
Consistent Data Replication
in Mobile Ad Hoc Networks

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur Erlangung der
Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Jörg Hähner

aus Düsseldorf

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Alejandro P. Buchmann, Ph. D.

Tag der mündlichen Prüfung: 19.10.2006

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2007

2

Contents

Abstract 17

Zusammenfassung 19

1 Introduction 31

1.1 Motivation . 31

1.2 Problem Statement and Contributions 33

2 Consistency and System Model 37

2.1 Consistency Model . 37

2.1.1 Chronological Ordering 39

2.1.2 Definition of Consistency 39

2.1.3 Examples of Executions 40

2.1.4 Using Update-Linearizability 43

2.2 System Model . 44

2.2.1 Communication between Nodes 44

2.2.2 Observation Jitter . 45

3 Basic Concepts and Data Structures 47

3.1 Basic Concepts for Deriving Chronological Ordering 47

3.2 Basic Concepts for Data Replication 50

3

4 CONTENTS

3.3 State Record . 51

3.4 Ordering Graph . 51

3.4.1 Adding Ordering Information 52

3.4.2 Reducing the Ordering Graph 53

3.4.3 Joining Ordering Information 60

3.4.4 Determining the Ordering of Update Requests 61

3.4.5 Ordering the State of Distinct Objects 64

3.4.6 Complexity of the Operations 65

4 Replication Algorithms 69

4.1 Algorithm 1: Full Replication 70

4.1.1 Update Operations . 70

4.1.2 Read Operations . 73

4.1.3 Correctness . 75

4.2 Algorithm 2: Partial Replication 79

4.2.1 Server Selection Algorithm 79

4.2.2 Dynamic Replica Allocation Algorithm 83

4.2.3 Update Operations . 84

4.2.4 Read Operations . 84

4.2.5 Correctness . 96

4.3 Transmission of the Ordering Graph 98

4.4 Removal of Objects from the Database 101

5 Performance Analysis 103

5.1 Methodology . 103

5.1.1 Performance Metrics 103

5.1.2 System Parameters . 105

5.2 Evaluation of the Observation Jitter 109

CONTENTS 5

5.2.1 Delay Jitter: Experimental Evaluation 109

5.2.2 Discussion . 113

5.3 Evaluating the Full Replication Algorithm 114

5.3.1 Evaluation using a Perfect MAC-Layer 114

5.3.2 Evaluation using a CSMA/CA MAC Protocol 117

5.3.3 The Impact of Mobility 126

5.3.4 The Impact of Transmission Failures 126

5.4 Evaluating the Partial Replication Algorithm 128

5.4.1 Operation Latency . 136

5.4.2 Success Ratio and Recency 137

5.4.3 Message Overhead . 138

5.4.4 The Impact of Mobility 139

5.4.5 The Impact of Transmission Failures 140

5.5 Comparison and Conclusion 142

6 Related Work 145

6.1 Consistency Models . 145

6.1.1 Consistency Models in Database Systems 145

6.1.2 Consistency in Distributed File Systems 147

6.1.3 Memory Consistency Models 148

6.1.4 Consistency in the Internet 150

6.2 Time Synchronization . 151

6.3 Data Replication in MANETs and Sensor Networks 153

6.4 Discussion . 154

7 Summary and Conclusions 157

6 CONTENTS

List of Figures

1 Zwei Aktualisierungsanforderungen mit max. Jitter (grau schat-

tiert) . 24

2 Beispiel eines Ordnungsgraphen 24

3 Durchschnittliche Latenz bei der Aktualisierung über der An-

zahl der DB-Knoten . 27

4 Durchschnittliche Lückengröße über der Anzahl der DB-Knoten. 28

2.1 Illustration of the different roles 38

2.2 Example executions . 41

3.1 Ordering of two packets at the receiver, with δcomm (shaded

grey) . 48

3.2 Overview of the update operation of the replication algorithms 51

3.3 Example of using lossless-reduce 54

3.4 Example of using lossy-k-reduce with k = 2 59

3.5 Example graph G for using occurredBefore 64

4.1 Overview of the update operation of Algorithm 1 71

4.2 Example graph after the ambiguity in the ordering has been

resolved by the algorithm. 77

4.3 Example of the message sequence when selecting a server . . . 82

4.4 Examples of DB nodes evaluating a client read snapshot . . . 82

7

8 LIST OF FIGURES

4.5 Example programs relevant for remote read operations 88

4.6 Possible re-ordering when reading the same object 89

4.7 Causal dependencies: events a and b are read requests, c and

d are read replies . 90

4.8 Examples for using the “process every reply on arrival” strategy. 93

4.9 Example of the message sequence when using a continuous

read operation . 95

4.10 Example of using only a subgraph for synchronization 100

5.1 Selection of observers for update requests 106

5.2 Setup for measuring the one-trip time 110

5.3 Communication to obtain the one-trip time 111

5.4 Histogram of the measured one-trip times 112

5.5 Average update success ratio using the collision-free MAC at

an update rate of 10/s . 116

5.6 Average update latency over number of db nodes using the

CSMA/CA MAC protocol . 119

5.7 Average update success ratio over number of DB nodes using

the CSMA/CA MAC protocol (higher is better). 120

5.8 The cause of accepting and rejecting updates with an update

rate of 5 update per second using the CSMA/CA MAC protocol.121

5.9 Average result recency over number of DB nodes using the

CSMA/CA MAC protocol (lower is better). 122

5.10 Cumulative distribution of the gaps for 120 DB nodes using

the CSMA/CA MAC protocol (x-axis is log-scale). 122

5.11 Fraction of rejected updates per DB node caused by insuffi-

cient ordering information using the CSMA/CA MAC protocol.123

5.12 Difference between message overhead (per update and DB node)

and update success ratio over the number of DB nodes using

the CSMA/CA MAC protocol. 124

LIST OF FIGURES 9

5.13 Average update latency in dependence of read and update rate.129

5.14 Mean number of DB nodes in dependence of read and update

rate. 130

5.15 Mean read latency in dependence of read and update rate. . . 131

5.16 Mean update success ratio in dependence of read and update

rate (higher is better). 132

5.17 Mean read success in dependence of read and update rate

(higher is better). 133

5.18 Mean update recency in dependence of read and update rate

(lower is better). 134

5.19 Mean read recency in dependence of read and update rate

(lower is better). 135

5.20 Messages sent per second and node 136

10 LIST OF FIGURES

List of Tables

3.1 Computational complexities of the graph operations 65

4.1 Possible combinations of roles on a node for algorithm 1. . . . 71

4.2 Comparison of the read operations with respect to statefull

DB nodes, programming support required, complexity of the

database sub-system, and latency 96

5.1 Parameters of the experiments to measure the delay jitter . . . 111

5.2 Parameters of the initial set of experiments 115

5.3 Update success ratio when using the collision-free MAC at an

update rate of 10/s (higher is better). 116

5.4 Result recency when using the collision-free MAC at an update

rate of 10/s (lower is better). 117

5.5 Average update latencies and standard deviation of accepted

update messages using the CSMA/CA MAC protocol. 118

5.6 Average number of hops and standard deviation of accepted

update messages using the CSMA/CA MAC protocol. 119

5.7 Average and standard deviation for the update success ratio

(higher is better), the update recency (lower is better), and

the update latency using the CSMA/CA MAC protocol with

80 DB nodes at variable node speed. 125

11

12 LIST OF TABLES

5.8 Average and standard deviation for the update success ratio

(higher is better), the update recency (lower is better), and

the update latency using the CSMA/CA MAC protocol with

80 DB nodes at various packet error probabilities. 127

5.9 Parameters used for all experiment with the partial replication

algorithm. 128

5.10 Average and standard deviation for the update success ratio

(higher is better), the read success ratio (higher is better), and

the read recency (lower is better) using the partial replication

algorithm with 80 DB nodes at variable node speed (5 update

and 5 read operations per second). 140

5.11 Average and standard deviation for the update success ratio

(higher is better), the read success ratio (higher is better), and

the read recency (lower is better) using the partial replication

algorithm with 80 DB nodes at variable packet error ratio (5

update and 5 read operations per second). 141

List of Algorithms

1 The add function . 52

2 The lossless-reduce function 55

3 Function to add transitive edges 57

4 The lossy-k-reduce function 60

5 The join function . 60

6 The occurredBefore predicate on ordering graphs 62

7 Observer-node Algorithm (phase 2) 72

8 Node-node algorithm (phase 3) 74

9 Algorithm for processing incoming update requests 85

13

14 LIST OF ALGORITHMS

Acknowledgements

First of all I would like to thank my advisor Kurt Rothermel for giving me

the opportunity to work on this dissertation in his group. I would also like to

thank him for his guidance and many fruitful discussions about my work. I

would also like to thank Alejandro Buchmann for his work as my co-advisor.

Many thanks go to my exceptional colleagues in the Distributed Systems

Group who helped me at countless occasions with valuable suggestions and

lots of motivation. In particular I would like to thank Christian Becker, Do-

minique Dudkowski, Marcus Handte, Pedro José Marrón, and Gregor Schiele

for many valuable discussions.

I would also like to thank the Gottlieb Damiler and Karl Benz Foundation

in Ladenburg for partially funding my work within the project ”Ladenburger

Kolleg – Living in a Smart Environment“.

15

16 LIST OF ALGORITHMS

Abstract

Mobile ad-hoc networks (MANETs) are used in situations where networks

need to be deployed immediately but no network infrastructure is available. If

MANET nodes have sensing capabilities, they can capture and communicate

the state of their surroundings, including environmental conditions or objects

in their proximity. If the sensed state information is propagated to a database

to build a consistent model of the real world, a variety of promising context-

aware applications becomes possible.

The models and concepts proposed in this dissertation can be applied

to cooperatively maintain a model of the state of physical world objects on

devices in MANETs. State information may be updated by independent ob-

servers either sequentially or concurrently. Applications that read the state

of any object from the model multiple times can rely on the guarantee that

every successive read operation will read either the same state information

or a newer state information that has been reported by an observer after

the previously read information. The first contribution of this dissertation

formalizes these requirements and defines a novel consistency model called

update-linearizability. Secondly, it introduces a new class of data replica-

tion algorithms that provably guarantees update-linearizability in MANETs

without using synchronized clocks on any pair of nodes in the system. The

presented algorithms allow to execute read and write operations at any time,

which provides high availability of data. These properties are even main-

tained in networks that are temporarily partitioned and where nodes are

highly mobile. Finally the dissertation provides a proof that all replicas held

in the system eventually converge towards the most recent state information

of the physical world objects which they represent.

17

18

Zusammenfassung

Die schnelle Entwicklung von eingebetteten Systemen, Kommunikations- und

Sensortechnologie hat zu vielfältigen Rechnersystemen geführt, mit denen

es möglich ist, Eigenschaften der physischen Welt zu überwachen. Je nach

Art der verwendeten Sensortechnologie ist es möglich, einfache physikalische

Größen, wie beispielsweise die Temperatur, oder auch komplexere Umge-

bungsinformationen, wie beispielsweise Bilder die von einer Kamera gelie-

fert werden, zu erfassen. Die Reichweite, mit der die eingesetzten Sensoren

Änderungen in der physischen Welt erfassen können ist jedoch beschränkt.

Eine Möglichkeit um größere Gebiete zu überwachen, ist die Verwendung von

mehreren Geräten mit Sensoren an verschiedenen Orten innerhalb des zu be-

obachtenden Gebietes. Jedes dieser Geräte kann nun lokal die zu messenden

Größen erfassen und diese Informationen mit anderen Geräten mittels draht-

loser Kommunikation austauschen. Diese verteilt gemessenen Informationen

können dann im Folgenden zu einem Modell des gesamten beobachteten Ge-

bietes zusammengefasst und verwaltet werden. Das daraus resultierende Mo-

dell der physischen Welt kann dann als Basis für eine Vielzahl von Beob-

achtungsanwendungen, wie beispielsweise das Planen und Durchführen von

Rettungseinsätzen [HRB04] genutzt werden.

In solchen Beobachtungsanwendungen spielt das Konzept der physischen

Zeit eine besondere Rolle, da Schlüsse häufig auf der Basis der chronologi-

schen Ordnung, in der Änderungen erfolgen, gezogen werden. Wenn beispiels-

weise an allen Türen in einem Gebäude Sensoren angebracht sind, mit deren

Hilfe festgestellt werden kann, in welche Richtung eine Person sich durch eine

Tür bewegt, dann kann eine Anwendung aus der jüngsten Sensorinformation

ableiten, in welchem Raum sich die Person befindet. Die Bezeichnung jüng-

19

20 ZUSAMMENFASSUNG

ste Information bezieht sich dabei direkt auf die chronologische Ordnung der

Sensorinformationen. Wenn eine Applikation die Beobachtungen bezüglich

der Zeitpunkte ordnen kann, zu denen sie passiert sind, dann kann die Posi-

tion einer Person korrekt ermittelt werden. Liegt diese Ordnung nicht korrekt

vor, dann kommt die Applikation möglicherweise zu falschen Schlüssen.

Neben der korrekten chronologischen Ordnung der Beobachtungen spielt

die kooperative Verwaltung von Sensorinformationen auf einer Menge von

Geräten eine wichtige Rolle. Diese Geräte können beispielsweise in einem

mobilen ad-hoc Netz (MANET), in dem keine dedizierte Kommunikations-

infrastruktur benötigt wird, organisiert sein. In diesem Fall kann es jedoch

vorkommen, dass Änderungen des gleichen Objektes von verschiedenen von-

einander unabhängigen Geräten erfasst werden. Mit dem Begriff Datenkonsi-

stenz wird allgemein die Widerspruchsfreiheit einer Datenmenge bezeichnet.

Bezogen auf die von verschiedenen Geräten erfassten Daten können Wider-

sprüche beispielsweise auftreten, wenn mehrere Kopien desselben Datenob-

jekts auf verschiedenen Geräten gespeichert werden. Aufgrund der Eigen-

schaften von MANETs können so genannte strikte Konsistenzanforderun-

gen aus dem Bereich der klassischen Datenbanksysteme nicht durchgesetzt

werden. Stattdessen werden in der Regel so genannte schwache Konsistenz-

modelle verwendet, um die Widerspruchsfreiheit der Daten zu beschreiben.

Hierbei wird durch die verwendeten Verfahren garantiert, dass alle Kopien

eines Datenobjektes in einen gemeinsamen Zustand konvergieren. Die For-

derung, dass die Kopien innerhalb des Netzes in irgendeinen gemeinsamen

Zustand konvergieren, reicht jedoch oft nicht aus. Wenn beispielsweise die

Folge von Schreiboperationen auf einem Objekt dazu dient, gemessene Tem-

peraturänderungen an einer Brücke zu speichern, dann ist es wichtig, dass

diese Änderungen auch in der Reihenfolge gespeichert werden, in der sie

tatsächlich aufgetreten sind, d.h. in chronologischer Ordnung. Wird bei der

Ausführung der Operationen die chronologische Ordnung eingehalten, dann

kann durch das Lesen des Datenobjekts zum Beispiel festgestellt werden, ob

die Temperatur gestiegen oder gefallen ist. Werden die Änderungen der Tem-

peratur nicht in chronologischer Ordnung gespeichert, so ist es nicht möglich

diese Schlüsse korrekt zu ziehen. Als nächstes wird ein Konsistenzmodell vor-

gestellt, welches die chronologische Reihenfolge von Aktualisierungen berück-

ZUSAMMENFASSUNG 21

sichtigt. Der dann vorgestellte Replikationsalgorithmus garantiert, dass das

beschriebene Modell der Datenkonsistenz eingehalten wird.

Konsistenzmodell

In dem im Folgenden vorgestellten Konsistenzmodell [HRB04] können die

beteiligten Knoten eine oder mehrere der folgenden Rollen annehmen: Beob-

achter, Datenbankknoten und Klienten. Die Aufgabe von Beobachtern ist es,

den Zustand von Objekten der physischen Welt (kurz Objekte) mittels geeig-

neter Sensorik zu erfassen. Dazu müssen die Objekte eindeutig identifizier-

bar sein. Dies kann beispielsweise durch die Verwendung von elektronischen

Etiketten (RFID-Tags) wie etwa dem elektronischen Produktcode [epc] rea-

lisiert werden. Wenn ein Beobachter eine Zustandsänderung eines Objektes

erfasst, dann erzeugt er eine so genannte Aktualisierungsanforderung (upda-

te request), welche die Identität und den neuen Zustand des entsprechenden

Objektes enthält. Diese Aktualisierungsanforderung wird dann vom Beob-

achter an alle in der Nähe befindlichen Datenbankknoten versandt. Die Da-

tenbankknoten (kurz DB-Knoten) sind im Folgenden dafür verantwortlich,

den jeweils aktuellsten Zustand von jedem Objekt im Sinne der chronolo-

gischen Ordnung zu verwalten. Zur Beantwortung von Anfragen halten sie

eine Kopie des Zustands von jedem Objekt. Somit können Anfragen von je-

dem DB-Knoten direkt beantwortet werden. Klienten sind Anwendungen,

die ausschließlich Leseoperationen auf den erfassten Zustandsinformationen

ausführen.

Da es in verteilten Systemen keine exakte globale Zeit gibt, können Beob-

achtungen verschiedener Beobachter nur mit begrenzter Genauigkeit geord-

net werden. Aus diesem Grund wird die so genannte geschieht-vor Relation

(occurred-before) definiert, um Aussagen über die chronologische Ordnung

von Operationen machen zu können:

Definition 1 (geschieht-vor):

Seien u und u′ zwei Aktualisierungsanforderungen. Definitionsgemäß gilt: u

geschieht-vor u′, genau dann wenn tobs(u
′)− tobs(u) > δ mit δ > 0. Die Zeit

tobs(u) bezeichnet dabei den Zeitpunkt, zu dem die Beobachtung gemacht

22 ZUSAMMENFASSUNG

wurde, welche in u beschrieben ist.

In dieser Definition ist der Parameter δ ein Systemparameter, der die

mögliche Genauigkeit der chronologischen Ordnung von zwei Aktualisierungs-

anforderungen angibt. Je kleiner δ ist, umso genauer ist die geschieht-vor Re-

lation, da nur solche Aktualisierungsanforderungen geordnet werden können,

die mindestens δ Zeit auseinander liegen. Wenn zwei Aktualisierungsanfor-

derungen weniger als δ auseinander liegen, dann spricht man von nebenläufi-

gen Anforderungen. Diese Nebenläufigkeit wird als u || u′ notiert. Das in

dieser Arbeit vorgestellte Konsistenzmodell Update-Linearisierbarkeit ord-

net die Aktualisierungsanforderungen aller Beobachter auf der Basis der

geschieht-vor Relation. Informell ausgedrückt wird garantiert, dass ein Kli-

ent, der einmal den Zustand eines Objektes gelesen hat, bei einer folgen-

den Leseoperation entweder denselben Zustand liest oder einen aktuelleren

im Sinne der geschieht-vor Relation. Die formale Definition der Update-

Linearisierbarkeit beruht auf der Existenz so genannter Serialisierungen der

verteilten Ausführung von Aktualisierungsanforderungen und Leseoperatio-

nen und ist wie folgt definiert.

Definition 2 (Update-Linearisierbarkeit):

Eine Ausführung von Leseoperationen und Aktualisierungsanforderungen ist

konsistent, wenn es eine Serialisierung S dieser Ausführung gibt, die folgende

Bedingungen erfüllt:

(C1) Alle Leseoperationen eines einzelnen Klienten auf einem einzelnen Ob-

jekt sind in S gemäß der Programmordnung des Klienten geordnet.

(C2) Für jedes Objekt x und jedes Paar von Aktualisierungsanforderungen

u[x] und u′[x] auf x in S gilt: u′[x] ist ein (direkter oder indirekter) Nachfol-

ger von u[x] in S, wenn u[x] geschieht-vor u′[x] oder u[x] || u′[x] gilt.

(C3) Für jedes Objekt x in der Datenbank hält S die Spezifikation einer

einzigen Kopie von x ein.

Die Update-Linearisierbarkeit sichert zu, dass Klienten, die Kopien eines

Objektes lesen, die Sicht auf ein einzelnes Objekt erhalten. Die Definition ver-

langt, dass auf dieser logischen Kopie der Datenbank alle Aktualisierungsan-

forderungen gemäß der geschieht-vor Relation ausgeführt werden. Basierend

auf dem vorgestellten formalen Konsistenzmodell beschreiben wir im Fol-

ZUSAMMENFASSUNG 23

genden nun einen Replikationsalgorithmus, welcher die die Einhaltung der

Update-Linearisierbarkeit garantiert. Innerhalb der gesamten Arbeit wird ein

weiterer Algorithmus vorgestellt, der die Informationen auf einer Teilmenge

aller im Netz befindlichen Knoten repliziert.

Algorithmen und Datenstrikturen

Der im folgenden beschriebene Replikationsalgorithmus [HRB04] dient da-

zu, den Zustand von jedem beobachteten Objekt auf allen DB-Knoten zu

replizieren. Das zugrunde liegende Rechnernetz besteht aus Knoten, die mo-

bil sein können und die Rollen von Beobachtern, DB-Knoten oder Klien-

ten einnehmen. Jeder Knoten, der die Rolle eines Klienten inne hat, nimmt

automatisch auch die Rolle eines DB-Knoten wahr. Damit ist es einerseits

möglich, dass Klienten ihre Leseoperationen lokal, d.h. ohne Kommunika-

tion über das Netz, ausführen können. Auf der anderen Seite müssen Ak-

tualisierungen an alle DB-Knoten verteilt werden. Die Rolle des Beobach-

ters kann von einem Knoten entweder exklusiv wahrgenommen werden oder

mit der Rolle des DB-Knoten kombiniert werden. Der Replikationsalgorith-

mus ordnet Aktualisierungsanforderungen basierend auf den Zeitpunkten zu

denen sie von DB-Knoten in direkter Kommunikationsreichweite der erzeu-

genden Beobachter empfangen werden. Daher ist der Wert des Parameters

aus der Definition der geschieht-vor Relation von der maximalen Schwan-

kung (Jitter) der Kommunikationsverzögerung auf einer einzigen Teilstrecke

(single-hop) im Netz abhängig. Wird für den Parameter δ die maximalen

Schwankung auf einer Teilstrecke gewählt (dargestellt in Abbildung1), so

kann anhand der Empfangszeitpunkte die Ordnung der Aktualisierungsan-

forderungen nach der geschieht-vor Relation bestimmt werden. Knoten, wel-

che die Rolle eines DB-Knoten innehaben, benötigen physische Uhren, die

jedoch nur der lokalen Zeitmessung dienen und deshalb nicht untereinander

synchronisiert sein müssen.

Der Zustand einzelner Objekte wird von Beobachtern in Aktualisierungs-

anforderungen abgespeichert. Eine Aktualisierungsanforderung ist ein 4-Tupel

(Obj , State,Obs , SN) und enthält Informationen über ein Objekt mit der

Identität Obj . Der gespeicherte Zustand des Objektes wird als State be-

24 ZUSAMMENFASSUNG

Observer 1 DB Node Observer 2

t

u1

u2

tu1

tu2

t3

t2

t1

Abbildung 1: Zwei Aktualisierungsanforderungen mit max. Jitter (grau schat-

tiert)

u1 u5u4

u2

u3

add

Abbildung 2: Beispiel eines Ordnungsgraphen

zeichnet und wurde von dem Beobachter Obs erfasst und versandt. Zu je-

der Aktualisierungsanforderung vergibt der Beobachter eine streng monoton

wachsende Sequenznummer SN . Damit kann die Ordnung von Aktualisie-

rungsanforderungen desselben Beobachters gemäß der geschieht-vor Relation

anhand der jeweiligen Sequenznummern festgestellt werden. Um die Relati-

on zwischen Aktualisierungsanforderungen von verschiedenen Beobachtern

ableiten zu können, müssen zusätzliche Ordnungsinformationen erfasst und

verwaltet werden. Dazu wird ein so genannter Ordnungsgraph verwendet.

Jeder Knoten in diesem Graph stellt eine lokal bekannte Aktualisierungsan-

forderung dar. Die gerichteten Kanten zwischen den Knoten repräsentieren

Elemente der geschieht-vor Relation. Wenn eine Kante (u, u′) zwischen zwei

Aktualisierungsanforderungen u und u′ im Graphen existiert, dann heißt das,

dass u vor u′ in der geschieht-vor Relation liegt.

Abbildung 2 zeigt ein Beispiel eines Ordnungsgraphen, in dem zunächst

die Aktualisierungsnachrichten u1 bis u4 enthalten sind. Aus diesem Graph

lässt sich ablesen, dass u1 das kleinste Element gemäß der geschieht-vor Re-

ZUSAMMENFASSUNG 25

lation in diesem Graphen ist. Das heißt, bei u1 handelt es sich in der chro-

nologischen Ordnung um die älteste bekannte Aktualisierungsanforderung.

Die Aktualisierungen u2 und u3 sind in der chronologischen Ordnung jünger

als u1, können aber untereinander nicht verglichen werden. Die Anforderung

u4 ist gemäß der dargestellten Ordnung jünger als u2 und u3 und damit

auch jünger als u1. Zusätzlich zum Ordnungsgraphen sind die Operationen

add und join definiert, die es ermöglichen, Ordnungsgraphen zu verarbei-

ten und aus ihnen Schlüsse über die geschieht-vor Relation zwischen Ak-

tualisierungsanforderungen unterschiedlicher Beobachter zu ziehen. Die add

Operation dient dazu, eine neue Aktualisierungsanforderung in den Graphen

einzuordnen, d.h. einen neuen Knoten und Kanten in einen bestehenden Gra-

phen einzufügen. Damit die so erzeugte Ordnungsinformation konsistent mit

der Beobachtungsreihenfolge in der physischen Welt ist, wird die add Ope-

ration nur angewandt, wenn die beiden folgenden Bedingungen erfüllt sind.

Basierend auf der Diskussion des Parameters δ, muss die Aktualisierungs-

anforderung auf einem DB-Knoten direkt von einem Beobachter empfangen

werden. Zusätzlich darf in der Zeitspanne der Länge δ vor dem Empfang

der Aktualisierungsnachricht keiner weiten Aktualisierungsnachricht von ei-

nem anderen Beobachter für dasselbe Objekt empfangen worden sein. In

Abbildung 2 wird die Anwendung der add Operation anhand der Aktualisie-

rungsanforderung u5 veranschaulicht. Die join Operation dient dazu, Ord-

nungsinformationen, die von unterschiedlichen DB-Knoten erfasst wurden,

konsistent zu vereinigen. Dazu werden die Knoten- und die Kantenmengen

der beiden Graphen vereinigt. Sowohl die add als auch die join Operation

enthalten darüber hinaus Optimierungen, welche die Größe der Graphen re-

duzieren. Die Reduktion garantiert, dass ein Graph maximal einen Knoten

pro Beobachter — den jeweils aktuellsten — enthält. Der Replikationsal-

gorithmus, der im Folgenden vorgestellt wird, garantiert zu jeder Zeit die

Einhaltung der Update-Linearisierbarkeit. Ein DB-Knoten, der eine Aktuali-

sierungsanforderung für ein Objekt x direkt von einem Beobachter empfängt,

überprüft zunächst die oben beschriebenen Voraussetzungen für die Anwen-

dung der add Operation. Wenn möglich, wird die add Operation auf den

lokal gespeicherten Ordnungsgraphen für das Objekt x angewandt und der

bisher gespeicherte Zustand des Objektes mit dem neu empfangenen Zustand

26 ZUSAMMENFASSUNG

ersetzt. Nachdem dies durchgeführt wurde, wird die Aktualisierungsanforde-

rung zusammen mit einer Kopie des zugehörigen lokalen Ordnungsgraphen

an alle direkt benachbarten DB-Knoten verschickt. Empfängt ein DB-Knoten

eine Aktualisierungsanforderung für ein Objekt x zusammen mit einem Ord-

nungsgraphen wird im Algorithmus zunächst das Resultat der join Operation

— angewandt auf den empfangenen und den lokal gespeicherten Graphen —

gespeichert. Damit erhält der DB-Knoten neue Ordnungsinformationen. Als

nächstes muss der Algorithmus entscheiden, ob die empfangene Aktualisie-

rungsanforderung gespeichert, und damit der bisher gespeicherte Zustand des

Objekts x überschrieben werden soll. Anders formuliert muss nun überprüft

werden, ob der empfangene Objektzustand — enthalten in der Aktualisie-

rungsanforderung — aktueller ist als der bisher gespeicherte. Dazu müssen

im Algorithmus drei Fälle unterschieden werden. Wenn das Objekt x bisher

unbekannt war, d.h. es wurde bisher keine Aktualisierungsanforderung für

x empfangen, dann kann der Zustand angenommen werden. In dem Fall, in

dem sowohl der momentan gespeicherte Zustand als auch der empfangene

Zustand von x von dem selben Beobachter erfasst wurde, kann über einen

Vergleich der Sequenznummern in den dazu gehörigen Aktualisierungsanfor-

derungen entschieden werden, welcher von beiden Zuständen aktueller ist.

