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Chapter 1

Introduction

Everyone agrees that human beings can acquire a natural language only because they are
biologically prepared to do so and only because they are exposed to other people in the
culture speaking the language. The difficult part is in specifying the exact nature of this
biological preparation, including the exact nature of the cognitive and learning skills that
children use during ontogeny to acquire competence with the language into which they are
born.
Michael Tomasello (2003)

1.1 Background Problem

Experimentalists (especially psychologists) have the tendency to regard the generation of
data as more important than the development of theories. They often view theories merely
as a means to explain the data and maybe to generate new experiments. Theoreticians
(especially linguists) on the other hand often tend to regard theories as the primary goal
of the scientific work and data only as a means to evaluate them. But while a theory
is always a theory about something (i.e. empirical observations of some kind), data can
stand on its own feet. To publish data without an underlying theory is common practice.
Especially data which contradicts a widely accepted theory is interesting and an important
and stimulating scientific finding. However, in the neuroscience of language, the emergence
of functional imaging methods such as EEG, MEG, PET and fMRI has, within the last
ten years, led to a very strong prevalence of empirical results over theoretical understand-
ing. The enormous flood of (often inconsistent) empirical results currently resists coherent
interpretation by the few theories that are available. These theories might be categorized
into (i) structural theories and (ii) computational theories.

Structural theories usually come in the form of boxes and arrows, in which cognitive
functions, described by a general label such as e.g. lexical retrieval or (which is worse)
semantics (Deacon 1997), are attributed to a certain anatomical brain region. They are of-
ten generated by scientists working with patients or using functional imaging. Using these
methods, correlations have been established between some aspects of language processing

1



2 CHAPTER 1. INTRODUCTION

and local changes in neural activity, or lesions have been described that cause the impair-
ment of certain linguistic capabilities. While traditional structural models, e.g. Geschwind
(1965), which are generally agreed to capture at least some part of the truth, are too
coarse-grained to deal with the specific data of current imaging experiments, no consensus
has been reached about more recent models of this type (Deacon 1997). The labels used
to denote the cognitive functions in those box and arrow models allow little insight into
the exact nature of information processing that is claimed to take place in the respective
brain area and, therefore, does not allow precise predictions that can be experimentally
evaluated. Also, the box-and-arrow models are still very distant from a neural explanation
of language processes as the linguist understands and describes them.

Computational theories make stronger claims about the exact bits and pieces of in-
formation that are stored and retrieved during language processing, but they usually do
not relate a specific kind of information processing to a neural substrate, such as a brain
region (Levelt 1989, Plaut and Kello 1999) let alone physiological entities such as neurons,
synapses or cortical columns. There are several kinds of theories that might be called
computational. Here I should mention three of them: linguistic theories, psycholinguistic
theories and connectionist models.

Linguistic theories often offer precise, even algorithmic accounts of language processes.
Some of those theories, such as Chomsky (1965, 1994), claim to describe cognitively real
processes, while others do not. But even those linguistic theories which claim to describe
cognitive processes are often not in a form that allows testing by behavioral experiments.
and so far the relation to cognitive processes could only been demonstrated experimentally
for very few of them. And to use theories which do not describe cognitively plausible
processes as a basis for experimental brain research is not very promising. Especially most
semantic theories (Montague 1973) with their anti-psychologistic roots (Frege 1892) keep a
safe distance to mental processes or mental representations while trying to describe meaning
in terms of correspondence between utterances and states of the world. For theories which
do not aim to describe the cognitive processes and cognitive representations involved in
meaning processing, this is, of course, a justified approach. But despite the non-cognitive
character of its approach, theoretical semantics (in accord with philosophy of language),
offers a large and articulate body of theories about the computation of meaning, as well as
detailed observations about all kinds of meaning phenomena which a cognitive or neural
theory of meaning also has to deal with. For their part, theoretical semanticists, with
their insights into the structure and use of language, could give guidance to neuroscientific
research to a greater extent than has been the case hitherto. Semanticists have, in spite
of their growing knowledge of how meaning is expressed in language, hardly played a part
in efforts to account for meaning-related phenomena in neural terms. In experimental
brain research, in psycholinguistic theories and experiments, and in connectionist models,
all of what has been learned about the representation and processing of language by the
methods of theoretical semantics has thus far been ignored. One of the main reasons for
this lack of attention is the result of the non-cognitive tradition, mentioned above, in which
semantic theories have thus far been developed. It makes them not only hard to test in
behavioral and especially physiological experiments (since their basic concepts seem to be
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so orthogonal to cognitive or physiological ones), they also do not seem a realistic point
of departure for the enterprise of understanding the neural basis of meaning processing
(e.g. the interpretation of neurophysiological data or the design of new neuroscientific
experiments). This is particularly salient when we turn to very basic semantic relations
and operations which the working semanticist usually takes for granted as he grapples with
problems that count as the real challenges within his community. In the light of results that
have been emerging within the neurosciences about the neural representation of information
generally, theoretical semanticists will, if they are to make a useful contribution to a neural
theory of meaning, have to rethink their theories, and establish a new conceptual foundation
for them which is compatible with these results.

Most current psycholinguistic theories, such as Levelt (1989), offer statements about
cognitive processes involved in language production or comprehension, as they take into
account cognitive concepts such as retrieval from memory or spreading activation or lateral
inhibition. This enables these theories to make good predictions about empirical data such
as reaction times and speech errors. But when you compare them to linguistic theories,
then, of course, they are pretty meager in terms of the variety of linguistic phenomena
and the complexity of sentences they can explain. In particular, when it comes to the
compositional aspects of meaning, they usually do not give a precise description of how
linguistic form is used to determine meaning and vice versa. This is not surprising because,
of course, these theories always have to carry the additional burden of having to agree
with behavioral (and not only linguistic) data. The need to show that such data are
consistent with the theory slows down the theoretical development considerably (and most
psycholinguists are anyway fully engaged in obtaining this data). Especially when it comes
to meaning, most experimental work in psycholinguistics focuses on single word processing,
using picture naming and priming studies. As it was already pointed out by Levelt (1999),
there is a need in the experimental sciences for a cognitive theory of semantics which
can also serve as a basis for brain research. In general, psycholinguistic theories appear
to describe cognitive processes involved in language processing for which a brain area
which activates when those processes are executed can be found, as has been shown by
Levelt et al. (1998) and Roelofs and Hagoort (2002). The problem with this mapping is
that psycholinguistic theories do not take the computational organization of the brain into
account. I will try to show in this thesis that the modular organization of the brain may well
be very different, following different principles than the ones linguistic and psycholinguistic
theories often appear to assume. Simply trying to map components of these theories onto
the brain may therefore not be the right approach.

Computational neural models on the other hand use small neuron-like computing units,
and connections between those units that resemble biological synapses. This allows those
models to employ knowledge about the computational possibilities of various types of neu-
rons and synapses, as well as insights about the distribution of computations over different
brain areas. Models that connect behavioral data with data obtained in electrophysiologi-
cal single cell recordings (in animal brains) are often of this type. But for higher cognitive
functions, especially language processing functions, single cell recordings are hardly ever
available. Since this major source of evidence about the localisation of processing is lacking



4 CHAPTER 1. INTRODUCTION

(although other sources are in fact available), almost all connectionist models of language
processes do not make strong claims about the brain areas that carry out the computations
executed by specific artificial neurons of the model. Moreover, most current connectionist
models are even simpler than the current psycholinguistic theories.

1.2 Massive Integration

What we need is a computational (algorithmic) and precise (formal) description of the
processes and representations involved in a) neural theory that describes how interesting
linguistic (semantic/pragmatic) phenomena are processed on the neural level. Such a the-
ory would bridge the gap between cognitive neuroscience and theoretical semantics and
create a framework in which both communities can think. To do this, the theory would,
on one hand, have to connect to linguistic theories and explain linguistic phenomena. On
the other hand, it would have to be compatible with results and knowledge provided by
neuroscience. In computational and experimental neuroscience a variety of methods has
meanwhile led to theories and experimental results about the nature of neural representa-
tions and computations as well as about the regions of the brain where they are located. In
this way they have created a platform on which it now seems possible to develop accounts
of how the human brain understands and produces language.

A reformulation of the foundations of semantic theory in terms of the brain will have to
take into account that in the brain representations and computations manifest themselves
as states of physically real entities (i.e. neurons and synapses) and it is the properties of
those entities and their interaction that determines what kind of computations or rep-
resentations are possible. Our current understanding of neural information processing is
based on experimental investigations of these entities (both on the microscopic and on the
macroscopic level).

The knowledge about information processing in the brain, which I claim needs to be
integrated in such a theory, can be divided into several kinds of data. These data can
be classified into two broad categories: the behavioral level and the neurophysiological
level. On the behavioral level there is linguistic data, i.e. data which is generally used by
theoretical linguists to evaluate their theories. In large parts it consists of the utterances
which normal speakers, who have fully acquired their native language, produce under
normal circumstances. But it also includes the utterances (or pre-linguistic sounds) of
children in their early stages of development, and the transitions between the utterances
made in the early stages and those made in the later stages. Further, it includes the errors
children and adults make under normal circumstances. It also includes reaction time (RT)
data and learning rates.

Behavioral data can be obtained either in patients (e.g. people with injuries, diseases,
or brain lesions which impair their linguistic performance) or in (so-called) normals (i.e.
people without such impairments). Behavioral data of patients already give insights into
the locations of the brain mechanisms involved and the neural architecture of the cognitive
processes.
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More information about the biological implementation of those processes can be ob-
tained by measurements on the neurophysiological level (the second broad category). Here,
it isn’t the behavior of the tested person that plays the central role, but some measured
physiological brain response.

One possible way to categorize data of the neurophysiological level is by considering
the number of neurons they measure. Small scale measurements are the conduction or
stimulation of single or small numbers of neurons by introducing an electrode directly into
the brain. In some rare cases, when patients undergo some sort of epilepsy surgery, elec-
trodes can be directly used to measure or to stimulate single neurons while the patient is
performing a linguistic task. But in general this type of data is obtained with animals.
Nevertheless, animal brains and the human brain appear to be very similar in terms of
their general mechanisms of computation (this is discussed in a bit more detail below).
Therefore, the insight that animal research provides into the general learning and process-
ing mechanisms of the brain can be applied by imposing biologically plausible constraints
on theoretical models of cognitive processing in the human brain. I will call the insights
into information processing in the human brain provided by this kind of data design con-
straints. Design constraints include observed learning mechanisms of brain areas, as well
as connections between brain areas, and conduction times.

Large scale measuring methods can detect the activation of large numbers of neurons
or synapses. The ones most frequently used are fMRI and EEG (others are PET, SPECT,
MEG, and TMS). Functional imaging data, such as fMRI, give us clues about the location of
certain brain processes with a fairly good space resolution, but pretty bad time resolution.
EEG on the other hand gives us insights into the time response of neural activation, but
the space resolution is very low. EEG (and MEG data) can also give us information
about activity in different frequency bands (such as the γ-band). While the results of
small scale measurements are mainly used contrain the design of a neural model, large-
scale measurements can be used to test predictions such a model makes. To obtain such
predictions, functional imaging data or EEG data need to be simulated with the neural
model. So far this has hardly every been done in relation to language.

By using computational models, all these different kinds of data can potentially be in-
tegrated. Connectionist models allow a mathematical and algorithmic formalization that
helps to make the assumptions and consequences of different possible computational al-
ternatives precise. The box-and-arrow models discussed above or theories that are not
specified in a mathematical or computational way often resist falsification because their
consequences are not clear. In contrast computational neural models are based on precise
algorithmic theories and make quantitative predictions. Unlike the theories in which a box
or a module is denoted merely by a verbal label (e.g. concept selection), a connectionist
model needs to be specific in terms of input, output and exact information processing. The
theoretician is faced with a number of choices or possible computational theories of how
- precisely - a cognitive process is executed. The exact specification of the process allows
one to predict and compare the consequences of those different theories. Therefore, such
theories may have different potentials for explaining linguistic data (i.e. on the basis of
biologically plausible computations they could give reason why certain natural language
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expressions have a certain form). Depending on the capability of models to account for
linguistic data in this way some models could already be eliminated. In addition, a compu-
tational neural model can, if it is designed in the right way, also simulate behavioral data,
such as reaction times or learning rates. Comparison on the behavioral level is then likely
to rule out several of the computational alternatives because their predictions are not in
accordance with the behavioral data. If computational possibilities and algorithms of the
real brain are taken into account, as I will do in this thesis, some of these possible alter-
native theories cannot be considered plausible from a neurobiological point of view. This
further reduces the number of possible theories. Decisions between alternative theories can
also be made by including the simulation of brain lesions so that the resulting behavior
of the model can be compared with patient data. Finally, computational neural models
can be used to simulate functional imaging (fMRI or PET) or electrophysiological (EEG
or MEG). Based on the predictions made by these types of simulations, experiments can
provide strong evidence for or against some possible theories. This is a rough description of
the way in which the massive integration of data enabled by computational neural models
allows for specification of theories and predictions that can lead to scientific progress by
falsification (Popper 1934) and maybe lead to a true understanding of how meaning is
really processed and represented in the human brain.

Another reason why a computational neural model is needed, instead of just a imathe-
matical theory, is because of the complexity of neural dynamics. When we model a cognitive
task in terms of neurons, connections, and learning rules, we specify static properties of the
brain, but what we are interested in is dynamical behavior and changes of values, such as
for example the activation of neurons, the changing strength of synapses or focal changes
in neural activity within certain brain regions (as it is measurable in the real brain with
functional imaging). The interaction and the number of variables in such a model is so
complex that the outcome cannot be calculated by hand so that an implementation on a
computer is needed.

The number of processing units in the real brain (1011 neurons and 1015 synapses are
estimated for the human cerebral cortex alone) is so big that a simulation with a realistic
number of neurons or synapses is still not possible (not even for a single brain area).
Therefore, a certain degree of abstraction is necessary if an enterprise such as the one
sketched above is to be practically possible. Large-scale neural modeling is one possible
approach. In large-scale neural models the claim is not to model the behavior of single
neurons, but rather of larger neural groups. Whichever the method of abstraction is, it
is important to keep the essential features of the neural organization of computing, such
as the distribution of computing units, or, as I will show in the next section, the learning
algorithms used by the different parts of the brain.

1.3 Learning

The way a neural model processes information is determined by its neurons, the inter-
connection of those neurons (i.e. the structure of the model), and the strengths of those
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connections. These strengths can either be fixed (by the programmer) from the very be-
ginning or they can be trained with some learning algorithm. There are several reasons
why a neural theory which accounts for semantic processing should include learning.

The first reason is a very pragmatic one: Learning algorithms help to fix the synaptic
strength between the neurons in a way that allows the model to actually perform the task.
Many neural models are so complex that to fix the strength of the connections between its
neurons by hand is more costly than to train them with learning algorithms.

The second reason is that the brain (in most parts) is a learning system. It can learn
new languages and forms of communication until death. Modeling it as such as a learning
system is likely to help us to arrive at biologically plausible neural representations, and
algorithms as well because the way the brain learns determines the way it can represent
what it has learned. One of the major goals of the theory developed in this thesis is to
take into account the mounting evidence that different major brain structures (cortex,
basal ganglia, cerebellum) differ mainly with respect to the learning method they use
(Doya 1999, 2000). To accomplish complex learning tasks, such as language acquisition,
the brain uses these interacting subsystems to achieve the global goals of the system. In
particular, unsupervised learning in the cortex (Hebb 1949, Bliss and Lomo 1973, Artola
et al. 1990) is used for concept acquisition and word - meaning associations, supervised
learning (cerebellum) can be used to train forward models (Jordan and Rumelhart 1992)
for prediction, and reinforcement learning (basal ganglia) can be used to train a value
function (Sutton and Barto 1998) necessary for goal-directed utterance selection. While
physiological investigations have shown us how the brain learns, behavioral studies on
language acquisition have taught us what kind of information the language acquiring child
uses (and in particular what kind of clues parents and the environment provide it with) to
learn the meaning of words and more complex utterances. We also have some knowledge
about how the brain represents this information. Combining the theories about the learning
processes inside the brain with the theories about language acquisition observed from the
outside allows us to see the causal link between behavior and biological mechanisms and
can bring us another step closer to an understanding of the real neural processes and
representations involved in the production and understanding of meaningful language.

The third reason is that to include learning makes the theory subject to testing by
empirical data on language acquisition. Such a theory provides descriptions of representa-
tional structures not only for the mature language use of the grown-ups (as most theories
of theoretical semantics do), but also of the language of children in all stages of language
acquisition; and, what is almost more important, it describes the transitions between them
(computational accounts of these transitions are important and too little systematic re-
search has been done to provide them). But developing a theory about language acquisition
requires the inclusion of additional non-linguistic capabilities and cognitive functions, such
as attention (to describe gaze-following and shared attention capabilites of the child) as
well as role-reversal imitation. The ultimate goal of such a theoretical framework for the
description of meaning acquisition on a neural level would be to describe the information
contained in the represented semantic abilities at any point in time. As this information
always is the basis for further learning, it is possible to account for how similar information
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provided to the child by the environment in an observed usage-event enables it to learn
very different aspects of language depending on its stage of development. The theory,
therefore, could describe how the semantic abilities of the child are building up. And due
to the integrative character of the theory, it could also simulate physiological data during
acquisition that can be tested with brain imaging techniques.

The fourth reason for having an adaptive model is its use in the modeling of information
exchange. Meaning, from a cognitive point of view, emerges through learning - from the
first words acquired by children from the interaction with their parents to the change
of (semantic) knowledge by verbal information exchange as it was extensively discussed
already by Frege (1892) (in a very different context). Although the acquisition of basic
syntactical structures of a person’s native language might be over at an early stage of
childhood, it is obvious that her communication capabilites have the potential of further
extension and refinement through her entire lifetime. An adaptive framework of meaning,
like the one I will introduce in this thesis, does not only allow the modeling of early meaning
acquisition but also the more elaborate acts of information transmission we find in adults.

The last reason for modeling linguistic ability as a learning system is that this allows
a clear distinction between innate structures and acquired capabilities - the topic of the
next section.

1.4 The Question of Innateness

The question which linguistic capabilities are innate and which can be learned has been a
hot topic of discussion for many years. The starting point of this dispute was Chomsky’s
(in many points justified) attack on the behavioristic research philosophy and especially on
Skinner’s book Verbal Behavior. Chomsky’s subsequent work led to the research program
of Universal Grammar and Principles and Parameters in which (mainly) linguists tried to
describe the innate human grammatical system of the brain by specifying linguistic rules.
Computational neural modelers, on the other hand, have been trying for many years to
show that general learning principles are capable of acquiring the representations that a
system needs if it is to be able to use natural language grammar. In recent years the two
sides have shown some convergence and the dispute has somewhat cooled off. Since natural
language syntax does not play a significant role in the simple artificial languages I study
in this thesis, this particular issue does not arise. However, in principle the same issue is
relevant in connection with semantics and in my theoretical approach to the processing of
meaning in the brain with computational neural models, I will specify certain biological
structures, learning algorithms, and parameters (which might been seen as genetic dispo-
sitions) and try to show how such a system can acquire linguistic capabilites. In view of
this I would like to say some things about the question of innateness and also about the
general approach of addressing this problem that is taken in this thesis.

As put nicely by Michael Tomasello1, it has always been clear that the brain is not
a complete tabula rasa and that language is only acquired because humans have certain

1the citation at the beginning of this chapter
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genetical dispositions that allow them to learn language (in contrast to other animals).
On the other hand everyone is aware that at least some aspects of language are learned.
This leaves us with the question of exactly what is innate and what can be learned. More
specifically the question is: what is the necessary innate basis of learning natural language.
Computational neural models offer a way of investigating this question.

The genome specifies structures and their biochemical components, i.e. what the genome
specifies is basically the design of the human brain. Computational neural models make
it possible (and require!) to describe such a design. All the genetical dispositions for
language must - in one way or the other - be in the brain by virtue of some architectural
properties, types of neurons, their connections or the strength of those connections (for
genetically specified computations), and the (learning) algorithms with which they interact.
The insight that computational models serve very nicely to model this difference between
dispositions and acquired knowledge was pointed out by Elman et al. (1996). They allow
us to work out the dispositions to acquire language which must be genetically specified
and to specify a brain that has what Arbib (2000) calls language readiness. The general
approach of describing the mechanisms for language acquisition in terms of a computational
neural system is not far removed from the description of a language acquisition device.
However, to describe a language-ready brain in terms of neural architecture is, of course,
very different from the attempt to describe the genetical determination for human language
processing by grammatical rules. But the description of the architecture makes it possible
to actually investigate what kind of dispositions are needed to allow natural language to
be learned (while the mere specification of grammatical rules does not). For example,
concepts are acquired, but they are based on innate basic features, and the unsupervised
learning algorithm which the brain uses to acquire them is also innate.

For this approach - called synthetic psychology by Braitenberg (1984) - to work, it
is important to start with a simple system that comes with a simple initial structure
and to test what kind of behavior (i.e., in the case of language acquisition, what kind
of communication abilities) it can develop. Then it will be obvious whether the amount
and kind of initial information used was sufficient. It can be regarded as the ultimate
goal of this approach to describe the essential structures of the human brain which are
necessary for the acquisition of a human language. However, one feature of the synthetic
approach to cognition (Braitenberg 1984) is to begin by assuming a simple mechanism
and to discover its limitations. It is important to understand this principle as a way of
doing research and not as a claim. I do not claim that the structural and parametric
dispositions I will describe in this thesis are sufficient to learn human languages - I am
just trying to see how far I can get with the particular assumptions I make - introducing
each time I reach a limit another disposition into the model. Such a system, for which
some initial information or structure can be specified, but which has the potential to fully
develop its functional capabilites by interacting with its environment, is called a dynamical
system. Mathematically, a dynamical system can be described by a set of possible states, a
state function (mapping previous states and the input onto new states), an output function
(mapping states onto outputs), and an initial state. The initial state, the state function



10 CHAPTER 1. INTRODUCTION

and the output function can be thought of as representing the genetical disposition2. The
disposition given by the initial state and these functions needs to be specified in terms
of neural properties (i.e. connections, initial connection strengths between neuron etc.).
Although we do not know yet what exactly the genetical dispositions for language are, it
is evident that genes only determine the way the human brain processes by creating the
necessary neural structures; any form of processing algorithm built into the brain is built
in terms of neurons and connections.

Although the approach sketched so far allows me to stay fairly neutral with respect
to the question which dispositions are innate, I still would like to point out that three of
Chomsky’s main arguments for a universal grammar can no longer be considered tenable.
The first one is his point that parents do not teach their children language explicitly and
that children do not get a reward for successful language use. Recent data of Chouinard
and Clark (2003) has shown that parents actually do teach language to their children in
a subtle but nevertheless efficient way. For example, parents might not point out the
mistakes children make, but they often present the correct form of an utterance to them as
a reaction to a wrong usage. Children can also observe the consequences of their utterances
to improve their linguistic skills (the expected effect can be contrasted to the real effect
resulting in some kind of error signal), a capability that can be implemented in neural
systems, as was demonstrated by Jordan and Rumelhart (1992). And although children
do not get a reward from their parents for correct usage, their own awareness that their
use was correct will produce an internal sense of success that can play the role of a positive
reward in language acquisition. Moreover, they will no doubt find that by using language
they can accomplish more than without it, in particular that language will help them to
get others to do what they want (e.g. given them the thing that they want).

Chomsky’s poverty of stimulus argument3 has come to appear increasingly problematic
as computer simulations of syntax acquisition, such as Chang (2002), and language acqui-
sition data (Tomasello 2003) are showing more and more convincingly that the learning
mechanisms of the human brain might well be able to acquire syntactic rules from the
limited linguistic input they get. A weak point of the simulation studies remains the long
training times, which seem to be far from being comparable to the actual learning times
of children.

Another argument is about Language Universals 4. Here it has to be said that the
structure of language is given by three factors, the first is the limits and capabilites of the
human brain, the second is the optimality of linguistic structures for information exchange,
and the third one is the conventions within a language community. These three factor are
not independent of each other. One one hand, the optimal structures for information
exchange, depend on the possibilies of our brain to process linguistic structures. In that

2Note however that, for good reasons, most neural models do not start with a new-born brain, but
usually the initial capabilities in a modeled cognitive system already corresponds to those at a certain
point of development.

3The argument that children do not receive enough stimulation to acquire the complex structure of
natural language syntax.

4It has been observed that many languages in the world use similar kind of linguistic structures.
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sense our brain determines optimal structures of information interchange. On the other
hands, it is possible that genetic changes have led to brains, that can process structures
that are more efficent in the transmission of information. This would mean that the
optimality of linguistic structures for efficient information exchange could have determined
the processing capabilites of the brain. For example, it can be mathematically shown that
a compositional language is more optimal for information exchange than a language that
only uses non-compositional information. Therefore, brains that can use compositional
language have a clear advantage over those that cannot. Only with brains that are capable
of using compositional language can a language community come up with a compositional
language and use it conventionally. This means that a community can only adapt to more
optimal forms of language after the brain has evolved to process them. In summary, if
language is similar across cultures, then that is because we have the same brains and
we have to use them in the best possible way in order to communicate. It is however,
not very likely that the brain’s capacity to process structures that can be used for efficent
information transmission has evolved solely for the purpose of communication, which brings
us to the question of domain specificity.

The problem of domain specificity is closely related to the whole discussion about
nature vs. nurture. For language, being processed with domain specific brain mechanisms
can mean two things: (i) language is processed in brain structures or brain areas in which
no other cognitive function is being processed or (ii) language is processed and acquired
with neural algorithms that are not used to process any other cognitive function. Since it
is clear that certain cognitive functions used in language are also used in other cognitive
tasks (e.g. basic auditory processing) the more reasonable way of asking the question is
- here as elsewhere - which components of language are domain specific. In this thesis,
I will not discuss whether there are brain areas and structures used solely for language
processing. I will, however, demonstrate that the simplified forms of meaning that I deal
with in this thesis can be acquired with algorithms that can be (and are) used to carry out
other cognitive tasks as well. But since I am not dealing with complex syntactic structures,
my simulations and theoretical insights do not answer the question whether the processing
of syntax requires special algorithms.

One of the cognitive tasks I investigate in this thesis is the learning of utterance effects.
Here, a good analogy can be found in the motor system. To choose the right action, in
a certain context, the motor system needs to predict the outcome of a certain action.
Models that make this kind of prediction are called internal models. But internal models
can be used not only to choose the appropriate action in a certain context, but also to
understand the intentions of others. If you observe a person performing a certain action in
a certain situation and you know which effect this action will have, you can use this model to
understand the actor’s intention (Wolpert et al. 2003). Since utterances can be regarded as
goal directed in production, and because understanding the intention behind an utterance
has to be regarded as the ultimate goal in comprehension (Grice 1975), internal models
might give new insights into the representation of meaning in the brain. But although my
theory will use general methods of neural computation that can be used for other cognitive
tasks as well, the architectures of the system components are designed to map a certain
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input structure to a certain output structure in such a way that they can aquire language
meaning. Such aspects of the architecture, as well as way the components are connected,
may well be where the genetical disposition lies.

1.5 Goal-Directedness

In order for a species to persist, genetic modifications (mutations) occurring within it should
enable its members to better exploit their environment. Better communication skills give
humans a major advantage since they lead to social interaction and cooperation in achieving
a goal. Compositional language for example allows us to have precise communication with
lower learning costs.

A major accomplishment of evolution is that it has equipped the brain of humans (and
other animals) not only with specific processing capabilities, but also with the ability to
learn and adapt to the environment. One of the major learning methods of the brain is
reinforcement learning. Reinforcement learning uses genetical information about which
actions and situations are positive for the persistence of the organism (or its genes, to be
precise) and rewards those, causing the desire to bring the situation about again or repeat
the action. It also punishes actions and situations with the effect of causing the desire
to avoid them in the future. The organism learns which situations and actions (and also
objects) are more desirable and which are less. This in turn leads to humans and animals
having goals (or intentions) and thus to their functioning as goal-oriented systems. If we
see the brain as a goal-directed system generally, the goal-directedness of language can be
regarded as a special case of goal-directed behaviour, and language as one of the means
which agents can use to achieve their goals. Thus, the learning of language becomes an
optimization process, in the course of which the ability of the language learner to handle the
environment increases with higher levels of linguistic sophistication: the more accurately
we communicate, the more likely it is for our goals to be accomplished.

The awareness that utterances have extra-linguistic motives and extra-linguistic effects
goes back a long time (Austin 1961, Wittgenstein 1953). Wittgenstein and Austin saw and
stated clearly that the purpose of language is not - in the first place - to describe the world.
Linguistic utterances - like actions - are used to accomplish certain goals. As subsequent
work within speech act theory has made increasingly clear, utterance effects vary from the
most direct and directly observable to the indirect and only indirectly observable (such as
the sharing of information and other more subtle social effects). Speaking involves conceiv-
ing an intention and selecting the relevant information to be expressed for the realization
of this purpose (Levelt 1989). It is, further, generally recognized that the utterance of
a speaker achieves its effects by way of getting the addressee to recognize the speaker’s
intention to achieve it (Grice 1975). In other words, to really understand an utterance is
to understand the speaker’s communicative intention. To understand intention, as pointed
out by Bloom (2000), Tomasello (2003) and many other researchers in language acquisi-
tion, appears to be an essential prerequisite for acquiring the meaning of words. Since the
purpose for which utterances are used plays such a prominent part in language use and lan-
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guage acquisition, it seems natural to model acquisition of meaning and linguistic structure
in a setting where it goes hand in hand with the learning that and how utterances of given
forms can be used to achieve certain extra-linguistic goals. It is reasonable to assume that
if we really want to understand communication, we must understand the relation between
the utterances and their goals. Language production should be modeled as involving the
transition from goals to utterances and language comprehension as involving the transition
from perceived utterances to inferred goals. Such an approach to language use needs to
answer several questions. From a language production point of view such a theory needs
to explain: (i) how we know in what situations it is useful, given certain desires, to speak
instead of performing some other, non-verbal action, or simply doing/saying nothing, and
when to say what to whom; and (ii) how we transform the goal we want to achieve in the
given situation into an utterance (or a sequence of utterances). From the view point of
language comprehension, such an approach offers the possibilty of modelling language un-
derstanding in the context of knowing what kind of goals another agent is likely to have in
a certain situation. In other words, such a framework has to offer some sort of probability
filter helping to process utterances based on the question: What can this person possibly
want from me? The addressee can use this mechanism to estimate which communicative
goals are more likely than others in this particular context, and based on this estimation,
the probability of certain words and phrases could be computed in a top-down manner.
In that way, such a mechanism would influence the processing of not only pragmatic and
semantic, but also of syntactical, and even of phonetic and phonological information.

Although the problem of intention in communication has generally been recognized in
philosophy of language, linguistic theories (with some exceptions), but especially psycholin-
guistic ones have not really worked out a theoretical framework which makes it possible
to address this issue. The approach I take towards the problem of meaning in this thesis
differs from those commonly adopted in theoretical linguistics, in psycholinguistics, or in
neuroscientific approaches. It differs in paying attention to the extralinguistic purposes of
language use from the very start.

1.6 Scope of this Thesis

The goal described above - to develop a neural theory of meaning, bridging the gap be-
tween theoretical semantics and experimental neuroscience - is, of course, a very difficult
one. The work presented in this thesis cannot be more than a first step in this direction.
I develop a computational neural theory that describes how interesting phenomena at the
linguistic (semantics/pragmatics) level are processed on the neural level. The bridge be-
tween neuroscience and theoretical linguistics isn’t quite finished. The main shortcoming
is that the language my theory is able to process, while it captures what I consider the
most essential features of human language, is still not natural human language (the topic
of research for theoretical semantics). It involves a moderate degree of compositionality,
but it is still comparatively simple. However, building the bridge has naturally led to the
integration of concepts of cognitive psychology, such as working and long term memory, as
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well as semantic and episodic memory, into the theoretical framework.
I have dealt with what I consider the most essential requirements of human commu-

nication: concept acquisition, goal-directed utterance selection, compositionality, topic-
comment structure for information transmission, and a variety of different types of speech
acts. I have not dealt with syntax, although syntax is of course a defining feature of human
language. But until the semantic structures my theory can deal with are rich enough to
capture the meaning of utterances in which the details of syntax become decisive, syntax
will not be relevant.

I am going to present a theory of meaning representation developed in the approach
I have sketched above. These ideas will be used to motivate a general formal framework
for describing meaning representations as they are likely to exist in the human brain. I
will start by explaining the emergence of conceptual representations in the brain and from
there go on to language use, compositionality and different kinds of speech acts. Since
in this thesis I am developing a neural theory of meaning, the notion of concepts familiar
from the theory of linguistics has to be recast in terms of physiologically real entities (such
as neurons and synapses); it is the properties of these entities and their interactions that
determine the range of possible representations and computations.

Since I want to model agents who want to communicate with other agents in order
to achieve certain goals, I have equipped my agents with the capacity of having desires.
To this end, I have placed them in a environment in which they develop these desires
by receiving rewards or punishments in specific states of the environment. Thereby they
acquire an internal representation of which states are desirable and which states should
be avoided. They also learn from which other states these desirable states can be brought
about by their actions (linguistic and otherwise). In that way they learn that these other
states are also desirable.

In the theory presented in this thesis (and the computer simulations that complement
it), internal models are used to predict context dependent utterance effects. A child that
is learning to speak can be regarded as a system that interacts with the environment
by observing the utterances of other people and their effects, as well as the effects of its
own utterances. In other words, children learn under which conditions which utterances
have which results. In line with this, observing the consequences of utterances is the
major principle of learning in the approach I employ. However, learning from this kind
of experience makes sense only if the agent has the capacity of developing, on the basis
of his observations, means of representing what effect his actions will produce in given
circumstances. In the theory presented in this thesis these means are given in the form of
an internal model which predicts the effects produced by different utterances. The internal
model of an agent is trained by his observing the changes in the environment that his
utterances and those of other agents bring about.

However, to know the effects of an utterance cannot be sufficient by itself to make
the appropriate selections of utterances in a context. A selection mechanism is needed
that finds the best utterances (or actions) for a specific goal. There is good evidence that
reinforcement learning (Sutton and Barto 1998) is a good approximation of this selection
mechanism in the human brain. By means of reinforcement learning a so-called value
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function can be trained, which computes a value for every possible sensory state of the
world. Such a function can be thought of as specifying the desires of an agent. A state
with a high value is strongly desired and a state with a low value is one the agent tries to
avoid.

I use a multi-agent game simulation to show that the combination of reinforcement
learning and internal modeling is most effective to teach an agent language by imitation
and to produce optimal communicative behavior. Previous work in multi-agent modeling of
communication (Steels 2001, Cangelosi et al. 2002, Smith et al. 2003) generally investigated
what might be called the descriptive aspects of language. These approaches deal with
problems such as how object categories emerge, how these categories are given linguistic
labels, or how such labels are shared within a language community. These aspects are
essential for understanding how a successful repertoire of reference acts can evolve within
a language community. However, to go beyond the descriptive use of language, which is
the aim of the studies described in this thesis, it is necessary to investigate the relation
between utterances and goals. Of course - in a certain sense - the agents in some of those
previous studies can also be said to have goals - the goal of a successful act of reference or
the goal of successfully transmitting a correct description of some state of affairs. But to
get a better picture of communication it is important to move on to the general phenomena
of goal-directed communication.

In my first study the language that is to be acquired consists of a small set of one-
word sentences which, when used in the right situation, have the effect of a certain kind
of object being handed to the speaker by the addressee. In this game, a learner (child)
is placed in an environment with two other agents (parents) who can speak already (i.e.
they are pre-programmed agents who make pragmatically correct use of the utterances of
the language). The agents have to perform a certain task (feeding), for which they are
rewarded (by reduced hunger). The language learner learns to predict the outcomes of
utterances in varying contexts (e.g. he learns that to ask another agent for a certain object
is only useful when the addressee has the desired object). In this way the agent learns
to choose that utterance in a given situation for which the predicted effect will be more
beneficiary to him than that of any other alternative utterance he could have used. At the
same time the agent learns to understand the utterances with which others address him
- that is, he learns to infer the speakers’ desires from the utterances they make - and to
react accordingly.

In the computer simulations described in chapter 5, the design of the agents is demon-
strated to work for one type of speech acts: requests. In chapter 6 the theoretical basis
for these simulations is extended to questions and assertions. For questions, I change the
input to the value function and the internal model, which up to that point has just been
a model of the current state of the world. This is necessary because the goal of questions
is to increase the knowledge of the agent. Hence, agents need to be equipped with the
possibility of acquiring knowledge. In the earlier models, the complete state of the world
was assumed to be accessible to them at every moment in time. In the revised model, I
introduce properties of the world that are not accessible for the agent at every moment and,
add as a new component a knowledge base in which the (usually incomplete) knowledge
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of the agents about the world is represented. Based on these extensions it is possible to
show mathematically why an agent will be motivated to ask questions in order to obtain
knowledge.

To model assertions as expressions of desires is only possible if the use of an assertion
leads to a state with a higher value (i.e. a desired state). The basic effect of an assertion
is to change the mental state (the knowledge or the focus of attention) of the addressee.
To regard this effect without its social context is not sufficient if the goal is to explain why
agents should choose to make assertions in the first place. In chapter 6, I discuss how the
change of the mental state of the addressee can lead to higher rewards in the long run
(and, thus, to a state with a higher value). One of the reasons involves the idea of social
rewards through mutual cooperation.

In chapter 7, I investigate the acquisition of compositional language. Here I employ
simple attention mechanisms in both theory and simulations. The internal models used
in these later simulations do not predict the next sensory state on the basis of utterances
and the previous sensory states, but focus on the objects which the utterances describe as
changing their location. In this model agents develop the power to predict location changes
of objects from the form of the utterances in which these objects are mentioned. In this way
they can aquire the passive and active command of some basic form of compositionality.
In particular, the agent can understand, i.e. predict the effect of, utterances he has never
heard before. It is also in chapter 7 that I unite the theoretical insights about goal-directed
communication gained hitherto with the ideas about concept representation described in
chapter 4. In this integrated formalism, current states and desired states are represented
as conceptualized states of the environment represented in terms of long term and working
memory binding of feature neurons through synaptic changes and neural oscillations. This
framework is used to model the speaker’s representation of the addressee’s knowledge about
the world. Based on those representations, I model goal-directed information transmission
in terms of (among other things) the topic - comment structure of the utterance.

The chapters 6 and 7 are mainly theoretical extensions of the computational framework
developed in chapter 5 and the theoretical approaches of chapters 2 and 4. I have refrained
from doing too many computer simulations, because at this point it was more important to
get a larger theoretical understanding of the possibilites of the framework than to simulate
some more details. The thesis ends with a chapter on how the theoretical insights to which
it has led can be used to predict results which can be tested in behavioral and brain imaging
experiments with humans.



Chapter 2

Learning, Representation, and
Processing in the Brain

2.1 Rethinking Modularity

2.1.1 A Short Historical Overview

The dispute about the organization of processing and representation in the brain goes
back a long way in time. The nineteenth century scientist Franz Joseph Gall (1757-1828)
claimed in 1810 that the brain is a collection of 35 centers, each corresponding to a specific
mental function (among them: mother love, generosity, secretiveness). This idea was called
phrenology. To see whether the idea is true, Pierre Flourens (1794-1867) removed portions
of the cortex in animals to see whether he could disturb specific mental functions, but he
did not find evidence for the phrenological system. In 1825 he put forward the idea that
all regions of the brain participate in all functions. This idea was called the aggregate field
view.

