

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

CR: D.2.12, D.2.13, D.3.3, H.4.1, I.2.4

Institut für Architektur von
Anwendungssystemen

 Universitätsstr. 38
70569 Stuttgart
Germany

WS-BPEL Extension for Semantic Web
Services (BPEL4SWS), Version 1.0

Dimka Karastoyanova, Tammo van Lessen,
Frank Leymann, Jörg Nitzsche, Daniel Wutke

Report 2008/03
April, 2008

WS-BPEL Extension for Semantic Web
Services (BPEL4SWS), Version 1.0

April 2008

Editor

Jörg Nitzsche

Authors (in alphabetical order)

Dimka Karastoyanova
Tammo van Lessen
Frank Leymann
Jörg Nitzsche
Daniel Wutke

Licence

Permission to copy and display the WS-BPEL Extension for Semantic Web
Services Specification (the “Specification”, which includes WSMO, (SA)WSDL and
schema documents), in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the WS-BPEL Extension
for Semantic Web Services Specification, or portions thereof, that you make:

1. A link or URL to the Specification at one of the Authors’ websites.

2. The copyright notice as shown in the Specification.

The Authors agree to grant you a license, under royalty-free and otherwise
reasonable, non-discriminatory terms and conditions, to their respective essential
patent claims that they deem necessary to implement the Specification.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS
OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO
ANY USE OR DISTRIBUTION OF THE SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner,
including advertising or publicity pertaining to the Specification or its contents
without specific, written prior permission. Title to copyright in the Specification
will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Page 2 of 46

Abstract

The Web Services Business Process Execution Language, version 2.0 (WS-BPEL
2.0 or BPEL for brevity) introduces a model for business processes based on Web
services. A BPEL process orchestrates interactions among different Web services.
The language encompasses features needed to describe complex control flows,
including error handling and compensation behavior.
BPEL for Semantic Web Services (BPEL4SWS) uses Semantic Web Service
Frameworks to define a communication channel between two partner services
instead of using the partner link which is based on WSDL 1.1. It enables
describing activity implementations in a much more flexible manner based on
ontological descriptions of service requesters and providers.

Status

BPEL4SWS is provided as-is and for review and evaluation only. The authors hope
to solicit your contributions and suggestions in the near future. The authors make
no warrantees or representations regarding the specifications in any manner
whatsoever.

Page 3 of 46

Table of Contents

1 Introduction__ 5
2 Language Design__ 6

2.1 Dependencies on Other Specifications _____________________________________ 6
2.2 Notational Conventions ___ 6
2.3 Namespaces___ 6
2.4 Language Extensibility ___ 7

3 Defining a BPEL4SWS process __ 8
3.1 Initial Example__ 8
3.2 Overall Language Structure __ 20

4 Data Handling ___ 23
4.1 Ontological Data Types __ 23
4.2 Mediation ___ 24
4.3 Reasoning in BPEL4SWS __ 25

5 WSDL-less interaction model ___ 29
5.1 Conversation___ 29
5.2 InteractionActivity__ 29
5.3 Pick __ 31
5.4 EventHandler __ 33
5.5 Partner ___ 34

6 Describing Interactions using the RO4SSOA ____________________________ 36
7 Grounding __ 37

7.1 Syntax __ 37
7.2 Properties ___ 37
7.3 Operational behaviour___ 38

8 Acknowledgements ___ 40
9 References __ 40
10 Non-normative references __ 41
Appendix A – Standard Faults ___ 41
Appendix B – BPEL4SWS Schema__ 41

Page 4 of 46

1 Introduction
This specification introduces an extension to BPEL to enable describing interaction
using semantic Web service Frameworks instead of using WSDL 1.1 [WSDL 1.1].
Semantic Web services (SWS) can be considered an integration layer on top of
Web services; they use ontologies as data model and they have a rich conceptual
model. There are efforts towards standardizing this conceptual model within the
Reference Ontology for Semantic Service Oriented Architectures (RO4SSOA)
[RO4SSOA].

The RO4SSOA is as an extension of the SOA-RM [SOARM], informed by existing
semantic Web service approaches such as the Web Service Modelling Ontology
(WSMO) [WSMO] and the OWL Services Ontology (OWL-S) [OWL-S].

It formalises the concept of a service described in terms of its interfaces and its
capability, as in the SOA-RM. In contrast to the SOA-RM it also explicitly models
the required capability and possible interactions of the service consumer. The
concept used to contain these descriptions is called a goal.

In addition to the SWS based interaction, BPEL4SWS makes use of annotated
data types to enhance data handling by means of ontological mediators and uses
ontological reasoning to evaluate conditions.

Page 5 of 46

2 Language Design
The BPEL4SWS extension is defined in a way that it is layered on top of BPEL so
that its features can be composed with BPEL features whenever needed. All
elements and attributes introduced in this extension are made available to both
BPEL executable processes and abstract processes.

This extension introduces a set of elements and attributes to enable defining
interaction that is independent of WSDL and ontological mediation.

2.1 Dependencies on Other Specifications
BPEL4SWS utilizes the following specifications:

• WS-BPEL 2.0: BPEL4SWS extends the WS-BPEL 2.0 process model and
uses existing WS-BPEL 2.0 capabilites.

• SAWSDL: BPEL4SWS uses SAWSDL to annotate data types of variables
used in a process definition.

2.2 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC 2119].

2.3 Namespaces
This specification uses a number of namespace prefixes throughout; they are
listed in Table 1. Note that the choice of any namespace prefix is arbitrary and
not semantically significant (see [XML Namespaces]).

Prefix Namespace

bpel
http://docs.oasis-
open.org/wsbpel/2.0/process/executable

b4s
http://www.iaas.uni-
stuttgart.de/bpel4sws/executable

prg
http://www.iaas.uni-stuttgart.de/bpel4sws/
wsdlgrounding

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

Table 1 Prefixes and namespaces used in this specification

Page 6 of 46

All information items defined by BPEL4SWS are identified by the XML namespace
URI [XML Namespaces] http://www.iaas.uni-
stuttgart.de/bpel4sws/executable. A normative XML Schema [XML Schema
Part 1, Part 2] document can be obtained by dereferencing the XML namespace
URI.

2.4 Language Extensibility
The BPEL4SWS specification extends the reach of the standard BPEL extensibility
mechanism to BPEL4SWS elements. This allows:

• Attributes from other namespaces to appear on any BPEL4SWS element

• Elements from other namespaces to appear within BPEL4SWS elements

Extension attributes and extension elements MUST NOT contradict the semantics
of any attribute or element from the BPEL4SWS namespace.

Standard BPEL element <extension> must be used to declare mandatory and
optional extensions of BPEL4SWS.

Page 7 of 46

3 Defining a BPEL4SWS process

3.1 Initial Example

Before describing the structure of business processes in detail, this section
presents a simple example (inspired by the example given in the WS-BPEL
specification) of a BPEL4SWS process for handling a purchase order. The aim is to
introduce the most basic structures and some of the fundamental concepts of the
extensions.

