
Multi-Field Visualization on
Graphics Processing Units

Von der Fakultät Informatik, Elektrotechnik und Informations-

technik der Universität Stuttgart zur Erlangung der Würde

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Ralf Peter Botchen

aus Frankfurt am Main

Hauptberichter: Prof. Dr. T. Ertl

Mitberichter: Prof. Dr. M. Chen

Prof. Dr. D. Weiskopf

Tag der mündlichen Prüfung: 19.11.2008

Institut für Visualisierung und Interaktive Systeme

der Universität Stuttgart

2008

CONTENTS

List of Abbreviations and Acronyms 1

Abstract and Chapter Summaries (in English and German) 3
Abstract . 3
Chapter Summaries . 4
Zusammenfassung . 9
Kapitelzusammenfassungen . 10

1 Introduction 17
1.1 Goal of this Thesis . 19
1.2 Acknowledgments . 20

2 Graphics and Visualization Fundamentals 23
2.1 Visualization . 23
2.2 The Visualization Pipeline . 24
2.3 Grid Types and Data . 26

2.3.1 Structured Grids . 26
2.3.2 Unstructured Grids . 27
2.3.3 Point Clouds . 28
2.3.4 Grid Interpolation . 28

2.4 Introduction to Flow Visualization 31
2.4.1 Particle Based Techniques 31
2.4.2 Line Integral Convolution 32

2.5 Introduction to Volume Visualization 33
2.5.1 Indirect Volume Visualization 34
2.5.2 Direct Volume Visualization 35

2.6 The Rendering Pipeline . 38
2.7 Graphics Processing Units . 39

3 Visualization of Multi-field Flow Data 41
3.1 Basic Ideas on Fluid Dynamics 43
3.2 Simulation and Measuring Techniques in a Nutshell 44
3.3 Feature Classification . 47
3.4 Strategies for Uncertainty Visualization 51

3.4.1 Texture-based Flow Visualization 52
3.4.2 Texture-Based Uncertainty Visualization 54
3.4.3 Color-Based Uncertainty Visualization 61
3.4.4 Application Cases . 64

3.5 Combined Feature Visualization 68

I

II Contents

3.5.1 Definition of Feature Criteria 69

3.5.2 Using First-Order Fuzzy Logic 70

3.5.3 Interactive Combined Feature Visualization for Analysis . 71

4 Flexible Multi-volume Visualization 77

4.1 Medical Imaging Techniques in a Nutshell 78

4.2 Multi-volume Rendering . 80

4.2.1 Slice-based Multi-volume Rendering 81

4.2.2 Multi-Volume Raycasting 82

4.3 The Render Graph Framework 87

4.3.1 The Scene Node . 88

4.3.2 Structural Nodes . 88

4.3.3 Shader Nodes . 89

4.3.4 A Render Graph Example 89

4.4 Dynamic Shader Generation . 90

4.4.1 Two-pass Shader Assembly 91

4.5 Application Cases . 94

5 Multi-field Video Visualization 101

5.1 Concepts and Definitions for Video Visualization 104

5.2 Video Processing . 107

5.2.1 Video Transfer Function 107

5.2.2 Optical Flow . 108

5.2.3 Seed Point Generation 109

5.2.4 Classifying Actions . 110

5.2.5 Object Relations . 113

5.3 The Multi-field Video Visualization Framework 116

5.3.1 Distorted Video Volumes 118

5.3.2 Scalable Multi-field Bricking 119

5.3.3 Integrating Optical Flow in Volume Visualization 121

5.3.4 Flow Geometry Bricks 123

5.4 Types of Visual Signatures . 123

5.5 A User Study on Visual Signatures 127

5.5.1 Evaluation of Visual Signatures 131

5.5.2 Application Cases . 134

5.6 A Survey on Visual Effects for VideoPerpetuoGrams 138

5.7 The Extended VideoPerpetuoGram Framework 141

5.7.1 Illustrating Focus Information 143

5.7.2 Conveying Context Information 146

5.7.3 Efficient Focus and Context Rendering 147

5.8 Evaluation of VideoPerpetuoGram Visualization 148

Contents III

6 Visualization of Encoded Multi-field Data 153
6.1 Radial Basis Functions . 154

6.1.1 Spherical and Ellipsoidal Gaussians 156
6.1.2 Functional Approximation 158
6.1.3 Scalar vs. Vector Encoding 161

6.2 Interactive Rendering . 162
6.2.1 Data Structure and Texture Layout 163
6.2.2 Slicing Planes and Volume Visualization 165
6.2.3 Feature Extraction . 167
6.2.4 Particle Advection . 169
6.2.5 Texture-based Flow Visualization 171

6.3 Application Cases . 173

7 Multi-field Techniques in Visualization 179
7.1 Conclusion . 182
7.2 Future Challenges . 185

Bibliography 187

IV Contents

LIST OF ABBREVIATIONS AND ACRONYMS

API application programming

interface

bit binary digit

cf. confer

CCD Charge-coupled Device

CCTV Closed Circuit Television

CFD Computational Fluid

Dynamics

Cg C for Graphics

CPU Central Processing Unit

CT Computer Tomography

CTA Computed Tomography

Angiography

DES Detached-Eddy Simulation

DNS Direct Numerical

Simulation

Dr. rer. nat. Doctor rerum naturalium

DVR Direct Volume Rendering

ECG electrocardiogram

EBF Elliptical Basis Functions

e.g. exempli gratia

et al. et alii, et aliae, et alia

etc. et cetera

FEM finite element methods

fps frames per second

fMRI functional Magnetic

Resonance Imaging

GB gigabyte

GHz gigahertz

GLSL OpenGL Shading

Language

GPU Graphics Processing Unit

HLSL High Level Shading

Language

IA interrogation areas

i.e. id est

LIC Line Integral

Convolution

LES Large-Eddy Simulation

MB megabyte

MHD Magnetohydrodynamics

MRI Magnetic Resonance

Imaging

OLIC Oriented Line Integral

Convolution

PC Personal Computer

PIV Particle Image

Velocimetry

pixel picture element

Prof. Dr. Professor Doctor

RAM Random Access Memory

RANS Reynolds-Averaged

Navier-Stokes

RBF Radial Basis Functions

RGB red, green, blue

RGBA red, green, blue, alpha

s second

SIMD Single Instruction,

Multiple Data

spf seconds per frame

texel texture element

voxel volume element

VPG Video Perpetuo Gram

WTF goes without saying

1

2 Abbreviations and Acronyms

ABSTRACT AND CHAPTER SUMMARIES

Abstract

The generation of multi-field data has become commonplace in many scientific

disciplines and application areas today. While researchers have produced numer-

ous techniques for analyzing a single scalar, vector, or tensor field over the last

years, finding approaches for exploring multi-field datasets still forms one of the

significant challenges in visualization and analytics. One crucial aspect for the

growing demand of multi-field visualization techniques is the fact that scientists

need to explore the interaction of these fields to gain deeper understanding of un-

derlying processes and relationships. This work addresses the challenge of illus-

trating multi-field data and presents new approaches of visualization techniques

for a variety of application areas, with the aim to map these algorithms to graphics

hardware architectures to achieve interactive visualization.

In particular, the main contributions of this thesis contain multi-field flow vi-

sualization with one focus on integrating an additional flow uncertainty value,

based on measurement simulation, into visualization. Therefore, texture based

advection techniques are extended for the transport and display of the additional

information. The second focus lies on the illustration of multiple fields as one

combined characteristic set to minimize memory usage and allow further feature

extraction from the new unique representation. New techniques are developed for

multi-field volume rendering in the area of medical applications, with the primary

challenge to intermix volumetric data that was acquired by different medical imag-

ing modalities. The proposed solutions give implementation details for raycasting

and slice-based rendering of multiple overlapping volumes. The third application

area is video visualization. This domain is a typical representative for multi-field

visualization, as it combines both, flow fields and multi-volume data for illus-

tration. The goal of the introduced video visualization techniques is to extract

dynamic or still objects in a scene, detect their individual actions and the relations

among each other and to display this filtered information as a continuous stream

of signatures for analysis. Another problematic issue in multi-field visualization

is the size of the data, which is usually rather large. Yet, data transfer to and mem-

ory size on GPUs are two major bottlenecks. To address this issue, throughout the

thesis techniques for data reduction by combination and data bricking for contin-

uous streaming are discussed. Finally, multi-field data encoding and visualization

techniques are presented that utilize the advantages of radial basis functions to

minimize the data size.

3

4 Abstract and Chapter Summaries

Chapter Summaries

An overview of the thesis is given in this section as chapter summaries.

Chapter 1: Introduction

The first chapter introduces the topic of this thesis. Multi-field visualization as

such is a relatively new area of research that deals with large data sizes and the

challenge to map various overlapping fields to the available screen space for il-

lustration. Thus, the focus of this discussion is the demand for novel multi-field

visualization techniques in science and engineering disciplines, and the issues that

need to be considered for developing new algorithms that fulfill the requirements

to advance analysis and understanding of the phenomena occurring in the data.

Chapter 2: Graphics and Visualization Fundamentals

In Chapter 2 an overview of visualization technologies and methods is given. The

chapter starts by an introduction to visualization in general, then giving a descrip-

tion of the fundamental visualization pipeline and its stages. Next, the various

types of grids that are used for the data analysis throughout the thesis are de-

scribed, followed by the interpolation schemes that can be computed on these

grids, to obtain values at arbitrary locations from the data given on discrete grid

points.

Subsequently, an overview of basic principles on flow visualization is pro-

vided. The section starts with a formal definition of flows, before it describes

particle based tracing techniques for steady and unsteady flows as representative

for a sparse visualization. As counterpart, for a dense visualization, the texture

based line integral convolution method is introduced.

Chapter 2 continues with an overview of volume visualization used for visual-

izing scalar fields. The workflows of indirect and direct volume rendering meth-

ods are described, whereby the direct volume rendering techniques are subdivided

into raycasting and slice-based volume rendering. For the latter two techniques,

the volume rendering integral is described and blending operators by means of

image compositing are given. The discussion of the former is restricted to the

Marching-Cubes algorithm for isosurface extraction.

The final part of this chapter details operations on a lower abstraction level.

It starts with the rendering pipeline that transforms all geometrical primitives to

pixels. Since this transformation is usually performed by graphics hardware and

all algorithms in this thesis are developed with the aim to be mapped to commod-

ity graphics hardware architectures, the chapter closes with a discussion on the

functionality of graphics processing units.

Abstract and Chapter Summaries 5

Chapter 3: Multi-field Flow Visualization

Chapter 3 starts with an introduction to multi-field flow visualization and outlines

related work, published in literature. The following sections exemplify the ba-

sic idea of fluid dynamics on the Navier-Stokes equation and outline some of the

most important simulation and measuring techniques used to obtain the flow data

presented in this work. Based on this flow data, the subsequent section gives an

overview of flow features and their mathematical definition, as well as an intro-

duction to possible uncertainties and errors that can adhere the data during acqui-

sition. These uncertainties can also be understood as a kind of flow feature and

thus, need to be considered for ensuing visualization.

In the following sections, this chapter presents five novel texture-based tech-

niques to visualize uncertainty in time-dependent 2D flow fields. All methods use

semi-Lagrangian texture advection as basis to show the flow direction by streak-

lines. Three of these methods include an additional step that is derived from a

generic filtering process, and then incorporated into the traditional texture advec-

tion pipeline as pre-processing or post-processing step. From the perception point

of view, these methods indirectly map the uncertainty to intensity of the image,

by blurring the streaklines. The two remaining methods use a color mapping

approach to display the uncertainty extent on a different perceptional channel,

i.e., hue. The visualization methods allow for a continuous change of the density

of flow representation by adapting the density of particle injection, and can be

mapped to efficient GPU implementations. The usefulness of these techniques is

demonstrated for examples of simulation and PIV data sets.

Flow data usually contains various features and multi-field data that bears not

only a flow field, but also information about pressure, temperature or even uncer-

tainty, tends to be very large and unwieldy for visualization. To prepare this data

for interactive visualization, the next section of this chapter describes a framework

that exploits first-order fuzzy logic to combine multiple scalar features, extracted

from the original data, to one logical combined feature set. The combination of

several feature criteria to one characteristic subset can be used to build one sin-

gle geometric isosurface representation of several features, and thus, significantly

reduces the amount of graphical primitives that would be needed to display all

features separately. The created subset is also utilized for particle seeding, with

the aim to show the behavior of the flow in the surrounding area.

Chapter 4: Multi-field Volume Visualization

Volume rendering of multiple intersecting volumetric objects is a difficult visu-

alization task, especially if different rendering styles need to be applied to the

objects, in order to achieve the desired illustration effect. Chapter 4 describes a

generic technique for multi-volume rendering, discusses implementation details

6 Abstract and Chapter Summaries

for two rendering approaches and verifies the techniques on several medical ap-

plication examples.

The chapter begins with an overview of related work in multi-volume visual-

ization and outlines the applied medical imaging techniques that have been used to

obtain the test datasets. The general challenges of multi-volume rendering are dis-

cussed, before technical details for slice-based multi-volume rendering and multi-

volume raycasting are given. The focus of this part is the problem of intermixing

several overlapping volumes and the different issues that need to be considered for

implementing these approaches. Both techniques are implemented in a generic

multi-volume rendering framework that is based on a freely configurable render-

ing graph. The following sections describe the so called render graph framework

and explain the evaluation of the graph as a two-pass process for the dynamic

generation of shader programs. The chapter is concluded by the demonstration

and discussion of various medical application cases that show the flexibility of the

system before it gives a comparison of rendering performance for both techniques.

Chapter 5: Multi-field Video Visualization

Video visualization is a computation process that extracts meaningful information

from original video data sets and conveys the extracted information to users in

appropriate visual representations. The goal of Chapter 5 is to presents a broad

treatment of the subject, following a typical research pipeline involving concept

formulation, system development, a path-finding user study, an expert survey, and

a field trial with real application data. The chapter starts with a motivation on

video visualization and outlines related work in this field. The next section in-

troduces concepts and definitions for video visualization that are the basis for the

following implementations and studies. The main part of this chapter starts with

a summary of a number of image processing modules and filters that are used

in the video processing stage to extract meaningful information form the video

stream. In particular, this section includes the description of a video transfer func-

tion to highlight important features in the video stream, an optical flow filter for

estimating motion flows in subsequent images, a seed point generation algorithm

for placing flow glyphs in the video, an action recognition and classification filter

that is based on a motion descriptor and an object relation filter that computes 1:1

relations for all objects appearing in the scene, and assigns these relations to the

objects for visualization.

Based on the extracted information of these filters, the next section presents the

video visualization framework that was developed to maintain a user study on vi-

sual signatures. The system supports four kinds of signatures that are rendered as

a combination of volume and flow visualization in a volume bounding box that is

bend to a horseshoe shape for better screen space utilization. Further, this system

implements a video volume bricking mechanism to allow a continuous stream-

Abstract and Chapter Summaries 7

ing and rendering of large video volumes. The effectiveness of this approach is

demonstrated with example visualizations constructed from two benchmarking

problems in computer vision. The subsequent section provides details about the

assembly, execution and evaluation of a major user study on visual signatures

that was accomplished with the renderings produced with the visualization frame-

work. The study demonstrates that video visualization is both technically feasible

and cost-effective. Further, the study gives evidence that ordinary users can be

accustomed to the visual features depicted in video visualizations, and can learn

to recognize visual signatures of a variety of motion events.

The results of the user study inspired to develop new video visualization algo-

rithms as mapping techniques that were validated by an expert survey and led to

the implementation of an extended video visualization framework. Based on the

visualization expert survey, the second part of this chapter proposes a visualization

solution, where a video stream is rendered as abstract illustrative visualization that

conveys a continuous stream of multi-field information including extracted ob-

jects, detected actions and the estimated relationship between objects. This type

of video visualization is named as VideoPerpetuoGram (VPG). Therefore, the ba-

sic visualization system is extended to handle the raw and processed information

of the video stream in a multi-field visualization pipeline, incorporating new the

visualization techniques that scored best in the survey. The chapter closes with

an evaluation of the extended visualization framework and examines the effective

means for depicting multi-field information in VPG.

Chapter 6: Visualization of Encoded Multi-field Data

An alternative approach that exploits a compact and universal data representation

scheme of radial basis functions (RBF) and ellipsoidal basis functions (EBF) to

store multi-field data in the local memory of the graphics hardware is given in

Chapter 6. Procedural encoding of scattered and unstructured multi-field datasets

using RBFs is an active area of research with great potential for compactly rep-

resenting large datasets. The reduced storage requirement allows the compressed

datasets to completely reside in the local memory of the graphics card, thus, en-

abling accurate and efficient processing and visualization without data transfer

problems.

The introduction of this chapter gives a motivation on the use of procedural

encoding for the visualization purpose and outlines a variety of related work in this

area of research. The fundamentals of spherical and ellipsoidal basis functions and

the workflow of functional approximation using these functions is detailed in the

first section of Chapter 6. The steps for procedural encoding of scalar and vector

data are discussed in the following section. This part includes domain localization,

initial parameter approximation, nonlinear optimization and error measurement

for the optimization process based on the H1-norm and the L2-norm.

8 Abstract and Chapter Summaries

The main section of this chapter presents a framework for multi-field ap-

proximation and visualization, using spherical and ellipsoidal Gaussian functions,

which provide greater compression for encoding volumetric and vector data of dif-

ferent type and structure, e.g., uniform meshes, tetrahedral meshes, and meshless

representations. The proposed system supports new hierarchical techniques that

effectively encode data on arbitrary grids including volumetric scalar, vector, and

multi-field data and adapts the employed basis functions to graphics hardware

rendering. The effectiveness and performance for both spherical Gaussians and

ellipsoidal Gaussians is demonstrated by various GPU-based visualization tech-

niques, such as particle tracing, texture advection, cutting planes, isosurfaces, and

volume rendering, build on those techniques introduced in the previous chapters.

The chapter is then concluded with an evaluation of a variety of encoded applica-

tion datasets and a comparison of the different encoding techniques for interactive

rendering.

Chapter 7: Multi-field Techniques in Visualization

The last chapter concludes this thesis with guidelines for the design of multi-field

visualization methods. It gives a complete overview on all proposed techniques

and a discussion on the ”lessons learned” by accomplishing the studies and dur-

ing the realization of the approaches. Further, a review on the achievements and

gained insights of all individual techniques is given, followed by some thoughts

on still existing challenges that need to be considered for the design of new multi-

field visualization techniques in future.

Zusammenfassung und Kapitelzusammenfassungen 9

Zusammenfassung

Die Generierung von Multifeld-Daten ist heutzutage in vielen wissenschaftlichen

Disziplinen und auch in praktischen Anwendungsgebieten weit verbreitet. Wäh-

rend Wissenschaftler im Verlauf der letzten Jahre zahlreiche Techniken für die

Analyse von einzelnen Skalar-, Vektor-, und Tensorfeldern entwickelten, so ber-

gen Lösungsansätze zur Erkundung von Multifeld-Datensätzen eine komplexere

Problematik, die die Forschung im Bereich der Visualisierung und der Analytik

vor enorme Herausforderungen stellt. Ein entscheidender Aspekt für die steigende

Nachfrage an Multifeld-Visualisierungsmethoden ist die Tatsache, dass Wissen-

schaftler und Analysten die Interaktion zwischen mehreren in Relation zueinander

stehenden Feldern erforschen wollen, um weitere Erkenntnisse über die beobach-

teten Phänomene zu gewinnen, um so ein tieferes Verständnis der zugrunde lie-

genden Prozesse zu ermöglichen. Diese Arbeit behandelt Problemstellungen, die

bei der Visualisierung von Multifeld-Daten auftreten und präsentiert neue Visua-

lisierungskonzepte und Algorithmen für eine Vielzahl von Anwendungsgebieten.

Ziel ist weiterhin, diese Algorithmen auf moderne Grafikhardwarearchitekturen

abzubilden, um so verstärkt eine interaktive Darstellung zu gewährleisten, die für

einen kontinuierlichen Analyseprozess von großer Bedeutung ist.

Im Einzelnen enthalten die Beiträge in dieser Doktorarbeit Konzepte zur Vi-

sualisierung von Multifeld-Strömungsdaten, mit Fokus der Integration eines zu-

sätzlichen Ungenauigkeitsparameters in die Darstellung, der bei Messung oder

Simulation der Daten entstehen kann. Für die Umsetzung wird eine bildbasierte

Strömungsvisualisierungstechnik, die auch als Texturadvektion bekannt ist, im-

plementiert. Diese Technik wird erweitert, um zusätzliche Informationen zu trans-

portieren und darzustellen. Der zweite Schwerpunkt im Bereich der Strömungs-

visualisierung basiert auf einer Technik zur Illustration von mehreren Skalarfel-

dern als ein logisch kombiniertes charakteristisches Skalarfeld. Der Vorteil dieser

Technik liegt zum einen in der Minimierung des Speicherbedarfs, führt zu ei-

ner vereinfachten Suche und Extraktion von Strömungscharakteristiken auf dem

reduzierten Feld und kann zum anderen als Kriterium verwendet werden, um Par-

tikel in die Strömung zu injizieren. Ein weiterer Teil behandelt neue Techniken

zur Multifeld-Volumenvisualisierung von mehreren zusammengehörigen skala-

ren Feldern aus dem medizinischen Kontext. Die primäre Herausforderung liegt

hier im geeigneten Vermischen der einzelnen volumetrischen Daten, die durch

verschiedene medizinische Bildgebungsverfahren erzeugt wurden. Insbesonde-

re bei der Wahl eines spezifischen Algorithmus zur direkten Volumenvisualisie-

rung sind hier unterschiedliche Aspekte zu beachten. Die präsentierten Lösungen

beinhalten Implementierungsdetails für Raycasting sowie für das Schnittebenen-

basierte Verfahren zur Visualisierung von Szenen, in denen sich mehrere Volu-

men überschneiden. Der dritte Kernbereich dieser Dissertation behandelt die Vi-

10 Zusammenfassung und Kapitelzusammenfassungen

deovisualisierung. Dieses Anwendungsgebiet ist ein klassischer Stellvertreter für

Multifeld-Visualisierung. Hier werden beide bisher besprochenen Gebiete für die

Darstellung der Multifeld-Daten kombiniert. Multifeld-Videodaten beinhalten so-

wohl Volumendaten von extrahierten Objekten als auch Bewegungsinformationen

und somit Strömungsdaten dieser Objekte die zur Visualisierung herangezogen

werden. Ziel der vorgestellten Videovisualisierungstechniken ist die Extraktion

dynamischer und statischer Objekte aus einer Szene und weiterführend die De-

tektion von individuellen Aktionen und Relationen, die den einzelnen Objekten

zugeordnet werden können. Anhand dieser gefilterten Informationen wird dann ei-

ne kontinuierliche Endlosdarstellung des Videos generiert, wobei die extrahierten

Objekte in dieser Ansicht als raum-zeitliche Signaturen dargestellt werden, die für

die Analyse der Daten von großem Wert sind. Eine weitere Problematik, die bei

der Visualisierung von Multifeld-Daten auftitt, ist die Tatsache, dass die Existenz

von mehreren, in der Regel recht großen Datenfeldern auch unweigerlich zu einem

enormen Speicherbedarf führt. Der Transport großer Datenmengen vom Haupt-

speicher zum Grafikspeicher ist jedoch ein wesentlicher Flaschenhals, der für

die Realisierung von interaktiven Visualisierungstechniken berücksichtigt werden

muss. Verschiedene Lösungsvorschläge für diese Problemstellung finden sich in

dieser Dissertation in Form einer Unterteilung der Daten in einzelne Blöcke, die

dann kontinuierlich zur GPU heruntergeladen werden können. Auch die Kombi-

nation und somit eine Fusion von mehreren Datenfeldern zu einem charakteristi-

schen Datenfeld, das dann platzsparend im Grafikspeicher gelagert werden kann,

wird hier vorgestellt. Da diese Form von Datenhandhabung nicht in allen Anwen-

dungsgebieten einsetzbar ist, widmet sich das letzte Kapitel ausschließlich der Re-

konstruktion von komprimierten Multifeld-Daten. Durch Approximation mittels

radialer Basisfunktionen ist es möglich, komplette Multifeld-Datensätze durch ei-

ne neue Datenstruktur zu repräsentieren und so als Ganzes im GPU-Speicher zu

lagern. Um diese komprimierten Multifeld-Daten darzustellen, präsentiert diese

Arbeit GPU-basierte Dekodierungsalgorithmen, die eine interaktive Rekonstruk-

tion und Visualisierung ermöglichen.

Kapitelzusammenfassungen

Eine Übersicht dieser Dissertation wird in den folgenden Abschnitten durch eine

Zusammenfassung jedes einzelnen Kapitels gegeben.

Kapitel 1: Einleitung

Im erste Kapitel werden die Themen und die Problemstellungen, die in dieser Dis-

sertation abgehandelt werden vorgestellt. Die Visualisierung von Multifeld-Daten

als solches ist eine verhältnismäßig neue Forschungsdisziplin, die sich substanzi-

ell mit der simultanen Handhabung von mehreren großen Datenfeldern beschäftigt

Zusammenfassung und Kapitelzusammenfassungen 11

sowie mit der Herausforderung, diese sich überlappenden Daten möglichst effizi-

ent in den Bildraum abzubilden. Einen Ansporn für die entwickelten Methoden

in dieser Arbeit gibt vor allem die wachsende Nachfrage nach neuen Multifeld-

Visualisierungstechniken sowohl für wissenschaftliche Zwecke als auch in vielen

Anwendungsgebieten. Weiterhin enthält dieses Kapitel Problematiken und Frage-

stellungen, die beachtet werden sollten, um neue Algorithmen für die Darstellung

und Analyse von Multifeld-Daten zu entwickeln. Neue Visualisierungsalgorith-

men auf diesem Gebiet unterstützen den Anwender im Wesentlichen bei der Ana-

lyse der Daten und dem Verständnis der zugrunde liegenden Phänomene, die in

den Daten auftreten.

Kapitel 2: Grafik und Visualisierungsgrundlagen

In Kapitel 2 wird ein Überblick der fundamentalen Visualisierungstechnologien

und -methoden gegeben. Das Kapitel beginnt mit einer Einleitung in das Gebiet

Visualisierung im Allgemeinen und gibt im Anschluss eine Beschreibung der zu-

grunde liegenden Visualisierungspipeline, die in der Regel durchlaufen wird, um

aus Rohdaten eine aussagekräftige Darstellung zu generieren. Im darauf folgen-

den Unterkapitel werden die verschiedenen Arten von Gittertypen vorgestellt, die

in dieser Arbeit zur Datenrepräsentation verwendet werden, gefolgt von den In-

terpolationsverfahren, die auf den entsprechenden Gittertypen definiert sind. In-

terpolation wird verwendet, um Datenwerte an beliebigen Positionen zwischen

den diskret gegebenen Datenpunkten des Gitters zu berechnen.

Der folgende Abschnitt beinhaltet die Grundprinzipien der Strömungsvisu-

alisierung und beginnt mit formalen Definitionen aus dem Bereich der Visuali-

sierung und Simulation, gefolgt von Partikel-basierten Verfolgungstechniken als

Repräsentant für eine dünne Visualisierung, für stationäre sowohl als instationäre

Strömungen. Als Gegenstück dazu wird für eine dichte Repräsentation des Strö-

mungsfelds die texturbasierte Linienintegral-Faltungsmethode (line integral con-

volution) vorgestellt. Kapitel 2 wird fortgesetzt mit einem Überblick der grundle-

genden Volumenvisualisierungsmethoden die häufig eingesetzt werden, um volu-

metrische Skalarfelder darzustellen. Im Einzelnen werden hier die Abläufe für

indirekte und direkte Volumenvisualisierungsverfahren beschrieben, wobei die

Techniken zur direkten Darstellung von Volumen in Raycasting und Schnittebenen-

basierte Verfahren unterteilt sind. Für die beiden letzteren Methoden wird zunächst

das Volumenrenderingintegral eingeführt und dann diskretisiert. Für die diskrete

Abtastung des Volumens werden Überlagerungsoperatoren vorgestellt. Diese de-

finieren die gewichtete Summierung der einzelnen Abtastpunkte. Die Diskussion

über indirekte Volumenvisualisierung beschränkt sich auf das Marching-Cubes-

Verfahren, das dazu verwendet wird um anhand eines Isowertes eine geometrische

Isofläche aus dem Volumen zu extrahieren.

Der abschließende Teil dieses Kapitels schildert den Ablauf von Operationen

12 Zusammenfassung und Kapitelzusammenfassungen

auf einer niedrigeren Abstraktionsstufe. Der Abschnitt beginnt mit der Beschrei-

bung der Rendering-Pipeline, die während der Bearbeitung alle geometrischen

Primitive rasterisiert und zu Pixeln des Ausgabebildes aufarbeitet. Da diese Um-

wandlung normalerweise auf der Grafikhardware durchgeführt wird und alle Al-

gorithmen in dieser Dissertation mit dem Ziel entwickelt wurden, sie letztendlich

auf handelsübliche Grafikhardwarearchitekturen abzubilden, schließt dieses Ka-

pitel mit einer Diskussion über den Funktionalitätsumfang von modernen Grafik-

prozessoren.

Kapitel 3: Multifeld-Strömungsvisualisierung

Kapitel 3 beginnt mit einer Einleitung in des Gebiet der Multifeld-Strömungs-

visualisierung und gibt einen Überblick über verwandte Arbeiten, die in der Li-

teratur zu finden sind. Die folgenden Abschnitte verdeutlichen die Grundidee der

Strömungsdynamik anhand der Navier-Stokes-Gleichungen und umschreiben ei-

nige der wichtigsten Simulations- und Messtechniken, die von Strömungsmecha-

nikern eingesetzt wurden, um die in dieser Arbeit verwendeten Daten zu erzeugen.

Auf der Basis dieser Strömungsdaten gibt der folgende Abschnitt einen Einblick

in unterschiedliche Stömungscharakteristiken und ihre mathematische Definition

sowie eine Erläuterung zu möglichen Ungenauigkeiten oder gar Fehlern, die den

Daten während der Erzeugung durch Messung oder Simulation anhaften können.

Diese Ungenauigkeiten können auch als eine Art Strömungscharakteristik ver-

standen werden, wobei auch für dieses Attribut die Notwendigkeit besteht, wäh-

rend des Visualisierungsprozesses brücksichtigt zu werden.

In den weiterfürenden Abschnitten stellt dieses Kapitel fünf neue texturbasier-

te Techniken vor, um Strömungsungenauigkeiten in zeitabhängigen zweidimen-

sionalen Strömungsfeldern sichtbar zu machen. Alle Methoden verwenden das

Prinzip der semi-Lagrangen Texturadvektion als Basis, um die Strömungsrichtung

durch kontinuierliche Strömungslinen darzustellen. Drei dieser Methoden imple-

mentieren einen zusätzlichen Schritt, der von einem generischen Filterprozess ab-

geleitet wurde und je nach Technik als Vorverarbeitungsschritt oder Nachverarbei-

tungsschritt in den traditionellen Ablauf der Texturadvektion eingebunden wird.

Aus Sicht der menschlichen Perzeption bilden diese Methoden die Ungenauigkeit

indirekt auf den Intensitätskanal eines Bildes ab, indem sie die Strömungslinien

orthogonal zur Strömungsrichtung verwischen und so die Intensität in diesem

Bereich minimieren. Die beiden anderen Methoden verwenden den Ansatz ei-

ner Farbkodierung, indem sie die Ungenauigkeiten anhand einer Farbtabelle auf

einzelne Farbwerte abbilden. Aus perzeptueller Sicht sind Farb- und der Inten-

sitätskanal strikt getrennt und daher die unterschiedlichen Methoden auch in Kom-

bination gut wahrnehmbar. Die texturbasierten Visualisierungsmethoden erlauben

einen kontinuierlichen Übergang der Dichterepräsentation von dünner bis hin zu

dichter Partikelverteilung zur Strömungsdarstellung, indem sie eine variable An-

Zusammenfassung und Kapitelzusammenfassungen 13

passung der Dichte für die Partikelinjektion erlauben. Alle Techniken wurden als

leistungsfähige GPU-Implementierung realisiert und ermöglichen so eine inter-

aktive Visualisierung. Die Nützlichkeit dieser Techniken wird anhand mehrerer

Anwendungsbeispiele aus der Simulation und echter Messungen, die mit der PIV-

Methode durchgeführt wurden, demonstriert.

Strömungsdaten enthalten für gewöhnlich eine Vielzahl verschiedener Cha-

rakteristiken. Multifeld-Daten, die nicht nur aus einem Strömungsfeld bestehen,

sondern auch Informationen über Druck, Temperatur oder Ungenauigkeiten ent-

halten, neigen dazu, von der Datenmenge her sehr groß und daher für die Visua-

lisierung recht unhandlich zu sein. Wie diese Datenmengen für eine interaktive

Visualisierung vorverarbeitet werden können, beschreibt der folgende Absatz die-

ses Kapitels. Hier wird ein Framework beschrieben, das durch Anwendung einer

Fuzzy-Logik erster Ordnung mehrere skalare Charakteristiken zu einer charak-

teristischen Menge logisch zu kombiniert. Dieses neu generierte Skalarfeld re-

präsentiert die charakteristische Menge aller kombinierten Felder und kann dazu

genutzt werden, um geometrische Isoflächen anhand eines vordefinierten Isower-

tes zu extrahieren. Durch diesen Vorverarbeitungsschritt verringert sich der Auf-

wand für die Visualisierung, da die Anzahl der geometrischen Primitive, die aus

dem kombinierten Feld generiert werden, maßgeblich geringer ist als die Anzahl,

die entstehen würde, wenn die Extraktion auf jedes einzelne Feld angewendet

wird. Die extrahierte geometrische Untermenge wird daraufhin für eine gezielte

Partikelinjektion herangezogen, mit dem Ziel, das Verhalten der Strömung in der

Umgebung dieser Charakteristischen Isofläche zu zeigen.

Kapitel 4: Multifeld-Volumenvisualisierung

Die Darstellung von mehreren sich gegenseitig überlappenden volumetrischen

Objekten ist eine große Herausforderung für die Volumenvisualisierung, insbe-

sondere mit der Anforderung, unterschiedliche Teilmengen der Objekte mit ver-

schiedenen illustrativen Stilen darzustellen. Kapitel 4 beschreibt eine generische

Technik zur Visualisierung von skalaren Multifeld-Daten, bespricht Implementie-

rungsdetails für zwei unterschiedliche Lösungsansätze und validiert diese Techni-

ken anhand einer Vielzahl von medizinischen Anwendungsbeispielen.

Das Kapitel beginnt mit einem Überblick der verwandten Arbeiten im Be-

reich der Multifeld-Volumenvisualisierung und gibt anschließend einen Einblick

in die wichtigsten medizinischen Messverfahren, die zur Datenakquisition der

verwendeten Testdaten eingesetzt wurden. Die Herausforderungen zur Entwick-

lung von Methoden für die Multifeld-Volumenvisualisierung werden im folgen-

den Abschnitt besprochen, bevor technische Details für Schnittebenen-basiertes

Multifeld-Volumenrendering und Multifeld-Volumenraycasting spezifiziert wer-

den. Der Fokus des nächsten Teils ist die Problematik, die beim Vermischens oder

dem so genannten ”blending” unterschiedlicher, sich überlappender Entitäten ent-

14 Zusammenfassung und Kapitelzusammenfassungen

steht und die bei der Implementierung der beiden Ansätze beachtet werden muss.

Die beiden Techniken sind in ein generisches Framework eingebunden. Dieses

basiert auf einem frei konfigurierbaren Graph-Konzept, dem ”Rendergraph”. Die

folgenden Abschnitte beschreiben den Aufbau dieses Rendergraph-Frameworks

und erklären die Evaluierung des Graphen als einen zweistufigen, dynamischen

Prozess, der für die Generierung der Shader Programme verantwortlich ist. Das

Kapitel wird durch die Demonstration und die Diskussion von verschiedenen me-

dizinischen Anwendungsszenarien abgeschlossen, die die Flexibilität und die Ein-

satzvielfalt des Systems zeigen. Beide Visualisierungstechniken werden auch auf

ihre Leistungsfähigkeit hin untersucht und verglichen.

Kapitel 5: Multifeld-Videovisualisierung

Videovisualisierung ist ein Prozess, in dem sinnvolle Informationen aus den origi-

nalen Videodaten extrahiert werden, um sie dann dem Benutzer in einer möglichst

effektiven und verständlichen Form darzustellen. Das Ziel von Kapitel 5 ist eine

relativ breite Abhandlung dieses Themengebiets und folgt dem Prinzip eines typi-

schen Forschungsablaufes, von der Konzeptformulierung, zur Systementwicklung

eines Prototypen über die Durchführung einer weitreichenden Benutzerstudie und

einer Expertenbefragung, bis hin zu Feldversuchen mit realen Anwendungsdaten.

Das Kapitel beginnt mit einer Ausführung von Beweggründen, die zur Video-

visualisierung geführt haben und beschreibt dann bereits bestehende Arbeiten auf

diesem Gebiet. Der folgende Abschnitt stellt wichtige Konzepte und Definitionen

der Videovisualisierung vor, die die Basis für folgende Implementierungen und

Benutzerstudien bilden. Der Hauptteil dieses Kapitels gliedert sich in eine Zusam-

menfassung der Bildverarbeitungsmodule, die im System der Videoverarbeitung

eingesetzt werden, um Informationen aus den Rohdaten zu extrahieren. Insbeson-

dere umfasst dieser Abschnitt die Beschreibung einer Videotransferfunktion, um

wichtige Eigenschaften im Datenstrom hervorzuheben, einen optischen Flussfil-

ter, um Bewegungen von Objekten in aufeinander folgenden Bildern zu berechnen

und einen Algorithmus zur Saatpunktgenerierung anhand derer sich Richtungs-

glyphen im Video platzieren lassen. Weiterhin wird hier ein Aktionserkennungs-

und Klassifikationsfilter vorgestellt sowie ein Objekt-Relationsfilter, der 1 : 1-

Relationen für alle erkannten Objekte berechnet, die in der Szene erscheinen und

diesen einen Relationskoeffizient zuweist, der dann zur Darstellung verwendet

wird.

Basierend auf den extrahierten Informationen der beschriebenen Filter, stellt

der folgende Abschnitt ein Framework zur Videovisualisierung vor, das entwickelt

wurde, um eine Benutzerstudie zum Thema visuelle Signaturen in der Videovisua-

lisierung zu ermöglichen. Das System unterstützt vier Arten von Signaturen, die

aus einer Kombination von Volumen- und Strömungsvisualisierung erzeugt wer-

den und die in einer zur Hufeisenform gebogenen Box im Bildraum dargestellt

Zusammenfassung und Kapitelzusammenfassungen 15

werden. Diese besondere Darstellungsform wurde gewählt, da sie den vorhande-

nen Bildraum am besten ausnutzt. Weiterhin enthält dieses System einen Datenun-

terteilungsmechanismus, um die Handhabung großer Videodaten zu vereinfachen.

Der Mechanismus teilt die Daten in kleinere Stücke auf und ermöglicht somit

einen Transfer von kleineren Blöcken zur Grafikhardware für eine kontinuierliche

Wiedergabe. Die Effektivität dieses Ansatzes wird anhand verschiedener Beispiel-

visualisierungen demonstriert, die aus typischen Benchmarking-Referenzdaten,

wie sie im Forschungsbereich des Bildverstehens zu finden sind, generiert wur-

den. Der folgende Abschnitt liefert Details über den Aufbau, die Durchführung

und die Auswertung der Benutzerstudien zum Thema visuelle Signaturen, die mit

Hilfe des Frameworks erstellt wurden. Die Studien zeigen, dass Videovisualisie-

rung sowohl technisch umsetzbar als auch kosteneffektiv einsetzbar ist. Weiterhin

liefert die Studie den Beweis, dass gewöhnliche Benutzer die Interpretation von

visuellen Signaturen selbst für eine Vielzahl von Bewegungsereignissen erlernen

können.

Die positiven Resultate der Benutzerstudie führten zur Entwicklung von neuen

Videovisualisierungstechniken, deren Entwurf im Vorlauf durch eine Befragung

von mehreren Experten validiert wurde. Die Ergebnisse sind in einem erweiter-

ten Videovisualisierungsframework implementiert. Basierend auf der Expertenva-

lidierung, beschreibt der zweite Teil von Kapitel 5 einen Lösungsansatz zur Vi-

deovisualisierung, in dem der Videostrom als kontinuierliche, illustrative Signa-

tur dargestellt wird, wobei diese abstrakte Illustration alle extrahierten Multifeld-

Daten wie z.B. Objekte, Aktionen und Relationen enthält. Diese Art der Videovi-

sualisierung wird im Folgenden als VideoPerpetuoGram (VPG) bezeichnet. Folg-

lich wird das auf einer Multifeld-Visualisierungspipeline bestehende System er-

weitert, um die Rohdaten des Videostroms zu bearbeiten und die extrahierten In-

formationen anhand der neuen Techniken darzustellen. Das Kapitel schließt mit

einer Auswertung des erweiterten Frameworks und überprüft, wie wirkungsvoll

Multifeld-Informationen in einem VPG illustriert werden können.

Kapitel 6: Visualisierung von Enkodierten Multifeld-Daten

Ein alternativer Ansatz, der eine kompakte und universelle Datenrepräsentation

von radialen Basisfunktionen (RBF) und ellipsoidalen Basisfunktionen (EBF) zur

Speicherung von Multifeld-Daten ausnutzt, wird in Kapitel 6 vorgestellt. Dieser

Ansatz der Datenkodierung ist sehr nützlich, um große Mutlifeld-Daten zu kom-

primieren und so als Ganzes im lokalen Speicher der Grafikhardware zu halten.

Der Einsatz von radialen Basisfunktionen findet in der Forschung verstärkt An-

klang und birgt ein großes Potetnial zur Approximation von Daten. Durch die

effiziente Kodierung als Vorberechnungsschritt und die Möglichkeit zur echtzeit-

dekodierung auf der Grafikhardware während der Darstellung ist diese Methode

sehr interessant für die Visualisierung, da so Datentransferprobleme und auch der

16 Zusammenfassung und Kapitelzusammenfassungen

akute Mangel an lokalem Speicher umgangen werden kann.

Die Einleitung dieses Kapitels motiviert den Einsatz dieses prozeduralen Ko-

dierungsverfahrens für die Visualisierung und beschreibt eine Auswahl von ver-

wandten Arbeiten in diesem Forschungsgebiet. Die Grundlagen für radiale und el-

lipsoidale Basisfunktionen und der Arbeitsablauf der funktionalen Approximation

unter Verwendung dieser Basisfunktionen werden im ersten Abschnitt von Kapitel

6 beschrieben, gefolgt von den einzelnen Schritten für die Kodierung von Skalar-

und Vektordaten. Dieser Teil umfasst Gebietslokalisierung, Abschätzung der Aus-

gangsparameter, nichtlineare Optimierung und Bestimmung des Fehlermaßes für

den Optimierungsprozess, basierend auf der H1-Norm und der L2-Norm.

Der Hauptteil dieses Kapitels beschreibt ein Framework für die Visualisierung

von kodierten Multifeld-Daten, die durch radiale oder ellipsoide Gauss-Funktio-

nen repräsentiert werden. Diese Funktionen bieten im Vergleich zu anderen Basis-

funktionen eine bessere Kompression von skalaren und vektoriellen Daten unter-

schiedlichster Art und Struktur und lassen sich auf eine Vielzahl von Gittertypen

anwenden, wobei die resultierende Datenstruktur gänzlich ohne Gitter auskommt.

Das vorgestellte System unterstützt weiterhin hierarchische Techniken, die eine

effektive Kodierung der unterschiedlichen Daten bezüglich der gewählten Ba-

sisfunktion begünstigt sowie eine Oktalbaum-basierte Unterteilung der kodierten

Daten, die zur Beschleunigung der Visualisierung mittels Grafikhardware einge-

setzt wird. Im letzten Abschnitt dieses Kapitels werden die Effektivität und Lei-

stungsfähigkeit der beiden Ansätze radialer und ellipsoidaler Gauss-Funktionen

durch verschiedene GPU-basierte Visualisierungstechniken getestet. Dazu gehö-

ren z.B. Partikelverfolgung, Texturadvektion, Schnittebenen, Isoflächen Extrakti-

on und Volumenvisualisierung auf Basis der kodierten Multifeld-Daten. Das Ka-

pitel resümiert mit der Evaluierung aller vorgestellten Kodierungen und Visua-

lisierungstechniken anhand einer Vielzahl von Anwendungsdatensätzen und gibt

einen Vergleich der verschiedenen Techniken in Bezug auf eine interaktive Dar-

stellung.

Kapitel 7: Multifeld-Techniken in der Visualisierung

Das letzte Kapitel vollendet diese Dissertationsschrift und gibt Vorschläge und

Richtlinien für den Entwurf von Multifeld-Visualisierungsmethoden. Das Kapitel

enthält eine komplette Übersicht über alle vorgestellten Techniken und eine Dis-

kussion über die Lektionen, die während der Durchführung der Studien und der

Implementierung der Ansätze gelernt wurden. Weiterhin beschreibt dieses Kapi-

tel die Entwicklung und die gewonnenen Erkenntnisse jeder einzelnen Visualizie-

rungstechnik, gefolgt von einigen Gedanken zur weiterhin existierenden Heraus-

forderung, die für die zukünftige Entwicklung von Multifeld-Visualisierungsme-

thoden besteht.

CHAPTER

1 INTRODUCTION

Visualization has become a fundamental tool in scientific research and engineer-

ing disciplines. The analysis of complex, multi-dimensional and large-scale data

is recognized as an important component in areas including computational fluid

dynamics (CFD), medical imaging, weather modeling, computational mechanics,

manufacturing industry and chemical engineering. In these areas, the output of

specific simulation and measuring techniques can be a single scalar field, or more

commonly, a combination of various fields consisting of scalar, vector or tensor

data, making the amount of information available to the analyst indefinite. In re-

cent years researchers have concentrated on finding effective ways to visualize a

single field variable, like the extraction of isosurfaces from a scalar field or the

representation of the flow behavior in a velocity field by arrow glyphs or trace-

lines. Even though in many cases the visualization of a single field is adequate to

satisfy the user needs, it is conceivable that a simultaneous visualization of mul-

tiple fields would be useful and of great value for the analysts, to give a better

understanding of potential influences between those fields.

As stated by Chris Johnson in 2005, in his visualization viewpoints article
[69], there are several issues that should be taken into account in terms of finding

effective visualization methods for given problems and for making advances in

visualization research, independent of the source of the data and the application

area. One of the listed points of research problems is to find new visualization

techniques for multi-field data. A crucial aspect for multi-field data visualiza-

tion is to be aware that both, the number of independent variables (like space and

time) and the number of dependent variables (like density, velocity vector or tem-

perature) can be arbitrary. This fact needs to be considered for classification and

extraction of features, and the subsequent visualization, which makes it a difficult

task. However, the extraction of various features from different fields is becom-

ing very important as the need to show a combination of features and to highlight

17

18 Chapter 1. Introduction

their correspondence and a possible interaction between those fields is increasing

for the purpose of analysis. This includes the identification of important features

as well as tracking their signatures evolving in the data over time. Besides the

challenges of classifying features and showing correspondence of different fea-

tures, a major difficulty in developing visualization methods for multiple fields is

to find an adequate representation that displays the extent of all involved attributes

without cluttering the visualization display or occluding one feature by another.

When a suitable representation for the underlying data is found, regardless if

it is a single field or of multi-field type, another aspect for providing a good vi-

sualization is to give information about the reliability of the resulting illustration.

While it is very common in other fields of science and engineering to show 2D

graphs that represent error or uncertainty occurring within experimental or simu-

lation data, visualization research nearly completely ignored this issue and despite

from a few exceptions, most visualizations lack to give information about the cor-

rectness of representing the underlying data. One reason why this should be done

is that most of the extraction and visualization algorithms are not always capa-

ble of either analyzing or representing the desired information of the data with

high accuracy. These uncertainties or errors can be caused by border conditions

in simulations, technical difficulties like a proper calibration for measurements or

interpolation inaccuracy of missing data values for visualization, making it essen-

tial to include them as additional information for the analyst. This point becomes

even more important for multi-field data, as the sources of possible errors increase

with every variable added for visualization.