The aggregate field view was held by many influential scientists, such as Ivan Pavlov
(1849-1936), Henry Head (1861-1940), or Karl Lashley (1890-1958). The empirical basis
of Karl Lashley’s argument against the view that brain functions can be localized was his
failure to find a learning center. In the light of the view which I will advocate in this
thesis, this was an interesting observation. Although now it is generally agreed that the
hippocampus serves a more central role in (at least certain types of) learning than other
structures, it is also true hat most parts of the brain are actually involved in learning.

However, the aggregate field view had strong opponents, such as Paul Broca (1824-
1880), John Hughlings Jackson (1835-1911), Gustav Theodor Fritsch (1838-1927), Julius
Eduard Hitzig (1838-1907), David Ferrier (1843-1928), Carl Wernicke (1848-1904), Ramon
y Cajal (1852-1934), Korbinian Brodmann (1868-1918), Wilder Penfield (1891-1976), and
Norman Geschwind (1926-1984). Jackson was the first to postulate on a solid empirical
basis that mental functions can be localized in areas of the cerebral cortex and, therefore,
special abnormal mental conditions may result from structural damage of certain parts of
the brain.

17
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Especially electrophysiological research was able to create a stable basis for the idea
of brain functions being localized in certain areas. This started with the work of Fritsch
and Hitzig, who showed experimentally that electrical stimulation of the cortex (of dogs)
produced contralateral limb movements. Ferrier was able to confirm this finding with
monkeys. Penfield and Roberts (1959) were the first to work with the brains of humans
(epileptic patients) and to localize motor and speech functions with electrical stimulation.

Due to this evidence, today there is no one who would doubt anymore that at least
some cognitive functions are localized to a certain degree. However, the dispute about the
structural organization of cognitive functions in the brain is far from over.

2.1.2 Current Issues

Through the popularity of Modularity of Mind (Fodor 1983) and the invention of modern
functional imaging methods like PET (Peterson et al. 1988) and fMRI, a large community of
neuroscientists has emerged who are trying to localize cognitive modules in the brain. The
research approach they often follow can be characterized in the following way: Scientists
try to localize a certain cognitive function, say, syntactic processing, by e.g. contrasting the
brain activity measured during the execution of a task which appears to involve syntactical
processing with the activity measured during a task which does not. While this approach
might generate valuable data, there are nevertheless several assumptions underlying this
method which are questionable. In particular, assumptions about the nature of localization
need to be thought through in much more detail than has been done hitherto. For a start,
we don’t know why specific functions might be represented in particular areas. We also
don’t know exactly what kind of functions we are looking for. Further, we don’t know
to what degree the exact localization is predetermined (i.e. specified in the genes) and
what the nature is of the genetical specification that causes a cognitive function to be
localized in a certain brain area. For example, the part of the brain in which visual
processing is located might be genetically specified in the following way: Genes specify
certain neural structures, i.e. nerve fibers that project information from the eye via the
thalamus to the primary visual cortex. As a consequence, the visual cortex starts to
process visual information. For that reason the position of a cortical area with its motor
and sensory pathways and its connection to other brain areas are likely to determine its
function. Experiments have shown that connecting another cortical area in such a way
that it receives visual input results in this other area processing visual information in a
very similar way as the primary visual cortex.

It has been observed, in particular by Brodmann (1909), that different parts of the
cortex have slight differences in their layer structure (see figure 2.1), e.g. the primary
visual cortex probably has properties that allow it to have a slight advantage for visual
processing in comparison to other cortical areas. But this advantage might consist only
of small differences in the anatomy (e.g. a certain layer with a certain type of neuron is
slightly thicker than it is in other cortical areas). Besides those minimal differences (that
might make a significant difference in the processing of particular types of information),
the cortex as such seems to have a very similar structure everywhere and doesn’t seem
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Figure 2.1: Brodmann Areas of the Cerebral Cortex

to be very domain specific (Braitenberg and Schuez 1998). Data about interindividual
differences (i.e. differences between subjects in the localization of some cognitive function
in the brain) and local reorganization of cognitive functions (i.e. the relocalization of a
cognitive function to another brain area after lesion caused by e.g. strokes) are supporting
this assumption. For example it can be seen that the lower the cognitive function is, the
smaller the interindividual differences are. Therefore, lower sensory and motor functions
can be studied with functional imaging in a much better way.

Furthermore it is still very unclear what the elementary cognitive functions are which
are localized in certain brain areas. It is not known how a mental function is decomposed
into subfunctions, what those subfunctions are and which of these subfunctions can be
located in a given brain area.

There is, for example, data showing that (i) the syntactical capabilities of a patient
are impaired if his Brodmann Areas 44 and 45 are lesioned. There is also evidence from
functional imaging that these areas are activated during cognitive tasks which involve
some syntactical processing. However, this still does not mean that there is something
like a syntax module in areas 44 and 45, because (i) the areas which are involved in
syntactical processing are very likely to be involved in other functions which do not deal
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with syntactical processing; (ii) not all of the area is necessarily involved in syntactical
processing and (iii) syntactical processing might involve other areas as well.

These considerations are especially true for the processing of meaning in the brain.
Some researchers, such as Deacon (1997), have postulated a semantics module. However,
the processing of meaning involves a large variety of complex processes and representations
of different nature and it is not very likely that all this is done in one area of the brain.
First of all, the very first relations between meanings and words are learned by connecting
perceptual categories with words. The localization of the representation of the perceptual
categories is likely to vary with the sensory modality of the information they categorize.
In other words, the basic conceptual representations used in semantic processing are prob-
ably represented in almost all cortical areas (Hebb 1949, Braitenberg and Pulvermueller
1992). More abstract concepts might not depend so much on the sensory modalities but
quite possibly they are represented in the vicinity of the sensory features they abstract
from. To compose a complex meaning from the primitive representations of the meaning
of content words and function words involves processes (such as the choice of speech act,
the generation of the topic-comment structure of the utterance, the selection of quantifiers,
definite or indefinite determiners, the selection of anaphoric expressions) of a very different
nature, which are related to other kinds of processes in the brain that are used in differ-
ent cognitive functions as well (such as memory, motor control, sequencing of movement,
perceptual processing etc.). Looking at functional imaging data of semantic processing,
different studies find activation in areas in different lobes of the cortex and it is likely that
this activation is very much dependent on the exact task, and that these different tasks
cannot easily be subsumed under the term semantics, and that they are confined to one
(domain specific) brain area.

A semantic module characterized as an abstract function would be something like equa-
tion 2.1.

~y = Sem(~x) (2.1)

where ~x is a vector consisting of all input that is required for all semantic processes and
Sem() is the function that computes every semantic task necessary in language processing.
Of course, a semantics module is needed in both production and comprehension. But in the
case of production the function maps meaning into forms, while form needs to be mapped
into meaning in comprehension. Supposedly the form and the meaning representation are
not part of the semantics module, then (about) half of the output of the module needs to
go to a site representing meaning and the other half to a site representing form; and the
same holds for the input. So let us assume for a moment that the module is only involved
in production, i.e. the function Sem() maps meanings on forms. Now if we also assume
that the sole purpose of this module is to map simple lexicalized concepts on content words,
then a semantics module of this type might be capable of doing the job. But as soon as
you consider what kind of complex interplay of information for a mapping from meaning
to form is required in utterance production, you will soon see that meaning processing
is a complex interaction of many functions. For instance, to perform the simple task of
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referring to a certain target person (not present) the speaker needs to do several things.
As a first choice, the name of the person needs to be checked as a possibility to refer to
the absent person. However, a proper name can only be used if the addressee is aware of
that person’s name. The speaker therefore needs to check whether the addressee has used
the name in the past to refer to the target person. This involves probably subconscious
retrieval from episodic memory. If the name is not a possibility then a definite description
has to be found that allows the addressee to identify the target. This also involves retrieval
of knowledge of the addressee about the target person. This is just one simple example of
what it takes to process meaning in the brain.

Postulating a semantics module or searching for a semantics area in the brain is for
these reasons not very likely to lead to interesting insights or progress in our understanding
of meaning processing in the brain. What we need to do is to specify the different functions
that are necessary for the processing of meaning, to spell them out mathematically and in
terms of neural computations, and to describe how they can interact with each other and
with functions that are not merely involved in meaning processing (such as retrieval from
episodic memory). Such a set of functions should be able to learn. This means that the
functions each involve a dynamic state si that can change during learning. Such a state
consists of synaptic strengths for long term learning.

~y1 = F1(~s1, ~x1) (2.2)

... (2.3)

~yn = Fn(~sn, ~xn) (2.4)

One or several of these functions Fi() might actually have meanings as an input and
another one might have forms as an output, but it is the exact processes, the retrieval
of the required information, and especially the interaction between the different functions
that we should try to understand. Postulating such possible sets of subfunctions, testing
their interaction in computational simulations and using them as a basis for experimental
research is likely to result eventually in the understanding of meaning processing in the
brain.

In this thesis I will specify some potential candidates of those functions, including their
possible neural realization. Each of those functions might be localized in a different area
of the brain; some might not even be represented in the cerebral cortex, but in subcortical
areas such as the cerebellum and the basal ganglia. And each of these functions might
contribute to cognitive processing that does not fall under the broad category of semantic
processing.

2.2 Brain Structures and Learning Algorithms

Traditionally higher cognitive functions are thought to be represented in the cerebral cortex.
Subcortical structures, such as the cerebellum and the basal ganglia were always regarded
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Figure 2.2: Interactions between Cortex, Basal Ganglia and Cerebellum

as being concerned with motor control. However, there is more and more evidence pointing
towards the involvement of the cerebellum and the basal ganglia in higher cognitive and
non-motor functions (Desmond and Fiez 1998).

Above I sketched the theoretical idea that cortical tissue is basically interchangeable
and the function of a region is determined by its connection to motor and sensory in-
formation as well as to other cortical areas. This would mean that the way the cortex
processes information follows the same principles in every cortical region and that visual
processing, auditory processing, as well as higher level cortical processing employ the same
basic mechanisms. This actually appears to be case. The cortex appears to be a very big
associative memory device in which associations are learned by an unsupervised learning
algorithm characterized for the first time by Hebb (1949). The involvement of the cortex
in the processing of meaning might therefore be accounted for in terms of a computational
description of these general mechanisms, the information flow between the brain and the
outside world (in terms of sensory input and motor output) and the information flow be-
tween the different cortical areas. In this section I will describe a widely accepted theory
about the general mechanism of cortical processing, as well as the data supporting it.

Just as for the cerebral cortex, basic computational principles have also been found for
the basal ganglia and cerebellum (see figure 2.2). For the cerebellum it is environmental
dynamics and supervised learning and for the basal ganglia it is state evaluation and
reinforcement learning. So it is not unlikely that these three brain structures can be
described best not by reference to specific cognitive domains, but by their computational
and learning principles. This position was stated by Doya (1999).

The three learning types that are attributed to the brain structures are supervised,
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Figure 2.3: Difference between different learning algorithms in terms of error signal.

reinforcement and unsupervised learning. The difference between them is in terms of the
error signal they use (figure 2.3). Supervised learning requires directional error vectors,
i.e. information about the specific error of every output neuron. Reinforcement learning
uses only scalar rewards, i.e. information to what degree the overall performance is good
or bad. Unsupervised learning works completely without any error signal. Note that an
error signal does not mean that there needs to be a teacher who provides this signal but
the signal can be computed from information about the environment.

Different learning algorithms are suited to solving different kinds of learning problems.
Supervised learning is very effective in acquiring internal models of the environment. The
reason for this is that an internal model has to learn a mapping between a current state
and a future state. While interacting with the environment this future state is provided
by the environment. Therefore, an error vector can be computed from the actual future
state and the predicted future state. This error vector is needed for supervised learning.

Reinforcement learning is well suited to learning how to evaluate environmental states.
The reinforcement learning algorithm is able to do this, because, again, the necessary error
signals (rewards and punishments) are provided by the environment (or more precisely -
an internal evaluation of the environment). Unsupervised learning is capable of associative
learning, acquiring categories and, therefore, suited for the representation of environmental
and internal states. Category representations emerge because certain features are generally
observed within a certain type of object. To increase the associative links between these es-
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Figure 2.4: A section of brain tissue showing real neurons under the microscope.

sential properties of the category does not require an error signal. Therefore, unsupervised
learning is the best algorithm for this kind of learning.

In the remainder of this chapter I will discuss the evidence for the view that the process-
ing in the three brain structures can be characterized in terms of their learning algorithms.
As a consequence it seems reasonable to assume that the functions those structures execute
are those which their learning mechanisms can acquire. If this is indeed the case, then it
is very likely that those structures contribute the same kinds of functions for all cognitive
domains, rather then being involved in distinct domains. In other words, a complex func-
tion of a specific cognitive domain (e.g. control of arm movement) might be realized by a
global network combining the specific learning capabilities of the different brain structures.
This view is also supported by the strong connection between cortex and basal ganglia, and
between cortex and cerebellum, as well as by imaging studies showing correlated activation
between the cortex and the cerebellum (Tamada et al. 1999a).

After discussing the computational principles of the different brain structures in this
chapter, the rest of the thesis will be an attempt to describe how the specific abilities
of these structures can be assembled into the acquisition and the use of a goal directed
communication system. The emphasis will, of course, be put on the meaning aspect of these
systems. But before I discuss the computational principles of different brain structures, I
need to briefly describe the relation between theoretical accounts of neural computation
(that are the basis of simulations using neural models) and neurobiological reality.
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Figure 2.5: The structural similarities of different kinds of real neurons.

2.3 Real Neurons and Artificial Neurons

2.3.1 Neurons

Artificial neurons are models of idealized biological neurons. The degree of similarity
between the neuron models of computational neuroscience and real neurons usually depends
on the purpose of the simulation in which it is used. While some neuron models pay
attention to details, such as ion channels and the speed of electric transmission in the axon,
the neuron models used in simulations of higher level functions such as language cannot,
usually due to a lack of computational power, go into such details. A good approximation
used in most of the simulation in this thesis is the neuron model described in figure 2.6.
The output of the neuron in this model is computed by an output function that maps
the sum of the weighted inputs (see section 2.3.2) to a so-called spike rate. This neuron
model, however, does not take into account the timing of single spikes and can, therefore,
not be used for the simulation of neural oscillations required in some parts of this thesis.
Another model, the so-called leaky integrator neurons (equation 2.5) forms the underlying
theoretical account of these parts. The leaky intergrator neuron models the temporal
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Figure 2.6: A standard neuron model.

dynamics of a neural cell membrane mi, which receives input from other neurons yj and
leaks a constant amount of charge l while above its resting potential.

mi(t + 1) = mi(t) + Σn
j=0yj(t)− l (2.5)

2.3.2 Synapses and Learning

Learning takes place in at the junction between neurons, the so-called synapses. Learning
is a change in synaptic strength. In most neural models, synapses are modelled by so-
called weights, usually a factor with which the input coming from another neuron via the
modelled synapse is multiplied. The different learning algorithms that I will discuss in
sections 2.4, 2.5, and 2.6 use different principles to change these weights. Weights seem to
be a pretty good approximation of real biological synapses. But while an artifcial neuron
usual gets input from about 10 to 100 synapses, a real neuron (e.g. in the cortex) gets input
from up to 10000 synapses (Braitenberg and Schuez 1998). For a more detailed account of
the computations happening in real synapses see Koch (1999).

2.4 Cerebellum

2.4.1 Supervised Learning

Supervised learning amounts to the acquisition of an input-output mapping ~y = F (~x)
from a set of training pairs < ~x, ~y∗ > that specifies for every input ~x in the training set the
desired output ~y∗. Like in many neural networks, the input to a neuron yi is computed as
the sum of the activations of all neurons xj that are connected to yi times the strength (or
weight) wji of the connection from xj to yi (equation 2.6). In this way, an output vector
~y is computed from the input vector ~x. From ~y and the desired output ~y∗ a directed error
vector ~e can be computed (equation 2.7) that specifies the error for every output neuron
yi (y∗i is the desired output of this neuron).
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Figure 2.7: Layer structure of the cerebellum

yi =
n∑

j=1

wjixj (2.6)

ei = y∗i − yi (2.7)

The learning algorithm tries to minimize the expected output error by estimating the
change for every weight ∆wji in dependence of whether it contributed to the error (i.e.
whether the input neuron connected by this weight was active) and also as dependent on
a learning rate α that determines how fast the weight is changed (equation 2.8). Then the
weights are modified by the computed difference ∆wik (equation 2.9).

∆wji = αeixj (2.8)

wji ← wji + ∆wji (2.9)

2.4.2 Anatomy

The cerebellum is attached to the brain stem by three major input and output peduncles
(i.e. fiber bundles). These are the superior (brachium conjunctivum), middle (brachium
pontis), and inferior (restiform body) cerebellar peduncles. There are three sources of input
to the cerebellum, in two categories consisting of mossy and climbing fibers, respectively.
Mossy fibers can originate from the pontine nuclei, which are clusters of neurons located
in the pons that carry information from the contralateral cerebral cortex. They may also
arise within the spinocerebellar tract whose origin is located in the ipsilateral spinal cord.
Most of the output from the cerebellum initially connects to the deep cerebellar nuclei
before exiting via the three peduncles. The most notable exception is the direct inhibition
of the vestibular nuclei by Purkinje cells. The cerebellum is covered by an outer cortex (or
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Figure 2.8: Supervised learning in the cerebellum

gray matter) containing neural cell bodies overlying a region that contains predominantly
myelinated axons (or white matter). Two shallow grooves running from rostral to caudal
divide the cerebellar cortex into the vermis and two hemispheres. The cerebellum has a
uniform anatomical organization with characteristic multiple inhibitory pathways, a nearly
feed-forward structure, granule and Purkinje cells, mossy fiber input, and climbing fiber
input from the inferior olive (Ghez 1991).

2.4.3 Physiology

Physiological experiments have shown simple spikes as response to parallel fiber input and
complex spikes as response to climbing fiber input. In motor tasks the climbing fibers seem
to transmit registrations of errors in movement. These error signals produce learning in
terms of long term depression (Doya 2000)

2.4.4 Theoretical Model

These anatomical and physiological findings suggest that supervised learning in the cere-
bellum is implemented in the following way: The output of the granule cells is linearly
combined by a Purkinje cell (equation 2.6). The error signal e is carried by the climbing
fibers, while the output vector x is carried by parallel fibers (Doya 2000)
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Supervised learning is often used in multi-layer feedforward networks (trained with
backpropagation). Such networks have proven to be able to learn e.g. the internal models
which I will discuss and use below. However, the cerebellum clearly is not a multi-layer
network. Nevertheless, the strong connections between the cerebral cortex and the cere-
bellum might allow the two structures in interaction to compute and represent similar to
multi-layer (recurrent) networks.

2.5 Basal Ganglia

2.5.1 Reinforcement Learning

The purpose of reinforcement learning is to use experience to decide on a course of action.
It is usually based on simplifications such as discrete time, a finite set of discrete states of
the environment, and a discrete set of possible actions. A learning system (agent) selects
its actions by considering possible future states. The goal of the agent is to maximize the
sum of rewards.

To this end the agent trains a mapping of states into actions, which is called a policy
π (equation 2.10).

a(t) = π(x(t)) (2.10)

2.5.2 Anatomy

The striatum is the input side of the basal ganglia, receiving afferent projections from
the cerebral cortex. Three nuclei comprise the striatum: caudate nucleus, putamen, and
nucleus accumbens. There are three nuclei on the output side of the basal ganglia: the
internal segment of the globus palidus, ventral pallidum, and substantia nigra pars retic-
ulata. The output nuclei send their axons primarily to thalamic nuclei which, in turn,
project to different areas of the frontal lobe. The striatum also consists of two compart-
ments: the striosome (which sends output to the dopamine neurons in the substantia nigra
pars compacta) and the matrix (which sends output to the internal segment of the globus
palidus and the substantia nigra pars reticulata (Côté and Crutcher 1991).

2.5.3 Physiology

It was found that cells in the striatum increase firing if a reward is given (Doya 2000)

2.5.4 Theoretical Models

The striosome compartment works as value prediction and the matrix compartment works
as an action selection mechanism (equation 2.10) (Doya 2000).
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Figure 2.9: Anatomy of the Basal Ganglia

2.6 Cerebral Cortex

2.6.1 Unsupervised Learning

Unsupervised learning learns mutual information that some elements of the vector give
about other elements of the vector. This can take many forms and serve several functions.
In this thesis the main function of unsupervised learning is the formation of conceptual
representations.

2.6.2 Anatomy

The neocortex consists everywhere of a similar six layered structure. It has massive re-
current connections. This homogeneous anatomical structure suggests that all the cortical
areas perform homogeneous computations.

2.6.3 Physiology

If from the perspective of neural implementation the conceptual representations which are
used to mould our sensation into the perception of entities of different sorts are identical to
the conceptual representations which are associated to lexical items as lexical meanings (as
the above reflections suggest) then what is known about the neural dimension of perception
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Figure 2.10: Reinforcement learning in the Basal Ganglia

may help us in developing a reasonable theory of how the brain represents concepts used
in the processing of meaning. This is important because there is a large quantity of
experimental results and theoretical insights about the neural realization of perception
processes and their results - very much more than we currently know about the neural
aspects of semantic processing. As things stand at present, so much is known about neural
aspects of perception (even about vision alone!) that anything resembling a survey of the
literature would be out of the question. All I can do is mention a few facts and hypotheses
which are pertinent to the ideas which I will develop in this thesis.

First of all, perception is a hierarchical process. There is convincing evidence that at
the lowest level certain sensible features - colors like green and yellow, qualities of taste
such as sweet and sour, etc - are represented by single cells or small cell clusters (Hubel
and Wiesel 1962). The activation of such a cell or cluster is the neural correlate of the
feature perception, so that the cell (cluster) can be regarded as a feature identifier at this
level. In particular, the visual field is represented by a field of identifiers for any one of the
basic colors (as well as a number of other visually perceptible features) and the activation
of any one of these identifiers signals the instantiation of that feature in the part of the
visual field to which the cortical position of this identifier corresponds. In these cases it
is the direct neural connection between the identifiers and the corresponding detectors in
the sensory organs which, it might be said, gives the identifiers their meaning. On the
other hand the feature identifiers are linked to more complex cell clusters higher up in the
processing hierarchy. These represent more complex concepts and derive their meaning
from their links to the identifiers below. Beyond this second tier of cell clusters there are
other tiers; and the farther removed a cluster is from the primary sensory areas, the more
abstract (from the low-level perceptual features) the concept it represents.

Furthermore, the geometrical lay-out of the brain is such that identifiers are spatially
grouped by perceptual channel. Roughly speaking, visual features are represented in ar-
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Figure 2.11: Layer structure of the cerebral cortex

eas of the visual cortex, auditory features in the auditory cortices, taste features in the
paralimbic cortex, and so on (Fuster 1995). These areas are further subdivided according
to feature type. Thus, visual features pertaining to the type of object are processed and
represented in the so-called ventral stream while other visually detectable characteristics
pertaining to the position and possible actions upon the object are processed in the dor-
sal stream (Ungerleider and Miskin 1982, Milner and Goodale 1995). These streams are
further subdivided into areas representing specific properties of the object. E.g. in the
dorsal stream the area MT (mid-temporal cortex) is known to be sensitive to stimulus
movement (Hildreth and Koch 1987), while in the ventral stream area V4 is important in
color processing (Zeki 1980).

Dynamic Binding

Given this organization of the representation of perceptual features, a perceived individual
object will activate neurons corresponding to the perceptual features that are part of
the individual object which is perceived. Corresponding to the sensory modalities which
the object stimulates (think for instance of its shape, its color, its smell, the sound it
produces), these neurons are distributed over different parts of the cerebral cortex. Given
such a representation of different features of an object, how can these features be perceived
as features of the same thing? This problem has been called the binding problem.

The currently most plausible theory about how the brain accomplishes binding was
first put forward by von der Malsburg (1981). The theory postulates that features can
by dynamically bound by synchronizing the firing of the neurons representing the features
of the object. The synchronization of neural activity can be explained by the ability of
neurons to detect temporal coincidence (von der Malsburg 1985). This ability can in turn
be explained by the properties of the cell membrane (Koch 1999).
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Figure 2.12: Unsupervised learning in the cerebral cortex

Synchronization of the firing of cortical neurons has been experimentally confirmed by
multi-electrode recording from the visual cortex (Eckhorn et al. 1988, Gray et al. 1989,
Kreiter and Singer 1996). Also EEG studies (for a review see Muller and Gruber (2001))
could show increased γ-band activity for processes related to binding.

Some people argue that for some difficult cases of synchronization, i.e. cases in which the
synaptic stengths between the neurons which are to be synchronized are not strong enough,
a short term increase of synaptic strength between those neurons is necessary1. How-
ever, computer simulations have shown that synchronized activity can usually be achieved
by the general inhibitory mechanisms of the cerebral cortex (Wennekers and Palm 1997,
Knoblauch and Palm 2002a,b).

Another theory about how features of one entity are bound in the brain is binding by
spatial attention (Treisman and Gelade 1980, Treisman 1986). This theory is based on
the assumption that an attention map is used to represent the location of attention (i.e.
by using a position coding, active neurons in the attention map represent the location in
space to which attention is directed). Active feature neurons outside of the attention maps
are then interpreted as representing properties of the object located at that particular
point in space. Due to various sources of evidence, such as patient data2 and functional
imaging studies, this attention map is now considered to be in the intra-parietal sulcus
(Freidman-Hill et al. 1995, Robertson et al. 1997, Itti and Koch 2001).

A unification of these two theories was proposed by Robertson (2003): An external
source that synchronizes neural responses between cortical feature maps seems to be nec-
essary, and this source seemed to be spatial attention, mediated by the parietal lobe. But
there is currently no evidence supporting this claim, so the interaction between mecha-
nisms of dynamic binding by temporal synchronization of neural activation and by spatial

1There is also some evidence for such a mechanism in the cortex.
2Patients with bilateral lesions of the parietal lobe suffer from Balint’s syndrome - one of its symptoms

being simultanagnosia, the inability to see more than one object at a time
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attention remains an exciting topic of research. Since I do not deal with issues of attention
in this chapter, I will focus on binding by temporal synchronization.

In contrast to binding in long term memory, which I will discuss below, binding by
syncronized activation is (i) dynamic and (ii) temporary (although, as we will see, it can
lead to long term binding). Therefore I will call this type of binding working memory
binding. Once the binding of those entities is accomplished by the mechanisms of synchro-
nization, its activity can be sustained by the prefrontal cortex, as was demonstrated by
the computational model of Raffone and Wolters (2001).

Long Term Binding

Some of the concepts we represent are memorized, i.e. the features characterizing them are
bound in long term memory from which they can be retrieved again at some later point.
Long term binding is assumed to be realized by long term changes of the synaptic strengths
(physiologically this is done by lowering the synaptic thresholds). It gets established by
a learning mechanism first postulated by Hebb (1949), who introduced the term cell as-
semblies for the groups of cells (or of cell clusters) that get bound together by synaptic
strength modification as the result of such learning. Hebb’s learning rule was confirmed
a quarter of a century later by observations on the hippocampus (Bliss and Lomo 1973).
This form of learning is called long term potentiation (LTP). It and its counterpart, long
term depression, LTD) are now considered the general neural mechanisms underlying long
term learning in the cerebral cortex (Artola et al. 1990). Note that the dynamically bound
representation of concepts by synchronized activation basically consists of neurons which
fire repeatedly almost exactly at the same time, and thus facilitate long term binding by
mechanisms such as LTP. In other words, synchronized activation as mechanism of dynamic
binding and LTP as a mechanism of long term binding fit very well together.

Another mechanism of long-term binding is the formation of so-called grandmother
cells. A grand-mother cell is a neuron or neural cluster that represents a certain feature
combination present on a perceptually lower level. Evidence for this kind of representa-
tion can be found in many single cell recording studies. It can also be inferred from the
hierarchical organization of the perceptual system.

Hebbian learning and grandmother cells do not exclude each other. They might both
exist, but serve different and complementary functions in the brain.

2.6.4 Theoretical Models

There are two main types of computational theories explaining the formation of grand-
mother cells in the brain, both using unsupervised learning. The first one is the theory
of self-organizing maps (SOM) by Kohonen (1982), the other is adaptive resonance theory
(ART) by Grossberg (1980).

There are also computational theories about conceptual representations by means of
synchronized activity. In physiological terms, synchronized activity means that neurons
spike at approximately the same time. To simulate spikes the neuron model needs to
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takes into account important properties of the real biological neuron, in particular of the
cell membrane. Synapses which connect a neuron with other neurons are generally of two
sorts, (i) excitatory and (ii) inhibitory. The cell membrane of a neuron integrates excitatory
and inhibitory synaptic activity over time, and leaks (i.e. looses) electrical potentials when
there is no input. If the membrane reaches a certain threshold the neuron spikes. A
good mathematical model of this behavior is the well-known leaky-integrator neuron. The
leaky-integrater neuron has been succesfully used to simulate synchronization. In these
simulations the inhibitory synapses function as an inhibition mechanism. This mechanism
has been shown to be very important (Wennekers and Palm 1997).

Mathematically, the membrane potential of neurons in a brain area can be given by a
vector ~m(t) - a vector of states of membranes of cells located in this area, in which every
element mx of the vector represents the electrical potential of the membrane of one of
the cells. The synaptic strength within and between areas can be approximated by a so
called weight matrix W(t). The state of a brain area r at time t will then be modelled as
determined by the membrane potential vector ~mr(t) and the area’s weight matrix Wr(t)
thus as the pair < ~mr(t),Wr(t) >. The state of the entire brain at t, A(t), is composed
of the states of its regions at t together with further distal weight matrices Wr,r′(t) which
represent the strengths of the connections between the cells in area r and those in area r′.

A(t) =< {< ~mr1(t),Wr1(t) >, ..., < ~mrn(t),Wrn(t) >},
{Wr,r′(t) : r = r1, ..., rn; r′ = r1, ., rn} >

(2.11)

As in standard dynamical systems, the next state of the brain, A(t + 1) (the state of
the brain at time t + 1), depends in such a model only on the current state A(t), and on
the sensory input i(t) which reaches the brain at t. The transition can be schematically
expressed as in (2.12)

A(t + 1) = S(A(t), i(t)) (2.12)

The function S() can be made explicit in the following way: The state of the membrane
potentials of the neurons in a region r can be computed from the input to r and the neural
activity within r. The input will consist wholly or partly of sensory input for those regions
which lie directly at the sensory periphery, while for regions that are not directly connected
with sensory organs it will consist entirely of input from other regions. The neural activity
within a region (i.e. the spike activity F(t) at t in each of the different regions) is a function
of the membrane potential in r at t.

Within this framework the acquisition of concepts can be modelled as a reaction of
the brain to certain patterns of sensory input. The model assumes that the synaptically
determined strengths of links between clusters is changed according to Hebb’s rule, i.e.
approximately as in equation 2.13.

∆wij = cuiuj (2.13)

Here, ui is the pre-synaptic neuron (the one that fires), uj the post-synaptic neuron
(the one the receives the input), and c is a variable determining the learning rate.
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Such a model might display the following behaviour:
(i) Frequent sensory perception of certain (types of) objects produces very strong con-

nections between the neurons representing the different features of the object.
(ii) At the same time the model will also be able to form concepts involving compar-

atively weak connections between the cell groups involved. Such concepts will be hard
to activate and their activation will require joint activation either of a large number of
the features that are part of them or of one or more features which are distinctive of the
concept in that they have even weaker (if any) links to other concepts.

The reader interested in such simulations of binding by synchronizations might want
to look at the work of Wennekers and Palm (1997), Knoblauch and Palm (2002a), and
Knoblauch and Palm (2002b).



Chapter 3

A Goal-Directed Communication
System

3.1 The Importance of Considering Goals

Language is used to achieve a variety of goals - from the most simple and straight-forward
(getting someone’s attention) to the more complex or subtle (touching someone’s heart
with a piece of poetry). We can use utterances to accomplish goals because utterances
have an effect on the world (a direct effect on the mental states of the addressees and
an indirect one on states of the world that the addressees can bring about by actions
motivated by the change of their mental state)1. The importance of considering the effects
of utterances was already pointed out by Wittgenstein (1953)2. However, these aspects have
not yet been taken into account sufficiently by researchers investigating the neural basis of
language. To really understand how meaning processing in the brain enables meaningful
communcation it is essential to relate the goals and the utterances people make to achieve
them in terms of a neural algorithm. The goal of this chapter is to outline how the different
learning methods employed by the different brain structures (as described in chapter 2)
contribute to the processing of meaning in the brain and how these contributions can be
integrated into a theoretical framework explaining the neural processes involved in goal-
directed communication.

1The possibility of using language to pursue our goals not only gives us a reason to speak, but also
gives us reason to learn. For the more precisely we relate our utterances to the relevant properties of the
world and our goals, the more effective our utterances will become in achieving them. Unfortunatly, this
relation between motivation and learning is not discussed in this thesis.

2According to von Savigny (1998) the theory of meaning developed in Wittgenstein (1953) can be
summarized in the following way: the meaning of an utterance is the (context) conditions under which it
can be used and the result this utterance leads to.

37
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3.2 The Overall Architecture

3.2.1 Essential Cognitive Functions

As explained in chapter 2, the cerebral cortex, the basal ganglia and the cerebellum provide
us with three basic learning mechanisms: unsupervised learning in the cortex, reinforce-
ment learning in the basal ganglia and supervised learning in the cerebellum.

I will relate these learning algorithms (and brain structures) to three cognitive functions
that are essential to the creation of a goal-directed communcation system: conceptualized
state representation, state evaluation, and internal model. The best way to learn these
three functions is by unsupervised leaning, reinforcement learning, and supervised learning,
respectively. Conceptualized state representations are needed for an efficient coding of
relevant information about actual and possible states of the world (including mental states).
States are evaluated in order to determine how desirable current and possible states are -
in particular states which can be brought about by the speaker (either by some non-verbal
action or by using a communicative act to get another person to bring about this state).
Finally, it is the function of the internal model to compute which states are brought about
by which verbal or non-verbal actions in which contexts.

3.2.2 A Formal Description of the Architecture

The exact nature of the (conceptualized) state representation will vary considerably through-
out this thesis and will become more and more complex from chapter to chapter. For now,
it is sufficent to say that a state representation s is a variable containing the information
represented in the brain about a current or potential state of the world.

Such states of the world are evaluated by a so-called value function V (). The value
function maps states s onto real numbers (values). The higher the value, the more desirable
is the state.

The third component, the internal model, computes which verbal actions (utterances)
u (or non-verbal actions a) bring about which states s of the world. Internal models can
be either forward or inverse models. A forward model is a function F () which computes
the next state st+1 from the current state st and the utterance (equation 3.1). An inverse
model is a function I() which computes the utterance which will bring about the change
from the current and the state st to the desired state st+1 (equation 3.2).

st+1 = F (st, u) (3.1)

u = I(st, st+1) (3.2)

Both functions can be used in utterance selection. A major question that will be
addressed in this thesis is whether the brain uses forward or inverse models, or both. It
might also need additional mechanisms, as we will see by the end of this thesis.
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The proposed architecture can select utterances by an interplay between value function
and internal model. Depending on whether the system uses a forward model or an internal
model there are two possible ways of selecting utterances.

With a forward model the system would use an algorithm described in equation 3.3.
Here, the forward model F () predicts the outcome of every possible utterance in the current
context and each outcome is mapped onto a value with the value function V (). The
utterance yielding the highest value is chosen.

u = argmaxuV (F (st, u)) (3.3)

The inverse model I() needs the desired state as an input and therefore starts by
computing a value for every possible state with the value function V () (equation 3.4).
From this state s and the current context st, the utterance that will bring about the
transition from st to s is computed with the inverse model I().

u = I(st, argmaxsV (s)) (3.4)

3.3 Cognitive Components in More Details

3.3.1 The (Conceptualized) State Representations

The state representation s is a representation consisting of a set of concepts. To be more
precise, the state representation includes categorized information about the agent himself,
the outside world, other agents, etc. I will briefly describe it here. The exact structure of
the state representation will be developed during this thesis.

First of all, the state representation s(t) includes information about the sensory acces-
sible world, i.e. everything the agent is able to perceive at a point t. This is already a
tricky business. Suppose there is an apple to the left of the agent and a pear to the right
and the agent is not able to look at both objects at the same time. A realistic theory
about the representation of sensory input should include some attention component, and
also some short term or working memory device which allows the brain of the child to
represent the items and events of the suroundings. To keep things simple, I will in my
first computer simulation (described in chapter 5) assume that all objects of the world are
visually available simultaneously at all points in time. However, it will become necessary
at some point to include in the state representation also objects which are not part of the
immediate surroundings, viz. objects the agent encountered at some time in the past and
still remembers. The same holds for the properties of these objects. It must be possi-
ble for some of those properties to be accessible at the current moment while others are
remembered.

Besides objects, the state representation also needs to include events, such as actions.
Furthermore, there are also facts concerning the internal world or internal states of the
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language user/language learner that the state representation needs to take into account, for
example, whether the agent is hungry, thirsty, or sleepy, to name only the most basic ones.
More complex types of representations include our knowledge about the mental states of
other agents and our knowledge about our own mental states (including our own knowledge
about our own knowledge).

Humans are not born with the concepts of objects, actions or events preestablished
in the brain. Children must learn them. The cortex, due to the learning algorithm it
uses (as described in chapter 2), is the optimal device for acquiring concepts. The sensory
information a child is provided with comes in the form of innate basic sensory features
represented along with innate basic motor features in the primary sensory and motor areas
of the cortex. When children learn to categorize objects, actions and states of their envi-
ronment, more complex motor and sensory concepts emerge in higher motor and sensory
areas, as well as in multimodal areas of the cortex (integrating areas). Through processes
of association and abstraction, the cortex learns that certain features always appear to-
gether and thus a concept is formed. This learning leads to a more efficient coding of the
representation of the world. Many concepts are formed long before the children learn what
these objects and states are called.

Exactly how these concepts are formed, represented and processed, and what neural
mechanisms are involved, is the main topic of chapter 4.

3.3.2 Evaluation

The value function V maps states to values. The input state can be the current state or
any other possible state. The values asigned to the states are estimations of how good it is
for an agent to be in that state. The value is a positive or negative real number expressing
how much an agent desires a particular state. The value function is defined in terms of
future rewards that can be expected, or, to be precise, in terms of the expected return
(Sutton and Barto 1998). The expected return is the sum of discounted rewards, which
can be expected in and after the given state st (equation 5.1).

V π(st) = Eπ{
∞∑

k=0

γkrt+k+1} (3.5)

V π(st) is the estimation of the value of state st at (discrete) time step t under a policy
π. A policy is a function mapping every state onto an action. The choice of action has a
strong influence on the next state st+1 of the world.

The γ-parameter is the discount factor, which determines the value of future rewards.
The higher the value of γ is, the more importance is given to future rewards.

3.3.3 Internal Models

Internal models are called internal models because they are models in the brain of the
dynamics of the outside environment. Usually, internal models are used in motor control,
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but in this thesis I will apply the concept to language use. In this context, internal models
are models of the effects of certain verbal actions (i.e. utterances) on the state of the
world (i.e. the agent’s internal representation of it). Children can train their internal
models by being exposed to utterances used by themselves and others and observing these
utterances to have specific (indirect) effects on the world as they perceive it. This includes
experienced (and, at a later learning stage, inferred3) mental states of the addressees. A
related approach has been proposed by Langacker (1987).