“On receiving the purchase order from a customer, the process initiates two paths
concurrently: calculating the final price for the order, selecting a shipper […], and
scheduling the production and shipment for the order. While some of the
processing can proceed concurrently, there are control and data dependencies
between the three paths. In particular, the shipping price is required to finalize
the price calculation, and the shipping date is required for the complete fulfillment
schedule. When the three concurrent paths are completed, invoice processing can
proceed and the invoice is sent to the customer.” [WS-BPEL 2.0]

Receive
Purchase

Order

Initiate
Price

Calculation
Decide

On
Shipper

Initiate
Production
Scheduling

Complete
Production
Scheduling

Complete
Price

Calculation

Arrange
Logistics

Invoice
Processing

Receive
Purchase

Order

Initiate
Price

Calculation
Decide

On
Shipper

Initiate
Production
Scheduling

Complete
Production
Scheduling

Complete
Price

Calculation

Arrange
Logistics

Invoice
Processing

Figure 1: Purchase Order Process – Outline [WS-BPEL 2.0]

Page 8 of 46

In contrast to the WS-BPEL process defined in the BPEL specification, in the
BPEL4SWS process presented below not all communication channels are modelled
using a partnerLink. The communication with the shipper is modelled using
WSDL-less interaction activities forming a conversation. A goal description is
attached which describes the goal of this particular conversation in terms of its
requested capability and its message exchange (interface, according to the
RO4SSOA). The goal matches a service in case (i) the capability the service
provides and the capability the goal requests match and (ii) the message
exchange the service can involve in matches the message exchange the goal
requests. The message exchange of both, the goal and the service, is grounded to
WSDL port types in a manner that is compliant with the Basic Profile 1.1 [WS-I
Basic Profile] of the WS-Interoperability organization. The first two messages, i.e.
the shippingRequestMessage and the shippingInfoMessage, are not grounded
to a particular port type. They are sent to the port type of the service that has
been discovered during runtime. The third message, the scheduleMessage is
grounded to the shippingCallbackPT. This port type is used by the service to
provide the shipping date to the process. The process grounding binds operations
of the shippingCallbackPT to activities in the process model.

PartnerLink
invoicing

PartnerLink
scheduling

computePrice PT

invoiceCallback PT

scheduling PT

Process
purchaseOrderProcessing

C
onversation
Shipping Process

G
rounding

Shipping
C

allback
PT

Shipping
C

allback
PT

goal service

describes

describes

grounds to
grounds to

matching

Conversation
shipping

PartnerLink
purchasing

purchaseOrder PT

Figure 2: Purchase Order Process – Communication Channels

Page 9 of 46

<process name="purchaseOrderProcess"

 targetNamespace="http://example.org/bpel4sws/purchase"

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

 xmlns:lns="http://manufacturing.org/wsdl/purchase"

 xmlns:b4s=" http://www.iaas.uni-stuttgart.de/BPEL4SWS/executable">

 <documentation xml:lang="EN">

 A simple example of a BPEL4SWS process for handling a purchase

 order.

 </documentation>

 <extensions>
 <extension namespace="http://www.iaas.uni-stuttgart.de/
 bpel4sws/executable"
 mustUnderstand="yes"/>
 </extensions>

 <b4s:conversations>

 <b4s:conversation name="shipping"

 hasGoal="http://example.org/bpel4sws/goal"/>

 </b4s:conversations>

 <partnerLinks>

 <partnerLink name="purchasing"

 partnerLinkType="lns:purchasingLT"
 myRole="purchaseService" />

 <partnerLink name="invoicing" partnerLinkType="lns:invoicingLT"

 myRole="invoiceRequester" partnerRole="invoiceService" />

 <partnerLink name="scheduling"

 partnerLinkType="lns:schedulingLT"

 partnerRole="schedulingService" />

 </partnerLinks>

 <variables>

 <variable name="PO" messageType="lns:POMessage" />

 <variable name="Invoice" messageType="lns:InvMessage" />

 <variable name="shippingRequest"

 messageType="lns:shippingRequestMessage" />

 <variable name="shippingInfo"

 messageType="lns:shippingInfoMessage" />

 <variable name="shippingSchedule"

 messageType="lns:scheduleMessage" />

 </variables>

Page 10 of 46

 <faultHandlers>

 <catch faultName="lns:cannotCompleteOrder"

 faultVariable="POFault"

 faultMessageType="lns:orderFaultType">

 <reply partnerLink="purchasing"

 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder" variable="POFault"

 faultName="cannotCompleteOrder" />

 </catch>

 </faultHandlers>

 <sequence>

 <receive partnerLink="purchasing"
 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder" variable="PO"

 createInstance="yes">

 </receive>

 <flow>

 <links>

 <link name="ship-to-invoice" />

 <link name="ship-to-scheduling" />

 </links>

 <sequence>

 <assign>

 <copy>

 <from>$PO.customerInfo</from>

 <to>$shippingRequest.customerInfo</to>

 </copy>

 </assign>

 <extensionActivity>
 <b4s:interactionActivity

 name="decideOnShipper"

 conversation="shipping"

 inputVariable="shippingRequest"

 outputVariable="shippingInfo">

 <sources>

 <source linkName="ship-to-invoice" />

 </sources>

 </b4s:interactionActivity>
 </extensionActivity>
 <extensionActivity>

 <b4s:interactionActivity

Page 11 of 46

 name="arrangeLogistics"

 conversation="shipping"

 outputVariable="shippingSchedule">

 <sources>

 <source linkName="ship-to-scheduling" />

 </sources>

 </b4s:interactionActivity>

 </extensionActivity>
 </sequence>

 <sequence>

 <invoke partnerLink="invoicing"

 portType="lns:computePricePT"

 operation="initiatePriceCalculation"

 inputVariable="PO">

 <documentation>

 Initial Price Calculation

 </documentation>

 </invoke>

 <invoke partnerLink="invoicing"

 portType="lns:computePricePT"

 operation="sendShippingPrice"

 inputVariable="shippingInfo">

 <documentation>

 Complete Price Calculation

 </documentation>

 <targets>

 <target linkName="ship-to-invoice" />

 </targets>

 </invoke>

 <receive partnerLink="invoicing"

 portType="lns:invoiceCallbackPT"

 operation="sendInvoice" variable="Invoice" />

 </sequence>

 <sequence>

 <invoke partnerLink="scheduling"

 portType="lns:schedulingPT"

 operation="requestProductionScheduling"

 inputVariable="PO">

 <documentation>

 Initiate Production Scheduling

 </documentation>

 </invoke>

 <invoke partnerLink="scheduling"

 portType="lns:schedulingPT"

Page 12 of 46

 operation="sendShippingSchedule"

 inputVariable="shippingSchedule">

 <documentation>

 Complete Production Scheduling

 </documentation>

 <targets>

 <target linkName="ship-to-scheduling" />

 </targets>

 </invoke>

 </sequence>

 </flow>

 <reply partnerLink="purchasing" portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder" variable="Invoice">

 <documentation>Invoice Processing</documentation>

 </reply>

 </sequence>

</process>

Listing 1: Purchase Order Process

“The WSDL port type offered by the service to its customers (purchaseOrderPT)
is shown in the following WSDL document. Other WSDL definitions required by
the business process are included in the same WSDL document for simplicity; in
particular, the port types for the Web services providing price calculation,
shipping, and production scheduling functions are also defined there” [WS-BPEL
2.0]. Note that in contrast to the example in the BPEL 2.0 specification, no
partnerLinkType is defined for the shipping. The messages used during the
shipping conversation are annotated using SAWSDL annotated data types.

