
A Cross-Layer Framework for
Sensor Networks

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Andreas Jürgen Lachenmann

aus Nürtingen

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr. rer. nat. habil. Pedro José Marrón

Tag der mündlichen Prüfung: 24. April 2008

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2008

2

Acknowledgments

First of all, I would like to thank my advisor, Kurt Rothermel, for giving me the op-
portunity to work on this dissertation in his group. He provided the right combination
of valuable feedback and of the freedom to pursue own ideas. Special thanks also go
to Pedro José Marrón for being a great co-advisor.

I would like to thank my colleagues in the Distributed Systems Department, especially
Matthias Gauger, Klaus Herrmann, Daniel Minder, Olga Saukh, and Robert Sauter.
They created a unique environment where working was fun. In addition, I am grateful
for their discussions and comments that helped to greatly improve my work. I also
want to thank the students who contributed to parts of this thesis.

Furthermore, I would like to thank Landesstiftung Baden-Württemberg for partially
funding my work.

Finally, I thank my parents and my brother for their continuing support throughout
my studies and the work on this dissertation.

3

Acknowledgments

4

Contents

Abstract 13

Deutsche Zusammenfassung 15
1. Einleitung . 15
2. Schichtenübergreifender Datenaustausch 17
3. Datenspeicherung in virtuellem Speicher 20
4. Abstraktionen und Algorithmen für energiebewusste Anwendungen . . 22
5. Zusammenfassung und Ausblick . 24

1. Introduction 27
1.1. Motivation . 27
1.2. Contribution . 29
1.3. Structure . 31

2. Background 33
2.1. Wireless Sensor Networks . 33

2.1.1. System Properties . 33
2.1.2. Assumptions . 36

2.2. Cross-Layer Interactions . 39
2.3. TinyCubus Project . 42

2.3.1. Tiny Data Management Framework 42
2.3.2. Tiny Configuration Engine . 43
2.3.3. Tiny Cross-Layer Framework 44

3. Design Overview 45
3.1. Functionality of the Cross-Layer Framework 45
3.2. Common Design Properties . 46

3.2.1. Runtime System . 47
3.2.2. Compile-Time Tools . 48

4. Cross-Layer Data Exchange 51
4.1. Preliminaries . 51
4.2. Application Analysis . 52

4.2.1. Selected Applications . 53
4.2.2. Forms of Cross-Layer Interactions 54
4.2.3. Summary . 59

5

Contents

4.3. Data Exchange on a Single Node . 61
4.3.1. TinyXXL Language Description 63
4.3.2. Impact on the Life Cycle of Applications 67
4.3.3. TinyXXL Compiler . 68
4.3.4. Runtime Support for Data Exchange 68
4.3.5. Advantages . 69

4.4. Neighborhood Data Sharing . 70
4.4.1. Neighborhood Data Sharing Algorithm 72
4.4.2. Programming and Runtime Support 77

4.5. Evaluation . 78
4.5.1. Data Exchange on a Single Node 79
4.5.2. Neighborhood Data Sharing . 83

4.6. Related Work . 89
4.7. Summary . 92

5. Data Storage in Virtual Memory 93
5.1. Preliminaries . 93
5.2. Design . 95

5.2.1. Sensor Network Characteristics 95
5.2.2. Design Goals . 96
5.2.3. Design Overview . 96
5.2.4. Implementation . 99
5.2.5. Integration with TinyXXL and TinyCubus 103

5.3. Memory Layout Heuristic . 106
5.3.1. Use of Variable Access Traces 106
5.3.2. Grouping of Data Elements . 108
5.3.3. Data Placement . 110

5.4. Evaluation . 111
5.4.1. Isolated Memory Access Performance 111
5.4.2. Application Performance . 113
5.4.3. Large Data Storage . 118

5.5. Related Work . 123
5.6. Summary . 125

6. Abstractions and Algorithms for Energy-Aware Applications 127
6.1. Preliminaries . 127
6.2. Meeting Lifetime Goals with Energy Levels 129

6.2.1. System Design . 130
6.2.2. Energy Levels . 131
6.2.3. Energy Profiling . 135
6.2.4. Runtime System . 141
6.2.5. Integration within the Framework and with TinyCubus 147

6.3. Distributed Assignment of Energy Levels 149
6.3.1. Problem Description . 149

6

Contents

6.3.2. Realization on Sensor Nodes . 154
6.4. Evaluation . 159

6.4.1. Quality of Level Assignments 160
6.4.2. Real-World Applications . 165
6.4.3. Distributed Assignment . 167
6.4.4. Runtime Overhead . 172
6.4.5. Summary . 175

6.5. Related Work . 175
6.6. Summary . 177

7. Summary and Outlook 179
7.1. Conclusions . 179
7.2. Outlook . 181

A. Extensions of the nesC Grammar 183
A.1. Changes for TinyXXL . 183
A.2. Changes for Levels . 186

Bibliography 187

Index 197

7

Contents

8

List of Figures

2.1. Wiring of Blink, a simple TinyOS application 35
2.2. nesC configuration for the Blink application 36
2.3. nesC module for the Blink application 37
2.4. Layers in the network protocol stack 40
2.5. Components in the Tiny Data Management Framework 43

3.1. Parts of the Cross-Layer Framework . 46
3.2. Overview of the runtime system . 48

4.1. Overview of different forms of cross-layer optimizations 54
4.2. Parametrization vs. data sharing . 58
4.3. Possibilities to declare shared data with nesC and TinyXXL 62
4.4. Declaration of shared data with TinyXXL 64
4.5. Provision of data and use of parameters with TinyXXL 65
4.6. Sample virtual data item that aggregates the number of network neighbors 67
4.7. Overview of the Neidas algorithm . 72
4.8. Actions within request rounds . 73
4.9. Overlapping neighborhoods . 74
4.10. Relation between request rounds and data send rounds 75
4.11. Accessing neighborhood data with TinyXXL 77
4.12. Bytes transmitted, varying share of nodes requesting data 84
4.13. Latency until requests and data have been received 85
4.14. Bytes transmitted varying the node density 86
4.15. Bytes transmitted compared with Hood 87
4.16. Bytes transmitted for the Sense-R-Us application 88

5.1. Memory hierarchy of ViMem . 98
5.2. ViMem compilation process . 100
5.3. nesC code that accesses variables stored in virtual memory 101
5.4. Mapping of IDs to virtual memory . 102
5.5. Additional indirection for VM accesses within TinyCubus 106
5.6. Overview of the memory layout heuristic 107
5.7. Example for processing an access trace 109
5.8. Example for the memory layout algorithm 111
5.9. Simulation of TinyDB . 115
5.10. Simulation of Maté . 117

9

List of Figures

5.11. Varying the number of pages in RAM 120
5.12. Varying the size of the data in virtual memory 122

6.1. Combining energy levels . 132
6.2. Code example for a component specifying energy levels 134
6.3. Code example for wiring energy levels 135
6.4. Code example for wiring the energy levels of the application 135
6.5. Unit testing code for nCUnit . 137
6.6. Test driver used for energy profiling . 138
6.7. Computing the energy consumption of a code block 139
6.8. Battery discharge characteristics from three experiments 142
6.9. Accumulating the energy consumed by a level 144
6.10. Combinations of activation schedules for two nodes 151
6.11. Combinations of energy level schedules for two nodes 153
6.12. Algorithm for the distributed optimization 156
6.13. Distributed computation of energy levels 157
6.14. Algorithm to compute the local schedule 158
6.15. Required lifetime vs. lifetime achieved 162
6.16. Average utility throughout the required lifetime 163
6.17. Lifetime of the experiments with Mica2 nodes 164
6.18. Level assignment over time . 165
6.19. Average lifetime for Volcano . 167
6.20. Average deviation of the number of active nodes from Ravg 169
6.21. Average deviation of the network-wide utility from Uavg 170
6.22. Active nodes over time for a sample run of 25 nodes 171
6.23. Duration of level adjustment . 173

10

List of Tables

4.1. Classification of unstructured cross-layer interactions 59
4.2. Classification of structured cross-layer interactions 60
4.3. Complexity of sample applications . 79
4.4. Number of changed lines of code (added, removed, and modified) and

total numbers in the modified components 79
4.5. Lines of code in a minimal application and number of changed lines

when adding another publisher . 80
4.6. Code size of the example applications 81
4.7. Runtime overhead of TinyXXL/TinyStateRepository 82

5.1. Properties of the Atmel AT45DB041B flash memory chip 96
5.2. Typical latencies for different kinds of variable accesses 112
5.3. Variables moved to virtual memory . 114
5.4. Allocated space in RAM . 114

6.1. Average lifetimes of sample applications for constant energy levels . . . 160
6.2. Runtime overhead of local optimizations 172
6.3. Effect of runtime overhead for local optimizations on node lifetime . . . 173
6.4. Energy overhead of distributed level assignments 174

11

List of Tables

12

Abstract

Cross-layer interactions are often used in wireless sensor networks. They help to
optimize energy consumption, deal with memory limitations, and consider the spe-
cial properties of wireless communication. However, cross-layer interactions have the
disadvantage of negatively affecting desirable properties of the software design like
modularity and reusability. In the extreme, applications consist of a monolithic piece
of code that is hard to develop and impossible to maintain.

Therefore, this thesis investigates different approaches to address the negative side-
effects of cross-layer interactions. In particular, it develops a framework that pursues
three different strategies.

First, it tries to preserve modularity and increase reusability by decoupling components
that exchange data. This strategy is realized by TinyXXL, a programming abstraction
for cross-layer data exchange. This part of the framework has been created based on an
analysis of cross-layer interactions in existing applications. With some compile-time
optimizations TinyXXL can reduce both energy and memory consumption compared
to an application built from reusable components. Using Neidas , a novel neighborhood
data sharing algorithm, it offers a comprehensive system for data exchange among the
layers of a single node and with neighboring nodes.

Second, the framework relaxes one of the constraints that often lead to cross-layer in-
teractions and, thus, reduces the need to apply them. Specifically, it includes ViMem,
a flash-based virtual memory system that helps to reduce memory limitations and
tries to optimize the memory layout.

Finally, the third strategy is to partially move energy concerns into the system soft-
ware. For this purpose the framework includes Levels , an abstraction to specify op-
tional functionality which allows to accurately meet a user-defined lifetime goal. If
necessary, Levels deactivates functionality in order to reach that target lifetime. Fur-
thermore, it includes a distributed algorithm that helps to provide a constant appli-
cation quality over the total network lifetime.

13

Abstract

14

Deutsche Zusammenfassung

1. Einleitung

In den letzten Jahren wurden drahtlose Sensornetze entwickelt, die dazu dienen, Daten
aus der realen Welt zu sammeln. Diese Netze bestehen aus so genannten Sensorkno-
ten, kleinen batteriebetriebenen Rechnern, die über Funk miteinander kommunizie-
ren. Vielversprechende Anwendungen für Sensornetze sind z. B. die Beobachtung von
Naturereignissen [Werner-Allen et al. 2006a] und von Tieren in ihrem natürlichen Le-
bensraum [Szewczyk et al. 2004; Juang et al. 2002] sowie die Strukturüberwachung
von Brücken und Gebäuden [Marrón et al. 2005c; Xu et al. 2004; Kim et al. 2007] und
die Überwachung von Maschinen und Industrieanlagen [Krishnamurthy et al. 2005].

Ein typischer Sensorknoten wie z. B. ein Mica2-Knoten besteht aus einem Mikro-
controller mit einer Taktfrequenz von wenigen Megahertz und wenigen Kilobyte Ar-
beitsspeicher, einem nichtflüchtigen Flashspeicher, einer Funkschnittstelle und anwen-
dungsabhängigen Sensoren. Da viel Anwendungen für Sensornetze über einen langen
Zeitraum ohne menschlichen Eingriff betrieben werden sollen und weil die Energie-
versorgung meist über Batterien erfolgt, ist Energie eine stark beschränkte Ressource.
Dies führt auch dazu, dass beispielsweise energiesparende Mikrocontroller mit nur we-
nig Arbeitsspeicher eingesetzt werden.

Diese Ressourcenbeschränkungen erfordern, dass die Software der Sensorknoten opti-
miert wird. In den Netzwerkprotokollen werden hierzu häufig schichtenübergreifende
Optimierungen eingesetzt (so genannte Cross-Layer-Interaktionen). Im Gegensatz zu
einer strikt getrennten Schichtenarchitektur arbeiten dabei die verschiedenen Schichten
enger zusammen. So können sie zum Beispiel Daten gemeinsam benutzen, was sowohl
Platz im Arbeitsspeicher als auch Energie für das Sammeln der Daten einzusparen
hilft. Weiterhin erlauben Cross-Layer-Interaktionen, besser mit den Besonderheiten
der drahtlosen Kommunikation umzugehen. Beispielsweise haben hier – im Gegensatz
zur Annahme von TCP – Paketverluste häufig andere Ursachen als eine Überlastung
der Verbindung.

Neben ihren allgemein anerkannten Vorteilen, die viele Anwendungen auf den ressour-
cenbeschränkten Sensorknoten überhaupt erst möglich machen, haben Cross-Layer-
Interaktionen allerdings auch Nachteile. Insbesondere haben sie negative Auswirkun-
gen auf wünschenswerte Eigenschaften der Softwarearchitektur [Kawadia and Kumar
2005]: die Modularität wird verringert und einzelne Schichten können nicht mehr ohne

15

Deutsche Zusammenfassung

weiteres ausgetauscht werden. Im Extremfall entsteht eine monolithische Anwendung,
die nicht mehr wartbar ist. Ziel dieser Arbeit ist es deshalb, Programmierabstraktio-
nen und Systemsoftware zu entwickeln, die diese negativen Auswirkungen zu vermeiden
helfen.

Zunächst werden verschiedene Sensornetzanwendungen analysiert, um die darin ver-
wendeten Cross-Layer-Interaktionen zu identifizieren und zu klassifizieren. Dann wird
ein Framework vorgestellt, das drei verschiedene Strategien anwendet, um die nega-
tiven Auswirkungen von Cross-Layer-Interaktionen zu verringern. Im Unterschied zu
existierenden Ansätzen [Conti et al. 2004; Kumar et al. 2006; Su and Lim 2006] be-
schränkt sich das hier beschriebene Cross-Layer-Framework allerdings nicht darauf,
diese negativen Auswirkungen zu lindern, sondern befasst sich mit ihren Ursachen
und versucht häufige Gründe für solche Interaktionen aus dem Zuständigkeitsbereich
des Anwendungsentwicklers zu entfernen. Die drei Strategien des Frameworks sehen
dabei wie folgt aus:

Erstens wird versucht, Schichten und Softwarekomponenten, die Daten austauschen, zu
entkoppeln. Damit bleibt trotz der Interaktion die Modularität größtenteils erhalten.
Diese Art der Interaktion wurde ausgewählt, da sich in unserer Analyse von Anwen-
dungen zeigte, dass es hierbei ein großes Potential für Optimierungen gibt und dass
diese Interaktionsform noch nicht ausreichend von bestehenden Programmiersprachen
unterstützt wird. Diese Strategie wird durch TinyXXL und das TinyStateRepository
umgesetzt. Zusammen mit Neidas , einem Algorithmus für die Verteilung von Daten
auf Nachbarknoten, bietet TinyXXL ein System an, das sowohl für den Datenaustausch
innerhalb eines Knotens als auch in der Nachbarschaft geeignet ist. Neidas versucht die
übertragene Datenmenge zu minimieren und nutzt dabei die Broadcast-Übermittlung
in Funknetzen aus.

Die zweite Strategie des Frameworks ist es, eine der Randbedingungen, die häufig
zu Cross-Layer-Interaktionen führt, zu lockern. Dabei wird die Speicherbeschränkung
teilweise aufgehoben, indem mit ViMem ein flash-basiertes virtuelles Speichersystem
entwickelt wird. Wenn die Speicherbeschränkungen weniger streng sind, werden weni-
ger Cross-Layer-Interaktionen eingesetzt, und es treten auch keine negativen Neben-
wirkungen auf. ViMem versucht mit Hilfe einer Heuristik, die Anordnung von Daten
im Speicher so zu optimieren, dass möglichst wenige Seiten vom Flash-Speicher gelesen
bzw. dorthin geschrieben werden müssen. Dabei werden die spezifischen Eigenschaften
von Sensornetzen und Flash-Speichern besonders berücksichtigt.

Als dritte Strategie verfolgt das Framework das Ziel, manche Cross-Layer-Interaktionen
unnötig zu machen, indem Energie-Aspekte – ein weiterer häufiger Grund für Cross-
Layer-Interaktionen – in die Systemsoftware verschoben werden. Diese Strategie wird
mit Levels umgesetzt, das die Möglichkeit bietet, ein Ziel für die Lebensdauer jedes
Knotens vorzugeben. Das System versucht dann ohne Zutun der Anwendung, diese Le-
bensdauer zu erreichen, indem optionale Funktionalität der Anwendung – falls nötig
– deaktiviert wird. So kann für eine gegebene Lebensdauer eine annähernd optimale
Anwendungsqualität unter den vorhandenen Energiebeschränkungen erreicht werden.

16

2. Schichtenübergreifender Datenaustausch

Weiterhin erlaubt Levels mit Hilfe eines verteilten Algorithmus, über die gesamte Le-
bensdauer des Sensornetzes die durchschnittliche Anwendungsqualität im gesamten
Netz nahezu konstant zu halten.

Bei der Entwicklung des Frameworks wurde besonders darauf geachtet, dass die entwi-
ckelten Konzepte auf ressourcenarmen Sensorknoten umgesetzt werden können. Des-
halb wird mit einer modularen Architektur – ähnlich wie beim Sensornetz-Betriebs-
system TinyOS [Hill et al. 2000] – nur die Funktionalität des Frameworks auf den
Sensorknoten installiert, die für die Anwendung tatsächlich benötigt wird. Außerdem
werden so viele Optimierungen und Verarbeitungsschritte wie möglich zur Compile-
Zeit durchgeführt, um den Aufwand zur Laufzeit zu minimieren.

Diese Arbeit wurde im Rahmen des TinyCubus-Projekts [Marrón et al. 2005a; Marrón
et al. 2005b] durchgeführt, das das Ziel hat, ein generisches rekonfigurierbares Frame-
work für Sensornetze zu entwickeln. Bei dieser Arbeit handelt es sich um das Teilpro-
jekt des Tiny Cross-Layer Framework. Weitere Teile von TinyCubus sind das Tiny
Data Management Framework, das Softwarekomponenten zur Laufzeit adaptiert, und
die Tiny Configuration Engine, die Topologieinformationen sammelt und Programm-
updates im Netz verteilt.

In den folgenden Abschnitten werden nun die wichtigsten Punkte zu den einzelnen
Teilen der Arbeit zusammengefasst. Zunächst wird in Abschnitt 2 eine Klassifikati-
on von Cross-Layer-Interaktionen vorgestellt sowie ein kurzer Überblick über unsere
Mechanismen zum Datenaustausch (TinyXXL und Neidas) gegeben. Dann wird in Ab-
schnitt 3 ViMem, das virtuelle Speichersystem, kurz beschrieben. In Abschnitt 4 wird
Levels , unser Ansatz zur Erstellung von energiebewussten Anwendungen, vorgestellt.
Abschließend fasst Abschnitt 5 die Schlussfolgerungen und den Ausblick zusammen.

2. Schichtenübergreifender Datenaustausch

In Kapitel 4 der Arbeit wird zunächst eine Klassifikation von Cross-Layer-Interaktionen
vorgestellt. Diese Klassifikation basiert auf der Analyse existierender Sensornetzanwen-
dungen und deren Verwendung von Cross-Layer-Interaktionen. Es wird dabei zwischen
unstrukturierten Interaktionen, deren negative Auswirkungen auf die Architektur be-
sonders groß sind, und strukturierten Interaktionen unterschieden, die zumindest teil-
weise die Modularität erhalten.

Unstrukturiert ist das Zusammenfügen eigentlich logisch getrennter Komponenten, die
Ersetzung von Systemkomponenten und die Verwendung globaler Variablen. Logisch
getrennte Schichten oder Komponenten werden häufig zusammengefasst, weil sie so
einfacher interagieren können. Dies verringert jedoch die Modularität und erschwert
die Wartbarkeit. Systemkomponenten werden oft durch anwendungsspezifische Vari-
anten ersetzt, wenn die ursprünglichen Versionen nicht die benötigten Schnittstellen
oder Eigenschaften bereitstellen. Besser wäre es hier allerdings, zusätzliche Kompo-

17

Deutsche Zusammenfassung

nenten mit der gewünschten Funktionalität einzuführen, da sonst auch das Verhalten
anderer Systemkomponenten beeinflusst werden kann. Globale Variablen sind schließ-
lich zu meiden, weil es unklar bleibt, welche Abhängigkeiten zu den einzelnen Modulen
bestehen.

Als strukturierte Cross-Layer-Interaktionen werden dagegen Funktionsaufrufe und Da-
tenaustausch bezeichnet, wobei sich letzterer noch untergliedern lässt in Parametrisie-
rung und die gemeinsame Nutzung von Daten. Interaktionen, die auf Funktionsauf-
rufen basieren, werden von Programmiersprachen wie nesC [Gay et al. 2003] bereits
recht gut unterstützt. Sie sind in TinyOS zwischen allen Komponenten möglich – un-
abhängig davon, zu welcher Schicht sie gehören. Mangels Alternativen werden Funk-
tionsaufrufe auch dazu eingesetzt, Daten auszutauschen. Dies stellt jedoch eigentlich
eine separate Interaktionsform dar. Dabei bedeutet Parametrisierung, dass gezielt das
Verhalten einer Komponente beeinflusst wird, indem andere Komponenten die von
ihr definierten Parameter setzen. Die gemeinsame Nutzung von Daten dient dagegen
dazu, die internen Daten für andere Schichten lesbar zu machen.

Da Datenaustausch häufig für Cross-Layer-Interaktionen eingesetzt wird und aktuell
verwendete Programmierabstraktionen dafür nicht adäquat sind, weil sie die Kopplung
der beteiligten Komponenten unnötig stark erhöhen, unterstützt TinyXXL diese Form
der Interaktion explizit. Es entkoppelt interagierende Komponenten, indem die Da-
ten nur indirekt über einen zentralen Datenspeicher (das TinyStateRepository) ausge-
tauscht werden. Das TinyStateRepository stellt einen Publish/Subscribe-Mechanismus
zur Verfügung, über den Nutzer von Daten benachrichtigt werden, wenn sich diese
ändern. Um den Laufzeitaufwand gering zu halten, erfolgt die Anmeldung dazu sta-
tisch beim Kompilieren.

Eine Komponente, die Daten anbietet oder benötigt, spezifiziert eine entsprechende
Abhängigkeit. Diese Abhängigkeit wird dann von einem Prä-Compiler aufgelöst. Beim
Kompilieren stellt TinyXXL sicher, dass alle benötigten Daten vorhanden sind, dass
nur tatsächlich genutzte Daten bereitgestellt werden und dass dieselbe Art von Daten
nur ein einziges Mal gesammelt wird. So wird vermieden, dass unnötig Energie ver-
braucht wird für das Sammeln und Bereitstellen von Daten (z. B. zum Ermitteln der
Nachbarknoten). Dies wird dadurch realisiert, dass gemeinsam benutzte Daten nur
geschrieben werden können, wenn der Zugriff in einem bedingten Anweisungsblock
erfolgt.

Die Prüfung der Datenabhängigkeiten erlaubt es, automatisch optimierte Anwen-
dungen aus wiederverwendbaren Komponenten zu erstellen. Eine aufwendige manu-
elle Optimierung der Anwendung ist damit oft nicht erforderlich. Bei den Daten-
abhängigkeiten können zudem neben der Art der Daten auch nicht-funktionale Eigen-
schaften spezifiziert werden, um z.B. die Kosten beim Datensammeln zu minimieren
oder nur solche Daten zu verwenden, die eine bestimmte Genauigkeit haben.

Mit so genannten virtuellen Daten erlaubt TinyXXL außerdem, auf Daten zuzugreifen,
die in der geforderten Form nicht im Speicher vorhanden sind; sie werden erst beim

18

2. Schichtenübergreifender Datenaustausch

Zugriff dynamisch aus anderen Daten erzeugt. Damit kann auf mehr Daten als nur die
internen Rohdaten der Komponenten zugegriffen werden und ähnliche Daten können
leicht aus vorhandenen abgeleitet oder konvertiert werden, ohne zusätzliche sammeln
und speichern zu müssen.

Insbesondere mit der automatischen Optimierung und seinen virtuellen Daten geht
TinyXXL über existierende Ansätze für Cross-Layer-Frameworks hinaus [Conti et al.
2004; Kumar et al. 2006; Su and Lim 2006]. Im Unterschied zu diesen System kon-
zentriert sich TinyXXL nicht nur auf den Datenaustausch zwischen den Komponenten
eines einzelnen Sensorknotens, sondern unterstützt auch den Austausch von Daten mit
Nachbarknoten. So können auch Daten anderer Knoten ohne großen Entwicklungsauf-
wand in die Anwendung integriert werden – unabhängig davon, von welcher Schicht
oder Komponente sie auf dem Ursprungsknoten bereitgestellt werden. Die zentrale
Komponente dieses Ansatzes ist Neidas , ein Algorithmus zum Datenaustausch mit
Nachbarknoten. Dieser Algorithmus ist für heterogene Netze geeignet, in denen die
Knoten nicht im Voraus wissen, welche Daten ihre Nachbarn benötigen, und in de-
nen sich die Topologie häufig ändern kann. Er nutzt die Broadcast-Eigenschaften der
Funkkommunikation aus und baut auf einem Verfahren namens

”
Polite Gossiping“

auf, um die Zahl der übertragenen Pakete zu minimieren.

Bei Polite Gossiping [Levis et al. 2004b] senden Knoten Pakete nur, wenn sie nicht
schon dieselben Information von einer gewissen Anzahl an Nachbarn erhalten haben. In
Neidas wird dieser Mechanismus dazu eingesetzt, um sowohl die Anzahl der Datenan-
forderungen als auch der Datenpakete selbst zu reduzieren. Dadurch, dass Daten peri-
odisch angefordert und gesendet werden, reagiert der Algorithmus auf Veränderungen
in der Topologie. Knotenausfälle werden über einen Soft-State-Ansatz behandelt, so-
dass nur diejenigen Daten gesendet werden, die auch tatsächlich von Nachbarknoten
benötigt werden.

Weiterhin setzt die Implementierung von Neidas Piggybacking ein, um bei den ver-
gleichsweise kleinen Datenmengen den zusätzlichen Aufwand für den Paket-Kopf und
die Präambel auf der MAC-Schicht einzusparen. So können die Nachbarschaftsdaten
an die regulären Pakete der Anwendung angehängt werden, ohne dass dort Änderungen
erforderlich wären. Nur falls die Anwendung über einen längeren Zeitraum kein geeig-
netes Paket schickt, wird ein separates Paket für die Nachbarschaftsdaten versendet.
Insbesondere wenn Low-Power-Listening [Polastre et al. 2004] eingesetzt wird, bei dem
die Präambel verlängert wird, um die Empfänger zeitweise abschalten zu können, kann
durch Piggybacking der Aufwand zum Datenaustausch beträchtlich reduziert werden.

Die Evaluation in Kapitel 4 zeigt, dass komplexe Anwendungen mit TinyXXL erstellt
werden können und dass sowohl der Entwicklungs- als auch der Laufzeitaufwand für
Anwendungen mit TinyXXL recht gering ist. Außerdem zeigt die Evaluation, dass
Neidas – verglichen mit einfachen Implementierungen von push- und pull-basierten
Ansätzen sowie mit Hood [Whitehouse et al. 2004] – die übertragene Datenmenge
erheblich reduzieren kann. Insbesondere bei dicht besetzten Netzen profitiert Neidas
von Polite Gossiping und verringert die von jedem Knoten zu übertragenden Daten.

19

Deutsche Zusammenfassung

3. Datenspeicherung in virtuellem Speicher

Kapitel 5 beschreibt ViMem, ein System für flash-basierten virtuellen Speicher auf
Sensorknoten. ViMem berücksichtigt die besonderen Gegebenheiten der Sensorknoten
und ermöglicht es so, virtuellen Speicher effizient in Sensornetzen einzusetzen.

Flashspeicher ist auf typischen Sensorknoten viel größer als Arbeitsspeicher (512KB
im Vergleich zu 4KB bei Mica2-Knoten). Allerdings sind die Zugriffskosten größer:
Es können nur ganze Seiten von mehreren Hundert Bytes gelesen oder geschrieben
werden. Insbesondere Schreiben erfordert einen hohen Energieaufwand und hat eine
große Latenz. Anstatt – wie im RAM – eine Variable in wenigen Prozessorzyklen zu
schreiben, sind beim Flashspeicher dafür mehrere Millisekunden erforderlich. Nichtsde-
stotrotz kann Flashspeicher als sekundärer Speicher für ein virtuelles Speichersystem
verwendet werden. In aktuellen Betriebssystemen für Sensornetze [Hill et al. 2000; Han
et al. 2005; Dunkels et al. 2004; Abrach et al. 2003] gibt es jedoch keine Unterstützung
für virtuellen Speicher. Eine solche Funktionalität wurde erst parallel zu unserer Ar-
beit von t-kernel [Gu and Stankovic 2006] demonstriert, das im Unterschied zu ViMem
allerdings nicht die Anordnung im Speicher verändert.

Wichtige Eigenschaften von Sensornetzen beeinflussen den Entwurf von ViMem. Zu-
nächst wird in Sensornetz-Betriebssystemen wie TinyOS [Hill et al. 2000] der meiste
Speicher statisch zugewiesen. Da nur eine Anwendung gleichzeitig ausgeführt wird, ist
das Verhalten besser vorhersehbar als in Multitasking-Systemen. Zudem sind Zugriffe
auf den virtuellen Speicher nur für Variablen notwendig, nicht aber bei jedem einzelnen
Prozessorbefehl, da der Programmspeicher vom Arbeitsspeicher getrennt ist. Weiter-
hin ist Simulation zu einem unverzichtbaren Bestandteil der Programmentwicklung
geworden [Titzer et al. 2005], so dass sie auch für Optimierungen ausgenutzt werden
kann. Außerdem enthalten typische Sensorknoten keinerlei Hardwareunterstützung für
virtuellen Speicher. Deshalb muss das ganze System in Software implementiert wer-
den. Schließlich unterscheidet sich das Verhalten von Flashspeicher stark von anderen
Speicherarten und – wie oben beschrieben – sind insbesondere Schreibzugriffe kosten-
intensiv. Deshalb müssen solche Zugriffe nach Möglichkeit minimiert werden.

Da die Verzögerung eines Variablenzugriffs sehr groß ist, wenn die entsprechende Sei-
te zunächst vom Sekundärspeicher geladen werden muss, können nicht alle Variablen
im virtuellen Speicher platziert werden. Insbesondere solche Variablen, die in zeitkriti-
schen Funktionen wie Interruptbehandlungsroutinen verwendet werden, sollten weiter-
hin immer im Arbeitsspeicher sein. Aus diesem Grund bietet ViMem die Möglichkeit,
die Variablen, die in den virtuellen Speicher transferiert werden sollen, explizit bei
ihrer Deklaration durch ein entsprechendes Attribut zu kennzeichnen.

ViMem nutzt Simulationsläufe, um zu ermitteln, welche Variablen und Teile kom-
plexer Variablen – so genannte Datenelemente – häufig gemeinsam benutzt werden.
Auch wenn die tatsächliche Zugriffsreihenfolge in der Praxis davon abweichen kann,
kann dadurch die Anzahl der Seitenfehler reduziert werden. Allerdings ist das Pro-

20

3. Datenspeicherung in virtuellem Speicher

blem, eine Speicheranordnung mit der minimalen Anzahl Seitenfehler zu finden, NP-
vollständig [Gupta 1991] – selbst wenn die genaue Zugriffsreihenfolge zur Laufzeit
bekannt ist. Deshalb verwendet ViMem eine Heuristik, um die Anordnung im Spei-
cher zu bestimmen.

Bei dieser Heuristik wird ein Graph aufgebaut, bei dem jeder Knoten einem Daten-
element entspricht. Seine Kanten beziehen sich dagegen auf die Nähe zwischen den
einzelnen Datenelementen, d. h. ihre gemeinsame Verwendung. Immer wenn auf ein
Datenelement zugegriffen wird, werden das Gewicht des Knotens sowie die Kantenge-
wichte zu den unmittelbar zuvor zugegriffenen Elementen inkrementiert. Wären diese
Elemente auf einer anderen Speicherseite, würde potentiell ein Seitenfehler auftreten
und eine Speicherseite müsste nachgeladen werden.

Anschließend werden die Elemente gruppiert, die häufig gemeinsam verwendet wer-
den, d. h. deren mit den Knotengewichten normalisierte Kantengewichte besonders
groß sind. Durch die Normalisierung der Kantengewichte können sowohl Gruppen
entstehen, die sehr häufig verwendet werden, als auch solche, die nur selten benutzt
werden. Sie werden dann auf Speicherseiten platziert, wobei zwei Klassen von Seiten
benutzt werden. Auf der einen Klasse werden hauptsächlich die Elemente platziert,
die häufig geschrieben werden, während auf der anderen solche angeordnet werden,
die vorwiegend gelesen werden. Die letzteren Seiten müssen somit nur selten auf den
Flashspeicher zurückgeschrieben werden, auch wenn sie aus dem Arbeitsspeicher ent-
fernt werden müssen.

Die Implementierung von ViMem für Mica2-Knoten nutzt die im Flash-Chip enthal-
tenen SRAM-Puffer, um die Anzahl der tatsächlichen Schreibzugriffe auf den Flash-
speicher zu reduzieren. Dies ist deshalb möglich, da die Konsistenz und Persistenz des
virtuellen Speichers nach einem unerwarteten Neustart nicht gewährleistet sein muss;
die Daten der Puffer können also verloren gehen.

In der Evaluation dieses Kapitels wird mit Simulationen gezeigt, dass ViMem die An-
zahl der Zugriffe auf den Flash-Speicher stark verringern kann im Vergleich zu einem
Ansatz, bei dem die Variablen entsprechend ihrer Deklarationsreihenfolge angeord-
net werden und der damit schon die natürliche Lokalität der Daten ausnutzt. Da-
zu müssen allerdings genügend Informationen über die Zugriffsmuster zur Verfügung
stehen, um das Speicherlayout anpassen zu können. Für diese Simulationen wurden
TinyDB [Madden et al. 2005] und Maté [Levis et al. 2005] als Beispiele für komplexe
Anwendungen so abgeändert, dass sich Teile ihrer Variablen im virtuellen Speicher
befinden. Weiterhin wird untersucht, wie sich die Anzahl der Speicherseiten im Ar-
beitsspeicher sowie die Gesamtgröße der Daten im virtuellen Speicher auf die Anzahl
der Seitenfehler und den Energiebedarf auswirken.

21

Deutsche Zusammenfassung

4. Abstraktionen und Algorithmen für energiebewusste
Anwendungen

Kapitel 6 beschreibt Levels , den Teil des Frameworks, der Energieaspekte in die Sys-
temsoftware verschiebt. Levels sorgt dafür, dass eine vorgegebene Lebensdauer erreicht
wird, wobei die Anwendungsqualität maximiert werden soll. Es stellt dazu die Pro-
grammierabstraktion der Energiestufen bereit. Diese Stufen enthalten optionale Pro-
grammteile, die nicht unbedingt erforderlich sind, um eine Basisfunktionalität der An-
wendung zu gewährleisten. Beispielsweise kann in einem dünn besetzten Netz ein Kno-
ten seine energieintensiven Sensoren abschalten, wenn er dadurch die Netzwerkkon-
nektivität erhalten kann. Somit ist er – trotz reduzierter Funktionalität – nützlicher,
als wenn er komplett ausfallen würde, auch wenn er selbst keine Sensordaten mehr
sammeln kann.

Mögliche Anwendungen findet man beispielsweise bei der Strukturüberwachung von
Brücken [Kim et al. 2007], wo Batterien nur bei regelmäßigen Inspektionen alle paar
Jahre ersetzt werden können [Marrón et al. 2005c]. Dadurch wird die geforderte Le-
bensdauer der Knoten bestimmt. Weiterhin sollte hier kein Knoten vorzeitig ausfallen,
weil die Topologie typischerweise sehr dünn besetzt ist. Durch Abschalten der Sensoren
kann bei dieser Anwendung ein beträchtlicher Teil der benötigten Energie eingespart
werden.

Bei einer anderen Anwendung, dem Überwachen des Mikroklimas von Bäumen [Tolle
et al. 2005], ist die Netzwerkdichte so groß, dass die Konnektivität auch bei Knoten-
ausfällen erhalten bleiben könnte. Dennoch kann auch hier davon profitiert werden,
wenn jeder Knoten die gesamte Lebensdauer erreicht. In dieser Anwendung könnte bei-
spielsweise das recht energieaufwendige Speichern einer zusätzlichen Kopie der Daten
im Flashspeicher unterbleiben, wenn diese sowieso zur Basisstation gesendet werden.
Dadurch gehen vielleicht einzelne Werte verloren, wenn ein Übermittlungsfehler auf-
tritt, aber die räumliche Auflösung der Sensorwerte bleibt dennoch für die geforderte
Lebensdauer erhalten, da dies nur einzelne Pakete betreffen dürfte.

Eine Energiestufe enthält alle Befehle, die zusammen deaktiviert werden können. Bei-
spielsweise ist dies bei der Strukturüberwachung alles, was mit dem Erfassen von Sen-
sorwerten zusammenhängt. Um Programmcode einer Energiestufe hinzuzufügen, muss
für diesen einfach mit einer bedingten Anweisung geprüft werden, ob die Energiestufe
aktiv ist. Alle Energiestufen einer Anwendung bilden zusammen einen Stapel, bei dem
sie – beginnend mit der obersten Stufe – deaktiviert werden können. Wenn eine Stufe
aktiv ist, sind auch alle darunterliegenden aktiv. Die unterste Stufe wird von dem
gesamten Programmcode gebildet, der nicht explizit einer höheren Stufe hinzugefügt
wurde. Diese Energiestufe ist immer aktiv.

Dieses Konzept passt sich gut in die modulare Entwicklung von Anwendungen mit
komponentenbasierten Programmiersprachen wie nesC ein. So können in einzelnen
Komponenten Energiestufen definiert werden, die dann beim Erstellen der Anwen-

22

4. Abstraktionen und Algorithmen für energiebewusste Anwendungen

dung kombiniert werden. Für jede dieser Energiestufen kann der Anwendungsentwick-
ler einen Nützlichkeitswert angeben. Dieser legt fest, wie groß der Gewinn an Funktio-
nalität im Vergleich zu der darunterliegenden Stufe ist. So steigt die Nützlichkeit viel-
leicht stärker an, wenn in einer Stufe Sensordaten gesammelt werden sollen, während
der zusätzliche Gewinn einer lokalen Speicherung dieser Daten kleiner ausfällt.

Levels benötigt zur Laufzeit Informationen über den Energiebedarf der verschiedenen
Energiestufen. Um diesen abschätzen zu können, wird mit Hilfe eines Simulators ein
Energieprofil aller optionalen Code-Blöcke der Energiestufen erstellt. Dazu können
beispielsweise Testfunktionen aus dem Modultest wiederverwendet werden, da auch
hierfür jede Funktion unabhängig von der gesamten Anwendung ausgeführt werden
sollte. Diese Energiemessung ermöglicht es, auch den Energiebedarf von asynchron
ausgeführtem Code (z. B. TinyOS-Tasks, Interruptbehandlungsroutinen) korrekt der
richtigen Energiestufe zuzuordnen. Außerdem erlaubt sie – indem mehrere Messun-
gen durchgeführt werden – eine Berechnung sowohl der Energie, die von der entspre-
chenden Funktion einmalig beim Aufruf benötigt wird, als auch einer Änderung im
kontinuierlichen Energiebedarf (z. B. beim Aktivieren einer Hardwarekomponente).

Da typische Sensorknoten wie die Mica2 keine direkte Beobachtungsmöglichkeit des
Energieverbrauchs anbieten, muss dieser über die Batteriespannung berechnet wer-
den. Diese Spannung fällt mit der Kapazität ab. Obwohl es sich dabei nicht um den
Hauptfokus von Levels handelt, ist eine Abbildung der Spannung auf die verbleibende
Batteriekapazität notwendig, um ein funktionierendes System zu bilden. Für Levels
wurde deshalb ein recht einfaches, aber effizientes Modell mit Hilfe von Messungen er-
stellt, das jeden Spannungswert auf einen Energiewert abbildet. Außerdem gibt dieses
Modell die erwartete Genauigkeit für jeden Wert an, da sich diese für verschiede-
ne Spannungswerte stark unterscheiden kann. Um die Berechnungen zur Laufzeit zu
vereinfachen und dennoch korrekte Ergebnisse zu erhalten, wird sowohl bei der Erstel-
lung des Modells als auch zur Laufzeit von einem Energieverbrauch für ein Codestück
ausgegangen, der unabhängig von der aktuellen Versorgungsspannung ist.

Zur Laufzeit wird mit Hilfe des Batteriemodells die verbleibende Kapazität und der
aktuelle Gesamtverbrauch des Knotens berechnet. Außerdem wird mit den Informatio-
nen des Energieprofils der Bedarf der einzelnen Stufen ermittelt. Aufbauend auf diesen
Daten kann dann eine optimale Zuweisung von Energiestufen berechnet werden.

Dazu wird ein Problem der linearen Programmierung mit Hilfe des Simplex-Algorith-
mus gelöst. Es soll dabei die Zeitdauer in den Energiestufen berechnet werden, die ihre
durchschnittliche Nützlichkeit über die Zeit maximiert. Dies soll unter Beachtung der
folgenden Randbedingungen geschehen: Die Zeitdauer in allen Energiestufen soll der
geforderten verbleibenden Lebensdauer des Knotens entsprechen, und es soll höchstens
so viel Energie benötigt werden, wie auch zur Verfügung steht.

Da Levels die Optimierungen lokal auf den einzelnen Knoten durchführt, schwankt die
netzwerkweite Gesamtqualität der Anwendung stark, weil viele Knoten zu ähnlichen
Optimierungsergebnissen kommen und deshalb dieselben Energiestufen zur selben Zeit

23

Deutsche Zusammenfassung

wählen. Um diese Qualität annähernd konstant zu halten, bietet Levels verschiedene
Mechanismen an. Erstens kann der Anwendung die Entscheidung überlassen werden,
welche Stufe aus dem lokalen Optimierungsergebnis ausgewählt werden soll. Zu diesem
Zweck kann sie ihre eigene, anwendungsspezifische Koordination durchführen. Zwei-
tens kann eine Stufe zufällig aus dem lokalen Ergebnis gewählt werden. Dies sorgt für
eine gleichmäßigere Verteilung über die Zeit. Schließlich bietet Levels eine verteilte
Heuristik an, die die Stufenzuweisungen lokal in der Nachbarschaft koordiniert. Sie
kann außerdem dazu benutzt werden, in dichten Netzen Knoten zeitweise zu deakti-
vieren, wobei auch hierbei die Anwendungsqualität konstant gehalten werden soll.

Bei diesem verteilten Ansatz versucht jeder Knoten, die Energiestufen aus seinem
lokalen Ergebnis so über die Zeit verteilt zuzuweisen, dass die Abweichung vom durch-
schnittlichen Wert in der Nachbarschaft minimiert wird. Dabei kann ein Greedy-
Ansatz die lokal optimalen Zuweisungen mit geringem Aufwand bestimmen. Das Er-
gebnis sendet jeder Knoten dann an seine Nachbarn, die dieses Ergebnis bei der Durch-
schnittsberechnung für ihre eigene Zuweisung berücksichtigen. Es handelt sich um eine
Heuristik, die nicht notwendigerweise das globale Optimum findet, da jeder Knoten
nur seine eigenen Zeitintervalle beeinflussen kann und die Werte seiner Nachbarn als
gegebene Randbedingungen hinnehmen muss.

Das Kapitel enthält eine Evaluation von Levels , in der sowohl mit Simulation als
auch mit Hilfe von Experimenten mit realen Sensorknoten gezeigt wird, dass Levels
die angeforderte Lebensdauer recht genau erreicht und somit die Qualität der An-
wendung fast optimal ist. Wie die Experimente zeigen, werden dazu allerdings recht
genaue Informationen über die Batterieentladung benötigt. Weiterhin wird eine kom-
plexe Anwendung zur Vulkanüberwachung [Werner-Allen et al. 2006a] so abgeändert,
dass sie Levels nutzt. Für die Integration von Levels waren nur geringe Änderungen
am Programmcode der Anwendung notwendig. Obwohl diese Anwendung von exter-
nen Ereignissen abhängt, erreicht auch sie die angeforderte Lebensdauer. Außerdem
wird mit Simulationen dargestellt, dass sich durch die verteilte Koordination der Zu-
weisungen die Abweichung von der durchschnittlichen Anwendungsqualität erheblich
verringern lässt. Schließlich zeigt die Evaluation, dass der Laufzeitaufwand von Levels
vernachlässigbar klein ist.

5. Zusammenfassung und Ausblick

Die Arbeit schließt mit einer Zusammenfassung und einem Ausblick auf Forschungs-
fragen, die sich aus dieser Arbeit ergeben (siehe Kapitel 7).

Zusammenfassend lässt sich sagen, dass das entwickelte Cross-Layer-Framework einen
breiten Bereich von Cross-Layer-Interaktionen behandelt, auch wenn dadurch nicht al-
le negativen Auswirkungen dieser Interaktionen beseitigt werden können. In manchen
Aspekten ist das Framework sogar allgemeiner als das ursprüngliche Ziel. Beispiels-

24

5. Zusammenfassung und Ausblick

weise können mit dem Algorithmus zur Anforderung von Daten der Nachbarknoten
nicht nur klassische Cross-Layer-Daten ausgetauscht werden, sondern auch z. B. An-
wendungsdaten. Ähnlich hilft Levels nicht nur einige Cross-Layer-Interaktionen zu
vermeiden, sondern bietet davon unabhängige Mechanismen an, um eine gegebene
Lebensdauer zu erreichen. Daher verringert das Framework nicht einfach die Neben-
wirkungen von Cross-Layer-Interaktionen, sondern hilft dem Anwendungsentwickler,
effiziente Sensornetzanwendungen zu erstellen.

Zukünftige Forschungsfragen betreffen sowohl eine Ergänzung des Frameworks um
andere Arten von Cross-Layer-Interaktionen und mögliche Erweiterungen der einzel-
nen Teile als auch die erneute Betrachtung von Entwurfsentscheidungen abhängig von
der weiteren Entwicklung der Sensornetze-Forschung. Aller Voraussicht nach werden
Cross-Layer-Interaktionen bei billigen, ressourcenbeschränkten Geräten, die drahtlos
miteinander kommunizieren, auch in Zukunft wichtig bleiben.

25

Deutsche Zusammenfassung

26

1. Introduction

1.1. Motivation

In the last few years wireless sensor networks have been introduced to unobtrusively
collect data from the physical world. The nodes of such a network – so-called sensor
nodes – are able to sense physical data, process this data within the network, and
transmit it using wireless multi-hop communication. It is widely believed that sensor
networks will have a huge potential in the future [Estrin et al. 1999; Römer and
Mattern 2004; Marrón et al. 2006b].

Several promising application scenarios for sensor networks have been described in the
literature. Much of the research in the early years has focused on military applications
[Arora et al. 2004] and on environmental monitoring. For example, sensor networks
have been used to get information about the micro-climate of redwood trees [Tolle
et al. 2005], to monitor animals in their natural habitat [Szewczyk et al. 2004; Juang
et al. 2002], and to detect volcanic eruptions [Werner-Allen et al. 2006a]. For these
environmental monitoring applications sensor nodes help to unobtrusively observe
physical phenomena at a previously unknown fidelity and scale. Although there are
some exceptions, most of the applications in this domain just gather, aggregate, and
forward data without doing more complex processing in the network.

Besides these scientific applications, other – more commercial – applications have
already emerged. For instance, sensor networks have been proposed for industrial
monitoring where they have been used to predict equipment failure from vibration
patterns [Krishnamurthy et al. 2005]. Compared to previous solutions that used
wired sensors or had employees with mobile devices read out the data, sensor networks
reduce costs greatly. Likewise, another promising application is structural health
monitoring of buildings and bridges [Xu et al. 2004; Marrón et al. 2005c; Kim et al.
2007]. Although maintenance personnel still has to manually inspect the machines
and structures from time to time, the use of sensor networks allows to detect defects
early at reduced costs. Therefore, they can be repaired before large damage occurs.