Im dritten Fall, wenn die empfangene und die bereits gespeicherte Aktuali-

sierungsanforderung von unterschiedlichen Beobachtern stammen, wird der

Ordnungsgraph von x verwendet, um über die Speicherung der empfangenen

Informationen zu entscheiden.

Leistungsbewertung

Im Folgenden werden ausgewählte Ergebnisse von Simulationsexperimenten

präsentiert, welche die Leistungsfähigkeit des Replikationsalgorithmus ver-

anschaulichen. Hierzu sollen insbesondere zwei wichtige Metriken, die Ak-

tualisierungslatenz und die so genannte Lückengröße zwischen zwei auf einer

physischen Kopie durchgeführten Aktualisierungen, betrachtet werden. Die

Aktualisierungslatenz beschreibt die Zeit, die zwischen dem Versenden ei-

ner Aktualisierungsanforderung durch einen Beobachter und dem Empfang

derselben Anforderung auf einem DB-Knoten vergeht. Dabei werden nur sol-

ZUSAMMENFASSUNG 27

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 50 100 150 200 250

db nodes

av
g

. u
p

d
at

e
la

te
n

cy
 [

s]

rate 1

rate 2

rate 5

rate 10

Abbildung 3: Durchschnittliche Latenz bei der Aktualisierung über der An-

zahl der DB-Knoten

che Anforderungen betrachtet, die tatsächlich zur Ausführung kommen, d.h.

in diesen Fällen kann eindeutig entschieden werden, dass die empfangene

Anforderung einen aktuelleren Zustand enthält als der momentan auf dem

DB-Knoten gespeicherte Zustand. Zur Laufzeit kann es zu Situationen kom-

men, in denen Nachrichten nicht bei allen DB-Knoten ankommen. Dieser Fall

tritt beispielsweise ein, wenn das Netz durch die Bewegung mobiler Knoten

zeitweise partitioniert wird. So kann es dazu kommen, dass einem DB-Knoten

eine Aktualisierungsanforderung nicht ausführt, obwohl der darin enthalte-

ne Zustand aktueller im Sinne der geschieht-vor Relation ist als der mo-

mentan gespeicherte. In diesen Fällen entsteht eine so genannte Lücke, d.h.

der DB-Knoten hätte mit vollständigem Wissen einen aktuelleren Zustand

gespeichert. Die Lückengröße bezeichnet wie viele solcher Aktualisierungs-

anforderungen hintereinander auf einem DB-Knoten nicht zur Ausführung

kamen und ist damit eine Metrik für die Aktualität der auf DB-Knoten ge-

speicherten Informationen.

Die Messungen der beschriebenen Metriken wurden im Simulator ns2 [ns2]

durchgefhrt. In den durchgeführten Simulationen wird eine Fläche von 500 x

28 ZUSAMMENFASSUNG

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 50 100 150 200 250

db nodes

re
ce

n
cy

rate 1

rate 2

rate 4

rate 5

rate 6

rate 8

rate 10

Abbildung 4: Durchschnittliche Lückengröße über der Anzahl der DB-

Knoten.

500 m2 zugrunde gelegt, auf der insgesamt 100 Beobachter platziert sind. Als

Sendereichweite wird 100 m und als Datenübertragungsrate wird 1 Mbit/s

angenommen. Die Anzahl der DB-Knoten wird in verschiedenen Experimen-

ten zwischen 40 und 200 variiert. Diese Knoten bewegten sich nach dem so

genannten random waypoint Mobilitätsmodell [BMJ+98] mit einer Geschwin-

digkeit zwischen 1 und 2 m/s. Die Rate, mit der Aktualisierungsanforderun-

gen erzeugt werden, variiert zwischen einer und zehn Aktualisierungen pro

Sekunde (systemweit).

Beispielhaft zeigt Abbildung 3 Ergebnisse für die durchschnittliche Ak-

tualisierungslatenz über der Anzahl der DB Knoten. Jede einzelne Kurve

stellt dabei die Ergebnisse für verschiedene Aktualisierungsraten dar. Bei

großen Aktualisierungsraten lässt sich ein starker Anstieg der Latenz, bedingt

durch die steigende Netzlast, beobachten. In Abbildung 4 ist beispielhaft die

durchschnittliche Lückengröße in den entsprechenden Szenarien dargestellt.

Mit steigender Aktualisierungsrate und damit steigender Netzlast lässt sich

beobachten, dass die Größe der Lücken zwischen Paaren von akzeptierten

Aktualisierungen wächst.

ZUSAMMENFASSUNG 29

Zusammenfassung

Mit den Methoden und Verfahren, die in dieser Arbeit vorgestellt werden,

lassen sich Modelle der physischen Welt auf den Knoten von mobilen ad-hoc

Netzen verwalten. Das vorgestellte Konsistenzmodell berücksichtigt dabei die

chronologische Ordnung zwischen den verschiedenen Aktualisierungen eines

beobachteten Objektes. Insbesondere wird garantiert, dass eine Leseoperati-

on niemals einen Wert als Ergebnis liefert, der älter als das Ergebnis einer

früheren Leseoperation auf dem selben Objekt ist. Die präsentierten Algo-

rithmen verwenden zum Ableiten der chronologischen Ordnung keine syn-

chronisierten Uhren und garantieren das Konsistenzmodell. Die hierzu not-

wendige Annahme erfordert, dass die Schwankung (jitter) der Kommunikati-

onsverzögerung auf einer einzelnen Teilstrecke im Netz nach oben beschränkt

ist.

Die Leistungsbewertung zeigt, dass die Algorithmen sich in einer Viel-

zahl von Szenarien anwenden lassen. In Szenarien, bei denen die Netzlast

insgesamt niedrig ist, ist die Aktualität der gelesenen Informationen nahe an

den global aktuellsten Werten. Bei höherer Netzlast sinkt die Aktualität der

gelesenen Informationen ab. Es ist jedoch erkennbar, dass die Datenobjekte

selbst bei hoher Last regelmäßig aktualisiert werden.

Basierend auf den vorgestellten Konzepten und Algorithmen lassen sich

Systeme entwickeln, die

• den Zustand der physischen Welt erfassen und speichern,

• die chronologische Ordnung zwischen Zustandswechseln von Objekten

erfassen,

• keine Netzinfrastruktur benötigen und

• keine synchronisierten Uhren benötigen.

Anwendungen in solchen Systemen können die verwalteten Informationen

dazu verwenden, um auf Änderungen in der physischen Welt zu reagieren

und ihre Funktionalität darauf hin anzupassen.

30 ZUSAMMENFASSUNG

Chapter 1

Introduction

1.1 Motivation

The rapid development of embedded systems, (wireless) communication and

sensor technologies has lead to a manifold class of small computing devices

which can be used to unobtrusively monitor properties of their physical sur-

roundings. Depending on the sensor technology the properties that may be

monitored range from basic physical quantities in the surroundings, e.g. tem-

perature, to complex environmental information, for example, images cap-

tured by a camera. However, all sensor technologies have in common that

their sensing range is limited. One solution to enable the monitoring of spa-

tial areas which are larger than the sensing range of an individual sensor is to

network multiple devices with sensors at different locations. Each individual

device can then monitor local properties and exchange this information with

other devices in order to create a model of the physical surroundings from

the union of all sensors in the system. This model of the physical surround-

ings is an important basis for different classes of applications that need to

respond to changes in the physical world. It is, for example, important in

a rescue scenario [HRB04] where a group of fire fighters needs to coopera-

tively extinguish a fire in a large spatial area. Other application examples

include tracking the position of people or objects, e.g., [WJH97, MHR01],

adaptive home and office automation, e.g., [HL01], the structural surveil-

31

32 CHAPTER 1. INTRODUCTION

lance of buildings in order to automatically detect damage, e.g., [MLM+05],

or driver assistance systems based on information gathered in networks that

span multiple vehicles, e.g., [MLM+05].

In such monitoring applications, the concept of physical time is funda-

mental for reasoning about the coherence of changes to objects in the physical

world. Given that, for example, all doors in a building are equipped with

sensors that detect individuals passing through. If these sensors also detect

the direction in which people walk through a door, the collected information

can be used to retrieve the position of persons in the building by looking at

which sensor reported most recently about them. The question which sensor

reported “most recently” directly refers to the order of observations accord-

ing to physical time. If an application is able to order the observations of

sensors according to the time at which they occurred, it can correctly de-

rive the position of a person. If, however, that order is not preserved in the

system, the application may come to a false conclusion.

Besides the correct ordering, the cooperative management of information

across multiple devices is important since many applications need to reason

about the situation in their complete operational environment and not only

in their vicinity which may be monitored with local sensors. Consider, for ex-

ample, the group of fire fighters in the rescue mission who have to coordinate

their individual tasks in order to achieve the superior goal of fighting a forest

fire. Sub-tasks of the workers include securing a part of the operational area.

Here, they benefit from information describing the temperature at different

locations in the sub-area they are responsible for. Additionally, they need

to monitor the state of equipment, such as water pumps, in order to react

to failure of equipment. Beyond the individual sub-tasks, groups of workers

need information about the state of equipment and coworkers in surround-

ing areas. This is essential to react promptly, if the situation in other parts

of the operational environment becomes critical, e.g., when the direction of

the wind changes in the case of a forest fire and a close-by coworker needs

support. To be able to access the necessary information, it needs to be col-

lected by and shared between the workers. In that sense, the fire fighters

and their equipment may be augmented by appropriate sensors, computing

1.2. PROBLEM STATEMENT AND CONTRIBUTIONS 33

devices, and communication technology that allow to collect the information

at face and to distribute it among the workers giving each one the necessary

information to reason about what to do.

One important communication paradigm for networking devices in such

future systems is the paradigm of mobile ad-hoc networks (MANETs) [Sto02]

where devices can communicate spontaneously with each other without us-

ing a pre-installed communication infrastructure such as a mobile phone net-

work like GSM or UMTS. Using infrastructure-less systems like MANETs

bears two major advantages. First, MANETs may operate in locations

where no communication infrastructure is available or has been destroyed.

Secondly, they support the management of information that has local rel-

evance [BBH02] such as information from nearby co-workers in the rescue

scenario by design since close-by devices exchange information directly. Ad-

ditionally, information can be distributed over larger distances than the com-

munication range of a single device using multi-hop communication.

In summary it can be concluded that data models which contain informa-

tion about observations made in the physical world will provide an important

basis for applications in order to adapt their behavior to changes of the model

and thus to changes in the physical world. Due to the limited sensing range

of individual sensors multiple devices will be used to make observations in

larger spatial areas. Using MANETs to network these devices suits the re-

quirement of many monitoring applications well, since the monitoring area

of interest can easily be covered with a MANET even if a pre-installed net-

working infrastructure is not available.

1.2 Problem Statement and Contributions

From the previous scenario it can be derived that it is necessary to consis-

tently manage the information about the state of physical world objects. In

particular this involves to maintain the order of changes according to physical

time which becomes particularly difficult, if the observations are sensed by

independent devices. Therefore it is required to develop appropriate mech-

anisms to order physical world observations in a distributed system with

34 CHAPTER 1. INTRODUCTION

respect to physical time. In the case of independent devices these observa-

tions are causally unrelated since the observations occur outside the system.

In the described rescue scenario this happens, for example, if the temperature

at a certain location is first measured by one fire fighter and then later on by

one of his co-workers. Both measure the temperature at the same location.

However, the reportings of the temperature values need to be ordered ac-

cording to physical time to derive whether there was an increase or decrease

of temperature at the observed location.

The results of this dissertation can be used to build and maintain a model

of the physical world which describes the state of (real) objects in a given

spatial area on the devices in a MANET. The objects are monitored by mo-

bile devices equipped with sensors (so-called observers) which are located in

the spatial area. The state information of objects is maintained coopera-

tively on mobile devices which assemble a MANET. State information may

be updated by independent observers either sequentially or concurrently. Ap-

plications that read the state of any object from the model multiple times

can rely on the guarantee that every successive read operation will read ei-

ther the same or a more recent state information that has been reported

by an observer after the previously read information. The first contribution

of this dissertation formalizes these requirements and defines a novel consis-

tency model called update-linearizability. Secondly, it introduces a new class

of data replication algorithms that provably guarantees update-linearizability

in MANETs without using synchronized clocks on any pair of nodes in the

system. The presented algorithms allow to execute read and write opera-

tions at any time, which provides high availability of data. These properties

are even maintained in networks that are temporarily partitioned and where

nodes are highly mobile. Finally the dissertation provides a proof that all

replicas held in the system eventually converge towards the most recent state

information of the physical world objects which they represent.

Classification

The models and algorithms which are presented in this dissertation are in the

intersection of three areas of research: the chronological ordering of events

1.2. PROBLEM STATEMENT AND CONTRIBUTIONS 35

in distributed systems, data replication, and data consistency. One of the

first approaches that comes to mind for deriving the chronological order-

ing between pairs of events is the use of synchronized physical clocks and

timestamps. However, the effort needed to maintain the synchronicity of

potentially all clocks in the system is high. This makes traditional time

synchronization algorithms like NTP [Mil94], which originated in wired net-

works, unattractive for energy-constrained wireless networks like wireless

sensor networks (WSN) [ER03]. There are, however, clock synchroniza-

tion schemes especially designed for wireless ad-hoc and sensor networks,

e.g., [Röm01,EGE02], that take limitations of resources like bandwidth and

energy into account. Unfortunately, the maximum time synchronization error

between any pair of nodes in the system depends on two potentially unknown

system parameters: the maximum number of hops between nodes (the net-

work diameter), and the duration of disconnection between nodes, e.g., the

time network partitions prevail. Therefore, we introduce a novel approach

that allows to derive chronological ordering between events that occur in the

physical world with constant accuracy. In this approach the chronological

ordering is derived from the order in which messages are received via a single

hop in the network.

Increasing the availability of data and the overall system performance are

two of the major reasons for using replication techniques. Depending on the

particular replication method used, it is possible to continue operation in the

presence of server failures or network partitioning. If there exists only one

physical copy of a logical data item (non-replicated case) each access to a

logical object corresponds to one access to a physical object. If, however, mul-

tiple physical copies of a logical object exist (replicated case), operations on a

logical object can, in general, map to different sets of operations on the under-

lying physical objects. The read-one-write-all approach [BG84], for example,

may map a read operation on a logical object to any one of the physical copies

while write operations are executed on all physical copies. Obviously, the or-

der in which operations on the physical copies of a data object are executed

impacts the result of the operations on logical objects. Consistency models

are therefore used to specify the correct behavior of accessing replicated data

objects. In the area of (distributed) databases, numerous replication manage-

36 CHAPTER 1. INTRODUCTION

ment algorithms have been proposed to achieve one-copy consistency (e.g.,

see [BHG87]). The goal of these approaches is to make the system behave as

if only one copy existed. However, applying these algorithms in MANETs,

where network partitioning may occur frequently [HDMR04], would result

in reduced availability of data, while also incurring unacceptably high com-

munication overhead and latencies. For many applications the availability of

data is more important than strong consistency, as in the scenario described

above. This fact has lead to the definition of weaker consistency levels in var-

ious areas, such as directory systems, e.g., [Nee93], distributed file systems,

e.g., [Sat93], or database replication, e.g., [DGH+87, KC00]. However, the

consistency models used in these areas do not consider the temporal order-

ing of operations. Instead, they use, for example, any order as long as it is the

same for all copies [KC00]. In this dissertation we define a novel consistency

model which provides chronological ordering guarantees between operations

on a data object. The model belongs to the class of weak consistency mod-

els and thus the replication algorithms presented in this dissertation achieve

high availability of data even in networks that change dynamically over time

or that are temporarily partitioned.

Outline of the Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 gives a

formal definition of the novel consistency model update-linearizability along

with the system model used for the remainder of this work. Chapter 3 first

provides an overview of the approach followed to derive chronological or-

dering. Next, two important data structures, namely the state record and

the ordering graph, that are necessary for storing state information about

physical objects and temporal ordering information in the system are pre-

sented. Chapter 4 describes two data replication algorithms that provably

guarantee update-linearizability and use the data structures presented earlier.

Chapter 5 presents simulation results that compare the performance of the

replication algorithms. Chapter 6 discusses the related work. The disserta-

tion closes with a summary of the presented contributions and an outlook to

possible future work.

Chapter 2

Consistency and System Model

A formal model that defines the correct ordering of events that occur in

the physical world is important since it defines a correctness criteria for

algorithms. Thus, algorithms that guarantee a particular consistency model

provide valuable guarantees to application programmers. Therefore, we first

define the consistency model called update-linearizability [HRB04, HBM04]

in this chapter. Since the basis for the ordering of events is physical time

in the context of this work, the definition of consistency is preceded by a

formal definition of chronological ordering. Following the definition of update-

linearizability, we introduce the system model for which the algorithms in the

remainder of this work are developed.

2.1 Consistency Model

The goal of the consistency model presented next is to order events in the

physical world according to the physical time at which they occurred. As

illustrated in Figure 2.1, the model defines the roles of perceivable objects

(objects for short), observers, clients, and database nodes (DB nodes).

Objects are physical world objects that can be uniquely identified by ap-

propriate sensor technology. Observers use sensors to identify and monitor

the state of perceivable objects in their vicinity. They create so-called update

requests whenever the state of an object in their vicinity changes significantly.

37

38 CHAPTER 2. CONSISTENCY AND SYSTEM MODEL

DB nodes

Observer 1 Observer n

update request update request

Client mClient 1

read read

Perceivable Objects

Figure 2.1: Illustration of the different roles

Whether a state change is significant or not depends on the particular ap-

plication running in the system. Each observer has a unique identifier by

assumption. Update requests contain the the identifier and the new state of

the observed object. Clients are applications that read state information of

objects. This information is, for example, used to adapt the application be-

havior or to provide services to other nodes in the network. Finally, DB nodes

are responsible for storing object state information. Given that perceivable

objects are considered to be physical objects, the state information stored in

DB nodes is only updated upon changes detected by observers. Client nodes

may solely read the information provided.

The goal of the consistency model presented here is to prevent that clients

acquire state information that is older than what they have previously read.

This means that every state change of a physical world object which is read

by a client occurred in the order in which it was read. The opposite im-

plication, i.e., that every state change which occurred in the system can be

read by a client, is not guaranteed by the consistency model as a trade-off

to less stringent assumptions about the underlying system model and high

2.1. CONSISTENCY MODEL 39

availability of the data.

2.1.1 Chronological Ordering

Due to the lack of exact global time in distributed systems, the chronological

order of update-requests being created by different observers can be captured

only with limited accuracy. We define the occurred-before relationship for

update-requests, which is a relaxation of exact chronological ordering, as

follows.

Definition 1 (occurred-before). Let u and u′ be two update requests. Then

u occurred-before (<) u′ iff tobs(u
′) − tobs(u) > δ, where δ > 0 and tobs(u)

denotes the physical time at which the state change leading to the generation

of u occurred in the physical world.

The parameter δ defines how accurate the chronological ordering of state

changes can be captured in a given system. It is important for applications

because it defines the minimum temporal distance between any pair of state

changes which is necessary to determine their correct chronological ordering.

If neither u < u′ nor u′ < u, then u and u′ are said to be concurrent,

denoted as u‖u′. For concurrent update requests it cannot be guaranteed

that correct chronological ordering is captured. The magnitude of δ depends

on the system mechanisms used to determine the order of update requests.

The approach used in this work will be introduced Section 3.1.

2.1.2 Definition of Consistency

The formal definition of update-linearizability comprises the idea that for an

execution of operations there exists a totally ordered serialization against

a single logical image of all DB objects and each client sees a view of the

objects that is consistent with the logical image. It guarantees that updates

are only performed in the occurred-before order within the serialization. Fur-

thermore, the definition guarantees that read operations of a single client

40 CHAPTER 2. CONSISTENCY AND SYSTEM MODEL

for a single object are ordered according to each client’s program order. As

a consequence, update-linearizability guarantees that a client never reads a

value that is older than any value it has read before for the same object. The

formal definition of the consistency model is given as:

Definition 2 (update-linearizability). An execution of the read and update

operations issued by clients and observers is said to be update-linearizable if

there exists some serialization S of this execution that satisfies the following

conditions:

(C1) All read operations of a single client on a single object in S are ordered

according to the program order of the client.

(C2) For each object x and each pair of update requests u[x] and u′[x] on x

in S: u′[x] is a (direct or indirect) successor of u[x] in S if u[x] < u′[x] or

u[x] ‖ u′[x].

(C3) For each object x in the database S meets the specification of a single

copy of x.

Once a client c has executed a read r1 that returned the result of an update

request u1 on a specific object x, conditions (C1) and (C2) guarantee that the

next read operation r2 of c on x returns at least the same result as r1 or some

result written by an update request u2, with u1 < u2 or u1‖u2. Additionally,

condition (C3) guarantees that each read operation returns the value of the

update operation, which precedes the read operation in the serialization.

2.1.3 Examples of Executions

Figure 2.2 shows examples of valid and invalid executions according to Defi-

nition 2. The notation u2[x]1 is used to describe an update request for object

x, that is created by observer O2 and that writes the state 1. r1[y]2 describes

a read operation of client C1 that reads object y and returns state 2. The

time axis runs from left to right.

The execution in Figure 2.2(a) is correct according to Definition 2. One

serialization that satisfies all conditions of Definition 2 is

2.1. CONSISTENCY MODEL 41

u1[x] 1

r
1
[x] 2

O1:

C2:

C1:

O2: u2[x] 2

r
2
[x] 2

r
1
[x] 1

t

(a) Valid example with one object

u
1
[x] 1

r
1
[x] 2

O1:

C2:

C1:

O2: u
2
[x] 2

r2[x] 2

r
1
[x] 1

r2[x] 1

t

(b) Invalid example with one object

u
1
[x] 1

r1[y] 1

O1:

C2:

C1:

O2: u
2
[x] 2

r2[y] 2

r1[x] 2

r
2
[x] 1

u1[y] 2

u2[y] 1

t

(c) Valid example with two objects

Figure 2.2: Example executions

42 CHAPTER 2. CONSISTENCY AND SYSTEM MODEL

Sa = (u1[x], r1[x]1, u2[x]2, r1[x]2, r2[x]2).

Condition (C1) of Definition 2 is maintained in Sa, because the read

operations of client C1 are executed according to the program order: r1[x]1

precedes r1[x]2. Since client C2 executes only one read operation, its program

order cannot be violated. At the same time, u1[x]1 precedes u2[x]2 in Sa. This

means that condition (C2) of Definition 2 is fulfilled, because u1[x]1 < u2[x]2

according to Definition 1 holds in the given example. Finally, condition (C3)

of Definition 2 holds, because each read operation returns the value of the

update request by which it is preceded in Sa.

In contrast to the previous example, Figure 2.2(b) shows an invalid execu-

tion. There exists no serialization of the execution that satisfies all conditions

of Definition 2. For example, the serialization

Sb = (u1[x]1, r1[x]1, r2[x]1, u2[x]2, r1[x]2, r2[x]2)

satisfies condition (C2), because the update requests are ordered accord-

ing to the physical time at which they were created by the observers. Under

the assumption that (C3) holds, i.e., each read operation returns the value

that has been written by the preceding update operation in the serializa-

tion, it can be concluded that the program order of client C2 is violated

(see Sb where r2[x]1 precedes r2[x]2). Consequently, if condition (C1) holds,

condition (C3) is violated. Given the partial serialization

S ′
b = (r1[x]1, r1[x]2, r2[x]2, r2[x]1)

of all read operations that fulfills condition (C1) and starts with the

program of client C1, there exists no way of inserting the update operations

into S ′
b without violating the other two conditions. Update u1[x]1 needs to

be inserted before the first read operation in S ′
b in order to fulfil condition

(C3) for r1[x]1. Additionally, u2[x]2 has to be inserted before r1[x]2 in order

to fulfil condition (C3) for that read operation, which results in the following

serialization

2.1. CONSISTENCY MODEL 43

S ′′
b = (u1[x]1, r1[x]1, u2[x]2, r1[x]2, r2[x]2, r2[x]1).

While condition (C2) is fulfilled for the update operations, condition (C3)

is violated for r2[x]1 (which returns 1 as the result), since the preceding

update operation in S ′′
b has written the value 2 to x. All permutations of

the read operations that fulfil condition (C1) and start with the program of

client C2 will require that u2[x]2 comes first in the serialization in order to

fulfil condition (C3). The consequence of this is, that condition (C2) will be

violated.

The example in Figure 2.2(c) is a valid execution with two objects, be-

cause update-linearizability is an object-local property and both clients read

each object only once. This means that condition (C1) will always be fulfilled.

A valid serialization for this execution is

Sc = (u1[x]1, r1[x]1, u2[x]2, r2[x]2, u2[y]1, r1[y]1, u1[y]2, r2[y]2)

which first orders all operations for object x and then all operations for

object y according to Definition 2.

2.1.4 Using Update-Linearizability

From the perspective of a programmer the concept of update-linearizability is

different from classical strict consistency models such as one-copy consistency

[BHG87].

Consider a program that monitors the state of an object, e.g. the tem-

perature of an object in a fire-fighting application. The task of the program

is to send a notification to another process if a temperature threshold is ex-

ceeded. Let statebelow be a value below and stateabove a value above a given

threshold. Definition 2 guarantees that if the monitoring process reads a

sequence statebelow then stateabove there was a state change from below the

threshold to above the threshold. The same holds respectively for reading

stateabove first and then statebelow. This means that the monitored state of

44 CHAPTER 2. CONSISTENCY AND SYSTEM MODEL

the object crossed the threshold in the observed direction, if the monitor-

ing process sends a notification. The opposite implication, i.e., that each

state change of the object causes a notification, is not guaranteed by the

consistency model. Computations that involve reading multiple objects may

be regarded as concurrent clients where one object is read by each client,

because update-linearizability is a local property for each object.

2.2 System Model

The system in which the algorithms presented in this work are assumed to

run consists of a set of nodes N . Each node is a programmable autonomous

system with at least a CPU, memory, and a bi-directional wireless commu-

nication interface. Nodes are initially deployed on a spatial area, the opera-

tional environment, and may be either mobile or stationary. Each node can

be in one or more of the following roles as depicted in Figure 2.1: observer,

client, and database node (DB node).

Besides the nodes in the network, other (physical) objects may be located

in the operational environment. These perceivable objects (objects) are not

nodes of the network and therefore do not receive or send packets. It is

assumed that these objects may be uniquely identified using appropriate

sensor technology, such as radio frequency identification tags (RFID tags,

e.g. [epc]). Furthermore, the state of these objects is monitored by observers

over time to detect state changes.

2.2.1 Communication between Nodes

Any node is able to exchange data packets directly with another node via

a single hop, if the spatial distance between them is less than rtx. The

parameter rtx depends on the particular communication technology used and

effects of radio propagation, such as the reflection or absorption of radio

waves in the operational environment. Given a particular node ni ∈ N and

a time t, the set of neighbors neighbors(ni, t) ⊆ N is defined as the set of all

nodes with whom ni is able to communicate with directly at time t using the

2.2. SYSTEM MODEL 45

send(m) primitive. We assume that the send primitive delivers a message

m to all neighbors of the sender with best-effort semantics.

A node may communicate with other nodes than its neighbors using a

multi-hop routing algorithm with uni-send(destination, m). The primitive

uni-send delivers the message m to a receiver with the unique address des-

tination with best-effort semantics.

A node may communicate with a group of other nodes using a multi-hop

multi-cast algorithm using multi-send(dest-group, m). The primitive sends

a message to a group of receivers (multi-cast group) specified by a group

address dest-group with best-effort semantics. Nodes may become part of

the multi-cast group at any time by using multi-attach(dest-group) and

leave the group by using multi-detach(dest-group). The well-known group

DBGRP represents the group of all DB nodes.

2.2.2 Observation Jitter

The approach for deriving the chronological ordering between update re-

quests is introduced in Section 3.1. It is influenced by two parameters of the

system: the jitter1 δcomm of the end to end communication delay between

two nodes in the network on a single hop using send and the jitter δsens of

the time it takes to observe a state change by means of sensors. The sum of

both terms is called observation jitter or δobs.