Not only are adequate visual representations of the underlying data and its

according reliability of great importance. As multi-field data often has a com-

plex three-dimensional structure, the possibility of real-time interaction with the

system has an essential meaning for a fast and effective understanding of the illus-

trated data. In general, the minimal claim for interactive frame rates lies between

five to twenty frames per second, depending on the application. To achieve inter-

activity, the use of modern graphics hardware and its massive computation power

of parallel stream processors is predestinated. The rapid progress in the design

of graphics hardware with new functionality and more computation power lead to

very flexible, high-performance GPUs which provide freely programmable units,

such as the vertex processor, geometry processor and fragment processor. The

utilization of these units for the purpose of interactive visualization makes it more

efficient and more effective. Efficiency is obtained by accelerating the visualiza-

tion algorithms using special features supported by modern GPUs. More effec-

tivity results from accelerated visualizations, as they allow interaction and thus, a

more productive work during data analysis. Therefore, the presented algorithms

are developed with the aim to run on GPUs.

1.1. Goal of this Thesis 19

1.1 Goal of this Thesis

All algorithms presented in this work have been developed to handle multi-field

data, under consideration of the discussion above and with the aim to be mapped to

graphics hardware architectures and thus, the main objectives that are of concern

can be summarized by four questions:

1. How can multi-field (large-scale) data, which has its origin in a broad range

of application fields and which may be acquired from various data sources,

be processed effectively in uncompressed or compressed form?

2. What has to be considered to develop novel algorithms to extract important

features or signatures from the raw multi-field data and visualize a combi-

nation of them most clearly at a time?

3. In which way can errors and uncertainties inhering the data from faulty

measurements, algorithmic instabilities or reliability of the algorithms be

included into visualization?

4. How can we creatively map new visualization algorithms to graphics hard-

ware, exploiting their computation power to effectively facilitate interactive

visualization?

With the intention to give answers to these questions, GPU-based multi-field

methods have been designed for volume rendering and flow visualization and ap-

plied to data from application areas such as medical imaging, computational fluid

dynamics and video surveillance recordings, to cover the application field as broad

as possible. In detail, the presented flow visualization methods consider multi-

ple fields with the focus on displaying arbitrary combinations of these fields and

showing inherent uncertainties of simulation or measuring techniques. The pro-

posed volume visualization of medical data aims at the combined illustration of

multiple data from CT, MRI and fMRI scans, to enhance the pre-operative analy-

sis and shows the difficulties and solutions for a slice-based and a raycasting ap-

proach. Video visualization in general is of multi-field nature, due to the resulting

information of object extraction and action recognition algorithms and combines

volume rendering of 3D object traces and flow visualization of object movement.

The goal is to illustrate a maximum amount of information— that is usually anno-

tated by text or labels and displayed in this form, would usually lead to cluttering

and occlusion—in combination with the certainty of the extraction algorithms in

one final image. Eventually, the use of radial basis functions is presented to com-

press large-scale multi-filed data. This technique can be applied to reduce the size

of the data, before passing it to the limited memory of the graphics hardware and

to uncompress it on the GPU either for volume or flow visualization.

This work brings all presented methods in a context, and tries to extract guide-

lines for the implementation of multi-field visualization techniques on GPUs.

20 Chapter 1. Introduction

However, the research on multi-field visualization is a young scientific discipline

with quite a lot of new interdisciplinary problems that could not all be addressed

here, as they are diverse enough to induce the need for several new strategies.

Nevertheless, the presented techniques might give other researchers a paradigm

and inspiration to develop new multi-field visualization algorithms and help them

to solve similar problems.

1.2 Acknowledgments

I am most grateful to my advisor Thomas Ertl, who supported and guided my work

and provided a great environment to work in. Thanks for giving me the chance

to become acquainted with so many interesting fields of research, work with so

many professional people and attend all the conferences that have been important

for me making progress and developing new ideas. I am more than thankful to

my advisor Daniel Weiskopf, who prepared me to take this step into scientific

research and for leading my way through the research jungle, spending so much

of his valuable time for discussions and explanations, even though he was located

on the other side of the planet. Thank you for always being positive and supportive

on my work. I am highly indebted to Min Chen for his guidance and support in

the video visualization project. With all his invaluable comments and constructive

suggestions, not only professionally, he became more than a mentor to me. I

specially appreciate all the realistic and honest advices he gave me. Furthermore,

I want to thank him for the stay in Swansea and the opportunity to give a talk in

London. I am deeply grateful to Rul Gunzenhäuser for his confidence in my work,

and the distinction of my diploma thesis, which gave me a lot of motivation.

I would like to express my gratitude to Luis G. Nonato for the good time in

Brazil and for his valuable comments and discussions on the on-going work on

higher-order data visualization. Unfortunately this work is not included in this

thesis. I am very thankful to Ícaro L. L. da Cunha, who helped me a lot with

different formalities in São Carlso and showed me around in São Paulo. Many

thanks to Valdecir Polizelli-Junior for keeping company and giving me a deep in-

sight into the complex system of Brazilian phone numbers. I am very grateful to

João P. Gois for his help organizing my access to the bandejão and especially for

picking me up at the bus station in the middle of the night. Further, I want thank

the German Academic Exchange Service (DAAD) for providing the financial sup-

port for my stay at the University of São Paulo, São Carlos, and for carrying out

the good cooperation between Germany and Brazil.

Many thanks to Tobias Schafhitzel for the long constructive discussions; for

urging each other in hard times; and for his help on many different matters at the

University. Beyond that, thanks for being my climbing fellow all the time. A

tribute goes to Friedemann Rößler for our sometimes “painful” work on medical

1.2. Acknowledgments 21

multi-volume rendering that we fortunately both survived in the end; and to Ed-

uardo Tejada for his valuable help on different matters and for our still on-going

work on higher-order data visualization.

I express gratitude to Yun Jang, Jingshu Huang, Manfred Weiler, Simon Steg-

maier, David S. Ebert and Kelly P. Gaither, who have been the collaborators in my

first project and helped me a lot in understanding how this work has to be accom-

plished. Sven Bachthaler, Rudy R. Hashim and Ian Thornton were of particular

importance to me in the video visualization project. Thank you for the support.

Many thanks to both, Thomas Klein my all time office mate for the many

constructive discussions and all the funny situations in our office; and Magnus

Strengert for answering an awful amount of technical questions about visual-

ization and graphics hardware, and for the collaboration in the spectral volume

rendering project, which was the most practical theoretic work ever, but is unfor-

tunately not included in this thesis. Moreover, I thank the students I supervised

and with whom I worked with over the last years in alphabetical order, Thomas

Derr, Jochen Eggert, Andreas Lauser, Jörg Oberfell, Tim Reiner, Fabian Schick,

Thorsten Schmidt, Mikael Vaaraniemi and Edmund Wolf.

Acknowledgment to Ulrike Ritzmann, for her help with the formalities; and

to the persons I had the pleasure to work with at the Universität Stuttgart; in par-

ticular (in alphabetical order, without the ones mentioned above), Wolfgang Bay-

erlein, Katrin Bidmon, Harald Bosch, Marianne Castro, Carsten Darchsbacher,

Joachim Diepstraten, Mike Eissele, Thomas Engelhardt, Martin Falk, Steffen

Frey, Mark Giereth, Frank Grave, Sebastian Grottel, Gunter Heidemann, Julian

Heinrich, Marcel Hlawatch, Benjamin Höferlin, Andreas Hub, Steffen Koch, Se-

bastian Klenk, Steffen Koch, Hermann Kreppein, Andreas Langjahr, Dietmar Lip-

pold, Julia Möhrmann, Christoph Müller, Thomas Müller, Guido Reina, Matthias

Ressel, Martin Rotard, Filip Sadlo, Harald Sanftmann, Thomas Schlegel, Mar-

tin Schmid, Bernhard Schmitz, Waltraud Schweikhardt, Christiane Taras, Markus

Üffinger, Joachim Vollrath and Michael Woerner.

A big shout-out goes to my best friend Markus ”W1” Weigel for never letting

me down, even if sometimes it was hard to keep in contact. Thanks for all the

good times we had over the last years, especially for all the fun battles in those

MMORPGs we played. Many thanks to my friend Oliver ”NBK” Zweigle for

forming a tight DJ team over more than five years, tearing clubs down in the

south and being a part of the legendary FF Crew. I am more than thankful to my

friends Roman de Giuli aka. ”Perryroman” and Jerome Kuhn aka. ”Ialone” for

being part of the band ”Reimheitsgebot” and rocking concerts together all over

Germany, but most of all for being true friends over nearly two decades now –

holler!

It goes without saying that I am most thankful to my family for their constant

support and belief in me. To my sister for exploring the world together with

22 Chapter 1. Introduction

nothing more than a backpack and inspiring me on tour. But most of all I am

grateful to my mum and my dad, because for all my trials and tribulations you had

the invaluable piece of advice and gave me the strength to struggle on when it was

necessary. For always being the backup I could count on in hard times, I am more

than grateful. ”Everything’s gonna be alright.”

Ralf Peter Botchen

CHAPTER

2 GRAPHICS AND VISUALIZATION

FUNDAMENTALS

This chapter is supposed to provide visualization fundamentals and an overview of

previous work, which is significant for the comprehension of the employed tech-

niques presented in this thesis. It gives a general survey on visualization problems,

the kind of data grids that were processed during this work, basic visualization

techniques and visualization related technologies that have been adopted and ex-

tended to implement new scientific multi-field visualization methods.

2.1 Visualization

One of the most distinctive and accurate cognitive organs is the human visual

system. It has developed and improved its functionality over many millenniums to

perceive and process an immense bandwidth of information. The visualization of

abstract or concrete information is not a practical invention of the computer era, a

nice example of early visualization are ancient Paleolithic art and cave paintings,

created by early mankind all over the world, to illustrate their life, rituals and

surroundings. In Figure 2.1, the left image shows one of the oldest, human made,

realistic images of large animals. These paintings were found in the Lascaux cave

in France and are estimated to be 16,000 years old. The paintings on the right

side of Figure 2.1 show a group of hunters tracing down a herd of elephants. This

piece is dated back 8,000 years and has been discovered in the Cederberg cave

in South Africa. Even in this early stage of visualization, illustrations have been

used to record multiple important information – like the execution of a procession

or the way of hunting a herd animals and the number of hunters needed to trace

them down – and to communicate this knowledge to the posterity.

The perpetual evolution to today’s computer age led to several new forms of

creating and gathering data. With each novel technology, the amount of producible

data is steadily increasing and in the majority of cases, this data is very abstract

and difficult to understand for the human in its raw form. This requires more

23

24 Chapter 2. Graphics and Visualization Fundamentals

Figure 2.1: Examples of early visualization, showing the ritual of hunting animals. Left:

Paleolithic art in the Lascaux cave in France. Right: Cave art in the Cederberg cave in

South Africa. Images courtesy of Wikimedia R©.

sophisticated methods to extract and illustrate only important information that is

contained in the data. Like statistics, visualization aims at analysis and correct

interpretation of this information, both quantitative and qualitative. Therefore, the

focus of visualization is to gain more insight into any kind of data and to bring the

contained information as a picture before the mind. It is simply a way of making

things clearer and more understandable, because if you can see it then it becomes

more credible. The insights provided by visualization can support the work in

other scientific fields and might as well improve the daily public live.

2.2 The Visualization Pipeline

The visualization of scientific data plays a significant role in research projects just

as it is important for advances in industry. Data sets resulting from real world

measurements or numerical simulations are often so large and complex that it is

not possible to see and understand the important parts without applying a proper

visualization technique. Thus, the goal of scientific visualization is to make visi-

ble the invisible, which means to extract the most interesting information from a

dataset and to transform it into a visual representation that can be understood and

analyzed. To obtain this goal, the data has to go through several stages of pro-

cessing that can be described by a multi-stage pipeline, as shown in Figure 2.2.

This visualization pipeline describes the way from data acquisition over filtering

and mapping to rendering and is one of the most valuable concepts in visualiza-

tion [52].

Data acquisition is the first stage of the pipeline and includes all steps that

are required to obtain the raw data. In this work, the processed data ranges form

numerical simulations (DNS, LES, DES) of flow phenomena over (PIV) mea-

surements of fluid flow and aerosols, discussed in Chapter 3, to sensor data from

2.2. The Visualization Pipeline 25

9

�
8

:9 :

�
88

visualization
display

filtering mapping rendering

raw data
visualization

data
renderable

representation
simulation

sensors

steering interaction

data base

8

Figure 2.2: The visualization pipeline.

medicine (CT, CTA, MRI, fMRI), detailed in Chapter 4, as well as video data

acquired by (CCTV) cameras used in Chapter 5. Apart from the mentioned data

sources, visualization techniques are also used to illustrate collected information

stored in data bases instead of simulation or measurements, e.g., the spreading of

diseases, the distribution of health care, economical fluctuations or the statistical

analysis of a survey. This work will only examine this kind of data marginally

for the utilization of visualization techniques and rather proposes methods to pro-

cess scientific data as mentioned above. Depending on the data source and the

acquisition technique, the raw data might require some kind of pre-processing.

Therefore, in the filtering stage the potentially very large raw data is prepared for

visualization by data reduction or data enhancement. Usually user centered sub

sets of data are selected and extracted as visualization data. Operations that rank

among this stage are smoothing filters, interpolation, correcting erroneous mea-

surements and segmenting, registering or labeling the data. The mapping stage

transforms the visualization data into a renderable representation. The selected

focus data are mapped to a set of geometric primitives (e.g., points, lines, trian-

gles) and additional attributes (e.g., color, texture, size) that can be used in the ren-

dering stage to produce displayable images. In modern visualization systems, this

rendering stage is processed by graphics hardware and the geometric primitives

are passed through another pipeline – the so-called rendering pipeline – where

they undergo several operations like viewing transformation, lighting, clipping or

projection, before they are rasterized. The functionality of the rendering pipeline

will be introduced in Section 2.6. The final step is the visualization display, where

the rasterized output of the rendering process is usually directly displayed on an

output device as single image or as animated sequence of a pre-computed video.

An essential aspect of the visualization process is the possibility for the user

to interact with all stages of the pipeline and to get a direct feedback of the system

(cf. Figure 2.2). In many cases and especially for data that is unknown to the

user, only an explorative approach of data analysis leads to a better insight. This

requires visualization methods that support an interactive tuning of all parameters.

26 Chapter 2. Graphics and Visualization Fundamentals

structured grids unstructured grids

Figure 2.3: Common grid types in scientific visualization. From left to right: Cartesian

grid; rectilinear grid; curvilinear grid; unstructured simplex grid; unstructured zoo grid.

Any combination of these grid types is possible.

2.3 Grid Types and Data

Depending on the method of measuring or simulation, data for scientific visual-

ization have different characteristic attributes that allow a classification. The data

can occur in different form or structure, the dimensionality of the data domain can

vary (0D, 1D, 2D, 3D, ...) and the type of the data might be of scalar or vector

form. If the data type is of higher dimensionality, it is called tensor or multivariate

data. This kind of data differs from the previously mentioned in a way that it can

contain various attributes that do not necessarily have to correlate, e.g., pressure,

temperature and velocity.

Independent of the topology, the data is usually stored as a set of tuples con-

taining a spatial position and one or more data values of arbitrary type, also known

as data points. A data structure is called grid, if two neighboring data points can

be connected by an imaginary line and thus form the grid topology. Gridless data

given as a set of points without topology is also called scattered data. A multitude

of data structures have been proposed, to satisfy the different needs for specific

applications. Figure 2.3 shows a rough classification of grid types used in sci-

entific visualization; they can be subcategorized into structured and unstructured

grids. The relevant grid types as well as the fundamentals of point clouds, used in

this work should be described in the following.

2.3.1 Structured Grids

For structured grids, the connectivity of grid points is implicitly given and need

not to be stored with each data value. As shown in Figure 2.3, there exist different

types of structured grids that can be further classified as Cartesian, uniform, rec-

tilinear and curvilinear. The simplest grid is the Cartesian grid, of which all cells

have the same form and the cell size is of unit length in each dimension. This grid

type is preferred in many applications since it can be stored in a plain array and

thus, significantly eases data access and simplifies the complexity of algorithms.

Uniform grids are very similar to Cartesian grids, the cells are in general but

2.3. Grid Types and Data 27

not necessarily oriented along the orthogonal axes of coordinates. But in contrast

to a Cartesian grid, the cells have been scaled non-uniformly in at least one dimen-

sion and form cuboids. With subject to the size ∆x × ∆y × ∆z of a cubic cell,

the position of the vertices x
unif
i,j,k in an uniform grid of dimension nx × ny × nz is

defined as

x
unif
i,j,k = t + O

i∆x
j∆y
k∆z

 , i = 0, . . . , nx; j = 0, . . . , ny; k = 0, . . . , nz ,

where O is a rotation matrix and t a translation vector that is applied, if the grid

point with indices (0, 0, 0) in world coordinates does not match with the origin.

In contrast to the constant cell size of Cartesian and uniform grids, the gener-

alized rectilinear grids may have grid point distances ∆x, ∆y and ∆z of arbitrary

size which depends on the indices i, j and k respectively. Therefore, the vertex

positions xrecti
i,j,k can be computed by

xrecti
i,j,k = t + O

x(i)
y(j)
z(k)

 , i = 0, . . . , nx; j = 0, . . . , ny; k = 0, . . . , nz ,

with x(i), y(j) and z(k) as coordinate functions.

Curvilinear grids have the same connectivity as rectilinear or uniform grids,

but they do not possess an implicit definition for the vertex positions. Instead,

their construction follows a curved line and the position for each vertex vc
i,j,k has

to be stored as additional vector. These grids are well suited to model simulation

domains that are bent around a curved obstacle, i.e., a cylinder. Although the

cells of curvilinear grids are non-intersecting and conforming, they bear some

difficulties for visualization and are often resampled for this purpose.

Two-dimensional and three-dimensional structured grids are widely-used in

car manufacturing and aerospace industry to run simulations or record sensor data

from measurements. In image and video processing, a two-dimensional Carte-

sian grid is the most common way to store the image data that comes from video

cameras or rendering systems.

2.3.2 Unstructured Grids

Unstructured grids are the most general grid type, as they have no predefined

connectivity and do not impose any restrictions on the shape of the grid cells.

In practical applications, however, these grids usually only consist of tetrahedra,

hexahedra, prisms and pyramids – since the interpolation functions for these cells

are well known and computationally feasible – but any other more complex form

of cell type can be used.

28 Chapter 2. Graphics and Visualization Fundamentals

Since unstructured grids have irregular topology, the connectivity information

has to be stored explicitly. This requires more space and leads to larger data

structures, but also results in more flexibility. Unstructured grids are spatially

adaptive; this means that they can discretize domains of any shape and topology,

by locally adapting the resolution – i.e., the size – or the shape of the grid cells.

Several variants of unstructured grids can be found especially in the context

of finite-element-analysis. Among the most important types are the simplex grids.

They consist only of the simplest n-dimensional primitives. In two dimensions,

this is the triangle, in three dimensions the tetrahedron. In important feature

of simplex grids is the possibility of linear interpolation within the cells, which

makes them a very interesting basis for many visualization techniques.

Along the simplex grids, there are unstructured grids in use that consist of

different basic primitives – as illustrated on the right side of Figure 2.3 – also

known as zoo-grids. For the purpose of simulation the different cell shapes bear

several advantages. However, for visualization the cells are usually decomposed

into the corresponding simplices.

2.3.3 Point Clouds

A point cloud is a set S = {x1, . . . ,xN} (RD of data points (possibly acquired

by a 3D scanning device), where N is the number of points and D the dimension

of the domain. Point based data processing is receiving a growing amount of

attention in computer graphics, as the point is a rendering primitive for direct

visualization, without the need to generate triangle meshes for rendering.

However, besides this advantage, the biggest challenge for point based data

visualization is to find an appropriate interpolation scheme, to obtain data values

between the given points in a computationally feasible amount of time. Global in-

terpolation methods are too expensive, as the influence of every single data point

has to be considered. On the other hand, it is difficult to achieve a smooth global

approximation with a local formulation. Beyond this, an efficient search for local

neighbors of a given point implies that the point cloud is stored in a hierarchi-

cal data structure. Recently, the use of radial basis functions to reconstruct large

data has been addressed by researchers [26], and will be used for multi-field vi-

sualization in Chapter 6. These functions are beneficial, since their interpolation

scheme is known to converge exponentially and the fast evaluation enables inter-

active methods for point based volume visualization [64], as well as for meshless

surface approximation [149; 150].

2.3.4 Grid Interpolation

Independent of the utilized grid, most visualization techniques require data values

not only on the given data points, but also at arbitrary locations within the data

domain. Estimating these intermediate data values and coordinates is the task of

2.3. Grid Types and Data 29

x

x

x
x

(a) (b) (c) (d) (e)

xb

xa

xa xb

xc

xa

xc

xb

xd

x

xd

xa xb

xc

xad

xab

xd

xa xb

xc

xad

xab

xae

xe
xf

xg
xh

Figure 2.4: Interpolation schemes: (a) linear on a line segment; (b) linear in a triangle; (c)

linear in a tetrahedron; (d) bilinear in a square; and (e) trilinear in a cube.

interpolation methods. This section introduces the most common interpolation

schemes used in computer graphics and utilized in this work.

Nearest-Neighbor Interpolation The simplest interpolation method is nearest-

neighbor interpolation, which uses the data point closest to the actual position to

determine the new data value. As only one data point is used, the interpolated data

value matches the value of the neighboring point. This causes nearest-neighbor

interpolation to result in discontinuous transitions across cell boundaries and more

accurate interpolation schemes have to be considered, if more precise and contin-

uous results are desired.

Linear Interpolation Linear interpolation is a very useful continuous interpola-

tion scheme, because it can be applied to any simplex grid cell. Figure 2.4 (a-

c) illustrates linear interpolation for the most common simplices. In the one-

dimensional case, if two scalar values s(xa) and s(xs) are given on two points xa

and xb of a line segment. For any point x that lies on the line between xa and xb,

using the weight α ≤ 1, the linear interpolated of value s(x) can be written as

s(x) = (1 − α) s(xa) + α s(xb) , with α =
|x − xa|

|xb − xa|
. (2.1)

For the two-dimensional case, as depicted in Figure 2.4 (b), the value s(x) at

point x has to be interpolated within a triangle △ xaxbxc. This scheme which is

also known as barycentric interpolation, is slightly different from linear interpo-

lation between two points, but also works with a linear weighting of the values at

the three given points to obtain the desired value at position x. The interpolation

function is defined by

s(x) = α s(xa) + β s(xb) + γ s(xc) ,

where the weights α, β and γ, with α + β + γ = 1, are the barycentric coordi-

nates of x in △ xaxbxc. The weights are the surface areas of the sub-triangles

30 Chapter 2. Graphics and Visualization Fundamentals

△ xaxbx, △ xaxxc and △ xxbxc, each divided by the surface area of △ xaxbxc

for normalization.

In a similar way, this can be extended to linear interpolation for a three-

dimensional simplex. A scalar value s(x) for any point x inside a ⊠ xaxbxcxd

tetrahedron may be computed as

s(x) = α s(xa) + β s(xb) + γ s(xc) + δ s(xd) ,

where the sum of α, β, γ and δ equals one. Analog to the two-dimensional case,

in three dimensions, the weights are computed by the sub-volumes ⊠ xaxbxcx,

⊠ xaxbxxd, ⊠ xaxxcxd and ⊠ xxbxcxd, divided by volume of the whole tetra-

hedron.

Bilinear and Trilinear Interpolation Linear interpolation can be easily exten-

ded for regular grids by repeatedly applying linear interpolation in each direction.

In the two-dimensional case of a square, the product of interpolations is called

bilinear interpolation and can be formulated as

s(x) = (1− α)(1− β) s(xa) + α(1− β) s(xb) + αβ s(xc) + (1− α)βs(xd) ,

with

α =
|xab − xa|

|xb − xa|
and β =

|xad − xa|

|xd − xa|
.

Analogously, trilinear interpolation in a cube can be formulated as

s(x) = (1 − α) (1 − β) (1 − γ) s(xa) + α (1 − β) (1 − γ) s(xb) +
α β (1 − γ) s(xc) + (1 − α) β (1 − γ) s(xd) +
(1 − α) (1 − β) γ s(xe) + α (1 − β) γ s(xf) +
α β γ s(xg) + (1 − α) β γ s(xh) ,

with

α =
|xab − xa|

|xb − xa|
, β =

|xad − xa|

|xd − xa|
and γ =

|xae − xa|

|xe − xa|
.

It should be noted that any bilinear and trilinear interpolation can be computed

by successively applying linear interpolations. A second important characteristic

of these interpolation schemes is the restriction to the vertices of a cell, which

means that only the function values of the vertices of a specific cell are required,

in order to interpolate the value of any point within this cell.

2.4. Introduction to Flow Visualization 31

Higher-order Interpolation Especially in flow simulation or surface modeling,

the reconstructed data is often a function of higher-order. In this case, piecewise

linear interpolation might not be adequate and higher-order interpolation schemes,

such as Lagrange interpolation or Hermite interpolation are required. For n + 1
given data points, these methods can reconstruct a unique interpolation polyno-

mial of degree n, bearing the advantage that these functions are continuous and

differentiable. However, although there exist a multitude of sophisticated higher-

order interpolation schemes, they are not utilized for the work in this thesis and

thus are not discussed in more detail here. One reason for this is the fact that com-

puting higher-order interpolation requires to solve a system of linear equations to

determine the coefficients. This is computationally very expensive and slow and

consequently not applicable, as real-time interactive visualizations require inter-

polation schemes that can be evaluated efficiently on the graphics hardware.

2.4 Introduction to Flow Visualization

A major part of this thesis concentrates on the visualization of flows or uses the

information of motion to embed it in illustrations. In either case, the flow is de-

scribed by a 2D or 3D field, where each grid point is assigned a velocity vector,

indicating the direction of the flow and its speed. For a position x in 3D and at

time t, this vector is defined by

v(x, t) =

u1(x, t)
u2(x, t)
u3(x, t)

 . (2.2)

2.4.1 Particle Based Techniques

Particle based methods are widely used in scientific flow visualization, as they

can show the local motion of the flow for individual particles along their integral

curves, as well as representing the global behavior of the flow with a set of traced

particles. Particle traces form characteristic lines in a vector field; there exist

streamlines, pathlines, streaklines and timelines, whereby only the first three are

used in this work.

From a Lagrangian point of view a streamline corresponds to a line through

the velocity field which is tangent to the velocity at every point, with the excep-

tion that v(x) = 0. It is a solution to the initial value problem of an ordinary

differential equation

dx(t)

dt
= v(x(t)) , x(0) = x0 , (2.3)

where t is the parameter of the resulting curve x(t). A streamline can be consid-

ered as a snapshot of the velocity field at a fixed time step t.

32 Chapter 2. Graphics and Visualization Fundamentals

A pathline is obtained by setting out a particle and tracing its path in unsteady

flow. The trajectory of a massless particle injected into any time dependent ve-

locity field v(x, t) at position x0, is given by the Lagrangian formulation of the

underlying equation of motion

dx(t)

dt
= v(x(t), t) , x(0) = x0 . (2.4)

In experimental visualization, this can be achieved by long-term film exposure.

A streakline is the connection of all dye particles released from one seed lo-

cation at different time steps. A streakline through a certain point x0 at time step

t1 is not uniquely defined, as another choice of t, such as t2 might lead to a dif-

ferent streakline through x0. The tangent curve x(t) along v can be computed by

integrating x(t) numerically. A common approach is to use Euler integration

xi+1 = xi + ∆tv(xi) , (2.5)

where xi are positions along the particle trace, v is the flow field, and ∆t the inte-

gration step size. The tracing procedure can be described as follows. From a given

starting point x0, which is the chosen particle seed point, a forward integration to

obtain the next position of the particle is applied according to Equation (2.5).

2.4.2 Line Integral Convolution

Vector fields can be visualized in various ways. The particle based techniques

presented in the previous section are restricted to a spatially coarse distribution of

tracelines. In contrast, texture based methods aim to give a dense representation

of the flow domain. Line integral convolution (LIC), as introduced by Cabral and

Leedom [18] in 1993, is an effective method of visualizing flow fields with small

scale structures. The algorithm filters an input texture with a one-dimensional

convolution kernel along (curved) streamlines of a given vector field and generates

a filtered texture as output, as shown in the images of Figure 2.5. In most cases, a

texture with white noise serves as input, but pink noise or any other texture pattern

can be used. The intensity I(x0) at an arbitrary position x0 of the output image is

given by

I(x0) =

∫ t0+tl

t0−tl

κ(t − t0)T (x(t))dt , (2.6)

where κ is the convolution kernel, T the input texture and x(t) describes the pa-

rameterized streamline through x0 (x0 = x(t0)). Various kernel functions κ can

be used in the filter operation, whereby usually a symmetric kernel such as the

Gaussian function is chosen. For the final intensity I(x0) at position x0, the tex-

ture values along the segment x(t) of the streamline with (t0 − tl ≤ t ≤ t0 + tl),

2.5. Introduction to Volume Visualization 33

(a) (b)

Figure 2.5: Illustration of two flow datasets with the LIC method. Image (a) contains a

source, a sink and a clockwise spinning vortex. Image (b) shows one source a clockwise

and an anti-clockwise spinning vortex. The global illustration of the underlying flow fields

even emphasizes the forming saddle points.

are weighted by the corresponding kernel values κ(t − t0). The filter operation

can be approximated via a discrete convolution

I(x0) ∼=

tl
∑

i=−tl

κ̃(i∆t)T (x(i∆t)) , (2.7)

with a discrete convolution kernel κ̃ with length 2tl + 1 and a step size ∆t along

the streamlines. As a result of the convolution operation, the texture values av-

erage together to highly correlated, slowly varying intensities along individual

streamlines of the field, but independent in directions perpendicular to the flow.

The LIC technique has been extended in various ways, e.g., oriented line inte-

gral convolution (OLIC) [160] which illustrates flow fields by convolving a sparse

texture with an anisotropic convolution kernel; improvements and extensions to

the spot noise technique have been presented [31]; as well as multi-frequency

noise techniques [74]. Enhancements of LIC have been discussed for advanced

color coding [136], time dependent animation [42; 67], or the application to un-

steady flow [88; 137].

2.5 Introduction to Volume Visualization

Another major part of this thesis deals with multi-field datasets, containing vari-

ous three-dimensional scalar data fields, usually rendered with a kind of volume

visualization. This section presents the basic ideas of these volume rendering

techniques. In this context, the term volume visualization specifies representa-

tion, manipulation and illustration of volumetric scalar data, whereby the process

34 Chapter 2. Graphics and Visualization Fundamentals

includes all stages of the visualization pipeline, i.e., filtering, mapping and ren-

dering.

From a mathematical point of view, all volume data can be described as a

function f : R3 → R that maps a three-dimensional data point to a scalar value.

In practice, the data is often given on a three-dimensional Cartesian grid – called

volume – where the uniform grid cells are referred to as voxels. Depending on

the desired representation, either a surface representation or a volumetric illus-

tration, we speak of indirect volume visualization or direct volume visualization.

While the former extracts an isosurface to obtain a geometric representation of 2D

primitives, the later evaluates the volume rendering integral that models physical

effects of non-opaque material and enables a semi-transparent visualization of the

whole domain. Both techniques are discussed in the following.

2.5.1 Indirect Volume Visualization

Indirect volume rendering techniques map the original volume data to an interme-

diate representation – such as geometric primitives – because this representation

can be processed and visualized with less effort. However, in most cases this

mapping includes loss of data and accuracy due to interpolation and approxima-

tion which is generally accepted, as parts of the whole data are not needed for

visualization and can be neglected. For example, in medical illustrations, the re-

construction of an opaque bone structure with a volumetric rendering technique

might be inefficient, when only the opaque hull of this structure needs to be visu-

alized. In a volumetric dataset acquired by a medical imaging technique like CT

or MRT, the material representing bone is given by a similar scalar value, form-

ing a connected set or contour in the data. This contour can be reconstructed by

computing an isosurface for a specified isovalue, i.e., the scalar that represents the

bone.

One of the most established algorithms for extracting isosurfaces from vol-

umetric data given on cuboid grid cells is the Marching-Cubes [90] algorithm

proposed by Lorensen and Cline. The Marching-Cubes algorithm processes ev-

ery grid cell and reconstructs for a given isovalue the corresponding isosurface

in this cell, consisting of triangles and a normal on the vertices of each triangle.

During this process, the scalar value of every vertex of a cell is tested against

the isovalue and the vertex is classified as greater as or smaller than the value.

From the resulting classification a index is generated, which represents one of

the 256 possible triangle configurations that exist for an isosurface intersecting a

cube. Due to symmetry, these cases can be reduced to 15 basic configurations

as illustrated in Figure 2.6 and stored in a pre-computed indexed lookup table.

Ambiguous cases can be eliminated by using the asymptotic decider as demon-

strated in [108]. The vertices of the intersecting triangles are obtained by linear

interpolation along the edges of the cube (cf. Equation (2.1)). In case normals

2.5. Introduction to Volume Visualization 35

Figure 2.6: Marching-Cubes configurations. Note that the empty case is not illustrated.

are needed for advanced surface shading, the normal for each triangle vertex can

be computed by linearly interpolating the vertex normals of the cubes’ vertices.

The latter are obtained, e.g., with the central differences method considering the

vertex neighbors. The generated primitives can be efficiently processed ”on-the-

fly” by conventional graphics hardware up to a large number of primitives, which

makes this method a preferable choice for many applications. A variant of the

MC implementation – the Marching-Tetrahedra – is used in Section 3.5 to extract

volume contours of scalar features in flow fields.

2.5.2 Direct Volume Visualization

While indirect volume visualization techniques work on an intermediate, lossy

representation of the original dataset, direct volume rendering techniques use the

original data for an instantaneous visualization. A general analytic description

of the direct volume visualization process was presented in [82; 101]. The au-

thors showed that all known volume rendering approaches can be generalized as

specification of an underlying physical transport theory model for propagation of

light in materials. For modeling the physical effects of light propagation through

semi-transparent material, three characteristics need to be considered: absorption,

emission and scattering. Hence, the equation of radiative transfer completely de-

scribes the radiation field in a participating medium, with respect to these three

characteristics. The intensity radiated from a given point x in direction v is deter-

mined by the radiance I(x,v, ν), which is dependent of the frequency ν.

Scattering of light is a complex process which changes both frequency ν and

direction v of the radiant energy. Iterating along a ray and accumulating radiance

I is only valid if scattering can be completely neglected. Thus, volume rendering

approaches in general use an emission-absorption model that ignores scattering

effects.

36 Chapter 2. Graphics and Visualization Fundamentals

The Volume Rendering Integral

Lets consider a ray of light traveling along a direction v parameterized by a vari-

able s. The ray enters the volume at position s0. By suppressing the argument

v, the analytic solution of the emission-absorption equation of transfer over a line

segment reads in integral form

I1 = I0T (s0, s1) +

∫ s1

s0

η(s)T (s, s1)ds , (2.8)

with transparency T between two points s0, s1 and emission η, whereby

T (s0, s1) = e−τ(s0,s1) = e
−

R s1
s0

κ(t)dt
, T ∈ [0, 1] .

Here τ(s0, s1) =
∫ s1

s0

κ(t)dt is the optical depth, with absorption κ, which defines

how far a ray enters a material until it will be completely absorbed. As usual I0

is given by the boundary conditions. The numerical solution of Equation (2.8)

requires a discretization along the ray. The integration range is usually divided

into n intervals sk. It is by no means necessary for the sk to be positioned equidis-

tantly, though this is the most commonly used approach. The intensity I at a

discrete position sk can then be computed iteratively according to

I(sk) = I(sk−1)T (sk−1, sk) +

∫ sk

sk−1

η(s)T (s, sk)ds , (2.9)

with the constants

θk = T (sk−1, sk) , bk =

∫ sk

sk−1

η(s)T (s, sk)ds and b0 = I(s0) ,

whereby the absorption term θk is called the transparency of the medium and

the emission term bk describes the increase of radiant energy emitted within the

range [sk−1, sk] along the ray. If one knows something about the absorption and

emission coefficients, e.g., that they behave like a polynomial of some degree, one

can exploit this, which will accordingly result in a higher-order quadrature rule.

However, most often in practice absorption and emission coefficients will be given

as an array of data values at discrete points, and fairly little will be known about

their functional form.

With these presumption, it is now possible to use an Eulerian sum for the

evaluation of the integral in Equation (2.9), and assuming the source term and

the attenuation factor for a certain segment sk as constants bk and θk, then the

integration is reduced to a finite sum over the accumulated opacity. Computing

2.5. Introduction to Volume Visualization 37

(a) (b)

Figure 2.7: For Raycasting (a), one viewing ray is traced per pixel. The slice-based

approach (b) accumulates all view aligned slices per pixel.

the exponential attenuation along the ray by using the first two terms of its Taylor

expansion series, the final intensity for a ray segment sk is given by

I(sk) =
n

∑

i=0

bi

i−1
∏

j=0

θi . (2.10)

This iterative approach is the fundamental equation for almost all methods of di-

rect volume rendering, whereby the emitter bi is usually given by a color multi-

plied with its opacity ciαi and the attenuation term θi is given by (1 − αi).
For these approaches the participating medium of a three-dimensional object

is represented by a scalar value assigned to each discrete voxel. The physical

properties of the scalars are given by a color and opacity value which are stored in

a mapping table, the so called transfer function. To obtain the final intensity, the

mapped voxel values are composited along the viewing direction for every pixel

of the rendered image, evaluating Equation (2.10). Two of the most common

approaches that have been used throughout this thesis are outlined here.

Volume Raycasting

Raycasting is based on the idea of computing the final color of every pixel in the

image by shooting rays – that originate in the viewers’ eye – through the scene and

solving Equation (2.10) (see Figure 2.7 (a)). Compositing the color and opacity

for each pixel is done by evaluating discrete sampling points along the ray and

applying the recursive over operator [115]. For raycasting, the compositing is

commonly accomplished in front-to-back order, which results in

cout = cin + (1 − αin)αici ,
αout = αin + (1 − αin)αi ,

(2.11)

whereby ci and αi are the pre-multiplied color contribution and opacity of the i-th
sample, and n is the total number of samples along the ray.

38 Chapter 2. Graphics and Visualization Fundamentals

Slice-based Volume Rendering

The advent of hardware-accelerated texture mapping lead to slice-based volume

rendering algorithms [17], which are in general slightly faster then raycasting.

The slice-based approach renders a set of textured slices that are aligned parallel

to the viewing plane (see Figure 2.7 (b)). The per pixel compositing of the volume

samples from each slice is commonly performed with the back-to-front version of

the over operator

cout = (1 − αi)cin + αici , i = 1, · · · , n , (2.12)

which neglects the additional alpha computation, and thus, improves performance.

2.6 The Rendering Pipeline

The vantage point for hardware accelerated visualization are graphical primitives,

such as points of a volume cloud, line segments of a particle trace or triangles of

an isosurface, generated by the visualization algorithms described in the sections

above. These primitives – which are commonly given as list of vertices – serve

as input for the graphics hardware and are processed by the so-called rendering

pipeline (see Figure 2.8) which generates a final two-dimensional rasterized image

as output.

The vertices of the geometric primitives to be rendered are usually specified

in a local coordinate system, which is often chosen in a way such that the center

of the whole object coincides with the origin. For rendering, these vertices have

to be combined into a single world coordinate system, which is independent of

any viewer. In this world space, lighting computations can be performed and tex-

ture coordinates are specified. Then the vertices are transformed to eye coordinate

system, which is defined by a viewing direction, an up vector and a right vector

(implying a right-handed coordinate system). In this coordinate system culling is

performed, since the visibility of the polygons depends on the line-of-sight vec-

tor and the normal and center of each polygon. The vertices in eye coordinates

are still three-dimensional, they are projected to the viewing plane to obtain a

two-dimensional representation of the scene in clip coordinates or screen coor-

dinates. In this space, clipping is performed and hidden surfaces are removed in

scenes with several opaque objects. The eye-space to screen-space transformation

is non-linear and perspective division by the fourth component of the homoge-

nous coordinates is applied to obtain normalized device coordinates. Finally, the

last stage of the rendering pipeline consists of rasterizing the projected polygons.

During this last step, shading, texturing and hidden surface removal are performed

on a per per-fragment basis. In this context, a fragment can be regarded as a pixel

carrying additional information like depth values and texture coordinates.

2.7. Graphics Processing Units 39

geometry
processor

fragment
processor

CPU
application

primitive assembly
& rasterization

framebuffer
tests & blending

memory resources
buffers & textures

vertex
processor

stream output

Figure 2.8: The programmable rendering pipeline. Blue boxes indicate freely pro-

grammable units.

2.7 Graphics Processing Units

Originally the rendering pipeline was implemented on graphics hardware as a

fixed-function pipeline and could not be controlled other than by changing the

input data and manipulating various state variables to influence transformation,

lighting and blending of polygons. With the introduction of new graphics proces-

sors, this rendering pipeline evolved to a freely programmable pipeline in recent

years, allowing the programmer to write shader programs that define operations

performed in the geometry processing stage or the fragment processing stage, as

shown in Figure 2.8.

A vertex shader can be implemented to program the vertex processing unit

with mathematical functions processing the vertex data, e.g., geometrical trans-

formations, per-vertex lighting and computation of texture coordinates. This unit

can only process existing geometry provided by the application or passed by the

stream output from a later stage. In contrast, the lately introduced geometry shader

can generate a limited amount of new geometry from existing geometry. In a

general sense, the creation of new geometry is not a part of the actual rendering

process and thus, this stage takes a special role but also counts to vertex or geom-

etry processing. Further, the geometry shader has to be executed after the vertex

shader and processes incoming vertices with attached adjacency information. The

new vertices are passed as stream output to buffers in graphics memory and can be

read back into the pipeline, to be processed in a subsequent rendering pass. The

pixel shader is used to manipulate the rasterized fragments by means of color,

or optionally more attributes such as depth and opacity. The pixel shader is exe-

cuted for each rendered pixel, without any knowledge of the scene’s geometry or

neighboring pixels.

It is important to note that modern GPUs are based on the SIMD related stream

processing paradigm that allows the application to exploit a highly parallel pro-

cessing of the streamed data. In terms of stream processing, all shader programs

are computation kernel functions that perform the same operation in parallel on

all processed elements independently.

40 Chapter 2. Graphics and Visualization Fundamentals

CHAPTER

3 VISUALIZATION OF MULTI-FIELD

FLOW DATA

The visualization of vector fields has evolved to an important and interesting area

of research, bearing a multitude of different visualization techniques [85] that

have the ability of representing flow features in a local [68] and global [96] way,

for steady [155] and unsteady [147] vector fields. Most of theses methods are

based on the visualization of a single feature that can be extracted from a flow

field, such as vortices, wakes [54] or shear layers [103]. All proposed vortex

detection approaches employ flow attributes that describe a rotation or a swirling

motion around a center of a region, leading to a line-based description [2; 114;

145], or a region-based description [3; 65; 87] of the vortex. Several other state-of-

the-art feature extraction and visualization approaches can be found in [116]. For

the purpose of analysis, not only features are of interest, but it is important to know

about the reliability of the data and in particular of uncertain or erroneous regions.

From the visualization point of view, the reliability or uncertainty as an attribute

of the data can be understood as scalar feature too. A major part of research in

this area has focused on representing uncertainty in simulation or analytical data,

by extracting and manipulating geometry, e.g., isosurfaces with uncertainty [15;

70; 121], applying the uncertainty of surface boundaries to volume rendering [77],

or manipulating the thickness of an isosurface [70]. Various types of glyphs for

uncertainty in flow visualization have been used in [89; 170]. A classification of

distinct possibilities of uncertainties – that can occur in a wide field of applications

– and an extensible overview on uncertainty visualization techniques can be found

in [48; 112]. The proper understanding of interaction between various processes

and features in those fields is a pre-requisite for solving problems in engineering

sciences. Many phenomena cannot be described by concentrating on them in

isolation and thus, multi-field visualization concepts that include various kinds

of field problems, as well as the reliability of the underlying process or data are

needed. So far, only a few systems for efficient combination and visualization of

41

42 Chapter 3. Visualization of Multi-field Flow Data

high-dimensional features have been developed. Amongst others, these systems

support a multi-field graph to visualize correlations in various scalar data [128],

the selection of various features from a combined feature domain with a brush

metaphor [32], or the post-classification of streamlines [126] that pass a region of

multiple features by a Boolean function.

With the background of latest results proposed in literature, the work devel-

oped in this chapter describes enhanced multi-field flow visualization techniques,

with a focus on uncertainty visualization in Sections 3.4.2 and 3.4.3, and com-

bined feature visualization in Section 3.5. The uncertainty based visualization

techniques extend 2D texture advection by an additional processing step. The first

three methods are derived from a generic filtering process that is incorporated into

the traditional texture advection pipeline. The first approach applies a cross ad-

vection perpendicular to the flow direction. The second method employs isotropic

diffusion that can be implemented by Gaussian filtering. The third method adopts

a multi frequency noise approach to apply pre-filtered input patterns to the advec-

tion process. These techniques are then enhanced by two color based uncertainty

visualization methods, one that directly maps an uncertainty extent related color

to the advected streaklines; and a second one that first detects uncertainty edges

around streaklines, before mapping color to the edges only.

In the subsequent sections of this chapter, a flow feature visualization system

is presented that uses first-order fuzzy logic (FOFL) for a combined visualization

an analysis of flow features. The system allows the user to define and combine

multiple feature criteria as logic point predicates and display the resulting charac-

teristic set as isosurface with geometric primitives. For this purpose, the workflow

of the system is subdivided into three layers: (i) feature definition and extraction;

(ii) logical combination of feature sets; and (iii) visualization of the structures

created by the feature sets in combination with the surrounding flow behavior.

Combined feature visualization is an effective tool for handling large multi-field

flow data, as the logical combination of features can be pre-computed, and only

the resulting set needs to be processed during visualization.

The work described in Sections 3.4.2 and 3.4.3 is based on two publications
[12; 13], and was carried out in collaboration with Daniel Weiskopf from the

Universität Stuttgart, Germany. Andreas Lauser from the Universität Stuttgart,

Germany was an active collaborator during the development of the combined vi-

sualization technique published in [11] and presented in Section 3.5. He must

be credited for the implementation of the framework and the operators. Before

detailing the methods introduced in these sections, an overview of computational

fluid dynamics, different simulation and measuring techniques, as well as various

flow feature classification methods is given.

3.1. Basic Ideas on Fluid Dynamics 43

3.1 Basic Ideas on Fluid Dynamics

Computational fluid dynamics has two major sub-disciplines, including hydrody-

namics – the theory of fluids in motion; and aerodynamics – the theory of gases in

motion. In terms of simplification, both will be summarized and called fluid be-

low. The state of a fluid can be described by means of mathematical functions that

are specified by five state variables, such as the velocity v(x, t) and the thermody-

namic variables pressure p(x, t) and density ρ(x, t), for a time t at any location x

in the fluid. In order to determine these five state variables, an appropriate differ-

ential equation that fulfills the conservation laws is required. From the principle

of the conservation of mass, the continuity equation can be derived as

∂ρ

∂t
+ ∇ · (ρv) = 0 , (3.1)

where the ∇ is used as differential operator called “nabla”. In verbal terms this

equation means that the amount of fluid flowing into a volume in space must be

equal to the amount of fluid flowing out. Cauchy’s first law of motion can be

deduced from the principle of conversation of momentum written as

∂v

∂t
= −(v · ∇)v −

∇p

ρ
+ F ,

where F describes an external force, such as the gravitational acceleration g. As

this equation is only valid for perfect fluids without inner friction, such as non-

viscous fluids, a term µ containing the viscosity coefficient needs to be introduced

for viscous fluids. These considerations lead to the so-called Navier-Stokes equa-

tion for compressible fluids. This equation accounts for the motion of the fluid

through space, along with any internal or external forces that act on the fluid and

can be formulated as

∂v

∂t
= −(v · ∇)v −

∇p

ρ
+ F + µ∇2v +

µ

3
(∇(∇ · v)) , (3.2)

where ∂v
∂t

is the derivative of velocity with respect to time and equals −(v · ∇)v

the convection term, −∇p

ρ
the pressure term, the external force F, the viscosity

term µ∇2v and the heat transfer term µ

3
(∇(∇ · v)). For incompressible fluids,

such as they are used throughout this thesis, the later term can be neglected, as

∇ · v = 0. With specific initial conditions about the properties of the considered

fluid – such as viscosity and heat transfer – and an equation of state that relates

the pressure and the density of the fluid, it is possible to completely describe the

flow behavior by solving the set of partial differential equations. Unfortunately,

these equations have analytic solutions only for very simple flows and thus, for

most problems numerical techniques as listed in Section 3.2 are applied. Usually

44 Chapter 3. Visualization of Multi-field Flow Data

this is done by dividing the simulation domain into a large number of cells and

then, solving an algebraic version of the equations for each cell, considering the

values in the neighboring cells.