Other applications include precision agriculture to prevent deceases from spreading
and to increase the harvest as well as animal production [Langendoen et al. 2006; Wark
et al. 2007]. For example, a sensor network can be used to provide data on humidity
and temperature close to the crop or measure soil moisture. This information allows to
infer when to apply fertilizer and when to move cattle to another pasture, for example.

27

1. Introduction

Finally, in intelligent transport scenarios cars can be regarded as sensor nodes [Rei-
chardt et al. 2002; Marrón et al. 2005b]. In these applications the cars send, for
example, messages to warn other vehicles of dangerous situations or to assist in lane
merging.

In most of these examples sensor nodes are powered from batteries. In order to create
inexpensive devices that operate for a long time without human intervention sensor
nodes are strictly resource-constrained [Hill et al. 2004]. Because of the limited
battery capacity especially the amount of energy available is a major constraint. The
energy restrictions have lead to the use of small, efficient microcontrollers. Therefore,
typically not just energy is a limiting factor but also the amount of main memory
available and – to a lesser extent – the computational capabilities.

The resource restrictions of sensor nodes lead to a need for optimizations in sensor
network applications. The goal of such optimizations is to conserve energy (e.g., by
reducing radio communication) or to make the memory footprint in RAM smaller
(e.g., by avoiding redundant data). Only with such optimizations it is possible to run
a sensor node for weeks or even months with a single set of batteries or to develop
complex software systems for hardware platforms with only a few kilobytes of RAM.
One technique for such optimizations is to use cross-layer interactions, where – in
contrast to a strictly layered architecture [Garlan and Shaw 1993] – software layers
interact more closely. Cross-layer interactions are widely used in sensor networks
[Levis et al. 2004a] and are often regarded as a necessity [Goldsmith and Wicker
2002]. In addition, cross-layer interactions offer the possibility of dealing with the
special properties of wireless networks that cannot be handled well by strictly layered
architectures. For example, this can be coping with variations in link quality or
adjusting the transmission strength, which influences the radio range, the number of
collisions, and energy consumption.

As described by Kawadia and Kumar [Kawadia and Kumar 2005], cross-layer inter-
actions can have a negative effect on desirable properties of the software architecture
such as modularity. For example, if cross-layer interactions are not performed in a con-
trolled fashion, it might not be possible to exchange a module without major changes
to others. This reduces modularity and the reusability of software components. In
the extreme, the system becomes a monolithic piece of code that is hard to develop
and impossible to maintain. Thus, if cross-layer interactions are needed, they have
to be used deliberately. Therefore, in this thesis we propose a set of programming
abstractions and the corresponding system software that help in dealing with these
interactions.

The resulting framework assists the developer in three ways when applying cross-
layer interactions. First, it aims to alleviate the negative effects on the software
architecture by decoupling interacting software components. For example, this allows
to deal with the special properties of wireless communication. Second, the framework
tries to reduce the need for cross-layer interactions by relaxing the constraints that
lead to cross-layer interactions. Finally, it deals explicitly with these constraints inside

28

1.2. Contribution

the system software so that the application can achieve its target lifetime without
additional cross-layer interactions.

1.2. Contribution

This thesis has several contributions. First, based on an analysis of existing sensor
network applications it presents a classification of the cross-layer interactions found
there. Second, it describes a framework with its algorithms and heuristics that pursues
three strategies to alleviate the negative side-effects of cross-layer interactions. As
described above, the first strategy tries to preserve modularity and reusability by
decoupling the interacting components. In this part of the framework we focus on
some particular forms of cross-layer interactions that deal with exchanging data among
layers. The second strategy aims to avoid some cross-layer interactions by providing an
abstraction that addresses one of the main causes why they are used in the first place.
In particular, this abstraction tries to alleviate the memory limitations by providing
an optimized virtual memory system. Finally, the third strategy deals explicitly in the
framework with another one of these causes: energy limitations. Using the abstraction
of a so-called energy level it allows to meet user-defined lifetime goals while providing
good application quality. This way it does not only reduce the effort of the application
developer but also makes some cross-layer interactions unnecessary. However, even
with this part of the framework complex applications cannot do without all cross-
layer interactions if they have to operate efficiently.

With these three different strategies our cross-layer framework follows a much broader
approach than other frameworks. Typically, existing cross-layer frameworks for sensor
networks and mobile ad-hoc networks (MANETs) provide means to facilitate cross-
layer interactions [Conti et al. 2004; Kumar et al. 2006; Su and Lim 2006] but do
not try to address their causes. The following paragraphs give some details about the
parts of our cross-layer framework that employ its three strategies.

To decouple software components the cross-layer framework provides mechanisms to
exchange data among several layers. Such functionality helps to reduce memory con-
sumption since redundant data does not have to be kept in RAM by several layers. In
addition, energy consumption is possibly also reduced because data does not have to
be gathered several times by, for example, sending messages if it is already available
on another layer. Finally, this mechanism allows the software developer to create a
cross-layer network stack that can better deal with the properties of wireless com-
munication. Unlike most existing systems supporting data exchange [Conti et al.
2004; Kumar et al. 2006; Su and Lim 2006; Köpke et al. 2004] our approach automat-
ically performs many optimizations at compile-time and avoids, for example, having
meta-data in RAM.

In order to create a comprehensive system for both intra-node and inter-node data

29

1. Introduction

sharing, the cross-layer framework includes an efficient protocol to share data with
neighboring nodes. Data from neighbors allows for potentially new optimizations in the
applications without requiring much additional development effort. Other approaches
that provide programming abstractions for neighborhood communication [Whitehouse
et al. 2004; Welsh and Mainland 2004; Mottola and Picco 2006] either include just
simple algorithms to actually share the data or leave the design of such an algorithm
to the application developer.

To address memory limitations differently and to make many cross-layer interactions
unnecessary, the cross-layer framework includes a virtual memory system that in-
creases the amount of memory available by placing currently unused data in flash
memory. Therefore, it relaxes the strict memory constraints that are the cause of many
cross-layer interactions. It addresses the specific properties of the sensor nodes and –
unlike existing virtual memory solutions for sensor networks [Gu and Stankovic 2006]
– tries to optimize the memory layout. Thus, it reduces the overhead of such a virtual
memory solution, concerning both access latency and energy consumption. Other ap-
proaches that optimize memory layouts either focus on restructuring code [Muchnick
1997; Hatfield and Gerald 1971; Hartley 1988], which is stored separately on typical
sensor nodes, or do not take into account the characteristics of flash memory [Gupta
1991; Stamos 1984]. Furthermore, the virtual memory system allows to keep more
cross-layer data in memory and, therefore, avoids energy-expensive data gathering.

Finally, to explicitly address energy constraints the cross-layer framework includes
mechanisms that measure the energy consumption of some code and adjust the func-
tionality of the sensor nodes. It allows to meet a user-defined lifetime goal while
providing the best quality possible. Most existing approaches are not targeted to the
resource limited platforms of sensor nodes [Flinn and Satyanarayanan 1999; Zeng et al.
2002], provide only limited mechanisms to adjust application quality [Madden et al.
2005], or focus on maximizing lifetime instead of meeting a target lifetime at a good
quality [Cardei and Wu 2006; Cerpa and Estrin 2002; Giusti et al. 2007]. Meeting a
lifetime goal for the sensor network can be useful in many classes of applications such
as, for example, structural health monitoring and environmental monitoring.

Like the virtual memory system, this part of the framework tries to avoid some cross-
layer interactions. However, instead of relaxing the constraints that cause them, it
tries to reduce the burden on the developer when creating energy-efficient applications.
This way it moves energy concerns into the system software and the developer is less
likely to apply cross-layer interactions for energy efficiency. In addition, using minimal
data exchange among nodes, a distributed algorithm can assign node schedules that
keep the overall quality of the application almost constant.

The major contributions of this thesis have been published in international scientific
conferences [Lachenmann et al. 2005; Lachenmann et al. 2006; Lachenmann et al.
2007a; Lachenmann et al. 2007b; Lachenmann et al. 2007c].

30

1.3. Structure

1.3. Structure

The rest of this thesis is structured as follows. Chapter 2 introduces the context in
which this work has been done. It includes an overview of wireless sensor networks
and their applications, an introduction to cross-layer interactions, and a description
of the TinyCubus project, of which the cross-layer framework is part.

Chapter 3 summarizes the functionality of the framework, gives an overview of its
individual parts, and presents properties of the overall design.

Following this overview, the next chapters describe the three parts of the cross-layer
framework in more detail:

First, Chapter 4 presents our analysis of cross-layer interactions in existing applica-
tions. In addition, it describes the abstractions and algorithms for data exchange
between both the software components of a single node and neighboring nodes. The
chapter includes an evaluation that shows the efficiency of this approach.

Second, Chapter 5 presents and evaluates the cross-layer framework’s virtual memory
system. This system uses a heuristic to optimize the layout of variables in virtual
memory. The evaluation results show that for typical sensor network application the
heuristic can greatly reduce the access costs to virtual memory.

Third, Chapter 6 describes the abstraction of a so-called energy level, which allows
to adjust the functionality of the application in order to meet a user-defined lifetime
goal. In addition, it includes a distributed mechanism to balance node schedules over
time. Using both simulation and experiments with Mica2 nodes, the chapter shows
that this approach is able to accurately meet a lifetime goal despite many inaccuracies
present on sensor nodes.

Finally, Chapter 7 summarizes the contributions of this thesis and identifies possible
extensions for future work.

31

1. Introduction

32

2. Background

This chapter presents background information on the work of this thesis. It describes
wireless sensor networks in more detail – including their applications and hardware
properties – and states the underlying assumptions of this thesis. It then defines the
term “cross-layer interaction” and gives an overview of such interactions. Finally, this
chapter describes the TinyCubus project, in which our cross-layer framework has been
developed.

2.1. Wireless Sensor Networks

Within the last few years there has been significant research in the area of wireless
sensor networks. This section summarizes properties of typical platforms regarding
both hardware and software. In addition, it states the assumptions of our system
model.

2.1.1. System Properties

Hardware Platforms

As already mentioned in the introduction, sensor nodes form a wireless network using
ad-hoc communication. Typically, each sensor node is equipped with a microcontroller,
a radio chip, non-volatile flash memory, and application-specific sensors. In this thesis
we focus specifically on the small, resource-limited, inexpensive “mote-class” devices
[Hill et al. 2004]. These kinds of devices are commonly used in sensor network research;
they are already commercially available from several manufacturers. Examples include
the Telos nodes [Polastre et al. 2005b] and the Mica2 nodes [Hill et al. 2004]. Since
the implementation of our cross-layer framework is targeted towards Mica2 nodes the
following description focuses on this hardware platform.

A Mica2 node is equipped with an 8-bit RISC processor from Atmel that runs at
7.37MHz. Its main memory consists of 4KB of RAM. The program is stored separately
in flash-based program memory, which is much larger in size (128KB). Besides these
two memories that are internal to the CPU, the Mica2 nodes – like most available
sensor nodes – are equipped with an external flash memory chip of 512KB. Flash
memory can be used, for example, to store sensor readings.

33

2. Background

The Mica2 nodes communicate via wireless transmission in an ISM band. The com-
munication chip allows to implement even the MAC layer in software. Therefore,
cross-layer interactions can be applied easily in the complete network stack.

The user can add application-specific sensor boards to the Mica2 nodes. Without such
a board, the sensor node can only measure its internal battery voltage. Typical sensor
boards, which are commercially available, include light, temperature, and acoustic
sensors. Other boards are equipped with accelerometers and magnetometers or with
humidity, barometric pressure, and seismic sensors.

Finally, the Mica2 nodes have three LEDs, which can be used for debugging purposes,
and an interface to connect them to the serial port of a PC. If a node is connected to
a PC, it acts as a gateway to the sensor network.

Like most sensor nodes available today, the Mica2 nodes are powered by two AA bat-
teries. Therefore, if the node should be operational for more than a few days, energy
is a precious resource. The energy consumption of the sensor node can vary signif-
icantly depending on the current states of the CPU, radio chip, sensors, and flash
memory chip, which are the main energy consumers. For example, power consump-
tion of the CPU can increase from 348µW in its “power down” state to 22.8mW
in the “active” state [Landsiedel et al. 2005]. The power consumption of the radio
chip is often in the same order of magnitude whereas custom sensor interface boards
sometimes consume as much energy as the remaining components of the sensor node
combined [Werner-Allen et al. 2006a; Kim et al. 2007].

The Mica2 nodes have been a popular research platform for several years now. They
are supported by many sensor network operating systems and tools. Even though
some new hardware platforms have emerged recently, their properties (e.g., the CPU
speed, RAM size, battery-power, flash memory as secondary memory) are very similar.
Therefore, it can be expected that the challenges addressed in this dissertation will still
be present in the future. Instead of using advances in hardware for faster processors
with more RAM it is more likely that these advances will lead to a reduction in cost,
size, and energy consumption [Gay et al. 2003; Dunkels et al. 2004; Gehrke and
Madden 2004].

Operating Systems

Several operating systems have been proposed to specifically address the challenges of
sensor networks. The best-known examples are TinyOS, Contiki, SOS, and Mantis.

TinyOS [Hill et al. 2000] is probably the most popular operating system for sensor
networks. It has an active community of developers and has been ported to several
hardware platforms including the Mica2 nodes. Several large applications have been
developed using TinyOS and have been tested in real-world deployments. TinyOS
has been implemented in nesC [Gay et al. 2003], a programming language specifically

34

2.1. Wireless Sensor Networks

BlinkM

SingleTimer

Main

LedsC

StdControl

StdControl

StdControl

Timer Leds

LedsTimer

provides

uses

Figure 2.1.: Wiring of Blink, a simple TinyOS application

designed to support the TinyOS abstractions of components, events, and tasks.

The concurrency model of TinyOS is based on an event-driven system. All events are
executed atomically with respect to other events. Therefore, to maintain the reactivity
of the system longer computations are done in so-called tasks. Tasks can be suspended
by events, but not by other tasks. A simple scheduler runs the tasks in FIFO order.

A TinyOS application consists of system and application components that are con-
nected (“wired”) using their interfaces. Only those components that are actually
needed by the application are included in the code image. This reduces the size of
both the code image and the variables in RAM. Each component can be wired to any
other one. Therefore, there is no explicit notion of layers in TinyOS and cross-layer
interactions can be applied more easily.

For example, Fig. 2.1 shows how a simple application is composed of several existing
components. Each component like “BlinkM” specifies the interfaces that it provides
(“StdControl”) and those that it uses (“Timer” and “Leds”). The application is then
created by wiring these dependencies to other components.

In nesC code the wirings are defined in so-called configurations. For instance, Fig. 2.2
shows the code needed to create the wiring of the sample application of Fig. 2.1. This
application, “Blink” is part of the TinyOS distribution. It periodically toggles one of
the node’s LEDs. Each of the components that are used in this code fragment can be
a configuration, which composes other components, or a module, the second type of
nesC components.

A module includes the actual code that implements the interfaces provided. The code
of BlinkM, the module that implements the Blink application’s main functionality, is
shown in Fig. 2.3. The commands of the “StdControl” interface are used for initial-
ization and to control a timer. Whenever this timer fires (event “Timer.fired”), the
node toggles its red LED using the “Leds” interface.

35

2. Background

1 configuration Blink {
2 }
3 implementation {
4 components Main , BlinkM , SingleTimer , LedsC ;
5

6 Main . StdControl −> SingleTimer . StdControl ;
7 Main . StdControl −> BlinkM . StdControl ;
8

9 BlinkM . Timer −> SingleTimer . Timer ;
10 BlinkM . Leds −> LedsC ;
11 }

Figure 2.2.: nesC configuration for the Blink application

Although TinyOS is probably the most-widely used operating system for sensor net-
works, there are several alternatives.

First, Contiki [Dunkels et al. 2004] provides more flexibility than TinyOS. Instead
of replacing the complete code image when installing updates – as it is required with
TinyOS – Contiki allows to replace loadable modules and the kernel itself individually.

Contiki is based on an event-based kernel but includes an optional library for multi-
threading. This library simplifies application development but increases memory con-
sumption since each thread needs its own stack. Therefore, as a third approach Contiki
supports so-called proto-threads [Dunkels et al. 2006] which provide a thread-like pro-
gramming interface that the compiler transforms to an event-based implementation.

Second, SOS [Han et al. 2005], which is similar to Contiki, allows for dynamic re-
placement of modules. However, it does not include a multi-threading abstraction.

Finally, Mantis [Abrach et al. 2003] includes such an abstraction. This system has
the goal of providing an easy-to-use environment for rapid prototyping. Therefore,
it tries to transfer well-known abstractions like multi-threading to the field of sensor
networks. In addition, it includes a layered network architecture, where several layers
can be combined in a single thread.

For the implementation of the concepts presented in this thesis we have selected
TinyOS as the underlying operating system. The broad range of existing applications
that have been developed with this system allows to test the framework in differ-
ent scenarios. In addition, with its component-based architecture it allows to apply
cross-layer interactions more easily than Mantis, for example.

2.1.2. Assumptions

This thesis makes some assumptions on the classes of devices used and on properties
of the network. Some of the assumptions are valid only for parts of the framework.

36

2.1. Wireless Sensor Networks

1 module BlinkM {
2 provides interface StdControl ;
3 uses interface Timer ;
4 uses interface Leds ;
5 }
6 implementation {
7 command r e s u l t t StdControl . i n i t () {
8 ca l l Leds . i n i t () ;
9 return SUCCESS;

10 }
11

12 command r e s u l t t StdControl . s t a r t () {
13 return ca l l Timer . s t a r t (TIMER REPEAT, 1000) ;
14 }
15

16 command r e s u l t t StdControl . stop () {
17 return ca l l Timer . stop () ;
18 }
19

20 event r e s u l t t Timer . f i r e d () {
21 ca l l Leds . redToggle () ;
22 return SUCCESS;
23 }
24 }

Figure 2.3.: nesC module for the Blink application

Therefore, after describing general assumptions relevant to more than one part this
section gives details on specific assumptions for the parts dealing with cross-layer data
exchange, virtual memory, and energy awareness.

First of all, the framework assumes as a hardware platform small inexpensive, battery-
powered sensor nodes like well-known mote-class devices [Hill et al. 2004]. Therefore,
the resources on the sensor nodes, especially main memory and energy, are strictly
limited. These limitations make some optimizations necessary when creating complex
applications that can run for a long time from a single set of batteries. Program mem-
ory, which is assumed to be separate from main memory, is – in contrast – expected
to be less constrained than RAM.

To support a wide range of applications, networks with both relatively few nodes
(tens of nodes) and large numbers (hundreds or thousands) should be supported.
This assumption is relevant for neighborhood data sharing and our abstraction for
energy-aware applications but not for the other parts since they do not make use of
network communication.

Since the components dealing with virtual memory and energy awareness rely on
information from simulation, they have the assumption that the relevant properties
of sensor networks are captured in the simulator. This refers especially to the costs

37

2. Background

of flash memory accesses, energy consumption of the different hardware devices, and
the battery capacity available. We verified this assumption for Mica2 nodes and the
Avrora simulator [Titzer et al. 2005] by measuring these properties with real hardware
nodes.

To dynamically adapt the system to new properties TinyCubus assumes that software
components can be replaced at runtime. In TinyOS this requires the use of a special
linker running on the sensor nodes [Marrón et al. 2006a]. Moreover, the underlying
hardware platform has to support writing to program memory without requiring an
external programming device.

Data Exchange

The framework’s part dealing with data exchange assumes that for data sharing it
is sufficient if there is a single component providing a particular kind of data. In
addition, it supposes that the relevant non-functional properties can be specified in a
way that makes it possible to fulfill the requirements of all data users.

Our neighborhood data sharing algorithm assumes that a cheap broadcast channel is
available, where nodes can overhear the messages of their neighbors. This depends on
the duty cycles of the nodes and the MAC layer protocol. Commonly used protocols
like B-MAC [Polastre et al. 2004] and IEEE 802.15.4 support such a broadcast chan-
nel but, for example, some TDMA-based protocols might only provide point-to-point
unicast communication.

Furthermore, the neighborhood data sharing algorithm assumes that radio communi-
cation is lossy. This means that not all messages are delivered successfully on the first
try. Moreover, the topology is assumed to be frequently changing and nodes may fail.
Since the algorithm has been developed with these properties in mind, it would offer
suboptimal performance in an unrealistic, lossless network with a static topology. In
addition, the links between nodes do not have to be symmetric, i.e., even if node A
can hear node B, B cannot necessarily receive packets from node A.

Finally, the neighborhood data sharing algorithm assumes that each requested data
item is needed by more than one node in the neighborhood.

Data Storage in Virtual Memory

Our virtual memory system assumes that a form a of larger secondary storage is
available. Its currently used memory layout algorithm has been specifically optimized
to flash memory, where, for instance, writing is much more expensive than reading.

Taking into account the access delay of virtual memory, our system assumes that
the processing power available is not a bottleneck on sensor nodes. As an analysis

38

2.2. Cross-Layer Interactions

shows [Levis et al. 2004a], this is true for existing applications where the CPU is idle
most of the time.

This algorithm also assumes that all data – except for the stack – is statically allo-
cated at compile-time. Even though dynamic memory allocation is possible on some
platforms, TinyOS, for example, discourages its use in order to avoid memory leaks.
Therefore, in order to deal with the worst case, applications usually allocate more
memory than they need most of the time. This makes it possible to optimize the
memory layout because only a subset of the data is used during normal execution.

In addition, the virtual memory system assumes that variables are not accessed uni-
formly but that some of them are accessed more frequently than others and that
there are groups of variables which are often used together. In our experience this
assumption holds for almost any real-world application.

Abstractions and Algorithms for Energy-Aware Applications

The part of the framework dealing with energy issues assumes that information about
the energy used or the energy left in the batteries is available. This can be exact energy
readings obtained with a battery monitoring chip or – as in the case of standard Mica2
nodes – this information can be inferred from the current battery voltage.

The applications created with this part of the framework are assumed to have some
energy-expensive functionality that is not really needed for a sensor node to be useful.
For example, such basic functionality can preserve network connectivity without gath-
ering sensor data. In addition, we assume that an application consumes more energy
in higher energy levels than in lower ones. This condition has to be ensured by the
application developer.

Furthermore, if our distributed coordination approach of level assignments is used,
we assume that there are enough nodes in the network neighborhood to balance their
assignments. In addition, when using the coordination approach nodes may not be
mobile since the schedule is balanced for longer time intervals.

2.2. Cross-Layer Interactions

Layered architectures have been successfully used for many years now. Most notably,
layers have been employed in communication architectures but also in operating sys-
tem and database design [Garlan and Shaw 1993]. For network communication the
ISO OSI (Open Systems Interconnection) reference model proposes a layered architec-
ture. Similarly, the widely used Internet network protocols form layers in the network
protocol stack (see Fig. 2.4(a)) [Tanenbaum 2003].

39

2. Background

Application

Transport

Network

Data Link

PhysicalL1

L2

L3

L4

L5

(a) Protocol stack described by Tanen-
baum [Tanenbaum 2003]

Application

Transport

Network

Data Link

PhysicalL1

L2

L3

L4

L5 C
ross-Layer

Interactions

(b) Cross-layer interactions

Figure 2.4.: Layers in the network protocol stack

In such a strictly layered architecture each layer can only be accessed from the adjacent
layers, i.e., the layers immediately above or below it. In addition, this interaction is
limited to narrow, well-defined interfaces. For example, in a network protocol stack
the layers just pass packets to the next layer without skipping layers and without
providing additional means for closer interaction.

Layered architectures have several advantages [Garlan and Shaw 1993]. First, they
allow to increase the level of abstraction with each layer. Therefore, for example,
lower layers deal with communication between directly connected nodes whereas higher
layers route packets to other networks without having to deal with issues like medium
access control. Second, layered architectures support maintainability since changes
are limited to a specific layer or – if its interfaces change – to at most the two adjacent
ones. Finally, layered architectures support the reuse of software since layers are
only loosely coupled. Several implementations can be used interchangeably if they
just provide the same interfaces. This is especially interesting if these interfaces are
standardized like in the OSI model. For instance, the same higher layer protocols can
be used to communicate over different link layer protocols.

However, layered architectures have also some disadvantages [Garlan and Shaw 1993].
First, finding the right abstractions for the layers can be difficult, especially when cre-
ating standardized models. For example, there were some difficulties mapping existing
protocols into the OSI model because they bridged several layers. Second, a closer
coupling between layers could often improve performance. This is particularly impor-
tant in the domain of resource-constrained sensor networks. For instance, no duplicate
state information would be needed if layers shared their internal data such as infor-
mation about neighboring nodes. This would not only reduce memory consumption
but also reduce the processing and energy overhead for gathering this data. In addi-
tion, such a more closely interacting system could better deal with some properties

40

2.2. Cross-Layer Interactions

of wireless transmission than a strictly layered architecture. For example, in wireless
networks transmission failures are more common than in wired networks. However, if
a packet is lost, TCP assumes network congestion and reduces its transfer rate. If it
were informed about the cause for a loss – as with the Explicit Congestion Notifica-
tion mechanism [Shakkottai et al. 2003] – better throughput could be achieved with
wireless links.

Such interactions that couple logically separate layers more closely or even merge them
are called cross-layer interactions. In particular, we define a cross-layer interaction as
any form of interaction that is beyond the narrow functional interfaces of a strictly
layered reference architecture (see Fig. 2.4(b)).

This definition is not limited to the layers of the network protocol stack but can be
applied to other layered architectures as well. Furthermore, if the architecture does
not consist of explicitly defined layers, interactions between other logically separate
entities such as software components can be viewed as cross-layer interactions.

In this thesis we focus on cross-layer interactions that are intended by the developer
to do some optimizations. We do not target unintended cross-layer effects like those
occurring when using TCP over a lossy wireless channel [Kawadia and Kumar 2005].

There are several examples for cross-layer interactions described in the literature. For
example, the MAC and routing layers often share some data like information about
nodes in the neighborhood [Polastre et al. 2005a] or the local topology [van Hoesel
et al. 2004]. Likewise, maps provided by the application can be used to improve the
performance of geographic routing [Tian et al. 2003]. Another example can be found
in query processing systems: The network and the application layers collaborate to
aggregate data [Gehrke and Madden 2004]. Chapter 4 includes a description of cross-
layer interactions in existing applications.

As already mentioned in the introduction, cross-layer interactions are frequently used
in sensor networks. In fact, the domain of sensor networks is particularly suited
for cross-layer interactions. First, there is usually just a single application running
on each node, which allows for optimizations throughout all layers of the protocol
stack. Second, in current operating systems the source code of this stack is available
and – compared to other systems – more layers are implemented in software. For
example, even the MAC layer is usually just another software layer and, therefore,
modifications of the radio chip are often not necessary for cross-layer interactions.
Finally, in TinyOS [Hill et al. 2000], for example, the traditional layered approach
is substituted by component-based architectures that allow to perform cross-layer
optimizations more easily [Levis et al. 2004a]. In such systems there is usually no
strict separation between application and system components which further facilitates
cross-layer interactions.

So far, however, cross-layer interactions have been most often used in an ad hoc fashion,
i.e., without a structured mechanism. Therefore, their negative effect on modularity
is greater than necessary. This leads to so-called spaghetti code, which is hard to

41

2. Background

understand and impossible to maintain. Because of these effects some skepticism
about cross-layer interactions has emerged [Kawadia and Kumar 2005] – despite the
obvious need for them in resource-constrained sensor networks. However, if cross-
layer interactions were used with appropriate abstractions, many of their negative
side effects could be alleviated. This approach is taken by most other cross-layer
frameworks [Conti et al. 2004; Kumar et al. 2006; Su and Lim 2006] which focus
on providing a structured mechanism to exchange data among layers (see Chapter 4).
Such mechanisms help to better preserve modularity while still enabling data exchange.
Furthermore, by addressing the causes of cross-layer interactions the system software
can help to avoid some cross-layer interactions completely (see Chapters 5 and 6).

2.3. TinyCubus Project

This dissertation has been created within the TinyCubus project [Marrón et al. 2005a;
Marrón et al. 2005b]. TinyCubus is a generic framework that supports the require-
ments of flexibility, adaptation, and reconfiguration of typical sensor network applica-
tions. This section gives a brief overview of the architecture of TinyCubus.

TinyCubus is implemented on top of TinyOS. It consists of three parts: the Tiny
Data Management Framework, which supports the adaptation of components, the
Tiny Configuration Engine, which allows for the exchange and reconfiguration of com-
ponents at runtime, and the Tiny Cross-Layer Framework, which is described in detail
in this dissertation.

2.3.1. Tiny Data Management Framework

The Tiny Data Management Framework is a set of system components that provide
adaptation functionality. For each type of standard data management component
such as replication, caching, hoarding, prefetching or aggregation, as well as each
type of system component, such as time synchronization and broadcast algorithms,
TinyCubus assumes that several implementations of each component type with the
same interfaces exist. The Tiny Data Management Framework is then responsible for
the selection of the correct implementation based on the current information available
in the system.

The cube of Fig. 2.5, called “Cubus”, combines optimization parameters (O1, O2, . . .),
such as energy, communication latency and bandwidth; application requirements (A1,
A2, . . .), such as reliability or consistency level; and system parameters (S1, S2, . . .),
such as mobility or node density. For each component type, algorithms are statically
classified in advance according to these three dimensions. For example, TAG [Mad-
den et al. 2002] implements a tree-based routing algorithm used for aggregation in
sensor networks that operates efficiently in static environments, but cannot be used

42

2.3. TinyCubus Project

A1

A2

A3

S1 S2 S3

O1

O2

O3

System parameters

A
pp

lic
at

io
n

re
qu

ire
m

en
ts

Opt
im

iza
tio

n
pa

ra
m

.

Figure 2.5.: Components in the Tiny Data Management Framework

effectively in highly mobile scenarios with strict reliability requirements. In such a
setting, a flooding-based algorithm would probably do much better. Therefore, the
component implementing the algorithm is tagged with the combination of parameters
and requirements for which the algorithm is most efficient. The mapping of compo-
nents to parameter values is performed off-line using experimental evaluations of each
component in combination with the corresponding parameters. This way it is possible
to know which components and/or groups of components perform best for a given
parameter combination.

The Tiny Data Management Framework selects the best suited set of components
based on current system parameters, application requirements, and optimization pa-
rameters. This adaptation has to be performed throughout the lifetime of the system
and is a crucial part of the optimization process.

2.3.2. Tiny Configuration Engine

When new functionality such as a new processing or analysis function for sensed data
is required by the application, it is necessary to install new components or swap
functions. The Tiny Configuration Engine addresses this problem by distributing and
installing code in the network. Its goal is to support the configuration of arbitrary
components with the assistance of its two main parts: the topology manager and a
runtime dynamic linking mechanism.

The topology manager is responsible for the self-configuration of the network and
the assignment of specific functionality to each node. For this purpose it makes use
of a generic role assignment mechanism [Römer et al. 2004]. Using the cross-layer
framework’s state repository it also publishes topology information that describes the
neighborhood of sensor nodes, the status of communication links and the availability

43

2. Background

of components in other neighboring nodes. This and other cross-layer information can
be used for the selection of more efficient routes for data and code dissemination as
shown in [Marrón et al. 2005a].

The linking mechanism, FlexCup, allows for the reconfiguration of sensor nodes by
providing the necessary bootstrapping code and the ability to load and install com-
ponents on-the-fly. Using this approach the energy spent for code updates is largely
reduced. In addition, it provides the flexibility needed for adaptation [Marrón et al.
2006a].

2.3.3. Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a generic interface to support the use of
cross-layer interactions. It includes functionality to facilitate the exchange of data
among components of different layers and among neighboring nodes, provides a virtual-
memory abstraction, and offers a mechanism to meet user-defined lifetime goals. The
Tiny Cross-Layer Framework is the focus of this thesis.

44

3. Design Overview

This chapter gives an overview of the cross-layer framework’s design. It first presents
the framework’s functionality in some more detail and then describes properties of its
design.

3.1. Functionality of the Cross-Layer Framework

As described in Chapter 1, the cross-layer framework pursues three ways to reduce
the negative effects of cross-layer interactions and to avoid some of them completely.
First, it provides a mechanism to exchange data among different layers and between
neighboring nodes. Second, it includes a flash-based virtual memory system that tries
to optimize the memory layout. Finally, it allows to meet a user-defined lifetime goal
for the sensor nodes while taking into account their energy constraints.

Data exchange is one of the most commonly used techniques to implement cross-
layer interactions. However, it increases the coupling between layers significantly.
Therefore, the first part of the cross-layer framework, which is described in Chapter 4,
tries to reduce this coupling. With this approach, which is called TinyXXL, the
components exchange their data via the TinyStateRepository , a repository containing
all cross-layer data. This way components do not have to interact directly to exchange
data. TinyXXL optimizes the application to only include each data item once in
limited memory and avoid – possibly energy-expensive – redundant data gathering.
In addition, TinyXXL includes Neidas , an algorithm for neighborhood data sharing.
This way not just the data from components on the same node but also the data
from neighboring nodes can be accessed via the TinyStateRepository . Neidas tries to
reduce the number of messages sent with “polite gossiping”, which makes use of the
broadcast nature of radio communication.

The second part of the framework, ViMem, deals with the memory constraints of
sensor nodes by providing a virtual memory abstraction. Therefore, the memory
constraints of sensor nodes are reduced and fewer cross-layer interactions are neces-
sary. ViMem takes into account the special characteristics of sensor networks and the
properties of flash memory, which is used as secondary storage. It uses traces from
simulation to find out which variables are accessed more frequently than others and
which ones are often used together. Based on this information it employs a heuristic

45

3. Design Overview

ViMem

Data storage in
virtual memory

Levels

Meeting lifetime
goals

Distributed
coordination

TinyXXL
Neidas

Data exchange on
a single node

Data sharing
among neighbors

Cross-Layer Framework

Figure 3.1.: Parts of the Cross-Layer Framework

to modify the memory layout in order to decrease the number of page faults. ViMem
is described in Chapter 5.

The last part of the cross-layer framework, Levels , allows to meet a user-defined life-
time goal by reducing the functionality of the application if necessary. For example,
a node could stop energy-expensive data sampling and just forward radio messages
from other nodes to keep the network connected. Although the node does not provide
its full functionality, it is still more useful this way than after failing completely. To
achieve this, the developer has to specify optional functionality in the code and de-
fine a lifetime goal. The lifetime estimation at runtime is based on information from
simulation tools that include detailed energy models of the sensor nodes. With Levels
some of the cross-layer interactions caused by energy limitations can be avoided be-
cause the system itself takes care of ensuring that a node achieves the target lifetime.
Furthermore, Levels includes an efficient distributed coordination algorithm that tries
to keep overall application quality of the network roughly constant. Levels is described
in Chapter 6.

Fig. 3.1 shows an overview of the three parts of the cross-layer framework. In the
left column TinyXXL and Neidas form a comprehensive approach for data sharing.
With this part of the framework we try to alleviate the negative side effects of cross-
layer interactions. The center column shows ViMem, which addresses the memory
constraints with its virtual memory system. In the right column Levels deals with
energy limitations. It provides functionality to meet a user-defined lifetime goal and
to coordinate nodes for constant application quality.

3.2. Common Design Properties

In the design of the cross-layer framework we considered specifically the resource lim-
itations of sensor nodes. Therefore, two general principles are used to reduce resource
consumption. First, the framework has been designed using a modular approach which
avoids that unused functionality consumes resources. Second, as much processing as
possible is done offline to reduce the runtime overhead.

46

3.2. Common Design Properties

Following a modular approach, the three parts of the framework can be either used
individually or in combination. Using them individually allows to build a lean system
where only those runtime components that are actually needed are included in the
code. A similar approach is also pursued by TinyOS [Hill et al. 2000; Gay et al. 2003]
where only those system components that are needed by the application become part
of the compiled code image.

To shift processing offline, each of the three framework parts consists of compile-time
tools in addition to the components of their runtime system. Whenever possible, these
tools try to reduce the runtime overhead – including both processing and memory
overhead.

The following subsections give a brief overview of the characteristics of the runtime
system and the compile-time tools. A more detailed description of each of them can
be found in Chapters 4, 5, and 6.

3.2.1. Runtime System

Parts of the runtime system are supplied with the framework and others are generated
by the compile-time tools. These generated components are specific to the application
at hand and include, for example, an optimized memory layout for virtual memory.
Creating these components for each application allows to reduce RAM consumption
since they can statically include most information needed at runtime. Therefore, it
can be accessed from less constrained program memory instead of RAM.

Fig. 3.2 shows how the parts of the cross-layer framework interact at runtime. All three
parts, i.e., the TinyStateRepository that stores TinyXXL’s cross-layer data, the virtual
memory system ViMem, and Levels , the part dealing with energy consumption, can
be accessed from the application and the system software. The figure also shows which
hardware components are primarily used by which part of the framework: the Tiny-
StateRepository uses radio communication to share data with neighboring nodes via
Neidas , ViMem stores variables both in RAM and flash memory, and Levels estimates
the remaining energy using the battery voltage sensor available on most sensor nodes.
Besides the cross-layer framework, these hardware components may, of course, be
accessed by other parts of the system, too.

Depending on the configuration, the TinyStateRepository can store its data either
using the virtual memory abstraction of ViMem or in RAM. In order to allow for an
accurate prediction of node lifetime, Neidas and ViMem use Levels to encapsulate the
communication and flash memory code, respectively (see Chapter 6 for more details).

47

3. Design Overview

ViMemTinyStateRepository

Neidas

Access

data

RAM
Flash

Memory

Battery

voltage

sensor

Radio

Application and system components

Share

data

Get

voltage

Store data

Energy for radio transmission

Energy

for flash

Cross-layer

framework

Hardware

Levels

Coordination

Distributed coordination

Figure 3.2.: Overview of the runtime system

3.2.2. Compile-Time Tools

For each of the parts of the cross-layer framework some extensions to nesC [Gay
et al. 2003], the programming language used by TinyOS [Hill et al. 2000], have been
defined. TinyXXL introduces data definitions and dependencies, ViMem allows to tag
variables that are to be placed in virtual memory, and Levels introduces the energy
levels abstraction. For each of the three parts a separate parser is called that processes
these specific language extensions. Therefore, changes to existing tools such as the
nesC compiler are minimal. In fact, no changes to the compiler are necessary. The
only change that can be optionally applied exports some information from the nesC
compiler to automatically ensure that TinyXXL variables accessed from time-critical
functions are not placed in virtual memory.

After processing the input files the compile tools generate the code for the runtime
system that is specific to the application. For TinyXXL they create the components of
the TinyStateRepository and do the optimizations described in Chapter 4. Regarding
ViMem each access to virtual memory is redirected to the runtime system and an
optimized memory layout is computed. For Levels the compile tools insert information
about the energy consumption of code blocks that are put into optional energy levels.

The compile-time tools have been integrated into the TinyOS build system. Therefore,
with simple changes to the makefile an application can make use of the functionality

48

3.2. Common Design Properties

of one of the cross-layer framework’s parts. Their output is nesC code that is then
processed by the standard nesC compiler.

Since TinyXXL and Levels require some extensions to the nesC language, their code
cannot be processed by the nesC compiler before it has been modified by the frame-
work’s compile-time tools. However, because the implementations of both ViMem and
Levels require some information from the nesC compiler, the order in which the three
parts of the cross-layer framework are processed is important. In addition, some parts
generate code that has to be included in the processing of the other ones. For example,
TinyXXL can store its data in virtual memory and its neighborhood distribution algo-
rithm makes use of energy levels. Therefore, the build process calls the compile-time
tools in the following order. First, the TinyXXL data sharing code is processed. Its
compile tool can deal with the language extensions of the other parts and does not
require information from the nesC compiler. Second, Levels-specific code is processed.
If ViMem is active, the Levels pre-compiler also processes the components in which
ViMem uses energy levels for flash accesses – even if these components are not used
by the application yet. Finally, the ViMem compile tool is called to create a memory
layout and redirect virtual memory accesses.

For the application developers most of this process is transparent; they simply invoke
the same build process like in a normal TinyOS application.

49

3. Design Overview

50

4. Cross-Layer Data Exchange

This chapter contains an analysis of cross-layer interactions in existing sensor network
applications. Based on the specific instances found there it proposes a classification
and identifies two types of cross-layer interactions – data sharing and parametrization
– for which system support is especially promising.

Starting from these results the chapter describes the part of the cross-layer framework
dealing with the exchange of data among both software components of a single node
and neighboring nodes. Finally, it evaluates this part of the framework and gives a
brief overview of related work.

4.1. Preliminaries

Although cross-layer interactions are often described in the literature [Melodia et al.
2005; Raisinghani and Iyer 2004; Srivastava and Motani 2005; Levis et al. 2004a], it
is unclear what kinds of cross-layer interactions are actually used in real applications.
To get a better understanding of this problem – and of cross-layer interactions in
general – we analyzed several real-world applications and created a classification of
their cross-layer interactions.

From this classification we then selected two types of cross-layer interactions that are
not adequately supported by current programming languages: parametrization and
data sharing. These classes of cross-layer interactions, which we subsume under the
term “data exchange”, are often used in practice for important optimizations. First,
parametrization is essential to tailor system components to the specific requirements
of an application, which allows for energy-efficient operation. Secondly, because of
data sharing there is no need to keep redundant data in stringently constrained RAM
and to acquire it twice with possibly high energy costs (e.g., for sending messages).
Furthermore, they also help to deal with the special properties of radio communication.

In current programming languages such as nesC [Gay et al. 2003] these interactions are
often implemented with function calls. As we show in Section 4.3, such an approach
increases coupling unnecessarily and creates considerable overhead for the develop-
ers, especially when the application evolves. In addition, it hinders component reuse
because the components forming the application have to be optimized by hand in
order to prevent separate components from providing the same data twice. There-
fore, we have created TinyXXL (“Exchange of Cross-Layer Data for TinyOS”) that

51

4. Cross-Layer Data Exchange

provides programming language support for data exchange [Lachenmann et al. 2006].
TinyXXL is composed of two parts: a compile-time and a runtime component. For
compile-time support of data exchange, we extended the nesC programming language
to include abstractions for data definition and exchange. At runtime this language
extension is complemented by the TinyStateRepository that stores all cross-layer data
and provides efficient access to it.

With TinyXXL and the TinyStateRepository we pursue the goal of creating language
and system support for highly optimized applications while fostering component reuse
and independent software development. First, we try to decrease the effort of ap-
plication developers when exchanging data and to decouple interacting components.
Secondly, our approach automatically optimizes applications at compile-time by re-
moving redundant data provision code and selecting a data provider that meets the
non-functional requirements of the data users best. Therefore, arbitrary reusable
components can be combined to form an optimized application without any data re-
dundancies. Thirdly, since most of the checks are performed at compile-time, there
is only little runtime overhead associated with the TinyStateRepository . Finally, this
part of our framework does not only support data exchange among components of a
single node but also integrates an efficient algorithm for neighborhood data sharing.

This algorithm, Neidas , efficiently requests and sends neighborhood data by taking
advantage of the broadcast nature of radio transmission [Lachenmann et al. 2007c]:
it suppresses messages if, for example, several neighbors have already sent the same
request. In addition, by periodically repeating packets the algorithm increases the
probability that neighboring nodes actually receive the content.

4.2. Application Analysis

Although there are no traditional layers in component-based applications like those
based on TinyOS, the components forming an application can be classified at a certain
level of abstraction (e.g., hardware abstraction level or application level). These levels
of abstractions can be regarded as layers. The concrete form of these conceptual layers
is part of the design decisions taken by the application developer. In such architectures
cross-layer interactions are implicitly allowed since there is no restriction as to which
component can be used [Levis et al. 2004a]. With this view cross-layer interactions
are not limited to the network protocol stack but can occur between any system or
application components.

As described in Chapter 2, in this thesis we consider cross-layer interactions to be all
interactions among components of logically separate layers that are beyond the use of
narrow functional interfaces of strictly layered reference architectures to, for example,
send and receive messages. Such interactions can skip layers or couple them more
tightly.

52

4.2. Application Analysis

4.2.1. Selected Applications

In order to provide a classification of cross-layer interactions that are actually used
in real-world applications, we have analyzed existing sensor network applications and
system components available in the TinyOS CVS repository [TinyOS] and those de-
veloped by our research group. Since TinyOS [Hill et al. 2000] is – by far – the most
frequently used operating system for sensor networks, we focus on applications built
on top of this system using the nesC programming language [Gay et al. 2003]. In nesC
interactions based on the use of specific interfaces can form an arbitrary dependency
graph. For instance, it is possible for a high-level application component to directly
use a low-level hardware component.

We have analyzed three nontrivial applications, namely TinyDB, AcousticLocalization,
and Sense-R-Us, which contain between 11,000 and 30,000 lines of code. TinyDB
[Madden et al. 2005] provides query processing capabilities with an SQL-like query
language and offers a generic solution for data gathering. AcousticLocalization can
be used to determine the geographic position of nodes in a sensor network by taking
advantage of the difference in the speed of radio waves and sound [Sallai et al. 2004].
It represents an example of a sensor network application that does more complex
data processing in the network than simply aggregating the sensor readings. Finally,
Sense-R-Us [Minder et al. 2005] is an application developed by our research group that
uses a sensor network to provide functionality typically found in smart environments.
Each user carries a sensor node that can communicate with stationary nodes placed
in offices and meeting rooms. The application is then able to determine the position
of research assistants, detect the location and duration of meetings, etc.

To put our classification on a broader basis, we have also analyzed the requirements
and design of the Sustainable Bridges and CarTALK 2000 applications, which are
the motivating examples for the TinyCubus project [Marrón et al. 2005b]. Sustain-
able Bridges [Marrón et al. 2005c] is an application for long-term structural health
monitoring of bridges. Using different kinds of sensors it tries to detect small de-
fects before larger damage can occur. Since batteries can only be replaced during
regular bridge inspections, energy efficiency is very important for this application.
CarTALK 2000 [Reichardt et al. 2002], in contrast, has the goal of creating a co-
operative driver assistance system that provides an ad-hoc warning system for traffic
jams, accidents, and lane or highway merging. Since sensors are integrated into cars,
they move relative to each other and, therefore, algorithms that are able to cope with
mobile sensors are needed to accurately process data.

As this description shows, these applications represent a wide range of sensor network
applications with different properties.

53

4. Cross-Layer Data Exchange

Unstructured

Parametrization Data sharing

Cross-layer
interactions

Data exchangeFunction calls

Structured

Global variables
Replacement of

system components
Merging of

components

Figure 4.1.: Overview of different forms of cross-layer optimizations

4.2.2. Forms of Cross-Layer Interactions

Fig. 4.1 shows the taxonomy of cross-layer interactions we have created by analyzing
the aforementioned applications [Lachenmann et al. 2005]. In the figure we distin-
guish between unstructured and structured forms of interaction. The unstructured
interactions are located on the left-hand side and represent cross-layer interactions
that interfere most with modular software development and that tend to make the
programming and maintainability of code significantly harder. The first one, merg-
ing components, deals with combining components that are logically separate into a
single one. The second type of interaction, the replacement of system components,
can be found in situations where an application replaces certain system components
with application-specific code that uses the same interfaces, but changes the default
behavior of the system. Finally, the third one covers the use of global variables in
order to facilitate the sharing of data between components.

The right-hand side of Fig. 4.1 depicts the class of cross-layer interactions that can be
found in better structured applications. The first type deals with the use of interfaces
for the execution of callbacks or functions in other layers in a controlled way. This is
the way applications directly access hardware components and low-level components
execute application-specific code. The second type, data exchange, is a structured
alternative to global variables. In our view, there are two possibilities: either allowing
the parametrization of components, or providing capabilities related to the controlled
sharing of data.

It should be noted, however, that function calls and data exchange are not mutually
exclusive. For example, data sharing can be implemented by using function calls that
return the appropriate data to the caller. In fact, using languages like nesC this is the
only way to implement data exchange.

The following paragraphs give a more detailed description of each kind of interaction
using examples from the applications we have analyzed.

54

4.2. Application Analysis

Merging of Components

The combination of components into a single one is normally used to allow for easier
interaction among them. This kind of interaction does not require the separation of
layers at all. However, it contradicts the principles of good software engineering since
it does not allow for the easy and independent development, exchange, and reuse of
components.

