
Constraints and Triggers to Enhance

XML-based Data Integration Systems

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart

zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Jing Lu

aus Jiangsu, China

Hauptberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang

Mitberichter: Prof. Dr.-Ing. Stefan Deßloch

Tag der mündlichen Prüfung: 27. 04. 2009

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stuttgart

Bundesrepublik Deutschland

2009

Acknowledgements

“A teacher for a day is a father for a lifetime.” This is an old Chinese saying. It

means that one should appreciate and respect those people who once taught

him something. It is not an accident that in German the supervisor of a PhD

candidate is called “Doktorvater”. So first, I thank my Doktorvater, Prof.

Dr. -Ing. habil. Bernhard Mitschang, who encouraged me to work on this

topic, for his continuous support, bright ideas, patience and wise suggestions.

Furthermore, he gave advice on how to be a good paper writer and how to

be a good presenter. I will cherish this appreciation all my life.

Second, I would like to thank Prof. Dr.-Ing. Stefan Deßloch, for spending

his valuable time on reviewing this work and giving me many significant

feedbacks.

Third, I must thank my parent and my husband, for their love, understand-

ing and tolerance. And I also appreciate years of support and encouragement

from Prof. Qian Wang and the family of Jianshe Zhu.

I owe many thanks to Sylvia Radeschütz for her modification and advice

of the German abstract and to Lu Li for her careful proof-reading of this

work. The add-oils from Zhao Chen, Chunmei Yin, Lianfeng Yang, Jianfeng

Zhang and Hao Wang always stimulated me to persevere.

“No pains, no gains.” I would like to share this adage with my son, Xinhan

Tao, who gave me the most motivation to finish this work and who gave me

the most sunshine, the smile, and the happiness during my study in Stuttgart.

Stuttgart, April 27, 2009. Jing Lu

v

Abstract

XML is becoming one of the main technological integredients of the Internet.

It is now accepted as the standard for information exchange. XML-based

data integration system, which enables sharing and cooperation with legacy

data sources, arises as a more and more important data service provider on

the web. These services can provide the users with a uniform interface to

a multitude of data sources such as relational databases, XML files, text

files, delimited files, Excel files, etc. Users can thus focus on what they want,

rather than think about how to obtain the answers. Therefore, users do not

have to carry on the tedious tasks such as finding the relevant data sources,

interacting with each data source in isolation using the local interface and

combining data from multiple data sources.

Users are always expecting better query performance and data consistency

from the data integration systems. This work proposes an approach to sup-

port constraints and triggers in the XML-based data integration system in

order to optimize queries and to enforce data consistency. Constraints and

triggers have long been recognized to be useful in semantic query optimiza-

tion and data consistency enforcement in relational databases. This work first

gives an approach to use constraints from the heterogeneous data sources to

semantically optimize queries submitted to the XML-based data integration

system. Different constraints from the data sources are first integrated into

a uniform constraint model. Then the constraints in the uniform constraint

model are stored in the constraint repository. Traditional semantic query

optimization techniques in the relational database are analyzed and three

of them are reused and applied by the semantic query optimizer for XML-

based data integration system. Among them are detection of empty results,

vii

viii Abstract

join elimination and predicate elimination. Performance is analyzed accord-

ing to the data source type and the data volume. The semantic query opti-

mizer works best when the data sources are non-relational, the data volume

is huge and the execution cost is expected to be high.

In order to make the XML-based data integration system fully equipped

with data manipulation capabilities, programming frameworks which sup-

port update at the integration level are being developed. This work discusses

how to realize update in the XML-based data integration system under the

Service Data Objects programming framework. When the user is permitted

to submit updates, it is necessary to guarantee data integrity and enforce

active business logics in the data integration system. This work presents an

approach by which active rules including integrity constraints are enforced

by XQuery triggers. An XQuery trigger model in conformance to XQuery

update model proposed by W3C is defined. How to define active rules and

integrity constraints by XQuery triggers is discussed. Triggers and constraints

are stored in the trigger repository. The architecture supporting XQuery trig-

ger service in the XML-based data integration system is proposed. Important

components including event detection, trigger scheduling, condition evalua-

tion, action firing and trigger termination are discussed. The whole XQuery

trigger service architecture above a data integration system is implemented

in BEA AquaLogic DataService Platform under the Service Data Objects

programming framework. Experiments show active rules and integrity con-

straints are enforced easily, efficiently and conveniently at the global level.

Constraints and triggers play an important role in XML-based data in-

tegration systems. Using constraints and triggers in the XML-based data

integration system we can efficiently improve query performance and enforce

data consistency.

Zusammenfassung

Web Services sind eine neue Technologie für Web-Anwendungen. Doch wer-

den ein großer Teil der Daten weiterhin in Legacy-Datenquellen gespeichert,

wie z.B. relationale und objekt- orientierte Datenbanken, Textdateien, XML-

Dateien, HTML-Dateien und Excel-Dateien. Informationsintegration ist seit

langem ein zentrales Forschungsthema im Bereich der Datenbanken und der

Künstlichen Intelligenz. Die älteren Datenbanksysteme waren meisterns noch

Einzelsysteme (standalone). Mittlerweile ist der große Nutzen aus der Inte-

gration von Informationen aus verschiedenen Quellen bekannt, und vielfach

auch gewünscht bzw. benötigt.

Die Nachrichten, die mit Web Services ausgetauscht werden, basieren

hauptsächlich auf XML. XML hat sich als dominierender Standard für den

Austausch von Informationen über das Internet etabliert. Als Anfragesprache

für XML dient XQuery, das sowohl sehr leistungsfähig als auch leicht be-

dienbar und erlernbar ist. In den letzten Jahren sind viele XML basierte

Datenintegrationsssysteme auf den Markt gekommen. Sie bieten eine ein-

heitliche Schnittstelle für die Benutzer an, Anfragen an heterogene Daten-

quellen zu stellen. Die Anwender können sich somit darauf konzentrieren, was

sie an Information erfahren wollen, anstatt darauf, wie sie die Information

beziehen können. So muss sich der Benutzer nicht mit der langwierigen Auf-

gabe beschäftigen, die relevanten Datenquellen zu finden, mit jeder Daten-

quelle über die jeweilige lokale Schnittstelle separat zu interagieren und die

Ergebnisse am Ende wieder zu kombinieren. In einem XML-basierten Daten-

integrationssystem gibt es für jede Datenquelle einen Wrapper. Dieser Wrap-

per führt ein XML-Schema aus, das den Inhalt der entsprechenden Daten-

quelle in XML beschreibt. Der Anfrageprozessor des XML-basierten Daten-

ix

x Zusammenfassung

integrationssystems nimmt eine Anfrage in XQuery von den Benutzern oder

Anwendungen entgegen, analysiert die Anfrage, zerlegt sie in einzelne Teilan-

fragen und übergibt sie dem jeweiligen Wrapper. Die Wrapper übersetzen die

Anfragen in die lokale Anfragesprache und übersetzen nach ihrer Ausführung

die Teilergebnisse zurück in XML.

Anwender erwarten eine immer bessere Anfrageperformanz und Datenkon-

sistenz von den XML-basierten Datenintegrationssystemen. Diese Arbeit

stellt ein Konzept vor, wie Integritätsbedingungen und Trigger in XML-

basierten Datenintegrationssystemen unterstützt werden können, um Anfra-

gen zu optimieren und die Datenkonsistenz zu garantieren. Integritätsbedin-

gungen und Trigger werden in relationalen Datenbanken genutzt, um seman-

tische Anfrageoptimierungen durchzuführen und Datenkonsistenz zu sichern.

Das größte Problem bei der Optimierung von Anfragen in einem XML-

basierten Datenintegrationssystem ist, dass die Datenkommunikation bei

dem Datenaustausch zwischen Benutzer, Datenintegrationssystem, Wrap-

per und Datenquellen sehr aufwändig und teuer ist. In dieser Situation ist

eine Optimierung durch semantische Regeln attraktiv, um die Kosten der

Kommunikation zu reduzieren. Die Optimierung durch semantische Regeln

ist bekannt unter dem Namen ”Semantic Query Optimization” (SQO). Zu

diesem Thema sind viele Forschungsarbeiten im Bereich der relationalen und

deduktiven Datenbanken erschienen. SQO nutzt die Integritätsbedingungen

zur Verbesserung der Effizienz der Anfrageausführung. Mit SQO kann mehr

Effizienz erreicht werden als nur durch syntaktische Anfrageoptimierung-

stechniken allein, weil ein syntaktischer Optimierer semantisches Wissen

nicht verstehen kann und damit zu einer suboptimalen Ausführung für

die jeweilige Suchanfrage führt. Deshalb können diejenigen Anfragen, die

eigentlich ohne Zugriff auf die Datenquelle beantwortet werden könnten,

nicht von dem syntaktischen Optimierer erkannt werden. Ein syntaktischer

Optimierer kann keine semantisch redundanten Bedingungen erkennen und

löschen oder zusätzliche nützliche Bedingungen der Anfrage hinzufügen, um

die Gesamtkosten für die Anfrageausführung minimal zu halten.

Diese Arbeit stellt zunächst einen Ansatz zur Verwendung der Integritätsbe-

dingungen von heterogenen Datenquellen vor, um Anfragen an XML-basierte

Datenintegrationssysteme zu optimieren. Verschiedene Integritätsbedingungen

Zusammenfassung xi

aus heterogenen Datenquellen werden zuerst in ein einheitliches Modell (Uni-

form Constraint Model) integriert. Dann werden die Integritätsbedingungen

aus dem Uniform Constraint Model in das Repositorium für Integritätsbedin-

gungen gespeichert. Traditionelle semantische Anfrageoptimierungstechniken

der relationalen Datenbanken werden analysiert, drei davon ausgewählt und

für die XML-basierten Datenintegrationssysteme implementiert: die Erken-

nung von leeren Anfrageergebnissen, das Löschen von Joins und das Löschen

von Prädikaten. Die Anfrageperformanz wird analysiert, sowie sortiert nach

Datenquelle und Datenvolumen. Der semantische Anfrageoptimierer erreicht

die beste Leistung, wenn die Datenquellen nicht-relational sind, das Daten-

volumen groß ist und die Ausführungskosten hoch sind.

Um XML-basierten Datenintegrationssystemen eine vollständige Verwen-

dung von Datenmanipulationen zu erlauben, wurde ein Framework entwick-

elt, das dem Benutzer die Erstellung von Updates auf der Integrationsebene

ermöglicht. Wenn der Benutzer Updates durchführen darf, ist es notwendig,

Datenintegrität und Datenkonsistenz in dem Datenintegrationssystem zu

gewährleisten.

In den Datenintegrationssystemen liegen die Regeln zur Einhaltung der

Datenkonsistenz in verschiedenen Formen vor, z.B. in verschiedenen Kom-

ponenten oder sogar im Programmcode. Deshalb ist die Wartung sehr

schwer. So ist es eine herausfordernde Aufgabe, eine einheitliche Defini-

tion, Verwaltung und Wartung der Datenkonsistenzregeln zu entwerfen.

Diese Anforderungen lassen sich am besten mit Triggern umsetzen. Trigger

ermöglichen eine einheitliche und kompakte Beschreibung der aktiven Regeln

und Integritätsbedingungen. Trigger haben eine einfache Syntax und können

automatisch als Reaktion auf Ereignisse durchgeführt werden.

Diese Arbeit präsentiert eine Methode, in der Datenkonsistenzregeln durch

XQuery-Trigger umgesetzt werden können. Es wird ein XQuery-Trigger-

Modell definiert in Übereinstimmung zu dem XQuery-Update Standard von

W3C. Wie Datenkonsistenzregeln dann mit den XQuery-Triggern definiert

und in einem Triggerrepositorium gespeichert werden, wird anschließend

diskutiert. Die gesamte Architektur wird präsentiert, einschließlich Ereignis-

erkennung, Auswertung der Bedingungen, Absetzen der Aktionen und dem

Beenden des Triggers. Der Prototyp des XQuery-Trigger-Services ist auf BEA

xii Zusammenfassung

Aqualogic DataService Platform implementiert. Die Evaluierungen zeigen,

dass Datenkonsistenzregeln leicht und effizient auf globaler Ebene umgesetzt

werden können.

Integritätsbedingungen und Trigger spielen eine wichtige Rolle bei XML-

basierten Datenintegrationssystemen. Die Verwendung von Integritätsbedin-

gungen und Triggern in XML-basierten Datenintegrationssystemen kann ihre

Anfrageperformanz verbessern und ihre Datenkonsistenz sichern helfen.

Contents

1 Introduction . 1

1.1 Motivation . 1

1.1.1 Improving Query Capabilities . 2

1.1.2 Scaling up Data Consistency . 3

1.1.2.1 Ensuring Global Integrity Constraints 4

1.1.2.2 Enforcing Active Rules in XML-DIS 5

1.2 Problem Overview . 7

1.3 Contributions . 8

1.4 Structure of this Work . 9

2 Fundamentals . 11

2.1 XML-based Data Integration System . 11

2.1.1 Data Integration System . 11

2.1.1.1 Data Mediation . 11

2.1.1.2 A Theoretical Perspective of Data Integration . . . 13

2.1.1.3 Integration Model: GAV and LAV 14

2.1.1.3.1 GAV: Global as View. 14

2.1.1.3.2 LAV: Local as View 14

2.1.2 Relational vs. XML-based DIS . 15

2.1.2.1 XML and XQuery . 15

2.1.2.2 Relational Data Integration Systems 17

2.1.2.3 XML-based Data Integration Systems 18

2.1.2.4 Comparison of the Two Models 19

2.1.2.4.1 Comparison of XML and Relational

Model . 19

xiii

xiv Contents

2.1.2.4.2 SQL and XQuery: Similarities and

Differences . 20

2.2 Constraints and Triggers . 21

2.2.1 Relational Constraints and Triggers 22

2.2.1.1 Relational Constraints in SQL 22

2.2.1.2 Relational Triggers in SQL 23

2.2.2 XML Constraints and Triggers . 25

2.2.2.1 XML Constraints . 25

2.2.2.1.1 Domain Constraints 26

2.2.2.1.2 Occurrence Constraints 26

2.2.2.1.3 UNIQUENESS . 26

2.2.2.1.4 Keys . 27

2.2.2.1.5 Referential Constraints 28

2.2.2.2 XML Triggers . 29

2.2.2.2.1 Event . 29

2.2.2.2.2 Condition . 30

2.2.2.2.3 Action . 31

2.2.2.2.4 Transition Values . 32

2.3 Semantic Query Optimization . 32

2.4 Active Database System . 34

2.5 Summary . 36

3 Query Optimization by Constraints . 37

3.1 Motivating Example . 37

3.2 XML Constraints . 39

3.2.1 XML Schema and Constraints . 39

3.2.2 Three Approaches to Express Constraints 40

3.2.2.1 Supplement with Another Schema Language 40

3.2.2.2 Writing Code . 44

3.2.2.3 Using XSLT/XPath . 44

3.3 A Uniform Constraint Model . 46

3.3.1 Active XQuery . 47

3.3.2 Uniform Constraint Model . 49

3.4 Constraint Wrapper and Constraint Repository 50

Contents xv

3.4.1 Expression of Relational Constraints 51

3.4.1.1 CHECK. 51

3.4.1.2 ASSERTION . 52

3.4.2 Expression of STEP/EXPRESS Constraints 53

3.4.3 Compensating Local Constraints . 54

3.4.4 Global Referential Constraints . 55

3.4.5 Constraint Repository . 55

3.5 A Semantic Query Optimizer . 56

3.5.1 Traditional Semantic Query Optimization 56

3.5.2 Architecture . 56

3.5.3 Query Adapter . 58

3.5.3.1 Query Decomposer . 59

3.5.3.2 Constraint Fetcher . 59

3.5.3.3 Conflict Detector . 59

3.5.3.4 Query Reformulater . 60

3.5.4 Query Reformulation Rules . 60

3.5.4.1 Analysis . 60

3.5.4.2 Detection of Empty Results 61

3.5.4.3 Predicate Elimination . 61

3.5.4.4 Join Elimination . 62

3.5.5 Experiments and Evaluation . 64

3.5.5.1 Notations in Performance Table 69

3.5.5.2 Detection of Empty Results 69

3.5.5.3 Join Elimination . 71

3.5.5.4 Predicate Elimination . 79

3.5.5.5 Discussion . 81

3.6 Summary . 82

4 Updates in XML-DIS . 85

4.1 Updating the View . 85

4.1.1 Updating Relational Views . 85

4.1.2 Updating XML Views of Relational Data 87

4.1.3 Updating XML Views in XML-based Data Integration

Systems . 90

xvi Contents

4.2 XQuery Update Facility 1.0 by W3C . 91

4.2.1 INSERT . 92

4.2.2 DELETE . 93

4.2.3 REPLACE . 93

4.2.3.1 Replacing a Node . 93

4.2.3.2 Replacing the Value of a Node 94

4.2.4 RENAME . 94

4.2.5 State-of-art of XQuery Update . 94

4.3 Realizing Updates through SDO . 95

4.3.1 SDO Goals . 95

4.3.2 SDO Preliminaries . 96

4.3.3 Data Graph . 98

4.3.4 Change Summary . 100

4.3.4.1 Creating Data Objects . 100

4.3.4.2 Deleting Data Objects . 101

4.3.4.3 Updating Data Object Property Values 103

4.3.4.4 Hybrid Modifications . 104

4.4 Service Data Objects in XML-based Data Integration Systems 104

4.4.1 DAS in DIS . 104

4.4.2 Global Update in DIS by SDO. 107

4.5 Data Services: Combine SDO and SOA . 108

4.6 Summary . 110

5 Enforcing Global Constraints and Triggers 111

5.1 Trigger Model in Data Integration System 111

5.2 XQuery Trigger Model for XML-DIS . 112

5.2.1 Design of Trigger for XML-DIS . 112

5.2.2 XQuery Trigger . 113

5.2.3 Examples . 115

5.2.3.1 Integrity Constraints. 115

5.2.3.2 Referential Constraint: Insert Checking. 116

5.2.3.3 Referential Constraint: Cascade Delete. 117

5.2.3.4 Logging. 117

5.2.3.5 Accumulating Trigger. 118

Contents xvii

5.2.4 Assumptions for XQuery Triggers in XML-DIS 119

5.3 The Architecture of Trigger Service . 120

5.3.1 ECA rules in Active Databases . 120

5.3.2 The Architecture . 121

5.3.3 Main Components . 122

5.3.3.1 Event Detection . 122

5.3.3.1.1 Primitive vs. Composite Events 125

5.3.3.1.2 Order-Dependent vs. Order-

Independent Events 125

5.3.3.1.3 Explicit vs. Derived Event Detection

Model . 125

5.3.3.1.4 Immediate vs. Deferred Event

Consumption Model 126

5.3.3.2 Triggering Phase . 126

5.3.3.3 Trigger Scheduling . 126

5.3.3.3.1 The Selection of the Next Trigger to be

Fired . 126

5.3.3.3.2 The Number of Triggers to be Fired 127

5.3.3.4 Condition Evaluation . 127

5.3.3.4.1 Interpreting LET Clause 128

5.3.3.4.2 Interpreting FOR Clause 128

5.3.3.4.3 Processing CHECK Constraints 129

5.3.3.4.4 Processing Trigger 131

5.3.3.5 Action Firing . 131

5.3.3.6 Trigger Termination . 132

5.3.3.7 Failure Handling . 133

5.4 Implementation and Evaluation . 133

5.5 Trigger Analysis . 134

5.6 Summary . 136

6 Related Work . 139

6.1 Semantic Query Optimization . 139

6.2 Data Integrity . 141

6.3 Active Systems, ECA Rules, and Triggers 144

xviii Contents

6.3.1 ECA Rules for XML . 144

6.3.2 Distributed Active Information Systems 145

7 Conclusion . 149

A XML Schema of Data Graph Serialization 153

References . 155

List of Figures

2.1 Architecture of a Common Integration Architecture 12

2.2 Detailed Architecture of a Data Integration System 13

2.3 A Typical Relational Data Integration System 18

2.4 A Typical XML-based Data Integration System 19

3.1 An Assumed XML-Based Data Integration System 38

3.2 Supplement with Schematron . 41

3.3 Supplement with Schematron: Architecture 43

3.4 Writing a Stylesheet to Check the Constraints. The XSLT

Stylesheet Contains Code to Check Additional Constraints . . . 45

3.5 Constraint Model . 49

3.6 Architecture of Constraint Wrapper . 50

3.7 Architecture of the Semantic Query Optimizer 57

3.8 Components and Processing Flow of Query Adapter 58

3.9 Example to Explain Join Elimination. 63

4.1 Updates in an XML-based Data Integration System 91

4.2 Components of the SDO Solution . 97

4.3 An SDO Data Graph . 99

4.4 Head of Change Summary: Creating Data Objects. (INSERT) 100

4.5 Example of Change Summary: Creating Data Objects.

(INSERT) . 101

4.6 Change Summary: Deleting Data Objects. (DELETE) 102

4.7 Example of Change Summary: Deleting Data Objects.

(DELETE) . 102

xix

xx List of Figures

4.8 Change Summary: Deleting Two Data Objects Example.

(DELETE) . 103

4.9 Head of Change Summary: Updating Data Objects. (UPDATE)103

4.10 Example of Change Summary: Updating Data Objects.

(UPDATE) . 105

4.11 Change Summary: Hybrid Example. 106

4.12 An XML-based Data Integration System Supporting SDO. . . . 107

4.13 Data Graph as an Integration View . 107

4.14 Update on the Integration View by SDO 108

5.1 XQuery Trigger Model . 113

5.2 Abstract Architecture for Active Database Systems 120

5.3 Architecture of the XQuery Trigger Service 122

5.4 Analysis of the Submitted DataGraph with ChangeSummary . 123

5.5 An Example of ChangeSummary which Executes DELETE. . . 123

5.6 An Example of ChangeSummary which Executes UPDATE . . 124

5.7 Building a Complete XQuery Expression 130

5.8 Action Firing, DataGraph Generating and Update Execution

for Step 8 in Figure 5.3 . 132

5.9 Generated DataGraph with ChangeSummary 132

List of Tables

3.1 Door Information in the Architect Database 37

3.2 Schema Mapping of Table movie titles . 51

3.3 Schema Mapping of Table dvd sell and dvd order 52

3.4 Schema Mapping of Entity circular cone 53

3.5 Schema Mapping of Employee.txt . 54

3.6 Notations in Performance Table . 69

3.7 Performance of Detection of Empty Results 71

3.8 Performance of Join Elimination . 75

3.9 Performance of Join Elimination with DB2 and XML file

when the Result Set is Small . 78

3.10 Comparison of Data Retrieval Time before and after Join

Elimination with DB2 and XML file when the Result Set is

Small . 78

3.11 Performance of Join Elimination with DB2 and XML file

when the Result Set is Huge . 78

3.12 Comparison of Data Retrieval Time before and after Join

Elimination with DB2 and XML file when the Result Set is

Huge . 79

3.13 Performance of Predicate Elimination . 81

xxi

Chapter 1

Introduction

1.1 Motivation

Web services are emerging as a new paradigm to build web applications. How-

ever, a large fraction of data continues to be stored in legacy data sources in-

cluding relational databases, object-oriented databases, text files, XML files,

delimited files, HTML files, Excel files, and so on. Information integration

has long been recognized as a central problem of modern database systems.

While early databases were self-contained, it is now generally realized that

there is great value in taking information from various sources and making

them work together as a whole [Wie92] [Ull97]. The goal of a data integration

system is to provide a uniform interface to a multitude of data sources. This

problem has received considerable attention from researchers in the fields of

Artificial Intelligence and Database Systems. The most important advantage

of a data integration system is that it enables users to focus on specifying

what they want, rather than thinking how to obtain the answers. As a re-

sult, it frees the users from the tedious tasks of finding the relevant data

sources, interacting with each source in isolation using a particular interface,

and combining data from multiple sources [Hal01].

XML is one of the main technological ingredients in web services. It has

emerged as a dominant standard for information exchange on the Internet.

XQuery is a powerful and convenient language designed for querying XML.

Nowadays there are many XML-based Data Integration Systems, where each

wrapper exports an XML Schema describing the content of the corresponding

source as XML. It also obtains and exports metadata describing the capabil-

1

2 1 Introduction

ities of the sources. The Query Processor of the XML-based data integration

system accepts XQuery from the users or end-applications, parses it, decom-

poses it, pushes down the query plan and transforms it to the wrappers. The

wrappers translate the queries into the local language and transform the lo-

cal results into XML. Typical XML-based data integration systems include

EXIP [PV02], Xyleme [ASV06], Silkroute [FTS00], BEA AquaLogic [Car06],

XCalia Intermediation Core [Xca08], etc.

1.1.1 Improving Query Capabilities

Nowadays people are expecting more efficient queries from data integration

systems where query optimization is greatly different from that in the tra-

ditional database context. First, since the sources are autonomous, the opti-

mizer may have no statistics about the sources, or just unreliable ones. Hence,

the optimizer cannot compare different plans, because their costs cannot be

sufficiently well-estimated. Second, since the sources may have different pro-

cessing capabilities, the query optimizer needs to consider the possibility of

exploiting the query processing capabilities of a data source. Finally, in a

traditional system, the optimizer can reliably estimate the time to transfer

data from the disc to main memory. But in a data integration system, data

is often transferred over a wide-area network, and hence delays may occur

for a multitude of reasons. Therefore, even a plan that appears to be the best

based on cost estimates may turn out to be inefficient if there are unexpected

delays in transferring data from one of the sources accessed early on the plan.

The heterogeneity and web-orientation of modern applications have ben-

efited from the flexibility of XML. A major difficulty in optimizing queries

in an XML-based data integration system is that once a query is submitted,

control over its execution becomes no longer possible [OB04]. Under this sit-

uation, using semantic rules to minimize the cost of communication becomes

more attractive. Semantic query optimization (SQO) has been applied to re-

lational and deductive databases [SO89]. SQO uses the integrity constraints

associated with a database to improve the efficiency of query evaluation.

With SQO, more efficiency can be achieved than by only using syntactic

1.1 Motivation 3

query optimization techniques, because a syntactic optimizer does not un-

derstand semantic knowledge, and thus leads to a suboptimal execution for

the given query. Certain queries, which can be answered without any table

scan in the database, cannot be detected by a syntactic optimizer, thus re-

sulting in unnecessary database accesses. Furthermore, a syntactic optimizer

cannot detect and eliminate semantically redundant restrictions or joins in

the queries or introduce some useful restrictions and joins into a query to

reduce the overall cost of query execution, either [CGK+99]. SQO can also

be adapted to XML-based data integration system using constraints from

local data sources. An SQO optimizer for XML-based data integration sys-

tems uses the integrity constraints associated with the data sources of the

data integration system to semantically optimize the queries submitted to

the data integration system. When we want to develop an SQO optimizer for

XML-based data integration systems, some problems arise naturally. First,

constraints from data sources are normally heterogeneous. For example, there

are relational constraints (CHECK, ASSERTION, etc), XML constraints,

STEP/EXPRESS constraints, and so forth. In order to make the optimizer of

the integration system understand the heterogeneous constraints, a uniform

constraint model is needed. Second, there must be a wrapper to translate

the heterogeneous constraints of the data sources to the uniform constraint

model. Third, there must be a repository to store the constraints. Fourth,

there must be an analysis to see which traditional SQO techniques fit for the

XML-based data integration systems and which not. Details will be shown

in Chapter 3.

1.1.2 Scaling up Data Consistency

Currently most of the XML-based data integration systems do not support

ad-hoc XQuery update at the integration level because global update is in-

herently a difficult problem and until now W3C has not published the final

standard of the XQuery Update facility. Programming frameworks are de-

signed to solve this problem. We realize the global update in the XML-based

4 1 Introduction

data integration system by the Service Data Objects [BBNP03] framework.

Details are shown in Chapter 4.

1.1.2.1 Ensuring Global Integrity Constraints

When the data integration system supports global update, data integrity

constraints should be enforced. Integrity constraints specify those states of

the data integration system that are considered to be semantically valid.

In a data integration environment, integrity constraints might specify that

replicated information is not contradictory, that information is not dupli-

cated, that certain referential integrity constraints hold, or that some other

condition is true over the data in multiple data sources. Although a lot of

work has been done on transaction management in multidatabase systems,

the treatment of semantic integrity constraints (e.g. uniqueness conditions),

especially detecting potential violations and specifying necessary reactions in

XML-based data integration systems, is often omitted [TC97].

Currently, constraints in the data integration systems are either not moni-

tored at all, or monitored using ad-hoc techniques. Such techniques are error-

prone and can lead to irreparable inconsistencies in the data sources of the

data integration systems [CGMW96]. One could just ignore the problem, let

all constraints be checked at the local level. This is unsatisfactory for the

following reasons [GETE89]:

• Users of the data integration system would not get a clear conceptual

picture of the constraints in the system. They often want to know why a

global update has been rejected.

• In some cases the same constraints could be defined at all data sources. It

is more efficient to check it once at the global level, rather than check it

multiple times at multiple local databases.

• In some cases there are inherently global constraints, which are not deriv-

able from local constraints. It is necessary to identify and provide a mech-

anism for enforcing them.

• There are some constraints, in which the check of one constraint needs the

evaluation of the conditions on other data sources.

1.1 Motivation 5

• There are some data sources, which do not have a constraint checking

mechanism. The data integration system should give a compensation to

ensure the constraints from these data sources.

In a traditional centralized or tightly-coupled distributed databases, trans-

actions form the cornerstone of integrity constraint checking: before a trans-

action commits, it ensures that all integrity constraints are valid. If a con-

straint is violated, then the transaction may be aborted, the constraint may

be corrected automatically or an error condition may be raised. While the

facilities like atomic transactions, locking, and consistent queries are reason-

able assumptions in centralized or tightly-coupled distributed environments,

they typically do not hold in loosely-coupled heterogeneous environments. A

data integration system is comprised of multiple heterogeneous data sources,

including relational databases, object-oriented databases, text files, XML

files, XML native databases, excel files, or even web applications. These data

sources are integrated together through the data integration system to pro-

vide a global view to the user. Another characteristic of data integration

system is that different data sources offer different facilities for constraint

management, which makes constraint management more difficult. The lack

of inter-site transaction mechanisms in data integration system renders tra-

ditional constraint checking mechanisms inapplicable. Therefore, in order to

ensure the global data integrity in the data integration system, we need new

constraint checking mechanisms. We first need a specification language to

assign global integrity constraints in the data integration systems. Then we

need new mechanisms to detect the update operation, to evaluate integrity

condition and to avoid their violations. These requirements can be best sat-

isfied by triggers. Details will be presented in Chapter 5.

1.1.2.2 Enforcing Active Rules in XML-DIS

Triggers, or active rules, are already well studied in the active database sys-

tems. Active database systems allow users to create rules to specify data ma-

nipulation operations to be executed automatically whenever certain events

occur or conditions are met [Wid96]. Active database rules provide a general

6 1 Introduction

and powerful mechanisms for traditional database features such as integrity

constraint enforcement, view maintenance, and authorization checking. Ac-

tive database rules also support non-traditional database features such as

version management, and workflow control.

When the data integration system supports global updates, data consis-

tency should be enforced, e.g., when the user updates data source A, B might

also be updated to keep data consistency between A and B. Currently, in the

data integration systems data consistency enforcement rules are described in

different forms, managed by different components or even embedded in the

programming code whereby the maintenance becomes very hard. Therefore,

it is demanding to define a uniform definition, management and maintenance

of data consistency enforcement rules. These requirements can be best ful-

filled by triggers [PD99] [VSCR00]. Triggers enable a uniform and compact

description of active rules and integrity constraints, which are the foundation

of data consistency, and facilitate the maintenance of them [SD95]. Triggers

have a simple syntax and are automatically invoked in response to events. The

simple execution model of triggers makes them a promising means for scal-

ing up data consistency in data integration system. Triggers are processed

in a specific environment defined as a data integration system service. In

such environments, possible uses of triggers are numerous, for instance, view

maintenance, global schema updates, verification and validation of global in-

tegrity constraints, notification, application and component integration and

cooperation, etc [VSCR00].

Supporting trigger service in data integration system applications implies

at least four challenges:

1. The inherent heterogeneity of the data integration system requires a flex-

ible and simple trigger specification language.

2. The inherent heterogeneity of the system imposes the need for a flexible

rule execution model adaptable to the characteristics of the participating

data sources.

3. The active mechanism must deal with the autonomy of both the global

system itself and the participating data sources. In a data integration sys-

tem, data sources can keep their communication and execution autonomy.

1.2 Problem Overview 7

Thus, they may share or not control information and they may continue

to control their execution autonomy at any moment, independently of the

integration. They can commit or abort local transactions at any time and

this can affect the execution of global operations.

4. The events stemming from different contexts must be managed by the

trigger service. Communication protocols are needed to observe events

from their sources (data sources) and signal them to consumers (rules).

Events are messages containing information about the integration and its

component data sources. Therefore, they should be processed respecting

information consistency, legacy and performance needs.

Details are shown in Chapter 5.

1.2 Problem Overview

In general, in order to support constraints and triggers in XML-based data

integration systems, the following problems must be settled:

1. It is necessary to define a uniform constraint model to express the con-

straints coming from the local data sources.

2. The design of a constraint wrapper which can execute the translation be-

tween the local constraints and the uniform constraint model.

3. Analysis of the current SQO techniques to see which can be reused in the

XML-based data integration system scenarios.

4. Implement the SQO techniques.

5. Performance analysis. Ensure that SQO really improves the query capa-

bility.

6. It is necessary to define the global constraint and trigger model for defining

the data consistency enforcement rules.

7. The global trigger execution model should be defined and implemented

including how to detect the event, evaluate the condition, and fire the

actions.

This dissertation concentrates on settling the above-mentioned problems.