3.2 Simulation and Measuring Techniques in a Nutshell

Flow data can be acquired by various ways of simulation or real-world measuring

techniques. This section gives an overview of techniques that have been applied

to obtain the data used to validate the multi-field flow visualization techniques

presented in this thesis. All simulation techniques aim to solve the Navier-Stokes

equations given in Equation (3.2) with different approaches for the turbulence

model. Measuring systems try to reconstruct the behavior of the flow by capturing

the movement of particles injected into the flow in relatively small time intervals.

Direct Numerical Simulation

DNS directly solves the Navier-Stokes momentum equations numerically without

any turbulence model [130]. The used algorithms vary in the method that solves

the equations, e.g., explicit or implicit techniques can be applied. For explicit

methods, the time step has to be proportional to the spatial grid in order to keep

the computation stable. Implicit methods allow for bigger time steps to improve

computation performance. On the one hand, these simulations are capable of

representing all temporal and spatial scales of turbulence; on the other hand, they

require very large computational resources. Especially for turbulent flow with

many small structures, DNS needs a high-resolution grid to conserve the kinetic

energy, which leads to exceeding computational costs. Therefore, DNS is mainly

applied to small grids or flows with relatively low Reynolds numbers.

Reynolds-Averaged Navier-Stokes

RANS methods solve the Reynolds equations, which are time-averaged Navier-

Stokes equations [33]. These equations can be acquired by separating flow ve-

locity into mean and fluctuating parts, introducing new terms known as Reynolds

stresses. The momentum equations are coupled with appropriate conservation

equations for the mass and the energy. Sometimes the energy equation is not

needed. This occurs when the flow is incompressible, in thermal and chemical

equilibrium (which is the case of low speed aerodynamic flows). In contrast to

DNS, this approach can also be applied to flows in complex geometry and at high

Reynolds numbers at very low computational costs and is therefore commonly

used in CFD. However, RANS methods require the use of turbulence models that

characterize all unsteady turbulent motion. Unfortunately, no turbulence model

has been developed to this day that is capable of representing the turbulent mo-

tion accurately for a wide variety of flows. This limitation of RANS has led to

increasing interest in other simulation techniques.

3.2. Simulation and Measuring Techniques in a Nutshell 45

Large-Eddy Simulation

LES is based on Kolmogorov’s theory of self similarity [78], and was first pro-

posed by Smagorinsky [138]. LES is capable of resolving the major part of the

kinetic energy of turbulent motion, where only the small structures have to be

modeled. The popularity of LES is based on the fact that the kinetic energy con-

tent of turbulent flow decreases with increasing wave number, whereby the major

portion of the Reynolds stress can be solved. LES techniques solve space-filtered

and/or time-filtered Navier-Stokes equations. Therefore, it is possible to directly

compute the large scales (i.e. the large eddies) with less computational costs. The

effects of the smaller flow structures have to be modeled by a sub-grid scale (SGS)

model, since low-pass filtering introduces unknown quantities. The main advan-

tage of LES is that the computational costs are substantially smaller than for DNS

(but higher than for RANS), since not all scales have to be solved.

Detached-Eddy Simulation

DES is a hybrid approach for the prediction of turbulent motions in flow fields

with high Reynolds numbers [141]. It uses a single turbulence model that has the

capacity of an SGS model in regions with a grid resolution fine enough for LES

computation, and RANS in all other areas. More precisely, RANS is applied in

zones where the turbulent length scale is less than the maximum grid dimension

or near solid boundaries. Since the computational demands of pure LES increase

significantly in the vicinity of walls, zonal approaches like DES are often em-

ployed to save computation costs. A weak point of those hybrid approaches is

that RANS and LES have different requirements with respect to the underlying

grid, and therefore, the success of the computation highly depends on the quality

of the selected sub-grids for the different methods.

Particle Image Velocimetry

Real-world fluid flow can be measured by particle image velocimetry (PIV) [59;

117]. The basic principle of PIV is to inject particles into the flow and to measure

the movement of these particles between two light pulses. Usually, a planar laser

light sheet technique is used. In very short intervals the target area is illuminated

twice by a double-pulsed laser and recorded onto the CCD array of a digital cam-

era (see Figure 3.1). Since the CCD chip must be able to capture each light pulse

in separate image frames, the resolution in time is bound to the image frequency

of the camera. Afterwards, appropriate algorithms evaluate consecutive images

and determine the displacement of particles in the flow. The most common way

of measuring displacement is to divide the image plane into small interrogation

areas (IA) and cross correlate the images from the two time exposures. With this

method, even unsteady or non-periodic flow fields can be measured.

46 Chapter 3. Visualization of Multi-field Flow Data

CCD

array
lens

lens

light

sheet

target

area

flow with

particles

Dt

DAI

image

frame t

image

frame t+Dt

X
correlation

vector field

double-

pulsed

laser

Figure 3.1: Configuration of a particle image velocimetry system.

One possible cross correlation algorithm works as follows: Each image is

divided into l small IAs with edge length K (in pixels); the IAs are then shifted

and compared with other parts of the image. For each translation ∆x of one IA A
with K2 pixels to another domain B of the same size, the cross correlation

C(∆x) =
K

∑

i=1

K
∑

j=1

Bij · Aij(∆x) (3.3)

can be computed. If the coefficient C is a maximum and/or minimum for a trans-

lation ∆x (depending on the matrix function), then the largest match between A
and B and thus the shift of the particles has been found for IA A. Solving Equa-

tion (3.3) for all IAs ∆xl of the image results in a collection of displacement vec-

tors that can be converted to velocity vectors by using the time difference between

both evaluated images:

vl(xl) =
dxl

dt
≈

∆xl

t2 − t1
.

A problem of all real-world measuring systems is that during data acquisition

errors can be introduced into the datasets from several sources [117]:

• Random error due to noise in the recorded images.

• Bias error arising from the process of computing the signal peak location to

sub-pixel accuracy.

• Calibration inaccuracy of the CCD camera.

• Acceleration error caused by approximating the local Eulerian velocity from

the Lagrangian motion of tracer particles.

• Gradient error resulting from rotation and deformation of the flow within an

interrogation area leading to a loss of correlation.

3.3. Feature Classification 47

• Dimension of the cross-correlated interrogation areas.

• Tracking error resulting from the inability of a particle to follow the flow

without slip.

Some of these errors can be minimized by carefully choosing the experimental

conditions, but others cannot be eliminated and thus, the final data inherits uncer-

tainties by the nature of the measuring system. Since engineers are fully aware of

the existence of those uncertainties, it can be of great advantage to include them

to an interactive visual feedback during analysis.

3.3 Feature Classification

The introduced simulation and measuring techniques of section 3.2 can provide

a plethora of multi-field data, including fields such as velocity, density, pressure

or temperature of the fluid. Feature detection provides a powerful means of au-

tomatically identifying regions of interest by detecting analytically based features

in computational fluid dynamics data (e.g., [58; 65; 91; 131]). In general, a fea-

ture is a prominent attribute or aspect that characterizes something of interest. As

proposed by Peikert [114], a flow feature can be classified by its locality or di-

mensionality and thus, characterizes a set of points in a multivariate field, defined

by a given feature criterion. For example, feature extraction methods can be based

on criteria like vortex core lines [145], vortex core regions [2], ridge lines, valley

lines, or separation lines [72], but also other properties like pressure, temperature

and uncertain or erroneous data values [112] can be of interest for the analyst.

This section gives an overview of classified feature criteria commonly used for

the purpose of analyzing gaseous or fluid flow phenomena.

Jacobian

Most flow feature detection methods deal with the analysis of the flow behavior

around the nearest neighborhood of a given point. For this analysis, the velocity

gradient tensor (also known as Jacobian J) plays an important role, as it consists

of the partial derivatives that give information about the extent of change at a

certain location in a vector field. If v represents a velocity field of a moving fluid,

then J represents the velocity gradient tensor

J =

∂vx

∂x
∂vx

∂y
∂vx

∂z
∂vy

∂x

∂vy

∂y

∂vy

∂z
∂vz

∂x
∂vz

∂y
∂vz

∂z

. (3.4)

The velocity gradient tensor is made of a symmetric and a antisymmetric

part, the deformation tensor Sij and the rigid body rotation tensor Ωij (see Equa-

tion (3.7) which is also known as vorticity tensor. The determinant of the Jaco-

bian matrix represents the transformation of one volume unit from one coordinate

48 Chapter 3. Visualization of Multi-field Flow Data

space to another. Its importance is due to the fact that it represents the best lin-

ear approximation to a differentiable function near a given point and it is used to

extract and classify a number of features from flow fields.

Vorticity

Vorticity is related to the local angular rate of rotation and can be understood as

the curl of the fluid velocity at a point. Mathematically, the vorticity is a pseudo

vector defined by the direction of the axis of rotation and the magnitude of the

rotation itself. Given the Jacobian, the vorticity can be easily extracted from the

rotational part Ω of the matrix [54], and can be written as

ω = ∇× v . (3.5)

Vorticity can also be considered as the circulation per unit area at a point in a fluid

flow field. A vector field which has zero curl everywhere is called irrotational,

which is always true, if the vector v represents the gradient of a scalar field.

Helicity

By computing the helicity of a velocity field, we can examine the potential for

helical flow, or flow that appears to move in a corkscrew pattern. Helicity is

computed using Equation (3.6), and physically represents the curl in the direction

of the velocity field as

h = (∇× v) · v . (3.6)

If the fluid moves in a dominant stream wise direction, then helicity looks similar

to vorticity. However, if the flow is not dominated by a single direction, then

the helicity will provide interesting and different results than those obtained by

computing and analyzing just the vorticity of the field.

λ2 Vortices

Vortices are among the most relevant features in a flow for many applications.

The λ2 method was developed by Jeong and Hussain [65], to identify vortical re-

gions, as they realized that intuitive measures such as vorticity or pressure-minima

are not always adequate indicators. This unreliability is caused by two physical

effects. First, viscous effects can eliminate pressure minima in vortical regions

and second, an unsteady straining can result in pressure minima in non-vortical

regions. The first effect causes false negatives and the second yields false posi-

tives, both misleading an analysis. To discard these effects of unsteady irrotational

straining and viscous effects caused in conjunction with false pressure evaluation,

the λ2-method depends on the velocity gradient tensor of Equation (3.4) and sim-

ply neglects these terms in the derivation of the gradient taken from the Navier-

Stokes equations. In the end, the λ2 vortex detection problem is computed by first

3.3. Feature Classification 49

decomposing the Jacobian matrix of the velocity field – i.e., the velocity gradient

tensor vi,j – into the symmetric part S and the antisymmetric part Ω

vi,j =
1

2
(vi,j + vj,i) +

1

2
(vi,j − vj,i) (3.7)

= Sij + Ωij ,

where S = J+JT

2
, Ω = J−JT

2
and J = ∇v . From a physical point of view,

S is the strain-rate tensor and Ω the vorticity tensor. This reduces the problem in

the next step to an eigenvalue analysis of the matrix S2 + Ω2. Since this matrix is

real and symmetric, it results in three eigenvalues — the roots of the characteristic

polynomial — denoted by λ1 ≥ λ2 ≥ λ3. A λ2 vortex is then defined as a con-

nected region where two of the eigenvalues are negative, or equivalently, where

λ2 < 0. Since this classification results in a whole region the λ2 criterion is rather

fuzzy than binary.

Shear Layers

Boundary layers or shear layers are important, since they embody two kinds of

features that can lead to meaningful conclusions. On the one hand, they tell that

the fluid is under shear stress and on the other hand, they also indicate the gener-

ation of vorticity. This suggests a marker that is a function of both Ω and shear.

As shown in [54], the stress tensor contains both the bulk and the shear stress

and is independent from the coordinate system. To extract a single scalar that

is coordinate system invariant and has the bulk terms removed, it is necessary to

diagonalize this tensor. The result is always three real eigenvalues (λs1, λs2, λs3)
that produce a vector which signifies the principle axis of deformation [54]. The

norm of the second principal invariant of the stress deviator can be used as a mea-

sure of the shear. This measure is denoted as

λs =

√

(λs1 − λs2)2 + (λs1 − λs3)2 + (λs2 − λs3)2

6
. (3.8)

A scalar shear field sH can then be constructed from a function of |Ω| and λs.
Using only the two strongest eigenvalues empirically gives better results in two

dimensions. Therefore Equation (3.8) reduces to λs = λs1 − λs2.

Shock Detection

Shocks represent a large class of features which more broadly are represented by

connected regions of sharp discontinuities. The potential shock regions can be

identified and further classified by methods first defined in [97]. The quantities

are calculated by

E1 = min(v
|v| · ∇ξ, 0) , E2 = max(v

|v| · ∇ξ, 0) , E3 =
∣

∣

∣∇ξ − v
|v|v · ∇ξ

∣

∣

∣ , (3.9)

50 Chapter 3. Visualization of Multi-field Flow Data

simulation

sensors

data base

sampling

interpolation

quantization

volume

animation

flow

data

uncertainty

derived

uncertainty

visualization

uncertainty

analysis

data acquisition visualizationfiltering / mapping

Figure 3.2: Possible sources for uncertainties from data acquisition to visualization.

where v denotes the velocity field and ξ can represent either pressure p, density ρ,

or Mach number M . If ξ = p and E2 > 0, then the point is part of a compression

shock, otherwise if E1 < 0, the point is part of an expansion shock. If ξ = ρ and

E2 > 0, then the point is part of an expansion shock, otherwise if E1 < 0, the

point is part of a compression shock. If ξ = M and E2 > 0, then the point is part

of an expansion shock, otherwise if E1 < 0, the point is part of a compression

shock. The value E3 represents shear shock orthogonal to the flow direction.

Scalar Attributes and Derived Quantities

Although scientist and engineers are primarily interested in the overall flow be-

havior, or local occurring vortical regions or shear layers, depending on the re-

quirements of the application domain other attributes can be of importance. The

analysis of various fields simultaneously can include various attributes such as

pressure p or density ρ and derived quantities like velocity magnitude ‖v‖, vortic-

ity magnitude ‖ω‖ or the divergence div(v) = ∇ · v of a vector field.

Uncertainty

For an efficient understanding of the visualized data, it is important to indicate

how accurate and reliable the provided data and thus the visualization is. As

shown in the three stage pipeline of Figure 3.2 (adopted from [89; 112]), several

different uncertainties or errors can be introduced to the data on the way from

data acquisition to the stage of visualization. In the visualization step, algorithmic

uncertainties can occur, e.g., by approximating factors for global illumination or

by interpolating data values on slices in volume rendering. Transformation un-

certainties are introduced by converting from one unit to another or by scaling,

resampling, or quantization. In this thesis however, the focus lies on uncertain-

ties that appear in the first stage — during data acquisition, as this stage is most

interesting for uncertainty visualization, because the errors from data acquisition

typically cannot be influenced or reduced by subsequent processes.

In this context, raw data from real-world measurements such as the PIV meth-

od as detailed in Section 3.2, is one possible basis to compute an error value, as

they intrinsically inhere measuring errors. The utilized error measure is typically

based on the root mean square. For the PIV method this yields N measurements

3.4. Strategies for Uncertainty Visualization 51

visualization
display

visualization
display

original error
measure

derived error
measure

combination
e.g. rms

functional
mapping

visual
mapping

raw data

Figure 3.3: Pipeline for visualizing uncertainties. (Adopted from Pang et al. [112]).

for the vector field at each spatial location and time step. The raw data measure-

ments are denoted vi with i = 1 . . . N . The average vector v serves as basis for

traditional vector field visualization. Then, the root mean square

rrms =

√

√

√

√

1

N

N
∑

i=1

||vi − v||2 ,

can be used as the measure of uncertainty.

However, any other error computation could be used as uncertainty measure,

e.g., for various simulation methods it is of interest to which extent the results

of each simulation differ. In this case, a possible measure for uncertainty is the

magnitude of the difference vector of both methods, computed for each grid cell

of the field. This yields

d = ‖v1 − v2‖ .

It should be noted that for visualization the original error value needs to be

mapped to a derived error measure, e.g., by a linear or a non-linear function, in

order to obtain values in a useful range. This possibly space-variant and time-

dependent uncertainty measure is denoted by u(x, t).

3.4 Strategies for Uncertainty Visualization

The goal of this section is to enhance texture advection for the visualization of

multi-field flow data. In this particular case, the basic technique is enriched by a

visualization of flow uncertainty, without losing the benefits of texture advection,

i.e., its flexibility and efficiency. From an abstract point of view, uncertainty visu-

alization can be structured into a three-stage process (see Figure 3.3). The visu-

alization essentially requires the ability to represent one additional single-valued

attribute: a measure for uncertainty or error.

Various means of a visual mapping of multi-variate data could be employed

to represent the error attribute. A simple and well-known method is to map the

derived error value to color and to overlay this color on top of the underlying flow

visualization. However, this kind of visualization method only shows uncertainty

at a respective point, i.e., it results in a localized representation. In contrast, un-

certainty in a flow leads to an uncertainty of particle transport, which should also

52 Chapter 3. Visualization of Multi-field Flow Data

advected texture injection texture
ρ := ρ+1

blending

advection for
next step ρ Iρ

ρ+1 := αρ + (1-α)ρI time step t-∆t time step t

advection

(a) (b)

Figure 3.4: (a) pipeline for texture based flow visualization, (b) shows the advection step.

be represented by means of “uncertain” particle traces. It is reasonable to mark

a particle that has been advected throughout an error-affected area and to empha-

size this in the further process of the flow. Furthermore, an uncertainty-affected

region can influence its neighborhood and this should be taken into account in the

visualization step. Therefore, the goal is to incorporate the uncertainty represen-

tation within the concept of texture-based particle transport. Another advantage

of this approach for the first three of the proposed techniques is that the error

attribute is encoded in the same perceptual channel as the original flow—in the

form of a texture—and, thus, other perceptual channels (e.g., color) could be used

to encode additional attributes. As the following approaches of uncertainty flow

visualization are based on texture advection, the basic principles of texture based

flow visualization are reviewed first in the subsequent section.

3.4.1 Texture-based Flow Visualization

Texture advection is a well-established and versatile method for visualizing steady

and unsteady flow and has been strongly advanced lately, not only because of the

rapidly increasing performance and functionality of GPUs [132; 167]. It is di-

rectly related to Line Integral Convolution (LIC) [18] introduced in Section 2.4.2,

and most examples of texture advection can be considered as LIC with an ex-

ponential filter kernel. The availability of dense noise-based and sparse dye-

based representations, as well as the possibility for the user to interact and ma-

nipulate all important parameters on-the-fly makes it a powerful tool for inter-

active visualization. Early versions of texture advection [102] were extended to

2D Lagrangian-Eulerian Advection (LEA) [66], 2D Image Based Flow Visual-

ization (IBFV) [155], or GPU-based texture advection [166] of dense particles

and for a sparse representation as done with the metaphor of dye advection [162;

163]. Semi-Lagrangian transport [66; 142], which is the basis for the later imple-

mentation of texture advection for uncertainty visualization, is briefly described

in this section. For a deeper insight on state-of-the-art texture-based flow visual-

ization the reader is referred to [85].

Particles or injected dye are represented on a regularly sampled grid or texture.

This property field is denoted by ̺(x). The points x are from the domain of the

3.4. Strategies for Uncertainty Visualization 53

nD vector field, Rn. For the Eulerian approach, particles lose their individuality

and their position is implicitly given by the location of the corresponding texel in

the property field. Particles are transported along streamlines for steady, or along

pathlines for unsteady vector fields v(x, t), where t denotes time. The Lagrangian

formulation of motion given in Equation (2.4), can be integrated to compute the

pathline of an advected massless particle,

x(t1) = x(t0) +

∫ t1

t0

v(x(t), t) dt . (3.10)

The evolution of the property field ̺(x, t) is governed by

∂̺(x, t)

∂t
+ v(x, t) · ∇̺(x, t) = 0 .

This partial differential equation can be solved by semi-Lagrangian transport [66;

142], which leads to a stable evolution even for large step sizes. A backward

texture lookup is often employed:

̺(x(t0), t0) = ̺(x(t0 − ∆t), t0 − ∆t) . (3.11)

Starting from the current time step t0, an integration backwards in time according

to Equation (3.10) provides the position at the previous time step, x(t0 − ∆t).
Texture-based methods often produce only short streamlines or streaklines and,

therefore, first-order Euler integration typically provides sufficient accuracy:

x(t0 − ∆t) = x(t0) − ∆tv(x(t0), t0) .

The property field is evaluated at this previous position to access the particle that

is transported to the current position. Tensor-product linear interpolation (bilinear

in 2D or trilinear in 3D) is applied to reconstruct the property field at locations

different from grid points.

One advantage of texture advection is that it can be used to visualize larger

structures in the flow, like streamlines in steady flow or streaklines in time-varying

flow. However, sequentially applying the advection step to an input texture leads

to a heavy deformation of the patterns in this texture according to the underlying

flow field, but it does not reveal the desired clear structures of the flow, such as

streamlines. To achieve this, these structures can be generated by injecting smooth

dye patterns or noise-based particles into the property field ̺ after each advection

step, following the IBFV approach [155]. According to Figure 3.4, in the accumu-

lation step newly injected particles from the input texture ̺I are combined with

the advected particles in the property field ̺. The accumulation is done by means

54 Chapter 3. Visualization of Multi-field Flow Data

of a blending function, e.g., alpha blending as defined in Equation (2.12) can be

applied as

I(̺(x, t + 1)) = αI(̺I(x, t)) + (1 − α)I(̺(x, t)) ,

which represents the discretized version of an exponential filter kernel [38] in

the context of LIC [18]. Texture advection is highly applicable for uncertainty

visualization because it offers important benefits. First, the injection scheme is

flexible in allowing the user to gradually change the density of new particles from

a few randomly injected particles, up to a densely filled property field represented

by white noise. Second, texture advection lends itself to a direct and efficient

mapping to GPUs, which leads to an interactive visualization of large datasets.

3.4.2 Texture-Based Uncertainty Visualization

Texture advection as described in the previous section is capable of showing the

vector field of the flow (i.e. a single vector at each data point), but needs to be ex-

tended to visualize additional information. The goal of this section is to enhance

texture advection for the visualization of multi-field flow data. In this particu-

lar case, the basic technique is enriched by a visualization of one more scalar

attribute, such as uncertainty or error, without losing the benefits of texture advec-

tion, i.e., its flexibility and efficiency.

The original uncertainty that is described by a scalar value may be mapped to

a derived measure, e.g., by a linear or a non-linear function, in order to empha-

size uncertainty ranges and obtain useful values. The result of this mapping is

denoted by the uncertainty measure u(x, t). Uncertainty visualization addresses

the display of u(x, t). The crucial observation is that uncertainty of the vector

data results in an uncertainty of pathlines. Therefore, the particle transport should

take into account u(x, t) by modifying the advection process. In fact, the pipeline

from Figure 3.4 is just extended by one additional image-filtering stage that works

on the advected texture, but is completely decoupled from the texture advection

computation. The first steps of the visualization cycle (“load flow data”, “texture

advection”, and “particle and dye injection”) are identical to traditional texture ad-

vection. The additional error filtering stage can be embedded into this traditional

pipeline without any major drawback, as shown in Figure 3.5. Error filtering aims

at manipulating the spatial frequency perpendicular to particle traces to show un-

certainty u(x, t), i.e., not only the spatial frequency along the flow changes as in

LIC [18], or in basic texture advection [85]. But this uncertainty filter affects the

advected property field ̺ according to the following 2D convolution:

̺filtered(x) =

∫

V (x,v)

f(u, x̃,v)̺(x + x̃) dnx̃ . (3.12)

3.4. Strategies for Uncertainty Visualization 55

visualization
display

particle and
dye injection

load flow and
error data

texture
advection

display
error

advection

initialize
property field

next time step

particle and
dye injection

Figure 3.5: Flowchart of the texture advection pipeline extended extended by an error

advection step.

In contrast to many other convolution filters, the filter f may be space-variant

and flow-dependent, and so is the compact nD integration domain V (x,v), at

which the dimension is restricted to n = 2 for visualization. The integral is eval-

uated at a fixed time t. The goal of the convolution filter is to modify the spatial

frequency perpendicular to particle traces: it essentially smears out particle traces.

While LIC or traditional texture advection only modify the spatial frequencies

along the flow, uncertainty-aware texture advection also affects the spatial fre-

quencies perpendicular. The specific character of the uncertainty visualization is

controlled by the choice of filter kernel and integration domain. This class of

filtering can be understood as post-processing. Two different approaches for post-

processing uncertainty filters, i.e., cross advection and error diffusion and a third

technique called multi-frequency noise which implements pre-processed filtering

on the injection texture are described below.

Cross Advection The first specific example for error filtering is the cross advec-

tion approach. Here, the filter domain is reduced to a line perpendicular to the

current flow direction. The fundamental idea is that particles are additionally

transported perpendicular to the flow direction, smearing out the streakline of the

particle trace. This essentially leads to a 1D convolution similar to that of tradi-

tional texture advection. The only difference is that a symmetric filter (in both

directions) is applied. The discretized version of the filter reads

̺filtered =
∑

i∈{−1,0,1}

κi̺i , (3.13)

where κi is the discrete filter kernel and ̺i are samples of the property field along

the perpendicular line,

̺i = ̺(x + iµ∆tMrotv(x, t)) . (3.14)

Here, µ denotes the error-depending relative step size, ∆t is the step size of

traditional texture advection, and Mrot is a 2D matrix for a rotation by 90 degrees.

The integration width and, thus, the length scale for smearing is controlled by the

56 Chapter 3. Visualization of Multi-field Flow Data

time step t-∆t time step t

advection

tr
a
n
sp

o
rt

tr
a
n
sp

o
rt

error region error region

r

r

r

c

-g

g

Figure 3.6: Semi-Lagrangian transport of a particle along flow direction into an error

region from time step t− ∆t to time step t. The cross advection is applied in time step t.

error value via µ. Equation (3.13) implements the analog of line integral convo-

lution based on texture advection, with the following differences: First, a con-

volution perpendicular to the flow direction is performed; second, a symmetric

convolution filter in both directions is applied. This filtering maintains a constant

overall brightness if a normalized kernel is used (i.e.,
∑

κi = 1). A typical choice

for this 1D filter kernel is κi = 0.25, 0.5, 0.25.

Figure 3.6 illustrates the two steps performed for the complete cross advection

approach. In the first step, a particle (grey dot) is transported by traditional semi-

Lagrangian advection along the flow direction into an uncertainty or error affected

region. Black grid points lie inside the error region, white grid points outside.

In the next step shown on the right side of Figure 3.6, the intensity values are

computed for the current point (grey dot) and the two cross directional points

(white and black dots), by combining the values according to Equation (3.13).

The filtering process can be slightly modified by replacing the weighted sum

in Equation (3.13) by a maximum function according to

̺filtered = max{̺i|i = 1, 2, 3} . (3.15)

The maximum function avoids that (sparsely seeded) streaklines are not reduced to

very small property values in regions of large uncertainty, and therefore smeared-

out streaklines are maintained. In general, the max() function does not provide a

constant overall brightness but tends to increase the image brightness. Therefore,

this variant is primarily designed for sparse representations with a few, clearly

separated streaklines.

The left image of Figure 3.7 shows an example of a single dye pattern injected

into a uniform flow field. The underlying uncertainty begins a few steps away

from the injection point and then stays constant. The exact shape of the streakline

is visible in the error-free part of the flow that changes to a symmetric expansion

3.4. Strategies for Uncertainty Visualization 57

(a) (b)

Figure 3.7: Image (a): Cross advection with a single dye pattern in a laminar flow field

v(x, y) = (1, 0) and with piecewise constant uncertainty. Image (b): Sparsely injected

particles into the same flow with increasing uncertainty from top to bottom. (Images

courtesy of Botchen et al. [12], c©2005 IEEE).

of both sides. The right image illustrates a sparse injection of random particles,

while the uncertainty increases from top to bottom. Since uncertainty magnitude

affects the step size of cross transport, streaklines in regions with large errors

(bottom) spread more than those in unaffected regions (top).

Cross advection can be considered an image-processing operation that can be

directly mapped to GPU fragment operations. The update equations (3.13) or

(3.15) work independently on 2D grid cells of the property field. By identifying

this 2D grid with a texture, the update of cells (i.e., texels) is reduced to updating

the underlying texture through a fragment program. In fact, ping-pong rendering

is employed to update textures: Two copies of the property field are held in tex-

ture memory; one serves as render target, the other one serves as input texture.

After each update, the role of the two textures is exchanged. This cross advection

process is one example for an “error advection module” in Figure 3.5.

The main part of the HLSL fragment program of the basic transport mech-

anism for Equation (3.15) is given in Listing 3.1. The mapping from the input

uncertainty measure to the relative step size µ is implemented by a dependent-

texture lookup. The space-variant input uncertainty is held in a 2D domain-filling

texture. Three texture lookups in the property texture are performed to evaluate

Equation (3.14). In the 2D case, the rotation matrix Mrot can be realized by a

component swizzle followed by a simple multiplication. Finally, the texel with

maximum intensity is written to the output. In a variant of this fragment program,

the max() function is replaced by a weighted sum to implement Equation (3.13).

58 Chapter 3. Visualization of Multi-field Flow Data

1 f loa t4 d i r = tex2D (VecField , TxCoord) ; / / lookup vec to r a t pos TxCoord
2 f loa t4 t h i sTx = tex2D (AdvTx , TxCoord) ; / / r e s u l t o f prev ious advect ion
3 f l o a t e r r o r = tex2D (Er rF ie ld , TxCoord) ; / / u n c e r t a i n t y measure u (x , t)
4 f l o a t s tS ize = tex2D (ErrStSize , e r r o r) ; / / e r r o r step s ize : mu ∗ Del ta t
5 f loa t4 maxintens ;
6

7 d i r . yx = d i r . xy ∗ s tS ize . xx ; / / perform cross advect ion
8 d i r . x ∗= −1.0 f ; / / r o t a t e −90
9 newpos . xy = TxCoords − d i r . xy ;

10 f loa t4 l e f t T x = tex2D (AdvTx , newpos . xy) ;
11 newpos . xy = TxCoord + d i r . xy ; / / r o t a t e 180
12 f loa t4 r ighTx = tex2D (AdvTx , newpos . xy) ;
13

14 maxintens . x = max(l e f t T x . x , r i g h t T x . x) ; / / f i n d maximum i n t e n s i t y
15 maxintens . x = max(th i sTx . x , maxintens . x) ;
16

17 Output . rgba = maxintens . xxxx ; / / f i n a l output
18 return Output ;

Listing 3.1: Main part of the HLSL fragment program for the cross advection ap-

proach. (Code courtesy of Botchen et al. [12], c©2005 IEEE).

Error Diffusion The second technique implementing the generic filtering process

from Equation (3.12) is called error diffusion, which is an alternative example of

uncertainty visualization. In contrast to cross advection, error diffusion applies

an isotropic 2D filter kernel, independent of the direction of the flow. Filtering is

space-variant: The amount of smearing is controlled by the uncertainty u(x, t),
which determines the width (i.e. size) of the filter kernel. The larger the uncer-

tainty, the wider the kernel. Typically, a normalized 2D Gaussian filter kernel is

used, to maintain a constant overall brightness. While cross advection blurs the

streakline sideways to the flow direction, the diffusion filter affects texels not only

in direction of the flow but in all directions. Since an error-affected data point

exerts influence to all its adjacent points in real data measurements, this filtering

process imitates natural diffusion. The maximum function is not recommended as

filter function for error diffusion because it would lead to an extreme increase in

brightness caused by the larger 2D footprint of error diffusion (as compared to the

smaller 1D footprint of cross advection), which means, there is a higher probabil-

ity of collecting bright contributions than in the cross advection approach.

The diffusion computation is completely detached from the advection step

and can be computed separately as shown in Figure 3.5. In this second step, a

discretized 2D filter kernel is applied to the previously advected particles. Just as

cross advection, error diffusion is an image-processing operation that can be di-

rectly mapped to GPU fragment operations. Error diffusion sums the terms within

the support of the 2D filter kernel. For a GPU implementation, it is inefficient to

use a large filter kernel because this would increase the computation costs dramati-

cally. Therefore, only a discrete, separated 3×3 Gaussian filter is implemented. A

larger filter kernel is achieved by successive application of this 3 × 3 filter, where

3.4. Strategies for Uncertainty Visualization 59

(a) (b)

Figure 3.8: Image (a): Gaussian error diffusion with a single dye pattern in a laminar

flow with piecewise constant uncertainty. Image (b): Sparsely injected particles into the

same flow, with uncertainty magnitude increasing from top to bottom. (Images courtesy

of Botchen et al. [12], c©2005 IEEE).

the number of filtering steps is determined by the extent of uncertainty. A fine

adjustment of filter strength through the uncertainty value is achieved by modi-

fying the entries in the filter mask. The actual filter is constructed from a linear

interpolation between an identity mapping and a full Gaussian kernel, where the

interpolation weight is determined by the uncertainty value. Linear interpolation

guarantees that the integral over the interpolated filter remains constant and nor-

malized. In this way, it is possible to obtain a range of filtering results, all the way

from an identity mapping in regions with no uncertainty (which results in exact

streaklines) up to a standard Gauss filter in regions with maximum uncertainty

(which strongly blurs the streakline in all directions). For the GPU implementa-

tion, both the identity mapping and the Gaussian function are held in a floating-

point texture. During runtime, a bilinear lookup is performed in this texture that

computes the linear interpolation to obtain a modified filter kernel. As demon-

strated in Section 3.4.4, GPU implementations lead to interactive visualizations

even for very large datasets in the range of 106 grid points.

Figure 3.8 (a) illustrates dye injected into a laminar flow field with constant

uncertainty, beginning a few steps away from the injection point. Well recogniz-

able is the one-to-one mapping of the streakline in areas without error influence,

which changes to a constant blurring in all directions in the error-affected region.

Figure 3.8 (b) shows the Gaussian error diffusion approach applied to sparsely in-

jected particles into the same flow with increasing uncertainty from top to bottom.

This picture illustrates that the size and weight of the filter kernel depends on the

uncertainty magnitude; hence streaklines in the lower part of the flow are heavily

60 Chapter 3. Visualization of Multi-field Flow Data

(a) (b)

Figure 3.9: Comparison of cross advection (a) and Gaussian error diffusion (b) with two

dye patterns injected into a flow with increasing uncertainty from left to right. (Images

courtesy of Botchen et al. [12], c©2005 IEEE).

blurred while streaklines in the upper part are mapped to identity.

For comparison, Figure 3.9 shows both approaches with two injected dye pat-

terns into a laminar flow field with increasing uncertainty from left to right. Con-

sidering the lower dye in the left image, one can see how uncertainty magnitude

affects the step size of the cross advection and how the streakline widens due to an

increasing step size. Depending on the 2D convolution kernel, the wavefront of a

streakline computed with the error diffusion approach runs faster than traditional

texture advection or the cross advection approach.

Multi-Frequency Noise The generic multi-frequency noise approach [74] is a-

dopted as third technique for a dense vector field representation. Here, uncertainty

is used to control the spatial frequency of noise injection. This technique can be

directly incorporated into semi-Lagrangian advection by slightly modifying the

injected noise. The original 2D noise is replaced by a 3D noise texture whose lay-

ers are filled with noise patterns of varying maximum spatial frequency. The first

slice contains original white noise; all successive slices contain filtered versions

of this white noise with decreasing maximum frequency. Filtering is based on the

fast Fourier transform: First, the original white noise is transformed to frequency

space, then a low pass filter is applied in frequency space and finally a inverse

Fourier transformation back to image space is performed. Since low-pass filtered

images lose contrast, histogram equalization is applied to match the contrast of the

original image and sharpen the low-frequency structures. To access the different

layers, the noise lookup is extended by a third dimension that is controlled by the

error value. Figure 3.10 gives an example of four different noise patterns and their

3.4. Strategies for Uncertainty Visualization 61

(a) (b)

Figure 3.10: Image (a): Four layers of multi-frequency noise. The frequency depends on

the uncertainty value. Image (b): Advection of multi-frequency noise in a laminar flow.

(Images courtesy of Botchen et al. [12], c©2005 IEEE).

application to the visualization of a uniform flow field.

Both post-filtering methods proposed so far are adequate for sparse and dense

particle injection patterns. In contrast to them, the multi-frequency approach is

not suitable for a sparse particle injection, because low-pass filtering of sparse

injected particles would lead to artifacts as known from heavy JPEG compressed

images. Further, one would recognize single, isolated and large streaks, but their

width would not change depending on uncertainty. Therefore, this approach is not

intuitive enough for uncertainty visualization.

3.4.3 Color-Based Uncertainty Visualization

Although texture-based uncertainty visualization already leads to an intuitive vi-

sual encoding of uncertainty information, additional visual cues can be used to

further enhance perception. Besides spatial visual structures, which are exploited

by texture-based visualization, color generally plays a dominant role in human vi-

sual perception. An advantage is that color, shape and position are highly separa-

ble perceptual dimensions [159, p. 180] — color and texture patterns can be easily

combined without impairing each other. Therefore, in this section the simultane-

ous assignment of color and texture patterns is used to propose two approaches

that improve texture based uncertainty visualization.

Color Mapping The first approach directly maps u(x, t)—the uncertainty extent

to color, by employing a 1D color table. This color table takes the uncertainty as

the 1D input parameter and outputs an RGB value. The resulting color is com-

bined with the grey-scale property texture from the advection process by blending

62 Chapter 3. Visualization of Multi-field Flow Data

(a) (b)

(c) (d)

Figure 3.11: Examples of color enhanced texture-based flow visualization techniques

showing the 84th layer (z/D ≈ −1.016) of the LES cylinder dataset. Quantitative color

coding (a); and qualitative color mapping with discrete colors (b). Image (c) shows un-

certainty based cross advection (b); and the uncertainty-edges technique combined with

a spectral (blue to red) color map is illustrated in (d). (Images courtesy of Botchen et al.

[13], c©2006 ISFV).

or modulation. This algorithm can be performed in one render pass and needs

no implementation as additional module, which makes the realization simpler and

implicates higher performance.

A popular way of using a color table is to display quantitative data. It is

important that the color table is designed in a way that supports the accurate per-

ception of quantitative data, for example, by using a perceptually uniform color

scale. More details on the design of color tables are discussed by Ware [158].

Another application of color tables uses color to separate regions—essentially

labeling those regions. In this sense, color is mainly used to encode nominal in-

formation; color can be extremely effective as a nominal code [159, p. 123]. Each

color represents an interval of uncertainty values. The advantage of such a discrete

color coding is that regions can be more easily recognized than with a quantitative

color scale. The discrete color coding is particularly useful when a qualitative

understanding of the visualization is more important than reading off quantitative

data.

Examples for the specific color coding techniques are shown in Figure 3.11.

Image (a) illustrates qualitative color coding of uncertainty, and image (b) in Fig-

3.4. Strategies for Uncertainty Visualization 63

1 f loa t4 l f t = tex2D (AdvTx , TxCoord1) ; / / get the i n t e n s i t i e s f o r a l l
2 f loa t4 r g t = tex2D (AdvTx , TxCoord2) ; / / neighbors around TxCoord0
3 f loa t4 up = tex2D (AdvTx , TxCoord3) ; / / from the advected t e x t u r e
4 f loa t4 l o = tex2D (AdvTx , TxCoord4) ;
5 f loa t4 u p l f t = tex2D (AdvTx , f l o a t 2 (TxCoord3 . x−PxSize . x , TxCoord3 . y) . xy) ;
6 f loa t4 uprg t = tex2D (AdvTx , f l o a t 2 (TxCoord3 . x+PxSize . x , TxCoord3 . y) . xy) ;
7 f loa t4 l o l f t = tex2D (AdvTx , f l o a t 2 (TxCoord4 . x−PxSize . x , TxCoord4 . y) . xy) ;
8 f loa t4 l o r g t = tex2D (AdvTx , f l o a t 2 (TxCoord4 . x+PxSize . x , TxCoord4 . y) . xy) ;
9

10 f loa t4 row = u p l f t + 2∗up + uprg t / / weight the upper and lower row
11 − l o l f t − 2∗ l o − l o r g t ; / / f o r edge de tec t i on
12 f loa t4 column = uprg t + 2∗ r g t + l o r g t / / weight the l e f t and r i g h t row
13 − u p l f t − 2∗ l f t − l o l f t ; / / f o r edge de tec t i on
14 f loa t4 isEdge = abs (row) + abs (column) ; / / sum up the values to one f i n a l
15 f l o a t res = dot (isEdge , v Iden t) ; / / sca la r represen t ing the edge
16

17 f l o a t e r r v a l = tex2D (ErrTx , TxCoord0) ; / / get e r r o r ex ten t a t t h i s po i n t
18 f l o a t c o l o r = tex2D (AdvTx , TxCoord0) ; / / get c o l o r from advected t e x t u r e
19

20 Output = c o l o r ; / / assign o r i g i n a l advected c o l o r
21 i f (res > Threshold) { / / i f a s t rong edge e x i s t s
22 Output = tex2D (TxErrorTF , / / assign u n c e r t a i n t y c o l o r
23 f l o a t 2 (c o l o r . x , e r r v a l) . xy) ;
24 }
25 return Output ; / / w r i t e f i n a l c o l o r to b u f f e r

Listing 3.2: The main part of the HLSL fragment program for the uncertainty edge

approach, without the actual advection step. (Code courtesy of Botchen et al. [13],

c©2006 ISFV).

ure 3.11 demonstrates discrete, quantitative color coding of uncertainty for the

LES dataset. More information on the dataset is detailed in Section 3.4.4. For

comparison, Figure 3.11 (c) shows the monochrome, uncertainty based cross ad-

vection approach applied to the same LES dataset. Figure 3.11 (d) gives an exam-

ple of the uncertainty edge approach introduced below. This technique combines

the monochrome streaklines from traditional texture advection with color coded

edges around the heads of the streaklets.

Uncertainty Edge Detection This second color mapping based approach is an-

other useful method for visualizing uncertainties. It is realized as 2-pass rendering

algorithm, whereby the important second pass is detailed as HLSL code snippet

in Listing 3.2. In the first stage, traditional texture advection is employed as de-

scribed in Section 3.4.1. In the second stage, an edge-detection filter—namely a

3×3 Sobel operator (Listing 3.2, Lines 1–15)—is applied to the result of stage

one, extracting all edges, which generally are located around the injected particle

and along the side of its short streakline. In the same step, a color mapping of the

uncertainty value is applied (Listing 3.2, Line 22). If no edge exists at the evalu-

ated region, the result from stage one—the color of the original particle traces—is

used instead. An advantage of this technique is that it does not modify or filter

64 Chapter 3. Visualization of Multi-field Flow Data

the original streaklines, computed in the first stage and, thus, additional informa-

tion (e.g., pressure or density) could be encoded. A slight disadvantage of this

technique is that the edges can clutter the final visualization. Therefore, it is bet-

ter suited for a sparse particle injection, where streaklines are clearly separated.

Figure 3.11 (d) demonstrates uncertainty edge detection for the LES test dataset.

3.4.4 Application Cases

The introduced techniques are now illustrated on several test datasets. The laminar

water channel dataset shown in Figures 3.12 and 3.13 was measured by a 3D

S-PIV method. This dataset contains one time step of water streaming through

the test channel that was designed for studying laminar-turbulent boundary layer

transitions in a water channel. The measurements, conducted by the Institute for

Aerodynamics and Gasdynamics at the Universität Stuttgart, consist of a 81 ×
45 × 9 hexahedra-based dataset which contains one time step of water inflow,

streaming through the channel, forming vortices in the current. For the final data,

the experiment was conducted 25 times for the 9 separated 2D layers and averaged

to one velocity field. Further information on the acquired original data can be

found in [99].

The wall-mounted finite cylinder datasets illustrated in Figures 3.11 and 3.14

were computed on an unstructured grid with 12.3 million grid points, with LES

and DES methods. The simulation for the original datasets was performed on

the same grid with a Reynolds-number of 200,000. The final data is averaged,

using 3083 single time steps. Computation timings for the cylinder datasets are

given for a cluster computer with 42 IBM pSeries 690 PCs with 1.3 GHz. For the

12.3 million grid points, it took the cluster 3.1 minutes for LES and 5.0 minutes

for DES per simulated time step. More details on the original datasets and its

acquisition can be found in [43]. The visualization of the DES and LES simula-

tions is an example of comparative visualization, i.e., the magnitude of the vector

difference between distinct simulation results serves as uncertainty measure u.

Since our GPU visualization techniques are designed for Cartesian grids, to ex-

ploit the SIMD (single instruction multiple data) architecture of modern graphics

hardware, it was necessary to resample the original dataset on an equidistant grid.

Therefore, we placed a cube with the dimensions x ∈ [−1.5, 4.5], y ∈ [−1.5, 1.5],
and z ∈ [0.0,−3.0] in the interesting region of the original dataset, and resampled

it with 256 × 128 × 128 sample points.

Figure 3.12 directly compares the three filtering based uncertainty approaches

by using sparse and dense particle injection represented by a white noise pattern.

The images show the fifth layer of the water channel dataset. Clear streaklines are

generated with traditional semi-Lagrangian texture advection in Figure 3.12 (a)

using alpha blending as exponential filter along flow direction. Streaklines only

widen in divergent parts of the vector field and due to numerical diffusion. Im-

3.4. Strategies for Uncertainty Visualization 65

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Visualizing the 5th layer of the PIV dataset. The left side of the upper six

images shows: semi-Lagrangian texture advection (a); sparse representations of cross ad-

vection (c); and Gaussian error diffusion (e). The right side illustrates all three approaches

using a dense representation: multi-frequency noise (b); cross advection (d); and Gaussian

error diffusion (f). (Images courtesy of Botchen et al. [12], c©2005 IEEE).

ages (c,d) show the flow visualized with the cross advection approach, for sparse

and dense particle injection respectively. In regions with marginal uncertainty, the

streaklines remain clear but in uncertainty-affected regions they become blurred

perpendicular to the flow by an extent that depends on the uncertainty value. The

same applies to sparse and dense particle injections of images (e,f), generated by

Gaussian error diffusion. With both techniques, the user can still see structures of

the flow in error regions, though the spatial frequency has been reduced. Further-

more, even the orientation of the flow is distinguishable due to the OLIC-like [160]

structure of the streaklines. As anticipated, the spatial frequencies strongly de-

crease in regions of large error, irrespectively of the method being pre-filtered or

post-filtered. All techniques produce similar results and eliminate structures of

the streaklines in error regions. These approaches can be applied for dye pat-

terns in the same way as for dense particle textures, which enable the engineer to

66 Chapter 3. Visualization of Multi-field Flow Data

(a) (b)

(c) (d)

Figure 3.13: Illustration of the 6th layer of the PIV measured water channel dataset,

rendered with a sequential (orange) color map and blended with the texture-advection

result (a); and with applied uncertainty edges (b). The 8th layer of the PIV dataset. Image

(c) shows a combination of cross advection and a discrete, qualitative color map; and

in image (d) uncertainty edge detection combined with a sequential color map. (Images

courtesy of Botchen et al. [13], c©2006 ISFV).

interactively release dye in interesting regions to explore features of the flow.

Figure 3.13 shows results for the color based approaches. Images (a,b) illus-

trate the sixth layer and images (c,d), the eighth layer in of the measured dataset

with different color maps. The left images apply a color map to the complete

texture-based flow visualization, i.e., to the whole domain. In contrast, the right

images only apply color coding to uncertainty edges; here, uncertainty is only

shown in regions where particles are visible, freeing image space in the other ar-

eas. The unmanipulated streaklines could be used to display an additional variate

(e.g., pressure). Images (a,b) and (d) in Figure 3.13 use a sequential color table

that maps the degree of uncertainty from low (white) to high values (highest color

saturation). In image (c) the qualitative color mapping represents five different

regions of uncertainty: high uncertainties are represented by red or blue colors,

whereas regions with no or little uncertainty are mapped to orange and purple

color and mid-range values are displayed as green color. In this way, the viewer’s

attention is drawn to regions with strong deviations. All visualizations show that

the areas of high uncertainty lie in regions where the flow moves in the direction

of the third dimension, i.e., a weakness of this PIV method is the accuracy in the

third dimension, which is plausible since the measurements are performed on 2D

layers.