Merging components can often be avoided by creating separate components that co-
operate by using either function calls or some form of data exchange. Therefore, there
is usually a better alternative to simply combining code. Nevertheless, this simple
form of cross-layer interaction is often seen in practice. For example, in TinyDB an
application-layer component includes parts of the routing code because it needs to
determine which node should receive aggregated results, for example. Applying this
optimization helps to save both energy and main memory.

Replacement of System Components

Another form of unstructured cross-layer interaction is the replacement of system
components. This is normally used to add specific functionality of the application
components into lower layers that otherwise do not offer it. The problem with this
kind of interaction is that side-effects on other system components and non-application
components are hard to determine. Furthermore, if a new version of the component
becomes available and implements additional functionality, the application that has
replaced it does not automatically benefit from it. This makes the maintenance of the
application harder since these modifications will have to be updated manually.

Therefore, a much better alternative is – if possible – to include additional application-
specific components with similar functionality or to use callbacks in the real system
components that implement the desired functionality. Just like merging of compo-
nents, this type of interaction is also very common in applications. For example,
TinyDB replaces SimpleTimeM with its own implementation that makes the compo-
nent’s accuracy parameterizable. If another component included in the application
relies on the predefined accuracy value, the use of this modified component can lead
to timing bugs which are hard to find. Likewise, AcousticLocalization replaces sev-
eral TinyOS components that are related to sensor value reading and, again, timing.
Compared to the standard components, the sensor access components add support to
read a continuous series of samples and the timer component has been modified to
provide an interface that allows for more fine-grained accuracy. The reasons for these
changes are either hardware limitations (e.g., a small number of hardware timers)
or inadequate abstractions provided by the original components. Finding the right
level of abstraction in such generic components is a common problem that makes the
creation of layered architectures difficult [Garlan and Shaw 1993].

55

4. Cross-Layer Data Exchange

Two more disadvantages become apparent with these components. First, they are only
targeted to Mica2 nodes, which makes porting and simulating the whole application
difficult. Second, the application-specific timer component has not been updated when
the standard TinyOS component evolved. So it does not include support for power
management, for example, as it is the case in more recent releases of TinyOS.

As a final example, in CarTALK 2000 the MAC layer has been developed specifically
for this application and is used by all network protocols. Therefore, it replaces a stan-
dard MAC layer protocol, which might be expected by other protocols or applications
on the nodes, with an application-specific one.

Global Variables

This form of interaction uses variables that are globally accessible from several compo-
nents to exchange data. The main problem here is that the dependencies of software
components that read or write these variables are not specified. Thus it remains un-
clear whether the data is actually needed, whether the variables are filled with values
at all, or whether there are several components writing potentially inconsistent data.

In TinyOS-based sensor networks nesC’s component-oriented programming model dis-
courages the use of global variables although it is still possible to employ them. Instead,
data is usually defined local to one component with access functions that can be used
by other components.

In our sample TinyOS applications global variables are used in a limited way. In these
applications only the node’s network address and the application’s group ID used
for radio communication are stored globally. However, these variables are usually
treated like constants. The only reason why they are defined as variables is to allow
applications to dynamically set them at runtime after installing a new code image, for
example.

Function Calls

Function calls are well-supported by nesC using commands and events that are defined
in interfaces. They are needed not only for cross-layer interactions but also for both
interactions of components within layers and calls to the functional interface of directly
adjacent layers. With cross-layer interactions, however, function calls are needed for
the use of specific functionality in lower layers or for the integration of high-level code
in lower layers via predefined callbacks. In sensor networks, where there is no clear
separation between system and application components, function calls can be made
from any one component to any other simply by wiring their interfaces together.

As an example, Sense-R-Us calls low-level functions to turn on and off sensors as
they are needed, and AcousticLocalization periodically turns off the radio module.

56

4.2. Application Analysis

This is also done in the Sustainable Bridges application. Obviously, the reason for
this behavior is the energy limitation of the nodes. Another example can be found
with the components that acquire network neighborhood information for TinyDB and
Sense-R-Us. They intercept all messages received by the node and store information
about the senders. Thus they avoid energy-expensive communication for their own
beacon messages. Finally, low-level networking components define a callback used by
Sustainable Bridges and TinyDB to insert a time stamp into the message at the time
it is being sent. This guarantees better accuracy for time synchronization. However,
function calls increase the coupling between components because there is a direct con-
nection between the interacting modules. By using generic aliases for the components
being wired (e.g., “MAC Component” or “Routing Component”) instead of the actual
components’ names this coupling could be partially reduced.

Although function calls can be used to implement parametrization and data sharing,
we consider these two classes to be separate, data-centric forms of cross-layer interac-
tions: For exchanging data a function call would unnecessarily increase coupling since
the source of the data is most often not important. However, in nesC-based applica-
tions these forms of interaction have to be implemented as function calls because this
programming language does not have separate abstractions for data exchange.

Parametrization

Parametrization is a cross-layer interaction that has to do with the explicit exchange
of data. It is normally used to adapt the behavior of components using well-defined
switches that change the functionality, execution path, etc. In contrast to data shar-
ing, parameters target exactly one component and modify its behavior based on the
requirements of the application.

Parametrization of system components in TinyOS-based sensor networks is possible
because there is usually only one application actively running on the system at a given
time. The components of this application cooperate and are usually tailored to fulfill
the application’s goals.

There are several examples of parametrization in the sensor network applications we
have studied. Their most important characteristic is the fact that there is usually only
one component that offers an interface for parametrization, and a set of components
that use it to provide values. For example, the TinyOS MAC component, which is
based on the B-MAC protocol [Polastre et al. 2004], has an interface to set the radio
frequency, change the length of the preamble, and turn acknowledgments on or off.
Another example for parametrization is the routing component in TinyDB. Its update
interval is adjusted by an application-level component based on the data sampling
rate of the queries currently being executed. Similarly, in Sustainable Bridges the
routing algorithm is parameterizable. In addition, it makes use of parametrization
itself by dynamically adjusting the transmission power of the radio. The very same

57

4. Cross-Layer Data Exchange

Publishers Publisher

Subscriber Subscribers

Data items

Figure 4.2.: Parametrization (left) vs. data sharing (right)

example of cross-layer interactions can also be found in CarTALK 2000. Adjusting
the transmission power is a special characteristic of wireless networks that can help to
reduce energy consumption and collisions.

If we talk about this cross-layer interaction in terms of a publish/subscribe system,
parametrization implies the presence of a variable or a set of variables with only one
subscriber (the component it parametrizes), and a series of publishers which modify
its value (see the left-hand side of Fig. 4.2).

Data Sharing

Finally, data sharing involves the use of one or more variables in the program that are
shared among components. This information is not related to parameters and can be
stored, modified and computed dynamically. Unlike global variables the dependencies
on the data are specified more clearly here.

Normally, data sharing is implemented using function calls that introduce tight cou-
pling, and most of the time developers try to optimize it by hand to avoid duplicate
data when reusing components.

In our analysis of the applications we did not encounter cases where several publishers
provided a single piece of data to several subscribers. We attribute this to the fact
that the applications are highly optimized by hand and do not include redundant code.
Therefore, using the same model as for parametrization, data sharing can be considered
as a form of cross-layer interaction where a piece of data has only one publisher, that
is, the component that provides this piece of information to other components, and
a series of subscribers that are interested in knowing it (see the right-hand side of
Fig. 4.2).

There are many examples of such cross-layer interactions, since there is a large poten-
tial for memory and energy savings. Some of them deal with hardware configuration
data or information about current queries in Sense-R-Us. In addition, in this applica-
tion information about the network neighborhood is shared between communication
components and an application component that uses this data to determine the cur-

58

4.2. Application Analysis

Table 4.1.: Classification of unstructured cross-layer interactions
Merging of Replacement of Global variables
components system components
Applications includes routing
code (TDB)

Application-specific MAC-
layer (CT)

Local address (all TinyOS ap-
plications)

Time components replaced
(TDB, LOC)

Radio group ID (all TinyOS
applications)

ADC components replaced
(LOC)

rent position of the node. Likewise, in TinyDB the routing components share much of
their internal data with the application components (e.g., the routing parent, the hop
count to the root, the occupancy of the send queue, and the set of neighbors). This
data can be accessed via queries.

Even more examples can be found in Sustainable Bridges and CarTALK 2000. In
Sustainable Bridges the routing metric uses cross-layer data about the quality of radio
links and the energy available. This way it reduces energy consumption and deals with
peculiarities of radio communication. Sustainable Bridges’s role assignment algorithm
requires both local and neighborhood data from several layers to evaluate the role
specification. The role data, in contrast, is used by the code distribution algorithm
to efficiently disseminate code updates in the network. Again, this helps to reduce
energy consumption.

In CarTALK 2000 the routing and aggregation algorithms use cross-layer data in the
form of a road map, the node’s own position, and that of its neighbors to efficiently
route and aggregate messages. In addition, the adaptation algorithm uses cross-layer
data of several layers to make its adaptation decisions.

4.2.3. Summary

Table 4.1 and Table 4.2 classify the cross-layer interactions described above into our
taxonomy. All the cross-layer interactions identified in the applications can be assigned
to the categories of our classification. It should be noted, however, that – like every de-
sign decision – finding cross-layer interactions is to some extent subjective. Therefore,
another analysis might identify different cross-layer interactions in the applications.

In the tables, “TDB” is short for TinyDB, “LOC” for AcousticLocalization, “SRU”
for Sense-R-Us, “SB” for Sustainable Bridges, and “CT” for CarTALK 2000.

Most of the cross-layer interactions used in the applications are structured, i.e., func-
tion calls, parametrization, or data sharing. As described above, the unstructured
forms of interaction lead to bad software design, hinder modularity, and limit reusabil-
ity. Better alternatives are given by the more structured forms of interaction that are
often related to the unstructured ones. For example, data exchange is the structured

59

4. Cross-Layer Data Exchange

Table 4.2.: Classification of structured cross-layer interactions
Function calls Parametrization Data sharing

Turn off hardware devices
(SB, TDB, SRU)

MAC layer parameterizable
(all TinyOS applications)

Routing uses link quality, en-
ergy (SB)

Time synchronization when
sending (SB, TDB)

Routing parameterizable
(SB, TDB)

Role assignment uses data
(SB)

Application intercepts pack-
ets (TDB, SRU)

Adjust transmission power
(SB, CT)

Code distribution uses roles
(SB)
Routing uses road map, posi-
tions (CT)
Aggregation uses road map,
positions (CT)
Adaptation uses cross-layer
data (CT)
Configuration data (SRU)

Current queries (SRU)

Neighborhood information
(SRU)
Internal routing data (TDB)

version of global variables. Likewise, function calls can often substitute merging of
components and replacement of system components.

The tables show that a large number of cross-layer interactions deals with parametriza-
tion and data sharing. As already described above, these forms of interactions are not
well-supported by current programming languages and are often implemented with
function calls. In addition, in our experience these forms of cross-layer interactions
have a large potential for optimizations. Therefore, based on these findings, we have
developed TinyXXL, which is described in the following section.

Furthermore, as the description in the previous subsection illustrates, many cross-
layer interactions are caused by energy limitations, memory constraints, and special
properties of wireless communication. These are the properties that we specifically
address with our cross-layer framework. However, some interactions are applied be-
cause of different reasons like, for example, other hardware limitations or inadequate
abstractions of the system components. Nevertheless, in some cases these interactions
can also be addressed with our framework.

60

4.3. Data Exchange on a Single Node

4.3. Data Exchange on a Single Node

Current programming languages do not provide explicit and adequate support for data
exchange. For example, nesC only allows the implementation of data exchange using
function calls, which unnecessarily increases coupling and which can lead to a signif-
icant development overhead as well as possibly unoptimized applications. First, the
developer has to create an interface, implement this interface within a component, and
“wire” all users of the piece of data to this component. Usually, this direct interaction
is not needed since the components are only interested in the data – independent from
its source. Secondly, if two components provide the same piece of data, this data is
stored and acquired twice, which might require energy-intensive operations such as
sending messages. For example, if both MAC layer, routing, and application-level
components maintain neighbor tables, they allocate limited memory space for redun-
dant data. In addition, they waste processing time and energy, if they send beacon
messages to update these tables.

Manually optimizing the components that form an application increases the develop-
ment efforts significantly. With sensor network applications becoming more and more
complex, inefficiencies due to duplicate data are hard to detect and even more so to
fix. For example, TinyDB, consists of almost 30,000 lines of code grouped in 176
components. Therefore, when developing such a complex application, it is difficult
to detect components with duplicate data. It is even more difficult to optimize the
application by removing data gathering code so that the same data is not stored and
acquired twice. Often this code is not isolated in a special function but interwoven
with other functionality needed for the component to work properly. In addition, as
we describe in the following paragraphs, such modifications hinder reuse and indepen-
dent development of components, two approaches often used to significantly decrease
the development costs of software.

Basically, there are two common solutions to properly implement data exchange with
nesC: The first one stores the data in the component sharing its data whereas the
second solution uses a separate component to store the data that is wired to both its
providers and subscribers.

Storing the data within the providing component (see Fig. 4.3(a)) is most often used
in existing applications. However, this solution introduces tight coupling between
components accessing and providing a given piece of data, which hinders maintain-
ability. If a component providing some data is to be replaced, not only the wirings
of its functional interface have to be adjusted but also those of the components that
use its data. These wirings (the arrows in the figure) can be distributed across all
application and system components since in nesC any component may use any other
one. For example, an application component that does not send any radio messages
itself might access the network neighborhood information of the routing component.

If data is stored in a separate component that has been exclusively created for data

61

4. Cross-Layer Data Exchange

Publisher 1

Variable Declarations

Get Interface

Subscriber 1

Subscriber 2

Get Interface

Get Interface

(a) Data stored in publisher

Data Component

Variable Declarations

Set Interface

Get InterfacePublisher 1

Subscriber 1

Subscriber 2

Get Interface

Get Interface

Set Interface

(b) Data stored separately

Data 1

Variable Declarations

Subscriber 1

Subscriber 2

Publisher 1

Data 1 Provide

Data 1 Use

Data 1 Use

(c) Data declared with TinyXXL

Figure 4.3.: Possibilities to declare shared data with nesC and TinyXXL

62

4.3. Data Exchange on a Single Node

storage (such as in Fig. 4.3(b)), components accessing and providing some piece of
data are decoupled; so the aforementioned maintainability problems do not appear
with this solution. However, the compiler cannot guarantee automatically that there
is a component in the system providing the data. In addition, to avoid duplicate data
provision, publisher components have to check whether or not they have to acquire
the data. This check is difficult to implement without runtime overhead, especially if
non-functional requirements have to be considered. For example, such requirements
could be a certain accuracy level or an update frequency needed by the data user.

We address these issues by extending nesC with TinyXXL in the following way:

• TinyXXL decouples the components providing and using data (see Fig. 4.3(c)) by
automatically creating wirings between them and by using a publish/subscribe
scheme, which eases the process of data exchange.

• For shared data TinyXXL ensures that there is only a single component provid-
ing each data item. In contrast, with parametrization several components can
provide values to modify the behavior of a specific one, such as the MAC layer
component.

• TinyXXL adds capabilities for the specification of non-functional properties of
data providers so that the system can select the one component that meets the
requirements of data users best.

• TinyXXL provides efficient automatic notifications of subscribers after changes
to the data.

• TinyXXL offers optimization capabilities that remove the data gathering code
from all but one provider of a single kind of data. This way, no processing time
and energy is spent for acquiring redundant data. Thus it is possible to develop
optimized applications from reusable components without manual intervention.
For example, both a generic MAC layer and a routing component can provide
information about the quality of network links. With TinyXXL only one of
them gathers this data; thus the size of allocated memory and – possibly –
energy consumption are reduced.

4.3.1. TinyXXL Language Description

The changes to nesC needed to achieve the benefits mentioned above are relatively
simple. Our additions and modifications include the ability to declare data definition
files, specify data dependencies, specify “ifproviding” blocks for data publishers, and
use virtual data items. For reference, Appendix A summarizes the changes to the
nesC grammar.

63

4. Cross-Layer Data Exchange

1 xldata NeighborData (co s t type bui ldCost (<)) {
2 NeighborNode neighborTbl [ROUTE TABLE SIZE] ;
3 i n t 8 t neighborCount ;
4 }

Figure 4.4.: Declaration of shared data with TinyXXL

Data Definition

Within TinyXXL data is defined in a separate file similar to the way interfaces are
specified in nesC. In such a file the developer groups all the data items that logically
belong together. For example, an array with information about the neighboring nodes
is declared in the same file as a counter for the number of elements in it (see Fig. 4.4).

The syntax of the definition of individual data items resembles the declaration of
variables. Unlike interfaces, which can be implemented by several components, there
is only a single instance of a data file. This way the data can be identified by its
unique name. As the example above shows, it is possible to declare parameters for non-
functional requirements (in this case “buildCost”), which are used by the system to
select a publisher component that meets the requirements of the subscribers. The “less
than” sign in the example expresses that the publisher with the smaller values for this
parameter should be preferred if several ones fulfill these requirements. This structure
provides hints to TinyXXL regarding possible optimization strategies. Depending on
the kind of data, other requirements (e.g., concerning the update frequency of a data
item or its accuracy) can be added.

In the case of parametrization several components may set the values influencing
a single parameter. Therefore, there is no need to select a publisher meeting non-
functional requirements; such requirements have to be defined only for shared data.

Specification of Data Dependencies

Components exchanging data declare this property in their header similar to the inter-
faces provided. However, in contrast to interfaces there is no need to create wirings for
data dependencies because they are automatically resolved by the TinyXXL compiler.
If data definition files specify non-functional properties, components providing data
have to give values for those here. Components subscribing to the data may specify
an arbitrary condition that uses a data item’s non-functional requirements. This con-
dition has to be met by the publisher component. For example, a data subscriber can
specify that the cost for acquiring some data may not exceed a given limit and that
the accuracy has to be better than some threshold.

Fig. 4.5 shows an example for a component publishing some data and subscribing to
a parameter. From the developers’ point of view data is accessed like global variables.

64

4.3. Data Exchange on a Single Node

1 module MultiHopRouter {
2 provides {
3 xldata NeighborData (COST PERIODIC MSG) ;
4 . . .
5 }
6 uses {
7 xlparam RoutingParam ;
8 interface ReceiveMsg ;
9 . . .

10 }
11 }
12 implementation {
13 event TOS Msg∗ ReceiveMsg . r e c e i v e (TOS Msg∗ Msg) {
14 ifproviding (NeighborData) {
15 . . .
16 NeighborData . neighborTbl [iNbr] . address
17 = pRP−>source ;
18 NeighborData . neighborTbl [iNbr] . r e f r e s h
19 = NBR MOST RECENT;
20 . . .
21 }
22 }
23 event void RoutingParam . changed () {
24 ca l l Timer . stop () ;
25 ca l l Timer . s t a r t (TIMER REPEAT,
26 RoutingParam . update Inte rva l ∗ 1024L) ;
27 }
28 }

Figure 4.5.: Provision of data and use of parameters with TinyXXL

The difference is, however, that each variable name has to be preceded by the name of
the data definition it is contained in (e.g., “NeighborData.neighborTbl”). Again, this
is analogous to the use of interfaces in nesC. Another difference compared to global
variables is that data accesses of publishers have to be included in an “ifproviding”
block (see below).

If problems from concurrency can arise, developers have to enclose accesses to shared
data in standard nesC “atomic” statements (not shown in the code example). There-
fore, they can use the constructs that they are already familiar with from nesC.

Neither publishers nor subscribers can access the data via pointers to guarantee that
only components declaring correctly their dependencies are able to access the data.
Our experience after modifying and creating several nontrivial applications using
TinyXXL shows that this limitation does not severely restrict the developer.

When a component subscribes to some data, the developers have to implement a
special function named “changed” (see Fig. 4.5). This is a notification function called
after data has been modified. If this functionality is not needed, the compiler removes

65

4. Cross-Layer Data Exchange

this code. As we describe in Section 4.3.3, data subscriptions themselves cannot be
changed at runtime but are statically created at compile-time.

“ifproviding” Blocks for Data Publishers

For components publishing some data we added the “ifproviding” blocks as another
language construct. All the code related to data provision has to be included in such a
block (see Fig. 4.5). This is necessary for two reasons. First, if the component does not
have to provide the data because another one supplies the same data, the code inside
this block is removed by the compiler. So there are no unnecessary processing steps to
provide the same data twice and no overhead at runtime to check if the component has
to acquire the data. Secondly, at the end of such a block subscribers are automatically
notified of the change. These notifications cannot be accidentally omitted by the
developer and this solution offers higher efficiency than notifications after each variable
assignment. There is no need for “ifproviding” blocks if a component just subscribes
to some data; it may access the data anywhere in the code.

Obviously, code that is needed to fulfill a publisher’s functional purpose cannot be en-
capsulated in an “ifproviding” block. Otherwise, the component could not work prop-
erly if another component publishes this data and the code within the “ifproviding”
block is removed by the compiler. In this case the component also has to specify a
dependency on the data as a subscriber so that it can access the data outside the
“ifproviding” blocks. For example, a routing component that makes its internal
neighborhood information available to other components also has to subscribe to this
data if it uses it for routing.

Virtual Data Items

Besides data stored in RAM, we have added support for dynamically generated data
with virtual data items. Virtual data items declare how the data can be computed
dynamically from some other data already present. For subscribers, this is completely
transparent; they cannot tell whether data is stored in RAM or generated on-the-fly.

Using virtual data items, operators known from databases can be implemented for
cross-layer data. This functionality can include projections from several data defini-
tions into a single one and aggregation functions that perform some computation on
the data. For example, Fig. 4.6 shows a virtual data item that aggregates the number
of neighboring nodes by counting the elements in some other data structure. Simi-
larly, if there is no data publisher for the kind of data needed by a subscriber in the
system, virtual data can be used to convert some other data to the required format.
For example, a component just interested in neighborhood information does not want
to process complex routing information, although the requested data could be inferred
from that. Therefore, a virtual data item can distill this information from the more

66

4.3. Data Exchange on a Single Node

1 xlvirtual NeighborCountAggregator {
2 provides xldata NeighborCount () ;
3 uses xldata RoutingData () ;
4 }
5 implementation {
6 xldata void NeighborCount . count (u i n t 8 t ∗ r e s u l t) {
7 u i n t 8 t i ;
8 ∗ r e s u l t = 0 ;
9 for (i =0; i<MAX ELEMENT COUNT; i++) {

10 i f (RoutingData . ne ighbors [i] . f l a g != EMPTY)
11 (∗ r e s u l t)++;
12 }
13 }
14 }

Figure 4.6.: Sample virtual data item that aggregates the number of network neighbors

complex internal data of the routing component without increasing allocated memory.
These conversion capabilities can also be used with evolving data definitions, as new
versions of a component are developed. Here components still expecting the old data
format can use virtual data instead of the actual representation in RAM. The decisions
on whether to store some data in RAM or to provide it using virtual data is made by
the TinyXXL compiler based on the publishers and subscribers available.

There are several advantages of virtual data items. First, it is possible to provide
additional data besides just the internal representation of the publisher components.
This way data that is not directly provided by the components in the system can still
be used by subscribers. Secondly, using virtual data reduces the amount of data that
is stored in limited RAM and does not impose the overhead of acquiring similar data
twice. Thirdly, instead of requiring every publisher or subscriber to convert the data,
the system provides the data already in an immediately usable format.

To implement a virtual data item, the dependencies on other data have to be specified
just like with data accesses. Then for each variable declared in the represented data
a function like the “NeighborCount.count” function in Fig. 4.6 has to be provided.
Obviously, this function can incur some processing overhead. However, this processing
overhead would also exist with conversions that are implemented in pure nesC code
and is often less than acquiring equivalent data twice.

4.3.2. Impact on the Life Cycle of Applications

Using TinyXXL influences the whole life cycle of sensor network applications, including
design, implementation, and operation. In the design phase the developer can select
reusable components of which the application is composed without making sacrifices
regarding cross-layer optimizations. In addition, despite the use of cross-layer interac-

67

4. Cross-Layer Data Exchange

tions, the modularity of the application is preserved and components are decoupled.
Thus, when the application evolves, components can be exchanged more easily.

In the implementation phase the developer does not have to manually optimize data
exchange, e.g., by ensuring that no redundant data is gathered and stored. This is
something that is already done by TinyXXL. Therefore, the implementation effort is
largely reduced (see Section 4.5.1).

During the operation phase of a sensor network application TinyXXL helps in re-
ducing resource consumption by automatically performing cross-layer data exchange.
Although the developer does not have to deal with optimizations, the performance of
an application built from reusable components is comparable to a manually optimized
one, since no redundant data is acquired and stored.

4.3.3. TinyXXL Compiler

The TinyXXL compiler is a pre-compiler that outputs pure nesC code. It has been
implemented in Java using JavaCC as a parser generator. From the data definitions
and the data dependencies the TinyXXL compiler generates the files that implement
the TinyStateRepository (see Section 4.3.4). It ensures that only components declaring
their dependencies can access the data in the specified way. The compiler resolves non-
functional requirements on publishers by adding preprocessor directives that select the
data provider satisfying the requirements best.

Since the TinyXXL compiler resolves all data dependencies at compile-time, it is
not possible that components subscribe to some data dynamically. We selected this
approach for two reasons. First, our analysis of existing sensor network applications
(see Section 4.2) did not show much need for dynamic subscriptions. Secondly, this
approach can be implemented without any RAM overhead and notifications can be
realized more efficiently because there is no list of current subscribers to check.

The TinyXXL compiler translates all data accesses into function calls to the TinyState-
Repository . This way it ensures that the data cannot be accessed via pointers. Like
almost all nesC functions these function calls are later inlined by the nesC compiler so
that the compiled code closely resembles direct variable accesses. Furthermore, each
“ifproviding” block is translated into a regular if-statement that can be evaluated at
compile-time. Thus none of the TinyXXL concepts imposes the runtime overhead of
a function call.

4.3.4. Runtime Support for Data Exchange

At runtime the TinyStateRepository provides support for cross-layer data exchange. It
consists of a set of components generated by the TinyXXL compiler and stores the data
and parameters specified using TinyXXL. For each data and parameter declaration the

68

4.3. Data Exchange on a Single Node

TinyXXL compiler creates a nesC component that declares data as variables within
this component. This file also contains access functions to get and set the values of
variables in a controlled way. So the code generated is similar to the example shown in
Fig. 4.3(b). The subscribing components are automatically wired to the get interface
and one of the publishers is selected to provide this data, which is wired to the set
interface. In this example “Publisher 2” does not need to provide the shared data.
Therefore, the TinyXXL compiler removes the code related to data provision from this
component. The TinyStateRepository then automatically notifies all subscribers after
the publisher has finished writing data.

In the TinyStateRepository the system keeps information about the name of the data
item, its type of cross-layer interaction (parametrization or data sharing), a list of
publishers of each data item, a list of subscribers, its data type, and the value of the
shared data or parameter. Only the data values themselves are kept in RAM; all other
information is translated at compile time and implicitly stored in the code image of
the application.

The solution described so far requires the compiler to do most of the work like checking
data dependencies. In addition, with its global view of the application the compiler is
able to remove code that is not needed. However, such compile-time optimizations are
not possible when using adaptation within the TinyCubus framework (see Section 2.3).
If such adaptation capabilities are to be supported, there is no longer a global view at
compile-time since binary components can be linked to the code image individually.
However, FlexCup [Marrón et al. 2006a], the linker on the sensor node, can be mod-
ified to do most of the optimizations during adaptation, which are performed by the
compiler in the static case. For example, just like functional dependencies it can also
check if all data dependencies are fulfilled and use the non-functional requirements to
select a publisher that meets the requirements of the subscribing components best.
By directly changing parts of the program code (i.e., the values of some constants) the
linker can perform these changes without increasing RAM consumption and with only
little runtime overhead for accesses to the TinyStateRepository (see Section 4.5.1).
The only difference is that, since TinyCubus does not compile any code on the sen-
sor nodes, the code within the “ifproviding” blocks is not removed but simply not
executed if it is not needed.

4.3.5. Advantages

The use of TinyXXL exhibits several advantages compared to pure nesC solutions.

• TinyXXL ensures the modularity of applications by having components explicitly
declare their dependencies on shared data and parameters. Therefore, it is not
necessary to directly wire components accessing some data to those that provide
it.

69

4. Cross-Layer Data Exchange

• The components exchanging data are decoupled from each other and, when the
application evolves, can be replaced independently.

• The TinyXXL compiler automatically reduces resource consumption by remov-
ing code that acquires redundant data and by selecting a single publisher com-
ponent that fulfills the requirements of the subscribers with the least costs.

• Since redundant data is automatically removed from applications, components,
which – in addition to their actual functional purpose – provide some of their data
to other components, can be developed without wasting memory and energy.
These components can then be reused in new applications, regardless of other
components that possibly provide the same types of data.

• TinyXXL’s tight integration in a programming language allows us to perform
checks at compile time without any runtime overhead and with only little over-
head if support for dynamic adaptation is needed. For example, the TinyXXL
compiler ensures important properties such as type safety as well as access con-
trol so that only components declaring their dependencies correctly on some data
or parameter can access it.

• The integration in the programming language allows for an efficient publish/sub-
scribe mechanism without any RAM overhead and with automatic notifications
of changes.

4.4. Neighborhood Data Sharing

Many protocols and applications do not only require data from other layers on the
same node but also data from neighboring nodes. This data is either required to pro-
vide the node’s functionality or to allow for new optimizations. Examples for such
data are the location of neighboring nodes [Karp and Kung 2000; Minder et al. 2005]
and information about their current role [Römer et al. 2004]. Typically, developers
create application-specific protocols for this task. This approach tends to incur signif-
icant development overhead but offers the possibility of high efficiency with optimized
protocols. Nevertheless, in real development projects, the effort for creating such op-
timizations might be too large and the actual solution might, thus, be suboptimal.
Therefore, a general-purpose algorithm would not only reduce the development effort
but – in some cases – also allow for greater efficiency. Although it is still possible
to create more efficient application-specific solutions, our algorithm already provides
good efficiency at no additional development costs.

In this section we describe our algorithm for neighborhood data sharing that strives to
minimize the number of bytes transmitted while dealing with unreliable communica-
tion links. In addition, we use this algorithm as the basis of programming abstractions
to facilitate the development of efficient applications that use data from neighboring

70

4.4. Neighborhood Data Sharing

nodes.

Although neighborhood data sharing only involves communication in a limited part
of the sensor network and the size of such data is often small, the data of all nodes
throughout the network adds up to considerable amounts. Therefore, optimizing such
transmissions locally on each node can result in significant improvements regarding
the number of messages sent and enhance the energy efficiency of the whole network.
So far, however, most work has focused on disseminating data to all nodes in the
network (e.g., [Heinzelman et al. 1999; Levis et al. 2004b; Hui and Culler 2004]) or on
data-centric algorithms that transmit data to a sink node (e.g., [Intanagonwiwat et al.
2000]). In contrast, sharing data efficiently within the neighborhood has not been
studied in sufficient detail yet. Even work dealing with programming abstractions
for data sharing left the actual data transmission algorithm to be created by the
application developer [Whitehouse et al. 2004] or only provided simple ones [Welsh
and Mainland 2004].

There are two classes of data sharing algorithms: push-based and pull-based ap-
proaches [Franklin and Zdonik 1997]. With push-based approaches a node providing
data sends it without having received an explicit request for it. Obviously, such ap-
proaches can lead to inefficiencies when the node’s neighbors do not need this data.
Especially in heterogeneous networks a node cannot necessarily infer what data its
neighbors need because they may execute different code. Thus nodes might transmit
unnecessary data or omit data that is actually required.

The second class of data sharing algorithms is composed of pull-based approaches.
Here nodes only send data when they have received a request for it. This approach
is better suited for heterogeneous networks, since each node may request the data
it actually needs. The only shared assumptions are that neighbors can provide the
requested data and use the same naming scheme. However, a pull-based approach can
incur significant overhead for sending requests.

Therefore, we have developed Neidas (“NEIghborhood DAta Sharing algorithm”),
an efficient pull-based algorithm for neighborhood data sharing. Similar to network-
wide dissemination approaches, our algorithm makes use of overhearing requests and
data from neighboring nodes. It leverages the advantages of both pull-based and push-
based strategies: The algorithm works well with heterogeneous networks and reduces
the overhead for requests.

We have integrated Neidas into TinyXXL to create a comprehensive system for data
sharing among components on a single node and on neighboring nodes. This system
reduces the effort for the application developers because they do not have to create
their own neighborhood data sharing algorithm and can use the same abstraction for
both local and neighborhood data sharing. Furthermore, it combines the advantages of
TinyXXL and Neidas : automatic optimizations, avoidance of redundant data storage
and gathering, efficient and reliable data sharing.

71

4. Cross-Layer Data Exchange

(1) In each request round:
Wait for the listen-only period and random interval
For each data item needed from neighbors:

If less than kr identical requests have been received:
Send request

(2) In each data send round:
For each data item requested by other nodes:

If data item not requested in last data send rounds:
Remove request

Wait for listen-only period and random interval
For each data item requested by other nodes:

For local data and data received from neighbors:
If less than kd copies of data with same version
number have been received from this node:

Send data including version number
Double duration of data send round

(3) If new neighbors arrive:
Reset duration of data send round to one request round

(4) Request received:
Mark data as requested
Increment counter for request

(5) Data received:
If data requested and data is from node in neighborhood:

If version number > stored version number
Store data, source node, and version number

Else if version number == stored version number
Increment counter for this data

Figure 4.7.: Overview of the Neidas algorithm

4.4.1. Neighborhood Data Sharing Algorithm

Neidas is a data sharing algorithm that retrieves data from all neighboring nodes
in radio range and continuously transmits updates when this data changes. It is
based on the observation that – even in heterogeneous networks – there are typically
several nodes within radio range that are interested in the same data. Therefore,
our algorithm can take advantage of polite gossiping, which was first introduced in
the Trickle algorithm [Levis et al. 2004b]. Trickle is an algorithm that efficiently
distributes information about code images in the whole network. With its polite
gossiping approach nodes wait a random time before sending data or a request for
data from neighboring nodes. If during this time kr neighbors send the same request,
polite gossiping suppresses the transmission of redundant messages. Therefore, this
algorithm leverages the broadcast nature of radio transmission: If several nodes have
the same request, making each node send it would be unnecessary. Similarly, Neidas
uses the same mechanism to locally forward the data provided by neighbors.

To deal with transmission failures and dynamic topologies Neidas periodically resends
requests and data in so-called request and data send rounds. Fig. 4.7 gives an overview
of the basic operation of the algorithm. The algorithm is called: periodically in each

72

4.4. Neighborhood Data Sharing

Listen-only

Send request

if necessary

Request round

t

Listen-only

Send request

if necessary

Request round

Figure 4.8.: Actions within request rounds

request round (1) and data send round (2), when new nodes arrive in the neighborhood
(3), and when requests (4) or data packets (5) are received. The following subsections
describe the Neidas algorithm in more detail.

Neighborhood Management

Since Neidas retrieves and stores data from neighboring nodes, it needs to know which
nodes are in the neighborhood. Our current implementation includes an algorithm that
intercepts all Neidas packets to build this neighborhood table. This algorithm does
not incur any message overhead because it does not send any packets itself. If it has
not received any packets within a predefined interval, it removes this particular node
from the table.

If there is already an algorithm available that provides the required interfaces, it
can be used instead to avoid duplicate data in memory. For instance, neighborhood
information can be retrieved from the TinyStateRepository (see Section 4.3), SP’s
neighbor table [Polastre et al. 2005a], or accessed directly from the algorithm providing
the data. To demonstrate this flexibility we implemented several such algorithms.

Sending Requests

Neidas is a pull-based algorithm, i.e., nodes send requests for data that they need.
It takes advantage of overhearing messages by suppressing requests if other nodes
have already sent the same one. The algorithm periodically resends requests to deal
with dynamic neighborhoods and transmission failures. Therefore, it divides time into
fixed-length request rounds, which are shown in Fig. 4.8.

Starts of rounds do not have to be synchronized on neighboring nodes. This can lead
to an increased number of messages if nodes send their requests early at the beginning
of a round. To avoid this problem, each round starts with a listen-only period [Levis
et al. 2004b] in which a node just listens for messages from its neighbors (see Fig. 4.8).
In the rest of the round each node randomly selects a point of time at which it will

73

4. Cross-Layer Data Exchange

A B

Figure 4.9.: Overlapping neighborhoods

send its request if by then it has not overheard at least kr identical ones. Otherwise,
it suppresses its own request in the current round.

Since neighborhoods may overlap, not necessarily all the neighbors of a node receive
a request when the node overhears one. Therefore, a node might suppress its own
transmission although not all of its neighbors have received the same request. For
example, in Fig. 4.9 Node A sends a neighborhood data request which is received by
all nodes in the dark circle. Therefore, Node B, which needs the same data, suppresses
its own request. Thus not all nodes in its neighborhood (the light circle in the figure)
receive the request. This is especially a problem because there might be no other node
in the neighborhood requesting that data item. Trickle can easily deal with this issue
since all nodes transmit the same kind of information and because version numbers
ensure that the most recent information is always sent. Neidas , in contrast, addresses
this problem in the following way. First, the threshold kr is set to a slightly greater
value than in Trickle. As simulations showed, a kr value of 3 offers good results.
Secondly, the random delay before sending a request ensures that not always the same
nodes with the same set of neighbors send a request. Finally, following a soft-state
approach for storing the requests with timeouts longer than a single round, nodes do
not have to receive a request in every round. As shown in our simulations, in static
topologies all nodes within radio range receive a request after some rounds. However,
the algorithm still cannot guarantee that every single neighbor receives a message.

If communication links are asymmetrical, i.e., node A hears node B, but B cannot
receive messages from A, Neidas remains functional, since it does not necessarily
require direct interaction between nodes to request and transmit data – given that
there are other nodes with the same request. Thus Neidas fully makes use of the
broadcast nature of radio transmission with its polite gossiping scheme.

Sending Data

Besides sending requests, Neidas takes care of sending the requested data itself. Nodes
transmit this data in two cases. First, they send all data matching a request periodi-

74

4.4. Neighborhood Data Sharing

Request rounds

Data send round

t

Figure 4.10.: Relation between request rounds and data send rounds

cally – including data received from neighboring nodes. This helps to make sure that
after some retransmissions all neighbors have received it. As long as the request is
valid, i.e., its soft state has not timed out, the data is resent. Second, when the lo-
cal data is modified, nodes send additional updates to their neighbors. This way the
neighbors receive the most current data even before the next regular retransmission.

For sending data Neidas also takes advantage of polite gossiping: Nodes that have
received data from one of their neighbors transmit this data in addition to their local
values. Since data is associated with a single node, only exactly the same data from the
same node can suppress a transmission. In order to ensure that just the most current
data is resent, the data includes a version number which is incremented whenever the
data changes. To deal with version number overflows, receivers only accept data if
this number is within a given range.

Since data is only relevant for the immediate neighbors and since only data originating
from the same node can suppress its transmission, the polite gossiping threshold kd

for data can be smaller than kr for requests. In addition, the version numbers define
a prioritization where more recent data will not be silenced by older versions.

Nodes only accept data originating from one of the neighbors in radio range. This
makes sure that data received via a third node is not disseminated throughout the
network but kept within the neighborhood. Although Neidas currently only uses the
radio range to define the neighborhood, with polite gossiping it would be easy to
transmit data to differently defined groups of neighbors such as those proposed by
abstract regions [Welsh and Mainland 2004].

Data is not sent in every round in which it has been requested. The reason for this
is that Neidas tries to reduce the number of packets. Since the data itself is often
somewhat larger than a request message, it is important to minimize the number
of data transmissions. Therefore, we have introduced data send rounds. All data
requested in the last and current data send round is sent if kd neighboring nodes
have not already transmitted the same data. As Fig. 4.10 shows, a data send round
is composed of one or more request rounds. The length of the data send round is
doubled after each round (up to a predefined maximum duration), in the figure from
the length of one request round to four of them. It is reset to the length of a single
request round when new nodes arrive in the neighborhood. This way these nodes

75

4. Cross-Layer Data Exchange

receive prompt replies to their requests while greatly reducing the number of messages
in static topologies. Note that changes to the length of the data send round are local
to each node; they do not require any coordination among nodes. The length value
reflects each node’s estimate how often resends are necessary to make sure that all
neighboring nodes receive a data item while keeping the rate of messages low.

We use a soft-state approach to remove requests after some time. Requested data,
however, is not removed as long as the node stays within the neighborhood and there
is enough memory available. So even after long data send rounds or several failed data
transmissions, a node using Neidas still can access a previously received version of its
neighbors’ data from the local cache.

Further Optimizations

It is well known that radio communication consumes large amounts of energy [Shnay-
der et al. 2004]. In addition, there is also a significant MAC layer overhead associated
with every packet. Therefore, reducing the number of messages is even more important
than simply reducing the amount of data to be transmitted. In TinyOS and its stan-
dard MAC layer protocol [Polastre et al. 2004], for instance, the MAC layer preamble,
the header and the checksum included in all packets add between 17 (full duty cycle
of receivers) and 2,663 bytes (low power listening with 1% duty cycle). Thus with a
default data payload size of 29 bytes the overhead of sending a packet is between 58%
and more than 9,000%.

Requests for neighborhood data and the data itself are expected to be comparatively
small. Therefore, as an optimization Neidas accumulates several requests or data
transmissions into a single packet. This is easily possible since Neidas uses small
integer IDs instead of long names to identify the data and its type.

Sometimes even further optimizations are possible. Many applications and algorithms
periodically send messages that do not fill the complete payload. Therefore, Neidas
can take advantage of this free space by piggybacking its requests and data onto these
messages. If the radio is operated in promiscuous mode, it does not even matter
whether or not the packet is addressed to the same node as the piggybacked data,
which – in our implementation – is always broadcast to all nodes in radio range.
However, piggybacking is not feasible in all cases. For example, it is possible that
the application does not send any data itself or that there are not enough free bytes
available in the messages. Therefore, if after a time interval specified by Neidas the
data has not been piggybacked, the piggybacking component sends a separate packet
for this data.

This approach may incur some additional delays. During this time neighboring nodes
might already have transmitted the same request, so that using polite gossiping it no
longer has to be sent. Therefore, Neidas checks before actually sending the request if
it is still necessary; otherwise, it cancels it.

76

4.4. Neighborhood Data Sharing

1 module DataAccessM {
2 uses interface Timer ;
3 uses xldata RoleData as RoleDataLocal ;
4 uses xldata RoleData as RoleDataN [] ;
5 . . .
6 event r e s u l t t Timer . f i r e d () {
7 u i n t 8 t i ;
8 for (i =0; i<Neighbors . count ; i++) {
9 i f (RoleDataLocal . r o l e

10 == RoleDataN [Neighbors . nodes [i]] . r o l e) {
11 . . .

Figure 4.11.: Accessing neighborhood data with TinyXXL

Our implementation works with all packets sent by any TinyOS-based applications
and protocols because it replaces the TinyOS components which provide the so-called
active message interface immediately above the MAC layer. For both the higher-level
and the MAC layer component itself piggybacking is completely transparent.

4.4.2. Programming and Runtime Support

TinyXXL, as it is described in Section 4.3, has been developed for data exchange
among the components of a single node. To create a comprehensive system both for
this kind of intra-node data exchange and for neighborhood data sharing we extended
TinyXXL to support accessing the data of neighbors and use Neidas in the TinyState-
Repository .

If a component wants to access data of its neighbors, it has to declare this property
as a dependency. Then it may use the neighbors’ data similar to an array with the
neighbors’ node IDs. For instance, the code snippets in Fig. 4.11 show in line 4
how a dependency for role information [Römer et al. 2004] of neighboring nodes is
declared. The brackets at the end of the line, which are not given for the dependency on
the corresponding local values (line 3), denote that data is requested from neighbors
and then accessed in an array-like fashion. With these declarations both local role
information and that of neighboring nodes can be accessed (see lines 9 and 10 in the
figure). If the data of a node is accessed which has not been received yet, a default
value specified with the declaration of the data is returned (e.g., a reserved value
indicating the absence of data). Since RAM is very limited on sensor nodes, Neidas
does not store separately which nodes have already sent their data.

If data from neighboring nodes is declared to be accessed by at least one component,
the TinyXXL compiler reserves some memory for caching this data locally. In addition,
it adds calls to the Neidas algorithm to retrieve and continuously update the data. The
compiler ensures that for each data item – even if it is requested by several components
– there is only one such request sent and that the same data from a single node is

77

4. Cross-Layer Data Exchange

stored only once in RAM. This way applications can benefit from the advantages of
Neidas without adding the burden of implementing data exchange on the application
developer. In fact, it is possible to retrieve some arbitrary data from the TinyStateRe-
pository . The developer of the code running on the neighboring nodes does not have to
be aware of the fact that an already existing piece of data might be needed by another
node. This is an important advantage of our approach that facilitates independent
development of software in heterogeneous sensor networks as well as reusability and
exchangeability of components, whose data is automatically shared with neighboring
nodes when necessary.

One inherent assumption of this solution is that on neighboring nodes the data is
provided by a component and stored in the TinyStateRepository . Because of opti-
mizations performed by the TinyXXL compiler, data is only gathered on a node if
there is a component that needs to access it locally. Otherwise, it removes the data
gathering code to reduce runtime overhead. In this case these nodes cannot answer
requests for such neighborhood data. Therefore, like with manually implemented data
sharing, the developer has to ensure that data needed from neighboring nodes is avail-
able.

If a node just accesses its local values and not those of its neighbors, there is almost
no overhead associated with the integration of Neidas . In this case Neidas does not
transmit any request messages. In addition, its RAM consumption is almost negligible:
There is no need to reserve memory for local copies of neighborhood data, if the node
does not use it. However, Neidas has to reserve two single bits for each kind of data
in order to check if it has been requested by neighboring nodes within the most recent
data send rounds.

Our solution offers the benefits of TinyXXL also for neighborhood data sharing. For
example, it decouples components providing and accessing data: The component pro-
viding a piece of data that is needed by another node can be different from the one
requesting data. In fact, in heterogeneous networks the component providing this data
does not have to be part of the application requesting it. In addition, just like with
local data it is possible to use virtual data items to transform data or perform some
computations on it. Thus a neighboring node does not have to store a piece of data in
order to provide it, as long as it can be converted to the target format. Furthermore,
by taking advantage of the TinyStateRepository ’s publish/subscribe mechanism the
system can transmit updated data to its neighbors if it has been modified.

4.5. Evaluation

This section presents evaluation results for data exchange on a single node using
TinyXXL as well as for neighborhood data sharing with Neidas and its integration
in TinyXXL. Using real-world applications it shows the benefits for developers. In

78

4.5. Evaluation

Table 4.3.: Complexity of sample applications
Application # components # LOC
Sense-R-Us 116 18,714
TinyDB 176 29,559
AcousticLocalization 69 11,359

Table 4.4.: Number of changed lines of code (added, removed, and modified) and total
numbers in the modified components

Changed # LOC LOC mod.
Application Add. Rem. Mod. components
TinyDB 391 332 297 6,318
AcousticLocalization 40 24 8 1,468

addition, this section presents the results of simulations that measure the run-time
overhead on the sensor nodes including memory, processing, and message overhead.

4.5.1. Data Exchange on a Single Node

Development Costs

To show the development costs of TinyXXL we have created a nontrivial applica-
tion and modified parts of two other ones available from the TinyOS CVS reposi-
tory [TinyOS] to use it. These applications were already used for the analysis of
cross-layer interaction in Section 4.2. They contain between 11,000 and 30,000 lines
of code (see Table 4.3). Our newly created application is Sense-R-Us, which uses
a sensor network to determine the position of research assistants and to detect the
location and duration of meetings. The modified applications are TinyDB and Acous-
ticLocalization. As already describe above, TinyDB provides generic query processing
capabilities whereas AcousticLocalization determines the geographic positions of nodes
using the difference in the speed of radio waves and sound. In TinyDB our changes to
use TinyXXL focus on the components related to communication. In our view, those
can profit most from a structured approach to cross-layer interactions. Nevertheless,
the rest of the application also provides some opportunities to apply them.