8 1 Introduction

1.3 Contributions

Our contributions include:

1. We provide a uniform constraint model to represent constraints from dif-

ferent and typically heterogeneous data sources.

2. We introduce the Constraint Wrapper concept and present the algorithm to

translate local constraints into the uniform constraint model automatically.

3. We establish the Constraint Repository, where constraints from local data

sources are stored and maintained.

4. We provide the architecture of the semantic query optimizer and show

how queries to different data integration systems are optimized by the

optimizer. We describe the details of the query adapter, which is the kernel

of the optimizer. We implement three SQO techniques of the optimizer:

detection of empty results, join elimination and predicate elimination. We

carry out experiments and analyze the performance.

5. We realize global update under the SDO programming framework in the

XML-based data integration system.

6. We introduce the XQuery trigger specification language for the developer

to assign data consistency enforcement rules including global integrity con-

straints over the data integration system.

7. We build up the architecture of data consistency rule enforcement in the

data integration system and show how to detect events, evaluate condi-

tions, and execute actions.

8. When there is an update from the application to the data integration

system, we enforce constraints in order to ensure the data integrity in the

XML-based data integration systems.

9. We implement the whole prototype and compare it with the traditional

methods by implementing data consistency enforcement rules in the pro-

gramming code.

1.4 Structure of this Work 9

1.4 Structure of this Work

Chapter 2 gives the fundamental concepts and techniques underlying of this

work. This chapter includes the general introduction of data integration sys-

tems, different global data models, different integration models, etc; XML

and XQuery; XQuery Update; constraints and triggers; and so on.

Chapter 3 first proposes the constraint model in the global level to express

the local constraints. Then it introduces how to establish the constraint re-

poritory and the methodology to develop a constraint wrapper. This chapter

discusses also how to use constraints associated to the data sources as query

rewriting rules to optimize queries semantically in a data integration system.

Experiments and evaluation are shown at the end of that chapter.

Chapter 4 first introduces the well-known and difficult problem of updat-

ing a view. Then it introduces the XQuery Update Facility 1.0 by W3C. The

state-of-art of realizing XQuery updates in the XML-based data integration

system is proposed. How to realize update through Service Data Objects

follows. We give details on the implementation of realizing updates in the

XML-based data integration system under the SDO programming frame-

work.

Chapter 5 proposes the XQuery trigger model and shows how to define

active rules and integrity constraints using this model. It also discusses ar-

chitectural issues and the details of enforcing integrity constraints and active

rules in a data integration system. Main components such as event detection,

trigger scheduling, condition evaluation, action firing, trigger termination and

failure handling are discussed. An implementation view and an evaluation are

given, too.

Chapter 6 covers the related work. Our work is compared with the related

work in three aspects: semantic query optimization, data integrity and active

system.

Finally, chapter 7 gives the conclusion of this work.

Chapter 2

Fundamentals

This chapter will cover the fundamental knowledge of this work. We will

begin with the definition of a data integration system. Then we will discuss

the integration model. After that relational data integration systems and

XML-based data integration systems will be compared. Then constraints

and triggers will be introduced both in relational databases and in XML

databases. We will discuss the semantic query optimization and the active

database systems at the end.

2.1 XML-based Data Integration System

2.1.1 Data Integration System

2.1.1.1 Data Mediation

Information integration has long been recognized as a major issue in mod-

ern database systems. The main characteristic distinguishing data integra-

tion systems from distributed and parallel database systems is that the data

sources underlying the system are autonomous. In particular, a data integra-

tion system provides access to pre-existing sources, which were created in-

dependently. Unlike multidatabase systems, a data integration system must

deal with a large and constantly changing set of data sources. These char-

acteristics raise the need for richer mechanisms for describing the data. In

particular, a data integration system requires a flexible mechanism for de-

scribing contents of sources that may have overlapping contents, which are

11

12 2 Fundamentals

described by complex constraints, and which may be incomplete or only par-

tially complete.

A common integration architecture is shown in Figure 2.1 [Wie92] [Ull97].

Query

Mediator

Mediator

Wrapper
 Wrapper

Source
 Source

Fig. 2.1 Architecture of a Common Integration Architecture

Several sources are wrapped by software that translates between the

source’s local language, model, and concepts and the global concepts shared

by some or all of the sources. System components, here called mediators

[Wie92], obtain information from one or more components below them, which

may be wrapped sources or other mediators. Mediators also provide infor-

mation to components above them and to external users of the system. In a

sense, a mediator is a view of the data found in one or more sources. Data

does not exist at the mediator, but one may query the mediator as if data

was stored there. It is the responsibility of the mediator to mediate with its

sources or other wrappers to find the answer to the query.

Figure 2.2 shows a detailed architecture of a data integration system.

The wrappers are responsible to generate a view of the local data sources

and the views are stored in the data integration systems. Different from a

data warehouse, the views are not materialized but virtual.

2.1 XML-based Data Integration System 13

RDB
 OODB

XML

Files

Wrapper
 Wrapper
 Wrapper
 Wrapper

Web

Applications

Client Applications

Data Integration System

Query

Processor
 Metadata

Schema

Data
 Views

Fig. 2.2 Detailed Architecture of a Data Integration System

2.1.1.2 A Theoretical Perspective of Data Integration

The most important ideas in a data integration system are the global schema,

the sources, and the mapping between them. [Len02] formalizes a data inte-

gration system I as a triple < G,S,M >, where

• G is the global schema, expressed in a language LG over an alphabet AG.

The alphabet comprises a symbol for each element of G (i.e., a relation if

G is relational, a class if G is object-oriented, etc.)

• S is the source schema, expressed in a language LS over an alphabet AS .

The alphabet AS includes a symbol for each element of the source schema.

• M is the mapping between G and S, constituted by a set of assertions of

the form:

qS → qG,

qG → qS

where qS and qG are two queries of the same form, over the source schema

S, and over the global schema G respectively. Queries qS are expressed in

a query language LM,S over the alphabet AS . Queries qG are expressed

in a query language LM,G over the alphabet AG. Intuitively, an assertion

qS → qG specifies that the concept represented by the query qS over the

sources corresponds to the concept in the global schema represented by

the query qG. The explanation of an assertion of type qG → qS is similar.

14 2 Fundamentals

In the following sections, we assume that both the mediated schema and

the source schema are relational.

2.1.1.3 Integration Model: GAV and LAV

One of the main differences between a data integration system and a tra-

ditional database system is that users pose queries in terms of a mediated

schema, not in terms of the database schema. The data is stored in the data

sources, organized under local schemata. When the data integration system

wants to answer queries posed on the mediated schema, there must be some

descriptions of the relationship between the data sources and the mediated

schema. These descriptions are known as schema mapping. The query pro-

cessor of the integration system must be able to reformulate a query posed

on the mediated schema into a query against the source schemata.

2.1.1.3.1 GAV: Global as View

Global as View (GAV) was introduced in [ACPS96], [FRV96], [CGMH+97],

[PAGM96]. In the GAV approach, for reach relation R in the mediated

schema, a query is written over the source relations specifying how to obtain

R’s tuples from the sources. The advantage of GAV is that the query reformu-

lation is relatively straightforward. The relations in the mediated schema are

defined in terms of the source relations. The only work of query reformulation

in GAV is to unfold the definitions of the mediated schema relations. The

disadvantage of GAV is that it is difficult to add new data sources to the data

integration system. It is necessary to consider all the possible interactions of

the new participating data source with each of the existing ones. Separation

of a local data source is costly. This disadvantage limits the extendibility of

the data integration system with respect to new data sources.

2.1.1.3.2 LAV: Local as View

Local as View (LAV) was introduced in [DG97], [IFF+99], [KW96], [LRO96].

Compared with GAV approach, in the LAV approach, the descriptions of the

2.1 XML-based Data Integration System 15

sources are given in the opposite direction. The contents of a data source are

described as a query over the mediated schema relation. Each data source is

described in isolation. It is the responsibility of the data integration system

to figure out at query time how the sources interact and how their data can

be combined to answer the query. The benefits of LAV are:

1. It is easier to describe the data sources because it is not necessary to incor-

porate knowledge from other data sources, nor to know about relationships

between data sources. It is easier to add new data sources participating

in the integration. This is very important when there are a lot of partici-

pating data sources and the number of participating data sources changes

often.

2. The administrator of the integration system can write precise descrip-

tions of the data sources by writing constraints on the content of the data

sources. Therefore, it is easier for the data integration system to enhance

query performance, e.g., to choose a minimal number of data sources rel-

evant to a query.

The disadvantage of LAV is that query reformulation becomes more com-

plicated than in GAV, because it is not possible to simply unfold the defini-

tions of the relations in the mediated schema.

2.1.2 Relational vs. XML-based DIS

2.1.2.1 XML and XQuery

For a quarter century relational database systems have dominated the

database industry. In relational database systems, the tables are flat. The

order of information is not important and the data structure is quite sta-

ble and unchanged over time. However, since the Web arose, it has led to

requirements for storage of new kinds of information in which the order of

information is important and data structure can vary over time and from one

document to another. These evolving requirements have given rise to Exten-

sible Markup Language (XML) [W3C06a] as a widely accepted data format

16 2 Fundamentals

and to XQuery [BCF+07] as an emerging standard language for querying

XML data sources [OCKM06].

Since the first relational database systems appeared in the early 1980s, the

commercial database field has seen many evolutionary changes. Most large-

scale commercial database systems have been based on the relational data

model and Structure Query Language (SQL) [SQL92].However, the appear-

ance of XML and XQuery leads to a significant new approach to database

management.

XML was developed by an XML Working Group (originally known as the

SGML Editorial Review Board) formed under the World Wide Web Consor-

tium (W3C) in 1996. XML has many advantages. For example, it can be used

as a more expressive markup language as HTML, as an object-serialization

format for distributed object applications, or as a data exchange format

[FTS00]. XML is rapidly becoming one of the most widely adopted technolo-

gies for information exchange and representation especially in the Internet

[BCP01].

In order to understand why XML can be used as a new approach to storing

and retrieving data in the Internet, it is necessary to introduce the concept

of metadata. Metadata is defined as “data about data”. Metadata is the in-

formation that describes the structure of stored data. In relational database

systems, data has a regular and repeating structure that can be described

independently of any data instance. Normally in relational database systems,

metadata is stored separately from the data itself, typically in a set of ta-

bles called the system catalog. The relational query languages make use of

metadata when they process queries.

XML documents are self-describing data in which metadata is separated

into two types: markup and schema. Markup contains information about in-

dividual instances of stored data. For example, a piece of data might be iden-

tified as an address or as a postal code. Schema, on the other hand, contains

global information about how documents are assembled by the component

parts. A schema for a purchase order, for example, might specify that a pur-

chase order consists of a date, a customer, a ship-to address, an optional

bill-to address, and an array of one or more items that in turn contain lower-

level data structures. A schema for a given type of document specifies the

2.1 XML-based Data Integration System 17

degree of flexibility that is allowed in constructing documents of that type,

such as alternative content, optional content, and constraints on the number

of occurrences of various parts.

The first languages widely used in retrieving information from XML doc-

uments were XPath [CSD99] and XSLT [W3C99b]. XPath was designed as

a notation for navigating within an XML document, which is structured as

a hierarchy of elements and attributes. XPath can isolate the elements and

attributes that satisfy a given search criterion, but it cannot construct a new

element. For this reason, it is not a complete query language. XSLT is more

powerful than XPath, but was designed primarily for transforming one doc-

ument into another. The expressive power of XSLT is sufficient for a query

language, but its recursive pattern matching paradigm is difficult to optimize

and is better adapted for document transformation than for queries.

Recognizing the limitation of XPath and XSLT, the World Wide Web

Consortium (W3C) organized a workshop in 1998 to begin the consideration

of a new query language for XML data sources. One outcome of the workshop

was the formation of a new W3C working group on XML Query, which has

produced a draft specification of a new language called XQuery.

W3C XQuery [BCF+07] is a query language for XML. The most common

use cases for XQuery involve XML publishing to create XML for Web mes-

sages, dynamic web sites, or publishing applications. The original data may

be found in XML files, or it may be in a data store such as a relational

database [Dat09].

2.1.2.2 Relational Data Integration Systems

Figure 2.3 shows a typical data integration system where the global data

model is relational.

The data users are permitted to submit SQL queries and the query pro-

cessor of the relational data integration system will parse the queries, rewrite

the queries and divide the queries into sub-queries. The sub-queries are then

transmitted to the wrappers. The wrappers are responsible for translating the

sub-queries into sub-queries in the local query languages. The sub-queries in

18 2 Fundamentals

Relational

Database

OO

DBMS
 Files

Wrapper
 Wrapper
 Wrapper
 Wrapper

Web

Applications

SQL

Relation

s

Data Users

Query Processor

Metadata

Repository

Parse

Rewrite

Divide

Sub-Queries/Sub-Results

Fig. 2.3 A Typical Relational Data Integration System

the local query languages are then executed in each local data source. The re-

sults are then transmitted to the wrappers and the wrappers are responsible

to translate the results into the results in the global data model. The query

processor then combines all the sub-results and returns the results (normally

relations, or tables) to the data users.

2.1.2.3 XML-based Data Integration Systems

XML-based data integration system has been studied and developed for many

years and has become a mature technology [Car06]. Figure 2.4 shows a typ-

ically XML-based data integration system.

In an XML-based data integration system, the users or the end applications

submit XML Queries to the data integration system. The query processor

will parse the queries, rewrite the queries and divide them into sub queries.

These sub queries are then transmitted to the wrappers of the XML-based

data integration system. The wrappers will translate the sub queries given

in XQuery syntax into the queries in the local query language and the sub

queries in the local query language will be executed in the local data sources.

The results are returned to the wrappers and the wrappers will translate the

2.1 XML-based Data Integration System 19

RDB
 OODB

XML

Files

Wrapper
 Wrapper
 Wrapper
 Wrapper

Web

Applications

Client Applications

Web

Services

Ad-Hoc

XQueries
 Java Clients

XML-Based Data Integration System

Query

Processor
 Metadata

Schema

Data
 Views

XQuery
 XML

Fig. 2.4 A Typical XML-based Data Integration System

local results into XML format. The query processor then combines the sub

results and returns them to the users or to applications.

2.1.2.4 Comparison of the Two Models

In order to state the necessity of an XML-based data integration system, we

need to first compare it with the relational data integration systems. We first

compare the two data models: XML data model and relational data model.

Then we compare the two query languages used in the two data integration

systems: SQL and XQuery.

2.1.2.4.1 Comparison of XML and Relational Model

First we list the difference of the two data formats.

1. Relational data is structured while XML data is semi-structured.

2. XML data is self-described while relational data is not.

3. XML data is often sparse while relational data is not.

4. Relational data has no intrinsic order that is independent of its values, but

XML is often used to store intrinsically ordered data, such as paragraphs

in a book.

20 2 Fundamentals

5. Compared to a typical relational system catalog, XML schema [W3C06b]

information is often more complex and supports structurally different XML

data objects under the same schema. An XML query may operate over mul-

tiple documents conforming to different schemata or to multiple versions

of a schema.

6. Relational databases represent information only by values, whereas XML

also uses the concept of nesting (element hierarchies) and references.

7. XML mixes markup with data. Data and metadata are separated in rela-

tional databases.

8. XML documents often contain text, which increases the importance of

search. Text search requires linguistic operations, such as stem matching,

and often needs to combine precise with imprecise forms of search in a

single query. Relevance ranking is an important form of search in XML

data.

2.1.2.4.2 SQL and XQuery: Similarities and Differences

SQL is a mature relational database language that takes advantage of the

regular structure of data stored in tables. [OCKM06] gives a detailed compar-

ison between SQL and XQuery. The similarities between SQL and XQuery

are:

1. Both are declarative query languages.

2. Both are functional languages defined in terms of a set of expressions that

are closed under a specific data model.

3. The two languages are roughly equivalent in expressive power (both sup-

port joins, quantification, recursion, and user-defined functions).

4. Both languages have type systems that include simple and complex data

types and inheritance.

5. Both languages have set-oriented operators, including union and intersec-

tion, as well as set-oriented search operators.

The differences between SQL and XQuery are:

1. XML data, unlike relational data, has an intrinsic order. So the design

of XQuery must include positional predicates, “before” and “after” pred-

2.2 Constraints and Triggers 21

icates, and operators, such as path expressions, that preserve document

order.

2. Because XML mixes markup with data, it is possible in XQuery to express

queries that span both data and metadata. Data and metadata are sepa-

rated in relational databases; therefore, SQL cannot express this kind of

query.

3. XQuery has a concept of identity that is not present in SQL. In XQuery,

nodes (which correspond to XML concepts such as elements and attributes)

have identity, but atomic values (such as 47 and ”Hello”) do not. The con-

cept of identity affects the XQuery language in several ways. The language

has expressions called constructors that create new nodes with new iden-

tities. Also, XQuery set operators, such as union and intersect, and path

expressions eliminate duplicates from their results based on node identity

rather than on value, as in SQL.

2.2 Constraints and Triggers

The idea of integrity constraints in relational databases appeared not long

after the relational model itself. From about the mid-1980’s to the mid-

1990’s there were numerous research proposals and prototypes in the area

of database constraints and triggers. In 1983, [CD83] developed an integrity

monitor for the database system INGRES. The integrity subsystem guards

the database against semantic errors by permitting users to make assertions

which define the correctness of the database, and to specify actions to be

taken when the assertions are not satisfied [EC75]. There are several kinds

of assertions: tuple- vs. set-oriented assertions, state- vs. transition-oriented

assertions, and immediate- vs. delayed assertions. Tuple-oriented assertions

are normally about the individual tuples while set-oriented assertions may be

based on built-in functions applied to sets, such as average, sum, maximum,

etc, or may be based on the comparison of one set to another. The difference

between state-oriented assertions and transition-oriented assertions is that to

aid in state transition assertions, there must be the keywords such as “OLD”

and “NEW”. Immediate assertions mean that the assertions cannot be sus-

22 2 Fundamentals

pended but must be enforced even on intermediate stages of a transaction.

Those assertions that is not declared to be “immediate” are delayed.

From then on most mainstream database products announced their sup-

port for constraints and triggers, with expressive constraint specifications

in the SQL-92 standard [SQL92], and both constraints and triggers in the

SQL-99 standard [Mel03].

Shortly after researchers recognized the importance of database integrity

constraints, including automatic reactions to constraint violations, the idea

expanded to the more general concept of triggers, also now known as Event-

Condition-Action (ECA) rules or active rules [PD99].

2.2.1 Relational Constraints and Triggers

2.2.1.1 Relational Constraints in SQL

The SQL-92 (and subsequent SQL-99) standard provides several mechanisms

for specifying integrity constraints. The most common kinds of constraints

are keys, non-null constraints, and referential integrity. Among them referen-

tial integrity constraints can be specified with particular actions to be taken

upon violations, such as cascaded delete or set null.

Check constraints are generally associated with a given database table.

SQL-like syntax is used to specify conditions that must hold for each tuple

of the table, and the conditions are checked on inserts and updates to the ta-

ble. SQL-92 standard permits sub-queries within check constraints, thereby

enabling check constraints to be used for multi-tuple and multi-table con-

straints. Unfortunately, most products do not support this feature. Those

constraints which are not specific to a single table can be specified by SQL-

92 assertions. Again many products do not support this level of generality.

Finally, domain constraints can be specified to constrain all values in all

columns of the domain, or any value cast to the domain.

When a constraint is first defined or when new data is loaded, the system

verifies the constraint against the data. Thereafter the events are monitored

2.2 Constraints and Triggers 23

and actions are executed to ensure that the database state always satisfies

the constraint as specified.

There are four Constraint variations: UNIQUE constraints, PRIMARY

KEY constraints, FOREIGN KEY constraints and CHECK constraints,

which are defined in the following [Mel03]:

1. A UNIQUE constraint defines one or more columns of a table as unique

columns; it is satisfied if no two rows in the table have the same nun-null

values in the unique columns.

2. A PRIMARY KEY constraint is a UNIQUE constraint that specifies

PRIMARY KEY; it is satisfied if

• no two rows in the table have the same non-null values in the unique

columns and

• none of the primary key columns are NULL.

UNIQUE constraints and PRIMARY KEY constraints describe a base

table’s candidate keys.

3. A FOREIGN KEY constraint defines one or more columns of a table

as referencing columns whose values must match the values of some cor-

responding referenced columns in a referenced base table (the referenced

columns must be UNIQUE columns for the referenced table). It is satis-

fied if, for every row in the referencing table, the values of the referencing

columns are equal to those of the corresponding referenced columns in

some row of the referenced table. If either table contains NULLs, satis-

faction of the FOREIGN KEY constraint depends on the constraint’s

match type. FOREIGN KEY constraints describe linkages between base

tables.

4. A CHECK constraint defines a search condition; it is violated if the result

of the condition is FALSE for any row of the table. An ASSERTION is

a CHECK constraint that may operate on multiple tables.

2.2.1.2 Relational Triggers in SQL

An SQL Trigger specifies a set of SQL statements that are to be executed,

either once for each row or once for the whole triggering INSERT, DELETE,

24 2 Fundamentals

or UPDATE statement, either before or after rows are inserted into a table,

rows are deleted from a table, or one or more columns are updated in rows

of a table. Triggers are similar to constraints. In fact, referential constraints

are now defined by the SQL standard as merely a type of trigger. What

distinguishing a trigger from a constraint is the flexibility. The trigger body

may contain actual SQL procedure statements that can be defined by the

user.

Constraints are normally declarative while triggers are explicitly procedu-

ral. A trigger is activated whenever a specified event occurs. The event is

usually an INSERT, DELETE, or UPDATE on a particular table. Once the

trigger is activated, an optional specified condition is checked. If the condi-

tion is true, an action is executed. If the condition is omitted, it is considered

as true and an action is executed, too.

Triggers have an activation time: BEFORE or AFTER. Triggers have a

granularity: ROW-LEVEL or STATEMENT-LEVEL. There are transition

variables which record the OLD and NEW value of the variables affected by

the events. There are also transition tables: OLD TABLE and NEW TABLE.

Each trigger has access to transition variables and transition tables. Condi-

tions can be arbitrary predicates. Actions are stored procedures including

SQL statements, control constructs, and calls to user-defined functions. The

user-defined functions invoked by a trigger action may have side effects that

fall outside of DBMS control.

There are two classic instances where triggers are used to support ker-

nel database functionality: referential integrity and materialized views. In

general, triggers can be classified into following categories [CCW00]:

1. Constraint-preserving triggers: Signal integrity constraint violations and

force rollbacks of the violating transactions.

2. Constraint-restoring triggers: Detect integrity constraint violations and

modify the database contents in order to restore integrity.

3. Invalidating triggers: Signal and mark integrity constraint violations, al-

lowing applications to respond appropriately.

2.2 Constraints and Triggers 25

4. Materializing triggers: Compute materialized derived information, from

simple scalar values to aggregate values to complex views, either by incre-

mental modifications or complete refresh.

5. Metadata triggers: Maintain consistency across system catalogs or other

metadata.

6. Replication triggers: Replicate, migrate, or log information and/or modi-

fications from the primary copy of one table or database to the secondary

copy.

7. Extenders: Manage new types of data and keep specialized external struc-

tures consistent with the base data.

8. Alerters: Notify or push information to users in the form of messages,

typically based on a publish/subscribe model.

9. Ad-hoc triggers: Implement business rules, scheduling, workflow, supply-

chain management, or other application-specific logic.

[CW91] [CW92] [CW93] [CFPT94] are the foundations of early work that

triggers can be generated automatically for a wide class of applications: con-

straint maintenance, materialized view maintenance, and managing semantic

heterogeneity.

2.2.2 XML Constraints and Triggers

2.2.2.1 XML Constraints

[LC00] presents the types of semantic constraints hidden in Document Type

Definition (DTD) [W3C99a]. As DTD is now being replaced by XML Schema,

we discuss XML constraints only in XML schema here. In general, there are

altogether five kinds of XML constraints hidden in XML schema. In the

following, we classify these constraints and give each kind of constraints an

explaining example.

26 2 Fundamentals

2.2.2.1.1 Domain Constraints

When the domain of the attributes is restricted to a certain specified set of

values in XML Schema, it is called Domain Constraints. In Example 2.2.1,

the domain of the Type ”myInteger” is restricted:

<xs:simpleType name="myInteger">
<xs:restriction base="xs:integer">
<xs:minInclusive value="-2"/>
<xs:maxExclusive value="5"/>

</xs:restriction>
</xs:simpleType>

Example 2.2.1: Domain Constraints in XML Schema

2.2.2.1.2 Occurrence Constraints

Occurrence constraints define how many times the sub-element should ap-

pear. There are altogether four kinds of occurrence constraints. We use Ex-

ample 2.2.2 to explain each of them:

1. 1-to-{0,1} mapping (“at most” semantics): An element may have either

zero or one sub-element. (e.g., sub-element ShipTo).

2. 1-to-{1} mapping (“only” semantics): An element must have one and only

one sub-element. (e.g., sub-element BillTo).

3. 1-to-{0, ...} mapping (“any” semantics): An element may have zero or

more sub-elements. (e.g., sub-element items).

4. 1-to-{1, ...} mapping (“at least” semantics): An element may have one or

more sub-elements. (e.g., sub-element buyer).

2.2.2.1.3 UNIQUENESS

Uniqueness constraints ensure that no duplicate values are entered in the

specified elements. Example 2.2.3 defines a Uniqueness constraint. “@part-

num” and “productName” must be unique in “items/item”.

2.2 Constraints and Triggers 27

<xsd:complexType name="PurchaseOrderType">
<xsd:all>
<xsd:element name="buyer" type="Buyer"

minOccurs="1" maxOccurs=unbounded/>
<xsd:element name="shipTo" type="USAddress"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="billTo" type="USAddress"

minOccurs="1" maxOccurs="1"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"

minOccurs="0" maxOccurs=unbounded/>
</xsd:all>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

Example 2.2.2: Occurrence Constraints in XML Schema

<xsd:element name="items" type="Items">
<xsd:unique name="partNumAndName">
<xsd:selector xpath="item"/>
<xsd:field xpath="@partNum"/>
<xsd:field xpath="productName"/>

</xsd:unique>
</xsd:element>

Example 2.2.3: UNIQUENESS Constraints in XML Schema

2.2.2.1.4 Keys

In relational database systems, a primary key is a column (or a set of columns,

if you use the multiple-column constraint format) that contains a non-NULL,

unique value for each row in a table. In XML Schema, “key” element is used

to define, that the elements “a” under “root” element must have unique value

of “id” attribute and it must be present (Not NULL). In Example 2.2.4, states

are keyed by their codes.

<xs:key name="state">
<xs:selector xpath=".//state"/>
<xs:field xpath="code"/>
</xs:key>

Example 2.2.4: KEY Constraints in XML Schema

28 2 Fundamentals

2.2.2.1.5 Referential Constraints

In relational database systems, a referential constraint definition defines an

integrity condition that must be satisfied by all the rows in two tables. The

resulting dependency between two tables is affected by changes to the rows.

In XML Schema, the referential constraint definition defines an integrity

condition that must be satisfied by all the elements in the XML document.

The resulting dependency between two elements is affected by the changes to

the elements. Example 2.2.5 shows referential constraints in XML Schema.

<element name="purchaseReport">
<complexType>
<sequence>
<element name="regions" type="r:RegionsType"/>

<element name="parts" type="r:PartsType"/>
</sequence>
<attribute name="period" type="duration"/>
<attribute name="periodEnding" type="date"/>

</complexType>

<unique name="dummy1">
<selector xpath="r:regions/r:zip"/>
<field xpath="@code"/>

</unique>

<key name="pNumKey">
<selector xpath="r:parts/r:part"/>
<field xpath="@number"/>

</key>

<keyref name="dummy2" refer="r:pNumKey">
<selector xpath="r:regions/r:zip/r:part"/>
<field xpath="@number"/>

</keyref>
</element>

Example 2.2.5: Referential Constraints in XML Schema

To ensure that the part-quantity elements have corresponding part de-

scriptions, we say that the number attribute (field xpath=”@number”/) of

those elements (selector xpath=”r:regions/r:zip/r:part”/) must reference the

“pNumKey key”. This declaration of number as a keyref does not mean that

its value must be unique, but it does mean there must exist a pNumKey with

the same value.

2.2 Constraints and Triggers 29

2.2.2.2 XML Triggers

XML is accepted as one of the most widely adopted standards for information

exchange and representation. XML repository can be used both as direct data

sources and as an interoperability layer between data sources.

Acting as interoperability layer means that data sources export XML

views over their data, these XML views may then be materialized in the

XML repository. Other systems can directly import or query these views

stored in the XML repository. Many open source and commercial native

XML databases have been developed, among which are Berkeley DB XML

[Ora09], eXist [eXi08], MarkLogic [Mar08a], Tamino XML Server from Soft-

ware AG [AG09], and Oracle XML DB [Ora08b]. Like relational database

systems, these XML database systems support not only data storage but

also query processing mechanisms and indexing mechanisms. Several XML

query languages have been developed to support querying in XML database

systems: Lorel [AQM+97], XML-QL [DFF+98], XQL [RLS+98], and XQuery

[BCF+07]. XQuery is the standard query language proposed by W3C. In or-

der to evolve XML into a universal data representation and sharing format,

several XML update languages have been proposed [TIHW01] [XML00]. The

XQuery update operations commonly include insertion, deletion, replace-

ment, and renaming of XML data.

After extending XML query language with update capabilities, it is neces-

sary to provide a mechanism to guarantee the data integrity in XML reposi-

tory. In order to make XML repository fully equipped with data management

capabilities, XML repository must also be extended to support active rules

for checking the correctness of updates and monitoring changes of documents.

As in SQL triggers, an XML trigger also mainly includes three parts:

events, conditions and actions. We will explain each of these three parts

in the following.

2.2.2.2.1 Event

The event part of the XML trigger specifies the events responsible for rule

triggering. A mutating event is generated when the XML content is modified.

30 2 Fundamentals

We assume three types of mutating events: insert, delete, and update. The

definition of a mutating event declaratively describes the nodes (elements, or

attributes) whose modifications need to be monitored. Every time a moni-

tored modification occurs, the corresponding event instance is generated and

associated with the modified node, e.g., an event definition insert(//house)

monitors the insertion of “house” elements in the repository; an event in-

stance is generated whenever a “house” element is introduced.

The event specifies what causes the rules to be triggered. Useful triggering

events are:

• Data modification. The event is specified as a change to an XML docu-

ment, resulting in an invocation of a data manipulation primitive within

an XML repository. Primitives for data modification include insert, delete

and update of XML information items, either performed manually by the

user or accomplished through an update language. In addition, an event

might be specified as the invocation of a function or a particular method

that modifies the XML data.

• Data retrieval. The event might be specified as a query that extracts XML

items from the repository or as an invocation of a method or function that

retrieves XML data.

• Application-defined. The event might be specified as high-level operation

of Web or document management applications, such as the publishing or

updating of a Web page or the opening or closing of an editing session

upon a document, the sending of a document through a mailer or the

user connection to a Web site. These events are generated by applications

external to the XML repositories and can be possibly detected without

accessing it. A name is declared to denote such events (defined as constants,

such as user-login, publish-doc, open-session, send-doc, etc.)

2.2.2.2.2 Condition

The condition part of the XML triggers specifies the predicate that must be

satisfied to execute the trigger’s action, expressed through a query which is

interpreted as a truth value if it returns a nonempty answer. An important

feature is the presence of a communication mechanism between the condition

2.2 Constraints and Triggers 31

and the event part, so that the condition has a way to refer to the nodes on

which the events occurred. This communication is based on predefined vari-

ables $old and $new that represent the nodes on which the events occurred

with their current and past values, in a way similar to transition variables of

database triggers. Possible conditions include:

• Predicates. The condition might specify that a certain predicate holds

on the XML repository. This predicate is encoded by using the condition

clauses of an XML Query language. Conditions can be arbitrarily compli-

cated as they might include full-fledged joins and aggregates. When the

condition evaluation is very expensive, conditions may be restricted to

support only comparison operators (restricted predicates).

• Queries. The condition might be a full query onto the XML repository.

The condition is evaluated to be true whenever the query produces a non-

empty answer. A generic query inspects the content of the repository in

its current or past states.

• Methods. A rule condition might be specified as a call to a function written

in an external programming language or in the query language itself, if

supported. If the method invocation returns true, then the condition holds.

Moreover, the method can be a SOAP invocation, shipped to a remote

XML server.

2.2.2.2.3 Action

The Action part of a rule specifies a method to invoke when the rule condition

is evaluated true. Possible actions include:

• Data modification operations. Insert, delete and update operations are

allowed as rule actions.

• Data retrieval. The action might be a query on the XML repository to

retrieve data, or a function or method devoted to retrieve data.

• Application methods. A rule action might be the invocation of a method,

either expressed in a programming language or in the query language to

access the repository, or encoded in SOAP and shipped on the network.

32 2 Fundamentals

2.2.2.2.4 Transition Values

The triggering of a rule occurs within a database state change, that is called

transition. A transition can be limited to a small change on the database,

or can be expanded to cover an entire transaction. We suppose that these

concepts are available in an XML repository, and consider the evaluation of

rules to be held within transactions as well. Transition values are designated

as the references to old and new data after modifications to the repository.

2.3 Semantic Query Optimization

In the early 1980’s, researchers recognized that semantic information stored

in databases could be used for query optimization, too [SO89] [CGM90]

[JCV84]. A new set of techniques called semantic query optimization (SQO)

was developed. SQO adds a new and much wider dimension to the process of

conventional query optimization. Instead of just using syntactic knowledge,

it also uses the integrity constraints associated with a database to improve

the efficiency of query evaluation, such as knowledge about the domains of

relations, nature of data, etc. Integrity constraints (ICs) are important to

express the semantics in databases for a long period of time. They express

the properties that must be true about the data stored in a database. Once

declared, the database system must protect the integrity of the database as

expressed by the integrity constraint, if it is activated.