It must also be assumed that the child can experience the ways in which the effects of
a given action vary depending on certain configurations of the world - in other words, that
these effects are context-dependent. Again, the context includes experienced (and, later,
inferred) mental states of the addressees.

As I have explained in detail in chapter 2, the principal capability of the cerebral cortex
is to detect and store correlations of events and states in the environment. It is, therefore,
not unlikely that the correlations between expressions, context configurations and effects
are stored in the cortex. Those stored correlations would form a probabilistic internal
model which can be used to predict the probability of the effect of a certain utterance in
a particular context. However, since supervised learning is the best learning algorithm to
acquire internal models (because actual and desired output are given), I am assuming that
the cerebellum plays a central role in the acquisition of the internal model. But, as I will
discuss later, the cortex might nevertheless store those correlations and use it to reduce
the number of necessary computations significantly.

3.3.4 Other Essential Functions

Of course, there are other (and maybe more basic) cognitive functions needed to support
the acquisition and use of these three functions. One important function is intention
reading. This is now regarded as a necessary prerequisite for word learning. Therefore,
any theory of language acquisition must take intention reading into account. Intention
reading develops in several steps, from simple (and possibly instinctive) gaze-following to
the child’s ability to use a number of complex social and pragmatic cues to determine the
referent of a word.

Another important cognitive function which the theory presented here presupposes
is imitation. To acquire symbolic communication by imitating an adult, role reversal
imitation has to take place (Tomasello 2003). In comparison to normal imitation behavior,
the child must not only substitute herself for the adult as an actor, but also substitute
the adult for herself as the target of the intentional act. In this thesis, I will assume the
capacity for imitating behaviour as given.

Another essential capability is the ability to acquire and represent word forms (including
the ability to segment speech and recognize words). I will discuss this capability in some
more detail in section 4.2.

3As explained above, the theory of mind- capabilites are not developed before the age of four and until
that time the child is not able to draw such inferences.
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3.4 Remarks on Utterance Comprehension

The focus of this thesis is on the production and not on the comprehension of utterances,
and I will not deal with mechanisms of comprehesion in detail. Nevertheless, I would like
to propose a simple form of comprehension which does not require any extra mechanism or
algorithms in addition to the ones described so far. The mechanism I will describe is simple,
but I think it nevertheless captures an important aspect of language comprehension.

The framework introduced so far describes a system which can store the relation be-
tween utterances, contexts and effects in an internal model. A speaker A1 can use it to
select an utterance u when its estimated effect d is desired.

If speaker A1 and addressee A2 speak the same language (which I assume throughout
this thesis), they should have represented the same relations between expressions, contexts
and effects. In other words, A2 has the very same internal model as A1 (or at least a very
similar one) and can use it (a forward model is required for this process) to map u directly
onto d. In that way A2 can compute the desire d (which has triggered the usage of u) of
A1 from A1’s utterance u.

There is also empirical evidence of a neural mechanism that maps first-person experience
onto third person experience in monkeys (Rizzolatti and Arbib 1998), which makes it pretty
likely that such a mechanism also exists in humans.



Chapter 4

Basic Units of Meaning

4.1 Form and Meaning

The enterprise of creating a neural theory of meaning representation and meaning process-
ing that is undertaken in this thesis is based on the assumption that in the brain there is
a level of representation of language form and a level of representation of language mean-
ing. The language forms that play a role in this thesis are word forms, simple sequences
of words, as well as topic, comment, and speech act markers. I will dedicate the next
section to a brief discussion of how word forms could be represented in the brain, because
word forms are the most important form unit in this thesis. However, since the purpose
of this thesis is not to develop any theoretical account of language form, I will use simple
representations of form that do not take into account questions of biological plausibility.

To talk about the representations of meanings is far more controversial. First of all,
it is not even clear what a representation of a meaning is, since the notion of meaning is
already far from clear. In this thesis, two major types of meaning representations are used.
The first one are representations of individual objects and object categories functioning as
the meanings of content words. The second type are representations of current states and
desired states, functioning as descriptions of circumstances of utterance use.

For us to communicate, the brain has to be able to transform the representation of
meaning to a representation of form in language production, and to transform the rep-
resentation of form into a representation of meaning in language comprehension. These
two transformation processes cannot simply be understood as a two way channel, but they
differ at least in some of the brain areas involved. For auditory speech comprehension,
we definitely use the primary auditory cortex and higher auditory areas, while for speech
production, we use the primary motor cortex and higher motor areas. Of course, it would
be uneconomical for the brain to represent e.g. semantical or phonetical information twice
in the brain - once for production and once for perception. This argument from economy
has lead to theories such as the motor theory of speech perception, which claims that motor
representations are also used in speech perception. Also, the more we get away from the
primary sensory and motor areas, and the higher the language related cognitive processes
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are, the more likely it is that the same representations are used. Still, the transformation of
any type of meaning to any type of form might be a process of a different nature than the
inverse transformation, and involvement of similar processing units cannot by any means
be taken for granted.

If you regard the complete transformation processes - starting from the perception of
sound to the complete understanding of the utterance, including implicatures, allusions etc.
, the representations of form involve different representational levels with different types of
information and probably different brain areas; and the same holds for the representations
of meaning. What those representation are, where they are, exactly what information they
code are questions which to answer would involve a summary of the research of almost all
fields concerned with language. Since this thesis is about the creation of a computational
theory of meaning in the brain, I will focus on the meaning side of the representation (and
even here I will only be able to deal with the levels and aspects that I consider to be the
most central).

In this chapter, I will introduce what I consider to be the most fundamental neural
representation of what might be called the basic unit of meaning: the concept. Before
I discuss the representation of concepts in the brain, I will give a brief outline of the
representation of the most important unit of form in the brain: the word form. In this
outline of the representation of the word forms, I do not even get close to a survey of the
literature. Nevertheless, my description should suffice to give the reader an idea about
the complexity of word representations in the brain. In particular it should clarify what I
mean by word form representations, a notion that will be used throughout the rest of this
thesis.

4.2 Representation of Word Forms

4.2.1 Functional Neuranatomy

In the following discussion of the experimental literature on the representation of word
forms in the brain, I will place special emphasize in the relation between production and
perception and the question in how far representations used in production appear also to
be used in perception and vice versa. As a starting point I would like to contrast two
classical and widely known models of how words are represented in the cortex. The first
one is Lichtheim’s model of single word processing. Lichtheim (1884) postulates an au-
ditory speech center projecting to a center of concepts during language understanding.
The concept center projects to the motor center of speech during production. The model
postulates one concept center used in both production and perception. Word forms, how-
ever, are proposed to be represented independently for production and perception and the
model postulates independent form-meaning interactions for production and perception.
The auditory speech center further projects directly to the motor center (for repetition).
The second model is the Wernicke-Geschwind-Model of language (Geschwind 1965), which
is widely accepted and still used in contemporary neurology. Broca’s Area is postulated
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to be the center of motor control of speech (i.e. it transforms phonemes into articulatory
programs). Geschwind postulated that phonemes and word forms are represented in Wer-
nicke’s Area (BA 22) and that these representations are used in both speech perception and
speech production. The angular gyrus (GA), a major multi-modal association area (BA
39), was not only postulated as an essential structure in reading (transformation of letters
in phonemes), but also claimed to play the fundamental role in all kinds of transformation
of visual information to language (e.g. in picture naming). This model was based on the
work of Carl Wernicke (1874) who, through post mortem analyses of patients with brain
lesions, was able to show that comprehension of speech was impaired when the lesions were
located in the posterior BA 22 (superior temporal gyrus). Since Wernicke’s early studies
much information has been gathered about the role of the superior temporal gyrus (STG)
in speech perception.

But speech perception does not start in STG. The first cortical area of relevance for
speech is the primary auditory cortex (A1). Its tonotopic organization has been demon-
strated in monkeys with single cell recordings (Rauschecker et al. 1995). Neurons in these
areas are responsive to pure tones, and narrow frequency bands. The tonotopic organiza-
tion which has been demonstrated in monkeys could be confirmed in humans with fMRI
(Wessinger et al. 1997). A1, in turn, projects to the lateral belt areas (Hackett et al. 1998),
i.e. the secondary auditory cortex (A2). The responsiveness of the lateral belt areas to
more complex sounds has also been demonstrated in monkeys (Rauschecker et al. 1995).
The superior temporal gyrus, which includes the lateral belt areas, projects to the sup-
plementary motor area (SMA), which, as we will see, is important in speech production
(Deacon 1992). Projections from the lateral belt to the superior temporal sulcus (STS)
were found by Hackett et al. (1998). The responsiveness of the lateral belt areas to more
complex sounds has also been demonstrated in humans with functional imaging (Wessinger
et al. 2001). The anterior superior temporal sulcus (STS) projects widely to a-modal asso-
ciation cortices (Jones and Powell 1970), as well as to lower order visual areas (Maioli et al.
1998). Deacon’s major finding is that the most extensive projection to prearcuate (frontal)
regions comes from STG and even denser projections come from STS. No connection was
found from STS to A1.

Evidence for the involvement of auditory areas in speech production comes from clin-
ical data. Important production disorders that can be caused by temporal lesions are
paraphasias (Damasio 1992), a problem attributed to errors in the process of phonologi-
cally encoding words. Severe Wernicke’s Aphasia can lead to severe anomia (Goodglass
1997), the inability to find high information words. Those two phenomena might both
be caused by problems of phonological encoding, i.e. a disorder or a disability. The re-
spective words are often preserved in comprehension (Goodglass 1997). This, however,
does not necessarily indicate different representations in perception and production, since
it can be explained by independent access routes. The counterpart of anomia in perception
is word deafness (WD) with intact word and speech production and intact perception of
complex sounds. Bilateral lesions in STG result in pure WD (Tanaka et al. 1987). WD
can be caused by several cognitive deficits, such as the inability to recognize word forms
or to connect the detected forms with a meaning. Evidence for the involvement of the
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superior and middle posterior temporal gyrus in prelexical phonological processing, e.g. in
perception of an unfamiliar language, was found by Mazoyer et al. (1993). It could also be
shown that speech sounds are processed more ventrally than non-speech sounds (Zatorre
et al. 1992). Two PET investigations observed activation of the superior temporal gyrus
in speech perception. One study showed activation of the left anterior superior temporal
sulcus only for intelligible speech (Scott et al. 2000) while the second found activation in
the superior temporal sulcus during performance of a verbal fluency task. The authors,
therefore, postulate this region to be involved in the acquisition of phonetic sequences
(Wise et al. 2001). This later PET study further observed that supra-temporal cortical
plane responding to both speech and non-speech stimuli and that posterior media at the
junction to the inferior parietal cortex responds to speech production.

In the frontal lobe it is especially SMA and the primary motor cortex (M1) that are
of interest for speech. SMA is involved in the representation of complex motor programs
in general, which would imply a major role in speech motor control. SMA projects to the
primary motor cortex (M1 or BA 4). M1 is organized somatotypically (Greyer et al. 2000).
M1 and the premotor cortex (BA 6) are reciprocally connected, (Pandya and Kuypers
1969, Jones and Powell 1970). Price et al. (1996) could show with a PET study that the
activation of what the authors called posterior Broca, i.e. BA 44/6, correlated with the
phonetic encoding of phonological word form into an articulatory plan. Their assumption
is that words are stored in the form of auditory information. The brain area was found
by subtracting the brain activity obtained during a condition in which participants had
to listen to words from the brain activity obtained during a condition in which the same
participants had to repeat words. The authors therefore claim this area to be required for
motor plans including speech. An articulation task in the same study activated the sylvian
sensorimotor cortex bilateral in tongue, mouth, and respiratory areas, proving further
evidence for the involvement of auditory areas in speech production. It is further notable
that stimulating M1 (with an electric wire) produces rudimentary vocalizations, while no
other area could trigger these responses (Penfield and Roberts 1959). Hence it seems that
the primary motor cortex includes representational structures that directly trigger motor
output (Ojeman 1983).

The area that has been known to be related to language for longer than any other area
is Broca’s area (Broca 1865). But to this day it is also the most controversial brain area.
Its location was redefined several times and is now relatively well agreed to be Brodmann’s
Areas 44 and 45 (Damasio 1992). The role of Broca’s area in the motor control of speech
is disputed, as apraxia, the inability to coordinate speech movements with unimpaired
perception of speech, seems to be caused by lesions in BA 4/6 and not by lesions in BA
44/45 (Levine and Sweet 1982). The integration of linguistic knowledge in brain research
on language gave rise to the alternative view that the areas 44/45 are housing syntax (Zurif
1982). Is is now widely agreed that the main symptom of damage to areas 44 and 45 is
agrammatism, but there is still evidence supporting an important role of Broca’s area in
speech motor control as well.
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4.2.2 Learning of Words

For the learning of speech sounds it is essential that the brain learns that speech motor
commands produce specific sounds. To imitate the sound of the parent’s language, children
need to predict the sound of their speech motor commands (or find a motor command to
produce a specific sound). This is done by so-called internal models (of which I already
talked in chapter 3 and will talk a lot more in the chapters to come). The internal models
of speech motor control are trained during the babbling phase, in which sequences of motor
commands are produced and, by means of auditory feedback, are associated with sequences
of auditory events. The motor representations can get a strong bidirectional link with
the auditory pattern that occurs when the produced sound is perceived. The knowledge
introduced by this link can be seen as the ability of the child to intentionally produce
a certain sound. These internal models of speech sounds can be seen as representing an
established connection between the motor and the auditory aspects of speech sounds. A
word form can then be seen as a sequence of such speech sounds. Of course, to give a full
account of word forms, other aspects than the production and perception of sounds have
to considered, such as the word’s morphological properties, its syntactic behavior and, in
case the agent is literate, its orthography. But in this thesis they will not be dealt with.

4.2.3 Computational Aspects

One might imagine a simplified computational model of word form representations in the
following way: During the babbling phase motor events are triggered in M1. The produced
sequences are detected, encoded and represented in SMA. The role of SMA is also to
reactivate these sequences of motor events in M1. The sequences of articulatory movements
lead to sound, which is registered and analysed in A1. A2 detects auditory features.
Sequences of auditory features are detected in STS. With the motor sequences in SMA
are then associated auditory sequences in STS. The resulting structure is the auditory-
motor representation of sounds. These sound representations can, if required, reactivate
the motor sequences which produce the respective speech sounds.

The learning of word forms starts with the auditory processing of the sound of the word.
Sequences of sounds are detected and represented in STS. They can, then, be associated
with some form of semantic representation. In this theoretical sketch, it is assumed that
a word form is perceived when a familiar speech sound sequence is redetected. This takes
the form of reactivation of a representation of a sequence of auditory features. If this
sequence representation is meaningful, i.e. if it was associated with some form of meaning
in the past, then it will activate this meaning representation. During naming, the (visual)
meaning representation can reactivate the word form representation is STS, which in turn
activates the auditory part of the representation of the sound sequence. The auditory
representation of the sounds sequences can in turn activate the motor commands that
produce the sounds of the word form, i.e. it can trigger the execution of the respective
motor events by M11.

1For a mathematical formalization of this model, a description of its implementation, and simulation
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4.2.4 Abstract Word Form Units

This theoretical sketch of the representation of word forms in the cerebral cortex is just one
of several theories. It is in contradiction with several of those other theories, such as the
motor theory of speech perception (Liberman and Mattingly 1985) which states that the
object of speech perception are the intended phonetic gestures of the speaker represented
in the brain as invariant motor commands. However, no case of word deafness caused by
frontal lesions is known to me. Also, there exist hardly any reports that lesions in frontal
areas result in disturbance of speech perception.

My theoretical sketch also ignores the undoubted role of the cerebellum in speech motor
control. However, my only purpose here in describing how word forms might be represented
in the brain, is to show that, despite the fact that a word is sometimes produced (involving
motor modalities of the brain) and sometimes perceived (involving auditory modalities), it
is not unlikely that there is some abstract representation of word form in the brain which
is used in both production and perception. It is this abstract representation that I will
refer to in the rest of this thesis when I will talk about word form representations.

4.3 Representations of Concepts

4.3.1 The Basic Unit of Meaning

The focus of this chapter is a theoretical investigation of concepts. Concepts are a suitable
anchoring point in an interdisciplinary investigation of meaning in the brain such as the
one untertaken here because linguistic semanticists, psycholinguists, psychologists, and
experimental and computational neuroscientists all use this term. However, there is some
disagreement upon the exact function of a concept and the information it carries. In
general, the term concept refers to a cluster of information that can be used to categorize
objects, actions, or situations. This means that the concept is, first of all, a representation
used to categorize perceptual information. Of course, there are concepts which cannot
be directly grounded in perceptual information. However, it is reasonable to assume that
even those are linked to concepts which are grounded in sensory and motor experience via
various kinds of abstractions. If such a concept has a certain word associated with it, then
this concept carries the information as to which objects, actions, or situations the word
associated with it can be applied to. Such a concept I will call a lexicalized concept.

The theory that it is one and the same type of conceptual representation which (i)
carries the information necessary to categorize non-linguistic perceptual information and
(ii) carries the information which constitutes the meaning of a word cannot be taken for
granted and is not accepted by everybody. Also, there is some evidence, summarized by
Levelt (1989), that between the word form representation and the conceptual represen-
tation there is another level of representation called the lemma, which is a combination
of semantical and syntactical information and has an important role in the production of

results, consult Klein and Billard (2001)



4.3. REPRESENTATIONS OF CONCEPTS 49

complex utterances. The existence of the lemma level is disputed.
It is, however, beyond doubt that the representation of perceptual categories and the

representation of words which can be used to refer to objects, actions or situations of this
category must have a very close relationship. That is the case for several reasons:

The first one is that people can verify linguistically presented information by percep-
tually processing the world and they can easily describe perceived scenarios.

Second, from an ontogenetic point of view, children learn to organize what they perceive
of the world into entities of different categories before they learn their first words. It is,
therefore, justified to assume that they acquire their first set of representations of categories
(concepts) based on non-linguistic perception alone. Then they learn that objects belonging
to such a category can be referred to by a certain word, i.e. they lexicalize some of their
acquired concepts. This in turn makes it very plausible that the child associates the word
representation with the category representation it has already acquired.

Since there is no evidence supporting the view that the conceptual representations used
in perception are different from those used in language processing, I will - at least until
contratictory evidence is found - subscribe, in keeping with Occam’s Razor, to the theory
that the concepts used for categorizing perceptual information and those used to represent
the meaning of standard content words are identical.

How concepts are implemented in the brain in terms of neurons and synapses is not
known and the theoretical assumptions about this issue diverge considerably. Below, I will
discuss some of those approaches, adopt the most plausible ones, and extend them to a
neural theory of concepts that can meet some of the most important requirements for the
processing of meaning in the brain.

But before doing that I will try to explain the important function that concepts have
in the representation and processing of meaning in the brain in more detail. I will use
the theoretical notion of predication - arguably the most important building block of the
entire edifice of linguistic semantics - and explain how concepts are used to implement its
function.

4.3.2 A Neural Theory of Predication

As most linguists and philosophers see it, predication is an operation in which one entity,
the predicate, is applied to another, the predicable; the result of the application is either
positive, when the predicate is true of the predicable, or negative, when it is not. In more
psychological terms, predication could be regarded as the process of attributing a category
to an individual. Here, individual is a broad term for individual instances of categories of
objects (including e.g. humans), abstract entities, events, states, and actions.

An important aspect of this conception of predication is the view usually associated
with Frege (1879) that predicate and predicable are entities of fundamentally different
sorts. The predicable has a reality all of its own (it can, so to speak, stand on its own
feet), but the predicate has only a kind of virtual or potential reality - it yields something
of genuine reality only through predication, i.e. when it is combined with a predicable and
the result is either a truth or its opposite.
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When we try to relate this apsychologistic (or, as some would see it, antipsychologistic)
conception of predication to the mental act of predication - to what it is people do when
they attribute a property to a thing and to what goes on in their heads when they do so -
we run into all sorts of problems. In fact, as soon as one starts to think about the relation,
one can’t help noticing that there isn’t just one type of mental act that corresponds to the
linguists’ and philosophers’ notion of predication, but a number of them, and it is crucial
not to confuse these. Mental acts of predication involve particular ways of representing, and
sometimes recognizing, both the predicate and the individual involved, and the recognition
and representation of these two components of the predication may vary significantly from
one instance to the next. Consider sentence (1).

(1) The keynote lecture was boring.

Igoring the questions of how the brain deals with the definite description, for example
the problem of how a particular instance of keynote lecture is selected in the context,
this sentence involves two predications, involving the categories keynote leture and boring.
Further, it is important to consider the processing difference between the production of
a sentence and its comprehension. In the production, the speaker who wants to give
the addressee some information about an individual entity has to select an appropriate
category for an individual entity (represented in her brain) to refer to it (predication 1).
This category has to be selected in a way that allows the addressee to identify the particular
individual. If the speaker would have chosen another category, as in sentence (2) then the
addressee might identify a different individual (e.g. considering that this conversation takes
place at a conference with several talks each day).

(2) The talk was boring.

To transmit information about the selected individual, the speaker, then, has to select
another category - a lexicalized concept that represents the property which the speaker
wants to communicate (predication 2). This selection does not have to deal with the
problems of referential uniqueness, since this predicate is not used to single out a referent,
but to give information about it. However, it has other problems which I will discuss later
in detail. In contrast to these processes involved in production, in sentence comprehension
the addressee has to identify a specific individual based on the categorial information
given to him by the speaker (predication 3), and then attribute a certain property to it
(predication 4).

In theoretical linguistics (where one is not dealing with the cognitive processes involved
in production and comprehension), these four types of category attributions are all treated
in the same way. In the light of such reflections what little current semantic theory has
to say about predication may not seem all that helpful; at the very least it is incomplete,
and needs to be complemented by an account of the various ways in which the mental
representations of predicate and predicable can be combined so as to yield, at the level
of consciousness, the sense of a predicational judgment. Below I will formulate some first
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hypotheses about what the representations involved in these mental predication operations
may be like and about some of the ways in which they can interact to produce an act of
predication.

An assumption already made above is that lexicalized concepts (i.e. concepts which have
a word associated with it) carry the information as to which objects, actions, or situations
this word can be applied to. For example, there is a word banana and a conceptual
representation of a banana which carries information on the basis of which a speaker is able
to determine whether what he sees is or is not a banana. The concepts which will represent
this kind of categorical information will be called categorical concepts. But not only the
categories are represented in the brain - individuals need to be represented as well. Humans
are able to remember individual entities, such as, for example, the particular banana which
I put in the refrigerator yesterday, or the smaller one of the two bananas on the table. The
representation of such an individual entity in the brain (whatever that may be) I will call
an individual concept. The application of the term concept to individuals might seem to
be contractictory to cognitive psychologists who usually distinguish concepts (i.e. mental
representations of categories) from instances of the concepts. I hope that the rest of this
chapter makes clear why I have chosen similar terms for both types of representations;
the reason is that one aspect of my story will be that between individual concepts and
categorial concepts there is not the fundamental difference that linguists, philosophers and
psychologists assume exists between predicates and predicables or categories and their
instances.

A theory of mental predication should, at the very least, have something to say about
the following mental acts and processes: (i) the acquisition of a categorical concept through
perception, (ii) the acquisition of an individual concept through perception, (iii) catego-
rization of a perceived object as belonging to a certain known category, (iv) identification
of a perceived object as a known individual, (v) retrieval of an individual concept based
on the understanding of a denoting predicate or predicate complex, and (vi) modification
of an individual concept through communication.

In contrast to other aspects involved in the processing and acquisition of meaning, I
assume that conceptual representations are purely a cortical matter and, therefore, are
based on the computations and representations attributed to the cortex, as outlined in
chapter 2. The two major points made there were that (i) certain neurons in the sensory
areas respond to certain features in the environment and (ii) synapses between neurons in
many areas increase their synaptic strength when the connected neurons fire at approxi-
mately the same time. Based on these and other findings, there is a growing consensus
that basic concepts are neurally represented by comparatively strongly connected neurons,
which thereby form so called cell assemblies (Hebb 1949); coordinated firing activity in
such an assembly signifies activation of the represented concept. A longer discussion of the
physiological data and the theoretical modelling of this data can be found in section 2.6.

Based on the insight discussed there, I will now outline a mathematical description
of the behaviour of neurons and synapses involved in long term and short term binding.
This description is on a very high level of abstraction. It is still compatible with the
physiological data discussed in chapter 2.6 and can be implemented using leaky-integrator
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neurons. However, it allows for a much more concise description of the states of neurons
and synapses as far as they are involved in conceptual processing.

The starting point of this framework is, as discussed above, the fact that different
features are localized in different brain areas. Therefore the conceptual state of the brain
C of an agent A1 at time t is represented as a feature-value matrix of different brain areas
(equation 4.1). Here V FA is for visual form areas, V 4 is for visual color areas, and OA is
for olfactory areas. Note that these areas are functional areas and not anatomical labels,
i.e. they are the areas in which these functions are represented. Since there might be still a
dispute over which anatomical areas these functions are located in, I do not want to make
any strong antomical claims here. However, my choice of areas is motivated by data on
the localization of brain functions.

CA1(t) =


V FA : ...
V 4 : ...
OA : ...

(4.1)

In each of these areas there are representations (neurons and neuron cluster) of certain
features, again represented as a feature value matrix (equation 4.2).

CA1(t) =


V FA :

 feature 1 : < {}, {} >
... ...
feature n : < {}, {} >


V 4 : ...
OA : ...

(4.2)

The value of the feature is a pair of sets of labels. The first set of labels represents
the activation and binding of features, i.e. working memory. If features are bound, then
they have the same label. Having the same label means that the activation of the neurons
representing the features is synchronized with the activation of the neurons representing
the other features. In equation 4.3, feature 1 and 2 are active but are not synchronized,
i.e. they are features of different entities. However, feature 2 is sychronized with feature 3,
i.e. they are features of the same entity.

CA1(t) =



V FA :

[
feature 1 : < {w1}, {} >
feature 2 : < {w2}, {} >

]
V 4 : ...

OA :

[
feature 3 : < {w2}, {} >
feature 4 : < {w3}, {} >

]
...

(4.3)

Binding of entities in working memory for a sufficient amount of time will lead to
synaptic changes, i.e. binding in long term memory. This is represented in the second set
of labels. In equation 4.4 the activation in working memory has ceased, but has resulted
in a long term binding of features 2 and 3.
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CA1(t + 5) =



V FA :

[
feature 1 : < {}, {} >
feature 2 : < {}, {l1} >

]
V 4 : ...

OA :

[
feature 3 : < {}, {l1} >
feature 4 : < {}, {} >

]
...

(4.4)

But not only can working memory binding lead to long term binding, also long term
bindings facilitate joint activation whenever one part of the assembly gets triggered.

CA1(tx) =



V FA :

[
feature 1 : < {}, {} >
feature 2 : < {w1}, {l1} >

]
V 4 : ...

OA :

[
feature 3 : < {}, {l1} >
feature 4 : < {}, {} >

]
...

(4.5)

Because of the strong synaptic connection between feature 2 and feature 3, feature 2
activates feature 3 and their activation is synchronized.

CA1(tx + 1) =



V FA :

[
feature 1 : < {}, {} >
feature 2 : < {w1}, {l1} >

]
V 4 : ...

OA :

[
feature 3 : < {w1}, {l1} >
feature 4 : < {}, {} >

]
...

(4.6)

In general it is not necessarily the case that activation of one cell cluster automatically
triggers activation of the other clusters that are long term bound to it (e.g. if the connected
cluster are not excited by other sources). On the other hand, clusters that are weakly
connected can synchronize when they do receive strong input from other sources. However,
in my simplified framework I do not deal with those cases.

The picture that emerges from these neuroscientific facts and assumptions based on
them is one of fairly directly implemented basic concepts (or features) and of complex con-
cepts that are built in some way from simpler concepts as components. This conception
is consonant with a well-established perspective within cognitive psychology, according to
which many, most or perhaps even all concepts have a prototypicality structure, with the
concept’s prototype consisting of a weighted set of features. The assumption of prototypi-
cality structure has been used in explaining a range of observations about the way in which
concepts are used and about their acquisition (Rosch 1973, Clark 1973, Lakoff 1987).

This discriptive formalism introduced in this section is, of course, a broad simplification
of matters. However, it captures some essential properties of how concepts are represented
in the brain, such as the distinction and the relation between long term and working mem-
ory binding. This distinction is - as far as I know - not made in any theories within
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theoretical linguistics or psycholinguistics. But especially in psycholinguistics it is impor-
tant to distinguish these levels of representation, since they are necessary to characterize
the processes involved in the production and comprehension of informative sentences, as
we will see in chapter 7.

4.4 Individual and Categorical Concepts

4.4.1 Categorization

In psychological research about picture naming and categorization, the term concept usually
means the representation of categorical information in the brain. An individual instance
(e.g. a picture of a particular car) is shown to a subject whose task is to come up with the
correct category label (car in this case).

The implicit assumption seems to be that the category is represented as a concept in
the brain, i.e. it is memorized and then retrieved, whereas an individual is something that
is perceived at a certain point in time and is not represented afterwards. This is not the
way things are. It is true, that perception is always perception of one or several individuals
- the object in the world is never a category, but it is certainly the case that individuals
can also be memorized and retrieved in the brain. It is, therefore, justified to speak about
the representation of both, individuals and categories, as concepts.

A more helpful distinction that is made in standard psychological theories is that be-
tween episodic and semantic memory. One could argue that the individual concept is a
matter of episodic memory, while the categorical concept is a matter of semantic memory.
This is because the encounter of individual entities happens in episodic events - we meet
particular individuals on particular occasions. This is important because it implies that
the individual concept carries information about time and place of the encounter.

The encounter with several individual entities that have a certain property can trigger
the formation of a categorical concept. The formation of such a category can generally be
characterized as an abstraction of particular features that distinguish the individual entities
of this category (including the abstraction of space and time, i.e. episodic information about
the individuals which, in many cases, might be the only recognizable difference between
individuals of one category).

It might be justified to say that it is possible to distinguish two major types of theories
about the neural mechanisms of categorization in the cerebral cortex: (i) generation of a
higher level representation (possibly in a different brain area) in the way this was postulated
in self-organizing maps (Kohonen 1982) or in adaptive resonance theory (Grossberg 1980).
(ii) feature reduction on the same level based on a Hebbian associcative framework (Hebb
1949). The first method associates a category representing neuron to a set of features (the
category neuron might at first fire accidentally when the features of the category are active).
Categorization is the activation of the category neuron. This neuron can also reactivate
the category (but does not have to). According to the second account, repeated encounters
with individual objects with the same property lead to a stronger association between the
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Figure 4.1: The representation of an individual concept with hierarchical feature binding.

shared features. Categorization is then simply the activation of the shared features of
the category. Features of the category can reactivate each other, since they have strong
associative links. Note that the two types of theories are not mutually exclusive. The
brain could and probably does use both mechanisms to categorize and represent categories
(Palm 1982).

Note also, that, as discussed in section 2.6.3, these two mechanisms are also the general
mechanisms of feature binding in long term memory. This means that the features of an
individual concept can also be bound by a abtract neural representation on a higher level.
The essential difference between individual and categorical concepts in the brain therefore
boils down to the pruning of feature information (see figures 4.1 - 4.4).

In this thesis I will not address the question whether the features are bound on the same
level or on a higher level2. Far more interesting for the theoretical framework which will be
developed here is that the facts and assumptions of current neuroscience suggest that at
the neural level there is no fundamental distinction between representations of individuals
and representations of categories - for either representation takes the form of a bound set
of features, realized by a network of linked feature-representing cells or cell groups.

Suppose that this is so. Then we must face the question: How could such a uniform
mode of representation for both individuals and categories be compatible with the view of
philosophical and linguistic semantics according to which they are entities of fundamentally
different kinds? Or - asking the question from a slightly different angle - how can the brain,
assuming that it does represent individuals and properties in this uniform manner, execute

2I hope to answer this question in forthcoming empirical work which is done in collaboration with Ton
Dijkstra and Herbert Schriefers.



56 CHAPTER 4. BASIC UNITS OF MEANING

Figure 4.2: The representation of a category concept with hierarchical feature binding.

acts of predication if it is of the essence to the predication operation that the two entities
involved, the predicate and the predicable, are as different as semantics claims they are?
It is to this question in particular that this section explores some first, tentative answers.
I will develop these answers with the help of the theoretical framework skteched above. I
begin by reflecting on the acquisition of both individual and categorical concepts in the
context of perception.

First consider the case where a person A1 observes a certain object - a banana, say - and
the features of this individual object are allowed to enter long term memory. Equation 4.7
might describe the representation of the individual banana that A1 encounters. Note that
this indidual representation comes with, besides form and color features, also information
about the time and place of encounter (I simplify by assuming that the representation
involves a 2 × 2 grid world and 4 possible points in time).
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Figure 4.3: The representation of an individual concept with associative feature binding
on the same level.

CA1(t) =



V FA :

[
banana form feature : < {}, {l1} >
other form feature : < {}, {} >

]

V 4 :

[
banana color feature : < {}, {l1} >
other color feature : < {}, {} >

]

TA :

[
sweet feature : < {}, {} >
other taste feature : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.7)

Now A1 encounters a second individual banana with similar general features but dif-
ferent time and location, leading, in combination with the representation of the previous
banana, to a state which is described in equation 4.8,
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Figure 4.4: The representation of a categorical concept with associative feature binding on
the same level.

CA1(t) =



V FA :

[
banana form feature 1 : < {}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {l2} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {l2} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.8)

We now have a situation where two individual objects share two features. This means
that these two features are active together more often than the other features, and this
allows the formation of a categorical concept consisting of these two features. The new
categorical concept is represented as label l3 in equation 4.9.
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CA1(t) =



V FA :

[
banana form feature 1 : < {}, {l1, l2, l3} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {}, {l1, l2, l3} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {l2} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {l2} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.9)

Note that such a mechanism for the generation of categorical concepts automatically
abstracts from time and location information, as well as from specific properties of partic-
ular individuals.

4.4.2 Distinguishing Individuals and Categories

The Bottom of the Lattice

Given that individual concept and categorical concept use the same mechanisms of binding,
what is it about a concept that makes it into either a categorical or an individual concept?
The answer that comes to mind when looking at the individual concepts l1 and l2 and
the categorical concept l3 is that an individual concept is one which is richer in content.
The main thing here is that an individual concept, no matter how little information it
may carry, always comes with the time and place (or times and places) of encounter. This
means that there is a history (at least a little one) for every individual we remember. This
episodic information serves to give every individual concept sufficiently specific information
to qualify as uniquely identified by the represented features. This uniqueness of features
appears to be the essential property of individual concepts.

Look at the list of bound features given in equations 4.10. Since I use this list only to
illustrate a theoretical point about individual concepts, the features are not assigned to
any brain areas.
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CX(t) =



f1 : < {}, {l1, l2, l3, l4, l5, l6, l7} >
f2 : < {}, {l1, l2, l3, l4, l5, l6, l7} >
f3 : < {}, {l2, l4} >
f4 : < {}, {l3, l5, l6, l7} >
f5 : < {}, {l4, l5, l6, l7} >
f6 : < {}, {l5, l6, l7} >
f7 : < {}, {l6} >
f8 : < {}, {l7} >

(4.10)

To make my point more visible to the reader, I will, for a moment use a different notation
which expresses the same relation between features and labels (equation 4.11-4.18).

l1 = {f1, f2} (4.11)

l2 = {f1, f2, f3} (4.12)

l3 = {f1, f2, f4} (4.13)

l4 = {f1, f2, f3, f5} (4.14)

l5 = {f1, f2, f4, f5, f6} (4.15)

l6 = {f1, f2, f4, f5, f6, f7} (4.16)

l7 = {f1, f2, f4, f5, f6, f8} (4.17)

Here, l1 clearly is a categorical concept, since it shares the features with all other
concepts. l2 and l3 are also categorical concepts and they are subcategories of l1. The first
individual concept is l4, since it does not share this feature combination with any other
concept. Although it has more features than l4, l5 is still a categorical concept, since it
shares its features with l6 and l7. To summarize, it can be said that in the subsumption
lattice of all of a person’s concepts at any one time the individual concepts always occupy
bottom positions (see also figure 4.5).

Recognition and Categorization of an Individual

Given this structural relation between indviduals and categories, perception of an individ-
ual object can lead to either (i) recognition of the individual (which corresponds to the
activation of an individual concept) or (ii) categorization of the individual (which corre-
sponds to the activation of a suitable categorical concept).

The categorization of an object is taking place when its perception activates the specific
features of the categorical concept. The recognition of an individual can take place as
soon as perception has features which are only present in that specific combination in
one particular individual concept. The activation of other features that follows from the
identification of the individual concept I will call expansion.
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Figure 4.5: Lattice of all of a person’s concepts

4.4.3 Types of Predication

Production

Under the assumption that both individual concepts and categorical concepts are repre-
sentated in the form of a bound set of features and the assumption that the only difference
is the uniqueness of bound features (usually achieved in form of information about time
and place of encounter), how can the brain execute acts of predication?

I will now try to answer this question. Here it is important to recall the point made
in section 4.3.2 about the distinction between four different kinds of predication. Two of
those main types of predication are important for language production and the other two
for language comprehension. Since there is a topic-predication and a comment-predication
in both production and perception, the four types might be called:

• topic predication in production

• comment predication in production

• topic predication in perception

• comment predication in perception

As I have mentioned before, topic and comment predication have to deal with additional
complications, such as representations of the mental states of the addressee, and I will deal
with those in section 7.5. In this section, I will just sketch the basic mechansims involved
and how they can be described in the theoretical framework I have just sketched.
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To illustrate the processes consider a situation in which a person A1 observes a certain
object - a banana, say - and then becomes acquainted with some further feature of it.
For instance, we may assume that after having first become aware of it, A1 takes a bite
of the banana and finds it to be (deliciously) sweet. At this point A1 has an individual
representation of this particular banana (bound by l1 in equation 4.18). A1 also has two
categorical concepts, one for banana (l2) and one for sweet (l3).

CA1(t) =



V FA :

[
banana form feature 1 : < {}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l1, l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.18)

The process of topic-predication in production involves the finding of a lexicalized
concept which can be used by the addressee to identify the individual about which the
speaker wants to give information. This process of denoting by the speaker as well as the
process of comment-predication in production involves the representation of the addressee’s
state of knowledge. Both topic and comment predicate are found by contrasting the desired
mental state of the addressee with the current mental state. In chapter 7 the theoretical
framework will be extended to allow representions of the mental state of the addressee.
Therefore, topic and commment-predication will be discussed in detail there. However, for
the comprehension side the description is already possible.

Comprehension

Topic-predication in comprehension involves the identification of an individual, i.e. the
activation by an addressee A2 of an individual concept described by the topic predicate.
Before understanding the utterance A2 has to have a representation of the categorical
concepts bound by l2 and l3 and an individual concept bound by l1 (as in equation 4.19).
Note that in contrast to A1’s representation of the indivudual banana, A2’s representation
does not include the feature sweet. This is because A2 does not know (yet) that this
particular banana is sweet.
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CA2(t1) =



V FA :

[
banana form feature 1 : < {}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.19)

To understand and process a sentence such as (1), A2 has (i) to understand the topic-
predicate as identifying the indvidual that A1 is talking about, and (ii) to understand the
comment-predicate as attributing a property to that individual.

(1) The banana is sweet.

By understanding the topic predicate banana, A2 activates the representation of his
categorical concept l2 (equation 4.20).