Table 4.4 summarizes how many lines of code had to be added, removed, or modified
to add data sharing and parametrization capabilities using TinyXXL. It also shows
the total number of lines of code of all components that were modified. In TinyDB
we have created 24 shared data variables and parameters, but in AcousticLocaliza-
tion just 4 parameters, because in this application the components work mostly on
internal data. Therefore, as Table 4.4 shows, in TinyDB by far more lines had to be
changed. In general, the lines that were added are quite simple such as the variable
declaration and the specification of data dependencies. Correspondingly, the lines of
code that were removed were used to declare and share the variables with specialized

79

4. Cross-Layer Data Exchange

Table 4.5.: Lines of code in a minimal application and number of changed lines when
adding another publisher

Total Changed # LOC
Version # LOC Add. Rem. Mod.
Pure nesC, data in publisher 46 1 9 1
Pure nesC, data separate 65 1 2 1
TinyXXL 39 1 0 1

interfaces. Modified lines of code were mostly changed so that accesses to shared data
and parameters refer to the TinyXXL variables. One reason why the number of lines
added is greater than those removed is that our modified versions publish more data
than the original implementations because this data could also be useful for other
components. In summary, however, there is significant effort needed when modifying
existing applications to use TinyXXL.

If applications are developed from scratch with TinyXXL, the development costs are
much smaller. In fact, there are fewer lines of code necessary than in pure nesC-based
solutions. To show this, we have implemented a minimal application that shares a
single variable between two components. We have created three versions of this appli-
cation. Using just nesC, the first one stores the shared data in the publisher component
(see Fig. 4.3(a) on page 62) whereas the second one stores it in a separate component
(see Fig. 4.3(b)). Finally, the third version uses TinyXXL for data exchange (see
Fig. 4.3(c)). All three variants offer the same functionality, use 20 bytes of RAM, and
compile to 452 bytes of code.

Table 4.5 compares the code length of the different variants, which is one of the best
predictors of understandability and maintainability [Sommerville 2001]. The results
in Table 4.5 show that the TinyXXL variant requires the smallest number of lines
of code. In particular, it needs 40% fewer lines than the nesC approach that keeps
the data in a separate component and still 15% fewer lines than the nesC variant
storing the variable within the publisher component. Although these numbers depend
on the number of shared data variables, the number of accesses to them, as well as
the number of publishers and subscribers, this example gives some idea about what
we expect to find in more complex applications.

Sense-R-Us shows that complex applications can be developed with TinyXXL. This
application makes extensive use of data sharing. For example, during the first 60
seconds after power-on – when information about neighboring nodes is gathered – data
from the TinyStateRepository is accessed almost 3,300 times. In retrospect TinyXXL
has made developing this application much easier.

80

4.5. Evaluation

Table 4.6.: Code size of the example applications (in bytes)
Application Original TinyXXL
TinyDB 62,144 61,894
AcousticLocalization 24,272 23,996

Maintainability

To show the benefits to maintainability, we modified the different versions of the
minimal application introduced above. We added another component that provides the
same data as the publisher already present. We then tried to optimize the application
so that only one of the publishers writes the shared data and that no redundant
variables are stored in RAM. As shown in Table 4.5, in all three versions of the
application one line had to be added and one had to be modified. Besides that, in the
two pure nesC versions code had to be removed manually because it would have been
redundant. In the variant with the data stored directly in the publisher these were
nine lines of code because the declaration of the redundant variable, all accesses, and
the code providing the shared data to other components had to be removed. In the
version that keeps the shared variable in a separate component only the accesses and
the unused interface had to be deleted (two lines of code). In the TinyXXL version,
however, nothing had to be changed.

Space Requirements

Table 4.6 shows the size of the code in program memory for both the original appli-
cations and the ones built with TinyXXL. The numbers are almost identical because
most function calls to the TinyStateRepository are inlined by the compiler and, there-
fore, the code is mostly equivalent. Due to slight differences in the implementation
and the optimizations performed by the compiler there are some variations (about
1%). However, they are too small to derive a general trend.

TinyXXL does not increase the size of allocated memory in RAM. The data in the
TinyStateRepository is the same as in pure nesC-based approaches, since the Tiny-
StateRepository does not store any meta-data in limited RAM. If the application makes
use of TinyCubus’s adaptation capabilities, there is no RAM overhead for the Tiny-
StateRepository , either, since all information about data providers and subscribers is
written to the code in program memory. Only if support for neighborhood data sharing
is included in the application, there is a slight memory overhead (see Section 4.5.2).

It should be noted that both TinyDB and AcousticLocalization have already been
optimized by hand. Therefore, this setting is the worst case where TinyXXL is not
able to add any benefit via its optimizations. With less optimized applications than
our sample applications (e.g., those built from reusable components), we expect both
code size and RAM consumption to decrease since the TinyXXL compiler includes

81

4. Cross-Layer Data Exchange

Table 4.7.: Runtime overhead of TinyXXL/TinyStateRepository
CPU Cycles Time (µs)

Original TinyXXL Original TinyXXL
Read access 13.36 16.06 1.81 2.18
Write access 19.81 19.27 2.69 2.61

only one instance of the data in memory and removes redundant data gathering code.

Runtime Overhead

To find out the runtime overhead of TinyXXL compared to a pure nesC approach, we
measured the number of processor cycles needed for data exchange. For this purpose
we used Avrora [Titzer et al. 2005], an emulator for Mica2-based sensor networks.
We instrumented both the original and our modified versions of TinyDB and ran
both versions of the application for 60 simulated seconds. During this time the nodes
periodically exchanged messages and updated their routing tables several times.

The numbers in Table 4.7 show that the overhead of TinyXXL for read accesses is
about 20%. Although this overhead seems to be significant, it is not noticeable when
running applications in practice; in absolute numbers it is just 0.37 µs. Furthermore,
the speed of the processor and the clock cycles available are usually not regarded as
a limiting factor in existing sensor network applications. In fact, compared to radio
bandwidth the CPU is fast enough to process incoming messages without a need for
receive queues [Levis et al. 2004a].

We attribute the overhead of read accesses mainly to fewer optimizations performed
by the nesC compiler. Although most function calls can be inlined, there are some
situations where in the original version of TinyDB a variable is already stored in one
of the processor’s registers and does not have to be loaded again. The compiler does
not always perform this optimization with data from the TinyStateRepository so that
the average cycle count is slightly increased.

For write accesses the numbers of both versions of TinyDB are almost identical. In fact,
by coincidence the results for the TinyXXL version is even slightly better. In general,
the compiler performs the same optimizations in all cases since it always has to write
the value to the variable. Note that for this comparison theTinyXXL’s notification
functions were not included since they provide some additional functionality. In any
case, the overhead of these functions is not associated with every write access but with
“ifproviding” blocks because the subscribers are only notified once for each block. In
our modified version of TinyDB, for example, about 2.5 write statements are enclosed
in such a block on average.

If support for dynamic adaptation within TinyCubus is needed, the optimizations
usually performed by the TinyXXL compiler are done by the FlexCup linker. Since –

82

4.5. Evaluation

compared to the number of data accesses – applications are only adapted infrequently
and since the linking process already takes a few seconds [Marrón et al. 2006a], apply-
ing these optimizations is not performance-critical. However, with this approach there
is also some extra overhead at runtime: for each “ifproviding” block an additional
check is required, because the code of such a block cannot be removed by the compiler
in this case. In TinyDB this overhead is just 3.94 cycles (0.53 µs) on average. Because
typically some computation or even the transmission of radio messages is included in
such a block, the benefits of not executing this code – if it is not needed – clearly
outweigh this overhead.

Even small processing overheads at runtime can sum up in the course of time and
influence the lifetime of the sensor network. However, only if an application has been
optimized, it provides better overall performance. Such manual optimizations are less
and less feasible as applications become more complex and are increasingly developed
by experts in the application domain rather than experts in sensor networks. Com-
pared to unoptimized applications that gather the same kind of data twice, the small
runtime overhead of TinyXXL and the TinyStateRepository can be neglected. For
example, if TinyXXL avoids sending unnecessary radio packets, this alone will out-
weigh the energy consumed by the CPU for the TinyStateRepository ’s small runtime
overhead.

4.5.2. Neighborhood Data Sharing

Experimental Setup

We have simulated Neidas using the Avrora simulator. Unless otherwise noted, each
simulation scenario contains 50 nodes which are randomly placed in a 60m × 60m
rectangular area. Since communication is only local to the neighborhood, we expect
that the results are also valid for larger-size networks.

The nodes’ radio model is a lossy model, which is based on empirical data and has
a transmission range of about 15m. The TinyOS MAC layer takes care of multiple
accesses to the radio channel. The measurements shown are the average of 10 runs of
600 simulated seconds each. We have set Neidas ’s polite gossiping thresholds kr to 3
and kd to 1. As described above, experiments have shown that good results can be
obtained with these values. The duration of a request round has been set to 10 s for
all algorithms but in long-running experiments this value can be neglected – as long
as all algorithms use the same duration. Nodes are turned on randomly in the first
10 s and are not switched off before the end of the simulation. Unless otherwise noted,
we have not made use of piggybacking optimizations.

83

4. Cross-Layer Data Exchange

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1
A

vg
. n

um
be

r
of

 b
yt

es
 tr

an
sm

itt
ed

 p
er

 n
od

e
Share of nodes needing data

Neidas
Pull

Push

Figure 4.12.: Bytes transmitted, varying share of nodes requesting data

Efficiency of Neidas

We have created straight-forward implementations of standard pull-based and push-
based algorithms, which are likely to be integrated in similar form in real applications.
For a meaningful comparison, all of them use the same underlying data format and
marshaling components as Neidas .

The pull-based algorithm periodically requests the data of neighboring nodes but does
not suppress requests already heard. Similar to Neidas it does not service a request
immediately but waits until the next round. However, it does not distinguish between
request and data send rounds. The push-based algorithm periodically broadcasts its
data without the need for requests. Neither of these algorithms resends data from
neighboring nodes.

In our simulations all nodes provide a single data item of 10 bytes. We have varied
the ratio of (randomly selected) nodes that needed this data. The only messages sent
are those to request and transmit data.

Fig. 4.12 shows the total number of bytes transmitted by each node on average –
including the packet header, preamble, etc. Since there are no big differences in the
processing overhead of the three algorithms, overall energy consumption is dominated
by the radio. Therefore, the energy consumed by the algorithms can be inferred from
the number of bytes transmitted.

The push-based algorithm always transmits the same number of bytes because it does
not distinguish between nodes that need data and those that do not. In contrast, for
the pull-based algorithm the number of bytes transmitted grows with the percentage
of nodes requesting data. If this percentage is greater than about 70%, the pull-based
algorithm is less efficient than the push-based one because of the additional overhead
for request messages. Even when all nodes request data, the overhead for these requests
is relatively small. The reason for this is that the pull-based algorithm uses the efficient
underlying techniques from Neidas to build packets. Therefore, requests are usually

84

4.5. Evaluation

 0

 10

 20

 30

 40

 50

 60

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. l
at

en
cy

 [s
]

Share of nodes needing data

Neidas request latency
Pull request latency
Neidas data latency

Pull data latency
Push data latency

Figure 4.13.: Latency until requests and data have been received

sent together with the data as a single message, and there is no overhead for the packet
header, preamble, etc. Otherwise, the numbers of the pull-based algorithm would be
up to 500% greater (not shown in the figure) because the payload is very small and
thus the overhead of sending extra packets has even greater effects.

Neidas transmits much fewer bytes than these two algorithms. Depending on the
number of nodes requesting data, it only sends between 30% and 62% of the number
of bytes of the push-based algorithm and between 44% and 58% of the pull-based
algorithm. Up to 20% of the savings compared to the corresponding pull-based ap-
proach are due to polite gossiping of requests. This percentage increases with higher
node densities. Enlarging the length of data send rounds is responsible for the rest of
the savings.

Fig. 4.13 compares the average latency until a node entering the neighborhood receives
requests and data. The request latency of Neidas is up to 4 s greater than that
of the pull-based algorithm because of suppressed request messages in overlapping
neighborhoods. However, when comparing the latency of the data itself, the values for
both algorithms are almost identical because with Neidas nodes are able to provide also
data requested from their neighbors. The data latency of the push-based algorithm, of
course, is even shorter since with this algorithm nodes do not wait for requests before
they send their data. The values for the data latency may seem comparatively high
given the duration of the request rounds of 10 s. However, these numbers are average
values until the data from all neighboring nodes has been received. Due to lossy links
and collisions, some nodes have to send their data several times.

Fig. 4.14 shows the average number of bytes transmitted for different node densities.
To get these values we have varied the total number of nodes from 25 to 200. The
size of the area is kept constant and always 40% of the nodes request data from their
neighbors. The figure shows that the values for the pull-based algorithm increase by
about 38% with higher densities until all nodes are in the neighborhood of at least one
node requesting data. For the push-based algorithm the number of bytes is constant

85

4. Cross-Layer Data Exchange

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40
A

vg
. n

um
be

r
of

 b
yt

es
 tr

an
sm

itt
ed

 p
er

 n
od

e
Avg. number of nodes in radio range

Neidas
Pull

Push

Figure 4.14.: Bytes transmitted varying the node density

since each node sends its data independent of other ones. With Neidas , the number
of bytes transmitted by each node even decreases by about 30% with higher densities
although in these cases more nodes have to send their data. This is because more
nodes overhear packets from their neighbors which avoids sending the same request
several times.

As the results show, Neidas is suitable for both heterogeneous and homogeneous net-
works. Considering the benefits such as the small number of transmitted bytes shown
in Fig. 4.12 and its ability to profit from high node densities (Fig. 4.14), for many
applications Neidas offers a good compromise between efficiency and timely delivery
of data.

Comparison with Hood

Hood [Whitehouse et al. 2004] is a programming abstraction that tries to ease neigh-
borhood data exchange in sensor networks. By leaving the data transmission policies
to be implemented by the developer, it allows for more flexibility than our system but
increases the development effort. In this part of the evaluation we compare Hood with
Neidas and TinyXXL.

We have implemented a simple algorithm that builds a tree to route data to a sink
node with both Hood and TinyXXL. In this example all nodes request their neighbors’
depth in the routing tree. They then select the neighbor with the smallest depth as
their parent and adjust their own depth value. Using Hood we have implemented two
versions: The first one minimizes the number of messages by solely relying on Hood’s
auto-push policy that only broadcasts updates when the data changes. The second
one is able to deal better with new nodes and transmission failures of lossy links by
periodically requesting the neighbors’ values in addition to the automatic updates.
This version resembles more closely the properties of Neidas but with its forwarding
of neighbor data Neidas is able to provide even better reliability. Depending on

86

4.5. Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 5 10 15 20 25 30 35 40

A
vg

. n
um

be
r

of
 b

yt
es

 tr
an

sm
itt

ed
 p

er
 n

od
e

Avg. number of nodes in radio range

Hood auto-push
Hood push/pull

TinyXXL

Figure 4.15.: Bytes transmitted compared with Hood

the properties required by the application, the solution actually implemented by the
developer will probably lie somewhere within the boundaries defined by the two Hood
versions. The TinyXXL implementation, however, automatically integrates Neidas so
that the application developer does not have to deal with these low-level details.

Both the Hood versions and the TinyXXL version of the code use equivalent neigh-
borhood management algorithms. These algorithms do not send any information
themselves but use the node IDs transmitted with each request and data packet. It is
an integral part of Hood’s concepts that the neighborhood management algorithm has
to be written by the application developer whereas in the TinyXXL version Neidas ’s
default neighborhood management algorithm is used.

Fig. 4.15 visualizes the total number of bytes sent by the Hood versions and the
TinyXXL version for different node densities. Since the standard push-only version
of Hood sends data just when it is modified, this algorithm transmits the smallest
number of bytes. However, it is not able to deal with transmission failures and newly
deployed nodes as it sends data only once. These two properties are fulfilled by the
other two versions of the application. Therefore, these implementations offer different
functionality and can hardly be compared. Thus we limit the following discussion to
the TinyXXL variant and the Hood version including data pulls.

As expected, the number of bytes sent by TinyXXL decreases with high densities since
it is based on Neidas . In contrast, the Hood version does not make use of overhearing
messages and, therefore, has to transmit significantly more data if the number of nodes
in radio range increases. For the highest node density the TinyXXL version sends only
24% of the number of bytes transmitted by Hood.

When compiled for Mica2 nodes, our sample application including the operating sys-
tem components reserves 810 bytes of RAM in the Hood versions and just 608 bytes in
the TinyXXL version (25% less). Most of TinyXXL’s savings are due to fewer vari-
ables used in the marshaling components as well as in the components storing data.
With RAM sizes of just a few kilobytes such optimizations are crucial in order to be

87

4. Cross-Layer Data Exchange

 0

 1000

 2000

 3000

 4000

 5000

 25 30 35 40 45 50
A

vg
. n

um
be

r
of

 b
yt

es
 tr

an
sm

itt
ed

 p
er

 n
od

e
Total number of nodes

Application-specific
TinyXXL

TinyXXL with piggybacking

Figure 4.16.: Bytes transmitted for the Sense-R-Us application

able to create complex applications.

From a developer’s point of view creating the application with TinyXXL incurs signif-
icantly less overhead. The routing tree algorithm described above was implemented
in 176 lines of code with Hood (for the version including data pulls) vs. 88 lines of
code with TinyXXL. This means that the TinyXXL implementation needs 50% fewer
lines of code than the Hood implementation. Most of these savings, however, are due
to the fact that Hood requires the developer to implement a separate neighborhood
management algorithm, which is already present in the TinyXXL solution. Although
such numbers do not necessarily allow to draw conclusions about the complexity of
the code, they can give a rough estimate about the effort needed by the application
developer. Considering that Hood already reduces complexity compared to manual
implementations [Whitehouse et al. 2004], the overhead reductions of TinyXXL are
even more significant.

Integration in Sense-R-Us

In Sense-R-Us there are stationary nodes placed in rooms and mobile ones that are
carried by persons. The mobile nodes use neighborhood data from the stationary ones
to localize themselves by requesting information about the location of neighboring
nodes. A mobile node’s location is set to the value of a neighboring node, which has
been selected using the received signal strength.

We compare an implementation of Sense-R-Us that has been built using TinyXXL with
the original one for which neighborhood data sharing has been implemented manually.
This version uses Sense-R-Us’s custom querying protocol, which tries to reduce the
number of messages by intelligently selecting the nodes to be queried. However, it
does not leverage broadcast communication and comes at the expense of significant
development overhead.

88

4.6. Related Work

In our experiments we simulated up to 50 nodes of which 22 ones are stationary. The
remaining nodes are mobile and move using a random walk model. Fig. 4.16 shows the
number of bytes transmitted by the application-specific implementation of Sense-R-
Us, a version using TinyXXL, and another TinyXXL version that takes advantage of
the piggybacking optimization described in Section 4.4.1. These numbers also include
packets transmitted by other components, e.g., to discover neighboring nodes. As the
figure shows, for low densities with no or only few mobile nodes the performance of the
TinyXXL versions is worse compared to the optimized application-specific solution.
If, however, the node density is increased, the TinyXXL version can take advantage of
overhearing messages and the number of bytes sent by each node decreases. For the
application-specific implementation, in contrast, the number of bytes sent increases
by almost 50% when adding more mobile nodes. The reason for this is that this
implementation relies solely on point-to-point communication. Therefore, separate
messages might have to be sent even if other nodes have similar requests. If TinyXXL’s
piggybacking optimization is used, the number of bytes transmitted is reduced by
between 8% and 13% compared to the other TinyXXL implementation. These savings
are due to the reduced number of packets sent by this variant. Although piggybacking
could also be incorporated in an application-specific solution, using TinyXXL has
the advantage that it comes “for free” without requiring the developer to manually
implement it.

4.6. Related Work

This section describes work related to our classification of cross-layer interactions, to
TinyXXL and the TinyStateRepository , as well as to Neidas .

There are several publications that give an overview of the use of cross-layer interac-
tions. For example, Melodia et al. [Melodia et al. 2005] describe the use of cross-layer
interactions in the sensor networks literature. Instead of identifying common mecha-
nisms in these interactions, they rather group their examples by the interacting layers.
A similar approach is pursued by Rasinghani and Iyer who give an overview of cross-
layer interactions in 3G wireless networks [Raisinghani and Iyer 2004]. They describe
protocols at different layers and group them based on their interactions with upper or
lower layers, respectively.

Levis et al. [Levis et al. 2004a] describe some examples of cross-layer interactions
in existing TinyOS applications. Although they give examples of different kinds of
cross-layer interactions, they do not present a classification.

Finally, Srivastava and Motani describe cross-layer interactions in (general) wireless
networks [Srivastava and Motani 2005]. They explain common mechanisms similar
to our classification. For example, just as we describe in Section 4.2, they also iden-
tify merging of layers. However, there are also some differences. For instance, our

89

4. Cross-Layer Data Exchange

classification focuses on the kind of information being exchanged (parameters or inter-
nal data) whereas theirs distinguishes cross-layer interactions based on the direction
of data exchange in the protocol stack. In addition, Srivastava and Motani classify
approaches for cross-layer frameworks. In this classification TinyXXL and the Tiny-
StateRepository would be a shared database while the rest of our cross-layer framework
does not fit in any of the categories provided.

Regarding work related to TinyXXL and the TinyStateRepository , blackboard archi-
tectures [Nii 1986] have been widely used in artificial intelligence systems. In this
kind of architecture a blackboard is used to structure and store knowledge as a global
database. Logically independent modules modify the data in order to incrementally
solve a problem; they use the blackboard as the only form of interaction. Thus, similar
to TinyXXL the modules are decoupled. However, there is no clear specification of
data dependencies and all modules may modify the data. Furthermore, with TinyXXL
there is still the possibility to employ the standard nesC forms of interaction.

In the realm of mobile ad-hoc networks (MANETs) the MobileMan project [Conti
et al. 2004] creates a cross-layer architecture for the protocol stack. Although the
concepts used for data sharing are similar to TinyXXL, MobileMan does not pursue
the goal of easing the usage of cross-layer interactions and, therefore, is not part
of a programming language. Furthermore, it assumes hardware platforms typical of
MANETs, which are, in the general case, not so resource-constrained.

Part of the link abstraction SP for sensor networks [Polastre et al. 2005a] is a neighbor
table data structure that can be accessed by protocols of several layers. However, with
SP data sharing is limited to some a priori selected data items; unlike TinyXXL it
does not allow for the definition of arbitrary shared data.

Köpke et al. [Köpke et al. 2004] have created a publish/subscribe-based system for
sensor nodes. However, their work does not provide many of the features of TinyXXL
because it is not integrated into a programming language. For example, it does not
guarantee type safety when accessing data and does not deal with multiple publishers
providing possibly inconsistent, duplicate data. Unlike our approach this system needs
some meta-data to be stored in limited RAM.

Concurrently to our work Kumar et al. [Kumar et al. 2006] have developed a system
with similar goals as ours. They decouple interacting layers by sharing data via the
so-called Information Exchange Service, which is similar to our TinyStateRepository .
However, their system does not seem to be as optimized to the resource constraints of
sensor nodes as our system. For example, instead of using compile-time optimizations
for memory efficiency their approach requires significant amounts of meta-data at run-
time. In addition, the lack of static optimizations leads to increased access latencies,
which this system tries to remedy with an memory-intensive caching mechanism.

TinyGUYS [Cheong et al. 2003] is a global data storage that deals with concurrency
problems; it guards accesses to the variables by writing all changes in a buffer and
having the scheduler copy this data to the real variables later. Such synchronization

90

4.6. Related Work

of accesses is not considered by our approach. We rather rely on the developer to add
the standard nesC “atomic” statements when synchronization problems can occur.
Obviously, TinyGUYS adds some memory overhead for the buffers which can be a
problem with resource-constrained sensor nodes.

SNACK [Greenstein et al. 2004] is a configuration language, component library, and
compiler based on the nesC language. Similar to our approach it tries to ease the de-
velopment of efficient sensor network applications. However, it deals with the creation
of service libraries that can be combined to form an application rather than focusing
on the problems of cross-layer data exchange.

Our neighborhood data sharing algorithm is based on publish/subscribe-like interac-
tion. Such systems have been used in different domains to make data available in
the network. In sensor networks several algorithms following a publish/subscribe-
like paradigm have already been proposed. Perhaps the best-known example is SPIN
[Heinzelman et al. 1999], which uses such an approach to disseminate data in the net-
work. However, these approaches typically require explicit interaction between every
two nodes publishing and subscribing to data, which is not needed by our algorithm.

Gossiping algorithms are flooding-like approaches where nodes randomly forward data
packets that they have received. Trickle [Levis et al. 2004b] uses polite gossiping to
efficiently distribute information about code images in the whole network. It has
been integrated into Deluge [Hui and Culler 2004], a code distribution algorithm, and
adapted for the Drip protocol [Tolle and Culler 2005] to transmit queries to all nodes
in the network. Neidas is inspired by the concepts of Trickle but deals with multiple
nodes requesting potentially different data. Trickle, in contrast, can assume a single
or few data sources and just one kind of data. In addition, with Neidas changes of
data are kept local whereas Trickle disseminates them through the network.

As already described above, Hood [Whitehouse et al. 2004] is a programming abstrac-
tion that tries to ease neighborhood data exchange in sensor networks. However, it
leaves important parts to be added by the application developer, e.g., data transmis-
sion policies that are responsible for sending data and requests. In addition, Hood does
not strive to provide a comprehensive system for both intra-node and neighborhood
data exchange.

Likewise, abstract regions [Welsh and Mainland 2004] provide programming primi-
tives for local communication. An abstract region is defined using radio connectivity
or the location of nodes, for example. Extending the neighborhood beyond immediate
neighbors within radio range is something not considered by our approach yet. Like
Hood, abstract regions only include a very basic data transmission algorithm. Simi-
larly, logical neighborhoods [Mottola and Picco 2006] can be used for communication
within a set of nodes that are not necessarily just the nodes in radio range. However,
with this system a data sharing mechanism would still have to be implemented by the
application developer based on other primitives.

There are numerous algorithms and applications that make use of data obtained from

91

4. Cross-Layer Data Exchange

their neighbors. Most of them include custom solutions for neighborhood data sharing.
Prominent examples are algorithms for self-organization [Römer et al. 2004], routing
[Karp and Kung 2000], and medium access control [Ye et al. 2002]. By factoring out
the transmission of data using TinyXXL, developers could focus more closely on the
actual purposes of their algorithms and applications.

4.7. Summary

This chapter has presented several contributions. First, we have described our analysis
of cross-layer interactions in typical sensor network applications and created a classi-
fication of the individual instances we found there. Second, based on this analysis, we
have created TinyXXL, a programming abstraction for cross-layer data sharing and
parametrization. TinyXXL strives to ease the development of cross-layer optimized
applications built from reusable components. It allows for the declaration of compo-
nents’ dependencies on data, decouples components providing and using some data,
and automatically optimizes applications by avoiding redundant data provision. Using
TinyXXL the examples of Table 4.2 on page 60 for parametrization and data sharing
can be implemented without coupling the interacting layers tightly. With TinyXXL
data dependencies become first-class citizens similar to functional interfaces. TinyXXL
is complemented by the TinyStateRepository , an efficient state repository generated
by the TinyXXL compiler that stores all cross-layer data at runtime. Finally, we have
presented Neidas , a pull-based algorithm for neighborhood data sharing, and its inte-
gration into TinyXXL. The combined system is a comprehensive system for both data
exchange among components and neighborhood data sharing. Using Neidas as its ba-
sis it offers efficient data sharing at largely reduced development costs. For example,
in heterogeneous networks the developer of a node providing data does not even have
to be aware that this data might be required by another one.

As shown in the evaluation, complex applications can be developed using TinyXXL.
For example, we have modified TinyDB and AcousticLocalization, two nontrivial ex-
isting applications, to make use of TinyXXL and developed Sense-R-Us from scratch
with our programming abstractions. With our approach fewer lines of code are needed
for data sharing and parametrization while profiting of additional benefits such as the
selection of the “best” component to publish the data. We have also shown that the
TinyStateRepository is an efficient implementation of a state repository regarding its
runtime overhead. Furthermore, Neidas and TinyXXL allow for efficient transfer of
data with neighboring nodes at largely reduced development costs.

In conclusion, TinyXXL provides an efficient system both for cross-layer data exchange
among the components of a single node and for neighborhood data sharing.

92

5. Data Storage in Virtual Memory

This chapter presents the cross-layer framework’s virtual memory abstraction. With
this part of the framework one of the main reasons for cross-layer interactions – the
severe memory constraints of sensor nodes – is relaxed. The chapter describes a
heuristic that tries to optimize the memory layout using simulation traces. Using
experiments with real-world applications, an evaluation shows that the heuristic is
able to improve the performance of the virtual memory system. Finally, the chapter
presents work related to this part of the framework.

5.1. Preliminaries

Traditionally, main memory has been a very scarce resource in sensor networks, and
most sensor nodes are equipped with just a few kilobytes of RAM (for example, the
Mica2 nodes from Crossbow only have 4KB). However, several sensor network ap-
plications already require more memory than available on current sensor nodes. For
instance, TinyDB [Madden et al. 2005] requires the user to select at compile-time
which functionality should be included in the code image. This decision can later only
be changed by installing a new code image on each sensor node. Likewise, the maxi-
mum size of an application in the Maté virtual machine [Levis et al. 2005] is strictly
limited by the amount of main memory available. Therefore, in many applications
cross-layer interactions are often used to partially alleviate the memory limitations.

As applications for sensor networks increase in complexity, RAM limitations will con-
tinue to cause difficulties for developers. For example, if applications perform more
complex analysis than just the simple aggregation of most applications today, even
nodes with more memory will not be able to satisfy future needs. As the experience
from other domains shows, even with comparatively large random access memories
there is always a shortage of main memory.

In traditional computing systems virtual memory has been widely used to address this
problem [Silberschatz et al. 2002]. With virtual memory, parts of the contents of RAM
are written to secondary storage when they are not needed. This mechanism is easy
to use since the system takes care of managing the memory pages. However, current
operating systems for sensor networks [Hill et al. 2000; Han et al. 2005; Dunkels et al.
2004; Abrach et al. 2003] do not support virtual memory. Only recently t-kernel [Gu

93

5. Data Storage in Virtual Memory

and Stankovic 2006] has emerged as the first attempt to demonstrate that virtual
memory can be useful in sensor networks as well.

Sensor nodes are equipped with flash memory as secondary storage, which – with a size
of between 512KB and 1MB – is much larger than main memory. In many cases sensor
network applications use flash memory to log sensor readings for later analysis. It is
organized in pages of several hundred bytes that have to be written en bloc. Accessing
it is much more expensive than accessing RAM: it takes several milliseconds to read
or write a flash page whereas variables in RAM can be accessed in a few processor
cycles. In addition, accesses to flash memory are comparatively expensive regarding
energy consumption. Nevertheless, as we show in this chapter, this type of memory is
appropriate for the implementation of virtual memory on sensor nodes.

The system model used by operating systems such as TinyOS is well suited to the use
of virtual memory. First, variables and addresses are known at compile-time because
all memory – except for the stack – is allocated statically. Secondly, since there is only
one application running, the locality of reference [Denning 1970] is increased compared
to multitasking systems and accesses are more predictable. Finally, since sensor nodes
usually execute code directly from program memory, which is separate from RAM, in
sensor networks virtual memory will only be used for data. Therefore, the additional
overhead introduced by virtual memory does not arise with every single instruction
but only with data accesses.

This chapter presents ViMem [Lachenmann et al. 2007a], a system that provides a
virtual memory abstraction for TinyOS-based sensor networks and uses flash memory
to extend the size of RAM available to the application. Since energy is a limited
resource in sensor networks, ViMem tries to minimize the number of flash memory
operations. It uses variable access traces obtained from simulations to rearrange vari-
ables in virtual memory at compile-time so that only a small number of accesses is
necessary. As we show in the evaluation, this algorithm can help greatly to reduce the
overhead of our virtual memory solution.

Using simulation data, the algorithm determines which variables are accessed fre-
quently. It splits up complex data structures such as arrays or structs to examine each
element individually. We define as such a data element an atomic part of a complex
variable with a simple data type like “int”. The algorithm then groups such parts of
variables that are often accessed together. Likewise, it tries to put variables that are
accessed frequently on the same memory page so that it is likely to remain in RAM
most of the time.

The memory layout is determined offline by a pre-compiler that modifies the code
to redirect variable accesses to virtual memory. ViMem manages the flash pages in
memory so that the developers do not have to deal with these low-level details and
access variables simply as if they were stored in RAM. The only difference for the
application developers is that they have to tag all variables that they want to place in
virtual memory with a special attribute. This way they maintain full control of which

94

5.2. Design

variables are stored in virtual memory. For sensor networks this is important to allow
the developers to keep variables permanently in RAM if they are used in time-critical
functions.

Our solution has several benefits. First, it makes it possible to develop complex
sensor network applications without having to restrict the functionality due to memory
constraints. Secondly, although the developers control which variables are placed
in virtual memory, accesses to those variables are transparent. Finally, through an
intelligent placement of variables that takes into account the properties specific to
sensor network applications, to hardware platforms, and to the development process
ViMem is able to provide its functionality with minimal runtime overhead. We argue
that such optimizations are essential to make virtual memory usable for the resource-
constrained devices of sensor networks.

5.2. Design

This section first presents relevant characteristics of sensor networks, then lists our
design goals, and finally gives an overview of the system design.

5.2.1. Sensor Network Characteristics

A number of characteristics of sensor networks have influenced the design of our virtual
memory system. First of all, the hardware platforms used in typical sensor networks do
not include any support for virtual memory. Therefore, the whole system – including
address translation, the detection of page faults, and the page replacement policy –
has to be implemented in software.

In addition, the behavior of flash memory vastly differs from other types of memory
like magnetic disks and RAM [Gal and Toledo 2005]. For example, there is a large
difference in the access speed for reading and writing. This difference also becomes
apparent with the energy consumption of flash memory. Therefore, the number of write
accesses has to be minimized. Table 5.1 shows the properties of the flash memory
chip used in the Mica family of sensor nodes. For this hardware, writing a page
to flash typically takes 4.5 times as long as transferring one to RAM. Even more
important, we have measured that writing requires about 23 times the energy of
reading. Furthermore, there is a limit on how often each flash page can be written.
Thus some kind of wear leveling [Gal and Toledo 2005] has to be used in order to make
sure that in the long run each page is written a similar number of times.

Since sensor networks consist of a large number of devices that are embedded in possi-
bly inaccessible locations and offer only limited user feedback capabilities, simulation
has become an important part of the sensor network development process [Titzer et al.

95

5. Data Storage in Virtual Memory

Table 5.1.: Properties of the Atmel AT45DB041B flash memory chip [Atmel Corpora-
tion 2005]

Property Value
Page size 264 bytes
Number of pages 2048
Number of internal SRAM buffers for pages 2
Max. standby current 10 µA
Max. page read current 10 mA
Max. page write current 35 mA
Typical page read delay (measured) 3.6ms
Typical page write delay (measured) 16.3ms

2005]. Therefore, simulation can be used as a tool for optimizations. Such optimiza-
tions are important in order to meet the application’s lifetime goals.

5.2.2. Design Goals

Our main objective for ViMem is to provide a virtual memory abstraction on sensor
nodes that minimizes energy consumption and the number of accesses to flash mem-
ory. Taking into account the properties of sensor networks described above we have
identified the following design goals in order to achieve this general objective:

• ViMem should not require hardware support for address translation, etc.

• ViMem should minimize the number of write accesses to flash memory for energy
and efficiency reasons.

• It should be efficient for frequently used variables.

• The developer should be able to control which variables are placed in virtual
memory.

• Accesses to variables in virtual memory should be transparent to the developer.

• ViMem should allow for the reuse of existing application and system components
without requiring major modifications.

5.2.3. Design Overview

Like the other parts of our cross-layer framework, ViMem consists of two main parts:
a compiler extension and a runtime component. The compiler extension redirects vari-
able accesses to ViMem’s runtime system and determines the placement of variables
on the memory pages. The runtime component takes care of loading and storing flash
memory pages when they are needed.

96

5.2. Design

Compiler Extension

Developers should be able to use variables in virtual memory just like those in RAM.
However, since sensor network hardware does not directly support virtual memory, all
access to data in virtual memory must be redirected to ViMem’s runtime component.
Our system accomplishes this by using a pre-compiler that changes all such variable
accesses. This pre-compiler modifies nesC source code. Although this approach is
no real virtual memory system in the traditional sense, it offers similar benefits to
applications and developers.

The developer maintains full control of which variables are kept in RAM and which
ones are stored in virtual memory. Only those tagged with a special attribute are
put into virtual memory. This way, variables that are used in interrupt handlers
and other performance-critical functions can always be kept in RAM. In TinyOS’s
execution model these functions are called “asynchronous events”. All other functions
are executed in the task context which is less performance-critical, as interrupt event
handlers can suspend such tasks [Hill et al. 2000; Gay et al. 2003].

The pre-compiler executes a memory layout algorithm to place variables on pages in
virtual memory. Our software design allows for easy use of different such algorithms.
The default algorithm, which is described in Section 5.3, uses access traces obtained
from simulation tools to get information about the frequency of memory accesses.
Doing all the processing offline minimizes the effort at runtime on the sensor nodes.

Runtime Component

ViMem’s runtime system is responsible for the management of memory pages kept in
RAM and for the provisioning of data to the application. The challenge here is to
determine which memory page has to be replaced when another one is loaded from
flash memory. Therefore, the algorithm has to predict which pages are most likely
used again in the future. In addition, it has to consider the costs for replacing a page.
If a page has not been modified, replacing this page is less expensive than selecting a
page that has to be written back to flash memory.

This algorithm was not the main focus of our research. Therefore, for ViMem’s re-
placement policy we employ the Enhanced Second-Chance Algorithm [Silberschatz
et al. 2002], which approximates a least-recently used (LRU) page replacement strat-
egy. This algorithm stores two bits for each page in RAM: a recently used bit and a
modified bit. It uses these bits to group each page into one of the four classes described
below. Then it selects the first page in the lowest nonempty class to be replaced.

The lowest class consists of pages that have neither been modified nor recently used.
These pages are the best ones to replace. If a page has been modified but not recently
used, it is part of the second class. Likewise, the third class comprises all pages that
are clean but have been recently used. Finally, a page that has been recently used and

97

5. Data Storage in Virtual Memory

re
ad

w
rit

e

RAM
4 kByte

2 Buffers
528 Byte

Flash Memory
528 kByte

2,048 pages of 264 bytes

F
la

sh
 C

hi
p

re
ad

w
rit

e

Figure 5.1.: Memory hierarchy of ViMem

modified belongs to the last class. It will not only have to be written back to flash
memory but is also likely to be used again soon.

The page replacement algorithm uses a circular list to examine each page in memory.
It starts looking for a page in the lowest category. If it finds none, it looks for one of
the second class and then continues with the other ones.

In addition, the runtime system makes use of the SRAM buffers, which are part of the
flash memory chip used in our implementation platform, the Mica2 nodes. Pages have
to be transferred to one of these buffers before they can be written to the flash. In
addition, as Fig. 5.1 shows, the buffers are used as a second level of caching: expensive
write accesses are not performed immediately but the page is just stored in the buffer.
If it is needed again, it does not have to be written to flash memory and can be
retrieved from the buffer. Likewise, if it is not modified again while in RAM, it does
not even have to be written back to the buffer again. If, however, a page is read that
is currently not stored in one of the buffers, our system reads it directly from flash
memory to RAM. This is possible without introducing additional overhead and leaves
the SRAM buffers unchanged so that the number of actual write accesses to the flash
can be further reduced. Since persistence is not required for a virtual memory system,
it does not matter if a page in the buffer is lost when the batteries of the device are
depleted, for example.

Each flash memory page can only be written a fixed number of times. Therefore,
our runtime system tries to distribute write accesses across several physical pages
in order to avoid wearing out pages that are written more often than others. For
this purpose, it reserves a larger pool of flash memory pages than it actually needs
(e.g., 1.5 times this number). Since there is usually enough free space available in flash
memory and since we expect the space needed for virtual memory to be comparatively
small, this does not severely reduce the flash memory usable by the application and
other system components. If a page is written back to flash, ViMem cycles through

98

5.2. Design

a list of all reserved flash pages and selects the first one currently not being used.
Following this approach, write accesses to frequently used pages will be spread across
a larger number of physical pages. The data structures containing the information
about available pages can be kept in RAM, as they are relatively small. In addition,
since old contents of virtual memory do not have to be accessed after restarting a
node, losing these data structures does not lead to problems. Of course, this aspect
of ViMem is only needed if the flash memory chip does not take care of wear leveling
itself.

5.2.4. Implementation

In this section we describe in more detail how ViMem has been implemented and how
it can be used. We give this description for its two parts, the compiler extension and
the runtime component, in the following subsections.

Like the rest of the cross-layer framework, our current implementation of ViMem is
based on TinyOS and nesC. It has been optimized to the hardware properties of the
flash memory chip used in the Mica family of sensor nodes. However, many of the
concepts could also be applied in other operating environments and on other hardware
platforms.

Compiler Extension

Overview of the Compilation Process Fig. 5.2 gives an overview of the compila-
tion process of an application that uses ViMem. First, the nesC compiler checks the
syntax of the source code and generates an XML file with information about compo-
nents, variables, functions, etc. This file is then used by the ViMem pre-compiler to
determine which components contain accesses to virtual memory and, therefore, need
to be rewritten. The XML file also includes information about the data types of the
variables that are to be placed in virtual memory. Exporting information about the
program structure to an XML file has been introduced in version 1.2 of the nesC com-
piler [Gay et al. 2005]. Using information from the nesC compiler avoids duplicating
existing functionality in our pre-compiler. Besides the source code, another input for
the pre-compiler is a data access trace obtained from simulation. If this trace is avail-
able, it improves the performance of ViMem at runtime. However, it is not essential
for building a running application.

Using all these inputs, the ViMem pre-compiler modifies the source files that access
virtual memory and creates an optimized memory layout as well as components that
make this layout available at runtime. These results, the ViMem runtime components,
and other unmodified source files are the input for the actual compilation step, which
is performed by the nesC compiler. As usual, this step results in a code image that
can be installed on sensor nodes or simulated using appropriate tools. These two

99

5. Data Storage in Virtual Memory

nesC: Check syntax
and generate XML file

ViMem pre-compiler: Rewrite
components and create memory layout

nesC: Compile code

Avrora: Simulate and
generate access trace

Source code

XML file Access trace

Code image

ViMem runtime
components

Memory mapping
components

Install code image

Modified source
files

Figure 5.2.: ViMem compilation process

alternatives are shown in Fig. 5.2 below the dashed line because they are not part of
the compilation process itself but are invoked separately.

If the developer chooses to simulate the application, the output of the simulator, in
our case the Mica2 simulator Avrora [Titzer et al. 2005], can be used to generate an
access trace. Avrora provides fine-grained instrumentation capabilities which allow
to get detailed information about the execution without changing the timing of the
program [Titzer and Palsberg 2005]. Using this instrumentation interface, we have
created probes that record all accesses to data elements in virtual memory. The result
given by these probes forms the access trace for the ViMem pre-compiler. If the
application is compiled again, a memory layout optimized for the given access trace
will be generated.

Implementation Details The pre-compiler has been implemented in Java using
JavaCC as a parser generator. It modifies all components that access variables in
virtual memory, creates the memory layout, and generates components that map vari-
ables to their actual position in virtual memory.

As the code example in Fig. 5.3 shows, all variables that are to be placed in virtual

100

5.2. Design

1 u in t 16 t varInVM @vm() ;
2 u in t 16 t ∗ po in t e r @vmptr () ;
3 u in t 16 t varInRAM ;
4

5 u in t 16 t ∗ t e s tFunct ion (
6 u in t 16 t ∗ value @vmptr ()) @vmptr () {
7 ∗ value = 54 ;
8 return value ;
9 }

10

11 command r e s u l t t StdControl . i n i t () {
12 varInRAM = 123 ;
13 varInVM = varInRAM ;
14 po in t e r = &varInVM ;
15 varInVM = ∗ t e s tFunct ion (po in t e r) ;
16 return SUCCESS;
17 }

Figure 5.3.: nesC code that accesses variables stored in virtual memory

memory have to be tagged with the attribute “@vm”. The ability to tag variables,
parameters, and functions with user-defined attributes is another feature introduced
in nesC 1.2. Only variables which are declared globally within a component or marked
as “static” can be placed in virtual memory. Local variables of functions, in contrast,
are always allocated in RAM on the stack.

It is not possible to reference a variable in virtual memory using a normal pointer
variable, since its actual position in RAM may change after it has been swapped out
to flash memory. In this case the runtime system could not associate the pointer value
with a variable in virtual memory. Therefore, pointer variables as well as parameters
and return values of functions that refer to a variable in virtual memory have to be
tagged with the attribute “@vmptr”. All variables and parameters that are tagged
with this attribute are modified by the pre-compiler as well: They no longer refer to a
location in RAM but contain an ID that denotes the corresponding element in virtual
memory.

The only restriction for the developer is that casting variables to types of a different
size is not allowed. The reason for this is that data elements in virtual memory are
not necessarily contiguous. Without this restriction it would be possible that several
flash operations are necessary for such an access.

Adding the attributes “@vm” and “@vmptr” is the only change to the code that has
to be performed by the application developer when using ViMem. As the example in
Fig. 5.3 shows, accesses to such variables look exactly like accesses to normal variables.
In the example there is one variable stored in RAM (“varInRAM”), one stored in
virtual memory (“varInVM”), and a pointer to a variable in virtual memory. The
sample code shows that ViMem uses pure nesC code. If the pre-compiler is not run,

101

5. Data Storage in Virtual Memory

0100101001001110
1100101101100111
0001111000000000
1101110100001010
0111011101111101
1000001110101101
0100101000000011
1100101101100111
0001111011011011

0x0 0101001001110110
0x1 0101101100111000
0x2 1111011011011110
0x3 0000000000110010
0x4 1011101111101100
0x5 0001110101101010
0x6 0101001001110110

Program memory

C
od

e
V

M
 ID

 ta
bl

e

Virtual memory

Direct access
page 0, offset 10

In
di

re
ct

 a
cc

es
s

w
ith

 ID
 3

P
ag

e
0,

 o
ffs

et
 5

0

Figure 5.4.: Mapping of IDs to virtual memory

nesC could still compile the same code and store variables in RAM.

The ViMem pre-compiler takes this code and removes the declaration of all variables
placed in virtual memory. Instead it assigns them an ID that refers to a position
in virtual memory. Therefore, it replaces all references to such variables as well as
accesses via “@vmptr” variables with calls to the ViMem runtime component that
refer to the element’s ID. Like most functions in nesC, calls to the components of
the ViMem runtime system are usually inlined. This reduces the overhead associated
with accesses to variables in virtual memory. Furthermore, as described in Section 5.3,
ViMem’s pre-compiler places variables intelligently in virtual memory in order to
reduce accesses to flash memory.

For efficiency reasons, the pre-compiler uses two different ways to translate an ID of
a data element in virtual memory to the right memory location. If the ID is known
at compile-time, the pre-compiler inserts a direct call to the runtime system with the
correct page and offset in that page. This is possible for all variables except pointers
and accesses to arrays when the element index is stored in another variable. For
these two types of accesses the exact ID of the element is not known at compile-time.
Therefore, the runtime system has to look up the page and offset of the data element
whenever such a variable is accessed. This information is stored in a table in program
memory where it can be read efficiently without occupying space in RAM.

These two alternatives are shown in Fig. 5.4. The first ID can be resolved at compile-
time and, therefore, the address in virtual memory can be directly inserted. For the
second access, however, the ID needs to be resolved at runtime. For example, the data
element could be accessed via a pointer. Thus the actual position in virtual memory
has to be looked up in the table containing the IDs.

If possible, the pre-compiler uses the first type of access because the performance of
the second variant is slightly worse (see Section 5.4.1).

102

5.2. Design

Runtime Component

The runtime component is responsible for checking if a page needed currently resides
in RAM and to move pages from and to flash memory. It has been optimized regarding
its fast path, i.e., the overhead for the most common case (accesses to pages already
in RAM) has been reduced. For accesses to pages that have to be loaded first, opti-
mization is not as critical since a much longer delay is imposed by the flash memory
operations. Furthermore, we have tried to keep the RAM consumption of the runtime
system low. However, where possible, we opted to reduce overhead on the fast path
by keeping data structures for efficient accesses in RAM (see Section 5.4.3 for details
on RAM overhead). Since with ViMem the strict RAM limitations are no longer a
severe problem, marginally increasing the RAM consumption of the system does not
limit the memory available to the application.

The performance of ViMem depends on the number of virtual memory pages that
are kept concurrently in RAM. This parameter is determined by the pre-compiler
dynamically based on the memory space available. In Section 5.4.3 we show how this
number influences the overall performance.