With semantic query optimization more efficiency can be achieved for

query optimization than by only using syntactic query optimization tech-

niques. This is because syntactic optimizer does not understand semantic

knowledge, which should be satisfied by all instances of particular database

In this case syntactic optimizer often leads to a suboptimal form for the

given query for execution. Certain queries, which can be answered without

any relation scan in the database, cannot be detected by a syntactic opti-

mizer, thus resulting in superfluous database accesses. Syntactic optimizers

cannot detect and eliminate semantically redundant restrictions or joins in

2.3 Semantic Query Optimization 33

the queries or introduce some useful restrictions and joins into the query to

reduce the overall cost of query execution, either.

Two queries are semantically equivalent if they return the same answer for

any database state satisfying a given set of integrity constraints. A semantic

transformation transforms a given query into a semantically equivalent one.

Semantic query optimization is the process of determining the set of semantic

transformations that result in a semantically equivalent query with reduced

execution costs.

In [CGK+99], the authors outline five common SQO techniques:

• Join elimination: A query contains a join for which the result is known as

a priori, hence it does not need to be evaluated. For example, when the

two attributes of the join are related by a referential integrity constraint.

(A.a= B.a, A.a is referenced by B.a.)

• Join introduction. It may be advantageous to add a join with an additional

relation, if that relation is relatively small compared to the original rela-

tions as well as highly selective. If the join attributes are indexed, higher

benefit will be generated. This is under the assumption that the retrieval

of tuples using an index is more efficient than their sequential processing.

But in general, this is not always true.

• Predicate elimination: if a predicate is known to be always true it can be

eliminated from the query.

• Predicate introduction: a new predicate on an indexed attribute may result

in a more efficient access methods. Similarly, a new predicate on a join

attribute may reduce the cost of the join as well as the size of the join

result.

• Detecting the empty result: if the query predicate is inconsistent with the

integrity constraints, the query does not have an answer. Similarly, if a

predicate evaluates to false, the query’s result is set empty.

Unfortunately, although semantic query optimization is well known to be

useful and could potentially provide much greater performance improvements

than traditional syntactic query optimization, only few commercial products

employed it. In [CGK+99], the authors present three reasons why SQO has

never caught up in the commercial world where most databases are RDBMS:

34 2 Fundamentals

• SQO is in many cases designed for deductive databases where the relatively

high cost of applying complex rules (in comparison to much less complex

rules in relational databases) is more likely to make the extra computa-

tional effort for SQO worthwhile. Because of this association, SQO might

not appear useful for relational database technology.

• At the time when SQO techniques were developed, the CPU and I/O

speeds were not high enough for the extra computational cost of SQO to

be acceptable. The savings in query execution time (dominated by I/O)

that SQO could provide was not worth the extra CPU time necessary to

optimize a query semantically.

• ICs usually have to be defined at first for a given database, and then SQO

may be applied. Although many ICs in fact exist in the most real life

databases, however, only few of them are ever defined.

Nowadays the computer hardware has dramatically involved. The speed of

CPU and I/O has been greatly improved. The extra processing for SQO

seems to be acceptable now. At the same time the computer storage capabil-

ity has been improved and currently there is a great volume of data existing

in current enterprise information systems, which makes data retrieval more

time-consuming. After distributed database and data integration systems

appeared, network delays in answering queries appeared as well. Under this

situation, using integrity constraints to semantically optimize queries to the

data integration system becomes more attractive. This work gives an ap-

proach to semantically optimize queries to an XML-based data integration

system exploiting the constraints coming from the local data sources.

2.4 Active Database System

Active database systems support mechanisms that enable them to respond

automatically to events that are taking place either inside or outside the

database system itself [PD99]. Active databases support their applications

by moving the reactive behavior from the application (or polling mechanism)

into the DBMS. Active databases are thus able to monitor and react to

specific circumstances of relevance to an application. The reactive semantics

2.4 Active Database System 35

are both centralized and handled in a timely manner. An active database

system must provide a knowledge model (i.e., a description mechanism) and

an execution model (i.e., a runtime strategy) for supporting this reactive

behavior. A common approach for the knowledge model uses rules that have

up to three components: an event, a condition, and an action. The event part

of a rule describes a happening to which the rule may be able to respond.

The condition part of the rule examines the context in which the event has

taken place. The action describes the task to be carried out by the rule if the

corresponding event has taken place and the condition has evaluated to be

true.

Most active database systems support rules with all three components

described; such a rule is known as an event-condition-action or ECA-rule. In

some proposals the event or the condition may be either missing or implicit.

If no event is given, then the resulting rule is a condition-action rule, or

production rule. If no condition is given, then the resulting rule is an event-

action rule.

At first glance, the introduction of active rules to a database system may

seem like a straightforward task, but in practice proposals must be made be-

cause widely different functionalities must be supported. Among the issues

that distinguish the proposals are the expressiveness of the event language,

the scope of access to database states from the condition and action, and the

timing of condition and action evaluation relative to the event. The function-

ality of a specific system will be influenced by a number of factors, including

the nature of the passive data model that is being extended, and the cate-

gories of application to be supported.

When ECA rules are put into a distributed environment, things become

more difficult. How to detect distributed events, how to evaluate conditions

in a distributed environment, how to coordinate the action part with the

event part and how to coordinate the different parts in the action part in a

distributed environment are problems that are not yet fully solved and need

more research effort. We go a step further in this direction and try to settle

this problem in a data integration system.

36 2 Fundamentals

2.5 Summary

Data integration has long been recognized as the kernel problem in database

research and industry. At the beginning, data integration systems were re-

lational. That means, the data model in the integration level is relational.

As XML has become the main technological ingriedents in Internet data

exchange, XML-based data integration systems appeared. In this chapter,

we first discussed the fundamentals of data integration. Then we compared

the two integration models: relational model and XML model. The differ-

ent query languages in these two kinds of data integration system, SQL

and XQuery were compared according to similarities and differences. After

that we introduced the foundations of constraints and triggers. These two

concepts appeared soon after the database came into the world. We first

introduced the relational constraints and triggers especially in SQL. Then

the XML constraints and triggers were discussed. This knowledge forms the

fundamental of this work. Our goal is to use constraints and triggers to en-

hance an XML-based data integration system in three ways. First, to use

constraints to semantically optimize queries submitted to XML-based data

integration systems. Second, to use the constraints to ensure data integrity

in XML-based data integration systems. Third, to use the triggers to enforce

data consistency among the data sources of the XML-based data integra-

tion systems. So, fundamentals of semantic query optimization and active

database system were discussed at the end of this chapter.

Chapter 3

Query Optimization by

Constraints

The first enhancement by constraints in our work is to semantically optimize

the queries submitted to the data integration system. In this chapter, we

mainly introduce how to use constraints to improve the query performance

of the data integration system. We will begin by a motivation example. Then

we will analyze the difficulties to express different constraints coming from

heterogeneous data sources. Our approach will follow including a uniform

constraint model, constraint wrapper, and the semantic query optimization

techniques. We will present the performance of the semantic query optimizer

and give some discussion at the end.

3.1 Motivating Example

In order to give a more plain and clarified explanation of the ideas in this

chapter, we first assume an XML-based data integration system as shown in

Figure 3.1.

Suppose a construction company keeps data about a building under con-

struction in XML files. This data must be consistent with the architect’s

design, which is in an RDBMS stored in the architect’s computer.

The door information is stored in Table 3.1 by the architect.

Table 3.1 Door Information in the Architect Database

DoorNr Width Length
001 1.5 3
002 1.8 2.8

37

38 3 Query Optimization by Constraints

XML-Based Data Integration System

User

Relational

DataBase

XML

Fiiles

Fig. 3.1 An Assumed XML-Based Data Integration System

The information of the doors is stored in the following XML file by the

construction company:

<door_info >
<door>
<door_nr>001</door_nr>
<width>1.5</width>
<length>3</length>

</door>
<door>
<door_nr>002</door_nr>
<width>1.8</width>
<length>2.8</length>

</door>
</door_info>

Example 3.1.1: DoorInformation.xml

Suppose there is a constraint in this data integration system as the follow-

ing:

Constraint 1: The length of the door is less than 3.2 meters, which is a

relational constraint:

CONSTRAINT P CHECK (length < 3.2)

When the user submits the following query:

Find a door whose length is more than 3.3 meters.

This query will be pushed down to the relational wrapper and translated

into SQL as follows:

3.2 XML Constraints 39

SELECT door_nr FROM door_info WHERE length>3.3

There will be an empty result set returned. If Constraint 1 would be

stored at the integration level, the data integration system would be able to

detect that the length of the doors in the relational table will be less than

3.2. This query will return an empty result set. It should not be pushed down

to the relational data source nor be translated into SQL. There is no need

to open and scan the relational table.

When the user submits the following query:

Find a door whose length is less than 3.3 meters.

This query will be pushed down to the relational wrapper and translated

into SQL as follows:

SELECT door_nr FROM door_info WHERE length<3.3

If the Constraint 1 would be stored in the integration level, the data

integration system would be able to detect that the length of the doors in

the relational table will be less than 3.2. So the predicate ′′length ≤ 3.3′′

always holds. This predicate can be eliminated. There is no need to compare

the value of the length attribute with 3.3. This is especially significant when

the local data source lacks this optimization mechanism locally.

3.2 XML Constraints

If we want to use the local constraints from the data sources to semantically

optimize the queries submitted to the data integration system, the first prob-

lem is how to express these local constraints in the data integration layer.

The first step is to consider whether XML Schema can express all these local

constraints.

3.2.1 XML Schema and Constraints

Constraints for semi-structured data have been the topic of research for sev-

eral years. [BFSW01] introduces various kinds of semi-structured data con-

40 3 Query Optimization by Constraints

straints, including relative key constraints, path inclusion constraints, and

set-valued foreign keys. [Bon02] also discusses the interactions among them.

However, current schema languages support integrity constraints only to

a limited extent. XML Schema is capable of expressing fixed-format struc-

tural and type constraints, but it does not support generic constraints. XML

Schema supports structured constraints (for the assessment of document well-

formed-ness w.r.t. to the XML information items) as well as type and iden-

tity constraints. Thus, in an XML-based data integration system, the global

schema, which is normally XML Schema, can express some of the constraints

found in typical heterogeneous data sources, e.g., Primary Key, Foreign Key

and Unique from Relational Database; OID, ObjectKey, Referential Integrity

from Object-Oriented Database; etc.

3.2.2 Three Approaches to Express Constraints

Unfortunately, there are many other constraints, which cannot be expressed

by XML Schema. For example: CHECK, ASSERTION and TRIGGER from

relational databases; semantic constraints such as C1 > C2; etc. [xfr06]

presents three different approaches to express those constraints that cannot

be expressed by XML Schema directly:

• Supplement with another schema language (e.g., DSD [DSD08], DTD

[W3C99a], Schematron [Sch09], Relax NG [MUR09], etc) which can sup-

port constraints in a comparable way.

• Writing code (e.g., Java, C++).

• Using XSLT /XPath Stylesheet.

We will analyze each of these approaches to see whether it fits for expressing

local constraints at data integration layer.

3.2.2.1 Supplement with Another Schema Language

For a better understanding of the first approach we need the following defi-

nitions:

3.2 XML Constraints 41

Definition 1. A grammar-based schema language specifies what elements

may be used in an XML instance document, the order of the elements, the

number of occurrences of each element, and the content/data type of each

element. It specifies what components are allowed and the rules for using the

components.

Relax NG [MUR09], XML Schema, and DTD are grammar-based schema

languages. Relax NG and XML schema use XML syntax. DTD uses a non-

XML syntax.

Definition 2. An assertion-based schema language specifies the relation-

ships between the elements and attributes in an XML instance document. It

is also called a rule-based schema language.

Schematron [Sch09] is an assertion-based language and it uses XPath to

express assertions. Schematron provides meaningful, user-defined diagnostic

messages. It is the only schema language with support for connecting a data

check to a diagnostic.

Figure 3.2 shows the procedure to check whether an XML document is

valid or invalid with the help of Schematron.

XML

Schema

Schematron

Extra

Assertions

XML Data

/Document

Valid / Invalid

Fig. 3.2 Supplement with Schematron

Using Schematron the additional constraints (as “assertions”) are embed-

ded within the schema document (within “appinfo” elements), as shown in

Example 3.2.1. This example shows how to use Schematron to express a con-

straint ’A is greater than B’, which cannot be expressed by XML Schema.

A Schematron engine will then extract the assertions and validate the

instance document against the assertions.

42 3 Query Optimization by Constraints

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.demo.org"
xmlns="http://www.demo.org"
xmlns:sch="http://www.ascc.net/xml/Schematron"

elementFormDefault="qualified">
<xsd:annotation>
<xsd:appinfo>

<sch:title>Schematron validation</sch:title>
<sch:ns prefix="d" uri="http://www.demo.org"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:element name="Demo">
<xsd:annotation>
<xsd:appinfo>

<sch:pattern name="Check A greater than B">
<sch:rule context="d:Demo">

<sch:assert test="d:A > d:B"
diagnostics="lessThan">
A should be greater than B
</sch:assert>

</sch:rule>
</sch:pattern>

<sch:diagnostics>
<sch:diagnostic id="lessThan">

Error! A is less than B.
A = <sch:value-of select="d:A"/>
B = <sch:value-of select="d:B"/>

</sch:diagnostic>
</sch:diagnostics>

</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>

<xsd:element name="A" type="xsd:integer"
minOccurs="1" maxOccurs="1"/>

<xsd:element name="B" type="xsd:integer"
minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Example 3.2.1: An XML Schema with Schematon

Figure 3.3 shows the architecture for determining if your data meets all

constraints: The XML data and the XML schema are put into the schema

validator to see whether there is invalidity. If there is none, then the docu-

ment is checked as valid by the schema validator. The XML schema and the

XML data are then transformed to Schematron to check the assertions to see

whether there is conflict or violation. If there is no violation, the XML data

3.2 XML Constraints 43

XML Schema

Schema

Validator

Schematron

XML Data

/Document

Valid

Valid

Valid

Fig. 3.3 Supplement with Schematron: Architecture

is considered to be valid. Only if both checks consider the data valid, then

the data is valid.

The advantages of a supplement with another schema language are:

1. The constraints are collocated.

2. Many of the schema languages were created in reaction to the complexity

and limitations of XML schemata. Consequently, most of them are rela-

tively simple to learn and use.

The disadvantages of a supplement with another schema language are:

1. Multiple Schema Languages Required: Each schema language has its own

capabilities and limitations. Multiple schema languages may be required

to express all the additional constraints.

2. Yet Another Vocabulary: There are many schema languages, each with its

own vocabulary and semantics. Although relatively easy to learn and use,

it still takes time to learn a new vocabulary and semantics.

3. Questionable Long Term Support: In most cases the schema languages

listed above were created by a single author. These products normally

lack of long term support.

44 3 Query Optimization by Constraints

3.2.2.2 Writing Code

The second approach is to check the constraints by writing code through

high-level programming languages, such as C++, Java, etc. The advantage

of this option is that with a single programming language you can express

all the additional constraints. The disadvantage is that one must go through

the compiling, linking, executing effort. Another disadvantage of this option

is that constraints are embedded in the code and are not in an abstract

expression. It is hard to understand and maintain the constraints.

3.2.2.3 Using XSLT/XPath

Figure 3.4 shows the architecture for writing a stylesheet to check the con-

straints. Similar with supplement with Schematron, the XML data and XML

Schema are put into the schema validator to check the validity. The XML

data and the stylesheet, with the constraints given as code, are put into

the XSL processor. The XSL processor will execute the code to see whether

the XML data conforms to the constraints. Only when the result from the

schema validator and the result from the XSL processor are both valid, the

XML data is considered valid.

Example 3.2.2 shows the stylesheet to check the constraints.

The advantages of writing constraints as XSLT stylesheet are:

1. Application Specific Constraint Checking: Each application can create its

own stylesheet to check constraints that are unique to the application.

2. Core Technology: XSLT/XPath are core technologies which are well sup-

ported, well understood, and with lots of material written on it.

3. Expressive Power: XSLT/XPath is a very powerful language. Most con-

straints can be expressed using XSLT/XPath. Thus you don’t have to

learn multiple schema languages to express your additional constraints.

4. Long Term Support: XSLT/XPath is well supported by W3C.

The disadvantages of writing constraints as XSLT stylesheet are:

1. Separate Documents: With this approach it is necessary to write the XML

Schema document and a separate XSLT/XPath document to express ad-

3.2 XML Constraints 45

Schema

Validator

XML Schema

XML Data

XSLT Stylesheet

XSL

Processor

Valid

Valid

Valid

Fig. 3.4 Writing a Stylesheet to Check the Constraints. The XSLT
Stylesheet Contains Code to Check Additional Constraints

<?xml version="1.0"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:d="http://www.demo.org" version="1.0">

<xsl:output method="text"/>
<xsl:template match="/">

<xsl:if test="/d:Demo/d:A < /d:Demo/d:B">
<xsl:text>Error! A is less than B</xsl:text>

<xsl:text>
</xsl:text>
<!-- carriage return -->
<xsl:text>A = </xsl:text>

<xsl:value-of
select="/d:Demo/d:A"/>

<xsl:text>
</xsl:text>
<!-- carriage return -->
<xsl:text>B = </xsl:text>

<xsl:value-of
select="/d:Demo/d:B"/>

</xsl:if>
<xsl:if test="/d:Demo/d:A >= /d:Demo/d:B">

<xsl:text>
Instance document is valid

</xsl:text>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

Example 3.2.2: Sample Constraint Expressed in XSLT

46 3 Query Optimization by Constraints

ditional constraints. Keeping the two documents synchronous needs to be

carefully managed.

2. XSLT is designed for document formatting rather than toward querying.

The rule-based syntax of XSLT is quite awkward as a language for express-

ing constraints. Also, using XSLT one cannot express updating a document

directly, because it requires a new result tree to be generated by applying

transformation to the source document [BPW02].

3.3 A Uniform Constraint Model

Section 3.2 analyzed the possibilities to use XML Schema together with an-

other schema language or programming code or XSLT stylesheet to express

all the constraints. Each approach has its own advantages and disadvantages.

When we put the whole scenario into the data integration system where only

the virtual XML views exist in the integration level, it is not suitable to use

any of the above three approaches. The ultimate goal of a data integration

system is to make the user free from the tedious tasks of learning a new

schema language, or writing code such as programming code or even XSLT

code. But supplement with any other technologies will force the users and

the developers to learn the new technologies. The second approach, writing

the constraints by programming code, makes the maintenance of constraints

very hard: everytime when there is an update of constraint, the developers

have to go into the code and to modify the programs. After that they need to

compile, debug, and run. The last one, writing the code as XSLT stylesheet,

the constraints are also embedded in the programs. It is hard to know what

constraints exist in the data integration system. In general, the third one is

not an abstract-level constraint expressing mechanism.

We try to find a constraint model, which is abstract and simple enough for

the developers to learn and which has won popularity and commercial use

and that should have better properties than any of the above three.

We observe the fact that an important usage of triggers is to check in-

tegrity constraints. We go further and try to use triggers as the constraint

model. This trigger constraint model integrates most of the advantages given

3.3 A Uniform Constraint Model 47

in Section 3.2. But until now there is no standard for XQuery triggers avail-

able. Fortunately, in the research field there has been many work on XQuery

triggers, among them Active XQuery has won great popularity and usage

value. We first give a short introduction on Active XQuery in Section 3.3.1.

Then we show how to use an abstract and simplified Active XQuery model

to express the constraints in the data integration system. We also use the

Active XQuery-based model to express the triggers in the data integration

system to implement the business rules, which is the original usage value of

the triggers, as will be shown in Chapter 5.

3.3.1 Active XQuery

Active XQuery was first proposed by [BBCC02] and was popularly used in

many XML trigger scenarios, e.g. [SNS06]. Active XQuery was first designed

as active rules (triggers) for XML repositories.

The syntax is shown in Example 3.3.1.

1: CREATE TRIGGER Trigger-Name
2: [WITH PRIORITY Signed-Integer-Number]
3: [BEFORE| AFTER]
4: (INSERT|DELETE|REPLACE|RENAME)+
5: OF XPathExpression (,XPathExpression)*
6: [FOR EACH (NODE|STATEMENT)
7: [XQuery-Let-Clause]
8: [WHEN XQuery-Where-Clause]
9: DO (XQuery-UpdateOp|ExternalOp)

Example 3.3.1: Active XQuery Syntax

The meaning of each line is explained in the following:

• Line 1: The CREATE TRIGGER clause is used to define a new XQuery

trigger, with a specified name.

• Line 2: Rules can be prioritized in an absolute ordering, expressed with an

optional WITH PRIORITY clause, which admits as argument any signed

integer number. If this clause is omitted, the default priority is zero.

• Line 3: The BEFORE/AFTER clause expresses the triggering time relative

to the operation.

48 3 Query Optimization by Constraints

• Line 4: Each trigger is associated with a set of update operations (insert,

delete, rename, replace), adopted from the update extension of XQuery

from [TIHW01].

• Line 5: The operation is relative to elements that match an XPath expres-

sion (specified after the OF keyword), i.e. a step-by-step path descending

the hierarchy of documents. One or more predicates (XPath filters) are al-

lowed in the steps to eliminate nodes that fail to satisfy given conditions.

Once evaluated on document instances, the XPath expressions result into

sequences of nodes, possibly belonging to different documents.

• Line 6: The optional clause FOR EACH NODE/STATEMENT expresses

the trigger granularity. A statement-level trigger executes once for each set

of nodes extracted by evaluating the XPath expressions mentioned above,

while a node-level trigger executes once for each of those nodes. Based on

the trigger granularity, it is possible to mention in the trigger the transition

variables:

1. If the trigger is node-level, variables OLD NODE and NEW NODE de-

note the affected XML element in its before and after state.

2. If the trigger is statement-level, variables OLD NODES and NEW NODES

denote the sequence of affected XML elements in their before and after

state.

• Line 7: An optional XQuery-Let-Clause is used to define XQuery variables

whose scope covers both the condition and the action of the trigger. This

clause extends the “REFERENCING” clause of SQL, because it can be

used to redefine transition variables.

• Line 8: The WHEN clause represents the trigger condition, and can be an

arbitrarily complex XQuery Where clause. If omitted, a trigger condition

that specifies WHEN TRUE is implicit.

• Line 9: The action is expressed by means of the DO clause, and it can

be accomplished through the invocation of an arbitrarily complex update

operation. In addition, a generic ExternalOp syntax indicates the possi-

bility of extending the XQuery trigger language with support to external

operations, permitting, e.g., to send mail or to invoke SOAP procedures.

3.3 A Uniform Constraint Model 49

3.3.2 Uniform Constraint Model

One of the most important usage of triggers is to enforce integrity constraints.

We use triggers to develop the uniform constraint model for data integration

systems to express all kinds of constraints from heterogeneous local data

sources.

We choose to use Active XQuery [BBCC02] as the base of our constraint

model for the following reasons: first, the syntax of Active XQuery is sim-

ple; second, it can be automatically invoked in response to events; third, its

execution model is simple enough for rapid prototyping of a wide rage of

usage. Fourth, it is capable of expressing both local constraints and global

domain constraints and the global referential constraints. Here is the uniform

constraint model based on Active XQuery in Figure 3.5.

1: DECLARE NAMESPACE ns1 (,ns)*,

2: CREATE CONSTRAINT Constraint-Name

3: ON (INSERT|DELETE|REPLACE)+

4: OF XPathExpression (,XPathExpression)*

5: [FOR EACH (NODE|STATEMENT]

6: [XQuery-Let-For-Clause]

7: [WHEN XQuery-Where-Clause]

8: DO

9: ERROR Message

 | Other Action

Fig. 3.5 Constraint Model

The first line is the namespace definition. Which data sources and which

data objects in the data integration system are associated in the constraint

definition are listed in the namespace declaration. The second line is the con-

straint name. The third line gives the constraint-associated operations. The

fouth line is the constraint-relative elements. The fifth line is the constraint

granularity. The sixth line defines the XQuery variables covering both the

condition and the action. The seventh line is the constraint checking condi-

tion and the eighth line is to send the error message to the end application

or to take some actions.

This uniform constraint model adheres to the spirit and practice of trig-

ger definition and execution model of the SQL standard, which has gained

50 3 Query Optimization by Constraints

tremendous popularity for developing data-intensive applications and which

is the most used in commercial systems [BBCC02]. This constraint model

is powerful enough to express all the constraints coming from heterogeneous

data sources and the global constraints in the data integration system in the

global level.

3.4 Constraint Wrapper and Constraint

Repository

In order to make the data integration system constraint service understand,

the constraints from typically heterogeneous data sources should be trans-

lated into constraints in the uniform constraint model at the global level in a

global schema. Our constraint wrappers borrow the ideas from data integra-

tion wrappers. We have relational constraint wrapper for relational constraint

mapping, XML wrapper for XML files, etc. We also provide a special way for

those data sources which lack constraint mechanisms to submit constraints.

These data sources include web services, HTML files, text files, etc. We per-

mit them to submit predicate-like constraints. Constraint mapping depends

on schema mapping. When translating constraints, the data integration sys-

tem must provide schema mapping information. After the translation by the

constraint wrapper, the constraints are expressed in the uniform constraint

model and in the global schema. The translation flow can be simply expressed

as depicted in Figure 3.6 [LM07].

Constraint

Wrapper

Local

Constraints

Schema

Mapping

Information

Constraints

in Global Schema

and Uniform

Constraint Model

Fig. 3.6 Architecture of Constraint Wrapper

3.4 Constraint Wrapper and Constraint Repository 51

In the next sections, we will give the examples to show how heterogeneous

constraints and global constraints are expressed in the uniform constraint

model.

3.4.1 Expression of Relational Constraints

3.4.1.1 CHECK

Example 3.4.1 is a CHECK definition.

CREATE TABLE movie_titles(
our_dvd_cost INTEGER

CHECK (our_dvd_cost < 90),
);

Example 3.4.1: CHECK CONSTRAINT

The schema mapping information is shown in Table 3.2.

Table 3.2 Schema Mapping of Table movie titles

Original Type Original Name Global Name
Table movie title document(’movie titles.xml’)

Column our dvd cost document(’movie titles.xml’)/our dvd cost

This constraint will be expressed in the uniform constraint model as Ex-

ample 3.4.2 and Example 3.4.3 shows.

DECLARE NAMESPACE ns1=document(’movie_titles.xml’)
CREATE CONSTRAINT check_our_dvd_cost
ON INSERT OF ns1/our_dvd_cost
Let $cost:= ns1/our_dvd_cost
WHEN $cost>= 90
DO (PopupErrorMessage("our dvd cost must be less

than 90"))

Example 3.4.2: CHECK Constraint in Uniform Constraint Model by IN-
SERT Operation

All the “CHECK” constraints can be translated in this way.

52 3 Query Optimization by Constraints

DECLARE NAMESPACE ns1=document(’movie_titles.xml’)
CREATE CONSTRAINT check_our_dvd_cost_update
ON UPDATE OF ns1/our_dvd_cost
Let $cost:= ns1/our_dvd_cost
WHEN $cost>= 90
DO (PopupErrorMessage("our dvd cost must be less

than 90"))

Example 3.4.3: CHECK Constraint in Uniform Constraint Model by UP-
DATE Operation

3.4.1.2 ASSERTION

Example 3.4.4 is an ASSERTION definition across two tables guaranteeing

that the payment of a DVD is received before the due date.

CREATE ASSERTION receivedEqualsDue
CHECK (not exist(SELECT * FROM dvd_sell ds, dvd_order do
WHERE ds.payReceived>do.payDue AND

Ds. name=do. name))

Example 3.4.4: ASSERTION

The schema mapping information is shown in Table 3.3:

Table 3.3 Schema Mapping of Table dvd sell and dvd order

Original Type Original Name Global Name
Table dvd sell document(’dvd sell.xml’)

Column payReceived document(’dvd sell.xml’)/payReceived
Column name document(’dvd sell.xml’)/name
Table dvd order document(’dvd order.xml’)

Column payDue document(’dvd order.xml’)/Due
Column name document(’dvd order.xml’)/name

This assertion will be translated into the uniform constraint model as

Example 3.4.5 shows.

Again by “UPDATE” operation, we can define also a trigger by only re-

placing the “INSERT” with “UPDATE” in Example 3.4.5.

All the ASSERTION constraints can be mapped in this way.

3.4 Constraint Wrapper and Constraint Repository 53

DECLARE NAMESPACE
ns1=doc(’dvd_sell.xml’),
ns2=doc(’dvd_order.xml’)

CREATE CONSTRAINT check_ receivedEqualsDue
ON INSERT OF ns1/dvd_selling
FOR EACH NODE
Let $received:=NEW_NODE//payReceived

$name:=NEW_NODE//dvd_name
$due:=(FOR &due in ns2//payDue
WHERE ns2/name=$name

RETURN $due)
WHEN $received>$due
DO (PopupErrorMessage("payment received date must be

earlier than the due date"))

Example 3.4.5: ASSERTION in Uniform Constraint Model

3.4.2 Expression of STEP/EXPRESS Constraints

We use local “WHERE” rules in Entity definition in Example 3.4.6 to show

how they are mapped into our constraint model. Other constraints from

STEP/EXPRESS can be mapped in the same way.

ENTITY circular_cone
SUBTYPE OF(primitive_with_one_axis);

Semi_angle: REAL;
Radius: REAL;
Height: REAL;

WHERE
Semi_angle > 0;
Semi_angle < 90;
Radius >= 0;
Height > 0;

END_ENTITY;

Example 3.4.6: STEP/EXPRESS constraint

The schema mapping information is shown in Table 3.4:

Table 3.4 Schema Mapping of Entity circular cone

Original Type Original Name Global Name
Entity circular cone document(’circular cone.xml’)

Element Semi angle document(’circular cone.xml’)/table/row/Semi angle
Element Radius document(’circular cone.xml’)/table/row/Radius
Element Height document(’circular cone.xml’)/table/row/Height

54 3 Query Optimization by Constraints

The local “WHERE” rules will be translated into our constraint model in

Example 3.4.7.

DECLARE NAMESPACE ns1=doc(’circular_cone.xml’)
CREATE CONSTRAINT check_semi_angle
ON INSERT OF ns1/table_1/row
Let $sa:= ns1/table_1/row/Semi_angel
WHEN $sa<= 0 OR $sa>=90
DO (PopupErrorMessage("Semi_angle should be more than 0

and less than 90"))

Example 3.4.7: STEP/EXPRESS Constraint in Uniform Constraint Model

Here, by “UPDATE” operation we can define another trigger by only re-

placing the “INSERT” with “UPDATE” in Example 3.4.7. The radius check-

ing and the height checking constraints can also be written in the same way.

3.4.3 Compensating Local Constraints

In a data integration system, the data sources are miscellaneous. There are

those data sources where there is no constraint enforcement mechanism, nor

do they have a constraint expression mechanism. We provide a way where

these data sources can submit predicate-like constraints. By providing the

schema mapping information predicate-like constraints can be translated into

the uniform constraint model, too. Example 3.4.8 is the predicate-like con-

straint submitted by the data source.

Employee.txt/salary > 5000EURO

Example 3.4.8: Predicate-Like Constraints

The schema mapping information is shown in Table 3.5.

Table 3.5 Schema Mapping of Employee.txt

Original Type Original Name Global Name
file Employee.txt document(’Employee.xml’)

column salary document(’Employee.xml’)/salary

The constraint in the uniform constraint model is shown in Example 3.4.9.

3.4 Constraint Wrapper and Constraint Repository 55

DECPARE NAMESPACE ns1=doc(’Employee.xml’)
CREATE CONSTRAINT check_salary
ON INSERT OF ns1/salary
Let $s:= ns1/salary
WHEN $s<= 5000
DO (PopupErrorMessage("The salary must be more

than 5000EURO!"))

Example 3.4.9: CHECK Constraint in Uniform Constraint Model

Here, by “UPDATE” operation we can define another trigger by only re-

placing the “INSERT” with “UPDATE” in Example 3.4.9.

3.4.4 Global Referential Constraints

In query optimization, referential constraints are used to eliminate joins. So,

the contents in the action part (cascade delete or set null) are not important.

Example 3.4.10 shows the way to record the referential constraints.

DECLARE NAMESPACE
ns1 = doc(Customer.xml),
ns2 = doc(CustomerHobby.xml)

CREATE CONSTRAINT CustomerMustExistConstraint
ON INSERT OF ns2/CustomerHobby
LET $newCustomer = NEW_NODE/Customer
LET $cid := $newCustomer/C_ID
LET $customer :=ns1/Customer/CUSTOMERRECORD

/CUSTOMER[CUSTOMER_ID=$cid]
WHEN not (fn:exists($customer))
DO popuperrormessage(’Customer must exist when a hobby is inserted!’)

Example 3.4.10: Refential Constraint Example

3.4.5 Constraint Repository

Constraint repository is the general constraint storage, where the local con-

straints expressed in global schema, the global domain constraints and the

global referential constraints are stored. The local constraints are translated

into constraints in the global schema by the constraint wrapper. The global

domain constraints which spread multiple data sources and the global refer-

56 3 Query Optimization by Constraints

ential constraints between the data sources are defined, for example, by the

data integration system administrator.

3.5 A Semantic Query Optimizer

3.5.1 Traditional Semantic Query Optimization

Remind that there are altogether five techniques of semantic query optimiza-

tion in traditional relational database technology [CGK+99]:

1. Detection of empty result. If the query predicates are inconsistent with

integrity constraints, the query does not have an answer.

2. Join elimination. A query may contain a join for which the result is known

as a priori, hence it does not need to be evaluated. (For example, for some

queries involving a join between two tables related through a referential

integrity constraint).