CA2(t2) =



V FA :

[
banana form feature 1 : < {w2}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w2}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.20)

This triggers the activation of the individual concept l1 (equation 4.21).
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CA2(t3) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.21)

The preception of the word sweet (the comment-predicate) triggers the activation of
the categorical concept of sweet (equation 4.22).

CA2(t4) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {w2}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.22)

The attribution of the property sweet to the individual banana takes the form of syn-
chronizing the activity of the individual concept with the categorical concept, leading to a
uniform representation of the sweet banana (equation 4.23).
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CA2(t5) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {w1}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.23)

This can lead to a binding in long term memory of the feature sweet to the individual
concept in long term memory (equation 4.29).

CA2(t6) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {w1}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >



(4.24)

4.4.4 Meager Individual Concepts

There seems to be an immediate objection to the suggestion that in the subsumption
lattice of all of a person’s concepts at any one time the individual concepts always occupy
bottom positions. It appears that many of the individual concepts we actually entertain
are quite poor in content. If you tell me: ”I saw a man in the street yesterday.” and you
get called away to the phone before you can say anything else, the effect your utterance
will presumably have on me is that I have set up an individual concept for the man you
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mentioned, but there is very little I know about the individual which this individual concept
is supposed to represent. It is only natural for me to assume that there are many men
you saw in the street yesterday. So the property of being a man seen by you in the street
yesterday almost certainly will not pick out the individual uniquely. In fact, suppose I
happen to know that yesterday you were in the street at least twice, first in the morning
on your way to work and then on your way from work in the evening, and that I consider it
a practical certainty that you saw men in the street at both times. Then the concepts ”man
seen by you in the street yesterday on the way to work” and ”man seen by you yesterday on
the way from work”, while each qualifying intuitively as a (non-empty) categorical concept,
are both subsumed by the concept I have set up in response to your utterance.

Or so it might seem. But on a closer look the semblance disappears. My individual
concept for the man you mentioned before you were called away isn’t a concept for just
any man you saw in the street yesterday, it is my concept for the person that you were
referring to when you said those words to me. This is information that won’t tell me much
about the intrinsic properties of the man in question, but it may nevertheless uniquely
identify him, even if it does so in some indirect way which won’t help me to find out who
he is (unless I rely on you as a source of further information).

I believe that it is this kind of anchoring information that in such cases distinguishes
individual concepts from categorical ones and that places them necessarily at the bottom
of any subsumption hierarchy irrespective of how much (or little) intrinsic information the
concept may contain about the thing it represents. Usually such anchoring information
takes the form of an explicit descriptive condition on the represented object (i.e. of a
combination of categorical concepts, in the terminology used hitherto) of which it is (prac-
tically) certain that only one thing can satisfy it; an example are conditions to the effect
of the thing having been located in a given place at a given time. But there are also
cases where the anchoring condition is not explicit in the manner of this example. Thus,
in the case just discussed, where my individual concept is based on the information you
have given me in this one sentence before you got called away, the condition presumes
there to exist some causal relation between me and a particular man, a relation which
has been established via (i) your earlier perception of that man and (ii) your referring to
that man when speaking to me. In this case the anchoring condition confers uniqueness
upon the individual concept by other than straightforwardly descriptive means. There are
even cases where this anchoring information cannot really be construed as pertaining to
the represented individual in any straightforward sense at all. This happens for instance
when an individual is introduced at a particular point in the course of a piece of fiction.
The reader will at that point introduce, as part of his representation of the content of the
story, an individual concept. And the concept will qualify as an individual concept insofar
as one of the concepts it includes will be that the individual was introduced at such and
such a point of the text, and/or with such and such words. Of course this information
cannot be construed as a property of the (fictional) character described: it is not like his
being characterized as a handsome prince, or a toad, or as having lived for most of his
life in Baker Street. Nevertheless, as a unique identification of the fictional character the
information serves as well as, say, the concept of having been mentioned by someone on a
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given occasion serves to uniquely identify an individual in the real world.

Individials and Prototyes

In the way in which this theory about individuals and categories in the brain has been
stated so far, is not consistent with prototype theory (Rosch 1973). My theory so far
states that an individual concept l1 can be categorized as l2 because the features of l2 are
all present in l1. Prototype theory states that an individual can still belong to a certain
category (represented by a prototype concept l4) even if the individual (e.g. l3) does not
include all features of the prototype (e.g. l4).

l1 = {f1, f2, f3, f4, f5, f6, f7} (4.25)

l2 = {f1, f2, f3} (4.26)

l3 = {f1, f2, f3, f5, f6, f7} (4.27)

l4 = {f1, f2, f3, f4} (4.28)

Another related problem for my theoretical framework is possible change of individuals.
How can an individual be recognized when it changed location or say its color (e.g. in the
case of bananas).

One way that comes to mind of dealing with this problem is to use a soft mapping
algorithm, which allows to categorize l3 as belonging to l4 (or to recognize an individual even
if not all the features match those represented by the corresponding concept). However,
such a soft mapping cannot be the solution as it stands, given the way in which individual
concepts have been defined so far. If l1 - l4 would be represented in the brain of an agent,
l4 would be considered to be an individual like l1 and l3 and the distinguishing criteria of
what an individual is would be lost.

To solve this problem, I will take the importance of episodic information one step
further. In the last section episodic information was used to distiguish individual from
categorical concepts by adding enough features to ensure that indvidual concepts will
always be at the bottom of the conceptual lattice. As I have shown above, being at
the bottom of the subsumption hierarchy is neither a sufficient nor a necessary condition
for being an individual concept. However, it is possible to distinguish individual from
categorical concepts simply by testing the presence of certain kinds of episodic information.
In particular, if the concept carries information about time and place of encounter then
the concept is the representation of an individual. This still allows me to hold on to my
original claim that the learning mechanisms and principles of representations are the same
for individuals and categories.
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4.5 Coding of Events

4.5.1 State of the Art

The approach sketched so far describes how the brain can code information about all
types of individual objects (e.g. fruits, tools, animals, humans) and object categories. The
framework is sufficient to model knowledge about certain objects, e.g. the knowledge that
a certain individual banana is sweet, or that John is married. However, the brain must
also be able to represent states or events corresponding to the sentences like (1).

(1) John gives Paul the banana.

All the concepts I introduced so far were a combination of sensory features. In contrast,
the concept of give also involves motor features as well (Pulvermueller 2001). I will not make
any detailed assumptions on how this concept is represented in the brain and just assume
that it is a combination of sensory and motor features of a certain degree of abstraction.

The problem I must deal with at the moment has to do with the interaction of the
different concepts in the representation of an event.

Suppose that give is represented by some motor feature, John, Paul, and the (individual)
Banana by a combination of visual features with time and place of encounter (equation
4.29).

CA(t) =



V :

 John feature : < {}, {l1} >
Paul feature : < {}, {l2} >
Banana feature : < {}, {l3} >


M :

[
give feature : < {}, {l4} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {l2} >
position[2, 1] : < {}, {l3} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {l2} >
t[3] : < {}, {l3} >
t[4] : < {}, {} >



(4.29)

Given this equation there are two possible ways of activating the required participants in
the event: (i) they are all activated in asynchrony or (ii) they are all activated in synchrony.
Both possibilities create a problem. In (i) we lose the knowledge that they all code the
same event, since there would be no way of distinguishing the involved individuals from
other indivuals represented in the scene, such as an additional apple. Another problem
is that the event described by sentence (1) would be coded exactly in the same way as
the event coded in sentence (2), i.e. this representation cannot distinguish which of the
individuals functions as agent, object, or recepient.

(2) Paul gives John the banana.
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The same is true for possibility (ii). But for this second possibility there arises an
additional problem which is much worse: It appears that all the information coded in the
concepts of give, John, Paul, banana are conflated into one concept. This means that it can
no longer be distinguished which of the active features are part of Paul, which are part of
John or the banana, and which features belong to the concept of the action representation.
If we use this kind of representation (3) might be conceptually represented exactly in the
same way as (4).

(3) John and Paul.

(4) John is Paul.

In the literature, several strategies can be found to overcome this problem. I will briefly
sketch the most important ones and their problems. Then I will describe an alternative
approach derived from neurophysiological data.

The first approach to avoid the conflation of concepts is to use a hierarchical architec-
ture. As discussed before, the brain might recruit neurons in another (higher level) area
to represent a concept whose features are represented in the original area (equation 4.30).

CA1(t) =


V isualAreas :

 JohnV isualFeature(01) : < {}, {l1} >
...
JohnV isualFeature(n) : < {}, {l1} >


HigherConceptArea :

[
JohnConceptualNode : < {}, {l1} >

] (4.30)

This higher level representation can then be used to code the complex event. If only
the higher level representation is activated, there is no danger of a conflation of features
(equation 4.31).

CA1t =


JohnConceptualNode : 1
PaulConceptualNode : 1
GiveConceptualNode 1
BananaConceptualNode 1

 (4.31)

Although such a representation prevents the conflation of the features of the individual
concepts, it still does not allow a distinction between the content of the sentences (1) and
(2) and since this distinction is essential I will therefore not use this strategy.

Another attempt to solve this problem is described, and shown to be problematic by
(Chang 2002). It is based on an assumption which has been around in theoretical linguistics
for many years - the idea is that actions are coded in some form of predicate - argument
structures. For example in equation 4.32, the first column vector codes the action type, the
second codes the agent, and further vectors can code all sorts of argument types (similar
to the approach of )
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CA1t =



action agent object receiver
1 0 0 0 give
0 1 0 0 John
0 0 0 1 Paul
0 0 1 0 banana
0 0 0 0 ...
0 0 0 0 ...
0 0 0 0 ...
0 0 0 0 ...


(4.32)

In this approach events can be distinguished that correspond to (1) and (2), repectively.
Also, there is no danger of feature conflation since every column vector codes different
objects, so that a simultanous activation of features is not to be interpreted as a single
object with these active features. However, the fact that individuals can be in several of
the argument positions poses another problem: They have to be coded at every position
at which they occur. For example it has to be possible to represent John, who can be
either agent or receiver in the vector coding the agent and, again, in the vecor coding the
receiver. This is not only an immense waste of coding space (and surely not the way the
brain organizes its conceptual representations), but also it poses the problem that during
concept aquisition, every concept has either to be learned several times or dublicated in
some way (see Chang (2002) for a more extensive discussion and demonstration of these
problems). This is sufficient reason not to adopt this approach.

Another way to solve this problem based on temporal coding was proposed by Shastri
and Ajjanagadde (1993). The representation they used is based in temporal synchrony.
Corresponding to each verb, there are neurons for the thematic roles of the verb (e.g. for
the verb give, there would a neuron for the agent, another one for the receiver, and one
for the object that changes itss carrier. To represent the event, these role-coding neurons
synchronized their firing with the conceptual representation of the individuals that fill the
roles. Adopting this ideas to my theoretical framework, sentence (1) would be represented
as in equation 4.33.

CA1(t) =



give verb features : < {w1}, {} >
give agent representation : < {w2}, {} >
give patient representation : < {w3}, {} >
give object representation : < {w4}, {} >
John features : < {w2}, {} >
Paul features : < {w3}, {} >
banana features : < {w4}, {} >
...

(4.33)

This approach prevents conflation of the concepts, allows a distiction between the
coding of (1) and (2) and there is no need to duplicate any conceptual representation. While
Shastri and Ajjanagadde (1993) postulate the 4 events of synchronized activity to happen
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within 40ms (because of synchronization in the γ-band), there is no empirical evidence
supporting the idea that the brain is capable of such rapid changes in the activation and
synchronization patterns. Simulation studies suggest that such changes need more time
(Knoblauch and Palm 2002a,b). However, the general idea of representing an event as a
number of concepts that are not synchronized with each other is not implausible and the
representational structures I will use below follow a similar idea.

4.5.2 Extending the Formalism

The solution for the problems sketched above is inspired by electrophysiological studies,
but the theory is still in a very speculative stage and direct evidence still needs to be
obtained. Nevertheless, I would like to briefly sketch the general ideas.

The motor system is currently one of the most exhaustively studied brain systems. Area
F5 codes specific actions (e.g. grasping, holding, tearing), rather than the single movements
that are need to perform them (Rizzolatti et al. 1988). Since the performance of an action
can be regarded as a property of an individual, there appears to be no good reason not to
bind the action to the individual performing the action. Within my formal framework a
sentence such as (5) could therefore be represented as in equation 4.34.

(5) John walks.

CA1(t) =



V isualAreas :

 JohnV isualFeature 1 < {w1}, {l1} >
...
JohnV isualFeature n < {w1}, {l1} >


MotorArea(F5?) :

 walking feature < {w1}, {l2} >
other actions < {}, {l3} >
...


(4.34)

For sentences (1) and (2) this approach has the following implications. When John gives
Paul the banana, Paul has to receive it, i.e. he has to open his hand and take the banana.
This can be coded in the same way as John’s action of giving the banana. Equation 4.35
gives the representation of John giving something to Paul.

CA1(t) =



V isualAreas :



JohnV isualFeature 1 < {w1}, {l1} >
...
JohnV isualFeature n < {w1}, {l1} >
Paul V isual feature 1 < {w2}, {l4} >
...
Paul visual feature n < {w2}, {l4} >



MotorArea(F5?) :


give feature < {w1}, {l2} >
take feature < {w2}, {l5} >
other actions < {}, {l3} >
...



(4.35)
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The remaining problem is the banana. Just to have a banana in the scene (i.e. an active
representation of a banana) is not sufficient, since this banana can then not be distinguished
from other bananas or other objects that are also present, perceived and represented. Also
to add a being given-feature to the banana would not help, since utterances such as (6) can
involve several objects on which the same action is performed.

(6) John gives the banana to Paul and George gives the apple to Ringo.

The solution is based on the coding of object positions.

CA1(t) =



V isualAreas :



John visualFeature 1 < {w1}, {l1} >
...
John visualFeature n < {w1}, {l1} >
Paul visual feature 1 < {w2}, {l4} >
...
Paul visual feature n < {w2}, {l4} >
banana visual feature 1 < {w3}, {l6} >
...
banana visual feature n < {w3}, {l6} >



MotorArea(F5?) :


give feature < {w1}, {l2} >
take feature < {w2}, {l5} >
other actions < {}, {l3} >
...



Location :


position[1, 1] : < {}, {w3, w1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {w2} >



(4.36)

Of course it is a broad simplification just to postulate a spatial overlap of John and the
banana. A first improvement would be to represent an overlap between coding of John’s
hand position and the banana, but to do this one would need to take into account how
the brain codes the position of limbs. Then, as a next step more abstract representations
of spatial relations would be necessary, but to develop such a detailed theory about the
representation of spatial relations is beyond the scope of this thesis. Instead, I would like
to close this section by briefly discussing the representation of events corresponding to
sentences such as (7) or (8).

(7) John throws the banana in the direction of Paul.

(8) John throws the banana over the fence.

These sentences describe events which do not involve an action of Paul or the fence,
so they cannot be represented analogously to equation 4.36. However, it is known that
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there are neurons in the brain coding a desired trajectory of a movement (Johnson and
Ferreina 1996). Therefore, an activation of a neuron coding an appropriate trajectory and
a position coding similar to the one used for John in the examples above can be used to
represent the events described in sentences (7) and (8).

Of course these are just a few examples of event representations and I am aware of the
broad simplications I have made and the aspects I have left out. But for the time being I
need to restrict myself to the representation of these first ideas.

4.6 Lexicalization

So far, I have not said anything about how the word form representations explained in
section 4.2 connect to the concept representations discussed in sections 4.3, 4.4, and 4.5.
As indicated above, we assume that both word form representation and concepts are repre-
sented in the cortex. Therefore, following the theory outlined in chapter 2, word forms and
concepts are connected with unsupervised associative learning. If a concept is connected
to a word form representation I will call it a lexicalized concept. If a word form represen-
tation has a lexicalization link to a conceptual representation, the word form is rendered
meaningful in that it enables the agent to associate the word form with certain features.

Lexicalization is a difficult process, since it is not easy for the language acquiring child
to learn which concepts should be connected to which word forms (see Bloom (2000) for a
discussion of the relevant problems and an informal account of a solution). I will say a great
deal more about how this learning can be explained within the formal theory developed in
this thesis. However, in the following chapters 3, 5, and 6 I will introduce a very different
line of thought, which emphasizes the nature of language as a device to accomplish certain
goals and where use produces certain effects on the world. The two theoretical strands will
be pulled together in chapter 7. In that chapter I will also explain how concepts can be
lexicalized through interaction of the language acquiring child with the adult.
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Chapter 5

Expressing Desires

5.1 Simulating Goal-Directed Utterance Selection

In this chapter I will describe a possible neural architecture motivated by the biological
considerations I have presented so far and investigate its possibilities with computer simu-
lations. The architecture I will propose is capable of learning to use language by selecting
utterances suitable for pursuing a specific goal. I have adapted the concept of the internal
model (from control theory) to the problem of language use, and use it, in combination
with reinforcement learning, to model utterance selection. I also use internal models to ap-
proach the problem of intention understanding in language. With simulation experiments
in a multi-agent environment I show that our architecture is capable of deciding when to
speak (instead of performing non-verbal actions), whom to address and what to say, as
well as to understand the intention of another speaker. Further, I discuss data from func-
tional imaging and electrophysiological experiments that point towards a possible relation
of the components of our architecture to real brain structures. According to this data, the
cerebellum and the basal ganglia appear to be among the major structures involved. This
could shed new light on the role these structures play in higher linguistic tasks. Finally,
I propose functional imaging experiments which could confirm our hypotheses about the
localization of the major components of our model in the brain.

In recent years, a large number of studies have investigated language production in the
brain. These studies have dealt with many types of linguistic skills, such as the transforma-
tion of meanings into words (e.g. in picture naming), the construction of correct syntactic
or morphological structures and the production of phonetically well-formed speech. In any
everyday act of communication these skills are employed with a purpose. They are used
to realize a goal which goes beyond the production of an intelligible utterance as such and
usually beyond the truthful description of a state of affairs. Hence, at the beginning of
every act of communication stands the speaker’s goal and - by means of her linguistic skills
- this goal is transformed into an utterance. Such a transformation must involve a process
which can compute what kind of linguistic construction is the most useful in order to pur-
sue this goal. So far, however, linguistic skills have been investigated in abstraction from
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the non-linguistic goals of language production. Therefore little is known about the neural
basis of this transformation process. Apart from the selection of the appropriate linguistic
construction, such a transformation also needs to include the decisions which goals can be
pursued by utterances in the first place (instead of by non-verbal actions or not at all) and,
in case the selected action is verbal, who it should be addressed to. Furthermore, since the
work of Grice (1957), it is a widely accepted view that a speaker’s utterance achieves its
effects by getting the addressee to recognize the so called communicative intentions of the
speaker. The communicative intentions are defined as those (and only those) intentions
which the speaker wants the recipient to recognize as the goals of the utterance (Levelt
1989). In fact, if these goals are not recognized by the addressee the communicative act
cannot be regarded as successful. So, not only does the speaker’s goal stand at the begin-
ning of the communication process, its recognition by the addressee is also the final result
of the comprehension process. The neural basis of understanding the communicative goal
of another speaker is also still very poorly understood. It is not unlikely that the processes
of selecting utterances in accordance with goals and the process of understanding the goals
of another speaker share some basic neural representations, brain mechanisms and even
some anatomical brain structures.

In this chapter, I present a neural architecture using value functions and internal mod-
els for goal-directed and context-dependent selection of utterances. I also consider how an
agent uses this architecture (internal models in particular) to understand the communica-
tive intention of another speaker. A value-function is a function which assigns values to
states of the world. The value reflects how desirable a specific state of the world is. The
internal model, on the other hand, predicts the outcome of actions in certain contexts.
An architecture which combines the two components can predict the outcome of an action
and is able to assign a value to that outcome. So far, value functions and internal models
have been investigated as the basis of goal-directed selection of motor actions (including
speech motor control) in the brain (Doya 1999, 2000). I adapt this usage of forward models
and value functions to language, because (despite the many differences verbal and non-
verbal actions might have in terms of their complexity and in terms of their processing
in the brain) both types of actions need to be selected in dependence of a context and
with respect to a goal (Austin 1961) and, therefore, might also have similarities in terms
of mechanisms and brain structures involved. Such similarities have also been proposed to
exist between the processes of understanding people’s intentions in using verbal action and
in using non-verbal actions (Wolpert et al. 2003). This proposal is supported by the find-
ing that the understanding of the intention of non-verbal actions of other persons precedes
the understanding of the verbal actions of other persons ontogenetically (Tomasello 2003).
There is also evidence supporting the view that understanding another’s intentions (e.g.
in gestures) also precedes understanding another’s utterances phylogenetically (Rizzolatti
and Arbib 1998, Arbib 2000).

There are a number of recent neurophysiological and imaging studies on the represen-
tation of value functions and internal models in the brain (Breiter et al. 2001, Seymour
et al. 2004, Haruno et al. 2004, Tanaka et al. 2004, Watanabe et al. 2003, Kawagoe et al.
2004, Imamizu et al. 2000). I will discuss these studies in relation to our model and suggest
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where the value function and the internal model are located in the brain. The evidence
points towards an involvement of especially the basal ganglia (Breiter et al. 2001, Seymour
et al. 2004, Haruno et al. 2004, Tanaka et al. 2004, Watanabe et al. 2003, Kawagoe et al.
2004), the cerebellum (Ito 1970, Kawato 1999, Doya 1999, Imamizu et al. 2000), the hip-
pocampus and some cortical regions. The model therefore can give a first account of the
involvement of the basal ganglia and the cerebellum in higher level linguistic processing
and can be used to explain the effects on those processes of lesion in these areas. The
model can also be used to interpret related functional imaging studies. It can also be used
to design studies to test the proposed relation of the main components of our architecture
to real brain structures.

5.2 Theoretical Framework

5.2.1 Value Function and Forward Model

Instead of the term goal I use the terms desire and intention, because I need to distinguish
states of the world, which the agents know to be beneficial for themselves (desired states)
from states of the world they are actually trying to reach by some action or utterance
(intended states). An agent in our theoretical framework has many desires. However, only
some of these desires actually become intentions1. This happens when the agent tries to
fulfill a desire by some suitable action. In my model I represent desires as valued states
of the world and intentions simply as states of the world which are linked to some verbal
or non-verbal action that is made to bring this state about. The values of the desired
states are estimations of how good it is for an agent to be in such a state. The value is a
positive or negative real number expressing how much the agents desires a particular state.
A function mapping every state onto such a value is called a value - function (equation
5.1).

V π(st) = Eπ{
∞∑

k=0

γkrt+k+1} (5.1)

The value function is defined in terms of future rewards that can be expected, or, to
be precise in, terms of the expected return (Sutton and Barto 1998). The expected return
is the sum of discounted rewards, which can be expected in and after the given state st.
V π(st) is the estimation of the value of state st at (discrete) time step t under a policy π. A
policy is a function mapping every state onto an action. The choice of action has a strong
influence on the next state st+1 of the world. However, in multi-agent systems (which I use
in our experiments), the actions of the other agents also influence the future states of the
world. As long as the actions of the other agents are not (yet) deterministic, as is usually
the case as long as agents are still learning, the values of the states are also not stable; and

1I use desire and intention as technical terms here and do not claim these to be real desires and
intentions. However, I think, that a certain analogy can be seen.
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Figure 5.1: A simplified graph of how utterances (and other actions) are selected in our
model: The forward model predicts the context-depended utterance effects and the value
function determines whether the utterance is selected on the basis of how desirable the
effect is.

so is the policy π which depends on the values of states. With the converging of the other
agent’s actions, the policy π can also converge, and so can the expected return Eπ{...}.

The γ-parameter is the discount factor, which determines the importance of the values
of future rewards for the evaluation of the current state. The higher the value of γ is, the
more importance is given to future rewards. The value function allows to determine the
desired state of every agent in every state: It is the state with the highest value. However,
not every state can be reached from every other state. In fact, only the context state st

and those few states which can be produced from st through a single action in a single
times step are accessible. Therefore, the value function only needs to compute the value
of those states which can be reached from the current state.

Given the value function, verbal and non-verbal action can be selected with respect
to how much the consequence of the action is desired, i.e. a speaker uses a certain action
because he desires the effects he expects the action to produce in the present context. The
type of internal model which predicts the consequences of actions in a certain context is
called forward model (Jordan and Rumelhart 1992). Within motor control, forward models
are used to predict sensory consequences from efference copies of issued motor commands
(Kawato 1999). In the model described in this paper, I use forward models for the selection
of verbal actions in the following way: the outcome of all possible actions in the present
context is predicted with the forward model and then the action which produces the most
desired effect is chosen.

In general, the effect of actions and especially of utterances is not deterministic, but
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probabilistic. This is an important problem, as it also affects action selection (do we
rather select an unlikely effect which is very much desired or a very likely effect which is
less desired?). However, in this chapter I limit myself to dealing with the general principles
of the acquisition and utilization of internal models in language use and do not deal with
probabilistic effects. Also, I do not deal with the fact that the effect of verbal actions on
the observable world are indirect. They are achieved by a more direct effect on the (only
indirectly observable) mental state of the addressee. To deal with this phenomena in a
realistic manner would involve a method of computing the mental state of the addressee
from his observable behavior and to relate this state to the effect of the utterance.

The forward model F used in this study does not deal with these problems. F simply
predicts a subsequent state s∗t+1 based on a current state st (context) and a non-verbal or
verbal action (utterance) ut.

s∗t+1 = F (st, u
∗
t ) (5.2)

What subsequent state an utterance can produce is one of the things that has to be
learned by a language learning child. This learning involves, among other things, the
observation of the utterances of other speakers (including the contexts and consequences
of these utterances) and the capability to generalize from their utterances to the effects
that the learner may expect from his own utterances. Further, the learner can observe the
effects of his own utterance and also make use of that information for the fine tuning of his
internal model of language use, e.g. he can experience whether or not a certain utterance
in a particular context produces the predicted effect. Irrespective of whether the learner
observes or speaks himself, in both cases the experienced context-dependent effects of the
utterances can be used to train the internal model of language use.

Given the forward model F , I model language production (utterance selection) with a
function that selects the verbal action which produces the most desirable state (equation
5.3).

ut = argmaxuV (F (st, u
∗
t )) (5.3)

This function returns the u from all possible u which, given the context st, is mapped
by the forward model F into a state s for which the value function V returns the highest
value. This equation does not use an action-dependent component of the reward (action
cost) since I do not impose any costs for actions themselves).

To understand the communicative intention of a speaker, an addressee can also use
the forward model. If the forward model is applied to the utterance with which he was
addressed and the context in which the utterance was made, the result is the effect which
the utterance has been learned to produce in that context. Since human speakers share
an understanding concerning which effects are produced by which utterances in which
contexts, the result is likely to be the effect which the speaker intends to accomplish, i.e.
his communicative intention.
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Learning Algorithms

The value function is implemented as a neural network. To train this network, I used
TD(0) reinforcement learning (Sutton 1988). In TD-learning, the so-called TD-error gives
the distance and direction to the correct prediction and, thus, can be used to change the
weights of a neural network. The TD-error δ is computed by subtracting the current state
value of state st V (st) from the sum of the reward rt+1 and the value of the next state
V (st+1) times the discount factor (equation 5.4). Given δ, the value of the state V (st) is
changed to V (st) + αδ, where α is the rate of change (equation 5.5).

δ = rt+1 + γV (st+1)− V (st) (5.4)

V (st)← V (st) + αδ (5.5)

The forward-model, mapping utterances and game-states (contexts) onto game-states
(consequences) is implemented by a single-layer perceptron. I use supervised learning to
train this forward model. In supervised learning, the output of the network yk is subtracted
from the desired output y∗k to compute the error ek (5.6). The weight change ∆wik is then
calculated by multiplying ek with the value of the input neuron xi and the rate of change
α (equation 5.7). Then ∆wik is used to update the weight (equation 5.8).

ek = y∗k − yk (5.6)

∆wik = αekxi (5.7)

wik ← wik + ∆wik (5.8)

From this theoretical framework I derive the following two hypotheses: (i) In an envi-
ronment where only certain accomplishments are rewarded agents equipped with a value
function (trained with reinforcement learning), a (rule-based) forward model, and a set of
verbal and non-verbal actions can learn to behave in an optimal way, employing language
and other actions whenever appropriate. (ii) In such an environment an agent equipped
with an optimal value function and a rule-based model for non-verbal actions can learn to
use language to achieve his goals by learning to express his desires and to understand the
desires of other agents.

5.3 The Acquisition Environment

I test our hypotheses about language acquisition and communication in a simulation of a
multi-agent-game. The goal of this game is to obtain food through verbal and non-verbal
action. Food grows in certain intervals on trees. The present simulation uses three trees
T1...T3 growing three types of food. Every tree Ti can hold maximally 5 pieces of food.
Therefore, a tree can be represented by a 5-dimensional binary vector t. The six possible
states of such a tree vector, coding the number of food pieces (0 ... 5), is shown in equation
5.9.
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Further, there are three agents A1...A3. Every agent Ai can store 5 pieces of each of
the three food types and can, therefore, be represented as a 3 × 5 matrix A. The coding
of the number of food piece of every food type in the agents store is analog to the coding
of the trees.

Thus, a state s of the game is represented as a 6-tuple consisting of three 3× 5 binary
matrices and three 5-dimensional binary vectors (equations 5.10,5.11 and 5.12).

s =< A1, A2, A3, T1, T2, T3 > (5.10)

Ai = A (5.11)

Ti = t (5.12)

The agents interact with the world by their perceptions and non-verbal actions and
with each other by perception and non-verbal as well as verbal actions. At every point
in time t, every agent can perceive the complete state st. Time is supposed to advance
in discrete jumps, from t1 to t2, t2 to t3 etc. Each two successive times ti and ti+1 are
separated by an action ati of one of the agents, so that the state sti+1

at ti+1 is the result
of the action ati producing this effect in the state sti at ti. To learn the effects agents need
to store the complete observable game state (including all utterances). To do this, every
agent has his own short term memory device capable of storing game states for a constant
number m of time steps.

Always after a certain time interval one piece of food gets digested, i.e. it disappears.
Once the amount of food in the game is below a certain threshold, 3 pieces of food grow
simultaneously on one tree. Because of this design, the agents need to act and cannot rest,
after they have gained a sufficient amount of food items. Agents never starve to death. But
for every time step in which they do not have any food, they get a very negative reward.

Agents can perform one of the following actions:

• harvest a tree (take down all the food)

• give one piece of food to another agent

• ask another agent for a piece of food of a certain type

• no action

Agents are allowed to perform no action, because, in cases where their current situation
cannot be improved by any action, I do not want to force them to deteriorate because they
have to do something. Also it appears to be a realistic approach that agents can do nothing
unless an action improves their situation.
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Figure 5.2: This shows the initial game state. The long yellow standing rectangles are
the trees, each holding 3 pieces of food. The grey squares are the agents. They have the
capacity of storing 5 pieces of each food type. The bar on the right displays scores and
utterances. The green bars show, which agents cooperated with which other agents in their
last move.

At each transition between two successive times, only one agent can perform an action.
This agent can either perform one non-verbal or one verbal action. Generally, the agents
take turns. However, when an agent asks another agent for a type of food, the normal
order of play is suspended for one time step and it is the turn of the addressee to give the
desired object to the speaker.

The goal of the agents in the games is to have one piece of each food type at all times.
Therefore, the reward function was designed in the following way: Each agent gets a reward
at every time step. If an agent has at least one item of every food type, he gets a reward
of +3, otherwise he gets −1 for every food type which is missing in his store at that time.

An utterance of an agent is defined by its content (i.e. the word which is used), its
speaker, and its addressee. The context of each utterance is the complete state of the
game as described above. An agent can only address one of the other agents, never both
of them, but the third party can observe every utterance that is made. This is important,
because in our setting language is also learned by observing the context-dependent effects
of the utterances of other agents. The word used in an utterance has to be one item of the
vocabulary of the language of the game. In the present study, it consists of the three words
triangle, square, and diamond.

To choose their actions or utterances, the agents predict the outcome of all possible
actions in the present context with a forward-model. The forward model is rule-based for
no action, harvesting trees, and donating objects, i.e. the agents do not have to learn the
context dependent effects of these actions. With respect to verbal actions, our simulation
uses two types of agents. The first type of agent employs a rule-based dialogue system
to understand and produce utterances. The second, and more interesting type uses the
neural network-based architecture described above.

This architecture uses two types of data for learning. On one hand it learns by observing
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Figure 5.3: This shows an arbitrary state during the early stages of training. The last
action of agent 1 was to ask agent 2 for the square. Obviously, this is not the best move.
A better move would be to harvest the square tree, as with this action, the agent would
get 3 squares instead of one.

the context-dependent utterance effects of other speakers. On the other hand, it learns by
trial-and-error, i.e. by observing the context-dependent effects of its own utterances.

The neural network-based forward model trained with this data is gradually improving
its ability to map context and utterance onto effects. The better the forward model is
trained, the better it can be used for language production and language comprehension.

For language production, the predicted effects of the verbal actions are evaluated with
the value function (this is also the case for dialogue system-based agents). The verbal or
non-verbal action which will bring about the state with the highest value is chosen.

In language comprehension, the language learner, when addressed with an utterance,
applies his neural network-based forward model to the utterance and the game state. The
network then estimates what effect the utterance usually has in the given context. Using
this method the learner computes the intention from the utterances and the context. In
other words, the language learner understands the utterance, because he wonders what
effect, according to his own experience, such an utterance has in the present context.
Using the present state of the game and the estimation of the desired state of the speaker,
the addressee then uses a rule-based algorithm to compute which action would bring this
desired state about.

In the simulations reported in this chapter, I have decided to make the addressee fulfill
the comprehended desire of a speaker, i.e. they give the desired object to the speaker even
if they need it themselves. Alternatively, I could have made the agents cooperate only if it
would be beneficial for themselves and make them develop a more strategic way of playing
the game. This, however, would mean that the focus of this study would shift towards
an investigation of cooperation in multi-agent systems, similar to the work of Grim and
Kokalis (2004) or Mirolli and Parisi (2004). But cooperation is not the issue of the study



84 CHAPTER 5. EXPRESSING DESIRES

described in this chapter. Here I try to model the situation of a child that learns language
through interaction with its parents. In such a situation, cooperation can be assumed
to be the general attitude that agents have towards each other. The simulations are not
intended to investigate the effects of non-verbal cooperation or non-cooperation, but to
investigate a general mechanism of utterance selection, as well as the advantage a child
gains by learning to communicate verbally with adults, given that these adults are willing
to cooperate with the child and with each other.

In chapter 6, I will raise the issue of cooperation and strategic game play to motivate
the selection of assertive speech acts, but then this issue is raised to explain the effect of a
type of utterance and is, therefore, more relevant to a neural theory of meaning and use.

5.4 Simulations

5.4.1 Value Function

During the training of the value function agents learn which states are desirable. In that
training phase they use a rule-based forward model, which computes the context-dependent
consequences of all four kinds of actions (including verbal actions). Because of this, the
value function enables the agents to decide in which situations it is better to harvest,
donate, speak, or simply do nothing.

At the very early stages of the training, agents select no action or senseless actions very
often (such as donating objects to other players without being asked). Sensible, but subop-
timal actions, as described in figure 5.3, occur in the intermediate stage of training. After
training, no more suboptimal action can be detected. Agents use language if appropriate,
harvest trees whenever this was the best possible action, and almost completely stopped
choosing no action (as one would have expected of a successful simulation since in most
cases some action or request does in fact improve the state of agent). Figures 5.4 and 5.5
demonstrate the effect of the γ-parameter. The value function of each agent will compute
positive values for objects in the store of this agent and negative values for objects in the
store of other agents. With γ = 0.9, the value function computes positive values for more
than one object of the agent, although the reward is given only for the first object. This
is not the case for γ = 0.1. When the γ parameter is set this low, then agents only take
immidiate rewards into account instead of collecting food items that they can use in the
long run.

The TD-error decreased very fast in the beginning (figure 5.6) and optimal performance
could already be observed after about a million time steps. In the end, agents performed
approximately at the level of a human player or even better.

5.4.2 Language Learning

In the second type of simulation, a neural network based forward model was trained us-
ing the previously described learning algorithm. The task for the network was to learn
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the context-dependent consequences of utterances. This network represents the linguistic
knowledge of the agent. In our simulation, these consequences are assumed to be conven-
tional within a language community. An agent is placed within a community of other agents
and has to learn the conventions from them. For this task, the language learner is placed
in an environment with two agents who use the rule-based dialogue system to produce
and understand utterances. These rule-based agents have no interest in the learner-agent’s
learning of language. They do not perform any non-verbal actions or utterances with the
goal to teach language to the learner. Instead, the learner-agent can learn language by
observing the language use of the rule-based agents and by trial and error. The rule-based
agents’ knowledge about the conventions of their language is hard-coded. They act ac-
cording to a set of rules translating their desires into utterances and computing the state
desired by another speaker from the utterance they are addressed with. Their verbal ac-
tions and their reactions to verbal actions of other agents make it possible for the language
learner to acquire the verbal repertoire they use. At the beginning of the second type
of simulation, the language learner’s value function (the neural network which computes
values of the states) is already fully trained. With this working value function, this agent
knows which states should be achieved. His language capabilities, on the other hand, could
best be described as involving the production of random utterances with no understanding.
Although the learner knows which state should be achieved, he has no idea which of the
utterances are likely to bring this state about. This leads to situations where e.g. he needs
the square of one agent, but addresses another one and asks him for the triangle. Figure 5.7
illustrates another situation where the language learner asks an agent for an object which
the addressed agent does not even have. This is because in the early stages of training the
learner has no or no accurate representation of the context condition for successful use of
an utterance and also does not know its conventional effect.

The language understanding of the learner faces the same problems. Similar to the
previous simulations during which the value function was trained, all agents, including
the learner, are forced to cooperate when being asked for a food item. For the language
learning agent this means that he has to comply to the request of another agent as well as
his linguistic capabilites allow him to. If he does not understand the request, and shows no
reaction, or if he shows the wrong reaction, he is not punished. In early stages of training
the learning agent usually shows no reaction when being asked for a food item, because he
maps the utterance to the wrong state, i.e. not to the state that is desired by speaker. Often
the state that the learner identifies as the one desired by the agent who has addressed him
is not accessible from the state in which the utterance takes place. In the rare cases where
it is accessible the agent does what is needed to bring about the state he has identified
as the desired one. While the training progresses, however, reactions are more and more
in accordance with the utterances he is addressed with. Also the learner’s utterances are
more and more attuned to the situation and his needs. After training, language production
and comprehension was optimal and no difference between teacher and learner could be
detected any longer. As can be seen in figure 5.8, the prediction accuracy increased very
fast to a level close to 100 %.
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5.4.3 Learning without Observation

An internal model of utterance effects makes it possible to learn these effects also by
observing the language use of other agents. To see the actual benefit of observation-based
learning I compared (i) learners who do not learn by observation (i.e. they train their
forward model only by observing the effects of their own actions) with (ii) learners who
learn by observation as well.

As a first measure of successful learning I counted the number of wrong uses of ut-
terances, i.e. utterances which did not match the context conditions (e.g. an utterance in
which another agent was asked for a certain object which he did not have). The ratio of
wrong utterances for both types of agents is 0.5 in the beginning of the simulation (see
figures 5.9 and 5.10). For agents who do not use learning by observation, the ratio stays
at this level until 10 million time steps. At 50 Million it is still around 0.1 and it finally
reaches 0.0 at 80 million time steps. For agents which do use observation learning, the
ration drops very fast in the beginning, being below 0.2 after 10 million time steps. After
50 million time steps the ratio for this type of agents is already below 0.05, reaching 0.0
before 80 million time steps. Although the agents who use observation learning learn a lot
faster, both types of agents are free of errors after approximately the same number of time
steps.