For accesses to flash memory, ViMem uses the standard TinyOS “PageEEPROM”
component which has been slightly modified and extended for our purposes. Never-
theless, our version of this component is fully compatible with the old version, which
also allows other parts of an application to access the flash. The only drawback of
such uses by another component will be a somewhat degraded performance since the
flash chip is blocked if that component reads or writes pages. In addition, ViMem
has to share the flash buffers with that component, which may lead to an increased
number of actual writes to the flash chip.

Our modifications to the flash component are limited to three changes: First, the
flash component resets its state immediately after executing a command instead of
doing this in a separate nesC task. This modification allows subsequent accesses to
flash memory from a single task. Secondly, we optimized read accesses by transferring
pages directly to the CPU without loading them into one of the flash chip’s SRAM
buffers. Since modified pages would have to be written to actual flash memory if
another page was loaded into its buffer, this change reduces the number of write
accesses to flash memory. Finally, we added a new command that avoids unnecessary
page transfers from RAM if the same (unchanged) page is still stored in one of the
buffers. This modification reduces the number of page transfers to the flash memory
chip if modified pages have been copied from a buffer to RAM again only for reading.

5.2.5. Integration with TinyXXL and TinyCubus

This section describes how TinyXXL makes use of ViMem to store its data and which
changes to ViMem are necessary if it is used within the dynamically adapting Tiny-

103

5. Data Storage in Virtual Memory

Cubus framework.

As described in Chapter 4, cross-layer data declared with TinyXXL is stored in the
TinyStateRepository . If data from neighboring nodes is needed, it can amount to
significant sizes. Therefore, ViMem lends itself to store the data of the TinyState-
Repository . If the application developer decides to use it for this purpose, however,
some data might be accessed from functions called by time-critical interrupt handlers.
If the corresponding memory page has to be read from flash memory first, the appli-
cation would probably not work as expected. Information about the functions called
from interrupt handlers is already gathered by the nesC compiler. However, it is not
exported to other tools. Therefore, we extended the nesC compiler to make this data
also available in its XML file.

This is the only modification to the nesC compiler for our cross-layer framework.
If it is not applied, it is still possible to use TinyXXL and ViMem. In that case,
however, the developer should manually avoid accessing data via TinyXXL in time-
critical functions.

TinyXXL’s virtual data items (see Section 4.3) can still be used in the presence of
virtual memory. Since their values are computed at each access, they are not stored
in virtual memory themselves. However, the data from which they are derived can be
placed in virtual memory.

If ViMem is used within the TinyCubus framework, some changes to ViMem – as it
has been described above – are necessary.

If TinyCubus dynamically adapts the components forming the application, the mem-
ory layout has to be adjusted as well. Otherwise, it would not be optimized to the
actual application running. In fact, in most cases the data elements required by the
new component will not match those present in the old one’s memory layout. Includ-
ing a separate memory layout with each component is not feasible because then the
overall layout of the application could not be optimized. Thus a combined memory
layout for each set of components forming an application has to be created offline.
Creating such an optimized layout on the sensor nodes is not practicable because of
the additional runtime overhead. Therefore, there has to be a way of transmitting
a memory layout suitable for the current components to the sensor nodes. Existing
algorithms for code distribution cannot be used because they usually disseminate the
code throughout the network. In the TinyCubus scenario, however, each node – or
each group of nodes – can potentially run a different set of components. In addition,
once the memory layout is available on the sensor node, it has to be integrated with
the code image. Therefore, this task has to be done on the sensor nodes as well.

Besides the memory layout, the code of the components needed for adaptation has to
be somehow transmitted to the sensor node. However, transmitting these components
to all nodes of the sensor network would impose a large overhead. Therefore, we have
developed a protocol that sensor nodes can use to request both the code and the
memory layouts [Weinschrott 2007]. Since radio transmission is energy-expensive and

104

5.2. Design

since the size of such data can be several kilobytes, the protocol caches the data items
in the network to reduce traffic. Nodes that are on the route and, therefore, receive the
data anyway, decide themselves if they want to add it to their cache. If a node needs a
new component or memory layout, it starts an expanding ring search [Yavatkar et al.
1995] to find a cache that is nearby.

To install the memory layout on the sensor node FlexCup [Marrón et al. 2006a], our
dynamic linker, can be extended. Since FlexCup modifies the code before installing it
into program memory, it is the natural place to update the memory layout. However,
updating the layout in the compiled files requires some modifications to the code
generated by the ViMem pre-compiler.

Having FlexCup modify the code itself, i.e., changing the parameters of the functions
calling ViMem’s runtime system, is most of the time not feasible. These functions
would have to be treated separately from any other functions processed by FlexCup
and it would have to be ensured that the compiler does not do any optimizations that
use the values of the parameters for any other purpose. Therefore, when using ViMem
together with FlexCup not just arrays and pointers (as described in Section 5.2.4) but
all variables have to be accessed indirectly using a reference to the memory layout
in program memory. Although this is slightly less efficient, the additional delay is
only noticeable for the access time if the data element is currently available in RAM.
Therefore, FlexCup does not have to modify every access to virtual memory but simply
replaces the table containing the memory layout mappings.

When combining components dynamically, the compiler does not have a global view of
the variables available at runtime. Therefore, not only is finding an optimal memory
layout impossible, but also assigning IDs to data elements is difficult. Since the set of
components used at runtime is not known in advance, the ID for each data element
would have to be globally unique, i.e., for all possible combinations of components.
Even if assigning such IDs is possible (e.g., using a combination of a component ID
and its local data IDs), they will be considerably longer than the two bytes normally
used by ViMem.

It is necessary that within each application the IDs are unique. If they were just
unique within each component, pointers to virtual memory could not be exchanged
among the components. Therefore, we use the following solution for the integration of
ViMem and FlexCup: Each component contains a second table in program memory
that maps the locally unique IDs of data elements to the IDs used by the overall
application. This table is also updated by FlexCup when installing the application.
This solution requires an additional indirection. However, since the table is stored in
program memory, the costs for that are – again – comparatively small.

Fig. 5.5 summarizes how all accesses to virtual memory are done when components
can be dynamically replaced. Each component includes a separate table that maps its
local IDs to the memory IDs of the application. The retrieved application ID is then
used to look up the position in virtual memory. Both of these mappings are updated

105

5. Data Storage in Virtual Memory

1000101001001110
0100101101100111
1101111011011011
0101110111101011
1011011101111101
1100001110101101
0000101000000011
1000101101100111
1101111011011011

Program memory

C
od

e

ID
 ta

bl
e

fo
r

co
m

po
ne

nt

Virtual memory

A
cc

es
s

w
ith

 lo
ca

l
co

m
po

ne
nt

 ID
 3

0x0 0101001001110110
0x1 0101101100111000
0x2 1111011011011110
0x3 0000000000000101
0x4 1011101111101100

0x0 1101001001110110
0x1 1001101100111000
0x2 0111011011011110
0x3 0001110101101010
0x4 1011101111101100
0x5 0000000000110010
0x6 0101001001110110

A
cc

es
s

w
ith

ap

pl
ic

at
io

n
ID

 5

P
ag

e
0,

 o
ffs

et
 5

0

ID
 ta

bl
e

fo
r

ap
pl

ic
at

io
n

Figure 5.5.: Additional indirection for VM accesses within TinyCubus

when a new combination of components is installed.

In summary, FlexCup has to fulfill two additional tasks with ViMem. First, it has to
update the table of each component that maps the local IDs of data elements to those
used by the application. Second, it has to update these application IDs to reflect an
optimized layout.

5.3. Memory Layout Heuristic

This section describes our memory layout heuristic that determines the placement of
variables in virtual memory. It is the core part of our approach to reduce the number
of flash accesses and, thus, improve on efficiency. The heuristic has two main goals:
First, it aims to exploit locality of reference in order to reduce the overall number of
page replacements. Second, it puts special effort in decreasing the number of write
accesses to flash memory.

ViMem’s pre-compiler runs this algorithm when building the application. Fig. 5.6
gives an overview of the heuristic. As we describe in the following subsections, it uses
simulation traces to determine an efficient memory layout by grouping variables and
placing them on memory pages.

5.3.1. Use of Variable Access Traces

In general, finding an optimal memory layout is not possible since the exact order in
which variables are accessed at runtime depends on many factors. For example, in

106

5.3. Memory Layout Heuristic

Process variable access trace
While trace not completely processed

Let d be the currently accessed data element and v the corresponding node in the graph
Add d to list l of recently accessed elements
If l already includes another access to d

Remove older entry
While the size of all elements in l > Constant

Remove oldest entry
Increment the weight of v
Increment the weight of all edges between v and the other elements in l

Group data elements
While not given percentage of elements grouped and suitable edges are available

Let emax be the edge that connects v1 and v2, where v1 and v2 consist of less than a predefined
number of data elements and where the normalized proximity g(emax)/(f(v1) + f(v2)) has the
greatest value

Merge v1 and v2 into vgroup

Set node weight of vgroup to the average of the elements it contains
Remove duplicate edges from vgroup to any other node and set the edge weight to the maximum

weight of these edges

Place groups on memory pages
While not all data elements have been placed

Let g be the group of data elements with the maximum number of accesses that has been
assigned to a flash page yet

If g is written often
Select first write-often page with enough space for g
Place g on that page

Else
Select first mostly-read page with enough space for g
Place g on that page

Figure 5.6.: Overview of the memory layout heuristic

sensor networks data gathering requests from users as well as sensory input and packets
received from other nodes may influence the application flow. Even if the exact order
of accesses were known at compile-time, finding an optimal memory layout would be
an NP-complete problem [Gupta 1991]. Therefore, our memory layout algorithm can
only provide a heuristic that does not necessarily find the best solution.

Although the specific order of data accesses is not predictable, usually there are pat-
terns that recur. For example, some variables are often accessed following each other
and some of them are accessed more frequently than others. Our heuristic uses simu-
lation traces to determine such patterns for variables stored in virtual memory. Even
if the same sequence of accesses is not repeated when running the application later,
we argue that these traces can provide valuable hints for data placement. However,
the simulation scenario has to resemble the actual operation of the sensor network.
Since simulation is a technique often used when developing sensor network applications
and since simulation scenarios have to be realistic to evaluate the functionality and

107

5. Data Storage in Virtual Memory

performance of the application anyway, this step does not impose excessive additional
burden on the application developer. Furthermore, as these results can be obtained by
extending the simulator rather than modifying the application, gathering information
about variable accesses does not alter the behavior of the application itself. Therefore,
a single simulation run can be used both to test the application and to obtain a data
access trace.

The ViMem pre-compiler can be configured to use for variable placement either the
access traces of all nodes of the network, those of a group of nodes, or just the ones
of a single node. This allows the system to optimize the memory layout for nodes
with different tasks, although they may execute the same code image. For example,
a node at the edge of the network can have different variable access patterns than
a node at the center where more packets have to be forwarded. We expect that the
performance of ViMem is best if a separate code image with an optimized memory
layout is installed for each such group of nodes. Otherwise, the system remains fully
functional, but at increased memory access costs.

If no simulation data is available (e.g., when building a new application), the ViMem
pre-compiler uses the variable references in the source code to estimate the number
of accesses. Obviously, this information can be inaccurate because it is unclear how
often a function is called or which branch of an if-statement is selected at runtime, for
example.

We have verified each design decision taken for our heuristic using existing sensor
network applications and always selected the alternative that offered the best perfor-
mance. As Section 5.4 shows, the results of the heuristic are promising.

As described above, the pre-compiler splits up complex variables, such as large arrays
and structs, and examines each part individually. For example, the first elements of
an array might be accessed more frequently than the last ones. Therefore, instead
of recording the access just for complex variables as a whole, all data accesses are
associated with individual data elements. This approach allows the memory layout to
more closely resemble the actual access patterns. The only exception to this rule are
small arrays: our algorithm always treats accesses to one of their elements as accesses
to the complete array. In our experience with existing applications the elements of
such arrays have a tight coupling and, therefore, should be regarded as a single entity.

5.3.2. Grouping of Data Elements

Having gathered information about accesses to data elements, the memory layout algo-
rithm groups those data items often accessed together. When reading an access trace
the pre-compiler calculates the weights of a fully-connected graph G = (V, E, f, g),
where the nodes V are the data elements and the edges E represent the relationship
between the data elements. In this graph both the nodes and edges are weighted: The
weight of a node, given by f : V → IR, indicates how often the corresponding data

108

5.3. Memory Layout Heuristic

b: 1

Recently accessed:Access trace:

Read s.y
Write a
Read a
Write s.y
Read s.x
Read b
Read a
…

1

0

1

2 3

0
1

0

0

0

a: 3

s.x: 1 s.y: 2

c: 0
b: 2 bytes

a: 1 byte

s.x: 4 bytes

s.y: 2 bytes

a: 1 byte

s.y: 2 bytes

M
ax

. 8
 b

yt
es

I

II

III

IV

V

Figure 5.7.: Example for processing an access trace

element has been accessed, and the weight of an edge, defined by g : E → IR, gives
information about the proximity of the data elements it connects.

For each sensor node in the network, the pre-compiler maintains an ordered list of
data elements that have been accessed recently. Each data element appears in this list
at most once for only its most recent access. The sum of the sizes of all elements may
not exceed a parameterizable constant. These elements represent those that should
be preferably in RAM when the new element is accessed. If one of them is not stored
in RAM, a page fault can occur and another page would have to be loaded to RAM.
When the ViMem pre-compiler adds a data access from the trace, it increases both
the access count in the data element’s node and the proximity to all data elements in
the list.

Proximity of two data elements deliberately does not take into account the temporal
distance between accesses to data elements: To determine if they should be placed on
the same memory page, it does not matter whether or not there is some delay between
accesses – as long as no other variables are accessed in between.

Fig. 5.7 shows an example how an access trace is processed. The figure displays parts
of an access trace for one node, the graph G, and the list of recently accessed elements.
For simplicity, it assumes that the size of a memory page is just 8 bytes and that the
same maximum size is used for the elements in the list. The figure shows the simple
variables “a” (size: 1 byte), “b” (2 bytes), and “c” (4 bytes) as well as struct “s” with
its fields “x” (4 bytes) and “y” (2 bytes). As described above, the algorithm splits
up the parts of the struct and examines each field individually. In the example the
last line of the access trace is being processed, which leads to the changes highlighted
with arrows. First, the element is added to the list of recently accessed data elements
(I). Since the total size of the elements in this list is greater than the page size, the
algorithm removes the oldest element (“s.y”, crossed-out in the figure, II). Then it
increments the weights of “a” (III) and of all its edges to elements in the list (IV and
V).

109

5. Data Storage in Virtual Memory

After reading the complete access trace, ViMem’s pre-compiler tries to group the
elements that are often used together. To achieve this goal it merges nodes in the
graph G that have high proximity values. This step is inspired by the procedure
sorting algorithm [Muchnick 1997] that performs similar operations on the call graph
to place the code of a procedure always near its callers.

In this step the algorithm does not use the raw proximity value g(e) but normalizes
them using the access counts of the data elements (f(v1) and f(v2)) it connects:
p = g(e)/(f(v1) + f(v2)). This way, the algorithm can form groups both of elements
accessed frequently and of those only used seldom. It repeatedly selects the edge emax

from the graph G with the highest normalized proximity value pmax. The algorithm
then merges the nodes connected by emax and coalesces their edges. It sets the node
weight of the group to the average of its elements’ weights, which helps to treat merged
nodes and original ones as equal when computing p. The weight of coalesced edges
is set to the maximum of the original edge weights. This preserves close proximity
between elements even if they have become parts of merged nodes. The elements
forming one such new node are grouped and always placed on a single memory page
later.

The algorithm repeats this process until a given percentage of data elements has been
grouped. If, however, the size of the group exceeds a given limit (e.g., one eighth of
the size of a memory page), no more elements are added to it. The reason for this
is that we want to avoid very large groups which are less flexible when creating the
memory layout.

5.3.3. Data Placement

After determining the groups of data elements used together, the memory layout
algorithm places them on actual memory pages. This part of the heuristic processes
the elements in the order of their access frequencies because proximity has already
been exploited when forming groups. This way data elements that are accessed often
are placed on the same memory page, which can probably stay in RAM for most of
the time, while elements that are used only seldom do not occupy space on pages in
RAM.

The algorithm places the data using a first-fit strategy with two sets of pages: one
with elements that are modified often and one with those that are written only sel-
dom. When placing an element, it checks if the number of write accesses is above a
threshold. In this case the element is placed on a page that contains other elements
that are written frequently whereas all elements that are mostly read are placed on
different pages. If a page has to be removed from RAM, this approach makes it more
likely that the page does not have to be written back to flash memory. Similarly,
if a modified page is removed from RAM, it is probably written because of multiple
changes. Therefore, this scheme takes into account the differences between read and

110

5.4. Evaluation

a
1 byte

s.y

a

c

c

s.y

c

c

Page 0: 8 bytes

b

s.x

s.x

b

s.x

s.x

Page 1: 8 bytes
b

2 bytes

c
4 bytes

s.x
4 bytes

s.y
2 bytes

50
accesses

struct s

150
accesses

160
accesses

70
accesses

150
accesses

155
accesses

Figure 5.8.: Example for the memory layout algorithm

write accesses mentioned above. In some cases this part of the heuristic helped to
reduce the number of write accesses by up to 70%.

Fig. 5.8 takes up the example from Fig. 5.7 after the complete access trace has been
processed. For simplicity, the example does not distinguish between read and write
accesses. In the situation shown just “s.y” and “a” are grouped. Then all groups and
single data elements are placed on flash pages in the order of their access counts. The
variable “b” is put completely on the second page, as elements may not span several
pages. This way at most one flash memory operation is necessary when accessing a
variable. As the example shows, the elements on page 0 are accessed more frequently
than those on page 1. Therefore, this page will probably be kept in RAM most of the
time whereas page 1 can be replaced more often with other pages.

5.4. Evaluation

In this section we present evaluation results for ViMem. All experiments have been
performed using Avrora. This simulator contains an energy model with detailed infor-
mation about the energy consumption of the hardware components [Landsiedel et al.
2005].

5.4.1. Isolated Memory Access Performance

Table 5.2 compares the access speeds of a single variable access depending on where
the variable is currently stored.

111

5. Data Storage in Virtual Memory

Table 5.2.: Typical latencies for different kinds of variable accesses
Type of access Delay
Variable in RAM 1.09µs
VM variable in RAM 18.72µs
VM var. from buffer without page write 3.66ms
VM var. from flash without page write 3.72ms
VM var. from flash with page write to buffer 7.58ms
VM var. from flash with page write to flash 19.83ms

Variables that are not included in ViMem’s virtual memory system are always stored
in RAM. The access to such a variable takes only 1.09µs.

If a variable is stored in virtual memory, there is some overhead for each access even
if the page containing the variable is already available in RAM. The reason for this
is that ViMem’s runtime system has to check first if the page is currently stored in
RAM. Since our hardware platform does not directly support virtual memory, this
has to be implemented in software. Therefore, it takes up to 18.72µs to access such
a variable. This number also includes the address translation of the variable ID to
the correct memory page and the offset within this page. However, in many cases this
translation can be done offline by the compiler. Then the latency for variable accesses
is reduced by 22% to 14.65µs (not shown in the table).

If a page is not stored in RAM but has to be retrieved from either the flash memory
chip’s buffers or the flash memory itself, the delay increases further. If the replaced
page in RAM has not been modified and thus does not have to be written back to flash,
it takes about 3.7ms to read a new page from the flash buffers or the flash memory
itself. These numbers also contain the processing overhead of ViMem’s runtime system
that has to find a page to replace in RAM. However, the dominating factor is the
transfer time of the page from the flash memory chip to the CPU via the Serial
Peripheral Interface (SPI). This transfer time also prevails if a page from RAM has to
be copied to one of the flash buffers. Because one page has to be read from the flash
chip and another one has to be written to one of the buffers, the latency approximately
doubles.

An even larger delay can be observed if another page has to be written from the flash
buffer to flash memory in order to free a buffer for the new page coming from RAM.
The whole cycle of writing that page to flash memory, writing another one from RAM
to the flash buffer, and reading the new page takes more than 19ms.

These numbers seem huge compared to a variable access in RAM. However, it should
be noted that ViMem’s goal is to reduce the number of flash accesses, especially page
writes. Therefore, in practice only a small number of variable accesses leads to such
long delays, and most variables are accessed in RAM (see Sections 5.4.2 and 5.4.3 for
details). In addition, since access to virtual memory is only allowed in non-time-critical
functions, even long delays do not affect the operation of the application. Finally, in

112

5.4. Evaluation

other domains, where virtual memory has been successfully used for years, similar
delays can be observed. For example, the random access speed of typical hard disks
for PCs is about 10ms.

5.4.2. Application Performance

In this subsection we focus on the performance of complex applications using ViMem.
We have modified two of the most RAM-intensive applications available in the TinyOS
CVS repository [TinyOS]: TinyDB and Maté.

Experiment Setup

As already described in Chapter 4, TinyDB [Madden et al. 2005] provides an SQL-like
query interface to the sensor network. With almost 30,000 lines of code it is one of the
most complex applications available for TinyOS and as a part of the TASK system
has been successfully used in real-world deployments [Tolle et al. 2005]. As described
in Section 5.1, TinyDB requires the user to select at compile-time which functionality
to include in the code image since the variables of all its components would not fit in
RAM.

Maté [Levis et al. 2005] is a virtual machine that executes applications, which have
been compiled to a special byte code format. Although this byte code representation
is more compact than native code, RAM still is a limiting factor, since the user’s
application as well as its variables have to be stored there.

We have modified both applications to make use of ViMem. In TinyDB we have only
put variables of application and routing components in virtual memory, as they are
responsible for large amounts of memory consumption. Pointers to variables in virtual
memory are still stored in RAM to avoid two flash accesses for a single data item. In
addition, we have not added variables to virtual memory that are used in time-critical
functions like “async events” or are cast to another type. TinyDB heavily uses the last
kind of variables to implement a dynamic memory allocation mechanism. Although
we have left this mechanism untouched, with significant changes to the application it
would be possible to replace large parts of it with virtual memory.

Concerning Maté we have focused on the variables storing the application code capsules
in RAM and left all other variables unchanged. First, these variables consume large
amounts of RAM. Secondly, this part of Maté is essential to build more complex
applications. Finally, Maté already provides mechanisms to adapt the size of these
variables to the underlying hardware platform. If more memory for the byte code
becomes available by using ViMem, it is easy to adjust Maté to take advantage of
this.

113

5. Data Storage in Virtual Memory

Table 5.3.: Variables moved to virtual memory
Application Number Size Pages used
TinyDB 75 569 bytes 2.15
Maté 1 792 bytes 3.0

Table 5.4.: Allocated space in RAM
Application Original ViMem
TinyDB 2,832 bytes 2,577 bytes
Maté 3,196 bytes 2,727 bytes

Table 5.3 summarizes the number and size of variables that are stored in virtual
memory and shows the number of memory pages used. All of these modifications were
done by simply adding the “@vm” and “@vmptr” attributes to variables or pointers,
respectively. With Maté all the code capsules are stored in a single array. Therefore,
just one variable has been marked with the “@vm” attribute. We have compiled both
applications with their default settings.

Table 5.4 compares the size of allocated memory in RAM for the original and the
ViMem versions of the applications. In addition to the size of the page currently kept in
RAM the ViMem versions also include the RAM overhead of their runtime components
as well as the flash memory access components from TinyOS (approximately 50 bytes).

We have created several versions of TinyDB and Maté that use virtual memory and
differ only in their respective memory layouts. The first version uses the same run-
time components as ViMem but places data elements in the order in which they are
processed by the compiler using a first-fit strategy. This approach makes use of the
observation that variables declared together are often used together and, therefore, ex-
ploits the natural locality of the code. The other virtual memory versions use ViMem’s
heuristic to create an optimized memory layout. One of them just relies on information
about variable accesses from the source code whereas the other ones base their layout
on simulation traces. For both applications one such trace has been created when no
query or no byte code application, respectively, was running. For TinyDB the second
trace has been created when one query to report the node ID was being executed.
Similarly, for Maté we have run the CntToLeds application from the tutorial [Maté]
for recording the second simulation trace.

All data access traces have been obtained from a deliberately simple setup with just
five nodes in a grid topology. In contrast, the actual simulations of the applications
have been done in a network of 50 randomly placed nodes. These changes in the
simulation setup help to show that some differences between the scenario in which
the access traces have been obtained and the actual operation environment do not
influence the effectiveness of our heuristic.

For these experiments we keep just one memory page (264 bytes) in RAM. This is the
worst case for a virtual memory system: if a variable from another page is accessed,

114

5.4. Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

TinyDB
with two queries

TinyDB
with one query

TinyDB
without queries

P
er

ce
nt

ag
e

of
 p

ag
e

fa
ul

ts

First−fit
Source code

Trace without queries
Trace with one query

(a) Page fault rate

 0

 0.5

 1

 1.5

 2

 2.5

TinyDB
with two queries

TinyDB
with one query

TinyDB
without queries

A
ve

ra
ge

 la
te

nc
y

[m
s]

First−fit
Source code

Trace without queries
Trace with one query

(b) Average access latency

Figure 5.9.: Simulation of TinyDB

this page has to be loaded from flash memory first. Having just one page in RAM
eliminates side-effects of the page replacement algorithm. Therefore, the performance
is just influenced by the memory layout.

We have simulated TinyDB and Maté using different scenarios. Each of them has
been simulated for 1,000 seconds.

Simulation of TinyDB

Fig. 5.9 shows simulation results for the four variants of TinyDB described above in
three different scenarios. The first two scenarios correspond to the ones used to get
the data access traces. In the third scenario an additional query is dispatched which
reports the values of the light sensors.

In Fig. 5.9(a) we show the ratio of variable accesses leading to a page fault, i.e., a
read access from secondary storage (including reads from the flash chip’s buffers). In
many cases ViMem’s memory layout algorithm greatly reduces the number of accesses
to flash memory. Using only the data references from the source code it is already
able to decrease the percentage of accesses leading to page faults by at least 35%.
Nevertheless, memory layouts that have been optimized for a given scenario can reduce
the percentage of page faults even further. For the scenarios executing queries in the
best cases the page fault rate is just around 1% (about 3,000 page reads). This
excellent result is possible because only a subset of the variables in virtual memory
is frequently used. In these experiments 90% of all accesses refer to just 20% of the
bytes in virtual memory.

For the scenario when no query is running the page fault rate is slightly greater
(approximately 5% or 1,400 page reads) even if the memory layout has been optimized

115

5. Data Storage in Virtual Memory

specifically for this scenario. The reason for this is that here a much smaller number
of accesses is distributed over almost the same number of distinct data elements.

As the versions optimized with traces of the respective other situation show, the
scenario used to obtain the access traces should not differ too much from the actual
execution scenario. In fact, in such cases the version optimized using the source code
can be even better than an application optimized for the wrong scenario – especially, if
the simulation scenario was too simple for the execution environment. However, if more
information about the execution scenario is available, using traces from simulation can
reduce the number of page faults by about 60% compared to just using the source
code for optimizations.

With ViMem less than 7% – and in the best case just 0.6% – of all variable accesses
lead to a page write to the flash buffer. In addition, at most 0.1% of all variable
accesses result in an actual write access to flash memory. The reason for this is both
the efficient memory layout and the use of the flash chip’s buffers as a second level
of caching. In absolute numbers, in our simulations with ViMem each node usually
performs just 2 such operations. Our wear leveling heuristic described in Section 5.2.3
ensures that write accesses are evenly spread across all allocated flash memory pages.
The first-fit strategy, however, has to transfer a page to the flash buffer in up to 14%
of all variable accesses. Each node writes up to 1,696 pages to flash memory, although
it uses the same buffering techniques as ViMem. We attribute this difference primarily
to the distinction of pages that are mostly read and those that are written often.

As the access latency directly depends on the number of page faults and write accesses,
similar results can be reported for these measurements. As Fig. 5.9(b) shows, ViMem
reduces the latency for TinyDB up to 95% compared to the first-fit layout. However,
even for the version optimized using the query trace, the average latency is still at least
75µs whereas an access of a normal variable in RAM is performed in approximately
1µs.

If more than one page is kept in RAM, most of these numbers will be further reduced,
since a smaller number of flash accesses will be necessary. For instance, if two memory
pages are kept in RAM, for the ViMem versions in many cases no page faults at all
occur and the average access latency can be as small as 16µs. Furthermore, in sensor
networks processing power is usually not as constrained as other resources; in typical
sensor network applications the CPU is idle most of the time. Therefore, we think
that the overhead introduced by ViMem is acceptable for many applications.

We do not present detailed results for energy consumption because they are domi-
nated by other hardware components and interactions between nodes. In addition,
the timings of the TinyDB versions vary so that, for example, the applications send a
different number of packets or turn on their LEDs for differing durations. Therefore,
the values oscillate. In Section 5.4.3 we show results for energy consumption in a more
controlled setting.

116

5.4. Evaluation

 0

 5

 10

 15

 20

 25

 30

Maté with
Aggregation

Maté with
CntToLeds

Maté without
application

P
er

ce
nt

ag
e

of
 p

ag
e

fa
ul

ts

First−fit
Source code

Trace without application
Trace with CntToLeds

(a) Page fault rate

 0

 0.5

 1

 1.5

 2

Maté with
Aggregation

Maté with
CntToLeds

Maté without
application

A
ve

ra
ge

 la
te

nc
y

[m
s]

First−fit
Source code

Trace without application
Trace with CntToLeds

(b) Average access latency

Figure 5.10.: Simulation of Maté

Simulation of Maté

Our simulation scenarios for Maté follow the same pattern from TinyDB. First, we
have simulated Maté without any (byte code) application running and then with the
CntToLeds application, which correspond to the two scenarios used to get the variable
access traces for ViMem. Then we have run the aggregation application from the Maté
tutorial. This is a more complex application that builds a collection tree and calculates
the average value of sensor readings in this tree. Like the third scenario for TinyDB
this one shows the performance when the operation differs from the traces.

As Fig. 5.10 shows, for Maté many of the numbers are even smaller than for TinyDB.
The reason for this is that in our scenarios only some of Maté’s storage spaces for code
capsules are used. Therefore, accesses typically refer to just a small set of variables
that can be kept in RAM most of the time. This behavior, however, is typical for
most applications that allocate their memory statically because they have to reserve
enough space to deal with the worst case.

When no application is executed, there is only a small number of variable accesses
(38 accesses per node, mostly for initialization). Therefore, the high page fault rate
for the unoptimized version shown in Fig. 5.10(a) is somehow misleading as it is just
10 page faults in absolute numbers. The ViMem versions, however, do not show any
page faults at all for this scenario as well as for the execution of CntToLeds. For this
application even the unoptimized version achieves a page fault rate of just 0.23%. This
is because CntToLeds is very small and the code capsules used are (by coincidence)
placed on a single memory page.

For the aggregation application the numbers remain excellent for all ViMem versions
with approximately 6 page faults (less than 0.1%). This application is still small
enough to fit on a single memory page if the memory layout is chosen appropriately.

117

5. Data Storage in Virtual Memory

In fact, less than 6% of the data elements allocated in virtual memory are used in
90% of all accesses. This is because the total size of statically allocated memory has
to be able to accommodate an application consisting of several large code segments. If
some code capsules are only filled partially, the memory space in between is not used.

The short access latencies shown in Fig. 5.10(b) also reflect that a very small number
of write accesses is necessary. If there are page faults at all, each node of the ViMem
versions writes on average less than 4 pages to the flash buffers of which up to 3 are
copied to the actual flash memory chip. The unoptimized version, however, has to
transfer up to 699 pages to the flash buffers, which increases the latency.

5.4.3. Large Data Storage

In this subsection we evaluate ViMem with respect to two parameters: the number of
memory pages in RAM and the total size of all data stored in virtual memory.

Experiment Setup

It is not possible to completely evaluate ViMem using TinyDB and Maté because in
their current implementations these applications do not operate with several kilobytes
more RAM than available. It would be interesting to see, however, how ViMem
performs in this case. Moreover, it is also not possible to evaluate ViMem with simple
applications, which, for instance, access memory sequentially or randomly. Results
from such experiments would not be meaningful, either, because these accesses would
not exhibit the patterns found in real applications.

Therefore, in order to evaluate the behavior of ViMem with larger data sets we have
written a code generator that creates an application with an arbitrary number of data
elements whose distribution of memory accesses is based on the accesses of a real
application. A difference is, however, that for the generated application each data
element has a size of 4 bytes (“uint32 t”). If the number of variables is greater than
in the original application, the code generator adds some random jitter to avoid that
always the same number of distinct variables is accessed. Therefore, when increasing
the total size of data in virtual memory the number of variables actually accessed also
grows.

For the experiments described in this subsection we have used this code generator
to create applications that perform 5,000 data accesses, which are repeated 10 times.
The basis for code generation was a data access trace from TinyDB where no queries
were executed.

We have simulated these applications for 1,000 s. After completing the data accesses,
the application switches the processor into power down mode, where it consumes less
energy. Other hardware devices such as the radio or the LEDs have not been enabled.

118

5.4. Evaluation

In addition, no side effects because of other computations done by the application
or interactions with neighboring nodes occur. Therefore, using this approach we can
measure the pure overhead of the virtual memory system.

We show the results of two sets of experiments. In the first one we have created an
application that allocates 3,168 bytes (12 pages) in virtual memory. We have then
varied the number of memory pages that are kept in RAM. We intend to evaluate the
overall performance of the system here which includes the overhead introduced by the
replacement algorithm at runtime. In the second set of experiments we have increased
the total size of virtual memory up to 15,840 bytes (60memory pages) while keeping a
constant number of pages in RAM. This is almost four times the size of RAM available
on Mica2 sensor nodes. These experiments provide some insight about how ViMem
performs when varying the data size.

We have simulated the generated applications with different memory layouts. First,
where possible, we have created a version that stores all data in RAM without using
virtual memory. Obviously, such a variant could not be created for the second set of
experiments because the total data size is larger than RAM there. Secondly, we have
used a first-fit strategy to place data elements on virtual memory pages in the order
in which they have been declared. The third version uses ViMem’s memory layout
algorithm with information about variable accesses from the source code. Since in
our generated application there are no branches or pointers, this variant has a perfect
view of all data accesses, which in real applications could only be obtained through
simulation. Finally, the last version uses the same trace but omits every fourth access
when processing it. The idea of this variant is to see how ViMem performs if the
operating environment differs from the simulation setup and the exact access trace is
not known beforehand.

Number of Pages in RAM

Fig. 5.11(a) shows the amount of RAM statically allocated by the application with and
without virtual memory. If ViMem keeps just one page in RAM, it saves almost 90%
of RAM and allocates just 378 bytes (including all operating system components and
the flash memory component). For each additional page the memory consumption
increases by 266 bytes, which is just two bytes more than the size of the memory
page itself. Only in the very last measurement ViMem allocates more RAM than the
variant without virtual memory (overhead: 4%).

Fig. 5.11(b) shows the percentage of variable accesses that lead to a page fault when
the number of pages in RAM is varied. The results for one page are greater than those
presented in Section 5.4.2 because the total data size is larger here. As expected, in
these simulations the results using source code optimizations are the best ones. Here
the memory layout algorithm can accurately predict the data access patterns.

Of the 3,168 bytes allocated in virtual memory 1,676 bytes are actually accessed. Since

119

5. Data Storage in Virtual Memory

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12

B
yt

es
 a

llo
ca

te
d

in
 R

A
M

Pages in RAM

No virtual memory
ViMem

(a) RAM allocation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12

P
er

ce
nt

ag
e

of
 p

ag
e

fa
ul

ts

Pages in RAM

First-fit
Source code

Incomplete trace

(b) Page fault rate

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12

E
ne

rg
y

[J
ou

le
]

Pages in RAM

No virtual memory
First-fit

Source code
Incomplete trace

(c) Energy consumption

Figure 5.11.: Varying the number of pages in RAM

120

5.4. Evaluation

this size is much larger than just a few memory pages, conflicts between different pages
in RAM occur with any memory layout for 1 and 2 pages in RAM. For these cases the
optimized versions do not show much advantage compared to the first-fit approach.
In fact, for the version using the incomplete access trace some more write accesses are
necessary which further increases energy consumption (see Fig. 5.11(c)). If, however,
with more pages such conflicts no longer occur, ViMem is able to create efficient
memory layouts. For example, if at least 4 out of 12 memory pages are stored in
RAM, the page fault rate for the optimized versions is less than 5%. From 6 or 7
pages on, respectively, no more pages have to be read from flash. Compared to the
unoptimized version ViMem avoids up to 3,995 page faults for the 50,000 variable
accesses simulated.

Fig. 5.11(c) presents results for energy consumption. The values shown here just
include the energy consumption of the CPU and the flash memory chip. The figure
also includes the values for the application that stores all its data in RAM. Of course,
this approach performs best with results that cannot be reached by any virtual memory
solution. Nevertheless, the results for ViMem are encouraging. When no page faults
occur, the energy overhead of the virtual memory solutions compared to the RAM-
only version is just 0.02 J (5% overhead). If accesses to flash memory are necessary,
roughly half of the total energy is consumed by the CPU and half of it by the flash
memory chip.

It should be noted that this application represents the worst case for ViMem when
comparing it to implementations without virtual memory: Energy is only spent to
access variables. No other devices such as the radio or the sensors consume energy
and no additional computation is performed by the CPU. For example, if the radio
is listening during simulation, energy consumption rises to 39.5 J for the application
storing all its data in RAM. Therefore, for real-world applications, the overhead of
ViMem is less significant, even if some accesses to flash memory are necessary.

Though not shown in the figure, the values for the access latency closely correspond to
energy consumption as both of them depend on the number of read and write accesses
to the flash memory chip. In the best case our heuristic’s latency is just 4% of the
access latency of the first-fit strategy and only 15µs worse than the version storing all
its data in RAM.

In summary, Fig. 5.11 suggests that with ViMem large amounts of RAM can be saved
at justifiable overhead if more than one third of the total number of pages is placed
in RAM.

Total Data Size

All the previously described applications could be implemented without virtual mem-
ory because they allocate less RAM than the 4KB available on our implementation
platform. With the following experiments we want to find out how ViMem performs

121

5. Data Storage in Virtual Memory

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2500 5000 7500 10000 12500 15000

R
at

io
 o

f b
yt

es
 a

llo
ca

te
d

in
 R

A
M

to
 b

yt
es

 in
 v

irt
ua

l m
em

or
y

Total data size [bytes]

ViMem

(a) Relative RAM allocation

 0

 5

 10

 15

 20

 25

 30

 35

 2500 5000 7500 10000 12500 15000

P
er

ce
nt

ag
e

of
 p

ag
e

fa
ul

ts

Total data size [bytes]

First-fit
Source code
Incomplete trace

(b) Page fault rate

 0

 1

 2

 3

 4

 5

 2500 5000 7500 10000 12500 15000

E
ne

rg
y

[J
ou

le
]

Total data size [bytes]

First-fit
Source code
Incomplete trace

(c) Energy consumption

Figure 5.12.: Varying the size of the data in virtual memory

122

5.5. Related Work

if the size of the data is increased. Using our code generator we have created applica-
tions that allocate up to 15.5KB of virtual memory. In all simulations the contents
of 12 memory pages are kept in RAM.

Fig. 5.12(a) shows the ratio of bytes allocated in RAM (including all overhead and
variables from other components used) to the size of virtual memory. As before,
the only case where more memory is allocated in RAM than in virtual memory is
the artificial one with all pages in RAM. In all other measurements virtual memory
provides much more memory than it allocates in RAM. Each additional page in virtual
memory has a RAM overhead of just 3.5 bytes (mostly for the data structures needed
because of wear leveling) and provides 264 bytes to the application.

Fig. 5.12(b) presents the percentage of variable accesses leading to page faults. The
numbers for the first-fit version increase to 35% for a data size of 15,840 bytes
(60 pages). For the versions of the applications whose memory layout has been cre-
ated by ViMem’s algorithm, however, a much smaller number of page faults has been
measured. For the best version the page fault rate stays smaller than 4.1% in all cases.

Despite the randomness introduced when increasing the data size only a subset of
all variables is accessed. This subset can be kept in RAM all the time if the total
data size is less than 11KB. Only after that the first page faults occur with the best
ViMem variant. Again, in real applications such good results could only be obtained
by using simulation traces for optimizations. If the incomplete data trace is used for
optimization, the numbers increase faster but stay well below the first-fit approach.
For this version the maximum page fault rate is 9%.

Fig. 5.12(c) shows the energy consumed by the different versions of the application.
With the best variant the results for the largest data size increase only by 1.1 J com-
pared to the smallest size. For the other ViMem version energy consumption increases
moderately by 2.2 J whereas the first-fit version with 60 memory pages consumes
throughout the simulation 3.7 J more than the 12 page application.

Again, energy consumption is closely related to the average access latency. For this
metric the maximum value of the first-fit approach is approximately 1.8ms. Regarding
ViMem, the latency increases only to 0.80ms for the version optimized using the
incomplete trace and 0.39ms for the other one.

In summary, if sufficient information about access patterns is available, ViMem is able
to significantly enlarge the memory available at only slightly increasing costs.

5.5. Related Work

In this section we present work related to ViMem that deals with virtual memory and
data placement, uses flash memory for other purposes in sensor networks, or provides
other solutions to the lack of memory on sensor nodes.

123

5. Data Storage in Virtual Memory

Virtual memory has a long history in operating systems research [Denning 1970] and
is now a standard technique in modern operating systems [Silberschatz et al. 2002].
It allows the developer to use more RAM than physically available in the system
by swapping out data to secondary storage. The system takes care of selecting the
memory pages stored in RAM and translating addresses. Therefore, virtual memory
is completely transparent to developers. Recently, t-kernel [Gu and Stankovic 2006]
has applied this widely-used mechanism to sensor networks. However, this system
does not modify the memory layout to minimize accesses to secondary storage, which
is an important property of our approach. In addition, there the overhead of a page
fault can occur with every variable access (even in time-critical functions) since the
developer cannot select the variables that are to be placed in virtual memory. Finally,
because it is based on load-time modifications of the code, this further increases the
overhead at runtime.

For traditional computing systems some compiler techniques to optimize the memory
layout for the properties of the memory hierarchy have been proposed. Most of them
either use hardware support, simulation traces, or simply the source code to determine
the memory layout. In many cases the main focus is on restructuring code, which is not
needed for our scenario where the code itself is separate from (virtual) data memory.
For example, Hatfield and Gerald [Hatfield and Gerald 1971] reorder code sectors to
have parts close to each other if they are used together. Similarly, Hartley [Hartley
1988] duplicates code blocks to have functions always near their caller. However, these
optimizations do not modify the arrangement of variables in memory.

Stamos [Stamos 1984] classifies different approaches to create a memory layout includ-
ing both code and data. In his classification our approach would be a graph-theoretic
algorithm that uses information from actual execution traces. However, he regards
the detailed analysis done by our memory layout algorithm as infeasible for his own
scenario, the placement of Smalltalk objects on virtual memory pages.

In addition, there are some techniques that target other parts in the memory hierarchy.
For example, compile-time optimizations can be used to create an efficient memory
layout concerning CPU cache misses. Although similar in spirit, the problem for CPU
caches is different from the one addressed by our approach. Instead of placing data
used together on the same memory page, Calder et al. [Calder et al. 1998] try to
reduce cache misses by placing such entries in memory locations that are mapped on
non-conflicting cache lines.

Muchnick [Muchnick 1997] gives an overview of techniques of compile-time optimiza-
tions for the memory hierarchy. In contrast to our approach, these techniques often
involve modifications to the code such as loop transformations. Regarding the layout
of data in memory, Gupta [Gupta 1991] proves that the problem of finding an optimal
memory layout is NP-complete and describes a heuristic that uses information from
the source code to arrange data in memory.

All of these optimization approaches are targeted to environments different from sensor

124

5.6. Summary

networks. Therefore, they do not specifically address the properties of this domain
(e.g., access characteristics of flash memory, energy considerations, etc.).

Sensor network applications and system components already use flash memory for
different purposes. For instance, it is used to store sensor values directly on the sensor
node [Tolle et al. 2005; Madden et al. 2005]. Storing the data in flash memory can
be more energy-efficient than sending it to a base station [Dutta and Culler 2005].
In addition, code update mechanisms [Hui and Culler 2004; Koshy and Pandey 2005;
Marrón et al. 2006a] use flash memory to store and process code updates before
transferring them into program memory. Finally, ELF [Dai et al. 2004] is a file
system for flash memory that allows application developers to store data without
having to deal with the low-level properties of flash memory. As can be seen from this
description, there is a variety of uses for flash memory in sensor networks.

Instead of using virtual memory, one could also build a sensor node which is already
equipped with more RAM. For example, unlike most sensor nodes the BTnodes [Beutel
et al. 2004] have 240KB of additional RAM. However, there are currently no nodes
available that are equipped both with more RAM and flash memory. If the advantages
of flash memory such as non-volatile storage of sensor readings and its even larger size
are needed, alternative solutions such as virtual memory have to be used. Since one of
the central assumptions of sensor network research is that nodes are cheap, consume
little energy, and have a small form factor, equipping them with more RAM in addition
to flash memory or replacing flash memory with other, more expensive types of memory
is not an option. In fact, in the future the class of inexpensive, energy-efficient nodes
will continue to be equipped with very limited hardware resources [Gu and Stankovic
2006]. In addition, as described above, the experience from other domains shows that
even large amounts of RAM do not lessen the need for virtual memory. Typically,
more complex applications emerge if more memory is available.

5.6. Summary

In this chapter we have described and evaluated ViMem, our virtual memory system
for TinyOS-based sensor nodes. ViMem does not require special hardware support
for virtual memory and has been implemented for standard Mica2 nodes. We have
identified the need for special memory optimizations in the domain of sensor networks
and proposed a compiler-based heuristic to create an efficient memory layout. ViMem
determines the layout based on data access traces obtained from simulation or the
source code itself.

Since finding an optimal memory layout is an NP-complete problem, no (efficient)
heuristic necessarily finds the best layout. However, as we have shown in Section 5.4,
our approach can reduce the overhead of virtual memory significantly compared to
approaches that just exploit the natural locality of variable declarations. Our simula-

125

5. Data Storage in Virtual Memory

tions show that if the properties of the execution scenario are not known beforehand
it is often better to just use the source code for optimizations instead of a simulation
scenario that differs too much.

In spite of all optimization efforts, virtual memory introduces some overhead. As
we show in the evaluation section, this overhead does not hinder the implementation
of nontrivial applications for sensor networks. Compared to other energy consumers
on the sensor node, the increase of energy consumption of ViMem can be almost
neglected. In addition, as sensor network applications are typically inactive for long
periods, no virtual memory accesses and, thus, no overhead occur during these sleep
times.

From a developer’s point of view, using ViMem is simple: Virtual memory variables
just have to be tagged with a special attribute and can then be used as if they were
in RAM. Therefore, the developer does not have to deal with the low-level details of
flash memory accesses. In fact, the code expected by our pre-compiler is pure nesC
code.

ViMem makes it possible to use virtual memory in the domain of sensor networks.
Therefore, the memory limitations of sensor nodes are not as strict as before and
fewer cross-layer interactions are necessary. Even if in future generations of sensor
nodes more memory was available, the convenience of an optimizing virtual memory
system would help to simplify the development of exciting applications, which are
more complex than the ones we know today.

126

6. Abstractions and Algorithms for
Energy-Aware Applications

This chapter presents the final part of the cross-layer framework: In order to address
energy limitations (one of the major reasons for cross-layer interactions) explicitly,
it introduces the abstraction of an energy level. This part of the framework focuses
especially on those applications where the minimum required lifetime for all nodes is
known in advance. At runtime the system selects one of the energy levels that provides
good application quality while meeting the lifetime goals. Then the chapter shows how
some local coordination can be used to better balance energy level assignments over
time. It evaluates this part of the cross-layer framework using simulation as well as
experiments with Mica2 nodes and presents an overview of related work.

6.1. Preliminaries

Traditionally, sensor network research has tried to maximize network lifetime, e.g., by
exploiting redundancy or by applying cross-layer interactions. Although this is useful
in many cases, for some applications the required lifetime is known in advance and
there are no redundant nodes in their topologies. Therefore, instead of maximizing
overall lifetime, it is more important that every single node stays alive for a user-
defined lifetime and that during this time the application provides the best quality
possible subject to the energy constraints present.