3.4. Strategies for Uncertainty Visualization 67

(a) (b)

(c) (d)

Figure 3.14: Comparing of the LES (left) and DES (right) datasets, encoded by sequential

red colors (a); and with a spectral (blue-red) color map. The top row shows is the 84th

layer (z/D ≈ −1.016), the bottom row shows the 40th layer (z/D ≈ −2.055), located

right on top of the cylinder. (Images courtesy of Botchen et al. [13], c©2006 ISFV).

The visualization of the DES and LES simulations is an example of compar-

ative visualization, i.e., the difference between different simulation results serves

as uncertainty measure. All images of the simulated datasets shown in this paper

use the magnitude of the velocity difference vector as uncertainty extent, whereas

other values like pressure, density or temperature can be used instead, if they are

a matter of particular interest. High uncertainties appear in regions with vortex

separations near the surface or in shear layers behind the cylinder. Figure 3.14

shows a comparison of two different layers of both simulations. Images (a) and

(b) show the difference of velocity magnitude in the computed shear layers behind

the cylinder. A red color table is applied, sequentially enhancing saturation with

increasing uncertainty. This kind of mapping is used in most applications since

color and uncertainty are intuitively coupled. Nevertheless, the use of a diverging

color map, as shown in the right image, can emphasize the visualization. Images

(c) and (d) of Figure 3.14 illustrate vortex separations near the upper edge of the

cylinder with a spectral color map. Noticeable are the small differences in flow

directions of both datasets. While blue regions with very low uncertainties fade to

the background, the red-colored regions with high uncertainties are emphasized.

These uncertainties are due to the different simulation approach that is chosen

near boundary regions for DES and LES.

68 Chapter 3. Visualization of Multi-field Flow Data

viewport I II III IV V

1024×512 901 429 507 822 539

Table 3.1: Rendering performance in frames per second, measured on a Pentium IV with

3.4 GHz and an NVIDIA GTX 7800 GPU. Techniques are (I) conventional texture ad-

vection; (II) cross advection; (III) error diffusion; (IV) uncertainty color coding; and (V)

uncertainty edges, respectively. Note that the timing of the multi-frequency noise ap-

proach equals technique (I), as it works on a pre-filtered input texture.

The implementation of texture-based uncertainty visualization is based on

C++, Direct3D 9.0, HLSL, and FX files. Respective performance numbers are

documented in Table 3.1. Rendering speed depends linearly on the number of

texels. Cross advection, error diffusion and uncertainty edge detection have sim-

ilar performance since all three techniques need an additional render pass and

more texture lookups. Due to single pass rendering and half as many lookups,

the multi-frequency approach and the color mapping approach are nearly twice as

fast.

3.5 Combined Feature Visualization

The preceding sections presented 2D flow visualization techniques with the ability

to embed one or two additional flow features – i.e., uncertainty, velocity magni-

tude or pressure – into the visualization. This section aims at visualization tech-

niques for three-dimensional flow fields with the capability to include multiple

flow features into the final illustration. For three-dimensional vector fields the

challenge to produce a proper visualization is more complex. Due to the addi-

tional dimension, the final illustration can suffer from cluttering and occlusion.

Further, if these fields are given on anything other than a regularly structured grid,

it can make the process of computation and analysis highly complicated. This fact

leads to the need to reduce the large data flood and present only desired details of

the data to the viewer. One possible approach for this purpose is the use of a higher

level of abstraction to represent the data as done by flow topology methods [95],

although these methods are mostly limited to work on singularities of the under-

lying field. Another approach is to partition the flow field based on user-defined,

combined properties [126], and to display the flow structures only in regions that

fulfill these conditions.

The proposed multi-field flow feature visualization system, as shown in Fig-

ure 3.15, builds on the latter idea of reducing the amount of data for visualization,

by merging several features to one user-defined criteria. Therefore, multiple fea-

tures are combined using first-order fuzzy logic (FOFL) operators to create one

characteristic set of all input features, which is then used as a basis for further

3.5. Combined Feature Visualization 69

� :� :
scalar feature

criteria definition

∧
combined

feature subset

multivariate
data

iso-surface
constructionconjunction

visualization

particle seeding /
particle tracing

user interaction
input output

∨

Figure 3.15: Work flow of the multi-field feature combination and visualization system.

(Image courtesy of Botchen et al. [11], c©2008 ISFV).

computation. The system allows the user to define and combine multiple fea-

ture criteria as logic point predicates and display the resulting characteristic set as

isosurface with geometric primitives. For this purpose, the system is subdivided

into three layers; (1) feature definition and extraction, (2) logical combination of

feature sets and (3) visualization of the structures created by the feature sets as

isosurfaces in combination with the surrounding flow behavior as particle trace-

lines.

3.5.1 Definition of Feature Criteria

As a first step for feature based visualization, proper feature extraction methods

are essential. Thus, an important task is to find an appropriate definition that leads

to a good detection and thereupon to an adequate representation of the desired

feature. There exist a multitude of features for flow fields and scalar fields that

are supported by the system. An overview of flow features is given in Section 3.3.

The system extracts the features in a semi-automatic pre-processing step from the

given dataset. This extraction results in a normalized scalar field, i.e., the fuzzy

domain of the feature. In principle, any possible criterion can be defined, as long

as it can be mapped to a scalar field.

For an interactive analysis, the question of what is or is not considered to be

a feature eventually refers to the user and depends on what part of the data the

user is interested in. Hence, on the resulting scalar fields from the semi-automatic

extraction, the user is enabled to interactively define and combine several desired

feature criteria for illustration during analysis. It should be noticed that features

can be either global or local; the former are influenced by all values of the field,

whereby the latter represent a local quantity. However, all features are a charac-

terization of a set of points. The definition of a feature is usually closely coupled

to the dataset to be analyzed and depends on the requirements of the analysis.

70 Chapter 3. Visualization of Multi-field Flow Data

(a) (b) (c) (d)

Figure 3.16: Images (a,b) illustrate the results of the C 0-continuous min/max-logic for

an artificial isovalue dataset consisting of a sphere overlapped by a cube. The conjunction

∧ is shown in (a), and the disjunction ∨ in (b). Images (c,d) show the results of the C ∞-

continuous multiplicative logic, with the conjunction ∧∗ in (c), and the disjunction ∨∗ in

(d) respectively. (Images courtesy of Botchen et al. [11], c©2008 ISFV).

3.5.2 Using First-Order Fuzzy Logic

In the second stage, the system implements predicates to formulate functions on

the characteristic feature sets with logical operators {¬,∧,∨}. The difficulty of

using standard FOL is its binary nature, meaning that a predicate can either be

true or false. Yet, most feature extraction methods do not classify the feature in a

Boolean way, but rather give a fuzzy version of a characteristic feature set that tells

about the extent of the feature. Therefore, fuzzy point predicates are employed to

indicate whether a feature exists to a certain extend at a given location of the

dataset, meaning that we can describe a continuous connected region as feature.

Predicates of valence 1 express statements like high pressure exists and are used to

operate and extract features from the data. Therefore, all implemented predicates

operate on a normalized range and the continuous FOFL fulfills the following

three conditions:

1. It is consistent with binary Boolean logic P (x) = {true, false}.

2. The De Morgan’s rules hold for all possible values.

3. Conjunctions are steady functions.

For a feature criterion ξ given on the domain Dξ, a fuzzy predicate Pξ and a

combined characteristic set CS are defined as follows:

Pξ : Dξ → [0, 1] , CS =
⋃

Pξ(Dξ)>0

Dξ .

Here, ξ may represent λ2, sH , ‖v‖, ‖ω‖, p, ρ or u and the fuzzy value represents

the extent of a feature at a given point. Two different logic approaches – min/max

logic and multiplicative logic operators – are tested and evaluated to give the pos-

itive and negative aspects of those operators, when applied to flow visualization.

3.5. Combined Feature Visualization 71

Min-Max Logic The operators for min-max logic are defined as follows:

Pξk
∧ Pξl

= min{Pξk
,Pξl

} ,

Pξk
∨ Pξl

= max{Pξk
,Pξl

} ,

¬Pξ = 1 − Pξ .

Multiplicative Logic The second type of operators we use in our system imple-

ments multiplicative logic, leading to the following definition of operators:

Pξk
∧∗ Pξl

=
√

Pξk
· Pξl

,

Pξk
∨∗ Pξl

= ¬(¬Pξk
∧∗ ¬Pξl

) ,

¬Pξ = 1 − Pξ .

From a geometrical point of view, the min-max logic is equivalent to set op-

erations on isosurfaces and is in general C 0-continuous. This is adequate for

geometry construction algorithms that are applied later on, since they are com-

monly C 0-continuous too. However, from the combinational point of view, the

results of min-max logic might not be satisfactory enough. One of its character-

istics - i.e., the stronger or weaker feature dominates the result – can completely

neglect the other one and thus, lead to a loss of information. Here, the use of

multiplicative logic can be advantageous, because of its C ∞-continuous nature.

This means that the resulting set of a combination covers a region that is influ-

enced by all participating features. The effect of the different behavior for the

two logics are illustrated in Figure 3.16. The example shows the concatenation of

two artificial feature sets representing a sphere (blue) and a cube (yellow). Both

features increase from their barycenter. The isosurfaces was built with an isovalue

of 0.5 and the result of the respective operation is colored in purple. An important

aspect of the multiplicative logic is the fact that the operators are not associative

and therefore

(Pξk
∧∗ Pξl

) ∧∗ Pξm
6= Pξk

∧∗ (Pξl
∧∗ Pξm

) and

Pξk
∧∗ Pξk

6= Pξk
.

In other words this means that the individual fields are not weighted equally by

combination. Here, the last accumulation is the one with the strongest weight and

thus, the order in which the different fields are combined needs to be considered.

3.5.3 Interactive Combined Feature Visualization for Analysis

The third stage provides visualization by giving a structural overview of the ex-

tracted feature sets in combination with an illustration of the surrounding flow

behavior as streamlines. Depending on the underlying dataset, different aspects

72 Chapter 3. Visualization of Multi-field Flow Data

(a) (b)

Figure 3.17: The images illustrate the structural results for feature extraction on the ejec-

tion nozzle dataset for low velocity magnitude CS = P‖v‖ = 0.1 (a) and high vorticity

magnitude CS = P‖ω‖ = 0.9 (b). (Images courtesy of Botchen et al. [11], c©2008

ISFV).

of the data can be of interest to the user. In general, engineers have a basic idea

about what kinds of features are important for them and how to define and com-

bine them to obtain a reasonable characteristic feature set. However, an accurate

representation of the desired feature set is often achieved by repeatedly tuning the

parameters — usually done by adjusting the threshold value c, or the length of

the traced lines and thus, for an interactive analysis there should be the possibility

to customize the feature sets to the users needs. The system enables the interac-

tive modification of parameters for feature extraction. Based on the characteristic

feature set, a structural overview is build with 2D geometric primitives and 1D

tracelines.

The extracted features are given as point set which can be simplified and de-

scribed quantitatively in order to be visualized by geometry. The algorithm detects

the hull of the feature set, given by the threshold value c to build the isosurface

by means of {∀T ∃G : CST = c}. Since the system works on tetrahedral grids,

this implies that for all tetrahedra T a geometric primitive G is constructed, if the

isosurface runs through it. The construction of the geometry is computed with

the Marching-Tetrahedra algorithm [153], an adapted version of the more com-

mon Marching-Cubes algorithm [21; 90], Once the surface grid is computed, it is

used as source for particle tracing. As seeding strategy, we place a particle on the

barycenter of every grid polygon, to cover the whole feature domain. Outgoing

from their initial seeding position, the particles are traced with the second order

Runge-Kutta method. A bonus of this elementary approach is that it avoids the

problems of occlusion and clutter that can occur, when seeding particles in the

whole domain and thus, the user can directly explore the flow behavior in regions

of interest by a sparse seeding on the chosen feature domain. On the other hand,

as shown in Figure 3.17 (a,b) for different velocity magnitudes, the choice of a

single non combined feature set can cause the particle tracing to miss important

parts of the flow.

3.5. Combined Feature Visualization 73

(a) (b)

(c) (d)

(e) (f)

Figure 3.18: (a) CS = Pp = 0.1, (b) CS = Pλ2
∧∗ Pp = 0.1 (c) CS = Pλ2

= 0.1,

(d) CS = PsH
∧∗P‖v‖ = 0.1 (e) CS = PsH

= 0.1 (f) CS = (Pλ2
∧∗Pp)∨

∗ (PsH
∧∗

P‖v‖). (Images courtesy of Botchen et al. [11], c©2008 ISFV).

Further evaluation of the system was performed on three datasets coming form

different engineering application scenarios. Figure 3.18 shows the spatial evolu-

tion of a liquid sheet, ejected at Reynolds number 4,000 from a diverging ejection

nozzle. The DNS volume-of-fluid simulation of the liquid was done with the fo-

cus to find the most instability enhancing parameters and to give detailed informa-

tion on the possible outcome concerning the spreading rate and the disintegration

mechanism depending on the character of the nozzle. The dataset was computed

by the Institute of Aerospace Thermodynamics, at the Universität Stuttgart. It was

simulated on a Cartesian grid with 480×384×192 resolution and 253 time steps.

The dataset used for testing shows time step 220, converted to 64,000 tetrahedral

cells.

As presented in [127], the nature of flow through converging or diverging

channels is strongly influenced by the angle and the length of the nozzle, basically

leading to acceleration or deceleration of the flow. Though the diverging nozzle

74 Chapter 3. Visualization of Multi-field Flow Data

(a) (b)

(c) (d)

(e) (f)

Figure 3.19: The wall mounted cylinder illustrated with combined feature sets:

(a,b) CS = ¬PsH
∧∗ ¬Pu = 0.95, (c,d) CS = ¬Pλ2

∧∗ Pu = 0.9. (e,f) CS =
(¬PsH

∧∗ P‖v‖) ∨
∗ (¬Pλ2

∧∗ Pu ∧∗ ¬P‖ω‖) = 0.9. (Images courtesy of Botchen et al.

[11], c©2008 ISFV).

type represents only a very small technical modification compared to a parallel

nozzle, a very high level of kinetic energy flux of ǫ = 1.55 can be achieved,

leading to a typical sinusoidal wave instability.

The fuzzy predicates used to create the characteristic sets for images (a-d)

are based on p, ‖ω‖, λ2 and sH , respectively. In image (e) the combination

CS = Pp

∧

PsH
was used and for image (f) the characteristic set is defined as

CS = Pp

∧

¬Pλ2
, CS = Pp ∧ ¬Pλ2

∧ PsH
∧ P‖ω‖, whereby both operations

were performed with multiplicative logic. The results indicate that the increasing

wave instability from left to right implicates a gain of λ2 as well as sH , while the

p slightly decreases at the end of the diverging jet.

3.5. Combined Feature Visualization 75

(a) (b)

(c) (d)

Figure 3.20: Laminar water channel with rendered characteristic sets: (a) CS = P‖v‖ ∨
PsH

= 0.05, (b) CS = P‖v‖ ∧ PsH
0.05, (c) CS = P‖v‖ ∨

∗ PsH
= 0.05, (d) CS =

P‖v‖ ∧
∗ PsH

0.05. (Images courtesy of Botchen et al. [11], c©2008 ISFV).

The 12.3 million grid points of wall mounted cylinder Figure 3.19 were resam-

pled with 64,000 tetrahedral cells for the LES and DES datasets. The visualization

of the simulations is an example of comparative visualization, i.e., the difference

between different simulation results serves as uncertainty measure u.

The multiplicative disjunction of negated shear and negated uncertainty re-

sults in an isosurface that excludes the uncertain regions but includes the high

shear near the bottom, as can be seen in the top view of Figure 3.19 (a,b). A com-

bination of high λ2 and high uncertainty is illustrated in Figure 3.19 (c,d) leads to

nearly complementary results. Note that λ2 and shear need to be inverted, as by

definition, a smaller value covers more of the vortical region or the region under

shear stress. With more sophisticated combinations as in images (e,f) it becomes

clear that regions where all features are combined have a large extend are in the

direct neighborhood of the cylinder.

Figure 3.20 gives combined feature set examples for the laminar water chan-

nel dataset that was resampled from original dataset with 16,000 tetrahedral cells,

since the visualization system was designed for tetrahedral grids. Image (a) in

Figure 3.20 shows the characteristic set CS for P‖v‖ and in (b) the extracted iso-

surface for PsH
respectively. The illustration of the individual features clearly

shows that the relative velocity at the inlet region on the left side is higher than

on the right side, where a higher shear value dominates. Logical combinations of

those two features are presented with min/max disjunction CS = P‖v‖ ∨ PsH
in

(d) and min/max conjunction CS = P‖v‖ ∧ PsH
in (c). In images (e) and (f) the

examples of multiplicative disjunction and conjunction show that the continuous

results of multiplicative logical operations lead to a structural feature representa-

76 Chapter 3. Visualization of Multi-field Flow Data

tion that adequately covers the region to unveil the flow properties of interest.

As can be seen from the resulting images, a sophisticated user defined com-

bination of multiple desired features can give a good structural overview of all

regions where these features appear, as well as an adequate amount of seeding

geometry that can be adjusted by the user during analysis.

CHAPTER

4 FLEXIBLE MULTI-VOLUME

VISUALIZATION

Single data volume rendering methods have made significant progress in research

and are deployed in many fields of application today [7; 37; 92]. Extensions for

single-pass raycasting on GPUs have been proposed [144] and several algorithms

have been developed dealing with continuative topics, such as volume clipping
[79; 164] and volume deformation [28; 84]. A comprehensive overview on state-

of-the-art volume rendering techniques is given in [36]. However, many applica-

tions in scientific and medical visualization operate on multiple datasets – derived

from different imaging modalities or numerical simulations – rather than only on

a single input dataset. The simultaneous analysis of multiple correlated datasets or

several different regions of particular interest within a single complex volume is a

more sophisticated problem. In this case, a prerequisite for a comprehensive anal-

ysis and a proper understanding of the volume data is not only the interactivity

of the visualization technique but also an adequate visual representation. Espe-

cially for preoperative planning tasks in medical surgery, it can be of great benefit

to see several types of data simultaneously by spatially superimposing them, and

thereby enable the surgeon to identify anatomical landmarks and critical struc-

tures. For example, multi-volume visualization helps the surgeon to picture the

precise procedure of an operation and to get the required orientation that is nec-

essary to perform skin incisions or bone cover removal at the optimal location

before performing the actual surgery. The combined visualization of several vol-

umes bears various challenges [169], such as to establish visual correspondences

while maintaining distinctions among multiple volumes. A general approach for

blending several volumes was designed by Cai and Sakas [19]. This approach

splits the rendering process in three fundamental rendering pipelines for multi-

volume data intermixing. Recent work on multi-volume rendering describes a

CPU-based raycasting algorithm for direct rendering multiple overlapping vol-

umes [49], by handling single volume areas and regions where several volumes

77

78 Chapter 4. Flexible Multi-volume Visualization

intersect separately. The compositing of multiple volumes is maintained by se-

quentially applying the over operator given in Equation (2.10) for each individ-

ual volume. Other techniques apply non-photorealistic rendering styles [16], to

achieve traditional three-dimensional illustrations as used in educational books.

A hybrid algorithm for mixing volumes and translucent polygonal objects [81],

and graph based schemes [25; 105] were presented.

In this section, the presented concept for multi-volume rendering is related to

the later two approaches, but with the focus on the applicability to GPU-based

rendering. The system is based on a graph presentation that wraps complex GPU

shading algorithms in single graph nodes, it is able to handle multiple volume

datasets that can be combined in one scene, and allows for the rapid development

of new visualization applications. The rendering framework is possible to as-

semble various complex volume rendering styles from predefined pieces of code

“on-the-fly” and assign them to parts of one or more volumes. This flexible render

graph system can be freely configured from several modularized nodes, leaving

the user on an abstract level, while designing a multi-volume illustration.

The described work is based on two publications [122; 123], and was carried

out in collaboration with Friedemann Rößler from the Universität Stuttgart, Ger-

many. He must be credited for parts of the implementation and the conceptual

design. Before detailing the multi-volume rendering methods for slice-based ren-

dering and raycasting, an overview on medical imaging modalities employed to

acquire the used datasets for this work is given.

4.1 Medical Imaging Techniques in a Nutshell

Medical imaging refers to modern techniques and processes used to create im-

ages of the human body for clinical purposes or medical science. The images are

recorded with a computer and are usually stored with 12 bit resolution. The results

are used for the study of normal anatomy and physiology or functional analysis of

the brain. Different modalities are applied depending on the application area. The

commonly used techniques are described in this section.

Computer Tomography

CT or computed axial tomography (CTA) including conventional, helical and

electron-beam forms, is an x-ray based medical imaging method employing to-

mography [151]. The word “omography” is derived from the Greek tomos (slice)

and graphein (to write). The device is equipped with an x-ray sensing unit which

rotates around the body to create two-dimensional, cross-sectional images. CT

provides clinically relevant anatomic information and is used to study aortic dis-

ease, pericardial disease and cardiac masses, among others. It is relatively nonin-

vasive, and has comparatively low short-term and long-term risks.

4.1. Medical Imaging Techniques in a Nutshell 79

Computer Tomography Angiography

CTA is an extended method of CT, using a small dose of contrast material to pro-

duce detailed pictures [146]. The iodinated contrast medium is injected through

a peripheral vein by a small needle or catheter, to visualize arterial and venous

blood flow through major vessels in the body. Just like CT, it is a noninvasive out-

patient procedure that produces two-dimensional, cross-sectional images, helping

physicians to diagnose and treat medical conditions, with the focus on the heart,

lungs, kidneys, arteries, or veins of the body.

Magnetic Resonance Imaging

MRI or also called nuclear magnetic resonance (NMR) imaging [100], is a pro-

cedure that uses powerful magnets placed around a horizontal tube like scanning

device to form a magnetic field. The body part has to be placed in the exact isocen-

ter of the magnetic field to be scanned. The generated electromagnetic field is used

to align the nuclei of hydrogen atoms in the body and then, record this orientation

with point wise, precisely tuned burst of radio waves using a computer. Hit by the

radio wave, each distinct material such as tissue, bone or vessel, reflects a brief,

unique radio signal of its own. Unlike CT and CTA, MRI is non-ionizing and has

no known biological hazards, it is intrinsically three-dimensional. It can produce

high-resolution images of the heart’s chambers and large vessels without the need

for contrast agents. MRI is an acceptable technique for evaluating diseases of the

aorta such as dissection and aneurysm, heart muscle diseases and cardiac masses

such as intracardiac tumor. It is also preferably used for brain imaging, to outline

the affected part of the brain and help define the problems created by stroke. MRI

supports surgeons in terms of pre-operative and post-operative analysis.

Functional Magnetic Resonance Imaging

Functional MRI or short fMRI is a type of specialized MRI scan. It measures the

haemodynamic response related to neural activity in the brain or spinal cord of hu-

mans or animals and is one of the most recently developed forms of neuroimag-

ing. The ability of fMRI is to observe both the structures itself and also which

structures participate in specific functions of neural activity, detected by a blood

oxygen level dependent signal [109]. It dominates the functional brain mapping

field due to its low invasiveness, lack of radiation exposure, and relatively wide

availability. This new ability to directly observe brain function opens an array of

new opportunities to advance our understanding of brain organization, as well as

a potential new standard for assessing neurological status and neurosurgical risk.

80 Chapter 4. Flexible Multi-volume Visualization

4.2 Multi-volume Rendering

For rendering a single volume dataset, there exist a number of GPU-based tech-

niques, e.g., raycasting, splatting, and texture slicing, which numerically evaluate

the continuous volume rendering integral as in Equation (2.10). The basic idea of

these techniques is to first sample the volume at certain sampling positions, then

map the sampled values to color and opacity, and finally compose the resulting

color values in correct depth order.

If several intersecting volumetric objects should be visualized in a single im-

age, it has to be decided how the different objects contribute to the final image.

For this multi-volume rendering problem Cai and Sakas [19] determined three

levels of volume intermixing. For image level intermixing, the volumes are ren-

dered independently and the resulting images are combined by a compositing rule

which may take the opacity and depth value of the pixels into account. For accu-

mulation level intermixing, the visual contributions of the volumes are combined

step by step. At each sampling point the sample values of the different volumes

are mapped independently to colors and opacities and then these color values are

accumulated to a single sample color. For illumination level intermixing the sam-

ple color is not intermixed from colors and opacities, but directly computed by a

special multi-volume illumination model.

While illumination level intermixing allows producing physically inspired re-

sults like X-ray images, accumulation level intermixing is the most common ap-

proach for illustrative multi-volume visualization, because it provides the possibil-

ity of applying independent transfer functions and shading styles to the different

volumes. Furthermore, in contrast to image level intermixing, it leads to a cor-

rect depth cueing of the volumes. If accumulation level intermixing is used, the

GPU-based multi-volume rendering problem is two-fold. On the one hand, a vol-

ume rendering algorithm has to be applied which can handle several intersecting

volumes simultaneously. On the other hand, the volume intermixing is performed

on a per-sample level, which implies that for each combination of shading styles

and transfer functions a specialized GPU shader has to be provided. Further, de-

pending on the chosen volume rendering approach the implementation challenges

highly differ by means of evaluating and compositing multiple volumes.

The following sections present a framework with an integrated solution for

these tasks on the example of two direct volume rendering approaches, i.e., slice-

based multi-volume rendering and multi-volume raycasting. This multi-volume

visualization framework provides full flexibility for generating meaningful repre-

sentations of the investigated datasets. It facilitates to intuitively build up a render

graph on an abstract graphical level, completely decoupling the operator from the

complex process of information handling and shader generation.

4.2. Multi-volume Rendering 81

V1

V2

V1

V2

V1

V2

Figure 4.1: Three types of multi-volume slice accumulation on the example of two over-

lapping proxy slices: Merge (left); Separate (middle); and Intersect (right). Each different

colored region is processed by an individual shader. The grey square illustrates the inter-

section layer of the multi-volume slice. (Images courtesy of Rößler et al. [122], c©2008

IEEE).

4.2.1 Slice-based Multi-volume Rendering

While the scene description of the framework is independent of the applied ren-

dering technique, the actual GPU rendering algorithm needs to be adapted to the

applied rendering method. For the slice-based approach, the volumes in the multi-

volume scene are primarily transformed into camera space and then the volume

bounding boxes are equidistantly sliced along the viewing direction. This slicing

leads to multi-volume slices, each containing coplanar proxy slices of the different

volumes in the scene. The sampling distance between the multi-volume slices is

chosen in relation to the volume with the smallest voxel size. For rendering, the

multi-volume slices are processed in back-to-front order and their previously ac-

cumulated color contribution is blended with the over operator (Equation (2.11))

into the frame buffer. Since the system allows the assembly of shader programs

for any combination of volumes in the scene, three different techniques for the

multi-volume slice accumulation (see Figure 4.1 respectively) are considered:

Merge This method merges the geometry of all existing proxy slices into a single

hull, which is not necessarily convex. Then this hull is tessellated with gluTessela-

tor of the OpenGL Utility Library (GLU) and the resulting triangles are rendered

with a single shader that accumulates the contributions of all n volumes within

the multi-volume slice, requiring no shader switches at all.

Separate The separation technique is based on the strategy to handle each proxy

slice separately. Here, no expensive merge of the volume slices is necessary.

A single shader for each of the n volumes is assembled, resulting in n shader

switches per multi-volume slice.

Intersect The third technique goes one step further by handling each possible

combination of intersecting volumes with a different shader. This method needs

82 Chapter 4. Flexible Multi-volume Visualization

to divide the regions of intersecting volumes into single bounding polygons and

needs to tessellate them. Regarding the shader switches, the upper limit is 2n due

to the maximum number of possible combinations of n overlapping volumes.

A further discussion of the advantages and disadvantages of the three accumu-

lation techniques and some comparative performance results for different scenar-

ios can be found in Section 4.5. Independent of how the three slice accumulation

techniques handle the different volumes, each technique implements accumula-

tion level intermixing. This means that the visual contributions of the volumes are

combined step by step, where the compositing of the different volume samples

is often performed by standard alpha blending with the recursive over operator

given in Equation (2.12). A problem of this operator is that the resulting color and

opacity depends on the order in which the volumes are applied. This is similar

to the multiplicative Fuzzy Logic described in Section 3.5.2, were the last accu-

mulated value has the strongest weight. For this reason other operators have been

proposed which calculate a weighted sum of the single contributions. An exam-

ple is the inclusive opacity operator of Cai and Sakas where the color values are

weighted with their normalized opacity:

cout =
n

∑

i=1

αi

αsum

ci , with αsum =
n

∑

i=1

αi . (4.1)

Depending on the used multi-slice accumulation algorithm, different sets of

GPU shader programs have to be generated. This is performed on the fly by

the shader generator (see Section 4.4), at the first time a certain combination of

volumes appears and then the shader program is stored in a map for later re-use.

So, only if the render graph configuration changes or another slicing technique is

chosen, the shader programs are discarded and re-generated during the rendering

of the next frame.

4.2.2 Multi-Volume Raycasting

While texture slicing and volume splatting were especially developed for GPU-

based rendering, raycasting does not fit directly to rasterization hardware. Never-

theless, since raycasting is the most native way of volume rendering and leads to

superior results, there have been developed several raycasting approaches which

strive to exploit the parallel rendering capabilities of a GPU. The basic idea of

these approaches is to render the front faces of the volume’s bounding box and

then cast the viewing ray for each rasterized fragment. On older graphics hard-

ware this had to be done in multiple rendering passes [83; 125], but latest GPUs

provide loops and dynamic branching and by this they allow the implementation

of the whole ray traversal in a single shader [144].

4.2. Multi-volume Rendering 83

screen

V1 V2

10 11
01

00

volPerm 00 10 01 11

01
screen

V1 V2

empty space V1 V2 V1 I V2

obvious approach depth peeling approach

shaderV1 U V2

Figure 4.2: Two approaches for multi-volume raycasting of a two-volume scene (V1, V2):

On the left side the first (dark blue) and the last (grey) intersection points of the viewing

rays with V1 and V2 are computed and then these rays are traversed by a single multi-

volume shader responsible for both volumes. For the approach on the right side the scene

is segmented into three layers by depth peeling. Each layer is rendered with optimized

shaders which take only the covered volumes (volPerm) into account. The first layer

(orange) consist of two disjoint regions of V1 and V2 which are treated by two different

shaders. (Images courtesy of Rößler et al. [123], c©2008 IEEE).

The straightforward approach for raycasting of multiple volumes on the GPU

can be realized by extending the single pass method for a single volume to a

three pass rendering method (see Figure 4.2 (left)). First the front faces of all

volumes’ bounding boxes are rendered with activated depth test and the depth

function set to less. For each viewing ray this yields the first entry point to a

volume in the scene. The coordinates of these entry points are stored in a texture.

In the second pass, the back faces of the bounding boxes are rendered with the

depth function set to greater. This generates the exit points from the furthermost

volumes along the rays. Now that the entry and exit points for the union of all

volumes are known, the whole multi-volume scene can be visualized in a third

pass by rendering a screen-filling quad to initialize the rays and applying a single

fragment shader. This shader reads for each pixel the pre-computed entry and

exit points and traverses the viewing ray between these points in front-to-back

order. At each sampling position along the ray, the shader evaluates the color

contributions of all volumes in the scene and accumulates them to a single sample

color, which is then blended to the ray’s output color. The major disadvantage

of this approach is that for each sampling point along each ray each volume is

evaluated, even if the sampling point lies outside a volume’s bounding box, or the

ray traverses empty space. Alternatively, it can be tested if a sampling point lies

inside the volume before the evaluation is done, but this introduces a huge number

of expensive branching operations especially for complex scenes.

For these reasons a more sophisticated multi-volume raycasting technique (see

Figure 4.2 (right)) is desired that requires a slightly different algorithm work flow.

84 Chapter 4. Flexible Multi-volume Visualization

1 void raycastingCPU () {
2 act iva teShader (f i rs tLayerGPU) ; / / generate f i r s t depth l ay e r
3 for each volume i n scene {
4 v o l B i t = 1 << volNum ;
5 renderFrontFaces (v o l B i t) ;
6 }
7

8 l i s t prevPermList , curPermList ; / / i n i t l i s t s o f permutat ions
9 curPermList . add (0) ;

10

11 while (layerNum < maxNumOfLayers) { / / loop over depth laye rs
12 act iva teShader (nextLayerGPU) ; / / generate next depth l ay e r
13 for each volume {
14 v o l B i t = 1 << volNum ;
15 renderBoundingBox (v o l B i t) ;
16 }
17

18 prevPermList = curPermList ; / / check prev ious permutat ions
19 curPermList . c l ea r () ;
20 for each prevPerm i n prevPermList / / perform raycas t i ng f o r volPerm
21 for each volPerm i n s i n g l e B i t F l i p (prevPerm) {
22 act iva teShader (raycastingGPU , volPerm) ;
23 renderScreenFi l l ingQuad () ;
24 i f (anyFragmentWrit ten ())
25 curPermList . add (perm) ;
26 }
27 }
28 }

Listing 4.1: Pseudocode for the raycasting procedure on the CPU. The shaders

(red) are given in listings 4.2 and 4.3. (Code courtesy of Rößler et al. [123],

c©2008 IEEE).

The implementation of this work flow leads to several challenges that are best un-

derstood by following the pseudocodes in Listings 4.1, 4.2 and 4.3. The algorithm

first divides the multi-volume scene into depth ordered segments of intersecting

volumes and then applies to each of these segments an optimized shader that only

takes the currently involved volumes into account. The segmentation of the scene

is done by depth peeling. As shown in Listing 4.1 (line 6), the depth peeling starts

with rendering the entry points of the rays in the same way as it is described for the

approach above. Then the volume bounding boxes are rendered once again with

depth test set to less and a special shader applied (Listing 4.2, nextLayerGPU),

which peels away the first entry points by comparing their stored z-values with

the z-values of the currently rendered fragments. This generates for each view-

ing ray the second intersection point with a volume bounding box. The following

intersection points are computed in the same way by taking the previous intersec-

tion points as new start points and again applying the nextLayerGPU shader. The

highest possible number of intersections per ray for n volumes is 2n, since there

can be maximally n entry points and n exit points.

The described depth peeling algorithm generates layers of ray segments that

4.2. Multi-volume Rendering 85

1 i n : vec3 curPos ; uint v o l B i t ; bool f ron tFace ;
2 out : vec3 pos ; uint volPerm ;
3

4 void f i rs tLayerGPU () {
5 pos = curPos ; / / w r i t e p o s i t i o n and
6 volPerm = v o l B i t ; / / volume b i t vec to r
7 }
8

9 void nextLayerGPU () {
10 vec4 prevPos ; uint prevPerm ; / / read prev ious l ay e r values
11 readPreviousValues (prevPos , prevPerm) ; / / from tex tu res
12

13 i f (curPos . z < prevPos . z) / / d iscard fragment i n
14 discard ; / / f r o n t o f prev ious l ay e r
15

16 i f (f ron tFace) / / compute cu r ren t permutat ion
17 curPerm = prevPerm | v o l B i t ; / / on enter l ay e r
18 else
19 curPerm = prevPerm & ˜ v o l B i t ; / / on e x i t l a y e r
20

21 pos = currentPos ; volPerm = curPerm ;
22 }

Listing 4.2: Pseudocode for the computation of a ray segment layer on the GPU.

(Code courtesy of Rößler et al. [123], c©2008 IEEE).

are bounded by two consecutive intersection points. So, each segment traverses

a constant set of overlapping volumes. However, these sets of volumes can differ

across a ray segment layer, as can be seen in Figure 4.2 (right), where the orange

layer consists of two disjunct regions of volume V1 and volume V2. This means

that there is no single shader which can be applied. Instead, a ray segment layer

has to be further divided in screen space into regions of equal ray segments. To

easily determine which volumes are intersected by a ray segment, it is possible

to exploit the integer arithmetic capabilities of NVIDIA’s G8 series GPUs. In the

depth peeling step a bit vector is applied to each ray segment which encodes the

intersected volumes – i.e., the current volume permutation. Since 32-bit integer

values are used, the total number of volumes in a scene is limited to 32 which is

sufficient for common scenes. The permutations are stored in an integer texture

which is initialized with 0. The permutation of the current ray segment layer is

computed by incrementally changing the permutation of the previous layer. For

each bounding box the id of the corresponding volume – encoded as bit vector

volBit – is given as uniform to the depth peeling shader. If the currently rendered

bounding box face is a front face a rendered fragment represents a point where the

volume is entered, so the new volume permutation curPerm is computed from the

previous permutation prevPerm by appending volBit with bitwise OR “|”, (see

Listing 4.2 (line 18)). At back faces the viewing ray is leaving the volume. Here

the new volume id is subtracted by merging the previous permutation with the

bitwise complement “∼” of volBit by bitwise AND “&”, (Listing 4.2 (line 19)).

86 Chapter 4. Flexible Multi-volume Visualization

1 i n : uint shdrPerm , f l o a t smplDist ;
2 out : vec4 outCol ;
3

4 void raycastingGPU () {
5 vec3 pos , s t r tPos , endPos , step ; vec4 smplCol ;
6

7 i f (shdrPerm != getSegmentPerm ()) / / d iscard i f shader and
8 discard ; / / ray segment are unequal
9

10 readStartAndEnd (s t r tPos , endPoint) ; / / compute sampling step
11 step = norm (endPos − s t r tPos) ∗ smplDist ; / / along the ray
12

13 i n i t I n t e r p o l a t e d V a r s () ;
14 i n i t F r o n t V a r s () ;
15

16 pos = s t r tPos ;
17 outCol = vec4 (0 , 0 , 0 , 0) ;
18 while (pos . z < endPos . z) { / / ray t r a v e r s a l
19 copyFrontToBackVars () ;
20 computeOtherVars () ;
21

22 smplCol = vec4 (0 , 0 , 0 , 0) ;
23 for each volume i n shdrPerm { / / accumulate s i n g l e
24 smplCol = accum (smplCol , vo lCo l [i]) / / sample co lo rs
25 }
26 outCol += (1.0−outCol . a) ∗ smplCol ; / / perform blending
27

28 i t e r a t e I n t e r p o l a t e d V a r s () ;
29

30 pos += step ; / / next sampling p o s i t i o n
31 }
32 }

Listing 4.3: Pseudocode for raycasting of a ray segment layer on the GPU. The

green functions are replaced by generated code due to the render graph configura-

tion and due to the current volume permutation. (Code courtesy of Rößler et al.

[123], c©2008 IEEE).

Basically, a ray segment layer is rendered several times by specialized shaders

for each possible permutation of volumes (Listing 4.3). To avoid unnecessary

computations for not affected ray segments each shader first loads the ray seg-

ment’s volume permutation and tests it against the permutation considered by the

shader itself. If they are not equal, the execution of the shader is directly discarded.

Since all ray segments that pass the same overlapping volumes usually cover con-

nected regions and dynamic branching is efficiently done on current GPUs for

coherent fragments, the overhead of these tests is relatively low. However, the

number of shaders which have to be executed per layer is 2n−1, which is the total

number of permutations minus the zero permutation, where no volume is covered.

This number becomes quite large even for small numbers of volumes. But it can

be remarkably reduced by exploiting the fact that the volume permutations cov-

ered by the current ray segment layer depend on the permutations covered by the

preceding layer. At the segment border of a single viewing ray the corresponding

4.3. The Render Graph Framework 87

volume permutation changes only at a single bit, because either a new volume is

entered or an old one is left. For the whole segment layer this means that only

those volume permutations have to be tested that can be generated from the per-

mutations covered by the previous layer by single bit flips (Listing 4.1 (lines 22-

32)). To determine which permutations have been covered by a ray segment layer

hardware supported occlusion queries are used. For each tested shader a query is

started which returns whether any fragment was written to the frame buffer and

by this if any ray segment has covered the corresponding permutation.

4.3 The Render Graph Framework

The graphical user interface (GUI) of the system consists of three views (see Fig-

ure 4.3 (b)). The major render view shows the visualization results due to the

actual scene and render graph configuration and provides interactive manipula-

tion of the camera position with the mouse. The two other views are placed above

each other on the left hand side of the render view. The lower render graph view

presents the render graph as a hierarchical tree. The graph in a whole can be ma-

nipulated by appending and removing nodes. It is also possible to insert nodes at

a higher level of the graph, because removed branches are stored in a clip-board

and can be re-inserted later. If a node of the render graph is selected, the above

render node view shows an individual dialog for the manipulation of the nodes’

individual parameters. Changes in the node or graph view are directly mapped to

the underlying render graph and the resulting effects to the multi-volume visual-

ization are shown immediately in the render view.

The implementation of the multi-volume visualization techniques (e.g., vol-

ume shading, clipping and non-photorealistic rendering methods) was embedded

into the above mentioned framework, which supports dynamic shader generation

for both slice-based multi-volume rendering and multi-volume raycasting, to ease

the construction of multi-volume scenes for the user. Further on, it is possible to

extend the system to new techniques by implementing and integrating new render

nodes. The design of this object oriented system is based on C++, OpenGL and

GLSL. The framework consists of four major components: the scene description,

the render graph, the multi-volume renderer, and the shader generator. The fact

that accumulation level intermixing permits an arbitrary combination of shading

styles and transfer functions leads to a large number of possible visualization al-

gorithms for a given multi-volume scene. Further on, the volume intermixing is

performed on a per-sample level, which implies – in the context of GPU-based

rendering – that for each of the visualization algorithms a specialized GPU shader

has to be provided. Usually this complexity is coped with by providing a set of

fixed shaders for predefined combinations of volumes and shading techniques.

The so called render graph was developed in order to overcome these restric-

88 Chapter 4. Flexible Multi-volume Visualization

tions and to provide full flexibility in GPU-based multi-volume rendering. This

graph describes a complex multi-volume shading algorithm by the combination

of several render nodes. Thereby, each render node describes a certain part of the

whole shading algorithm and the final shader code is automatically generated by

the system due to the actual graph configuration. Unlike a classical scene graph,

which permits the creation and manipulation of complex scenes, the render graph

describes the visualization of a given multi-volume scene on the level of shading a

single multi-volume sample, independent of the finally applied volume rendering

technique. There exist three basic types of render nodes which represent different

stages of the shading process.

4.3.1 The Scene Node

The root of the entire render graph is always defined by a single scene node that

represents the interface between the external description of the scene objects (i.e.,

the camera, light sources and volumes) and the graph itself. Therefore, this node

collects the required information from these objects and passes it on to its children.

4.3.2 Structural Nodes

Starting from the scene node, all volumes are initially treated equivalent, regarding

the shading process. To allow a separate handling of different volumes as a whole

or just parts of them, structural nodes are introduced. These nodes do not directly

contribute to the shading result; rather they provide capabilities to dynamically

control the evaluation of the render graph by branching and manipulation. Three

kinds of structural nodes are supported:

Splitter Node The splitter node is used to divide the handling of the volumes into

several branches. Therefore, an arbitrary number of groups can be created, where

each group contains one or more volumes. Moreover, a volume can be placed in

several groups simultaneously. Every group results in a new branch of the render

graph. Thus, it is possible to define different rendering styles for different volumes

or to combine several rendering styles for a single volume. This can be considered

as a branching on object level.

Conditional Node In contrast to the splitter node, a conditional node performs a

subdivision of the volume objects themselves. This means, during the rendering

process only the branch is chosen for which the condition is true. These conditions

are normally evaluated on basis of the actual fragment position and could for

example describe the selection of a segmented structure or the clipping against an

implicitly given geometry like a plane.

4.3. The Render Graph Framework 89

Resulting Sample Color

Split V1/V1

Skin Shader Bone Shader

Split V1/V2

V1 Hand

Scene Node

V2 Bucky Ball

Σ

Condition V2

DVR Shader

Iso Shader Transform

Illumination Illumination Illumination

(a) (b)

Figure 4.3: The abstract render graph structure (a) represents a scene of two volumes with

different rendering styles applied. The resulting image of the applied render graph to the

dual-volume scene (b). (Images courtesy of Rößler et al. [123], c©2008 IEEE).

Transformation Node To spatially separate whole volumes or previously subdi-

vided parts of them, it is possible to insert a transformation node into the render

graph. This node implements an affine transformation which is applied to all vol-

umes that are assigned to the actual branch. Thereby, volume displacement can be

realized.

4.3.3 Shader Nodes

The third kind of nodes are the shader nodes, which exclusively implement low-

level shading operations to compute the resulting image. The shader nodes can be

placed anywhere in the render graph, and several shader nodes can be cascaded on

a path from the root down to a single leaf of the graph. In this case, the successor

either overwrites or manipulates the result of its preceding shader node.

4.3.4 A Render Graph Example

The abstract functionality of the render graph and its nodes gets clearer on the

structural example for the computation of the resulting sample color in correspon-

dence to Figure 4.3 (a). Render nodes are represented by grey boxes. The colored

lines describe the paths of the volumes, the black arrows indicate the parent-child

relationship of nodes. Applying this graph to the given dual-volume scene, with

volume V1 as the hand dataset and volume V2 as the bucky ball, results in the

image shown in Figure 4.3 (b).

Starting at the scene node, which handles the attached volumes, their path

leads through the graph in a top-down manner. The first splitter node Split V1/V2

divides the paths of both volumes into two branches, where the hand volume takes

90 Chapter 4. Flexible Multi-volume Visualization

the left branch and the bucky ball takes the right one. Volume V1 hits another split-

ter node Split V1/V1. This node virtually splits the single path of the volume into

two independent branches that both work on the same hand volume, but lead to

different shader nodes, indicated by the continuous lines and the dashed lines.

The Skin Shader node in the left branch is responsible for the semi-transparent

isosurface rendering of the skin, while the Bone Shader node in the right branch

performs a direct volume rendering of the bone structure in Figure 4.3 (a). Both

nodes are succeeded by illumination nodes that manipulate the previously calcu-

lated fragment sample color with lighting computation.

Investigating the right branch of node Split V1/V2, volume V2 encounters a

conditional node Condition V2. This node splits the bucky ball into two halves

using a clipping plane. The left branch hits an Iso Shader node, followed by

an illumination node, resulting in a lighted isosurface. The right branch runs

into the transformation node Transform, translating and rotating this half, before

the direct volume rendering node DVR Shader serves the unlighted color for this

path. Finally, the contributions of the different branches are mixed according to

the defined accumulation operation.

4.4 Dynamic Shader Generation

The goal of dynamic shader generation is to convert the abstract representation of

the render graph into an especially adapted GPU-based shader program. Here, the

high-level shader language GLSL [124] can be used for hardware accelerated ren-

dering. The advantage of GLSL (and other high level shader languages) is that it

permits the generation of structural C-like code which is automatically optimized

by the compiler with respect to the current hardware configuration.

The basic idea of the shader generation approach is that a single render node

acts as a container that stores all needed information and dependencies to perform

its desired task. Therefore, it provides a set of output variables that either act as

input for succeeding render nodes or as final output value for the actual volume

sample. For each of these output variables the following information has to be

given:

1. Name and type: A unique name and a data type to permit correct access by

other render nodes.

2. Shader code part: Predefined code that implements the computation of the

output variables.

3. Input variables: Output variables from previous render nodes on which the

computation of the actual output variable is based on.

4. Externals: External parameters and textures that are needed for the output

computation. They are passed to the shaders as uniform variables.

4.4. Dynamic Shader Generation 91

5. Shader type: An output variable can either be calculated per vertex in the

vertex shader and interpolated by the graphics hardware, or it has to be

calculated per fragment in the fragment shader.

6. Scope: A variable can either be valid for the whole scene, for a certain

transformation, or for a specific volume.

Which output variables a render node serves, depends highly on its type (see

Section 4.3). The scene node for example provides all information of the given

multi-volume scene to the other nodes of the graph. This is e.g., the camera ma-

trix or the position of the light source. Additionally it provides the sample position

and the volumes’ scalar values, gradients and curvatures at this position. To facil-

itate complex shading algorithms like pre-integration or isosurface shading, these

values are also provided for the succeeding sample position along the viewing ray.

A shader node generally computes the sample color for a single volume. There

are two major types of shader nodes: Those which compute the resulting color di-

rectly from the actual volume sample, e.g., direct volume rendering or isosurface

shading; or those which manipulate the previously computed sample color to ap-

ply for example illumination or ghosting effects.

Structural render nodes do not directly contribute to the rendering result, which

means that they usually do not provide any output variable that can be used by a

succeeding node. Nevertheless, condition nodes have to provide a Boolean con-

dition variable for each outgoing branch, which indicates, if the related branch

should be evaluated due to the applied condition. Furthermore a condition node

may manipulate the actual volume gradient with respect to the distance to the

clip surface as proposed in [164], to get correct illumination results in succeeding

computations.