3. Predicate elimination. If a predicate is known to be always true it can be

eliminated from the query.

4. Join introduction. It may be advantageous to add a join with an additional

relation, if that relation is relatively small compared with the original

relations as well as highly selective. (This is even more appealing if the

join attributes are indexed.)

5. Predicate introduction. A new predicate on an indexed attribute may allow

for a more efficient access method. Similarly, a new predicate on a join

attribute may reduce the cost of the join.

3.5.2 Architecture

Figure 3.7 shows the architecture of the semantic optimizer [LM08a].

The data sources can register their constraints to the optimizer through

constraint wrappers (Step 1). The administrator of the data integration sys-

tem can also add or delete global constraints (Step 2). The constraint wrap-

pers will translate the local constraints into constraints in global schema with

3.5 A Semantic Query Optimizer 57

User

DataSource

Admin

DIS

Admin

Data

Integration

System

Constraint

Repository

Query

Adapter

Constraint

Wrapper

Message

Generator

3

7

8

2

5
 6

4

1

9

Fig. 3.7 Architecture of the Semantic Query Optimizer

the help of the schema mapping information. The translated constraints will

be added into the constraint repository (Step 3). The data sources can also

deregister constraints and the constraint wrappers will delete the correspond-

ing constraints from the constraint repository.

The user can submit the query to the optimizer and the query adapter will

accept the query (Step 4). Then the query adapter will consult the constraint

repository (Step 5) and check whether there are constraints related to the

query (Step 6). If the query adapter finds that there are some applicable

constraints in the constraint repository, the constraints will be fetched out

and compared with the query condition. When the query adapter finds that

there is conflict between the query condition and the constraints so that the

query will return empty result, a message will be generated (Step 8) and

the user will be informed (Step 9). When there is no conflict, the query

adapter will try to find whether there is possibility to optimize the query

using the constraint information. If there exists the possibility, the query

adapter will generate a new query and send it to the query processor of the

data integration system (Step 7).

The semantic query optimizer is an independent module, which can either

be installed as a supplement of the Data Integration System, or be published

58 3 Query Optimization by Constraints

as a Web Service, whose interface can be published and invoked by different

Data Integration Systems.

3.5.3 Query Adapter

Query adapter is the kernel of the semantic query optimizer. It consists of

four components: query decomposer, constraint fetcher, conflict detector, and

query reformulator, as illustrated in the Figure 3.8. Generally, the query

adapter accepts an XML query from the user as input. Then it uses the

semantic knowledge stored in the constraint repository to generate a seman-

tically equivalent but more efficient query. The functionalities of the four

components are discussed below.

Query

Constraint

Repository

Optimized

Query

Query De-

composer

Conflict

Detector

Constraint

Fetcher

Query Re-

formulator

1

5

7

4

2

3

Message

Generator

6

Fig. 3.8 Components and Processing Flow of Query Adapter

3.5 A Semantic Query Optimizer 59

3.5.3.1 Query Decomposer

The query decomposer takes an XML Query from the user as input and de-

composes the query into three parts: condition part, data source part and

result return part. It forwards the query condition part and the data source

part to constraint fetcher (Step 1), the query condition part to conflict de-

tector (Step 2), and the whole query to query reformulator (Step 3).

3.5.3.2 Constraint Fetcher

The constraint fetcher searches the constraint repository to find the related

constraints (Step 4) and forwards the constraints to conflict detector (Step

5).

3.5.3.3 Conflict Detector

The conflict detector takes query condition and the constraints as input.

We suppose that there are no contradictory constraints in the constraint

repository (e.g., a > 10 ∧ a < 9 is a contradictory constraint). Since the

constraints and the query condition can be arbitrary literals, we use the

following method. The query condition part is transformed into DNF (Dis-

junctive Normal Form) [Men97]. The constraints are transformed into DNF,

too. Converting a logical expression to DNF involves using Double Negation

Elimination, De Morgan’s Law and the Distributive Law [Sch00]. Conflict

detector builds a constraint DNF tree. Then it uses the constraint DNF tree

to evaluate the query condition. If there is a conflict, it will return false. The

message generator is informed and generates an error message (Step 6). If

there is no conflict, query reformulator will be invoked (Step 7). We use an

example to show how this algorithm works.

Suppose the constraints are:

Pd = (((a1 > 5) ∨ (a2 > 30)) ∧ ((a2 < 50) ∨ (a3 > 40)))

Suppose the condition in the query is:

Pc = (((a1 > 10) ∨ (a2 < 30)) ∧ (a1 < 20)))

The whole element set for the constraint and the query condition is:

60 3 Query Optimization by Constraints

At = {a1, a2, a3}

The constraint will be transformed into the following DNF:

Pd = (((a1 > 5) ∧ (a2 < 50)) ∨ ((a1 > 5) ∧ (a3 > 40)) ∨ ((a2 > 30) ∧ (a2 <

50)) ∨ ((a2 > 30) ∧ (a3 > 40)))

The query condition is also transformed into DNF:

Pc = (((a1 > 10) ∧ (a1 < 20)) ∨ ((a1 < 20) ∧ (a2 < 30)))

Both DNFs will be transformed into DNF trees. The root is the “∨” op-

erator and the leaves are the conjunctions “∧”.

Each leaf of the query condition DNF tree will be evaluated with each leaf

of the constraint DNF tree. When there is one leaf in condition DNF tree

which is evaluated to be true with one leaf in the constraint DNF tree, the

final result is true. Otherwise it is evaluated to be false.

In this example, the query condition predicate ((a1 > 10) ∧ (a2 < 20))

and the constraint predicate ((a1 > 5)∧ (a2 < 50)) are evaluated to be true,

hence, there is no conflict between the constraint and the query.

3.5.3.4 Query Reformulater

If the conflict detector finds no conflict, the query reformulator will check

whether there exist possibilities to eliminate joins or predicates. If this is the

case, it will generate a new query, which is semantically equivalent to and

hopefully more efficient than the original one. Query reformulation rules are

discussed in Section 3.5.4.

3.5.4 Query Reformulation Rules

3.5.4.1 Analysis

There are five semantic query optimization techniques most often discussed in

literature: join elimination, join introduction, predicate elimination, predicate

introduction, and detection of empty results [CGK+99]. Among the five tech-

niques, join introduction and predicate introduction are based on the index

mechanism of a relational database. Due to the fact that in an XML-based

3.5 A Semantic Query Optimizer 61

data integration system the data sources are often non-relational and most

of them do not have an indexing mechanism, these two techniques are not

considered. Join elimination, predicate elimination and detection of empty

results are used as the premier query reformulation rules in our optimizer.

3.5.4.2 Detection of Empty Results

When the conflict detector detects that there is a conflict between constraints

and the query so that the query will return an empty result set, the message

generator will inform the user about the detection result.

3.5.4.3 Predicate Elimination

The main idea of predicate elimination is that if a predicate is known to be

true, it can be eliminated from the query. For example, suppose there is a

constraint: Customer salary > 50000 and there is a query in which there

is a condition customer salary > 40000. This condition predicate can be

eliminated.

Still, we use the constraint source DNF tree and the query condition DNF

tree to test whether there exists some possibility to eliminate predicates. If

the domain predicate of query condition is subsumed as true by each leaf in

the constraint DNF tree, we can eliminate the domain predicate from the

query condition. We use an example to explain the whole precess.

Assume that a query contains the condition that:

((A > 10) ∧ (B > 20))

Assume that DNF tree constructed by all associated constraints is:

(((A > 20) ∧ (B > 25)) ∨ ((A > 30) ∧ (B < 50)))

It is clear, the literal (A > 10) subsumes (A > 20)and(A > 30). In this

way, (A > 10) can be removed from the query condition. The literal (B > 20)

subsumes (B > 25), however, does not subsume (B < 50). Finally, the literal

(B > 20) stays.

62 3 Query Optimization by Constraints

3.5.4.4 Join Elimination

The main idea of join elimination is that when a query contains a join for

which the result is known as a priori, it does not need to be evaluated. For

example, when the two attributes of the join are related by an enforced

referential integrity constraint.

Referential constraints are mainly used here. The query transformer takes

the selected referential constraints and the query condition as input to see

whether there exist redundant joins. The first step is to extract the attributes

in the query condition part. Then the algorithm will find all the data sources

that have these attributes. The algorithm will search the constraints which

are filtered out according to the query condition and result part. When there

are referential constraints, the algorithm will build a reference chain, where

the father source (which can be a table from a relational database or an

XML file from an XML data source) is the source, the primary key belongs

to, and the child source is the data source, the foreign key belongs to. The

algorithm will search the reference chain and extract all the attributes from

the query return part. If there is no attribute from the first data source in the

query return part and there is no attribute from the first data source in the

query condition part except the primary key in the join, the join between the

primary key and the foreign key will be eliminated. We also use an example

to explain this reformulation rule.

Suppose there is a relational data source DS1. Suppose in DS1 table

Customer has a primary key CustomerID. Table Customer contains two

columns: CustomerID and Age. Suppose there is an XML data source DS2.

In DS2 there is an XML file CustomerHobby.xml. The file CustomerHobby.xml

contains two elements: XML CustomerID and Hobby. CustomerID in the

table Customer is referenced as the foreign key of CustomerHobby. This

global referential constraint is defined and stored in the constraint repository.

After integration the table Customer will be seen by the data integration

system user as Customer.xml. Suppose the primary key and the foreign key

are not null. Figure 3.9 is used as an example to explain this procedure.

3.5 A Semantic Query Optimizer 63

<CustomerHobbies>

 <CustomerHobby>

 <XML_CustomerID>

 2113

 </XML_CustomerID>

 <Hobby>

 Fishing

 </Hobby>

 </CustomerHobby>

 <CustomerHobby>

 <XML_CustomerID>

 2114

 </XML_CustomerID>

 <Hobby>

 Travel

 </Hobby>

 </CustomerHobby>

………………...

</CustomerHobbies>

CustomerID
 Age

2113
 32

2114
 33

2115
 40

2116
 68

...
 ...

...
 ...

...
 ...

Data Source 1

Table Customer

Data Source 2

CustomerHobby.xml

Refer to

Fig. 3.9 Example to Explain Join Elimination

Suppose there is a query, which wants to find all values of Hobby, where

XML CustomerID is greater than 2113 and CustomerID is joined with

XML CustomerID. Formally, the query condition is:

XML CustomerID > 2113 ∧XML CustomerID = CustomerID

There is a join in the query condition. After the constraint fetcher queries

the constraint repository, a referential constraint is found. According to the

referential constraint, we build the following reference chain:

Customer ← CustomerHobby

We use ← to mean “being referenced”. In this reference chain the first

data source is Customer. Then the algorithm will find whether there exist

elements from Customer in the query return part. In this example there is

only one element hobby in the query return part, which is not from Customer.

Then the algorithm will analyze the elements in the query condition part. If

the elements in the query condition part are not from Customer except the

primary key in the join, the algorithm will eliminate this join in the condition

part. As a result, the data integration system does not need to retrieve both

data sources. This saves execution and communication cost.

64 3 Query Optimization by Constraints

3.5.5 Experiments and Evaluation

We used BEA Weblogic as the application server, BEA LiquidData as the

data integration system [BEA03], Tamino XML Server [AG06] as constraint

repository, Apache Tomcat [Fou06] to run the web service. We used DB2 as

relational data source and XML files as a non-relational data source to carry

out our experiments. Five data sources are used to participate in the whole

experiments:

1. A DB2 database named CSCO, which contains customer information in the

table CUSTOMER and the corresponding order information in the table

CUSTOMER ORDER, referenced using the attribute CUSTOMER ID;

2. A DB2 database named CSC, which contains the data replication of the

customer information, i.e., the CUSTOMER table in CSCO;

3. A DB2 database named CSO, which contains the data replication of

the customer order information, i.e., the CUSTOMER ORDER table in

CSCO. We define a global referential constraint between these two data

sources: CSC and CSO. The CUSTOMER ID in CUSTOMER from CSC

is referenced by CUSTOMER ORDER from CSO.

4. An XML file named xml customer.xml, which contains customer infor-

mation. There is a global referential constraint defined between CSO and

xml customer.xml: The attribute CSO.CUSTOMER ORDER.CUSTOMER ID

references the element in xml customer.CUSTOMER.CUSTOMER ID.

5. An XML file named xml customer order.xml, which contains customer or-

der information. Again we define a global referential constraint between

the two XML data sources: the CUSTOMER ID in xml customer.xml

is referenced by xml customer order.xml. We define another global ref-

erential constraint between CSC and xml customer order.xml: The el-

ement xml customer order.CUSTOMER ORDER.CUSTOMER ID refer-

ences the attribute CSC.CUSTOMER.CUSTOMER ID.

For these experiments, several data schemata are designed for the data

sources. The data schemata for DB2 database are represented as SQL

in Example 3.5.1 (Table CUSTOMER) and Example 3.5.2 (Table CUS-

TOMER Order).

3.5 A Semantic Query Optimizer 65

CREATE TABLE CUSTOMER (
CUSTOMER_ID DECIMAL(8) PRIMARY KEY NOT NULL,
FIRST_NAME VARCHAR(20) NOT NULL,
LAST_NAME VARCHAR(20) NOT NULL,
CUSTOMER_SINCE DATE NOT NULL,
STREET_ADDRESS1 VARCHAR(50) NOT NULL,
STREET_ADDRESS2 VARCHAR(50),
CITY VARCHAR(40) NOT NULL,
STATE VARCHAR(40) NOT NULL,
ZIPCODE VARCHAR(10) NOT NULL,
EMAIL_ADDRESS VARCHAR(40) NOT NULL,
TELEPHONE_NUMBER VARCHAR(20) NOT NULL);

Example 3.5.1: Table CUSTOMER

CREATE TABLE CUSTOMER_ORDER (
ORDER_ID DECIMAL(8) PRIMARY KEY NOT NULL,
ORDER_DATE DATE NOT NULL,
CUSTOMER_ID DECIMAL(8) NOT NULL,
SHIP_METHOD VARCHAR(20) NOT NULL,
TOTAL_ORDER_AMOUNT DECIMAL(10,2) NOT NULL);

Example 3.5.2: Table CUSTOMER Order

The data schemata for XML files as data sources are represented as

XML SCHEMA in Example 3.5.3 (xml Customer.xml) and in Example 3.5.4

(xml Customer order.xml).

Consider that there is an integrity constraint submitted by the local

database CSCO administrator, written by using the expression of CHECK

CONSTRAINT, as shown in Example 3.5.5. It indicates that the value of

attribute TOTAL ORDER AMOUNT is between 300 and 3000. This con-

straints will be expressed in the uniform constraint as shown in Example

3.5.6.

There is a referential integrity constraint submitted by the local database

CSCO administrator, shown in Example 3.5.7.

There is also a submitted integrity constraint (IC3) in the local database

CSC in Example 3.5.8. IC3 will be translated by the constraint wrapper in

the following uniform constraint model as shown in Example 3.5.9.

A referential constraint between two data sources (CSC and CSO) is de-

fined in IC4, as shown in Example 3.5.10.

A referential constraint between two XML files (xml customer.xml and

xml customer order.xml) is defined in IC5, as shown in Example 3.5.11.

66 3 Query Optimization by Constraints

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="db">
<xs:complexType>
<xs:sequence>
<xs:element ref="CUSTOMER" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="CUSTOMER">

<xs:complexType>
<xs:sequence>
<xs:element ref="FIRST_NAME"/>
<xs:element ref="LAST_NAME"/>
<xs:element ref="CUSTOMER_ID"/>
<xs:element ref="STATE"/>
<xs:element ref="ZIPCODE"/>
<xs:element ref="CITY"/>
<xs:element ref="STREET_ADDRESS2"/>
<xs:element ref="STREET_ADDRESS1"/>
<xs:element ref="CUSTOMER_SINCE"/>
<xs:element ref="EMAIL_ADDRESS"/>
<xs:element ref="TELEPHONE_NUMBER"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="CUSTOMER_ID" type="xs:long"/>
<xs:element name="CUSTOMER_SINCE" type="xs:string"/>
<xs:element name="EMAIL_ADDRESS" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="STATE" type="xs:string"/>
<xs:element name="STREET_ADDRESS1" type="xs:string"/>
<xs:element name="STREET_ADDRESS2" type="xs:string"/>
<xs:element name="TELEPHONE_NUMBER" type="xs:string"/>
<xs:element name="ZIPCODE" type="xs:string"/>
<xs:element name="CITY" type="xs:string"/>

</xs:schema>

Example 3.5.3: XML Schema of xml Customer.xml

Example 3.5.12 is a constraint in the XML file data sources. It in-

dicates that the value of attribute TOTOAL ORDER AMOUNT in the

xml customer order.xml is between 3300 and 6000. Otherwise an error mes-

sage will appear and the insert operation will be discarded.

We define a global referential constraint between the relational database

CSO and the XML file xml customer.xml, shown in Example 3.5.13. It indi-

cates that the attribute CUSTOMER ORDER.CUSTOMER ID in the CSO

references the attribute CUSTOMER.CUSTOMER ID in the xml customer.

We define another global referential cosntraint between the relational

database CSC and the XML file xml customer order.xml as shown in Exam-

3.5 A Semantic Query Optimizer 67

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="db">
<xs:complexType>

<xs:sequence>
<xs:element ref="CUSTOMER_ORDER"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="CUSTOMER_ID" type="xs:long"/>
<xs:element name="CUSTOMER_ORDER">
<xs:complexType>

<xs:sequence>
<xs:element ref="ORDER_DATE"/>
<xs:element ref="ORDER_ID"/>
<xs:element ref="CUSTOMER_ID"/>
<xs:element ref="SHIP_METHOD"/>
<xs:element ref="TOTAL_ORDER_AMOUNT"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ORDER_DATE" type="xs:string"/>
<xs:element name="ORDER_ID" type="xs:long"/>
<xs:element name="SHIP_METHOD" type="xs:string"/>
<xs:element name="TOTAL_ORDER_AMOUNT"

type="xs:decimal"/>
</xs:schema>

Example 3.5.4: XML Schema of xml Customer order.xml

IC1:
CONSTRAINT constraint1
CHECK ((CSCO.CUSTOMER_ORDER.TOTAL_ORDER_AMOUNT >= 300)
and (CSCO.CUSTOMER_ORDER.TOTAL_ORDER_AMOUNT <= 3000))

Example 3.5.5: IC1: CHECK constraint in Table CUSTOMER ORDER of
CSCO Database

IC1:
CREATE CONSTRAINT IC1
ON INSERT OF doc(’CSCO.xml’)/db/CUSTOMER_ORDER
LET $c1 :=
doc(’CSCO.xml’)/db/CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT

WHEN (($c1 < 300) or ($c1 > 3000))
DO (PopupErrorMessage("Column cannot be inserted!

Total Order Amount shoule be between 300 and 3000!"))

Example 3.5.6: IC1 in Uniform Constraint Model

IC2:
The attribute CSCO.CUSTOMER_ORDER.CUSTOMER_ID
references the attribute CSCO.CUSTOMER.CUSTOMER_ID.

Example 3.5.7: Referential Constraint between CUSTOMER and CUS-
TOMER ORDER Tables

68 3 Query Optimization by Constraints

IC3:
CONSTRAINT constraint2
CHECK ((CSO.CUSTOMER_ORDER.TOTAL_ORDER_AMOUNT >= 300)
and (CSO.CUSTOMER_ORDER.TOTAL_ORDER_AMOUNT <= 3000))

Example 3.5.8: IC3: CHECK Constraint in CSO Database

IC3:
CREATE CONSTRAINT IC1
ON INSERT OF doc(’CSO.xml’)/db/CUSTOMER_ORDER
LET $c1 :=
doc(’CSO.xml’)/db/CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT

WHEN ($c1 < 300)
DO (PopupErrorMessage("Column cannot be inserted!
Total Order Amount shoule be greater than or equal to 300!"))

Example 3.5.9: IC3 in Uniform Constraint Model

IC4:
The attribute CSO.CUSTOMER_ORDER.CUSTOMER_ID
references the attribute CSC.CUSTOMER.CUSTOMER_ID.

Example 3.5.10: IC4: Referential Constraint between Two Data Sources

IC5:
The attribute xml_customer.xml/CUSTOMER_1/CUSTOMER_ID
references
the attribute xml_customer_order.xml/CUSTOMER_ORDER2/CUSTOMER_ID.

Example 3.5.11: IC5: Referential Constraint between Two XML Files

IC6:
CREATE CONSTRAINT trigger1
ON
INSERT OF doc(’xml_customer_order.xml’)

/db/CUSTOMER_ORDER
LET $c1 :=
doc(’xml_customer_order.xml’)

/db/CUSTOMER_ORDER
/TOTAL_ORDER_AMOUNT

WHEN ($c1 < 3300)
DO (PopupErrorMessage

("Column cannot be inserted"))

Example 3.5.12: IC6: XML File Constraint in Uniform Constraint Model

IC7:
The attribute CSO.CUSTOMER_ORDER.CUSTOMER_ID

references
the element in xml_customer.CUSTOMER.CUSTOMER_ID.

Example 3.5.13: IC7: A referential Constraint between Database and XML
File

3.5 A Semantic Query Optimizer 69

ple 3.5.14. IC7 indicates that the element CUSTOMER ID in xml customer order

references the attribute CUSTOMER.CUSTOMER ID in CSC.

IC8:
The element xml_customer_order.CUSTOMER_ORDER.CUSTOMER_ID
references the attribute CSC.CUSTOMER.CUSTOMER_ID.

Example 3.5.14: IC8: Referential Constraint betweem DB and XML File

3.5.5.1 Notations in Performance Table

We use the notations given in Table 3.6 to explain the performance numbers

shown in the next paragraphs.

Table 3.6 Notations in Performance Table

Q Query
DV Data Volume
OrT Original Execution Time (s)
TrT Transformation Time (s)
OpT Optimized Execution Time (s)
AB Absolute Benefit (s)
RB Relative Benefit (%)
DVR Data Volume of Relational Data
DVX Data Volume of XML Data
OrDRR Original Data Retrieval Time of Relational Data(s)
OrDRX Original Data Retrieval Time of XML Data(s)
OpDRR Optimized Data Retrieval Time of Relational Data(s)
OpDRX Optimized Data Retrieval Time of XML Data(s)

Note that our example queries are tested in BEA LiquidData. When “#”

appears in the query examples in the following paragraphs, it means an input

parameter in LiquidData.

3.5.5.2 Detection of Empty Results

We design two queries, Q1 and Q2, which are built to return empty re-

sult by our optimizer. Q1 is a simple selection query over only the rela-

tional database CSCO, while Q2 is the same query over only the XML file

70 3 Query Optimization by Constraints

xml customer order.xml. In Q1 (Example 3.5.15), only one DB2 database

named CSCO was used as data source. In Q2 (Example 3.5.16), only an

XML file named xml customer order.xml was used as data source.

Example Q1:
<results>
{
for $CSCO.CUSTOMER_ORDER_1 in document("CSCO")

/db/CUSTOMER_ORDER
where ($CSCO.CUSTOMER_ORDER_1/TOTAL_ORDER_AMOUNT ge
$#min_total_order_amount of type xs:decimal)
return
<result>

<order_id>
{xf:data($CSCO.CUSTOMER_ORDER_1/ORDER_ID)}

</order_id>
<order_date>
{xf:data($CSCO.CUSTOMER_ORDER_1/ORDER_DATE)}

</order_date >
<ship_method>
{xf:data($CSCO.CUSTOMER_ORDER_1/SHIP_METHOD)}

</ship_method>
</result>

}
</results>

Example 3.5.15: Q1

Example Q2:
<results>
{
for $xml_customer_order.CUSTOMER_ORDER_1 in
document("xml_customer_order")/db/CUSTOMER_ORDER
where ($xml_customer_order.CUSTOMER_ORDER_1

/TOTAL_ORDER_AMOUNT ge
$#min_total_order_amount of type xs:decimal)
return
<result>

<order_id>
{xf:data($xml_customer_order.CUSTOMER_ORDER_1/ORDER_ID)}

</order_id>
<order_date>
{xf:data($xml_customer_order.CUSTOMER_ORDER_1/ORDER_DATE)}

</order_date>
<ship_method>
{xf:data($xml_customer_order.CUSTOMER_ORDER_1/SHIP_METHOD)}

</ship_method>
</result>

}
</results>

Example 3.5.16: Q2

3.5 A Semantic Query Optimizer 71

After optimization both XQueries are transformed to empty ones because

of the constraints. That means that the results of these XQueries should be

empty according to the constraints stored in the constraint repository.

We use 1000, 5000 and 15000 records respectively in the data sources for

testing and get the performance results, as shown in Table 3.7. From Table

3.7 we can see that great benefit can be obtained by applying detection of

empty result technique. Another fact we find is that the larger the data

volume is, the more improvement we obtain.

Table 3.7 Performance of Detection of Empty Results

Q DV OrT(s) TrT(s) OpT(s) AB(s) RB Constraint Used
Q1 1000 0.509 0.047 - 0.462 90.77% IC1

5000 1.112 0.047 - 1.065 95.77%
15000 2.234 0.047 - 2.187 97.90 %

Q2 1000 0.875 0.047 - 0.823 94.06% IC3
5000 3.906 0.047 - 3.854 98.67%
15000 12.469 0.047 - 12.417 99.58 %

3.5.5.3 Join Elimination

We design three queries: Q3, Q4 and Q5, whose joins are eliminated by our

optimizer. Q3 (Example 3.5.17) is queried only over the relational database

CSCO, Q4 (Example 3.5.18) is queried over two relational databases, CSC

and CSO, and Q5 (Example 3.5.19) is queried over two XML files: xml custo-

mer.xml and xml customer order.xml.

After join elimination optimization these three XQueries are transformed

to new ones, which may be executed more efficient. Q3 is rewritten to

Q3′(Example 3.5.20), Q4 is rewritten to Q4′ (Example 3.5.21) and Q5 is

rewritten to Q5′ (Example 3.5.22).

We use 1000, 5000, and 15000 records respectively in the data sources

for testing. We get the performance results, as shown in Table 3.8. From

Table 3.8 we can see that our optimizer is capable to efficiently optimize

queries. Again we find the fact that the larger the data volume is, the more

improvement we obtain.

72 3 Query Optimization by Constraints

Example Q3:
<results>
{
for $CSCO.CUSTOMER_ORDER_1 in

document("CSCO")/db/CUSTOMER_ORDER
for $CSCO.CUSTOMER_2 in

document("CSCO")/db/CUSTOMER
where ($CSCO.CUSTOMER_2/CUSTOMER_ID eq
$CSCO.CUSTOMER_ORDER_1/CUSTOMER_ID)
and ($CSCO.CUSTOMER_2/CUSTOMER_ID

ge $#min_customer_id of type xs:decimal)
return
<result>

<order_id>
{xf:data($CSCO.CUSTOMER_ORDER_1/ORDER_ID)}

</order_id>
<order_date>
{xf:data($CSCO.CUSTOMER_ORDER_1/ORDER_DATE)}

</order_date>
<ship_method>
{xf:data($CSCO.CUSTOMER_ORDER_1/SHIP_METHOD)}

</ship_method>
</result>

}
</results>

Example 3.5.17: Q3

Example Q4:
<results>
{
for $CSC.CUSTOMER_1
in document("CSC")/db/CUSTOMER

for $CSO.CUSTOMER_ORDER_2
in document("CSO")/db/CUSTOMER_ORDER

where ($CSC.CUSTOMER_1/CUSTOMER_ID
eq $CSO.CUSTOMER_ORDER_2/CUSTOMER_ID)

and ($CSC.CUSTOMER_1/CUSTOMER_ID
ge $#min_customer_id of type xs:decimal)

return
<result>

<order_id>
{xf:data($CSO.CUSTOMER_ORDER_2/ORDER_ID)}

</order_id>
<order_date>
{xf:data($CSO.CUSTOMER_ORDER_2/ORDER_DATE)}

</order_date>
<ship_method>
{xf:data($CSO.CUSTOMER_ORDER_2/SHIP_METHOD)}

</ship_method>
</result>

}
</results>

Example 3.5.18: Q4

3.5 A Semantic Query Optimizer 73

Example Q5:
<results>
{
for $xml_customer.CUSTOMER_1
in document("xml_customer")/db/CUSTOMER

for $xml_customer_order.CUSTOMER_ORDER_2 in
document("xml_customer_order")/db/CUSTOMER_ORDER
where ($xml_customer.CUSTOMER_1/CUSTOMER_ID eq
$xml_customer_order.CUSTOMER_ORDER_2/CUSTOMER_ID) and
($xml_customer.CUSTOMER_1/CUSTOMER_ID
ge $#min_customer_id of type

xs:decimal)
return
<result>
<order_id>

{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_ID)}
</order_id>
<order_date>

{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_DATE)}
</order_date>
<ship_method>

{xf:data($xml_customer_order.CUSTOMER_ORDER_2/SHIP_METHOD)}
</ship_method>

</result>
}
</results>

Example 3.5.19: Q5

Q3’:
<results>
{
for $CSCO.CUSTOMER_ORDER_1

in document("CSCO")/db/CUSTOMER_ORDER
where ($CSCO. CUSTOMER_ORDER_1/CUSTOMER_ID
ge $#min_customer_id of type
xs:decimal)
return
<result>
<order_id>

{xf:data($CSCO.CUSTOMER_ORDER_1/ORDER_ID)}
</order_id>
<order_date>

{xf:data($CSCO.CUSTOMER_ORDER_1/ORDER_DATE)}
</order_date>
<ship_method>

{xf:data($CSCO.CUSTOMER_ORDER_1/SHIP_METHOD)}
</ship_method>

</result>
}
</results>

Example 3.5.20: Q3’

74 3 Query Optimization by Constraints

Q4’:
<results>
{
for $CSO.CUSTOMER_ORDER_2

in document("CSO")/db/CUSTOMER_ORDER
where ($CSO.CUSTOMER_ORDER_2/CUSTOMER_ID

ge $#min_customer_id of type
xs:decimal)
return
<result>

<order_id>
{xf:data($CSO.CUSTOMER_ORDER_2/ORDER_ID)}

</order_id>
<order_date>
{xf:data($CSO.CUSTOMER_ORDER_2/ORDER_DATE)}

</order_date>
<ship_method>
{xf:data($CSO.CUSTOMER_ORDER_2/SHIP_METHOD)}

</ship_method>
</result>

}
</results>

Example 3.5.21: Q4’

Q5’:
<results>
{
for $xml_customer_order.CUSTOMER_ORDER_2 in

document("xml_customer_order")/db/CUSTOMER_ORDER
where ($xml_customer_order.CUSTOMER_ORDER_2/CUSTOMER_ID ge
$#min_customer_id of type xs:decimal)
return
<result>

<order_id>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_ID)}

</order_id>
<order_date>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_DATE)}

</order_date>
<ship_method>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/SHIP_METHOD)}

</ship_method>
</result>

}
</results>

Example 3.5.22: Q5’

3.5 A Semantic Query Optimizer 75

Table 3.8 Performance of Join Elimination

Q DV OrT(s) TrT(s) OpT(s) RB Constraint Used
Q3 1000 0.922 0.141 0.314 50.65% IC2

5000 1.982 0.141 0823 51.36%
15000 5.712 0.141 2.609 51.86 %

Q4 1000 1.687 0.141 0.272 75.52% IC4
5000 4.489 0.141 0.92 76.36%
15000 11.953 0.141 2.588 77.17 %

Q5 1000 1.86 0.153 0.797 48.92% IC5
5000 7.672 0.153 3.714 49.60%
15000 23.266 0.153 11.487 49.97 %

For the queries whose data sources are heterogeneous, for example, one

is relational database, another is an XML file, we use the two examples Q6

(shown in Example 3.5.23) and Q7 (shown in Example 3.5.24) for testing.

Q6:
<results>
{
for $xml_customer.CUSTOMER_1

in document("xml_customer")/db/CUSTOMER
for $xml_customer_order.CUSTOMER_ORDER_2 in

document("CSO")/db/CUSTOMER_ORDER
where ($xml_customer.CUSTOMER_1/CUSTOMER_ID eq

$xml_customer_order.CUSTOMER_ORDER_2/CUSTOMER_ID) and
($xml_customer.CUSTOMER_1/CUSTOMER_ID lt 10)

return
<result>
<order_id>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_ID)}
</order_id>
<order_date>

{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_DATE)}
</order_date>
<ship_method>

{xf:data($xml_customer_order.CUSTOMER_ORDER_2/SHIP_METHOD)}
</ship_method>

</result>
}
</results>

Example 3.5.23: Q6

Because of the IC6, the join “(xml customer.CUSTOMER 1/CUSTOMER ID

eq xml customer order.CUSTOMER ORDER 2/CUSTOMER ID)” will be

eliminated by our optimizer and Q6 will be semantically equivalent to Q6′

Example 3.5.25.

76 3 Query Optimization by Constraints

<results>
{
for $xml_customer.CUSTOMER_1 in document("CSC")/db/CUSTOMER
for $xml_customer_order.CUSTOMER_ORDER_2 in

document("xml_customer_order")/db/CUSTOMER_ORDER
where ($xml_customer.CUSTOMER_1/CUSTOMER_ID eq

$xml_customer_order.CUSTOMER_ORDER_2/CUSTOMER_ID) and
($xml_customer.CUSTOMER_1/CUSTOMER_ID lt 10)

return
<result>

<order_id>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_ID)}

</order_id>
<order_date>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_DATE)}

</order_date>
<ship_method>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/SHIP_METHOD)}

</ship_method>
</result>

}
</results>

Example 3.5.24: Q7

Q6’:
<results> {

for $xml_customer_order.CUSTOMER_ORDER_2 in
document(’CSO’)/db/CUSTOMER_ORDER

where ($xml_customer_order.CUSTOMER_ORDER_2/CUSTOMER_ID lt 10)
return

<result>
<order_id>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_ID)}
</order_id>
<order_date>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_DATE)}
</order_date>
<ship_method>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/SHIP_METHOD)}

</ship_method>
</result> }

</results>

Example 3.5.25: Q6’

Q7 is optimized and the join is eliminated and there is no need to access

the relational database CSC, shown in Example 3.5.26.