Page 13 of 46

<wsdl:definitions

 targetNamespace="http://manufacturing.org/wsdl/purchase"

 xmlns:sns="http://manufacturing.org/xsd/purchase"

 xmlns:pos="http://manufacturing.org/wsdl/purchase"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

 <xsd:schema>

 <xsd:import namespace="http://manufacturing.org/xsd/

 purchase"

 schemaLocation="http://manufacturing.org/xsd/

 purchase.xsd" />

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="POMessage">

 <wsdl:part name="customerInfo" type="sns:customerInfoType" />

 <wsdl:part name="purchaseOrder" type="sns:purchaseOrderType" />

 </wsdl:message>

 <wsdl:message name="InvMessage">

 <wsdl:part name="IVC" type="sns:InvoiceType" />

 </wsdl:message>

 <wsdl:message name="orderFaultType">

 <wsdl:part name="problemInfo" element=”sns:OrderFault " />

 </wsdl:message>

 <wsdl:message name="shippingRequestMessage"

 sawsdl:modelReference="http://example.org/shippingOntology#

 shippingRequest"

 sawsdl:loweringSchemaMapping="http://example.org/..."

 sawsdl:liftingSchemaMapping="http://example.org/...">

 <wsdl:part name="customerInfo" element="sns:customerInfo" />

 </wsdl:message>

 <wsdl:message name="shippingInfoMessage"

 sawsdl:modelReference="http://example.org/shippingOntology#

 shippingInfo"

 sawsdl:loweringSchemaMapping="http://example.org/..."

 sawsdl:liftingSchemaMapping="http://example.org/...">

Page 14 of 46

 <wsdl:part name="shippingInfo" element="sns:shippingInfo" />

 </wsdl:message>

 <wsdl:message name="scheduleMessage"

 sawsdl:modelReference="http://example.org/shippingOntology#

 shippingSchedule"

 sawsdl:loweringSchemaMapping="http://example.org/..."

 sawsdl:liftingSchemaMapping="http://example.org/...">

 <wsdl:part name="schedule" element="sns:scheduleInfo" />

 </wsdl:message>

 <!-- portTypes supported by the purchase order process -->

 <wsdl:portType name="purchaseOrderPT">

 <wsdl:operation name="sendPurchaseOrder">

 <wsdl:input message="pos:POMessage" />

 <wsdl:output message="pos:InvMessage" />

 <wsdl:fault name="cannotCompleteOrder"

 message="pos:orderFaultType" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="invoiceCallbackPT">

 <wsdl:operation name="sendInvoice">

 <wsdl:input message="pos:InvMessage" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="shippingCallbackPT">

 <wsdl:operation name="sendSchedule">

 <wsdl:input message="pos:scheduleMessage" />

 </wsdl:operation>

 </wsdl:portType>

 <!-- portType supported by the invoice services -->

 <wsdl:portType name="computePricePT">

 <wsdl:operation name="initiatePriceCalculation">

 <wsdl:input message="pos:POMessage" />

 </wsdl:operation>

 <wsdl:operation name="sendShippingPrice">

 <wsdl:input message="pos:shippingInfoMessage" />

 </wsdl:operation>

 </wsdl:portType>

Page 15 of 46

 <!-- portType supported by the shipping service -->

 <wsdl:portType name="shippingPT">

 <wsdl:operation name="requestShipping">

 <wsdl:input message="pos:shippingRequestMessage" />

 <wsdl:output message="pos:shippingInfoMessage" />

 </wsdl:operation>

 </wsdl:portType>

 <!-- portType supported by the production scheduling process -->

 <wsdl:portType name="schedulingPT">

 <wsdl:operation name="requestProductionScheduling">

 <wsdl:input message="pos:POMessage" />

 </wsdl:operation>

 <wsdl:operation name="sendShipingSchedule">

 <wsdl:input message="pos:scheduleMessage" />

 </wsdl:operation>

 </wsdl:portType>

 <plnk:partnerLinkType name="purchasingLT">

 <plnk:role name="purchaseService"

 portType="pos:purchaseOrderPT" />

 </plnk:partnerLinkType>

 <plnk:partnerLinkType name="invoicingLT">

 <plnk:role name="invoiceService"

 portType="pos:computePricePT" />

 <plnk:role name="invoiceRequester"

 portType="pos:invoiceCallbackPT" />

 </plnk:partnerLinkType>

 <plnk:partnerLinkType name="schedulingLT">

 <plnk:role name="schedulingService"

 portType="pos:schedulingPT" />

 </plnk:partnerLinkType>

</wsdl:definitions>

Listing 2: WSDL defintion

Page 16 of 46

The process grounding binds operations of the shippingCallbackPT to activities
in the process model.

<prg:grounding

 processName="http://example.org/bpel4sws/purchase#

 purchaseOrderProcess"

 xmlns="http://www.iaas.uni-stuttgart.de/bpel4sws/grounding"

 xmlns:prg="http://www.iaas.uni-stuttgart.de/bpel4sws/grounding"

 xmlns:pos="http://manufacturing.org/wsdl/purchase">

 <prg:conversation name="shipping">

 <prg:activity name="arrangeLogistics"

 portType="pos:shippingCallbackPT"

 operation="sendSchedule"/>

 </prg:conversation>

</prg:grounding>

Listing 3: Process Grounding

According to the RO4SSOA, a goal, in this example a WSMO goal defined using
WSML [WSML], is used to describe the shipping conversation of the
purchaseOrderProcess.

Page 17 of 46

namespace {_"http://example.org/bpel4sws#",
 so _"http://example.org/shippingOntology#"}

goal _"http://example.org/bpel4sws/goal"
 ...
 capability
 precondition
 ...
 postcondition
 ...
 assumption
 ...
 effect
 ...

 interface purchaseOrderProcess
 choreography
 stateSignature
 ...
 out
 concept so#shippingRequest
 in
 concept so#shippingInfo
 concept so#shippingSchedule withGrounding {
 _"http://manufacturing.org/wsdl/purchase#wsdl.
 interfaceMessageReference(shippingCallbackPT/
 sendSchedule/In)"
 ...

Listing 4: WSMO goal

A service, also specified using WSMO/L, matches the requirements of the goal in
terms of capability and message exchange.

Page 18 of 46

namespace {_"http://example.org/bpel4sws#",
 so _"http://example.org/shippingOntology#"}

webService _"http://example.org/bpel4sws/service"
 ...
 capability
 precondition
 ...
 postcondition
 ...
 assumption
 ...
 effect
 ...

 interface shippingService
 choreography
 stateSignature
 ...
 in
 concept so#shippingRequest withGrounding {
 _"http://manufacturing.org/wsdl/purchase#wsdl.
 interfaceMessageReference(shippingPT/requestShipping/In)"
 out
 concept so#shippingInfo withGrounding {
 _"http://manufacturing.org/wsdl/purchase#wsdl.
 interfaceMessageReference(shippingPT/requestShipping/Out)"
 concept so#shippingSchedule

 ...

Listing 5: WSMO service

Page 19 of 46

3.2 Overall Language Structure
This section provides a quick summary of BPEL4SWS extension elements,
including the new activity type interaction activity, conversation and partner.

<bpel:process ...

 ...

 xmlns:b4s=" http://www.iaas.uni-stuttgart.de/BPEL4SWS/executable"

 ...

 <bpel:extensions>

 <bpel:extension

 namespace="http://www.iaas.uni-stuttgart.de/BPEL4SWS"

 mustUnderstand="yes"/>

 </bpel:extensions>

 ...

 <b4s:partners>?

 <b4s:partner name="NCName"

 businessEntity="QName">+

 <b4s:conversation name="NCName"/>+

 </b4s:partner>

 </b4s:partners>

 ...

 <b4s:conversations>?

 <b4s:conversation name="NCName">+

 </b4s:conversations>

 ...

 <bpel:assign validate="yes|no"? standard-attributes>

 standard-elements

 (

 <bpel:copy keepSrcElementName="yes|no"?>from-spec to-spec

 </bpel:copy>

 |

 <bpel:extensionAssignOperation>

 <b4s:mediate name=”NCName”

 mediatorURI=”anyURI”?

 inputVariable=”NCName”

 outputVariable=”NCName”/>

 </bpel:extensionAssignOperation>

)+

 </bpel:assign>

 ...

 <b4s:eventHandlers>?

 <b4s:eventHandler name="NCName"

 <b4s:onEvent name="NCName"

 variable="NCName"

 conversation="NCName">

Page 20 of 46

 <bpel:correlations .../>?

 scope

 </b4s:onEvent>*

 <bpel:onAlarm .../>*

 </b4s:eventHandler>

 </b4s:eventHandlers>

 ...