I also compared the performance (in terms of score) of the two learning types. As can
be seen in figure 6.1 the performance of the observation learners increases immediately and
very fast, while the agents without observation learning have a slower start and perform
worse for about 170 million time steps. After that, there is no significant difference between
the two learning types.

5.4.4 Muted Agents

Although I constructed the simulation environment to make it beneficial for the agents
to use language, I wanted to test how much agents gain by communication. Therefore, I
modified the simulation in such a way that agents could no longer select verbal actions
to fulfill their desires. I ran 10 simulations for 10 million time steps with and without
language and computed the mean value of reward received by all agents per time step.
With language, agents received an average reward of 0.843, without language they received
-1.913 (figure 5.12). Using the values of the 10 runs, I performed a paired t-test of the
significance of the difference. It revealed a highly significant p-value of 0.0000003928.

5.5 Discussion

5.5.1 Summary of Simulation Results

I have demonstrated that in a game environment where only certain accomplishments are
rewarded, agents equipped with a value function (trained with reinforcement learning), a
(rule-based) forward model, and a set of verbal and non-verbal actions can learn to behave
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in an optimal way, employing language and other actions whenever appropriate. I have
also demonstrated that in such an environment an agent equipped with an optimal value
function and a rule-based model for non-verbal actions can learn to use language to achieve
his goals by expressing his desires and to understand the desires of other agents.

Furthermore, I have compared this model with one that does not learn by observation.
The small difference between value function learning with and without observation can be
explained by the extreme simplicity of the language used in this study. I predict that the
more complex the language used by the agents is, the higher the advantage of observation
learning would be.

In general the number of time steps required for the training of both, the value function
and the forward model, is very high. For the forward model the high number can be ex-
plained by the fact that the model learns the effect of utterances without prior knowledge
or subfunctions. Further, the function F () uses the complete state of the world as argu-
ments and result (maps context states and utterances onto the next state). To create a
more realistic model it would be necessary to incorporate conceptual knowledge and mech-
anisms such as shared attention to a particular part of the world. These changes might
reduces the learning rate immensely, because instead of mapping complete worlds onto
complete worlds, the model would just have to learn a change in propery (location) of the
object of significance. However, neither for the forward model nor for the value function
was optimization of the learning time the purpose of this study. So I have not investigated
how changing the values of various parameters reduces the number of time steps necessary
for learning. An actual comparison of the speed of word learning by a model of this type
and the learning rate of children would have to pay more attention to these kind of factors.
Such a study would be very interesting, but is beyond the scope of this thesis.

5.5.2 Basal Ganglia and the Value Function

The theoretical framework of language use introduced in this paper proposes two major
components: a value function to predict the value of states and an internal model to
predict which states can be brought about by which utterances. Neural correlates to both
components can be found in the literature.

To find brain areas involved in the computations described by the value function, func-
tional imaging experiments need to be considered, which identified regions for reward pre-
diction. In experiments where subjects need to act to maximize the reward, they often
need to predict the reward (e.g. as the consequence of a certain action). The task of the
value function is also to predict a reward - the reward for a certain state. Brain activity
correlating to reward prediction was found in the striatum in fMRI studies (Breiter et al.
2001, Seymour et al. 2004, Haruno et al. 2004, Tanaka et al. 2004). Also, reward predictive
modulation of striatal neuron firing was shown by Watanabe et al. (2003) and Kawagoe
et al. (2004).



88 CHAPTER 5. EXPRESSING DESIRES

5.5.3 Cerebellum and the Forward model

In our architecture, the effects of verbal and non-verbal actions are predicted by the in-
ternal model. Based on neurophysiological data already Ito (1970) suggested that internal
models predicting the effects of motor commands are represented in the cerebellum. Recent
neurophysiological and imaging data supports this theory (Kawato 1999, Imamizu et al.
2000). Also, current neural models of linguistic processing identify the cerebellum as the
neural site representing an internal model used in speech motor control (Guenther 2001).
To regard the function of the cerebellum within linguistic processing as limited to motor
control is a result of the traditional view of the cerebellum. In contrast to this tradition, I
suggest that the cerebellum is a main component of the complex mechanisms involved in
predicting context-dependent utterance effects that are required for appropriate language
use. Several kinds of evidence support this view.

The first kind of evidence, summarized by Doya (1999), are anatomical, physiological
and computational data, suggesting that major brain structures are not to be distinguished
mainly by their cognitive domain (motor control, language, memory, attention etc.), but
by their method of learning (their learning algorithm). For the cerebellum the method
of learning indicated by this data is supervised learning. Supervised learning, again, is
the most suitable algorithm for the acquisition of internal models (Kawato 1999). If it is
the case that the cerebellum is generally the neural structure acquiring and representing
internal models, then it is likely that internal models required for higher linguistic functions
are also represented in the cerebellum (at least to some important part).

Second, clinical data also points towards an involvement of the cerebellum in the pre-
diction task modeled in this study. Note that the internal model is used by the agent to
select the appropriate utterance for a certain goal and a certain context. A patient without
such an internal model would still have some basic linguistic knowledge (e.g. would be able
to name objects). However, he would not be able to predict language effects and, therefore,
would not be able to use language appropriately. This aspect of use, the so-called prag-
matic aspects of language, are known to be impaired in patients with Autism or Asperger
syndrome. While patients with Autism often have no or strongly impaired language, in-
dividuals with Asperger syndrome, a high functioning2 variant of Autism, have a normal
command of language. Yet they fail to use this language capacity to engage in interactive
communication.

With autistic patients, anatomical abnormalities have been identified in many brain
areas. These include the cerebellum (Courchesne et al. 1994) and the hippocampus, but
also other areas, such as frontal lobes, parietal lobes, the amygdale, and the brain stem.
Further, decreased Purkinje cell density in the cerebellum is a relatively constant obser-
vation across post-mortem studies of autistic patients (Williams et al. 1980, Bauman and
Kempner 1985, Ritvo et al. 1986, Bauman and Kemper 1994, Bailey et al. 1998). Purkinje
cells, on the other hand, have been shown to be important for internal models (Kawato

2By convention, if an individual with autism has an IQ in the normal range (or above), they are
said to have high-functioning autism (HFA). If an individual meets all of the criteria for HFA except
communicative abnormality/history of language delay, they are said to have Asperger syndrome (AS).



5.5. DISCUSSION 89

1999).
Besides these findings in Autists and Asperger patients, there is another impairment

suggesting an important role of the cerebellum in the neural representation of the internal
model: Cerebellar mutism, as described by Turgut (1998), is a specific disorder in which a
complete but transient loss of speech occurs following resection of intrinsic posterior cranial
fossa tumors or cerebellar hemorrhages, or upon trauma. Trauma to the cerebellum is the
most common organic cause of mutism (Gordon 2001). As cerebellar mutism is usually
followed by dysartria, it has often been regarded as an extreme disorder of speech motor
control. However, a systematic study of Riva and Giorgi (2000) showed, that, depending
on the site of the lesion, cerebellar mutism can also be followed by higher order language
disorders comparable to agrammatism, and disorders comparable to those of autism.

The third kind of evidence comes from functional imaging and other studies showing
that the cerebellum also plays a major role in the processing of higher linguistic levels
(Desmond and Fiez 1998, Papathanassiou et al. 2000, Marien et al. 2001, Noppeney and
Price 2002, Xiang et al. 2003, Stowe et al. 2004, Justus 2004). If our architecture is correct,
and the cerebellum is one of the main neural sites of the internal model for language use,
then it is not unlikely that these cerebellar activations found in those experiments concern
the use-related aspects of linguistic competence.

5.5.4 Involvement of Other Brain Areas

On its own the cerebellum appears to be a short term prediction component which is
unlikely to be able to handle the long term effects of utterances. However, loops between
cortical areas (such as the cortical language areas) and the cerebellum could handle these
long term effects. Functional connectivity between frontal areas (Broca’s Area) and the
cerebellum shown in a functional imaging study (Tamada et al. 1999a) supports this view.
Also, an internal model predicting context-dependent utterance effects is likely to involve
many other linguistic skills, which are likely to be represented in cortical areas, such such as
BA 44/45 and BA 22. Other cortical areas involved in the understanding of communicative
intentions might be those associated with mind-reading (Baron-Cohen 2004, Hill and Frith
2003).

5.5.5 Alternative Models of Language Use

In my approach agents are capable of generating their own goals, based only on rewards
given in certain states. Unlike any other approach known to the authors, the modeled
system has to learn when it is useful to speak, instead of just keeping silent or performing
a non-verbal action. This is an important feature of humans and human communication.
Humans are not simply reactive systems. I can initiate conversations, ask questions when
I need information, or talk just for social reasons. Models of language use which are not
goal-directed lack this important capability. In most current dialogue systems, for example,
questions trigger the search for some information, which is then made available in some
form to the querier, possibly in the form of an utterance phrased in the same language as
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the question. In general, such systems cannot understand speaker’s intentions, nor can they
form appropriate intentions themselves. The capability to handle the goal-directedness of
language in production and perception appears to be one of the most essential features of
the language faculty in the human brain. Purely reactive systems (as most systems are
until now) cannot serve as plausible models of the cognitive architecture of the human
communication system.

Goal-directedness can also be modeled without a predictive component (such as an in-
ternal model) with simple reinforcement learning. However, it has been argued by Chomsky
(1959), that language cannot be learned by simple reinforcement learning3. Further, lan-
guage is learned to a large degree by observation; and a device is needed which can learn
context dependent utterance effects independently of the reward these effects produce. In
other words, the language faculty must be independent of the knowledge about which states
of the world are desirable, or how much. This independence is upheld by our theoretical
framework, which - in contrast to simple reinforcement learning - uses the value function
and the internal model as two interacting, but separate components.

With a value function as one component, an internal model of the environmental dynam-
ics is necessary for utterance selection. Although I used forward models in the simulations
reported in this thesis, inverse models might be involved too. Inverse models can calcu-
late necessary feed-forward motor commands from desired trajectory information (Kawato
1999). Adapting this definition to language, inverse models would map desired states and
context states directly into utterances4, i.e. they would calculate the action necessary to
accomplish the most desired state in the present context. The problem of inverse models
for this task is that not all desired states (probably only very few of them) can be reached
by some action from the current context state. States which cannot be reached by an
action need to be ruled out computationally. For an environment of a similar complexity
as the one in our study (which is still quite simple in comparison to the real world), such
computations are very expensive.

The alternative I have chosen in our approach - the combination of value function
and forward model - selects utterances by predicting the effect of all possible actions or
utterances and selecting the utterance or action which brings about the effect the agent
desires the most. Of course, for natural language it is an impossible task to compute the
expected effect of all possible utterances. There are infinitely many of them; therefore,
such a computation could not be carried out in finite time. If, however, in the brain,
the linguistic constructions for which the effects are computed by the forward model are
triggered by context cues and properties of the desired state, then the forward model
approach seems to be more plausible than the inverse model approach.

Our view is also supported by research in language acquisition. Children appear to
learn the use of utterance in terms of relations between context, utterance, and effect
(Tomasello 2000, 2003).

3Although his points are still quite controversial.
4In contrast to the forward model, which is used to predict the outcome of all possible actions in the

present context, so that the action which produces the most desired effect can be selected.
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5.6 Conclusion

In this article, I have introduced a neural model of language use which is based on the
combination of a value function and an internal model. In this approach, the value function
determines which state of the world is the most desirable and the internal model computes
which verbal or non-verbal action is the best to reach this state. I showed that such an
architecture is capable of deciding when to use (a simple form of) language and selecting the
appropriate utterance with respect to the goal and the context. Various kinds of evidence
support the view that this is the brain’s way of using language and currently I do not see a
good alternative to this approach. Furthermore, there is evidence indicating that the basal
ganglia are the major component in the brain’s implementation of the value function and
that the cerebellum plays at least an important role in the representation of the internal
model.

5.7 Technical Details

5.7.1 Rules

This section gives the details of the rule-based language. Agents using the rule-based
language use the rules both for language production and for language comprehension.
Note that all agents (including the rule-based speakers) use a neural-network based value
function to select actions.

The algorithm for the rule-based language would first test whether the last action was
a verbal action. If this is the case, a reaction is required. If no reaction is required, the
standard action selection algorithm would be carried out. To minimize computational and
coding effort, I have used the rule-based forward model for non-verbal actions to predict the
outcome of verbal actions for the rule-based speakers. To do this I let the rule-based forward
model for non-verbal actions predict the outcome of taking objects from other agents (this
type of prediction is blocked in my neural network-based agents). If the state to which
such an action would lead gets the highest value (using the argmaxuV ()- function), the
non-verbal action is transformed by a function generate utterance into a verbal action.
This function transforms the parameters of the non-verbal action into parameters of a
verbal action approximately as in equations 5.13 - 5.15.

addressee← object source location (5.13)

speaker ← object target location (5.14)

content← object type (5.15)

If a reaction is required, the rules compute the required reaction as in equations 5.16 -
5.18.

object target location← addressee (5.16)
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object source location← speaker (5.17)

object type← content (5.18)

There is a further set of rules to compute the non-verbal reactions of the neural-network
based speakers. When they are addressed, they use the neural network-based forward
model to compute the desire of the speaker, i.e. they compute the desired state. However, as
the transformation of a desire into an action is not a linguistic problem, our simulation uses
a set of rules to compute the action which fulfills the desire. This is done by comparing the
desired state with the current state and identifying the object with the changed position.
After having computed the position of this object in the current state and the position in
the desired state, the transformation into non-verbal action parameters is straightforward.

5.7.2 Parameters of the Simulations

The neural network implementation of the value function maps states of the game to real
numbers. The input layer consists of one neuron for every binary value of the vectors and
the matrices of s. The output of the network is the linear combination of the weighted
binary inputs. As exploration mechanism I used a soft-max method. I tested the training
of the value function for γ = 0.1, 0.3. 0.5, 0.7, and 0.9. The lower the γ-value the faster
was the decrease of the TD-error and the higher the γ-value, the faster was the increase in
performance (with respect to score) and the better the performance in the game in total
(see also figs. 5.4 and 5.5). Therefore, I chose to use a γ-value of 0.9. The learning rate of
the value function αV was set to 0.001. The softmax exploration algorithm used a method
in which random numbers were added to the values of the states. In the beginning of the
simulation, these values were selected from between a maximal value v and 0. Until the
end of the simulation v was linearly decreasing to 0. As initial value of v I chose 4.

The neural network implementation of the forward model is a single-layer network with
two types of input: the first type of input is the complete state s. The input layer, therefore,
has one neuron for every binary value of the vectors and the matrices of s. Further, the
input layer has a binary vector to code the used one word sentence. The output of the
model is, again, the complete state of s, coded by one neuron for every binary value of
the vectors (representing the trees) and the matrices (representing the agents). No hidden
layers are used. The learning rate of the forward model αf was set to 0.00005. The
threshold θ for the output neurons was 1 in all networks and all simulations.

The simulation parameter regulating the number of food items in the game, were the
minimal number of items in the game (no = 9), the number of items in the game at the
very beginning (ni = 9), the number of objects which grow on a tree when the item number
is below no (go = 3) and the number of time steps after which one objects of every agent
is digested (do = 5).

Further parameter defining the game were:
number of agents: 3
number of trees: 3
number of food types: 3
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number of possible items on a tree: 5
number of possible items of one type an agent can posses: 3
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Figure 5.4: This shows the strength of the synaptic weights for the value function after 20
million time steps for γ = 0.9. Every horizontal row represents the weights of one agent
for computing the value function over the game state.

Figure 5.5: This figure shows the strength of the synaptic weights for the value function
for γ = 0.1 (20 million time steps).
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Figure 5.6: This is the development of the TD-error with γ = 0.3. The figure shows the
average error of 5 runs.

Figure 5.7: This shows an episode during language learning. The language learner (agent
2) asks agent 1 for the square, although agent 1 does not have one. This is an example of
the language learner not being able to understand the context conditions and the normal
effects this kind of utterance has.
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Figure 5.8: The prediction error of language learning changes over time. This graph shows
the percentage of correct predictions for five runs (10 million time steps each). The error
decreases very fast in the beginning and then slowly reaches 0.

.

Figure 5.9: This figure shows the average ratio of wrong utterances for five simulations in
which only trial-and-error learning and no learning by observation was used.
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Figure 5.10: This figure shows the ratio of wrong utterances for cases in which learning by
observation is used in addition to trial and error learning.

Figure 5.11: This figure shows the performance of a language learner which uses v-function
and forward model, but no learning by observation (black line) in comparison to a language
learner which uses v-function and forward model, and learns by observation as well (grey
line). The lines represent the average development of the score for 5 simulation runs. In
these simulations, the reaction of the learner to request for objects is switched off, because,
as soon as he understands other agents, he also has to give objects away. This would result
in a massive drop of the score.
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Figure 5.12: This shows the distribution of average scores of 10 runs. The left box shows
the values for simulations in which the agents where allowed to communicate. The right
box shows the value for simulations during which communication is suppressed.



Chapter 6

Speech Acts

6.1 Increasing the Speech Act Variety

In this thesis, language acquisition and processing in the brain is modeled within the
theoretical framework of goal-directed systems. This perspective puts non-linguistic goals
- the reasons why we talk in the first place, but also the purpose of each single utterance
- into a central position and regards other aspects of language processing as a means to
an end. One main strength of this approach is that it allows a natural analysis of how
humans are able to generate utterances to accomplish their non-linguistic goals. The acts
of pursuing such non-linguistic goals were called perlocutionary acts by Austin (1961). So
far, I have only dealt with one sort of perlocutionary act - the act of getting an addressee to
give the speaker an object. The corresponding speech act type is a request. In this chapter,
I will show that my theoretical framework (using internal models and value functions) can
also deal with other major types of speech acts: questions and assertions. The theory
can explain how humans select among different types of speech acts depending on the
context and their desires. To accomplish this extension of the theory, I will introduce a
fundamental distinction which I have ignored so far: the distinction between the states of
the world and the knowledge of the agents about this world. This distinction is essential
for the modeling of meaning processing in the brain, since in the end it is the information
about the world that one wants to obtain when asking questions and that one wants to
share when making assertions. In other words, the possibility of not having information is
an important presupposition for a theoretical investigation on these speech acts.

I will use several different game environments in this chapter to illustrate different
problems that have to be dealt with while dealing with different speech acts and to describe
how they can be solved using internal models and value functions. These different games
are all related to the game used in chapter 5, but often more abstract and I will focus only
on the particular relevant part of the games.

99
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6.2 Questions

6.2.1 Knowledge

In the model described in chapter 5 a request is triggered if the value function indicates
that a state of the game in which the speaking agent would have a certain object has a
higher value than the current state in which this agent does not have this object while
another agent has it. The intended effect of questions is of a different type: it is not a gain
of objects, but a gain of knowledge.

Of course, asking questions to gain knowledge and making statements to provide knowl-
edge only makes sense if there are states of affairs in the environment that are unknown
to some of the agents while known to others. The simulations reported in chapter 5 were
designed in a way that every relevant property of the environment was directly accessible
at every point in time, i.e. the agents always knew everything they needed to know about
the state of the environment. In this chapter, I will introduce properties of the environ-
ment which are not always directly accessible. To obtain knowledge about these properties
agents need to ask questions.

The explanation that agents ask questions because they want to obtain knowledge is not
sufficient in a theoretical framework in which all actions are performed in order to increase
the total reward - it needs to be explained in what way knowledge increases the reward
the agent will receive. The simplest way of doing this would be to directly reward the gain
of knowledge. Such an approach is biologically not implausible. It would correspond to an
instinct of curiosity. Curiosity is a general drive to obtain knowledge (about certain things)
and it gives a person who has just obtained knowledge a positive feeling. In other words,
a reward for knowledge gain is hardwired in the brain. This mechanism is considered an
essential property of humans (Oudeyer and Kaplan 2004).

Here, I will take an different approach. This approach is based on the assumption that
humans can learn that (at least a certain kind of) knowledge has positive long term effects,
i.e. it can lead to a future increase of the received rewards. However, if knowledge gain is
not directly rewarded, the only way for it to have a value, i.e. (according to the definition of
value given in chapter 5) to lead to an increase in expected rewards, is by helping to select
verbal or non-verbal actions which then lead to an increase in received rewards. To learn
this value of knowledge it is necessary that the state of an agent contains a representation
of the knowledge of the agent. The only difference between some states of the agent might
then be a difference of the agent’s knowledge. This enables the value function to learn
to attribute different values to different states of knowledge. In this approach, a piece of
information which does not lead to a long term increase in rewards will be judged as being
of no value and, thus, not considered information worth obtaining. Humans, however,
might be able to extrapolate from the benefits of particular knowledge to a positive effect
of knowledge in general, i.e. they might learn that knowledge is usually something that is
worth obtaining. In this thesis, however, I will not deal with such a generalization.
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Figure 6.1: This shows a possible situation in which an agent does not have some but not
all knowledge about the world. He needs to get a food item, but he does not know whether
the items can be found in the east or in the north. He has two possible non-verbal actions
to select from (moving east and moving north).

6.2.2 Learning the Value of Knowledge

I will now sketch an environment and an architecture which make it possible to learn the
value of knowledge. I do this by introducing situations in which agents do not have the
knowledge to decide which of two actions is the better one. They lack information about
the state of the world relevant for making this decision, but can obtain this information by
asking a question. Having this information they can make informed decisions that result
in higher rewards in the long term.

Suppose that in this environment there is (among others) an agent A1 who, as before,
uses a forward model and a value function to select non-verbal or verbal actions.

The environment has 4 states {w0, w1, w2, w3} described by a two-dimensional binary
vector ~v. In contrast to the setting in chapter 5, there is at least one property in this
environment which A1 cannot directly observe. This property is represented in v1, i.e. the
first dimension of ~v. v1 = 1 in w0 and v1 = 0 in w1, w2 and w3.

w0 =

 v1 : 1
v2 : 0
v3 : 0

 ; w1 =

 v1 : 0
v2 : 0
v3 : 0

 ; w2 =

 v1 : 0
v2 : 1
v3 : 1

 ; w3 =

 v1 : 0
v2 : 1
v3 : 0

 (6.1)

Note that the only difference between w0 and w1 is the state of v1 - and it is exactly
this property that agents have no access to. Being part of the state of the environment
~v, v1 also has an effect on the outcome of actions. Among the actions that agent A1 can
select from there are two non-verbal actions a1 and a2. The probability of transitions from
one state of the environment to another can be read off from the conditional probabilities
in equations 6.2 - 6.13. As it can be seen from equations 6.6 - 6.13, only transitions from
w0 and w1 are dependent on the actions of A1.
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p(w2|a1 ∧ w0) = 1 (6.2)

p(w3|a2 ∧ w0) = 1 (6.3)

p(w2|a2 ∧ w1) = 1 (6.4)

p(w3|a1 ∧ w1) = 1 (6.5)

p(w0|a1 ∧ w2) = 0.5 (6.6)

p(w0|a2 ∧ w2) = 0.5 (6.7)

p(w1|a1 ∧ w2) = 0.5 (6.8)

p(w1|a2 ∧ w2) = 0.5 (6.9)

p(w0|a1 ∧ w3) = 0.5 (6.10)

p(w0|a2 ∧ w3) = 0.5 (6.11)

p(w1|a1 ∧ w3) = 0.5 (6.12)

p(w1|a2 ∧ w3) = 0.5 (6.13)

Since the representation of the environmental state ~v is no longer fully accessible to
agent A1, he can not use ~v as input to his various cognitive functions (e.g. his value func-

tion). Instead, he has a dynamical knowledge base ~b which is part of the state of the agent.

This knowledge base ~b contains the information about the environment which is accessible
at every point in time plus information which is gained by means of communication. A1

can use ~b as input to his cognitive functions.
The first two dimensions of ~b (b1 and b2) represent A1’s knowledge about v1. These two

bits are necessary, although v1 only has two possible states. The reason is that b1 and b2

together need to have at least three possible states - they need to be able to distinguish
between three possible states of knowledge: knowing that v1 = 1, knowing that v1 = 0 and
not knowing anything about v1. This is coded in the following way:

b1 = 1 ∧ b2 = 0⇐ A knows that v1 = 0 (6.14)

b1 = 0 ∧ b2 = 1⇐ A knows that v1 = 1 (6.15)

b1 = 0 ∧ b2 = 0⇐ A does not knows anything about v1 (6.16)

There is a correspondence between world states ~v and knowledge base states ~b. In
equation 6.17 we can see that it cannot be decided whether the world is in states w0 or in
state w1 if both b1 = 0 and b2 = 0. However, if either b1 = 1 (equation 6.18) or b2 = 1
(equations 6.18) then this decision can be made.

~b =


b1 : 0
b2 : 0
b3 : 0
b4 : 0

⇒ ~v =

 v1 : 1
v2 : 0
v3 : 0

 ∨ ~v =

 v1 : 0
v2 : 0
v3 : 0

 (6.17)
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~b =


b1 : 1
b2 : 0
b3 : 0
b4 : 0

⇒ ~v =

 v1 : 1
v2 : 0
v3 : 0

 (6.18)

~b =


b1 : 0
b2 : 1
b3 : 0
b4 : 0

⇒ ~v =

 v1 : 0
v2 : 0
v3 : 0

 (6.19)

~b =


b1 : 0
b2 : 0
b3 : 1
b4 : 1

⇒ ~v =

 v1 : 0
v2 : 1
v3 : 1

 (6.20)

~b =


b1 : 0
b2 : 0
b3 : 1
b4 : 0

⇒ ~v =

 v1 : 0
v2 : 1
v3 : 0

 (6.21)

The reward function for the states is given in equation 6.47.

r(w) =


1 ⇐ w = w2

−1 ⇐ w = w3

0 ⇐ w = w0|w1

(6.22)

This means that our agent always receives a reward of 1 when the world is in state w2

and a reward of −1 when the world is in state w3. However, since the value function is no
longer trained with state of the worlds ~v but with states of the knowledge base ~b, the value
function will learn the corresponding values of ~b.

V


b1 : 0
b2 : 0
b3 : 1
b4 : 1

 = 1; V


b1 : 0
b2 : 0
b3 : 1
b4 : 0

 = −1 (6.23)

So far, the agent has only learned that certain states of the world, represented in his
knowledge base ~b have a specific high or low value. To understand the value of knowledge
the agent has to learn that certain states of ~b that contain more information about the
state of the world ~v lead to better actions and therefore higher rewards. Actions are
selected using the internal model. The internal model we will use in this chapter differs
significantly from the one in previous chapters. For one, like the value function, the internal
model can no longer use states of the environment ~v as input and output (since they are

not accessible), but has to use the knowledge state ~b. Further, since the effects of actions
are no longer deterministic, the internal model has to be able to acquire probabilistic state
transitions. How such a probabilistic model P () is trained will be explained in section 6.2.4.
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For now, it is sufficient to know that a probabilistic internal model learns to map triples
consisting of an utterance, a context state and an effect state onto probability values.

The transition probabilities of this world are given in equation 6.2 - 6.13. But since the
states of the world ~v are not accessible the agent has to learn the transition probabilities
of states ~b of the knowledge base. In equation 6.24 the acquired transition probability is
the one corresponding to the one given in equation 6.2. The transition probability is one,
because the agent, since b1 = 1, is well informed that he is in state w0

P (


b1 : 1
b2 : 0
b3 : 0
b4 : 0

 , a1,


b1 : 0
b2 : 0
b3 : 1
b4 : 1

) = 1 (6.24)

If b1 = 0 and b2 = 0 (with the same value for b3 and b4), i.e. the agent does not know
whether he is in state w0 or in state w1, then the transition probability to w2 is only 0.5
(equation 6.25) while the transition probability to w3 is also 0.5 (equation 6.26).

P (


b1 : 0
b2 : 0
b3 : 0
b4 : 0

 , a1,


b1 : 0
b2 : 0
b3 : 1
b4 : 1

) = 0.5 (6.25)

P (


b1 : 0
b2 : 0
b3 : 0
b4 : 0

 , a1,


b1 : 0
b2 : 0
b3 : 1
b4 : 0

) = 0.5 (6.26)

Since agents base the selection of actions on the prediction of their internal model,
an agent will always select action a1 if he knows that he is in state w0 (i.e. if b1 = 1,
b2 = b3 = b4 = 0) and he will always select a2 if he knows that he is in state w1 (i.e. if
b2 = 1, b1 = b3 = b4 = 0). Both, a1 done in the context w0 and a2 done in the context of
w1 lead to state w3 and a reward of 1. Therefore, a knowledge state in which b1 = 1 or
b2 = 1 (with b3 = b4 = 0) will also always by followed either state w3 (and a reward of 1).
Hence, the value of these two knowledge states will be increased to 1 as well.

V (


b1 : 1
b2 : 0
b3 : 0
b4 : 0

) = V (


b1 : 0
b2 : 1
b3 : 0
b4 : 0

) = 1 (6.27)

To select an action with a probabilistic internal model the value of the outcome for
an action a is computed in the following way: for every possible outcome of this action,
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the likelihood of a transition to this outcome ~b has to be multiplied by the value of this
outcome (equation 6.28)

∑
~bt+1

P (~bt, a, ~bt+1)× V (bt+1) (6.28)

P (

(
b1 : 0
b2 : 0
b3 : 0
b4 : 0

)
, a1,

(
b1 : 0
b2 : 0
b3 : 1
b4 : 1

)
) × V (

(
b1 : 0
b2 : 0
b3 : 1
b4 : 1

)
) + P (

(
b1 : 0
b2 : 0
b3 : 0
b4 : 0

)
, a1,

(
b1 : 0
b2 : 0
b3 : 1
b4 : 0

)
) × V (

(
b1 : 0
b2 : 0
b3 : 1
b4 : 0

)
) (6.29)

P (

(
b1 : 0
b2 : 0
b3 : 0
b4 : 0

)
, a2,

(
b1 : 0
b2 : 0
b3 : 1
b4 : 1

)
× V (

(
b1 : 0
b2 : 0
b3 : 1
b4 : 1

)
) + P (

(
b1 : 0
b2 : 0
b3 : 0
b4 : 0

)
, a2,

(
b1 : 0
b2 : 0
b3 : 1
b4 : 0

)
) × V (

(
b1 : 0
b2 : 0
b3 : 1
b4 : 0

)
) (6.30)

Since the result of both terms is 0, the agent has no basis for preferring either action
a1 or action a2. This means, that if the agent does not know whether he is in state w0 or
in state w1 he will end up choosing actions more or less at random. This will result in a
transition to w2 in some cases (providing a reward of 1 and in a transition to w3 in about
the same number of cases (providing a reward of −1). Hence, the value of this state will
converge to approximately 0 (equation 6.31).

V (


b1 : 0
b2 : 0
b3 : 0
b4 : 0

) = 0 (6.31)

V (


b1 : 1
b2 : 0
b3 : 0
b4 : 0

) = V (


b1 : 0
b2 : 1
b3 : 0
b4 : 0

) = 1 (6.32)

In contrast, if the agent knows whether he is in state w0 or in state w1, he will always
select the action resulting in a higher reward. Therefore, the value of the corresponding
states of his knowledge base will converge to 1 (equation 6.32). This is the point where
the agent has learned to appreciate the value of this knowledge.

6.2.3 Predicting the Effect of Questions

The main reason why it is important to explain how humans learn to appreciate the value of
knowledge is that this appreciation motivates an important type of speech act: questions.
In the previous section, I merely explained how agents could develop a preference for being
in a state in which they have more information about the world. But to motivate the
speech act of asking a question, the agents need to have the possibility of deciding between
a performance of an action that will lead to chance in the environment but is based on
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insufficient information and an act that may or will lead to obtaining more information e.g.
by asking a question. So far, the agent A1 can perform the non-verbal actions a1 or a2. A
question about the property v1 of the world will be a verbal action (or utterance) u1. For
now, I will not deal with the possible answers that A1 is maybe getting from other agents,
nor will I deal with the problem of how these answers are processed by him so as to obtain
the knowledge whether either b1 = 1 or b2 = 1. The only thing that matters at this point is
that the question somehow results in a subsequent state in which the required knowledge
is present. Put in terms of a probabilistic internal model, the agent learns that asking the
question leads to his knowledge that the world is in state w0 in some cases (equation 6.33)
and that it is in state w1 in about the same number of other cases (equation 6.34).

P (


b1 : 0
b2 : 0
b3 : 0
b4 : 0

 , u1,


b1 : 1
b2 : 0
b3 : 0
b4 : 0

) = 0.5 (6.33)

P (


b1 : 0
b2 : 0
b3 : 0
b4 : 0

 , u1,


b1 : 0
b2 : 1
b3 : 0
b4 : 0

) = 0.5 (6.34)

To choose between asking a question and performing a non-verbal action it is necessary
to compute the value of the outcome of both types of actions. As in the previous section,
the outcome of both action a1 and action a2 is 0 if the agent does not know whether he
is in state w0 or w1. If he knows that he is in state w0 then the outcome of a1 is 1 and
of a2 is −1, and, vice versa if he is in state w1. To compute the outcome of asking the
question we have to use again the formula described in equation 6.28. As we have seen
in equations 6.33 and 6.34, the probability of getting to either of the two fully informed
knowledge states (with either b1 = 1 or b2 = 1) is 0.5 and the value of both states is 1
(equation 6.32). Therefore, since the relevant question will necessarily lead to one of these
two knowledge states, the value of performing this question is 1 (equation 6.35).

0.5× 1 + 0.5× 1 = 1 (6.35)

This means that the agent will not select a non-verbal action if he does not know in
which state he is, but instead he will get this information by asking the relevant question.
In general this architecture allows agents to learn in which situations it is good to ask
questions instead of performing non-verbal actions. Of course, the same principle also works
for larger representations of knowledge and more complex worlds and game situations.

6.2.4 A Probabilistic Internal Model

Since a probabilistic internal model P () is used in sections 6.2.2 and 6.2.3, I will briefly
sketch in this section how such a model works and how it is trained. A probabilistic forward
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model maps triples of utterance, context states and effect states to probability values.
A probabilistic internal model can be trained by storing the co-occurrences of context

state, effect state and utterance. Consider for example the world with four possible state
representations {s1, s2, s3, s4}. Usually if an agent does not say anything, the world moves
from s1 to s2, from s2 to s3, from s3 to s4, and from s4 back to s1. Now if an agent uses
utterance u1 in the context of s1 he will bring about s3. And he can also change the world
state from s4 to s2 by using utterance u2. To indicate that an agent is not saying anything,
I will use u0 - the null or empty utterance. It simply means that the agent did not say
anything in the given context state.

As a formalization of the storage device, I will use a function C() (for co-occurrence)
which maps triples of effect states se, context states sc and utterances u into pairs <
nc, ne >. nc is the memorized number of times u was made in the context of sc, while ne is
the memorized number of times a state transition to se was observed after u was made in
the context of sc. In our example it might have been the case that the agent has observed
a transition from s1 to s2 when he said nothing for 11 times (equation 6.36), never heard or
used u1 in state s1 (equation 6.37), and once used u2 in s1 without observing a transition
to s2 (equation 6.38)

C(s2, s1, uo) =< 11, 11 > (6.36)

C(s2, s1, u1) =< 0, 0 > (6.37)

C(s2, s1, u2) =< 1, 0 > (6.38)

The effect of the utterance u1 in situation s1 can be stored by the same mechanism.

C(s3, s1, uo) =< 0, 0 > (6.39)

C(s3, s1, u1) =< 6, 6 > (6.40)

C(s3, s1, u2) =< 1, 0 > (6.41)

Now the probability of a transition can be calculated by the formula given in 6.42

p(se|sc ∧ u1) =

{
ne

nc
⇐ sc 6= 0

0 ⇐ sc = 0
(6.42)

In our example the probability of a transition from s1 to s3 if u1 was made is 1; if u2

was made or nothing was said (u0) the probability is 0.

6.2.5 Learning to ask Questions

In the setting described above, the learning agent is able to learn the effect of questions by
trial-and-error, because the pre-programmed agents will answer his questions and thereby
change his knowledge base. It is, however, not plausible that children learn the effect of
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questions by making an utterance which accidently has the form of a question and thereby
learn that such a form leads to an answer. Rather, children learn the effects of questions
from their interaction with speakers of the language (such as their parents). It is known
from research in language acquisition that parents play question-answer games with their
children. The parent asks a question like (1) and if the child does not answer herself, she
gives an answers like (2), while pointing out the ball.

(1) Where is your ball?

(2) There is your ball.

Children can use this pattern to learn the connection between questions and answers.
On one hand they learn the form of questions and answers, on the other hand they also
learn that a question is usually followed by a (verbal or non-verbal) answer, and that this
answer supplies the person asking the question with new information. Of course, the child
has to understand that the effect of the question is not the sound of a verbal answer or
the gesture of a non-verbal one, but the knowledge it provides. In other words it has to
learn the relation between the content of the question and the information provided by
the answer. This relation is a difficult topic which I cannot discuss here in detail. In the
approach to language processing with forward model and value function, an agent only
has to come to understand that in certain contexts (in which some specific knowledge is
lacking) particular questions lead to states with more knowledge (states which, therefore,
have a higher value). How the relation between questions and answers is stored in the
forward model will be discussed in section 6.4.4.

When the information about the effect of questions is stored in the forward model of
the language acquiring child, it knows that a question (such as the one about the ball)
requires a verbal answer or some other kind of reaction (such as pointing to the ball) and
will, if possible, provide such an answer when it is asked such a question. Furthermore,
the child at that point has also learned that it can use questions to obtain information
itself. Note the connection between requests and questions: Question too are requests, but
requests of a special sort, i.e. requests for information. The difference with other requests
usually manifests itself in the kind of reaction that the addressee is invoked to make. In
the case of requests other than questions the reaction is normally some non-verbal action.
In the case of questions it is usually a verbal answer (and thus a verbal action), although
it can also take the form of a non-verbal action, such as e.g. a pointing. It is this way of
answering a question, and this way only, which I am investigating here.

To show how the question-answer-pattern can be learned within my theoretical frame-
work, consider a scenario in which agents can point to objects, and can also focus their
attention on a certain object, without which the action of pointing to an object would
make no sense. Questions are asked about object positions and answers are given in terms
of pointing gestures. The answer to a question about the position of a certain object is
given by pointing out the object.

Attention is a very important factor in the neural modeling of language since one of
the major purposes of language is to direct the attention of addressees to certain objects
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or states of affairs. Also gaze following and shared attention are mechanisms known to be
essential prerequisites to learning the meaning of words (Tomasello 2003). I will talk more
about attention and how it can be dealt with in my theoretical framework in chapter 7.

Attention is considered to be represented by an attention map in the posterior inferior
parietal sulcus (Itti and Koch 2000). Such an attention map can be represented as a matrix
of binary values. With such a representation and a simulated pointing device the learning
of question-answer patterns can be simulated.

In the following environment there is a pre-programmed parent agent (PP) and a neural
network - based child agent (NN). The parent agent teaches the pattern to the child agent.
There are three (holophrase) questions possible:

(3) question-triangle

(4) question-square

(5) question-diamond

The conventional effect of these questions (i.e. the effect programmed into the pre-
programmed agents), is to trigger a non-verbal pointing to an object. The object in
question is a triangle in the case of (3), a square in the case of (4), and a diamond in the
case of (5).