4.4.1 Two-pass Shader Assembly

Based on the definition of output variables, the related shader code and the de-

pendencies on input variables, it is possible to generate a specific shader program

for computing the final color of a multi-volume sample. Therefore, the shader

generation process is divided into two passes. The first pass evaluates the graph

and determines all output variables which have to be computed for the requested

sample color. This information is stored in the so-called variable state, which is

a structural copy of the render graph that holds only the currently used variables

and links to the original render graph nodes. In the second pass the pre-computed

variable state is used to combine the associated shader code parts for the final

shader program.

1st Pass The render graph is traversed in depth-first order to collect the variables,

and for each render node an associated variable state node is created. When a

92 Chapter 4. Flexible Multi-volume Visualization

leaf node of the render graph is reached, it is tested whether it can provide the

sample color and if so, this variable is stored in the related variable state node.

Furthermore, the applied input variables are stored in a list of required variables.

On the way back to the root of the graph, this list is re-investigated for each passed

node and servable variables are replaced by their associated input variables. If

the actual render graph configuration defines a valid shader program, the list of

required variables will be empty in the end.

Branches of the render graph – originating from condition and splitter nodes

– are evaluated independently on the way down. At the backward traversal the

different lists of required variables are re-merged to a single one. In addition,

at splitter nodes it is determined which volumes are investigated at the different

branches. Since the sample colors only have to be computed for still active vol-

umes, this information is additionally stored in the related variable state at the

leaf node and propagated to the required input variables. At conditional nodes,

for each outgoing branch the related conditional variable is added to the required

variables list and then processed just like the others.

A transformation node plays a special role in the variable gathering pass. All

variables with volume or transformation scope that are computed on the succeed-

ing branch, have to be adjusted due to the defined transformation. The same has

to be done for the required variables on the way up to the root. Additionally, if

the same volume is examined multiple times on different branches with different

transformations, it effectively has to be rendered multiple times at different po-

sitions. Thus, even the preprocessing – e.g., the slicing for slice-based volume

rendering – is affected. To cope with this fact, all volumes that are actually ac-

tive on a transformation node’s branch are shallowly cloned, which means that

the clones point to the original volumes, and additional transformation matrixes

are attached. Furthermore, the active volumes at the outgoing branch of a trans-

formation node are replaced by their related clones. In the subsequent processing

steps of shader generation and rendering, all volumes in the scene – originals and

clones – are treated equivalent.

2nd Pass While the definition of render nodes and the generation of variables

do not depend on a certain rendering technique, the code generation pass pro-

duces shader programs that are especially adapted to the applied rendering algo-

rithm. As described before, the system supports slice-based volume rendering

(see Section 4.2.1) and multi-volume raycasting (see Section 4.2.2), and creates

a corresponding vertex/fragment shader pair for the rendering of either a single

multi-volume slice, or a multi-volume ray segment. It is possible to generate a

single shader program that processes all volumes in the scene at once, or separate

shader programs for single volumes or programs for any combination of them.

4.4. Dynamic Shader Generation 93

To assemble a shader program for slice-based multi-volume rendering for a

given set of volumes, the pre-computed variable state is traversed in depth-first

order. At each variable state node the shader code parts that are associated with

the stored variables are taken and, depending on the variable’s shader type, ei-

ther added to the vertex or to the fragment shader. If a variable that is computed

in the fragment shader, depends directly on a variable in the vertex shader, this

input variable is served automatically to the fragment shader by a varying vari-

able. However, the number of varying components that can be used in a single

GPU program is limited and depends on the graphics hardware. To overcome this

restriction, the number of potential varying components is counted before assem-

bling the shaders and, if the limit is exceeded, vertex shader variables are com-

puted in the fragment shader as well. If a variable has either transformation scope

or volume scope, its code segment is defined only once by the render node, but

is appended to the shader several times for each requested transformation and/or

volume respectively. To ensure the distinction of the different computations, the

variable names are additionally extended by a unique per-volume postfix.

If there are branches in the render graph, the shader code is assembled in-

dependently for each branch and finally combined. In order to avoid unneces-

sary computations, the code parts of variables of previous render nodes are al-

ways added to the shader as late as possible. If a variable is used in all outgoing

branches of a structural node, it is placed before branching, but if it is only needed

for a single branch, it is computed inside exclusively. Conditional branches are

evaluated, if the associated conditions – represented by Boolean condition vari-

ables – are satisfied. This is realized by nesting the branches inside if -statements.

If a transformation node is placed somewhere below a conditional branch and the

branching condition depends on the transformation, for each leaf of the outgo-

ing subtree, the condition has to be evaluated as an independent if-branch in the

shader code. After the traversal of the variable state graph, code for the accumu-

lation of the color contributions of the different volumes at all branches is added

to the fragment shader, to compute the final multi-volume sampling color. The

generated GPU program is now ready for direct use in slice-based multi-volume

rendering, which is presented in the next section.

The shader code for the slice-based approach computes a multi-volume sam-

pling color per fragment on a slice, which is then blended to the framebuffer.

On the contrary, multi-volume raycasting is implemented as single pass algo-

rithm [144], computing several multi-volume samples along a ray segment that

have to be blended accumulated the shader, before blending to the buffer. For

this purpose, an additional loop needs to be added to the shader to realize the ray

traversal. To assign each ray to an unique combination of volumes, the volume bit

vector of the ray segment is compared to the shader’s bit vector at first, in terms

of depth peeling. Then, start and end point of the ray segment is read from the

94 Chapter 4. Flexible Multi-volume Visualization

previously computed textures. Finally a loop is executed which traverses the ray

segment from start to end point with a predefined sampling distance. The code

inside the loop is dynamically generated due to the render graph configuration,

just as it is done for the slice-based approach. In the end of the ray traversal loop,

code for the accumulation of the color contributions of the different volumes is

added to compute a single multi-volume sampling color, which is then blended to

the output color of the ray segment.

The generated shader code can be further optimized. First, several of the out-

put variables – e.g., the volume texture coordinates – don’t have to be computed at

each sampling point by their complex predefined operations, but be interpolated

instead from initially computed sample values. For this, an initialization step be-

fore the ray traversal loop is added, where the variable values for the first and the

second sampling point along the ray segment are pre-computed and the sample-

to-sample step size is calculated by subtracting these two values from each other.

Inside the loop the step size is used to generate a new variable value from the

previous one by incrementation. A further potential for optimization is given by

the fact that several volume shading algorithms, like pre-integration or implicit

isosurface rendering, do not calculate a color for a single sample position but for

the whole slab between two samples. This means that some variables have to be

computed for the current sampling position and for the following one as well. In-

stead of re-computing both values for each sampling step it is sufficient just to

compute the new value for the current back sample and to copy the value for the

front sample from the back sample of the previous step. Additionally, the front

value has to be initialized before the ray traversal.

4.5 Application Cases

A typical scenario for multi-volume rendering is medical visualization and illus-

tration. On the one hand, several scans with different imaging modalities are

often taken of a single patient, to get comprehensive information about anatomi-

cal structures and functional processes. On the other hand, a single dataset usually

contains a couple of different structures which can best be emphasized by different

transfer functions and shading techniques. Thus, to demonstrate the applicability

and flexibility of the presented multi-volume rendering framework, various tech-

niques are applied to several different medical use cases, which are detailed in

the following. The visualization results of the five example setups and the corre-

sponding render graphs are shown in Figures 4.4, 4.5 and 4.6 respectively.

Diagnosis The first use case is an example in the area of neuroradiological diag-

nosis for the detection of malformations of cerebral blood vessels. Therefore a

CTA scan of the patient’s head is taken, which is a CT technique, where a con-

4.5. Application Cases 95

(a) (b) (c) (d)

Figure 4.4: Example setup I: Combination of a CTA (Computed Tomography Angiogra-

phy) dataset and a related MRI (Magnetic Resonance Imaging) dataset of a human head.

The MRI dataset provides the skin and brain tissue. It is vertically cut and the two halves

are moved away from each other to get insight to the inner structures. The CTA dataset

contains the skull and the vessels which are rendered with different transfer functions.

Images (a-c) show three stages of an interactive multi-volume visualization session and

image (d) represents the render graph which corresponds to the final configuration in (c).

(Images courtesy of Rößler et al. [122], c©2008 IEEE).

trast agent is injected to emphasize the vessel structure in the resulting images. In

addition, an MRI scan that accentuates the brain tissue is used to get the patient

specific relationship between the blood vessels and the anatomical structure of the

brain. Note that the CTA and the MRI scans are co-registered.

Figure 4.4 shows an example visualization (setup I) of this two-volume scene.

Images (a-c) illustrate different visualization steps during the render graph config-

uration, and image (d) shows the render graph that corresponds to the final result

in (c). The goal of the visualization is to present the intracranial brain vessels in

relation to the surrounding skull and in the context of the brain structure. There-

fore, the visualization path of the two volumes is first split into one branch for

the MRI volume and two branches for the CT volume by a splitter node. Then,

the MRI volume, which contains the skin and the brain tissue, is rendered with a

direct volume rendering (DVR) node and the surface structure is emphasized by

the combination of a cartoon shading node and a lighting node which performs

Phong shading. To get insight into the inner structures, the MRI head is divided

vertically by a plane condition node and the two halves are rotated and moved

away from each other by two tranformation nodes. The first branch of the CT

volume is responsible for the visualization of the skull. For this purpose a DVR

node with a transfer function that extracts the bone tissue and a standard Phong

shading is applied. On the second CT branch the vessel structure inside the skull

is extracted. Primarily, a so-called sphere condition node is applied, which ap-

proximates the brain volume by a sphere and cuts away all vessels outside this

sphere. Then, a DVR node with a transfer function for the vessels is attached and

96 Chapter 4. Flexible Multi-volume Visualization

(a) (b)

Figure 4.5: Example setups II and III with the corresponding render graphs: setup II

in image (a) shows a DVR shaded fMRI dataset combined with the anatomical brain

MRI data rendered as illuminated semi-transparent isosurface and two 2D slices of the

whole head as context information, setup III in image (b) shows the combination of an

illuminated DVR shaded MRI head with a ghosting method applied to see the inside. The

interior brain is rendered as illuminated isosurface with a 3D LIC computation applied, to

emphasize the curvature. (Images courtesy of Rößler et al. [122; 123], c©2008 IEEE).

finally the vessels are emphasized by cartoon and Phong shading.

Analysis Another application area of medical multi-volume visualization is the

analysis of functional processes inside the human body that are measured by func-

tional imaging methods, e.g., fMRI (functional MRI). This is a special MRI tech-

nique that measures the activation of the brain. It is for example used by cognitive

neuroscientist to study the relationships between cognitive tasks and the involved

brain regions. To get an impression of the localization of the functional processes,

the functional brain images are usually fused with a corresponding anatomical

reference dataset.

An example of fMRI volume visualization is given in Figure 4.5 (a) (setup

II), which shows a multi-volume scene consisting of an fMRI activation dataset,

a corresponding anatomical MRI dataset of the head, and a third dataset which

contains the explicitly segmented brain of the anatomical MRI volume. To vi-

sualize the relation between the three datasets, three different shading techniques

are applied. The activation volume is rendered with DVR and a special transfer

function that color codes the activation values. The brain dataset is visualized

by an illuminated semi-transparent isosurface, to show the brain surface without

occluding the activation inside. Finally, a single orthogonal slice of the complete

MRI volume is extracted by a slice node to provide the anatomical context of the

scene.

4.5. Application Cases 97

(a) (b)

Figure 4.6: setup IV in image (a) shows a MRI dataset of a head that is segmented into

different anatomical regions like skin, brain tissue and vessels. These regions are dif-

ferently colored and partly cut away by two clip planes. For setup V in image (b) the

upper half of another MRI scanned head is cut away, to lay open the brain, which is seg-

mented and colored due to a functional brain atlas. (Images courtesy of Rößler et al. [122;

123], c©2008 IEEE).

Illustration Illustrative volume rendering techniques become more and more im-

portant in medical volume visualization (e.g., [16; 53]), because they permit us

to emphasize significant information in the datasets, while nonrelevant informa-

tion is suppressed. While the major application of illustrative volume rendering is

the creation of illustrations for presentation and education, it can also be used for

diagnostic analytic purposes.

Figure 4.5 (a) and Figure 4.6 (a,b) show three illustrative medical multi-volume

visualizations that were generated with the framework. All visualizations present

a two-volume scene of a MRI dataset of a human head and the explicitly seg-

mented brain. In the first example (Figure 4.6 (b)) (setup III) the whole MRI

volume is shaded with DVR and illuminated with Phong shading. Additionally, a

ghosting node is appended, which subsequently increases the transparency of the

fragments with respect to the center and radius of a predefined sphere. By this, the

inside brain becomes visible, which is rendered as an illuminated isosurface with

an additional 3D LIC (line integral convolution) computation on the surface to

emphasize the curvature. This is a flow visualization technique, which is applied

to the previously computed curvature field of the brain dataset.

In the second illustrative example in Figure 4.6 (setup IV), a simulated MRI

dataset of the BrainWeb database [1] is visualized in combination with a corre-

sponding segmentation volume. The segmentation volume assigns to each voxel a

unique tag, indicating the tissue type which the voxel belongs to. First, the whole

MRI dataset is shaded and illuminated with a grey value transfer function applied.

98 Chapter 4. Flexible Multi-volume Visualization

setup I setup II setup III setup IV setup V

raycasting 10.8 30.4 12.3 20.5 11.5

slice-based merge 16 123 7.7 30.5 24

separate 40 201 8.4 30.5 28

intersect 11 414 8.5 30.5 34

Table 4.1: Performance of all three multi-volume slicing techniques on a 5122 viewport

given in frames per second (fps). Measurements have been performed on an NVIDIA

GeForce 8800 GTS graphics board with 512 MB memory.

Then, a tag condition node is attached which takes the segmentation node as input.

This node permits the definition of tag groups and for each group a new outgoing

branch is generated. In the given example, branches for skin, skull, grey matter,

white matter, and vessels are defined. To each of these branches recolor nodes

are attached which multiply the previous grey values with a pre-defined color. In

addition, skin, skull, grey matter, and white matter are partly clipped away by sev-

eral plane condition nodes, each consisting of two clip planes. While skull and

brain are completely removed by setting the alpha value to zero, the clipped skin is

still rendered semi-transparent to give a feeling of the whole head’s anatomy. The

equal timings for the different slice-based approaches in Table 4.1 can be ascribed

to the fact that this dataset consists of only one volume and a tagged volume that

is used for branching and applying separate rendering styles; and therefore, all

rendering operations can be accomplished in one single shader for all approaches,

which respectively leads to the same rendering performance.

In the final illustrative example of Figure 4.6 (b) (setup V), the brain is sub-

divided into several functional regions due to a given brain atlas. Therefore, the

MRI head is again shaded with DVR and illuminated with Phong, but with an-

other transfer function as in the first example. The upper half of the head is cut

away by a plane condition node, which is placed in front of the DVR node. The

brain is initially shaded with DVR, with a grey value transfer function applied and

also illuminated. Then, a tag condition node is attached which takes an additional

tagged volume – the brain atlas – that assigns an unique region ID to each voxel.

The tag condition node permits the definition of tag groups and for each group

a new outgoing branch is generated. In the given example, recolor nodes are at-

tached to each of theses branches which multiply the previous grey values of the

fragments with a pre-defined color.

The rendering performance of the system was tested for each of the five exam-

ple setups. Thereby, CTA and MRI datasets used for setup I have both a resolution

of 256x256x120 voxels, the head and the brain dataset for setup II, III, and V have

a resolution of 181x217x181 voxels, and the fMRI activation volume in setup II

4.5. Application Cases 99

has a resolution of 40x48x34. Table 4.1 shows the measured results with respect

to the presented multi-volume slicing techniques. Depending on the complexity

of the applied render graph and the total number of volumes in the scene the ad-

vantages of the different techniques are accentuated. As can be clearly seen, the

separation method dominates for most cases in terms of performance, but with the

significant drawback of the restriction of the accumulation functionality to stan-

dard GPU blending operations. If more sophisticated accumulation functions are

required, the two other slicing techniques are the only choice, which have the dis-

advantage of high cost for the additional tessellation. Nevertheless, the intersect

method can even outperform the separate approach if the bounding boxes of all

volumes are co-aligned, as can be seen for setup III and setup IV. This is caused by

less effort for rasterization, since each sample is only processed once. For setup

I (a) and setup II to V, merge is slower than intersect due to two reasons. First,

each volume is sampled for the whole proxy geometry and unneeded samples are

computed in non-overlapping regions. Second, it has to be tested for each sample

whether it belongs to a volume or not. In setup I (c) the advantage turns over to

merge, because of the exponentially raising effort for tessellating the overlapping

proxy geometries, needed by the intersect approach. Summarizing, the choice of

the slicing technique highly depends on the graph configuration and the desired

quality of the visualization result.

Regarding the system’s complexity, the effort for shader generation has also

to be taken into account. It is linear with respect to the number of volumes and

the number of render nodes, because each node has to be processed twice for each

volume. Since the total number of volumes and render nodes is rather small, the

generation time is minimal in contrast to the rendering performance. Another as-

pect is the complexity of the generated shader programs, which is also linearly

increasing with the number of volumes and render nodes. Additionally, it de-

pends on the single complexities of the applied shading algorithms, e.g., the LIC

computation in setup II is very expensive and thus, highly effecting the frame

rates. Nevertheless, the performance tests in the context of neuro sciences and

neuro surgery have shown that the system provides interactive framerates even

for complex scenarios. So, it fits well to a wide range of medical problems and

allows clinical users to create meaningful and comprehensive visualizations in an

intuitive way.

A minor drawback of this multi-volume rendering system is its scalability for

a large number of intermixing volumes in a scene. One point is the use of the

32-bit integer to encode all possible volume permutations, which limits the total

number of simultaneously processed volumes to 32. As the computation expense

increases linear with the number of volumes, this would cause the system to lose

the capability of interactive rendering. Another weak point is the limited hardware

memory of 512MB on current graphics hardware. Common volumes have a size

100 Chapter 4. Flexible Multi-volume Visualization

of 128MB, assuming they consist of 2563 voxels in integer precision. This reduces

the number of volumes stored in hardware memory to four. However, for common

multi-volume scenes, as they appear in medical applications this is sufficient.

CHAPTER

5 MULTI-FIELD VIDEO VISUALIZATION

A video stream consists of a sequence of 2D frames that in general can be consid-

ered as 3D volume data, with one temporal and two spatial dimensions. Notion-

ally, a video stream is analogous to many forms of digital signals (e.g., record-

ings of voice, electrical activity of the heart and seismic waves), except that it is

composed of numerous interrelated pixel signals, and is inherently much more

complex. Hence, dynamically processing and summarizing a video stream, and

cost-effectively presenting a record of a video stream remain a huge challenge

in video processing and visualization. One of these major difficulties is the fact

that, in most videos, each 2D frame is the projective view of a 3D scene. Hence,

a visual representation of a video volume on a computer display is, in effect, a

2D projective view of a 4D spatiotemporal domain. Because the third dimension

of the video volume is the temporal dimension, simply visualizing a video vol-

ume using traditional volume rendering techniques is often inadequate in terms

of extracting and conveying the most meaningful information in a video. For this

purpose, automatic annotation [86] or encoding of additional information into the

video frames could be considered, which is fundamentally an analytical process.

Further, including the moving direction of dynamic objects in terms of flow visu-

alization such as arrows or hedgehogs [34; 75] into the visualization could be of

interest for an analyst. Other visual representations for flow rely on characteristic

lines, such as streamlines, obtained by particle tracing. A major problem of 3D

flow visualization is the potential loss of visual information due to mutual occlu-

sion. This problem can be addressed by improving the perception of streamline

structures [62], or by appropriate seeding [51]. All these aspects make video vi-

sualization a multi-field research problem that relates to video processing, volume

visualization, flow visualization, and human factors in motion perception, which

was not contemplated in this combination yet and requires new approaches for

appropriate visualization.

101

102 Chapter 5. Multi-field Video Visualization

(a) object frame (b) optical flow

Figure 5.1: Two frames of the “OneShopOneWait1front” dataset, hand labeled with the

provided ground truth information. Both frames show three people located in front of a

shop, ID0 entering the shop, ID1 browsing the shop window and ID2 passing by. (Images

courtesy of Botchen et al. [9], c©2008 IEEE).

The fundament for video visualization was first introduced as a novel tech-

nique and application of volume visualization [30], and it was demonstrated that

a spatiotemporal video volume can be used to aid the process of video edit-

ing [6]. In fact, video visualization reaches out to several other disciplines. A

number of researchers have noticed the structural similarity between video data

and volume data commonly seen in medical imaging and scientific computation,

and have explored the avenue of applying volume rendering techniques to solid

video volumes in the context of visual arts [40; 57; 76]. A lot of research is

carried out to study video processing in the context of video segmentation [113;

139], and video surveillance [27; 29]. Systems have been developed under aspects

of simultaneously wide-angle and detailed-view cameras [110], as well as for mul-

tiple spatially-related videos [157] that can be combined with environmental mod-

els, or fused to an augmented virtual environment [134]. While such research and

development is without a doubt hugely important to many applications, the exist-

ing techniques for automatic video processing are normally application-specific,

and are generally difficult to adapt themselves to different situations without costly

calibration.

The work presented in this section takes a different approach from automatic

video processing. As outlined in [152], it is intended to “take advantage of the hu-

man eye’s broad bandwidth pathway into the mind to allow users to see, explore,

and understand large amounts of information at once”, and to “convert conflicting

and dynamic data in ways that support visualization and analysis”. The objective

of the proposed approach is to generate an effective multi-field visualization by

combining volumetric scalar and vector data in order to extract and convey the

most meaningful information in a video. The strategy is to use the capabilities of

modern GPUs to synthesize interactive multi-field visualization.

103

frame 550

frame 650

frame 750

(a) object volume (b) flow glyphs

(c) combined visualization

Figure 5.2: Left: Frames selected from the video clip “LeftBox”. A woman deposits a

box in the scene and leaves. Right: Volume visualization of extracted objects in a video in

(a); flow visualization of an estimated optical flow of the same dataset in (b); and image

(c) shows a combination of both visualizations. (Images courtesy of Botchen et al. [10],

c©The Eurographics Association 2006).

Lets consider an example video stream captured by the CAVIAR project [41].

Figure 5.1 shows a presentation based on snapshots together with annotated texts

that were hand labeled as the ground truth in CAVIAR. Even without contem-

plating the difficulties in developing a system that would produce reliable and

comprehensive annotated texts dynamically in a variety of situations, the visual

record exemplified by Figure 5.1 would require a lot of snapshots and a lot of

texts in order for viewers to observe and comprehend the activities and events in

the video. Further, it is difficult to recognize the spatial coherence of moving ob-

jects, evolving over a time interval of a video, by analyzing separated still images.

This problem can be addressed by rendering the video data as large volume, as

shown in the “LeftBox” example video clip in Figure 5.2 (a). Although the visu-

alization adequately represents the objects extracted from the background scene,

it does not provide sufficient motion features to allow the user to recognize that a

moving object (i.e., a person) left a stationary object (i.e., a box) in the scene.

One possible approach to enhance the perception of motion is to estimate and

visualize the optical flow in a video as flow glyphs, as shown in Figure 5.2 (b).

However, the motion on its own cannot adequately convey the presence of objects

in the scene. These observations indicate that the combined use of a volumetric

scalar field (for the video data) and a vector field (describing the motion) might

104 Chapter 5. Multi-field Video Visualization

result in an effective video visualization. The combined visualization shown in

Figure 5.2 (c) separates four stages of the video. In stage one, the person enters

the scene with a box, i.e., the person is moving. In stage two, the person stops

to deposit the box on the floor. This fact is clearly conveyed through a lack of

flow glyphs. In the next stage, the person moves around the box. In stage four,

the person exits the scene, but leaves the motionless box on the floor. The com-

bination of volume and flow visualization gives the viewer a better understanding

of both the information on location and motion of objects. In the next step, the

basic approach on visual signatures is enhanced to a summarization and illustra-

tion method that can be used to present a record of video stream dynamically and

cost-effectively. This extended method depicts a video stream as a series of con-

tinuing video volumes, which displays snapshots at relatively sparse intervals, and

highlights automatically recognized actions with a set of visual mappings. This

enables viewers to make a dynamic judgment of the semantics of an event, when

the event is unfolding itself. The effectiveness of conveying and recognizing vi-

sual signatures of motion events in videos is supported by a major user study and

a survey on visual effects described in Section 5.5.

The work described in this section was carried out in collaboration with Min

Chen, Rudy R. Hashim and Ian M. Thornton from the University of Swansea,

Greg Mori from the Simon Fraser University and Sven Bachthaler, Fabian Schick

and Daniel Weiskopf from the Universität Stuttgart. So far, the ongoing work led

to the following publications [9; 10; 24]. Rudy R. Hashim implemented the tool

for the user study and accomplished this study described in Section 5.5 in the com-

puter lab at the University of Swansea. Ian M. Thornton has to be accredited for

the help in evaluating the user study. Sven Bachthaler and Greg Mori were respon-

sible for the implementation of the action based video processing filter described

in Section 5.2.4. Fabian Schick must be credited for parts of the implementation

for the extended framework in Section 5.7.

5.1 Concepts and Definitions for Video Visualization

A video V is an ordered set of 2D image frames {I1, I2, ..., In}. It is a 3D spa-

tiotemporal dataset, usually resulting from a discrete sampling process such as

filming and animation. The main perceptual difference between viewing a still

image and a video is that a contemplator is able to observe objects in motion (and

stationary objects) in a video. For the purpose of maintaining the generality of for-

mal definitions, it is also necessary to include motionlessness as a type of motion

in the following discussions.

Let m be a spatiotemporal entity, which is an abstract structure of an object

in motion and encompasses the changes of a variety of attributes of the object in-

cluding its shape, intensity, color, texture, position in each image, and relationship

5.1. Concepts and Definitions for Video Visualization 105

with other objects. Hence, the ideal abstraction of a video is to transform it to a

collection of representations of such entities {m1,m2, ...,mk}.

Video visualization is thereby a function, F : V → I that maps a video V to an

image I , where F is normally realized by a computational process, and the map-

ping involves the extraction of meaningful information from V and the creation

of a visualization image I as an abstract visual representation of V . The ultimate

scientific aim of video visualization is to find functions that can create effective

visualization images, from which users can recognize different spatiotemporal en-

tities {m1,m2, ...,mk} “at once”.

A visual signature V(m) is a group of abstract visual features related to a spa-

tiotemporal entity m in a visualization image I , such that users can identify the

object, the motion, or both by recognizing V(m) in I . In many ways, it is no-

tionally similar to a handwritten signature or a signature tune in music. It may

not necessarily be unique and it may appear in different forms and different con-

text. Its recognition depends on the quality of the signature as well as the user’s

knowledge and experience. With these assumptions and the consideration that the

effectiveness of abstract representations is well-accepted in many applications, it

is more than instinctively plausible to explore the usefulness of video visualiza-

tion, for which Daniel and Chen [30] proposed the following three hypotheses:

1. Video visualization is an (i) intuitive and (ii) cost-effective means of pro-

cessing large volumes of video data.

2. Well constructed visualizations of a video are able to show information that

numerical and statistical indicators (and their conventional diagrammatic

illustrations) cannot.

3. Users can become accustomed to visual features depicted in video visual-

izations, or be trained to recognize specific features.

The initially developed video visualization framework described in Section 5.3

has the main aim to evaluate these three hypotheses. With a focus on visualizing

objects and motion events in videos, the aspects for the design of this system

include:

• To integrate automatic video processing techniques with video visualization

in a framework for summarizing video streams visually and dynamically.

• To consider video visualization as a flow visualization problem, in addition

to volume visualization.

• To introduce novel notions of visual signature for symbolizing abstract vi-

sual features with the focus to depict individual objects and motion events

in videos.

106 Chapter 5. Multi-field Video Visualization

• To compare the effectiveness of different abstract visual representations of

motion events, including solid and boundary representations of extracted

objects, difference volumes, and motion flows depicted using glyphs and

streamlines.

• To conduct a user study that results in the first set of evidence for supporting

hypothesis (3). In addition, the study provides an interesting collection of

findings that helps to understand the process of visualizing motion events

through their abstract visual representations.

Integrating these considerations into a visualization framework and evaluating the

results with a user study led to several findings that served as a motivation to ex-

tend this approach to an enhanced video visualization system which incorporates

object actions, as well as object relations in the illustrations to support the process

of analysis. The aim of this extended system, described in Section 5.7, is to cre-

ate a visual representation of a continuous video stream in a manner similar to an

electrocardiogram (ECG) and a seismograph. Such visualization should convey

both the raw imagery information of the video stream as well as processed infor-

mation (e.g., extracted actions, recognized objects or detected events). The latter

is usually application-specific. This visualization can serve a number of purposes:

1. Fast temporal overview. The visualization would make it easy for viewers

to gain an overview of a temporal segment of a video without watching the

video, or trying to piece together an overview from several disconnected

snapshots.

2. Focus highlighting. The visualization would highlight specific processed

information (as the focus) against the raw imagery information (as the con-

text), and draws the viewers’ attention to objects, actions or events that are

of interest.

3. Fault tolerance. The visualization would enable viewers to identify errors in

the processed information since automated vision techniques and statistical

analyses are unlikely to deliver 100% accuracy.

4. Long-term record. The visualization could be used as a long-term visual

record of the video stream as ECGs and seismograph are used.

Typical applications that could benefit from visualizations that provide these fea-

tures for the analyst are systems including video surveillance cameras which pro-

duce a vast amount of video data, as typified by the shopping mall datasets. With

the aim to quickly evaluate and analyze video streams that show actions and mo-

tion of persons, the contributions of the enhanced system in Section 5.7 consider:

• The implementation a system for the dynamic processing and visualization

of action-based video streams, hence demonstrating the technical soundness

of this strategy.

5.2. Video Processing 107

• To show a concept of visualizing actions and relations in video streams over

a long time-span, based on a collection of short time-span techniques for

action detection and relation estimation.

• To incorporate a focus+context design for multi-field visualization of raw

and processed information of video streams, based on a set of visual map-

pings for highlighting multiple attributes including snapshots, object track-

ing, action classification, object relation and levels of plausibility.

• To introduce a new visual representation of a video stream, called Video-

PerpetuoGram, as both a dynamic video summary and a long term abstract

record.

Considering these concepts, the realization led to a video processing and video

visualization system in Section 5.3 that in the first run was designed to study

visual signatures, as evaluated in Section 5.5. With the findings of this study and a

survey on visual effects the visualization framework and the rendering techniques

were extended to include object actions and object relations into the illustrations

as shown in Section 5.7. Before detailing the implementation and evaluation of

such a visualization system, the next section gives an overview of applied video

processing filters that can be used to extract information from the video streams

to provide it for visualization.

5.2 Video Processing

An important issue for multi-field video visualization is the adequate extraction

of additional information from the video stream that should be highlighted in the

actual visualization process. This section describes object related filters for the

video processing sub-system. These filters are computed in a pre-processing step

and respective results are used at runtime to enhance the recognition of features in

the video volume.

5.2.1 Video Transfer Function

The first type of filter is related to the visualization of the 3D scalar video volume.

Volume visualization, in general, faces the fundamental issue of assigning an ap-

propriate transfer function to the scalar 3D dataset, as described in Section 2.5.

For the special case of video volume rendering, the transfer function is primar-

ily used to highlight important regions of the video and to render unimportant

regions transparent. This filter assigns opacities derived from a selection of differ-

ent feature criteria defined in [30]. In a pre-processing step, a feature criterion is

evaluated for the dataset and stored as an additional scalar dataset that can be con-

sidered as an importance volume. At runtime, the importance volume is assigned

opacities, and possibly colors, by means of a 1D transfer function.

108 Chapter 5. Multi-field Video Visualization

5.2.2 Optical Flow

In addition to a direct visualization of the 3D video volume, motion characteristics

of people or moving objects in the video are of great relevance. One possible

approach for the detection of moving objects in a video is to compute the optical

flow of an image sequence with a gradient-based differential method [60]. The

implementation used in this work is based on a modified version of the gradient-

based differential method [5], which results in a velocity field v = (u, v) per

video frame. Lets consider an image sequence as an intensity function I(p, t),
where p = (x, y) is a position on an object in motion, and t is the time variable.

The translation of p with velocity v = (dx/dt, dy/dt) = (u, v) is thus

I(p, t) = I(p − vt, 0) .

A Taylor expansion of the above expression results in

Ix(p, t)u + Iy(p, t)v + It(p, t) = 0 ,

where Ix, Iy, and It are the partial derivatives of I(p, t). This problem is not

well posed with two unknown variables (u, v). It is common to introduce further

constraints in order to solve for (u, v). Many proposed methods including [60],

associate the above equation with a global smoothness term, and perform a cost

minimization over a defined domain D:

∫

D

(Ixu + Iyv + It)
2 + λ2

[(

∂u

∂x

)2

+

(

∂u

∂y

)2

+

(

∂v

∂x

)2

+

(

∂v

∂y

)2]

dp ,

where λ indicates the influence of the smoothness term, which, as suggested in
[60], is set to 100 in this implementation. The velocity v = (u, v) is estimated by

minimizing the above integral using an iteration process:

uk+1 =ūk −
Ix(Ixū

k + Iyv̄
k + It)

α2 + I2
x + I2

y

,

vk+1 =v̄k −
Iy(Ixū

k + Iyv̄
k + It)

α2 + I2
x + I2

y

, with u0 = v0 = 0 ,

where k is the iteration number, ūk and v̄k are the averages of uk and vk, respec-

tively, in a neighborhood domain.

The computed optical flow fields can be illustrated by the use of flow visu-

alization techniques such as arrow plots and glyphs. Several glyph based flow

visualization techniques can be found in literature and the reader is referred to

the overview chapter in [165] for background reading on those methods. Another

approach is based on the characteristic lines, such as streamlines, obtained by par-

ticle tracing. A major problem of 3D flow visualization is the potential loss of

5.2. Video Processing 109

(a) object frame (b) optical flow (c) frame seeding

Figure 5.3: Image (a) shows the difference object in the scene, computed from an empty

reference frame. In (b), the optical flow of the frame is shown with green lines. In (c),

seeds are generated based on the optical flow shown in image (b). (Images courtesy of

Botchen et al. [10], c©The Eurographics Association 2006).

visual information due to mutual occlusion. This problem can be addressed by

improving the perception of streamline structures [62], or by appropriate seeding

as detailed in [51], discussed in the next section.

5.2.3 Seed Point Generation

To facilitate the visualization of the previously computed optical flow, it is nec-

essary to determine a set of seed points for particle tracing or for positioning

of flow glyphs. The filtering stage that generates seed points is implemented as a

CPU program outside the later described video visualization rendering framework

(VVR), in order to provide most flexibility in designing the seeding algorithms.

Typically, the seeding stage uses the optical flow and the difference object to de-

termine the seed points. Figure 5.3 (c) shows an example frame for seeding.

As detailed in Section 5.2.2, the 2D vector fields {v1,v2, . . . ,vn} are com-

puted based on the intensity object fields {I1, I2, . . . , In}. Then, the filter stage

generates from the sequence of text files {S1, S2, . . . , Sn} a seed list for every

frame. This seeding is designed as a 3-phase algorithm:

1. The algorithm determines a list of all eligible points in vi, with two control

parameters: grid interval and magnitude threshold. With the grid interval

parameter, the user can superimpose a grid on all the 2D vector fields and

only grid points are eligible to be selected as seed points. With the magni-

tude threshold parameter, insignificant motion with a magnitude less than

the threshold is filtered out.

2. The algorithm sorts the list of eligible seed points according to some criteria

of visual importance, typically for instance, the magnitude of the motion

vector at each point.

3. Finally, the algorithm selects a set of seeds from the sorted list. The user

has the option to select all points, to select the first N points, or to select

110 Chapter 5. Multi-field Video Visualization

randomly N points in the list. As the first phase usually produces a large

list of seed points, which could lead to slow rendering as well as cluttering

the visualization, this selection process allows the list to be trimmed down

based on importance.

An example of the seeding process is given in Figure 5.3. Image (b) shows the

object extracted from the background, while image (b) shows an optical flow field

estimated with two consecutive video frames. Figure 5.3 (c) shows an example of

a created seed list that was generated from the optical flow in Figure 5.3 (b), using

the above algorithm.

In case of multiple objects appearing in a scene, and in terms of avoiding

cluttering and occlusion, it is useful to place only one seed point per object. Com-

monly, this seed point is placed in the barycenter of the object and the motion

direction is then represented by a flow glyph or a traceline.

5.2.4 Classifying Actions

Given an input video, the previous filters facilitate to extract appearing objects and

to compute their motion direction. A combination of this extracted data leads to

different visualizations shown in Section 5.4 and is investigated by the user study

in Section 5.5. In addition to that, it can have a great impact on the perception

of an observer to classify the objects with their accomplished actions and add this

information to the visualization, as shown in Section 5.7. The problem of activ-

ity recognition and classification has received a large amount of attention from

the computer vision community. Rao et al. [119], Gavrila and Davis [45], and

Moeslund and Granum [104] review the previous work on activity recognition.

Much of it involves tracking at the level of body parts, and hence is inapplica-

ble for the smaller size human figures in lower quality surveillance videos that

are used in this work. Other related approaches include Bobick and Davis [8],

who derive the Temporal Template representation from background subtracted

images. They present results on a variety of choreographed actions across dif-

ferent subjects and views, but require two stationary cameras with known angular

interval, a stationary background, and a reasonably high-resolution video. Song et

al. [140] demonstrate detection of walking and biking people using the spatial ar-

rangement of moving point features. Freeman et al. [44] use image moments and

orientation histograms of image gradients for interactive control in video games.

Developing this theme, Zelnik-Manor and Irani [172] use marginal histograms of

spatio-temporal gradients at several temporal scales to cluster and recognize video

events. In later work, Shechtman and Irani [135] presented a motion correlation

method which handles motion ambiguity due to aperture effects.

5.2. Video Processing 111

Action Recognition Classifying actions can be accomplished by tracking and sta-

bilizing each human figure present in each frame. This gives a figure-centric

spatio-temporal volume for each person. Any residual motion within the spatio-

temporal volume is due to the relative motions of different body parts: limbs, head,

torso etc. This motion can be characterized by a descriptor based on computing

the optical flow, projecting it onto a number of motion channels, and blurring.

To recognize a similar motion afterwards, previously seen (and labeled) action

fragments are stored in a database, and by computing a spatio-temporal cross cor-

relation it is possible to find the one most similar to the motion descriptor of the

query action fragment.

The implemented action classification technique builds on the work of Efros

et al. [35] for analyzing the motion of a human figure, which has proven to be

quite effective in discriminating between coarse-level actions, such as running or

walking in different directions. In particular, it can make these discriminations

from low-resolution video data, of the type which would be commonly found in

a surveillance setting. This approach performs action recognition in a nearest

neighbor framework. The distance measure used for comparing novel data with

stored examples is based on blurred optical flow measurements. Details of the

motion descriptor are given in the next section.

The filter was applied to the set of 26 video streams provided by the CAVIAR

project [41], which captured different scenarios at the front of a shop entrance

in a Lisbon shopping center. These video streams were designed to test com-

puter vision algorithms for object, action and event recognition and classification.

They are all accompanied by hand labeled ground truth information such as object

bounding boxes and basic action classification.

In order to feed the visualization sub-system with more interesting information

for perceptual and semantic reasoning, a slightly more detailed class of actions

has been defined, than what is in CAVIARs ground truth annotation. In particular,

motion types are associated with directions, and detected actions are provided

with a plausibility measurements. Compared to action recognition, detection of

human figures is relatively straight-forward in these scenes. Hence, the bounding

box information in the ground truth annotation was only used for detecting the

objects in motion.

Motion Descriptor The motion analyzing algorithm starts by computing a figure-

centric spatio-temporal volume for each person. Such a representation can be

obtained by tracking the human figure and then constructing a window in each

frame centered at the figure. Any of a number of trackers is appropriate. The

main requirement is that the tracking has to be consistent — a person in a partic-

ular body configuration should always map to approximately the same stabilized

112 Chapter 5. Multi-field Video Visualization

(a) (b) (c) (d) (e)

Figure 5.4: Constructing the motion descriptor: (a) Original image; (b) Optical flow; (c)

Separating the x and y components of optical flow vectors for Fx and Fy; (d) Half-wave

rectification of each component to produce four separate channels F+
x , F−

x , F+
y and F−

y ;

(e) Final blurry motion channels Fb+x , Fb−x , Fb+y and Fb−y . (Images courtesy of Botchen

et al. [9], c©2008 IEEE).

image, but the method used is robust to small jittering.

Once the motion sequences are stabilized it becomes possible to directly com-

pare them in order to find correspondences. Finding similarity between different

motions requires both spatial and temporal information. This leads to the notion

of the spatio-temporal motion descriptor, an aggregate set of features sampled in

space and time that describe the motion over a local time period. Computing such

motion descriptors centered at each frame will enable the algorithm to compare

frames from different sequences based on local motion characteristics.

Given a stabilized figure-centric sequence, the optical flow is computed at

each frame using the Lucas-Kanade [93] algorithm (see Figure 5.4 (a,b)). The

optical flow vector field F is first split into two scalar fields corresponding to

the horizontal and vertical components of the flow, Fx and Fy, each of which is

then half-wave rectified into four non-negative channels F+
x , F−

x , F+
y , F−

y , so that

Fx = F+
x −F−

x and Fy = F+
y −F−

y (see Figure 5.4 (c,d)). These are each blurred

with a Gaussian and normalized to obtain the final four channels, F̂ b
+

x , F̂ b
−

x , F̂ b
+

y ,

F̂ b
−

y , of the motion descriptor for each frame (see Figure 5.4 (e)). Alternative

implementations of the basic idea could use more than 4 motion channels — the

key aspect is that each channel be sparse and non-negative.

Action Plausibility Measure The spatio-temporal motion descriptors are com-

pared using a version of normalized correlation. If the four motion channels for

frame i of sequence A are ai
1,ai

2,ai
3, and ai

4, and similarly for frame j of sequence

B then the similarity between motion descriptors centered at frames i and j writes

S(i, j) =
∑

t∈T

4
∑

c=1

∑

x,y∈I

ai+t
c (x, y)bj+t

c (x, y) , (5.1)

5.2. Video Processing 113

where T and I are the temporal and spatial extents of the motion descriptor re-

spectively. To compare two sequences A and B, the similarity computation will

need to be done for every frame of A and B so Equation (5.1) can be optimized

in the following way. First, a frame-to-frame similarity matrix of the blurry mo-

tion channels (the inner sums of the equation) is computed between each frame

of A and B. Let us define matrix A1 as the concatenation of a1’s for each frame

stringed as column vectors, and similarly for the other 3 channels. Then the frame-

to-frame similarity matrix Sff = AT
1 B1 + AT

2 B2 + AT
3 B3 + AT

4 B4. To obtain

the final motion-to-motion similarity matrix S, the frame-to-frame similarities are

added up over a temporal window T by convolution with a ‖T‖ × ‖T‖ identity

matrix, thus S = Sff ⋆ IT , where ⋆ is the cross correlation.

Given a novel sequence to be classified and a database of labeled example

actions, a motion similarity matrix is constructed first as outlined above. For each

frame of the novel sequence, the maximum score in the corresponding row of this

matrix will indicate the best match to the motion descriptor centered at this frame.

Now, classifying this frame using a k-nearest-neighbor classifier is simple: find

the k best matches from labeled data and take the majority label.

5.2.5 Object Relations

The process described in 5.2.4 also results in an object related action list, where

for each object x, there is a vector of measurements characterizing the actions

of x at a discrete temporal point t ∈ N, X(t) = [x1(t), a2(t), . . . , an(t)]⊤. One

can recognize that X(t) is a discrete multivariate time series and each xi(t) is its

elementary time series. The measurement of xi(t) can be nominal (e.g., names for

categorizing actions), ordinal (e.g., the importance rank order of x), an interval

(e.g., motion speed of x), or a ratio (e.g., plausibility measurement). Some of

these measurements are grouped together to form composite measurements, such

as coordinates, motion directions, bounding box, etc.

One must note that there is no general assumption that elementary time se-

ries are independent of each other, their correlation dimensionality is known,

or they possess special statistical properties, such as periodicity and persistence.

The establishment of such statistical properties from sample videos is beyond the

scope of this work. Hence not all tools for time series analysis are readily ap-

plicable [80]. However, several principle methods in time series analysis can be

adopted in this particular application. They include filtering, moving average,

cross-correlation, and power of time series, which are to be detailed below.

One of the goals is the feasibility of visualizing complex events, such as the

possibly related actions in a scene, by drawing the viewers’ attention to the possi-

bility of such relations, rather than informing the viewer of an explicit conclusion

which can be very unreliable in general.

As the particular interest lies in real-time processing of video streams, this

114 Chapter 5. Multi-field Video Visualization

requires the visualization to be updated dynamically, with only the access to video

data in a relatively short time span. Without losing generality, here it is possible

to consider only relations between two time series X(t) and Y(t) representing the

actions of objects x and y respectively.

Object Relation Filtering Time-invariant relation filters generate a new time se-

ries, rx,y(t), or r(t) in short. Each of its elementary time series, ri(t) is a func-

tion of one or more elementary time series of X(t) and Y(t), and measures the

probability if actions of x and y may be related in a specific aspect. The time-

invariance implies that if there is a filter F such that F
(

a(t)
)

= b(t), we also

have F
(

a(t + h)
)

= b(t + h) for any h ∈ N. Nevertheless, there is no restriction

as to the linearity and the size of the time window of each filter. Let Px(t) be a

composite time series representing the centroid of an object x, Vx(t) be its motion

direction, Bx(t) be its bounding box. Below is a set of example filters:

Closeness rC(t). Let dmax > 0 be a constant, and D be the Euclidean distance

function between two points. We have

rC(t) =

0, if D
(

Px(t), Py(t)
)

≥ dmax

1 −
D

(

Px(t),Py(t)
)

dmax
, otherwise .

(5.2)

Moving in similar directions rD(t). Let θ be the angle between vectors Vx(t) and

Vy(t) which can be obtained trivially. We have

rD(t) = max
(

0, cos(θ)
)

. (5.3)

Moving with similar speeds rS(t). Let ‖ ‖ denote the magnitude of a vector, and

smax > 0 be a constant. We have

rS(t) =

{

0, if | ‖ Vx(t)‖ − ‖Vy(t)‖ |≥ smax

1− | ‖ Vx(t)‖−‖Vy(t)‖

smax
|, otherwise .

(5.4)

Overlapping of bounding boxes rA(t). Let A be an area function, and ∪ and ∩
denote the spatial union and intersection of two bounding boxes. We have

rA(t) =
A

(

Bx(t) ∩ By(t)
)

A
(

Bx(t) ∪ By(t)
) . (5.5)

Moving towards each other rT (t). Let θx→y be the angle between vector Vx(t)
and Py(t)−Px(t), θy→x be the angle between vector Vy(t) and Px(t)−Py(t), and

5.2. Video Processing 115

υmax > 0 be a constant. We have

rT (t) =

0, if θx→y ≤ 0 ∨ θy→x ≤ 0

1, if θx→y > 0 ∧ θy→x > 0 ∧ υ ≥ υmax

υ, otherwise ,

(5.6)

with υ = cos(θx→y)‖Vx(t)‖ + cos(θy→x)‖Vy(t)‖. υ is the combined velocity of

Vx(t) and Vy(t) modulated by cos(θx→y) and cos(θy→x) respectively.

Moving average This is an efficient technique for computing dynamic properties

of a time series. It can be applied to the elementary time series prior to, or after

the filtering. In this work, the exponential moving average is employed, which

minimizes the need for the system to memorize the records of the previous time

span:

r̄(t0) = r(t0)

r̄(t) = αr(t) + (1 − α)r̄(t − 1) , (5.7)

where 0 ≤ α ≤ 1. In this work, the typically value for α is chosen to be 0.5.

Cross correlation Some useful indicators of a relation are in the form of cross

correlation, which evaluating covariance between two random vectors. For ex-

ample, we can use cross correlation to examine if the corresponding time series

of two objects are following the same trend. The Pearson product-moment cor-

relation coefficient applies for this requirement. For a time span [t-h, t], and two

corresponding time series, x(t) and y(t) (which can be original or resulting from

filtering), we have:

rPearson(t) =
1

h

t
∑

t−h

zx(i)zy(i) .

where zx(i) and zy(i) are the standard scores of x(i) and y(i) in the time span

[t − h, t]. One can observe easily that a larger time span will require relatively

more computation resources.