 <bpel:extensionActivity>

 <b4s:interactionActivity name="NCName"

 inputVariable="NCName"?

 outputVariable="NCName"?

 conversation="NCName"

 createInstance="yes|no"?

 standard-attributes>

 standard-elements

 <bpel:correlations .../>?

 </b4s:interactionActivity>

 </bpel:extensionActivity>

 ...

 <bpel:extensionActivity>

 <b4s:pick name="NCName"

 createInstance="yes|no"?

 standard-attributes>

 standard-elements

 (<b4s:onMessage name="NCName"

 variable="NCName"

 conversation="NCName">

 <bpel:correlations .../>?

 activity

 </b4s:onMessage> |

 <bpel:onMessage .../>)+

 <bpel:onAlarm .../>*

 </b4s:pick>

 </bpel:extensionActivity>

...

</bpel:process>

Listing 6: Overall Language Structure

A BPEL4SWS process must use BPEL4SWS extension elements. Therefore
elements from the namespace BPEL4SWS MUST be understood.

BPEL4SWS uses SAWSDL to annotate variable types with ontological concepts.
These annotations enable data manipulation on an ontological level. The mediate
operation which makes use of the ontological knowledge is introduced as a child
element of the extensionAssignOperation. The syntax and semantics of the
mediate element is introduced in section 4.2.

Page 21 of 46

BPEL4SWS introduces an interaction model that is independent of WSDL. The
WSDL-less interaction model is based on the concept of a conversation which
plays the role of a WSDL-less partnerLink. A <conversation> is defined in a
<conversations> element like a <partnerLink> is defined in a
<partnerLinks> element.

The new activity types, <b4s:interactionActivity> and <b4s:pick> as well
as the <b4s:eventHandler> reference a conversation and this way are used to
model interactions of a BPEL process with other services or processes. The new
activities types are included in the BPEL activity <bpel:extensionActivity>
which is used as wrapper.

BPEL4SWS enables constraining that several conversations have to be established
with one single partner: a <partner> element may group several conversations.
The <partner> elements are defined in a <partners> element.

The syntax and semantics of the elements forming the new interaction model are
introduced in section 5.

All BPEL4SWS elements may use the element <b4s:documentation> to provide
annnotation for users. The content could be a plain text, HTML, and so on. The
<b4s:documentation> element is optional and has the following syntax:

<b4s:documentation xml:lang="xsd:language">

...

</b4s:documentation>

Listing 7: Documentation element

Page 22 of 46

4 Data Handling

4.1 Ontological Data Types
In BPEL4SWS variables can be defined as either WSDL message types, xsd
elements, simple types or complex types like described in the WS-BPEL 2.0
specification, section 8.1.

<bpel:variables>?

 <bpel:variable name="BPELVariableName"

 messageType="QName"?

 type="QName"?

 element="QName"?>+

 from-spec?

 </bpel:variable>

</bpel:variables>

Listing 8: Variable Definition

SAWSDL annotations for XML data types is used to provide an ontological
representation of the data [SAWSDL].

<xsd:element name="OrderRequest"

 sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/

 spec/ontology/purchaseorder#OrderRequest"

 sawsdl:loweringSchemaMapping="http://www.w3.org/2002/ws/

 sawsdl/spec/mapping/

 RDFOnt2Request.xml"

 sawsdl:liftingSchemaMapping="http://www.w3.org/2002/ws/

 sawsdl/spec/mapping/

 Request2RDFOnt.xml">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="customerNo" type="xsd:integer" />

 <xsd:element name="orderItem" type="item" minOccurs="1"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

</xs:element>

Listing 9: SAXSD Sample

The attribute modelReference specifies the ontological concept, the XML data is
assigned to. The LiftingSchemaMapping defines rules how to transform an XML
instance of the given type into an ontological instance which is member of the
specified concept. The loweringSchemaMapping defines rules how to transform an
ontological instance which is member of the specified concept into an XML
instance of the given type.

Page 23 of 46

The information given in SAWSDL/XSD documents is used to transform XML
instance data into its ontological representation and vice versa. In case an error
occurs during lifting or lowering of data, a liloFault has to be thrown.

4.2 Mediation
Data manipulation in BPEL4SWS can be either implemented using copy
statements like described in the WS-BPEL 2.0 specification, section 8.4 or using
mediation. Especially, ontological mediation is defined as an
extensionAssignOperation.

4.2.1 Syntax

Definition of mediate:

<bpel:assign validate="yes|no"? standard-attributes>

 standard-elements

 (

 <bpel:copy keepSrcElementName="yes|no"?>from-spec to-spec</copy>

 |

 <bpel:extensionAssignOperation>

 <b4s:mediate name=”NCName”

 mediatorURI=”anyURI”?

 inputVariable=”NCName”

 outputVariable=”NCName”/>

 </bpel:extensionAssignOperation>

)+

</bpel:assign>

Listing 10: extensionAssignOperation: mediate

4.2.2 Properties

The <b4s:mediate> element has the following attribute:

 name: This attribute is used to unambigously identify a mediate element in
a BPEL4SWS process. This attribute is mandatory.

 mediatorURI: This attribute references a mediator that performs the data
manipulation. This attribute is optional.

 inputVariable: This attribute specifies the input for the mediate
operation. This attribute is mandatory.

 outputVariable: This attribute specifies the output of the mediate
operation. This attribute is mandatory

Page 24 of 46

4.2.3 Operational behaviour

Prior to execution of the mediate operation, a mediation service that is able to
mediate between the concept the inputVariable is annotated with and the concept
the outputVariable is annotated MUST be discovered. In case a mediatorURI is
specified the URI MAY be used/resolved to discover the mediation service. In case
no mediation service was discovered or an error during mediation occurred a
mediationFailed error MUST be thrown.

4.3 Reasoning in BPEL4SWS
In BPEL4SWS ontological reasoning can be used to evaluate expressions. In
particular boolean expressions that are used to evaluate conditions, e.g.
joinConditions, transitionConditions, exit conditions in <while> or
<repeatUntil> activities, and conditions that decide which branch to take in an
<if> activity.

The following example is used to illustrate the usage of reasoning in BPEL4SWS.

ontology _"http://www.example.org/ontologies/example"

concept Human
 nonFunctionalProperties
 dc#description hasValue "concept of a human being"
 endNonFunctionalProperties
 ...

concept Man subConceptOf Human
 nfp
 dc#relation hasValue ManDisjointWoman
 endnfp
 ...

concept Woman subConceptOf Human
 nfp
 dc#relation hasValue ManDisjointWoman
 endnfp
 ...

axiom ManDisjointWoman
 definedBy
 !- ?x memberOf Man and ?x memberOf Woman.

Listing 11: Human Ontology

The variable customer is annotated with the concept human that is defined in the
ontology presented above. This concept is further refined into man and woman,
i.e. the variable may also contain instances of type man and woman.

Page 25 of 46

<xsd:schema

 targetNamespace="http://example.org/XSD"

 ... >

 ...

 <xsd:element name="Customer"

 sawsdl:modelReference="http://www.example.org/

 ontologies/example#Human"

 sawsdl:liftingSchemaMapping="http://www.example.org/

 ..."

 ...>

 ...

 </xs:element>

</xsd:schema>

Listing 12: XSD Human

The expression language of the transition conditions in the links "receive-to-
man" and "receive-to-woman" are set to WSML4BPEL which in turn uses WSML
[WSML] to evaluate logical expressions.

<process ...

 xmlns:ns="http://example.org/XSD">

 ...

 <scope>

 <variables>

 <variable name="customer" element="ns:Customer" />

 ...

 </variables>

 ...