The game works in the following way: It consists of a number of learning episodes. In
each episode, the PP-agent asks a question (such as question-triangle) and waits one time
step for the answer of the NN-agent. If no or a wrong answer is given (the answer is given
in terms of a pointing gesture), the PP-agent points towards the object himself. After
that, the next episode starts.

To keep the matter simple, the environment consists of only four fields, each of which
can contain an object of one of the three object types. These four fields are presented to
the agent in form of a 3 × 4 matrix, where every column-vector codes one of the three
object types (triangle, square, diamond) while the position of the object is coded by the
position of the vector in the matrix. In equation 6.43, the first vector would mean that
the left most position is occupied by a triangle, the second by a square, the third by a
diamond, and the fourth is an empty position.

wk =

 1000
0100
0010

 (6.43)

These three objects (one triangle, one square, one diamond) are shifted to a different
position at the beginning of every new episode. The pointing gesture of the agents are
coded as a 4-dimensional horizontal binary vector ~p (e.g. in equation 6.44, the agent points
the the second object). The attention map is coded by another 4-dimensional horizontal
binary vector ~a (e.g. in equation 6.45, the agent attends to the fourth object). If a pointing
gesture is made by one agent, the attention of the other agent automatically follows the
pointing gesture.
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~p =
[

0100
]

(6.44)

~a =
[

0001
]

(6.45)

The learning agent uses the input given by the PP-agent to train his forward model.
He learns that a specific question is answered by a specific pointing gesture. His forward
model is mapping the state of the world wt and a question to an attention vector ~a.

~a(t + 1) = F (w(t), q(t)) (6.46)

Similarly to previous simulations, the agent trains his forward model by observation
and will, after a certain number of time steps, be able to answer the question by bringing
about the intended state of the speaker.

The reward r in this game is given by a reward function R() which maps triples of
world state, question, and attention map to a positive real number in case of successful
pointing and to a negative real number in case of failure, i.e. pointing to the wrong cell or
no pointing at all (equation 6.47).

r = R(wt, q
A
t−1,~a

A
t ). (6.47)

The three questions can be represented as three vertical 3-dimensional binary vectors
as in equations 6.48, 6.49, and 6.50.

question− triangle→

 1
0
0

 (6.48)

question− square→

 0
1
0

 (6.49)

question− diamond→

 0
0
1

 (6.50)

Rewards are given to the child for correctly pointing out the object. Such a reward
is a social reward, which the child obtains for cooperation and correct behavior. In this
potential simulation, the child is not supposed to ask questions itself and, therefore, is not
rewarded for obtaining knowledge, as in the last scenario. The reason for the child to adapt
to the behavior which is conventional in this environment - the behavior of pointing out
the objects when being asked about them - can be seen in its desire for social recognition.

Examples of triples of world states, questions, and attention maps for which the child
receives a positive reward are given in equation 6.51 and 6.52).
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<

 1000
0000
0000

 ,

 1
0
0

 ,
[

1000
]

> (6.51)

<

 1000
0010
0000

 ,

 0
1
0

 ,
[

0010
]

> (6.52)

The forward model then needs to be trained to map pairs of questions and world states
to the correct attention maps as in equations 6.54 and 6.55

F (w(t), q(t)) = ~a(t + 1) (6.53)

F (

 1000
0000
0000

 ,

 1
0
0

) =
[

1000
]

(6.54)

F (

 1000
0010
0000

 ,

 0
1
0

) =
[

0010
]

(6.55)

To construct a neural network which can be trained to find this mapping is a trivial
matter.

6.3 Assertions

6.3.1 Complex Desires

In this section I will introduce assertive speech acts into my theoretical framework. So
far, questions and requests have been analyzed as expressions of desired states - in the
simulations of chapter 5 the process of understanding a request involved nothing more
than the computation of the desired state which the speaker was trying to bring about.
In section 6.2 questions have been shown to function along similar lines. Hence, it seems
natural to analyze assertions as expressions of the desires and - similar to requests and
questions - all an addressee needs to do to understand an assertion is to compute the desired
state which triggered the utterance. However, assertions are more difficult to analyze in
my theoretical framework, because agents only choose an utterance if it leads to a state
with a higher value than states that can be brought about by other utterances or actions.
While it is easy to see how requests and questions (since they bring the speaker useful
information) can lead to states with a higher value, assertions appear neither to alter the
world, nor the knowledge of the speaker himself into a state with a higher value. Assertions
can nevertheless bring about states with a higher value for the one who produces them.
To explain how this is possible is the main focus of this section. It involves the description
of utterance effects on several levels.



112 CHAPTER 6. SPEECH ACTS

On one level, assertions tend to produce new information for the addressee and thus
to change his knowledge state. To represent the speaker’s desire to cause this effect,
it is necessary, to begin with, to represent his knowledge about the knowledge of other
agents. So far I have only introduced a device to store knowledge about states of the
world. This device would need to be extended accordingly. However, it is not known what
kind of neural representations the human brain uses to represent this kind of information.
Psychological experiments seem to suggest that representation of this kind might be of
a significantly higher level of complexity. Apparently young children acquiring a first
language are, according to these experiments, not yet capable of representing the belief
states of other persons in case these belief states differ from the child’s own belief state
(see Breheny (2002) for a summary and discussion of this literature). So if the primary
motivation for declarative utterances would be to change the belief state of another agent,
small children, as long as they lack this representational possibility, would not be able to
make declarative speech acts.

Besides this problem there is also another one which shows that the desire to change
the knowledge state of the addressee cannot be the only desire triggering an assertion.
Suppose a person A1 addresses another person A2 on a sunny day at the bus stop with the
utterance (6).

(6) A1 → A2: Nice weather today.

It cannot be said that it is A1’s desire to change the knowledge state of the agent by
adding the fact that the weather is nice today, since A2 already knows that. Rather, the
desire of A1 is to start a conversation and to socially connect to A2. So the desire of A1

is to start a conversation and talking about the weather is a standard way of starting a
conversation. If the process of understanding an utterance is by means of computing the
desire which triggered the utterance, then A2 will compute from the utterance that A1

has the desire to start a conversation and it is very intuitive that this is what A2 will
understand. However, the problem with this approach is that the theory so far claims that
the process of understanding an utterance consists only of the process of computing the
desired state that triggered the utterance and of nothing else. Now suppose A2 answers
with (7).

(7) A2 → A1: It will be even better tomorrow.

If the only desire that triggered utterance (6) is the desire to start a conversation and
the process of understanding an utterance is only the decoding of this desire, then A2 does
not have the information that the utterance (6) was about the weather. This, of course, is
totally absurd.

So is it after all the case that besides the desire to start a conversation, A1 has the
desire to change the knowledge of A2 in a way that A2 might after that know that the
weather is nice? No, not unless A2 is without any sense of temperature.

To problem lies in my assumption that the knowledge state of the addressee can only be
changed by adding new conceptual information (i.e. by adding new information about an
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individual or categorical concept). But consider that although A2 knows that the weather is
nice, he might not be conscious about it at the moment in time or, in other words, he might
not have his attention directed to this fact. Just possibly A1 might have wanted to bring the
beautiful weather to A2’s attention. In neural terms, A1 might have wanted to activate a
conceptual representation in A2 of today’s nice weather, i.e. although the knowledge about
the weather might already be present in A2, the activation of a conceptual representation
of this state of affairs might still constitute a change in his mental state. This effect of
the activation states of concepts can also be regarded as a change of context (at least of a
neural representation of context within the brain of the addressee) and in that respect is
related to the idea of Stalnaker (1979) or Kamp (1980) to regard the meaning of utterances
as context change potential.

The neural activation of existing concepts is not only necessary for somewhat excep-
tional cases such as utterance (6), but also for most cases of verbal information transfer: If
we give an addressee information about a specific individual we need to activate a concep-
tual representation which is already present. For example, if we want to tell an addressee
that the man we just saw is my brother, we need to activate the concept of this person and
the concept of brother and make the addressee store this relationship. However, this kind
of process uses compositionality, which my theoretical framework so far does not have and
I have to put this issue off until chapter 7.

For now it is sufficient to realize that a representation of the knowledge base (as I have
used it so far) is not adequate to describe the addressee’s processing of declarative (and
maybe other types of) utterances. However, the necessary neural basis for the extension of
the framework was already introduced in chapter 4. There, I explained the distinction be-
tween a neural representation of concepts in working memory and of concepts in long term
memory. This distinction in my framework can be used to distinguish between knowledge
and the mere activation of concepts needed to solve the problem described above.

Since it can be a desire of a speaker to change the conceptual activation of an ad-
dressee, utterances like (6) do no longer pose any serious problems for the assumption that
declarative utterances can be understood as expressions of desires. Following this analysis
the desire state triggering utterance (6) has two components: (i) starting a conversation
and (ii) activating a conceptual representation of (6). To understand the relation between
these two components, let me compare it to a similar relation in motor control. Consider
the following pair of desires: (i) picking up the phone and (ii) moving my hand. Of course,
I need to move my hand in order to pick up the phone, just like I activate the conceptual
representation in the brain of the addressee in order to start a conversation. However,
unlike in the example of the phone, where the relation between the goals of moving the
hand the picking up the phone is not separable, the relation between the goal of starting
a conversation and the goal of activating exactly the conceptual representation and con-
nection of nice, weather and today is somewhat arbitrary. A1 might well have started the
conversation with (8).

(8) A1 → A2: If the bus is not here in one minute, I will miss my train.

This seem to suggest that there is a primary social goal and a secondary conceptual
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goal which is selected as a means of fulfilling the primary goal. However, this is not the
case in general. Take for example sentence (9).

(9) A1 → A2: Your shoelace is untied.

Here, A1 uses (8) in order to help A2 avoid stepping on his shoelace and stumbling.
A1’s motivation to do this might be social - either because, as a human being A1 has
a cooperative nature (e.g. because there is an inborn mechanism that triggers internal
rewards for cooperative behavior) or A1 is cooperative for the sake of gaining a good social
reputation or increase the social bondage with the other person1. So here the goal on
one level is to prevent A2 from stumbling down. On a second level, the goal of A1 is to
provide the conceptual information to A2 that his shoelaces are untied - and to direct his
attention to this fact. In this example the primary goal and the secondary goal are tightly
connected and cannot be separated. And one cannot say that A1 first had the primary goal
of preventing A2 from stumbling down and, therefore, selected the conceptual information.
Rather, it is likely that the conceptual information was perceived by A1 and this triggered
the goal of preventing A2 from falling down. These examples show that the relation between
the conceptual level of the desire and what Austin (1961) has called the illocutionary and
perlocutionary act cannot easily be put in a simple temporal or causal relation. It is not
the case that the social desire triggers the desire to give a specific conceptual information.
However, a better analysis of this relation will be possible when compositional aspects of
language will be dealt with in chapter 7. For now it is important to understand that the
desire which triggers the declarative speech act appears to be a complex of desires which
bear a relation to each other that is hard to analyze with the current state of the theoretical
framework. This complex usually consist of (i) a desire to cause a certain conceptual state
in the addressees brain and (ii) some form of social desire.

6.3.2 Communicative and other Intentions

According to Levelt (1989), the communicative intention is the intention which the speaker
want the addressee to understand. In my theoretical framework - as I have presented it
this far - an agent A1 uses an utterance u to address another agent A2 because u brings
about a state bx with a higher value than the states that would come about as the result
of no action or other verbal or non-verbal actions. Utterances are understood by decoding
this intended state bx from the utterance u. This means that information which is not
given as part of bx is not perceived by the addressee. In section 6.3.1, I have shown that
the information transmitted by an assertion can be modeled in my general theoretical
framework by assuming that it is one part of the desire of the speaker to activate a certain
conceptual configuration in the knowledge base bx of the addressee.

So far, I have also been making the assumption that the desire that triggers the utter-
ance is the communicative intention of the speaker, and it it this communication intention

1There is no space in this thesis to explain and discuss the current theories about the cause and the
nature of human cooperation.
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that is transmitted to the addressee, i.e. this is the information the addressee will receive.
However, this cannot be right, because often utterances are triggered by intentions that
we do not want the addressee to understand. For example, A1 might use utterance (10)
with the intention to impress A2.

(10) A1 → A2 Yesterday, I bought a Porsche.

Is it therefore justified to give up the theory that utterances are selected as described
in equation 6.56 and utterances are understood as described in equation 6.57 - because in
that case the desire triggering the utterance will always be the information transmitted to
the addressee?

ut = argmaxuV (F (st, u
∗
t )) (6.56)

st+1 = F (st, ut) (6.57)

I think it is not justified to give up this theory. Even in the case of this example it might
in fact happen that A1 unintentionally transmits his intention to impress A2, because A2

knows that he himself would want to impress someone by such an utterance. The only
possible way of not transmitting this goal by disguising the original goal - in other words
by pretending to have another goal. And pretending, just like lying, adds a layer to the
modeling of information transmission that might violate the general principles developed
so far in many other ways as well, and I simply save myself from dealing with these issues
in this thesis.

However, is it really the case that every assertion is understood as an expression of a
desire to cause a change in the mental state of the addressee? Consider for example the
utterance (12) made by A1 - should it always be interpreted as (13) or can A2 directly
decode it into (14)?

(12) A1 → A2: Here is a triangle.

(13) A1 wants me to believe that there is a triangle at the position of A1.

(14) There is a triangle at the position of A1.

In case utterances are understood as (14), then the given information can be directly
added to the knowledge base unless it is inconsistent with existing knowledge. In the
case of such an inconsistency, A2 could, by using an additional inference step, realize that
although (14) is maybe not true A1 wants A2 to believe it. Thus A2 would only generate a
representation of (14) in case of inconsistencies. In case utterances are generally understood
as (13), then first the consistency of (12) can be checked first and in case there is no
inconsistency, the information is added to the knowledge base (as in Heim’s File Change
Semantics).

In the light of Grice’s insights I will model the transmission of descriptive information as
embedded in an intention. This also allows me to keep the general framework for modelling
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comprehension as a process of transforming every utterance into the expression of a desired
world state, only that now this world state includes the knowledge base of the addressee.
A neural model that includes a representation of the knowledge base of the addressee is
introduced in chapter 7.

6.3.3 Reasons to Change Knowledge

In correspondence to the two kinds of effects of declarative acts: (i) the effect on the ad-
dressee’s state of conceptual activation and (ii) the effect on some form of social reputation
for the speaker, the value of the effect state also has to vary along those lines. To model
social desires triggering assertions, the theory needs to involve a component in which the
social status of a speaker is incorporated in the overall value of the state, so that a social
action leads to an increases of the value of the state.

Besides social reason, assertions can also be triggered by the need to change the knowl-
edge base of the addressee for a purely selfish reason. The reason is that the speaker
often needs to give the addressee information he needs in order to accomplish a goal of
the speaker. For example, if the addressee does not know the location of a certain object,
which the speaker would like to request, the speaker needs to tell him the location of this
object. Often it might not be possible to give such information in a single utterance. For
example when a speaker wants an addressee to cook a certain dish, he has to explain s
sequence of steps to him involving several utterances allowing him to create the knowledge
about a more complex process.

6.3.4 The Social Value of Declaratives

Although assertions often do bring the addressee into a state of knowledge which may
lead to a long term increase in rewards for the speaker (because they are relevant for the
hearer to fulfill a desire of the speaker), many (or maybe most) assertions, especially in the
early stages of language acquisition, seem to have a primarily (and maybe instinctively)
social motivation. As observed by Dunbar (1996), the social bondage can be increased
already just by the general act of talking. But assertions can have more specific social
effects. As already mentioned above, they are often made for the purpose of improving
or maintaining the social status of the speaker. Answering questions is among the best
examples of assertive speech acts which are made for that purpose. But information can
also be shared for the very same reasons, without a triggering question.

What is the benefit for the speaker, if he answers questions or shares relevant informa-
tion with another person? At first sight, it appears to lead to a state with a lower value.
For example, by voluntarily pointing out the location of a food source, an agent might
lose potential food, because the addressee might eat some of the food at that location.
However, if the addressee stores this benevolent act in his memory (stores which persons
performed such social acts for his benefit) and in turn might give relevant information to
this agent in the future, it is not unlikely that the speaker will increase his overall reward
by such an act. This means that the increase in reward is indirectly obtained through a
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change in social status. To allow the agent to learn that such an improved social status
has a high value (i.e. might lead to a long term increase in reward) the social status must
be a part of the state representation (i.e. be among the arguments of the value function
and part of the results predicted by the forward model). However, the desire to gain and
maintain a good social reputation might not only be motivated by its power of increasing
the obtained long term reward. The social reputation (instinctively or by education) is
something that humans desire for itself.

Also the sharing of (personal) information enhances the social relation among the mem-
bers of a group for the following reason: such information allows other persons to better
understand the emotional life of their fellow agents. Through a better access to the value
function of another person, sympathy and empathy can increase and therefore also enhance
the emotional connection to this person. Although this effect can, of course, be learned
to a certain degree, it also appears to be to some degree a genetically predispositioned
pattern.

Another pattern of sharing information, which appears to be clearly instinctive, and,
therefore, can be observed already in small children, is to share information that is (emo-
tionally) significant. The biological reason for humans to share such kinds of information
is that from an evolutionary perspective humans shared significant stimuli (food sources,
predators etc.). Stimuli pointed out by the child (emotionally significant for it) might
however not be emotionally significant for the adult. This is simply because the child has
less experience than the adult and generally regards novel or noisy or other objects with
outstanding features as significant.

To simulate children and adults pointing out emotionally significant objects the theory
needs to be able to detect such objects. This can be done with the value function. Objects
involved in state changes which correlate with a significant change in value can be regarded
as significant objects. For a child of a certain age, it might probably be everything that
is new especially if it is in a certain way spectacular (such as colorful or noisy things) or
socially relevant, such as new persons.

Adults often point out objects to children and give them a verbal label simply because
they want to teach the name of the object to the child. This might be because the adult
consciously wants to teach the child the name or because he simply follows some parental
instinct.

Such a situation could be simulated by making an adult agent pick out an emotionally
significant object and name it. His goal would be to make the child share the attention
towards the object. This would give the child the opportunity to learn the name of the
object. Then, when it is the child’s turn to name the object it would be rewarded if it
could successfully get the adult to share the attention towards objects which are emotionally
significant to him by using a correct verbal label. I will not discuss technical details of such
a simulation, since there are already many simulations of this kind (e.g. Steels (1996) or
Steels (2001)). However, the selection of significant objects by means of a value function
would be a new feature of such simulations.

To conclude this section, let me mention that truth is also an important social aspect
when assertions are made. In a framework in which people are speaking to maximize their
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rewards, there are occasions in which it might be to the advantage of a person not to answer
a question truthfully or even to initially provide false information to lead somebody astray.
But, as already said, these aspects are beyond the scope of this thesis.

6.4 Selecting Among Different Speech Acts

6.4.1 The Environment

With this theoretical approach to what I believe to be the major types of speech acts, it
is now possible to model the selection of different speech acts within this framework. As
before, agents are able to decide whether to perform non-verbal action or verbal action,
and the verbal actions are either declaratives, imperatives, or interrogatives.

Given that we have triangles, squares and diamonds and three types of speech acts and
assuming that we have only single-word utterances without any compositional features, we
have 9 possible forms of utterances:

(1a) req-triangle

(1b) req-square

(1c) req-diamond

(2a) quest-triangle

(2b) quest-square

(2c) quest-diamond

(3a) assert-triangle

(3b) assert-square

(3c) assert-diamond

Since it is hard enough to create an environment in which each of those speech act types
is useful in a different manner to increase the total reward, I will only use pre-programmed
agents for the time being and do not concern myself with the problem of learning.

I will assume that (i) agents use utterances of the form of 1a-c because they get a direct
reward for getting a certain object in a certain situation; (ii) agents use 2a-c because they
will obtain knowledge about the location of objects which will lead to an increased reward
in the long run; and (iii) agents use 3a-c because that will improve or maintain their social
status. This also helps them to obtain a higher reward in the long run, since other agents
decide whether or not to cooperate with an agent based on the social status of this agent.

Agents in this simulation move on a 10 × 10 grid world. New objects are placed
at random locations. Agents have an internal map (a short term memory map) of the
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environment in which object locations can be memorized for n = 10 time steps after an
agent has encountered such an object. Objects can be perceived only if the object is in the
same field as the perceiving agent. The map also shows the position of the agent himself
and the position of the other agents, but not which objects these agents have. Every
agent has an internal representation of the world including a representation of the objects
about which they know. This representation can be thought of as the knowledge base ~b
introduced in section 6.2.2 and is distinct from the current state of the world. Agents
learn about object positions by perceiving the object in case they are close enough, or by
receiving information from other agents. Often they might not have an object represented
at a certain position although it is in fact there, because they have not perceived it yet and
received no information about it. Or they might have an object represented at a position
which no longer can be found there, since it was taken by another agent.

An agent can carry a maximum of maxt = 3 objects and needs to digest one object in
each 10 time steps. Every 10 time steps the agent has to digest a different type of object,
but always a triangle after a diamond, a square after a triangle, and a diamond after a
square. If the object which is supposed to be eaten at a time step of digestion is not in the
possession of the agent he gets a punishment of -1; otherwise he gets a reward of 1.

The non-verbal actions of the agents are:

• movement in one of four possible directions

• taking an object

• dropping an object

The possible movements of the agents are a single step in either of the four directions
(north, east, west, south) in the grid. The effect of such a movement is that the agent
leaves his current position and moves to the next position in the direction of the movement.
If the border of the grid world is reached, a movement in the direction of the border has
no effect.

Taking an object results in the agent having this object unless the agent has already
maxt objects; then it has no effect.

Dropping an object results in the agent no longer having this object. The object is
then at the position in the grid at which the agent is at the time of the dropping action.
A dropped object made in a field in which there is also another agent can be picked up by
this other agent.

6.4.2 The Social Score

The social score is essential in this formal framework. It is defined for any two agents
in both directions, i.e. for two agents A and B, SocA(B) gives the past experience A
had with B and B had with A. The score is a number between 0 and 10. For any
cooperation (dropping of a requested object) the number is increased (+ 1), and every
time an agent does not cooperate (i.e. does not drop a requested object), the number is
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decreased (- 1). For every answered question, the number is also increased (+ 1) and for
an unanswered question, the number is decreased (- 1). The score is also increased if agent
share information about object positions with another agent (assertions) even if they are
not asked for this information. Agents cannot improve their social status by pointing out
an object more than once to the same agent.

Although agents will be engaged in social acts, their behavior is egoistic in the sense
that all their verbal and non-verbal actions have the aim of maximizing their overall re-
ward. To make social acts pay off in the long run, unsocial behavior needs to have a
strong disadvantage. This disadvantage is accomplished by making the agents punish non-
cooperative behavior of other agents by letting previous acts of cooperation of an agent
determine their willingness to cooperate with this agent. More precisely, they determine
whether or not to cooperate with another agent, i.e. whether to drop a requested object or
answer a question by weighing up against each other the cost of cooperation, the benefit
of cooperation, and the social status of the speaker (what one knows about that agent’s
willingness to cooperate).

6.4.3 Verbal Actions

Requests

An agent has a desire of degree 3 for an object if this object is the next one he needs to
eat and he does not have it. If it is not the next, but the one after the next, his desire is
2, and if it is the last object that he needs, his desire for that object is 1.

A request is made if one agent (henceforth called A) desires a particular object of
another agent (henceforth called B). Note that an agent A can only see that another
agent has a certain object B if the two agents are in the same position of the grid world.
B will drop the object if the calculated ratio between the social score and his own desire
of the object is below a certain threshold. This threshold is either fixed before the game
or estimated during the game. In case it is estimated during the game, all other variables
should be fixed.

Questions

A question is asked by an agent A, if he desires a certain object which he does not have and
he also cannot see whether another agent has it. A question is answered by an (affirmative)
assertive utterance if the addressee B has the object e.g. question (2a) of A might be
answered by the assertion (3a) of B in case B has the object; no answer is given otherwise
(since there are no negations in this language). Since A cannot know whether B’s silence
means that he does not have the object or whether it is an act of non-cooperation, B needs
a way to indicate his willingness to cooperate. He can do that by answering the question
with information about another object he has. E.g. he could use utterance (3b).

(2a) quest-triangle
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(3a) decl-triangle

(3b) decl-square

Assertions

Besides assertions that are used to answer questions, assertions can also be made if an
agent A discovers an object (i.e. he is on the same field as this object) and his desire to
improve his social status with agent B is stronger than his desire to keep the object himself.
This allows agents to improve their social status even if they are not asked questions or
asked to drop objects.

6.4.4 The Mathematical Framework

The Agents

Every agent A is given by a 4-tuple A =< OA, MA, SA, DA >, where OA is the object store
of agent A, MA is a short term memory map, SA is the representation of the social score,
and DA represents the order of object digestion.

The object store is a 3 × 3 binary matrix, in which the number of objects is coded
which the agent carries at the moment. The number of 1’s in the first column vector
represents the number of triangles the agent has; the number of 1’s in the second column
vector represents the number of squares and the number of 1’s in the third the number of
diamonds. E.g. in equation 6.58, agent A has two triangles, no square, and one diamond.

OA =

 000
100
101

 , (6.58)

In the short term memory map MA the agents A have located their own position, the
position of other agents and they can store location of objects which they have encountered
for n time steps. After n time steps the representation of an object vanishes. The agent
can learn about object positions by being in the same location as the object or by getting
the information about the object location from another agent. MA is a 10× 10× 6 array
of binary values. The 10 × 10 - array gives the position of the agent and the objects, the
third dimension codes the object type or the identity of the agents. In equation 6.59, I will
use a 3× 3× 6 array of binary values to save space while still able to show the principle.

MA =

 000
010
000

 ,

 000
010
000


 000

000
001


 000

000
000

 ,

 001
000
000

 ,

 000
000
000

 (6.59)

Here, the left most matrix codes the position of the agent in a 3 × 3 space. The next
matrix codes the position of the second agent, which, as it can be seen is on the same
position as the agent A. The position of the third agent is coded in the third matrix. The
next matrix codes the position of triangles - there is no triangle position known to agent
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A. The next matrix, coding positions of squares, shows that there is a square in the upper
right corner. The final matrix, coding positions of diamonds, shows no diamond.

The social score SocAi
of an agent Ai is coded by a set {socAi

(A1)...socAi
(An)}, where

A1...An are the other agents in the game. Every element socAi
(Aj) of the set SocAi

is
represented by a pair of natural numbers < sij, sji > with values between 0 and 9 with sij

representing the history of j’s social behavior towards i and sji represents the history of
i’s social behavior towards j

The representation of the digestion order, D, is given by a 3×3 matrix in which the first
column vector represents the object which is needed at the next digestion step, the second
column represents the one needed after that and the third the one after that. Within the
column, a 1 in the first row represents a triangle, a 1 in the second row a square and a 1
in the final row represents a diamond.

D =

 100
010
001

 (6.60)

D is changed automatically when objects are digested. You can think about it as a
form of appetite or hunger, thirst, freezing etc. - some form of natural body signals.

Utterance Effects

Since we are using only pre-programmed agents, the conventional utterance effects need to
be defined. The other types of speech acts introduced in this chapter have made the state
quite complex. Therefore, utterance effects in the current model are far more complex
than in previous models. Effects have to be defined in terms of agent states, i.e. context
and effect states are based on the state of the agent A =< OA, MA, SA, DA >.

Request A request is made when the speaker A1 desires an object o that is in the
possesssion of another agent A2. If the agent is willing to cooperate he drops the object
and the position of the object is then indicated in MA1 . Nothing happens if the addressee
does not cooperate.

Declaratives For declaratives, agents name the objects which are at their current loca-
tion to another agent. An agent can do this instead of picking the object up or even after
dropping an object. The effect for agent A1 is that his social status with the agent A2 to
whom he points out this object improves. This effect happens only if the speaker really
has an object in his current position and the word he uses is the correct description.

The effect for the addressee A2 is that the described object appears at the position of
the speaker A1 in his map MA2 . Since the speaker has no representation of the knowledge
of the addressee, he cannot know about this effect. He only speaks in the hope of improving
his social status. This ignorance of the knowledge about the knowledge of other speakers is
of course a major simplification. I have briefly sketched above how the framework should
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be changed in the long run to model the knowledge change of the addressee. A first effort
to do this is made in chapter 7.

Questions The effect of a question is an increase in knowledge. A question is answered
by an assertion, and question and answer are performed and evaluated in a single time step.
The question about a specific object, e.g. triangle-quest, is answered with triangle-decl if
the triangle is at the position of the addressed agent and with no answer in case there is no
such object. Therefore, the effect of the question is the knowledge about the specific object
in case it is answered with the declarative. The mechanisms of reward are the same as
with declarative utterances in general. If a question is not answered, the agent is punished.
Note that the agent who does not have the object also does not answer. Therefore, in a
more realistic extension of the present language another utterance content corresponding
to English no should be introduced.

Utterance Selection

With this model, agents can select the correct and most useful imperative, interrogative,
or declarative act.

Requests Having certain objects, especially the objects which currently have a high
value (objects that are needed) increases the value of the state of the agent. Requesting
such an object results in having such an object and, therefore, requests will be selected
because they increase the total value of the speaker’s possessions, and thus the value of
the state he is in.

Declaratives Pointing out objects voluntarily or answering questions increases the social
score, which increases the value of a state. If requests do not result in the addressee giving
the object away, an agent can improve his social score by pointing out objects to him.

On the other hand, an agent has to decide in which cases he will give the information
about the current object to another agent, and in which cases he won’t. He needs to
calculate with which agents it is good to increase his social score, and also which objects
he might need soon himself. For such a decision to make sense, the agent also needs to
include D and S into his considerations.

Questions Questions should be asked if objects of a specific type are needed and their
location is not known or is too far away. They result in an increase of knowledge. The
value of this knowledge has to be dependent on D as well, because knowing about objects
which are needed soon has a higher value than knowing about objects that are not needed
immediately.

Suppose an object of a certain category is needed and no object of this category is
indicated in M . Then the (probabilistic) forward model should indicate the possibility of
a state in which the object is at the position of the addressee and this state should have a
very high value.
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6.5 Speech Acts and Reference

So far, this chapter was only a theoretical description of how different speech acts can be
modeled in the general theoretical framework using forward models and value functions.
Of course, it would be nice to have a working simulation, but there is a good reason not
to implement the framework as far as it is developed so far. The reason are the speech
act holophrases used in our model. Apparently children never use them. They learn at a
very early stage of language acquisition, usually before they even speak their first words,
to use different intonational patterns in ways comparable to the intonational patterns
coding different speech acts. Then, when they use their first real words, they can use them
with these different intonational patterns to perform different speech acts with the same
content word, i.e. they can ask about an object, request it, or just point it out (Tomasello
2003). Although these utterances of children are also called holophrases, in contrast to the
holophrases in my model so far, they code the information about the speech act and the
referential information in different components of the speech signal.

To account for this we would need a language with some form of speech acts markers
(corresponding to the English grammatical rules and intonational patterns coding the
basic speech acts). This requires significant changes to the model. The value function
does not need to be changed, since it does not make any difference whether the states
are accomplished by compositional or non-compositional utterances. But fundamental
changes need to be made to the internal model. How such an internal model is constructed
mathematically and implemented as a computer program will be explained in chapter 7.



Chapter 7

Compositionality

7.1 Definition

Humans can produce and understand utterances they have never heard before. They have
this ability, because they can derive the meaning of a complex utterance from the meanings
of its parts. This property of language is called compositionality.

There is considerable disagreement among researchers over the exact nature of com-
positionality. In this thesis, however, I do not want to involve myself in this discussion.
Since no one would doubt that some degree of compositionality is one of the single most
important features that makes language the powerful tool which it is, any neural theory of
meaning needs to deal with it. In this chapter, I will show how my theoretical framework
can be extended to deal with a compositional language.

7.2 A Simple Extension of the Architecture

7.2.1 Overview

So far, the major theoretical framework of this thesis (using value functions and internal
models for goal-directed communication) was only capable of processing one word holo-
phrases. In this chapter, I will extend this theory so that it can also deal with simple
compositional languages. To do this I will take up the theory of conceptual representations
developed in chapter 4 and integrate in into the theory of goal-directed communication.

Before I do this, I will present a very simple extension of the cognitive architecture
used in the simulations presented in chapter 5. In this extension, I use requests consisting
of a color adjective and a noun (a complex noun phrase), instead of single nouns (as in
chapter 5). To process these slightly more complex utterances, the linguistic input vector
now represents combinations of two possible words instead of simple words. Although,
after superficial observation, the model seemed to be able to deal with this primitive form
of compositionality, a simple compositionality test (explained below) demonstrated that
the model was not really able to grasp the compositional nature of this language.

125
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Figure 7.1: This is the more complex environment which is required to allow the simple
form of compositional utterances to make sense.

In reaction to the failure of this first simple approach, I will present a more complex
forward model, which uses an additional layer of semantic features extracted from the
utterance. This second approach turns out to be able to handle this primitive form of
compositionality exemplified in this language.

7.2.2 The Simulation

Environment

The language I will use in the first simulation of this chapter has the following simple
grammar:

S → A N

A → blue | red
N → triangle | square | diamond

The acquisition of this language was simulated in an environment similar to the one
used in the simulations of chapter 5. For the current simulation, however, this environment
needed to be changed, because even a very simple compositional language does not make
sense, if the world does not offer the possibility to use compositional expressions. In
particular, it would not make much sense to use an expressions such as red triangle, if
all triangles were red. Therefore, there is a need to have shapes of at least two colors.
Hence, I created an environment in which there are three objects types (triangle, square,
and diamond) of two colors (red and blue). The environment looks as in figure 7.2.

The goal of the agents - defined by the reward function - was the same as in the
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simulations of chapter 5. Also, the only possible speech act type were requests as in
chapter 5, i.e. every utterance describing an object of a certain type was to be interpreted
as the request for this object.

To deal with the two-word utterances I modified the value function and forward model
accordingly. The input argument of the value function was adapted so that it could learn
to compute a value for the more complex environment. For the forward model it was
not sufficient to adapt the state-argument to the more complex environment, the input
structure for the utterance had to be changed as well. In addition to a vector for the shape
word (up to now this was a 3-dimensional binary vector to code one of the three shape
words), another 2-dimensional vector is used to code the color word.

Appearent Results

Training the value function with the two-word utterances took about as many time steps
as with the one word holophrases. After the training, the mapping of world states into
values enabled the agent to select the best actions in all situations.

The training of the modified forward model did not take longer than the training of
the one-word forward model. After training, the mapping of world states and two-word
utterances into the next world state was 100% accurate.

This superficial description of the model’s performance seems to suggest that it was
actually able to handle the compositional language. However, to be able to learn the
compositional dimension of a language it is not sufficient that complex utterances can
be produced or understood. The necessary capability is that the meaning of a complex
utterance can be derived from the meaning of its parts. Therefore, I designed a simple test
of compositionality and I applied it to this simple extension of the model.

7.2.3 A Test of Compositionality

The compositionality test which I will out does not test whether a language is composi-
tional, but whether a system can learn a language, given that this language is composi-
tional.

To test whether a model can derive the meaning of a complex utterance from the
meaning of its parts, it needs to be shown whether the model can understand or produce
utterances it has never experienced before. Of course, it needs to be exposed sufficiently
to the meaning of the atomic parts of the language. It is, however, already a crucial
question how often and in what combinations these atomic parts of the language need to
be experienced by the model.

I will leave the question about frequency unanswered for the time being since this is
an empirical question which should be tested in experiments with children. In terms of
modelling, what needs to be found is the maximally high learning rate which still allows the
network to generalize. To the question of which parts and their (two-word) combinations,
on the other hand, I will try to give a tentative answer. To understand the meaning of
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the following utterances, described as ordered pairs in the set U1 (equation 7.2), it is not
sufficient for an agent to experience the use of E1 in equation 7.2.

E1 = {< a1, b1 >,< a2, b2 >} (7.1)

U1 = {< a1, b2 >,< a2, b1 >} (7.2)

The reason is that the agent has no way of knowing which part of the effect of an
utterance (such as < a1, b1 >) can be attributed to which lexical item. To derive the
meaning of a lexical item from its usage in a complex utterance, the system either needs
to know the meaning of the other parts or it needs to encounter the item in at least two
different contexts1. For example, if it is exposed to both < a1, b1 > and < a1, b2 > then
the system can learn what part of the meaning is attributed to a1 and therefore might be
able to attribute which part should be attributed to b1 and b2.

In this light, the test situation can be more correctly described as that where a system
experiences the meaning of set of sequences E = {< a1, b1 >,< a1, b2 >,< a2, b1 >} but
never encounteres the sequence U = {< a1, b2 >}. It is nevertheless able to compute
its meaning due the meaning representation it has developed from processing the first
sequence.

To apply this test, certain combinations (in our case < a1, b2 >) must not be in the
training set. If the model is nevertheless able to understand or even produce such an
utterance, then that shows that it is able to handle compositionality.

7.2.4 Application of the Test

Following the test procedure just described, I tested the extended model by blocking the
rule-based dialogue systems to produce (and, therefore, also to react to) the utterance:
< red, square >. The language learner encountered the words red and square only in the
utterances: < red, triangle >, < red, diamond >, and < blue, square >.

After training, the other agents were again allowed to produce the utterance < red, square >.
However, the learning agent was not able to react to this utterance in the correct way. Also,
no production of this utterance could be observed. In other words the architecture did not
pass the test. The model was not able to produce or comprehend this utterance by deriving
the meaning from its parts.

To check whether this problem is generally unsolvable or whether it is just a problem
of learning, I performed a mathematical analysis of the weights, i.e. I checked whether the
weights could be set in any way that would solve this problem. I did this by stating the
conditions on the weights in terms of a set of mathematical inequalities. It turned out that
there was no solution for these inequalities, so the problem cannot be solved by this model.

1This condition has to hold only for so called associativist theories of meaning acquisition, in which the
referent of a word is determined by properties in the world with which it is correlated most often. The
framework I am describing at the moment is such an associativist framework. Very soon in this chapter, I
will move more towards what might be called an intentionalist approach to meaning acquisition, in which
these conditions do longer have to hold.
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7.3 Using Conceptual Binding

In chapter 4, I have already explained what I assume as the basic organization of concepts
in the brain. One of the main features of this organization was that complex concepts
are actually composed from more basic concepts or features. If this is the case, then
compositionality exists already on the conceptual level. So a red square is likely to be
represented as a combination of the feature red and the feature square.

Given such an organization, it is straightforward to add a conceptual layer to the model
in which features such as red and square are represented. These basic features are assumed
to be either inherited or learned before their respective linguistic labels.

The essential step for the learning model is then to associate the labels with the con-
cepts. This pushes the essential problem of compositionality to the level of concepts (where
I believe this issue actually belongs).

If the association of features with labels is regarded as the main learning step the model
has to perform in a simulation environment such as the one in the previous section, then
there are two more tasks which the model has to solve. The first one is the problem of
object identification, i.e. how does the model know for which object it actually has to find
the features it can associate with the respective labels. The second is the problem of what
action actually has to be performed with the object if it is identified. This second problem
can be generalized to the problem of speech act compositionality and I will discuss it in
detail in the remaining sections of this chapter. The first problem, I believe, is the problem
of understanding intentions and directing attention respectively.