For example, in long-term structural health monitoring of bridges [Kim et al. 2007;
Marrón et al. 2005c] the batteries of nodes can only be replaced every few years during
regular inspections [Marrón et al. 2005c]. As the interval of these inspections is known
beforehand, it corresponds to the lifetime goal of the network. Because of high energy
costs for sensing and complex data analysis, measuring and analyzing sensor data is
an energy-intensive task. In addition, due to the typically sparse network topology, a
single node failure can partition the network and thus render large parts of it useless.
Therefore, for this application it is more important to preserve network connectivity
than to do complex analysis on every single node. For instance, if the battery capacity
becomes scarce, nodes could use a less accurate but also less energy-intensive data
analysis algorithm or – in the extreme case – switch to a reduced functionality mode,
where they stop sampling and forward only analysis results of other nodes to the base

127

6. Abstractions and Algorithms for Energy-Aware Applications

station. In these cases, of course, such a node will no longer be able to offer its full
functionality. Nevertheless, we argue that it is still more useful this way than if it
stops working completely.

Even if network connectivity could be preserved with only a subset of the nodes, some
applications require a high spatial resolution of sensors. If some nodes fail before the
anticipated end of the experiment, this reduces the usefulness of the remaining data.
For example, an application to monitor the microclimate of redwood trees [Tolle et al.
2005] transmits all data to a gateway node and stores it locally in flash memory to
increase data yield. However, instead of executing both of these energy-expensive
operations, the lifetime of a node could be extended if just one of them was executed.
Then the node would still deliver some data even if some of it might be lost due to
transmission errors, for example.

Similarly, for wildlife monitoring systems like ZebraNet [Liu et al. 2004] the user
defines the duration of the experiment. In this application nodes gather GPS traces
and forward their data in order to have other nodes (physically) transport it to the
sink. If a node fails, no more data will be gathered for one of the animals. Here there
are several possibilities to save energy by reducing the functionality. First, a node could
no longer forward the data from other nodes and, therefore, decrease energy-intensive
radio communication. Second, it could stop storing other nodes’ data and avoid flash
memory accesses. Finally, it could reduce energy consumption by decreasing the rate
it queries its own position from the GPS receiver.

In these applications it is possible to identify parts which are more energy-intensive
than others and which are not actually needed to provide some basic functionality.
Therefore, the final part of our cross-layer framework is Levels , a novel abstraction for
energy-aware programming of sensor networks that allows the developer to explicitly
single out optional functionality [Lachenmann et al. 2007b].

With our approach developers can specify so-called energy levels in an application
which differ in their energy consumption and the functionality they offer. The code
within each such level is associated with the energy it consumes. At runtime Lev-
els monitors the remaining battery capacity and the energy consumed in each level.
It then selects an energy level that allows the application to achieve its target life-
time, if necessary with restricted functionality. This way the lifetime of individual
nodes can be significantly extended and, for example, network connectivity can be
preserved. Compared to manual implementations of such functionality this program-
ming abstraction and its corresponding runtime system save much development effort.
For example, the application developer no longer has to write code to estimate the
energy remaining in the battery, the energy consumed by parts of the application, or
the time full functionality can be provided.

Our approach is based on measuring the energy consumption of individual energy levels
using an energy profiler with accurate simulation models [Titzer et al. 2005; Landsiedel
et al. 2005]. At runtime each node tries to maximize the utility of the energy levels

128

6.2. Meeting Lifetime Goals with Energy Levels

while achieving its lifetime goal. As we show in the evaluation, the abstraction of
energy levels is useful in real-world applications and Levels is able to help meeting
lifetime goals while providing good application quality.

However, if each node performs this optimization individually, all nodes will probably
switch to similar energy levels at the same time. Then the overall application quality of
the network – i.e., the average utility of all nodes – will be either excellent or poor but
nothing in between. Therefore, we propose different approaches to better distribute
energy level assignments over time. In particular, these approaches randomly assign
the results from the local optimization or coordinate their assignments in a completely
distributed way [Lachenmann et al.]. They increase the probability that, for example,
there are always some nodes gathering data even if some have deactivated their sensors
to meet their lifetime goal. Especially in dense networks like in the microclimate
monitoring mentioned above such coordination can help to provide almost constant
overall application quality.

These approaches cannot only be used to balance energy level assignments but can
also be applied to activate and deactivate nodes if some of them are redundant. This is
useful if the achievable network lifetime is extended with additional, redundant nodes.
In this case it is sufficient if each of them is only active for a fraction of the overall
network lifetime.

Deploying redundant nodes is possible in many applications. It is often easier than
replacing batteries or deploying additional nodes later if the nodes are placed in in-
accessible locations to do, for example, environmental monitoring. Frequently, the
effects on application quality when activating or deactivating nodes are even greater
than when switching energy levels.

Our solution has several benefits. First, the developer does not have to deal with the
low-level issues of energy consumption, which simplifies the development of energy-
aware applications. If the developer does not address these issues, there will probably
be fewer cross-layer interactions and, therefore, their negative side-effects will be re-
duced. Second, our solution helps to ensure that a given lifetime is reached and that
good application quality is offered. Third, with its distributed coordination our ap-
proach ensures that the overall application quality stays roughly constant. Fourth,
the overhead for the developer is just small and we provide a powerful programming
abstraction that allows for modular application development. Finally, the runtime
overhead of our system is negligible.

6.2. Meeting Lifetime Goals with Energy Levels

In this section we present the abstraction of an energy level. First, we describe relevant
design characteristics, the abstraction itself, and its integration into a programming
language. Then we describe in more detail the corresponding runtime system including

129

6. Abstractions and Algorithms for Energy-Aware Applications

its battery model, its mechanisms to attribute energy consumption to an energy level,
and the local optimization of energy levels.

6.2.1. System Design

Sensor Network Properties

Several properties of wireless sensor networks aid our approach of measuring energy
consumption and switching between energy levels at runtime.

First of all, there is usually just a single application running on each sensor node.
Therefore, the expected lifetime of a node depends only on one application that can
be controlled more easily than a multitasking system.

Second, sensor networks typically exhibit some periodic behavior. For example, sensor
readings are sampled periodically at user-defined time intervals. If the sensor network
application reacts to external events, these events often repeat for sufficiently large
periods. Thus it is possible to estimate future energy usage based on past consumption.

Third, because sensor nodes only have limited output capabilities and are often de-
ployed in inaccessible locations, simulation has become an integral part of the devel-
opment process [Titzer et al. 2005]. In addition, simulators are often equipped with
detailed energy models [Landsiedel et al. 2005; Shnayder et al. 2004]. Therefore, sim-
ilar to using simulation traces for ViMem, we can use simulation to get information
about the energy consumption of a piece of software.

Fourth, most sensor nodes available today are equipped with voltage sensors. Since
the voltage provided by a battery depends on its remaining capacity, we can use the
voltage data to estimate the residual energy.

Finally, as the nodes are strictly energy-constrained, in the domain of sensor networks
software developers are more concerned about energy consumption and node lifetime
than developers in other areas. Therefore, we expect that most developers are willing
to invest some effort for specifying energy levels and measuring energy consumption.

Design Goals

Our central design goal for Levels is to provide a programming abstraction and runtime
support that helps to meet the user’s lifetime goals by deactivating parts of an appli-
cation if necessary. To achieve this main objective we have identified the following
subgoals:

• The programming abstraction should allow for the definition of optional func-
tionality and it should be general enough to support a wide range of applications.

130

6.2. Meeting Lifetime Goals with Energy Levels

• Levels should be easy to use and the development overhead should be limited.

• For a given lifetime goal Levels should provide good application quality, i.e.,
nodes should not live much longer than required.

• The system should have a low runtime overhead to avoid that the overhead
absorbs its benefits.

• The runtime system should be able to deal with inaccurate energy estimations
which are inevitable with inexpensive sensor nodes.

System Overview

Based on these design goals we have created the programming abstraction of “energy
levels” that allows to specify optional code blocks. At runtime the system then de-
cides which energy levels are active, i.e., which code blocks should be executed. This
abstraction is described in more detail in Section 6.2.2.

Basically, our system is similar to well-known model predictive control (MPC) schemes
[Camacho and Bordons 2004]: First, we build a model that helps to predict energy
consumption by profiling the energy consumed by optional code (see Section 6.2.3).
This model allows to compute the energy used by each level at runtime. Second,
it is complemented by a battery model that maps voltage readings to the remaining
energy usable by the sensor node (see Section 6.2.4). Third, using the information from
energy profiling Levels keeps track of how much energy is consumed by each energy
level at runtime (see Section 6.2.4). This part of Levels considers both energy that
is consumed just once when executing a code block (e.g., to store some data in flash
memory) and changes in the rate of continuously consumed energy (e.g., by enabling
a sensor). Finally, together with the battery model this data allows to compute the
expected node lifetime in each energy level. This information is then used to optimize
the energy level for the remaining lifetime considering the given energy constraints
(see Section 6.2.4). Like other MPC algorithms, our system considers just the result
for the current time interval and later recomputes the remaining level assignments to
better reflect the new situation.

6.2.2. Energy Levels

An energy level includes all statements that can be deactivated together to reduce
energy consumption. Therefore, code in an energy level is optional for providing
some basic functionality of an application. If a level is deactivated, however, the
functionality of the application may be degraded. To put a code block into an energy
level the developer has to place it into a conditional statement that checks if the level is
currently active. The lowest energy level l0 is always active and is declared implicitly;
it includes all code that has not been added to any other level.

131

6. Abstractions and Algorithms for Energy-Aware Applications

Forwarding

Sensing

Storage

Analysis

l
0

l
1

l
2

l
3

FlashLevel

BasicLevel

Component3

Component4

StoreLevel

BasicLevel

Component2

Component1

StoreLevel

BasicLevel

SenseLevel

ComputeLevel

BasicLevel

Application

0

4

5

7

u
i

Figure 6.1.: Combining energy levels

All the energy levels form a stack where levels can be deactivated starting from the top
one. If level li is active, all levels below it, i.e., l0, . . . , li−1 are active, too. Therefore,
the code in li can rely on the functionality of lower levels. Levels above li, however,
might be deactivated.

Each energy level li is associated with a utility value ui: The application developer
can define this utility in a way that reflects the improvement in functionality.

Having a stack of energy levels does not mean that the functionality of an application
has to increase monotonically with higher levels. By using appropriate conditions it
is possible to, for example, transmit sensor readings in a low energy level to the base
station whereas they are just stored locally (without being forwarded) in a higher
level.

Levels assumes that higher levels lead to an increase in energy consumption. We
expect this to be true for almost any application. Otherwise, energy levels should be
merged because they are ill-defined. Such a situation could be easily detected during
the development phase.

If an energy level is being activated or deactivated, the runtime system calls a special
function to notify the application. It can use this function to adjust to the new level.
For example, if all the sensor sampling code is extracted into an energy level, the
application could turn the sensor hardware on or off in these functions.

Some applications might require that the system cannot change the currently active
level while the node is, for example, sensing or analyzing data. Levels provides an
interface for such applications that temporarily prevents level changes. To avoid that
nodes stay too long in the wrong level, however, such periods should be relatively short.
If a new level assignment is necessary during this time, it is applied immediately after
the application allows level changes again.

The abstraction of energy levels nicely fits modular development in component-oriented
languages like nesC [Gay et al. 2003]. If an application consists of several nesC compo-
nents which define their own energy levels, it might be undesirable that each of them
can be deactivated separately. For example, code in one component might depend on
functionality of another one’s (higher) levels. Therefore, using a “wiring”-like mech-

132

6.2. Meeting Lifetime Goals with Energy Levels

anism a component can combine levels of several components and thus ensure that
they are only active at the same time. In Fig. 6.1 the arrows show this mechanism.
For instance, it is used to combine the energy levels of Component3 and Component4.
Likewise, the overall levels of the complete application can be created by combining
the energy levels of its components. In addition, it is possible to insert levels from
one component between those of another one. For example, in Fig. 6.1 StoreLevel of
Component2 is mapped between the levels of Component1 in the application. How-
ever, it is not possible to change the order of the levels of a single component; doing
so could break assumptions in the code.

Using this simple mechanism, which closely corresponds to nesC’s wiring of interfaces,
the overall energy levels of the application in the figure (l0, . . . , l3) are formed. This
application can deactivate functionality for data analysis, storage, and sensing if nec-
essary. Forwarding functionality, however, is placed on the lowest level l0, which is
always active. The values for ui in the figure refer to the user-defined utility of the
energy levels.

By connecting all required levels to level l0 the developer has full control of which
energy levels have to be active for the current application. All other levels, however,
can be deactivated if necessary. Therefore, Levels allows for the reuse of components
with several energy levels, even if all of them are required to be always active for one
specific application.

Syntax

Like the other parts of the framework, we integrated Levels into nesC [Gay et al. 2003].
Building upon this general-purpose language helps to achieve general applicability of
our abstraction.

Fig. 6.2 shows a small code example of a component that provides two energy levels.
The numbers in the declaration of energy levels determine their local order. However,
these numbers do not have to be absolute or globally unique; other levels can still be
inserted when wiring the component.

In this example each energy level consists of a single optional code block. If the
highest level, “ComputeLevel”, is active, the component performs some computation
after receiving messages (line 10) and periodically reads a sensor value (line 16). If
just “SenseLevel” is active, the component will continue sampling data but cease to
do the computation. It would also have been possible to add else-branches here that
run a less expensive computation task in lower levels, for example. In the implicitly
declared default level l0, neither “computeTask” nor “SensorADC.getData” will be
invoked. Note that the code inside these two functions is regarded as a part of the
energy level from which it is called.

Whenever a level is being activated or deactivated, one of the corresponding functions

133

6. Abstractions and Algorithms for Energy-Aware Applications

1 module Component1 {
2 provides energylevel SenseLevel <1>;
3 provides energylevel ComputeLevel<2>;
4 . . .
5 }
6 implementation {
7 . . .
8 event TOS MsgPtr ReceiveMsg . r e c e i v e (. . .) {
9 i f (ComputeLevel . a c t i v e) {

10 post computeTask () ;
11 }
12 return msg ;
13 }
14 event r e s u l t t Timer . f i r e d () {
15 i f (SenseLeve l . a c t i v e) {
16 ca l l SensorADC . getData () ;
17 }
18 return SUCCESS;
19 }
20 command void SenseLeve l . a c t i v a t e () {
21 ca l l SensorContro l . s t a r t () ;
22 }
23 command void SenseLeve l . d ea c t i va t e () {
24 ca l l SensorContro l . s top () ;
25 }
26 . . .

Figure 6.2.: Code example for a component specifying energy levels

(“activate” and “deactivate”) will be called. In the example the sensors are turned
on just as long as they are needed (lines 21 and 24).

As the example in Fig. 6.2 shows, Levels requires only very small changes to existing
nesC modules. Furthermore, wiring energy levels is completely analogous to wiring
interfaces in nesC. This is shown in Fig. 6.3 and Fig. 6.4. Fig. 6.3 depicts the definition
of Component2 from Fig. 6.1. Its optional energy level is simply created by combining
the energy levels of Component3 and Component4. No wiring is needed for the lowest
level, which is always present.

In Fig. 6.4 standard nesC syntax is used to wire the optional energy levels of the
components from Fig. 6.1 to those of the application. Those energy levels are defined
using the predefined levels “Main.EnergyLevel”. Here the numbers in brackets define
the utility of the different levels. Because the changes to nesC are minimal, we think
that using energy levels should be easy for application developers.

For reference, Appendix A summarizes the changes to the nesC grammar needed for
Levels .

134

6.2. Meeting Lifetime Goals with Energy Levels

1 configuration Component2 {
2 provides energylevel StoreLeve l <1>;
3 }
4 implementation {
5

6 components Component3 , Component4 ;
7

8 StoreLeve l = Component3 . StoreLeve l ;
9 StoreLeve l = Component4 . FlashLeve l ;

10

11 }

Figure 6.3.: Code example for wiring energy levels

1 configuration Appl i ca t ion {
2 }
3 implementation {
4

5 components Main , Component1 , Component2 ;
6

7 Main . EnergyLevel [7] −> Component1 . ComputLevel ;
8 Main . EnergyLevel [5] −> Component2 . StoreLeve l ;
9 Main . EnergyLevel [4] −> Component1 . SenseLeve l ;

10

11 . . .
12

13 }

Figure 6.4.: Code example for wiring the energy levels of the application

6.2.3. Energy Profiling

In order to correctly estimate the lifetime of the application, Levels has to know how
much energy is consumed by each optional code block defined in energy levels. Getting
this information on the sensor node itself is not possible since the energy consumed
in individual blocks of code is too small to be accurately estimated using the node’s
built-in voltage sensor. Therefore, we make use of the fine-grained energy models
available in simulators.

It should be noted that because of hardware differences the energy consumption of
different nodes varies slightly [Landsiedel et al. 2005]. Currently, profiling can achieve
only optimal results if the energy model of the simulator is calibrated to each node.
Therefore, from our perspective an important design requirement for future sensor
nodes is that they should be created from parts which show only little variations in
energy consumption.

Compared to real measurements with instrumented sensor nodes and lab equipment,

135

6. Abstractions and Algorithms for Energy-Aware Applications

simulation has the advantage that the additional effort for the application developer
is small. Furthermore, our approach allows to reuse code from unit testing to profile
energy consumption. Therefore, in the following paragraphs we give a brief overview
of the nCUnit testing framework before we describe our approach to energy profiling.

Unit Testing for Sensor Nodes

Unit testing using either tools like JUnit [JUnit] or custom test drivers has already
proved to be a valuable technique in different domains including sensor networks. For
example, the TinyOS distribution includes several small test applications for many
operating system components. However, such custom test drivers often require sig-
nificant development effort. In addition, developers usually have to manually check
the results of the test cases. This is especially cumbersome for regression testing after
modifying existing code.

Therefore, we have developed nCUnit , an automated unit testing framework. It assists
the component developer when writing unit testing code by automating the setup of
test cases and by checking the success of the tests with assertions. It reduces both the
development effort for test cases and simplifies regression testing.

nCUnit is based on the Avrora simulator. Therefore, it directly runs the same code as
Mica2 sensor nodes. Using simulation for unit testing has two major advantages. First,
it allows to better control the environment and, thus, makes test results reproducible.
Second, in the simulator details about the hardware state can be checked without
influencing the runtime behavior of the component. This is possible since Avrora
accurately emulates a sensor node’s hardware.

The design of nCUnit takes into account the special properties of wireless sensor net-
works. Most important, the code of many typical TinyOS components does not modify
some software state like, for example, in an application writing data to a database.
The success of test cases for this code cannot be checked with conventional assertions.
Therefore, besides functions for standard assertions that check, for instance, the value
of a variable, nCUnit includes special assertions that allow to extend the simulator
with custom code or that check if the function under test calls a given function of
another component.

By extending the simulator the developer can check hardware properties that are
unavailable to the code running on the sensor node itself or would significantly alter
the runtime behavior. For example, such code could check if some data has been really
written to flash memory or if a packet has actually been sent.

Checking if a function calls another function is useful because of the component-based
structure of typical sensor network applications. As described in Chapter 2, in such
nesC-based applications each component can call functions in any other one. To verify
that the component under test actually sends a message via the routing component,

136

6.2. Meeting Lifetime Goals with Energy Levels

1 module TestAssertM {
2 provides interface StdControl ;
3 uses interface Assert ;
4 uses interface StdControl as TestControl ;
5 }
6 implementation {
7

8 command r e s u l t t StdControl . i n i t () {
9 return SUCCESS;

10 }
11

12 void t e s tFunct ion1 () @test () {
13 u i n t 8 t ∗ varPtr ;
14 // c rea t e Java c l a s s to check s imu la tor a s s e r t i on
15 ca l l Assert . a s s e r tJavaC la s s (”example . TestJavaAssert ” , 1000) ;
16 // check i f f unc t i on under t e s t t o g g l e s the red LED
17 ca l l Assert . a s s e r tCa l l s (”ToTestM . Leds . redToggle ” , NULL, NULL, COMPNONE) ;
18 // c a l l f unc t i on under t e s t
19 ca l l TestControl . s t a r t () ;
20 }
21

22 void t e s tFunct ion2 () @test () {
23 . . .
24 }
25 }

Figure 6.5.: Unit testing code for nCUnit

for example, the developer could replace that component and check when it is called.
However, this would require additional effort to write such replacements and to connect
them just for unit testing with the component under test. Therefore, nCUnit allows
the developer to specify an assertion that checks if a given function is called.

To create a test suite with nCUnit an additional module with its test code is needed.
For instance, Fig. 6.5 shows an example of such a module. Each function that contains
a test case is marked with the “@test” attribute. This code is modified by nCUnit ’s
pre-compiler. It creates calls to the test functions and ensures that for each such
function a separate simulation run is executed. Therefore, in each run the application
is in a consistent state even if a previous test case has failed.

In the figure testFunction1() tests the function TestControl.start (). It uses two as-
sertions. The first one uses the given Java class to do some checks from within the
simulator whereas the second one checks if that function toggles one of the LEDs. The
arguments of this assertion that are NULL in this example could be used to check if
the given function is called with some specific parameter values.

137

6. Abstractions and Algorithms for Energy-Aware Applications

1 module Prof i l ingM {
2 provides interface ReceiveMsg ;
3 provides interface Timer ;
4 . . .
5 }
6 implementation {
7 . . .
8 void measureReceive ()
9 @energy (”ReceiveMsg” , ” r e c e i v e ”) {

10 TOS Msg msg ;
11 msg . addr = TOS LOCAL ADDRESS;
12 . . .
13 signal ReceiveMsg . r e c e i v e (&msg) ;
14 }
15 void measureTimer () @energy (”Timer” , ” f i r e d ”) {
16 signal Timer . f i r e d () ;
17 }
18 . . .

Figure 6.6.: Test driver used for energy profiling

Measuring Energy Consumption with Simulation

Since nCUnit executes its test suites in a simulator, the approach we have applied
there corresponds to our energy profiling technique. Therefore, the developer can
reuse the test code from nCUnit for energy profiling. The only change needed is to
tag all relevant functions in the test driver with an “@energy” attribute that tells our
build system which functions should be used to measure energy consumption.

Fig. 6.6 shows example code that can be used to measure the energy consumption of the
optional code blocks in Fig. 6.2. This module has to be wired to the component whose
energy consumption should be measured instead of the components normally used
to, for example, receive radio messages. Creating these simple functions and wiring
the component correctly is the only additional effort needed from the developer. As
already mentioned, similar or even the same functions can be used for unit testing.

A pre-compiler generates calls for all measurement functions tagged with the “@energy”
attribute. The parameters of this attribute specify the name of the function that
should be profiled. For each measurement function the energy profiler is executed sev-
eral times, where – in order to avoid side-effects – each simulation calls only a single
measurement function once. The profiler starts two separate simulation runs for all
energy levels and each of their optional code blocks: one with a short duration t1 and
one with a longer duration t2.

These energy measurements allow the system to compute two kinds of energy con-
sumption for each of these code blocks: energy that is consumed once (i.e., when the
code is executed) and energy that is consumed continuously (i.e., by changing the

138

6.2. Meeting Lifetime Goals with Energy Levels

Time

C
o
n
s
u
m
e
d
 e
n
e
rg
y

Level lk

Level lk+1

t1 t2t0

Level lk+1 – level lk

Continuous energy

consumption

One-time energy

consumption

Figure 6.7.: Computing the energy consumption of a code block

state of a hardware device). For example, sending a message requires energy only
once whereas turning on sensors leads to a change in continuous energy consumption.
In addition, the measurements allow to remove the overhead introduced for setting up
the test case.

Fig. 6.7 shows how this computation is done for the case when the function under
measurement defines at most one optional code block for each of the energy levels
involved. The function is called at the well-known point of time t0. To get the
increase in energy consumption of level lk+1 four measurements are necessary: the
energy consumptions of the function under measurement in levels lk and lk+1 at both
t1 and t2 (see the arrows in the figure). Then the difference between the two levels
is computed by subtracting their values. From the resulting points the slope of the
energy difference, which corresponds to the change in continuous energy consumption,
and the one-time energy overhead at t0 can be computed.

This computation assumes that continuous energy consumption is linear. We expect
this to be true on average for sufficiently long executions. For example, if a timer is
activated to periodically invoke some code or if the sensor board is turned on, the
average energy consumed will increase linearly with time.

Such a computation is done for each optional code block of all energy levels. If there are
several such blocks in the function under measurement, in each run an additional block
(from the beginning of a function to its end) is activated. Using the same principle
as outlined above now for each code block, the difference in the energy consumed can
be computed. Activating code blocks incrementally allows to measure their individual
energy consumption while still ensuring that they can rely on the code in preceding
blocks to be active, too. At runtime, of course, in the actual application all blocks of
an energy level are active at the same time.

139

6. Abstractions and Algorithms for Energy-Aware Applications

After executing all simulations, the energy profiler analyzes its log files and performs
the computation outlined above. It then stores the energy consumption of each code
block in a central file. This file is later read when compiling the actual application to
insert energy values into the code.

Our profiling approach has several advantages. First, reusing unit testing code ensures
that the code is executed in a controlled setting where, for example, messages from
other nodes, unexpected sensor readings, or interactions with other components do
not alter the application flow. Second, these measurements do not only include the
energy spent by the CPU to run the code under test but also the energy consumption
of other hardware like the radio or flash memory chips. Finally, unlike existing energy
profilers [Landsiedel et al. 2005], which map energy consumption to code blocks,
or systems monitoring the energy state of hardware components at runtime [Dunkels
et al. 2007; Jiang et al. 2007a] our approach allows to include the energy consumption
of asynchronously executed code (e.g., TinyOS tasks, timers, split-phase events) in the
measurement. This is important to get the total energy consumption originating from
the code block: Since this code is executed from a certain energy level, its energy
consumption has to be attributed to that level.

Special Cases

There are two special cases to consider: the energy consumed by the lowest level l0
and energy consumption that depends on some state of the hardware or software.

First, we do not measure the energy consumed by the default energy level l0 and rather
compute this value at runtime by subtracting the energy of all other levels from the
overall energy consumed. This decision helps to keep the runtime overhead of Levels
small since this level would be present in every single function. Furthermore, because
there are no optional code blocks in level l0, profiling could be done only at a coarse
granularity and, therefore, would be probably inaccurate.

Second, for some code the energy consumption can differ depending on the state of
the hardware and the application. For example, if – within an optional code block –
the application tries to turn on a hardware device that is already enabled, executing
this code will not change energy consumption. To address this issue the application
developer can provide a condition in the “@energy” attribute that will later be checked
at runtime. Therefore, each measurement function can refer to a different state of the
component. For example, the condition could check an already existing state machine
or read out the status of a hardware device. The system stores separate information
about energy consumption for each condition. Depending on which condition applies,
Levels attributes the correct energy consumption to the code block at runtime. How-
ever, the developer should choose these conditions in a way that allows to evaluate
them efficiently. Otherwise, the overhead for checking the condition at runtime could
outweigh the benefits.

140

6.2. Meeting Lifetime Goals with Energy Levels

If a level is not active at runtime, evaluating such conditions can be difficult since
the deactivated code might have some effects on them. For example, if a function
adds sensor readings to a buffer before storing all of them together to flash memory,
only one of several calls will result in an energy-expensive write access to the flash
chip. To deal with this problem our energy profiler calculates the probability that
a code block is called with one of the conditions defined and computes the average
continuous energy consumption of each level. For this purpose we have to run the
complete application in a realistic scenario rather than execute unit test code. This
can be done while testing the whole application. In these measurements we rely on
the previously profiled energy consumption of code blocks; we just count how often
they are called for each of the conditions given by the application developer. Since the
information obtained from simulating the complete application is less accurate than
the atomic energy measurements of code blocks, we use it only when necessary, i.e.,
for code blocks of deactivated energy levels.

6.2.4. Runtime System

In this section we describe Levels ’ runtime system. The runtime system has three
tasks: estimating the remaining energy from voltage readings, attributing energy con-
sumption to energy levels, and adjusting the active levels at runtime.

Battery Model

To estimate the remaining lifetime it is necessary to know at runtime how much energy
is left in the battery. For this purpose we have built a simple battery model that maps
voltage values to the remaining usable battery capacity.

Creating such a model has not been the main focus of our research. In fact, if there is
a hardware power meter like SPOT [Jiang et al. 2007a] that accumulates the current
drawn from the battery, better accuracy could be obtained than with this model.
However, since the small, inexpensive devices we target have only voltage sensors,
battery voltage has to be mapped to the remaining energy. To do this mapping we
created a battery model for the specific type of alkaline-manganese dioxide batteries
[Duracell Batteries] that we use in our experiments.

We opted for a simple but efficient model: for each distinct voltage reading we store
the average remaining energy of this value in program memory. The overhead of this
approach is minimal since it does not require any computation at runtime. Neverthe-
less, Levels is flexible enough to be combined with more advanced (but possibly more
complex) battery models.

Because typical sensor network platforms like Mica2 nodes are not equipped with a
voltage boost converter [Polastre et al. 2005b], the current draw I depends linearly

141

6. Abstractions and Algorithms for Energy-Aware Applications

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

30000 25000 20000 15000 10000 5000 0

V
o

lt
a

g
e

 m
e

a
s
u

re
d

 [
V

]

Remaining energy [J]

Experiment 1
Experiment 2
Experiment 3

Figure 6.8.: Battery discharge characteristics from three experiments

on the battery voltage U . Thus the resistance R remains constant. From E = U · I · t
and R = U

I
the effect on energy (and power) is quadratic: E = U2

R
· t. However,

when creating our battery model we assumed a constant voltage Uconst = 3 V for
the computations. Therefore, instead of mapping the actual energy E to the voltage
readings, our battery model and all energy values in the rest of this chapter refer

to values for E · U2
const

U2 =
U2

const

R
· t. This simplifies computations at runtime greatly

because the energy consumption of a code block can be assumed to be independent of
the current supply voltage of the sensor node. Nevertheless, using the same approach
in the creation of the model and at runtime leads to consistent results that allow for
accurate computations.

To create the battery model we built an application for Mica2 nodes that periodically
measures the voltage and transmits this data via radio until the batteries are drained.
Using the energy model of the Avrora simulator [Landsiedel et al. 2005] we later
computed the total energy consumed by this measurement application throughout the
node’s lifetime. The result of this computation is not necessarily the total energy
available in the battery but rather the energy that is actually usable by the sensor
node. For our purposes this number is more relevant because this is also the energy
available at runtime. Ignoring for simplicity effects like the influence of temperature on
the batteries, this data allows to relate voltage measurements with the usable energy
left.

We performed several experiments with this application and created the model used
at runtime by computing the average voltage reading for each energy value. Fig. 6.8
shows the discharge behavior of three batteries. Although there are some differences,
the curves are almost equal when the batteries are almost empty. Particularly there
a good energy estimation is important to accurately meet a lifetime goal.

Since the relationship between voltage and the remaining energy is not linear, the

142

6.2. Meeting Lifetime Goals with Energy Levels

differences in energy values between two consecutive voltage readings can vary signifi-
cantly (see Fig. 6.8). This directly affects the accuracy of the mapping. For example,
in our battery models the differences vary between 7 J and 412 J for a battery with
about 32,000 J usable capacity. Similar differences can exist between the models of
several batteries, especially close to their total capacity. We make this expected error
available at runtime. This makes it possible to defer computations until significantly
more energy than that has been consumed; hence the influence of the inaccuracies is
reduced.

Attributing Energy Consumption to Energy Levels

The runtime system is responsible for attributing energy consumption to energy levels.
First, it is called whenever an optional code block is about to be executed. It then
checks if the energy level is active and adds the energy consumption of this code block
to the total energy consumed by the corresponding level. Second, periodically (every
few seconds) it adds up the energy that has been consumed continuously in the current
interval. Finally, periodically (every few hours) it uses this information and computes
the optimal level assignment for the time remaining.

If an optional code block of an energy level is about to be executed, the system checks
if the level is active. Only if it is active, the code will be executed. Furthermore, the
runtime system uses the data obtained with energy profiling (see Section 6.2.3) and
adds the energy consumption of the current block to the overall energy consumed by
the level. If a code block of level li is reached by executing code belonging to level lj
with j > i, the system correctly attributes the energy consumed by this code to level
lj. In addition, it updates continuous energy consumption if it is changed by the code.

The same information is also updated for blocks belonging to the next higher energy
level in the stack, which is actually not executed. This way the system can predict the
energy consumption after increasing the current level. However, we do not monitor
the energy consumption of even higher levels because it is unclear which of their code
will be additionally reached if the levels in between are activated. For example, if
currently only level li is active, the system cannot tell whether or not the application
will reach more code blocks of level li+2 from the code in level li+1. Therefore, energy
consumption of li+2 would not be accurately predicted.

Keeping only information up to the next higher level also restricts the levels that can
be selected when adjusting the current level. Therefore, in each adjustment the system
can increase the current level by at most one. This problem does not occur with lower
levels because their energy consumption can always be accurately predicted. Thus
several levels can be skipped when switching to a lower level.

As already mentioned, for each energy level, Levels keeps information about its contin-
uously consumed energy, e.g., for a hardware component that has been enabled in an
energy level. The runtime system periodically adds the energy continuously consumed

143

6. Abstractions and Algorithms for Energy-Aware Applications

Time

C
o
n
s
u
m
e
d
 e
n
e
rg
y

Execute code block

Continuous

One-time

Add continuous

consumption
Level adjustment

Figure 6.9.: Accumulating the energy consumed by a level

in the last few seconds to the one-time energy consumption of the code. This approach
provides finer granularity and, therefore, better accuracy than doing this only when
computing the energy level assignment. In addition, it minimizes overhead because
it requires less state and computational resources compared to calculating this data
whenever continuous energy consumption changes.

Fig. 6.9 summarizes how the runtime system computes the energy consumed by an
optional code block. When the code block is executed, both one-time and continuous
energy consumption are updated. The system then periodically adds continuous en-
ergy consumption to the energy consumed by the level. After some time this energy
consumption is reset when computing a new level assignment.

Adjustment of Active Energy Levels

Levels uses the information about the energy consumption of energy levels to period-
ically adjust the currently active level. In each adjustment it tries to maximize the
utility of the energy levels for the time remaining while meeting the lifetime goals.
Formally this corresponds to the following optimization problem. Given the current
lifetime t, the total required lifetime Treq, the remaining energy Erem, and the energy
levels l0, . . . , ln−1, which have the utility values u0, . . . , un−1 and consume P0, . . . , Pn−1

energy units per time interval, find the durations t0, . . . , tn−1 that maximize the utility
of the energy levels for the remaining lifetime Treq − t:

144

6.2. Meeting Lifetime Goals with Energy Levels

maximize
n−1∑
i=0

ui · ti

subject to
n−1∑
i=0

ti = Treq − t

n−1∑
i=0

Pi · ti ≤ Erem

t0, . . . , tn−1 ≥ 0

The first equation formalizes the maximization of the utility over time. Each ti corre-
sponds to the duration for which Level li is the highest active level. The constraints
then specify that the still needed lifetime has to be met and that enough energy has to
be available. Using a linear equation for the energy constraint is only possible because
our battery model returns the energy for a (hypothetic) constant voltage instead of
actual energy values. Finally, the last equation excludes solutions with negative time
durations.

The optimization problem can be solved using well-known algorithms from linear pro-
gramming [Chvátal 1983]. In our implementation we use the Simplex algorithm, which
is the standard method to solve such problems. Since our implementation uses effi-
cient fixed point arithmetic, the computational overhead of this algorithm is small.
Furthermore, we limited the overhead by defining a maximum number of iterations
after which the algorithm aborts even if it has not found the optimal solution yet. This
limit is reached only seldom in practice, however. As we show in the evaluation, the
computational overhead can almost be neglected even on resource-constrained sensor
nodes (see Section 6.4.4).

The results of the optimization are the ti values that specify for how long each energy
level should be the highest active one. Because there are just two constraints (in
addition to the exclusion of negative values), the Simplex algorithm always returns
a result with at most two non-zero time intervals. Therefore, independent from the
total number of energy levels at most two of them will be activated. We leverage this
property in our distributed algorithm (see Section 6.3.2).

The system tries to compute a new level assignment periodically with a low frequency
(e.g., every two hours). Repeating this computation is necessary since energy load may
vary over time and because of possible inaccuracies in previous adjustments. However,
due to the discharge characteristics of batteries the inaccuracies of the measurement
might exceed the actual energy consumed, especially for low-power applications. In
this case it is not possible to compute meaningful results. Therefore, we use the
expected accuracy from the battery model at runtime: only if the energy consumed

145

6. Abstractions and Algorithms for Energy-Aware Applications

by code in energy levels is sufficiently big, the algorithm tries to compute a solution.
Otherwise, it waits until the next measurement. Although this reduces the agility
of the system, it helps to obtain correct results. In addition, to further reduce the
fluctuations because of inaccurate measurements, we use a moving average to smooth
the energy values used for computation.

Moreover, to deal with inaccurately estimated remaining energy and with possibly
varying load within an energy level, Levels adds a safety factor to the lifetime still
required in order to make sure that the node can meet its lifetime goal. This design
decision leads to the side effect that the average level achieved is slightly below the
optimum because the lifetime goal is usually exceeded. We opted for this conservative
policy to ensure that no node runs out of energy early. Furthermore, as the safety factor
depends on the remaining lifetime required, this issue is addressed by periodically
recomputing the level assignment. The node will – in later computation rounds –
switch back to higher levels if sufficient energy is still available.

To minimize the complexity of the runtime system, Levels does not change levels
between these computations, even though the Simplex algorithm returns a complete
level assignment for the remaining time; we just switch to the highest level of the
result for optimal application quality. However, depending on the energy consumption
of the application and the current accuracy of the battery model, several tries might
be needed until the level assignment can be recomputed. Therefore, a level is selected
only if the algorithm expects to be executed again before the computed time duration.
Otherwise, Levels already switches to the next lower level of the solution.

Energy Level Assignment over Time

The level assignment described so far assigns energy levels independently on each
node. Therefore, if the load on the nodes is roughly equal, all nodes in the network
will change energy levels almost synchronously. Over time the overall application
quality of the network will be very high in the beginning before suddenly becoming
very low. Depending on the application this behavior might not be anticipated by the
user.

One way to address this problem is to define the lowest energy level such that it is
still useful to the application (e.g., nodes still sample data with lower-power sensors).
Alternatively, the user can define the target lifetime in a way that it is actually achiev-
able by sufficient nodes with their full functionality (e.g., at least by the leaves of the
routing tree).

If such a definition of energy levels or lifetime requirements is not possible, distributing
energy level assignments better over time often requires application-specific knowledge.
For example, in some applications neighboring nodes should be fully active at the same
time because they cooperate whereas in other applications nodes in high energy levels
should be distributed uniformly throughout the network. Therefore, this problem

146

6.2. Meeting Lifetime Goals with Energy Levels

can be addressed best by the application. Nevertheless, Levels provides supporting
mechanisms: The application can give hints which level to select and Levels can
introduce some randomness. Finally, as we describe in Section 6.3, Levels provides
a distributed algorithm that coordinates nodes such that the average energy level
remains roughly constant.

With the first mechanism the application performs its own coordination among nodes.
It does not, however, directly assign an energy level because, otherwise, the lifetime
goal could possibly not be met. Instead, it tells Levels which energy level from the
result of the optimization problem to select first: the low or the high one. Over its
lifetime each node will still use all energy levels from the results. Therefore, this
approach cannot guarantee that really all nodes selected by the application operate in
one specific level. However, it ensures that the lifetime goal can actually be met.

The second mechanism is similar but – instead of using information from the appli-
cation – with this approach each node randomly decides which level from the local
optimization result to select first. If the nodes have similar results from their local
optimization, this approach distributes level assignments uniformly in the network.
Although it might not provide optimal results, this mechanism is well-suited for low-
power applications since it does not require any coordination among nodes. However,
as we show in the evaluation, with minimal overhead our distributed algorithm is able
to perform even better results.

6.2.5. Integration within the Framework and with TinyCubus

This section outlines how Levels has been integrated with other parts of the cross-layer
framework and with TinyCubus.

Like the other parts of the cross-layer framework Levels has been developed in a
way that allows to use it individually without requiring the rest of the framework.
Nevertheless, it can be integrated seamlessly.

For using Levels together with TinyXXL no changes are necessary. If code access-
ing data in the TinyStateRepository is placed in an energy level, the access costs for
variables in the TinyStateRepository are automatically considered when running en-
ergy profiling. The only change done was to create two energy levels for Neidas , the
neighborhood data sharing algorithm. The first level includes all the code for sending
requested data whereas the second one contains the code to send requests. Per default
these energy levels are mapped to level l0 and, therefore, are always active. However,
the application developer can define them to be optional by changing some constants.

If ViMem is used, the energy consumption of a memory access may vary if the cor-
responding page is currently available in RAM or if it has to be retrieved from flash
memory first. When a memory page has to be transferred from flash memory, energy

147

6. Abstractions and Algorithms for Energy-Aware Applications

consumption can increase even more if another page has to be written back to flash
memory.

Like Neidas , we instrumented the implementation of ViMem with energy level code.
This allows us to profile the energy consumption of operations like loading and storing
flash memory pages. Since these operations are not optional, i.e., the system would
no longer work correctly if their code was not executed, this energy level is mapped
to l0 which is always active. This code block has just been introduced to accurately
attribute energy consumption if an access to virtual memory is done from a code block
in another level. Therefore, the application developer does not have to create separate
energy measurements for the cases when variables are already in RAM and when they
have to be loaded from flash memory. This solution assumes, however, that over time
always the same percentage of memory accesses will lead to a page fault.

The integration of Levels with TinyCubus is more difficult. In fact, integrating Levels
completely in TinyCubus is not possible since some of its functionality is comple-
mentary to TinyCubus. As described in Chapter 2, the TinyCubus framework adapts
applications based on their requirements, system parameters, and optimization param-
eters. One of these parameters can be energy consumption, which is also monitored
and adjusted by Levels . The adaptation of TinyCubus is different from the adjust-
ments of energy levels: TinyCubus allows to parameterize components and to replace
them at runtime with different implementations.

If TinyCubus performs its adaptation, Levels could no longer predict the future energy
consumption and the lifetime of the nodes accurately. Nevertheless, parts of Levels
have already been created with the intention of integrating them in TinyCubus.

First of all, changing an energy level of a component corresponds to parameterizing this
component. Therefore, the abstraction of Levels can be mapped to the mechanisms of
TinyCubus. However, significant changes to the runtime system of Levels are necessary
if it should take into account additional properties like reliability or the delivery ratio
instead of just looking at energy consumption.

Second, there has to be a way for TinyCubus to estimate the remaining energy. For
this purpose it can use the battery model of Levels that maps voltage readings to
energy values.

Finally, TinyCubus has to know how much energy some adaptable code consumes.
This functionality can build upon the simulation-based energy profiling of levels and
the corresponding runtime system that keeps track of the energy consumed by different
parts of the application. However, it should not just measure and track the energy
consumption of the code in energy levels but probably also that of additional code.
Since a complete implementation of the adaptation mechanism used in TinyCubus is
not available yet, the details of this integration of Levels have to be left for future
work.

148

6.3. Distributed Assignment of Energy Levels

6.3. Distributed Assignment of Energy Levels

The basic approach described so far might lead to large fluctuations in application
quality of the network since each node optimizes its energy level assignment without
taking into account those of its neighbors. To better balance the utility of energy level
assignments we have provided an interface for the application to influence which nodes
select what level. However, many applications do not need this flexibility because they
are expected to require a roughly uniform distribution of utility values in the network.
Thus such functionality should be part of Levels . For this purpose we have introduced
our randomization scheme in Section 6.2.4. This mechanism operates purely locally
and, therefore, does not add any overhead for communication. However, coordination
among neighboring nodes is likely to yield even better results than the randomization
mechanism at an acceptable overhead. Therefore, this section presents a distributed
mechanism to better balance energy level assignments over time.

In many applications redundant nodes can be added to increase network lifetime and
the resilience to node failures. If these nodes can be deactivated for some time, they
have the same energy available for fewer active time intervals. This way higher energy
levels can be selected and the application quality can be increased further. Likewise,
network lifetimes that are longer than the maximum lifetime of each node become
possible. Although we do not model deactivated nodes as another energy level, the
same mechanisms can be used to balance energy level assignments and to determine
when to activate redundant nodes.

Determining from all nodes the set of active ones is closely related to existing coverage
and topology control algorithms. However, we only deal with the problems addressed
by these algorithms implicitly through distributing active nodes in the network and
controlling network density. Unlike our approach, the vast majority of coverage and
topology control algorithms tries to maximize network lifetime [Cardei and Wu 2006;
Huang et al. 2006; Cerpa and Estrin 2002; Ye et al. 2003]. For Levels a different
optimization goal is needed because we assume that the required lifetime is given by
the developer.

6.3.1. Problem Description

This subsection describes the problem of finding an optimal schedule to activate nodes
and assigning their energy levels. Basically, this problem corresponds to finding a
permutation of the active time intervals and energy level assignments where the de-
viations from the average over time are minimized. The nodes still try to provide the
best quality possible for a user-defined network lifetime rather than maximizing that
time.

All our assumptions with the exception of the presence of redundancy are also valid
here. For example, we continue to assume that the developer specifies the overall

149

6. Abstractions and Algorithms for Energy-Aware Applications

required lifetime for the complete network. In the following equations, we refer to this
lifetime value as T req.

Furthermore, we assume that – besides the required lifetime for the whole network –
the individual required lifetime Treq is known for each node. This lifetime can either
be directly specified by the user or computed from the number of neighboring nodes
if the user defines the desired number of active nodes in an area instead.

In addition, our algorithm assumes that nodes are not mobile. This is necessary since
it computes the schedule for a longer time based on information about the nodes
present in the vicinity. This would not be possible if the nodes moved. Furthermore,
some (coarse-grained) synchronization among nodes is needed because nodes have to
transmit their results to their neighbors. If a node is deactivated, it has to wake up
to receive these messages from its neighbors.

Using the total required lifetime of the network T req and the time t that the network
has already been operating, we define the remaining required lifetime of the network
T rem:

T rem := T req − t

Similarly, Trem can be defined for each node as the required lifetime still remaining:

Trem := Treq − t

If the remaining lifetime of node j is used, this is expressed as Trem(j). This function
is defined for each node with 1 ≤ j ≤ R, where R is the number of nodes to consider
(e.g., the nodes in the radio neighborhood, including the current node).

Based on the lifetime of the nodes a schedule can be computed to activate and de-
activate them over time. For this purpose we use an approach that tries to keep the
number of active nodes constant, i.e., close to the average over time. Furthermore, as
a secondary goal, not just the number of active nodes should stay close to its average,
but also the utility of the currently selected energy levels. Determining the set of active
nodes is the primary goal since we assume that variations in energy level assignments
are less critical for overall application quality than variations in the number of active
nodes. The input for balancing energy levels is the result of each node’s local maxi-
mization of the utility since each node should still provide the highest utility (i.e., the
best application quality) for its required lifetime. Only if both the number of active
nodes and the average utility value are (roughly) constant, the application quality will
not vary over time.

We do not interpret deactivating a node as an additional (lower) energy level because
such a solution would not correspond to the semantics of energy levels that we have
introduced in Section 6.2.2. Therefore, applications could not be easily adjusted if
coordination among nodes was added.

150

6.3. Distributed Assignment of Energy Levels

1: Node 1: 011 4: Node 1: 101 7: Node 1: 110
Node 2: 001 Node 2: 001 Node 2: 001

2: Node 1: 011 5: Node 1: 101 8: Node 1: 110
Node 2: 010 Node 2: 010 Node 2: 010

3: Node 1: 011 6: Node 1: 101 9: Node 1: 110
Node 2: 100 Node 2: 100 Node 2: 100

Figure 6.10.: Combinations of activation schedules for two nodes

Computing a Schedule for Activating Nodes

To compute an optimal schedule for activating nodes we express the schedule of each
node as a string of 0 and 1. Each character corresponds to a time interval. If it is
0, the node is turned off in this interval whereas it is turned on if the corresponding
character is 1. The length of the string corresponds to the total remaining network
lifetime T rem and the number of 1 characters is the remaining lifetime of the node
(Trem). A valid schedule for the node is, therefore, a permutation of this string. Such
a string is given for each node. A valid schedule for the network is a combination of
the schedules of individual nodes.