Power of time series The power of a time series E(x(t), t1, t2) over a time span

[t1, t2] indicates the energy of the “activity” during that period. Using the notion

of average energy of a time series, gives

E(x(t), t1, t2) =
1

h

∫ t2

t1

x2(t)dt ≈
1

h

t2
∑

t1

x2(t) .

116 Chapter 5. Multi-field Video Visualization

optical flow est.

edge detection

change detection

seed generation

extracted object volume

4-band difference volume

object boundary volume

pre-computed seed list

horseshoe bounding
box renderer

optical flow field

captured
video data

create geometry
and fill volume

volume slicer

slice tesselator

horseshoe flow
geometry renderer

horseshoe volume
renderer

abstract visual
representation

user interface
and display

GPU modules CPU modules

framework

bricking

video processing pre-processed data

Figure 5.5: The system pipeline for multi-field video visualization.

The power of a multivariate time series, r(t), is the weighted average of the energy

of its individual elementary time series that is defined as

E(r(t), t1, t2) =

∑

i ωiE
(

ri(t), t1, t2
)

∑

i ωi

.

5.3 The Multi-field Video Visualization Framework

The flow chart in Figure 5.5 shows the overall system architecture of the video

visualization rendering (VVR) framework, which includes two major functional

sub-systems, namely video processing and video rendering. The main develop-

ment goals for this pipeline were: (i) to extract a variety of intermediate datasets

that represent attribute fields of a video. Such datasets include extracted object

volume, difference volume, boundary volume, and optical flow field; (ii) to syn-

thesize different visual representations using volume and flow visualization tech-

niques individually as well as in a combined manner; and (iii) to enable real-time

visualization of deformed video volumes (i.e., the horseshoe view), and to facili-

tate interactive specification of viewing parameters and transfer functions.

The video processing sub-system focuses on the generation of appropriate at-

tribute fields, including extracted object volume, 4-band difference volume, object

5.3. The Multi-field Video Visualization Framework 117

boundary volume, optical flow field, and seed list. These attribute fields are gener-

ated with a collection of filters introduced in Section 5.2 and are used to highlight

the different features in the following rendering stage.

The video rendering sub-system is the main focus of this section, with the

adaption of volume bricking to handle large volume and flow datasets. One mod-

ification for video volume bricking is that partitioning of data happens only in

the temporal dimension instead of the spatial partitioning commonly used in tra-

ditional volume rendering. As shown in Figure 5.5, the bricking process affects

most modules in the rendering sub-system through a loop that triggers a dynamic

update within each module. Because of the existence of this loop and the logical

brick structure, this bricking mechanism supports scalable multi-field visualiza-

tion, including video spans, glyph geometry for flow visualization, and dynamic

streamlines.

The video volume rendering adapts the horseshoe layout for video rendering

from [30], because the horseshoe geometry has a number of merits, including a

cost-effective space utilization and a provision of four visible sides of a video vol-

ume. However, the horseshoe layout requires the rendering of a deformed video

volume. A generic way to render deformed volumes is to use raycasting (e.g., ray

reflectors [84]), or utilize texture slicing [120], to render deformed volumes in real

time. In this approach, a slice-based volume rendering method is implemented

and here, a backward mapping is employed to modify the texture coordinates that

address the dataset.

For real-time rendering of large video volumes, GPU methods are employed

to achieve high frame rates. The visualization framework is built upon an existing

slice-based volume renderer [156]. An advantage of this framework is its sepa-

ration of different visualization aspects into different software components. The

framework is implemented in C++, using the Direct3D graphics API and HLSL

as shader programming language.

In the following sub-sections the technical details of distorted video volume

rendering and optical flow visualization are discussed. The starting point for vi-

sualization is volume rendering that shows a scalar field associated with the 3D

space-time video volume. In combination with appropriate transfer functions,

relevant information of the video volume can be emphasized and uninteresting

regions can be made transparent. A challenge for video volume visualization is

the interactive rendering of large datasets (see Sections 5.3.2), possibly using a

distorted horseshoe geometry as detailed in the next section. The second part of

the visualization system provides a representation of optical flow by glyphs or

streamlines constructed by particle tracing (see Section 5.3.3).

118 Chapter 5. Multi-field Video Visualization

Figure 5.6: Bounding boxes of the P-space (blue) and C-space (yellow). The slice planes

(green) are mapped to C-space in the fragment shader. (Image courtesy of Botchen et al.

[10], c©The Eurographics Association 2006).

5.3.1 Distorted Video Volumes

The visible video volume might need to be distorted during rendering. The pri-

mary example is the bending into a horseshoe shape [30], as shown in Figure 5.6.

A backward-mapping approach for rendering such deformed volumes can be ap-

plied: instead of deforming the geometry of the volume, it is easier to distort the

associated texture coordinates to obtain the same result [120]. Therefore, planar

and view-aligned slices are rendered with modified 3D texture coordinates.

The texture coordinates in computation space (C) are described by (xC , yC , tC)
in the range [0, 1]3. Here, x and y denote the spatial dimensions of a video slice

and t denotes the temporal dimension. In contrast, the coordinates in the physical

space (P) – the object space of the distorted volume – are given by (xP , yP , zP).
For the case of the horseshoe volume, a transformation according to cylindrical

coordinates is assumed,

(xP , yP , zP) = (−r cos(πtC), ys yC , r sin(πtC)) , (5.8)

with r = rmin + ∆r xC and ∆r = rmax − rmin .

Here, rmax and rmin describe the inner and outer radius of the horseshoe, respec-

tively. The parameter ys provides a scaling factor for the y dimension. Figure 5.7

illustrates the different coordinate systems.

The inverse mapping of Equation (5.8) is used to transform the physical coor-

dinates of the slices to texture coordinates (xC , yC , tC) that address the video vol-

ume. The inverted mapping involves inverse trigonometric functions, which are

available in GPU fragment programs. Therefore, the volume deformation can be

implemented by computing texture coordinates in a fragment program during tex-

ture slicing. An example of such a fragment program is provided in Section 5.3.2.

Since the video volume is not illuminated, it is possible to omit the transformation

5.3. The Multi-field Video Visualization Framework 119

volume
mapping

geometry
mapping

texture
lookup

single brick
mapping

volume
mapping

visible video segment

single brick of frames

physical
horseshoe

space

physical
brick
space

global
video
space

computational
space

local
brick/texture

space

V

C

B

P

P’

1

1

1 1

1

1

1

0

0

0

-1 (hw)
0 (sw)

1

Figure 5.7: Mapping between coordinate systems. (Image courtesy of Botchen et al. [10],

c©The Eurographics Association 2006).

of volume gradients for appropriate volume shading (see [120] for a description

of this type of transformation).

5.3.2 Scalable Multi-field Bricking

To visualize a large video dataset that cannot be loaded to GPU memory en bloc,

it is necessary to subdivide the whole domain into smaller sections that can be

handled and processed by the GPU. Therefore, a generic implementation that

combines volume visualization and the rendering of flow geometry in scalable

user-defined bricks is introduced in this section.

Let the video V be an ordered set of 2D image frames Ii, i ∈ {1, .., N}, where

N is the total number of frames. The volume is divided into K ≥ 1 video bricks,

where 1 ≤ k ≤ K bricks are rendered at a time. Each brick, Bj ⊆ V , contains

m image frames, with Bj ∩ Bl = ∅, where j, l ∈ {1, .., k} ∧ j 6= l and the

condition k · m = n, with n ≤ N . When the GPU memory cannot handle the

data size of N frames, which means that the condition n < N holds, dynamic

bricking needs to be applied to process the data. Each logical brick is described

by two integer values: the number of the starting frame and the number of frames

in the brick. Based on the information given by the logical brick structure, the

memory for k texture objects is allocated and each single volume brick is filled

with its corresponding video frames. Dynamic bricking is realized by reassigning

120 Chapter 5. Multi-field Video Visualization

1 f l o a t volData , tmpZ ; f l o a t 2 rp ;
2 f loa t3 txCrd = In . TextureCoord0 ; / / ca r tes ian coord ina tes
3 f loa t3 l kup ; / / horseshoe coord ina tes
4

5 txCrd . x = ((txCrd . x ∗2.0) − 1.0 f) ∗ (−1.0 f) ; / / t rans form to P space
6 rp . x = s q r t (pow(txCrd . x , 2) + pow(txCrd . z , 2)) ; / / map from P to C
7 rp . y = atan2 (txCrd . z , txCrd . x) ;
8 l kup . x = (rp . x − g fInRad) / (g fOutRad − g fInRad) ; / / compute rad ius
9 l kup . y = txCrd . y ; tmpZ = rp . y / g PI ; / / compute angle

10

11 l kup . z = (tmpZ − g vSclCrd . x) ∗ g vSclCrd . y ; / / map from C to B
12 volData = tex3D (VOLsmp, lkup) ; / / perform 3D lookup
13

14 Output . RGBColor = tex1D (TFsmp, volData . x) ; / / apply c o l o r values
15 return Output ; / / w r i t e to b u f f e r

Listing 5.1: The complete code of an HLSL fragment program for the bricked, dy-

namic video spans. (Code courtesy of Botchen et al. [10], c©The Eurographics

Association 2006).

the pointers in a cyclic way, forming a ring-buffer data structure. Thus, the last

texture object contains information that can be overwritten and filled with the

frames that newly enter the horseshoe.

Furthermore, a brick-based filter for seed generation, which is a modified ver-

sion of the one described in Section 5.2.3, needs to be applied. It enables frames

in different bricks to share a pre-processed seed point list. The input of this shared

list is used by all bricks and a flag indicates for each point whether this seed point

is used for constructing geometry for that brick or not. Starting from this log-

ical entity, the whole dynamic bricking structure can be built that consists of k
3D volume textures that are shifted through the horseshoe, and the flow geometry

generated from the seed points and the optical flow vectors as detailed below.

The fragment program that renders a single volume brick is given in List-

ing 5.1. The first line of code scales the texture coordinates to a range of [−1, 1],
because this permits us to map the cylindrical horseshoe coordinates between −π
and π. This mapping leads to a half circle in the xz plane, as required by the

bent horseshoe (see Figure 5.7). The following four lines realize the inverse of the

mapping in Equation (5.8), by first computing the radius and angle of the inter-

mediate cylindrical coordinate system, and then mapping them to the coordinate

system C, which represents the visible part of the video volume. The final map-

ping takes the coordinates into the local coordinate system of the brick B, which

is a subset of the visible video volume C. With these brick-related coordinates, a

3D texture lookup is performed and a final RGBα value is assigned according to

the transfer function.

5.3. The Multi-field Video Visualization Framework 121

5.3.3 Integrating Optical Flow in Volume Visualization

To combine an optical flow field with the distorted scalar field for the horseshoe

video volume, the video volume rendering system allows opaque flow geometry

to be added into the scene. The geometry, in the form of arrow glyphs or traced

lines, is created on-the-fly by the module FlowGeometryRenderer and stored in

the according geometry buffers before the actual rendering takes place.

Building the arrow geometry requires two pieces of information: a point p and

a direction v, which are given by the pre-computed seed points Si and the optical

flow vectors vi, as described in Sections 5.2.2 and 5.2.3. In fact, the original opti-

cal flow field is extended from a 2D spatial vector field described by (u, v) to a 3D

space-time vector field with an additional component along the temporal dimen-

sion: v = (u, v, vt). The temporal vector component vt describes the “velocity”

along the time axis of the video volume. So far, only temporally equidistant sam-

pling of the video volume is used. Therefore, vt is constant for the whole volume

and represents the relative speed along the time axis. The user is allowed to define

the relative speed vt. All example images in the following sections use vt = 0 in

order to focus on the motion within individual frames. Based on this 3D optical

flow, for each seed point a reference geometry for glyphs can be copied to the

geometry buffer, and shifted and rotated into the proper position and orientation.

As an alternative, particle tracing is used to visualize the trajectory of parti-

cles along the flow and to provide information of longer moving structures inside

a frame. These lines not only emphasize the distance of a movement, but also

can indicate a change in direction. Particle tracing needs more processing steps

and is implemented using Euler integration given in Equation (2.5). Trilinear in-

terpolation is used as reconstruction filter for the vector field. The number of

computed integration steps is chosen by the user, manipulating the length of the

traced lines. The rendering of those lines with dynamic texture mapping, as shown

in Figure 5.8, is detailed in Section 5.3.3.

One additional issue occurs when the video volume is distorted. In this case,

the original vector field data, which is given in C space, needs to be transformed

into the physical space P in order to obtain correct particle traces or glyph orienta-

tions. Similar to the coordinate transformation for the scalar field as discussed in

Section 5.1, a transformation rule for vector fields is needed. In general, vectors

can be defined as differentials according to

dy =
2

∑

i=0

∂y

∂xi

dxi =
2

∑

i=0

eidxi .

Here, the ei serve as basis for the vectors in the space associated with xi. In the

122 Chapter 5. Multi-field Video Visualization

Figure 5.8: Directional textured tracelines in combination with arrow glyphs. The arrows

are placed at the seed points in flow direction. (Image courtesy of Botchen et al. [10],

c©The Eurographics Association 2006).

case of the horseshoe, we have

ex =
∂xP

∂xC

= ∆r(− cos(πtC), 0, sin(πtC))

ey =
∂xP

∂yC

= (0, ys, 0)

et =
∂xP

∂tC
= π ∆r(sin(πtC), 0, cos(πtC)) ,

with xP = (xP , yP , zP). With these basis vectors, a vector field vC = (vx, vy, vt)
given in the coordinate system C is transformed to the coordinate system P by

vP =
∑

i=x,y,t

eivi .

Directional Textured Tracelines Lines are 1D primitives that convey information

about the orientation and extent of a trace along the flow, but fail to indicate the

flow direction. Therefore, animation is added to the tracelines in order to highlight

the direction of flow. The idea is to attach an animated 1D texture that moves into

the direction of the flow. The texture needs to have some kind of visual structure

so that its motion can be perceived. All tracelines shown in combination with

horseshoe rendering use a zebra-like texture, as illustrated in the zoomed box of

Figure 5.8. This image illustrates a spinning sphere lying in the xy-plane and

rotating around the z-axis. The arrow glyphs rendered at seed-point locations

show the flow direction at these certain locations. In contrast, the traced lines

provide flow information along a longer distance, covering more locations of the

domain.

5.4. Types of Visual Signatures 123

For texture mapping, each vertex of a line is assigned a texture coordinate, with

a range between [0, 1] from the first to the last vertex, respectively. By shifting the

local texture coordinate of each vertex with a global parameter ∆t, the texture

moves along the line, in direction of the underlying flow field. The 1D texture

does not need to be changed for the animation and can thus be computed on the

CPU and downloaded to the GPU once.

5.3.4 Flow Geometry Bricks

The geometry bricks are similarly to the volume bricks held in a pointer structure

that eases the swapping of the bricks for the dynamic rendering of large video

data. Unlike the volume bricks, a geometry brick only consists of the logical

structure that holds the range information of the currently visible region. The

render geometry for arrows and streamlines is constructed for the whole visible

horseshoe region (Section 5.3.3) only when needed and directly mapped from

C to P (Figure 5.7). All points that result from particle tracing are stored in a

single vertex buffer and rendered as line strip. The arrow geometry is stored in

an indexed vertex buffer to avoid redundant vertices. All buffers are rendered

as opaque geometry before the semi-transparent volume is displayed with back

to front blending. This rendering order allows to accurately mix geometry and

volume information by means of the depth test.

5.4 Types of Visual Signatures

As described in Section 5.1, a visual signature of an object is given by the spa-

tiotemporal entity m. With the various information extracted in the video process-

ing stage, it is feasible to construct different visual signatures to highlight different

attributes of m. Examples for the construction of different signatures are the fol-

lowing time-varying attributes: (i) the shape of the object; (ii) the position of the

object; (iii) the object appearance (e.g., intensity and texture); (iv) the velocity of

the motion. Consider an animation video of a simple object in a relatively simple

motion. As shown in Figure 5.9, the main spatiotemporal entity contained in the

video is a textured sphere moving upwards and downwards in a periodic manner.

To obtain the time-varying attributes about the shape and position of the object

concerned, an image processing algorithm extracts the object silhouette in each

frame from the background scene. It is also reasonable to identify the boundary

of the silhouette, which to a certain extent conveys the relationship between the

object and its surroundings (in this simple case, only the background).

To characterize the changes of the object appearance, the difference between

two consecutive frames is computed. Figure 5.9 (b) gives an example difference

image. A 2D motion field is established to describe the movement of the object

between each pair of consecutive frames, as shown in Figure 5.9 (c). Compiling

124 Chapter 5. Multi-field Video Visualization

frame 0 frame 5 frame 10 frame 15

(a) silhouette (b) difference (c) optical flow (d) color mapping

Figure 5.9: The top row shows four selected frames of a simple up-and-down motion,

depicting the first of the five cycles of the motion, together with examples of its attributes

associated with frame 0 illustrated in the bottom row. (Images courtesy of Chen et al.

[24], c©2006 IEEE).

all silhouette images as seen in Figure 5.9 (a), into a single volume results in a

3D scalar field that is called an extracted object volume. Similarly, a difference

volume can be obtained, which is also in the form of 3D scalar fields. The compi-

lation of all 2D motion fields in a single volumetric structure gives a motion flow

in the form of a 3D vector field. Given these attribute fields of the spatiotemporal

entity m, it is now possible to consider the creation of different visual signatures

for m.

One can find numerous ways to visualize such scalar and vector fields indi-

vidually or in a combinational manner. Without complicating the user study to be

discussed in Section 5.5, four types of visualization for representing visual signa-

tures are selected. Each type of visual signature highlights certain attributes of the

object in motion, and reflects the strength of a particular volume or flow visual-

ization technique. All four types of visualization can be synthesized in real time.

For the following discussions, the horseshoe view [30] was chosen as the primary

view representation. In comparison with conventional viewing angles, it places

four faces of a volume, including the starting and finishing frames, in a front view.

It also facilitates relatively more cost-effective use of a rectangular display area,

and conveys the temporal dimension differently from the two spatial dimensions.

5.4. Types of Visual Signatures 125

Type A: Temporal Silhouette Extrusion

This type of visual signature displays a projective view of the temporal silhouette

hull of the object in motion. Steady features, such as background, are filtered

away. Figure 5.10 (a) shows a horseshoe view of the extracted object volume

for the video mentioned in Figure 5.9. The temporal silhouette hull, which is

displayed as an opaque object, can be seen wiggling up and down in a periodic

manner.

Type B: 4-Band Difference Volume

Difference volumes played an important role in [30], where amorphous visual fea-

tures rendered using volume raycasting successfully depicted some motion events

in their application examples. However, their use of transfer functions encoded

very limited semantic meaning. For this work, a special transfer function is de-

signed that highlights the motion and the temporal change of a silhouette, while

using a relatively smaller amount of bandwidth to convey the change of object

appearance (i.e., intensity and texture).

Consider two example frames and their corresponding silhouettes in Figure 5.9.

Pixels in the difference volume are classified into four groups as shown in Fig-

ure 5.9 (d), namely (i) background (6∈ Oa∧ 6∈ Ob); (ii) new pixels (6∈ Oa∧ ∈ Ob);
(iii) disappearing pixels (∈ Oa∧ 6∈ Ob); and (iv) overlapping pixels (∈ Oa∧ ∈
Ob). The actual difference value of each pixel, which typically results from a

change detection filter, is mapped to one of the four bands according to the group

that the pixel belongs to. This enables the design of a transfer function that en-

codes some semantics in relation to the motion and geometric change.

For example, Figure 5.10 (b) was rendered using the transfer function illus-

trated in Figure 5.9 (d), which highlights new pixels in nearly-opaque red and

disappearing pixels in nearly-opaque blue, while displaying overlapping pixels in

translucent gray and leaving background pixels totally transparent. Such a visual

signature gives a clear impression that the object is in motion, and to a certain

degree, provides some visual cues to velocity.

Type C: Motion Flow with Glyphs

In many video-related applications, the recognition of motion is more important

than that of an object. Hence it is beneficial to enhance the perception of motion

by visualizing the motion flow field associated with a video. This type of visual

signature combines the boundary representation of a temporal silhouette hull with

arrow glyphs showing the direction of motion at individual volumetric positions.

It is necessary to determine an appropriate density of arrows, as too many would

clutter a visual signature, or too few would lead to substantial information loss.

Thereby a combination of parameters is used to control the density of arrows,

126 Chapter 5. Multi-field Video Visualization

(a) type A: silhouette hull (b) type B: 4-band difference volume

(c) type C: motion flow with glyphs (d) type D: motion flow with streamlines

Figure 5.10: Four types of visual signatures of an up-and-down periodic motion. (Images

courtesy of Chen et al. [24], c©2006 IEEE).

which will be discussed in Section 6. Figure 5.10 (c) shows a type C visual signa-

ture of a sphere in an up-and-down motion. In this particular visualization, colors

of arrows are chosen randomly to enhance the depth cue of partially occluded

arrows by improving their visual continuity.

Note that there is a major difference between the motion flow field of a video

and typical 3D vector fields considered in flow visualization. In a motion flow

field, each vector has two spatial components and one temporal component. The

temporal component is normally set to a constant for all vectors. For the temporal

component, experiments with a range of different constants have been conducted

and it seemed that in most cases, a nonzero constant would confuse the visual

perception of the two spatial components of the vector. Thereby, the temporal

components of all vectors were chosen to be set to zero.

Type D: Motion Flow with Streamlines

The visibility of arrow glyphs requires them to be displayed in a certain minimum

size, which often leads to the problem of occlusion. One alternative approach is to

use streamlines to depict direction of motion flow. However, because all temporal

components in the motion flow field are equal to zero, each streamline can only

flow within the xy-plane where the corresponding seed resides, and it seldom

flows far. Hence there is often a dense cluster of short streamlines, making it

difficult to use color for direction indication.

5.5. A User Study on Visual Signatures 127

To improve the sense of motion and the perception of direction, a zebra-like

dichromatic texture is mapped to the line geometry, which moves along the line

in the flow direction. Although this can no longer be considered strictly as a

static visualization, it is not in any way trying to recreate an animation of the

original video. The dynamics introduced is of a fixed number of steps which

are independent from the length of a video. The time requirement for viewing

such a visualization remains to be O(1). Figure 5.10 (d) shows a static view of

such a visual signature. The perception of this type of visual signatures normally

improves when the size and resolution of the visualization increases.

5.5 A User Study on Visual Signatures

The discussions in the previous sections naturally lead to many scientific questions

concerning visual signatures. The followings are just a few examples:

• Can users distinguish different types of spatiotemporal entities (i.e., types

of objects and types of motion individually and in combination) from their

visual signatures?

• If the answer to the above is yes, how easy is it for an ordinary user to

acquire such an ability?

• What kind of attributes are suitable to be featured or highlighted in visual

signatures?

• What is the most effective design of a visual signature, and in what circum-

stances?

• What kind of visualization techniques can be used for synthesizing effective

visual signatures?

• How would the variations of camera attributes, such as position and field of

view, affect visual signatures?

• How would the recognition of visual signatures scale in proportion to the

number of spatiotemporal entities present?

Almost all of these questions are related to the human factors in visualization

and motion perception. There is no doubt that user studies must play a part in

the search for answers to these questions. Therefore, an integral part of this work

is a user study on visual signatures. Because this is the first user study on visual

signatures of objects in motion, focus of this study lies on the recognition of types

of motion, with the main objectives:

1. To evaluate the hypothesis that users can learn to recognize motions from

their visual signatures.

2. To obtain a set of data that measures the difficulties and time requirements

of a learning process.

128 Chapter 5. Multi-field Video Visualization

3. To evaluate the effectiveness of the above-mentioned four types of visual

signatures.

Types of Motion

As mentioned before, an abstract visual representation of a video is essentially

a 2D projective view of our 4D spatiotemporal world. Visual signatures of spa-

tiotemporal entities in real life videos can be influenced by numerous factors and

appear in various forms. In order to meet the key objectives of the user study, it

was necessary to reduce the number of parameters to be examined in this scientific

process. In the same sense, simulated motions have been used with the following

constraints:

• All videos feature only one spherical object in motion. The use of a sphere

minimizes the variations of visual signatures due to camera positions and

perspective projection.

• In each motion, the center of the sphere remains in the same xy-plane,

which minimizes the ambiguity caused by the change of object size due

to perspective projection.

• Since the motion function is known, most attribute fields are computed an-

alytically. This is similar to an assumption that the sphere is perfectly tex-

tured and lit, and without shadows, which minimizes the errors in extracting

attribute fields using change detection and motion estimation algorithms.

This lead to the following seven types of motion:

1. Motion Case 1: No motion—in which the sphere remains in the center of

the image frame throughout the video.

2. Motion Cases 2 − 9: Scaling—in which the radius of the sphere increases

by 100%, 75%, 50% and 25%, and decreases by 25%, 50%, 75% and 100%
respectively.

3. Motion Cases 10−25: Translation—in which the sphere moves in a straight

line in eight different directions (i.e., 0◦; 45◦; 90◦; ...; 315◦) and two different

speeds.

4. Motion Cases 26 − 34: Spinning—in which the sphere rotates about the

x-axis, y-axis and z-axis, without moving its center, with 1, 5 and 9 revolu-

tions respectively.

5. Motion Cases 35, 38, 41: Periodic up-and-down translation—in which the

sphere moves upwards and downwards periodically in three different fre-

quencies, namely 1, 5 and 9 cycles.

6. Motion Cases 36, 39, 42: Periodic left-and-right translation—in which the

sphere moves towards left and right periodically in three different frequen-

cies, namely 1, 5 and 9 cycles.

5.5. A User Study on Visual Signatures 129

7. Motion Cases 37, 40, 43: Periodic rotation—in which the sphere rotates

about the center of the image frame periodically in three different frequen-

cies, namely 1, 5 and 9 cycles.

The first four types are considered to be elementary motions. The last three are

composite motions which can be decomposed into a series of simple translation

motions in smaller time windows. Other composite motions were considered for

inclusion first – such as the periodic scaling, and combined scaling, translation and

spinning – but it was decided to limit the total number of cases in order to obtain

an adequate number of samples for each case while controlling the time spent by

each observer in the study. For the same reason of reducing parameters to keep

the study simple, complex motions such as deformation, shearing and fold-over

were not included as well.

The Main User Study

Both the main and the supplemental user study were designed and conducted with

the aim to examine whether users are able to learn to recognize visual signatures

of motions, and to assist in the evaluation and the comparison of the effective-

ness of different abstract visual representations of videos. The setup included the

following:

Participants 69 observers (23 female, 46 male) from the student community of

Swansea University took part in this study. All observers had normal, or corrected

to normal, vision and were given a 2 book voucher each as a small thank-you

gesture for their participation. Data from two participants were excluded from

analysis as their response times were more than 3 standard deviations outside of

the mean. Thus, data from 67 (22 female, 45 male) observers were analyzed.

Tasks The user study was conducted in 14 sessions over a three week period.

Each session, which involved four or five observers, started with a 25 minutes

oral presentation, given by Rudy R. Hashim (one of the collaborators in [24]),

with the aid of a set of pre-written slides. The presentation outlined the steps of

the test, and highlighted some potential difficulties and misunderstandings. As

part of a learning process, a total of 10 motions and 11 visual signatures were

shown as examples in the slides. The presentation was followed by a test, typically

taking about 20 minutes to complete. A piece of interactive software was specially

written for structuring the test as well as collecting the results.

The test was composed of 24 trials. On each trial, the observer was presented

with between one and four visual signatures of a motion. The task was to identify

the underlying motion pattern by selecting one of the four alternatives listed on

the screen. Both the speed and the accuracy of this response were measured. As

130 Chapter 5. Multi-field Video Visualization

static scaling translation spinning periodic

accuracy (%) 81.2 (4) 90.3 (2) 66.7 (3) 49.4 (3) 62.2 (3)

response time (sec) 19.8 (2) 13.6 (1) 23.8 (1) 24.8 (1) 24.4 (2)

Table 5.1: Mean accuracy and response time related to motion types. Numbers in paren-

theses are standard errors (se) of the means. (Courtesy of Chen et al. [24], c©2006 IEEE).

observers were allowed to correct initial responses, the final reaction time was

taken from the point when they proceeded to the next part of the trial.

The second part of the trial was designed to provide feedback and training for

the observers to increase the likelihood of learning. It also provided a measure of

subjective utility that is, how useful observers found each type of visual signature.

In this part, the underlying motion clip was shown in full together with all four

types of visual signatures. The task was to indicate which of the four visual sig-

natures appeared to provide the most relevant information. No response time was

measured in this part.

At the end of the experiment, observers were also asked to provide an overall

usefulness rating for each type of visual signature. A rating scale ranging from 1

(least) to 5 (most) effective was used.

Design The 24 trials in each test were blocked into four equal learning phases

(six trials per phase) in which the amount of available information was varied. In

the initial phase all four visual signatures were presented, providing the full range

of information. In each successive phase, the number of available representations

was reduced by one, so that in the final phase only one visual signature was pro-

vided. This fixed order was imposed so that observers would receive sufficient

training before being presented with minimum information. For each observer

a random sub-set of the 43 motion cases was selected and randomly assigned to

the 24 experimental trials. For each case, the four possible options were fixed.

The position of options was however randomized on the screen on an observer by

observer basis to minimize simple response strategies.

The Supplementary User Study

Since the number of visual signatures available in the main user study decreased

from one phase to another, it may be difficult to know whether changes in the

overall accuracy and response times directly reflect learning. To address this issue,

a supplementary user study was conducted, where two visual signatures, types B

and C, were made available throughout the 24 trials. It was organized in the

same manner as the main study, and involved 40 observers (14 female, 26 male).

Among them, 17 also took part in the main user study, hence had some experience

5.5. A User Study on Visual Signatures 131

accuracy (%) response time (sec)

main sup-1 sup-2 main sup-1 sup-2

phase 1 66.7 68.1 75.5 30.8 24.7 26.7

phase 2 70.0 74.6 76.5 22.2 18.9 19.4

phase 3 72.0 74.3 82.4 17.5 12.0 16.9

phase 4 63.0 71.7 78.4 13.4 11.2 10.8

Table 5.2: Mean accuracy and response time in each phase. The mean values are listed

separately for the main user study, the first- and second-time groups in the supplementary

user study. The standard errors (se) of the means listed are all between 1 and 2. (Courtesy

of Chen et al. [24], c©2006 IEEE).

of video visualization, with a time lapse of 4-5 months. The other 23 were first-

time observers, with no previous experience in video visualization.

5.5.1 Evaluation of Visual Signatures

Conducting both user studies including over 100 participants produced enough

data for a solid and meaningful evaluation. In the data evaluation process, analysis

of Variance (ANOVA) was used to explore differences between three or more

means, and t-tests were used to directly compare two means. By convention, F
and t values indicate the ratio between effects of interest and random noise using

specific probability distributions. The probability p of obtaining F or t values,

given the statistical degrees of freedom indicated in parentheses, is also provided,

with values less than 0.05 considered unlikely to occur by chance alone.

Motion Types Table 5.1 gives the mean accuracy (in percentage) and response

time (in seconds) in relation to motion types. There were clear differences be-

tween the types of motion, both in terms of accuracy (F (4, 264) = 34.5,MSE =
5, p < 0.001), and speed (F (4, 264) = 12.6,MSE = 118, p < 0.001). The scal-

ing condition gave rise to the highest accuracy, clearly showing that positive iden-

tification of motion is possible from visual signatures. Post-hoc analysis showed

that this condition did not lead to better performance than the trivial static case,

but performance was reliably higher than the other three motion types (all have

t > 6.0, p < 0.001).

Accuracy levels for the translational motions, including the elementary motion

in one direction, and combinational motion with periodical change of directions

did not differ from each other, but were both significantly above those for spinning

motion (t > 2.8, p < 0.01). The difficulty in recognizing spinning motion appears

to arise because the projection of the sphere in motion maintains the same outline

and position throughout the motion. For example, the temporal silhouette hull of

132 Chapter 5. Multi-field Video Visualization

time (sec)

24 trails

45

40

35

30

25

20

15

10

5

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

main user study sup - first timer sup - second timer

Figure 5.11: The decreasing trend of the mean response time of each trial in both user

studies. (Image courtesy of Chen et al. [24], c©2006 IEEE).

Motion Case 31, which is a spinning motion, is identical to that of Motion Case

1, which is motionless. This renders type A visual signature totally ineffective in

differentiating any spinning motion from the motionless state.

Response times, computed only for correct trials, followed a similar pattern.

Here, however, scaling motion did give rise to significantly better performance

than the static case (t(114) = 3.1, p < 0.001), in addition to the other three

moving cases. No other comparisons were significant.

Phases Table 5.2 gives the mean accuracy (in percentage) and response time (in

second) in each of the four phases. Although the supplementary study was not

divided into specific phases, the data was grouped into 4 and 6 trials for com-

parison purposes. In the main user study, accuracy levels changed significantly

across the four phases (F (3, 198) = 2.9,MSE = 3.7, p < 0.05). While there is

a clearly increasing trend across the first 3 phases, this main effect appears to be

due more to the final drop between phases 3 and 4, the only pair of means to differ

significantly (t(132) = 2.23, p < 0.05). This drop may be due to the reduction

of the number of visual signatures to only one in Phase 4. A single visual sig-

nature is often ambiguous, for example, spinning and static cases share the same

Type A visual signature in the user studies, so this could have inflated error rates.

Another possibility is the lack of a confirmation process based on a second visual

signature.

It has to be noted that a similar trend can also be observed in the supple-

mentary study, where types B and C visual signatures were available throughout

the session. Here, though, there was no main effect of phase. It seems possi-

ble that the generally high level of performance in both of the user studies may

well be masking more subtle learning effects in terms of accuracy. Second time

5.5. A User Study on Visual Signatures 133

accuracy

90

80

70

60

50

40

30

20

10

0

phase 1
100

phase 2 phase 3 phase 4

static scaling translation spinning periodic

Figure 5.12: The mean accuracy (with standard errors), measured in each of the four

phases, categorized by the types of motion. (Image courtesy of Chen et al. [24], c©2006

IEEE).

45

40

35

30

25

20

15

10

5

0

time (sec) phase 1 phase 2 phase 3 phase 4

static scaling translation spinning periodic

Figure 5.13: The mean response time (with standard errors), measured in each of the four

phases, categorized by the types of motion. (Image courtesy of Chen et al. [24], c©2006

IEEE).

observers (mean = 78%, se = 2.6) performed slightly better than first time ob-

servers (mean = 72%, se = 2.8). Although this difference did not reach statis-

tical significance, the trend towards higher performance is still encouraging. Any

improvement, after a single prior exposure dating back several months, can pro-

vide some motivation to further explore long-term learning effects in this context.

In terms of response time, the story is much cleaner. In the main user study

there was a clear effect of phase (F (3, 198) = 43.5,MSE = 97.8, p < 0.001),

which takes the form of a consistent linear decrease (F (1, 198) = 121.6,MSE =
97.8, p < 0.001). Importantly, exactly the same pattern is present in the supple-

mentary study, with a main effect of phase (F (3, 114) = 35.2,MSE = 45.1, p <
0.01), driven by a linear decrease in response time (F (1, 114) = 103,MSE =

134 Chapter 5. Multi-field Video Visualization

preference

90

80

70

60

50

40

30

20

10

0

type A
100

type B type C type D

static scaling translation spinning periodic overall

8.0 %

50.2 %

31.3 %

6.3 %

12.8 %

50.7 %

28.7 %

7.8 %

34.6 %

51.7 %

5.4 %

8.4 %

44.1 %

23.4 %

6.9 %

25.7 %

23.5 %

49.9 %

7.5 %

19.1 %

28.9 %

45.8 %

11.3 %

14.1 %

Figure 5.14: The relative preference of each type of visual signature, presented in the

percentage term, and categorized by the types of motion. The overall preference is also

given. (Image courtesy of Chen et al. [24], c©2006 IEEE).

45.1, p < 0.001). Thus, within the space of a single experiment, observers im-

prove their performance even when the number of response options remains con-

stant. There were no other significant response time effects in the supplementary

study. Figure 5.11 shows this decreasing trend over all trials for both user studies.

For the main study, Figure 5.12 shows the accuracy in relation to each type of

motion in each phase. We can observe that the spinning motion seems to benefit

more from having multiple visual signatures available at the same time. The no-

ticeable decrease of the number of positive identification of the motionless event

in Phase 3 may also be caused by the difficulties in differentiating it from spin-

ning. Figure 5.13 shows a consistent reduction of response time for all types of

motion.

Preference Figure 5.14 summarizes the preference of observers in terms of types

of visual signatures, which largely reflects the effectiveness of each type of vi-

sual signature. Note that the type C visual signature was considered to be the

most effective in relation to the spinning motion, while type B was generally pre-

ferred for other types of motion. The overall preference (shown on the right of

Figure 5.14) was calculated by putting all “votes” together regardless the type of

motion involved. This corresponds reasonably well with the final scores, ranging

between 1 (least) to 5 (most) effective, given by the observers at the end. The

mean scores for the four types of visual signatures are A:2.6, B:4.0, C:3.6, and

D:3.1 (0.14 ≤ se ≤ 0.16) respectively.

5.5.2 Application Cases

Apart from the synthetic datasets that were used to produce the visualizations for

the user study, the video visualization system was applied to a set of video clips

5.5. A User Study on Visual Signatures 135

frame 550 frame 650 frame 750

Figure 5.15: The two lower images show the “LeftBag” video rendered as bricked volume

horseshoe. The three frames in the upper row present the stages entering, depositing, and

leaving. Ensuing reentering and picking up the box can only be seen in the horseshoe

visualization. (Images courtesy of Botchen et al. [10], c©The Eurographics Association

2006).

collected in the CAVIAR project [41] as benchmarking problems for computer

vision. In particular, this collection consists of 28 video clips of the entrance

lobby of the INRIA Labs at Grenoble, France, which were filmed from a similar

camera position using a wide angle lens. All videos have the same resolution with

384 × 288 pixels per frame and 25 frames per second. As all videos are available

in compressed MPEG2, there is a noticeable amount of noise, which presents a

challenge to the synthesis of meaningful visual representations for these video

clips as well as automatic object recognition in computer vision.

The video clips recorded a variety of scenarios of interest, including people

walking alone and in group, meeting with others, fighting and passing out, and

leaving a package in a public place. Because the camera was located at a relatively

high position and almost all motions took place on the ground, the view of the

scene exhibits some similarity to the simulated view used in the user study. It is

therefore appropriate and beneficial to examine the visual signatures of different

types of motion events featured in these videos.

The VVR system is capable of visualizing video streams in real time. With

the bricking mechanism, a video stream can be segmented into small time spans,

each of which is processed in the video processing sub-system and pushed to the

rendering sub-system. The processed multi-field data are then used to update the

136 Chapter 5. Multi-field Video Visualization

frame 550 frame 650 frame 750

Figure 5.16: Visualization of the “Rest FallOnFloor” video. The three frames in the

lower row show the stages entering, lying, and leaving, which can be clearly seen in the

upper horseshoe images. (Images courtesy of Botchen et al. [10], c©The Eurographics

Association 2006).

visualization. In this way, a continuous video stream can be visualized as either a

series of horseshoe images, or one dynamically updated image.

The three images in the top row of Figure 5.15 show the snapshots of three

time steps of the “LeftBag” scenario. From the left to the right of the lower im-

ages, the horseshoe has been updated four times, i.e., moved by four bricks. The

visualization presents a moving object (i.e., a person) that entered the scene and

then left an object (i.e., a bag) in the scene before exiting. By observing the glyphs

associated with the two objects, the observer can recognize that the object being

left in the scene remained stationary until a moving object (in fact the same per-

son) returned and took it away.

Let’s consider the visualization of another video clip shown in the top row of

Figure 5.16. In both horseshoe images, a moving object entered the scene and

then remained almost motionless for a while before moving again. In comparison

with the “LeftBag” video clip, it gets clear that there was only one object. In fact,

this particular video shows a drunken man falling on the floor.

In both video clips, each brick covers a time span of about 3 seconds. With

the GPU-assisted techniques described in the previous sections, the video visual-

ization rendering system can update the dynamic image for each new brick well

below one second. The exact timing for different rendering features is given in Ta-

ble 5.3. The table demonstrates that flow visualization does not reduce the overall

5.5. A User Study on Visual Signatures 137

viewport V-S V+S V+S+G V+DS All

800 × 600 11.04 9.63 9.63 7.40 7.20

1024 × 768 10.20 7.83 7.83 6.80 6.65

1280 × 1024 8.64 5.47 5.47 5.13 4.56

Table 5.3: Performance results in fps for the “LeftBag” dataset with a resolution of 384

× 288 × 1600 pixels. All timings were measured on a PC with 3.4 GHz Pentium 4 and

NVIDIA GeForce 7800 GTX (256MB). The table shows six different types of rendering

styles: volume without video span (V-S), volume with video span (V+S), volume with

video span and geometry (V+S+G), volume with dynamic video span (V+DS), and all

rendering features combined. (Courtesy of Botchen et al. [10], c©The Eurographics

Association 2006).

rendering performance: the video span (i.e., volume) with geometry (i.e., flow) is

rendered at the same speed as video span only. This behavior can be explained

by the fact that the rendering pipeline of VVR renders the opaque geometry prior

to the translucent volume. With depth testing activated, the system makes up for

the lost speed for rendering geometry by neglecting parts of the volume occluded

by the opaque geometry. The results in Table 5.3 also indicate that the rendering

costs are proportional to the viewport size.

Visual signatures of spatiotemporal entities in real life videos can be influ-

enced by numerous factors and appear in various forms. Such diversity does not

in any way undermine the feasibility of video visualization, and on the contrary, it

rather strengthens the argument for involving the “bandwidth” of the human eyes

and intelligence in the loop. The above examples can be seen as further evidence

showing the benefits of video visualization.

The outcome of the user study showed that rendering visual signatures are

an effective means for conveying objects and their according motions in real-life

videos in one illustration. In particular, it showed that human observers can learn

to recognize types of motion from their visual signatures. However, the commu-

nicated information from those images is rather small and could ideally provide

more features about the objects, such as their particular actions or the relations

between appearing objects. Further, the user study revealed that the applied de-

formed horseshoe volume rendering did not only bear vantages. Besides from the

better space utilization, the bending of the volume around the time-axis, inverts

the direction of the x-axis from start frame to end frame. This bending transforms

a constant movement e.g., from left to right to a perceived right to left motion, al-

though the actual motion of the object did not change. This fact lead to confusion

amongst some attendees. Another negative aspect is the fact that the frames in the

middle of the rendered video volume are projected to a minimal space – similar to

138 Chapter 5. Multi-field Video Visualization

tube
ball

Z

X

x

Y

t

x

0

5

10

15

20

25

30

Figure 5.17: The basic scenario of the survey. Left: Differently sized balls rolling in

horizontally mounted tubes. Right: The center position of the balls, recorded over a

period of time. (Images courtesy of Botchen et al. [9], c©2008 IEEE).

looking at the frames from the side – which can lead to a loss of information. Con-

sidering these aspects, in the next step the system should be extended to realize

a better visual mapping of the video volume, as well as convey more information

about the objects in their visual signature.

5.6 A Survey on Visual Effects for VideoPerpetuoGrams

Before extending the video visualization framework, a survey of visual effects was

carried out to study which kind of additional object attributes can be embedded

in the visual signature, and what types of visual effects can be utilized to ensure

an appropriate visualization. Section 5.2 exemplifies some typical attributes that

may be obtained through video processing, including object identifier, position,

size, action type, inter-object relation, and the certainty and error margins of the

analytical results. Such processed information may vary in terms of its amount and

variety in different applications of video processing. One design aim of the new

rendering system is to highlight specific pieces of processed information against

the raw imagery information. Designing and selecting a suitable combination of

visual mappings for conveying multiple attributes is thus crucial to the effective

and efficient use of the design space of visualization.

There are guidelines for using different visual effects, such as color, lumi-

nance, scale and symbols, in visualization (e.g., [159] and these expert guidelines

provided primary reasoning in the design of the extended multi-field video visu-

alization framework detailed in Section 5.7. In addition to these guidelines, the

survey described in this section supported the choice of appropriate visual effects

for different attributes and lead to the decision to change the projection of the

video volume from the prior perspective horseshoe mapping to a parallel projec-

5.6. A Survey on Visual Effects for VideoPerpetuoGrams 139

tion of the video cube, rendered with a top view.

The survey was based on a simple temporal scenario, as illustrated in Fig-

ure 5.17, which captures the essence of an action-based video. Assume that n
(n > 0) balls are placed in n horizontal mounted tubes, whereby each tube can

swing slightly up and down independently, causing the balls to roll left or right.

The x-coordinate of the central position of each ball is recorded over a period of

time. Further, each ball is associated with three additional attributes, representing

the following three categories of information respectively:

• Geometric attribute — a numerical value, such as the size or diameter of

the ball.

• Semantic classification — normally an enumerated value, such as the type

or owner of the ball.

• Statistical indicator — a numerical value without an intrinsic geometrical

meaning. The recorded information is associated with a statistical value

which may be used to indicate the certainty, or importance of the recording.

We assume that the statistical indicators fall into the range of [0, 1].

Over the recording period, the three attributes can vary, for instance, the ball

can change its type or size. For each attribute, six types of visual mappings are

considered, namely color, luminance, opacity, thickness, symbols and textures,

giving a total of 18 different attribute-mapping pairings. Figure 5.18 shows six

examples of the 18 pairings. To minimize the diversity of the illustrations, each

attribute is limited to four nuances. In the first row, the geometric attribute size

is mapped onto thickness in (a) and symbols in (b) respectively. In (c) and (d)

the semantic attribute type is mapped onto color and opacity respectively. For

the opacity example, the noisy background pattern was used to facilitate the per-

ception of different levels of transparency. On a monochrome background, the

opacity mapping would have a similar effect as luminance mapping. In the last

two images of Figure 5.18, the statistical attribute certainty is mapped onto lumi-

nance in (e) and textures in (f) respectively.

To determine the suitability of each pairing, 18 visualization researchers were

asked to score the example visualization on a scale from 0 to 10. All voluntarily

attending participants are staff members of the Institute for Visualization and In-

teractive Systems (VIS) at the Universität Stuttgart or the Visualization Research

Institute Universität Stuttgart (VISUS). One principal reason for engaging experts

in a survey rather than ordinary users through a user study is that the participants

of the survey should take into account the following visualization specific criteria:

• Perceptual effectiveness — are the visual effects easily recognizable and

distinguishable?

140 Chapter 5. Multi-field Video Visualization

Legend

Size 1

Size 2

Size 3

Size 4
t

x

0

5

10

15

20

25

30 t

x

0

5

10

15

20

25

30

Legend

Size 1

Size 2

Size 3

Size 4
t

x

0

5

10

15

20

25

30

Legend

Type 1

Type 2

Type 3

Type 4

(a) size as thickness (b) size as symbols (c) type as color

Legend

Type 1

Type 2

Type 3

Type 4
t

x

0

5

10

15

20

25

30

Legend

[0, 0.25]

(0.25, 0.5]

(0.5, 0.75]

(0.75, 1]
t

x

0

5

10

15

20

25

30

Legend

[0, 0.25]

(0.25, 0.5]

(0.5, 0.75]

(0.75, 1]
t

x

0

5

10

15

20

25

30

(d) type as opacity (e) certainty as luminance (f) certainty as texture

Figure 5.18: Example visualizations used for the survey. The images show the three

attributes illustrating six different visual mappings. (Images courtesy of Botchen et al.

[9], c©2008 IEEE).

• Intuitiveness in association — can one learn quickly the association be-

tween a type of visual mapping and a type of attribute?

• Visual scalability — can the scheme extend to a large value range and a

large number of balls?

• Space utilization — does the scheme require large space or high resolution

rendering?

The results of the survey are shown in Table 5.4, whereby the first column

of each attribute represents the average score for the chosen mapping and the

second column shows the standard deviation. For the three attributes, the best

and the second best scores are marked. Nevertheless, it can be assumed that every

mapping that scored 5.5 or higher is adequate enough to be used for visualizing the

corresponding attribute. The results reveal that color and thickness are the most

favored mappings, suitable for conveying changes of most attributes. Opacity

and texture are considered to be unsuitable, whilst symbols and luminance are

considered only usable for certain types of attributes.