For the communication technology used, it is assumed that δcomm is

bounded and known. This can, for example, be achieved by using broadcast

communication on layer two of the protocol stack, where packets are not

repeated upon communication failures, sent within a bounded randomiza-

tion interval, and are queued in a finite interface queue. These requirements

are, for example, fulfilled by the specification of the IEEE 802.11 Standard

(distributed coordination function, [Boa97]) and the MAC implementation

provided with TinyOS [HSW+00], an operating system designed for wireless

sensor network platforms such as the Berkeley Motes [mot].

1Delay jitter is defined to be the maximum difference between delays experienced by
any two packets [ZK91].

46 CHAPTER 2. CONSISTENCY AND SYSTEM MODEL

Regarding the jitter imposed by sensor technology, we assume within this

work that δsens = 0, i.e., it always takes the same time to retrieve and process

data from the sensor hardware.

Chapter 3

Basic Concepts and Data

Structures

In this chapter, we introduce the basic concepts and the data structures

that are used within this dissertation for the development of the replication

algorithms presented in Chapter 4. The two main data structures are the

state record and the ordering graph. The state record reflects all information

necessary to represent an update request in the system. The ordering graph

is used to maintain information about the chronological ordering of update

requests created by different observers.

3.1 Basic Concepts for Deriving Chronologi-

cal Ordering

A frequently used approach for deriving the chronological ordering between

pairs of update requests is the use of synchronized physical clocks. Here,

timestamps are associated with the events by the sensors that captured the

data. The chronological ordering and the time elapsed between a pair of

events can simply be determined by comparing their associated timestamps.

This, however, requires that the clocks of the nodes in the network are syn-

chronized. This can be achieved by using infrastructures that provide accu-

rate time information, for example, the Global Positioning System (GPS), or

47

48 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

Observer 1 DB Node Observer 2

t

u1

u2

tu1

tu2

t3

t2

t1

(a) Unambiguous ordering possible

Observer 1 DB Node Observer 2

t

u1

u2

tu1
tu2

t4

t2

t1

t3

(b) Unambiguous ordering not guaranteed

Figure 3.1: Ordering of two packets at the receiver, with δcomm (shaded grey)

by using clock synchronization schemes. The GPS infrastructure, however, is

not available in indoor scenarios since it requires line of sight communication

with the GPS satellites. Clock synchronization can be either be performed

proactively (often periodically), e.g., [Mil94] or reactively using posteriori

synchronization, e.g., [Röm01]. Clock synchronization schemes especially

designed for wireless ad-hoc and sensor networks, e.g., [Röm01,EGE02], take

limitations of resources like bandwidth and energy into account. However,

the maximum time synchronization error between any pair of nodes in the

system depends on two potentially unknown system parameters: the maxi-

mum number of hops between nodes (the network diameter), and the dura-

tion of disconnection between nodes, e.g., the time network partitions prevail.

While the former may be critical in large networks, the latter plays a sig-

nificant role in sparsely connected networks with mobile nodes where events

that need to be correlated at some point in time occurred earlier on in two

distinct network partitions. Due to the practically inevitable clock drift, the

clocks in distinct network partitions will run at different speeds even if a

periodic synchronization of the clocks within each partition is carried out.

This leads to an offset between clocks that grows with the duration of the

disconnection periods.

In order to achieve ordering accuracy which is independent from the net-

work diameter and the age of information, we propose a novel concept for

determining the chronological ordering between update requests. Our ap-

proach is based on the order in which update requests are received by nodes

3.1. BASIC CONCEPTS FOR DERIVING CHRONOLOGICAL ORDERING49

in the network via a single-hop. The concept is based upon the assump-

tion that the jitter δcomm of the communication delay on a single-hop in the

network has an upper bound. Figure 3.1 shows two examples with two ob-

server nodes and one DB node each. In both cases, the two observers send

an update request for an object at times tu1 and tu2, where tu1 < tu2. The

communication between the observers and the DB node is direct, i.e. no in-

termediate hops are used. The shaded triangles indicate the maximum delay

jitter δcomm that the individual packets may experience. By the assumptions

taken in Chapter 2 this jitter is bounded.

In Figure 3.1(a) the difference δcomm = t2 − t1 is equal to the difference

between tu1 and tu2 at which the update requests u1 and u2 were created.

As a result of that, the order in which the packets sent by the observers is

reflected in the order in which the messages are received. The example in

Figure 3.1(b) shows a situation where the difference tu2 − tu1 between the

sending of the two update request messages is less than δcomm. As a result of

that, the message containing u1 may arrive after t2 (but before t3) and the

message containing u2 may arrive earlier than t3 (but not before t2). Since

the difference t2− t3 is negative, the order in which the messages arrive may

be different from the order in which they were sent as a cause of the possible

jitter.

In general, when tu2 − tu1 ≥ δcomm, the order in which the messages were

sent can be unambiguously derived from the order in which they are received

at the DB node. In all other cases, when tu2 − tu1 < δcomm, that order may

not be maintained in all cases, depending on the effective jitter the messages

have experienced in the system. In contrast to timestamp-based approaches,

however, our approach cannot be used to calculate the temporal difference

between update requests.

Experiments presented in Chapter 5 show that δcomm is reasonably small

using standard technology. The values measured for δcomm using Berkeley

Motes are below 1ms. If synchronized (physical) clocks are used the possible

ordering accuracy depends on the accuracy of the underlying clock synchro-

nization algorithm. In the case of the time synchronization algorithm for

MANETs presented in [Röm01] the inaccuracy increases linearly with both

50 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

the number of hops a message traverses in the network and the age of the

information. Measurements on standard PCs presented in [Röm01] show in-

accuracies of approximately 2.2 ms and 3.75 ms for information that is 500

and 900 seconds old.

3.2 Basic Concepts for Data Replication

The replication algorithms in Chapter 4 are based on the previously pre-

sented approach of deriving the chronological ordering of update requests

by the order in which they are received. This section describes the basic

concept used to replicate object state information in the system. Figure 3.2

outlines the process of replicating the state information contained in an up-

date request on each DB node in the system. Initially, a perceivable object

is sensed by an observer which captures the id and the current state of the

object (phase 1 in Figure 3.2). Next, the observer creates a so-called state

record for the observation it has just made. The state record contains in-

formation about the object that has been observed and the observer that

has made the observation. After creation, the state record is forwarded to

all DB nodes in the single-hop communication range of the observer using

the observer-node algorithm (phase 2). Based on the ordering concept in-

troduced in the previous section, DB nodes will now decide on accepting or

rejecting the information. If the information is accepted, the DB node cre-

ates new chronological ordering information between the new update request

and update requests that have been previously processed by the node. The

ordering information is then stored in the so-called ordering graph using the

add function of the ordering graph. Finally, the DB node sends the update

request – which now contains the state record and the ordering graph – to

other DB nodes in the system using the node-node algorithm (phase 3). A

DB node receiving this information can now use the join and occurredBefore

functions of the ordering graph to derive the chronological order between the

received information and the locally stored information for the given object.

The remainder of this chapter describes the basic data structures used in the

replication algorithms.

3.3. STATE RECORD 51

Sensor

Observer

state record

wireless
medium

single hop
perceivable

object

id: 1
state: 25

DB Node

state record
and graph

DB

DB Node

state record
and graph

DB

wireless
medium

multi-hop

Phase 1 Phase 3:
node-node algorithm

Phase 2:
observer-node

algorithm

Figure 3.2: Overview of the update operation of the replication algorithms

3.3 State Record

A state record is used to collect all necessary information to reflect an update

request in the system and is defined as a 4-tuple (obj , state, obs , sn). In this

tuple, obj is the unique identity of the perceivable object concerned. The

state of the perceivable object associated with the state record is stored in the

state component of the tuple. The identity of the observer which created the

state record is stored in obs. Additionally, a unique and strictly monotonic

increasing sequence number is created by obs and is stored in sn. Each

observer uses a single counter for the sequence numbers independent of the

number of objects it observes.

The notation u[x]obs
sn is used to denote a state record created for object

x by observer obs with the sequence number sn. Similarly, db[x]obs
sn is used

to denote a state record which is stored in the local database of a DB node.

The set of all state records is denoted by R.

3.4 Ordering Graph

In cases where two state records are created by the same observer, the order in

which the state changes of the respective object occurred can be determined

by comparing the sequence numbers of the records. Whenever the order

52 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

between two state records created by independent observers must be derived,

additional ordering information is necessary. The purpose of the ordering

graph is to provide a data structure for storing such information.

Definition 3 (ordering graph). Let G = (V, E) denote an ordering graph.

The set of vertices V contains state records. The set of directed edges E

reflects the ordering relationship between state records, such that when an

edge (u[x]oi , u[y]pk) exists in E it holds that u[x]oi < u[y]pk.

The set of all ordering graphs is denoted as G. V and E denote the sets of

vertices and edges, respectively.

Note, that by construction the ordering graph is a directed acyclic graph.

A cycle in the graph would contradict the definition of the ordering graph,

because each of the graph vertices in the cycle would contain an observation

which transitively occurred before itself.

3.4.1 Adding Ordering Information

In order to add new ordering information to an ordering graph, we define the

operation add : G ×R → G as shown in Algorithm 1.

Algorithm 1 The add function

1: function add(Gin, u[x]Obs
sn) returns G

2: V ′ ← Vin ∪ {u[x]Obs
sn }

3: E ′ ← Ein ∪ {(u, u[x]Obs
sn) | u ∈ Vin \ {u[x]Obs

sn }}
4: G′ ← reduce(V ′, E ′)

5: return(G′)

Given an ordering graph G and a state record u[x]obs
sn , the add operation

inserts the state record into the set of vertices. Additionally, edges from all

vertices previously contained in G to the new vertex u[x]obs
sn are added to

the set of edges. The reduce1 function described next is then used to reduce

the size of the resulting graph. In order to show the correctness of the add

function, we need to proof the following claim.

1Whenever reduce is used in an algorithm, one of the presented functions for reducing
an ordering graph may be used.

3.4. ORDERING GRAPH 53

Correctness

Claim: Given that a graph G is correct according to Definition 3. If the

add function is applied by DB nodes to G after receiving an update request

directly from an observer, the resulting graph G′ will not contain invalid

ordering information. We take the assumption that the node using the add

function at time tr has not received an update request from a different ob-

server in the time period [tr − δcomm, tr]. This assumption is guaranteed by

the replication algorithms in the next chapter.

Proof. Without loss of generality we assume that a DB node ni receives an

update request containing a state record u[x]Obs
sn from observer Obs. First,

the function adds the new vertex u[x]Obs
sn to the graph in line 2. This is a

vertex created from an update request and therefore it is valid to add it to

the graph. By the assumptions taken, all update requests in V \ {u[x]Obs
sn }

occurred-before u[x]Obs
sn (the update request was received more than δcomm

after the last update request from a different observer). Therefore, add inserts

edges from all vertices previously contained in the graph (V \{u[x]Obs
sn }). The

correctness of the reduce functions is discussed in Section 3.4.2.

3.4.2 Reducing the Ordering Graph

Every time the add operation is used, the amount of storage needed for the

graph grows. In order to keep the size of the ordering graph reasonably

small, it is desirable to remove as much information as possible while still

being able to determine the chronological ordering of state records. The

typical pair of records, whose ordering needs to be determined, is one record

that has recently been created by an observer and another record that is the

currently the most recent information about an object stored on a DB node.

This means, that older vertices stored in the graph are less likely to be needed

for deciding on the ordering of state records. In general, we distinguish

between two classes of information removal. First, it is possible to remove

only such information from the graph that does not cause any loss of ordering

information (lossless reduction). Secondly, we follow approaches that do

54 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

u[x]p
2 u[x]p

3u[x]p
1u[x]o

1

Figure 3.3: Example of using lossless-reduce

remove ordering information from the graph (lossy reduction). However, the

focus here is to remove old vertices (and all in- and out-going edges). The

approaches differ in how much ordering information is lost as well as their

computational complexity and the memory complexity of the resulting graph.

We refine the approach taken in [Eic04]. Additional approaches that select

a sub-graph for transmission without reducing the local data structure are

discussed in Section 4.3 (p. 98). Experiments presented in Chapter 5 show

that the negative effect of using lossy reduction is low. In the given scenarios

(Figure 5.8, p. 121), for example, the percentage of rejected update requests

due to unknown ordering is in the order of 3 %.

Lossless Reduction

The first approach is to only remove information from the graph that does

not cause the loss of any ordering information. To do so, the lossless-reduce

function makes use of the sequence numbers inserted by observers into each

state record2. The idea is to remove such vertices from the graph that have

only in- and out-going edges from and to vertices which contain state records

created by the same observer. The formal definition of the function lossless-

reduce is given in Algorithm 2.

Figure 3.3 shows a graph were the lossless-reduce function removes the

vertex u[x]p2. This vertex has only in- and out-going edges to vertices created

by the same observer (which is p) and does not have the highest sequence

number. Vertex u[x]p3 must not be removed, because it is the vertex with

the highest sequence number in the graph. The vertex u[x]p1 must not be

2Recall that the sequence numbers issued by each observer are strictly monotonic in-
creasing.

3.4. ORDERING GRAPH 55

removed, because there exists an in-going edge originating at u[x]o1 which

was created by a different observer. The edge (u[x]p1, u[x]p3) is inserted by

addTransitive to reflect the relationship between the two vertices.

Algorithm 2 The lossless-reduce function

1: function lossless-reduce(Gin) returns G
2: Vd ← ∅
3: {select vertices for removal}
4: for all v ∈ Vin do

5: Vto ← selectTo(Vin, Ein, v)

6: Vfrom ← selectFrom(Vin, Ein, v)

7: Vft ← Vfrom ∪ Vto

8: remove← true

9: for all v′ ∈ Vft \ {v} do

10: if v′.obs 6= v.obs then

11: remove← false

12: end if

13: end for

14: if remove then

15: Vd ← Vd ∪ {v}
16: end if

17: end for

18: {do not remove highest sequence numbers}
19: for all v ∈ Vd do

20: if v.sn = high(Vd, v.obs) then

21: Vd ← Vd \ v

22: end if

23: end for

24: return addTransitive(Gin, Vd)

In Algorithm 2, the functions selectTo(V, E, v) is used to select all vertices

from V that have an out-going edge in E leading to vertex v (the predecessors

of v in E). Similarly, the function selectFrom(V, E, v) selects all vertices in V

that have in-going edges in G originating at v (the successors of v in G). The

function purgeEdges(V, E) removes all edges (v1, v2) from E that include at

56 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

least one vertex which is element of V .

Using these functions, lossless-reduce, iterates over all vertices v in Gin

(lines 4-17) and selects the predecessors and successors for each vertex and

stores them in Vft (lines 5-7). If all vertices v′ ∈ Vft \ {v} were created by the

same observer, vertex v is stored in Vd for removal (lines 9-16). However, it is

necessary to ensure that not all vertices created by an observer are removed

from the graph. To do so, the algorithm iterates over all vertices collected in

Vd and ensures that for each observer the vertex with the highest sequence

number is kept in the graph (by removing it from Vd, lines 19-23). For that

purpose, the function high used in line 20 returns for a set of vertices V and

an observer obs the highest sequence number for obs contained in any vertex

in Vd.

The function addTransitive given in Algorithm 3 and used in line 24

calculates transitive edges in the given graph that span vertices selected for

removal. This prevents that ordering information is lost purely to the removal

of vertices. Finally, lossless-reduce returns a graph where all vertices selected

in Vd are removed and the transitive edges are added.

Correctness of lossless-reduce

Claim: Given a correct graph Gin according to Definition 3, the function

lossless-reduce(Gin)

• does not create false ordering information,

• does not remove ordering information that is contained in Gin, and

• the resulting graph has the same number or less vertices than Gin.

In particular the most recent vertex of each observer that can be found in

Gin will remain in the resulting graph.

Proof. We take the assumption that the function addTransitive is correct

(discussed next). In general, removing edges and vertices from a correct

ordering graph will result in a correct graph, because the definition of an

3.4. ORDERING GRAPH 57

ordering graph (Definition 3) does not require the equivalence between the

existence between an edge in the graph and the actual ordering of the cor-

responding observations. Only if a particular edge exists, it is required that

the ordering of the observation is correct. Since the function only removes

vertices it does not create false ordering information.

The algorithm selects those vertices v = u[x]oi for removal that have

only predecessors and successors created by the same observer o (lines 4-17

in Algorithm 2). The ordering information between those vertices and their

predecessors and successors can be derived by comparing their sequence num-

bers, since observers use strictly monotonic increasing sequence numbers by

assumption. Only when a vertex created by an observer o has no successors

and its predecessor was also created by o, it must not be removed, because

it is the most recent vertex for o. This is guaranteed by the algorithm in

lines 19-23. Thus, the vertices in Vd can be removed without losing ordering

information.

Algorithm 3 Function to add transitive edges

1: function addTransitive(Gin, Vd) returns G
2: {collect border nodes and add trans. edges}
3: Eadd ← ∅
4: Vdd ← ∅
5: for all v ∈ Vd do

6: Vdd ← Vdd ∪ {v}
7: Vaf ← selectFrom(Vin \ Vdd, Ein ∪ Eadd, v)

8: Vat ← selectTo(Vin \ Vdd, Ein ∪ Eadd, v)

9: for all vf ∈ Vaf do

10: for all vt ∈ Vat do

11: Eadd ← Eadd ∪ {(vt, vf)}
12: end for

13: end for

14: end for

15: Epurged ← purgeEdges(Vd, Ein ∪ Eadd)

16: return G(Vin, Epurged)

58 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

Correctness of addTransitive

Claim: The function addTransitive(Gin, Vd) adds only edges which are correct

for Gin according to Definition 3. Vd contains vertices that are going to be

removed from the graph. In particular, for the vertices that remain in the

resulting graph it holds: if a path existed between a pair of such vertices in

Gin, there also exist a path between the same pair in the resulting graph.

Proof. The function addTransitive iterates all vertices that are selected for

removal in Vd. For each of these vertices v ∈ Vd it selects the predecessors

and successors from the set of all vertices except those elements from Vd that

have already been examined (Vin \Vdd). In lines 9-13 the function adds a new

edge for each pair of predecessor and successor. Since there exists a path in

Gin between those pairs (going through a vertex in Vd), it is valid to include

these edges.

If two (or more) successive vertices in Gin are selected for removal, they

are by-passed sequentially by removing one after the other (independent of

the order in which they are removed). Unnecessary edges are removed in

line 15 by calling purgeEdges(Vd, Ein ∪ Eadd).

Lossy-k-Reduce

The second approach to reducing an ordering graph explicitly allows to re-

move ordering information from the graph. Since the ordering graph is sent

over the network this is done to reduce the amount of memory needed for

the ordering graph. The basic idea is to only keep the k most recent ver-

tices of each observer in the graph and remove all other vertices. Similar to

the lossless-reduce function, transitive edges are added to span the removed

edges. The formal definition of the lossy-k-reduce function in presented in

Algorithm 4.

In order to show the correctness of the lossy-k-reduce function we need

to support the following claim.

3.4. ORDERING GRAPH 59

u[x]p
3

u[x]q
1

u[x]o
2

u[x]p
2u[x]p

1u[x]o
1

Figure 3.4: Example of using lossy-k-reduce with k = 2

Claim: Given a correct graph Gin, the function lossy-k-reduce(Gin) returns

a correct graph with at most k vertices per observer. The vertices for each

observer that remain in the resulting graph are the most recent ones for each

observer in Gin, i.e., the ones with the highest sequence numbers. Addition-

ally, the function does not introduce false ordering information.

Proof. By assumption addTransitive is correct. The algorithm first calculates

the set of all observers represented in the given graph by using the function

getObservers in line 4. Next, it iterates over all observers and selects for

each observer the (at most) k vertices with the highest sequence numbers

by using getHighestSN in line 6. The vertices selected for removal in Vd are

those which have not been selected by getHighestSN. This means that at least

the most recent vertex of each observer remains in the graph. Finally, the

algorithm calculates the set of transitive edges using addTransitive which

has shown to be correct in the previous section. The algorithm returns a

graph where all vertices in Vd are removed and the transitive edges in Eadd

are added. Since lossy-k-reduce neither adds vertices nor edges (except in

addTransitive) it does not create false ordering information.

An example for the use of lossy-k-reduce with k = 2 is depicted in Fig-

ure 3.4. Here, the vertex u[x]p1 is selected for removal, since there exist three

vertices created by observer p in the graph. The function addTransitive adds

two new edges to the graph pointing from u[x]o1 to u[x]o2 and u[x]q1, because

there existed a path from u[x]o1 to the two latter vertices going through the

removed vertex in the original graph.

60 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

Algorithm 4 The lossy-k-reduce function

1: function lossy-k-reduce(Gin, k) returns G
2: Vd ← ∅
3: {select vertices for removal}
4: Vobs ← getObservers(Vin)

5: for all o ∈ Vobs do

6: Vk ← getHighestSN(Vin, o, k)

7: Vall ← getAll(Vin, o)

8: Vd ← Vd ∪ (Vall \ Vk)

9: end for

10: return addTransitive(Gin, Vd)

3.4.3 Joining Ordering Information

Whenever two DB nodes exchange state records in the replication algorithms

described in Chapter 4, they need to also exchange ordering information.

A DB node receiving the ordering information stored at another DB node

therefore needs to consistently integrate that information into the ordering

information locally known. This integration is done by using the join : G ×
G → G function which is defined in Algorithm 5.

Algorithm 5 The join function

1: function join(G1, G2) returns G
2: E = E1 ∪ E2

3: V = V1 ∪ V2

4: G = reduce(V, E)

5: return(G)

The two ordering graphs which are passed to the join function are merged

by calculating the set union of both the two sets of vertices and the two sets

of edges. Again, the reduce function is used to reduce the size of the ordering

graph.

3.4. ORDERING GRAPH 61

Correctness

Claim: Given that G1 and G2 are correct graphs, join(G1, G2) does not create

false ordering information. If the reduce function that is applied in line 4 does

not remove any vertices or edges, the result of join will at least contain the

ordering information that is contained in either G1, G2, or both graphs.

Proof. By applying the set union to edges and vertices the new graph re-

turned by the join(G1, G2) function contains all ordering information con-

tained in G1 and G2. Any additional ordering information that is contained

in the result is the valid transitive concatenation of ordering information from

G1 and G2. This is caused if G1 and G2 have common vertices.

3.4.4 Determining the Ordering of Update Requests

DB nodes have to decide whether or not to accept received update requests.

Consider the case where the local DB includes state record db[x]oi and update

request u[x]pj is received. To preserve consistency, u[x]pj may only be accepted

if the update request that wrote db[x]oi occurred-before u[x]pj or both requests

are concurrent. If both requests are from the same observer (o = p) the up-

date request can be accepted if j > i. If both update requests come from

different observers, the ordering graph Gin passed to occurredBefore has to be

evaluated to decide whether the update has to be accepted: u[x]pj has to be

accepted if occurredBefore(Gin, db[x]oi , u[x]pj) evaluates to true. If the predi-

cate evaluates to false, the ordering of the two vertices is either unknown or

u[x]pj < db[x]oi . The predicate occurredBefore is defined in Algorithm 6. The

algorithm is described next as part of a constructive proof, which is followed

by an example for using the algorithm.

Correctness of occurredBefore

Claim: occurredBefore(Gin, u[x]oi , u[y]pj) == true implies that u[x]oi < u[y]pj
(occurred-before). By assumption, the graph Gin is a correct ordering graph.

62 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

Algorithm 6 The occurredBefore predicate on ordering graphs

1: function occurredBefore(Gin, u[x]oi , u[x]pj) returns boolean

2: if o = p then

3: if j > i then

4: return true

5: else

6: return false

7: end if

8: else

9: vfrom ← getVertexGE(Vin, o, i)

10: vto ← getVertexLE(Vin, p, j)

11: if (vfrom 6= null) ∧ (vto 6= null) then

12: if hasPath(Ein, vfrom, vto) then

13: return true

14: else

15: return false

16: end if

17: else

18: return false

19: end if

20: end if

3.4. ORDERING GRAPH 63

Proof. The occurredBefore predicate first compares the identities of the ob-

servers o and p. If these identities are equal, the predicate evaluates to true,

given that the sequence number i is less than j. If i < j holds, it can

be derived that u[x]oi < u[y]pj , by the assumption that sequence numbers of

observers increase strictly monotonic.

If the vertices u[x]oi and u[x]pj were created by different observers (o 6=
p), the graph is used to determine the ordering between the given vertices

(lines 9-19). First, the function getVertexGE(Vin, o, i) retrieves the vertex

vfrom from Vin that was created by observer o and has the smallest sequence

number available in the graph which is greater or equal to i. Similarly,

getVertexLE(Vin, p, j) returns the vertex vto that was created by observer

p and has the highest sequence number which is less or equal to j. Both

functions, getVertexLE and getVertexGE return null to indicate that no

vertex with the given observer id was found.

If u[x]oi is a vertex in the graph, it will be selected as vfrom by getVertexGE.

If not, some vertex u[x]oi+m with m > 0 will be selected, if it exists. In this

case it holds that u[x]oi < u[x]oi+m because of the assignment of the sequence

numbers. If no vertex u[x]oi+m with m > 0 exists getVertexGE returns null

and therefore occurredBefore returns false. A similar argumentation holds

when getVertexLE(Vin, p, j) is applied to find a vertex vto in the graph. If

u[x]pj is in the graph, it will be selected. Otherwise, either null or some

vertex u[x]pj−n with n > 0 is returned. In the latter case it can be concluded

that u[x]pj−n < u[x]pj by comparing the sequence numbers j − n and j.

Next, the algorithm examines, if a path from vfrom to vto exists. If such

a path is found, it can be concluded that vfrom < vto, because the occurred-

before relation is transitive. Following the previous discussion about using

getVertesGE and getVertexLE it can also be concluded that u[x]oi < u[x]pj .

Therefore, it is valid to return true.

Example for occurredBefore

If, for example, the predicate occurredBefore(G, u[x]o1, u[x]p3) is evaluated us-

ing the graph depicted in Figure 3.5 it returns true. Since the vertex u[x]o1

64 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

u[x]p
3

u[x]q
1

u[x]o
3

u[x]p
2u[x]o

2

Figure 3.5: Example graph G for using occurredBefore

is not in the graph, getVertexGE(Vin, o, 1) returns the vertex u[x]o2, which

is then used when searching for a path in line 11 of the algorithm. Since

an appropriate path is found, it can be concluded that u[x]o1 occurred-before

u[x]p3. The evaluation of the predicate occurredBefore(G, u[x]o3, u[x]q1) using

the same graph will return false, because there exists no path between the

update requests u[x]o3 and u[x]q1 in the graph.

3.4.5 Ordering the State of Distinct Objects

In some applications it is not only important to have access to the most

recent state of each object. Additionally, it may be beneficial to compare

the chronological ordering between the state records of two or more distinct

objects. If an application,for example, is monitoring the temperature of two

objects, it may be necessary to reason about which object’s temperature has

crossed a threshold first. To do so, only minor changes to the data structures

used in the above algorithms are necessary.

Instead of using one ordering graph per object, it is possible to use one

single ordering graph in which the ordering information for all objects are

maintained. The add, join, the losslessReduce, and the occurredBefore oper-

ations remain unchanged. The lossy-k-reduce operation needs to be modified

in such way that the k most recent vertices for each observer and each object

are kept in the ordering graph. The add operation used in the observer-node

algorithm (Alg. 7, p. 72) can be safely applied to a single ordering graph,

since the new update request being added to the graph is more recent than all

update requests in the graph independent from the object that is concerned.

3.4. ORDERING GRAPH 65

Function Complexity Remark

add O(|Vin|3) O(|Vin|2) when using lossy-k-reduce

lossless-reduce O(|Vin|3)
lossy-k-reduce O(|Vin|2)
join O(|Vin|3) O(|Vin|2) when using lossy-k-reduce

occurredBefore O(|Vin|+ |Ein|)

Table 3.1: Computational complexities of the graph operations

3.4.6 Complexity of the Operations

Both, the space and the computational complexities of the graph operations

depend on the data structures used to internally represent a graph. Here, we

will assume that the ordering graph G = (V, E) is stored as a list of vertices

and a list of adjacent vertices for each vertex (adjacency list). Internally,

the vertices are numbered with natural numbers between {0 . . . |V | − 1}.
Therefore, we assume that there exists a bijective function index : V →
{0 . . . |V | − 1} that assigns a natural number from {0 . . . |V | − 1} to each

vertex of a graph (the so-called vertex numbers). Additionally, there exists

the inverse function index−1 : {0 . . . |V |− 1} → V . Table 3.1 summarizes the

worst-case computational complexity of the graph operations based on the

assumptions that the graph is represented as a list of vertices and a adjacency

list for each vertex.