The schedule of node j at time interval i is defined by the following function:

Active(j, i) :=

{
1 if node j is scheduled to be active in interval i

0 otherwise

To solve the problem of keeping the number of nodes constant the average number of
nodes Ravg that are active in each time interval has to be known. This information
can be computed by dividing the sum of the required node lifetimes by the remaining
lifetime required for the whole network:

Ravg :=

∑R
j=1 Trem(j)

T rem

A solution that provides constant application quality always has a fixed number of
nodes active. To minimize variations, this number should be as close as possible to
Ravg. The deviation from Ravg can be computed in the following way:

∆active :=
T rem∑
i=1

∣∣∣∣∣
R∑

j=1

Active(j, i)−Ravg

∣∣∣∣∣

151

6. Abstractions and Algorithms for Energy-Aware Applications

For example, Fig. 6.10 shows all combinations of schedules for two nodes. The network
lifetime is assumed to be three time intervals. Node 1 can be active for two intervals
whereas Node 2 can be active for just one time interval. In this example Ravg is 1,
i.e., a solution is optimal if exactly 1 node is active in every time interval. Therefore,
there are three optimal solutions (solutions 3, 5, and 7).

Finding an optimal solution can be implemented as computing the permutations for
each node and calculating the deviation from Ravg for each time interval. Then an
optimal solution has the minimum sum of the deviations. However, this approach is
inefficient because there can be a large number of schedules. Therefore, in Section 6.3.2
we present a more efficient distributed heuristic that can be run on the sensor nodes.

Balancing Energy Level Assignments

When energy level assignments are coordinated, each node continues to solve the
optimization problem of Section 6.2.4. Therefore, it still optimizes its average utility
over its lifetime. The only difference is that the point of time when to select each level
assignment is determined by taking into account the assignments of other nodes.

Just like computing the schedule of active nodes, balancing energy level assignments
can be expressed as computing the permutation of a string of level numbers. Here,
however, the value of a character is only defined if the node is scheduled to be active
in the corresponding time interval. In this case the value corresponds to the number
of an energy level.

Again the goal is to minimize the deviation from the average. Now, however, the aver-
age utility of the energy levels has to be considered. Therefore, we define the function
Utility(l) that maps energy level numbers to their corresponding utility values.

The energy level of node j at time interval i is defined by the following function:

Level(j, i) :=

{
level assigned at time i if Active(j, i) = 1

undefined otherwise

Using these two functions and the function Trem(j), which returns the remaining re-
quired lifetime of node j, the average utility of the nodes in all time intervals can be
computed:

Uavg :=

∑R
j=1

(∑T rem

i=1 Active(j, i) · Utility(Level(j, i))
)

∑R
j=1 Trem(j)

152

6.3. Distributed Assignment of Energy Levels

3a: Node 1: -12 5a: Node 1: 1-2 7a: Node 1: 12-
Node 2: 1-- Node 2: -1- Node 2: --1

3b: Node 1: -21 5b: Node 1: 2-1 7b: Node 1: 21-
Node 2: 1-- Node 2: -1- Node 2: --1

Figure 6.11.: Combinations of energy level schedules for two nodes

The nominator of this fraction sums up all utility values from the energy levels assigned
to the nodes. The denominator, in contrast, computes how long all nodes are active
throughout the network lifetime.

Again, the deviation from the average is to be minimized in order to provide constant
application quality. This deviation can be computed by subtracting the overall average
utility Uavg from the average utility of the active nodes in each time interval:

∆levels :=
T rem∑
i=1

|δ(i)|

with δ(i) :=

∑R

j=1 Active(j,i)·Utility(Level(j,i))∑R
j=1 Active(j,i)

− Uavg if
∑R

j=1 Active(j, i) 6= 0

Uavg otherwise

We try to find a permutation of level assignments with the minimum value for ∆levels.
Only if a node is active, it can be assigned an energy level. In addition, to give
preference to the first problem the schedule of when to activate a node has to be
optimal. However, such an optimal schedule is not necessarily unique. Therefore, for
the global optimum solution it might be necessary to change the activation schedule
if this could improve ∆levels. A different (optimal) activation schedule might lead to
different energy level assignments since other nodes can be active at the same time.

Fig. 6.11 continues the example from Fig. 6.10. It assumes that Node 1 can switch for
one time interval to Level l1 and for another one to Level l2. Node 2, in contrast can
only select Level l1. If the utility values are equal to the level numbers, the average
utility Uavg is in this example 4

3
. This value cannot be achieved exactly because

discrete energy levels for fixed time intervals are to be assigned. The best solutions
have a deviation from the average level of 1

3
+ 1

3
+ 2

3
= 4

3
, where the 1

3
terms refer to

the time intervals in Level l1 and the 2
3

term to the time interval in Level l2. As the
figure shows, all three optimal assignments from Fig. 6.10 lead to the same deviation.
In fact, even creating a different permutation over level assignments (the variations a
and b of each solution) does not change the deviation in this simple example.

153

6. Abstractions and Algorithms for Energy-Aware Applications

6.3.2. Realization on Sensor Nodes

This subsection describes how the problems of Section 6.3.1 can be solved on the sensor
nodes. First, it gives some details about the complexity of the problem. Second, it
shows how the solution can be approximated in a completely distributed way that
requires the nodes only to send minimal amounts of data. Finally, it presents a
greedy approach that in combination with the distributed algorithm efficiently finds
a solution.

Number of Permutations

The straight-forward way to solve the problems introduced in Section 6.3.1 is to use a
backtracking approach. Such an approach computes all permutations and selects one
with the minimal deviation from the average. In practice, two backtracking runs are
needed: one to find an optimal schedule for activating nodes and another one to find
an optimal level assignment for such schedules. However, the overhead for computing
such optimal solutions is significant. In addition, to ensure a network-wide optimal
assignment, this computation would have to be done centrally. Therefore, not only
the computational overhead would be significant but also the amount of data that is
transmitted.

Even if just one of the two problems is solved, computing the optimal deviation for all
permutations requires a large number of such computations. For example, Fig. 6.10
shows that even for a very simple problem there is already a considerable number
of schedules possible. In general, for each node j there are Sj permutations of the
activation schedule:

Sj :=
T rem!

Trem(j)! ·
(
T rem − Trem(j)

)
!

This equation computes the number of permutations for two distinct kinds of elements
in a multiset. One kind of elements corresponds to the active time intervals of node
j with a multiplicity of Trem(j) whereas the other one represents the inactive time
intervals with a multiplicity of T rem − Trem(j).

If there are R nodes to consider, there are S combinations of their schedules:

S :=
R∏

j=1

Sj

If a backtracking approach is used, both the factorial and the product lead to a fast
growth of the number of possible combinations. For example, for a network of just five
nodes where every node can be active for five time intervals and the overall network

154

6.3. Distributed Assignment of Energy Levels

lifetime is 10 time intervals, S has a value of 1012. If the network should be active for
20 time intervals and all other numbers are not changed, more than 1020 permutations
have to be considered. Furthermore, an additional large number of permutations
would have to be computed for balancing energy level assignments as well.

Obviously, such a problem cannot be solved on a resource-constrained sensor node. In
fact, checking all permutation seems to be virtually impossible for realistic problem
sizes. Therefore, even in a hybrid network with some more powerful devices or with
some nodes connected to a PC, a backtracking approach cannot be used to find the
optimal solution. We address this problem by introducing a distributed heuristic that
can be applied efficiently even on sensor nodes. Although its results might not be
optimal, they are in general good enough to significantly reduce the variations in
application quality.

Distribution in the Network

Basically, to implement an assignment algorithm for the sensor network there are two
alternatives that do not require a global view of the network: having a cluster head
assign schedules to its neighbors and computing a local schedule on each node while
using the neighbors’ schedules as constraints.

Although the first solution is promising, it has the disadvantage that some nodes –
i.e., the cluster heads – have to do significantly more computation and communication
than the others. Therefore, their energy budget is burdened most. This problem
could be alleviated only by switching the role of a cluster head at runtime, which
would probably require to change the boundaries of clusters as well. This would add
significant overhead to the system. Furthermore, computing an exact solution to the
problem for all nodes of the cluster would probably increase complexity beyond the
capabilities of the sensor nodes. Because of that they could only approximate an
optimal solution. Nevertheless, we have explored this approach in a diploma thesis
[Ostermann 2007].

However, we finally selected the second alternative, where each node computes its own
schedule. Although this approach might not find a globally optimal solution, either,
it schedules the current node optimally with respect to the schedules of neighboring
nodes. In addition, it has the advantage that its overhead is comparatively small:
each node only has to compute its own schedule and broadcast it to its neighbors.
Depending on the number of energy levels, it is sufficient to store and transmit a
few bits for each time interval. Moreover, to avoid too frequent level changes and to
further reduce the overhead, longer intervals than those in Section 6.2.4 can be used
– at the cost of reduced agility. If these longer intervals are used, a node can send its
schedule in just a single message.

Fig. 6.12 shows an overview of our distributed algorithm. It is repeated for each such
longer time interval. First, the nodes wait for messages from their neighbors. Before

155

6. Abstractions and Algorithms for Energy-Aware Applications

While T rem > 0
Listen for schedules from neighbors and wait

On receive:
Set schedule of neighbor to values received

Compute local schedule
Broadcast local schedule to neighbors
Wait until next computation round

Figure 6.12.: Algorithm for the distributed optimization

the receivers of such a message do their own computation, they set the schedules of
the sender to the values received. Nodes from which no schedule has been received so
far are completely ignored and are not included in the optimization. Therefore, the
only schedule that can be modified is the one of the local node itself. This reduces
the complexity of the computation greatly. In addition, this approach considers the
specific neighborhood of each node even if neighborhoods are not completely identical.
However, since only the schedule of a single node can be modified, the solution is
probably not globally optimal. Finally, the node sends its schedule to its neighbors
and waits for the next computation round.

Even though this optimization is done for just a single node, it is too expensive for
resource-constrained sensor nodes to compute all possible permutations. For example,
computing all valid solutions for 20 time intervals and seven neighboring nodes can
take several minutes even if run on a PC. Therefore, we pursue a different approach
that greedily activates nodes in time intervals such that the deviation is minimized.

Each node repeats its computation periodically in order to deal with changes in the
local optimization results and with failures of other nodes. In later rounds previous
results from all neighbors can be used to further improve the assignment even if a
node has not updated its schedule for the current round yet.

Just like the application-specific coordination introduced in Section 6.2.4, this opti-
mization is not fixed to particular levels: if during a later local optimization an energy
level is no longer part of the result and if the distributed assignment has not been
updated yet, a node might select another energy level from its local optimization in-
stead. Therefore, there can be some variations in energy level assignments that are
not detected by the distributed computation.

Fig. 6.13 shows an example of how the distributed computation is done. The example
assumes that all five nodes can communicate with each other and that the optimization
is done in the order of the node IDs. Furthermore, the network lifetime is assumed to
be five time intervals and each node can be active for three of them (two in Level l2
and one in Level l0).

Since Node 1 just has to consider its own schedule for the first computation round, any
assignment is as good as any other one. After the computation it sends its schedule

156

6.3. Distributed Assignment of Energy Levels

Node 1

1: --022

Node 2

1: --022

2: 22--0

Node 4

1: --022

2: 22--0

3: -022-

4: 2--02

Node 5

1: --022

2: 22--0

3: -022-

4: 2--02

5: 022--

fixed

Node 3

1: --022

2: 22--0

3: -022-

Figure 6.13.: Distributed computation of energy levels

to the other nodes. Node 2 uses this schedule when computing its own activation
times and energy level assignments. Of course, it does not modify the schedule of
Node 1. Then it locally broadcasts its own schedule to the other nodes. Likewise, the
remaining nodes compute their schedules using those of the first ones as input.

In this example the results for both the activation schedule and the level assignment
are optimal. In each time interval three nodes are active, which is also the average
Ravg that the algorithm has tried to achieve. Likewise, the average level is – in this
example – equal to the optimum Uavg of 4

3
.

Greedy Approach

To compute an optimal schedule of a single node, it is not necessary to check all
permutations of its schedule. In fact, it is sufficient if a greedy approach is used that
selects those time intervals (one after the other) where the deviation from the average is
the smallest one. Fig. 6.14 shows this algorithm that computes the activation schedule
of a node.

The algorithm first calculates the average Ravg as described in Section 6.3.1. This
computation already assumes that the node is turned on for its required lifetime even
though it has not been assigned time intervals yet. Thus Ravg corresponds to the
actual target value.

The algorithm initializes its variables to deactivate itself in all time intervals (all values
set to 0). Then it computes the deviation values from Ravg if the node is active in
just one interval. This computation is done for all time intervals and the node stores
the values with the minimum deviations in Min Deltas. These numbers refer to the
intervals when the node should be active. Finally, it schedules itself to be active in
the intervals corresponding to these values.

For example, if in Fig. 6.13 Node 5 tries to assign its active time slots, it first computes
the overall average of active nodes per time interval, which – in this example – is 3.

157

6. Abstractions and Algorithms for Energy-Aware Applications

// initialization
Compute Ravg

For τ = 1 to T rem

Set activation schedule in interval τ to 0
Min Deltas = {}

// determine intervals with minimum deviations
For τ = 1 to T rem

Set activation schedule in interval τ to 1
Compute ∆active

If |Min Deltas| < Trem

Add (τ , ∆active) to Min Deltas
Else if ∆active smaller than largest value in Min Deltas

Remove largest element from Min Deltas
Add (τ , ∆active) to Min Deltas

Set activation schedule in interval τ to 0

// activate node in these intervals
For all (τ,∆active) ∈ Min Deltas

Set activation schedule in interval τ to 1

Figure 6.14.: Algorithm to compute the local schedule

It then assumes that it is active in one time slot and computes the deviations from
the average. Regarding the other nodes, two of them are active in the first three time
intervals whereas already three nodes are active in the last two intervals. If Node 5
is activated in one of the first three intervals, the overall deviation ∆active is 2. If it
is activated in one of the last two intervals, however, the deviation from Ravg is 4.
Therefore, since the node is required to be active for three time intervals, it schedules
itself to be active in the first three intervals.

This algorithm always finds an optimal solution subject to the schedules of the neigh-
bors and considering the fixed-length time intervals: If the node selects a time interval
with the smallest deviation from Ravg, this interval has to be part of an optimal solu-
tion since it corresponds to the summand of ∆active with the minimum values. Because
all the summands of ∆active are non-negative, the sum itself becomes minimal if all of
its summands are minimal. The only way to influence the deviation from the average
is to make the node active. In addition, the node has to be scheduled for exactly
its remaining lifetime. Therefore, there is no other assignment that could lead to a
smaller overall deviation.

The efficiency of this algorithm is much better than that of an algorithm that computes
all permutations. In fact, it just has to compute T rem values for the deviation. If
the overhead of a straight-forward solution to maintain the list of time intervals with

minimum deviation is considered, the overall complexity of this algorithm is O(T rem
2
).

Compared to Sj, the number of permutations of the schedule, this is a significant
improvement since Sj depends on the factorial of T rem.

158

6.4. Evaluation

The problem of balancing energy levels can be solved analogously because in each
local optimization result the Simplex algorithm returns at most two energy levels with
non-zero time durations. This directly corresponds to the problem of activating nodes
with the two states “on” and “off”. Here, however, only time intervals are considered
in which the node is scheduled to be active. In the beginning all of these intervals are
assigned the lower energy level from the local optimization result and the target value
for the average utility Uavg is calculated. Then the node computes the deviation ∆levels

from Uavg if it assigns its higher energy level to each interval, and selects the intervals
with the minimum deviations. Just like when computing the activation schedules, an
interval with a smaller deviation does not exist.

Using this algorithm and the distributed computation outlined in the previous subsec-
tion, the computational overhead for each node is minimal. Therefore, as we show in
the evaluation, even resource-constrained sensor nodes can optimize their own schedule
with respect to their neighbors’ schedules.

Although this approach always finds an optimal solution for each of the two sub-
problems subject to their constraints, its overall solution might not be the global
optimum for all nodes and for both sub-problems combined. First, because of the
distributed computation a node cannot modify its neighbors’ schedules. Therefore,
the solution might not be the network-wide optimum. Second, because assigning the
active time intervals of nodes and balancing the energy levels are solved independently
from each other, a node might not be active in time intervals where it could achieve the
average utility more closely even if such an activation schedule might also be optimal.
For example, in some time intervals only those nodes with low energy levels left might
be active. However, experiments have shown that this is not a problem in practice.

6.4. Evaluation

This section evaluates the benefits and overhead of Levels . For this purpose we use
both simple applications, which correspond to components found in more complex
ones, and real-world applications.

Unless otherwise mentioned, we use the Avrora simulator again, which accurately
emulates Mica2 sensor nodes. The battery voltage that the simulator makes available
to the sensor nodes’ voltage sensors has been recorded from individual batteries with
the voltage sensor of a real sensor node. In contrast, Levels running on the sensor
node uses a battery model based on the average of several such voltage traces (see
Section 6.2.4). Therefore, this simulation setup corresponds to the situation of real
sensor nodes.

159

6. Abstractions and Algorithms for Energy-Aware Applications

Table 6.1.: Average lifetimes of sample applications for constant energy levels (in days)
Application Level l0 Level l1 Level l2
FFT 961 375 not used
Flash 961 296 not used
SendLPL 34.6 22.5 16.7
SendLPLRandom 34.6 27.1 22.2
SendRadioOff 948 692 not used
Voltage 7.69 6.65 5.93

6.4.1. Quality of Level Assignments

In this subsection we evaluate the quality of level assignments. To do this we use
several metrics: First, we contrast the actual to the required lifetime. Second, we
compare the average utility achieved in simulation with the optimal value possible.
Finally, we validate our simulation results with experiments using real sensor nodes.

Simulation of Small Applications

The small applications that we use for this evaluation represent parts which can also
be found in larger ones. FFT periodically computes a Fast Fourier Transform, Flash
stores data into flash memory, and SendRadioOff turns the radio chip only on for send-
ing (short) messages but does not listen for any messages itself. Unlike SendRadioOff,
SendLPL uses low-power listening [Polastre et al. 2004] and thus sends messages with
longer preambles. In addition, it includes another energy level where a second periodic
message is sent. SendLPLRandom is similar to that. However, instead of periodically
running this code it waits for a random time and then sends a random-length burst of
messages. Finally, Voltage periodically sends messages with its current voltage read-
ing and, on the highest energy level, toggles its LEDs every thirty seconds. We used
this application also for experiments with real nodes. Because of the time constraints
of our experiments we intended to create a particularly energy-intensive application
here.

Except for SendLPLRandom all of these applications execute some tasks periodically.
This code has been encapsulated in an energy level which can be deactivated if neces-
sary. In this case, however, the applications will no longer perform their actual tasks.
SendLPLRandom, in contrast, represents an event-based application. To simulate
events, it waits for a random time (up to one hour) before running its optional code.

In most applications the utility values have been set to 0 for Level l0, 1 for Level l1,
and 2 for Level l2. For SendLPL and SendLPLRandom, however, the utility of level
l1 and l2 has been increased slightly to 2 and 3, respectively. Because of the greater
gap to l0 and the small difference to l2 these two applications preferably switch to l1
if they cannot stay in l2 all the time.

160

6.4. Evaluation

Table 6.1 shows the simulated lifetime of the applications when a constant energy level
has been set. We validated some of the shorter lifetimes with real sensor nodes. The
results of these experiments differed by at most 2.2% from the simulated values. We
attribute these differences mostly to variations in the capacity of the batteries used
and slight deviations in the energy model of the simulator.

The table shows that our evaluation includes very low-power applications with a maxi-
mum lifetime of several years like FFT, Flash, and SendRadioOff as well as applications
like SendLPL, SendLPLRandom, and Voltage which have a high energy consumption.
In addition, the lifetime of the nodes varies significantly for different energy levels. De-
pending on the application, the lifetime can be extended by between 30% and 225%
if only the lowest level is active.

Levels will not be able to meet a lifetime goal if the lifetime requested cannot be
possibly achieved when the application does not already start in the lowest level. For
example, for one of our simulated batteries, SendLPL has a maximum lifetime of 50,318
minutes in level l0. If a lifetime of 50,000 minutes is requested for this application and if
the initial energy level is l2, Levels switches to level l0 as soon as possible. Nevertheless,
it can only achieve a total lifetime of 49,348 minutes and, therefore, fails to meet the
requested lifetime goal. However, cases like that are somewhat artificial since using
Levels does not make much sense if the lifetime goal can hardly be met in the lowest
level. Therefore, in this evaluation we focus on more realistic lifetime goals where
better application quality is actually possible.

We have set such goals for all sample applications and selected the lifetimes such that
the first run could be completed in the maximum level with most simulated batteries.
Fig. 6.15 compares the average lifetime when simulating different batteries (including
95% confidence intervals) with the lifetime requested. In each of these simulations
Levels was able to meet the lifetime goal. In addition, the size of the confidence
intervals is in almost all cases smaller than 4% of the total lifetime. This is less than
the confidence intervals of the simulated battery capacity, whose size is about 6.4%,
since Levels adjusts to the actual battery discharge curve.

Furthermore, the nodes did not live much longer than requested. Therefore, the
applications were able to provide almost optimal quality subject to the constraints
present. The largest differences relative to the lifetime achieved can be observed most
often for the simulations with the smallest lifetimes because they have been chosen in
a way that the applications can stay in their highest levels for the complete lifetime.
Therefore, the node cannot possibly consume all the energy available. For example,
in the first simulation run, SendLPL lives about 20% longer than requested although
Levels stays in Level l2 for almost the complete simulation.

Besides that, the relative differences between the required and the actual lifetime are
the largest ones for SendRadioOff (5.9% on average). Due to the inaccuracies in the
estimation of the battery’s remaining energy, Levels defers the computation if only a
very small amount of energy has been consumed in optional energy levels. Therefore,

161

6. Abstractions and Algorithms for Energy-Aware Applications

 300

 400

 500

 600

 700

 400 500 600 700

FFT

 300

 400

 500

 600

 700

 300 400 500 600 700

Flash

 12

 16

 20

 24

 28

 32

 16 20 24 28 32

SendLPL

A
c
tu

a
l
lif

e
ti
m

e
 [
d
a
y
s
]

 21

 24

 27

 30

 21 24 27 30

SendLPLRandom

 700

 750

 800

 850

 900

 950

 700 750 800 850

SendRadioOff

 6

 6.5

 7

 7.5

 6 6.4 6.8 7.2

Voltage

Required lifetime [days] Achieved
Required

Figure 6.15.: Required lifetime vs. lifetime achieved (including 95% confidence
intervals)

Levels can only execute a small number of level computations and cannot switch long
enough back to a higher level when the energy reserved as a safety overhead becomes
available near the end of the required lifetime. Since this application consumes in
Level l1 just 0.14mW more than in level l0, it can take more than 45 days until a new
level assignment is computed, which reduces the agility of level adjustments. This
delay could only be reduced significantly with more accurate hardware to measure
battery capacity.

SendRadioOff is an extreme example for the amount of energy consumed where mean-
ingful computations are almost impossible. As other long-lived applications show, a
small increase in power consumption is enough to obtain considerably better results.
For example, FFT, for which the actual lifetime is much closer to the required one,
consumes in Level l1 just 0.60mW more than in Level l0.

This problem of SendRadioOff is also shown in Fig. 6.16. This figure compares for
a single battery the average utility value achieved within the requested lifetime to
the optimal average. This optimum has been computed offline by solving the same

162

6.4. Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

1
3
.9

1
7
.4

2
0
.8

2
4
.3

2
7
.8

3
1
.3

6
9
4

7
2
9

7
6
4

7
9
9

8
3
3

8
6
8

A
v
e
ra

g
e
 u

ti
lit

y

Required lifetime [days]

SendLPL SendRadioOff

Optimum
Achieved

Figure 6.16.: Average utility throughout the required lifetime

linear programming problem as Levels . However, it has been calculated only once
using exact information about the battery capacity and the energy consumption of
the different levels.

The figure shows that SendLPL achieves the optimal utility value almost perfectly
despite the inaccuracies present on the sensor nodes. For SendRadioOff the difference
is greater (about 0.24 utility units) because of the small number of level computations
described above.

Experiments with Mica2 Nodes

We validated the simulation results of the Voltage application in experiments with
real hardware using Mica2 sensor nodes. To prevent side-effects from slight variations
in energy consumption we calibrated the energy model used for profiling with a multi-
meter to the specific sensor nodes used and created a separate battery model for each
node.

Fig. 6.17 shows the actual lifetime achieved by the motes when varying the required
lifetime. We define as the lifetime the time a neighboring node was able to receive
periodically transmitted packets, which were sent irrespective of the current energy
level. In most experiments the nodes met their lifetime goal. However, in the last
experiments we ran – some of those with a lifetime of 10,000minutes (6.94 days) –
most nodes failed early although in previous experiments they accurately achieved this
lifetime. For this time value these failures reduce the average lifetime and increase the
size of the confidence interval. We had purchased the batteries used in these (failed)
experiments several months after the ones used to build the battery model. A detailed
analysis of the recorded voltage readings showed that the nodes expected to have
significantly more energy left than actually available. We attribute this to differences

163

6. Abstractions and Algorithms for Energy-Aware Applications

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7

A
c
tu

a
l
lif

e
ti
m

e
 [
d
a
y
s
]

Required lifetime [days]

Achieved lifetime
Required lifetime

Figure 6.17.: Lifetime of the experiments with Mica2 nodes (including 95% confidence
intervals)

in the properties of the batteries. In fact, after updating our battery model a lifetime
of 10,0000 minutes could be achieved again. This shows that a good representation
of the battery characteristics is needed for Levels to accurately meet lifetime goals. If
the experiments that failed are not considered for this lifetime, the lifetime achieved
would be on average 10,229 minutes (7.10 days). This is shown with the dotted line
segment.

The lifetime achieved by the sensor nodes in all other experiments was between 1.1%
and 6.5% longer than the lifetime requested. Considering variations in battery ca-
pacity and the relatively small number of possibilities to adjust the level for this
short-lived application these numbers are excellent. Although the variations due to
external influences are greater here, the results correspond to our simulations. There-
fore, they validate that the models used in the simulator capture the relevant factors
of real deployments.

Using our original approach, the sensor nodes start ideally in their highest energy level
and only switch to lower levels later if the lifetime goal can no longer be met. Thus
they minimize the number of level changes and avoid frequent changes in application
quality. Due to inaccuracies on the sensor nodes, this best case cannot be achieved at
runtime.

This is shown in Fig. 6.18 that visualizes the energy levels assigned in one of our
experiments with a Mica2 sensor node. As expected, the node starts with the highest
level (level l2) and after two days switches to the lowest level (level l0). Then, however,
near its target lifetime it switches back to higher levels. This behavior is due to the
safety factor in our computations: The node detects that its estimation has been too
conservative and tries to consume the energy available to provide the best application
quality possible.

164

6.4. Evaluation

l0

l1

l2

 0 1 2 3 4 5 6 7

E
n
e
rg

y
 l
e
v
e
l

Time [days]

Assigned level
Required lifetime

Figure 6.18.: Level assignment over time

Although this behavior differs from the ideal case, the number of level changes is still
very small; in this experiment just three such changes occurred within several days.
Depending on the energy consumption of the application and the requested lifetime
more changes can be necessary. Nevertheless, 70% of all the simulations presented in
the previous subsection required 10 or less actual level adjustments.

6.4.2. Real-World Applications

In this subsection we show how Levels can be applied to real-world applications. For
this purpose we selected monitoring of volcanoes [Werner-Allen et al. 2006b]. In this
application there is usually no redundancy in the network topology and the required
duration of the experiment is known in advance. Replacing batteries is extremely
difficult due to the inaccessible deployment location. Moreover, large parts of each
node’s energy are used to power the sensor interface board. Therefore, if a node stops
sampling data itself but continues forwarding data from other nodes, its lifetime can
be extended significantly and network connectivity can be preserved much longer.

As a concrete example of this class of applications we chose the system used at Reven-
tador (“Volcano”) [Werner-Allen et al. 2006a]. This system is a complex application
that has been tested in real-world deployments. It stores sensor readings to flash mem-
ory and the base station can then request stored data. In addition, Volcano includes
an in-network detection of volcanic eruptions.

Again we use the Avrora simulator for the evaluation. However, since this simulator
did not include the custom sensor interface board used by this application, we had to
add its energy consumption to the simulator’s energy model. From the information
available we assumed for the sensor board a current draw of 40mA. Furthermore, Vol-
cano has been originally created for Telos B nodes while the prototype implementation

165

6. Abstractions and Algorithms for Energy-Aware Applications

of Levels assumes the Mica family of sensor nodes. Therefore, we ported the appli-
cation to this hardware family. However, in order to keep changes to the application
small we simulated for this evaluation a fictitious Mica2-like node that is – like the
Telos B nodes – equipped with more RAM.

The behavior of Volcano depends on the eruptions detected by the sensor nodes. We
simulated these eruptions at random intervals such that on average one event occurred
every 30 minutes. However, like in the real deployment not all of these eruptions were
actually reported by the nodes if they, for instance, stopped sampling to transfer some
data.

In the deployment of the application [Werner-Allen et al. 2006a] some batteries with
higher capacities than those in our battery model were used. Therefore, our simulated
lifetimes are significantly shorter than those reported there; this reduction in lifetime
is not due to Levels and can also be observed when simulating the original application
with the parameters of our batteries.

In its original version Volcano does not include code to achieve a user-defined lifetime
goal. Therefore, we specified some optional functionality using our energy level ab-
straction. Since sensing is the largest single energy consumer, we put this code into a
separate energy level. If it is deactivated, the nodes turn off the energy-expensive sen-
sor interface boards and stop analyzing, storing, and transmitting their data. However,
they still fully participate in routing and thus forward data from other nodes.

We defined energy levels in two nesC modules that were then mapped to a single level
in the application. Only minor changes to the existing code were necessary: about 20
lines of code had to be added or modified. Some larger effort was, however, needed
to write the profiling functions since no suitable unit test drivers were available. The
size of this module is less than 200 lines of code. In addition, we were able to copy
almost the complete nesC wiring from the actual application and reuse it for energy
profiling.

Fig. 6.19 shows the average lifetime achieved by this application. In total we simulated
150 sensor nodes and none of them failed before its lifetime goal. However, since in this
complex application the behavior of the nodes depends on network packets received
and random events detected, accurately predicting future energy consumption from
past data becomes more difficult than with the simple applications of Section 6.4.1.
Therefore, the variations can be greater for this application. This is shown with
the confidence intervals in Fig. 6.19, whose sizes are between 3.6% and 6.0% of the
lifetimes requested. In addition, Levels is not able to completely consume the energy
kept as a safety buffer and the nodes live on average 12.4% longer than required.
This number could be reduced, however, by adjusting some parameters of Levels .
Nevertheless, considering the lesser predictability of this application even these results
are encouraging.

Just like for Volcano, Levels could also be applied to other existing applications.
To get a better understanding of the effort needed for this change we analyzed the

166

6.4. Evaluation

 2

 2.5

 3

 3.5

 4

 4.5

 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

A
c
tu

a
l
lif

e
ti
m

e
 [
d
a
y
s
]

Required lifetime [days]

Achieved
Required

Figure 6.19.: Average lifetime for Volcano (including 95% confidence intervals)

structural health monitoring application used at the Golden Gate Bridge [Kim et al.
2007]. For this application the sensor board is also one of the main energy consumers.
Therefore, by applying energy levels just like in Volcano the lifetime of this application
could be significantly extended. Similar effort as for Volcano would be needed for
this modification, i.e., changing about 20 code lines in the application and writing
measurement functions of less than 200 lines.

6.4.3. Distributed Assignment

This section evaluates the behavior of our distributed coordination algorithm. The
most important metric for this algorithm is the deviation from the average since min-
imizing this value is the overall optimization goal. Therefore, we run different algo-
rithms and compare this value both for the number of active nodes and for the average
energy level assigned.

First, we use the original approach from Section 6.2.4 that does not balance energy level
assignments among nodes: It always starts with the highest level first and switches to
lower levels only later. In addition, for this evaluation we assume that it turns on all
nodes for their required lifetime immediately after deploying the network.

Second, we use the randomization scheme from Section 6.2.4, which randomly decides
which level from the local optimization result should be selected first. This approach
does not require any additional optimization or coordination.

Third, the distributed greedy approach from Section 6.3.2 computes a solution that
takes into account the schedules of the neighbors.

Fourth, as a first benchmark, we compute a solution using a backtracking algorithm in

167

6. Abstractions and Algorithms for Energy-Aware Applications

combination with our distributed assignment algorithm. Each node only can modify
its own schedule; the schedules of its neighbors are fixed. Therefore, the solution found
might not be the global optimum for all nodes. Since this computation is done for
just a single node in each case, it is actually possible to compute all permutations of
its schedule on a more powerful device like a PC. In addition, this approach adjusts
the activation schedule if an equivalent solution exists that allows for a better level
assignment.

Finally, as a second benchmark, we have approximated a solution that is optimal for
the complete network using simulated annealing [Kirkpatrick et al. 1983]. Simulated
annealing has been developed as a meta-heuristic for optimization problems. It has
been inspired by annealing in metallurgy, where some material is temporarily heated
again in its cooling process in order to increase the size of its crystals. Basically,
simulated annealing follows a greedy approach that modifies the current solution and
selects the new solution only if it is better than the previous one. However, transferring
the annealing concept, a solution is selected with some probability even if it is not
better than the previous one. Therefore, simulated annealing avoids being stuck in
local optima. Using a heuristic is necessary since the complexity for realistic problem
sizes is too high to compute the exact optimum. However, for small problems with the
activation schedule we were able to verify that the solution found by this algorithm is
the actual optimum.

All previous evaluations in this chapter were done with just a single or few sensor
nodes. Thus they could be easily simulated with Avrora. However, if a greater num-
ber of nodes is run for a long lifetime, the performance of Avrora is not sufficient.
Therefore, for the simulation of distributed assignments, which need more nodes to
get meaningful results, we used a custom simulator that does not completely model
the actual Mica2 hardware. Instead, it just provides the functionality to solve the
problems of Section 6.3. Furthermore, it does not recompute a solution to the local
optimization problem but uses a precomputed energy level assignment. Therefore, it
cannot reflect the behavior when Levels switches back to a higher level near the end of
its lifetime, for example. However, for comparing different algorithms that all operate
on the same local optimization results, such functionality does not seem to be needed.

For these experiments we set the network lifetime to 20 time intervals. In a real
application each of these intervals may include several local optimization rounds that
try to maximize the average utility of the node. The required lifetime of each node
was set to 8 time intervals. Half of the nodes stayed for 4 time intervals in an energy
level with a utility of 2 whereas the other half stayed in this level for just 2 intervals.
For the rest of their lifetime all nodes switched to a level with a utility of 0. In our
experiments we placed the nodes randomly in a fixed area and varied the total number
of nodes. This way we ran simulations for different network densities.

In Fig. 6.20 we show ∆active, the deviation of the number of active nodes from the
average. The deviation of our original approach that activates all nodes first is – as
expected – the largest one since all nodes are scheduled to be active in the same time

168

6.4. Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5 10 15 20 25 30 35 40 45 50

D
e
v
ia

ti
o
n
 f
ro

m
 a

v
e
ra

g
e
 n

u
m

b
e
r

o
f
n
o
d
e
s

Total number of nodes

Active first
Randomization

Greedy approach
Backtracking

Approximated optimum

Figure 6.20.: Average deviation of the number of active nodes from Ravg (including
95% confidence intervals)

intervals. The deviations increases with greater node densities since with more nodes
in the neighborhood the absolute difference of the number of active nodes also grows.

For the randomization approach the results are significantly better. In addition, if
the number of nodes is increased, the average deviation only increases slightly. The
reason for this reduced increase is that with more nodes it becomes more likely that
the random schedules are assigned in a way that in each time interval approximately
the average number of nodes is active. Therefore, the actual number of active nodes
is close to the average.

Although the results of the randomization scheme are already better than those of the
original algorithm, they can still be improved if some coordination among nodes is
possible. These approaches consider the specific neighborhood – which is also used for
computing the average deviation in the figure – instead of the complete network. As the
figure shows, the results of the backtracking algorithm and of the greedy approach are
almost equal. This is as expected because they both compute a solution subject to the
same constraints. Small differences can be attributed to suboptimal local assignments
since each node can only adjust its own schedule.

Like the random approach, the results for these two algorithms increase only slightly
with higher node densities. This is because with more nodes a better coordination can
be performed.

For the simulated annealing approach, the deviation does not increase with higher
node densities since the globally optimal solution is approximated. For the other
algorithms, however, the schedules of the neighbors are fixed constraints, and only the
schedule of the local node can be modified. If the node density increases, the weight
of a single node decreases and more nodes are needed to balance the assignments and

169

6. Abstractions and Algorithms for Energy-Aware Applications

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

D
e
v
ia

ti
o
n
 f
ro

m
 a

v
e
ra

g
e
 u

ti
lit

y

Total number of nodes

High level first
Randomization

Greedy approach
Backtracking

Approximated optimum

Figure 6.21.: Average deviation of the network-wide utility from Uavg (including 95%
confidence intervals)

get closer to the average. Since the neighborhoods of the nodes are not identical, the
deviation increases slightly for both the greedy and the backtracking approach.

Fig. 6.21 shows the results for balancing energy levels. Here the values do not increase
with higher node densities because this figure shows the deviation from the average
utility, which is divided by the number of active nodes, instead of the absolute differ-
ence in the number of active nodes. Because the time spent in the energy levels varies
and because of the nodes’ placement in the topology there are some small variations.
This is directly reflected by the results of our original approach, where all nodes start
in their highest energy level. Since with this approach nodes do not take into account
the energy level assignment of their neighbors, the deviation from the average utility
is almost constant.

In contrast, the deviation of the other approaches decreases if more nodes are present.
The reason for this is that with more neighbors these approaches are able to approxi-
mate the average more closely. As the figure shows, the coordinating approaches are
in almost all cases better than the randomization scheme. Only in very sparse topolo-
gies with less than two concurrently active nodes in the neighborhood (simulations
for 5 and 10 nodes in total) the random approach might be slightly better. Since the
coordination approaches operate only in the local neighborhood, they cannot balance
the assignments for such a small number of neighbors. The randomization approach,
in contrast, profits from the fact that all nodes throughout the network assign their
schedules randomly.

Again the greedy approach is virtually equivalent to the backtracking algorithm, as
their overlapping confidence intervals show. This is notable since the latter algorithm
solves – unlike the former one – both sub-problems together and adjusts the activation
schedule if this reduces the deviation for the utility of energy levels.

170

6.4. Evaluation

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

A
c
ti
v
e
 n

o
d
e
s

Time interval

Active first
Randomization

Greedy approach
Backtracking

Approximated optimum
Average Ravg

Figure 6.22.: Active nodes over time for a sample run of 25 nodes

Here, the solution of simulated annealing is again better than the other approaches.
This is not surprising since this approach approximates the network-wide optimum
rather than solving the problem just with local knowledge on each node. Neverthe-
less, as the results show, the distributed approaches are very close to the optimum.
However, it should be mentioned that the approximated optimum just considers a
single solution for the activation schedules. Therefore, slightly better results might be
possible here if the assignments of both the activation schedules and the energy levels
are solved together.

Fig. 6.22 shows how many nodes are active in each time interval for a sample run
of 25 nodes. Naturally, the approach that activates all nodes first differs most from
Ravg whereas all other approaches oscillate around this average. These oscillations
are slightly greater for the randomization scheme, which leads to the greater overall
deviation. The approximated optimum with simulated annealing, however, shows –
as expected – the smallest deviation.

If a node is turned on and off or if its energy level changes, it probably needs some time
to adjust to its new task. Therefore, the number of such changes should be kept small.
In our basic approach of Section 6.2.4 this is done by starting in the highest level and
by only switching to a lower level if the lifetime goal cannot be met otherwise. For our
distributed and randomized approaches, however, this number will increase because
level changes are used to balance assignments in the network. In addition, it has not
been one of the goals of the optimization to minimize these changes.

Since in these simulations the level assignments have been set to fixed values, the
original algorithm changes the activation state and the energy level just once after
starting in the highest level. The other approaches require slightly more changes.
For example, on average the greedy approach activates each node 3.2 times in our
simulations and switches from one energy level to another one 3.0 times.

171

6. Abstractions and Algorithms for Energy-Aware Applications

Table 6.2.: Runtime overhead of local optimizations
Optional code block 91 µs
Check-only for optional code block 11 µs
Adding continuous energy (2 levels) 30 µs
Adding continuous energy (5 levels) 107 µs
Adding continuous energy (10 levels) 235 µs

Nevertheless, the number of changes is comparatively small in the distributed approach
since we use longer time intervals here than those for the local optimization. Within
each such long time interval there are usually no changes unless the local optimization
result from the Simplex algorithm has changed significantly.

6.4.4. Runtime Overhead

This section evaluates the runtime overhead of Levels . First, we show that the overhead
for the purely local optimization, where there is no coordination among nodes, is
almost negligible. Second, we demonstrate that adding distributed coordination does
not add much overhead.

Local Optimization

Since with the purely local version of Levels each node determines its energy level
independently from other ones, it does not have to send any radio messages. This
helps to make Levels usable with low-power applications. Therefore, the only increase
in energy consumption can be attributed to computational overhead. There are three
sources for this overhead. First, whenever a code block belonging to an energy level is
about to be executed, the system has to check if the level is active and has to add the
block’s energy consumption to its internal variables. Second, it accumulates continuous
energy consumption to overall energy consumption every few seconds. Finally, every
few hours Levels tries to adjust the current energy level with the Simplex algorithm.

To evaluate the first kind of overhead, i.e., the overhead associated with each optional
code block, we instrumented a simple application that makes use of the energy level
abstraction. By simulating this application we were able to measure the CPU overhead
in a controlled setting.

Table 6.2 shows the result of this experiment. The overhead associated with every
code block is comparatively small: it is just 91µs. However, sometimes the energy
consumed by this overhead might still outweigh the energy consumed within the code
block. In these cases the runtime system just checks if the code should be executed
without adding its energy value. This takes only 11µs. Therefore, even in this case
when Levels is of less use, its runtime overhead still does not dominate the energy
consumption of the code that it controls.

172

6.4. Evaluation

 0

 5

 10

 15

 20

 2 3 4 5 6 7 8 9 10

D
u
ra

ti
o
n
 [
m

s
]

Number of energy levels

No computation
Max. computation

Figure 6.23.: Duration of level adjustment

Table 6.3.: Effect of runtime overhead for local optimizations on node lifetime
Application Lifetime with Levels Reduction
Voltage Level l0 7.687 days 0.0%
Voltage Level l1 6.648 days 0.0%
Voltage Level l2 5.932 days 0.0%
FFT Level l0 944.4 days 1.8%
FFT Level l1 372.7 days 0.7%

In another experiment we measured the overhead when accumulating continuous en-
ergy consumption. Here the results depend on the number of energy levels defined in
the application. Although individual software components might all define their own
energy levels, we expect that application developers will combine them when creating
the overall application. Therefore, most applications will probably have less than five
energy levels. As the numbers in Table 6.2 show, even for applications with twice this
number the overhead is just a few hundred microseconds.

Finally, computing a new level assignment incurs the largest overhead. However,
since this computation is only executed every few hours, the overhead is less critical.
Fig. 6.23 shows the CPU overhead for two cases. In the first one, the energy consumed
is too small compared to the current accuracy given by the battery model. Therefore,
the actual computation is not performed. The other one, in contrast, shows the
overhead when the computation is done for the maximum number of iterations. With
more energy levels the overhead increases because for each level additional variables
have to be considered both when no result can be computed and for solving the
linear programming problem. Although an overhead of some milliseconds might seem
significant, this computation is only executed every few hours or even days (depending
on the energy consumption). Therefore, it should be acceptable for most applications.

To find out the actual effects of the computational overhead on node lifetime we

173

6. Abstractions and Algorithms for Energy-Aware Applications

Table 6.4.: Energy overhead of distributed level assignments
Action Energy
Send packet with LPL 70.9mJ
Receive for five minutes with LPL 156 mJ
Greedy algorithm 0.199mJ

simulated some of the test applications described in Section 6.4.1 with and without
our runtime system doing its computations. As the results in Table 6.3 show, for
short-lived applications with a lifetime of only a few days, the energy overhead of
the computation does not result in a detectable decrease in node lifetime. Even for
extremely low-power applications with a lifetime of several months or even years, the
CPU overhead of our runtime system leads to a reduction in lifetime of less than 2%.

Distributed Assignment

The overhead for coordinating assignments is also very small, especially since this
optimization is run less frequently and requires only minimal input from the directly
neighboring nodes. Table 6.4 summarizes the main components of the overhead for a
typical low-power application. Again the numbers have been obtained using Avrora.

The table assumes that the radio has to be turned on for five minutes just to exchange
the schedules. During this time we make use of low-power listening [Polastre et al.
2004] (with 1% duty cycle) that increases the length of the preamble in order to reduce
the time receivers have to listen for radio messages.

If 20 time intervals are used, a node’s state can be transmitted in a single network
packet. In applications with as many energy levels as 128 – much more than expected
in real-world applications – for each time interval just a single byte is needed: 1 bit
to represent the on/off state and up to 7 bits for the energy level assigned to the time
interval. Sending such a message including the longer preamble for low-power listening
consumes on the Mica2 platform 70.9mJ.

Furthermore, nodes have to be able to receive network packets for coordination. In
loosely synchronized networks it should be sufficient to turn on the radio for a few
minutes each time when a node expects to receive new schedules from its neighbors.
Turning on the radio for five minutes with low-power listening and the accompanying
switch of the CPU out of the power-save mode requires 156mJ.

Finally, the last component of the overhead is computing the local schedule using our
greedy algorithm. This computation takes for 20 time intervals 9.39ms and requires
just 0.199mJ of energy.

In summary, the energy needed for communication dominates the overhead for com-
putation. In total one coordination cycle requires 227mJ. If at the beginning an

174

6.5. Related Work

initialization is performed and if 20 computation cycles are executed during the life-
time of the network, the coordination consumes altogether just 4.77 J. Compared to
a total battery capacity of about 32,000 J this is negligible. Even if each message was
sent several times to increase reliability, an effect on node lifetime would hardly be
detectable.

6.4.5. Summary

In this evaluation we have shown that Levels is able to accurately achieve given lifetime
goals even if the application depends on external events. However, it requires detailed
information about the energy consumption and the battery discharge behavior in order
provide the expected results. With relatively small changes it is possible to add Levels
to existing real-world applications.

If some coordination in the network is available, Levels can balance both the active
time slots and energy level assignments in a way that provides almost constant appli-
cation quality over time. Furthermore, the overhead both for the local optimization
and for the distributed coordination is so small that it can virtually be neglected.

6.5. Related Work

In this section we give a brief overview of work related to Levels . Particularly, we
describe systems that take into account energy considerations for adaptation, extend
network lifetime by deactivating redundant nodes, map energy consumption to code
blocks, and model battery behavior.

In the realm of mobile computing, Odyssey [Flinn and Satyanarayanan 1999] monitors
the available energy and adapts the fidelity of applications to meet a user-defined
lifetime goal. For example, a video player switches to a differently compressed source
file or reduces its window size if energy becomes scarce. Odyssey does not provide
a programming abstraction like our energy levels and does not leverage simulation
data. Therefore, it cannot take advantage of predicting energy consumption after
adaptation. Furthermore, it has been designed for less resource-constrained devices
and relies on highly accurate measurement equipment, which we cannot assume on
inexpensive sensor nodes.

Similarly, ECOSystem [Zeng et al. 2002] tries to achieve a target lifetime by limiting
the discharge rate of the battery. It introduces the Currentcy Model to deal with
the demands of competing tasks in a multitasking system. Rather than identifying
optional functionality in applications, it modifies the scheduler to execute only those
tasks that have not spent their energy budget for the current round yet. Unlike our
approach it does not exploit information from simulation and, therefore, has to do
detailed energy accounting at runtime.

175

6. Abstractions and Algorithms for Energy-Aware Applications

In the field of sensor networks an architecture for energy management has been pre-
sented recently [Jiang et al. 2007b]. It shares many goals with our work like, for
example, the ability to specify a user-defined target lifetime and to identify optional
functionality. However, since this work seems to be at an early stage, the properties
of concrete implementations of this architecture are still unclear.

Probably most closely related to Levels is Eon [Sorber et al. 2007], which has been de-
veloped concurrently to our work. It provides a language and runtime environment for
energy-aware sensor network applications. However, instead of dealing with lifetime
goals Eon focuses on perpetual systems that employ energy harvesting. Therefore,
it pursues the goal of balancing energy consumption and production. Eon does not
make use of information from simulation and, therefore, can only estimate the en-
ergy consumption of different functionalities. In addition, it does not coordinate the
functionality assignments of nodes.