One important use of this survey is to assist in the design of multi-field visu-

alization through an optimized combination of different mappings. For example,

5.7. The Extended VideoPerpetuoGram Framework 141

attribute type certainty size

µ σ(x) µ σ(x) µ σ(x)
mapping

color 9.2 0.9 6.6 2.8 4.8 2.7

luminance 4.2 2.4 5.5 2.6 5.1 2.1

opacity 2.2 1.6 3.5 2.4 3.5 1.7

thickness 3.7 2.6 7.3 2.6 8.1 2.4

symbols 6.7 2.6 2.7 2.5 2.7 2.7

texture 2.8 2.0 0.8 1.1 0.8 1.1

Table 5.4: The table shows the average values µ of the rating for the six visual effects.

The rating ranges from 0 to 10, where 10 is the highest score. The best rated mapping for

a property is marked with bold font, the second best result is underlined. In Addition, the

standard deviation σ(x) for each value is given. (Courtesy of Botchen et al. [9], c©2008

IEEE).

if one needs to highlight three attributes simultaneously in the same visualiza-

tion, one optimal combination is to use color for type, luminance for certainty

and thickness for size. However, it may not be straightforward to combine some

mappings in the same visualization, for example color with symbols, luminance

with thickness and so on. A discussion on how such difficulties are addressed for

the development of the extended framework is given in the next section.

5.7 The Extended VideoPerpetuoGram Framework

The extended framework for multi-field visualization relies on the survey from

the above section in order to provide appropriate visual mappings of video at-

tributes to renderable representations. One issue is that more than just a single

video attribute needs to be visualized simultaneously. Possibly interesting video

attributes, as extracted by the action recognition stage (Section 5.2.4), include:

geometric information (the position of an object and its size), semantic informa-

tion (action type and the relationships between extracted objects), and statistical

information (the plausibility of a recognized action or relationship). In addition

to these video attributes, the aim is also to convey the correspondence between

the extracted video information and the key frames of the original video stream

(as exemplified by Figure 5.20 (c)). Therefore, focus-and-context visualization

techniques are employed to combine the display of extracted video attributes with

original video frames: the former is the focus, the latter serves as context. The

design of the visual representation needs to address a number of challenges:

142 Chapter 5. Multi-field Video Visualization

action recognition

object relation

object extraction

action plausibility

create geometry / fill volumes

volume slicer / slice tesselator

action geometry renderer

key frame slice renderer

action volume renderer

captured
video data

video processing video visualization

motion estimation

object
volumes

object
lists

action
visualization

user interface
and display

Figure 5.19: The extended system pipeline for multi-field video visualization.

• It must facilitate the continuous depiction, along the temporal axis, of ex-

tracted information and key frames for a video stream with an arbitrary

length;

• It has to provide a good visibility of motion traces along the temporal axis

to facilitate the comprehension of temporal behavior of the objects;

• It should make maximum use of the available screen space in the xy-dimen-

sion;

• It should try to convey the context information in an intuitively recognizable

form, but it should not detract from the focus;

• It should make use of effective different visual attributes to illustrate focus

information in different categories.

This section describes an approach that combines such information in an ap-

propriate focus-and-context visual representation, discusses the merits of sev-

eral typical designs, and presents a combined CPU and GPU implementation to

achieve a balanced distribution of the rendering workload.

The technical flow-chart in Figure 5.19 shows the overall architecture of the

whole system, which is similar to the previous framework also divided into two

substantial sub-systems — video processing and video visualization. The main

objective of this system is to process the input data stream, derive significant in-

formation and output a meaningful visualization.

The video processing sub-system receives the actual frames of the continu-

ous video stream. The purpose of this sub-system is to extract several different

attributes of a video, using image processing filters as described in Section 5.2,

with the main focus on object extraction and the classification of the performed

action for the recognized objects. Therefore, a recognition filter [35] is adapted

and extended it to give a premise about the possible relation of objects in the

5.7. The Extended VideoPerpetuoGram Framework 143

scene. Details of the individual modules are discussed in Section 5.2.4. The out-

put files contain the object IDs, the center positions, the action with the estimated

plausibility, the motion direction and the relation between objects.

With the gained information, the video visualization sub-system synthesizes a

meaningful visual representation for the given time span of the video stream, using

volume rendering in combination with glyph geometry and video snapshots. The

main goal is to clearly represent different actions, or motions of people detected

in a scene, and to emphasize a possible relation between them, i.e., grouping of

several people. Further, the functionality of this system utilizes real-time visu-

alization and an extended frame-by-frame volume bricking mechanism – derived

from the previously described volume bricking – to enable the handling of large

video data.

VideoPerpetuoGrams For rendering the VPGs in Figure 5.21 the projection pa-

rameters of the framework had to be changed. A different viewing angle and

a sheared volume in z-dimension minimizes the problem of overlap and self-

occlusion. A inclination of −49 degrees in the z-axis, with a shear of 45 degrees

in the same dimension, and a modified field of view by π
10

in combination with a

parallel projection generates satisfying results.

This enables the system to continuously render the incoming video stream,

writing the visualization result to an output buffer. For every 300 incoming video

frames, an image is rendered, where the middle section (including the second

and third key-frames) is cut out and appended to the last rendering result, thus

generating an endless output stream of a video. Using this technique, it is now

possible to see all the performed action sequences and relations that appeared in a

video in one continuous illustration at one glance.

5.7.1 Illustrating Focus Information

The discussion on visual mapping of the focus information includes the recog-

nized video attributes, in the following order: object position and size; action

type; relationship information and plausibility.

Object Position and Size VPG is intrinsically linked to a view of the space-time

of the video that uses the vertical axis for time and the horizontal axis for the

horizontal spatial dimension of the video frames, as illustrated in Figure 5.20.

The second spatial video dimension is essentially mapped to the vertical axis by

tilting the video frames. In this way, the mapping of the geometry of space-time

is fixed to that interpretation of the axes of the visualization image.

Therefore, the only appropriate mapping of object position is to respective

spatial coordinates in the VPG image. Figures 5.20 (a,d) show examples where

144 Chapter 5. Multi-field Video Visualization

(a) (b) (c) (d)

obj. occl.

walk left walk rightstanding first rel. second rel. fourth rel. fifth rel.third rel. sixth rel.

high

low

Legend

undef. rel.

walk left walk rightstanding first rel. second rel. fourth rel. fifth rel.third rel. sixth rel.Legend

undef. rel.

Figure 5.20: The “OneShopOneWait1front” dataset. Volume with 300 frames, starting

at frame 355 (a). Three object frames (455, 555 and 655) show the object actions and

relations encoded as colors (b). The OneStopEnter2front dataset showing object timeline

reconstruction (c) and additional action geometry (d). (Images courtesy of Botchen et al.

[9], c©2008 IEEE).

the object positions are marked by thick bands, Figure 5.20 (c) shows an example

that uses only a thin curve to indicate the center of the object’s position.

The expert survey indicates that the object’s size should be mapped to thick-

ness. Figure 5.20 (a) uses this mapping strategy: the thickness of the object’s trail

reflects the projected size of the object. For object size, no other visual attribute

is used for mapping; the only alternative is that object size is not visualized at all,

depending on user preference. However, size can be used to map other attributes

adequately, as shown in Figure 5.20 (d), where the extent of the object relation is

mapped to the thickness of the trace.

Actions One attribute of the action classification describes the type of action. In

the survey, the most highly ranked mapping for action type is the mapping to color.

Therefore, color mapping is recommended as an appropriate method to illustrate

the different action types. The color map is applied to the trail of the object in

order to couple object position and action type. Usually, the number of action

types is small, in the range of 10 types, so that the perceptual grouping through

5.7. The Extended VideoPerpetuoGram Framework 145

color hue can be used to clearly distinguish different actions. Figure 5.20 (b)

illustrates the effect of this color mapping for single frames, based on the color

table, given as legend under every image (orange: walk to the right; yellow: walk

to the left; green: standing; dark grey: overlapping).

The design of the color map is based on previous work and recommenda-

tions by Ware [158], Healey [56], and Kindlmann et al. [73]. The other highly

ranked mapping for action type uses symbols. Figure 5.20 (d) shows an example

of the glyph-based visualization of action type. Glyphs are distributed along ob-

ject trails, indicating the action type at respective space-time positions. The design

of the glyphs adopts established icons from flow visualization (i.e., arrows indi-

cating motion direction; additionally, a square icon indicating an object at rest).

Depending on the results of the survey, it is recommended using either color or

glyphs for action types. In particular, glyphs are useful when color is already

needed for the visualization of another video attribute.

Relations Relationship data is another kind of action-related information attached

to the video volume. The strength of the relationship between two objects is based

on their distance, relative speed, relative direction of motion, size of their bound-

ing boxes, and overlap of their bounding boxes. Typically, relation information

should be displayed together with action type, i.e., facing the issue of simulta-

neous visualization of several attributes. More importantly, both action type and

relation are most appropriately visualized by color. Color is particularly suited for

relation visualization because color is effective in building visual correspondence

and grouping.

To overcome the conflict that two different video attributes are well visualized

by color, the following strategies can be considered. The first strategy is to spa-

tially separate the colored image regions, as illustrated in Figure 5.20 (a,b): action

type is shown by color attached to the center of the object’s trail, whereas relation

information is color-coded within a surrounding silhouette line. Figure 5.20 (b)

shows that the relation data forms a silhouette around the action type representa-

tion. The color table for these relation silhouettes is shown in the legend of the

figure. For example, the red silhouette indicates the relation of the first two people

entering the scene in Figure 5.20 (a), and walking besides each other. The issue

with this strategy is that more visualization space is needed for spatial separation.

Therefore, this strategy is appropriate if enough screen space is available.

The other strategy is to use a different mapping for action type. As discussed

above, glyphs are a suitable alternative for the visualization of action type. Then,

color is available for relation visualization. This strategy is illustrated in Fig-

ure 5.20 (d). Here, the colored trace represents the relations of objects, whereby

the actions are mapped on different glyphs.

146 Chapter 5. Multi-field Video Visualization

Plausibility One of the reasons for using visualization for video analysis is that

computer-vision techniques are not always capable of fully analyzing videos with

high certainty. In fact, the action recognition algorithms provide a certainty—or

plausibility—attached to recognized action type and relation information. The

certainties of both video attributes as statistical attributes are included in this new

visualization approach. The expert survey indicates that mapping to thickness or

color should be most effective for these statistical attributes. The system supports

both alternatives. Figure 5.20 (d) shows how thickness is used for the continuous

mapping of the certainty of the relation type.

In contrast, Figure 5.20 (a) illustrates the mapping of all attributes to color

only. Here, saturation is used to indicate plausibility: high saturation corresponds

to high certainty, low saturation to low certainty. Only two different saturation

levels are used in order to allow for an accurate visual discrimination. The plau-

sibility value is mapped to the quantized saturation value by thresholding. The

advantage of the saturation mapping is that it can be immediately combined with

a hue mapping. In Figure 5.20 (a,b), both action type and relation information

are encoded by hue (in the main trail and the silhouette regions, respectively);

then, the plausibility values for action type and relation information are mapped

to respective saturation values.

5.7.2 Conveying Context Information

The above video attributes alone can communicate the performed action of per-

sons and their relations in the scene at any given time, but they are restricted in the

amount of detailed information they can convey because visual information about

the environment is lacking. Therefore, the spatial context of the surrounding en-

vironment is missing. For example, it would be difficult to say where exactly an

object is located in the scene at a certain time step. To increase the amount of in-

formation communicated to the viewer, and thus enhance the understanding of the

events in the scene, the system provides a set of additional visualization options

that facilitate the display of surround information. This additional visualization is

combined with the focus visualization of video attributes in a focus-and-context

approach.

Snapshots Original frames of the video contribute the most information possible.

They pull together extracted objects and their surrounding. Similarly, they can in-

dicate important static objects in the scene – i.e., a door or an obstacle – that might

cause persons to act in a certain way. The system allows for several video frames

to be placed as snapshots at any position in the volume as shown in Figure 5.20 (c)

and Figure 5.21. The useful number of snapshots that can be displayed simulta-

neously depends on the available screen space: the frames should be so far apart

that they do not overlap on the final visualization image.

5.7. The Extended VideoPerpetuoGram Framework 147

Focus-and-context rendering is achieved by blending the snapshots with a

depth-dependent alpha value over the visible volume signature. Depth-dependent

blending enhances depth perception. All objects that are visible in a snapshot are

rendered with full opacity to stand out from the background.

Timeline Reconstruction The object’s path evolving in time is reconstructed by

tracing a line through the objects center in every frame where the object appears as

shown in Figure 5.20 (c). This is useful to keep track of objects that can occlude

each other, if their paths are crossing. To visually enhance the progress of time,

which increases from back to front along the z-axis (equivalently from top to

bottom).

5.7.3 Efficient Focus and Context Rendering

For the efficient visualization of action based video volumes, the video visual-

ization application employs CPU and GPU methods to achieve real-time render-

ing. The visualization framework is built upon an existing slice-based volume

renderer [156] that has been modified for video volume rendering [10]. An ad-

vantage of this framework is its separation of different visualization aspects into

different software components.

This section discusses the technical details of action-based video rendering

modules that are used to generate the two presented visualization styles. Further, it

exemplifies the accomplished extensions that have been applied to the framework,

to produce a continuous video visualization.

Two-pass Silhouette Rendering Constructing the opaque silhouettes around the

opaque object traces is managed by a two-pass GPU-rendering procedure. Both

information – the silhouette with the object relation and the thereof enclosed re-

gion, holding the action type – are stored in every single video frame, as shown

in Figure 5.20 (b). By volume rendering both information in one pass, the opaque

silhouette would completely occlude the interior action information. As the vi-

sualization should show both attributes simultaneously, the approach is to first

render the complete volume, only blending the relation silhouettes to the frame-

buffer. Then, in the second pass, the whole volume is rendered again, but this

time only the interior is blended as opaque color to the framebuffer, generating

the desired result. The advantage of this technique is the good structured visual

result, with the clear separable inner and outer regions. Since the volume has to be

rendered twice, a drawback is the bisection of rendering performance, making this

technique not very useful for a real-time system that could be built with today’s

hardware.

148 Chapter 5. Multi-field Video Visualization

Additional Action Indication Regarding the issues of the prior technique, inves-

tigation in another combination of visual mappings was performed, guided by the

expert survey, to enhance the system. This technique, as shown in Figure 5.20 (d),

is implemented as single-pass volume rendering with additional glyphs to indicate

the objects action. For this technique, the volumetric representation of the object

trace indicates the relation of objects, illustrated with the same color. The plau-

sibility of the relation is mapped on the thickness of the trace, thereby neglecting

the size of the objects itself. In the context of this particular work, this choice

seems adequate, as the video processing module was designed for tracking only

one kind of object, i.e., persons that are nearly equal sized.

The motion glyphs are generated on the CPU and rendered as opaque geom-

etry over the object traces, whereby a square represents a standing person, and

arrows indicate a walk left or walk right respectively. This technique has the ad-

vantage that it maps both information to different visual attributes and achieves

high framerates that are required for a real-time application. However, due to

noise in the extracted video frames that can cause many small changes in the ac-

tion recognition (e.g., multiple changes from left to right caused by a standing

person that is slightly fluctuating), this can lead to a multitude of rendered glyphs

that occlude each other. This is overcome by thresholding with a user defined

value. The threshold regulates the maximum relative change of an object between

two frames, required to generate a glyph at this location.

5.8 Evaluation of VideoPerpetuoGram Visualization

The system was tested with several datasets that contained a different amount of

appearing people and various groupings, thus forming interesting relations. The

evaluation of time for all images in the presented figures runs from back to front

of each figure. The shopping mall datasets have been recorded with 25 fps, all

video volume illustrations in Figure 5.21 represent 44 seconds of the according

video. The illustrations have been rendered with the bricked volume approach,

meaning that one brick between two snapshots contains 100 video frames, thus

representing four seconds of the video.

The VPG in Figure 5.21 (left) represent the “OneShopOneWait1front” dataset.

In this scenario, two people enter the scene from the left side, walking to the

store. While one person enters the store, the other one is waiting outside in front

of the window, before his partner returns, whereupon they leave the scene. In the

meantime, two other people cross the scene from left to right with different speeds,

one after another. In addition to the object actions in the interior, one can see the

relation silhouettes here. Both persons that entered together, walking besides each

other, have the same colored silhouette (dark red) at the beginning and a mainly

orange colored action trace, indicating that they walk to the right. As they drift

5.8. Evaluation of VideoPerpetuoGram Visualization 149

apart, the dark red changes to a light red, since the relation plausibility falls under

the threshold value. Both crossing people start with a different colored silhouette,

causing all other silhouettes to change the color over time. This is due to the fact

that their relation changes from one to the other group member, while passing

by. The relation of the right person of the former group in Figure 5.21 (left)

changes to a relation to the crossing person (green). This is caused by a similar

speed and motion direction, as the other group member stopped in front of the

window, minimizing the relation plausibility. His relation in turn becomes very

strong to the crossing person, as they get very close and their bounding boxes

overlap (blue). The second passerby changes the silhouettes from cyan for the

first group member to magenta for the second group member. Then, the relation

of the two people who formed a group before is increasing again, resulting in a

dark red silhouette, as they leave the scene.

Figure 5.21 (middle) shows a very similar scenario as the left image. Again,

two people step into the scene together from the left side, one entering the shop,

the other one waiting outside. But this time, the third person that enters the scene

to confuse the system, appears just a few frames after the others, walking with

approximately the same speed in the same direction, thus the person is always

resided very close to the group. As well as in the first scenario, the relation filter

always scores higher for the two people that entered together, assigning the third

person a different color for a differing relation. Only as their paths cross and thus,

the bounding boxes overlap, The relation to the crossing person becomes stronger.

The red relation silhouettes of the group in Figure 5.21 (middle) is completely

disappearing, as one partner enters the store and vanishes inside. There does not

exist a relation for one single person. But as he steps outside the shop, the relation

silhouette reappears too.

The most complex case that was used to verify the system is the “TwoEn-

terShopfront2” dataset illustrated in Figure 5.21 (right). In this scenario, seven

people appear in the foreground of the scene nearly at the same time, crossing

paths, forming groups and splitting up again. In the beginning, two people cross

the site from different directions with unequal speeds. They both start with a rela-

tion to the third person inside the shop, but their relation score is highest as they

approach each other and cross, which is mapped to green. Then, two people en-

ter and cross their ways, shaking hands as they meet, indicated by the magenta

relation color. At the same time, a group of two other people appears from the

left side, walking besides each other and entering the store. The relation of the

meeting people is colored in green. Notice that relation colors that have been used

already are locked, but can be reused after a certain time span has passed. Since

there is only a limited amount of clearly separable colors, which can be exceeded

by the amount of possible relations, a light grey is used as reserve color that is as-

signed to relations with low plausibility. In fact, only the six highest relations are

150 Chapter 5. Multi-field Video Visualization

obj. occl.

walk left walk rightstanding first rel. second rel. fourth rel. fifth rel.third rel. sixth rel.

high

low

Legend

undef. rel.

Figure 5.21: VideoPerpetuoGrams of the datasets “OneShopOneWait1front”, “OneSho-

pOneWait2front” and “TwoEnterShop2front”. The en bloc visualization represents 44

seconds of the videos. (Images courtesy of Botchen et al. [9], c©2008 IEEE).

5.8. Evaluation of VideoPerpetuoGram Visualization 151

viewport 7682 10242

Volume 37.4 21.6

Volume+Glyphs+Key Frames+Shear 20.3 11.5

Volume+Glyphs+Key Frames+Shear+Bricking 11.2 7.9

Two-pass Silhouette Rendering 5.6 4.0

Table 5.5: Performance results, in fps for a video volume with a resolution of

300×384×288 voxels. All timings have been measured on a desktop PC with an AMD

Athlon 64 X2 dual processor with 2.4 GHz, 2 GB of RAM and a NVIDIA GeForce 8800

GT (512MB) graphics card. (Courtesy of Botchen et al. [9], c©2008 IEEE).

mapped to color, and all other relations that exist at the same time are indicated

by grey. This happens in the middle of Figure 5.21 (right), as many people appear

in the scene at the same time, each one having a relation to every other person in

the scene.

The performance results for the combination of all presented modules is given

in Table 5.5. The table shows that the framework can perform with interactive

frame rates, even for a high resolution display. A limitation of the system is the

illustration of scenes with a large amount of people appearing at once. In such

scenes it can be that most parts of some objects are occluded by other objects, thus

leading to a problem for the object tracking, as well as to overlap and occlusion

problems for the visualization. Here, the system is as good as the used computer

vision algorithm and tracking technique. The object tracking could be improved,

by using only the people’s heads for the recognition, since those parts of the bodies

should be visible most of the time. From the visualization side, the illustration of

an object trace could be minimized to a line, for objects that are not of great

interest, only using glyphs and silhouettes for the important objects or groups.

This could be pre-decided by an algorithm, using the relation probability, or it

could be left as an option for the user to select the objects of interest.

152 Chapter 5. Multi-field Video Visualization

CHAPTER

6 VISUALIZATION OF ENCODED

MULTI-FIELD DATA

The size and scale of data that is generated and gathered with nowadays complex

simulation and measuring techniques is increasing at an alarming rate, creating

a data deluge for analysts wanting to visualize, interactively manipulate, and ex-

plore the problem at hand. Moreover, most current visualization techniques are

datagrid specific and cannot allow scientists and researchers to interactively visu-

alize various unstructured and scattered large-scale datasets in a single system on

their desktop computers. One major issue for the visualization of large datasets

is the data transport from the CPU to the GPU and the data storage in the limited

graphics memory. To overcome this bottleneck, one possible approach is pre-

sented in this chapter. For the visualization of large, structured data streams, a

bricking based strategy can be applied to upload only the required subset of data

to the GPU memory for rendering, as discussed in the previous chapter. This strat-

egy however is only applicable if the problem domain can be subdivided and the

analysis task is of local nature.

For analysis tasks that consider the whole data domain, such as it is com-

mon in feature based flow analysis as shown in Chapter 3, or medical imaging as

described in Chapter 4, another solution is required that allows the whole infor-

mation contained in the data to be stored in GPU memory at a once. A feasible

approach is data storage reduction by means of data encoding, with the aim to

find a data layout that suits on graphics hardware memory and enables the utiliza-

tion of the programmable fragment processing unit for a simple and interactive

on-the-fly decoding during rendering.

This section describes a new technique for procedural encoding and visual-

ization of structured, scattered and unstructured multi-field datasets using Radial

Basis Functions (RBF) and Elipsoidal Basis Functions (EBF) with great poten-

tial for compactly representing large datasets. One advantage of RBF encoding

technique is the reduced storage requirement that allows the compressed datasets

153

154 Chapter 6. Visualization of Encoded Multi-field Data

to completely reside in the local memory of the graphics hardware, thus, enabling

accurate and efficient processing and visualization without data transfer problems.

Within computer graphics RBFs have been widely used for surface and functional

approximations due to their symmetry property. They have been applied in a

broad field of research including surface modeling, geometric modeling, spatial

interpolation in GIS applications and visualization of 3D scattered data [22; 46;

55; 129; 154; 173]. Previously, Jang et al. [64] and Co et al. [26] have used RBFs

to procedurally encode both scattered and irregular gridded scalar datasets. The

approach described here extends their methods and suits for interactive visualiza-

tion and feature detection of large scalar, vector, and multi-field CFD datasets.

The algorithm is well-suited for structured and unstructured data representations

and thereby applies well to meshless CFD methods. Further, feature detection

techniques, as introduced in Chapter 3, are applied for detecting and rendering

features the RBF space by utilizing the functional representation for efficiency.

The primary advantages of RBFs and EBFs include their compact descrip-

tion, ability to interpolate and approximate sparse, non-uniformly spaced data,

and analytical gradient calculations. Common choices for the RBFs are thin-plate

splines, multiquadrics, and Gaussians. Splines have no adjustable parameters and

do not have local support, thus leading to a denser system of equations necessary

to solve. Inverse multiquadrics have been proven to have a physically relevant

foundation [55]. However, Gaussian RBF and EBF models offer several advan-

tages. They are concise, robust, and have a regular and smooth behavior outside

the fitting domain, providing a localized function through which local data fea-

tures are preserved. The Gaussians also offer the additional advantage of being

less expensive to reconstruct on modern graphics hardware.

The work presented in this chapter was carried out in collaboration with Yun

Jang, Jingshu Huang and David S. Ebert from Purdue University; Kelly P. Gaither

from the University of Texas at Austin; and Manfred Weiler and Andreas Lauser

from the Universität Stuttgart. Yun Jang must be specially credited for the RBF

and EBF encoding of all datasets, while Manfred Weiler was responsible for the

basic implementation of the visualization framework and Andreas Lauser helped

with further code tuning. The presented methods were published in the Computer

Graphics and Applications journal [161] and in the Computer Graphics Forum

journal [63].

6.1 Radial Basis Functions

Radial basis functions are circularly-symmetric functions centered at a single

point. RBF encoding creates a complete, unified, functional representation of

the data field throughout three-dimensional space, independent of the underlying

data topology, and eliminating the need for the original data grid during visualiza-

6.1. Radial Basis Functions 155

tion. Unlike other data compression techniques like iterated function systems [4]

or wavelets [106], the compact representation of the basis function brings the ad-

vantage of a simple evaluation, as well as a smoothing of the first and second

derivative, in case of noisy data. RBFs play an important role in a broad research

area. Researchers have proposed several different polynomial functions to approx-

imate the construction of soft objects [171], or solid geometry applied to implicit

surfaces [71]. Recently, Chen [23] compared several different radial basis func-

tions that are suited to combine point clouds and conventional volume objects.

Jang et al. [64] and Weiler et al. [161] presented techniques for spatially-limited

spherical Gaussian radial basis function encoding and visualization of volumetric

scalar, vector, and multi-field datasets. To provide a greater variety of functional

approximation and modeling options, researchers proposed to use ellipsoids in-

stead of RBFs. Ellipsoids have been used in many research areas, such as seg-

mentation [111], object detection [47], and filtering of noisy data [133]. In the

area of data fitting, Calafiore [20] proposes an approximation of n-dimensional

data using ellipsoidal primitives and showed that a “distance-of-squares” geomet-

ric error criterion gives stability for Gaussian noise. This approach, however, is

limited to several hundreds of points because of numerical problems. Li et al.
[118] proposed a fitting method using ellipsoids for implicit surfaces with a lim-

ited number of data points. Recently Huang et al. [61] showed a shape-based

approach for thin structure segmentation and visualization in biomedical images

using an ellipsoidal Gaussian model.

Mathematically, for given data samples pj = (xj,yj) , j = 1, ..., n, where

the values xj ∈ R3 are the spatial locations and the values yj ∈ Rk are the data

values that exist at the corresponding spatial locations, the data values can be

approximated with a function f(x) defined as weighted sum

f(x) =
N

∑

i=1

λiφ
(

x, µi, σ
2
i

)

, (6.1)

where N is the number of basis functions, λi the weight, µi the center, and σ2
i the

variance of a single basis function φ. With this mathematical expression, λ, µ and

σ2 are optimized to find the best approximation of the original data values.

Depending on the application there exist several types of basis functions φ
that could be employed, ranging from multiquadric functions to biharmonic or

triharmonic splines. This chapter exclusively applies spherical and ellipsoidal

Gaussian functions because of their above stated advantages. The strategy of data

encoding and decoding for visualization is described in the following sections.

156 Chapter 6. Visualization of Encoded Multi-field Data

(a) (b) (c)

Figure 6.1: Visual comparison of basis functions using an oil reservoir data set. The left

image is the result using the spherical Gaussians, the middle image using the axisaligned

ellipsoidal Gaussians and the right image using the arbitrary directional Gaussians. (Im-

ages courtesy of Jang et al. [63], c©The Eurographics Association 2006).

6.1.1 Spherical and Ellipsoidal Gaussians

As previously mentioned, the radial basis function is a radially symmetric function

where the RBF volume has a spherical shape. For volume visualization, several

researchers [64; 161] have used spherical Gaussians as basis functions. Using a

Gaussian RBF, the data approximation function is of the form

f(x) =
N

∑

i=1

λie
−‖x−µi‖

2

2σ2
i , (6.2)

where λi are the RBF blending coefficients or Gaussian weights, µi are the RBF

centers, σ2
i are variances or Gaussian widths, and N is the number of basis func-

tions.

The spherical shaped basis function, however, has a limitation in fitting long,

high-gradient shapes, for example cylindrical shapes. The radius might reach the

shortest boundary of the area and require many small RBFs to fit one long shape.

Figure 6.1 (a) visually displays this artifact for spherical RBFs. In the worst case,

many discrete blobby structures can be shown in visualization instead of a visually

accurate approximation.

In order to reduce these artifacts, ellipsoidal Gaussians – which are ellipsoidal

basis functions (EBF) – can be used instead of the spherical Gaussians. There are

two kinds of ellipsoidal Gaussians: axis-aligned and arbitrary directional EBFs.

Figure 6.1 (b) shows the result of using the axis-aligned ellipsoidal Gaussian and

Figure 6.1 (c) shows the use of arbitrary directional Gaussians. As can be seen,

the narrow shape is well represented by both ellipsoidal Gaussian functions. Ad-

ditionally, only a smaller number of basis functions is needed to evaluate for ren-

6.1. Radial Basis Functions 157

x

y

r x

y

r

r

x

y

r

r

(a) (b) (c)

Figure 6.2: Comparison of basis functions for approximation of the grey data with three

basis functions: (a) RBF; (b) axis aligned EBF; and (c) arbitrary directional EBF. The

influence range of each basis function is shown as blue arrows and black curve for volume

subdivison. Red arrows indicate the orientation of arbitrary directional EBF. (Images

courtesy of Jang et al. [63], c©The Eurographics Association 2006).

dering each pixel, when using an octree data structure for spatial subdivision.

Cuboids are used to generate the spatial cell distribution rather than cubes and

they are aligned according to the influences along the axes. A comparison of the

three basis functions is shown in Figure 6.2. This figure shows a long diagonal

data distribution and the influences of the three basis functions are drawn overlaid

on the data. As can be seen, the enclosed volume of the ellipsoidal representa-

tions is smaller and fit better around the structure to be encoded and thus, they are

superior for reconstructing the structure in the rendering step.

The ellipsoidal Gaussian basis function in 3D space can be represented in a

matrix form using the Mahalanobis distance instead of the Euclidean distance

φ(x) = exp

(

−
1

2
(x − µ)TV−1(x − µ)

)

, (6.3)

where V is the covariance matrix, V−1 is positive definite and is defined by a

rotation matrix R, and a scalar matrix S, as

V−1 =

a1 a4 a6

a4 a2 a5

a6 a5 a3

 = R · S−1 · S−1 · RT ,

where x is a coordinate vector, [x y z]T and µ is the center vector of an ellipsoidal

Gaussian, [µx µy µz]
T . Moreover, for a rotation matrix, R−1 = RT and for a

scaling matrix ST = S.

Since all rotation angles are set to zero for the axis aligned ellipsoidal Gaus-

sians, off-diagonal components in V−1 are zero and diagonal components are

positive, a1 = 1
σ2

x
, a2 = 1

σ2
y
, a3 = 1

σ2
z
, and a4 = a5 = a6 = 0. Therefore, the axis

158 Chapter 6. Visualization of Encoded Multi-field Data

aligned ellipsoidal Gaussian can be represented as

φ(x) = exp

{

−
(x− µx)2

2σ2
x

−
(y − µy)

2

2σ2
y

−
(z − µz)

2

2σ2
z

}

. (6.4)

On the other hand, in the arbitrary directional ellipsoidal Gaussian, off-diagonal

components may not be zero. Therefore, the components of S and R are consid-

ered, instead of the direct form in Equation (6.4), to make sure that V−1 is positive

definite.

6.1.2 Functional Approximation

To generate a new functional representation for a given dataset, the realization

of a multi-level encoding process as shown in Figure 6.3 is required. The aim

of functional approximation is to find the best parameters for the basis functions

to fit the data values as closely as possible. This means that for a given set of

data points pj = (xj,vj) , j = 1, . . . , n, the function f(x) approximates the

data domain within a certain user specific error range. The pj can be vertices in a

structured or a unstructured grid, or even belong to a point based representation.

In Section 6.1.1, a functional approximation using RBFs is presented. This section

exemplifies the extended approximation process for the more complex EBFs. For

the extension from RBFs to EBFs, the covariance V is used rather than the single

variance in the functional approximation. The function using V is redefined as

f(x) =
N

∑

i=1

λiφ (x, µi,Vi) . (6.5)

The parameters include centers µ, covariances V, the weights λ and N is the

number of basis functions, respectively.

The approach of functional approximation is based on previous RBF work [64;

161]. The number of EBF parameters is larger than the number of RBF parame-

ters, which leads to a different approach for approximation and a slightly changed

memory layout for data storage, as shown in Section 6.2.1. In particular, for the

3D scalar approximation, 2 more parameters are added for the axis aligned ellip-

soidal Gaussians and 5 more parameters for the arbitrary directional ellipsoidal

Gaussians, compared to spherical Gaussians. For 3D vector approximation, 6

more parameters are needed for the axis aligned ellipsoidal Gaussians and 15

more parameters for the arbitrary directional ellipsoidal Gaussians.

A nonlinear optimization algorithm is used to find the best parameters for

the approximation. This algorithm quickly computes reasonable initial starting

parameters using the given data. This provides better results in the nonlinear op-

timization and these initial parameter values are inserted into the main optimiza-

tion algorithm. The algorithm determines the parameters for only a single basis

6.1. Radial Basis Functions 159

find
centers

estimate
errors

input
(x,v)

output
(µ,σ,λ)

add
EBFs

data-
residuum

nonlinear optimization
for EBF parameters

e > emax

Figure 6.3: Flowchart for data encoding with ellipsoidal basis functions.

function at each iteration. Once the parameters are found that reduce the approxi-

mation error the most, the influence of the basis function is removed from the data

values and the residual functional values (errors) are computed, using either L2-

norm or H1-norm. These residuals are then used in the next iteration. The above

approximation system is iterated until the error tolerance is satisfied. An error of

5% of the maximum data value is used as error tolerance. However, RMS errors

are typically less than 1-3% in the resulting datasets. Once the best functional

approximation is found, the volume is divided into several small subvolumes us-

ing an adaptive octree structure based on the basis function distribution (see Sec-

tion 6.2.1). This allows us to improve rendering speed. Moreover, this algorithm

can be applied to both scalar and vector datasets (see Section 6.1.3). The resulting

encoding algorithm as shown in Figure 6.3 consists of the following steps:

1. Perform domain localization on the original dataset to obtain smaller do-

main datasets with a limited number of data points.

2. Perform a multi-level least-squared fit of the data using Equation (6.2) in

each domain. In each level, the following steps are executed sequentially:

(a) Find the Gaussian centers with filtering and clustering techniques and

set the initial Gaussian weights and widths.

(b) Perform nonlinear optimization on Gaussian widths to minimize least-

squared errors in the domain, and solve the linear system for Gaussian

weights.

(c) Compute the errors at all data points in this domain. If the maximal

error is less than a predefined threshold, stop encoding the current

domain and go to the next domain; otherwise, encode the residual

error as a new dataset starting at Step 2(a).

Domain Localization Encoding large datasets is computationally expensive and

the encoding system might be ill-conditioned. Domain localization can be applied

to solve this problem. Domain localization was used by Nielson [107], whose

160 Chapter 6. Visualization of Encoded Multi-field Data

method localizes the domain by multiplying by a weight function for each evenly

decomposed subvolume. These spatially decomposed subvolumes, however, may

generate very sparse subdomains, which do not have enough data points to be fit.

Additionally, some subdomains might contain a large number of data points to be

encoded.

Therefore, a k-d tree is used to decompose the volume into overlapping subdo-

mains, each with an equal number of data points. Further, the weighting functions

are also defined for the overlapping regions between subdomains. Users can pre-

define the maximum number of data points in each domain and the size of the

overlap to which the weighting function is applied, according to their available

computational power. This domain localization provides a reasonable number of

data points for the encoding system. Theoretically, one subdomain is independent

of others with zero error encoding. Since the encoding system is an approxima-

tion, non-zero error may exist and may be largest in the overlap areas because

of the addition of subdomain encoding errors. This problem is addressed by re-

encoding the residual dataset error from the first-round encoded dataset.

Initial Parameter Approximation The initial Gaussian starting parameter values

for nonlinear optimization are important for the optimization convergence [14].

The starting center value is set to the maximum data value point and the weight

is set to the data value at this center. Since the residuals are computed after every

iteration, they become the new data values in the next iteration. Therefore, the

maximum error point is the maximum value data point. The position of this data

point is set to the center of the basis function and the maximum value at the point

is set to the weight of the basis function for either the radial or ellipsoidal basis.

There is only one variance in an RBF, which can be written as

σ2
ij =

r2

2 ln
(∣

∣

∣

vi

vj

∣

∣

∣

) , j = 1, ..., N , (6.6)

where vi is the data value at the center and vj is the value at the jth data point

assuming that sgn(vi) = sgn(vj) and |vi| > |vj|. r is defined as |xj − µi| and N
is the number of points. Then σ2

ij with σ2
i =

∑

j σ2
ij/N is averaged to compute

the approximate variance.

The variances of axis aligned EBFs are computed using both data values and

gradients since there is more than one unknown variance in the axis aligned EBF.

By taking derivatives of Equation (6.4), the approximation of the x direction vari-

ance works as follows:

σ2
xij

= −(xj − µxi) ·
vj

dvj/dxj

, j = 1, ..., N . (6.7)

6.1. Radial Basis Functions 161

The y and z direction variances can be computed similarly and the average of

these variances is then used for the approximate variances.

For the arbitrary directional EBFs, the above approximated variances can be

used by setting the off-diagonal components to zero, which means that all rotation

angles are zero, for the initial parameter values for the nonlinear optimization.

Nonlinear Optimization Once all approximate parameters are computed, they are

inserted into the nonlinear optimization algorithm, i.e., the Levenberg Marquardt

approach [94] is applied to minimize sum squared error. This approximation algo-

rithm optimizes all parameters at the same time. Note that parameters of the axis

aligned EBFs can be optimized in the same way as RBFs are optimized, since off-

diagonal components in the covariance matrix are all zero. However, for arbitrary

directional EBFs, the scaling components in the scaling matrix and the angles in

the rotation matrix are optimized instead of a1, . . . , a6 for 3D datasets, since the

result of this optimization might not construct a real covariance.

Error Measurement Even though EBFs are good basis functions for any struc-

tural dataset after optimization, it can still show visible artifacts. Therefore, two

different cost functions are used in the optimization process, which are compared

here. Commonly applied in such an optimization process is the L2-norm based

cost function

ψ =
1

2

N
∑

j=1

(f(xj) − yj)
2 , (6.8)

which only uses the data values. For increased visual accuracy, the gradients are

pre-approximated at each data point and added to the cost function, using the H1-

norm based cost function [50], given as

ψ =
1

2

N
∑

j=1

{

(f(xj) − yj)
2 +

(

∂f(xj)

∂x
−
∂yj

∂x

)2

+

(

∂f(xj)

∂y
−
∂yj

∂y

)2

+

(

∂f(xj)

∂z
−
∂yj

∂z

)2
}

,

(6.9)

in order to remove the visual artifacts. Comparison results between these two cost

functions are shown in Figure 6.13 of Section 6.3.

6.1.3 Scalar vs. Vector Encoding

Scalar data approximation is performed using the above approach since there is

only one value at each data point. Therefore, the maximum data point is set to be

a center of an ellipsoidal Gaussian and its value at the point is set to be a weight

162 Chapter 6. Visualization of Encoded Multi-field Data

of the ellipsoidal Gaussian. Variance terms are approximated using either Equa-

tion (6.6) or (6.7) according to the basis functions. The optimization of all these

parameters is performed by using the Levenberg Marquardt algorithm. For the

3D spherical Gaussian, 5 parameters (center, weight, and variance) are optimized

at the same time, 7 parameters for the axis aligned ellipsoidal Gaussians, and 10

parameters for the arbitrary directional ellipsoidal Gaussians.

While scalar data approximation is rather simple, vector data needs further

treatment in order to optimize all vector components at the same time. There

are many approaches to encode vector datasets. A simple approach encodes each

component of the vector separately, producing 3 separate systems of basis func-

tions (one for each component). A drawback of this representation is not only

the requirement of a much larger number of basis functions, but also the fact that

the reconstructed vectors are less accurate since the errors of the individual com-

ponents may add up to larger errors. Therefore, the chosen approach encodes

the vector data as one three-valued quantity, computing the error of the encod-

ing based on the vector error. For more accurate encoding, separate weights and

variances for each vector component are calculated, but not separate center loca-

tions. Experiments have been conducted for encoding single weight and variance

for each basis function, but the resulting encoding errors were much larger or

the representation needed many more basis functions. Based on this experience,

the memory layout for each basis function was chosen to store one center, three

weights, and three variances as described in Section 6.2.1. In 3D, there are 9 pa-

rameters for the spherical Gaussians, 15 parameters for the axis aligned ellipsoidal

Gaussians, and 24 parameters for the arbitrary directional ellipsoidal Gaussians.

6.2 Interactive Rendering

All rendering techniques that have been implemented to evaluate the strength

of evaluating the encoded data are based on the capability of modern graphics

adapters to perform arbitrary arithmetical operations on the GPU. The basic prin-

ciple of the rendering system is shown in Figure 6.4. The high memory bandwidth

and parallel processing capability of modern graphics hardware are exploited by

downloading all necessary information, like the coefficients of the RBF and EBF

encoding as texture maps to the graphics card. This allows the fragment unit to

access all data required for reconstruction and to perform the decoding on-the-fly

during rasterization.

Since the basis functions are evaluated by the GPU for each rendered fragment,

the encoding of the data is hidden from the rendering and, therefore, the approach

allows for a variety of visualization algorithms. For the visualization of encoded

scalar fields the system supports direct volume rendering, volume-rendered iso-

surfaces and arbitrarily oriented cutting planes described in Section 6.2.2. Further

6.2. Interactive Rendering 163

Tex 1 Tex 2 Tex 3

fragment program

µ i σi λ i

arbitrary directional EBF parametersaxis alligned EBF or RBF parameters

Tex 1
Tex 2

Tex 3
Tex 4 Tex 6

Tex 5 Tex 7
Tex 8

y2,i
a

a
z1,i

az2,i

λ i

µ
i

ax1,i

ax2,i

ay1,i

Figure 6.4: Texture layout and parameter transfer to the rendering system depends on

the chosen RBF/EBF encoding. The coeffcients are accessed directly from multiple two-

dimensional texture maps storing the compact representation in the local memory of the

graphics card. (Images courtesy of Jang et al. [63], c©The Eurographics Association

2006).

possibilities include the mapping of the reconstructed data onto the surface of re-

lated geometry, e.g., color coded pressure on the body of an airplane. Reconstruc-

tion and visualization of vector data, however, requires not only more sophisti-

cated data handling, but even more importantly, vector field specific visualization

techniques as demonstrated in Sections 6.2.3 and 6.2.4. Performance results for

all types of basis functions and datasets are given in Table 6.2 of Section 6.3.

6.2.1 Data Structure and Texture Layout

To speed up rendering, a volume subdivision algorithm [64] is used. This al-

gorithm utilizes an adaptive octree, it obtains the distribution of basis functions

using influence ranges and divides a volume into smaller subvolumes by setting

a maximum number of basis functions rendered in a subvolume. Therefore, each

subvolume contains less than the maximum number of basis functions, increasing

rendering performance.

For RBFs, influence ranges are the same in all directions, but EBFs have differ-

ent influence ranges in different directions. Figure 6.2 shows the influence ranges

of RBFs and EBFs. The influence radii of RBFs are computed as

ri = σi ·
√

2 · ln (|λi|/ǫ) ,

where ǫ is a user defined error tolerance. Subdivided volumes are cubes. For the

axis aligned EBFs, the influence range in x direction can be computed similarly

164 Chapter 6. Visualization of Encoded Multi-field Data

as

rxi
= σxi

·
√

2 · ln (|λi|/ǫ) .

The influence ranges in y and z direction can be computed similarly to the above.

Note that the influence range is a cuboid. The influence range of the arbitrary

directional EBF in 3D can be computed in each direction as follows:

r2xi
=
a2i
a3i

− a2
5i

|V−1|
· 2 · ln

(

|λi|

ǫ

)

,

r2yi
=
a3i
a1i − a2

6i

|V−1|
· 2 · ln

(

|λi|

ǫ

)

,

r2zi
=
a1i
a2i

− a2
4i

|V−1|
· 2 · ln

(

|λi|

ǫ

)

.

Note, this influence range is also a cuboid, but not just a parallelepiped.

The organization of the coefficients into textures has to allow efficient access

to all contributing basis functions of a particular cell. With the GeForce6’s dy-

namic branching and long fragment programs, a simple but effective greedy lay-

out algorithm can be used. This algorithm processes all cells sorted by descending

number of basis functions, starting with the cell containing the most functions and

assign it to the texture line with the smallest but sufficient number of free slots.

For fast computation of this slot, a free space list is utilized with one entry for each

texture row. This list is sorted by ascending free slots after the placement of each

cell. Texels in the texture map are filled in left-to-right order. Using this simple

approach, a minimal overhead of unused texels can be achieved. The fragment

program only needs to know the index of the first basis function for the current

cell and can access the remaining coefficients by applying an increasing offset to

the x-texture coordinate. Note that this may result in some data duplication, since

the spatial decomposition generates several instances of the same basis function

in different cells. However, as the size of a single set of coefficients is small, this

overhead is acceptable.

Vector data is encoded at full precision into three floating point texture maps

as indicated in Figure 6.4. All maps share the same basic layout to enable the use

of the same index to address all components of the RBF parameter set. The first

texture is an RGB map holding the positions µi of the RBF centers. A second

and third map store the weights λi and the widths σi of the RBF functions respec-

tively. Note that actually (2σ2
i)

−1 is stored instead of the width, in order to reduce

the number of required fragment operations. For efficiency, the texture format is

adapted to the dimensionality of the input data using either an R, RG, RGB, or

RGBA texture map. Thus, the RBF reconstruction algorithm supports vector data

up to four dimensions, multi-field datasets with up to four different scalar values,

6.2. Interactive Rendering 165

or any combination with up to four data components. For vector data that has

been encoded with arbitrary directional EBFs, a set of eight textures is needed to

store all parameters, as illustrated in Figure 6.4. In particular, six RGB textures

are needed for all covariance matrix elements a1,i, ..., a6,i. One RGB texture is

used to store all centers µi and one RGB texture is used for the weights λi.

In the rendering stage, back-to-front blending is applied. Due to that it is not

possible to render all cells consecutively, since this would lead to blending arti-

facts, because the cells are not stored as a depth sorted list. Even if they were,

it would still lead to artifacts on cell boundaries. A better way is to render slice

by slice. Since the order and thus the exact depth of all slices is known, only the

coordinates of the intersection polygon need to be computed for each slice. For

each intersection polygon, the fragment shader is called with a pointer to the first

basis function in the texture and the number of functions to evaluate. Although

the hierarchical structure reduces the number of evaluated functions, to improve

rendering speed, it can also slow down the rendering if the hierarchical subdivi-

sion level is chosen too high. This effect is a result of the small call overhead that

is needed for the render call of every intersection polygon. For too many inter-

section polygons, this exceeds the gain of reducing the amount of evaluated basis

functions.

6.2.2 Slicing Planes and Volume Visualization

The first implemented class of visualization methods for multi-field data is cen-

tered on the evaluation of the original encoded data properties. Here the fragment

programs can take advantage of the fact that almost all fragment instructions work

on a four-component vector; thus, the number of fragment operations required for

a multi-field reconstruction is essentially the same as for a single data component.

A few additional instructions are introduced, since for a multi-field RBF encoding,

three texture lookup operations are necessary in order to determine the coefficients

for one basis function. The five coefficients for an RBF encoded scalar can always

be stored in two RGBA texels.