Implementation Issues

In the following we discuss the implementation issues of the ordering graph

which are necessary to derive the space and the computational complexity of

the graph operations.

We assume that the index and the index−1 functions are implemented

by using hash tables with the vertices as keys and the corresponding vertex

numbers as values and vice versa. The adjacency list for each vertex is

implemented as a linked list of vertex numbers.

66 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

Space Complexity of an Ordering Graph

Each vertex of the graph has a constant length defined by the size of the

object and observer ids and the sequence number. Note that the state asso-

ciated with each update request is not stored in the graph, because it is not

needed to determine the ordering between state records. Therefore, the space

required to store the array of vertices is in O(|V |). The size of the hash map

is determined by the number of buckets m used in the hash map. Each bucket

points to a pair of vertex and vertex-numbers. Thus the space complexity of

the hash map used to implement the index-function is in O(m + |V |). The

precise magnitude of m depends on the actual implementation od the hash

map used. The worst case space complexity for one adjacency list is O(|V |)
if the list of successors of a vertex v includes all vertices in V . Thus, the

space needed to store all edges is at most O(|V |2).

The previous discussion leads to a total worst case space complexity of

the ordering graph which is in O(|V |2 + m).

Computational Complexity of addTransitive

The addTransitive function presented in Algorithm 3 iterates all elements

contained in Vd. Within this loop, the function first calculates the result

of the functions selectFrom(Vin \ Vd, Ein, v) and selectTo(Vin \ Vd, Ein, v) for

the given vertex v in Vd. The complexity of selectFrom depends linearly on

the number of elements in the adjacency list of vertex v. For computing the

result of the selectTo function, however, it is at most necessary to search

all adjacency lists, i.e., its complexity is in O(|Ein|). The complexity of

the nested for-loops in lines 9-13 is in O(|Vaf | ∗ |Vat|) which, in general, is

in O(|Vin|2). However, it holds that |Vaf | + |Vat| ≤ |Vin| since the graph is

acyclic by construction.

In general, the complexity of the addTransitive function is in O(|Vin|3). If,

however the number of vertices that are removed from the graph is constant

(as in the lossy-k-reduce function), the complexity is in O(|Vin|2).

3.4. ORDERING GRAPH 67

Computational Complexity of lossless-reduce

The for-loop in lines 4-17 of Algorithm 2 has a computational complexity in

O(|Vin|∗(|Ein|+ |Vin|)). The first term |Vin| is caused by the for-loop starting

in line 4 which iterates over all elements in Vin. The term (|Ein| + |Vin|) is

caused by the operations inside the loop. For each vertex in Vin the functions

selectFrom and selectTo are executed. This leads to a complexity in O(|Ein|)
as discussed previously. The second term |Vin| in the complexity goes back to

the nested for-loop in lines 9-13 which iterates over a subset of all vertices.

The for-loop in lines 19-23 executes in linear time with the size of the set

Vd since the high-function can be pre-computed. The complexity of addTran-

sitive is in O(|Vin|3) here, since Vd may contain any fraction of the vertices

in Gin. The complexity of purgeEdges is in O(|Ein|).

In summary, it can be concluded that the computational complexity of

the lossless-reduce-function is in O(|Vin|3).

Computational Complexity of lossy-k-reduce

The getObservers(Vin) function in line 4 of Algorithm 4 is linear in time with

the size of Vin, if the list of all vertices is searched once. Therefore, the number

of observers is in O(|Vin|). This defines how many iterations are done in the

for-loop in lines 5-9. Inside that loop, the functions getHighestSN (Vin, o, k)

and getAll(Vin, o) can be done in linear time depending on the number of

vertices in Vin (optimizations permit to execute both functions in a single

iteration). The computation in line 8 is also linear and depends on the size

of the set Vk. Thus, the complexity of the complete for-loop is in O(|Vin|2).

Under the assumption that the lossy-k-reduce function is used on graphs

which contain at most 2∗k vertices of the same observer, the size of the set Vd

is limited to at most k elements which limits the complexity of the addTran-

sitive function to O(|Vin|2) as discussed in Section 3.4.6. The complexity of

purgeEdges is in O(|Ein|).

Consequently, it can be concluded that the computational complexity of

the lossy-k-reduce-function is in O(|Vin|2).

68 CHAPTER 3. BASIC CONCEPTS AND DATA STRUCTURES

Computational Complexity of add and join

Both, the complexities of the add and the join function, are dominated by

the reduce function. This leads to an overall computational complexity of

O(|Vin|3) or O(|Vin|2) for both functions depending on which reduce function

is used.

Without using a reduce-function the complexity of the join function is in

O(max(|E1|, |E2|, |V1|, |V2|)) for the computation of the set unions in lines 2

and 3 in Algorithm 5.

For the add -function without the application of a reduce-function the

computational complexity is in O(|Vin|) for adding a new edge originating at

each vertex in line 3 of Algorithm 1.

Computational Complexity of occurredBefore

The if-branch in lines 2-7 of Algorithm 6 is calculated in constant time,

because it only consists of sequential comparisons and conditional branching.

In the else-branch of the algorithm, the functions getVertexGE (Vin, o, i)

and getVertexLE (Vin, p, j) are both executed in linear time which depends on

the size of the set Vin. Again, optimizations are possible in order to search

the set only once for both functions. The function hasPath(Ein, vfrom, vto)

in line 12 can be calculated using a breadth-first search in the graph in

O(|Vin|+ |Ein|) [Tur96].

In summary, the overall computational complexity of the occurredBefore

predicate is therefore in O(|Vin|+ |Ein|).

Chapter 4

Replication Algorithms

Given the consistency model discussed in Chapter 2, other issues need to be

considered when designing replication algorithms that guarantee the consis-

tency of the data in the first place: the availability of data for access and the

cost of data access.

One major goal of data replication is to increase the access availability

of the data [SS05]. In order to prevent data access failures caused by node

or communication failures, multiple physical copies of the same logical data

object are placed on a number of nodes in the system. How many copies to

create and where to place them are therefore important considerations that

have to be taken into account as properties of the concrete system model.

The cost of data access depends on how the operations defined on the

data are implemented. The cost for executing one kind of operation, e.g.

read operations, is in general not independent from the implementation of

the other operations, such as update operations. When designing a particular

replication algorithm a trade-off between the cost of the operations has to be

considered in the context of the requirements of applications which operate

on the replicated data.

Within this chapter, we present two replication algorithms that guarantee

the consistency model presented in Chapter 2. The first algorithm performs

a full replication on all nodes in the network that may read data. There are

several advantages that support this approach:

69

70 CHAPTER 4. REPLICATION ALGORITHMS

• All read operations are executed locally at no communication cost.

• Reading is always possible.

This behavior is advantageous for applications where the ratio between

read and update operations is high. Additionally, clients are able to read data

even when a node is temporarily disconnected, for example in a partitioned

network. However, these advantages come at a price. First, the cost for

updating an object requires that update operations are sent and applied to

all nodes in the network. Secondly, each node storing physical copies of the

objects needs enough local storage in order to host the data.

The second replication algorithm presented in this chapter replicates the

data objects only on a subset of nodes in the system in order to balance the

ratio between the cost for read and update operations. On one hand, using

this algorithm means that both, read and update operations, are in general

remote operations that cause communication cost. On the other hand, not

every node requires the memory capacity to store a copy of each data object.

4.1 Algorithm 1: Full Replication

The algorithm presented next fully replicates the state information of objects

on all nodes that may perform read operations on the state information of

objects. In terms of the system model presented in Chapter 2, all nodes that

are in the role of a client are also in the role of a DB node and vice versa.

Nodes in the role of an observer may either be solely in this role or the role

of an observer may be combined with the other two roles on a single node.

The possible combinations of roles per node are shown in Table 4.1. The

algorithm creates one ordering graph for each information object.

4.1.1 Update Operations

An update operation is separated into three phases as depicted in Figure 4.1.

In the first phase an observer detects a state change of a physical world object.

4.1. ALGORITHM 1: FULL REPLICATION 71

Table 4.1: Possible combinations of roles on a node for algorithm 1.

Node Role

Observer DB node Client

Node type A X

Node type B X X

Node type C X X X

Sensor

Observer

state record

wireless
medium

single hop
perceivable

object

id: 1
state: 25

DB Node

state record
and graph

DB

DB Node

state record
and graph

DB

wireless
medium

multi-hop

Phase 1 Phase 3:
node-node algorithm

Phase 2:
observer-node

algorithm

Figure 4.1: Overview of the update operation of Algorithm 1

72 CHAPTER 4. REPLICATION ALGORITHMS

Following, the observer may pre-process the captured data before it creates a

state record. In the second phase, the observer sends a message that contains

the state record to all nodes in single-hop distance using a layer 2 broadcast

message. Given that a DB node receiving the message at time trx has not

previously received another state record from a different observer in the time

interval [trx−δobs, trx] (line 2, Algorithm 7), it can now be concluded that this

message contains a state record with the most recent state information about

the particular object (see Figure 3.1, p. 48). Therefore, the DB node accepts

the update request and writes the state record contained in the message to

the local copy of the database replacing any old value. Additionally, the DB

node updates the ordering graph of the corresponding object by inserting

the new state record into the graph using the add function (see Algorithm 1,

p. 52). If the condition in line 2 of the algorithm does not hold the received

update request is discarded. In this case the chronological order of the two

observations leading to the generation of the two update requests cannot

be determined unambiguously. The algorithm used in the second phase is

depicted in Algorithm 7.

Algorithm 7 Observer-node Algorithm (phase 2)

Require: incoming message sent by an observer

1: on receive(u[x]Obs
sn):

2: if trx − tlast(x) > δ then

3: {Update database and ordering graph}
4: db[x]OS ← u[x]Obs

sn

5: Gx = add(Gx, u[x]Obs
sn)

6: send(message(u[x]Obs
sn , Gx))

7: end if

In the third phase the DB node is responsible for synchronizing other DB

nodes which are not in the communication range of the observer that created

the new state record. For this phase the algorithm uses a flooding-based

protocol which sends the new state record and the corresponding ordering

graph to all other DB nodes in the system using the send primitive. A DB

node receiving a message from another DB node executes Algorithm 8 in

order to decide about accepting the state record.

4.1. ALGORITHM 1: FULL REPLICATION 73

The algorithm executed when receiving a message containing a state

record u[x]Obs
sn and an ordering graph G′

x first merges the ordering graph

G′
x with the locally stored ordering graph Gx (line 3, Algorithm 8). Then

a check is performed whether there already exists a state record for object

x in the local database. If not (case N-1 in Algorithm 8) the received state

record is stored. If a state record for object x has previously been stored in

the local database the algorithm has to evaluate which one of the two state

records — the one stored locally or the one just received — is more recent.

If both state records were created by the same observer a comparison of the

sequence numbers is sufficient for this decision (case N-2-1, lines 10-22). If

the two state records were created by different observers then the decision to

accept the received state record has to be made using the ordering graph. In

particular, the occurredBefore predicate on the corresponding ordering graph

has to be evaluated to make the decision (case N-2-2, lines 23-34).

In all situations where the algorithm accepts the received state record

(cases N-1, N-2-1-1, and N-2-2-1), the newly accepted state record and the

corresponding ordering graph are sent to all single-hop neighbors using the

send primitive. If the algorithm does not accept a particular state record, this

record is either older or the same than what the DB node has already stored

in its database, or the information in the ordering graph is not sufficient to

derive that the received record is younger than what is stored. Note that the

state record and the ordering graph are also forwarded when the state record

has not been accepted but the ordering graph has changed. This allows DB

nodes to propagate new ordering information.

4.1.2 Read Operations

Read operations are done on the local copy of the objects. Therefore, a read

operation on an object returns the state written by the last update operation

that has been accepted locally.

74 CHAPTER 4. REPLICATION ALGORITHMS

Algorithm 8 Node-node algorithm (phase 3)

Require: incoming message sent by DB node

1: on receive(u[x]Obs
sn , G′

x):

2: GOld
x ← Gx

3: Gx ← join(Gx, G
′
x) {join ordering graphs}

4: if db[x]OS = empty then

5: {case N-1: no state record in DB for object x}
6: db[x]OS ← u[x]Obs

sn

7: send(message(u[x]Obs
sn , Gx))

8: else

9: {case N-2: object x stored in DB: db[x]OS }
10: if Obs = O then

11: {case N-2-1: db record and update request from the same observer}
12: if sn > S then

13: {case N-2-1-1: update request has higher sequence number }
14: db[x]OS ← u[x]Obs

sn

15: send(message(u[x]Obs
sn , Gx))

16: else

17: {case N-2-1-2: db record is more recent or the same}
18: if Gx 6= GOld

x then

19: send(message(db[x]OS , Gx))

20: end if

21: end if

22: else

23: { case N-2-2: different observers }
24: if occurredBefore(Gx, db[x]OS , u[x]Obs

sn) then

25: { case N-2-2-1: }
26: db[x]OS ← u[x]Obs

sn

27: send(message(u[x]Obs
sn , Gx))

28: else

29: {case N-2-2-2: update request not accepted}
30: if Gx 6= GOld

x then

31: send(message(u[x]Obs
sn , Gx))

32: end if

33: end if

34: end if

35: end if

4.1. ALGORITHM 1: FULL REPLICATION 75

4.1.3 Correctness

In this section, we first show that our algorithm is safe, i.e., we achieve

update-linearizability according to Definition 2. Then, we show that our

algorithm is live, i.e., every DB copy of an object eventually converges to the

most recently propagated state if communication failures are not permanent.

In the proofs the reduction of the ordering graph does not need to be

considered explicitly, because the reduce-functions presented in Section 3.4.2

(p. 53) guarantee that at least the most recent vertex of each observer remains

in the ordering graph. Older ordering information that may be removed

from graphs by a reduce-function can always be related to a newer vertex of

the same observer in the graph that has a higher observer sequence number.

These sequence numbers increase strictly monotonic locally on each observer.

Safety

First, we show that Definition 2 is fulfilled for a single copy. Let Sx,n denote

the sequence of update and read operations executed on the copy of object

x stored on node n.

Claim: Sx,n meets Definition 2.

Proof. First, we have to show that all read operations in Sx,n are performed

in the client’s program order. Since each read operation in Sx,n is requested

by means of a local (synchronous) DB call, it is guaranteed that the execution

order of reads corresponds to the program order.

Next, we show that all update operations in Sx,n are performed in occurred-

before order. More precisely, we show that once node n has accepted u[x]kj ,

it will never accept an update u[x]mi if u[x]mi < u[x]kj .

For the observer-node protocol, we assumed that δobs is defined by the

maximum communication delay jitter of a single-hop communication link as

described in Chapter 2. Therefore, it is guaranteed that u[x]mi is not accepted

after u[x]kj at any node. Since nodes perform update requests issued by

observers in the order of their arrival, the observer-node protocol preserves

the occurred-before order.

76 CHAPTER 4. REPLICATION ALGORITHMS

For the node-node protocol we have to consider two cases. If k = m,

then u[x]mi and u[x]kj were created by the same observer. In this case, our

sequence numbering scheme ensures that u[x]mi is not accepted once u[x]kj
has been accepted as i < j (case N-2-1-2, Algorithm 8). If k 6= m, then u[x]mi
will only be accepted if the local ordering graph includes a path from u[x]kj to

u[x]mi (case N-2-2-2). However, since no node receives u[x]kj before u[x]mi , no

ordering graph will ever include such a path. Consequently, the node-node

protocol also preserves the occurred-before order.

To show that our algorithm also fulfills Definition 2 for all copies of an

object, we have to consider serializations of the read and write operations

performed on all copies of a given object.

Claim: For each object x, there exists a serialization Sx of all read and

update operations on x that fulfills Definition 2.

Proof. Let SSx = {Sx,n | n is a DB node}. Each Sx,n in SSx can be divided

into segments, one for each update operation in Sx,n and the succeeding

read operations. Without loss of generality, let Sx,n include the following

sequence: · · ·u[x]k; r[x]k+1; · · · ; r[x]k+m; u[x]k+m+1; · · · . Then the segment

seg(u[x]k) of u[x]k is defined to be u[x]k; r[x]k+1; · · · ; r[x]k+m (k ≥ 0). Sx

can be constructed by merging the segments of sequences in SSx according

to the occurred-before order. In other words, for any two segments seg(u[x])

and seg(u′[x]) in SSx seg(u[x]) must have occurred-before seg(u′[x]) in Sx

if u[x] < u′[x], and in any order if u[x]||u′[x]. This is possible, because the

occurred-before relation is a partial order.

Liveness

In this section we show that the DB copies of an object converge to the most

recently observed state if communication failures are not permanent.

Claim: For each object x all available copies of x eventually receive and

accept an update operation u[x], where ¬∃uk[x] : u[x] < uk[x].

4.1. ALGORITHM 1: FULL REPLICATION 77

u[x]a
b

u[x]m
i

u[x]n
j

u[x]k
l

Figure 4.2: Example graph after the ambiguity in the ordering has been

resolved by the algorithm.

Proof. We start with the assumption that all update requests reach every

DB node with a finite latency. Furthermore we assume that there exists only

one observer m that updates a particular object x.

Let u[x]mj be the most recent update request that has been created by m

for x. If all previous update requests u[x]mi with 1 ≤ i < j have been delivered

to all DB nodes before u[x]mj , the DB nodes will accept u[x]mj because j is

currently the highest sequence number of m in the system (Algorithm 8,

case N-2-1-1). In those cases where any update request u[x]mi with i < j is

delayed and therefore delivered to a DB node after u[x]mj , the update request

u[x]mj has already been accepted and u[x]mi will be dropped (Algorithm 8,

case N-2-1-2).

Next, we discuss the case when more than one observer exist that create

update requests for object x. Without loss of generality, assume that there

exists a pair of observers m and n, and u[x]mi and u[x]nj are the latest up-

dates transmitted by m and n with u[x]mi < u[x]nj . If at least one DB node

receives u[x]nj from n after having learned about u[x]mi , this node adds edge

(u[x]mi , u[x]nj) to its local ordering graph and forwards it. Therefore, each

node eventually accepts u[x]nj .

In the presence of communication failures, however, messages may be

lost and therefore a DB node that has edge (u[x]mi , u[x]nj) in its ordering

graph may not exist. Then, a portion of the nodes may end up with db[x]mi
and another one with db[x]nj , and each node’s ordering graph Gx eventually

includes vertices u[x]mi and u[x]nj without an ordering relationship defined

between them.

78 CHAPTER 4. REPLICATION ALGORITHMS

Without loss of generality, we assume that update requests u[x]kl < u[x]mi <

u[x]nj are forwarded and that all nodes accept u[x]kl . Further we assume that

node n1 accepts u[x]mi and misses u[x]nj while node n2 misses u[x]mi and

accepts u[x]nj . This condition, where different nodes hold different state in-

formation for the same object, is resolved with the next update request u[x]ab
which will be ordered as the youngest update by the node receiving it from j

and adding it to its graph. After this update, the previously unordered up-

date requests u[x]mi and u[x]nj are ordered as preceding u[x]ab . This situation

is depicted in the Graph in Figure 4.2. See Section 4.4 for the discussion on

periodic update request.

4.2. ALGORITHM 2: PARTIAL REPLICATION 79

4.2 Algorithm 2: Partial Replication

In contrast to the first algorithm, the replication algorithm presented next

does not replicate the information on all nodes [HBMR06]. Instead, a sub-set

of all nodes is chosen to become DB nodes. Each of these nodes holds a copy

of all objects. As in the first algorithm, observers send a state record for each

observation they make to DB nodes in single-hop distance. If no DB node

is available in single-hop distance to an observer, a client is elected by the

observer to become a temporary DB node (TDB node). TDB nodes have to

at least maintain ordering graphs to support the creation and maintenance

of ordering information in the system. For the sake of simplicity we assume

in the following that they also store the most recent state for each object.

Therefore, TDB nodes have the same tasks as DB nodes except that they

may change their role back to only being a client under certain conditions

described later. Clients read the state of objects by sending unicast messages

to a DB node. A client may choose a DB node that is, for example, closest to

it. If the communication between the client and its DB node fails, the client

may choose a new DB node to read from using the server selection algorithm.

The client is conceptually composed of an application that reads object in-

formation and a database sub-system that handles remote communication

with DB nodes if necessary.

4.2.1 Server Selection Algorithm

Whenever a client needs to (re-)select a DB node to read from, it uses the

server selection algorithm. We first show the basic server selection approach

followed by implementation aspects. Then we outline some optimizations

that can be easily included into the basic approach.

Basic Server Selection

To guarantee update-linearizability the new DB node has to provide state

information to the client not older than what the client has read so far. More

formally, it has to fulfill the following criteria. Let Oc = {x1, x2, · · · , xn} be

80 CHAPTER 4. REPLICATION ALGORITHMS

the set of objects that the client has read at least once. For every object

xk ∈ Oc the client maintains the tuple (k,Obsk, snk) that contains the object

identifier, the observer identifier and the sequence number of the observer

whose update request it has read last. The set of all tuples is called client

read snapshot. The client may use a DB node if for every object xk ∈ Oc the

following holds: the object information last read by the client must be the

same or must have occurred-before the state information of the DB node’s

copy of the state information. Thus, the correctness of the server selection

is based on the correctness of the occurred-before operation. Note that a

client that has not performed a read before may be served by an arbitrary

DB node, because clients have an empty read snapshot on initialization.

Implementation Aspects

To find an appropriate DB node, the client sends a message that contains

its client read snapshot and a client sequence number1 to one or more DB

nodes. This may be achieved by, for example, sending a multicast message

m to all DB nodes using multi-send(DBGRP, m). In turn, each receiving

DB node checks whether it fulfills the consistency criteria needed to serve

the client. This is achieved by evaluating the occurred-before predicate for

each entry of the client read snapshot and the corresponding state record the

DB node has stored. A DB node only sends a reply message, if it is able

to serve the client according to the criteria above. The reply message sent

from the DB node to the client contains the client sequence number from

the request message in order to match the reply and the read snapshot. If

the client receives multiple replies, it may, for example, choose the DB node

whose reply was received first for future read operations.

The client may not find a subsequent server to read from for two reasons:

due to communication failures or because the DB node that served the client

previously crashed. In the former case the client periodically retries server

selection until the connectivity has been restored and an appropriate DB node

1Client sequence numbers are strictly monotonic increasing at each client and are used
to associate, for example, read and read-reply messages. Sequence numbers as part of
update requests are those maintained by observers.

4.2. ALGORITHM 2: PARTIAL REPLICATION 81

can be found. In the latter case a DB node that is able to serve the client

may not exist, because the client read snapshot may not match the current

state of any DB node. In this case the client also periodically repeats the

server selection procedure, because eventually some DB node will update its

copy of the database accordingly and the client will receive a positive reply to

its next server selection See Section 4.4 for the discussion on periodic update

request.

Optimizations

The basic approach may be optimized by allowing clients to read different

objects from different servers. This may be for example advantageous if the

read snapshot of a client is large. Given that, for example, a client has read

objects x, y, and z, there may be no server that suits the client’s needs

by providing recent versions of all objects. There may, however, be servers

that can serve the client consistently with a subset of these objects. To use

this optimization the implementation outlined before needs to be modified

in such way that each server reports to the client which subset of the objects

contained in the read snapshot it can serve. The client may then select

multiple servers to read from.

Some applications may not require to read all objects consistently at

all times. Therefore, the application developer may explicitly specify when

the consistency requirements for a particular object can be released. On

releasing an object, it is simply removed from the client read snapshot. As a

consequence the requirements for finding servers to read from are weakened.

Example for the Server Selection

Figure 4.3 shows an example of the message sequence when a client sends a

request to two available DB nodes. As show in Figure 4.4, DB node 1 is not

able to fulfill the clients request, because the values for objects y and z which

the client has read are more recent than what is stored in the local database

of DB node 1. In contrast to that, DB node 2 is able to fulfill the request

of the client, because all values stored in the local database of DB node 2

82 CHAPTER 4. REPLICATION ALGORITHMS

Client:

DB node 2:

DB node 1:

send
request

t

evaluate
snapshot

send
reply

accept
DB node 2

Figure 4.3: Example of the message sequence when selecting a server

DB node 2

u[z]p
3

u[y]o
5

u[x]o
3

DB:

u[y]q
1u[y]o

5u[y]p
1G

y
:

u[z]p
4

u[y]q
1

u[x]o
3

snapshot

<

<
=

DB node 1

u[z]p
3

u[y]o
5

u[x]o
3

DB:

u[z]p
2

u[y]p
1

u[x]o
3

snapshot

>

>
=

!
!

Hglobal = (. . . , u[y]p1, u[x]o3, u[y]o4, u[x]o5, u[z]p2, u[y]q1, u[z]p3, u[x]q2, u[z]p4, . . .)

Figure 4.4: Examples of DB nodes evaluating a client read snapshot

4.2. ALGORITHM 2: PARTIAL REPLICATION 83

are either the same values or more recent than what the client has last read.

These conclusions can be reached by either comparing sequence numbers

of state records (if both records were created by the same observer) or by

evaluating the occurredBefore predicate on the ordering graph corresponding

to the object. Hglobal in Figure 4.4 shows one possible (global) order in which

the observations could have taken place.

4.2.2 Dynamic Replica Allocation Algorithm

The update algorithm derives ordering information between update requests

based on the assumption that at least one DB node is in the transmission

range of each observer. If at least one client is in the (single-hop) transmission

range of an observer, the replica allocation algorithm ensures that one of

the clients present becomes a temporary DB node. Therefore, observers

periodically send single-hop messages to indicate their presence, which may

be piggybacked on update messages. Every DB node in the transmission

range of the observer replies with a DB node available message. If at least

one such message is received by the observer, it concludes that at least one DB

node is present and available for processing update requests. The number

of reply messages sent by DB nodes may be reduced by a scheme similar

to counter-based flooding [NTCS99]. If no DB node replies, the observer

concludes that there is no DB node in its communication range. Then, the

observer sends an election message in order to elect one of its neighbor client

nodes as a new TDB node. Each available client node replies with a message

in order to advertise its presence. This message includes some appropriate

parameters as election criteria, such as the amount of memory or energy

available at the client node. The observer then addresses the best suited

client node to become a TDB node, for example, the one with the largest

amount of memory available. The new TDB node creates a local database

and starts replicating object information by joining the group of DB nodes

and accepting update messages. To speed up the replication progress the

TDB node may request the ordering graphs from another DB node.

In mobile networks, the dynamic replica allocation algorithm will in gen-

eral lead to an increasing number of replicas (TDB nodes) over time. In

84 CHAPTER 4. REPLICATION ALGORITHMS

order to keep the number of replicas low, a TDB node may change its role

and drop its copy of the database under one of the following conditions: when

no observer is in the single-hop communication range of the TDB node or

whenever there is more than one (T)DB node in the communication range

of an observer. The first condition can be detected by the TDB node, if no

observer announces its presence for a given time. In the second case TDB

nodes may negotiate which ones – for example the ones with the smallest

amount of memory available – drop their copy in order to have one copy

remaining in the communication range of the observer. If a read request

arrives after the TDB node has dropped its copy, the client treats this as a

DB node failure (cf. read algorithm).

4.2.3 Update Operations

The phases of the algorithm are similar to those of the algorithm fully

replicating the data as depicted in Figure 4.1. When an observer senses

a state change of a perceivable object it sends a state record to all its neigh-

bors. All DB nodes among the neighbors will then act according to Algo-

rithm 7, except that the call of the send primitive in line 6 is replaced with

multi-send(DBGRP, message(u[x]Obs
sn , Gx)). With this change, the message is

sent to all DB nodes in the system which are assumed to have joined the

(well-known) multi-cast group DBGRP.

A DB node receiving a state record (from another DB node) via a multi-

cast message executes the algorithm shown in Algorithm 9. The algorithm is

similar to Algorithm 8. However, here incoming messages are not relayed by

the receiving DB node. The dissemination of the state records in the system

is handled by the underlying multi-cast algorithm.

4.2.4 Read Operations

In comparison to the first replication algorithm the partial replication algo-

rithm requires that read operations need to be executed on remote DB nodes.