Again we use different data volume combinations to test our performance.

The combination includes:

1. Small data volume RDB with small data volume XML file, RDB is elimi-

nated.

3.5 A Semantic Query Optimizer 77

<results> {
for $xml_customer_order.CUSTOMER_ORDER_2 in

document(’xml_customer_order’)/db/CUSTOMER_ORDER
where ($xml_customer_order.CUSTOMER_ORDER_2/CUSTOMER_ID lt 10)
return
<result>
<order_id>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_ID)}
</order_id>
<order_date>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/ORDER_DATE)}
</order_date>
<ship_method>
{xf:data($xml_customer_order.CUSTOMER_ORDER_2/SHIP_METHOD)}
</ship_method>
</result> }
</results>

Example 3.5.26: Q7’

2. Small data volume RDB with huge data volume XML file, RDB is elimi-

nated.

3. Small data volume RDB with small data volume XML file, XML file is

eliminated.

4. Small data volume RDB with huge data volume XML file, XML file is

eliminated.

5. Huge data volume RDB with small data volume XML file, RDB is elimi-

nated.

6. Huge data volume RDB with small data volume XML file, XML file is

eliminated.

7. Huge data volume RDB with huge data volume XML file, RDB is elimi-

nated.

8. Huge data volume RDB with Huge data volume XML file, XML file is

eliminated.

We test two kinds of situations: one is that the return result set is small

(under 50 record sets), the other is that the return result set is huge (e.g.,

about 10000 record sets). The performance with small result set is shown in

Table 3.9. The data retrieval time before and after optimization when the

result set is small is shown in Table 3.10.

78 3 Query Optimization by Constraints

Table 3.9 Performance of Join Elimination with DB2 and XML file when
the Result Set is Small

Q DVR DVX OrT(s) TrT(s) OpT(s) AB(s) RB Constraint Used
Q6 1000 1000 11.219 0.875 0.172 10.172 90.67% IC7

15000 1000 12.343 0.875 0.14 11.328 91.78 %
15000 15000 23.468 0.875 0.11 22.483 95.80 %
1000 15000 41.094 0.875 0.75 39.469 96.05 %

Q7 1000 1000 13.797 1.938 3.566 8.343 60.47% IC8
15000 1000 25.281 1.938 38.093 -14.75 -58.34 %
15000 15000 204.688 1.938 19.125 183.526 89.71 %
1000 15000 103.453 1.938 12.203 89.312 86.33 %

Table 3.10 Comparison of Data Retrieval Time before and after Join Elim-
ination with DB2 and XML file when the Result Set is Small

Q DVR DVX OrDRR OrDRX OpDRR OpDRX
Q6 1000 1000 2.516 7.047 0.172 -

15000 1000 2.641 6.812 0.125 -
15000 15000 0.485 17.844 0.094 -
1000 15000 2.454 31.765 0.719 -

Q7 1000 1000 4.378 7.218 - 1.844
15000 1000 11.656 10.063 - 11.968
15000 15000 61.109 136.641 - 12.922
1000 15000 35.677 62.734 - 6.093

The performance with large result set is shown in Table 3.11. The data

retrieval time before and after optimization when the result set is huge is

shown in Table 3.12.

Table 3.11 Performance of Join Elimination with DB2 and XML file when
the Result Set is Huge

Q DVR DVX OrT(s) TrT(s) OpT(s) AB(s) RB
Q6 1000 1000 13.578 0.875 5.062 7.641 56.27%

15000 1000 13.719 0.875 10.172 2.672 19.48 %
15000 15000 51.562 0.875 4.578 46.109 89.42 %
1000 15000 33.422 0.875 1.187 31.36 93.83 %

Q7 1000 1000 5.719 1.938 3.875 -0.094 -1.64%
15000 1000 3.984 1.938 2.984 -0.938 -23.54 %
15000 15000 23.719 1.938 23.11 -1.329 -5.6 %
1000 15000 152.453 1.938 37.016 113.499 74.45 %

From Table 3.9 and Table 3.11 we can see that the join elimination does

not always lead to performance improvement. Especially when the access to

the relational database is eliminated, join elimination even leads to a subopti-

3.5 A Semantic Query Optimizer 79

Table 3.12 Comparison of Data Retrieval Time before and after Join Elim-
ination with DB2 and XML file when the Result Set is Huge

Q DVR DVX OrDRR OrDRX OpDRR OpDRX
Q6 1000 1000 2.219 7.25 4.218 -

15000 1000 4.079 3.375 3.968 -
15000 15000 1.517 8.743 4.578 -
1000 15000 0.266 13.453 0.547 -

Q7 1000 1000 0.172 1.609 - 1.062
15000 1000 0.297 1.218 - 1.172
15000 15000 0.983 7.797 - 11.719
1000 15000 6.891 131.328 - 15.672

mal query. But if the access to the XML file is eliminated, the performance is

greatly improved. This is due to the characteristics of the relational database.

Relational database always has powerful query processing capabilities. By in-

dexing, caching, etc, access and queries to RDB can be finished very quickly.

But in the contrast, access to XML files is very slow. There is no inherent

optimization technique although nowadays research and industry are devot-

ing themselves into this topic. Discussion about how to optimize XML file

access is out of the topic of this work.

3.5.5.4 Predicate Elimination

We design two queries, Q8 (Example 3.5.27) and Q9 (Example 3.5.28),

whose predicates are partially eliminated by our optimizer. Q8 is queried

over the relational database CSC and Q9 is queried over the XML file

xml customer.xml. After transformation, Q8 is rewritten into Q8′ (Example

3.5.29) and Q9 is rewritten into Q9′ (Example 3.5.30).

We use 1000, 5000, and 15000 records respectively in the data sources

for testing and get the performance results, as shown in Table 3.13. From

Table 3.13, we can see that the predicate elimination technique also provides

improvement for the query. The fact that the larger the data volume is, the

better the improvement is, still holds.

80 3 Query Optimization by Constraints

Example Q8:
<results>
{
for $CSC.CUSTOMER_1 in document("CSO")/db/CUSTOMER_ODDER
where ($CSC.CUSTOMER_1/TOTAL_ORDER_AMOUNT ge 400)
return
<result>
<CUSTOMER_ID>

{xf:data($CSC.CUSTOMER_1/CUSTOMER_ID)}
</CUSTOMER_ID>
<CITY>

{xf:data($CSC.CUSTOMER_1/CITY)}
</CITY>
</result>

}
</results>

Example 3.5.27: Q8

Example Q9:
<results>
{
for $xml_customer.CUSTOMER_1 in
document("xml_customer_order")/db/CUSTOMER_ORDER
where ($xml_customer.CUSTOMER_1/TOTAL_ORDER_AMOUNT
ge 4000)

return
<result>
<CUSTOMER_ID>

{xf:data($xml_customer.CUSTOMER_1/CUSTOMER_ID)}
</CUSTOMER_ID>
<CITY>

{xf:data($xml_customer.CUSTOMER_1/CITY)}
</CITY>

</result>
}
</results>

Example 3.5.28: Q9

Q8’
<results>
{
for $CSC.CUSTOMER_1 in document("CSC")/db/CUSTOMER
return
<result>
<CUSTOMER_ID>

{xf:data($CSC.CUSTOMER_1/CUSTOMER_ID)}
</CUSTOMER_ID>
<CITY>

{xf:data($CSC.CUSTOMER_1/CITY)}
</CITY>
</result>

}
</results>

Example 3.5.29: Q8’

3.5 A Semantic Query Optimizer 81

Q9’:
<results>
{
for $xml_customer.CUSTOMER_1 in
document("xml_customer")/db/CUSTOMER
return
<result>
<CUSTOMER_ID>
{xf:data($xml_customer.CUSTOMER_1/CUSTOMER_ID)}

</CUSTOMER_ID>
<CITY>
{xf:data($xml_customer.CUSTOMER_1/CITY)}

</CITY>
</result>
}
</results>

Example 3.5.30: Q9’

Table 3.13 Performance of Predicate Elimination

Q DV OrFT(s) OpT(s) RB(%) Constraint Used
Q8 1000 0.731 0.603 11.35% IC3

5000 1.724 1.412 15.49%
15000 2.812 2.241 18.71 %

Q9 1000 1.02 0.812 15.39% IC6
5000 4.945 3.701 24.13%
15000 15.301 10.885 28.53 %

3.5.5.5 Discussion

In the reformulation rules for join elimination and predicate elimination, it

is possible that the eliminated joins or predicates include attributes which

are indexed in the underlying data sources. Exploiting the index typically

enhances query performance. If that predicate or join is eliminated, this ef-

ficient access might not be chosen anymore. Our optimizer might generate

a suboptimal query. Again in the experiments we find that when the query

is related only to one underlying relational DBMS and we submit the same

query for many times, the query execution becomes always quicker. This is

caused by the caching mechanism of RDBMS. So we conclude that when the

underlying data source of the query is only one relational DBMS, applying

our semantic optimizer might decrease the execution efficiency.

We conclude, that it is probably not worth applying semantic query opti-

mization when the data volume is small and when the query execution cost

is expected to be low. However when the data volume is large or when the

82 3 Query Optimization by Constraints

query execution cost is expected to be high, our optimizer becomes very use-

ful. Another aspect is that in the data integration system, most of the data

sources are not RDBMSs, our optimizer works very well. The reason is that

the non-relational data sources typically lack indexing mechanism as well as

sophisticated processing techniques, therefore, normally the query execution

cost is very high. Through the performance tables, we can see that the larger

the data volume is, the more benefit can be obtained.

3.6 Summary

Semantic query optimization is an old topic in the database field. In 1990’s

there was a great deal of work contributing to it. This chapter mainly dis-

cussed how to use constraints in the data integration systems to semantically

optimize queries submitted to the data integration systems. The first prob-

lem we came across was how to express the different constraints coming from

heterogeneous data sources. A uniform constraint model was thus estab-

lished which was based on Active XQuery and which could express all kinds

of constraints coming from data sources. In order to translate the different

constraints from the data sources into the uniform constraint model, a con-

straint wrapper was needed. After the translation of the constraint wrapper,

the different constraints were stored in the constraint repository. At the same

time, if a data source had no constraint system, its administrator could just

submit a predicate-like constraint and this constraint would be translated

by the constraint wrapper. Again, the administrator of the XML-based data

integration system could submit global constraints in the uniform constraint

model, too. When a query was submitted to the XML-based data integration

system, it would first be transferred to the query optimizer. The architecture

of the query optimizer was given. The query adapter, which was the most im-

portant component in the optimizer, was discussed in detail. It was composed

of query decomposer, constraints fetcher, conflict detector and query refor-

mulator. Three semantic query optimization techniques were implemented in

the query reformualtor: detection of empty results, predicate elimination and

join elimination. Experiments were carried on and the performance results

3.6 Summary 83

were given in tables. In general, performance of the XML-based data inte-

gration system was greatly improved by the optimizer when the data volume

was huge and when the data sources were not relational.

Chapter 4

Updates in XML-DIS

In order to explain why data consistency enforcement is needed in a data inte-

gration system, we must first go to the updates in the XML-based data inte-

gration. We will begin with updating the views in both relational databases

and XML-based data integration systems. Then we will present the W3C

XQuery Update Facilities. The Service Data Objects programming frame-

work will be proposed at the end.

4.1 Updating the View

4.1.1 Updating Relational Views

Most relational database systems permit users to delimit their view of the

database to those portions that are relevant to their applications. Views

enhance logical data independence, since most changes in the structure of the

database need not impact a view and hence, do not impact the application

programs that use the view. Views also simplify the user interface by allowing

the user to ignore data which they have no interest in. Further, views provide

a measure of protection by preventing the user from accessing data outside

the view.

The structure of the database is defined by the conceptual schema. The

contents of the database (e.g., sets of tuples) are called the extension of

the conceptual schema. The structure of a view is defined by a sequence of

operations applied to the conceptual schema. The contents of the view, called

the extension of the view, are defined by the same sequence of operations

85

86 4 Updates in XML-DIS

applied to the conceptual schema extension. This sequence of operations is

a functional mapping from conceptual schema extensions to view extensions

and is called the view definition function [DB82].

A view extension does not have an independent existence. It is the con-

ceptual schema extension that actually exists in the database. The view ex-

tension is completely defined by applying the view definition function to the

current conceptual schema extension. Because this mapping is functional,

updates on the conceptual schema extension are translated unambiguously

into corresponding changes in the view extension.

For a view to be useful, users must be able to apply retrieval and update

operations to it. These operations on the view extension must be trans-

lated into corresponding operations on the conceptual schema extension. Re-

trievals from a view extension can always be mapped into equivalent retrievals

from the conceptual schema extension: in order to evaluate a retrieval query

against a view in an abstract (and not optimized) model, one must first con-

struct the view extension by applying the view definition function to the

conceptual schema extension, and then evaluate the query against the view

extension. Clearly, this procedure retrieves exactly the data requested by the

query.

A mapping is also required to translate view updates into corresponding

updates on the conceptual schema extension. However, such an update map-

ping does not always exist, and even when it does exist, it may not be unique.

So a change in the view extension may not be reflected unambiguously by

equivalent changes in the database. There are five approaches to the problem

of mapping relational view updates:

1. View as an abstract data type: In this approach the DBA defines the view

together with the updates it supports. The effect of updates on the base

relations is explicitly defined [RS86] [TFC83]. The view definition describes

not only how view data are derived from the conceptual schema extension,

but also how operations on the view are mapped into operations on the

conceptual schema. This approach requires a method for designing views

and their operational mappings and for verifying that the design is correct,

4.1 Updating the View 87

which means, the conceptual schema operations indeed perform the desired

view operations correctly.

2. To define general translation procedures. These procedures take as input a

view definition, a view update, and the current schema extension and pro-

duce, if possible, a translation of the view update into conceptual schema

updates satisfying some desired properties. [DB82] proposes a translation

mechanism that uses view graphs to decide if a given update translation is

correct. The view graphs are constructed based on the syntax of the view

definition and on the functional dependencies of base relations.

3. View complement. [BS81] introduces the notion of view complement to

solve the update problem. Together with the user-defined view, a “com-

plementary” view is defined such that the database could be computed

from the view and its complement. A view can have many different com-

plements and the choice of a complement determines an update policy.

An update translation is considered correct if the complement of the view

remains constant. Finding a view complement may be NP-complete even

for very simple view definitions [CP84].

4. View as conditional tables. In [Shu00] views are represented as conditional

tables. It transforms a view update into a constraint satisfaction prob-

lem. Each solution to the constraint satisfaction problem corresponds to a

possible translation of the view update.

5. Object-based views. An extension of [Kel86] to deal with object-based

views is proposed in [BSKW91]. Algorithms are proposed for propagating

updates in a hierarchical structure of objects.

4.1.2 Updating XML Views of Relational Data

XML is frequently used for publishing as well as exchanging data. Due to

the high unintuitive representation of data in the relational model, it is also

increasingly being used as a mechanism through which to query and update

legacy relational databases.

The problem of updating XML views published over relational data comes

with new challenges beyond those of updating relational views. The chal-

88 4 Updates in XML-DIS

lenges relate to the translatability problem. That is, the mismatch between

the hierarchical XML view model and the flat relational base model raises

the question whether the given view update is even mappable into SQL up-

dates. For instance, the nested structure imposed by an XML view may be

in conflict with the constraints of the underlying relational schema, so that

updates that are valid on the view may not be achieved on the base. The

second challenge concerns the translation strategy issue. That is, assuming

the view update is indeed identified as being translatable, one needs to de-

vise a strategy to identify the minimal mapping update. This mapping has

to best bridge the two query and update languages (updates with diverse

granularity on the XML view versus flat tuple-based SQL updates on the

relational base).

The update translatability question remains largely unexplored. [WRM06]

addresses the question, if for a given update over an XML view, a correct

relational update translation exists. Intuitively, the translatability of XML

view update question can be described as follows: given a relational database

and an XML view definition over it, is it possible to decide whether an

update against the XML view is translatable into corresponding updates

against the underlying relational database without violating any consistency?

Intuitively, consistency means that (i) the requested view update is valid.

That is, it agrees with the implied XML view schema. (ii) The translated

updates against the relational database comply with the relational schema,

namely, to keep the relational database consistent by update propagation

if necessary. (iii) The XML view reconstructed on the updated relational

database using the view definition is exactly the same as the result that would

be generated by directly updating the materialized view, namely, without

view side-effects.

Commercial database systems, such as Oracle, DB2 and SQL-Server, also

provide XML support. Oracle XML DB [Ora00] provides SQL/XML as an

extension to SQL, using functions and operators to query and access XML

content as part of normal SQL operations, and also to provide methods for

generating XML from the result of an SQL Select statement. The IBM DB2

XML Extender [CX01] provides user-defined functions to store and retrieve

XML documents in XML columns, as well as to extract XML elements or

4.1 Updating the View 89

attribute values. However, neither IBM nor Oracle support update opera-

tions. [Rys01] introduces XML view updates in SQL Server2000, based on a

specific annotated schema and update language called updategrams, under

the assumption of updates always being translatable. Annotated schemata

consist of a schema description of the exposed XML view and annotations

that describe the mapping of the XML schema constructs onto the relational

schema constructs. Instead of using update statements, SQL Server 2000 uses

updategrams, which include a before and after image of the view to compute

the corresponding SQL statements. Updategrams provide an intuitive way

to perform an instance-based transformation from a before state to an after

state. Updategrams operate over either a default XML view implied by its

instance data (if no annotated schema is referenced) or over the view de-

fined by the annotated schema and the top-level element of the updategram.

Example 4.1.1 is a simple example.

<root xmlns:updg=’’urn:schema-microsoft-com:xml-updategram’’>
<updg:sync mapping-schema=’’nwind.xml’’ nullvalue=’’ISNULL’’>

<updg:before>
<Customer CustomerID=’’LAZYK’’
CompanyName=’’ISNULL’’
Address=’’Reinsburgstrasse 134a’’>
<Order OID=’’10482’’/>
</Customer>

</updg:before>
<updg:after>

<Customer CustomerID=’’LAZYK’’
CompanyName=’’UniCompany’’
Address=’’Universitaetsstr.38’’>
<Order OID=’’12345’’/>
</Customer>

</updg:after>
</updg:sync>

</root>

Example 4.1.1: Updategram in SQL Server 2000

Updategrams use their own namespace urn:schema-microsoft-com:xml-

updategram. Each updg:sync block defines the boundaries of an update batch

that uses optimistic concurrency control [Mic09] to perform the updates

transactionally. The before image in updg:before is used both for determining

the data to be updated as well as to perform the conflict test. The after image

in updg:after provides the state to which the data has to be changed. If the

90 4 Updates in XML-DIS

before state is empty or missing, the after state defines an insert; if the after

state is empty or missing, the before state defines what should be deleted.

Otherwise the necessary insertions, updates and deletions are inferred from

the difference between the before and after image.

In Example 4.1.1, the customer with the given data (including a company

name set to NULL) gets a new company name and address. In addition, the

relation to the order 10482 is removed and replaced by a new relational to

order 12345.

[BDH04] studies the XML view update problem using a nested relational

algebra. They assume the view is always well-nested, that is, joins are through

keys and foreign keys, and nesting is controlled to agree with the integrity

constraints and to avoid duplication. The update over such a view is thus

always translatable. Unfortunately, in general, conflicts are possible and a

view cannot always be guaranteed to be well-nested. Our work is under the

assumption that the update on the XML view is translatable.

4.1.3 Updating XML Views in XML-based Data

Integration Systems

Because in an XML-based data integration system, there is no materialized

data stored in it, realizing update in the XML-based data integration system

is to realize update in a virtual view. Figure 4.1 shows an XML-based data

integration system which supports updates.

Realizing update in XML-based data integration system includes two situ-

ations: one is to support XQuery updates in the XML-based data integration

system, the other is to support normal updates from the end applications

(e.g., Java applications, web services, etc). If the users submit XQuery up-

dates, the data integration system is responsible to parse the XQuery updates

(an XQuery Update Engine is then needed), divide them into sub-updates

and transform the sub-updates to the wrappers of each corresponding data

sources. The wrappers then translate the sub-XQuery-Updates into the local

update language or interact with the local update interfaces to finish the local

updates. Notice that when the users submit updates, there will be no results

4.2 XQuery Update Facility 1.0 by W3C 91

RDB
 OODB

XML

Files

Wrapper
 Wrapper
 Wrapper
 Wrapper

Web

Applications

Client Applications

Web

Services

Xquery

Updates
 Java Clients

XML-Based Data Integration System

Update

Processor
 Metadata

Schema

Data
 Views

Updates

Fig. 4.1 Updates in an XML-based Data Integration System

returned. Some message mechanism might be needed to let users know the

execution results: succeed or fail.

If the users submit updates from Java Applications or Web services, the

updates need also to be analyzed, divided and transformed to the wrappers.

We will introduce XQuery Updates and realizing updates by Service Data

Objects in the following sections.

4.2 XQuery Update Facility 1.0 by W3C

Over the past several years, the growth of the Web and e-commerce has

stimulated a tremendous surge of interest in XML as a universal, queryable

representation for data. Now XML is almost the de facto standard for infor-

mation interchange. Nearly every vendor of data management tools has added

support for exporting, viewing and in some cases even importing, XML-

formatted data. XML document repositories like Software AG’s Tamino

[AG09] and MarkLogic [Mar08c] are now available, and XML publishing

capabilities have been added to the relational database systems from Or-

acle (Oracle Business Intelligence Publisher (BI Publisher, formerly XML

Publisher)) [Ora08a], IBM [Mel05] and Microsoft [SPD08].

92 4 Updates in XML-DIS

Ultimately, it is expected that these relational database engines will pro-

vide standardized integration support for querying and publishing XML

views of databases. This will allow the sharing of data from both XML repos-

itories and traditional relational databases using a single, unified queryable

model - namely, XML views with an XML query language. The next step

in making XML to a full-featured data exchange format is to support not

only queries, but updates, over XML content. It should be possible to modify

content within XML documents and to express updates to XML views. The

ability to encapsulate an update operation is also necessary for expressing in-

cremental changes (“deltas”) over content, which is important for Continuous

Queries [CDTW00], XML document mirroring, caching, and replication.

Therefore, by W3C, XQuery Update Facility 1.0 defines an update facility

that extends the XML Query language, XQuery. The XQuery Update Facility

provides expressions that can be used to make persistent changes to instances

of the XQuery 1.0 and XPath 2.0 Data Model.

We give a short introduction of XQuery Update syntax and some explain-

ing examples below.

4.2.1 INSERT

The Syntax of XQuery Update INSERT is shown in Syntax 1.

InsertExpr::="insert" ("node" | "nodes")
SourceExpr InsertExprTargetChoice TargetExpr

InsertExprTargetChoice::=(("as" ("first" | "last"))? "into")
| "after"
| "before"

SourceExpr ::= ExprSingle
TargetExpr ::= ExprSingle

Syntax 1: XQuery Update INSERT

The semantics of INSERT can be found in [W3C08a]. We give no expla-

nation of the semantics here, but give an example to show how to use the

INSERT of XQuery Update Facility.

Example 4.2.1: Insert a year element after the publisher of the first book

in a given bibliography (bib.xml).

4.2 XQuery Update Facility 1.0 by W3C 93

insert node <year>2005</year>
after fn:doc("bib.xml")/books/book[1]/publisher

Example 4.2.1: XQuery INSERT

4.2.2 DELETE

The Syntax of XQuery Update DELETE is shown in Syntax 2.

DeleteExpr::="delete" ("node" | "nodes") TargetExpr
TargetExpr::=ExprSingle

Syntax 2: XQuery Update DELETE

Example 4.2.2: Delete the last author of the first book in a given bibliog-

raphy.

delete node fn:doc("bib.xml")/books/book[1]/author[last()]

Example 4.2.2: XQuery DELETE

4.2.3 REPLACE

The Syntax of XQuery Update REPLACE is shown in Syntax 3.

ReplaceExpr::= "replace" ("value" "of")? "node" TargetExpr
"with" ExprSingle

TargetExpr ::= ExprSingle

Syntax 3: XQuery Update REPLACE

4.2.3.1 Replacing a Node

Example 4.2.3: Replace the publisher of the first book with the publisher of

the second book.

94 4 Updates in XML-DIS

replace node fn:doc("bib.xml")/books/book[1]/publisher
with fn:doc("bib.xml")/books/book[2]/publisher

Example 4.2.3: XQuery Update REPLACE (1)

4.2.3.2 Replacing the Value of a Node

Example 4.2.4: Increase the price of the first book by ten percent.

replace value of node fn:doc("bib.xml")/books/book[1]/price
with fn:doc("bib.xml")/books/book[1]/price * 1.1

Example 4.2.4: XQuery Update REPLACE (2)

4.2.4 RENAME

The Syntax of XQuery Update RENAME is shown in Syntax 4.

RenameExpr::="rename" "node" TargetExpr "as" NewNameExpr
TargetExpr::=ExprSingle
NewNameExpr::=ExprSingle

Syntax 4: XQuery Update RENAME

Example 4.2.5: Rename the first author element of the first book to

principal-author.

rename node fn:doc("bib.xml")/books/book[1]/author[1]
as "principal-author"

Example 4.2.5: XQuery Update RENAME

4.2.5 State-of-art of XQuery Update

On March 28, 2008, W3C has published the XQuery Update Facility as a can-

didate recommendation. Unfortunately, until now the W3C has not yet pub-

lished the proposed recommendation of XQuery Update Facility standards.

4.3 Realizing Updates through SDO 95

The consequence is, most of the XML repository vendors and XML-based

data integration systems do not support accepting XQuery Update Facility

now recommended by W3C. In XML repository products, e.g., Software AG’s

Tamino XML Server supports it own XQuery Update syntax; MarkLogic only

supports its own built-in update functions in the libraries [Mar08b]. In XML-

based data integration systems, e.g., BEA AquaLogic DataService Platform,

none supports XQuery Updates directly. Generally, XQuery Update Facil-

ity is still in its infancy. Next, we will introduce how to realize update in

an XML-based data integration system through a programming framework:

Service Data Objects.

4.3 Realizing Updates through SDO

4.3.1 SDO Goals

Service Data Objects (SDO) is a specification for a programming model

that unifies data programming across data source types, provides robust

support for common application patterns, and enables applications, tools,

and frameworks to more easily query, view, bind, update, and introspect

data.

While the Java platform and J2EE provide a variety of data program-

ming models and APIs, these technologies are fragmented and are not always

amenable to tooling and frameworks. Further, some of the technologies can

be hard to use and may not be sufficiently rich in functionality to support

common application needs. SDO is intended to create a uniform data access

layer that provides a data access solution for heterogeneous data sources in

an easy-to-use manner that is amenable to tooling and frameworks. SDO is

not motivated to replace lower-level data access technologies.

The goals of SDO are as following:

• Unified data access to heterogeneous data sources. Current data program-

ming technologies are more or less specific to data source types. In real-

world applications, especially in a data integration system, however, data

frequently comes from a variety of sources.

96 4 Updates in XML-DIS

• Unified support for both static and dynamic data APIs. Static, strongly

typed interfaces provide an easy-to-use programming model for application

programmers. ResultSet and RowSet interfaces in JDBC, in contrast, pro-

vide only dynamic, untyped data APIs. Neither static nor dynamic data

APIs alone are sufficient, however, both are necessary.

• Support for tools and frameworks. Current data programming technologies

are not amenable to tools and frameworks across data source types.

• Support for disconnected programming models. Many applications natu-

rally have a disconnected usage pattern of data access: an application reads

a set of data, retains it locally for a short period of time, manipulates the

data, and then applies the changes back to the data source.

• Support for custom data access layers based on common design patterns.

Many applications use well-known design patterns (e.g., Transfer Object

[Sun08c], Transfer Object Assembler [Sun08d], and Data Access Objects

[Sun08a]) to build custom data access layers. These patterns are commonly

used when the application needs to be insulated from the physical data

sources. Implementing data access layers commonly requires a significant

amount of custom code, much of which can be automated. Further, these

custom data access layers should be able to be integrated into tools and

frameworks.

• Decouple application code from data access code. In order to be reusable

and maintainable, application code should be separable from data access.

Data access technologies should be amenable to this separation of concerns.

4.3.2 SDO Preliminaries

The SDO architecture is based upon the concept of disconnected data graphs.

Under the disconnected data graphs pattern, a client retrieves a data graph

from a data source, mutates the data graph, and can then apply the data

graph changes back to the data source. Most commonly, the update is per-

formed with optimistic concurrency semantics [Mic09], which means that if

any of the underlying data was changed before the client applies the changes.

the update is rejected and the application must take corrective action. Opti-

4.3 Realizing Updates through SDO 97

mistic concurrency semantics is a natural semantic that serves most business

applications well.

The key concepts in the SDO architecture are the data object, the data

graph and the Data Access Services (DAS) [BIO+], as shown in Figure 4.2.

Additionally, metadata plays a key role.

Client

Data

Source

Data

Access

Service

Read

Update

Metadata

DataGraph
 DataObject

Fig. 4.2 Components of the SDO Solution

These components have the following responsibilities:

• Data Objects. A data object holds a set of named properties, each of which

contains either a simple data-type value or a reference to another data

object. The data object API provides a dynamic data API for manipulating

these properties.

• Data Graph. The data graph provides an envelope for data objects. It is

the normal unit of transport between components. Data graphs can track

changes made to the graph of data objects. Changes include inserting data

objects, deleting data objects and modifying data object property values.

Usually, data graphs are constructed from one of the following:

1. Data sources such as XML files, Enterprise Java Beans (EJBs), XML

databases and relational databases.

2. Services such as Web services, Java Connector Architecture (JCA) Re-

source Adapters [Sun08b] and Java Message Service (JMS) messages

[Sun09].

98 4 Updates in XML-DIS

• Metadata. Metadata about data objects enables development tools and

runtime frameworks to introspect data, including data types, relationships,

and constraints. SDO provides a common metadata API across data source

types to enable generic tools and frameworks.

• Data Access Service. Components that can populate data graphs from

data sources and commit changes to data graphs back to the data source

are called Data Access Services (DAS).

4.3.3 Data Graph

Data graphs provide a container for a tree of data objects. They are pro-

duced by the DAS for SDO clients to work with. Once modified, data graphs

are passed back to the DAS for updating the data source. SDO clients can

traverse a data graph and read and modify its data objects. SDO is a discon-

nected architecture, because SDO clients are disconnected from the DAS and

the data source. They only see the data graph. Furthermore, a data graph can

include objects representing data from different data sources. A data graph

contains a root data object, all of the root’s associated data objects, and a

change summary. When being transmitted between application components

(for example, between a Web service requester and provider during service

invocation), to the DAS, or saved to disk, data graphs are serialized to XML.

The SDO specification provides the XML Schema of this serialization (see

Appendix A). Figure 4.3 shows an SDO data graph.

Change summaries are part of data graphs and are used to represent the

changes that have been made to a data graph returned by the DAS. They

are initially empty (when the data graph is handed over to a client) and

populated as the data graph is modified. Change summaries are used by the

DAS at backend update time to apply the changes back to the data source.

They allow DASs to efficiently and incrementally update data sources by

providing lists of the changed properties (along with their old values) and

the created and deleted data objects in the data graph.

A data graph may be serialized as an XML stream. In general, the data

graph serialization consists of a description of the schema used for the data

4.3 Realizing Updates through SDO 99

DataGraph

RootObject
 ChangeSummary

……

…...

Fig. 4.3 An SDO Data Graph

graph, followed by the data objects that are contained in the data graph,

followed by a description of the changes. The serialization of data objects

follows the XMI specification [Gro07] or the XSD for the data object model,

producing the same XML stream independent of the enclosing data graph

element. When XML Schema is used as the metadata, the XML serialization

of the data objects follow the XSD and the resulting XML elements should

validate with the XML Schema when all the constraints for the XSD are

enforced.

The description of the schema is optional and can be expressed either as

an XSD or EMOF model [OMG06]. We use XSD for explanation here. The

description of the changes is also optional. The changes are expressed as a

change summary. XSDs are typically included if it is likely that the reader of

the data graph would not be able to retrieve the model by the logical URI of

the XSD targetNamespace. The optional serialization of the ChangeSummary

follows XMI, where properties that have not changed values are omitted.

When serializing XSDs, only the XSDs actually used by the data objects

are typically transferred. When the data graph was originally created from

an XSD, the XSD form is preferred in order to preserve all original XSD

information. If the data graph is from a source other than XSD, an XSD

may be generated (typically following the EMOF and XMI specifications)

100 4 Updates in XML-DIS

and included, or the EMOF model may be included. The choice of which to

include is determined by the serializer of the data graph.

4.3.4 Change Summary

The serialization of the ChangeSummary includes enough information to re-

construct the original information of the data objects at the point when

logging was turned on. The goal of this format is to provide a simple XML

representation that can express the difference between the graph when log-

ging begins and ends.

4.3.4.1 Creating Data Objects

The ChangeSummary which creates data objects is normally with the head

shown in Figure 4.4:

<changeSummary create="
 TargetExpression
 "/>

 TargetExpress = A set of XPath expressions

Fig. 4.4 Head of Change Summary: Creating Data Objects. (INSERT)

“Create” in the ChangeSummary means to create data objects. The “Tar-

getExpression” is a set of XPath expressions. Each XPath expression specifies

the location path of a created data object. In case of creating data object,

there are no old values that are recorded in the ChangeSummary. The newly

created Root data object is a sibling node of ChangeSummary element stored

in the data graph. Figure 4.5 shows an example where five data objects are

created, which are the Root data object “Profile” and its four descendant

data objects including a “Student” data object, two “Address” data objects,

and a “Postcode” data object. The ChangeSummary tracks every location

path of the created Root data object and its descendants in the attribute

4.3 Realizing Updates through SDO 101

value. The number used in the location path specifies the sequence of the

child nodes in the tree.