 <flow>

 <links>

 <link name="receive-to-man" />

 <link name="receive-to-woman" />

 </links>

 ...

 <extensionActivity>

 <b4s:interactionActivity

 name="receiveCustomerDetails"

 conversation="shipping"

 outputVariable="customer">

Page 26 of 46

 <sources>

 <source linkName="receive-to-man" >

 <transitionCondition

 expressionLanguage="http://www.iaas.uni-

 stuttgart.de/bpel4sws/

 wsml4bpel">

 customer; ?x memberOf Man

 </transitionCondition>

 </source>

 <source linkName="receive-to-woman" >

 <transitionCondition

 expressionLanguage="http://www.iaas.uni-

 stuttgart.de/bpel4sws

 /wsml4bpel">

 customer; ?x memberOf Woman

 </transitionCondition>

 </source>

 </sources>

 </b4s:interactionActivity>

 </extensionActivity>

 ...

 </flow>

 </scope>

</process>

Listing 13: Ontological Reasoning in BPEL4SWS

WSML4BPEL is defined as follows:

wsml4bpel = varList ‘;’ http://www.wsml.org/wsml/wsml-syntax#log_expr

varList = var ‘ ’ varList | var

WSML4BPEL is an expression language that uses WSML logical expressions to
reason over a knowledge base. The knowledge base consists of:

 ontological instances that represent the values of the variables that are
specified as input of the query by listing them in the first part of the
expression (varList). The instances are generated using the
LiftingSchemaMapping defined for the variable types.

 ontologies that define the concepts that are used to annotate the variables
that are specified as input of the query .

All variables that are specified as input of the query MUST be visible in the
surrounding scope. They MUST be annotated with a modelReference and a
liftingSchemaMapping.

Page 27 of 46

In case the query results in a empty set the condition is considered false. In case
the query results in a non-empty set, the condition is considered true.

The expressions evaluate to true in case the variable represents a man (link
receive-to-man) or a woman (link receive-to-woman).

Page 28 of 46

5 WSDL-less interaction model
In BPEL the interaction with partner services is based on WSDL. A WSDL
extension called partner link type defines an abstract channel between two
partners by binding two roles together. The roles are defined in terms of port
types each role has to implement. In order to establish a contract between two
partners in BPEL, a partner link references a partner link type, and defines which
role is taken by the partner service and which role is taken by the process itself.
Thus, the WSDL definition of partner services is an integral part of the process
definition; BPEL4SWS improves this by allowing to specify the process model
independent of WDSL.

BPEL4SWS abstracts from interface definitions, i.e. port Types, and provides for a
“WSDL-less interaction model”. It is based on the newly introduced concept of a
conversation. A conversation is a WSDL-less abstraction of a partner link: Instead
of refering to a partner link type, a conversation refers to either a goal or a Web
service description defined according to the RO4SSOA.

BPEL4SWS defines new activity types to define the message exchange with
partners: the <b4s:interactionActivity> that represent WSDL-less receive,
reply and invoke activities; a WSDL-less <b4s:pick> activity; and a WSDL-less
<b4s:eventHandler>. The activities can be grouped using a <b4s:conversation>
element. This way a BPEL4SWS process can be involved in long-running multi-
message interactions with partners. Conversations can be grouped using a
<b4s:partner> element. This way it can be defined that multiple conversations
have to be conducted with a single partner.

5.1 Conversation
A <b4s:conversation> specifies a message exchange between two partners. It is
defined within a <b4s:conversations> element which is a child element of
<process>.

5.1.1 Syntax

Definition of conversation:

 <b4s:conversations>?

 <b4s:conversation name="NCName"

 hasGoal=”anyURI”?>+

 </b4s:conversations>

Listing 14: Conversation Syntax

5.1.2 Properties

The <b4s:conversation> element has the following attribute:

 name: This attribute is used to unambigously identify a conversation in a
BPEL4SWS process. This attribute is mandatory.

 hasGoal: This attribute references a goal description that describes which
requirements a BPEL4SWS process imposes on a service that is invoked
via this conversation. This attribute is optional.

5.2 InteractionActivity
An <b4s:interactionActivity> specifies that a process sends and/or receives
(a) message(s). It is defined as a child element of BPELs <extensionActivity>.

Page 29 of 46

5.2.1 Syntax

Definition of b4s:interactionActivity:

 <bpel:extensionActivity>

 <b4s:interactionActivity name="NCName"

 inputVariable="NCName"?

 outputVariable="NCName"?

 conversation="NCName"

 createInstance="yes|no"?

 standard-attributes>

 standard-elements

 <bpel:correlations .../>?

 </b4s:interactionActivity>

 </bpel:extensionActivity>

Listing 15: WSDL-less interactionActivity Syntax

5.2.2 Properties

The <b4s:interactionActivity> element has the following attributes and
elements:

 name: This attribute is used to unambigously identify an interactionActivity
in a BPEL4SWS process. This attribute is mandatory.

 inputVariable: This attribute refers to a process variable which is used
as input of this activity. The process variable MUST be of type
xsd:element, xsd:type or wsdl:messageType. This attribute is optional.
This attribute MUST NOT be used if the activity receives a message only.

 outputVariable: This attribute refers to a process variable which is used
as output of this activity. The process variable MUST be of type
xsd:element, xsd:type or wsdl:messageType. This attribute is optional.
This attribute MUST NOT be used if the activity sends a message only.

 conversation: This attribute indicates in which conversation the activity is
participating. This attribute is mandatory.

 createInstance: This attribute indicates whether this activity creates a
new process instance. This attribute is optional. The default value is no.
This attribute MUST NOT be used if the outputVariable is not specified or if
the attribute mode has the value out-in.

 standard-attributes: The activity makes available all BPEL’s standard
attributes.

 standard-elements: The activity makes available all BPEL’s standard
elements

 correlations: This element is used to define correlation. This attribute is
optional. Its syntax and semantics are introduced in the WS-BPEL 2.0
specification, section 9.2.

5.2.3 Operational behaviour

In case the inputVariable is not specified, the activity behaves like a WS-BPEL
<receive> activity. It waits for a matching message to arrive and completes
when the message arrives.

Page 30 of 46

If only the inputVariable is specified, the activity sends the message to a
partner service that is associated with the conversation, the activity references.
This behaviour corresponds to a <reply> or one-way <invoke> activity of WS-
BPEL 2.0. After sending the message the activity completes.

In case both variables are specified, the activity first sends a message and then
waits for a matching incoming message which corresponds to a request-response
<invoke> activity in WS-BPEL 2.0. After receiving the message, the activity
completes.

5.3 Pick
A <b4s:pick> specifies that a process receives (a) message(s). It is defined as a
child element of BPELs <extensionActivity>.

5.3.1 Syntax

Definition of pick:

 <bpel:extensionActivity>

 <b4s:pick name="NCName"

 createInstance="yes|no"?

 standard-attributes>

 standard-elements

 (<b4s:onMessage name="NCName"

 variable="NCName"?

 conversation="NCName">

 <bpel:correlations .../>?

 activity

 </b4s:onMessage> |

 <bpel:onMessage partnerLink="NCName"

 portType="QName"?

 operation="NCName"

 variable="BPELVariableName"?

 messageExchange="NCName"?>*

 <bpel:correlations .../>?

 <bpel:fromParts .../>?

 activity

 </onMessage>)+

 <bpel:onAlarm .../>*

 </b4s:pick>

 </bpel:extensionActivity>

Listing 16: WSDL-less pick Syntax

5.3.2 Properties

The <b4s:pick> element is enclosed in the BPEL extensionActivity and has the
following attributes and elements:

 name: This attribute is used to unambigously identify a pick activity in a
BPEL4SWS process. This attribute is mandatory.