In condition (C1) of update-linearizability it is required that all read opera-

tions of a client on a single object are executed in the program order of the

4.2. ALGORITHM 2: PARTIAL REPLICATION 85

Algorithm 9 Algorithm for processing incoming update requests

Require: incoming message sent by a DB node

1: on receive(u[x]Obs
sn , G′

x):

2: {join local and received ordering graphs}
3: Gx ← join(Gx, G

′
x)

4: if db[x]OS = empty then

5: { case N-1: no state record in DB for object x }
6: db[x]OS ← u[x]Obs

sn

7: else

8: { case N-2: object x stored in DB: db[x]OS }
9: if Obs = O then

10: {case N-2-1: db and incoming record are from same observer}
11: if sn > S then

12: {case N-2-1-1: update request has higher sequence number}
13: db[x]OS ← u[x]Obs

sn

14: end if

15: else

16: {case N-2-2: different observers}
17: if occurredBefore(Gx, db[x]OS , u[x]Obs

sn) then

18: {case 2-2-1: received record is more recent}
19: db[x]OS ← u[x]Obs

sn

20: end if

21: end if

22: end if

86 CHAPTER 4. REPLICATION ALGORITHMS

client. Abstractly, this can be achieved by providing FIFO communication

between the client and the DB node in both directions of communication.

For the sake of simplicity we first describe the read algorithm where a

client may only execute one read operation at a time. This blocking read

operation provides FIFO ordering. However, to improve the performance of

read operations the client may handle a number of read operations concur-

rently, either by bundling several read operations in a single read request

message or by sending multiple read request messages before a reply has

been received. In order to maintain the program order, the client then has to

order the incoming read reply messages accordingly. Our approach requires

that only the client needs to maintain information about the state of its own

read operations. The DB nodes do not have to maintain state information

regarding read operations clients sent to them.

If a client requests to read an object for which the DB node does not

store any state, an error is reported by the DB node. In the following we

assume that the client has selected a DB node to read from, for example, by

using the server selection algorithm described in Section 4.2.1.

Blocking Read Operation

To read the state of an object the client first sends a read request message to

the DB node using the uni-send primitive. The message contains the id of

the object for which the client wants to read the state and a client sequence

number . Next, the client blocks until it receives a read reply message from

the DB node or until a timeout occurs. If the client does not receive a read

response message after a timeout period, it may retransmit the read request

up to a maximum number of retries. If all retries fail, it may use the server

selection algorithm to select a new DB node.

When the DB node receives the read request, it sends a read response

to the client which contains the state record of the requested object and the

client sequence number from the request. When the client receives a read

response, it uses the client sequence number to detect duplicate messages.

Next, it updates its read snapshot with the observer id and observer sequence

4.2. ALGORITHM 2: PARTIAL REPLICATION 87

number from the state record contained in the response. Finally, the state

of the object is delivered to the application.

Concurrent Read Operations

One advantage of the blocking read operation is the fact that it is easy to

implement. However, one disadvantage is the aggregated latency of multiple

read operations executed sequentially: each read operation has a latency

of at least the round-trip time (RTT) of the communication between client

and DB node. In order to reduce the latency of successive read operations,

the client may send multiple read requests concurrently. This means that

the client is split into two concurrent threads of control: one contains the

application itself and the other thread contains the database sub-system.

Figure 4.5 shows two programs that may benefit from read operations that

are executed concurrently. We assume that the program is executed until

the first dependency on a read operation that is not satisfied with a read

reply is reached. If such a dependency is reached, the processes must be

synchronized by using, e.g., mechanisms similar to future objects in remote

procedure calls, e.g., [Cha89], which block on accessing a result which has

not been delivered yet.

The first example in Figure 4.5(a) starts by reading object x. Based on a

(local) condition the program reads either object y or z next. If the blocking

read operation is used when executing this program, the execution time would

be at least two times the RTT of the communication link between client and

DB node. However, when the read operations are started concurrently the

execution time can be reduced to a value between RTT and 2∗RTT, because

execution of the program would only block if value1 and value2 are not yet

delivered and needed for processing (since the variable condition is a local

variable with no dependencies to database objects).

The program in Figure 4.5(b) shows an example that reads the same

object x periodically in order to detect changes of the object’s state (e.g.,

by calculating the difference). If the blocking read operation is used for this

program, it would only be possible to detect changes with a frequency of less

than 1
RTT

(the sleep function would be omitted then). If the concurrent read

88 CHAPTER 4. REPLICATION ALGORITHMS

bool condition {local variable}
value1 = read(x)
if condition then

value2 = read(y)
else

value2 = read(z)
end if
{process value1 and value2}

int diff = 0
while diff == 0 do

x1 = read(x)
sleep tmin

x2 = read(x)
diff = x2 − x1

end while
{signal change diff }

(a) Example where explicit combination
of read operations is difficult

(b) Example program where the same
object may be read concurrently

Figure 4.5: Example programs relevant for remote read operations

operation is used it is possible to detect changes that have a higher frequency.

If the jitter of the (multi-hop) one-trip time in the network was 0 it would

be possible to detect changes with a frequency of 1
tmin

.

Implementing Concurrent Read Operation

The first implementation of concurrent read operations can be done explicitly

by the application programmer by bundling these read operations into a

batched read operation by passing a list of object ids to the database sub-

system. As a result, the database sub-system then sends a single read request

to the DB node listing all object ids that the client wants to read. The DB

node then sends a single reply message to the client.

A second approach to increase concurrency of read operations from a

single client is to send successive read requests before the reply messages to

the previous requests have been received. However, if the client issues two

concurrent operations reading the same object, the program order of the

client may be changed if a reordering of messages occurs in the network2. If

both requests for the same object were sent concurrently, either the requests,

the replies, or both could be reordered in the network. Additionally, an

update may be accepted on the DB node between the processing of the two

read requests. Finally, any read request or read reply message may be lost

due to (temporary) communication failures.

2Recall that read requests and replies may be sent over multiple hops in the network.

4.2. ALGORITHM 2: PARTIAL REPLICATION 89

Client

DB node 1

read(x)

read(x)

reply(x)

re
pl

y(
x)

DB node 2

up
da

te
(x

)
t

1 2

87

(2,7)(1,8)

Figure 4.6: Possible re-ordering when reading the same object

An example for this situation is given in Figure 4.6 where object x is

concurrently read twice by the application. In the time interval between

processing the two read requests, the DB node accepts an update for object

x. This means that the first reply message sent (associated with the sec-

ond request) contains the “old” value (prior to the update) for x and the

second reply message sent contains the “new” value (after the update) for

x. Additionally, the order in which the reply messages are received is again

changed.

To solve this problem we need to verify that two read requests were not

reordered in the network before they are received by a DB node. This means

that the event of sending the second read request is causally unrelated to the

processing of the first read request on the DB node. Figure 4.7 depicts the

two relevant cases where messages are delivered in order and where messages

are reordered. In the figure, events a and b represent the sending of read

requests and events c and d represent the processing of the read requests. In

Figure 4.7 (a) the events b and c are causally unrelated which indicates that

the messages were delivered in order. In contrary, in Figure 4.7 (b) there is

a causal dependency between events b and c from which the reordering can

be derived.

The causal independence between events b and c can be detected by us-

ing server sequence numbers issued by the DB node in addition to the client

90 CHAPTER 4. REPLICATION ALGORITHMS

t
dc

ba

d

c

b

a

(a) Events b and c are causally unrelated

t
d c

ba

cdba

(b) Event b causally precedes event c

Figure 4.7: Causal dependencies: events a and b are read requests, c and d

are read replies

sequence numbers. Each DB node therefore assigns strictly monotonic se-

quence numbers to each read request (from any client) it processes. Formally,

the client receives a pair of sequence numbers (snc, sns) with each read reply.

This pair of sequence numbers can be interpreted similar to a timestamp of

a vector clock [Mat89].

In the example in Figure 4.6 the client assigns the sequence numbers 1

and 2 to the read requests in the order they are sent. When receiving the

requests the DB node assigns server sequence numbers, e.g., 7 and 8, to the

requests. The read replies sent back to the client will therefore contain pairs

of sequence numbers (1, 8) and (2, 7).

The client now compares two received tuples by doing a component-wise

comparison, i.e.

(snc, sns) < (sn′
c, sn

′
s)⇔ (snc < sn′

c) ∧ (sns < sn′
s) (4.1)

Given that a client first receives a read reply message mrp1 that contains

the tuple of sequence numbers (snc1, sns1) and then a read reply message

mrp2 that contains the tuple of sequence numbers (snc2, sns2) we derive three

cases that have to be distinguished:

4.2. ALGORITHM 2: PARTIAL REPLICATION 91

1. Reads are correct and in order : If (snc1, sns1) < (snc2, sns2) holds, the

client can conclude that the request and reply messages were sent in

order. This means that the read operations were processed and received

in the program order of the client.

2. Reads are correct and out of order : If (snc2, sns2) < (snc1, sns1) holds,

the client can conclude that the request messages were received by the

DB node in order, but the reply messages were received out of order

by the client.

3. Read violation of the first read : If both tuples are unrelated, the two

read request messages were reordered in the network and have not been

processed in the program order of the client.

Next, we discuss how read reply messages are processed at the client. We

assume that the client executes a sequence of k concurrent read operations

S = (r1, . . . , rk). The sequence is concurrent, if the read request of rk has

been sent by the client before the read reply of r1 has been received by the

client.

Since the consistency model (cf. Definition 2, p. 40) is an object-local

model, the order in which read operations of different objects are processed on

the DB node is not critical for the correctness. However, if two or more read

operations are reading the same object, the ordering of the corresponding

requests and responses is important to maintain the program order of the

client. Without loss of generality, let S be a finite concurrent sequence of

n read operations that read only one object x (for example the program

depicted in Figure 4.5(b)). This means that the client receives at most n

reply messages (since messages may be lost) which may be delivered to the

database sub-system in any permutation. The spectrum of processing the

reply messages and consistently deliver data to the application now ranges

from using the first reply only to waiting until all reply messages have been

received3. Each of these approaches is correct with respect to Definition 2,

3Since our system is based on best-effort communication, the latter approach is com-
bined with a timeout: wait until all replies have been received or the timeout expires

92 CHAPTER 4. REPLICATION ALGORITHMS

however they make a trade-off between latency and the granularity of data

access. In the following we describe three approaches of the spectrum:

1. Deliver the first read reply : The first reply that the client receives is

delivered for all read operations. This approach has low latencies with

a trade-off to a coarse granularity of results .

2. Process every reply as it arrives : The first read reply that arrives at the

database sub-system of the client with the tuple (ci(1), sj(1)) of client

and server sequence numbers is delivered straight away to satisfy the

read operation with the sequence number ci(1). In the following, the

database sub-system maintains a state of which tuple (ci(k), sj(k)) has

been delivered to which read operation. k denotes the k-th reply mes-

sage that has been received. The functions i(k) and j(k) return the

client and the server sequence numbers of the k-th reply message, re-

spectively.

For all other reply messages that include (ci(k), sj(k)) with 2 ≤ k ≤ n,

the database sub-system compares the newly received tuple of sequence

numbers with those already delivered to the application according to

the relation defined for tuples of sequence numbers. If (ci(k), sj(k)) is

correct and in order with all previously delivered tuples, the incoming

reply will be delivered for the read operation with the client sequence

number ci(k). If any reply message with a client sequence number be-

tween ci(k−1) and ci(k) was not delivered, i.e., ci(k) − ci(k−1) > 0, the

result for the reply (ci(k), sj(k)) will be delivered for these missing read

requests as well. If the received reply violates the read order, it will be

dropped. If the last reply of the sequence is not received after a time-

out, the last read operation will return the result of the last reply that

has been received correctly. An example of a situation where a reply

is received out of order is illustrated in Figure 4.8(a). The DB node

receives the read requests in FIFO order. At the client, however, the

reply messages b′′ and c′′ are received out of order. In this case, the DB

sub-system delivers the reply c′′ as a result to the read request b and c

while b′′ is dropped on arrival. In Figure 4.8(b) the read requests are

4.2. ALGORITHM 2: PARTIAL REPLICATION 93

Client

DB node 1 t
a' b'

b''

c'

c''a''a b c

(a) The requests are delivered in FIFO order, the replies are delivered
out of order: When the client receives reply c′′, it delivers this reply to
requests b and c. The reply b′′ is dropped.

Client

DB node 1 t
a'b'

b''

c'

c''a''a b c

(b) The requests are delivered out of order, the replies are in FIFO order:
The DB node replies in the order in which it receives the requests. The
client accepts b′′ as a reply to request a and b and drops a′′. Reply c′′ is
accepted for c.

Client

DB node 1 t
a'b'

b''

c'

c''a''a b c

(c) The requests and replies are delivered out of order: The client will
accept a′′ as the reply to a. Reply b′′ is rejected, since it violates the read
order. Reply c′′ is then used for answering reads requests b and c.

Figure 4.8: Examples for using the “process every reply on arrival” strategy.

94 CHAPTER 4. REPLICATION ALGORITHMS

delivered out of order, while the replies are delivered in FIFO order.

Here, the reply b′′ is accepted to answer the requests a and b. The

reply a′′ is then dropped. In Figure 4.8(c) the requests a and b and the

corresponding replies are delivered out of order. In this example, reply

a′′ will be used to answer request a. Reply b′′, however, is dropped,

since it violates the read order. Instead, reply c′′ is used to answer the

read requests b and c.

3. Deliver when all replies are received : When all reply messages are re-

ceived the database sub-system sorts them according to the server se-

quence numbers, i.e., the order in which the requests were processed

by the server. The reply with the smallest server sequence number

will then be delivered to the first read operation in the sequence, the

reply with the next server sequence number will be used as a result to

the second read operation and so on. By waiting until all replies are

received the database sub-system can match the program order of the

client with the processing order of the DB node and thus satisfy the

consistency model.

Continuous Read Operations

If an application on a client needs to read the same object x multiple times, a

continuous read operation readcont(x, listenx) may be used by the program-

mer. With a continuous read the client registers at the DB node to be notified

about all changes made on the state of object x. Every time the DB node

receives an update for x it sends a read reply message containing the new

state to the client as depicted in the message sequence shown in Figure 4.9.

On receiving a read reply associated with a continuous read operation the

database sub-system uses the call-back listenx to notify the application of the

new state. To preserve the correct ordering of multiple and duplicated read

replies the database sub-system uses the server sequence numbers. Both,

duplicated replies and replies received out of order are not delivered to the

application.

While the read operations described earlier do not require that the DB

4.2. ALGORITHM 2: PARTIAL REPLICATION 95

Client

DB node 1

readcont(x)

re
pl

y(
x)

re
pl

y(
x)

DB node 2
or

Observer

up
da

te
(x

)
t

87

up
da

te
(x

)

re
pl

y(
x)

Figure 4.9: Example of the message sequence when using a continuous read

operation

node keep any state for its clients, the continuous read operation requires

that the DB node keeps track of all continuous read operations that clients

have registered. To avoid unnecessary state and message overhead we use

a lease mechanism which requires that the client periodically refreshes the

continuous read at the DB node. If the DB node does not receive a refresh

message for some time it removes the continuous read from its list and does

not send any read replies on changes any more.

Comparison of the Read Operations

The blocking read operation is easy to implement and to use. However,

for each successive read operation in an application program, the execution

time of the application grows linearly with the number of read operations.

The batched concurrent read operations ease this disadvantage in perfor-

mance. However, these require that the application programmer explicitly

combines read operations that may be sent in a single read request mes-

sage. The concurrent read operations can provide higher performance than

the blocking read operation. Additionally, they do not require the applica-

tion programmer to explicitly specify concurrency as it is required using the

batched read operations. Nevertheless, the implementation of the database

96 CHAPTER 4. REPLICATION ALGORITHMS

Table 4.2: Comparison of the read operations with respect to statefull

DB nodes, programming support required, complexity of the database sub-

system, and latency

state explicit use complexity of latency

at DB node by programmer DB sub-system

blocking no no low high

batched no yes medium low

concurrent no no high low

continuous yes yes medium low

sub-system supporting concurrent read operations is more complex than for

the approaches previously described. For many applications that repeatedly

read the same object, the continuous read operation constitutes an alterna-

tive that may reduce the overall message overhead, because less read requests

have to be sent to the DB node. However, the implementation requires that

state information is stored at the DB node for continuous reads used by any

client. Table 4.2 summarizes the comparison of the different read operations.

4.2.5 Correctness

In this section we outline why the algorithm for partial replication is correct

according to the definition of update-linearizability. For a discussion of the

safety and the liveness (convergence) of the update algorithm we refer to

Section 4.1.3 where all nodes are updated. Here we will focus on showing the

correctness of the read algorithms.

Correctness of the Read Algorithm

For all read operations we can assume that the DB node that serves a client

is correct with respect to the consistency model. In order to show that the

read operations are correct, we need to verify that the replies are delivered

according to the order in which the requests were sent (the program order

4.2. ALGORITHM 2: PARTIAL REPLICATION 97

of the client). The blocking read operation is correct since only one read

operation is allowed to be pending at any time. Duplicate reply messages

are eliminated by using client sequence numbers.

In the class of concurrent read operations, the correctness is based on

the comparison of client and server sequence numbers. The strategy, which

delivers the first read reply for a sequence of requests, is correct, since any

one of the read replies is used to answer all requests of a sequence. This

is correct with respect to Definition 2, since using only one reply does not

impose any ordering ambiguities.

The correctness of the approach that processes every reply on arrival

can be shown by examining all classes of ordering problems: requests and

replies are delivered in FIFO order (case I), requests are in FIFO order and

replies are out of order (case II), requests are out of order and replies are in

FIFO order (case III), and requests and replies are out of order (case IV).

The latter three cases are depicted in Figure 4.8. In case I the program

order of the client is respected. This situation is detected, when all tuples of

sequence numbers are received in increasing order according to the definition

in Equation 4.1. If this holds, the requests are processed and the replies are

delivered in the order in which they were sent by the client (the program

order). In case II (Figure 4.8(a)) the requests are processed in the program

order of the client. However, the replies are delivered out of order. In this

case, a read operation is answered by a reply which belongs to a request which

is later in the sequence of all requests. This is correct, because the reply to

answer the request is the same as the reply used to answer the succeeding

request. In case III (Figure 4.8(b)) the requests are not processed in the

client’s program order. On receiving the replies the client drops one of the

replies which has been processed out of order and uses the other to answer

both requests, which is correct. In case IV (Figure 4.8(c)) the request and

the reply are delivered out of order. When the second reply arrives, this is

detected by comparing the tuples of sequence numbers. The second reply is

dropped and is answered by the next correct reply.

The approach “deliver when all replies are received” is correct, because

it matches the order in which requests are processed by the DB node to the

98 CHAPTER 4. REPLICATION ALGORITHMS

program order by sorting the replies according to the sequence numbers of

the DB node. Replies which are not received by the client are substituted

by consecutive replies. The continuous read operation is correct, because the

replies are processed in increasing order of the DB node sequence numbers.

Duplicate and out of order replies are dropped.

4.3 Transmission of the Ordering Graph

The presented replication algorithms need to exchange ordering information

among DB nodes. This is necessary to synchronize the ordering information

available in the system. One approach is to transmit the complete order-

ing graph. In addition to the reduction functions on a local ordering graph

presented in Section 3.4.2 (p. 53), it is also possible to select subgraphs for

exchange without reducing the local ordering graph and thus save bandwidth.

This is in general possible, if the subgraph that is transmitted has vertices

which are also contained in the graph maintained at the receiver. The sub-

graph G1 depicted in Figure 4.10(a), for example, connects to the graph

G3 shown in Figure 4.10(b), because G1 and G3 share common vertices. If

the subgraph G1 is joined with graph G3, the resulting graph (depicted in

Figure 4.10(c)) contains valuable additional ordering information. However,

subgraph G2 does not connect to G3, because the two graphs do not contain

common vertices. This means that, if only subgraph G2 was transmitted,

the graph G4 = join(G1, G3) would result in a disjoint graph that misses

ordering information. In the following, we will present three classes of pos-

sible approaches for exchanging ordering information based on transmitting

subgraphs.

The presented approaches are based on the idea of selecting a subgraph

for transmission by traversing the graph in reverse order, i.e., by following

the edges in the graph in the opposite direction. For the representation of

the graph this means that in addition to the edges also the reverse edges

need to be stored. We distinguish between three approaches that, starting

at the most recently added vertex, extract subgraphs in reverse order for the

exchange between DB nodes:

4.3. TRANSMISSION OF THE ORDERING GRAPH 99

• depth-first based subgraph extraction,

• breadth-first based subgraph extraction, and

• negotiation-based subgraph extraction.

The first two approaches use traditional graph traversal algorithms, i.e.,

depth-first and breadth-first search along the reverse edges of the graph (see,

for example, [HS78]). The number of vertices selected for the subgraph is

limited to k. The parameter k describes the trade-off between the amount

of data that is transmitted and the probability of successfully synchronized

ordering graphs (under the assumption that synchronization is possible at

all). In preparation for the subgraph extraction all transitive edges are re-

moved from the ordering graph, the so-called transitive reduction [AGU72]

of a graph. This has to be done in order to avoid situations where edges exist

in the graph that lead from “old” to very recent vertices.

The third approach is based on the negotiation between pairs of DB

nodes [HBR03] in four phases. A DB node N1 that has accepted a new

update request u[x]on will advertise it by sending a message that contains the

triple (x, o, n), the id x of the corresponding object, the id o of the observer

that created it, and the sequence number n. The DB node N2 receiving

the triple will then check whether it has already accepted the corresponding

update request or its current database entry is more recent than the offer. If

both conditions are not fulfilled, DB node N2 will collect all vertices from its

ordering graph G2 that do not have any successors in the graph in Vnew, i.e.,

vertices that do not have any out-going edges. These vertices represent the

most recent update requests known on N2. The set Vnew is then sent to N1

which, in turn, selects a subgraph Gsub ⊆ G1 that contains all vertices (Vnew∩
V1) (or vertices from the same observer with a higher sequence number), the

newly received update request u[x]on, and those vertices that are on any path

between a vertex in Vnew ∩ V1 and u[x]on. If the subgraph Gsub is non-empty,

it is transmitted to N2 together with the update request u[x]on. If Gsub is

empty, the negotiation failed and the graphs are synchronized by one of the

other approaches that have been described.

100 CHAPTER 4. REPLICATION ALGORITHMS

u[x]p
3

u[x]q
1

u[x]o
3

u[x]p
2u[x]o

2

G1 G
2

(a) Graph available to be sent for synchronization

u[x]q
1

u[x]r3 u[x]s
2

u[x]o
3

G
3

(b) Graph to be synchronized

u[x]q
1

u[x]r3 u[x]s
2

u[x]o
3 u[x]p

3
u[x]p

2

G4

(c) Result of joining G1 and G3

Figure 4.10: Example of using only a subgraph for synchronization

4.4. REMOVAL OF OBJECTS FROM THE DATABASE 101

4.4 Removal of Objects from the Database

If the event that an object under observation leaves the entire system cannot

be detected, the database may contain obsolete state records. If the system

tracks people in a building, for example, the state record associated with a

person should be automatically removed after he or she left the building. For

this purpose, we adopt a soft state approach, which can be easily integrated

into the above algorithms. Each state record is associated with a time to

live (TTL) greater than the rate of state changes. Observers are responsible

for refreshing the TTL by sending new state records for every object in their

observation range, i.e., within a TTL period at least one state record must

be issued. Nodes refresh the TTL timer of a state record whenever they

accept an update for that record. If the timer expires, the corresponding

state record is removed.

102 CHAPTER 4. REPLICATION ALGORITHMS

Chapter 5

Performance Analysis

In this chapter we examine the performance of the algorithms presented in

the previous chapter. First, we define a set of metrics that are used to

formally describe the performance in different dimensions. The next section

describes the parameters of the system that impact the performance of the

algorithms and which are varied in the following experiments. The chapter is

then concluded by the presentation and the discussion of the results obtained

in simulation experiments.

5.1 Methodology

5.1.1 Performance Metrics

In order to quantify the performance of the proposed algorithm the following

quantities are measured during the experiments: the observation jitter, the

read and update latency, the read and update success ratio, and the recency

of the obtained read results with respect to the (idealized) global state.

Observation Jitter

The observation jitter δobs = δcomm + δsens as defined in Definition 1 is a

critical parameter that describes the best possible ordering accuracy for two

103

104 CHAPTER 5. PERFORMANCE ANALYSIS

update requests in a given system. It is given as the sum of the jitter in the

single-hop communication delay (δcomm) and the jitter of the time it takes

to sense the state of a physical object (δsens). In the experiments δcomm is

measured. The term δsens depends on the particular sensor technology used

and is beyond the scope of the experiments.

Latency of Operations

Both, the latency of read and update operations are taken into account. The

read latency denotes the time difference between starting a read operation

on a client node and reception of the result for the read operation. Failed

read operations are not taken into account. When Algorithm 1 (full repli-

cation) is used, the latency of read operations is close to 0, since no remote

communication is used in the execution of a read operation. However, when

Algorithm 2 is used, remote communication is used and thus the latency of

read operations may be significant.

The update latency is defined at a node as the time difference between

sending an update request at an observer and accepting it at a DB node. For

example, consider an update request that is passed from an observer to node

n1 first and then from n1 to node n2. Assume further that it takes time t1 for

processing and sending the request from the observer to n1 and time t2 for

the communication between n1 and n2. The update latency accounted for

that update request will be t1 at node n1 and t1 + t2 at node n2. The update

latency is only taken into account for those request which are accepted by a

DB node.

Update and Read Success Ratio

The success ratio in general describes the ratio between the number of suc-

cessfully finished operations per node and the total number of operations

that should have been completed on a given node. In the experiments, we

distinguish between the read success ratio and the update success ratio for

read operations and update operations. In the best case, a client node should

execute all read operations it has requested and a DB node should execute all

5.1. METHODOLOGY 105

update requests. If Algorithm 1 is used, the read success ratio is considered

to be 1.0, since it is assumed that local read operations do not fail.

Update and Read Recency

The update recency for an object x compares an accepted update request at a

DB node with the globally most recent update request available for x at the

time of acceptance. Consider, for example, that an object has been updated

10 times by updates u1, . . . , u10. The recency of the update is 0 if a DB node

has stored u10, 1 if the DB node has stored u9, 2 if the DB node has stored

u8, and so on.

The read recency is defined analogously for the recency of read results.

In this case read results are compared to the globally most recent update

request for the given object at the time they are received by the client. The

distinction between update and read recency is important for the partial

replication algorithm. Here, read reply messages may be in transit between

DB node and client while new update request are created in the system.

Message Overhead

For the full replication algorithm, the message overhead is measured in mes-

sages per update and node. Using this algorithm, messages are only sent

when updates are created. When the partial replication algorithm is used,

however, periodic message overhead, which is independent from particular

updates, needs to be taken into account. Here, the message overhead is

measured in messages sent per node and second on layer 2.

5.1.2 System Parameters

The performance metrics are influenced by a variety of system parameters,

which are described next. The system parameters are varied in the experi-

ments to investigate how they impact the overall performance of the system.

106 CHAPTER 5. PERFORMANCE ANALYSIS

10 observer/
column

10 observer/row

t
u[x]ok u[x]om

time between update requests

ok

om

neighbors of ok

Figure 5.1: Selection of observers for update requests

Load Model

The load imposed on the system during the experiments is characterized by

two parameters: the rate at which read operations and update operations

are performed. Both, the read and the update rate are given in terms of a

system-wide rate.

For the read operations, clients are selected randomly with a given read

frequency. The observers for the update operations are chosen in order to

simulate a random movement of the object under observation. The observers

are arranged in a regular grid and remain stationary. Initially the observer

that issues an update request is chosen at random. The next update request

is then issued by an observer which is a neighbor of the preceding observer

on the grid of observers. This process of selecting new observers and issuing

update requests is repeated until the end of the simulation with a given

read frequency. Figure 5.1 illustrates the selection of observers. Using this

object mobility model stresses the replication algorithm, because objects are

observed by distinct observers on every observation. This enforces that the

ordering graph is used in most cases to decide on accepting or rejecting an

update request.

5.1. METHODOLOGY 107

Node Mobility and Density

The number of nodes in the network and their mobility pattern influence

the topology of the network and therefore also the performance of read and

update operations. Depending on the mobility of nodes, the network may,

for example, become partitioned [HDMR04]. For this reason, an update

operation that is created in one partition becomes available only to DB nodes

in the same partition. If the spatial node density in the network is high,

instead of network partitioning, broadcast storms [NTCS99] may lead to

the collision of messages in the network. As a consequence, update or read

messages may be lost, impacting the performance. In the evaluation the

performance of networks where all nodes are stationary is compared with

networks where nodes follow the random-waypoint mobility pattern.