<!-- ChangeSummary -->

<changeSummary create="/Profile

 /Profile/Student[1]

 /Profile/Student[1]/Address[1]

 /Profile/Student[1]/Address[2]

 /Profile/Student[1]/Address[2]/PostCode"/>

<!-- Root Data Object -->

<ns0:Profile xmlns:ns0="ld:DataServices

 /StudentProfileXML/StudentProfile">

 <Student>

 <StudentID>09094201</StudentID>

 <Name>Jing Lu</Name>

 <Address>

 <HomeStreet>Reinsburgstr</HomeStreet>

 ...

 </Address>

 <Address>

 <OfficeStreet>Universitaetsstr</OfficeStreet>

 <PostCode>70569</PostCode>

 ...

 </Address>

 </Student>

</ns0:Profile>

Fig. 4.5 Example of Change Summary: Creating Data Objects. (INSERT)

4.3.4.2 Deleting Data Objects

The ChangeSummary recording deletion operation has the head shown in

Figure 4.6.

The ChangeSummary element uses an attribute “delete” to record the

deletion operation in the data graph. An automatically generated identifier

for the deleted data object is assigned to the value of this attribute. In case

of deleting data objects, the ChangeSummary element contains a copy of the

deleted data objects, which refers to the old values generated by the deletion

operation. Figure 4.7 is an example of ChangeSummary which deletes data

objects. “log.0” is the automatically generated identifier that identifies the

102 4 Updates in XML-DIS

 <changeSummary delete="#D">

 <A com:id="D">

 ...

 ...

 </changeSummary>

 A = Name of deleted Data Object

 D = A set of identifiers for the deleted Data Objects

Fig. 4.6 Change Summary: Deleting Data Objects. (DELETE)

to-be-deleted “Employee” data object in the ChangeSummary. All properties

and their values of this deleted data object are recorded as old values in the

ChangeSummary.

<changeSummary delete="#log.0">

 <emp:Employee com:id="log.0"

 xmlns:emp="ld:DataServices

 /EmployeeDB/Employee">

 <EmpID>00010</EmpID>

 <Name>John Smith</Name>

 <WorkDeptID>A00</WorkDeptID>

 <Salary>52750</Salary>

 </emp:Employee>

</changeSummary>

Fig. 4.7 Example of Change Summary: Deleting Data Objects. (DELETE)

The “delete” attribute can also record multiple deleted data objects. This

situation can occur only when underlying data source has a complex multi-

layer structure. For example, the “delete” attribute records a set of identifiers

of deleted data object, when a set of child nodes in an XML document are

deleted. Recording multiple identifiers of deleted data objects in the Change-

Summary is shown in Figure 4.8.

4.3 Realizing Updates through SDO 103

<changeSummary delete="#log.0 #log.1">

 <!-- updated father Data Object -->

 <Profile com:ref="/Profile">

 <Customer com:id="log.0">

 <!-- deleted child Data Object -->

 <CustomerID>C3456</CustomerID>

 ...

 </Customer>

 <Customer com:id="log.1">

 <!-- deleted child Data Object -->

 <CustomerID>C3457</CustomerID>

 ...

 </Customer>

 </Profile>

</changeSummary>

Fig. 4.8 Change Summary: Deleting Two Data Objects Example.
(DELETE)

4.3.4.3 Updating Data Object Property Values

The ChangeSummary which updates data objects has the head shown in

Figure 4.9.

 <changeSummary>

 <A com:ref="C">

{old property value}

 <A/>

 </changeSummary>

<!-- Root Data Object-->

New property values

 A = Name of updated Data Object

 B = Property name

 C = Target XPath expression

Fig. 4.9 Head of Change Summary: Updating Data Objects. (UPDATE)

When updating data objects, ChangeSummary must record both the old

values and the new values. “A” is the name of the updated data object. “B”

records the property name and “C” is the target XPath expression. Then the

new values are recorded in the root data objects. Figure 4.10 is an explaining

104 4 Updates in XML-DIS

example, which shows how to update an XML file which stores all customer

information and has a multi-layer structure. In the ChangeSummary it can

be seen that four data objects are updated: one “Customer” data object, two

“Address” data objects, and one “Street” data object. Every data object has

a changed property. These four properties are: the name of the first customer,

the zip of the first address, the city of the second address, and the street name

of the second address. The old values of these four properties are recorded in

the ChangeSummary element. The new values can be found in the Root data

object. The ChangeSummary tracks the location path of each updated data

object in its attribute value. The number used in the location path indicates

that the location path uses abbreviated syntax to specify the sequence of

child nodes in the tree.

4.3.4.4 Hybrid Modifications

Hybrid modifications consisting of INSERT, DELETE, and UPDATE are

also supported. These modifications can be applied to the data object and

all its descendant data objects. The ChangeSummary records the hybrid

modifications applied to the data object and all old values need to be pre-

served. The new values are recorded in the Root data object. Figure 4.11

illustrates a ChangeSummary instance that is generated after applying hy-

brid modifications to a “Customer” data object. The explanation is listed,

too.

4.4 Service Data Objects in XML-based Data

Integration Systems

4.4.1 DAS in DIS

Refer to Figure 4.1 again, in order to support retrieval and especially update

in the XML-based data integration system, a Data Access Service must be

running in the XML-based data integration system. Figure 4.12 shows an

4.4 Service Data Objects in XML-based Data Integration Systems 105

<!-- ChangeSummary -->

<changeSummary>

 <Customer com:ref="/Profile/Customer[1]">

 <Name>Rui Tao</Name>

 </Customer>

 <Address com:ref="/Profile/Customer[1]/Address[1]">

 <Zip>70197</Zip>

 </Address>

 <Address com:ref="/Profile/Customer[1]/Address[2]">

 <City>Stuttgart</City>

 </Address>

 <Street com:ref="/Profile/Customer[1]/Address[2]/Street">

 <Name>Reinsburgstrasse 134a</Name>

 </Street>

</changeSummary>

<!-- Root Data Object -->

<ns0:Profile xmlns:ns0="ld:DataServices

 /CustomerProfileXML/CustomerProfile">

 <Customer>

 <CustomerID>EE1234</CustomerID>

 <Name>Xinhan Tao</Name>

 <Address>

 <AddID>E4321</AddID>

 <Zip>70569</zip>

 ...

 </Address>

 <Address>

 <AddID>E4567</AddID>

 <Street>

 <StrID>S1234</StrID>

 <Name>Universitaetsstrasse 38</Name>

 ...

 </Street>

 ...

 <City>Vaihingen</City>

 </Address>

 ...

 </Customer>

</ns0:Profile>

Old

Values

New

Values

Fig. 4.10 Example of Change Summary: Updating Data Objects. (UP-
DATE)

106 4 Updates in XML-DIS

<changeSummary create="/Profile/Customer[1]/Address[2]

 /Profile/Customer[1]/Address[2]/Street"

 delete="#log.0">

 <Customer com:ref="/Profile/Customer[1]">

 <!-- updated Data Object property -->

 <Name>Jing Lu</Name>

 <Address com:ref="/Profile/Customer[1]/Address[1]">

 <!-- deleted Data Object -->

 <Street com:id="log.0">

 <StrID>S1238</StrID>

 ...

 </Street>

 </Address>

 </Customer>

</changeSummary>

<ns0:Profile xmlns:ns0="ld:DataServices

 /CustomerProfileXML/CustomerProfile">

 <Customer>

 <CustomerID>C3458</CustomerID>

 <Name>Yan Lu</Name>

 ...

 <Address>

 <AddID>A2200</AddID>

 <Zip>71154</zip>

 ...

 </Address>

<!-- created ``Address'' Data Object

 and its child Data Object ``Street'' -->

 <Address>

 <AddID>A2202</AddID>

 <Street>

 <StrID>S1235</StrID>

 ...

 </Street>

 ...

 </Address>

 </Customer>

</ns0:Profile>

CREATE

DELETE

UPDATE

UPDATE

OLD

VALUES

DELETE

OLD

VALUES

UPDATE

NEW

VALUES

CREATE

NEW

VALUES

Fig. 4.11 Change Summary: Hybrid Example.

XML-based data integration system where SDO is used as the programming

framework.

4.4 Service Data Objects in XML-based Data Integration Systems 107

Client

Data

Integration

System

OldDataGraph

DataObject

DataGraph

+

Change Summary

DAS

RDB

OO

DB

XML

Files

Web

Applications

Read/

Update

Fig. 4.12 An XML-based Data Integration System Supporting SDO

4.4.2 Global Update in DIS by SDO

Figure 4.13 shows a data graph which acts as a view on three data sources:

OODB, XML File and RDB, as shown in Figure 4.14. This data graph is

serialized in XML. The global view myCustomer is composed of three el-

ements: age comes from OODB, Hobby comes from XML file and CustID

comes from RDB.

 <sdo:datagraph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:company="company.xsd" >

<xsd> <xsd:schema targetNamespace="company.xsd">

 <xs:element name="MyCustomer">

 <xs:complexType> <xs:sequence>

 <xs:element name="age" type="xs:string" />

 <xs:element name="Hobby" type="xs:string" />

 <xs:element name="CustID" type="xs:string" />

 </xs:sequence> </xs:complexType>

 </xs:element> </xs:schema> </xsd>

<changeSummary create="/MyCustomer" />

<cus:CUSTOMER_ORDER_LINE_ITEM>

 <age>32</age>

 <Hobby>music</Hobby>

 <CustID>09094201</CustID>

</cus:CUSTOMER_ORDER_LINE_ITEM>

</com:datagraph>

XML Schema of the

Data Object

ChangeSummary

From OODB

From RDB

From XML file

Fig. 4.13 Data Graph as an Integration View

When the data integration system supports SDO, a Data Access Service

will run in it. Figure 4.14 shows how an update is submitted, analyzed,

decomposed and executed in the data integration system where a Data Access

Service is running. From Figure 4.14, we can see that the client will submit

108 4 Updates in XML-DIS

a data graph including three elements: Age, Hobby and CustID. The Data

Access Service will analyze the changes in the data graph and will carry on

the decomposition. After the processing of the Data Access Service, age goes

to OODB, Hobby goes to XML file and CustID goes to RDB. The changes

will be executed in the local data sources.

dataGraph.update(myCustomer)

1. Client Submit

Data Access Service

2. Change Analysis

OODB
 RDB
XML

Files

3. Decomposition and Execution

Age
 Hobby
 CustID

Age
 Hobby
 CustID

myCustomer

Age
 Hobby
 CustID

Fig. 4.14 Update on the Integration View by SDO

4.5 Data Services: Combine SDO and SOA

Service-Oriented Architecture (SOA) [IBM08] is considered as a loosely cou-

pled but not completely decoupled architecture, because, while the service

provider has no knowledge of the interfaces or business concerns of its con-

sumers, the consumers do include explicit references to the service provider

interface, in the form of service calls. The benefits of loose coupling include

simplified data access, reusability, and adaptability. New services can be ex-

posed and used without requiring extensive changes to existing applications.

The result is a service layer that is highly adaptive and change tolerant.

Data Service is now accepted as a popular idea to give consumers an

easy-to-use and uniform model for accessing heterogeneous, distributed data.

BEA [BEA08a] and DataDirect [Dat08] proposed this idea and now data

4.5 Data Services: Combine SDO and SOA 109

services are becoming more and more popular in accessing heterogeneous

data. Data services fit perfectly into the SOA picture by providing a data

abstraction layer between data users and the underlying data sources. Thus

the application developer needs to work only with a uniform, well-defined

SOA-based data access interface. The capabilities of data services are the

following:

1. Insulate integrated applications and processes from complexity of divergent

data forms and disconnected heterogeneous sources of enterprise data.

2. Manage the metadata information imported from disparate data sources.

3. Create data models showing the relationships between various data ser-

vices.

There are two types of data services: physical data services and logical

data services. The underlying are the heterogeneous and disconnected data

sources. The physical data services are built directly above the data sources.

The logical data services are build upon one or more physical data services.

The logical data services are also built upon logical data services or as a

combination of both physical and logical data services. The data access layer

of the enterprise includes both logical and physical data services.

A data service is similar to a conventional Web service in the following

respects:

1. It consists of public functions.

2. The functions that access services are modular, reusable, and extensible.

3. Implementation details are hidden.

The difference between web services and data services is also obvious:

1. A data service is a particular web service which has a core XML data type

that allows for easy manipulation of the return data.

2. A data service has the data retrieving, aggregating and transforming ca-

pabilities either by invoking the query engine or being the query engine.

110 4 Updates in XML-DIS

4.6 Summary

In this chapter, we introduced two ways to realize updates in the XML-based

data integration system. One is to support XQuery updates, the other is to

support updates by Service Data Objects. First we listed the difficulties in

updating a view. Then we introduced approaches in updating relational views

of relational data, updating XML views of relational data and updating XML

views in XML-based data integration system. The W3C XQuery Update

Facility 1.0 was introduced. The four basic concepts of Service Data Objects

were proposed including data objects, data graph, and change summary. How

to realize updates by Service Data Objects in an XML-based data integration

system was explained by examples. In the next chapter, we will introduce our

trigger model. The trigger model should be compatible to both alternatives.

Chapter 5

Enforcing Global Constraints

and Triggers

In Chapter 4 we discussed the updates in the XML-based data integration

systems. When the XML-based data integration systems support updates,

how to ensure the data consistency in the whole data integration system

must be settled. This chapter will go to this problem. We consider to en-

force the data consistency among the data sources in the data integration

systems by triggers. So we will begin with the trigger model in the data

integration system. Then we will introduce how to use the triggers to en-

force data consistency in the data integration systems. The architecture of

the XQuery trigger service will be given. Then we will go to details includ-

ing how to detect event, how to schedule triggers in the conflict set, how to

evaluate conditions, how to generate actions, and so on. Trigger termination

and failure handling problems will follow. We will present the trigger analysis

problem at the end.

5.1 Trigger Model in Data Integration System

Trigger model includes trigger meta model and trigger execution model. The

trigger meta model defines the Event, Condition and Action parts of the

trigger [VSCR00]. The data model of the data integration system defines the

data structure and the operations that can be executed over data. Conditions

and actions are specified considering the data model of the data integration

system. Hence, they may implicitly concern several data sources in the data

integration system.

111

112 5 Enforcing Global Constraints and Triggers

Normally a trigger consists of three components: the triggering operation,

the trigger condition and the trigger action. A trigger is triggered when one

of its triggering operations occurs; it is being considered when its condition is

under evaluation; it is executed when its action is performed. The definition of

an event specifies the set of event types representing the significant situations

that have to be observed across and within the data integration system and

the way such events have to be detected, composed and notified.

Triggers are executed according to an execution model that characterizes

the coupling of event consumption, condition evaluation and action execution

within and across data integration system. Implementing the above models

does not demand to re-define the data integration systems and their applica-

tions completely. We isolate the active mechanism from the data integration

system control.

5.2 XQuery Trigger Model for XML-DIS

5.2.1 Design of Trigger for XML-DIS

We assume that active rules in the XML-based data integration systems fol-

low the ECA paradigm, that is, they are triggered by specific events, include

a declarative condition and a sequence of procedural actions. The event part

contains a primitive event, which is restricted to instant or periodic temporal

events, insertions, deletions, and qualified updates on specific attributes or

properties. The condition part contains a boolean expression of predicates.

Predicates can be either simple comparisons between terms (variables or con-

stants), or the special predicates which compare newly inserted and deleted

tuples (old values and new values). The trigger model should permit the users

to write arbitrarily complex predicates. The action part contains a sequence

of commands.

5.2 XQuery Trigger Model for XML-DIS 113

5.2.2 XQuery Trigger

As mentioned in Chapter 4, XQuery updates are not supported by XML-

based data integration systems until now. We try to make our model ex-

tendable. Our design goal is that once the XML-based data integration sys-

tem supports ad hoc XQuery Updates proposed by W3C in the future, our

XQuery trigger model can still be used.

We decided to adopt a slightly modified trigger model based on Active

XQuery, due to its simplicity and good compatibility with XQuery. Our

XQuery trigger uses the update syntax in conformance to the W3C stan-

dard update facility [W3C08b] and adheres to the spirit of SQL99, which has

gained tremendous popularity for developing data-intensive applications. The

meta model of the XQuery trigger is defined in Figure 5.1. We extend the

uniform constraint model in Chapter 3. The extensions mainly include: first,

we define the trigger name in the second line. Second, in the action part, we

permit INSERT, DELETE, REPLACE and even external operations. In the

uniform constraint model, action part is mainly “Pop Up Error Message”.

1: DECLARE NAMESPACE ns1 (,ns)*,. Declare which data objects are related in the trigger

2: CREATE TRIGGER Trigger-Name Trigger name

3: ON (INSERT|DELETE|REPLACE)+ Trigger-associated operations

4: OF XPathExpression (,XPathExpression)* Trigger-relative elements

5: [FOR EACH (NODE|STATEMENT] Trigger granularity

6: [XQuery-Let-Clause] Defines the XQuery variables

7: [WHEN XQuery-Where-Clause] Trigger Condition

8: DO Trigger Action

 INSERT VALUES INTO XPathExpression|

 DELETE XPathExpression|

 REPLACE XPathExpression with VALUES |

 ExternalOP|

 ERROR Message

Fig. 5.1 XQuery Trigger Model

We list the most distinctive capabilities of the trigger model in the follow-

ing:

1. Namespace. In order to fit for the XML-DIS, the data objects which are

related in the trigger are declared in the namespace definition using their

global names.

114 5 Enforcing Global Constraints and Triggers

2. Granularity: FOR EACH NODE/STATEMENT. A node-level XQuery

trigger executes once for each node of the affected nodes. A statement-

level trigger executes once for each set of nodes of the affected node. Note

that the elements of a node at the global level might come from multiple

data sources. The execution will take place in multiple data sources in this

case. Default is node-level.

3. Transition values. If the trigger is node-level, variable OLD NODE and

NEW NODE denote the affected element in the XML view in its before

and after state. If the trigger is statement-level, variable OLD NODES and

NEW NODES denote the sequence of affected elements in the XML view

of the underlying data sources in its before and after state. The execution

model must provide access to the old and new values.

4. Complexity of predicates. Arbitrarily complex XPath and XQuery pred-

icates should be permitted. An XQuery engine is thus needed to parse

them.

5. Action part. It can invoke procedures that are executed remotely and ac-

cept XML-formatted parameters (e.g., according to the SOAP protocol).

Compared to the uniform constraint model in Chapter 3, more actions are

permitted in the action part.

The advantages by enforcing active rules in XML-based data integration sys-

tems through XQuery triggers include: firstly, active rules defined by XQuery

triggers are automatically executed after global updates on the underlying

data sources are detected as events and the evaluation of the condition is

true. There is no need to introduce an explicit coordination mechanism or

a workflow description responsible for invocation. Secondly, the action part

of XQuery triggers may invoke procedures that are executed remotely. This

permits the rapid integration of an e-service based on XQuery triggers with

other e-services implemented with traditional technologies. Thirdly, XQuery

trigger, due to its simplicity, permits the active rules to be rapidly prototyped

and tested.

5.2 XQuery Trigger Model for XML-DIS 115

5.2.3 Examples

The major usage of triggers in running applications is integrity constraint

checking, referential integrity constraint checking, logging and maintenance

of derived data. Our examples try to cover these areas. We use relational

database and XML files as assumed data sources since they represent most

of the data sources in an XML-based data integration system. The name

with postfix “DB” means the underlying data source is a relational database

while the name with postfix “XML” means the underlying data source is an

XML file. Other data sources, such as files, web applications, can be defined

similarly. Our examples are tested in the BEA AquaLogic 3.0 for WebLogic

8.1. Therefore, “ld:DataServices” appears in the namespace declaration. 1

5.2.3.1 Integrity Constraints.

Example 5.2.1 is defined above two data sources: CustomerOrderLineItemDB

and ProductXML.xml. It checks that the selling price in CustomerOrder-

LineItemDB must be greater than the price set by the manufacturer in

ProductXML.xml. Since this trigger is defined above two data sources, we

declare two namespaces at the beginning (Line 1,2). When there is an “IN-

SERT” in CustomerOrderLineItemDB (Line 4), that means, the seller wants

to sell a product and decide the price of it, the trigger will consult the Pro-

ductXML.xml to get the price decided by the manufacturer (Line 5,6,7).

The trigger condition part (Line 8) compares selling price with manufacturer

price. If the selling price is less than the manufacturer price, the trigger will

pop up an error message (Line 9). The “INSERT” will not be executed and

the user will know the reason of the rejection.

By the UPDATE operation we can just replace the “INSERT” in line 6

with “UPDATE”.

Example 5.2.1 is quite similar with Example 3.4.2 in Chapter 3. The dif-

ference is that here we use “CREATE TRIGGERNAME”.

1 “ld” is the abbrievation of LiquidData, which is an predecessor product of AquaLogic
from BEA.

116 5 Enforcing Global Constraints and Triggers

1: DECLARE NAMESPACE
2: ns1 = ld:DataServices

/CustomerOrderLineItemDB/CustomerOrderLineItem
ns2 = ld:DataServices

/ProductXML/PRODUCTRECORD
3: CREATE TRIGGER SellPriceGreaterThanListPriceConstraint
4: ON INSERT OF ns1:CustomerOrderLineItem()

/CUSTOMER_ORDER_LINE_ITEM
5: LET $newLine = NEW_NODE/CUSTOMER_ORDER_LINE_ITEM
6: LET $id := $newLine/PROD_ID
7: LET $price := ns2:PRODUCTRECORD()/PRODUCTRECORD

/PRODUCT[PRODUCT_ID=$id]/LIST_PRICE
8: WHEN $newLine/PRICE < $price
9: DO popuperrormessage(’Sell price must be

higher than manufacturer price’)

Example 5.2.1: Selling Price Greater than Manufacturer Price

5.2.3.2 Referential Constraint: Insert Checking.

Suppose the customer information is in the file CustomerXML.xml and

the customer order is in CustomerOrderDB. Suppose the Customer ID in

CustomerOrderDB refers to the Customer ID in CustomerXML.xml. When

a new customer order is inserted, the data integration system will check

whether the customer exists. This is a referential constraint at the global

level and can be defined by an XQuery trigger as shown in Example 5.2.2.

Line 1 defines two namespaces representing two data sources: one is the Cus-

tomerOrder in CustomerOrderDB, the other is the CUSTOMERRECORD

in CustomerXML. Line 2 defines the trigger name. Line 3 defines that the

trigger should be checked when there is an INSERT operation on table CUS-

TOMER ORDER of the first data source. Line 4 defines three variables which

will be used in the condition part and the action part. The first variable is

the new inserted order. The second variable is the customerID($cid) in the

new inserted order. The third variable should consult the second data source

to get the customer information according to the customerID ($cid). Line 5

judges whether such customer information in the second data source exists.

If there does not exist such a customer with this Customer ID, the trigger

will popup an error message. (Action part, Line 6).

By the UPDATE operation we can just replace the “INSERT” in line 6

with “UPDATE”.

5.2 XQuery Trigger Model for XML-DIS 117

1: DECLARE NAMESPACE
ns1 = ld:DataServices/CustomerOrderDB/CustomerOrder
ns2 = ld:DataServices/CustomerXML/CUSTOMERRECORD

2: CREATE TRIGGER CustomerMustExistConstraint
3: ON INSERT OF ns1:CustomerOrder/CUSTOMER_ORDER
4: LET $newOrder = NEW_NODE/CUSTOMER_ORDER

LET $cid := $newOrder/C_ID
LET $customer :=ns2:CUSTOMERRECORD()

/CUSTOMERRECORD/CUSTOMER[CUSTOMER_ID=$cid]
5: WHEN fn:not(not($customer))
6: DO popuperrormessage(’Customer must exist

when an order is inserted!’)

Example 5.2.2: : Referential Constraint: Insert Checking

5.2.3.3 Referential Constraint: Cascade Delete.

Suppose there are two databases: CustomerOrderDB and CustomerOrderItemDB.

In CustomerOrderDB, the customer order information is stored, e.g. the ship-

ping address, the paying methods, etc. In CustomerOrderItemDB the items

of the orders are stored. CustomerOrderItemDB.ORDER ID refers to Cus-

tomerOrderDB.ORDER ID. When an order in CustomerOrderDB is deleted,

the items of the deleted order stored in the CustomerOrderLineDB must be

deleted, too. The trigger is shown in Example 5.2.3. The explanation is sim-

ilar to the explanation in Example 5.2.2.

1: DECLARE NAMESPACE
ns1 = ld:DataServices/CustomerOrderDB/CustomerOrder
ns2 = ld:DataServices/CustomerOrderItemDB/CustomerOrderLineItem

2: CREATE TRIGGER ReferentialConstraintForCustomerOrder
3: ON DELETE OF ns1:CustomerOrder()/CUSTOMER_ORDER
4: LET $id := OLD_NODE/ORDER_ID
5: FOR $orderLine in ns2:CustomerOrderLineItem()

/CUSTOMER_ORDER_LINE_ITEM
6: WHEN $id=$orderLine/ORDER_ID
7: DO delete node $orderLine

Example 5.2.3: : Referential Constraint: Cascade Delete

5.2.3.4 Logging.

Suppose the customer information is in the XML file CustomerXML.xml.

Whenever a customer information is deleted, the deleted information will

be logged into the relational database LoggingDB. The trigger is shown in

118 5 Enforcing Global Constraints and Triggers

Example 5.2.4. The first three lines (Line 1, 2, 3) define the two namespaces.

The first one is the XML file and the second one is the relational database

where the deleted information will be stored. Line 4 is the trigger name. Line

5 defines the trigger operation “DELETE”. The trigger associated element is

“ns1:CUSTOMERRECORD()/CUSTOMERRECORD/CUSTOMER”. Line

6 and Line 7 define the two variables which record the current data and time.

Line 8 is the action part. The deleted information together with the deleting

date and the time will be recorded in the relational database LoggingDB into

the table LOGGING.

1: DECLARE NAMESPACE
2: ns1 = ld:DataServices/CustomerXML/CUSTOMERRECORD
3: ns2 = ld:DataServices/LoggingDB/LOGGING
4: CREATE TRIGGER LoggingTriggerForCustomer
5: ON DELETE OF ns1:CUSTOMERRECORD()/CUSTOMERRECORD/CUSTOMER
6: LET $date := fn:current-date()
7: LET $time := fn:current-time()
8: DO insert node

<LOGGING>
<OBJECTID>{OLD_NODE/CUSTOMER_ID}</OBJECTID>
<EVENT>Customer is deleted</EVENT>
<DATE>{$date}</DATE> <TIME>{$time}</TIME>
</LOGGING>
into ns2:LOGGING()

Example 5.2.4: : Logging Trigger

5.2.3.5 Accumulating Trigger.

Example 5.2.5 is a trigger among three data sources. Whenever a product is

sold (reflected, an INSERT in the relational database CustomerOrderItemDB),

the trigger will consult the ProductXML.xml to get the name of the man-

ufacturer. Then the total sale amount of the manufacturer, which is in

the relational database ManufactureSalesDB, will be increased. The first

four lines (Line 1-4) define the namespaces. The first namespace is the Cu-

tomerOrderLineItem table in the CustomerOrderItemDB. The second one is

the PRODUCTRECORD file in the ProductXML.xml file. The third one is

the ManufactureSales table in the database ManufactureSalesDB. Line 5 de-

fines the trigger name. Line 6 defines the trigger operation “INSERT”. Line 7

5.2 XQuery Trigger Model for XML-DIS 119

defines the trigger-associated element “ns1:CustomerOrderLineItem()/CUS-

TOMER ORDER LINE ITEM”. This means the trigger must detect the in-

sert operation on this element. Line 8-13 define the variables which will be

used in the condition part and the action part. During the variable definition,

it is necessary to consult the data integration system to get the manufacture

name in the ProductXML data source (Line 11) and get the current total

sales in the ManufactureSales table (Line 12). Line 14 is the action part

which replace the current total sales with the new value.

1: DECLARE NAMESPACE
2: ns1 = ld:DataServices/CustomerOrderItemDB/CustomerOrderLineItem
3: ns2 = ld:DataServices/ProductXML/PRODUCTRECORD
4: ns3 = ld:DataServices/ManufactureSalesDB/ManufactureSales
5: CREATE TRIGGER CountingTrigger
6: ON INSERT OF
7: ns1:CustomerOrderLineItem()/CUSTOMER_ORDER_LINE_ITEM
8: LET $prodid := NEW_NODE/PROD_ID
9: LET $newprice := NEW_NODE/PRICE
10: LET $mount := NEW_NODE/QUANTITY
11: LET $man := ns2:PRODUCTRECORD()/PRODUCTRECORD

/PRODUCT[PRODUCT_ID=$prodid]/MANUFACTURER
12: LET $curtotal := ns3:ManufactureSales()

/MANSALES[MANUFACTURER=$man]/GROSSSALES
13: LET $newtotal := $curtotal + $newprice * $mount
14: DO replace value of node

ns3:ManufactureSales()/MANSALES[MANUFACTURER=$man]/GROSSSALES
with $newtotal

Example 5.2.5: : Accumulating Trigger

By the UPDATE operation we can just replace the “INSERT” in line 6

with “UPDATE”.

5.2.4 Assumptions for XQuery Triggers in XML-DIS

A rule is triggered when one of its associated events occurs. Rule processing

is started whenever a rule is triggered, and consists in the iteration of rule

selection and rule execution [CCF01].

We assume that rule processing initiates immediately after events are de-

tected, and terminates when all triggered rules have been executed. There

are no deferred triggers.

120 5 Enforcing Global Constraints and Triggers

5.3 The Architecture of Trigger Service

5.3.1 ECA rules in Active Databases

Triggers, or ECA rules, appeared first in the active database systems. Figure

5.2 gives an abstract active rule system architecture as part of an active

database system [PD99].

Rule Base
 Conflict Set

Database

Event Detector
 Condition Monitor
 Scheduler

Query Evaluator

Detected

Events

Triggered

Rules

Condition

Evaluation

Action

Execution

Read/Update

Notification

Read/Update

Read
Situation Monitoring

Fig. 5.2 Abstract Architecture for Active Database Systems

The principle processes are depicted in rectangles and the data sources

in ellipses. Both are used to implement the functionality of an active rule

system for an active database system.

The principle processes are as follows:

1. The Event Detector ascertains what events, which the rule system

is interested in, have taken place. Primitive events are notified from

the database. Composite events are constructed from incoming primitive

events plus information about past events that can be obtained from the

history. There exist systems that support condition-action rules. In this

kind of system, there is no explicit statement of the events to be moni-

5.3 The Architecture of Trigger Service 121

tored. But normally actual implementations do have to monitor primitive

events.

2. The Condition Monitor evaluates the conditions of rules associated with

events that have been detected by the Event Detector.

3. The Scheduler compares recently triggered rules with those that have

previously been triggered, updates the conflict set, and fires any rules that

are scheduled for immediate processing.

4. The Query Evaluator executes database queries or actions. Access may

be required both to the current state of the database and to past states in

order to support monitoring of how the database is evolving.

This architecture is designed for using database systems. But for a trig-

ger service system, this reference architecture cannot be totally reused. We

will introduce the trigger service system for an XML-based data integration

system in the next section.

5.3.2 The Architecture

An active XML-based data integration system requires an integration-wide

mechanism for event handling and action execution. In such a context it

must be possible to detect events to make them visible to the trigger service

of the integration system. It must be also possible to couple the execution of

actions with the execution of data integration applications. Figure 5.3 shows

the architecture of the trigger service in the XML-based data integration

system [LM08b].

When the client application submits an update to the DIS (Step 1), the DIS

will call the trigger service (Step 2). The trigger service will consult the trigger

repository and fetch the related triggers (Step 3). The fetched triggers are

collected in the conflict set (Step 4). Then the trigger scheduling component

will fetch the triggers in the conflict set according to the scheduling rules

(Step 5) and hand over to the condition evaluation component (Step 6). Then

the trigger service will evaluate the condition. During condition evaluation, it

is possible to query other data sources through the DIS (Step 7). An XQuery

engine is used to execute the complete XQuery expression in the condition

122 5 Enforcing Global Constraints and Triggers

Client

Applications

XML-based

Data Integration System

Trigger Service

Event

Detection

Condition

Evaluation

Action

Firing

Message

Generator
Web

Apps
RDB
 XML

Files

Trigger

Repository

1

2

3

4

7

8

9

12

10

11

OO

DB

XQ
uery

Engine

6

Conflict

Set

Trigger

Scheduling

5

13

Trigger

Manager

Administ

rator

Fig. 5.3 Architecture of the XQuery Trigger Service

(Step 8). The evaluation result will be sent to the action firing component

(Step 9). If the condition is evaluated to true, there are two possible kinds of

actions: one is an error message, the other is a set of updates. If the action

is an error message, it means that the triggered active rules are “CHECK”

constraints and the constraints are violated. The action firing component

will call the message generator (Step 10) and an error message will be sent

back to the users or the client applications (Step 11). The operation will be

aborted so the data integrity is guaranteed. If the actions are a set of updates,

they will be sent to the DIS (Step 12) and the update will be executed in

the underlying data sources (Step 13).

We will use the XQuery trigger in Example 5.2.5 as an example to explain

the details of the trigger service.

5.3.3 Main Components

5.3.3.1 Event Detection

Suppose the client application submits the data graph (Step 1 in Figure 5.3)

serialized in XML to the data integration system shown in Figure 5.4. Events

5.3 The Architecture of Trigger Service 123

can be detected by analyzing the ChangeSummary. The first line of Change-

Summary denotes the operation type (INSERT, DELETE, or REPLACE).