Page 31 of 46

 createInstance: This attribute indicates whether this activity creates a
new process instance. This attribute is optional. The default value is no.

 standard-attributes: The activity makes available all BPEL’s standard
attributes.

 standard-elements: The activity makes available all BPEL’s standard
elements

 b4s:onMessage: This element represents an incoming message that
triggers a child activity. For each <b4s:pick> activity, at least one
b4s:onMessage or one bpel:onMessage element has to be specified. The
b4s:onMessage element has the following attributes and elements.

o name: This attribute is used to unambigously identify an onMessage
element in a BPEL4SWS process. This attribute is mandatory.

o variable: This attribute refers to a process variable which is used
as output of this activity. The process variable MUST be of type
xsd:element or xsd:type. This attribute is mandatory.

o bpel:correlations: This element is used to define correlation.
This attribute is optional. Its syntax and semantics are introduced
in the WS-BPEL 2.0 specification, section 9.2.

o bpel:activity: This element defines the child activity that is
triggered by the incoming message. This element is mandatory.

 bpel:onMessage: This element represents an incoming message that
triggers a child activity. For each <b4s:pick> activity, at least one
b4s:onMessage or one bpel:onMessage element has to be specified. Its
syntax and semantics are introduced in the WS-BPEL 2.0 specification,
section 11.5.

 bpel:onAlarm: This element allows defining timing constraints for the
scope of the pick activity. Any number of <bpel:onAlarm> elements may
appear as children of the b4s:pick activity. Its syntax and semantics are
introduced in the WS-BPEL 2.0 specification, section 11.5.

5.3.3 Operational behaviour

The operational behaviour of the <b4s:pick> activity is similar to the <pick>
activity in WS-BPEL 2.0 described in [WS-BPEL 2.0] section 11.5.

It “waits for the occurrence of exactly one event from a set of events, then
executes the activity associated with that event. After an event has been
selected, the other events are no longer accepted by that <pick>. If a race
condition occurs between multiple events, the choice of the event is
implementation dependent.” [WS-BPEL 2.0]

Similar to the WS-BPEL 2.0 pick, the <b4s:pick> activity's events come in two
forms:

• Message events, namely the <b4s:onMessage> which is similar to a
<b4s:interactionActivity> with only the outputVariable specified and
the <bpel:onMessage> is similar to a <bpel:receive> activity. Both wait
for the receipt of a matching message.

• The <onAlarm> corresponds to a timer-based alarm.

Similar to the WS-BPEL 2.0 <bpel:pick> which MUST include at least one
message event, each <b4s:pick> activity MUST include at least one
<b4s:onMessage> or <bpel:onMessage>.

Page 32 of 46

In case, the createInstance attribute is set to "yes", the events in the
<b4s:pick> MUST all be message events.

5.4 EventHandler
A <b4s:eventHandler> specifies that a process receives (a) message(s). It is
defined as a child element of <b4s:eventHandlers> which can occur as a child
element of <process> or <scope>.

5.4.1 Syntax

Definition of eventHandler:

 <b4s:eventHandlers>?

 <b4s:eventHandler name="NCName">+

 <b4s:onEvent name="NCName"

 variable="NCName"

 conversation="NCName">

 <bpel:correlations .../>?

 scope

 </b4s:onEvent>*

 <bpel:onAlarm .../>*

 </b4s:eventHandler>

 </b4s:eventHandlers>

Listing 17: WSDL-less eventHandler Syntax

5.4.2 Properties

The <eventHandler> element has the following attributes and elements:

 name: This attribute is used to unambigously identify an eventHandler in a
BPEL4SWS process. This attribute is mandatory.

 onEvent: This element represents an incoming message that triggers a
child activity. Any number of <onEvent> elements may appear as children
of the eventHandler element. The onEvent element has the following
attributes and elements:

o name: This attribute is used to unambigously identify an onEvent
element in a BPEL4SWS process. This attribute is mandatory.

o variable: This attribute refers to a process variable which is used
as output of this activity. The process variable MUST be of type
xsd:element or xsd:type. This attribute is mandatory.

o conversation: This attribute indicates in which conversation the
activity is participating. This attribute is mandatory.

o correlations: This element is used to define correlation. This
attribute is optional. Its syntax and semantics are introduced in the
WS-BPEL 2.0 specification, section 9.2.

o scope: This element defines the child scope that is triggered by the
incoming message.

 onAlarm: This element allows defining timing constraints for the scope of
the pick activity. Any number of <onAlarm> elements may appear as
children of the eventHandler element. Its syntax and semantics are
introduced in the WS-BPEL 2.0 specification, section 12.7.2.

Page 33 of 46

5.4.3 Operational behaviour

Similar to event handlers in WS-BPEL 2.0, <b4s:eventHandler>s can be defined
for each scope, including the process scope. The behaviour is described in the
WS-BPEL 2.0 specification in section 12.7.

Similar to the ws-BPEL 2.0 event handler, <b4s:eventHandler>s MUST contain at
least one <onAlarm> or <b4s:onEvent> element.

The <onEvent> element indicates that the specified event waits for a message to
arrive. The interpretation of this element and its attributes is very similar to a
<interactionActivity> with only the outputVariable specified.

The <onAlarm> element marks a time-driven event like desscribed in the WS-
BPEL 2.0 specification section 12.7.2.

The enablement and processing of events is defined like in section 12.7.3 and
12.7.4 of the WS-BPEL 2.0 specification.

5.5 Partner
A <b4s:partner> is used to specify that multiple <b4s:conversation>s have to
take place with one single partner. It is defined as a child element of
<b4s:partners> which can occur as a child element of <process> or <scope>.

5.5.1 Syntax

Definition of partner:

 <b4s:partners>?

 <b4s:partner name="NCName"

 businessEntity="QName"?>+

 <b4s:conversation name="NCName"/>+

 </b4s:partner>

 </b4s:partners>

Listing 18: partner Syntax

5.5.2 Properties

The <partner> element is enclosed in a <partners> element and has the
following attributes and elements:

 name: This attribute is used to unambigously identify a partner element in
a BPEL4SWS process. This attribute is mandatory.

 businessEntity: This attribute is used to specify a businessEntity, i.e. a
concrete organisation or unit. This attribute is optional.

 conversation: This element represents a conversation that has to be
established with the same partner then all other conversations enclosed in
the partner element. For each <b4s:partner> element, at least one
conversation element has to be specified. The conversation element
has the following attributes and elements:

o name: This attribute is used to identify the conversation that has to
be established with the partner the conversation is enclosed with.
This attribute is mandatory.

Page 34 of 46

5.5.3 Operational behaviour

Like the partner link in WS-BPEL, a conversation represents a conversational
relationship between two partner processes. The <b4s:partner> element is used
to express that more than a single conversational relationship has to to be
established with a business partner just like the partner element in [BPEL4WS
1.1]. The operational behaviour is defined in section 7.3 of the BPEL4WS 1.1
specification.

Page 35 of 46

6 Describing Interactions using the RO4SSOA
The WSDL-less interaction model presented in the previous section builds the
core of BPEL4SWS. BPEL4SWS uses the concept of a conversation to model the
interaction of a process with a partner service. This conversation is concerned
with solving a certain kind of problem, e.g. booking a flight. During this kind of
conversation there are two roles: One partner provides the functionality to book a
flight which is described via the concept of a service according to the RO4SSOA
and the other partner wants to use/consume this functionality which is described
via the concept of a goal. Therefore BPEL4SWS distinguishes between providing
and consuming conversations. On a providing conversation the process offers
functionality to partner services and on a consuming conversation a BPEL4SWS
process wants to use functionality provided by a partner service.

Providing conversations are described using a service description. Consuming
conversations are annotated with goal descriptions. This annotation can be made
using the hasGoal attribute of the <conversation>-element.