Stationary Nodes : In the stationary scenarios nodes are initially deployed

randomly on a given spatial area with uniform distribution. All nodes remain

stationary until the end of the experiment.

Random-Waypoint Mobility : In the random-waypoint mobility model

[BMJ+98] all nodes are initially placed at random positions (x, y) on the

given spatial area. Each node then selects a random destination (x′, y′) to

which it moves with a constant speed v. The speed v is chosen randomly

from an interval [vmin, vmax] with uniform distribution. After reaching its

destination a node pauses for a time tpause which is selected randomly from

an interval [tmin, tmax] with uniform distribution. After the pause, the node

selects a new destination and a new speed and moves to the new destination

as described before. The process is repeated until the end of the experiment.

The random-waypoint model has two major drawbacks if used in the

unmodified version. First, the average node speed can decrease over time

and asymptotically approaches 0 if vmin = 0 [YLN03]. Secondly, the spatial

distribution of nodes over time decays from its initial uniform distribution

to a non-uniform distribution that has its maximum density of nodes in the

center of the spatial area and a density of almost 0 close to the border of the

area [BRS03]. The mobility pattern used in the experiments were generated

using the mobility generator presented in [PBV05]. This mobility generator

avoids the above mentioned drawbacks of the random-waypoint model by

108 CHAPTER 5. PERFORMANCE ANALYSIS

generating mobility traces in steady state with a given average node speed

and a steady spatial distribution of nodes.

Parameters of the Algorithms

The following gives a summary of the parameters used to configure the repli-

cation algorithms.

The reduce function used in all experiments is the lossy-k-reduce func-

tion with k = 1. Out of all proposed reduce-variants this function removes

the most ordering information from ordering graphs and serves as a lower

performance bound. At all times in the experiments the complete ordering

graph is transmitted between DB nodes.

In the partial replication algorithm all clients select a server initially using

the multicast-based server selection protocol. Read operations are repeated

once after a timeout of 3 s. Observers announce themselves every 10 s. If a

read operation failed twice clients initiate a server selection.

5.2. EVALUATION OF THE OBSERVATION JITTER 109

5.2 Evaluation of the Observation Jitter

The value of δobs = δcomm + δsens in Definition 1 depends on the system

mechanisms used to determine the order of update requests. The method we

propose for the ordering of events is based on the order in which messages are

received on the first hop node. This means that the value of δcomm is constant

given that the jitter of the single-hop communication delay is bounded. This

section presents an analytical discussion of δcomm followed by experimental

results that strengthen the analytical results in practice.

5.2.1 Delay Jitter: Experimental Evaluation

The goal of the experimental evaluation is to find out the magnitude of

δcomm in practice. This section follows and extends the work that has been

conducted in [Hor05] to measure the single-hop delay jitter.

The fundamental problem with measuring the communication jitter in

a life system is that physical clocks are used. In practice, these clocks are

inaccurate, i.e., they have a drift that lets them run faster or slower than

the defined physical time [Lom02]. Formally, a physical clock Ci(t) can be

described as

Ci(t) = ai(t)t + bi (5.1)

where ai(t) denotes the drift of clock Ci at physical time t and bi denotes

the skew of Ci at time t = 0.

Given a system with two processes P1 and P2 that run on two physical

nodes and which may communicate directly using messages sent over a wire-

less communication interface. Process P1 has access to a physical clock C1

and process P2 can access C2. Let P1 — representing an observer — send a se-

quence of k messages to P2 — representing a DB node — at times s1, · · · , sk.

The corresponding times at which P2 receives the messages are denoted as

r1, · · · , rk. The goal of the experiments is to obtain times δi = ri − si for

each of the messages in order to derive the maximum delay jitter δcomm. The

110 CHAPTER 5. PERFORMANCE ANALYSIS

MCU

wireless
interface

MCU

wireless
interface

digital indigital out

Sender Receiver

Figure 5.2: Setup for measuring the one-trip time

problem, however, is that the sender can only obtain C1(si), whereas the

receiver can only obtain C2(ri).

Measuring the One-trip Time

The communication pattern used by the observer nodes is based on a one-

way communication. Each observer sends one message for each observation

it makes. In order to make measurements for the delay jitter in a simi-

lar environment it is desirable to have only one-way communication in the

experiments as well.

To be able to make precise measurements an out of band signaling mech-

anism is used that allows the sender of a message to signal the receiver the

start of a transmission. The overall setup of the experiment is depicted in

Figure 5.2. A general purpose (one bit) digital output of the sending node is

used to signal the receiver. The signal received on the digital input channels

is then used to trigger an interrupt handler on the receiver. The task of the

interrupt handler is to simply reset the internal physical clock to 0.

After initialization, the sender will periodically send (layer 2) broadcast

messages to the receiver immediately after sending a signal through the dig-

ital out channel resetting the clock on the receiver. Thus, the receiver can

derive the one-trip time by reading its clock when the message arrives. The

drift of the receiver’s clock can be neglected in these experiments since the

transmission of a single messages takes only a few milliseconds and its clock

5.2. EVALUATION OF THE OBSERVATION JITTER 111

treset

tsend

trcv

tout
out-of-band

Sender Receiver

Figure 5.3: Communication to obtain the one-trip time

Parameter Value

number of samples 7389

bit rate 19.2 kbps

message length 36 bytes

Table 5.1: Parameters of the experiments to measure the delay jitter

is reset using the out-of-band mechanism each time before sending a message.

Figure 5.3 shows a single message exchange between the two nodes used to

obtain the OTT. At time tout puts a signal on the digital out channel. At

time treset the receiver will have executed its interrupt handlers setting its

clocks to 0. On receiving a message the receiver simply reads its local clock

to obtain the OTT of the message. After obtaining a set of one-trip times,

node 2 can calculate the delay jitter as the difference between the maximum

and minimum OTT.

Experimental Setup

The experiments were conducted using two MICA-2 nodes [mot] Each ex-

periment consists of 7389 messages being sent at a rate of one message per

112 CHAPTER 5. PERFORMANCE ANALYSIS

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09

0,1
0,11
0,12
0,13
0,14
0,15

16
,4

2

16
,4

6

16
,4

9

16
,5

3

16
,5

6

16
,5

9

16
,6

3

16
,6

6

16
,7

0

16
,7

3

16
,7

7

16
,8

0

16
,8

4

16
,8

7

16
,9

0

one trip time (ott) [ms]

re
l.

fr
eq

u
en

cy

Figure 5.4: Histogram of the measured one-trip times

second to calculate the OTT. For the measurements TinyOS [HSW+00], a

common operating system of the MICA-2 nodes, is used. The MAC-protocol

implementation is modified in such way that it writes timestamps into mes-

sages immediately before serializing them to the channel. This approach

avoids that the measurements are impacted by the delay jitter imposed by

the randomization mechanisms used in the MAC-protocol. The communica-

tion is carried out with a bit rate of 19.2 kbps. Each message has a length

of 36 bytes, which consists of 29 bytes payload and 7 bytes message header.

Table 5.1 shows a summary of the parameters used.

Results

Figure 5.4 shows a histogram of the measured values of the one-trip times

obtained in the experiments. The x-axis denotes time intervals into which

the sampled messages latency fit and the y-axis shows the relative frequency

of the samples. The OTTs are clustered around eight distinct times. The

5.2. EVALUATION OF THE OBSERVATION JITTER 113

difference between neighboring clusters is approximately 50 µs which corre-

sponds to the time it takes to transmit one bit at a bit rate of 19.2 kbps

(which is 52.08 µs). Internally, the radio transceiver used on the Motes1 has

a 8 bit shift register. Each time this register has been filled, the transceiver

signals an interrupt to the micro controller (MCU) indicating that a byte

has been received. However, this byte may contain up to seven bits of the

preamble sent over the radio channel and only one bit which belongs to the

first byte of the data frame. As a consequence the last byte that is received

may contain between one and eight bits of the data frame. If the last byte

contains one bit of the data frame, the MCU receives the completed frame

seven bit-times later, since the shift register will be filled with seven bits that

do not belong to the data frame. The delay will be six bit-times, if the last

byte contains two bits of the data frame, and so on. This means that the the-

oretical lower bound for the jitter in this system is seven bit-times (364 µs).

However, the maximum jitter obtained in the experiments is 436.19 µs. The

difference of 72 µs goes back to the variance in processing delays2.

5.2.2 Discussion

The results of the experiments conducted on a hardware platform for WSN

applications (Mica Motes [mot]) show values of approximately 0.5 ms for

δcomm (excluding the randomization delay caused by the MAC layer). The

ordering accuracy which can be achieved by using this system is therefore

bound to an observation frequency of 2 kHz.

If synchronized (physical) clocks are used the possible ordering accuracy

depends on the accuracy of the underlying clock synchronization algorithm.

In the case of the time synchronization algorithm for MANETs presented

in [Röm01] the inaccuracy increases linearly with both the number of hops

a message traverses in the network and the age of the information. Mea-

surements on standard PCs presented in [Röm01] show inaccuracies of ap-

proximately 2.2 ms and 3.75 ms for information that is 500 and 900 seconds

old.

1The radio transceiver is a Chipcon CC1000 [Chi05]
2This corresponds to approximately 500 clock cycles of the MCU.

114 CHAPTER 5. PERFORMANCE ANALYSIS

5.3 Evaluating the Full Replication Algorithm

In this section we present the experimental evaluation of the full replication

algorithm. The first step is to evaluate the algorithm in an artificial environ-

ment without collision, contention, and transmission failures. This is done

in order to study its performance without the impact of underlying proto-

col software and transmission channel. The next set of experiments studies

the performance of the algorithm under the influence of a CSMA/CA based

protocol on layer 2 of the protocol stack. In this setting various other pa-

rameters, such as the node density and the load model, are varied and their

effect is evaluated. Finally, we also examine the impact of node mobility and

transmission failures on the performance of the protocol.

5.3.1 Evaluation using a Perfect MAC-Layer

The goal of the first set of experiments is to evaluate the performance of

the full replication algorithm in an (artificial) environment which allows for

collision-free communication at a maximum data rate on MAC-layer without

any transmission errors3. In this setting, the full replication algorithm can

distribute updates to all nodes in the same network partition at the maximum

data rate of the channel.

Using this setup, the number of DB nodes is varied. The node mobility

for the DB nodes is chosen from the interval [1.0, 2.0] m/s with a mean speed

of 1.5 m/s. The pause time is set to 0. The number of observers is set to 100

arranged in a regular and stationary grid as described above. The simulation

area is chosen to be 500 x 500 m2. Each node has a transmission range of

100 m using the free space radio propagation model with no transmission

failures and an omnidirectional antenna. Each experiment consists of 500

updates for a single object which are sent at an update rate of 10 updates

per second following the load model described above. The properties of the

system used for these experiments are summarized in Table 5.2

The examination of the success ratio shown in Figure 5.5 shows that

3This is often referred to as null-MAC

5.3. EVALUATING THE FULL REPLICATION ALGORITHM 115

Parameter Value

Number of database nodes 40, 80, 120, 160, 200

Number of observer nodes 100

Update rate (1/s) 10

Number of updates/experiment 500

Simulation area 500 x 500 m2

Transmission range 100 m

Mobility model random-waypoint (steady state)

Movement speed (db nodes) [1.0, 2.0] m/s

Maximum data rate 1 Mbit/s

Randomization period [0, 5] ms, uniformly chosen

Table 5.2: Parameters of the initial set of experiments

almost 100 % of all updates were accepted by nodes on average. The fraction

of the updates which were not accepted, have not been delivered to the node

due to network partitioning. This can be derived from the experimental

results, because all updates that were delivered to nodes (using the collision-

free MAC) were accepted. In other words, no updates had to be rejected at

nodes due to missing ordering information. The figure further shows that

the majority of the updates were accepted based on decisions made on the

ordering graph. This is caused by the simulation of mobile objects that

are sighted by changing observers according to the load model described in

Section 5.1.2. The second largest cause for accepting updates are those cases

where DB nodes receive updates directly from observer. Finally, the cases

where updates are accepted based on the comparison of version numbers,

where two consecutive updates from the same observer are received by a

DB node (see Algorithm 8, p. 74), occur very seldom (c.f. Table 5.3). These

cases can only be found, if no DB nodes are in the transmission range of an

observer, i.e., when the observer is in a network partition at the instance of

sending an observation.

The results for the scenario with 40 DB nodes show a significantly lower

update success ratio as compared to the scenarios with higher node densi-

116 CHAPTER 5. PERFORMANCE ANALYSIS

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

40 80 120 160 200

db nodes

u
p

d
at

e
su

cc
es

s
ra

ti
o

 (
av

g
.)

version number

observer

ordering graph

Figure 5.5: Average update success ratio using the collision-free MAC at an

update rate of 10/s

DB total ord. graph observer version num.
nodes avg. std.dev. avg. std.dev. avg. std.dev. avg. std.dev

40 0.872 0.144 0.739 0.152 0.122 0.063 0.010 0.005
80 0.983 0.062 0.849 0.071 0.128 0.050 0.004 0.002

120 0.996 0.026 0.864 0.064 0.127 0.060 0.003 0.001
160 0.998 0.002 0.868 0.069 0.129 0.070 0.002 0.001
200 0.996 0.004 0.856 0.074 0.136 0.075 0.002 0.001

Table 5.3: Update success ratio when using the collision-free MAC at an

update rate of 10/s (higher is better).

5.3. EVALUATING THE FULL REPLICATION ALGORITHM 117

DB recency

nodes average std.dev.

40 0.1462 2.9228

80 0.0171 1.1323

120 0.0039 0.2860

160 0.0013 0.0321

200 0.0037 0.0611

Table 5.4: Result recency when using the collision-free MAC at an update

rate of 10/s (lower is better).

ties. This is due to the fact that network partitions occur more frequently

in the 40 nodes scenario as compared to the other (higher) node densities.

With 120 and more DB nodes, network partitions rarely occur, leading to

an update success ratio of, on average, more than 99.5 %. This effect is also

reflected in the standard deviation given in Table 5.3 for each average. In the

40 nodes scenario, the standard deviation is significantly larger than in the

other scenarios, as some nodes may be isolated from the network partition in

which updates are distributed. The results for the recency of results shown

in Table 5.4 supports the success figures as the average result recency for 40

DB nodes is observably larger than for the higher densities and decreases to

almost 0 as the number of DB nodes increases.

5.3.2 Evaluation using a CSMA/CA MAC Protocol

In the previous section we have presented an evaluation of the full replication

algorithm using a collision-free MAC protocol. These experiments show the

performance of the algorithm under ideal communication conditions. In this

section we present simulation results using a more realistic MAC protocol.

For the experiments we have used a MAC protocol based on carrier-sense

multiple access with collision avoidance (CSMA/CA) which is used, for ex-

ample, in the distributed coordination function4 (DCF) of the IEEE 802.11

4The DCF is often called ad-hoc mode.

118 CHAPTER 5. PERFORMANCE ANALYSIS

rate 1/s rate 5/s rate 10/s
DB nodes average std. dev. average std. dev. average std. dev.

40 0.0943 s 0.0971 0.1912 s 0.2901 0,4399 s 1,2798
80 0.1562 s 0.1756 0.5495 s 0.9135 0,6787 s 1,7502

120 0.2152 s 0.2624 0.5680 s 0.8307 0,8164 s 2,2173
160 0.2636 s 0.3124 0.5657 s 0.8321 0,7759 s 1,8863
200 0.3585 s 0.3968 0.5754 s 0.8053 0,7965 s 1,7059

Table 5.5: Average update latencies and standard deviation of accepted up-

date messages using the CSMA/CA MAC protocol.

protocol family [Boa97]. Since the full replication algorithm uses only MAC-

layer broadcast messages, the experiments do not employ a request-to-send

(RTS) clear-to-send (CTS) mechanism for a so-called virtual carrier-sense.

The parameter set for the experiments includes those shown in Table 5.2.

Additionally, the update rate was varied between 1 and 10 updates per sec-

ond.

Update Latency

The average update latency of accepted updates increases both with the

number of DB nodes and the update rate in the system as shown in Figure 5.6

and Table 5.5. The results show a standard deviation which approximately

equals the average for low update rates. The large confidence interval given

by the standard deviation is caused by the varying number times an update

message is forwarded. This means that DB nodes close to the originating

observer will experience much lower latencies (small number of hops) than

DB nodes which are further away from the observer (large number of hops).

For larger update rates, both, the average latency and its standard de-

viation, show a sharp increase. Due to the increased overall network load,

which is caused by the higher update rate, collisions of messages occur more

frequent. However, not all of these updates messages are finally lost, because

the underlying flooding protocol may still deliver them on other routes in

the network. This assumption is supported by the number of hops update

5.3. EVALUATING THE FULL REPLICATION ALGORITHM 119

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 50 100 150 200 250

db nodes

av
g

. u
p

d
at

e
la

te
n

cy
 [

s]

rate 1

rate 2

rate 5

rate 10

Figure 5.6: Average update latency over number of db nodes using the CS-

MA/CA MAC protocol

rate 1/s rate 5/s rate 10/s
DB nodes average std. dev. average std. dev. average std. dev.

40 3.6897 1.9823 3.5629 2.1352 3.2632 2.0958
80 3.7623 1.9931 3.9132 2.3432 3.6548 2.3565

120 3.8928 2.0532 4.3912 2.6936 4.2379 2.8991
160 4.0105 2.1587 4.7509 2.9266 4.7905 3.2524
200 4.3395 2.3505 5.1023 3.1313 5.2086 3.7953

Table 5.6: Average number of hops and standard deviation of accepted up-

date messages using the CSMA/CA MAC protocol.

120 CHAPTER 5. PERFORMANCE ANALYSIS

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250

db nodes

ac
ce

p
t

ra
ti

o

rate 1

rate 2

rate 4

rate 5

rate 6

rate 8

rate 10

Figure 5.7: Average update success ratio over number of DB nodes using the

CSMA/CA MAC protocol (higher is better).

messages traverse in the network depicted in Table 5.6. As the update rate in-

creases for a given number of DB nodes, the average number of hops changes

only slightly. However, the standard deviation increases significantly with

the update rate, indicating that more and more updates exist which traverse

paths other than the shortest path between the observer and the DB node.

Update Success Ratio

The update success ratio using the CSMA/CA MAC protocol is depicted

in Figure 5.7. Compared with the update success ratio in the experiments

using the perfect MAC protocol (see Table 5.3), the experiments with the

CSMA/CA MAC protocol show a strong decrease of the success ratio as the

update rate increases. With an update rate of 1 per second, the success

ratio is close to the optimal values. As the update rate increases, the success

ratio decreases significantly. The cause for this behavior, however, is the

increasing network load which leads to frequent collisions of messages. The

examination of the total average ratio of update messages that are received on

DB nodes (not necessarily accepted) supports this assumption. Exemplary

5.3. EVALUATING THE FULL REPLICATION ALGORITHM 121

0

0,1

0,2

0,3

0,4

0,5

0,6

40 80 120 160 200

db nodes

p
ro

ce
ss

ed
 u

p
d

at
es

 (
re

l.)

reject unknown

reject too old

accept observer

accept vn

accept graph

Figure 5.8: The cause of accepting and rejecting updates with an update

rate of 5 update per second using the CSMA/CA MAC protocol.

for an update rate of 5 updates per second, Figure 5.8 shows the ratio of

update messages that are accepted using the ordering graph, by comparison

of version numbers, and by receiving updates directly from an observer (from

bottom to top). Additionally, it shows the fraction of updates that were

explicitly rejected by the algorithm because they were knowingly too old or

could not be ordered. The remainder of the update messages, for example,

approximately 45 % of all updates in the 40 DB node scenario, were not

received by the nodes on average. Therefore, it can be concluded that the

decrease in the update success ratio is mainly caused by the communication

mechanism used for distributing update messages.

Update Recency

The next step in evaluating the full replication algorithm is to examine the

recency of each update wich is accepted by the algorithm. Figure 5.9 shows

the average update recency over the number of DB nodes in the scenario.

Each curve shows the results for a different update rate between one update

122 CHAPTER 5. PERFORMANCE ANALYSIS

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 50 100 150 200 250

db nodes

re
ce

n
cy

rate 1

rate 2

rate 4

rate 5

rate 6

rate 8

rate 10

Figure 5.9: Average result recency over number of DB nodes using the CS-

MA/CA MAC protocol (lower is better).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 10 100 1000

result recency

cd
f

rate 1/s

rate 2/s

rate 4/s

rate 5/s

rate 6/s

rate 8/s

rate 10/s

Figure 5.10: Cumulative distribution of the gaps for 120 DB nodes using the

CSMA/CA MAC protocol (x-axis is log-scale).

5.3. EVALUATING THE FULL REPLICATION ALGORITHM 123

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0 50 100 150 200 250

DB nodes

ra
ti

o
 o

f
re

je
ct

ed
 u

p
d

at
es

 (
u

n
kn

o
w

n
 o

rd
er

in
g

)

rate 1

rate 2

rate 4

rate 5

rate 6

rate 8

rate 10

Figure 5.11: Fraction of rejected updates per DB node caused by insufficient

ordering information using the CSMA/CA MAC protocol.

per second (bottom curve) and 10 updates per second (top curve). The set of

experiments with one update per second comes close to the optimal recency

of 0, i.e., almost every update is received and accepted by the algorithm. As

the update rate increases, the recency of the information copies stored on

DB nodes decreases, i.e., the number of updates messages which have not

been accepted between two accepted updates increases. This corresponds

to the results which have been presented for the update success ratio in the

previous section. However, the cumulative distribution of the recency shown

in Figure 5.10 shows, exemplary for the scenarios with 120 DB nodes, that

most gaps detected between two accepted updates are small. With an update

rate of 10 per second (bottom curve), for example, shows that approximately

90 % of all gaps are less or equal to 10.

Message Overhead

Using plain flooding as an update distribution algorithm implies that each

DB node sends one message per update that has either been accepted or

124 CHAPTER 5. PERFORMANCE ANALYSIS

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 50 100 150 200 250

DB nodes

d
if

fe
re

n
ce

 b
et

w
ee

n
 m

sg
. o

ve
rh

ea
d

 a
n

d

su
cc

es
s

ra
ti

o

rate 1

rate 2

rate 4

rate 5

rate 6

rate 8

rate 10

Figure 5.12: Difference between message overhead (per update and DB node)

and update success ratio over the number of DB nodes using the CSMA/CA

MAC protocol.

whose ordering is unknown. Additionally, a message is forwarded, if an

update is not accepted, but the ordering graph on a DB node changes.

Therefore, Figure 5.11 shows the average percentage of rejected update

messages caused by unknown ordering information. In comparison, Fig-

ure 5.12 shows the difference between the average message overhead per node

and per update and the average update success ratio as a measure for the

additional message overhead caused by messages sent because of unknown

ordering information. These two sets of results show a similar behavior.

However, these rejected update messages cause an message overhead which

is, on average, 5 to 10 times higher, i.e., each update which is rejected be-

cause of unknown ordering information causes multiple messages. This is due

to situations where more than one DB node rejects the same update mes-

sage, leading to multiple messages for synchronizing ordering information per

rejected update.

The maximum length of a message is determined by the number of ob-

5.3. EVALUATING THE FULL REPLICATION ALGORITHM 125

DB node success ratio update recency update latency
speed average std. dev. average std. dev. average std. dev.

0.0 0.978 0.074 0.021 0.942 0.168 0.181
5.0 0.978 0.014 0.021 0.288 0.159 0.175

10.0 0.976 0.010 0.024 0.228 0.160 0.179
15.0 0.976 0.011 0.023 0.226 0.164 0.182
20.0 0.978 0.011 0.021 0.203 0.158 0.176

Table 5.7: Average and standard deviation for the update success ratio

(higher is better), the update recency (lower is better), and the update la-

tency using the CSMA/CA MAC protocol with 80 DB nodes at variable node

speed.

servers which have reported updates for a particular object, if the lossy-1-

reduce function is used (defined in Section 3.4.2, p. 53). In the simulation

experiments, the ordering graph is represented as an adjacency matrix and

a list of vertices. Let nobs be the number of observers, sstate the size of an

object’s state in bytes, and svertex the size of vertex in bytes (which includes

the observer id and the version number). Therefore the maximum message

size smax can be calculated by

smax = b(n2
obs + 8)/8c+ (nobs × svertex) + sstate (5.2)

where the first term is the size of the adjacency matrix (given that each

edge is represented by one bit), the second term is the size of the vertex list,

and the third term is the size of the object’s state. In the experiments we

chose nobs = 100, sstate = 10, and svertex = 6. The maximum payload which

has to be expected for these parameters is therefore smax = 1862 bytes. The

maximum messages size measured in the experiments was 1841 bytes, because

not all observers made an observation in the experiments. The considerations

for the message sizes do not contain any optimizations, for example, data

compression.

126 CHAPTER 5. PERFORMANCE ANALYSIS

5.3.3 The Impact of Mobility

In this section we investigate the impact of mobility on the performance of

the full replication algorithm. To achieve this, the mobility of DB nodes was

varied between 0 and 20 m
s

in a scenario with 80 DB nodes and an update rate

of one update per second. The rest of the parameters was chosen according to

Table 5.2. The previous experiments have shown that choosing 80 DB nodes

and an update rate of one update per second have a high enough node density

with only few network partitions and provide an environment which is not

impacted by broadcast storms. For this reason this setting was chosen to

evaluate the impact of varying speeds of DB nodes.

Table 5.7 shows the respective results for the update success ratio, the

update recency, and the update latency (average and standard deviation).

All three quantities show an almost constant behavior across varying node

speeds. The only irregularity that can be seen lies in the standard deviations

of the success ratio and the recency, which is higher for the static networks

than for the mobile scenarios. In these cases the network contained some

small partitions of DB nodes which did not change over time. In the mobile

scenarios, these partitions changed over time such that individual nodes were

isolated only for shorter periods of time. As a consequence, this led to fewer

DB nodes which missed many updates in a row and therefore a smaller

standard deviation in the mobile networks.

5.3.4 The Impact of Transmission Failures

Finally, we have investigated the effect of transmission failures on the per-

formance of the full replication algorithm. For the same reason as in the

previous section, the scenario with 80 DB nodes and one update per second

was chosen as a basis for these experiments. In addition, the packet loss ratio

was varied between 0 and 50 % at the receiver using a uniform distribution.

The results in Table 5.8 show that the update success ratio decreases as

the packet error increases. However, due to the robustness of the under-

lying flooding-based broadcast protocol, the decrease is slow. Even with a

packet error of 50 %, the success ratio decreases to only 0.89 (from 0.98 with

5.3. EVALUATING THE FULL REPLICATION ALGORITHM 127

packet success ratio update recency update latency
error average std. dev. average std. dev. average std. dev.

0.00 0.982 0.024 0.017 0.372 0.154 0.174
0.10 0.964 0.028 0.037 0.428 0.165 0.185
0.20 0.961 0.028 0.040 0.432 0.178 0.196
0.30 0.955 0.033 0.046 0.457 0.174 0.184
0.40 0.922 0.040 0.083 0.522 0.183 0.195
0.50 0.896 0.050 0.115 0.612 0.189 0.200

Table 5.8: Average and standard deviation for the update success ratio

(higher is better), the update recency (lower is better), and the update

latency using the CSMA/CA MAC protocol with 80 DB nodes at various

packet error probabilities.

no transmission failures). As a result, the update latency increases, since

redundant update messages arrive later at the DB nodes.

128 CHAPTER 5. PERFORMANCE ANALYSIS

Parameter Value

Number of observer nodes 100

Simulation area 500 x 500 m2

Transmission range 100 m

Mobility model random-waypoint (steady state)

Movement speed (db nodes) [1.0, 2.0] m/s

Maximum data rate 1 Mbit/s

Multicast routing MAODV

Unicast routing AODV

Max. number of read retries 1

Read timeout 3 s

Observer announce period 10 s

Table 5.9: Parameters used for all experiment with the partial replication

algorithm.

5.4 Evaluating the Partial Replication Algo-

rithm

This section serves to present the results of a set of simulation experiments

using the partial replication algorithm. The multicast algorithm used in

these experiments is MAODV [RP99]. The particular implementation for

the simulator used was provided by [ZK04]. For the movement of nodes, the

same mobility traces as in the evaluation of the full replication algorithm

are used. Each of these experiments is started with one DB node. All other

DB nodes are selected on demand by the replica allocation protocol. Each

read operation is repeated once, if a read timeout of 3 s occurs. Every

observer announces itself every 10 s. The basic set of parameters used for

the experiments is depicted in Table 5.9. The presentation of the results for

the full and the partial replication algorithms are different. The results of

the partial replication algorithm depend on the read and update rate, which

is reflected in the following figures.