The old data objects and the new data objects are listed in ChangeSummary

which can be used to compare with the trigger target XPath expression and

which provide the transition values.

<?xml version="1.0" encoding="UTF-8" ?>

<com:datagraph xmlns:com="commonj.sdo">

<xsd> <xs:schema targetNamespace="ld:DataServices/CustomerOrderLineItemDB

 /CustomerOrderLineItem"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="CUSTOMER_ORDER_LINE_ITEM">

 <xs:complexType> <xs:sequence>

 <xs:element name="LINE_ID" type="xs:string" />

 <xs:element name="ORDER_ID" type="xs:string" />

 <xs:element name="PROD_ID" type="xs:string" />

 <xs:element name="QUANTITY" type="xs:integer" />

 </xs:sequence> </xs:complexType>

 </xs:element> </xs:schema> </xsd>

<changeSummary create="/CUSTOMER_ORDER_LINE_ITEM" />

<cus:CUSTOMER_ORDER_LINE_ITEM

 xmlns:cus="ld:DataServices/CustomerOrderLineItemDB

 /CustomerOrderLineItem">

 <LINE_ID>0</LINE_ID>

 <ORDER_ID>ORDER_5_16</ORDER_ID>

 <PROD_ID>APPA_SH_1</PROD_ID>

 <QUANTITY>5</QUANTITY>

</cus:CUSTOMER_ORDER_LINE_ITEM>

</com:datagraph>

XML Schema

of the

Data Object

ChangeSummary

Event: INSERT

Fig. 5.4 Analysis of the Submitted DataGraph with ChangeSummary

Figure 5.5 shows an example which will execute a delete. The old values

are included in it.

<changeSummary delete="#log.0">

 <emp:Employee com:id="log.0"

 xmlns:emp="ld:DataServices/EmployeeDB/Employee">

 <EmpID>00010</EmpID>

 <Name>John Smith</Name>

 <WorkDeptID>A00</WorkDeptID>

 <Salary>52750</Salary>

 </emp:Employee>

</changeSummary>

Event: DELETE

Fig. 5.5 An Example of ChangeSummary which Executes DELETE

124 5 Enforcing Global Constraints and Triggers

Figure 5.6 shows an example which will execute an update. The old values

and the new values are included in it.

<!-- ChangeSummary -->

<changeSummary>

 <Customer com:ref="/Profile/Customer[1]">

 <Name>Jing Chu</Name>

 </Customer>

 <Address com:ref="/Profile/Customer[1]/Address[1]">

 <Zip>224233</Zip>

 </Address>

 <Address com:ref="/Profile/Customer[1]/Address[2]">

 <City>Tangyang</City>

 </Address>

 <Street com:ref="/Profile/Customer[1]/Address[2]/Street">

 <Name>TangxinStreet 38</Name>

 </Street>

</changeSummary>

<!-- Root Data Object -->

<ns0:Profile xmlns:ns0="ld:DataServices/CustomerProfileXML/CustomerProfile">

 <Customer>

 <CustomerID>C3457</CustomerID>

 <Name>Jing Lu</Name>

 <Address>

 <AddID>A2200</AddID>

 <Zip>70569</zip>

 ...

 </Address>

 <Address>

 <AddID>A2201</AddID>

 <Street>

 <StrID>38</StrID>

 <Name>Universitaetsstrasse</Name>

 ...

 </Street>

 ...

 <City>Stuttgart</City>

 </Address>

 ...

 </Customer>

</ns0:Profile>

Event: Update

Fig. 5.6 An Example of ChangeSummary which Executes UPDATE

By analyzing the ChangeSummary of the data graph, we can judge the

event type, the change target XPath expression and get the new values and

old values.

5.3 The Architecture of Trigger Service 125

5.3.3.1.1 Primitive vs. Composite Events

There are two kinds of events: primitive and composite events. Primitive

events are raised by a single low-level occurrence. Composite events are raised

by some combination of primitive or composite events. Composite event han-

dling presents challenges in terms of semantics and efficiency that have not

been yet fully addressed [PD99]. In data integration systems, because the

data sources are loosely-coupled, it is not necessary to combine the events in

different data sources. Therefore, we consider here only the primitive events.

5.3.3.1.2 Order-Dependent vs. Order-Independent Events

The concept of event in the XML world is different from that defined for

tuples in the relational model or for objects in the object-oriented mod-

els. Order is critical for XML documents. In the triggers for XML reposito-

ries, there are normally two kinds of event semantics: order-dependent and

order-independent, along with the distinction between positional and non-

positional operations. However, if XML is used as an interchange format (e.g.,

in XML-DIS), order is less relevant. Only if the trigger’s data sources are all

XML files, we use order-dependent semantics and permit positional opera-

tions. If the trigger’s data sources are mixed (including RDB, XML files, txt

files, etc) or include none XML data sources, we use order-independent event

semantics and permit no positional operations.

5.3.3.1.3 Explicit vs. Derived Event Detection Model

There are normally two kinds of event detection methods: explicit and de-

rived. Explicit events are those updates coming from XQuery Update lan-

guage or updates from application code. Explicit events will be detected

immediately. Derived events are normally detected by applying a delta algo-

rithm (“XML-Diff” algorithm [BBCC02]) on the data sources whereby the

history versions must be kept. We consider explicit events only since it is

impossible to store the history versions of each data source in the integration

level.

126 5 Enforcing Global Constraints and Triggers

5.3.3.1.4 Immediate vs. Deferred Event Consumption Model

Since after the updates are submitted to the underlying data sources, control

over them is lost, a deferred event consumption model needs coordination

mechanism, which adds the complexity of the trigger execution model (e.g.,

timestamp and the global clock are then needed). We assume the immediate

event consumption model.

5.3.3.2 Triggering Phase

After the events are detected (Step 2 in Figure 5.3), the trigger service will

look up the trigger repository and extract the triggers that are related to the

events (Step 3). These triggers are collected in the conflict set (Step 4).

5.3.3.3 Trigger Scheduling

Trigger scheduling determines what happens when multiple rules are trig-

gered at the same time. This phase indicates how the triggers are extracted

to the conflict set, how they are selected for evaluation and in which or-

der conditions are processed. There are two principle issues which must be

considered: one is the selection of the next rule to be fired, the other is the

number of rules to be fired.

5.3.3.3.1 The Selection of the Next Trigger to be Fired

Trigger order can strongly influence the result. Conflict resolution policies are

normally based on (1) the time of update (i.e., the time of event occurrence);

or (2) the complexity of the condition [PD99].

Nowadays the active database systems tend to support priority schemes, in

which triggers are associated with a static priority. Static priorities are often

determined either by the system (e.g., based on trigger creation time) or by

the user as an additional attribute of the trigger. In the latter case, a trigger

is selected from the conflict set for execution using a priority mechanism.

Triggers can be placed in order using a numerical scheme, in which each

5.3 The Architecture of Trigger Service 127

trigger is given an absolute value that is its priority [SJGP94], or by indicating

the relative priorities of triggers by stating explicitly that a given trigger must

be fired before another when both are triggered at the same time [ACL91].

In our work, if there are triggers whose action part is the “PopupErrorMes-

sage” (see example in Example 5.2.1), we extract and evaluate them first be-

cause they represent integrity constraints and they should be enforced first

since integrity constraint checking must be executed before any other oper-

ations. If the action part of the fired trigger is not “PopupErrorMessage”,

we mainly use the first policy. Triggers are selected according to the event

detection time.

5.3.3.3.2 The Number of Triggers to be Fired

There are mainly two options to decide on the number of triggers to be fired,

as explained in the following:

1. Fire all triggers in the conflict set sequentially;

2. Fire all triggers in the conflict set in parallel;

Which approach is most appropriate depends upon the task that is being

supported by the trigger. The first option is suitable for triggers supporting

integrity maintenance. It means an update is successful once all constraints

have been validated. The second option can encourage more efficient trigger

processing.We use the first option in our work (first-in-first-out) to decide

the order of trigger execution (Step 5 in Figure 5.3). The selected triggers

are sent to the condition evaluation component (Step 6).

5.3.3.4 Condition Evaluation

Most of the conditions in a trigger are only related to the OLD NODE and

NEW NODE (normally only the changed target elements). However, it is

also possible that the conditions are related to other data sources. For ex-

ample, in Example 5.2.5, the trigger must query the DIS to get the name

of the manufacturer stored in ProductXML.xml. In our trigger service, we

permit the user to write arbitrary conditions. An XQuery Engine is needed

128 5 Enforcing Global Constraints and Triggers

to evaluate the condition. Before starting the XQuery engine, notations such

as NEW NODE, OLD NODE, and queries to the DIS (Step 7 in Figure 5.3)

will be replaced with actual values because the XQuery engine cannot parse

these foreign notations. A complete XQuery FLWOR expression is built and

sent to the Engine (Step 8). The evaluation result is sent to the action firing

component (Step 9).

We will interpret each step of the working procedure of the XQuery Engine

in the following paragraphs.

5.3.3.4.1 Interpreting LET Clause

The value of a variable defined in this LET clause can be an atomic value

(such as a String or an Integer value) or an XML node (an XML fragment).

The value can come from a constant, OLD NODE or NEW NODE, a build-in

function, another variable, or a query to the data integration system [LM09].

The keyword OLD NODE and NEW NODE in the LET clause can not

be understood by the XQuery engine. They must be replaced with actual

values before being sent to the XQuery engine. Old value and new value

of a modified target are stored as a string with atomic value or an XML

fragment form. Hence, they can be directly used to replace the OLD NODE

and NEW NODE. For the variable whose value comes from evaluation of

other data sources, queries to the data integration system must be called first.

An XML fragment, or an array of XML fragments will be returned. When all

of the foreign notations are replaced with actual values, the condition part

can ultimately be accepted by the XQuery engine.

5.3.3.4.2 Interpreting FOR Clause

The XQuery FOR clause in the trigger iterates over an input sequence. We

restrict the input sequence to the values obtained by calling a data service’s

read function. The FOR clause has three forms as shown in Example 5.3.1.

The variable in a FOR clause can be considered as iterating over an array

returned by evaluating the XPath expression that contains the data service’s

read function. For instance, the XPath expression in Line 1 returns all “Cus-

5.3 The Architecture of Trigger Service 129

1: FOR $cus in ns0:CustomerProfile()/Profile/Customer
2: FOR $add in ns0:getCustomerByID(C3456)/Profile

/Customer/Address
3: FOR $name in ns0:CustomerProfile()/Profile

/Customer[CustomerID=C3456]/Address/Street/Name

Example 5.3.1: Some examples of FOR clause in constraint or trigger

tomer” from the “CustomerProfile” query to the data integration system. The

returned data objects form an XML fragment array. The variable “cus” iter-

ates over this array. Line 2 returns “Address” from the “Customer” whose

id is “C3456”. Line 3 returns all street name(s) under the address(es) of

Customer “C3456”.

5.3.3.4.3 Processing CHECK Constraints

If the action part of a trigger is PopupErrorMessage, we call this trigger

a CHECK constraint. In order to build a complete XQuery expression,

a self-defined return clause is appended at the end of the condition part.

Meanwhile, a logical negation is performed on the logical expression in the

CHECK constraint. The complete XQuery expression for the condition part

of check constraint is shown in Example 5.3.2.

XQuery-Let-For-Clauses
WHERE not (XQuery-Logical-Expression)
RETURN <Result>violated</Result>

Example 5.3.2: : Building a Complete XQuery FLWR-Clause for CHECK
Constraint

We use Figure 5.7 to illustrate the process of building the complete XQuery

expression from the condition part of a constraint.

In this example, the “Product” element in data service “ProductRecord”

might have multiple “ListPrice” elements. Hence, we can use a FOR clause

to iterate all list prices of a product. It can be seen from Figure 5.7 that

after the processing by using algorithms described above, every variable is

assigned an actual value. The variable “order” is assigned the new value of

the monitored target after modification, namely an XML fragment of “Cus-

tomerOrder”. “articleID” is assigned the article id of the new value. The

130 5 Enforcing Global Constraints and Triggers

Fig. 5.7 Building a Complete XQuery Expression

XPath expression in the FOR clause is replaced with a sequence of atomic

values, which represent four list price suggested by four different manufac-

turers. Then, the logical negation operation is performed on the logical ex-

pression in the CHECK clause and the CHECK clause is converted to an

XQuery-Where-Clause. Finally, a self-defined return clause is appended at

the end of the condition part to construct a complete XQuery expression.

The complete XQuery expression will be sent to the XQuery engine to be

evaluated. If any item in the FOR sequence does not satisfy the condition in

the WHERE clause, the XML element <Result>violated</Result> will be

returned. A single return would mean that the whole constraint is violated.

In this example, the constraint is violated by the performed modification,

because there is a list price “92.99” which is greater than the sales price

“89.99”.

5.3 The Architecture of Trigger Service 131

5.3.3.4.4 Processing Trigger

A complete XQuery expression must also be built to represent the condition

part of trigger. The form of the complete XQuery expression for the condition

part of a trigger is shown in Example 5.3.3.

XQuery-Let-For-Clauses
WHERE XQuery-Logical-Expression
RETURN <Result>fired</Result>

Example 5.3.3: : Building a Complete XQuery FLWR-Clause for Trigger

Once an XML element <Result>fired</Result> is returned, that means

the trigger is fired and the defined actions should be performed. The gener-

ation of the whole XQuery expression is the same as processing the CHECK

constraints.

5.3.3.5 Action Firing

If the action part is an error message, the trigger service will call the message

generator (Step 10 in Figure 5.3) and send error message back to the client

application (Step 11). The operation will be aborted, so the data integrity is

guaranteed. If the action part is a set of updates, the trigger service will map

the updates into corresponding data graphs serialized in XML. These data

graphs will be sent to the DIS (Step 12) and the update will be executed in

the data sources (Step 13). Figure 5.8 shows this procedure.

In our example, when a pair of shoes is sold, the trigger in Example 5.2.5

will be fired. The trigger service will consult the data integration system to

get the name of the manufacturer of the shoes, which is stored in Produc-

tXML.xml. Then the XQuery trigger service will generate a data graph with

ChangeSummary serialized in XML, as shown in Figure 5.9. This action will

update the “GROSSSALES” in ManufactureSalesDB from 999.95 to 1999.99.

132 5 Enforcing Global Constraints and Triggers

Data

Integration

System

DataGraph

+

Changesummary

Trigger

Service

U1

U2

.

.

.

Un

U = Update

RDB

OO

DB

XML

Files

Web

Applications

Update

Fig. 5.8 Action Firing, DataGraph Generating and Update Execution for
Step 8 in Figure 5.3

<?xml version="1.0" encoding="UTF-8" ?>

<com:datagraph xmlns:com="commonj.sdo">

<xsd> <xs:schema targetNamespace="ld:DataServices/ManufactureSalesDB

 /ManufactureSales"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="MANSALES">

 <xs:complexType> <xs:sequence>

 <xs:element name="MANUFACTURER" type="xs:string" />

 <xs:element name="GROSSSALES" type="xs:decimal"

 minOccurs="0" />

 </xs:sequence> </xs:complexType>

 </xs:element> </xs:schema> </xsd>

<changeSummary>

 <MANSALES com:ref="/MANSALES">

 <GROSSSALES>999.95</GROSSSALES>

 </MANSALES>

</changeSummary>

<ns0:MANSALES xmlns:ns0="ld:DataServices/ManufactureSalesDB

 /ManufactureSales">

 <MANUFACTURER>Nike</MANUFACTURER>

 <GROSSSALES>1999.9</GROSSSALES>

 </ns0:MANSALES>

 </com:datagraph>

XML Schema

of the

Data Object

ChangeSummary

Old Value

New Value

Fig. 5.9 Generated DataGraph with ChangeSummary

5.3.3.6 Trigger Termination

It is possible that during action execution some actions will trigger new

actions. Thus a cycle gets formed and the trigger execution cannot be termi-

nated. If there are no condition parts in the triggers, this can be avoided by

applying the DAG (Directed Acyclic Graph) algorithm when the trigger is

added to the repository. But if there are condition parts, it becomes impossi-

5.4 Implementation and Evaluation 133

ble to decide whether there is a cycle in trigger execution or not, because the

condition evaluation result depends on the content of the changed target or

the data sources which might change unpredictably. Some work goes a further

step to analyze the trigger behaviour in the XML repository [BPW01].

In our work if a given trigger executes an operation and this in turn causes

additional triggering, the trigger execution context is suspended, and a new

procedure is recursively invoked. The depth of the recursion is limited by a

system-specific threshold. If the depth is over that threshold, an exception

will be thrown. For a simple and direct execution of the trigger service in our

work, we set the threshold as two. This means that we only permit ti fires

tj and tj is not permitted to fire any trigger. Thus it is impossible to form a

circle and the trigger termination is guaranteed. Trigger termination problem

is difficult and some issues on how to analyze triggers will be discussed in

Section 5.5.

5.3.3.7 Failure Handling

It is also possible that the execution of actions will come across failures.

There are two kinds of failures. One is simply called a metric failure, which

means that an action cannot be finished in a limited timebound. This can

be caused when the data sources are overloaded. Another failure is called a

logic failure, which is caused by catastrophic failure of the underlying data

sources [CGMW96]. In our system, failures are detected and flagged. The

client application can thus know the failure causes.

5.4 Implementation and Evaluation

We use BEA AquaLogic Dataservice Platform 3.0 for WebLogic 8.1 as the

XML-based data integration system [BEA08a] which supports SDO program-

ming framework. The application server is the BEA WebLogic Server 8.1

[BEA08b]. We use Software AG’s Tamino XML Server [AG06] as the repos-

itory where XQuery triggers are stored. We also use the Tamino’s XQuery

engine to parse XQuery expressions. Refer to Figure 5.3 again, we also imple-

134 5 Enforcing Global Constraints and Triggers

ment a trigger manager, which is a graphical interface for the administrators

to add, delete, change and query the triggers. Experiments show that the

whole system runs very well [Wan08] and can fulfill the requirements of en-

hancing the data consistency in the data integration systems. Compared with

the traditional method of implementing active rules by programming code,

our method has the following advantages [GSS04]:

1. Heterogeneous data sources can interact easily through XQuery triggers

in the data integration systems. There is no need to know the location,

the characteristics, the interfaces of the data sources participating in the

integration.

2. XQuery triggers enable a uniform description of the active rules and in-

tegrity constraints relevant to the data integration systems. In contrast,

when active rules and integrity constraints are embedded into application

programs, they can be specified and implemented in different ways and in

several applications. The correct enforcement of business rules depends on

the reliability of programmers, which might cause severe inconsistencies.

3. A stand-alone XQuery trigger service provides a way to ensure that every

application obeys the same rules and avoids redundant integrity constraint

checking.

4. Using XQuery triggers facilitates readability and maintenance of business

rules. They can be inserted, maintained and managed easily in the repos-

itory. There is no need to go through programming code, which saves a

great deal of effort in developing active rules.

5.5 Trigger Analysis

Trigger analysis deals with predicting how a set of triggers behaves at run-

time. The following are the three properties of trigger behaviour in active

database systems (ADBs) [PD99]:

• Termination. ADB triggers are terminating only if there is no recursive

firing of triggers.

5.5 Trigger Analysis 135

• Confluence. Confluence property of triggers decides whether the exe-

cution order of non-prioritized triggers makes any difference in the final

database state.

• Observable Determinism. A trigger set is observably deterministic, if

the effect of trigger processing as observed by the user of the system is

independent of the order in which the fired triggers are selected for pro-

cessing.

The following two triggers implement a response, which is confluent but

observably nondeterministic.

On <event E1>
if <condition C1>
do <send message to user>

On <event E1>
if <condition C1>
do <abort>

In this example, if the first trigger is scheduled for firing before the second,

then the user receives a message and the transaction is aborted. By contrast,

if the second trigger is scheduled before the first, then the transaction is

aborted but no message is sent to the user. But the state of the database

does not change if we change the execution order of the two triggers.

The key analysis question is the termination of the trigger execution. A

set of triggers is said to be terminating if for any initial event and any initial

database state, the trigger execution terminates. Triggering and activation

relations between triggers have been used to determine whether a set of

triggers is terminating.

A trigger ri may trigger a trigger rj if the action of ri may generate an

event which triggers rj. [AWH92] [AHW95] proposed the triggering graph

which represents each trigger as a vertex, and there is a directed arc from a

vertex ri to a vertex rj if ri may trigger rj. Acyclicity of the triggering graph

implies definite termination of trigger execution.

[BW94] used an activation graph which also represents triggers as vertices.

In this case an arc between two distinct vertices ri and rj indicates that rj’s

condition may be changed from false to true after the execution of ri’s action,

136 5 Enforcing Global Constraints and Triggers

while an arc from a vertex ri to itself indicates that ri’s condition may be

true after the execution of ri’s action. Acyclicity of this graph also implies

definite termination of trigger execution.

Triggering and activation graphs were combined in [BCP95] in a method

called rule reduction which gives more precise results than either of the pre-

vious methods. With the method, any vertex which does not have both an

incoming triggering and activation arc can be removed from the graph, along

with its outgoing arcs. This removal of vertices is repeated until there are no

such vertices. If the procedure results in all the vertices being removed, then

the trigger set is definitely terminating.

Unfortunately, until now there is no universal rule to ensure the termina-

tion of triggers. But it is now widely recognized that user interactions are

necessary and sometimes sufficient during the analysis of the triggers.

5.6 Summary

This chapter presented an approach to realize an XQuery trigger service in an

XML-based data integration system. We specified a trigger model based on

an XQuery trigger that is in conformance to XQuery Update model of W3C

and we defined the semantics of the model. This model was also similar to

the uniform constraint model proposed in Chapter 3. The difference was that

the trigger model in this chapter focused on the action part which was much

complicated than the constraint model and where the triggers could execute

various data operations. We explained also how to write constraints and trig-

gers using this XQuery trigger model by examples. Then the architecture of

the whole XQuery trigger service was proposed. Main components including

event detection, trigger scheduling, condition evaluation, action firing were

discussed. How to ensure the termination of the trigger execution and how

to handle failures were also discussed. XQuery trigger provided a direct and

universal tool for assigning data consistency enforcement rules. We built up

the whole prototype under an SDO programming framework and presented

the detailed execution model. Experiments were referenced and showed that

5.6 Summary 137

the XQuery trigger service could fulfill the requirements of enhancing data

consistency in XML-based data integration systems.

Chapter 6

Related Work

Using constraints and triggers to enhance XML-based data integration sys-

tems is related to three aspects of related work, the first one is semantic

query optimization, the second one is data integrity, and the third one is

active systems. This chapter compares our work with related work in these

three aspects.

6.1 Semantic Query Optimization

In [SO89], a user specified query is optimized by describing a scheme to uti-

lize semantic knowledge. The semantic is represented as function-free clauses

in predicate logic. The scheme uses a graph theoretic approach to identify

redundant joins and restrictions in a given query. An optimization algorithm

is presented which eliminates redundant nonprofitable specifications. Rela-

tionships among entity schema, semantics and query form the basis of the

algorithm. The similarity between this work and ours is that both algorithms

are based on schema, semantics and query. The difference is that this work

uses subset constraints and implication constraints, while we use integrity

constraints. Another difference is that this work must use the index informa-

tion of a database, while we do not rely on indexes, because indexes are not

always available in data sources.

An implementation of two semantic query optimization techniques, predi-

cate introduction and join elimination, in DB2 universal database is described

in [CGK+99]. The experiments show that SQO can lead to dramatic perfor-

mance improvements. Only referential constraints and check constraints are

139

140 6 Related Work

used. This work is targeted to DB2 and ours is to XML-based DIS. In ad-

dition, it depends on the indexing mechanism of DB2, while again in a data

integration system indexes are not always available.

An efficient semantic query optimization algorithm, which runs best when

the database is large or when the query execution cost is expected to be high,

is presented in [PLO91]. The transformation process classifies the predicates

into imperative, optional, or redundant. At the end of the transformation

process, all the imperative predicates are retained, while the redundant pred-

icates are eliminated. Optional predicates are retained or discarded based

on the estimated cost and benefit of retaining them. Again this work is for

object-oriented DBMS and ours is for XML-based data integration system.

This optimizer is embedded in the DBMS and ours is used by the data in-

tegration system at the service level, for example, on the web through a

browser.

A system focusing on semantic query optimization for query plans of het-

erogeneous multi-database systems is presented in [HK00]. This approach

reduces the cost of query plans generated by an information mediator by

providing necessary and sufficient conditions to eliminate unnecessary joins

in a conjunctive query of arbitrary join topology. The difference between this

work and ours is that the optimization is targeted to a query plan generated

by the mediator of the data integration system, while ours is targeted to

the query generated by the user of the data integration system. This opti-

mizer must be embedded in the query mediator while ours is built on top

of the query mediator and thus provides better extendibility and flexibility.

However, the elimination techniques are also applicable in our approach as

well.

An intelligent system using tool-supported techniques to optimize medi-

ated queries are proposed by [BBM01]. The techniques rely on the availability

of integration knowledge including: local source schemata, a virtual mediated

schema and its mapping descriptions. These three kinds of integration knowl-

edge form the base of the query reformulation rules, while in our approach

we rely on the integrity constraints.

6.2 Data Integrity 141

6.2 Data Integrity

[DD95] [VA96] [CGMW96] [TC97] [GW93] address the problem of integrity

constraint checking in multi-database environments. However, what they con-

sider are tightly-coupled distributed databases in which global transactions,

global queries, and global concurrency control are present.

In [CGMW96] the authors have presented a framework and a toolkit for

constraint management in loosely-coupled heterogeneous environments. The

framework allows the formal specification of the interface each database of-

fers, and of the constraint management strategies. Then the formal guaran-

tees regarding the consistency of constraints can be proved. The framework

can express guarantees that are more “relaxed” than in conventional database

systems, in the sense that constraints may hold only at given times or under

certain conditions. This added flexibility is essential in real-world distributed

scenarios where it is not possible to guarantee that integrity constraints are

always satisfied. The toolkit provides configurable constraint management

and translation processes, and a library of proven strategies, making it rel-

atively easy to enforce relaxed constraints. We do not permit the relaxed

constraints in our work because relaxed constraints normally need a global

clock, so that the constraints can be checked at the given time referring to

the global clock.

In the framework each information source chooses an interface which can

offer to the local constraint manager (LCM) for each of its data items in-

volved in a multi-source constraint. The interface specifies how the data item

may be read, written, and/or monitored by the LCM. Applications inform

the constraint manager (CM) of constraints that need to be monitored or

enforced. Based on the constraint and the interfaces available for the items

involved in the constraint, the CM decides on the constraint management

strategy it executes. This strategy monitors or enforces the constraint. The

degree to which each constraint is monitored or enforced is formally specified

by the guarantee. In our work, we do not necessarily have a local constraint

manager, because we want to ensure the local autonomy of the data sources

in the data integration system.

142 6 Related Work

Interfaces are specified using a notation based on events and rules. It is

assumed that the interfaces for the data items involved in constraints are

specified by a “constraint administrator” at each site, based on the level of

access and performance that can be provided to the CM for the data item.

The strategy for a constraint describes the algorithm used by the CM to

monitor or enforce the constraint. Like interfaces, strategies are specified

using a notation based on events and rules. In addition to performing op-

erations on the data items involved in a constraint, strategies may evaluate

predicates over the values of data items (obtained through read operations)

and over private data maintained by the CM. Constraints in our work are

defined at the global level by the data integration system administrators. If

the administrators of the local data sources want the constraints from the

local data sources also be checked at the global level, they can also submit

the local constraints to the constraint service. The constraint wrapper will

translate the constraints into the uniform constraint model and the trans-

lated constraints will be stored in the constraint repository. Remember that

before being stored into the constraint repository, the administrator of the

data integration system needs to give an authentication in order to decide

whether the constraints can be checked at the global level.

[VA96] presents an approach to database interoperation that exploits the

semantic information provided by integrity constraints defined on the com-

ponent databases. The authors identify two roles of integrity constraints in

database interoperation: (1) a set of integrity constraints describing valid

states of the integrated view can be derived from the constraints defined on

the underlying databases. (2) local integrity constraints can be used as a se-

mantic check on the validity of the specification of the integrated view. The

ideas are illustrated in the context of an instance-based database interopera-

tion paradigm, where objects rather than classes are the unit of integration.

Two notions of objectivity and subjectivity are introduced as an indication of

whether a constraint is valid beyond the context of a specific database, and

the impact of these notions are demonstrated.

The object comparison rules are introduced in the database interopera-

tion. The condition part of object comparison rules, like object constraints,

imposes conditions which should be satisfied by object instances. Two types

6.2 Data Integrity 143

of object comparison rule conditions are distinguished by the authors: (1)

Inter-object conditions. These are conditions involving both objects to be

compared. (2) Intra-object conditions. There are conditions on a simple ob-

ject. Compared with our work, inter-object conditions are similar to the

global constraints defined above two or more data sources. Intra-object con-

ditions are similar with global constraints, which are defined on only one

data source.

In [TC97], the authors propose a flexible way to realize global integrity

maintenance in federated database systems. It aims at integrating the ac-

tive rule paradigm into a federated database framework. Thereby, integrity

constraints involving multiple component database systems can easily be sup-

ported. Active rules provide a powerful mechanism for communication and

cooperation between heterogeneous database systems. In addition, they are

used for specifying enforcement of constraints in case of violation.

At the federated level, global active mechanisms are offered in form of

global ECA rules. These ECA rules are stored in the global database which

also contains all data of the federation layer. According to the event part,

every global ECA rules is attached to a global rule manager which is responsi-

ble for the management and processing of this ECA rule. For global integrity

enforcement global ECA-rules are not sufficient, because global ECA-rules

alone cannot prevent local applications from performing operations which

may have an effect on the global integrity. Therefore, local ECA-rules and

local rule managers are needed. Local ECA-rules and local rule managers re-

side in a mediator layer on top of the local component databases. Local ECA

rules are used to specify actions which are performed upon the occurrence

of a local event. Like global ECA rules, local ECA-rules are managed and

processed by a local rule manager. A local rule manager detects a local event

in the component database and informs the appropriate global rule manager

about the event occurrence. In contrast to global ECA-rules, local ECA-rules

are stored locally at the component system level. The only purpose of these

local ECA-rules is to signal the occurrence of a specific local event to the

federation layer. In a data integration system, the data sources are more het-

erogeneous, while in the federated database system the components are all

databases. Data sources such as files, XML files, web applications cannot sig-

144 6 Related Work

nal the occurrence of an event to the data integration system. Therefore, in

our work, we consider only the events from the global updates. Local updates

to the local data sources are not considered.

[GW93] presents an optimization for integrity constraint verification in

distributed databases. The optimization allows a global constraint, i.e. a

constraint spanning multiple databases, to be verified by accessing data at a

single database, eliminating the cost of accessing remote data. The optimiza-

tion is based on an algorithm that takes as input a global constraint and

data to be inserted into a local database. The algorithm produces a local

condition such that, if the local data satisfies this condition, then based on

the previous satisfaction of the global constraint, the global constraint is still

satisfied. If the local data does not satisfy the condition, then a conventional

global verification procedure is required. The optimization in this work is ex-

ecuted in the database systems. Both global constraints and local constraints

are in the same form. But in a data integration system, the local constraints

are different from one data source to another and are also different from the

global constraints. It is hard to reuse this optimization, not to say that there

are data sources in the data integration system which do not even have their

own constraint mechanisms.

[GW97] describes a family of cooperative constraint checking protocols

for federated database systems. Many of the constraint checking protocols

here are also applicable to local systems that do not support transactions.

However, this work depends on the message mechanism, which can be sup-

ported by the underlying database systems, but cannot be ensured by the

data sources in a data integration system, which are more heterogeneous.

6.3 Active Systems, ECA Rules, and Triggers

6.3.1 ECA Rules for XML

[BPW02] [BPW01] [BCP01] [BBCC02] [PPW03] propose new languages for

defining ECA rules on XML, providing reactive functionality on XML repos-

itories. The language is based on reasonably expressive fragments of the

6.3 Active Systems, ECA Rules, and Triggers 145

XPath [CSD99] and XQuery standards. The difference is that the ECA rules

in these proposals are applied to XML repositories, while our ECA rules are

applied to the XML views of the underlying data sources.

[BPW02] [BPW01] propose a new language for defining ECA rules on

XML, providing reactive functionality on XML repositories, and develop new

techniques for analysing the triggering and activation dependencies between

rules defined in this language. The language is based on reasonably expressive

fragments of the XPath and XQuery standards.

[BBCC02] proposes Active XQuery, an active language for XML reposito-

ries that is based on a previously defined XQuery Update Model in [TIHW01].

In particular, it presents the syntax and semantics of the Active XQuery lan-

guage, aiming at emulating the trigger definition and execution model of

SQL3.

[PPW03] describes a language for ECA rules on XML and a prototype

implementation of this language. They also discuss some preliminary ideas

regarding a language for ECA rules operating on a graph/triple representa-

tion of RDF, and describe the architecture of a distributed deployment of

such RDF ECA rules.

[IO01] proposes and validates XBML (Xml-based Business Modeling Lan-

guage) as an XML active query language approach to specify electronic com-

merce business models. This work is for distributed XML databases while

ours is for XML data integration system.

6.3.2 Distributed Active Information Systems

[ABM04] proposes Active XML (AXML) which is a declarative framework

that harnesses web services for data integration and is put to work in a peer-

to-peer architecture. In each peer, a web service engine, an AXML service call

execution engine and an XML database as peer repository must be installed.

AXML can also be used to define interaction rules among peers. But it does

not fit data integration systems, because it is impossible to install these

engines and the XML database in the legacy data sources.

146 6 Related Work

FRAMBOISE [FGD97] proposes a construction system for ECA-services

decoupled from a particular DBMS. Event detection is performed by event

detectors which have to be specialized for the respective DBMS. A rule ser-

vice is responsible for the maintenance of the rule base and implements rule

execution. This work is designed for only one database while ours is for a

data integration system.