When the process engine executes an activity that refers to a consuming
conversation that has not been ititalized yet, the attached goal description is used
to discover a corresponding Web Service. In case no Web Service has been
discovered, a noServiceFound Fault has to be thrown.

Page 36 of 46

7 Grounding
The RO4SSOA builds a layer on top of Web services. It abstracts from technical
details and provides a description of service requester and service provider that
not only focusses on the interface but also describes the capabiility of a service in
terms of assumptions and effects. To facilitate communication among services
both, service as well as goal descriptions ground to WSDL. Frameworks that
implement the RO4SSOA require a middleware component that provides the
following functionalities:

 Goal-based service discovery

 Management of the life cycle of a communication between service
requester and service provider

 Endpoint(s) for receiving data from both, service requester and service
provider

 Means to invoke both, service provider and service requester

Conversations in BPEL4SWS are described using concepts of the RO4SSOA, but
the processes endpoint is also described in terms of WSDL port types. The link
between the WSDL-less interaction model and the WSDL description of a process
is established via a separate grounding file.

7.1 Syntax

<grounding processName="QName"

 xmlns=”http://www.iaas.uni-stuttgart.de/bpel4sws/

 wsdlGrounding”>

 <conversation name="NCName"

 partnerLinkType="QName"?

 myRole="NCName"?

 partnerRole="NCName"?>

 <activity name="NCName"

 portType="QName"?

 operation="NCName"/>+

 </conversation>+

</grounding>

Listing 19: Process Grounding

7.2 Properties
The <grounding> document has the following attributes and elements:

 processName: This attribute is used to reference the process the
grounding is specified for. This attribute is mandatory

 xmlNamespace: This element defines the namepace the document is
defined in. This attribute is mandatory

 conversation: This element reference a concersation in the given process
the grounding is defined for. For each <grounding> element, at least one
conversation element has to be specified. The conversation element
has the following attributes and elements:

Page 37 of 46

o name: This attribute is used to identify the conversation. This
attribute is mandatory.

o partnerLinkType: This attribute references the partnerLinkType
the conversation is grounded to. This attribute is optional.

o myRole: This attribute references the role the process takes. This
attribute is optional. In case the partnerLinkType attribute is
specified and the partnerRole attribute is not specified, this
attribute must be specified.

o partnerRole:This attribute references the role the partner service
takes. This attribute is optional. In case the partnerLinkType
attribute is specified and the myRole attribute is not specified, this
attribute must be specified.

o activity: This element references the activity or a event that is
trigerred by an incoming message respectively a grounding is
defined for. For each <conversation> element, at least one
activity element has to be specified. The activity element has
the following attributes and elements:

 name: This attribute is used to identify the activity the
grounding is defined for. This attribute is mandatory.

 portType: This attribute references the portType the activity
is grounded to. This attribute is optional. In case the
partnerLinkType attribute of the surrounding conversation is
not specified this attribute must be specified.

 operation: This attribute references the operation the
activity is grounded to. This attribute is mandatory.

7.3 Operational behaviour
The process grounding binds WSDL operations the process provides to the WSDL-
less interaction model.

At the beginning of a consuming conversation, i.e. the first occurrence of an
interaction activity belonging to a conversation that references a goal description,
the goal is submitted to the middleware component that executes goal-based
discovery and creates an instance identifier of the conversation. This instance
identifier MUST be included during the conversation between both, service
consumer and middleware as well as middleware and service provider.

In case a message is received at the WSDL endpoint that is provided for a
particular process, the grounding file is evaluated to determine which activity in
the process model is the recipient of the message. The data types of the variables
used as input/output container of an activity MUST match the data types used in
the WSDL operations an activity is grounded to. In case the receiving activity
belongs to an uninitialized providing conversation, the message has to be
inspected for the instance identifier created by the middleware component that
manages the life cycle of the communication. In case no instance identifier is
available the process has been invoked directly by a partner service. Then, the
EPR of the partnerRole of the partnerLinkType the conversation is grounded to
has to be initialized. EPRs are further describe in the WS-BPEL 2.0 specification,
section 6.3.

Page 38 of 46

When sending a message, first the process grounding is determined whether the
message belongs to a request-response operation, the processes endpoint
provides.

If this is not the case and an instance identifier for the communication is
available, the message in combination with the instance identifier is delivered to
the middleware component which excutes the invocation of the corresponding
service on behalf of the process. In case no instance identifier is available and the
activity belongs to a providing conversation the process grounding is evaluated to
determine the WSDL operation of the partner service the message has to be sent
to.

Page 39 of 46

8 Acknowledgements
The work published on this specification was partly funded by the SUPER project
(http://www.ip-super.org/) under the EU 6th Framework Programme Information
Society Technologies Objective (contract no. FP6-026850).

9 References
[BPEL4WS 1.1]

Business Process Execution Language for Web Services Version 1.1, BEA
Systems, IBM, Microsoft, SAP AG and Siebel Systems, May 2003, available
via http://www-128.ibm.com/developerworks/library/specification/ws-
bpel/, http://ifr.sap.com/bpel4ws/

[RFC 2119]

Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,
available via http://www.ietf.org/rfc/rfc2119.txt

[WS-BPEL 2.0]

Web Service Business Process Execution Language Version 2.0, Working
Draft, January 2006, OASIS Technical Committee, available via
http://www.oasis-open.org/committees/wsbpel

[WSDL 1.1]

Web Services Description Language (WSDL) Version 1.1, W3C Note,
available via http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[XML Namespaces]

Namespaces in XML 1.0 (Second Edition), W3C Recommendation, available
via http://www.w3.org/TR/REC-xml-names/

[XML Schema Part 1]

XML Schema Part 1: Structures, W3C Recommendation, October 2004,
available via http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2]

XML Schema Part 2: Datatypes, W3C Recommendation, October 2004,
available via http://www.w3.org/TR/xmlschema-2/

[SAWSDL]

Semantic Annotations for WSDL and XML Schema, W3C Recommendation
August 2007, available via http://www.w3.org/TR/sawsdl/

[WS-I Basic Profile]

Web Services Interoperability Organization, “Basic Profile Version 1.1", K.
Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P. Yendluri, April 16,
2004, available via
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[SOARM]

Reference Model for Service Oriented Architecture 1.0, Oasis Committee
Specification, August 2006, available via http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf

Page 40 of 46

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://ifr.sap.com/bpel4ws/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.oasis-open.org/committees/wsbpel
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/sawsdl/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

10 Non-normative references

[RO4SSOA]

Reference Ontology for Semantic Service Oriented Architectures,
Specification Draft, OASIS Semantic Execution Environment TC, March
2008, available via http://www.oasis-
open.org/committees/document.php?document_id=25381&wg_abbrev=se
mantic-ex

[WSMO]

 Web Service Modeling Ontology (WSMO), W3C Member Submission, June
2005, available via http://www.w3.org/Submission/WSMO/

[WSML]

Web Service Modeling Language (WSML) 0.3, WSML WG Draft, available
via http://www.wsmo.org/TR/d16/d16.1/v0.3/

[OWL-S]

OWL-S: Semantic Markup for Web Services, W3C Member Submission,
November 2004, available via http://www.w3.org/Submission/OWL-S/

Appendix A – Standard Faults
The following list specifies the standard faults defined within the BPEL4SWS
specification. All standard fault names are qualified with the standard BPEL4SWS
namespace.