Children have the (probably instinctive) capability of following the gaze of a parent.
Eventually, this capacity enables them to develop a sense of shared attention. Shared
attention appears already before language in children and it is regarded as an important
prerequisite of word acquisition. Attention also bridges the dispute between associativist
and intentionalist accounts of language acquisition. The children have to solve the problem
which object they should attend to (intentionalist account), but then the features of this
object have to be associated with the verbal label (associativist account).

Bottom-up control mechanisms of attention make us humans (including language learn-
ing children) attend to things which are prominent for some reasons and the mechanisms
of shared attention make children attend to the objects their caretakers attend to. It is,
therefore, reasonable to assume that the language learning agent in my model will attend
to the object which actually changes its owner, since (i) it is prominent by way of changing
position and (ii) it is attended to by both, the giving and the receiving agent.

7.3.1 Simulation

Taking these two ideas (label-feature-association and attention control mechanisms) into
account, I designed a complex forward model which works in the following way: In a first
step, a feature representation (color, form, movement) is extracted from the utterance.
This feature representation is then used to identify and locate the relevant object in space.
Attention is directed on this particular object and a change of its location is predicted.
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Figure 7.2: This is the compositional forward model. Like the simple forward model it
maps a state (context) and an utterance on the next state.

7.3.2 Results and Discussion

I have shown that agents can learn to use compositional utterances of the present fragment
to express their desires. They also learn to understand the desires of other agents expressed
by compositional utterances. Learning takes significantly longer than in the simulation
with the non-compositional model, but in both studies training times have not been used
to evaluate the models2. After training the agents show correct reactions when they are
addressed and produce the appropriate utterance in every situation.

Also, agents using the compositional forward model, were able to understand and pro-
duce sentences which they have never heard before, i.e. they derive the meaning of the
complex utterance from the meaning of its parts.

Whether this was achieved by having an innate representation of features, or whether
it was mainly because of the extra layer cannot be said at the moment. An interesting
experiment to test that would be to use a multi-layer network (such as a multi-layer
perceptron trained with backpropagation) and see whether it can aquire the necessary
feature representation in the extra layer. The reason why I felt justified in choosing to pre-
specify the features in the model of this section is that there is sufficient evidence showing
that certain basic features are indeed innate.

This can be achieved simply having a third layer in the network or requires in addition
preprogramming of innate feature is something that must be left open.

2I have not attempted to fit the training times to empirical language acquisition data. However, it
seems that in both cases, training takes significantly longer than in the language acquisition of children.
This, however, might change in models in which the referential aspect and the usage aspect of meaning
are treated independed from each other, as they are in the theoretical models that are introduced below.
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7.4 Unifying Theoretical Strands

In this section, I will finally take up the theoretical strand developed in chapter 4 and use
it to formalize the insights gained about the relation between utterances, current states
and desired states.

Using the example of the previous section, an utterance such as < green, triangle >
can be chosen in a current state CA1 such as the one described in equation 7.3).

CA1 =



V FA :

 triangle f : < {w1}, {l1} >
speaker f : < {w2}, {} >
addressee f : < {w3}, {} >


V CA :

[
green f : < {w1}, {l2} >

]
Location :

[
position[x1, y1] : < {w3, w1}, {} >
position[x2, y2] : < {w2}, {} >

]

Lexicon :

[
′triangle′ : < {}, {l1} >
′green′ : < {}, {l2} >

]
(7.3)

The desired state DA1 of agent A1 might be such as described in equation 7.4. The
only difference between CA1 and DA1 is that the green triangle changed its position from
the position of the addressee to the position of the speaker.

DA1 =



V FA :

 triangle f : < {w1}, {l1} >
speaker f : < {w2}, {} >
addressee f : < {w3}, {} >


V CA :

[
green f : < {w1}, {l2} >

]
Location :

[
position[x1, y1] : < {w3}, {} >
position[x2, y2] : < {w2, w1}, {} >

]

Lexicon :

[
′triangle′ : < {}, {l1} >
′green′ : < {}, {l2} >

]
(7.4)

The core of a request for objects is then the pattern described in equations 7.5 and 7.6.

CA1 =


BrainAreas 1− n

 speaker f : < {w1}, {} >
addressee f : < {w2}, {} >
identified object f : < {w3}, {} >


Location :

[
speaker position : < {w1}, {} >
addressee position : < {w2, w3}, {} >

] (7.5)

DA1 =


BrainAreas 1− n

 speaker f : < {w1}, {} >
addressee f : < {w2}, {} >
identified object f : < {w3}, {} >


Location :

[
speaker position : < {w1, w3}, {} >
addressee position : < {w2}, {} >

] (7.6)
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Note that an utterance is defined by speaker, addressee, and content, i.e. the represen-
tation of speaker and addressee is also triggered by the utterance. The utterance has the
form described in 7.7

speaker → addressee : w1, w2, ...wn (7.7)

At this point, all utterances are requests for objects. To extend the types of speech acts
possible within this new compositional framework, I also need some way to indicate the
speech act type. Requests for an object will be indicated by the marker obj req at the end
of the word sequence. In English such requests are usually expressed by the syntactical
structure of the sentence (V,S,O), or even with an explicit give me ... or polite variations
of this (such as indirect speech acts).

With this speech act marker, we get an utterance of the form described in equation 7.8

speaker → addressee : w1, w2, ...wn, obj req (7.8)

Now it is possible to introduce other speech act markers and examine systematically
how they contribute to the context conditions and the effect of the utterance. However,
before I do that, I need to introduce some more structure to allow the analysis of the
compositional effects of assertions. In particular, I need to introduce a way of representing
the mental states of other agents. I will then tie up the loose end of chapter 4, where
I postponed an analysis of the process of selecting topic and comment predications in
production.

7.5 Compositionality in Assertions

7.5.1 Theory of Mind

In section 7.5.3, I have discussed the variety and the different levels of goals that agents
can persue by using an assertion. But all these goals depend on the basic goal of changing
the conceptual activation in the knowledge base of the addressee. To model this central
goal of an assertion, both the current state CA1 and the desired state DA1 of an agent A1

have to include some way of representing the belief state of another agent A2.
Unfortunately the empirical data needed to base such a theory on does not offer a solid

foundation. There are some functional imaging studies about tasks involving theory of
mind (Hill and Frith 2003) which give us some idea about which brain areas might be
involved in the representation and processing of other people’s mental states. However,
close to nothing is known about the representations of a person’s knowledge about other
people’s mental states in terms of neurons. Fortunately, there is some behavioural data
which allows us to speculate on the nature of this representation.

Apparently children at first believe that all humans share the same knowledge. They
have trouble understanding that another person might not know something which they
know. But it appears that a child can realize that another persons might know s.th. that
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the child does not know, because they start asking questions, such as What’s that? and
Where go?, at a very early stage - clearly before they are able to pass the Sally-Ann Test. Do
such questions already represent a conscious realization that other persons have knowledge
which they do not have, where it is only later that children grasp that different persons
might have different knowledge? How do they know the knowledge of other people differs
from their own3? Of course, language is one way to make people (including children) aware
of differences in knowledge, but the ability to contrast my knowledge with other people’s
knowledge must be independent of language. This is illustrated by our ability to hide. It
is possible for me (and for children, too) to hide myself in a way that person A2 cannot see
me. To do this I need to take the perspective of that person and calculate the areas that
are hidden from his sight.

Since there is evidence that the child’s first attitude is that all knowledge is shared by
all people and that it becomes only later aware of the differences, it is justified to assume
that the brain represents knowledge about other person’s knowledge as a different from
our own knowledge. One way in which such difference could be represented is as follows.
By default, an agent A1 will assume that the knowledge of any other agent A2 is identical
to A1’s own knowledge. Only if there is a reason to assume that A2’s knowledge differs in
certain respects, then this difference will be represented. This also makes it unnecessary
for the brain of A1 to represent the same knowledge items several times - once as the
knowledge item of A1 and then again for A2 and again for every other agent to whom A1

attributes this bit of knowledge.
There are two main reasons to infer that another agent’s knowledge differ one’s own:

(i) language, i.e. someone telling us s.th. that is not in accord with our own beliefs and (ii)
something I will call simulation of experience, i.e. I simulate the experience of the other
person in my own brain to derive the knowledge this person has. To do this, I need to
simulate the perspective of another person and infer what kind of knowledge the other
person has gathered. Here are some examples:

• If someone was already in my room, I know that he has seen my room. Therefore, I
know that the person knows that I have a piano.

• If I have tasted the food the waiter has just brought in, and my dinner companion
did not taste it yet, I know that she does not have knowledge of its taste.

• If I watch out of the window and see a butterfly while I am on the phone with my
friend, I know that he does not see this butterfly.

• I assume that a certain person does not have my phone number, because I have never
given it to him.

Further, the problem of representing knowledge of another agent is in a sense similar to
the problem of representing an action of another agent: It needs to be represented as the

3Maybe the first step is to realize and become conscious of the fact that they themselves do not have
all knowledge.
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knowledge of that particular agent - in other words, the representation of the knowledge
needs to include some form of link to a person.

But how is a person represented in the brain? It seems justified to assume that the
representation of a person involves several levels of representation, among them at least the
following: (i) the person’s perceptual features (e.g. visual information about the person),
(ii) memories of episodes that involved this person (events involving the person which we
remember), and (iii) what we know about the mental state of the person (e.g. what we
know about the person’s knowledge). It is unlikely that we link our representation of
the knowledge of an agent with everything we know about the agent - just in order to
indicate whose knowledge it is. This would be to much information which might impede
the brain in its effort to keep apart the features of the many concepts and episodes it
has memorized. It is, however, not unlikely that the brain develops some form of higher
level representation of a person that abstracts from detailed information such as particular
episodic memories and perceptual memories about the appearance of that person. I will
assume such a representation and I will call it a tag - and if this tag is used to mark the
knowledge of a person, I will call it a knowledge tag.

Also, it seems reasonable to assume that representations of concepts such as categories,
individuals (events, agents, etc.) are shared between the agent’s own knowledge and her
knowledge about the mental states of other agents. Using the knowledge tag, such a sharing
of concepts is possible.

Like all other conceptual representations, the representation of the mental states of
another agent can be either in working memory or in long term memory with the usual
interaction between the two types of memory.

7.5.2 A First Speculative Representation

In this section I will use the idea of knowledge tags to enrich the theoretical framework with
a way of representing the mental states of other agents. So far, the conceptual knowledge
of an agent A1 is represented as in equation 7.9.

CA1(t) =

Modality 1 :

 feature 1 : < {li...}, {wk...} >
... ...
feature n : < {ll...}, {wm..} >


...

Modality z :

 feature 1 : < {lo...}, {wp...} >
... ...
feature n : < {lq...}, {wr...} >


(7.9)

Now suppose that an agent A1 knows that a certain banana is sweet while another
agent A2 does not know that. A1’s knowledge could be represented as in equation 7.10.
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CA1(t) =

Sight :
[

banana f : < {w1}, {} >
]

Taste :
[

sweet : < {w1}, {} >
]

Location :
[

position[x, y] : < {w1}, {} >
] (7.10)

In contrast, A2 does not know that the banana is sweet. His knowledge is represented
in equation 7.11.

CA2(t) =

Sight :
[

banana f : < {w1}, {} >
]

Taste :
[

sweet : < {}, {} >
]

Location :
[

position[x, y] : < {w1}, {} >
] (7.11)

To represent A1’s knowledge of A2’s mental state, I will use the knowledge tags intro-
duced above. It is, however, not clear where in the brain those tags might be represented.
I will, therefore, put the tags into a hypothetical area that I will call knowledge. To which
area in the real brain this functional area corresponds is subject to experimental research.

Using the tag, the knowledge of other agents A2 is represented by linking a conceptual
configuration to the tag of A2. If the tag is not active (as in equation 7.12), the represented
knowledge is that of the representing agent himself (A1). Equation 7.12 describes a state
of A1 in which he knows that a particular banana is sweet.

CA1(t) =

Sight :
[

banana f : < {w1}, {} >
]

Taste :
[

sweet : < {w1}, {} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {}, {} >
] (7.12)

However, if the tag is active, it generates the contrasting information about the concepts
leading to the representation of the knowledge of A2. Equation 7.13 describes a state of
A1 in which he knows that A2 does not know that this particular banana is sweet.

CA1(t + 1) =

Sight :
[

banana f : < {w1}, {} >
]

Taste :
[

sweet : < {}, {} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {w1}, {} >
] (7.13)

7.5.3 Transmission of Information

Within this enriched framework I am not only able to describe A1’s representation of A2’s
knowledge (equation 7.13), but also the knowledge that A1 wants A2 to have. To do this,
I simply use the tags also in the representation of the desired states D (equation 7.14).
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DA1(t) =

Sight :
[

banana f : < {w1}, {} >
]

Taste :
[

sweet : < {w1}, {} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A 2 : < {w1}, {} >
] (7.14)

Since the outline of my theoretical framework of goal-directed communication in chapter
3, it has been the central assumption of my theory that utterances are selected by means of
an internal model, i.e. either by a forward or an inverse model, or by both. In chapter 5, I
favoured the assumption that utterances are selected with a forward model, by simulating
the effects of all possible utterances and choosing the one with the effects which are desired
the most. While this approach has its advantages (discussed in chapter 5), it also has a
major problem. Because of the richness of language it is absolutely impossible for a speaker
to go through all possible utterances or even a large subset of them. Given, however, that
the language producing agent knows what the desired state is, an inverse model can be
used to select the utterance. In what follows, I will sketch an inverse model which uses
several processing steps to compute an utterance u which is likely to cause the transition
from CA1 to DA1 .

To accomplish this transition by means of language, it is, of course, essential that some
of the concepts, such as banana and sweet are lexicalized, as in equations 7.15 and 7.16.

CA1 =



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :
[

sweet : < {}, {l2} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {w1}, {} >
]

Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

] (7.15)

DA1 =



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :
[

sweet : < {w1}, {l2} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {w1}, {} >
]

Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

] (7.16)

Given these two states, producing the utterance which will bring about the transition
involves several processing steps. The first one is to find the difference between the current
state and the desired state (this is probably the case for other speech acts, too). This is
processing step 1.

CA1 =
{

Taste :
[

sweet : < {}, {l2} >
]

(7.17)
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DA1 =
{

Taste :
[

sweet : < {w1}, {l2} >
]

(7.18)

Given that this difference is found, processing step 2 is to identify the individual concept
of which this difference is part. In this case, it is the representation bound by the working
memory label w1.

Processing step 3 is then to select one or a combination of lexicalized concepts which
can be used to refer to this individual. Technically, it is the concept or concept combination
which has features that in combination are part of the individual concept and of no other
one. Also it has to be part of the individual concept in the knowledge representation of A2

in the current state CA1 and not in the desired state DA1 . Since A2 does not know these
additional properties, they can, of course, not be used to refer to this object.

In principle there are various options here. One option that is found, it seems, in
all natural languages is that of referring to the individual represented by one’s individual
concept by means of a proper name. I conjecture that names are associated with indi-
vidual concepts in essentially the same way in which a word like sweet is associated with
a categorical concept. For the case under discussion, however, a proper name seems an
unlikely communicative vehicle. For in order that a proper name can function effectively
in communication it is necessary that those who use it are members of a group within
which there exists a certain amount of common knowledge regarding the entity named.
Such knowledge presupposes that there has been considerable interaction within the group
pertaining to this entity. Not only must there be enough members who have had an op-
portunity to acquire an individual concept representing the entity, but they must also have
had the chance to establish that they share a concept for it. If those conditions are ful-
filled, and moreover members of the group come to associate the same name (i.e. the same
phonological string) with the individual concepts they have for the entity, then use of the
name by one of them in the presence of another member can be expected to have the effect
of triggering in that other member an activation of the individual concept with which the
name is linked. In general, however, it takes time for those preconditions to be fulfilled,
and it also requires an explicit act of naming on the part of somebody or some people
within the group to get the name-individual concept association going. It is something
that as a rule will happen only if the entity is long-lived and important enough to sustain
this fairly complex social process. Thus, in the normal course of things a banana neither
has the individual significance nor the longevity needed to become the bearer of a shared
name.

A1 will thus have to make use of another way of referring to his banana - or, in our terms,
another way of activating A2’s individual concept for this banana. Among the alternative
means that English has available for this purpose there are complex definite descriptions
and demonstratives, in which a noun (with or without additional adjectives, relative clauses
and/or prepositional phrases) is preceded by the or by one of the demonstratives this and
that, respectively. For present purposes I won’t distinguish between these three options -
there is much that linguistics has to say about the differences between them, but that is
not central to our present concern. Instead, I want to focus on the choice of the other part
of the phrase, i.e. of the noun (with or without satellites). How is A1 to decide on the noun
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or nouns he is to use?

The choice will have to depend on what A1 assumes A2 knows about the individual to
which he wants to draw A2’s attention. There are two cases that should be distinguished
here. The first is the one where A1 assumes - and let us suppose he assumes correctly -
that A2 already has an individual concept for the thing he wants to refer to. (For instance,
A1 may have noted that A2 was observing him while he was tasting the banana.) In
that case A1 will have to decide on one or more categorical concepts that (i) are part of
A2’s individual concept; (ii) whose activation will trigger the activation of A2’s individual
concept for the individual to which A1 means to refer; and (iii) for which A1 and A2 share
a lexicalization (i.e. sharing the conviction that they associate the same word forms with
those concepts).

Suppose that A1 settles on a set of one or more such concepts and utters a definite
description or a demonstrative in which the word forms for these concepts are conjoined.
(Again, I ignore the question exactly what form this conjunction will take, e.g. whether
any of the concept words will turn up in a relative clause and so on.) In order that
this phrase (description or demonstrative) has the intended effect on B, the activation of
the concepts which A2 associates with the concept words in this phrase must trigger the
activation of A2’s individual concept for the banana of which they are part. Intuitively,
the likelihood that this will happen would seem to depend on two different factors, (i)
whether the lexically triggered concepts play a sufficiently salient part in the network
which implements A2’s individual concept, and (ii) whether they play a comparable role in
other individual concepts. (In order that the right individual concept be activated by the
activation of its part concept or concepts there shouldn’t be too much competition from
other individual concepts to which the lexically activated concept or concepts also belong.)

The lexicalized concept that A1 will choose in our case is the one associated with the
word banana. Processing step 3 leads to an activation of the lexicalized concept and also
the word form banana (equations 7.19 and 7.20, working memory label w2). This step is
what I call the topic predication with banana as its topic predicate.

CA1 =



Sight :
[

banana f : < {w1, w2}, {l1} >
]

Taste :
[

sweet : < {}, {l2} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {w1}, {} >
]

Lexicon :

[
′banana′ : < {w2}, {l1} >
′sweet′ : < {}, {l2} >

] (7.19)
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DA1 =



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :
[

sweet : < {w1}, {l2} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {w1}, {} >
]

Lexicon :

[
′banana′ : < {w2}, {l1} >
′sweet′ : < {}, {l2} >

] (7.20)

Given this state of activation in the speaker’s brain, she now has to give the addressee
the new information about the individual the representation of which he has just triggered
in working memory. Processing step 4, therefore, is to find a lexicalized concept which can
activate this information. In our example, the concept is the one associated with the word
sweet (long term memory label l2). This step is called comment predication and sweet is
the comment-predicate.

Since the goal of the whole utterance production is the change of the knowledge state
of the addressee, the speaker also has to mark the utterance as an assertion, leading to an
utterance of the form (syntactical issues and function words are ignored):

[[bananaT ][sweetC ]assert] (7.21)

Note that the theoretical framework described so far explains only how an assertive
speech act is produced given that the desired state of the speaker is a state in which the
knowledge of the addressee is changed. It does not explain why the speaker should have
such a desired state in the first place. To select a state as the desired state it needs to be
accessible from the current state and the value function needs to map it onto a higher value
than all other accessible states. To be mapped on a high value by the value function, the
state with the changed knowledge of the addressee needs to include some features which
can motivate the selection of an assertive speech act (described in detail in section ). The
central feature here is in the representation of the knowledge base of the addressee. The
desired state needs to include a representation of the fact that the speaker has cooperated
with him - a memory that has a high value since it might trigger cooperative behavior
from the addressee in the future. An estimation of how important the information that
the assertion will provide is for the addressee might determine his degree of gratefulness.
However, such an estimation would require considerable development of the possibilities
of the theory. Another factor that could determine whether the speaker would provide
information to the addressee is whether he has memories of past cooperative behavior of
the addressee (e.g. his sharing of important information). Such information could be stored
in the current state.

7.6 Decomposing Speech Acts and Reference

As the coda of the theoretical development in this thesis, I would like to apply this frame-
work to the production of three types of speech acts (assertions, questions, requests). In
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the last section, I have already described the structure of the desired state D (equations
7.16) and the current state C (equation 7.15) serving as input to the inverse model which
has to determine the structure of an appropriate assertion.

One possible input (in terms of C and D) to the inverse model for requests can be the
one described in equations 7.22 and 7.23. The main point expressed in these equations is
that in the current state the sweet banana has a different position than in the desired state
(in which it has the same position as the speaker).

CA1 =



Sight :

[
banana f : < {w1}, {l1} >
self f : < {w2}, {} >

]
Taste :

[
sweet : < {w1}, {l2} >

]
Location :

[
position[x1, y1] : < {w1}, {} >
position[x2, y2] : < {w2}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]
Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
(7.22)

DA1 =



Sight :

[
banana f : < {w1}, {l1} >
self f : < {w2}, {} >

]
Taste :

[
sweet : < {w1}, {l2} >

]
Location :

[
position[x1, y1] : < {}, {} >
position[x2, y2] : < {w2, w1}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]
Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
(7.23)

This input leads to the following utterance type:

[[bananaT ][sweetC ]req] (7.24)

To compute a question, the inverse model of the speaker needs to take into account
that a question might trigger several possible answers. This means that the question can
lead to several possible states of the speaker (characterized by the information about the
world he has received and integrated into the overall state). In the following example we
have two possible states, called D1 and D2, described in 7.26 and 7.27. The current state
is given in equation 7.25.
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CA1 =



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :

[
sweet : < {}, {l2} >
not sweet < {}, {l3} >

]
Location :

[
position[x1, y1] : < {w1}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]
Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
(7.25)

D1
A1

=



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :

[
sweet : < {w1}, {l2} >
not sweet < {}, {l3} >

]
Location :

[
position[x1, y1] : < {w1}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]
Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
(7.26)

D2
A1

=



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :

[
sweet : < {}, {l2} >
not sweet < {w1}, {l3} >

]
Location :

[
position[x1, y1] : < {w1}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]
Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
(7.27)

The utterance type this input leads to is described in equation 7.28.

[[bananaT ][sweetC ]quest] (7.28)

Given these three input patterns and the three utterance types (characterized by the
different speech acts they perform), the question is, how does the system learn which input
to transform into which speech act type. Looking at the structure of the input pattern
shows that in the case of assertions it is the knowledge of the addressee that needs to
be changed, while it is the position of objects in the case of requests, and the speaker’s
knowledge about the world in the case of questions.

7.6.1 Computational Generalizations

So far, the input to the inverse model is a current state and a desired state (in the case of
questions a list of desired states). Note that the state descriptions I have used to explain
the nature of the representations and processes are very small elements of the very large
conceptual states that we must assume to be present in the real brain. The desired states
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have the same complexity as the current states. This is of course a very inefficient way of
coding (especially for questions), since they are usually - apart from some important but
small differences - equal to the current state. What we need instead is to specify a way
of reducing the desired states to some description of differences they make to the current
state (i.e. the required changes). I do this simply by specifying only those feature(s) which
differ from the current state.

For the current and desired states of the previous section, the desired change (∆) can
be found below.

Assertion ([[bananaT ][sweetC ]assert]) :

CA1 =



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :
[

sweet : < {}, {l2} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {w1}, {} >
]

Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

] (7.29)

∆ =
{

Taste :
[

sweet : < {w1}, {l2} >
]

(7.30)

Request ([[bananaT ][sweetC ]req]) :

CA1 =



Sight :

[
banana f : < {w1}, {l1} >
self f : < {w2}, {} >

]
Taste :

[
sweet : < {w1}, {l2} >

]
Location :

[
position[x1, y1] : < {w1}, {} >
position[x2, y2] : < {w2}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]
Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
(7.31)

∆ =

{
Location :

[
position[x1, y1] : < {}, {} >
position[x2, y2] : < {w2, w1}, {} >

]
(7.32)

Question ([[bananaT ][sweetC ]quest]):
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CA1 =



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :

[
sweet : < {}, {l2} >
not sweet < {}, {l3} >

]
Location :

[
position[x1, y1] : < {w1}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]
Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
(7.33)

∆1 =
{

Taste :
[

sweet : < {w1}, {l2} >
]

(7.34)

∆2 =
{

Taste :
[

not sweet < {w1}, {l3} >
]

(7.35)

The problem which still needs to be addressed is whether there are general process-
ing steps leading from the current state C and the desired change ∆ to an utterance,
irrespective of what speech act type this utterance should belong to.

Processing step 1 is to determine the speech act type. For the examples discussed above
the following algorithm can be used:

• If some Knowledge-feature is activated in the current state ⇒ assertion.

• If ∆ contains Location-features ⇒ request.

• If there are several ∆s ⇒ question.

This is, of course, a first approximation that only works for the specific speech acts and
utterances discussed so far. I will point out some problems with this approach, as well as
possible solutions to overcome these problems at the end of this section.

Processing step 2 can be analogous to the one in section 7.5.3: identification of the
individual to which the changing feature belongs. The same holds for processing step 3,
viz. the topic predication.

Using processing step 4 from section 7.5.3 I could handle assertions in the way specified
there. To deal with questions the general algorithm can be changed to repeat processing
steps 2, 3 and 4 for every ∆. Instead of the question specified in equation 7.28, this would
produce a sequence such as in equation 7.36.

[[bananaT ][sweetC ][bananaT ][not sweetC ]quest] (7.36)

Such a sequence is a meaningful sequence, since it is an accurate description of the
information state of the person asking the question. I will therefore assume it to be the
produced utterance form of a question.

For requests, ∆ contains two features, one new feature activation and one feature
deactivation, i.e. the object which was activated at the location of the addressee is no
longer active there (this is the deactivation) and is not active at the speaker’s location
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(this is the new activation). Since the main goal of the request is to get the object to the
position of the speaker and it is a necessary consequence that the object will no longer be
in the position of the addressee, the algorithm for request can be designed in such a way
that the newly activated feature of ∆ determines the comment predicate. In this case the
feature is the speaker’s position, for which generally the word here is used. We get the
following utterance, instead of the one in equation 7.24.

[[bananaT ][hereC ]req] (7.37)

To conclude this section, let me point out one important problem concerning process-
ing step 1 (the determination of the speech act type) concerning the difference between
questions and requests. While assertions have a pretty clear criteria of selection (change
of knowledge of the addressee) that distinguishes their desired state from the desired state
of other speech acts, in the current framework, questions and request both change the
representation of reality. While requests change the representation of reality because they
(might) lead to an event that actually changes reality (and, therefore, its representation),
questions change the representation of reality because the speaker gets knowledge about
something he does not know before. The only difference in the representation so far is that
questions have (at least) two alternative ∆s.

These two ∆s are not a problem if utterances are selected with a probabilistic forward
model as described in section 6.2, since such a model can compute probability values for
more than one possible outcome. However, for an inverse model this means that more than
one state has to be selected by the value function, and, at this moment, it is not clear how
that can be possible.

Assuming, however, that this problem can be solved, then it might also be possible that
an agent desires the world to be in one of certain alternative states, e.g. he might wants a
certain object, say his jacket, to be on one of his chairs, i.e. either on his chair number 1
or his chair number 2. How does the configuration of desired state and current state then
differ from asking whether his jacket is on chair 1 or on chair 2? The crucial difference
seems to be that in the case of the question the agent already knows that his jacket is on
either on chair 1 or on chair 2, while in the case of the request, he probably know that the
jacket is neither on chair 1 nor on chair 2. Both facts can be represented in the theoretical
framework as it is. In other words, if the current state and the desired state contradict
each other, then the selected speech act is a request, while if they don’t the selected speech
act is a question.

It might be that in the long run the solution of this problem needs to use some sort of
meta-representation of knowledge, i.e. an agent’s knowledge about his knowledge. But for
the time being, it seems that the distinction can already be made to a sufficient degree by
using the existing first-level representations of reality.

There is a further problem concerning questions: How does the speaker know who the
question should be addressed to. In case of requests for objects, the addressee simply is
the person with the object of desire and in the case of assertions, it is the person, whose
knowledge the speaker wishes to change. In the case of questions the current and desired
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state only represent the knowledge that is desired, but not the potential source of this
knowledge. To determine the addressee, a representation of the possible source of this
knowledge has to be included in the current state using the existing framework for the
representation of the knowledge of other agents. However, such a representation needs to
use higher level concepts such as location of, which still need to be introduced into the
theory.

7.7 Final Theoretical Remarks

7.7.1 Determining Desired State

As pointed out in chapter 5, inverse models have the disadvantage that the desired state
(or the desired change) needs to be found before the utterance selection process can take
place. Since it is not possible to compute the value of all possible states at every point in
time, it is necessary to find a way to compute the most salient and potentially most desired
possible changes instead of all possible changes.

One way to do that is by associative learning. The agents need to learn which current
(context) states are usually followed by which future states in case of no action. Then they
can learn by trial and error or by imitation what can be done to prevent this natural flow
of events. Also states can be associated with certain desires that in the past have been
fulfilled in the context of these states. These desires would then trigger the activation of
the desired states.

For forward models the problem is that not all possible actions can be checked, so either
the current state or the desired state needs to trigger some constraint on action selection.
In fact, as Hommel (1998) has shown, the desired state actually triggers the activation of
the action which has led to it in the past. This is evidence that indeed associations are
made between states and actions. So they could be used to constrain the possible actions.

These considerations need to be taken into account before experiments can be set up
to test hypotheses about the nature of the utterance selection process.

7.7.2 Syntax and Sequence Processing

Currently, the utterances represented are of a fixed length and with a fixed structure which
has fixed slots for the possible words: There is a slot for the first word (the topic predicate),
another slot for the second word (the comment predicate), and a final slot for the speech act
marker. However, in human languages, the number of words and the syntactical structure
and the semantic types in an utterance are much more flexible. Therefore, to bring the
language which these types of model are able to handle closer to real natural language,
the structure of the utterances must not be predefined by the programmer. Instead, the
agents should be able to learn which sequences produce which effects in the same way they
learn the effects of words and word combination. A model with a vocabulary consisting of
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red, blue, square, diamond, triangle, give, and eat should be able to produce and to receive
utterances such as (1) and (2).

(1) red red red red red

(2) square eat give square

Only through experience (imitation as well as trial-and-error) the model should learn
which sequences are an effective means of achieving goals and which are not. This also sheds
a new light on the function of syntactic structure. Either the sequence of words determines
the meaning (John kisses Mary. vs. Mary kisses John or it facilitates the processing of
the utterance, i.e. it is a conventionalized trigger for standardized (and therefore faster)
processing.

One possible way to accomplish the processing and generation of free sequences might
be to use a simple recurrent network (Elman 1990) as an internal model. Such networks are
able to generate some form of internal representation of syntactic and semantic categories.

Another and probably more interesting way would be to introduce a verbal working
memory (V WM) as a part of the agent’s internal state. A V WM has to contain an ordered
list of word forms. With such a device the production and perception of utterances could
be restricted to one single word, which would then be processed in the context of the
previous sequence. The effect of some words would simply be to change the state of the
V WM .

Of course, words will not stay in the V WM for very long. For one, there are constraints
on memory - only a specific number of items can be stored and also items can be stored
only for a limited time. But also, it is likely that items will not be held for long in V WM
if they have already been processed and are no longer needed.

Take the previous case of the assertion that a particular banana is sweet, given that
the current state is as in equation 7.38 with the desired state given in equation 7.39.

CA1 =



Sight :
[

banana f : < {w1}, {l1} >
]

Taste :
[

sweet : < {}, {l2} >
]

Location :
[

position[x, y] : < {w1}, {} >
]

Knowledge :
[

A2 : < {w1}, {} >
]

Lexicon :

[
′banana′ : < {}, {l1} >
′sweet′ : < {}, {l2} >

]
V WM : []

(7.38)

∆ =
{

Taste :
[

sweet : < {w1}, {l2} >
]

(7.39)

The first step, as we know, is to determine the speech act type, but nothing is produced
at that stage. After the third processing step the topic-predicate banana is produced with
the goal of transmitting this word into the V WM of the addressee. In equation 7.40 the



7.7. FINAL THEORETICAL REMARKS 147

changed representation of the mental state of the addressee shows an activation of the word
banana in V WM as the first word of a sequence.

CA1 =


Knowledge :

[
A2 : < {w1, w2}, {} >

]
Lexicon :

[
′banana′ : < {w2}, {l1} >
′sweet′ : < {}, {l2} >

]
V WM :

[
1st word : < {w2}, {l1} >

] (7.40)

This representation of the word banana is now - in the speaker’s representation of the
mental state of the addressee - activating the conceptual representation of banana. If
the information that banana is the topic predicate is also already available at that stage,
and if it is used as a definite description denoting an individual of the category banana,
then processing step 3 can also be executed. But depending on what information becomes
available at what stage of the utterance, word forms can be stored in V WM until processed.
This shift of the processing of the sentence structure to the processing of states with the
internal model and the value function allows (i) the production of arbitrary sequences, but
also enables (ii) the aquisition of the meaning of certain syntactic structures. Using this
design an agent can learn several things about the structure of utterances:

• He can acquire an understanding that word repetitions are useless in most cases. E.g.
after producing the word banana, the production of another word banana does not
have any useful effect on the addressee (in most cases).

• It allows the acquisition of conventional sentence structures. E.g. an utterance of
the form [[bananaT ][hereC ]req] is more often understood (has the desired effect) than
an utterance of the form [[hereC ][bananaT ]req].

• Meaningful differences in sequences can be understood. E.g. the agents can learn
that John kissed Mary and Mary kissed John produce different changes of knowledge
in the addressee’s knowledge representation.

• When the model is extended to handle more complex syntactic structure, it can learn
the meaning of certain function words. E.g. the agents can learn that the generation
of the sequence put the banana on the table can produce a different effect from the
production of the same sequence with a instead of the (in the first case the most
salient banana has to be put on the table, in the second case it does not matter
which banana).

Let me finally point out that such a design does not require multiple representations
of word forms as the current slot representation. To represent both utterances John kissed
Mary and Mary kissed John, in the previous design, the model needs one neuron the
represent Mary in the first position of the utterance and one neuron the represent Mary
in the third position. In the design just sketched, one representation of the word form is
sufficient.
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7.7.3 Learning Word Meanings in Context

Suppose a child already has a conceptual representation associated with the word form
window as well as a representation of the categorical concepts closed and open, but no
words associated with those. It further knows how to produce and comprehend the speech
act request. Now it observes a speaker who uses the request 7.47 to a third person. The
production of the request is based on the representations described in equations 7.42 and
7.43.

u = [[windowT ][openC ]req] (7.41)

CA1 =



Sight :
[

window f : < {w1}, {l1} >
]

Location :

[
open : < {}, {l2} >
closed : < {w1}, {l3} >

]

Lexicon :

[
′window′ : < {}, {l1} >
′open′ : < {}, {l2} >

] (7.42)

∆ =

{
Location :

[
open : < {w1}, {l2} >
closed : < {}, {l3} >

]
(7.43)

Since the child understands the topic-predicate window, as well as the general way
a request works, it knows that something will happen with the window. It can observe
that the window changes its position (from being closed to being open). Since the only
new word in the utterance was open, the child can associate the word with the concept
open (equations 7.45 and 7.46 show the representations of the child after linking word and
concept in working memory).

u = [[windowT ][openC ]req] (7.44)

CA1 =



Sight :
[

window f : < {w1}, {l1} >
]

Location :

[
open : < {}, {l2} >
closed : < {w1}, {l3} >

]

Lexicon :

[
′window′ : < {}, {l1} >
′open′ : < {w1}, {} >

] (7.45)

∆ =

{
Location :

[
open : < {w1}, {l2} >
closed : < {}, {l3} >

]
(7.46)

This should then result in a long term connection with the word and concept (equation
7.48 show the representation of the child after linking word and concept in long term
memory).

u = [[windowT ][openC ]req] (7.47)
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CA1 =



Sight :
[

window f : < {}, {l1} >
]

Location :

[
open : < {}, {l2} >
closed : < {}, {l3} >

]

Lexicon :

[
′window′ : < {}, {l1} >
′open′ : < {}, {l2} >

] (7.48)

7.7.4 Learning the Processing Steps

We are now equipped with a general inverse model which is able to compute utterances
of different speech act types from a current state and a desired change. A final question
to ask here would be how these processing steps are executed by a neural model, and also
whether they can be learned by one or several types of neural learning algorithms.

Unfortunately I cannot answer this question here in sufficient detail, but I would nev-
ertheless briefly sketch out some first ideas.

One of the first things agents have to acquire are categories of effects. They have to
learn that effects of a certain category can be accomplished with utterances of a certain
type. E.g. changing the state of an object in the world (in the examples in this thesis it is
usually the object’s position) is one category and the utterance type is a request.

Also, agents have to learn that words can be used to bring a certain object to the
attention of an addressee. They can already learn this in the single word stage. The
comment information can remain implicit, and has to be guessed by the addressee from
the situation. E.g. an utterance milk might have an implicit comment-predicate give.

Further, agents have to learn that if an addressee is attending to a certain object, some
information can be given about it (e.g. by the word give, indicating that the object should
be given to the speaker). This is also possible in the single word stage. The attention can
be drawn to an object by other means, such as gaze following, or pointing.

Then eventually the agents have to learn that verbal actions can accomplish both these
goals. At this point they have to acquire the skill to produce an utterance with a topic -
comment structure.

However, agents need to use subgoals for an implementation of this principle. For
example a desired state of an agent A1 could be to get an addressee A2 to open a certain
door. This means that A1 has the representation of a certain door in his brain and this
door is represented as closed. To produce the utterance which might cause A2 to open
the door is, according to the theoretical frame developed up to this point, done in several
major steps. First, A1 has to select the speech act type. Second, A2’s attention needs to
be directed towards the door; this leads to a decision on the topic predicate. Third, the
comment predicate needs to be decided on. These processes are probably formed in that
order, but this would be a question of empirical research. However, it can be assumed
that the decision regarding the speech act type and the topic-predicate and the comment-
predicate are made before A1 starts to actually produce the words of the utterance.

Given that the utterances I have dealt with so far are direct expressions of speech act
type, as well as topic-comment-structure, the translation into a sequence of words using
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the model described in section 7.7.2 is straightforward. However, in real natural languages
the surface form of the utterance often stands in a more complex relation to this structure.



Chapter 8

Predictions and Empirical Questions

8.1 On Theory and Data

8.1.1 Theory and Model

Before talking more about the relation between theory and data, I would like to draw a
clear distinction between theory and model. In the literature these two words are often
used interchangeably or without explaining the difference.

I use the terms in the following way: A theory is a set of formal or informal propo-
sitions that are claimed to be true (i.e. cognitively realistic). Those propositions might
be simplified, but are claimed to capture essential properties of human information pro-
cessing. A model of this theory is a computational implementation in accordance with
those propositions. However, the model is allowed (and often required) to use additional
constructions (mechanisms and representations) to be able to implement the theory and
deliver the required results. Those constructions, as far as they are not claimed to capture
real properties of human information processing, are not part of the theory. In almost all
modelling work this distinction is not worked out in sufficient detail. Often those addi-
tional contructions are not really critical, since they are easily identified as justifiable or
irrelevant simplifications. For example, depending on the exact goal of the model it might
be justified (and necessary) to simplify the representation of speech sounds in a model
about meaning processing in the brain, while it might not be justified in a model about
speech recognition. This is because a more exact representation might be relevant for the
goals of the first, but not for those of the second model.