TinyDB [Madden et al. 2005] allows to adapt the interval between the measurements
of a query in order to meet user-defined lifetime goals. Similar to our rationale, its
authors argue that in environmental monitoring scientists are more concerned about
meeting a lifetime goal than about the sampling rate. Since TinyDB’s programming
interface is based on high-level SQL-like queries, changing the sampling rate is the
only way to influence network lifetime.

There is already a large body of work dealing with the coverage problem in wireless
sensor networks. This work switches redundant nodes into sleep mode to maximize
the time that a given area is monitored by the network [Cardei and Wu 2006; Huang
et al. 2006]. Closely related are topology control mechanisms like ASCENT [Cerpa
and Estrin 2002] that switch off redundant nodes but strive to preserve network con-
nectivity. Similarly, PEAS [Ye et al. 2003], for example, controls the network density
to ensure both coverage and connectivity. Likewise, duty-cycling approaches [Giusti
et al. 2007] periodically turn off nodes to extend network lifetime. Unlike Levels all
of these approaches are only targeted to dense networks where redundant nodes can
be temporarily deactivated. In addition, although they keep the application quality
roughly constant, they do not have any given lifetime goals but try to maximize the
time for which they provide coverage or connectivity, respectively. Finally, they do not
provide more states with differing functionality – like our energy levels – and usually
turn nodes just on or off.

Many network protocols already include mechanisms to reduce energy consumption.
For example, at the link layer several protocols try to reduce the energy spent for idle
listening. Therefore, they often switch the radio chip into its sleep state [van Dam
and Langendoen 2003; Polastre et al. 2004]. These optimizations are orthogonal to
our approach. Energy levels could still be used on other layers, as long as, of course,
the same protocol stack is used for both energy profiling and the application itself.

Sensor network simulators like Avrora [Titzer et al. 2005; Landsiedel et al. 2005] and
PowerTOSSIM [Shnayder et al. 2004] enable the prediction of the energy consumption

176

6.6. Summary

of a sensor node. The values obtained from these tools are often used for evaluation
purposes and to give the developer hints about energy consumption, although usu-
ally not at runtime. Avrora allows to break down energy consumption to individual
functions. However, this part of Avrora can only associate the energy consumption
of the CPU with some code rather than including the other hardware components on
a node. In addition, unlike our approach, it does not take into account the energy
consumed by functions that are called by the code under measurement or, in the case
of TinyOS, by asynchronously executed tasks.

There are several more advanced battery models than ours described in the literature
[Rao et al. 2003]. They take into account effects resulting from temperature changes
and time-varying loads, for example. However, because the voltage sensor on typical
sensor nodes cannot provide the precision of lab equipment, we have to deal with
inaccuracies anyway. Furthermore, the computational overhead of many accurate
battery models is too large for resource-constrained sensor nodes, and it takes even
for more powerful computers hours to simulate a load profile.

6.6. Summary

In this chapter we have described and evaluated Levels , the part of our cross-layer
framework that deals with the energy limitations of the sensor nodes. Unlike most
approaches that try to maximize network lifetime, Levels helps to meet user-defined
lifetime goals for a sensor network and for each of its individual nodes. Levels requires
only small modifications to existing code and its energy levels provide a flexible and
easy-to-use programming abstraction. With only minimal extensions to nesC Levels
allows to mark code that is not needed to provide some basic functionality like network
connectivity or sampling with less energy-intensive sensors. In addition, measuring
the energy consumption of parts of an application is easy with our simulation-based
approach for energy profiling. Finally, our runtime system shields the application de-
veloper completely from low-level issues related to lifetime estimation. Even balancing
energy levels and node schedules among neighboring nodes for constant application
quality can be performed by the system without any effort for the developer.

If an accurate battery model and information about the energy consumption of the
sensor nodes are available, Levels helps to ensure that each node meets its lifetime
goal and provides an application quality that is close to the optimum. Therefore, the
developer does not have to deal manually with energy limitations. This will probably
make some cross-layer interactions unnecessary.

Levels assumes that future energy consumption can be predicted from information
about the past. Although we expect this assumption to be true for the long periods
between level adjustments, Levels might not be able, however, to meet the lifetime
goal in all cases if the node’s load changes significantly over time.

177

6. Abstractions and Algorithms for Energy-Aware Applications

Using our coordination algorithm, nodes can balance their energy level assignments
and – in dense networks with redundant nodes – their activation schedules in order
to reduce fluctuations in application quality. This approach is run in a completely
distributed way and requires only minimal data exchange among nodes. As we have
shown in the evaluation, the energy overhead of both this coordination and the local
optimization is negligible.

In conclusion, we expect that Levels will help to make the creation of energy-aware
sensor network applications much easier. For applications that cannot benefit from
redundant nodes it will allow to preserve some minimal functionality for the lifetime
defined by the user. Although this might somewhat decrease the quality of the data
obtained from the network, we argue that – especially in a sparse network topology – a
node is more useful when providing reduced functionality than if it stops working com-
pletely. Similarly, for applications with redundant nodes, Levels can help to achieve
a constant application quality over the complete network lifetime by computing both
the activation schedules and energy level assignments.

178

7. Summary and Outlook

This chapter summarizes the results from the previous ones and gives a brief outlook
on possible future research directions.

7.1. Conclusions

Cross-layer interactions have proved to be an invaluable tool when creating complex
applications for sensor networks. Therefore, one should not only consider the negative
side effects when thinking about them. However, they definitely raise the complexity
for the developer and increase the maintenance overhead. Thus, despite their obvious
benefits, they have to be applied carefully.

The main reasons for cross-layer interactions are special properties of wireless commu-
nication, the memory limitations of sensor nodes, and their severe energy limitations.
Unlike other approaches, our framework addresses all of them.

By analyzing existing applications we have shown that cross-layer interactions are not
just a theoretic concept but that they are widely used in practice. Based on this
analysis we have created a taxonomy which classifies the different types of cross-layer
interactions found.

We are convinced that with appropriate abstractions and system software their neg-
ative side-effects can be reduced. Nevertheless, the best solution often would be to
do without cross-layer interactions if such a solution can achieve similar performance.
Therefore, this thesis has presented a cross-layer framework for sensor networks that
pursues different strategies. Its goals are to reduce the negative effects of cross-layer
interactions, to address the reason why they are used in the first place, and – by
moving some concerns into the system software – to make some of them unnecessary.

First, with TinyXXL and the TinyStateRepository the framework facilitates data ex-
change among different layers. As our analysis of existing sensor network applications
has shown, this is a form of cross-layer interactions that is frequently used. Opti-
mizations based on data exchange seem to have a significant effect on the efficiency
of applications. TinyXXL allows to make use of data exchange without coupling the
layers more tightly. For example, this data can be used to better deal with the proper-
ties of wireless transmission. By performing optimizations at compile-time, TinyXXL
helps to avoid redundant data and, therefore, potentially reduces memory and energy

179

7. Summary and Outlook

consumption for applications built from reusable components. Combined with Neidas ,
a neighborhood data sharing algorithm, TinyXXL provides a comprehensive system
for data exchange both among the layers and software components of a single node
and between neighboring nodes. Neidas makes use of polite gossiping, i.e., it sup-
presses transmissions if some neighbors have already sent the request or data, in order
to reduce its overhead. Being built upon this concept, it fully leverages the broadcast
nature of radio communication.

Second, ViMem directly addresses one of the causes of cross-layer interactions. By
providing a flash-based virtual memory system it relaxes the memory constraints of the
sensor nodes. Therefore, some cross-layer interactions might not be necessary. Using
the virtual memory abstraction has the benefit that application developers can access
their data independent of its current place in RAM or flash memory. Furthermore,
we have adapted this mechanism to the special properties of flash memory and sensor
networks. Most important, ViMem strives to optimize the memory layout such that
the number of energy-expensive accesses to flash memory is reduced.

Finally, Levels addresses energy constraints. It allows the application developer to
meet a user-defined lifetime goal without having to explicitly deal with the low-level
details of energy estimation. Using its fully distributed assignment algorithm Levels
does not only maximize application quality on each sensor node for the given lifetime,
but also ensures a constant overall network quality over time. By providing this
functionality as a part of the system software, Levels can help to avoid some cross-layer
interactions of the application that are caused by energy limitations. Nevertheless,
even with Levels not all of these cross-layer interactions will become unnecessary.

We have implemented the parts of the cross-layer framework as an extension of TinyOS
and nesC for Mica2 nodes. Then we have evaluated them using simulation and exper-
iments with real sensor nodes. By developing or modifying complex applications we
have shown that our abstractions, algorithms, and system software can provide bene-
fit to real-world applications. For example, TinyXXL and ViMem have been applied
to TinyDB and Levels has been used to adapt an application that monitors volcanic
eruptions.

Although there is some runtime overhead associated with the framework, it is almost
always negligible. One design principle that helps to keep the overhead low is that
as much processing as possible is moved to compile-time. Therefore, the sensor nodes
themselves do not have to, for example, select a component that provides some data
with TinyXXL, optimize the memory layout for ViMem, or measure energy consump-
tion of code blocks for Levels .

Another design principle that helps to reduce the overall overhead is our modular
architecture. Each of the cross-layer framework’s three parts can be used individually
in applications. Thus only the functionality that is actually needed has to be present
on the sensor nodes. In this respect our cross-layer framework pursues the same
approach as TinyOS, which also includes only those components in the code image

180

7.2. Outlook

that are actually needed by the application.

In conclusion, the resulting framework addresses a broad range of cross-layer inter-
actions. In fact, in many aspects it is more general than the original target: Some
of its abstractions and algorithms are well beyond the traditional scope of cross-layer
interactions. For example, Neidas can be used not just for typical cross-layer data
like link qualities or routing information but also for any other kind of data useful to
neighboring nodes. Similarly, Levels is not just a tool that helps to avoid some cross-
layer interactions but provides powerful mechanisms for energy-aware applications.
Therefore, our framework does not simply reduce the negative effects of cross-layer
interactions; in general, it rather helps the application developer to create efficient
sensor network applications.

7.2. Outlook

Regarding possible future research problems, there are several ways to extend the
work of this thesis. First, the set of cross-layer interactions that are dealt with by the
framework could be expanded. Second, there are some opportunities to extend the
work on each of its parts. Finally, depending on the direction of future sensor network
research, some assumptions and trade-offs might have to be reconsidered. This section
gives some examples for each of these items.

First of all, even though our framework offers solutions for the most commonly used
cross-layer interactions, it does not support all examples for them that we have found
in existing applications. For instance, in Chapter 4 some of the examples for cross-layer
interactions based on function calls are not supported by our framework. We did not
consider these interactions because they are already well-supported by the mechanisms
of nesC. However, it could be worthwhile to reevaluate this way of interaction and
provide some mechanisms that couple these components less tightly.

Although we have modified existing protocols and developed a real-world application
from scratch using our data exchange abstractions, these interactions focus mostly
on specific pairs of protocols. However, it would be interesting to see what kinds of
cross-layer interactions emerge if a complete network stack with a large number of
alternative protocols is developed using TinyXXL.

For Neidas a possible extension is to consider not just the nodes in radio range but,
for example, arbitrary groups of nodes. Although such systems have already been
proposed in the literature, they often lack an efficient data sharing algorithm.

Regarding ViMem it might be interesting to study the trade-offs if it is applied to
different classes of devices that, for example, are equipped with another kind of sec-
ondary storage, possibly one of the new memory types currently being developed (e.g.,
FeRAM).

181

7. Summary and Outlook

For Levels one important research direction would be to combine it with a protocol
that preserves coverage or network connectivity. Furthermore, besides minimizing
the deviation from the average, constraints that actually span several nodes could
be introduced. This way, for example, the system could ensure that always a given
number of nodes provides a predefined energy level. In addition, instead of maximizing
application quality for a given lifetime, it could be worthwhile to examine what is
different for applications that want to achieve a given quality while maximizing their
lifetime. Similarly, the effects of energy harvesting – with the possibility of perpetual
applications – should be studied separately in more detail.

Furthermore, it is still an open question how other properties that are considered by
TinyCubus – for example, the delivery ratio – can be combined with the abstraction
of an energy level.

Depending on the direction of future sensor networks research, different aspects of our
work will have to be reconsidered. For example, if true low-power applications emerge
that sleep for several weeks or months before becoming active for just a few minutes,
some abstractions and algorithms of our framework will have to be adjusted. Most
notably, Neidas would need to be changed for such a “mostly-off” application since it
assumes a broadcast communication mechanism for periodic updates.

If, however, future sensor networks consist of more heterogeneous devices – some of
them possibly with more energy and other resources available – some trade-offs in
other parts of our cross-layer framework will have to be rethought. For example, if
more energy is available, Levels and ViMem will require some changes to adjust their
optimization goals and to make use of that additional energy.

Nevertheless, independent of the direction of sensor network research, we are convinced
that in the presence of cheap, resource-constrained devices and wireless communication
cross-layer interactions will continue to be an important topic. Furthermore, if such
interactions are used in the development of complex commercial applications, system
support with accompanying programming abstractions is necessary to create efficient
applications at low development costs.

182

A. Extensions of the nesC Grammar

For reference, this appendix summarizes the changes to the nesC grammar required
by our cross-layer framework. In particular, nesC has been extended for TinyXXL
and Levels . For ViMem, however, no changes were necessary since it only operates
with attributes that are already part of nesC.

This description extends the nesC and C grammars [Gay et al. 2005; Kernighan and
Ritchie 1988] and uses the same syntax as those. Words in a typewriter font are
keywords that are not replaced. Each line in a rule refers to a separate alternative.
If a rule is marked with “also”, this rule adds alternatives to a standard nesC rule.
Finally, optional symbols are marked with “opt”.

A.1. Changes for TinyXXL

Since TinyXXL introduces several new keywords, there are several changes to the
nesC grammar. However, many of them are very small, and some rules are only
needed because of the syntax used to display the grammar.

nesC-file: also
xldata-file
xlparam-file
xlvirtual-file

xldata-file:
xldata identifier (data-parameter-listopt) { xldata-body }

xlparam-file:
xlparam identifier { xldata-body }

xlvirtual-file:
xlvirtual identifier { xlvirtual-specification } xlvirtual-implementation

data-parameter-list:
data-parameter-declaration
data-parameter-declaration , data-parameter-list

183

A. Extensions of the nesC Grammar

data-parameter-declaration:
parameter-declaration (<)

parameter-declaration (>)

xldata-body:
type-specifier identifier ;

type-specifier identifier ; xldata-body

xlvirtual-specification:
uses-provides-data-list

xlvirtual-implementation:
implementation { translation-unit }

uses-provides-data-list:
uses-provides-data
uses-provides-data-list uses-provides-data

uses-provides-data:
uses xldata-uses-specification-element-list
provides xldata-provides-specification-element-list

xldata-uses-specification-element-list:
xldata-uses-specification-element
{ xldata-uses-specification-elements }

xldata-uses-specification-elements:
xldata-uses-specification-element
xldata-uses-specification-elements xldata-uses-specification-element

xldata-uses-specification-element:
xldata-type instance-nameopt xldata-uses-condopt xldata-uses-neighopt ;

xldata-uses-cond:
(xldata-parameter-cond)

xldata-uses-neigh:
[]

xldata-provides-specification-element-list:
xldata-provides-specification-element
{ xldata-provides-specification-elements }

184

A.1. Changes for TinyXXL

xldata-provides-specification-elements:
xldata-provides-specification-element
xldata-provides-specification-elements xldata-provides-specification-element

xldata-provides-specification-element:
xldata-type instance-nameopt xldata-provides-parameteropt ;

xldata-provides-parameter:
(xldata-parameter-specification)

xldata-type:
xldata identifier

xldata-parameter-cond:
expression

xldata-parameter-specification:
xldata-parameter-list

xldata-parameter-list:
xldata-parameter-value
xldata-parameter-list , xldata-parameter-value

xldata-parameter-value:
identifier
constant

statement: also
data-providing-statement

data-providing-statement:
ifproviding (identifier) statement

storage-class-specifier: also
xldata

specification-element: also
xldata-specification-element
xlparam-type instance-nameopt ;

xlparam-type:
xlparam identifier

185

A. Extensions of the nesC Grammar

A.2. Changes for Levels

For Levels , much fewer changes are needed since it mostly builds on nesC syntax. In
fact, just a single rule has to be modified in order to specify energy levels. No changes
are necessary for wiring energy levels.

specification-element: also
energylevel identifier < integer-constant >

No more modifications are needed because using energy levels is very similar to inter-
faces. In the implementation of Levels the pre-compiler, in fact, replaces them with an
interface. Implementing energy levels completely with interfaces is not possible since,
otherwise, the local order of energy levels within the module could not be specified.

186

Bibliography

[Abrach et al. 2003] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,
B. Shucker, J. Deng, and R. Han. MANTIS: System support for multimodal net-
works of in-situ sensors. In Proceedings of the 2nd ACM International Conference
on Wireless Sensor Networks and Applications, pp. 50–59, 2003.

[Arora et al. 2004] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni,
U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashita. A line in the sand: a
wireless sensor network for target detection, classification, and tracking. Comput.
Networks, 46(5):605–634, 2004.

[Atmel Corporation 2005] Atmel Corporation. 4-megabit DataFlash AT45DB041B
Datasheet, 2005.

[Beutel et al. 2004] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and
L. Thiele. Prototyping wireless sensor network applications with BTnodes. In
Proceedings of the 1st European Workshop on Sensor Networks (EWSN 2004), pp.
323–338, 2004.

[Calder et al. 1998] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious
data placement. In Proceedings of the Eighth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 139–149,
1998.

[Camacho and Bordons 2004] E. F. Camacho and C. Bordons. Model Predictive Con-
trol. Advanced Textbooks in Control and Signal Processing. Springer-Verlag, 2nd
edition, 2004.

[Cardei and Wu 2006] M. Cardei and J. Wu. Energy-efficient coverage problems in
wireless ad-hoc sensor networks. Computer Communications, 29(4):413–420, 2006.

[Cerpa and Estrin 2002] A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring
sensor networks topologies. In Proc. of the Twenty-First Annual Joint Conf. of the
IEEE Computer and Communications Societies, volume 3, pp. 1278–1287, 2002.

[Cheong et al. 2003] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A
programming model for event-driven embedded systems. In Proc. of the 2003 ACM
Symposium on Applied Computing, pp. 698–704, 2003.

[Chvátal 1983] V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983.

187

Bibliography

[Conti et al. 2004] M. Conti, G. Maselli, G. Turi, and S. Giodano. Cross-layering in
mobile ad hoc network design. IEEE Computer, 37(2):48–51, 2004.

[Dai et al. 2004] H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-structured
flash file system for micro sensor nodes. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, pp. 176–187, 2004.

[Denning 1970] P. J. Denning. Virtual memory. ACM Comput. Surv., 2(3):153–189,
1970.

[Dunkels et al. 2004] A. Dunkels, B. Grönvall, and T. Voigt. Contiki – a lightweight
and flexible operating system for tiny networked sensors. In Proceedings of the First
IEEE Workshop on Embedded Networked Sensors 2004 (IEEE EmNetS-I), 2004.

[Dunkels et al. 2006] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads:
Simplifying event-driven programming of memory-constrained embedded systems.
In Proceedings of the 4th International Conference on Embedded Networked Sensor
Systems, pp. 29–42, 2006.

[Dunkels et al. 2007] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based
on-line energy estimation for sensor nodes. In Proc. of the Fourth Workshop on
Embedded Networked Sensors, 2007.

[Duracell Batteries] Duracell Batteries. Duracell Plus alkaline-manganese dioxide bat-
tery. http://www.mdsbattery.co.uk/datasheets/duracell/MN1500PL.pdf.

[Dutta and Culler 2005] P. K. Dutta and D. E. Culler. System software techniques for
low-power operation in wireless sensor networks. In Proc. of the 2005 International
Conference on Computer-Aided Design, 2005.

[Estrin et al. 1999] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next cen-
tury challenges: Scalable coordination in sensor networks. In Proceedings of the 5th
Annual ACM/IEEE International Conference on Mobile Computing and Network-
ing, pp. 263–270. ACM Press, 1999.

[Flinn and Satyanarayanan 1999] J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In Proc. of the Seventeenth ACM Symposium
on Operating Systems Principles, pp. 48–63, 1999.

[Franklin and Zdonik 1997] M. Franklin and S. Zdonik. A framework for scalable
dissemination-based systems. In Proc. of the 12th Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pp. 94–105, 1997.

[Gal and Toledo 2005] E. Gal and S. Toledo. Algorithms and data structures for flash
memories. ACM Comput. Surv., 37(2):138–163, 2005.

[Garlan and Shaw 1993] D. Garlan and M. Shaw. An introduction to software ar-
chitecture. In Advances in Software Engineering and Knowledge Engineering, pp.
1–39, 1993.

188

http://www.mdsbattery.co.uk/datasheets/duracell/MN1500PL.pdf

Bibliography

[Gay et al. 2003] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded systems. In Proc.
of the Conf. on Programming Language Design and Implementation, pp. 1–11, 2003.

[Gay et al. 2005] D. Gay, P. Levis, D. Culler, and E. Brewer. nesC 1.2 Language
Reference Manual, 2005.

[Gehrke and Madden 2004] J. Gehrke and S. Madden. Query processing in sensor
networks. Pervasive Computing, 3(1):46–55, 2004.

[Giusti et al. 2007] A. Giusti, A. L. Murphy, and G. P. Picco. Decentralized scat-
tering of wake-up times in wireless sensor networks. In Proc. of the 4th European
Conference on Wireless Sensor Networks, pp. 245–260, 2007.

[Goldsmith and Wicker 2002] A. J. Goldsmith and S. B. Wicker. Design challenges
for energy-constrained ad hoc wireless networks. IEEE Wireless Communications,
9(4):8–27, 2002.

[Greenstein et al. 2004] B. Greenstein, E. Kohler, and D. Estrin. A sensor network
application construction kit (SNACK). In Proc. of the 2nd International Conference
on Embedded Networked Sensor Systems, pp. 69–80, 2004.

[Gu and Stankovic 2006] L. Gu and J. A. Stankovic. t-kernel: Providing reliable OS
support to wireless sensor networks. In Proc. of the 4th International Conference
on Embedded Networked Sensor Systems, pp. 1–14, 2006.

[Gupta 1991] R. Gupta. Compiler Optimization of Data Storage. PhD thesis, Cali-
fornia Institute of Technology, 1991.

[Han et al. 2005] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A
dynamic operating system for sensor nodes. In Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services, pp. 163–176, 2005.

[Hartley 1988] S. J. Hartley. Compile-time program restructuring in multiprogrammed
virtual memory systems. IEEE Trans. Softw. Eng., 14(11):1640–1644, 1988.

[Hatfield and Gerald 1971] D. J. Hatfield and J. Gerald. Program restructuring for
virtual memory. IBM Systems Journal, 10(3):168–192, 1971.

[Heinzelman et al. 1999] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive
protocols for information dissemination in wireless sensor networks. In Proc. of
the 5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, pp. 174–185, 1999.

[Hill et al. 2000] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors. In Proc. of the 9th Int’l Conf.
on Architectural Support for Programming Languages and Operating Systems, pp.
93–104, 2000.

189

Bibliography

[Hill et al. 2004] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platforms
enabling wireless sensor networks. Communications of the ACM, 47(6):41–46, 2004.

[Huang et al. 2006] C.-F. Huang, L.-C. Lo, Y.-C. Tseng, and W.-T. Chen. Decentral-
ized energy-conserving and coverage-preserving protocols for wireless sensor net-
works. ACM Trans. Sen. Netw., 2(2):182–187, 2006.

[Hui and Culler 2004] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In Proc. of the 2nd Int’l
Conf. on Embedded Networked Sensor Systems, pp. 81–94, 2004.

[Intanagonwiwat et al. 2000] C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected diffusion: A scalable and robust communication paradigm for sensor net-
works. In Proc. of the 6th Annual International Conference on Mobile Computing
and Networking, pp. 56–67, 2000.

[Jiang et al. 2007a] X. Jiang, P. Dutta, D. Culler, and I. Stoica. Micro power meter
for energy monitoring of wireless sensor networks at scale. In Proc. of the 6th Int’l
Conf. on Information Processing in Sensor Networks: Track on Sensor Platforms,
Tools and Design Methods, pp. 186–195, 2007a.

[Jiang et al. 2007b] X. Jiang, J. Taneja, P. D. Jorge Ortiz and, Arsalan Tavakoli and,
J. Jeong, D. Culler, P. Levis, and S. Shenker. An architecture for energy man-
agement in wireless sensor networks. In Proc. of the International Workshop on
Wireless Sensor Network Architecture, 2007b.

[Juang et al. 2002] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife tracking: Design tradeoffs
and early experiences with ZebraNet. In Proc. of the 10th Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 96–107,
2002.

[JUnit] JUnit. JUnit web site. http://www.junit.org.

[Karp and Kung 2000] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless
routing for wireless networks. In Proc. of the 6th Annual International Conference
on Mobile Computing and Networking, pp. 243–254, 2000.

[Kawadia and Kumar 2005] V. Kawadia and P. R. Kumar. A cautionary perspective
on cross layer design. IEEE Wireless Communications, 12(1):3–11, 2005.

[Kernighan and Ritchie 1988] B. W. Kernighan and D. M. Ritchie. The C Program-
ming Language. Prentice Hall, second edition, 1988.

[Kim et al. 2007] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless sensor networks.
In Proc. of the 6th International Conference on Information Processing in Sensor
Networks, pp. 254–263, 2007.

190

http://www.junit.org

Bibliography

[Kirkpatrick et al. 1983] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Opti-
mization by simulated annealing. Science, 220(4598):671–680, 1983.

[Koshy and Pandey 2005] J. Koshy and R. Pandey. Remote incremental linking for
energy-efficient reprogramming of sensor networks. In Proc. of the 2nd European
Workshop on Wireless Sensor Networks, pp. 354–365, 2005.

[Köpke et al. 2004] A. Köpke, V. Handziski, J.-H. Hauer, and H. Karl. Structuring the
information flow in component-based protocol implementations for wireless sensor
nodes. In Proc. of Work-in-Progress Session of the 1st European Workshop on
Wireless Sensor Networks (EWSN), Technical Report TKN-04-001 of Technical
University Berlin, Telecommunication Networks Group, pp. 41–45, 2004.

[Krishnamurthy et al. 2005] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra,
M. Flanigan, N. Kushalnagar, L. Nachman, and M. Yarvis. Design and deployment
of industrial sensor networks: Experiences from a semiconductor plant and the north
sea. In Proc. of the 3rd International Conference on Embedded Networked Sensor
Systems, pp. 64–75, 2005.

[Kumar et al. 2006] R. Kumar, S. PalChaudhuri, C. Reiss, and U. Ramachandran.
System support for cross-layering in sensor network stack. In Proc. of the 2nd In-
ternational Conference on Mobile Ad-hoc and Sensor Networks, pp. 793–807, 2006.

[Lachenmann et al.] A. Lachenmann, K. Herrmann, K. Rothermel, and P. J. Marrón.
On meeting lifetime goals and providing constant application quality. In prepara-
tion.

[Lachenmann et al. 2005] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rother-
mel. An analysis of cross-layer interactions in sensor network applications. In Proc.
of the Second International Conference on Intelligent Sensors, Sensor Networks and
Information Processing, pp. 121–126, 2005.

[Lachenmann et al. 2006] A. Lachenmann, P. J. Marrón, D. Minder, M. Gauger,
O. Saukh, and K. Rothermel. TinyXXL: Language and runtime support for cross-
layer interactions. In Proc. of the Third Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 178–
187, 2006.

[Lachenmann et al. 2007a] A. Lachenmann, P. J. Marrón, M. Gauger, D. Minder,
O. Saukh, and K. Rothermel. Removing the memory limitations of sensor networks
with flash-based virtual memory. In Proc. of the European Conference on Computer
Systems (EuroSys), pp. 131–144, 2007a. Also published in ACM SIGOPS Operating
Systems Review, vol. 41(3), 2007.

[Lachenmann et al. 2007b] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rother-
mel. Meeting lifetime goals with energy levels. In Proc. of the 5th ACM Conference
on Embedded Networked Sensor Systems, pp. 131–144, 2007b.

191

Bibliography

[Lachenmann et al. 2007c] A. Lachenmann, P. J. Marrón, D. Minder, O. Saukh,
M. Gauger, and K. Rothermel. Versatile support for efficient neighborhood data
sharing. In Proceedings of the Fourth European Conference on Wireless Sensor
Networks (EWSN 2007), pp. 1–16, 2007c.

[Landsiedel et al. 2005] O. Landsiedel, K. Wehrle, and S. Götz. Accurate prediction
of power consumption in sensor networks. In Proc. of the Second Workshop on
Embedded Networked Sensors, 2005.

[Langendoen et al. 2006] K. Langendoen, A. Baggio, and O. Visser. Murphy loves
potatoes: Experiences from a pilot sensor network deployment in precision agricul-
ture. In Proc. of the International Parallel and Distributed Processing Symposium,
pp. 8–15, 2006.

[Levis et al. 2004a] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler. The emergence of networking abstractions and tech-
niques in TinyOS. In Proc. of the 1st Symposium on Network Systems Design and
Implementation, 2004a.

[Levis et al. 2004b] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-
regulating algorithm for code propagation and maintenance in wireless sensor net-
works. In Proc. of the 1st Symp. on Networked Systems Design and Implementation,
pp. 15–28, 2004b.

[Levis et al. 2005] P. Levis, D. Gay, and D. Culler. Active sensor networks. In Proceed-
ings of the 2nd Symp. on Networked Systems Design and Implementation (NSDI),
2005.

[Liu et al. 2004] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Implementing
software on resource-constrained mobile sensors: Experiences with Impala and Ze-
braNet. In Proc. of the International Conference on Mobile Systems, Applications,
and Services, pp. 256–269, 2004.

[Madden et al. 2002] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst.
Rev., 36(SI):131–146, 2002.

[Madden et al. 2005] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TinyDB: An acquisitional query processing system for sensor networks. ACM Trans.
Database Syst., 30(1):122–173, 2005.

[Marrón et al. 2005a] P. J. Marrón, A. Lachenmann, D. Minder, J. Hähner, R. Sauter,
and K. Rothermel. TinyCubus: A flexible and adaptive framework for sensor net-
works. In Proceedings of the Second European Workshop on Wireless Sensor Net-
works (EWSN 2005), pp. 278–289, 2005a.

[Marrón et al. 2005b] P. J. Marrón, D. Minder, A. Lachenmann, and K. Rothermel.
TinyCubus: An adaptive cross-layer framework for sensor networks. it – Information
Technology, 47(2):87–97, 2005b.

192

Bibliography

[Marrón et al. 2005c] P. J. Marrón, O. Saukh, M. Krüger, and C. Große. Sensor
network issues in the Sustainable Bridges project. In European Projects Session of
EWSN 2005, 2005c.

[Marrón et al. 2006a] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh,
and K. Rothermel. FlexCup: A flexible and efficient code update mechanism for
sensor networks. In Proc. of the Third European Workshop on Wireless Sensor
Networks, pp. 212–227, 2006a.

[Marrón et al. 2006b] P. J. Marrón, D. Minder, and the Embedded WiSeNts Consor-
tium, editors. Embedded WiSeNts Research Roadmap. Logos, 2006b.

[Maté] Maté. Maté web page. http://www.cs.berkeley.edu/~pal/mate-web/.

[Melodia et al. 2005] T. Melodia, M. C. Vuran, and D. Pompili. The State of the Art
in Cross-layer Design for Wireless Sensor Networks. In Proceedings of the Second
International Workshop of the EURO-NGI Network of Excellence, 2005.

[Minder et al. 2005] D. Minder, P. J. Marrón, A. Lachenmann, and K. Rothermel.
Experimental construction of a meeting model for smart office environments. In
Proceedings of the First Workshop on Real-World Wireless Sensor Networks (RE-
ALWSN 2005), SICS Technical Report T2005:09, 2005.

[Mottola and Picco 2006] L. Mottola and G. P. Picco. Logical neighborhoods: A
programming abstraction for wireless sensor networks. In Proc. of the Int’l Conf.
on Distributed Computing in Sensor Systems, pp. 150–168, 2006.

[Muchnick 1997] S. S. Muchnick. Advanced Compiler Design & Implementation. Aca-
demic Press, 1997.

[Nii 1986] P. Nii. The blackboard model of problem solving. AI Magazine, 7(2):38–53,
1986.

[Ostermann 2007] A. Ostermann. Verteilte Bestimmung von Energiestufen in draht-
losen Sensornetzen. Diploma thesis, Universität Stuttgart, 2007.

[Polastre et al. 2004] J. Polastre, J. Hill, and D. Culler. Versatile low power media ac-
cess for wireless sensor networks. In Proc. of the Int’l Conf. on Embedded Networked
Sensor Systems, pp. 95–107, 2004.

[Polastre et al. 2005a] J. Polastre, J. Hui, P. Levis, J. Yhao, D. Culler, S. Shenker,
and I. Stoica. A unifying link abstraction for wireless sensor networks. In Proc.
of the 3rd International Conference on Embedded Networked Sensor Systems, pp.
76–89, 2005a.

[Polastre et al. 2005b] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-
low power wireless research. In Proc. of the Int’l Conf. on Information Processing
in Sensor Networks: Track on Sensor Platform, Tools and Design Methods for
Networked Embedded Systems, 2005b.

193

http://www.cs.berkeley.edu/~pal/mate-web/

Bibliography

[Raisinghani and Iyer 2004] V. T. Raisinghani and S. Iyer. Cross-layer design op-
timizations in wireless protocol stacks. Elsevier Computer Communications,
27(8):720–724, 2004.

[Rao et al. 2003] R. Rao, S. Vrudhula, and D. N. Rakhmatov. Battery modeling for
energy-aware system design. Computer, 36(12):77–87, 2003.

[Reichardt et al. 2002] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink, and
W. Schulz. CarTALK 2000: Safe and comfortable driving based upon inter-vehicle-
communication. In Proc. of the Intelligent Vehicle Symp., volume 2, pp. 545–550,
2002.

[Römer and Mattern 2004] K. Römer and F. Mattern. The design space of wireless
sensor networks. IEEE Wireless Communications, 11:54–61, 2004.

[Römer et al. 2004] K. Römer, C. Frank, P. J. Marrón, and C. Becker. Generic role
assignment for wireless sensor networks. In Proceedings of the 11th ACM SIGOPS
European Workshop, pp. 7–12, 2004.

[Sallai et al. 2004] J. Sallai, G. Balough, M. Maróti, and Ákos Lédeczi. Acoustic
ranging in resource constrained sensor networks. Technical Report ISIS-04-504,
Vanderbilt University, 2004.

[Shakkottai et al. 2003] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson. Cross-
layer design for wireless networks. IEEE Communications Magazine, 41(10):74–80,
2003.

[Shnayder et al. 2004] V. Shnayder, M. Hempstead, B.-r. Chen, G. Werner-Allen, and
M. Welsh. Simulating the power consumption of large-scale sensor network appli-
cations. In Proc. of the 2nd Int’l Conf. on Embedded Networked Sensor Systems,
pp. 188–200, 2004.

[Silberschatz et al. 2002] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating
System Concepts. John Wiley & Sons, 6th edition, 2002.

[Sommerville 2001] I. Sommerville. Software Engineering. Addison-Wesley, 6th edi-
tion, 2001.

[Sorber et al. 2007] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner,
and E. D. Berger. Eon: A language and runtime system for perpetual systems. In
Proc. of the 5th International Conference on Embedded Networked Sensor Systems,
pp. 161–174, 2007.

[Srivastava and Motani 2005] V. Srivastava and M. Motani. Cross-layer design: A
survey and the road ahead. IEEE Communications Magazine, 43(12):112–119, 2005.

[Stamos 1984] J. W. Stamos. Static grouping of small objects to enhance performance
of a paged virtual memory. ACM Trans. Comput. Syst., 2(2):155–180, 1984.

194

Bibliography

[Su and Lim 2006] W. Su and T. L. Lim. Cross-layer design and optimization for
wireless sensor networks. In Proc. of the Int’l Conf. on Software Engineering, Ar-
tificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 278–284,
2006.

[Szewczyk et al. 2004] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Main-
waring, and D. Estrin. Habitat monitoring with sensor networks. Comm. of the
ACM, 47(6):34–40, 2004.

[Tanenbaum 2003] A. S. Tanenbaum. Computer Networks. Prentice Hall, 4th edition,
2003.

[Tian et al. 2003] J. Tian, L. Han, K. Rothermel, and C. Cseh. Spatially aware packet
routing for mobile ad hoc inter-vehicle radio networks. In Proc. of the IEEE 6th
Intl. Conf. on Intelligent Transportation Systems (ITSC), volume 2, pp. 1546–1551,
2003.

[TinyOS] TinyOS. TinyOS CVS repository. http://tinyos.cvs.sourceforge.net/.

[Titzer and Palsberg 2005] B. Titzer and J. Palsberg. Nonintrusive precision instru-
mentation of microcontroller software. In Proc. of the Conf. on Languages, Com-
pilers, and Tools for Embedded Systems, pp. 59–68, 2005.

[Titzer et al. 2005] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable sensor net-
work simulation with precise timing. In Proc. of the Fourth Int’l Conf. on Informa-
tion Processing in Sensor Networks, pp. 477–482, 2005.

[Tolle and Culler 2005] G. Tolle and D. Culler. Design of an application-cooperative
management system for wireless sensor networks. In Proc. of the Second European
Workshop on Wireless Sensor Networks, pp. 121–132, 2005.

[Tolle et al. 2005] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in
the redwoods. In Proc. of the 3rd International Conference on Embedded Networked
Sensor Systems, pp. 51–63, 2005.

[van Dam and Langendoen 2003] T. van Dam and K. Langendoen. An adaptive
energy-efficient MAC protocol for wireless sensor networks. In Proc. of the Int’l
Conf. on Embedded Networked Sensor Systems, pp. 171–180, 2003.

[van Hoesel et al. 2004] L. van Hoesel, T. Nieberg, J. Wu, and P. J. M. Havinga.
Prolonging the lifetime of wireless sensor networks by cross-layer interaction. IEEE
Wireless Communications, 11(6):78–86, 2004.

[Wark et al. 2007] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman,
P. Valencia, D. Swain, and G. Bishop-Hurley. Transforming agriculture through
pervasive wireless sensor networks. IEEE Pervasive Computing, 6(2):50–57, 2007.

[Weinschrott 2007] H. Weinschrott. Protocol to acquire and cache large data in sensor
networks. Diploma thesis, Universität Stuttgart, 2007.

195

http://tinyos.cvs.sourceforge.net/

Bibliography

[Welsh and Mainland 2004] M. Welsh and G. Mainland. Programming sensor net-
works using abstract regions. In Proc. of the 1st Symp. on Networked Systems
Design and Implementation, pp. 29–42, 2004.

[Werner-Allen et al. 2006a] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor network. In Proc. of
the Symp. on Operating Systems Design and Implementation, 2006a.

[Werner-Allen et al. 2006b] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless sensor network on an active
volcano. IEEE Internet Computing, 10(2):18–25, 2006b.

[Whitehouse et al. 2004] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood:
a neighborhood abstraction for sensor networks. In Proc. of the 2nd International
Conference on Mobile Systems, Applications, and Services, pp. 99–110, 2004.

[Xu et al. 2004] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A wireless sensor network for structural monitoring. In
Proc. of the 2nd International Conference on Embedded Networked Sensor Systems,
pp. 13–24, 2004.

[Yavatkar et al. 1995] R. Yavatkar, J. Griffoen, and M. Sudan. A reliable dissemina-
tion protocol for interactive collaborative applications. In Proc. of the Third ACM
International Conference on Multimedia, pp. 333–344, 1995.

[Ye et al. 2002] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC proto-
col for wireless sensor networks. In Proc. of the Twenty-First Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, pp. 1567–1576, 2002.

[Ye et al. 2003] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS: A robust
energy conserving protocol for long-lived sensor networks. In Proc. of the Int’l Conf.
on Distributed Computing Systems, pp. 28–37, 2003.

[Zeng et al. 2002] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem:
Managing energy as a first class operating system resource. In Proc. of the Int’l Conf.
on Architectural Support for Programming Languages and Operating Systems, pp.
123–132, 2002.

196

Index

abstract regions, 91
access trace, 100, 107
AcousticLocalization, 53, 79
activation schedule, 151
Active(j, i), 151
adjustment of energy levels, 144
application quality, 127
application requirement, 42
ASCENT, 176
assumptions, 36
asymmetrical communication, 74
asynchronous code, 140
asynchronous event, 97
attribute, 101
average number of nodes, 151
average utility, 152
Avrora, 82, 100, 111, 136, 142, 159, 176

balancing energy levels, 152
battery model, 141
blackboard architecture, 90
Blink, 35
bridges, 127
BTnode, 125
buffer, 98, 103

CarTALK 2000, 53
compilation process, 48
compile-time tools, 48
configuration, 35
constraints, 28
Contiki, 36
contribution, 29
coverage, 176
cross-layer interaction

analysis, 54

classification, 54
description, 28, 41
negative effect, 28, 41
structured, 54
unstructured, 54

Currentcy Model, 175

data definition, 64
data dependency, 64
data element, 94, 108
data exchange, 54, 61
data placement, 110
data sharing, 58
∆active, 151
∆levels, 153
Deluge, 91
deviation, 151–153
distributed assignment, 149
Drip, 91
duty-cycling, 176

ECOSystem, 175
energy attribute, 138, 140
energy level, 127, 128, 131
energy profiler, 128
energy profiling, 135
Enhanced Second-Chance Algorithm, 97
Eon, 176
Erem, 144

flash memory, 94, 95, 98
FlexCup, 44, 69, 105
function calls, 56

global variables, 56
Golden Gate Bridge, 167
gossiping, 91

197

Index

grammar, 183
greedy approach, 157
grouping, 108

heuristic, 106
Hood, 86, 91

ifproviding block, 66
Information Exchange Service, 90
ISO OSI model, 39

JUnit, 136

l0, 131, 133, 140
layered architecture, 39
level adjustment, 144
Levels, 128
Levels grammar, 186
li, 132, 144
lifetime goal, 127
linear programming, 145
linker, 44
locality of reference, 94
logical neighborhoods, 91

MAC layer overhead, 76
Mantis, 36
Maté, 93, 113
maximization, 144
memory layout, 124
memory layout heuristic, 106
merging of components, 55
Mica2

energy, 34
hardware, 33, 95, 98

microclimate, 128
MobileMan, 90
model predictive control, 131
modularity, 28
module, 35
mote, 33
MPC, 131

nCUnit, 136
Neidas, 71
neighborhood data sharing, 70

neighborhood management, 73
nesC, 34
network lifetime, 150
non-functional requirement, 64

Odyssey, 175
optimization parameter, 42
optimization problem, 144
optional code block, 143
OSI model, 39

PageEEPROM, 103
parametrization, 57
permutation, 149, 151, 152, 154
Pi, 144
piggybacking, 76, 89
pointer, 65, 101
polite gossiping, 72
PowerTOSSIM, 176
pull-based data sharing, 71
push-based data sharing, 71

R, 150
Ravg, 151
redundancy, 149
redwood tree, 128
remaining lifetime, 150
remaining network lifetime, 150
replacement of system components, 55
replacement policy, 97
required lifetime, 150
reusability, 28
reusable components, 63
runtime system, 47

S, 154
safety factor, 146
schedule, 151, 154
Sense-R-Us, 53, 79, 88
sensor node, 33
sensor network

application, 27
hardware, 33, 94
operating system, 34
overview, 33

198

Index

Simplex, 145
simulated annealing, 168
simulation trace, 107
Sj, 154
SNACK, 91
SOS, 36
SP, 90
sparse topology, 127
special properties of wireless networks,

28, 41
SPIN, 91
SPOT, 141
SRAM buffer, 98, 103
stack of energy levels, 132, 143
structural health monitoring, 127, 167
Sustainable Bridges, 53
system parameter, 42

t, 144
t, 150
t-kernel, 93, 124
TCP, 41
test attribute, 137
test driver, 136
ti, 144
Tiny Configuration Engine, 43
Tiny Cross-Layer Framework, 44
Tiny Data Management Framework, 42
TinyCubus, 42, 69, 104, 148
TinyDB, 53, 79, 93, 113, 176
TinyGUYS, 90
TinyOS, 34
TinyStateRepository, 52, 68, 104, 147
TinyXXL, 51, 61, 103, 147
TinyXXL grammar, 183
topology control, 176
topology manager, 43
Trem, 150
T rem, 150
Trem(j), 150
Treq, 144, 150
T req, 150
Trickle, 72, 91

Uavg, 152

ui, 132, 144
unit testing, 136
utility, 128, 132, 144, 152
Utility(l), 152

ViMem, 94, 96, 147
virtual data item, 66
virtual memory, 93, 124
vm attribute, 101
vmptr attribute, 101
Volcano, 165
volcano monitoring, 165
voltage boost converter, 141

wildlife monitoring, 128
wireless networks, 28, 41
wireless sensor network, 33
wiring, 35, 132

ZebraNet, 128

199

	Abstract
	Deutsche Zusammenfassung
	1 Einleitung
	2 Schichtenübergreifender Datenaustausch
	3 Datenspeicherung in virtuellem Speicher
	4 Abstraktionen und Algorithmen für energiebewusste Anwendungen
	5 Zusammenfassung und Ausblick

	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure

	2 Background
	2.1 Wireless Sensor Networks
	2.1.1 System Properties
	2.1.2 Assumptions

	2.2 Cross-Layer Interactions
	2.3 TinyCubus Project
	2.3.1 Tiny Data Management Framework
	2.3.2 Tiny Configuration Engine
	2.3.3 Tiny Cross-Layer Framework

	3 Design Overview
	3.1 Functionality of the Cross-Layer Framework
	3.2 Common Design Properties
	3.2.1 Runtime System
	3.2.2 Compile-Time Tools

	4 Cross-Layer Data Exchange
	4.1 Preliminaries
	4.2 Application Analysis
	4.2.1 Selected Applications
	4.2.2 Forms of Cross-Layer Interactions
	4.2.3 Summary

	4.3 Data Exchange on a Single Node
	4.3.1 TinyXXL Language Description
	4.3.2 Impact on the Life Cycle of Applications
	4.3.3 TinyXXL Compiler
	4.3.4 Runtime Support for Data Exchange
	4.3.5 Advantages

	4.4 Neighborhood Data Sharing
	4.4.1 Neighborhood Data Sharing Algorithm
	4.4.2 Programming and Runtime Support

	4.5 Evaluation
	4.5.1 Data Exchange on a Single Node
	4.5.2 Neighborhood Data Sharing

	4.6 Related Work
	4.7 Summary

	5 Data Storage in Virtual Memory
	5.1 Preliminaries
	5.2 Design
	5.2.1 Sensor Network Characteristics
	5.2.2 Design Goals
	5.2.3 Design Overview
	5.2.4 Implementation
	5.2.5 Integration with TinyXXL and TinyCubus

	5.3 Memory Layout Heuristic
	5.3.1 Use of Variable Access Traces
	5.3.2 Grouping of Data Elements
	5.3.3 Data Placement

	5.4 Evaluation
	5.4.1 Isolated Memory Access Performance
	5.4.2 Application Performance
	5.4.3 Large Data Storage

	5.5 Related Work
	5.6 Summary

	6 Abstractions and Algorithms for Energy-Aware Applications
	6.1 Preliminaries
	6.2 Meeting Lifetime Goals with Energy Levels
	6.2.1 System Design
	6.2.2 Energy Levels
	6.2.3 Energy Profiling
	6.2.4 Runtime System
	6.2.5 Integration within the Framework and with TinyCubus

	6.3 Distributed Assignment of Energy Levels
	6.3.1 Problem Description
	6.3.2 Realization on Sensor Nodes

	6.4 Evaluation
	6.4.1 Quality of Level Assignments
	6.4.2 Real-World Applications
	6.4.3 Distributed Assignment
	6.4.4 Runtime Overhead
	6.4.5 Summary

	6.5 Related Work
	6.6 Summary

	7 Summary and Outlook
	7.1 Conclusions
	7.2 Outlook

	A Extensions of the nesC Grammar
	A.1 Changes for TinyXXL
	A.2 Changes for Levels

	Bibliography
	Index