 Fault name Description

noServiceFound Thrown if no service is found

liloFault Thrown if an error ocurred during the lifting or lowering of data

mediationFault Thrown if an error occurred during data mediation

Appendix B – BPEL4SWS Schema
XML schema for WS-BPEL Extension for Semantic Web Services (BPEL4SWS):

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 targetNamespace="http://www.iaas.uni-stuttgart.de/bpel4sws/
 executable"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.iaas.uni-stuttgart.de/bpel4sws/executable"
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/
 executable">

 <xsd:import
 namespace="http://docs.oasis-open.org/wsbpel/2.0/process/
 executable"

Page 41 of 46

http://www.oasis-open.org/committees/document.php?document_id=25381&wg_abbrev=semantic-ex
http://www.oasis-open.org/committees/document.php?document_id=25381&wg_abbrev=semantic-ex
http://www.oasis-open.org/committees/document.php?document_id=25381&wg_abbrev=semantic-ex
http://www.w3.org/Submission/WSMO/
http://www.wsmo.org/TR/d16/d16.1/v0.3/
http://www.w3.org/Submission/OWL-S/

 schemaLocation="http://docs.oasis-
open.org/wsbpel/2.0/OS/process/
 executable/ws-bpel_executable.xsd">
 </xsd:import>
 <xsd:annotation>
 <xsd:documentation>
 Schema for BPEL4SWS; Last modified date: 12th July, 2007
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="mediate"
 type="tMediate" />
 <xsd:complexType name="tMediate">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:attribute name="name"
 type="xsd:NCName"
 use="required" />
 <xsd:attribute name="inputVariable"
 type="xsd:NCName"
 use="required" />
 <xsd:attribute name="outputVariable"
 type="xsd:NCName"
 use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="conversations"
 type="tConversations" />
 <xsd:complexType name="tConversations">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:sequence>
 <xsd:element ref="conversation"
 minOccurs="1"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="conversation"
 type="tConversation" />
 <xsd:complexType name="tConversation">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:attribute name="name"
 type="xsd:NCName"
 use="required" />
 <xsd:attribute name="hasGoal"
 type="xsd:anyURI"
 use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tActivity">
 <xsd:complexContent>
 <xsd:restriction base="BPEL:tActivity">
 <xsd:attribute name="name"

Page 42 of 46

 type="xsd:NCName"
 use="required" />
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="interactionActivity"
 type="tInteractionActivity" />
 <xsd:complexType name="tInteractionActivity">
 <xsd:complexContent>
 <xsd:extension base="tActivity">
 <xsd:sequence>
 <xsd:element name="correlations"
 type="BPEL:tCorrelationsWithPattern"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="inputVariable"
 type="xsd:NCName" use="optional" />
 <xsd:attribute name="outputVariable"
 type="xsd:NCName"
 use="optional" />
 <xsd:attribute name="conversation"
 type="xsd:NCName"
 use="required" />
 <xsd:attribute name="createInstance"
 type="BPEL:tBoolean"
 use="optional" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="partners"
 type="tPartners" />
 <xsd:complexType name="tPartners">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:sequence>
 <xsd:element ref="partner"
 minOccurs="1"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="partner"
 type="tPartner" />
 <xsd:complexType name="tPartner">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="conversation"
 type="xsd:NCName"
 maxOccurs="unbounded"
 minOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name"
 type="xsd:NCName"
 use="required" />
 <xsd:attribute name="businessEntity"

Page 43 of 46

 type="xsd:anyURI"
 use="optional" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="pick"
 type="tPick" />
 <xsd:complexType name="tPick">
 <xsd:complexContent>
 <xsd:extension base="bpel:tActivity">
 <xsd:sequence>
 <xsd:element ref="onMessage"
 minOccurs="1"
 maxOccurs="unbounded" />
 <xsd:element name="onAlarm"
 type="bpel:tOnAlarmPick"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="createInstance"
 type="bpel:tBoolean"
 default="no" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="onMessage"
 type="tOnMessage" />
 <xsd:complexType name="tOnMessage">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="correlations"
 type="bpel:tCorrelations"
 minOccurs="0" />
 <xsd:element ref="bpel:fromParts"
 minOccurs="0" />
 <xsd:group ref="bpel:activity"
 minOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="name"
 type="xsd:NCName"
 use="required" />
 <xsd:attribute name="variable"
 type="bpel:BPELVariableName"
 use="optional" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="eventHandlers"
 type="tEventHandlers"/>
 <xsd:complexType name="tEventHandlers">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:sequence>
 <xsd:element ref="onEvent"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="onAlarm"
 type="bpel:tOnAlarmEvent"

Page 44 of 46

 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="onEvent"
 type="tOnEvent"/>
 <xsd:complexType name="tOnEvent">
 <xsd:complexContent>
 <xsd:extension base="bpel:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="correlations"
 type="bpel:tCorrelations"
 minOccurs="0"/>
 <xsd:element ref="bpel:fromParts"
 minOccurs="0"/>
 <xsd:element ref="bpel:scope"
 minOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name"
 type="xsd:NCName"
 use="required" />
 <xsd:attribute name="variable"
 type="bpel:BPELVariableName"
 use="optional"/>
 <xsd:attribute name="messageType"
 type="xsd:QName"
 use="optional"/>
 <xsd:attribute name="element"
 type="xsd:QName"
 use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

</xsd:schema>

Page 45 of 46

XML Schema for the grounding specification for BPEL4SWS:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 targetNamespace="http://www.iaas.uni-stuttgart.de/bpel4sws/
 grounding"
 elementFormDefault="qualified"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:prg="http://www.iaas.uni-stuttgart.de/bpel4sws/grounding">

 <xsd:complexType name="tGrounding">
 <xsd:sequence>
 <xsd:element name="conversation"
 type="prg:tConversation"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>

 <xsd:attribute name="processName"
 type="QName"
 use="required"/>
 </xsd:complexType>

 <xsd:complexType name="tConversation">
 <xsd:sequence>
 <xsd:element name="activity"
 type="prg:tActivity"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name"
 type="NCName"
 use="required"/>
 <xsd:attribute name="partnerLinkType"
 type="QName"
 use="optional"/>
 <xsd:attribute name="myRole"
 type="NCName"
 use="optional"/>
 <xsd:attribute name="partnerRole"
 type="NCName"
 use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="tActivity">
 <xsd:attribute name="name"
 type="NCName"
 use="required"/>
 <xsd:attribute name="operation"
 type="QName"
 use="required"/>
 </xsd:complexType>

 <xsd:element name="grounding"
 type="prg:tGrounding"/>
</xsd:schema>

Page 46 of 46

	080624 BPEL4SWS Specification.pdf
	1 Introduction
	2 Language Design
	2.1 Dependencies on Other Specifications
	2.2 Notational Conventions
	2.3 Namespaces
	2.4 Language Extensibility

	3 Defining a BPEL4SWS process
	3.1 Initial Example
	3.2 Overall Language Structure

	4 Data Handling
	4.1 Ontological Data Types
	4.2 Mediation
	4.2.1 Syntax
	4.2.2 Properties
	4.2.3 Operational behaviour

	4.3 Reasoning in BPEL4SWS

	5 WSDL-less interaction model
	5.1 Conversation
	5.1.1 Syntax
	5.1.2 Properties

	5.2 InteractionActivity
	5.2.1 Syntax
	5.2.2 Properties
	5.2.3 Operational behaviour

	5.3 Pick
	5.3.1 Syntax
	5.3.2 Properties
	5.3.3 Operational behaviour

	5.4 EventHandler
	5.4.1 Syntax
	5.4.2 Properties
	5.4.3 Operational behaviour

	5.5 Partner
	5.5.1 Syntax
	5.5.2 Properties
	5.5.3 Operational behaviour

	6 Describing Interactions using the RO4SSOA
	7 Grounding
	7.1 Syntax
	7.2 Properties
	7.3 Operational behaviour

	8 Acknowledgements
	9 References
	10 Non-normative references
	Appendix A – Standard Faults
	Appendix B – BPEL4SWS Schema