5.4. EVALUATING THE PARTIAL REPLICATION ALGORITHM 129

 1 2 3 4 5 6 7 8 9 10

update rate
 0 2 4 6 8 10 12 14 16 18 20

read rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

update latency [s]

(a) 80 DB nodes and clients

 1 2 3 4 5 6 7 8 9 10

update rate
 0 2 4 6 8 10 12 14 16 18 20

read rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

update latency [s]

(b) 120 DB nodes and clients

Figure 5.13: Average update latency in dependence of read and update rate.

130 CHAPTER 5. PERFORMANCE ANALYSIS

 1 2 3 4 5 6 7 8 9 10

update rate
 0 2 4 6 8 10 12 14 16 18 20

read rate

 0

 2

 4

 6

 8

 10

 12

 14

 16

number of DB nodes

(a) 80 DB nodes and clients

 1 2 3 4 5 6 7 8 9 10

update rate
 0 2 4 6 8 10 12 14 16 18 20

read rate

 0

 10

 20

 30

 40

 50

 60

 70

number of DB nodes

(b) 120 DB nodes and clients

Figure 5.14: Mean number of DB nodes in dependence of read and update

rate.

5.4. EVALUATING THE PARTIAL REPLICATION ALGORITHM 131

 1 2 3 4 5 6 7 8 9 10

update rate
 0 2 4 6 8 10 12 14 16 18 20

read rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

read latency [s]

(a) 80 DB nodes and clients

 1 2 3 4 5 6 7 8 9 10

update rate
 0 2 4 6 8 10 12 14 16 18 20

read rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

read latency [s]

(b) 120 DB nodes and clients

Figure 5.15: Mean read latency in dependence of read and update rate.

132 CHAPTER 5. PERFORMANCE ANALYSIS

 1 2 3 4 5 6 7 8 9 10

update rate

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

read rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

update success ratio

(a) 80 DB nodes and clients

 1 2 3 4 5 6 7 8 9 10

update rate

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

read rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

update success ratio

(b) 120 DB nodes and clients

Figure 5.16: Mean update success ratio in dependence of read and update

rate (higher is better).

5.4. EVALUATING THE PARTIAL REPLICATION ALGORITHM 133

 1 2 3 4 5 6 7 8 9 10

update rate

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

read rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

read success ratio

(a) 80 DB nodes and clients

 1 2 3 4 5 6 7 8 9 10

update rate

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

read rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

read success ratio

(b) 120 DB nodes and clients

Figure 5.17: Mean read success in dependence of read and update rate (higher

is better).

134 CHAPTER 5. PERFORMANCE ANALYSIS

 1 2 3 4 5 6 7 8 9 10

update rate
 0

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

read rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

write recency

(a) 80 DB nodes and clients

 1 2 3 4 5 6 7 8 9 10

update rate
 0

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

read rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

write recency

(b) 120 DB nodes and clients

Figure 5.18: Mean update recency in dependence of read and update rate

(lower is better).

5.4. EVALUATING THE PARTIAL REPLICATION ALGORITHM 135

 1 2 3 4 5 6 7 8 9 10

update rate
 0

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

read rate

 0

 5

 10

 15

 20

 25

 30

 35

 40

read recency

(a) 80 DB nodes and clients

 1 2 3 4 5 6 7 8 9 10

update rate
 0

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

read rate

 0

 5

 10

 15

 20

 25

 30

 35

 40

read recency

(b) 120 DB nodes and clients

Figure 5.19: Mean read recency in dependence of read and update rate (lower

is better).

136 CHAPTER 5. PERFORMANCE ANALYSIS

0

1

2

3

4

5

6

40 80 120 160 200

nodes

m
es

sa
g

es
/s

ec
o

n
d

 a
n

d
 n

o
d

e updates: 10/s, reads: 20/s

updates: 10/s, reads: 0/s

updates: 5/s, reads: 5/s

updates: 5/s, reads: 0/s

updates: 0/s, reads: 20/s

updates: 0/s, reads: 5/s

no load

Figure 5.20: Messages sent per second and node

5.4.1 Operation Latency

Figure 5.13 depicts the average update latency for networks with 80 and 120

DB nodes and clients. The update latencies in both sets are similar for all

update rates and for read rates between 1 and 10 read operations per second.

As the read rate increases beyond 10 operations per second in the 120 node

example, an increase of latencies can be observed. This is particularly evident

for scenarios with high read rates and low update rates where the number of

DB nodes increases as shown in Figure 5.14. Each of these update operation

causes a multicast message which is sent to a higher number of nodes and

therefore has a higher latency. The comparatively high number of DB nodes

in these scenarios in turn is caused by an increasing number of handover

operations as a result of read failures (see Figure 5.17 for the results of the

read success).

The read latencies for the same set of experiments is depicted in Fig-

ure 5.15. Overall, it can be observed that the read latencies are in the range

of up to approximately 1.5 s for scenarios with a read rate of up to 10 opera-

tions per second and update rates between 1 and 10 updates per second. As

5.4. EVALUATING THE PARTIAL REPLICATION ALGORITHM 137

the read rate increases beyond 10 operations per second, the read latency in

the 120 nodes example increases significantly and reaches several seconds.

These results lead to the conclusion that the impact of the read rate

on the overall performance is higher than the impact of the update rate.

Especially in densely populated networks, for example with 120 nodes, this

effect is evident form the results shown. This degradation in performance is

caused by the AODV routing protocol which uses message flooding for the

discovery of routes [PR99]. This overhead created by the routing protocol

adds to the messages sent by the application.

5.4.2 Success Ratio and Recency

The results for the update and read success ratios of the 80 and 120 node

networks are depicted in Figures 5.16 and 5.175. In the 80 nodes example it

can be observed that the update success ratio decreases slightly from 95 %

down to approximately 80 % when the update rate is increased and the read

rate is low. For high read and update rates the decrease is more distinct

leading to update success ratios as low as 55 %. The read success ratio for

the 80 nodes example shows results of 90 % and above except when both —

the read and update rates — are high. Here, the lowest read success ratio is

approximately 60 %. In the 120 nodes example, the read success ratios for

higher update and read rates are strongly influenced by network contention.

This leads to a sharp decrease in read and update success, especially for

read rates greater than 10 operations per second. The decrease in update

and read success corresponds to the increase of latencies discussed in the

previous section and is caused by increasing network contention.

The results for the update and read recency in the 80 and 120 node

examples are shown in Figures 5.18 and 5.19. The average update recency

measured in all experiments is below 1, i.e., on average less than one update

was missed at each DB node between two accepted updates. In the scenarios

with low network load the standard deviation of the update recency is well

below 2 indicating that only few DB nodes experience large gaps between two

5Please note that the viewing angle of the figures is adapted depending on the results.

138 CHAPTER 5. PERFORMANCE ANALYSIS

accepted updates. For higher network load, e.g., high update and read rates

in the 120 node example, the standard deviation of the update recency grows

up to 8. This is caused by a small number of DB nodes that miss a large

number of updates. However, even in the scenario with the highest network

load, i.e., 20 read operations and 10 update operations per second in the 120

node network, it has been measured that 98 % of all update operations have

a recency of less than 5. This indicates that the average is influenced by

some large values for the recency, while most gaps are small.

In comparison to the update recency, the results for the read recency

(Figure 5.19) expose significantly higher values for many scenarios. Espe-

cially in the experiments with update rates of 7.5 and more operations per

second. In these experiments, the time between two update operations is at

most 0.15 s. The average read latency (between sending the read request

and receiving the reply) in these experiments exceeds 0.25 s in most cases.

This means that in many cases updates will be received by DB nodes after a

read reply has been sent and before it has been received by the corresponding

client. This way the result contained in the reply will be less recent than the

globally most recent value. In scenarios with 5 or less updates and 10 or less

read operations per second the read recency remains below 1.

5.4.3 Message Overhead

Figure 5.20 shows the messages overhead measured in the number of messages

per second and per node (client and DB node) in dependence of the number

of nodes. These results include all periodic overhead caused by the routing

protocols and the replication algorithm.

The lowest curve in the figure shows the message overhead in a scenario

without any read and update operations. The remaining curves show the

message overhead for the scenarios with 10 update and 20 read operations

per second ((10, 20)-scenario) as well as the scenario with 5 update and 5 read

operations per second ((5, 5)-scenario). Additionally, the results for 5 and 10

update operations without read operations ((5, 0)) and (10, 0) scenarios) and

5 and 20 read operations without update operations ((0, 5) and (0, 20) sce-

5.4. EVALUATING THE PARTIAL REPLICATION ALGORITHM 139

narios) are shown. As shown before, the (5, 5) scenario represents a setting

where the replication algorithm delivers a good performance. Here, the over-

head is approximately the same as for the (5, 0) scenario. This means that the

read operations introduce almost no additionally overhead on average, since

AODV and MAODV a tightly integrated. As the load is increased in the

(10, 20) scenario the read operations cause a significant increase of overhead

in comparison to the (10, 0) scenario, where read operations fail frequently

causing a higher number of handovers from clients to new DB nodes.

Messages that contain update requests have essentially the same length in-

dependent from the replication algorithm used (see Section 5.3.2, p. 123). Us-

ing the partial replication algorithm they are increased by a constant amount

of data encoding the header of the routing protocol. Read request messages

contain the routing header of AODV and the id of the object that shall be

read and thus have a constant size. The size of read reply messages depends

on the size of the state information for the object read. Apart from this, the

size is constant (header). The periodic messages sent by observers within

the replica allocation protocol have constant size, just as the corresponding

reply messages sent by clients and DB nodes. The size of the messages that

are part of the server selection algorithm sent by clients depends linearly on

the number of distinct objects the client has read until it sends the message.

The reply messages that are sent by DB nodes have constant size.

5.4.4 The Impact of Mobility

In the next set of experiment we investigate the impact of mobility on the

performance of the replication algorithm. As a basis, a scenario with 100

observers and 80 nodes is chosen, where 5 update and 5 read operations are

executed per second. This scenario delivered a good performance in the pre-

vious experiments. In this setting the mobility of nodes was varied between

0 and 20 m/s. In the scenario denoted as 5 m/s, each node (DB nodes and

clients) moved at a constant speed of 5 m/s following the random way-point

mobility pattern without pause time, etc. Table 5.10 shows the results for

the update success ratio, the read success ratio, and the read recency. As

the mobility of nodes is increased, the accuracy of the routing information

140 CHAPTER 5. PERFORMANCE ANALYSIS

DB node upd. success ratio read success ratio read recency
speed (m

s) average std. dev. average std. dev. average std. dev.

0.0 0.968 0.015 1.000 0.000 0.302 0.567
5.0 0.862 0.052 0.966 0.099 1.485 3.376

10.0 0.826 0.073 0.939 0.128 2.317 5.642
15.0 0.813 0.054 0.905 0.166 2.283 5.525
20.0 0.784 0.097 0.833 0.223 3.328 8.833

Table 5.10: Average and standard deviation for the update success ratio

(higher is better), the read success ratio (higher is better), and the read

recency (lower is better) using the partial replication algorithm with 80

DB nodes at variable node speed (5 update and 5 read operations per sec-

ond).

maintained by the AODV and MAODV algorithms decreases, because topol-

ogy changes in the network become more frequent. Therefore, the update

and read success ratio show a slow decrease as the mobility of the nodes

is increased. In the static network, all read operations and 96.8 % of the

update operations are executed successfully. All update operations that are

not successfully accepted in this scenario are not delivered by the multicast

algorithm. None are rejected by the replication algorithm. As the node speed

increases, the average amount of update operations rejected by the replica-

tion algorithm increases to 1.3 % (min. 0 %, max. 4.5 %) for v = 20m
s
. In

conclusion, the amount of updates that are rejected by the algorithms in this

case is significantly less than the overall reduction in the update success ratio

caused by the increased mobility (which is 18.4 %). In summary, it can be

concluded that the decrease in the performance of the replication algorithm

is mainly due to communication failures which arise more frequently, when

the speed of the nodes is increased.

5.4.5 The Impact of Transmission Failures

Finally, we have investigated the impact of transmission errors on the per-

formance of the replication algorithm. The scenario with 100 observers, 80

5.4. EVALUATING THE PARTIAL REPLICATION ALGORITHM 141

packet upd. success ratio read success ratio read recency
error average std. dev. average std. dev. average std. dev.

0.0 0.928 0.029 0.992 0.041 0.614 1.154
0.1 0.922 0.031 0.986 0.058 0.657 1.149
0.2 0.906 0.031 0.984 0.066 0.772 1.511
0.3 0.742 0.169 0.795 0.319 2.774 7.317
0.4 0.480 0.082 0.134 0.224 14.191 23.974
0.5 0.298 0.090 0.013 0.077 27.652 34.196

Table 5.11: Average and standard deviation for the update success ratio

(higher is better), the read success ratio (higher is better), and the read

recency (lower is better) using the partial replication algorithm with 80

DB nodes at variable packet error ratio (5 update and 5 read operations

per second).

nodes, and 5 update and 5 read operations per second was chosen as a basis

for these experiments. The reason for this choice is the same as described

in the previous section. The node mobility used is the same as given in Ta-

ble 5.9. In different experiments the packet loss ratio was varied between

0 and 50 % at the receiver with uniform distribution. The results for these

experiments are listed in Table 5.11. The packet loss shows only little impact

on the performance of the replication algorithm for loss ratios of up to 20 %.

When the packet loss is higher than 20 %, the performance of the replication

algorithm decreases drastically. At a packet error ratio of 50 %, for example,

the read success ratio is very close to 0. Similar to the performance shown in

the previous section, the number of update requests that are rejected by the

replication algorithm is low in comparison to the overall decrease in perfor-

mance. In the scenarios without packet error, no updates are rejected. In the

scenario with 50 % packet error, the average percentage of rejected updates

is approximately 7 % (min. 0 %, max. 18.4 %). At the same time, the

overall difference of the update success ratio in both scenarios is 63 %. This

indicates that most of the updates, which are not reflected on the DB nodes

are lost due to communication failures.

142 CHAPTER 5. PERFORMANCE ANALYSIS

5.5 Comparison and Conclusion

In this chapter we have presented an extensive performance analysis of both,

the full and partial replication algorithm, which are described in Chapter 4.

For the experiments, we have varied the load model (update and read rate),

the node density and mobility, and the quality of the transmission channel.

In this section, we present a comparison of both algorithms and discuss the

question of when to chose which of the two replication algorithms. This

discussion is subdivided into the following questions:

• What is the expected read and update rate of applications ?

• Are the nodes going to be mobile? What is their speed of movement

going to be?

• What is the excepted quality of the underlying transmission channel?

By comparing the results of the experiments, it can be concluded that

the rate at which data items are read by application software plays a signifi-

cant role. Read operations in the full replication algorithm do not create any

communication in the network, since all clients are co-located on a DB node.

In the partial replication algorithm, read operations are based on the com-

munication between clients and DB nodes which may not be located on the

same physical node.

The results obtained for the partial replication algorithm show that the

overall performance is heavily impacted by the rate at which read operations

are performed. This is particularly evident in Figure 5.17 (p. 133) where

the read success decays sharply in the 120 node scenario as the read rate is

higher than 10 operations per second. Looking at low read rates reveals that

the read success remains almost constant for all update rates between 1 and

10 operations per second. At the same time, the update success ratio shows

only a slight decay of approximately 10 % as the update rate is increased

from 1 to 10 operations per second (Figure 5.16, p. 132).

The results for the full replication algorithm show that the update rate

strongly impacts the update success (Figure 5.7, p. 120). Taking the results

5.5. COMPARISON AND CONCLUSION 143

for the 80 node network reveals that the update success ratio decreases from

approximately 98 % to 25 % as the update rate is increased from 1 to 10

operations per second. At the same time the update success ratio for the

partial replication algorithm varies between approx. 96 % and 80 % —

however only for low read rates (Figure 5.16, p. 132).

The full replication algorithm has proven to be very robust with respect

to mobile nodes. The variable node speed did not show any impact on the

performance (Table 5.7, p. 125). In a similar scenario, the partial replication

algorithm shows a significant decrease in performance as the speed of nodes

is increased. The update success ratio, for example, remains at over 97 %

when the full replication algorithm is used, while it decreases from 96.8 %

down to 78.4 % for the partial replication algorithm (Table 5.10, p. 140).

Similarly, the full replication algorithm is very robust with respect to high

packet error ratios. In the experiments the packet error ratio varied between

0 an 50 % with uniform distribution. The update success ratio of the full

replication algorithm in the given scenario varied between 98.2 % and 89.6 %

when the packet error was increased from 0 to 50 % (Table 5.8, p. 127). In

a similar scenario the update success ratio dropped from 92.8 % down to

29.8 % when the partial replication algorithm was used (Table 5.11, p. 141).

Looking at the message overhead, it is important to consider that the full

replication algorithm only creates messages, if an update request is created

by an observer, i.e. it does not have any time dependent overhead. This is

very attractive for systems with low update rates. In addition to the time-

dependent overhead of the routing protocol that has been used, the partial

replication algorithm has a time dependent overhead caused by the dynamic

replica allocation protocol (Figure 5.20, p. 136).

In summary, it can be concluded that using the full replication algorithm

is attractive, if the read rate is high or the update rate is low. Additionally,

in systems that are exposed to high node mobility or frequent communication

failures, it showed to be very robust. The partial replication algorithm shows

good performance when the read rate is low. Its message overhead becomes

attractive for higher update rates, justifying its periodic message overhead.

144 CHAPTER 5. PERFORMANCE ANALYSIS

Chapter 6

Related Work

The models and algorithms which are presented in this dissertation are in the

intersection of three areas of research: the chronological ordering of events

in distributed systems, data replication, and data consistency. This chapter

gives a discussion of related approaches from the field of consistency models,

time synchronization, and data replication algorithms.

6.1 Consistency Models

6.1.1 Consistency Models in Database Systems

Strong consistency based on the concept of serializability has been addressed

in the domain of distributed databases extensively [EGLT76,HR83,BHG87].

Since consistency is considered to be a trade-off to availability [DGMS85],

strong consistency most likely results in poor availability in the presence

of frequent network partitioning. Therefore, these approaches cannot be

applied in arbitrary mobile ad hoc networks without significantly reducing

the availability of data in many settings.

Several consistency models have been proposed to suit mobile environ-

ments. In the Bayou project [TDP+94] a set of consistency models have been

proposed to provide so-called client-centric guarantees to applications. In

particular the authors proposed the “monotonic reads”, “monotonic writes”,

145

146 CHAPTER 6. RELATED WORK

“read your writes”, and “write follows read” models. With monotonic reads,

a process that has read a value of some data item x, will read the same

or a more recent value of x for all successive reads. However, this guaran-

tee for read operations does not enforce any ordering for write operations.

Monotonic writes guarantee that a write operation of the same process is

completed before a successive write operation occurs. In our model, however

we assume that the state of physical objects is written (updated) by multiple

independent processes. The “read your write”-model is used to express the

guarantee that the result of a write operation will always be seen by suc-

cessive read operations of the same process. The “write follows read”-model

requires that a write operation which follows a read operation in the same

process is applied to a value which is the same or more recent than the value

which was previously read. The latter two models consider the ordering of

read and write operations within a single process. In our model, we assume

that the state information of objects is updated by one class of processes

(observers) and read by another class of processes (clients), since write oper-

ations (update requests) are concerned with physical state, which cannot be

altered by write operations of clients.

A number of consistency models have been presented in the context of

database replication systems based on epidemic algorithms. The work de-

scribed in [HSAA03] describes two algorithms. The first algorithm is a imple-

ments a pessimistic approach that guarantees serializability. The second al-

gorithm is an optimistic algorithm which delegates the resolution of conflicts

completely to the application. The work in [DGH+87] proposes epidemic

algorithms to update copies in fixed networks. Their concept of consistency

ensures that all copies converge to some common state. This concept does

not enforce state transitions to be consistent with the order in which state

changes have been observed in the physical world. However, consistency with

respect to the order of the corresponding events in reality is most important

for many monitoring and tracking applications.

The system presented in [BK85,SBK85] has been designed for partitioned

networks and allows to execute transactions also while network partitions pre-

vail. The consistency model used in this system is based on ordering transac-

6.1. CONSISTENCY MODELS 147

tions by means of an abstract algorithm which preserves the local timestamps

used on each node. Additionally, the algorithm serves as a system-wide tie-

breaking algorithm. The task of the algorithm is to bring transactions, which

have been executed in distinct network partitions, into the same order on all

nodes without explicit negotiation. The authors do not present particular

algorithms for that purpose. In this dissertation we provide an approach for

maintaining the chronological ordering between operations which are created

by independent nodes without using synchronized clocks.

6.1.2 Consistency in Distributed File Systems

In classical distributed file systems the semantics of file-sharing can be di-

vided into UNIX-semantics, session semantics, immutable shared files, and

transaction-like semantics [LS90]. The classical UNIX-semantics requires

that all read operations to a file see the result of all previous write opera-

tions. The concrete order of read and write operations is typically beyond the

scope of file systems using this semantics. Session semantics defines that the

result of write operations are directly visible to the writing process whereas

other processes have access to the changes only after the file has been closed

and is therefore similar to the “read your writes” discussed previously. The

definition of immutable shared files is based on the idea that a file — once

created — can only be replaced by a new file but cannot be changed. The

transaction-like semantics is similar to the definitions used in transactional

databases, where opening and closing a file corresponds to beginning and

committing a transaction. These approaches are not applicable in the scope

of this work, because the chronological ordering of update operations exe-

cuted by independent processes, which may observe the same object, must

be maintained.

The Coda system [SKK+90] provides a file system which was especially

designed to support disconnected operations. In disconnected operation

[KS92] a client is allowed to operate on a cached copy of a file. This means

that operations performed while being disconnected may conflict with the

operations of other clients. Once a client is reconnected, the Coda system

detects write/write conflicts based on so-called storeids and Coda version vec-

148 CHAPTER 6. RELATED WORK

tors (CVV). If a conflict arises, it is reported to the application for conflict

resolution. When real-world phenomena are observed by sensors of indepen-

dent processes, it is in general not possible to resolve conflicting operations

on application layer. Given, for example, two temperature updates for an

object. Without any further knowledge an application cannot decide which

of the reported temperature readings is more recent than the other.

6.1.3 Memory Consistency Models

According to [Mos93] memory access can be categorized along the following

dimensions: direction of access (read or write), causality of access, and cate-

gory of access. The category of access distinguishes between competing and

non-competing accesses, synchronizing and non-synchronizing accesses, and

exclusive and non-exclusive accesses.

The sequential consistency model defined by Lamport [Lam79] defines

a system that is executed on a multi-processor system to be correct, if the

interleaving of the execution of each processor is equivalent to some serial

execution. This model requires that all pairs of conflicting operations (read-

/write and write/write) in distinct processes are executed in the same order.

The cache consistency model [Goo89] is a location relative weakening of se-

quential consistency, i.e. it requires sequential consistency for all operations

on a particular memory location. In these models the chronological order-

ing of operations is not conserved, because an operation in some process

A may have to be delayed until another operation of some process B has

been executed. Based on sequential consistency, a number of so-called hy-

brid consistency models have been proposed that divide memory locations

into two classes: synchronization variables and data variables. Weak con-

sistency [DSB88], for example, requires that the access to synchronization

variables is sequentially consistent.

Causal consistency [HA90] represents, compared to sequential consis-

tency, a weaker model. Here, operations that are in a potential causal

relationship must be seen in the same order by all processes. Using the

definition of causality based on message exchange [Lam78], a write operation

6.1. CONSISTENCY MODELS 149

may causally depend on a preceding read operation (given that both opera-

tions access the same variable). Similarly, the result of a read operation may

causally depend on the effect of a previous write operation. Just as with

Lamport’s definition the transitivity of causality also holds. In this work

we maintain the chronological ordering between physical-world events which

may be causally unrelated from the system’s point of view, since they occur

outside the system.

The pipelined RAM model (PRAM) [LS88] is based on the assumption

that in a multi-processor system each processor has its own local memory.

Write operations are written to the local memory of the writer and then

sent to all other processors. In terms of ordering constraints this means that

each processor reads the result of its own write operations straight away.

Different processors may see write operations of other (distinct) processors

in arbitrary order. However, they agree on the order of write operations of the

same processor. In comparison to the PRAM model, the slow memory model

defines a weaker level of consistency based on a location-relative weakening.

Thus, processors only have to agree on the order of write operations on a

single object. Both models do not consider chronological ordering between

write operations that originate from different processors.

The concept of physical time has been considered in a number of consis-

tency models such as linearizability [HW90], timed consistency [TRAR99],

and delta consistency [SRH97]. For linearizability, each operation on an

object is explicitly modeled as a pair of so-called invocation and response.

Both, the invocation and the response of the operation are associated with

one point in time at which they occur. At some point in time between invo-

cation and response, the operation takes effect on the state of the object. For

timed consistency and delta consistency it is required that any write opera-

tion completed at some time t is available for reading at all copies no later

than t+ δ. For arbitrary MANETs and WSNs, it cannot be guaranteed that

an operation takes effect within some specified time on all copies of an object.

This may, for example, be unfeasible due to network partitioning caused by

node mobility. In our work, we allow a write operation to be applied to

copies at different points in time. However, our concept of consistency re-

150 CHAPTER 6. RELATED WORK

quires that the order in which multiple write operations are applied to one

copy is consistent with the points in time at which these operations were in-

voked. The consistency model for monotonic random registers [LW01] defines

that a read operation reads from a write operation, if the write operation be-

gins before the read operations ends. It is required that the read operation

returns the result of the write operation, and that the write operation is the

latest write operation. Furthermore, the model defines that every read must

return the result of some previous write operation. However, the definition

does not enforce any particular order on write operations and the ordering

can only be applied to events that occur within a given system (similar to

Lamport [Lam78]).

6.1.4 Consistency in the Internet

The Domain Name System (DNS) [MD88] comprises a hierarchical organi-

zation of names in the Internet. Names that are contained in a single zone

are updated by a single DNS server. All other (slave) servers may maintain

copies of these entries for reading. Clients poll the master server periodically

to detect changes. In the timespan between an update and the next poll time

a slave server maintains a stale copy of the entry which may be served to

clients. In the scope of this work we allow the state of objects to be updated

by multiple independent processes.

The network news transfer protocol (NNTP) [KL86] is used to distribute

so-called news articles to a set of servers in the Internet. Clients may submit

new articles to any news server. Each article is associated with a time stamp,

a message id, and belongs to a certain category (newsgroup). Articles are

replicated periodically among servers in so-called news-feeds. In a news-feed

a server connects to other known servers and exchanges articles based on

their id. This means that all servers will eventually have replicas of the

same articles for the newsgroups they host. NNTP does not support update

operations on articles. Update operations, however, are necessary for the

work presented here in order to reflect changes in the physical world within

the system.

6.2. TIME SYNCHRONIZATION 151

The consistency of web caches — also called cache coherence — has been

studied extensively. According to the work presented in [Wan99] cache co-

herence mechanisms can be divided into two classes: strong and weak cache

consistency. The mechanisms providing strong cache consistency can be fur-

ther subdivided into: client validation and server invalidation. In the former

approaches the client validates the freshness of a cache entry on each access.

In the latter approaches the server sends invalidation messages to clients, if

an object is updated. However, both classes of coherence mechanisms require

reliable network connections at all times. The class of weak cache consistency

can be subdivided into: cache invalidation based on a (adaptive) time-to-live

(TTL) of each entry and on piggyback invalidation. All these approaches

have in common that objects are only updated by a single process, e.g., the

web server.

6.2 Time Synchronization

During the past decades many approaches have been proposed to synchro-

nize the clocks of a set of hosts in a computer network. In Christian’s algo-

rithm [Chr89] there is one dedicated time server in the network which has the

correct time by assumption. Each client that wishes to synchronize its clock

sends a periodic request message to the time server, which in turn replies with

the current time at the server. In order to estimate the time at which the

server has sent the reply, the one-trip time (OTT) is approximated by half

of the round-trip time (RTT) of request/response messages. In the Berkeley

algorithm for clock synchronization [GZ89] the authors assume that one ded-

icated host, the time server, is responsible for initiating the synchronization.