To simplify cognitively realistic processing is possible as long as the simplifications
capture those features of the process and the representations that are relevant for the goals
of the simulation. In some way or another however, simplifications have an effect on the
processes which are described by the theory. In my simulation (described in chapter 5),
the visual input to my model is simplified, but it seemed to be perfectly clear that I do not
claim this to be the cognitively realistic input. However, the choice of the representation
was made so that the essential features of the learning algorithm (which I do claim to be
cognitively realistic) could be implemented more effectivley and transparently. Because

151
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of the learning algorithm the visual input has to capture some essential properties of
the cognitively real visual representations, however, since otherwise a cognitively realistic
algorithm might not work as well.

Often a theory describes the relation between two variables in terms of a mathematical
function F . In the model such a function, especially if it describes a complex cognitive
process, needs to be implemented as an algorithm. This algorithm does not need to be
claimed to be cognitively realistic, which would mean that it is an additional construction
and not a part of the theory. If, however, the choice of algorithm has an effect on the
behaviour of the model, then the algorithm becomes theoretically relevant and should
be discussed and included in the theory. Many backpropagation models, for example,
are not clear about the exact status of the learning algorithm they use. Do they claim
that the brain uses backpropagation? Do they claim that the brain uses s.th. similar to
backpropagation? Or is it just a way of arriving at distributed representations which are
claimed to be cognitivly realistic? What exactly is the claim here?

And why is this so important? Because clearly stated claims are the only way of deriving
clear predictions from a theory. And only clear predictions can be tested. Therefore, only
a precisely worked out theory can lead to real scientific progress. Making neural models,
since they are computational, forces the researcher to be mathematically precise and algo-
rithmic, and, therefore, is a very suitable method of arriving at precise cognitive theories.
However, since most neural models (or modellers) do not clearly distiguish between theory
and additional constructions, i.e. the modellers haven’t really worked out their theoretical
claims, it is hard to see to what extent the data is in accord with their ideas. It is not
so hard to fit data to a model, when the model is full of algorithms, representations, and
parameters, and it is left in limbo which of those are essential and meaningful (and true).
Therefore, it should be made perfectly clear for every computational neural model which
parts of it are realistic - simplified maybe, but claimed to capture essential properties of the
process or representations, and which parts are mere additional constructions introduced
just for the sake of making the model work. Everything else leads to confusion and little
scientific progress.

8.1.2 Data Types

In this thesis, I have developed a theory about meaning acquisition, representation, and
processing in the human brain. Whether the claims made by this theory are true is a
question I am not able to answer at this point. But what I will do in this section is
to point out how they can be tested by empirical research. A computational theory of
meaning processing in the brain cannot be tested directly, since no direct evidence is
available. However, there is indirect evidence available on several levels of observation.
The strength of the model developed so far is that it can be tested on several of those
levels and, therefore, can serve as an integrative platform to be constrained by data of
different levels of observation.

These levels of observation can be classified into two broad categories: the behavioral
level and the neurophysiological level.



8.1. ON THEORY AND DATA 153

On the behavioral level, I will classify the data into two main types: The first type I will
call output data. Output data consists of the language (utterances) humans produce. It
includes linguistic data, i.e. data which is generally used by theoretical linguists to evaluate
their theories. These are the utterances which normal speakers, who have fully acquired
their native language, produce under normal circumstances. But output data also includes
the utterances (or pre-linguistic sounds) of children in their early stages of development, as
well as the transition between the utterances in earlier and later stages. Further, it includes
the errors children and adults make under normal circumstances. Finally, it includes all
output under experimental conditions (e.g. in the presence of distractors, noise, etc.).

The second type I will call performance data. I will distinguish two types of performance
data. The first one consists of the results of the standard measurement in behavioral
experiments: the reaction time (RT). RT experiments can give a good insight into the
complexity and the difficulty of brain processes. The second one is learning rate.

Both types of data can be obtained either in patients (e.g. people with brain diseases or
brain lesions which impair their performance) or in (so-called) normals (i.e. people without
such impairments). Behavioral data of patients already give insights into the locations of
the brain mechanisms involved and the neural architecture of the cognitive processes.

More information about the biological implementation of those processes can be ob-
tained by measurements on the neurophysiological level (the second broad category). Here,
it isn’t the behavior of the tested person that plays the central role, but some measured
physiological brain response.

One possible way to categorize data of the neurophysiological level is by considering
the number of neurons they measure. Small scale measurements are the recording or
stimulation of single or small numbers of neurons by introducing an electrode directly into
the brain. This type of research can in some rare cases be applied to humans, e.g. in case
they undergo some sort of epilepsy surgery, but in general this type of data is obtained
with animals. Therefore, it cannot be directly used to measure and stimulate while a
person is performing a linguistic task. However, as animal brains and human brain are
very simular in terms of their general mechanisms of computation, the insight this research
provides into the general learning and processing mechanisms of the brain can be applied
also to design biologically plausible constraints of a model of language processing. I will
call the insights into information processing in the human brain provided by this kind of
data design constraints.

Large scale measurements are measuring methods that measure the activation of large
numbers of neurons (or synapses). The most frequent are fMRI and EEG (others are PET,
SPECT, MEG, and TMS). Functional imaging data, such as fMRI give us clues about the
location of certain brain processes with a fairly good space resolution, but pretty bad time
resolution. EEG on the other hand gives us insights into the time response of neural
activation, but the space resolution is very low. EEG (and MEG data) can also give
us information about activity in different frequency bands (such as the γ-band). Both
functional imaging data and EEG data can be simulated with neural models, although in
relation to language this has hardly every been done.

Finally, connectivity data, i.e. data about the connection between brain areas, can be
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used as another design constraint.

8.1.3 Dependent and Independent Variables

The terms dependent and independent variable apply mostly to experimental research. In-
dependent variables are those that are manipulated whereas dependent variables are only
measured or registered. Dependent variables are called dependent variables because they
depend on the manipulation (the experimental conditions) of the independent variable. In
that sense, the data types described in the previous section are different kinds of dependent
variables. The purpose of a model or a theory is to predict the value of such a dependent
variable for different conditions (different parameters or manipulated independent vari-
ables). In that sense a computational neural model can be regarded as a function M which
computes a dependent variable y from an independent variable (parameter)1 p (equation
8.1).

y = M(p) (8.1)

A computational neural model usually computes primarily output data (i.e. linguistic
responses). Such a model can be regarded as an output function O() that computes
a certain output y from input x. If the input x is different for different experimental
conditions then x is a manipulated independent variable; if it stays the same for all the
conditions, it is not. In the latter case different parameters p1...pn have to function as
independent variables p1...pn (equation 8.2).

y = O(x; p1...pn) (8.2)

Besides the output data, a neural model can also be used to predict reaction time. To
do that, the neural network has to be a function over time t (equation 8.3) while the input
x becomes a parameter. To predict the reaction time a thresold function (equation 8.4) is
needed. The reaction time is the value t for which the threshold function and the output
function intersect (equation 8.5).

y = O(t; x, p1...pn) (8.3)

y = θ (8.4)

θ = O(t; x, p1...pn) (8.5)

It is desirable not only to predict output and behavioural data with the model, but to
test it on the basis of physiological data as well. The activation bA(t) of a certain brain
area A at t can be computed as the sum of the activation of all neurons m belonging to
that area in the model (equation 8.6).

1Of course, there can be more then one independent variable which can be manipulated independent
of each other.
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bA(t) =
ω∑

n=1

mA
n (t) (8.6)

All these major types of data can be computed by one and the same model based on
one theoretical framework. The framework I have developed in my thesis can be used
as a basis for such functions M that relate independent variables or parameters with
dependent variables of various types (output, behavioral, physiological). In the remainder
of this chapter, I will try to be more specific about where and how such functions can be
extracted from my theory.

8.1.4 Relating Behavioral and Physiological Data

A neural model can be used in a very straightforward way to directly relate observed
behavioral data to the areas which are simulated in the model. I will discuss two examples
of how this can be done: simulated lesions and synthetic brain imaging.

Simulated Lesions

Evidence for the involvement of a brain area in a cognitive function traditionally comes
from lesion studies (Broca 1865, Wernicke 1874).

Recently, there has been a growing interest in constructing neural models to study how
specific pathological neuroanatomical and neurophysiological changes can result in various
clinical manifestations, and to investigate the functional organization of the symptoms that
result from specific brain pathologies.

To simulate lesions, neurons or connections can be destroyed or disabled. Ruppin
and Reggia, for example, simulate a focal structure lesion by permanently clamping the
activity of the lesioned units to zero. According to Ruppin and Reggia such structural
lesions (involving neurons which are actually defect or destroyed) cause functional lesions
of areas which to a large degree depend for their input on the estroyed units in the area of
the structural lesion.

For the computational model described in this thesis there are many simulations of
lesions possible. One of the most interesting ones would be to destroy those neurons in
the internal model which have the function of the Purkinje cells in the cerebellum and
to see whether this produces malfunctions in the behavior of the model comparable to
the behavior of Autists. This would be an interesting simulation because it is a common
finding in Autistic patients that they suffer from a deficiency of Purkinje cells in the
cerebellum. These cells are important for the cerebellum in the acquisition of a forward
model. Therefore, a functional connection between those two phenomena might be found
by producing similar lesions in the neural model.
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Synthetic Brain Imaging

Neural models have been used to synthesize functional imaging data for more than 10 years
now (Arbib et al. 1995, Tagaments and Horwitz 1998). To use this approach for linguistic
tasks is complicated, but possible (Klein and Billard 2001).

Brain activity can be simulated by computing a value of activation of the neurons
in every defined brain structure and every discrete point in time while the behavior is
simulated. To synthesize brain activation with the model described in this thesis it is
necessary to attribute a brain region to those units that have not yet been correlated with
such an area.

The neural network representing the value function has an input layer for the perception
of the state, and an output layer consisting of only one neuron. The network representing
the forward model has an input layer for the perception of the state, an input slot for the
word and an output layer consisting of a neural representation of the state. The input layers
of both networks should be considered to be part of the perceptual system, and, therefore,
be considered to simulate cortical sensory areas. The output layer of the forward model,
on the other hand, can be used to simulate the cerebellum. The output neuron of the basal
ganglia represents activity of the basal ganglia.

To generate synthetic fMRI data, a computer simulation needs to be designed that can
also be executed as an experiment. To predict fMRI data for a classical subtraction design,
for example, two conditions that differ in one parameter have to be specified (e.g. p1 in
equation 8.3 can have the value v1 in condition 1 and v2 in condition 2).

8.2 Predictions

8.2.1 Forward or Inverse Models

One central claim of the theory developed in this thesis is that internal models play an
essential role in the selection of utterances. Recall that an internal model is an internal
representation of the dynamics of a system (e.g. an arm, a billiard ball, a human being,
the world etc.). If an agent knows how such a system in certain context conditions reacts
to a certain input parameter set (e.g. and action), then he can be said to have an internal
model of this system. To illustrate this, imagine that you are trying to lift a watering can
full of water from the ground. As it turns out the watering can had a little hole and the
water is all gone. Since you expect the watering can to be full of water and very heavy,
your movement is far too powerful for the empty can and you pull it into the air in a fast
uncontrolled movement. The reason, why your movement is so uncontrolled is that you
computed a different outcome for your motor action parameters by using your internal
model of the dynamics of the watering can.

While the involvement of internal models in the selection of verbal action has not been
tested so far, their involvement in motor action (involving speech motor control) is already
tested and widely accepted. In motor control, forward models appear to be necessary,
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because movements are too fast to be produced on slow sensory feedback alone. With
internal models, motor commands can be executed in a pure feed-forward manner.

Utterance selection can’t be based on sensory feedback either, because the consequences
of utterances cannot be perceived until a reaction of the environment has taken place.
Therefore, for utterance selection it is very likely that the reaction of the environment is
predicted by the speaker using an internal model of the environmental dynamics.

In motor control the existence of forward models has been demonstrated with experi-
ments in which subjects had to undertake point-to-point arm reaching movements. Such
reaching movements, if they are fast enough, need to use an internal model of the dynamic
characteristics of the arm, i.e. the brain musst have learned what kind of motor command
is necessary to bring the arm and the hand into a desired position with a fast movement.
In the experiment the dynamics of the arm was changed using a force field (Shadmehr and
Mussa-Ivaldi 1994, Lackner and Dizio 1994). As action selection is done using a internal
model, motor commands were still selected due to the relation between them and effects
stored in the internal model (which was no longer appropriate for the changed dynamics),
and it took some time till the model was adapted to the new dynamics. Therefore, move-
ment was distorted in the beginning and adapted to the new dynamics after a short while.
When the force field was then removed, the movement was again distorted for a short time.

The same type of experiment would be possible with language. The usual effects of
utterances could be altered in a simulated environment. Subjects would select utterances
due to the utterance - effect relation they are familiar with. Subjects are then likely to
change their utterances with respect to the new dynamics of the environment.

These experiments could also be executed in a PET or an fMRI scanner. As opposed
to what is found in studies investigating neural activation correlating to internal models
in motor control (Tamada et al. 1999b, Imamizu et al. 2000), experiments using language
are likely to activate some of the known language areas (e.g. those where lexical meaning
might be stored). It would be interesting to see which brain regions would be activated
when the subject adapts to the new utterance - effect relationship. Our model predicts
that activation correlating to the processing of the difference between the predicted and
the perceived effect will be found in the cerebellum.

In case internal models do play an essential role in utterance selection, it is also necessary
to find out whether this internal model is a forward model F (), predicting the next state
s(t + 1) from the current state s(t) and the verbal action u (equation 8.7) or an inverse
model I(), computing the required verbal action u to get from the current state s(t) to the
next state s(t+1) (equation 8.8). Utterance selection with the forward model is described
in equation 8.9 and equation 8.10 describes utterance selection with the inverse model.

st+1 = F (st, u) (8.7)

u = I(st, st+1) (8.8)

u = argmaxuV (F (st, u)) (8.9)

u = I(st, argmaxsV (st+1)) (8.10)
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To use the forward model for utterance selection as in equation 8.9, the outcome of all
(or at least several) possible utterances needs to be predicted because the algorithm has to
compute the outcomes st+1 of all possible u in the current state st to find the outcome with
the highest value. This necessarily leads to an activation of those utterances. Since this
activation would make it easier to retrieve those sentences, a priming experiment could be
used to test whether or not a forward model is at work.

However, a systematic computation of all possible utterance effects and the expected
values is hardly possible. It is, therefore, very likely that certain context situations, certain
desires, objects and activities trigger certain words, verbal patterns or utterances simply
because they are associated with them over time. In other words, utterance selection
by internal models is aided by associative links between words, concepts, context states,
desired states and sentence patterns. This means that, for example, if a person knocks at
my office door, I will not use a forward model to predict the effects of all possible utterances
including can you please pass me the salt and your plants really need water. It is more likely
the case that I associate this knock at my door with (i) the most likely future state, i.e.
a person standing on my door step as well as with (ii) the most frequent verbal reaction
to this situation, i.e. yes or come in. The forward model can then be used to predict the
effect of come in and if that effect is okay, I will just produce it and not bother predicting
the effect of other possible utterances. Or my desire not to be disturbed (triggered by
the knock) can be used as input to an inverse model producing a wait or a not now or
maybe even the reaction of not saying anything at all to make the person go away. But
how exactly these associative connections can restrict or bias the input of the utterance
selection algorithm needs to be described in more detail before a good experiment could
be set up to test this idea.

8.2.2 Reward Prediction

For the reinforcement learning component, there are already brain imaging studies testing
reward prediction (Breiter et al. 2001, Seymour et al. 2004, Haruno et al. 2004, Tanaka
et al. 2004). However, in most of these studies, the reward prediction has been tested
for actions and not for states, i.e. subjects had to predict the reward they would get for a
certain action and not necessarily for the state which would be brought about by the action.
Therefore, it would be interesting to see whether the activation in the striatum could be
reproduced in settings where the reward is given as dependent on the states instead of the
actions. This could be done by using actions for which the consequent state, but not the
reward has been experienced by the tested subject. In a similar study, verbal and non-
verbal actions could be used to bring states about. This would allow us to see whether the
activation correlating with reward prediction is the same for verbal and non-verbal actions
(which is predicted by our model). One of the most interesting questions to be answered
by such an experiment would be whether these reward predictions are language specific
and or whether the language faculty of the brain employs general (non-language specific)
reward mechanisms.
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8.2.3 Acquisition of First Words

As we have discussed in the previous chapter, children use their first words in so called
holophrases which are composed of two components: a content word and an intonational
pattern indicating the speech act (declarative, imperative, interrogative). Here, I will
describe the acquisition of this capability by means of my theoretical framework. I consider
it to be important to distinguish how the child actually comprehends the communicative
intention of the utterance from how it stores the relation between utterance form and
meaning, as well as how it can use the knowledge it has gained.

Comprehending the Intention

Suppose a specific learning situation in which a child learns the word ball from its mother.
The situation is the following: The mother points her finger to a ball and by doing this
directs the attention of the child towards the ball. While doing this she says ball with a
declarative intonation. I will ignore the problem that the child may have when it must
single out the relevant word when the mother uses a full sentence.

So far I have mostly focused just on the current state and the desired state of the
speaker. But for language acquisition it is necessary to describe the state of the addressee
(i.e. the child). Nevertheless, I will start with the current state and the desired state of the
speaker (the mother), since she uses the representations and algorithms which the child
actually needs to acquire. Note that in the following representation of the state of the
mother the described attention is the attention of the child. The desire of the mother
is to make the child focus its attention on the ball. To do this, the mother needs to
go through the processing steps described in chapter 7.6.1. First the speech act type is
selected. So far, declarative intonation was selected when the speaker wanted to change the
knowledge of the addressee. Manipulating his attention is very similar to the manipulation
of his knowledge and declarative intonation seems to be appropriate for this goal, too.
Due to the simplicity of the sentence, the mother can select the utterance in the first two
processing steps: 1. selection of declarative intonation and 2. selection of the content
word. It seems straightforward to assume that the goal of manipulation of attention or
knowledge is associated with declarative intonation resulting in a brain state of the mother
described in equations 8.11 and 8.12.
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CA1 =



Sight :

[
ball f : < {w1}, {l1} >
mother f : < {w2}, {} >

]

Location :

[
position[x1, y1] : < {w1}, {} >
position[x2, y2] : < {w2}, {} >

]
Attention :

[
A2 : < {w2}, {l2} >

]
Knowledge :

[
A2 : < {}, {l2} >

]

Lexicon :


′ball′ : < {}, {11} >
decl : < {}, {l2} >
imp : < {}, {} >
quest : < {}, {} >



(8.11)

∆ =
{

Attention :
[

A2 : < {w1}, {l2} >
]

(8.12)

Now for the addressee A2 (i.e. the child). The initial state is represented in equation
8.13 (with the attention of the child towards the mother).

CA2 =



Sight :

[
ball f : < {w1}, {} >
mother f : < {w2}, {} >

]

Location :

[
position[x1, y1] : < {w1}, {} >
position[x2, y2] : < {w2}, {} >

]
Attention :

[
A2 : < {w2}, {} >

]
Knowledge :

[
A2 : < {}, {} >

]

Lexicon :


′ball′ : < {}, {} >
decl : < {}, {} >
imp : < {}, {} >
quest : < {}, {} >



(8.13)

From the pointing gesture of the mother the child understands her intention to direct
the child’s attention to the ball.

C(A2) =

 Intention :
[

A1 : < {w3}, {} >
]

Attention :
[

A2 : < {w3, w1}, {} >
] (8.14)

This explanation, of course, is only valid if language acquisition can build on the ca-
pability of the child to understand non-verbal communicative intentions, such as pointing
gestures and gazes. Evidence that such capabilites exist in children is summarized by
Tomasello (2003).

Acquisition

Let us assume that the child understands that a basic declarative use of the word ball has
the same communicative intention as a pointing towards a ball. The child thus needs to
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learn that this kind the declarative usage is like pointing and the word denotes the object
which is pointed out. How can the child learn that? Some researchers think that the basic
intonation pattern for different types of situations are innate. Other opinions are that the
child observes that different intonation patterns correlate with certain intentions of the
adults e.g. a rising intonation is used when some form of reaction is required (question),
while a more flat pattern is used when the utterance is merely a comment (or assertion). In
our case, the child might be able to observe a certain intonation pattern that is frequently
accompanied by a pointing gesture and it understands that this intonation means that it
is supposed to direct its attention towards some thing. Having understood this, the child
can also understand that the word varies in relation to the particular object to which the
reference is made.

To test this hypothesis is not easy. There are many studies describing the use of
intonation in different situations with (apparently) different goals. But to test where this
use of intonation is coming from is difficult. To investigate the very cries that use a specific
pattern might not help since by then the child has already had verbal interaction with its
parents and has been exposed to different intonational patterns. One possibility would be
to design a new intonation pattern (e.g. a very high pitch beginning which drops linearly
to very low one). This intonation pattern could be used for example with new words for
new objects and a gesture (or a gentle push) indicating that the child is supposed to move
to that object. This experiment could also be done with adults. However, it is not yet
clear what the dependent and the independent variables (the manipulations) of such a
experiment should be. These aspects of such an experiment might be more apparent when
the acquisition part of the theory is worked out in more mathematical and computational
detail.

Usage

To use its newly acquired communication skills the child needs to be in a situation where it
needs to point out different objects to another person. Assuming that it has acquired the
association between speech act and intonation, as well as the associations between object
and word, the child can now select both accordingly (using the same mechanisms as the
mother).

8.2.4 Comprehension of Complex Utterances

This section will nicely show how the theory developed in this thesis makes predictions
on the behavioral and physiological level, while connecting nicely to ideas of theoretical
linguistics and philosophy of language. The theory distinguishes states of the systems in
terms of information in long term memory, which is stored in terms of long term memory
binding, i.e. increase in synaptic strength from information in working memory, which is
stored by working memory binding, i.e. increase in synchronization between neurons. It
further describes the process of retrieving information from long term memory into working
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memory and the other way round. It also distinguishes episodic from semantic memory.
All these distinctions and processes are described in terms of neural and synaptic behavior.

Here I will describe the comprehension of sentence (1). I will describe the different
processing steps and the possible manipulations of the independent variables to test the
theory. Note that in this example I have ignored the idea that utterances are always
causing a representation of the intention of speaker in the brain of the addressee, which is
another aspect of the theory which should be tested experimentally.

(1) The banana is sweet.

Equation 8.15 describes the initial state of the addressee.

CA2(t) =



V FA :

[
banana form feature 1 : < {}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >


Lexicon :

[
′banana′ : < {}, {l2} >
′sweet′ : < {}, {l3} >

]

(8.15)
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Processing Step 1

The first processing step is the activation of the word banana, i.e. the activation of the
lexical representation from the acoustic and phonetic features (which I did not include in
the model).

CA2(t + 1) =



V FA :

[
banana form feature 1 : < {}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >


Lexicon :

[
′banana′ : < {w1}, {l2} >
′sweet′ : < {}, {l3} >

]

(8.16)
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Processing Step 2

The second step is the activation of the lexicalized concept associated with the word. It is
a retrieval of information from long term memory to working memory. In working memory
it is represented as a synchronized activation of the features of the concept.

CA2(t + 2) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >


Lexicon :

[
′banana′ : < {w1}, {l2} >
′sweet′ : < {}, {l3} >

]

(8.17)
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Processing Step 3

The third step is the activation of the individual concept to which the activated cate-
gory concept applies from long term into working memory. The activated features of the
lexicalized concept activate the features of the individual concept.

CA2(t + 3) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >


Lexicon :

[
′banana′ : < {}, {l2} >
′sweet′ : < {}, {l3} >

]

(8.18)
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Processing Step 4

The understanding of the comment predicate then triggers the activation of the categorical
concept of sweet (equation 8.19).

CA2(t + 4) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {w2}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >


Lexicon :

[
′banana′ : < {}, {l2} >
′sweet′ : < {}, {l3} >

]

(8.19)
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Processing Step 5

The attribution of the property sweet to the individual banana takes the form of synchro-
nizing the activity of the individual concept with the categorical concept, leading to a
uniform representation of the sweet banana (equation 8.20) in working memory.

CA2(t + 5) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {w1}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >


Lexicon :

[
′banana′ : < {}, {l2} >
′sweet′ : < {}, {l3} >

]

(8.20)
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Processing Step 6

This can lead to a binding of the feature sweet to the individual concept in long term
memory (equation 8.21).

CA2(t + 6) =



V FA :

[
banana form feature 1 : < {w1}, {l1, l2} >
other form feature 2 : < {}, {} >

]

V 4 :

[
banana color feature 1 : < {w1}, {l1, l2} >
other color feature 2 : < {}, {} >

]

TA :

[
sweet feature 3 : < {w1}, {l3} >
other taste feature 4 : < {}, {} >

]

Location :


position[1, 1] : < {w1}, {l1} >
position[1, 2] : < {}, {} >
position[2, 1] : < {}, {} >
position[2, 2] : < {}, {} >



Time :


t[1] : < {w1}, {l1} >
t[2] : < {}, {} >
t[3] : < {}, {} >
t[4] : < {}, {} >


Lexicon :

[
′banana′ : < {}, {l2} >
′sweet′ : < {}, {l3} >

]

(8.21)

Experiments/Dependent Variables/Possible Manipulations

Spelling out the process of understanding utterances in my theoretical framework at this
level of detail immediately leads to several interesting empirical predictions which can be
tested experimentally. I grouped these predictions with the processing steps which they
are testing.

Processing Step 2

• Depending on the feature types different brain areas are predicted to activate. This
can be tested with fMRI or with EEG (in which case the activation is predicted to
be in the gamma range).

• Higher feature load should lead to a stronger activation.

Processing Step 3

The comprehension of sentences that refer to an individual by means of category informa-
tion (e.g. the president) include processing step 3, while sentences that do not refer to an
individual do not include this step. Sentence (2), for example needs to use the category
concept triggered by step 2 to activate an individual concept, while to understand sentence
(3) step 3 is not required.
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(2) A president has a lot of power (unspecific reading).

(3) The president has a lot of power.

A difference in processing steps suggests a reaction time experiment in which the pro-
cessing time of the two condition are compared (less processing steps is likely to result in
faster reaction time). Since the reaction time depends on many other factors as well, such
an experiment needs to carefully control those factors.

Processing Step 4

Processing step 4 is like step 2.

Processing Step 5

Depending on whether the utterance takes the form of an attribution or not, a difference
in coherence is predicted.

(4) The yellow object and the triangle I saw yesterday in the lesson.

(5) The yellow object is a triangle I saw yesterday in the lesson.

In utterance (5), in which a triangle I saw yesterday in the lesson is attributed to the
yellow object, form and color areas of the brain should synchronize while they should not
for utterance (4), which describes the yellow object and the triangle as two distinct entities.

Processing Step 6

Depending on whether the information is considered relevant for the future, it will be stored
in long term memory. A different pattern of EEG and fMRI activity can be expected for
information stored in long term memory than for information which is not.
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Chapter 9

Conclusion

In this thesis, I have developed a theory about the acquisition, processing, and represen-
tation of meaning in the human brain in terms of neural computations. While the theory
is very far from dealing with the large variety of complex sentences possible in natural
language (at the moment it deals with a simplified pseudolanguage) it explains what I
consider to be the most important ingredients of natural language: conceptual represen-
tations, compositionality, topic comment structure, goal directed utterance selection, and
the usage of different speech acts.

The strength of the theory is that it bridges ideas of theoretical semantics and philoso-
phy of language with psychological phenomena (attention, long term and working memory,
episodic and semantic memory, concepts, language acquisition) and explains both in terms
of physiologically realistic neural computations involving references to anatomical regions
of the brain.

The major work that remains to be done is to experimentally evaluate the theory.
In chapter 8, I have started to work out its exact predictions so it can be tested with
appropriate experimental methods, such as EEG, fMRI, patient studies, behavioral studies
of language acquisition with children and language use with adults. Because the complete
theoretical framework is very complex, it might be necessary to evaluate small parts of
the theory in different experiments. Also, to arrive at more exact predictions, and also to
combine the different empirical levels this theory integrates (behavioural, physiological) it
will be necessary to implement more parts of it in form of computational neural models.
This would also make it possible to simlulate lesions and synthesize fMRI data.

While on the neuroscientific side, it will be important to evaluate the theory with
experimental means, for the linguistic side of the theory it will be important to develop
it to a level of detail which allows it to deal with natural language sentences. This would
make it more relevant to linguists.
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Summary

This thesis deals with the question how the human brain acquires, represents, and processes
the meaning of natural language expressions. A computational neural theory of meaning
is developed with the goal of overcoming the strong prevalence of empirical results over
theoretical understanding that is currently present in the neuroscience of language. In
this context, the brain is regarded as a goal-directed system, which acquires language and
meaning as one means for achieving its goals. In this framework, learning of language is
an optimization process, in which the performance of the language learner in handling the
environment increases with a higher level of linguistic capacity. To accomplish complex
learning tasks, such as acquiring a language, the brain uses subsystems, which differ es-
pecially with respect to their learning strategies, but interact so as to achieve the global
goals of the system. One of the main subsystems is concerned with prediction: we learn
language by observing the changes in the environment that utterances can bring about
in certain contexts. In other words, we learn to predict the context-dependent effects of
utterances. As trained speakers, we can construct and select utterances in accordance with
how much we desire their predicted effects. In the introduction I discuss these motivations
that triggered the development of this theory. In particular, I discuss the need for massive
integration of data types by means of a computational neural model, learning in the human
brain, the question of innateness, and why it is important to consider the goals of speakers
from the very beginning of theory development.

In the second chapter, I describe the view that major brain structures differ especially
in respect of their learning strategies (Doya 1999). I explain three major types of learn-
ing algorithms in mathematical detail: reinforcement learning, supervised learning and
unsupervised learning and review the evidence for the thesis that each of those learning
methods is the learning method of one major structure of the brain (unsupervised learning
is the method of the cortex, reinforcement learning is the method of the basal ganglia, and
supervised learning is the method of the cerebellum).

On the basis of these different subsystems of the brain, the third chapter describes how
these components interact and jointly function as a goal-directed communication system. I
describe what the function of each of these subsystems in communication is. In particular,
I describe the use of the cerebral cortex in unsupervised concept acquisition, the role of
the basal ganglia in goal-directed utterance selection using reinforcement learning, and the
role of the cerebellum in acquiring internal models for predicting the effect of potential
utterances.
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In the fourth chapter, I present a computational framework of concept acquisition
and representation in the cerebral cortex. This theory deals with the distinction between
individual and categorical concepts, and with the transmission of information about certain
individuals from one person to another by means of the topic comment structure of an
utterance.

In the fifth chapter, I present simulation experiments that provide evidence for my
theoretical framework. In a multi-agent language game, agents use reinforcement learning
to train a value-function. This value-function is used along with a forward model to
select actions. The agent can select verbal and non-verbal actions, depending on whether
speaking or manipulating the environment directly is more likely to bring about the change
which the agent desires. Moreover, the learner can take his clues from the behavior of the
two other players, who strictly follow the rules the learner is to learn. The learner trains
a forward model of context-dependent utterance effects, which he then uses to express his
desires as well as to understand the verbal expressions used by other agents to convey their
desires.

The sixth chapter extends the theoretical framework, which so far could only deal with
requests, to deal with more speech act types, in particular, assertions, and questions. It
discusses the exact modification of the value function and the internal model that are nec-
essary to deal with these other types of speech acts. It also describes a possible simulation
environment to test those extensions.

In the seventh chapter, I discuss aspects of compositionality. First, I present some
simulation work, in which the forward models of the agents are extended with a layer of
features (color, form, movement) and an attention component. This extension enables
the agents to learn and use compositional aspects of language. After showing the results
of these simulations, I provide a theoretical extension of the framework that includes the
descriptive formalism developed in chapter 4. I use this theoretical extension to decompose
the speech act information (coded in the intonation of the utterance) and the reference
information (coded in the word form).

In the eighth chapter I show how the theory developed in this thesis can be tested
empirically. After discussing several types of data, such as linguistic, behavioral, clinical
and physiological data that can be used to evaluate my theory, I outline one acquisition
and one comprehension experiment and describe which exact theoretical predictions can
be tested with what kind of experimental methods.

The final chapter concludes about what has been achieved in this thesis and sketches
future direction of research in line with the research in this thesis.



Deutsche Zusammenfassung

Diese Arbeit behandelt die Frage, wie das menschliche Gehirn die Bedeutung natuer-
licher Sprache erlernt, repraesentiert und prozessiert. Das derzeitige Uebergewicht an
empirischen Daten gegenueber theoretischem Verstaendniss in der neurowissenschaftlichen
Erforschung der Sprache soll durch die Entwicklung einer computationellen neuronalen
Theorie der Bedeutung ausgeglichen werden. In diesem Zusammenhang wird das Gehirn
als ein zielgerichtetes System betrachtet, welches Sprache und Bedeutung erlernt als ein
Mittel, um sein Ziel zu erreichen. In diesem Rahmen wird das Lernen der Sprache zu
einem Optimierungsprozess, in welchem die Faehigkeit des Sprachlerners seine Umwelt zu
meistern sich verbessert je mehr er seine Sprache beherrscht. Um die komplexen Aufgaben
des Sprachlernens zu meistern benutzt das Gehirn Teilsysteme (Strukturen) die sich in
ihrer Lernstrategie unterscheiden, aber zusammenarbeiten um das globale Ziel des Sys-
tems zu erreichen. Eines der wichtigsten Teilsysteme beschaeftigt sich mit Voraussagen:
Wir lernen die kontextabhaengigen Effekte von Aeusserungen vorauszusagen indem wir
die Veraenderungen beobachten, die Aeusserungen in bestimmten Kontexten verursachen.
Wenn wir unsere Sprache beherrschen, koennen wir die Aeusserungen auswaehlen (und
produzieren) deren vorausgesagten Effekt wir erstreben. In der Einleitung dieser Arbeit
diskutiere ich die Motivationen die zur Entwicklung dieser Theorie gefuehrt haben. Im
Besonderen diskutiere ich die Notwendigkeit massiver Integration von Datentypen durch
computationelle neuronale Modelle, Lernen im menschlichen Gehirn, die Frage welche As-
pekte der Sprache angeboren und welche erlernt sind, und warum es essentiell ist die Ziele
des Sprechens bei der Entwicklung einer solchen Theorie von Anfang an in Betracht zu
ziehen.

Im zweiten Kapitel beschreibe ich eine Theorie, die sagt, dass die wichtigsten Hirnstruk-
turen sich insbesondere dadurch unterscheiden wie sie lernen (Doya 1999). Ich erklaere drei
wichtige Arten von Lernalgorithmen in mathematischem Detail: (reinforcement learning,
supervised learning and unsupervised learning). Danach gebe ich einen Ueberblick ueber die
Evidenz fuer die These, dass jede dieser Lernmethoden die Lernmethode eine der wichtigen
Gehirnstrukturen ist (Unsupervised Learning ist die Methode des Kortex, Reinforcement
Learning ist the Methode der Basal Ganglia und Supervised Learning ist die Methode des
Zerebellums).

Auf der Grundlage dieser verschiedenen Teilsysteme des Gehirns beschreibt das dritte
Kapitel wie diese Komponenten interagieren und als zielorientiertes Kommunikationssys-
tem zusammenarbeiten. Danach erlaeutere ich was die Funktion jedes dieser Teilsysteme
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im Gesamtsystem ist. Ich beschreibe insbesondere die Aufgabe des zerebralen Kortex
im unueberwachten Konzepterwerb, die Aufgabe der Basal Ganglien in der zielgerichten
Aeusserungswahl und die Rolle des Zerebellums in der Aneignung von internen Modellen
zur Voraussage von potentiellen Aeusserungseffekten.

Im vierten Kapitel praesentiere ich eine computationelle Theorie des Konzepterwerbs
und der Konzeptrepraesentation im zerebralen Kortex. Diese Theorie behandelt unter
anderem die Unterscheidung zwischen Individuen- und Kategorienkonzepten, sowie die
Uebertragung von Informationen von einer Person zur naechsten mit Hilfe der topic -
comment Struktur einer Ausserung.

Das fuenfte Kapitel beschreibt Simulationsexperimente welche Evidenz fuer meine The-
orie liefern. In einem Multi-Agenten-Sprachspiel benutzen Agenten reinforcement learning
um eine Wertefunktion zu trainieren. Diese Wertefunktion wird gemeinsam mit dem in-
ternen Modell benutzt um Handlungen zu waehlen. In Abhaengigkeit davon, ob es den
Agenten seinem Ziel naeher bringt zu sprechen oder die Welt direkt zu manipulieren, kann
er zwischen verbalen und nicht verbalen Handlungen waehlen. Darueberhinaus kann der
Lerner seine zwei Mitspieler imitieren, welche streng den Regeln folgen, die der Lerner
lernen muss. Der Lerner trainiert sein forward model (eine Art von internem Modell)
der kontextabhaengigen Aeusserungseffekte und benutzt es um seine eigenen Ziele auszu-
druecken, aber auch um die Ausdruecke zu verstehen, die andere Agenten benutzen um
ihre Wuensche zu vermitteln.

Im sechsten Kapitel erweitere ich den theoretischen Rahmen, welcher bis dahin nur
Forderungen behandelt hat, um die zwei weiteren zentralen Sprechakttypen Fragen und
Aussagen. Das Kapitel diskutiert die Veraenderungen die fuer das interne Modell und die
Wertefunktion vorgenommen werden muessen so dass diese auch mit den anderen Sprechak-
ttypen umgehen koennen. Auch eine moegliche Simulation um die Erweiterungen zu testen
wird beschrieben.

Im siebten Kapitel diskutiere ich Aspekte der Kompositionalitaet. Zunaechst prae-
sentiere ich ein paar kleinere Simulationen in welchen das forward model des lernenden
Agenten durch eine Schicht an Merkmalen (Farbe, Form, Bewegung), sowie einer Aufmerk-
samkeitskomponente bereichert wurde. Diese Erweiterungen ermoeglichen dem Agenten
die kompositionellen Aspekte der Sprache zu lernen und zu benutzten. Danach erweitere
ich auch den theoretischen Rahmen dieser Arbeit in dem ich dem Formalismus der in Kapi-
tel vier entwickelt wurde, in die Gesamttheorie integriere. Mit Hilfe dieser Erweitung ist
es mir dann moeglich Sprechakte in einerseits die Sprechaktinformation (kodiert in der In-
tonation der Aeusserung) und andererseits Referenzinformation (kodiert in der Wortform)
zu dekomponieren.

Im achten Kapitel zeige ich, wie die in dieser Arbeit entwickelte Theorie empirisch
getestet werden kann. Nachdem ich verschiede Datentypen (linguistische Daten, Verhal-
tensdaten, sowie klinische und physiologische Daten) die benutzt werden koennen um meine
Theorie zu evaluieren, diskutiert habe, beschreibe ich ein Erwerbs- und ein Verhaltensex-
periment und erlaeutere, welche exakten theoretischen Voraussagen mit welchen experi-
mentallen Methoden getestet werden koennen.

Das letzte Kapitel beschreibt was diese Arbeit insgesamt erreicht hat und skizziert kurz
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wie die Forschung, die in dieser Arbeit beschrieben wurde, weitergefuehrt werden sollte.
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