[SNS05] [SNS06] propose an active system whereby users can place triggers

on immaterialized nested XML views of relational data. In this architecture,

the authors present scalable and efficient techniques for processing triggers

over nested views by leveraging existing support for SQL triggers over flat

relations in commercial relation databases. The performance results indicate

that the proposed techniques are a feasible approach to support triggers over

nested views of relational data. In this approach triggers are based on Active

XQuery. This work is for relational data while ours is for a wide range of

underlying data sources.

[VSCR00] presents a service-based architecture that provides flexible and

independent active capabilities suitable for federated database system appli-

cations. Rule and event services are proposed to cooperate to specify and to

execute ECA rules. They respectively offer flexible rule execution and event

management adapted to different participating DBMS characteristics. Coop-

WARE [MGKS96] and TriggerMan [HK97] also propose execution mecha-

nisms for distributed rules. The former has been developed for a workflow

environment, and the latter proposes an asynchronous trigger processor as an

extension module for an object-relational DBMS. All the data sources here

are database systems while data sources in our work are in a wider range.

[CL98] proposes an architecture of a framework to support ECA rules

suitable for distributed and heterogeneous systems. It uses an expressive

composite event specification language: Snoop. The action part of the ECA

rules is written in a combination of OQL and C++. Our model adheres to

the SQL99 [Mel03] trigger spirit and uses the W3C Update standard model

which we believe has won more popularity and is more uniform.

[GETE88] presents an approach to integrate relational databases with sup-

port for global updates. The proposed approach is suitable for situations

where users need to be explicitly aware of storage locations for data items,

6.3 Active Systems, ECA Rules, and Triggers 147

as well as for situations where storage locations are determined by attribute

values. In our work the users of the active rules do not have to explicitly

know the storage locations. They only have to know the global names of the

data objects.

[AAC+99] proposes a specification language for active view definition above

an XML repository while our work is above an XML data integration system.

The active views are mapped into local functions, while the action parts of

triggers in our work are mapped into data graphs.

Chapter 7

Conclusion

Data integration has long been recognized as a very important problem in the

database and information system research field. The appearance of the Web

has motivated the research on XML-based data integration systems. In XML-

based data integration systems, the user submits an XQuery and gets back

the result in XML. After the XML-based data integration system accepts

the query from the user, it will parse it, divide it, push down the query plan

to the wrappers of the data sources. The wrappers of the data sources will

translate the sub-queries into the local query language. The sub-queries will

be executed in the data sources and the wrappers will translate the result

back to XML. The XML-based data integration system will combine the

results from each data source and return the final result in XML to the user.

Users are always expecting high query performance and data consistency

from the data integration system. This work goes a step further in satisfying

these requirements from the users by supporting constraints and triggers

in the XML-based data integration system. Constraints and triggers have

played an important role in database systems both in improving the query

capability and enforcing data consistency. Constraints from the databases

can be used to optimize the queries semantically. Triggers can be used in the

traditional database systems to ensure data consistency among tables. Based

on these ideas, this work discussed two main usage scenarios of constraints

and triggers in an XML-based data integration system. The first usage is to

use the constraints from the data sources and global referential constraints to

semantically optimize the queries submitted to the data integration system.

The second is to ensure the global data consistency in the data integration

system by enforcing global constraints and triggers.

149

150 7 Conclusion

In order to use the constraints from the local data sources to semantically

optimize the queries, we first define a uniform constraint model to express

the inherently heterogeneous constraints from the different data sources. The

uniform constraint model is based on an XQuery trigger model. We develop

a constraint wrapper, which borrows the concept of the integration wrap-

pers in the data integration system. A constraint wrapper can translate the

heterogeneous constraints from the data sources into the uniform constraint

model. After the translation, the constraints coming from the data sources

are expressed in the uniform form. Then these constraints are stored in the

constraint repository. We developed a semantic query optimizer for the data

integration system. When the user submits a query to the data integration

system, the query will be transformed to our semantic query optimizer. We

implemented three semantic query optimization techniques in the optimizer

including detection of empty result, join elimination and predicate elimina-

tion using the constraints in the constraint repository. The main idea of the

“detection of empty result” is that if the query condition is in conflict with

the constraints, the query will return an empty result. Therefore, the empty

result will be detected before the query is further processed by the data inte-

gration system. Thus a great deal of processing resource is saved. The main

idea of “join elimination” is that if there is a join in the query condition which

is supported by a referential constraint in the constraint repository then this

join will always hold true. Under some circumstances, the join will be elimi-

nated by our optimizer and thus there is no need to scan two data sources.

Therefore, a great deal of communication costs and processing resources are

saved. The main idea of “predicate elimination” is that if a predicate in the

query condition is subsumed by the constraints in the constraint repository,

this predicate will always hold true and thus can be eliminated. Again this

saves a great deal of communication and processing cost. We analyzed the ef-

fects of the optimizations and concluded that our optimizer works best when

the data volume is huge and the query cost is supposed to be high. Especially

when the data sources are non-relational databases, which are quite common

in an XML-based data integration system, our optimizer works best.

On the other hand, more and more XML-based data integration systems

announced to support update at the global level either by built-in functions

7 Conclusion 151

or by programming frameworks. Among these methods Service Data Objects

programming is the most uniform and is proposed by most of the industry-

leading vendors and open-source communities. We realized the global update

under the Service Data Objects programming framework. When the data

integration system supports updates at the global level, data consistency

among the data sources could be enhanced. In order to enforce the data

consistency at the global level in the XML-based data integration system, a

global trigger model is defined. We used again an XQuery trigger model whose

action part can include all kinds of data manipulation operations and even

external operations. Compared to the uniform constraint model, the XQuery

trigger model focuses on what actions should be taken when the triggers

are fired. The namespace declaration is used to define which data objects

are participating in the global trigger and constraint. We gave examples to

show how to define the global constraints and triggers using the XQuery

trigger model. Then we proposed the architecture to support an XQuery

trigger service in the data integration system in order to enhance data con-

sistency for the whole data integration system. Important components such

as event detection, trigger scheduling, condition evaluation, action firing and

trigger termination are discussed. By enforcing the data consistency rules

with triggers, the heterogeneous data sources can interact with each other

at the global level. The XQuery trigger service enables a uniform definition

of data consistency enforcement rules and guarantees a central management

of the data consistency enforcement rules and thus ensures that all appli-

cations in the data integration systems conform to the same constraint and

trigger enforcement rules. By using the XQuery trigger service, the XML-

based data integration system becomes active rather than passive in a sense

that it can take some actions when the specified events are detected and the

corresponding conditions are evaluated to be true.

Appendix A

XML Schema of Data Graph
Serialization

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sdo="commonj.sdo"
targetNamespace="commonj.sdo">
<xsd:element name="datagraph" type="sdo:DataGraphType"/>
<xsd:complexType name="DataGraphType">
<xsd:complexContent>

<xsd:extension base="sdo:BaseDataGraphType">
<xsd:sequence>

<xsd:any minOccurs="0" maxOccurs="1"
namespace="##other" processContents="lax"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="BaseDataGraphType" abstract="true">

<xsd:sequence>
<xsd:element name="models" type="sdo:ModelsType" minOccurs="0"/>
<xsd:element name="xsd" type="sdo:XSDType" minOccurs="0"/>
<xsd:element name="changeSummary" type="sdo:ChangeSummaryType"

minOccurs="0"/>
</xsd:sequence>

<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>
<xsd:complexType name="ModelsType">
<xsd:annotation>
<xsd:documentation>

Expected type is emof:Package.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:any minOccurs="0" maxOccurs="unbounded"
namespace="##other" processContents="lax"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="XSDType">
<xsd:annotation>
<xsd:documentation>

Expected type is xsd:schema.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:any minOccurs="0" maxOccurs="unbounded"
namespace="http://www.w3.org/2001/XMLSchema"

153

154 A XML Schema of Data Graph Serialization

processContents="lax"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ChangeSummaryType">
<xsd:sequence>
<xsd:any minOccurs="0" maxOccurs="unbounded"
namespace="##any"
processContents="lax"/>

</xsd:sequence>
<xsd:attribute name="create" type="xsd:string"/>
<xsd:attribute name="delete" type="xsd:string"/>
<xsd:attribute name="logging" type="xsd:boolean"/>
</xsd:complexType>
<xsd:attribute name="ref" type="xsd:string"/>

</xsd:schema>

References

[AAC+99] Serge Abiteboul, Bernd Amann, Sophie Cluet, Adi Eyal, Laurent Mignet, and

Tova Milo. Active views for electronic commerce. In VLDB ’99: Proceedings

of the 25th International Conference on Very Large Data Bases, pages 138–

149, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[ABM04] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active xml.

In PODS ’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 35–45, New

York, NY, USA, 2004. ACM.

[ACL91] Rakesh Agrawal, Roberta Cochrane, and Bruce G. Lindsay. On maintaining

priorities in a production rule system. In VLDB ’91: Proceedings of the

17th International Conference on Very Large Data Bases, pages 479–487,

San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.

[ACPS96] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian.

Query caching and optimization in distributed mediator systems. SIGMOD

Rec., 25(2):137–146, 1996.

[AG06] Software AG. Number one in xml management: Tamino xml server, technical

factsheet, 2006.

[AG09] Software AG. Xml data management, 2009.

http://www.softwareag.com/corporate/products/wm/tamino/default.asp.

[AHW95] Alexander Aiken, Joseph M. Hellerstein, and Jennifer Widom. Static analysis

techniques for predicting the behavior of active database rules. ACM Trans.

Database Syst., 20(1):3–41, 1995.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.

Wiener. The Lorel query language for semistructured data. International

Journal on Digital Libraries, 1(1):68–88, 1997.

[ASV06] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing and querying

xml with incomplete information. ACM Trans. Database Syst., 31(1):208–254,

2006.

[AWH92] Alexander Aiken, Jennifer Widom, and Joseph M. Hellerstein. Behavior of

database production rules: termination, confluence, and observable determin-

155

156 References

ism. In SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD international

conference on Management of data, pages 59–68, New York, NY, USA, 1992.

ACM.

[BBCC02] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active xquery. In ICDE ’02:

Proceedings of the Eighteenth International Conference on Data Engineering,

pages 403–412, San Jose, USA, 2002. IEEE Computer Society.

[BBM01] D. Beneventano, S. Bergamaschi, and F. Mandreoli. Extensional knowledge

for semantic query optimization in a mediator based system. In International

Workshop on Foundations of Models for Information Integration, 2001.

[BBNP03] John Beatty, Stephen Brodsky, Martin Nally, and Rahul Paul. Next-

generation data programming: Service data objects. A Joint Whitepaper with

IBM and BEA., 2003.

[BCF+07] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and J.Simeon.

Xquery 1.0: An xml query language, 2007. http://www.w3.org/TR/xquery/.

[BCP95] Elena Baralis, Stefano Ceri, and Stefano Paraboschi. Improving rule analysis

by means of triggering and activation graphs. In RIDS ’95: Proceedings of

the Second International Workshop on Rules in Database Systems, pages 165–

181, London, UK, 1995. Springer-Verlag.

[BCP01] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Active rules for xml:

A new paradigm for e-services. The VLDB Journal, 10(1):39–47, 2001.

[BDH04] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser. On the up-

datability of xml views over relational databases. In International Workshop

on the Web and Databases (WebDB), San Diego, CA, USA, 2004.

[BEA03] BEA. Bea liquiddata for weblogic, building queries and data views, 2003.

http://edocs.bea.com/liquiddata/docs81/querybld/index.html.

[BEA08a] BEA. Bea aqualogic data services platform 3.0, 2008.

http://edocs.bea.com/aldsp/docs30/index.html.

[BEA08b] BEA. Bea weblogic server and weblogic express 8.1 documentation, 2008.

http://edocs.bea.com/wls/docs81/index.html.

[BFSW01] Peter Buneman, Wenfei Fan, Jérôme Siméon, and Scott Weinstein. Con-

straints for semistructured data and xml. SIGMOD Rec., 30(1):47–54, 2001.

[BIO+] BEA, IBM, Oracle, Primeton Technologies, Rogue Wave Software, SAP, Soft-

ware AG, Sun Microsystems, Xcalia, and Zend Technologies. SDO for Java

Specification V2.1. http://www.osoa.org/download/attachments/36/Java-

SDO-Spec-v2.1.0-FINAL.pdf?version=1.

[Bon02] Angela Bonifati, editor. Reactive Services for XML Repositories. Dissertation,

2002.

[BPW01] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. Analysis and

optimization for event-condition-action rules on xml. Computer Networks,

2001.

References 157

[BPW02] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An event-

condition-action language for xml. In WWW ’02: Proceedings of the 11th

international conference on World Wide Web, pages 486–495, New York,

NY, USA, 2002. ACM.

[BS81] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM

Trans. Database Syst., 6(4):557–575, 1981.

[BSKW91] Thierry Barsalou, Niki Siambela, Arthur M. Keller, and Gio Wiederhold.

Updating relational databases through object-based views. SIGMOD Rec.,

20(2):248–257, 1991.

[BW94] Elena Baralis and Jennifer Widom. An algebraic approach to rule analysis

in expert database systems. Technical report, Stanford, CA, USA, 1994.

[Car06] Michael Carey. Data delivery in a service-oriented world: the bea aqualogic

data services platform. In SIGMOD ’06: Proceedings of the 2006 ACM SIG-

MOD international conference on Management of data, pages 695–705, New

York, NY, USA, 2006. ACM.

[CCF01] Fabio Casati, Silvana Castano, and Mariagrazia Fugini. Managing workflow

authorization constraints through active database technology. Information

Systems Frontiers, 3(3):319–338, 2001.

[CCW00] Stefano Ceri, Roberta Cochrane, and Jennifer Widom. Practical applications

of triggers and constraints: Success and lingering issues (10-year award). In

VLDB ’00: Proceedings of the 26th International Conference on Very Large

Data Bases, pages 254–262, San Francisco, CA, USA, 2000. Morgan Kauf-

mann Publishers Inc.

[CD83] Armin B. Cremers and G. Doman. Aim - an integrity monitor for the database

system ingres. In VLDB ’83: Proceedings of the 9th International Conference

on Very Large Data Bases, pages 167–170, San Francisco, CA, USA, 1983.

Morgan Kaufmann Publishers Inc.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A

scalable continuous query system for internet databases. In Weidong Chen,

Jeffrey F. Naughton, and Philip A. Bernstein, editors, Proceedings of the 2000

ACM SIGMOD International Conference on Management of Data, May 16-

18, 2000, Dallas, Texas, USA, pages 379–390. ACM, 2000.

[CFPT94] Stefano Ceri, Piero Fraternali, Stefano Paraboschi, and Letizia Tanca. Auto-

matic generation of production rules for integrity maintenance. ACM Trans.

Database Syst., 19(3):367–422, 1994.

[CGK+99] Qi Cheng, Jarek Gryz, Fred Koo, T. Y. Cliff Leung, Linqi Liu, Xiaoyan Qian,

and K. Bernhard Schiefer. Implementation of two semantic query optimiza-

tion techniques in db2 universal database. In VLDB ’99: Proceedings of the

25th International Conference on Very Large Data Bases, pages 687–698, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

158 References

[CGM90] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach

to semantic query optimization. ACM Trans. Database Syst., 15(2):162–207,

1990.

[CGMH+97] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstanti-

nou, J. Ullman, and J. Widom. The tsimmis project: Integration of het-

erogeneous information sources. Journal of Intelligent Information Systems,

8(2):117–132, 1997.

[CGMW96] Sudarshan S. Chawathe, Hector Garcia-Molina, and Jennifer Widom. A

toolkit for constraint management in heterogeneous information systems. In

ICDE ’96: Proceedings of the Twelfth International Conference on Data Engi-

neering, pages 56–65, Washington, DC, USA, 1996. IEEE Computer Society.

[CL98] Sharma Chakravarthy and Roger Le. Eca rule support for distributed het-

erogeneous environments. In ICDE ’98: Proceedings of the Fourteenth Inter-

national Conference on Data Engineering, page 601, Washington, DC, USA,

1998. IEEE Computer Society.

[CP84] Stavros S. Cosmadakis and Christos H. Papadimitriou. Updates of relational

views. J. ACM, 31(4):742–760, 1984.

[CSD99] J. Clark and W3C Recommendation S. DeRose, Editor. Xml path language

(xpath) version 1.0, 1999. http://www.w3.org/TR/xpath.

[CW91] Stefano Ceri and Jennifer Widom. Deriving production rules for incremental

view maintenance. In VLDB ’91: Proceedings of the 17th International Con-

ference on Very Large Data Bases, pages 577–589, San Francisco, CA, USA,

1991. Morgan Kaufmann Publishers Inc.

[CW92] Stefano Ceri and Jennifer Widom. Production rules in parallel and distributed

database environments. In VLDB ’92: Proceedings of the 18th International

Conference on Very Large Data Bases, pages 339–351, San Francisco, CA,

USA, 1992. Morgan Kaufmann Publishers Inc.

[CW93] Stefano Ceri and Jennifer Widom. Managing semantic heterogeneity with

production rules and persistent queues. In VLDB ’93: Proceedings of the

19th International Conference on Very Large Data Bases, pages 108–119,

San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[CX01] Josephine Cheng and Jane Xu. Xml and db2. In ICDE ’01: Proceedings of the

16th International Conference on Data Engineering, Heidelberg, Germany,

2001. IEEE Computer Society.

[Dat08] DataDirect. Xquery for data integration, 2008.

http://www.datadirect.com/products/xquery/data-integration/index.ssp.

[Dat09] DataDirect. Using xquery, 2009. http://www.xquery.com/tutorials-

/xquery tutorial/.

References 159

[DB82] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of

update operations on relational views. ACM Trans. Database Syst., 7(3):381–

416, 1982.

[DD95] Lyman Do and Pamela Drew. Active database management of global data

integrity constraints in heterogeneous database environments. In ICDE ’95:

Proceedings of the Eleventh International Conference on Data Engineering,

pages 99–108, Washington, DC, USA, 1995. IEEE Computer Society.

[DFF+98] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. “XML-

QL: A Query Language for XML”. In WWW The Query Language Workshop

(QL), Cambridge, MA, , 1998.

[DG97] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries

using views. In PODS ’97: Proceedings of the sixteenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems, pages 109–

116, New York, NY, USA, 1997. ACM.

[DSD08] Dsd, 2008. http://www.brics.dk/DSD/.

[EC75] Kapali P. Eswaran and Donald D. Chamberlin. Functional specifications of

subsystem for database integrity. In Douglas S. Kerr, editor, Proceedings of

the International Conference on Very Large Data Bases, September 22-24,

1975, Framingham, Massachusetts, USA, pages 48–68. ACM, 1975.

[eXi08] eXist. Open source native xml database, 2008. http://exist.sourceforge.net/.

[FGD97] Hans Fritschi, Stella Gatziu, and Klaus R. Dittrich. Framboise – an approach

to construct active database mechanisms. Technical report, 1997.

[Fou06] The Apache Software Foundation. Apache tomcat 6.0, 2006.

http://tomcat.apache.org.

[FRV96] Daniela Florescu, Louiqa Raschid, and Patrick Valduriez. Answering queries

using OQL view expressions. In Workshop on Materialized Views, in cooper-

ation with ACM SIGMOD, pages 84–90, Montreal, Canada, 1996.

[FTS00] Mary Fernández, Wang-Chiew Tan, and Dan Suciu. Silkroute: trading be-

tween relations and xml. Comput. Netw., 33(1-6):723–745, 2000.

[GETE88] M. Samy Gamal-Eldin, G. Thomas, and R. Elmasri. Integrating relational

databases with support for updates. In DPDS ’88: Proceedings of the first

international symposium on Databases in parallel and distributed systems,

pages 202–209, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[GETE89] M. S. Gamal-Eldin, G. Thomas, and R. Elmasri. Local and global constraints

in database integration. In Proceedings of the Twenty-Second Annual Hawaii

International Conference on System Sciences, Software Track, pages 604–611,

Kailua-Kona, HI, USA, 1989. MCS Dept., Clarkson Univ., Potsdam, NY.

[Gro07] Object Management Group. Mof 2.0/xmi mapping, version 2.1.1, 2007.

http://www.omg.org/docs/formal/07-12-01.pdf.

160 References

[GSS04] D. Goldin, S. Srinivasa, and V. Srikanti. Active databases as information sys-

tems. In Proceedings of Internatioanl Database Engineering and Applications

Symposium, pages 123–130. IEEE Computer Society, 2004.

[GW93] Ashish Gupta and Jennifer Widom. Local verification of global integrity

constraints in distributed databases. SIGMOD Rec., 22(2):49–58, 1993.

[GW97] Paul Grefen and Jennifer Widom. Protocols for integrity constraint checking

in federateddatabases. Distrib. Parallel Databases, 5(4):327–355, 1997.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal,

10(4):270–294, 2001.

[HK97] Eric N. Hanson and Samir Khosla. An introduction to the triggerman asyn-

chronous trigger processor. In Lecture Notes In Computer Science; Vol. 1312,

Proceedings of the Third International Workshop on Rules in Database Sys-

tems table of contents, pages 51–66. Springer-Verlag, 1997.

[HK00] Chun-Nan Hsu and Craig A. Knoblock. Semantic query optimization for

query plans of heterogeneous multidatabase systems. Knowledge and Data

Engineering, 12(6):959–978, 2000.

[IBM08] IBM. Service oriented architecture: Soa, 2008. http://www-

306.ibm.com/software/solutions/soa/.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S.

Weld. An adaptive query execution system for data integration. In SIG-

MOD ’99: Proceedings of the 1999 ACM SIGMOD international conference

on Management of data, pages 299–310, New York, NY, USA, 1999. ACM.

[IO01] H. Ishikawa and M. Ohta. An active web-based distributed database system

for e-commerce. In In Proc. Web Dynamics Workshop, London, 2001.

[JCV84] Matthias Jarke, Jim Clifford, and Yannis Vassiliou. An optimizing prolog

front-end to a relational query system. SIGMOD Rec., 14(2):296–306, 1984.

[Kel86] A. M. Keller. The role of semantics in translating view updates. Computer,

19(1):63–73, 1986.

[KW96] Chung T. Kwok and Daniel S. Weld. Planning to gather information. In

13th AAAI National Conf. on Artificial Intelligence, pages 32–39, Portland,

Oregon, 1996. AAAI / MIT Press.

[LC00] Dongwon Lee and Wesley W. Chu. Constraints-preserving transformation

from XML document type definition to relational schema. In International

Conference on Conceptual Modeling / the Entity Relationship Approach,

pages 323–338, 2000.

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective. In PODS ’02:

Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 233–246, New York, NY, USA, 2002.

ACM.

References 161

[LM07] Jing Lu and Bernhard Mitschang. Dis-cs: Improving enterprise data integra-

tion by constraint service. In ISCA 20th International Conference on Com-

puter Applications in Industry and Engineering (CAINE 2007), San Fran-

cisco, California USA, 2007.

[LM08a] Jing Lu and Bernhard Mitschang. A constraint-aware query optimizer for

web-based data integration. In Proceedings of the Fourth International Con-

ference on Web Information Systems and Technologies (WEBIST 2008), Fun-

chal, Madeira, Portugal, 2008.

[LM08b] Jing Lu and Bernhard Mitschang. An xquery-based trigger service to bring

consistency management to data integration systems. In iiWAS’08: Proceed-

ings of the 10th International Conference on Information Integration and

Web-based Applications and Services, pages 154–161, Linz, Austria, 2008.

ACM Press.

[LM09] Jing Lu and Bernhard Mitschang. Enforcing data consistency in data in-

tegration systems by xquery trigger service. International Journal of Web

Information Systems, 5(2), 2009.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heteroge-

neous information sources using source descriptions. In VLDB ’96: Proceed-

ings of the 22th International Conference on Very Large Data Bases, pages

251–262, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[Mar08a] MarkLogic, 2008. http://www.marklogic.com/.

[Mar08b] MarkLogic. Marklogic server technical data sheet, 2008.

http://www.marklogic.com/resources/marklogic-server-technical-data-

sheet.html.

[Mar08c] MarkLogic. Xml repository, 2008. http://www.marklogic.com/capabilities/xml-

repository.html.

[Mel03] Jim Melton, editor. Advanced SQL: 1999, Understanding Object-Oriented

and Other Advanced Features. Morgan Kaufmann, 2003.

[Mel05] Roman B. Melnyk. Db2 basics: An introduc-

tion to the sql/xml publishing functions, 2005.

http://www.ibm.com/developerworks/db2/library/techarticle/dm-

0511melnyk/.

[Men97] Elliott Mendelson, editor. Introduction to Mathematical Logic, Fourth Edi-

tion. Chapman & Hall/CRC, 1997.

[MGKS96] John Mylopoulos, Avigdor Gal, Kostas Kontogiannis, and Martin Stanley.

A generic integration architecture for cooperative information systems. In

COOPIS ’96: Proceedings of the First IFCIS International Conference on

Cooperative Information Systems, page 208, Washington, DC, USA, 1996.

IEEE Computer Society.

162 References

[Mic09] Microsoft. Optimistic concurrency (ado.net data services framework), 2009.

http://msdn.microsoft.com/en-us/library/cc668770.aspx.

[MUR09] Makoto MURATA. Relax ng, 2009. http://relaxng.org/.

[OB04] Mourad Ouzzani and Athman Bouguettaya. Query processing and optimiza-

tion on the web. Distrib. Parallel Databases, 15(3):187–218, 2004.

[OCKM06] F. Özcan, D. Chamberlin, K. Kulkarni, and J.-E. Michels. Integration of sql

and xquery in ibm db2. IBM Syst. J., 45(2):245–270, 2006.

[OMG06] OMG. Mof core specification, v2.0, 2006. http://www.omg.org/docs/formal-

/06-01-01.pdf.

[Ora00] Oracle8i”the xml enabled data management system. In ICDE ’00: Proceed-

ings of the 16th International Conference on Data Engineering, San Diego,

California, USA, 2000. IEEE Computer Society.

[Ora08a] Oracle. Oracle bi publisher overview, 2008.

http://www.oracle.com/technology/products/xml-publisher/index.html.

[Ora08b] Oracle. Oracle xml db, 2008. http://www.oracle.com/technology/tech/xml-

/xmldb/index.html.

[Ora09] Oracle. Oracle berkeley db xml, 2009. http://www.oracle.com/database-

/berkeley-db/xml/index.html.

[PAGM96] Yannis Papakonstantinou, Serge Abiteboul, and Hector Garcia-Molina. Ob-

ject fusion in mediator systems. In VLDB ’96: Proceedings of the 22th Inter-

national Conference on Very Large Data Bases, pages 413–424, San Francisco,

CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[PD99] Norman W. Paton and Oscar Dı́az. Active database systems. ACM Comput.

Surv., 31(1):63–103, 1999.

[PLO91] HweeHwa Pang, Hongjun Lu, and Beng Chin Ooi. An efficient semantic query

optimization algorithm. In Proceedings of the Seventh International Confer-

ence on Data Engineering, pages 326–335, Washington, DC, USA, 1991. IEEE

Computer Society.

[PPW03] G. Papamarkos, A. Poulovassilis, and P. Wood. Event-condition-action rule

languages for the semantic web. In In Proc. Workshop on Semantic Web and

Databases, at VLDB’03, Berlin, 2003.

[PV02] Yannis Papakonstantinou and Vasilis Vassalos. Architecture and implemen-

tation of an xquery-based information integration platform. IEEE Data Eng.

Bull., 25(1):18–26, 2002.

[RLS+98] Johnathon Robie, Joe Lapp, David Schach, Michael Hyman,

and Johnathon Marsh. Xml query language (xql), 1998.

http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[RS86] Lawrence A. Rowe and Kurt A. Shoens. Data abstraction, views and updates

in rigel. pages 278–294, 1986.

References 163

[Rys01] Michael Rys. Bringing the internet to your database: Using sqlserver 2000

and xml to build loosely-coupled systems. In Proceedings of the 17th Inter-

national Conference on Data Engineering, pages 465–472, Washington, DC,

USA, 2001. IEEE Computer Society.

[Sch00] Uwe Schöning, editor. Logik für Informatiker. Spektrum Akademischer Ver-

lag, 2000.

[Sch09] Schematron, 2009. http://www.schematron.com.

[SD95] Eric Simon and Angelika Kotz Dittrich. Promises and realities of active

database systems. In VLDB ’95: Proceedings of the 21th International Con-

ference on Very Large Data Bases, pages 642–653, San Francisco, CA, USA,

1995. Morgan Kaufmann Publishers Inc.

[Shu00] Hua Shu. Using constraint satisfaction for view update. J. Intell. Inf. Syst.,

15(2):147–173, 2000.

[SJGP94] Michael Stonebraker, Anant Jhingran, Jeffrey Goh, and Spyros Potamianos.

On rules, procedures, caching and views in database systems. pages 363–372,

1994.

[SNS05] Feng Shao, Antal Novak, and Jayavel Shanmugasundaram. Triggers over

xml views of relational data. In ICDE ’05: Proceedings of the 21st Inter-

national Conference on Data Engineering, pages 483–484, Washington, DC,

USA, 2005. IEEE Computer Society.

[SNS06] Feng Shao, Antal Novak, and Jayavel Shanmugasundaram. Triggers over

nested views of relational data. ACM Trans. Database Syst., 31(3):921–967,

2006.

[SO89] S. T. Shenoy and Z. M. Ozsoyoglu. Design and implementation of a semantic

query optimizer. IEEE Trans. on Knowl. and Data Eng., 1(3):344–361, 1989.

[SPD08] Mark Fussell Shankar Pal and Irwin Dolobowsky. Xml support

in microsoft sql server 2005, 2008. http://msdn.microsoft.com/en-

us/library/ms345117.aspx.

[SQL92] Information technology - database language sql, 1992.

http://www.contrib.andrew.cmu.edu/ shadow/sql/sql1992.txt.

[Sun08a] Sun. Data access object, 2008. http://java.sun.com/blueprints/corej2eepatterns-

/Patterns/DataAccessObject.html.

[Sun08b] Sun. J2ee connector architecture white paper - integrating

java applications with existing enterprise applications, 2008.

http://java.sun.com/javaee/overview/whitepapers/connector.jsp.

[Sun08c] Sun. Transfer object, 2008. http://java.sun.com/blueprints/patterns-

/TransferObject.html.

[Sun08d] Sun. Transfer object assembler, 2008.

http://java.sun.com/blueprints/corej2eepatterns-

/Patterns/TransferObjectAssembler.html.

164 References

[Sun09] Sun. Java message service (jms), 2009. http://java.sun.com/products/jms/.

[TC97] Can Turker and Stefan Conrad. Towards maintaining integrity of federated

databases. In BIWIT ’97: Proceedings of the 3rd Basque International Work-

shop on Information Technology (BIWIT ’97), page 93, Washington, DC,

USA, 1997. IEEE Computer Society.

[TFC83] Luiz Tucherman, Antonio L. Furtado, and Marco A. Casanova. A pragmatic

approach to structured database design. In VLDB ’83: Proceedings of the

9th International Conference on Very Large Data Bases, pages 219–231, San

Francisco, CA, USA, 1983. Morgan Kaufmann Publishers Inc.

[TIHW01] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Up-

dating xml. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD inter-

national conference on Management of data, pages 413–424, New York, NY,

USA, 2001. ACM.

[Ull97] Jeffrey D. Ullman. Information integration using logical views. In ICDT ’97:

Proceedings of the 6th International Conference on Database Theory, pages

19–40, London, UK, 1997. Springer-Verlag.

[VA96] Mark W. W. Vermeer and Peter M. G. Apers. The role of integrity constraints

in database interoperation. In VLDB ’96: Proceedings of the 22th Interna-

tional Conference on Very Large Data Bases, pages 425–435, San Francisco,

CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[VSCR00] Genoveva Vargas-Solar, Christine Collet, and Helena G. Ribeiro. Active ser-

vices for federated databases. In SAC ’00: Proceedings of the 2000 ACM

symposium on Applied computing, pages 356–360, New York, NY, USA, 2000.

ACM.

[W3C99a] W3C. Document type definition, 1999. http://www.w3.org/TR/REC-

html40/sgml/dtd.html.

[W3C99b] W3C. Xsl transformations (xslt) 1.0, 1999. http://www.w3.org/TR/xslt.

[W3C06a] W3C. Extensible markup language (xml) 1.0 (fourth edition), 2006.

http://www.w3.org/TR/2006/REC-xml-20060816/.

[W3C06b] W3C. Xml schema, 2006. http://www.w3.org/XML/Schema.

[W3C08a] W3C. Xquery update facility 1.0, 2008. http://www.w3.org/TR/xquery-

update-10/.

[W3C08b] W3C. Xquery update facility 1.0 requirements, 2008.

http://www.w3.org/TR/xquery-update-10-requirements/.

[Wan08] Xiaolong Wan. Enforcing constraints and triggers for active data services,

2008. Master Thesis, University of Stuttgart, Diplomarbeit Nr: 2714.

[Wid96] Jennifer Widom. The starburst active database rule system. IEEE Transac-

tions on Knowledge and Data Engineering, 8(4), 1996.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems.

Computer, 25(3):38–49, 1992.

References 165

[WRM06] Ling Wang, Elke A. Rundensteiner, and Murali Mani. Updating xml views

published over relational databases: towards the existence of a correct update

mapping. Data Knowl. Eng., 58(3):263–298, 2006.

[Xca08] Xcalia. Xcalia intermediation core, 2008. http://www.xcalia.com.

[xfr06] xfront. Xml schema: Best practices, 2006.

http://www.xfront.com/BestPracticesHomepage.htm.

[XML00] XML:DB. Xupdate - xml update language., 2000. http://xmldb-

org.sourceforge.net/xupdate/.