The time server periodically polls every machine in the network and com-

putes the average time. Next, the server sends to each client the difference

between the clock of the client and the average time in the system in order to

adjust the clocks. In this approach the RTT is also measured to approximate

the OTT. Both approaches are highly centralized and rely on the assumption

that the OTT is approximately half of the RTT. In MANETs, however, the

OTT of messages may change rapidly as the connectivity and the load of

152 CHAPTER 6. RELATED WORK

the network changes. Therefore, this fluctuation of the OTT impacts the

accuracy of the synchronization significantly. The network time protocol

(NTP) [Mil94] is one of the most commonly used protocols for time synchro-

nization in wired networks. The time synchronization service is provided by

a tree hierarchy of servers which are organized in so-called strata. The root

of this tree belongs to stratum 1, the stratum of other servers is set according

to their distance to the stratum 1 server. Each stratum-(n + 1) server syn-

chronizes with a server on stratum-n, enabling a distributed synchronization.

However, this approach introduces higher synchronization errors on higher

strata. Synchronization with NTP also relies on the OTT estimation based

on the measurement of RTTs.

In the area of MANETs and wireless sensor networks time synchroniza-

tion received a lot of attention in the past years. The idea of time stamp

synchronization in MANETs was first introduced in [Röm01]1. In this ap-

proach each time stamp is represented as a time interval [t− δ, t + δ] where

t represents a point in time and δ represents the error. The real point in

time can be anywhere within the interval. Therefore, two time stamps can

be correctly ordered only if their intervals do not overlap. Synchronization

is performed pairwise between nodes whenever time stamps are exchanged.

Since the synchronization is performed in an on-demand manner, δ is influ-

enced not only by the inaccuracy introduced by measuring the RTT, but

also on the age of a time stamp. Additionally, δ is increased every time

a time stamp is exchanged between a pair of nodes. In general, the accu-

racy of this approach decays with the network diameter and the age of time

stamps. The author of [Röm01] has conducted measurements that show a

linear increase of the inaccuracy with respect to the number of hops a time

stamp traverses and the age of a time stamp. For example, inaccuracies of

approximately 2.5 ms for an age of 600 s and 0.9 ms for traversing 5 hops

have been measured. The accuracy of chronological ordering in this disser-

tation is based on the assumption that the maximum jitter of the single-hop

communication delay is bounded and reasonably small. In systems where

this assumption holds, the algorithms presented in this dissertation provide

1A similar approach called post-facto synchronization has been proposed in [EE01]

6.3. DATA REPLICATION IN MANETS AND SENSOR NETWORKS153

ordering with constant accuracy. In particular, the accuracy does not depend

on the network diameter or the age of information.

6.3 Data Replication in MANETs and Sensor

Networks

Data replication has been addressed in the context of mobile ad-hoc and sen-

sor networks by many authors. The adaptive broadcast replication protocol

(ABR) [XWC00] was proposed to disseminate sensor data through a wireless

sensor network. ABR ensures weak consistency assuming that there exists

a single update source per object, i.e. each update created by a node can

be totally ordered by means of version numbers. On each local update, the

updating node calculates a distance to the previous value in order to estimate

the benefit of sending the update to other nodes in the system. In our work

we allow multiple update sources for each object.

Deno [KC00] presents an epidemic replication algorithm based on weighted-

voting for weakly connected mobile ad hoc networks. On object creation a

certain amount of so-called currency is associated with each object. When

an additional copy of a particular object is created, the amount of currency

is split between copies. An update on an object can only be committed,

if a sufficiently large subset of all copies agrees to commit. The subset is

sufficiently large, if the sum of currency for the object is greater than half

of the total currency for that object. This algorithm ensures that each copy

commits updates in the same order. However, there are no chronological

constraints concerning this order.

The authors of [LHE03] present a collection of protocols for probabilistic

quorum-based data storage in MANETs. Read operations will return the

result of the latest update operation that has been written to a quorum.

No assumptions are made in which order update operations, especially those

from different update sources, are applied to a quorum. Similarly, in [KMP99]

a quorum-based system is used to provide access to the most current state

information of objects. Each update is time-stamped under the assumption

154 CHAPTER 6. RELATED WORK

that the clocks in the system are synchronized. Queries are sent to an arbi-

trary quorum by clients. After collecting all responses, the client selects the

datum with the youngest time stamp as a query result. Depending on the

connectivity of the network, clients may not reach arbitrary nodes of a given

quorum, which in turn may lead to reading stale information. In contrast to

these approaches, our consistency model explicitly enforces the chronological

order of update operations from multiple update sources.

The Passive Distribution Indexing scheme (PDI) [LW03] was proposed

to store (key, value) pairs on mobile devices in a mobile ad-hoc network.

Within the algorithm, a combination of query and result dissemination is

used. Mobile hosts that receive results for queries may cache these for future

use. For cache invalidation, the authors propose a hybrid-strategy of explicit

invalidation and timeout values for cache entries. Data items may only be

modified by the origin server (single update source).

The work presented in [Har01] provides a set of algorithms for replica

placement and update dissemination in mobile ad-hoc networks. However,

the authors take the assumption that data items — once created — cannot

be changed. This means that the ordering of update operations does not

have to be considered in this system. In [HHN05] the authors assume that

data items are only updated by a single node in the system.

6.4 Discussion

Many of the consistency models which have been discussed previously are

used to provide strict ordering guarantees such as sequential or causal or-

dering, e.g. [BHG87, HSAA03, HA90, Wan99]. Therefore, these models are

not suitable for applications in MANETs envisioned in this dissertation for

two major reasons: they do not maintain the chronological ordering between

operations and result in poor availability in dynamic networks, for example

because they use locking of information objects.

Weaker existing models, e.g. [TDP+94,SKK+90,MD88,DGH+87,SBK85]

that have been designed for dynamic environments or disconnected opera-

tions do not provide chronological ordering guarantees. Here, the focus is,

6.4. DISCUSSION 155

for example, on the convergence to a common state [DGH+87, SBK85] or

the ordering of operations from the perspective of a single client [TDP+94].

Other examples [SKK+90] focus on the detection of conflicts which have to

be resolved by the application software or assume that updates can only be

applied to a single dedicated copy [MD88]. These models do not consider the

ordering of operations – executed by multiple independent processes – with

respect to physical time.

Those models which explicitly consider physical time, for example [HW90,

TRAR99,SRH97,LW01] are not suitable for dynamic environments such as

MANETs. These models define time-bounds in which operations must be

executed [HW90,TRAR99,SRH97] or require no particular ordering on write

operations [LW01].

The data replication algorithms that have previously been proposed can

be used in combination with existing consistency models, but do not pro-

pose a particular model [LHE03], assume that data objects are only updated

by a single dedicated process [XWC00,Har01], or propose that updates are

executed in the same yet any order at all copies [KC00].

The consistency model presented in this work defines a weak consistency

model that takes the chronological ordering of read and write operations

into account. It requires that write operations of independent processes are

ordered according to the time at which their execution starts and that pro-

cesses read the results of those write operations in increasing (chronological)

order. The model is suitable for networks with dynamic topology changes

and can be guaranteed even in networks that are temporarily partitioned.

The replication algorithms presented in this work are based on the read-one

and write-all approach. On the basis of our consistency model no locking of

data objects is required and thus a high availability in MANETs is achieved,

i.e., both read and write operations can be executed at any time.

156 CHAPTER 6. RELATED WORK

Chapter 7

Summary and Conclusions

The work in this dissertation addresses applications that require the state of

their physical surroundings in order to fulfill their overall goals while oper-

ating in an environment where no networking infrastructure is available. An

example for such applications is the coordination of rescue workers which is

based on the situation of all workers (their state) and the state of physical

objects in their operational environment. Since the chronological order in

which changes to this state information occur is important for making deci-

sions, we provide a novel consistency model called update-linearizability that

provides chronological ordering guarantees for update and read operations on

data objects. The key idea of the model is that update operations are only

applied to the data model held in the system in the order in which they

occurred in the physical world. If, for example, some object increases its

temperature over time, successive changes have to be reflected in the system

according to the physical time at which they are observed by sensors in the

system. This guarantee must be independent from other system properties,

such as the overall communication latency in the network.

We have provided two replication algorithms that are suitable for a wide

range of systems. The system model which is defined for the algorithms only

requires that communication between nodes is possible on best-effort basis.

The communication latency between nodes can be arbitrary, except for the

communication on the first hop between a node that senses a state change and

the neighboring node that receives the state change for further processing.

157

158 CHAPTER 7. SUMMARY AND CONCLUSIONS

Here, we require that the maximum jitter of the communication latency is

bounded. This is required in order to guarantee that the chronological order

of update operations can be captured correctly in the system and has been

shown to be realistic in real systems such as nodes used in wireless sensor

networks.

The replication algorithms presented in this dissertation have two very im-

portant attributes: they provably guarantee update-linearizability and they

do not require any pair of physical clocks in the system to be synchronized.

This means that the chronological ordering defined by update-linearizability

is guaranteed without using traditional clock synchronization schemes. This

is a preferable property, since the accuracy of clock synchronization schemes

typically depends on the network diameter (in hops) and the age of infor-

mation. The former dependency is either introduced by a hop-by-hop syn-

chronization where each hop introduces an uncertainty or a high multi-hop

communication jitter in the system. The latter dependency is introduced by

the time that passes between two synchronization events. The accuracy with

which the chronological ordering is reflected in systems using the algorithms

proposed in this work solely depends on the maximum jitter of the single-hop

broadcast communication delay in the network. This is achieved by using a

special data structure, the so-called ordering graph. The chronological or-

dering between state changes is derived from the communication between an

observer which detects a state change and the first node that receives the

information over a single hop in the network. Once this ordering information

is stored in the graph, it does not change over time and can be passed over

multiple hops without becoming inaccurate. Additionally, arbitrary ordering

graphs can be merged in order to consistently combine ordering information

that has been collected by independent nodes. In summary, the ordering

graph is used to derive the ordering of information which has been sensed by

independent observers in the system.

The two algorithms presented in this work are used to replicate the most

recent state of each observable object in the system. The first algorithm is

used to fully replicate the most recent state of each observable object in the

system on all nodes. The second algorithm replicates this information on

159

a subset of all nodes. In this case, other nodes may read state information

remotely. The observers used to sense state changes are only required to hold

a small state that describes the physical objects that are currently under

their observation. These nodes do not need to maintain any history of their

observations. When the full replication algorithm is used, these nodes only

have to send messages, i.e., they do not require any means for receiving

messages on application level. When the partial replication algorithm is

used, they need to be capable of sending single-hop broadcast messages. In

both cases they do not require any routing protocol implementation which

reduces the complexity of the software.

Within this dissertation we have presented experimental results, which

show that the achieved performance of the proposed algorithms is high for

a wide range of system parameters. In summary, the recency of the state

information available to applications is high as long as the network is not

congested. In these cases, the recency in comparison to the globally most

current state information mainly depends on the multi-hop communication

latency in the network.

Using the algorithms presented in this dissertation, it is possible to de-

velop systems that

• capture and store the state of physical world objects,

• capture and store the chronological ordering between these state changes,

• do not require a networking infrastructure,

• do not require synchronized clocks, and

• use these state changes to make decisions in the applications.

In the context of this dissertation, future work can be divided into three

categories: communication mechanisms, extension of the available state in-

formation, and systems design.

The communication mechanisms used in conjunction with the replication

algorithms are standard protocols. On the one hand this is an advantage, be-

cause of their multi-purpose character. On the other hand it may be possible

160 CHAPTER 7. SUMMARY AND CONCLUSIONS

to develop communication mechanisms that are optimized for distributing

physical world events (update requests after all) in the system.

The state information which is available to applications may be extended

by the provision and management of state histories. Currently the aim is to

maintain the most recent state information for each object. If an application

requires a history of state information, it has to maintain this information by

itself. Extensions may be made to manage state histories within the system

software in a generic way. A question that arises when state histories are

managed by the system is: how to treat updates that are older than the

currently most recent information available at the node when they arrive?

In the area of systems design it will be important to gather more knowl-

edge, both theoretically and practically, on how to design and evaluate sys-

tems with the concepts and methods that have been proposed in this work.

Bibliography

[AGU72] Alfred V. Aho, Michael A. Garey, and Jeffrey D. Ullman. The

transitive reduction of a directed graph. SIAM Journal on Com-

puting, 1(2):131–137, 1972.

[BBH02] Christian Becker, Martin Bauer, and Jörg Hähner. Usenet-on-

the-fly - supporting locality of information in spontaneous net-

working environments. In Workshop on Ad hoc Communica-

tions and Collaboration in Ubiquitous Computing Environments

at ACM CSCW 2002, 2002.

[BG84] Philip A. Bernstein and Nathan Goodman. An algorithm for con-

currency control and recovery in replicated distributed databases.

ACM Transactions on Database Systems, 9(4):596–615, 1984.

[BHG87] Phil Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-

currency Control and Recovery in Database Systems. Addison

Wesley, 1987.

[BK85] Barbara T. Blaustein and Charles W. Kaufman. Updating repli-

cated data during communications failures. In Proceedings of 11th

International Conference on Very Large Data Bases (VLDB 85),

pages 49–58, 1985.

[BMJ+98] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu,

and Jorjeta Jetcheva. A performance comparison of multi-hop

wireless ad hoc network routing protocols. In Proceedings of the

4th annual ACM/IEEE International Conference on Mobile com-

puting and networking, pages 85–97, 1998.

161

162 BIBLIOGRAPHY

[Boa97] IEEE Standards Board. IEEE std 802.11-1997 Information

technology- telecommunications and information exchange be-

tween systems-local and metropolitan area networks-specific

requirements-part 11: Wireless lan medium access control (MAC)

and physical layer (PHY) specifications, 1997.

[BRS03] Christian Bettstetter, Giovanni Resta, and Paolo Santi. The node

distribution of the random waypoint mobility model for wireless

ad hoc networks. IEEE Transactions on Mobile Computing, 2003.

[Cha89] A. Chatterjee. Futures: a mechanism for concurrency among

objects. In Supercomputing ’89: Proceedings of the 1989

ACM/IEEE conference on Supercomputing, pages 562–567, New

York, NY, USA, 1989. ACM Press.

[Chi05] Chipcon. Cc1000 single chip very low power rf transceiver

(datasheet). http://www.chipcon.com/files/CC1000_Data_

Sheet_2_2.pdf, 2005.

[Chr89] Flaviu Christian. Probabilistic clock synchronization. Distributed

Computing, 3(3):146–158, 1989.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,

Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.

Epidemic algorithms for replicated database maintenance. In

Proceedings of the 6th Symposium on Principles of Distributed

Computing, pages 1–12, 1987.

[DGMS85] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Con-

sistency in a partitioned network: A survey. ACM Computing

Surveys (CSUR), 17(3):341–370, 1985.

[DSB88] Michel Dubois, Christoph Scheurich, and Fayé A. Briggs. Syn-

chronization, coherence, and event ordering in multiprocessors.

IEEE Computer, 21(2):9–21, Feb 1988.

BIBLIOGRAPHY 163

[EE01] Jeremy Elson and Deborah Estrin. Time synchronization for

wireless sensor networks. In 2001 International Parallel and Dis-

tributed Processing Symposium (IPDPS), Workshop on Parallel

and Distributed Computing Issues in Wireless Networks and Mo-

bile Computing, 2001.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained

network time synchronization using reference broadcasts. In Pro-

ceedings of the 5th Symposium on Operating Systems Design and

Implementation (OSDI), 2002.

[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The

notion of consistency and predicate locks in a database system.

Communications of the ACM, 19(11):624–633, 1976.

[Eic04] Felix Eickhoff. Chronologische Ordnung von Update-Operationen

verschiedener logischer Objekte bei der Datenreplikation in mo-

bilen ad hoc Netzwerken. Diplomarbeit, Universität Stuttgart,

2004.

[epc] Electronic product code (epc). http://www.epcglobalinc.org.

[ER03] Jeremy Elson and Kay Römer. Wireless sensor networks: a new

regime for time synchronization. SIGCOMM Computer Commu-

nications Review, 33(1):149–154, 2003.

[Goo89] James R. Goodman. Cache consistency and sequential consis-

tency. Technical report 61, SCI Committee, 1989.

[GZ89] Ricardo Gusella and Stefano Zatti. The accuracy of the clock

synchronization achieved by TEMPO in berkeley UNIX 4.3BSD.

IEEE Transactions on Software Engineering, 15(7):847–853,

1989.

[HA90] Phillip W. Hutto and Mustaque Ahamand. Slow memory: Weak-

ening consistency to enhance concurrency in distributed shared

164 BIBLIOGRAPHY

memories. In Proceedings of the 10th IEEE International Con-

ference on Distributed Computing Systems (ICDCS), pages 302–

309, 1990.

[Har01] Takahiro Hara. Effective replica allocation in ad hoc networks

for improving data accessibility. In Proceedings of the Twentieth

Annual Joint Conference of the IEEE Computer and Communi-

cations Societies (INFOCOM), volume 3, pages 1568–1576, 2001.

[HBM04] Jörg Hähner, Christian Becker, and Pedro J. Marrón. Consistent

context management in mobile ad hoc networks. In Informatik

2004 – Informatik verbindet, volume 1, pages 308–313, 2004.

[HBMR06] Jörg Hähner, Christian Becker, Pedro J. Marrón, and Kurt

Rothermel. Maintaining update-linearizability for replicated in-

formation in manets. In Proceedings of the First IEEE Confer-

ence Communication System Software and Middleware (COM-

SWARE), pages 1–12, 2006.

[HBR03] Jörg Hähner, Christian Becker, and Kurt Rothermel. A protocol

for data dissemination in frequently partitioned mobile ad hoc

networks. In Proceedings. Eighth IEEE International Symposium

on Computers and Communication (ISCC 2003), volume 1, pages

633–640, 2003.

[HDMR04] Jörg Hähner, Dominique Dudkowski, Pedro J. Marrón, and Kurt

Rothermel. A quantitative analysis of partitioning in mobile ad

hoc networks (extended abstract). In Proceedings of the Joint In-

ternational Conference on Measurement and Modeling of Com-

puter Systems (SIGMETRICS/PERFORMANCE), pages 400–

401, 2004.

[HHN05] Hideki Hayashi, Takahiro Hara, and Shojiro Nishio. Updated

data dissemination methods for updating old replicas in ad hoc

networks. Personal Ubiquitous Computing, 9(5):273–283, 2005.

BIBLIOGRAPHY 165

[HL01] Jörg Hähner and Max Larsson. Integration of heterogeneous ser-

vices into the facility automation platform roomcomputer. Diplo-

marbeit, Technische Universität Darmstadt, Germany, 2001.

[Hor05] Oliver Hornung. Design of a method for measuring the maxi-

mum delay jitter of the communication between sensor nodes.

Studienarbeit, Universität Stuttgart, 2005.

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-

oriented database recovery. ACM Computing Surveys (CSUR),

15(4):287–317, 1983.

[HRB04] Jörg Hähner, Kurt Rothermel, and Christian Becker. Update-

linearizability: A consistency concept for the chronological or-

dering of events in MANETs. In Proceedings of the 1st IEEE

Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2004.

[HS78] Ellis Horowitz and Sartja Sahni. Fundamentals of Computer Al-

gorithms. Computer Science Press, Maryland, 1978.

[HSAA03] JoAnne Holliday, Robert Steinke, Divyakant Agrawal, and

Amr El Abbadi. Epidemic algorithms for replicated databases.

IEEE Transactions on Knowledge and Data Engineering,

15(5):1218–1238, 2003.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David

Culler, and Kristofer Pister. System architecture directions for

networked sensors. In ASPLOS-IX: Proceedings of the ninth in-

ternational conference on Architectural support for programming

languages and operating systems, pages 93–104, New York, NY,

USA, 2000. ACM Press.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM Transactions

on Programming Languages and Systems (TOPLAS), 12(3):463–

492, 1990.

166 BIBLIOGRAPHY

[KC00] Peter J. Keleher and Ugur Cetintemel. Consistency management

in deno. Mobile Networks and Applications, 5(4):299–309, 2000.

[KL86] Brian Kantor and Phil Lapsley. RFC 977: Network news transfer

protocol. http://www.faqs.org/rfcs/rfc977.html, Feb 1986.

[KMP99] Goutham Karumanchi, Srinivasan Muralidharan, and Ravi

Prakash. Information dissemination in partitionable mobile ad

hoc networks. In Proceedings of 18th IEEE Symposium on Re-

liable Distributed Systems, pages 4–13. IEEE Computer Society,

1999.

[KS92] James J. Kistler and M. Satyanarayanan. Disconnected operation

in the coda file system. ACM Trans. Comput. Syst., 10(1):3–25,

1992.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM, 21(7):558–565,

1978.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Transactions

on Computers, 28(9):690–691, 1979.

[LHE03] Jun Luo, Jean-Pierre Hubaux, and Patrick Th. Eugster. PAN:

Providing reliable storage in mobile ad hoc networks with proba-

bilistic quorum systems. In Proceedings of the 4th ACM Interna-

tional symposium on Mobile Ad Hoc Networking and Computing,

pages 1–12, 2003.

[Lom02] Michael A. Lombardi. NIST time and frequency services (NIST

special publication 432). Technical report, National Institute of

Standards and Technology, 2002.

[LS88] Richard J. Lipton and Jonathan S. Sandberg. PRAM: A scalable

shared memory. Cr-tr-180-88, Princton University, 1988.

BIBLIOGRAPHY 167

[LS90] Eliezer Levy and Abraham Silberschatz. Distributed file systems:

concepts and examples. ACM Computing Surveys, 22(4):321–

374, 1990.

[LW01] Hyunyoung Lee and Jennifer L. Welch. Applications of proba-

bilistic quorums to iterative algorithms. In 21st International

Conference on Distributed Computing Systems, pages 21–28,

2001.

[LW03] Christoph Lindemann and Oliver P. Waldhorst. Consistency

mechanisms for a distributed lookup service supporting mobile

applications. In MobiDe ’03: Proceedings of the 3rd ACM inter-

national workshop on Data engineering for wireless and mobile

access, pages 61–68, New York, NY, USA, 2003. ACM Press.

[Mat89] Friedemann Mattern. Virtual time and global states in dis-

tributed systems. In Proceedings of the Workshop on Parallel and

Distributed Algorithms, pages 215–226. North Holland, 1989.

[MD88] P. Mockapetris and K. J. Dunlap. Development of the domain

name system. In SIGCOMM ’88: Symposium proceedings on

Communications architectures and protocols, pages 123–133, New

York, NY, USA, 1988. ACM Press.

[MHR01] Marie-Luise Moschgath, Jörg Hähner, and Rolf Reinema.

Sm@rtlibrary - an infrastructure for ubiquitous technologies and

applications. In ICDCSW ’01: Proceedings of the 21st Inter-

national Conference on Distributed Computing Systems, pages

208–213, Washington, DC, USA, 2001. IEEE Computer Society.

[Mil94] David L. Mills. Global States and Time in Distributed Systems,

chapter Internet Time Synchronization: The Network Time Pro-

tocol. IEEE Computer Society Press, 1994.

[MLM+05] Pedro J. Marrón, Andreas Lachenmann, Daniel Minder, Jörg

Hähner, Robert Sauter, and Kurt Rothermel. TinyCubus: A

168 BIBLIOGRAPHY

flexible and adaptive framework for sensor networks. In Proceed-

ings of the 2nd European Workshop on Wireless Sensor Networks

(EWSN), 2005.

[Mos93] David Mosberger. Memory consistency models. Tr 93/11, De-

partment of Computer Science, University of Arizona, USA,

1993.

[mot] Mica motes. http://www.xbow.com.

[Nee93] R. M. Needham. Distributed Systems, chapter Names. Addison

Wesley, 2nd ed. edition, 1993.

[ns2] Network simulator ns2. http://www.isi.edu/nsnam/.

[NTCS99] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping

Sheu. The broadcast storm problem in a mobile ad hoc network.

In Proceedings of the 5th ACM/IEEE International Conference

on Mobile Computing and Networking, pages 151–162, 1999.

[PBV05] Santashil PalChaudhuri, Jean-Yves Le Boudec, and Milan Vo-

jnovic. Perfect simulations for random trip mobility models. In

Proceedings of the 38th Annual Simulation Symposium (ANSS),

2005.

[PR99] Charles E. Perkins and Elisabeth M. Royer. Ad-hoc on-demand

distance vector routing. In Proceedings of the 2nd IEEE Work-

shop on Mobile Computer Systems and Applications (WMCSA),

pages 90–100, 1999.

[Röm01] Kay Römer. Time synchronization in ad hoc networks. In Mobi-

Hoc ’01: Proceedings of the 2nd ACM international symposium

on Mobile ad hoc networking & computing, pages 173–182. ACM

Press, 2001.

[RP99] Elisabeth M. Royer and Charles E. Perkins. Multicast operation

of the ad-hoc on-demand distance vector routing protocol. In

Proceedings of the 5th annual ACM/IEEE International Confer-

ence on Mobile Computing and Networking, pages 207–218, 1999.

BIBLIOGRAPHY 169

[Sat93] M. Satyanarayanan. Distributed Systems, chapter Distributed

File Systems. Addison Wesley, 2nd ed. edition, 1993.

[SBK85] Sunil K. Sarin, Barbara T. Blaustein, and Charles W. Kaufman.

System architecture for partition-tolerant distributed databases.

IEEE Transactions on Computers, 34(12):1158–1163, 1985.

[SKK+90] Mahadev Satyanarayana, James J. Kistler, Puneet Kumar,

Maria E. Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A

highly available file system for a distributed workstation environ-

ment. IEEE Transactions on Computers, 39(4):447–459, 1990.

[SRH97] Aman Singla, Umakishore Ramachandran, and Jessica Hodgins.

Temporal notions of synchronization and consistency in beehive.

In SPAA ’97: Proceedings of the ninth annual ACM symposium

on Parallel algorithms and architectures, pages 211–220, New

York, NY, USA, 1997. ACM Press.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM

Computing Surveys, 37(1):42–81, 2005.

[Sto02] Ivan Stojmenović. Handbook of Wirless Networks and Mobile

Computing. Wiley, 2002.

[TDP+94] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spre-

itzer, Marvin M. Theimer, and Brent B. Welch. Session guaran-

tees for weakly consistent replicated data. In Proceedings of the

3rd International Conference on Parallel and Distributed Infor-

mation Systems (PDIS), pages 140–149, 1994.

[TRAR99] Francisco J. Torres-Rojas, Mustaque Ahamad, and Michel Ray-

nal. Timed consistency for shared distributed objects. In PODC

’99: Proceedings of the eighteenth annual ACM symposium on

Principles of distributed computing, pages 163–172, New York,

NY, USA, 1999. ACM Press.

[Tur96] Volker Turau. Algorithmische Graphentheorie. Addison-Wesley,

1996.

170 BIBLIOGRAPHY

[Wan99] Jia Wang. A survey of web caching schemes for the internet.

SIGCOMM Comput. Commun. Rev., 29(5):36–46, 1999.

[WJH97] Andy Ward, Alan Jones, and Andy Hopper. A new location

technique for the active office. IEEE Personal Communications,

4(5):42–47, 1997.

[XWC00] Bo Xu, Ouri Wolfson, and Sam Chamberlain. Spatially dis-

tributed databases on sensors. In Proceedings of the 8th ACM

International Symposium on Advances in Geographic Informa-

tion Systems, pages 153–160, 2000.

[YLN03] Jungkeun Yoon, Mingyan Liu, and Brian Noble. Random way-

point considered harmful. In Proceedings of the 22nd Annual

Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM), 2003.

[ZK91] Hui Zhang and Srinivasan Keshav. Comparison of rate-based

service disciplines. In SIGCOMM ’91: Proceedings of the confer-

ence on Communications architecture & protocols, pages 113–121.

ACM Press, 1991.

[ZK04] Yufang Zhu and Thomas Kunz. MAODV implementation for ns-

2.26. Technical Report SCE-04-01, Department of Systems and

Computer Engineering, Carleton University, Ottawa, Canada,

January 2004.

Index

δobs, 45

chronological order, 39

DB node, 38

full replication

liveness, 76

node-node algorithm, 74

observer-node algorithm, 72

safety, 75

multi-send, 44

observation jitter

definition, 45

experimental evaluation, 109

metric, 103

observer, 37

occurred before, 39

ordering graph

add, 52

addTransitive, 56

complexity, 65

definition, 52

join, 60

lossless reduce, 54

lossy-k-reduce, 58

occurredBefore, 61

partial replication

correctness, 96

node-node algorithm, 85

perceivable object, 44

read

blocking, 86

concurrent, 88

continuous, 94

examples, 87

local, 73

send, 44

sequence number

client, 86

observer, 51

server, 89

state record

creation, 72

definition, 51

uni-send, 44

update request, 37

update-linearizability, 39

171