The fragment programs can be applied to render a single slicing plane through

the volume domain. The system supports an arbitrary slice plane that can be freely

moved through the volume to explore flow properties. To reconstruct a scalar

value from data that has been encoded e.g., by arbitrary directional basis func-

tions, the fragment program has to calculate Equation (6.3) for all basis functions

that influence the fragment. The core loop of a fragment program to reconstruct

a scalar value form an arbitrary directional EBF representation is shown in List-

ing 6.1. Exploiting the SIMD architecture of graphics hardware, it is possible to

evaluate Equation (6.3) with only eight arithmetic instructions. First, the center

position is fetched into registers by a texture lookup, before the distance to the

actual texel is computed. Then, the vector-matrix-vector multiplication is com-

166 Chapter 6. Visualization of Encoded Multi-field Data

1 REP numfunc ; / / dynamic loop over a l l EBFs
2 TEX cDis t , txPos . xyxx , t e x t u r e [1] , RECT; / / f e t c h center p o s i t i o n
3 SUB cDis t , fragment . texcoord [0] , cD is t ; / / compute d is tance
4

5 TEX var X1 , txPos . xyxx , t e x t u r e [2] , RECT; / / f e t c h elem 1 − 3 and
6 TEX var X2 , txPos . xyxx , t e x t u r e [3] , RECT; / / elem 4 − 6 of covar mat r i x
7 TEX wt . xyz , txPos . xyxx , t e x t u r e [4] , RECT; / / f e t c h the weights
8

9 MUL tmp , cDis t , cD is t ; / / s t a r t computing exponent
10 DP3 expVal . x , tmp , var X1 ;
11

12 MUL tmp , cDis t , cD is t . yzxx ; / / a l l var X2 terms are
13 DP3 tmp . x , tmp , var X2 ; / / pre−m u l t i p l i e d by two
14 ADD expVal , expVal , tmp ; / / now compute exponent
15 EX2 expVal . x , −expVal . x ; / / to the base of two
16

17 MAD val , wt , expVal , va l ; / / r econs t ruc t vec to r
18 ADD txPos , txPos , t x I n c ; / / increment tex coords
19 ENDREP;
20

21 / / p ro j ec t i on , c o l o r mapping , . . .

Listing 6.1: Main part of a fragment program for scalar decoding of arbitrary direc-

tional basis functions via covariance matrix. The program exploits dynamic loops.

(Code courtesy of Jang et al. [63], c©The Eurographics Association 2006).

puted with two dot products per scalar component, multiplied with the squared

distance and followed by the evaluation of the exponent (see Listing 6.1, lines 9–

15). Based on the reconstructed scalar, further feature extraction or color mapping

can be done.

The color mapping for the evaluated basis function on a slice is performed

through a lookup in a transfer function implemented as a one-dimensional texture

map. The lookup is based either on a single component of the multi-field dataset

or on the magnitude of the encoded vector. Interactive switching between these

behaviors can be achieved by utilizing a dynamically assigned component mask,

implemented as a parameter of the reconstruction fragment program. Alterna-

tively, a three-dimensional texture can be used as transfer function, allowing for

a more sophisticated mapping based on all components of the encoded vector or

multi-field dataset. During the rendering of the slice, the algorithm has to take

care of the domain decomposition, since a different list of RBF centers has to be

considered for each cell. Therefore, the slice is clipped at the cell boundaries and

the resulting slice portions are rendered separately with indices pointing to the

RBF coefficients of the corresponding cell.

Increasing the number of slicing planes and blending them back-to-front leads

to direct volume renderings of the datasets, as explained in Section 2.5. The tech-

nique can also be extended to render shaded isosurfaces as demonstrated in [168].

In the latter case, the analytically reconstructed gradient is used for the lighting

computation. An example for RBF based volume rendering is illustrated in Fig-

6.2. Interactive Rendering 167

Figure 6.5: A volume rendering of the X38 compression shock (left) and expansion shock

(right) using 4,883 and 6,789 RBFs, respectively. (Images courtesy of Weiler et al. [161],

c©2005 IEEE).

ure 6.5, on the scalar compression shock of the X38 return shuttle.

Two slices of features detected on RBF encoded datasets are shown in Fig-

ure 6.6. The left image shows vorticity magnitude of the MHD dataset. The right

image shows a slice of λ2 values extracted from the tornado dataset. Computa-

tion time for these slices is about 0.04 s and almost independent of the number

of basis functions reconstructed per rendering pass. Single slices are only use-

ful to the knowledgeable fluid dynamics engineer. Volume renderings based on

a stack of slices reveal more structure. Figure 6.7 (a) illustrates this with an ex-

ample of the volume rendered MHD dataset with extracted vorticity magnitude.

The dataset is rendered with 400 slices. The right image of Figure 6.7 shows λ2

values computed for the tornado dataset and visualized with 256 slices. Since

feature detection involves expensive gradient calculations, volume rendering of

dynamically extracted features provides only limited interactivity. Rendering the

tornado dataset with 32 slices and λ2 extraction reaches an average of 1.2 fps.

Nevertheless, GPU-based feature detection in radial basis space is a very promis-

ing technique that should approach interactive rates with the next generation of

graphics hardware.

6.2.3 Feature Extraction

All the features relevant for this work are described in Section 3.3 and are based on

the velocity gradient tensor J of the vector field, given in Equation (3.4). There-

fore, if features of the encoded vector datasets are to be extracted, a fragment

program is needed that is capable of analytically calculating the nine-component

Jacobian matrix. The GeForce6 chip series not only allows the reconstruction of a

dynamic number of basis functions, but also the computation of all nine elements

168 Chapter 6. Visualization of Encoded Multi-field Data

(a) (b)

Figure 6.6: Slices of features extracted directly from the RBF encoding. Image (a) shows

vorticity magnitude of the MHD dataset encoded with 2,145 RBFs. In image (b) the λ2

values have been extracted from the tornado dataset. Note that the same transfer functions

as in Figure 6.7 have been applied, in order to allow direct comparison with the corre-

sponding volume renderings. (Images courtesy of Weiler et al. [161], c©2005 IEEE).

of the Jacobian matrix and the final evaluation in one single fragment program.

Therefore, only one single rendering pass is required resulting in a very fast per-

formance. Sample code that shows the reconstruction of a basis function with

gradient computation in a dynamic loop is given in Listing 6.2.

Based on the reconstructed velocity gradient tensor, the system supports fea-

ture calculations for vorticity, helicity and λ2 vortex detection, to demonstrate the

flexibility and use of this approach for feature detection. To gain an understand-

ing of the local flow, a good first approach is to calculate the vorticity of a vector

(cf. Equation (3.5)). Adding the required computation to the fragment program

presented in Listing 6.2 is straight forward. Since vorticity is a vector quantity,

the implementation allows the user to interactively define a bitmask for masking

out single components of ω and visualizing the magnitude of the resulting vector.

Vorticity already gives a good impression of where vortices can be found in the

vector field. However, advanced vortex detection algorithms, like the λ2 criterion

(cf. Equation (3.7)), give even better results and are also suitable for GPU-based

implementations due to their local nature. As before, a fragment program like the

one sketched in Listing 6.2 is used to retrieve the partial derivatives. After this

reconstruction the Jacobian is decomposed into a symmetric and an asymmetric

part. To determine the eigenvalues of the matrix S2 + Ω2, and to find the relevant

eigenvalue λ2, the approach proposed in [143] is adopted. The basic idea is to use

a modified version of Cardan’s Solution to analytically determine the root of the

characteristic polynomial. By pre-computing coefficients and storing them into

texture maps, no trigonometric functions need to be evaluated. As a result, the

6.2. Interactive Rendering 169

(a) (b) (c)

Figure 6.7: Volume rendered features extracted from the RBF encoded vortex and tornado

datasets. Image (a) shows velocity magnitude of the plasma flow (MHD), image (b) illus-

trates the computed λ2 values of the synthetic tornado. (Images courtesy of Weiler et al.

[161], c©2005 IEEE).

computation is very efficient despite its higher complexity.

By computing and visualizing the helicity of a velocity field, the analyst can

examine the potential for helical flow, or flow that appears to move in a corkscrew

pattern. Helicity is computed using Equation (3.6), and physically represents the

curl in the direction of the velocity field. If the fluid moves in a dominant stream-

wise direction, then helicity looks similar to vorticity. However, if the flow is

not dominated by a single direction, then the helicity will provide interesting and

different results than those obtained by computing and analyzing either curl or

vorticity.

Examples for feature based rendering are given for slice planes in Figure 6.6

and for volume rendering in Figure 6.7. The two slices of features detected on

RBF encoded datasets show vorticity magnitude of the MHD dataset in Fig-

ure 6.6 (a) and λ2 values extracted from the tornado dataset in Figure 6.6 (b). Fig-

ure 6.7 (a) illustrates this with an example of the volume rendered MHD dataset

with extracted vorticity magnitude. Image (b) of Figure 6.7 shows the tornado

dataset visualized with 256 slices. Figure 6.7 (c) shows isosurface rendering of

vorticity magnitude, with positive helicity mapped to red colors and negative he-

licity to blue colors.

6.2.4 Particle Advection

Particle tracking is another well-known technique for understanding flows, as pre-

sented in Section 2.4.1. The encoded vector fields are particularly well-suited for

this technique since the vector field has to be reconstructed only at a small num-

ber of positions. Although the positions may be distributed across the 3D volume,

the compact representation with basis functions can be used to accomplish this

170 Chapter 6. Visualization of Encoded Multi-field Data

1 REP numfunc ; / / dynamic loop over a l l RBFs
2 TEX cD is t . xyz , txPos . xyxx , t e x t u r e [0] , RECT; / / f e t c h RBF ’ s center p o s i t i o n
3 TEX v a r i . xyz , txPos . xyxx , t e x t u r e [1] , RECT; / / f e t c h RBF ’ s var iances
4 TEX lmbda . xyz , txPos . xyxx , t e x t u r e [2] , RECT; / / f e t c h RBF ’ s weights
5

6 SUB cD is t . xyz , fragment . texcoord [0] , cD is t ; / / compute d is tance
7 DP3 expval . xyz , cD is t . xyzx , cD is t . xyzx ; / / expval = ((−| x − mu i | ˆ 2)
8 MUL expval . xyz , expval . xyzx , −var iances . xyzx ; / / / (2∗ s igma i ˆ 2))
9

10 EX2 expres . x , expVal . x ; / / compute exponents
11 EX2 expres . y , expVal . y ; / / to the base of two
12 EX2 expres . z , expVal . z ;
13

14 MUL f c t r s , lmbda , v a r i ; / / f a c t o r = ((x−mu i)∗ lambda i
15 MUL f c t rX , cDis t , f c t r s . x ; / / / (2∗ s igma i ˆ 2))
16 MUL f c t rY , cDis t , f c t r s . y ; / / see c o r r e c t i o n below
17 MUL f c t r Z , cDis t , f c t r s . z ;
18

19 MAD derivX , f c t rX , expRes . x , der ivX ; / / compute p a r t i a l d e r i v a t i v e
20 MAD derivY , f c t rY , expRes . y , der ivY ; / / f o r every d i r e c t i o n
21 MAD der ivZ , f c t r Z , expRes . z , der ivZ ;
22

23 MAD val , expRes , lmbda , va l ; / / recons t ruc ted the vec to r
24 ADD txPos , txPos , t x I n c ; / / increment tex coords
25 ENDREP;
26

27 / / c o r r e c t i o n term since var iances s to re (1 / (2∗ s igma i ˆ 2))
28 MUL derivX , derivX , {2} . x ;
29 MUL derivY , derivY , {2} . x ;
30 MUL der ivZ , der ivZ , {2} . x ;
31

32 / / f ea tu re c a l c u l a t i o n and shading

Listing 6.2: Fragment program for the combined calculation of the vector field and

the velocity gradient tensor. The program exploits the possibility of dynamic loops.

(Images courtesy of Weiler et al. [161], c©2005 IEEE).

task. The visualization system supports a particle advection routine that is capa-

ble of tracking a large number of particles simultaneously, exploiting the parallel

rendering pipelines of current graphics cards.

The initial positions of the particles have to be defined by the user as a set of

3D coordinates. The particle coordinates are then stored in a 2D floating point

texture with as many texels as are required for storing the positions. In the next

step, a quadrilateral of the size of the texture is rendered to a offscreen buffer. For

each generated fragment, the velocity vector is then reconstructed as described in

Listing 6.2, using the appropriate particle coordinate that is stored in the texture,

for evaluating the sum of basis functions. The particle position is updated using

an Euler integration step as given in Equation (2.5), based on the reconstructed

velocity. These steps are repeated using the new particle positions as the input

texture until a user-defined number of iterations has been reached.

After each step, the updated particle positions are stored in a 2D floating point

6.2. Interactive Rendering 171

(a) (b)

Figure 6.8: Traces of 110 particles tracked over 400 time steps in the Channel dataset.

Image (a): RBF encoded dataset and GPU-based computation. Image (b): Original Carte-

sian grid and software implementation. (Images courtesy of Weiler et al. [161], c©2005

IEEE).

texture. Ideally, this texture should be used directly for rendering particle traces

as OpenGL vertex arrays without the need to read back the particle positions from

the graphics card. However, at the time this algorithms was developed, this func-

tionality was only available for ATI cards by means of the so-called uberbuffer

extension. Thus, rendering the particle traces on the GeForce6, requires a costly

glReadPixels for each time step to read the particle positions to main memory

and a transfer back to the GPU for the rendering.

An example of GPU based particle tracing is illustrated in Figure 6.8 (a). The

image shows 110 particles traced over 400 time steps, the particle traces were

calculated on the GPU for the RBF encoded dataset, using Euler integration with

fixed step size. Image (b) shows the traces computed by the commercial flow vi-

sualization package PowerVIZ [39] using the original Cartesian grid and fourth

order Runge-Kutta integration with adaptive stepsize. As expected, the Euler in-

tegration employed for the GPU implementation produces less accurate but nev-

ertheless comparable results.

6.2.5 Texture-based Flow Visualization

Particle traces serve good for the visualization of local flow behavior, represented

by the single traces. For a global visualization of flow fields, texture advection is a

well suited and common technique that is capable of representing the underlying

flow with a low density up to a high density of particles. The transport is based on

a semi-Lagrangian scheme, which is explained in Section 3.4.1.

As described before, the particles that are injected into the flow are represented

on a regular grid, namely a texture, which is denoted as the property field ̺(x).
From the Eulerian point of view, the position of a particle is implicitly given by the

location of the corresponding texel in the property field. Particles are transported

along streamlines for steady, or along pathlines for unsteady vector fields. Bilinear

interpolation is applied to reconstruct the property field at arbitrary locations.

In the visualization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Visualization of Encoded Multi-field Data

Figure 6.9: Comparison of water channel data with RBF (top), axis aligned EBF (middle),

and aribtrary directional EBF (bottom). (Images courtesy of Jang et al. [63], c©The

Eurographics Association 2006).

which the texture advection can be computed. The plane can be freely moved

through the volume to explore flow properties, as illustrated in Figures 6.9 and

6.10. To reconstruct a scalar value from data that has been encoded by arbitrary

directional basis functions, a fragment program is needed that is capable of analyt-

ically calculating Equation (6.3) for all basis functions that influence the fragment.

Exploiting the SIMD architecture of graphics hardware, it is possible to evaluate

Equation (6.3) with only eight arithmetic instructions, as shown in the body of

the loop in Listing 6.2. The vector reconstruction needed for particle advection

requires fourteen arithmetic instructions, which is basically the same procedure as

scalar decoding, but applied for every vector component. The particle advection

can be computed by first order Euler integration due to Equation (2.5). To evaluate

the property field ̺(x) at time step t−∆t, two textures are used as render targets,

as detailed in Section 3.4.1, and ping-pong rendering is applied.

Texture based flow visualization was applied for all three encoding techniques,

to one slice of the water channel dataset, shown in Figure 6.9. Although all three

different techniques show very similar results in this case, the axis aligned en-

coding needs fewer basis functions and thus gives superior real-time rendering

results. Further, the advection technique in combination with the arbitrary slice

6.3. Application Cases 173

(a) (b)

Figure 6.10: EBF encoded tornado dataset with texture based flow visualization (a), and

vorticity magnitude (b). The arbitrary sliceplane cuts the noosed vortex core two times.

(Images courtesy of Jang et al. [63], c©The Eurographics Association 2006).

plane enables the user to interactively explore flow features as shown for the tor-

nado dataset in Figure 6.10.

6.3 Application Cases

The proposed techniques for rendering the encoded multi-field data have been

implemented using C++, OpenGL and Assembler code for the fragment programs.

The rendering framework supports both, MS Windows and Linux systems and

has been tested on a Pentium 4 3.4GHz processor with an NVIDIA GeForce 7800

GTX graphics board for a variety of datasets. If not stated different, all timings

presented in Table 6.2 have been conducted on this system with a viewport of 5122

and 128 slices for volume rendering.

Under the multiplicity of used datasets reside different application cases such

as the simulation of fluid flow, convection scenarios and shock wakes or real-

world measurements of density and fluid velocity of participating media. The

specification and origin of the datasets should be described first, whereby all data

has been encoded with the schemes proposed in Section 6.1.2 for evaluation.

The oil reservoir data used in Figure 6.1 was computed by the Center for Sub-

surface Modeling at The University of Texas at Austin. This 156,642 tetrahedra

dataset is a simulation of a black-oil reservoir model used to predict placement of

water injection wells to maximize oil from production wells.

The X38 dataset shown in Figure 6.5 is based on a tetrahedral finite element

viscous calculation computed on geometry configured to emulate the X38 Crew

Return Vehicle. The geometry and the simulation were computed at the Engineer-

ing Research Center at Mississippi State University by the Simulation and Design

174 Chapter 6. Visualization of Encoded Multi-field Data

Dataset ML Convection Bluntfin Oil Reservoir Water Channel

I 2,092 237 891 59 895

II 208 101 264 13 293

III 112 90 282 13 299

Table 6.1: Statistical functional approximation results. Each number indicates the number

of basis functions for RBFs (I); axis aligned EBFs (II); and arbitrary directional EBFs

(III). (Courtesy of Jang et al. [63], c©The Eurographics Association 2006).

Center. This dataset represents a single time step in the reentry process into the

atmosphere. The simulation was computed on an unstructured grid containing

1,943,483 tetrahedra at a 30 degree angle of attack.

The Magnetohydrodynamics dataset (MHD) shown in Figure 6.7 (a,c) is a

simulation of plasma flow in the outer heliosphere of the sun computed by D.

Aaron Roberts at NASA Goddard Space Flight Center. This dataset has been

encoded with 2,145 RBFs. The norm of the curl of the velocity field is used as a

measure of vorticity, showing the alternating vortices in the plasma flow.

The water channel measurement used for the particle tracing in Figure 6.8

and the texture advection in Figure 6.9, is a time-dependent dataset obtained in

an experiment studying laminar-turbulent boundary layer transitions in a water

channel.

The natural convection dataset used for the visualization in Figure 6.11, simu-

lates a non-Newtonian fluid in a box, heated from below, cooled from above, with

a fixed linear temperature profile imposed on the side walls. The simulation was

developed by the Computational Fluid Dynamics Laboratory at The University of

Texas at Austin and was run for 6000 time steps on a mesh consisting of 48000

tetrahedral elements.

The Marschner-Lobb data shown in Figure 6.12 was obtained using an equa-

tion developed by Marschner and Lobb [98], and the same parameters that they

used have been applied in this simulation, except for spatial range. For encoding

the dataset, it was sampled with 50,000 points randomly in −0.5 < x, y, z < 0.5.

The Bluntfin dataset illustrated in Figure 6.13 for comparison of the different

encodings, was developed by C.M. Hung and P.G. Buning and it is a 40x32x32

single-zone, curvilinear, structured block dataset in plot3D format.

The last dataset used for the evaluation is the synthetic tornado dataset shown

in Figures 6.6, 6.7 and 6.10. The 32x32x32 dataset was provided by Roger Craw-

fis of The Ohio State University.

To compare the encoding results according to the different basis functions a

compilation of the encoding results is given in Table 6.1. As shown in the ta-

6.3. Application Cases 175

Dataset ML Convection Bluntfin Oil Reservoir Water Channel

I 0.1 0.7 1.3 2.7 44.8

II 0.7 1.3 1.8 10.6 128.4

III 0.9 1.1 1.6 8.0 87.2

Table 6.2: Performance measurements for different scenarios in frames per second (fps).

All volumes have been rendered with 128 slices and a viewport of 5122. The datasets

are tested for the three different encoding techniques, RBFs (I); axis aligned EBFs (II);

and arbitrary directional EBFs (III). For the Water channel dataset, the timings have been

evaluated for the texture advection technique on one sliceplane. (Courtesy of Jang et al.

[63], c©The Eurographics Association 2006).

ble, EBFs generate better statistical results than RBFs. Since all datasets have

non-spherically shaped volumes, EBFs are more flexible and appropriate to ap-

proximate the given volumes. For the comparison between axis aligned EBFs and

arbitrary directional EBFs, the results depend on the datasets. If one dataset has

more diagonal shapes than another, the arbitrary directional EBF is a more ap-

propriate basis function. Otherwise, the axis-aligned EBF is more appropriate as

approximation using arbitrary directional EBFs requires more computation than

approximation using axis-aligned EBFs and there are more parameters required

for the rendering system.

To give a fair visual comparison of the encoding techniques, the data has been

encoded by all methods, with approximately the same cost, according to the error

criteria. Therefore, an impression of how the number of basis functions needed

by each technique impacts the quality of the reconstructed structures. Figure 6.11

shows a comparison using two time steps of the natural convection data. Since it

has mostly axis aligned symmetric shapes, axis aligned EBFs and arbitrary direc-

tional EBFs show similar statistical and visual results. However, the result using

RBFs shows artifacts in the high gradient area in the upper part of Figure 6.11 (a)

and (e). We highlight areas with white boxes to more easily compare our results

visually. For the rendering, we use the flow illustration technique proposed by

Svakhine et al. [148].

Figure 6.12 shows the reconstructions of the Marschner Lobb dataset from six

diverse encodings. The left column shows three rendering results using the L2-

norm based cost function. Since the Marschner Lobb data has very high frequency

data values, the RBF result shows the worst approximation and EBFs show better

approximation. The lower row shows the rendering results using the H1-norm

based cost function. The H1-norm based cost function gives more accurate results

compared to the L2-norm based cost function.

Figure 6.13 compares six rendering results for the bluntfin dataset. Similar to

176 Chapter 6. Visualization of Encoded Multi-field Data

(a) (b) (c)

(d) (e) (f)

Figure 6.11: Comparison of two time steps (70th : a,b,c, 150th : d,e,f) of the natural

convection datasets encoded with: RBFs (a) and (d); axis aligned EBFs (b) and (e); and

aribtray directional EBFs (c) and (f). Focus areas are highlighted with white boxes to

compare the quality of THE encoding results visually. (Images courtesy of Jang et al.

[63], c©The Eurographics Association 2006).

the Marschner Lobb result, EBFs shows better results than RBFs and the H1-norm

based cost function generates more visually accurate results than the L2-norm

based cost function. However, even if the rendered images look like diagonal

shapes of data distribution, the data distribution is mainly along the z direction.

Therefore, the number of axis aligned EBFs needed for the encoding is similar

to the number of arbitrary directional EBFs. Additionally, the rendering results

of both EBFs show similar visual results. As shown in Figure 6.11 and 6.13, the

arbitrary directional EBF encoding provides the best reconstruction with fewest

basis functions. Even though this fragment shader needs the most instructions to

evaluate Equation 6.3, the minimum number of basis functions leads to the best

performance.

Concluding it can be said that the use of multi-field data encoding with ra-

dial and ellipsoidal basis functions for large datasets can overcome the approxi-

mation and visualization problems common for non-spherical structures, as well

as the bottleneck of limited memory on graphics hardware. The application cases

6.3. Application Cases 177

(a) (b) (c)

(d) (e) (f)

Figure 6.12: Comparison of the Marschner-Lobb dataset encoded with: RBFs (a); axis

aligned EBFs (b); arbitrary directional EBFs (c); RBFs with gradient (d); axis aligned

EBFs with gradient (e); and arbitrary directional EBFs with gradient (f). (Images courtesy

of Jang et al. [63], c©The Eurographics Association 2006).

showed that both statistical and visual results for comparison are more flexible and

appropriate for any data distribution, and specifically EBFs give greater compres-

sion and more accurate visual representation of datasets. Although the extension

to EBFs gives better approximation and visual accuracy, visual artifact can still be

visible for some datasets. In order to reduce these artifacts, the L2-norm based and

the H1-norm based cost function were applied in the encoding process to examine

their influence to optimization and visualization, whereby the results showed that

the L2-norm based cost function provides better visual representations.

178 Chapter 6. Visualization of Encoded Multi-field Data

(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Comparison of the Bluntfin dataset encoded with: RBFs (a); RBFs with gra-

dient (b); axis aligned EBFs (c); axis aligned EBFs with gradient (d); arbitrary directional

EBFs (e); and arbitrary directional EBFs with gradient (f). (Images courtesy of Jang et al.

[63], c©The Eurographics Association 2006).

CHAPTER

7 MULTI-FIELD TECHNIQUES IN

VISUALIZATION

This thesis addressed the challenges of illustrating a combination of multi-field

data, primarily of scalar and vector nature, and presented new visualization ap-

proaches for a multiplicity of application areas. A diagram of the proposed ren-

dering techniques for different application areas is illustrated in Figure 7.1. This

work brings all presented methods in a context, and tries to extract guidelines for

the implementation of multi-field visualization techniques on GPUs. As the di-

versity of applications and required solutions for visualization is almost unlimited,

not all problems and combinations could be addressed, and thus the given diagram

is by no means complete. However, the contribution of this work to the visual-

ization community should inspire other researchers and give them a paradigm or

guideline to solve similar multi-field visualization problems.

All processed multi-field data in this thesis consisted of a collection of scalar

and vector data. This data was acquired by different modalities and was applied to

different application areas for visualization, i.e., (i) flow visualization; (ii) volume

visualization; (iii) video visualization; and (iv) encoded data visualization. There-

fore, the developed techniques that work one or more of the input fields are shown

in Figure 7.1 and include: (1) isosurface rendering; (2) volume rendering; (3) par-

ticle tracing; (4) texture advection; and (5) additional color mapping of the extend

of an attribute mapped to the result of one of previous techniques. In particular,

the achievements and contributions on multi-field visualization in each individual

area of research can be summarized as follows:

Visualization of Multi-field Flow Data

A generic texture-based strategy to visualize an additional variate, such as uncer-

tainty, in time-dependent flow was presented in Chapter 3. As specific examples

for this strategy, five novel techniques were proposed: (i) cross advection; (ii)

error diffusion; (iii) multi-frequency noise; (iv) color mapping; and uncertainty

179

180 Chapter 7. Multi-field Techniques in Visualization

volume
rendering

isosurface
rendering

particle
tracing

additional
color

mapping

volume
visualization

flow
visualization

video
visualization

encoded
visualization

texture
advection

scalar
data

vector
data

rendering techniquemulti-field data

application

Figure 7.1: Diagram of all developed multi-field rendering techniques applied to several

application areas.

edge detection. According to underlying uncertainty of the data, these techniques

either change the spatial frequency perpendicular to the flow direction, or apply a

color mapping to or around the streaklines of injected particles. The main advan-

tage of these techniques is their flexibility and generality, as they can be directly

combined with semi-Lagrangian advection. Therefore, they can be applied to

any density of texture representation ranging from dense noise-based up to sparse

dye-based methods. Moreover, all approaches can be directly mapped to GPUs

in order to achieve real-time visualization. In this way, the user can interactively

explore the flow field.

In the following of this chapter, a system for the interactive analysis of flow

fields, based on a flexible combination of user defined feature criteria was pre-

sented. Starting form the extracted feature sets an investigation of the surrounding

flow behavior has been employed by placing particles on the characteristic feature

hull and tracing streamlines on the field. It was shown that this technique is a

useful tool to cope with multivariate fields by representing them on a higher level

of abstraction and to give the user the possibility to interactively steer the system

during analysis.

Flexible Multi-volume Visualization

In Chapter 4, a generic framework for combined multi-volume rendering of dif-

ferent modalities was introduced. It was shown that such a generic system is a

powerful method for illustrating complex structures in the data. However, pro-

181

gramming shader techniques is a very complicated and time consuming task that

requires expert knowledge. With the help of the dynamic shader generation tech-

nique, hardware shading has advanced to a more modular and flexible procedure.

By combining various specified shader nodes, a user without experience in shader

programming can easily mix these techniques to achieve the desired visual re-

sult. The power of this approach was exemplified on specific medical applica-

tion datasets. The challenges for implementing three different multi-volume slic-

ing approaches were discussed, as well as the difficulties that occur for multi-

volume raycasting. Both algorithms directly utilize the dynamic generation of

GPU shaders by applying optimized shaders to the previously segmented scene,

which only consider the currently traversed volumes.

Multi-field Video Visualization

Chapter 5 described a system designed specifically for real-time video volume

visualization. This system is capable of handling multi-field datasets and render-

ing combined volume and flow visualization, whereby a bricking approach has

been found to play a critical role in delivering this technology. Not only does it

enable large multi-field datasets to be accommodated in memory-restricted graph-

ics hardware, but it also provides a practical mechanism for visualizing real-time

video streams.

An extensive user study and an expert survey were conducted that provided an

extensive set of useful data about human factors in video visualization. Through

this work some first-hand evaluation as to the effectiveness of different video pro-

cessing techniques and visualization techniques could be gathered. In particular,

the first set of evidence was obtained showing that human observers can learn to

recognize types of motion from their visual signatures. Considering that most ob-

servers had little knowledge about visualization technology in general, over 80%
of them gained 50% or above success rate within a 45 minute learning process.

The reduction of response time within a session is significant, while the improve-

ment of accuracy may possibly gain through experiencing video visualization reg-

ularly over a period. Some of the findings obtained in this user study indicate the

possibility that perspective projection in a video may not necessarily be a major

barrier, since human observers can recognize size changes at ease.

The findings of the user study and the expert survey led to the design of an

extended system for action-based video visualization. This system combines

computer vision techniques with a volumetric visualization of space-time video

streams. The computer vision methods include the extraction of persons from

background, the application of a motion descriptor for action recognition, and

an object-object relationship filter. The visualization component of the system

is based on direct volume rendering, extending it to multi-field visualization of

action type, relations between objects, and level of uncertainty. The multi-field

182 Chapter 7. Multi-field Techniques in Visualization

visualization relies on a special design of transfer functions, additional glyph rep-

resentations, and the display of snapshots of the video stream.

An evaluation of the system showed that the main strength of the approach is

that it combines the best of automatic computer-based video analysis and human-

centered visualization. Statistical and computer vision techniques are most suited

for low-level analysis such as background extraction and classification of actions.

In contrast, human users are highly capable of building semantic information out

of the low-level input, for example, complete activities out of low-level actions.

In particular, users are able to resolve ambiguous, uncertain classifications from

computer vision methods.

Visualization of Encoded Multi-field Data

Chapter 6 presented a functional approximation for structured or unstructured

scalar, vector, and multi-field data using RBFs and EBFs, enabling them to be ef-

ficiently stored and reconstructed on commodity graphics hardware. It was shown

that by an extension to EBFs, the approximation and visualization problems com-

mon for non-spherical structures can be overcome. The statistical and visual com-

parison of the results indicated that EBFs are more flexible and appropriate for

a variety of different data grids, and give greater compression and more accurate

visual representation of datasets. Although EBFs give better approximation and

visual accuracy, visual artifact can still be visible for some datasets. In order to

reduce these artifacts, the optimization algorithm utilized the L2-norm based and

the H1-norm based cost functions that were compared in terms of their influence

to optimization and visualization.

The flexibility in visualizing these RBF and EBF encoded datasets was demon-

strated on a variety of rendering techniques, namely: texture-based volume render-

ing, cutting planes, isosurfaces, texture advection, and particle traces. Performing

these computations on the GPU also allows for pixel-accurate feature detection

and provides a flexible framework for interactive feature exploration, where the

feature parameters can be interactively adjusted.

7.1 Conclusion

In retrospective, the development of the presented multi-field visualization tech-

niques in this thesis was driven by the rapid progress and accessibility of high-end

graphics hardware on the consumer market. Thus, the design of each individual

algorithm was specially fitted to the latest available functionality provided by ac-

tual GPUs at this very time. Even though a redesign of these algorithms to the

latest hardware would lead to some adaption of the code and to an increase of

rendering speed by at least a factor of two in most cases, the lessons that have

been learnt during development and the essential findings are mostly decoupled

7.1. Conclusion 183

from the steadily increasing processing power of graphics hardware and can be

described on a more abstract conceptual level.

Nevertheless, exploiting the extreme rasterization power of graphics process-

ing units is always an important aspect for the design of multi-field visualization

techniques, as GPU implementations are often superior in rendering performance

to comparable CPU implementations. The suggested generic guidelines for the

development of new multi-field visualization techniques are based on the four

major questions described in Section 1.1. These questions where considered to

extract some basic rules for the design of multi-field algorithms and lead to some

important findings that are described in the following:

1. How can multi-field (large-scale) data that has its origin in a broad range

of application fields and that can be acquired from various data sources be

processed effectively in uncompressed or compressed form?

An important issue for the design of GPU-based multi-field visualization al-

gorithms is the aspect of large datasets that need to be downloaded to the graphics

hardware memory for processing. As the data bandwidth and the memory size on

the hardware will always be limited – no matter how powerful the actual hardware

is, because the data size and processing requirements are steadily increasing too –

this can become a major bottleneck. Throughout the thesis, different approaches

to this problem have been demonstrated: (i) the first approach used logical op-

erators to combine n scalar fields to one characteristic set and thus reduced the

data to be downloaded and processed on the GPU by the factor of n − 1; (ii) the

next concept was based on a volume bricking mechanism that was extended to

frame-by-frame bricking, to allow a continuous streaming of single video frames

of a bricked video volume to the graphics hardware. With this bricking mecha-

nism the continuous rendering of a large video stream as video volume could be

realized, without the requirement for the whole data to reside in graphics mem-

ory; and (iii) the last approach presented for an effective data layout exploited

functional approximation of multi-field data, to reduce the data size and enhance

the evaluation by utilizing the SIMD fragment shader operations. It was shown

that multi-field datasets can be approximated by spherical and ellipsoidal basis

functions and stored with less memory requirement, so that the whole data fits in

graphics memory for processing. This is advantageous for the analysis of global

features or phenomena, where all data is needed for evaluation at once. Summa-

rizing, the processing of large-scale multi-field data can be significantly improved

by taking into account three aspects: data reduction, data partitioning and efficient

data layout. Especially the former two aspects have impact on the next question.

2. What has to be considered to develop novel algorithms to extract important

features or signatures from the raw multi-field data and visualize a combi-

nation of them most clearly at a time?

184 Chapter 7. Multi-field Techniques in Visualization

For some cases it can be an advantage to compute certain features of the data

on-the-fly in the visualization stage. This is however only possible, if the whole

dataset fits into hardware memory, or only a subset of the data needs to be ana-

lyzed. If the analyst is interested in different features of separate fields that do

not fit into memory, a different strategy needs to be considered, which is tightly

coupled with the solutions to question 1. Further, this issue can be addressed

by thinning out the data, applying feature extraction algorithms on each individ-

ual field and pass only the extracted signatures of one or more features to the

visualization system. The visualization system is then assigned to illustrate these

features in best way possible. This can be realized by using different metaphors or

graphical representations for each feature, such as isosurface, streamlines, glyphs,

or a translucent volumetric illustration of the whole domain, whereby individual

variates need to be clearly distinguishable by the user. To further enhance per-

ception, several diverse mapping techniques can de utilized to map the extent of

various features to different visual cues, to facilitate a clear separation. The aspect

of perception also pours into the solution to the following point and is taken on

there.

3. In which way can errors and uncertainties inhering the data from faulty

measurements, algorithmic instabilities or reliability of the algorithms be

included into visualization?

Not only the existence and the extraction of features is important to understand

certain phenomena in multi-field data. It is also of great relevance to include un-

certainties inhering the data from faulty measurements, algorithmic instabilities

or the reliability of an algorithm into the visualization. This information is sig-

nificant for a reliable analysis process and should be included as auxiliary variate.

As shown throughout the chapters, this additional information can be a measured

value, a derived value or a statistical value and can be displayed in correspondence

with the original visualization, or manipulate this visualization. The critical as-

pect for the illustration of this additional variate is its clear perception, and thus, a

visual separation of all other variates. This can be achieved by mapping this value

to a different visual channel, like a different color value or unequal hue. Other-

wise, the unreliable feature or signature can be surrounded by a separate silhouette

that expresses the extent of uncertainty. In all cases, it is important to discretely

illustrate all variates and to not visually occlude each other and cause a loss of

information.

4. How can we creatively map new visualization algorithms to graphics hard-

ware, exploiting their computation power to effectively utilize interactive

visualization?

7.2. Future Challenges 185

Finally, one of the most important aspects in visualization is that interactivity

is often a key aspect for understanding complex features or phenomena in large

multi-field data and thus, interactivity should be one of the substantial goals for de-

signing new algorithms. A major backup to fulfill this goal arises from the current

advances in hardware development. Besides the central processing unit, modern

desktop PCs are commonly equipped with high-performance graphics processing

units, whose computation power is a valuable aid for the acceleration of visu-

alization algorithms. This work demonstrated that all proposed techniques can

be mapped to graphics hardware architectures and benefit from these implemen-

tations in terms of rendering performance. Nevertheless, it is not profitable to

source out the whole computation to the GPU and completely release the CPU. A

sophisticated load balancing between CPU and GPU is essential for an adequate

solution. Therefore, preprocessing or data storage of intermediate results should

be taken into account whenever possible.

Concluding it can be said that although this work investigated in several dif-

ferent application areas that produce a plethora of unequal multi-field data, the

requirements for GPU-based algorithmic design overlap for the most parts. Fol-

lowing the suggestions given in this section can lead to a successful development

of multi-field visualization algorithms and give engineers and scientists a well-

founded scaffolding for the design of new multi-field visualization solutions.

7.2 Future Challenges

Based on the experience gained during the compilation of this thesis and the ex-

tracted generic guidelines for the algorithmic design, some challenges that will

arise for further development can be prognosticated. First of all, increasing the

availability of multi-field visualization methods is a first step towards an improve-

ment of the acceptance of such techniques in scientific and economic environ-

ments. To achieve a broader distribution, further steps are required. Second, the

user handling of multi-field visualization techniques must be improved in terms

of user interaction and learnability of such systems. The operation of such an

application must be further decoupled from the detailed knowledge of the under-

lying algorithms, as addressed in Chapter 4, and these systems need to allow for

an exact reproducibility of previously obtained solutions. Especially in economic

systems, reproducibility is extremely important for the verification and compari-

son of examination results.

Beyond that, a deeper investigation in automatic feature detection algorithms

is necessary to disburden the user from having expert technical knowledge and

intensify his responsibility in problem identification and decision making. There-

fore, we need a tighter coupling between simulation algorithms, extraction algo-

rithms and visualization algorithms, to allow computational steering on a higher

186 Chapter 7. Multi-field Techniques in Visualization

abstraction level and achieve more interactivity. Further speedup can be produced

by exploiting multicore GPUs, which automatically leads to new algorithmic de-

sign requirements and novel solutions in terms of a distributed visualization.

BIBLIOGRAPHY

[1] B. Aubert-Broche, M. Griffin, G. B. Pike, A. C. Evans, and D. L. Collins.

Twenty new digital brain phantoms for creation of validation image data

bases. IEEE Transactions on Medical Imaging, 25(5):1410–1416, 2006.

[2] D. C. Banks and B. A. Singer. Vortex tubes in turbulent flows: Identification

representation, reconstruction. In Proceedings of IEEE Visualization, pages

132–139, 1994.

[3] D. C. Banks and B. A. Singer. A predictor-corrector technique for visu-

alizing unsteady flow. IEEE Transactions on Visualization and Computer

Graphics, 2(1):151–163, 1995.

[4] M. F. Barnsley, A. Jacquin, F. Malassenet, L. Reuter, and A. D. Sloan.

Harnessing chaos for image synthesis. 22(4):131–140, 1988.

[5] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical

flow techniques. International Journal of Computer Vision, 12(1):43–77,

1994.

[6] E. P. Bennett and L. McMillan. Proscenium: a framework for spatiotem-

poral video editing. In Proceedings of ACM Multimedia, pages 177–184,

2003.

[7] I. Boada, I. Navazo, and R. Scopigno. Multiresolution volume visualization

with a texture-based octree. The Visual Computer, 17(3):185–197, 2001.

[8] A. F. Bobick and J. W. Davis. The recognition of human movement us-

ing temporal templates. IEEE Transactions on Pattern Analysis Machine

Intelligence, 23(3):257–267, 2001.

[9] R. P. Botchen, S. Bachthaler, F. Schick, M. Chen, G. Mori, D. Weiskopf,

and T. Ertl. Action-based multifield video visualization. IEEE Transactions

on Visualization and Computer Graphics, 14(4):885–899, 2008.

[10] R. P. Botchen, M. Chen, D. Weiskopf, and T. Ertl. GPU-assisted multi-

field video volume visualization. In Proceedings of IEEE / VGTC Volume

Graphics, pages 47–54, 2006.

187

188 Bibliography

[11] R. P. Botchen, A. Lauser, D. Weiskopf, and T. Ertl. Flow feature visualiza-

tion using logical operators on multivariate fields. In Electronic Proceed-

ings of International Symposium on Flow Visualization, 2008.

[12] R. P. Botchen, D. Weiskopf, and T. Ertl. Texture-based visualization of

uncertainty in flow fields. In Proceedings of IEEE Visualization, pages

647–654, 2005.

[13] R. P. Botchen, D. Weiskopf, and T. Ertl. Interactive visualization of uncer-

tainty in flow fields using texture-based techniques. In Electronic Proceed-

ings of International Symposium on Flow Visualization, 2006.

[14] M. A. Branch, T. F. Coleman, and Y. A. Li. A subspace, interior, and

conjugate gradient method for large-scale bound-constrained minimization

problems. SIAM Journal on Scientific Computing, 21(1):1–23, 1999.

[15] R. Brown. Animated visual vibrations as an uncertainty visualisation tech-

nique. In Proceedings of GRAPHITE, pages 84–89, 2004.

[16] S. Bruckner and M. E. Gröller. VolumeShop: An interactive system for

direct volume illustration. In Proceedings of IEEE Visualization, pages

671–678, 2005.

[17] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomo-

graphic reconstruction using texture mapping hardware. In Proceedings of

the Symposium on Volume Visualization, pages 91–98, 1994.

[18] B. Cabral and L. C. Leedom. Imaging vector fields using line integral

convolution. In Proceedings of ACM SIGGRAPH, pages 263–270, 1993.

[19] W. Cai and G. Sakas. Data intermixing and multi-volume rendering. Com-

puter Graphics Forum, 18(3):359–368, 1999.

[20] G. Calafiore. Approximation of n-dimensional data using spherical and el-

lipsoidal primitives. IEEE Transactions on Systems, Man and Cybernetics,

Part A, 32(2):1083–4427, 2002.

[21] B. P. Carneiro, C. T. Silva, and A. E. Kaufman. Tetra-cubes: an algorithm

to generate 3D isosurfaces based upon tetrahedra. In Proceedings of the IX

SIBGRAPI International Conference, pages 205–210, 1996.

[22] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.

McCallum, and T. R. Evans. Reconstruction and Representation of 3D

Objects With Radial Basis Functions. In Proceedings of ACM SIGGRAPH,

pages 67–76, 2001.

Bibliography 189

[23] M. Chen. Combining point clouds and volume objects in volume scene

graphs. In Proceedings of IEEE / VGTC Volume Graphics, pages 127–135,

2005.

[24] M. Chen, R. P. Botchen, R. R. Hashim, D. Weiskopf, T. Ertl, and I. M.

Thornton. Visual signatures in video visualization. IEEE Transactions on

Visualization and Computer Graphics, 12(5):1093–1100, 2006.

[25] M. Chen and J. V. Tucker. Constructive volume geometry. Computer

Graphics Forum, 19(4):281–293, 2000.

[26] C. S. Co, B. Heckel, H. Hagen, B. Hamann, and K. I. Joy. Hierarchical

clustering for unstructured volumetric scalar fields. In Proceedings of IEEE

Visualization 2003, 2003.

[27] R. T. Collins, A. J. Lipton, and T. Kanade. Special section on video surveil-

lance. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(8):745–746, 2000.

[28] C. D. Correa, D. Silver, and M. Chen. Feature aligned volume manipulation

for illustration and visualization. IEEE Transactions on Visualization and

Computer Graphics, 12(5):1069–1076, 2006.

[29] R. Cutler, C. Shekhar, B. Burns, R. Chellappa, R. Bolles, and L. Davis.

Monitoring human and vehicle activities using airborne video. In Proceed-

ings of 28th Applied Imagery Pattern Recognition Workshop (AIPR), pages

146–153, 1999.

[30] G. W. Daniel and M. Chen. Video visualization. In Proceedings of IEEE

Visualization, pages 409–416, 2003.

[31] W. C. de Leeuw and J. J. van Wijk. Enhanced spot noise for vector field

visualization. In Proceedings of IEEE Visualization, pages 233–239, 1995.

[32] H. Doleisch, M. Gasser, and H. Hauser. Interactive feature specification for

focus+context visualization of complex simulation data. In Proceedings of

VISSYM, pages 239–248, 2003.

[33] D. J. Dorney. Reynolds-Averaged Navier-Stokes studies of low Reynolds

number effects on the losses in a low pressure turbine. Final Contractor

Report G-NAG3-1668, Lewis Research Center, 1996.

[34] D. Dovey. Vector plots for irregular grids. In Proceedings of IEEE Visual-

ization, pages 248–253, 1995.

190 Bibliography

[35] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing action at a

distance. In Proceedings of IEEE International Conference on Computer

Vision, pages 726–733, 2003.

[36] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf.

Real-Time Volume Graphics. AK Peters, 2006.

[37] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume ren-

dering using hardware-accelerated pixel shading. In Proceedings of EURO-

GRAPHICS / ACM SIGGRAPH Workshop on Graphics Hardware, pages

9–16, 2001.

[38] G. Erlebacher, B. Jobard, and D. Weiskopf. Flow textures: High-resolution

flow visualization. In C. D. Hansen and C. R. Johnson, editors, The Visual-

ization Handbook, pages 279–293. Elsevier, Amsterdam, 2005.

[39] Exa Corporation. PowerVIZ specifications, 2001.

http://www.exa.com/pdf/PowerVIZscreen.pdf.

[40] S. Fels, E. Lee, and K. Mase. Techniques for interactive video cu-

bism. In Proceedings of 8th ACM International Conference on Multimedia

(Posters), pages 368–370, 2000.

[41] R. B. Fisher. The PETS04 surveillance ground-truth data sets. In Pro-

ceedings of 6th IEEE International Workshop on Performance Evaluation

of Tracking and Surveillance, pages 1–5, 2004.

[42] L. K. Forssell and S. D. Cohen. Using line integral convolution for

flow visualization: Curvilinear grids, variable-speed animation, and un-

steady flows. IEEE Transactions on Visualization and Computer Graphics,

1(2):133–141, 1995.

[43] O. Frederich, E. Wassen, and F. Thiele. Flow simulation around a finite

cylinder on massively parallel computer architecture. In Proceedings of

the International Conference on Parallel Computational Fluid Dynamics

2005, 2005.

[44] W. Freeman, J. O. K. Tanaka, and K. Kyuma. Computer vision for com-

puter games. In Proceedings of IEEE 2nd Intl. Conf. on Automatic Face

and Gesture Recognition, pages 100–105, 1996.

[45] D. M. Gavrila. The visual analysis of human movement: A survey. Com-

puter Vision and Image Understanding: CVIU, 73(1):82–98, 1999.

Bibliography 191

[46] A. A. Goshtasby. Grouping and parameterizing irregularly spaced points

for curve fitting. ACM Transactions on Graphics (TOG), 19(3):185–203,

2000.

[47] N. Grammalidis and M. G. Strintzis. Head detection and tracking by 2-

D and 3-D ellipsoid fitting. In Proceedings of IEEE Computer Graphics

International Conference, pages 221–226, 2000.

[48] H. Griethe and H. Schumann. The visualization of uncertain data: Methods

and problems. In Proceedings of SimVis, pages 143–156, 2006.

[49] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. Flexible direct multi-

volume rendering in interactive scenes. In Proceedings of Vision, Modeling,

and Visualization, pages 379–386, 2004.

[50] R. Grosso and T. Ertl. Mesh optimization and multilevel finite element

approximations. In In Proceedings of Visualization and Mathematics, page

1930, 1997.

[51] S. Guthe, S. Gumhold, and W. Straßer. Interactive visualization of volu-

metric vector fields using texture based particles. In Proceedings of WSCG

2002 Conference, pages 33–41, 2002.

[52] R. B. Haber and D. A. McNabb. Visualization idioms: A conceptual model

for scientific visualization systems. In Visualization in Scientific Comput-

ing, pages =.

[53] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level volume

rendering of segmented data sets on consumer graphics hardware. In Pro-

ceedings of IEEE Visualization, pages 301–308, 2003.

[54] R. Haimes and D. Kenwright. On the velocity gradient tensor and fluid

feature extraction. Technical Report 99-3288, AIAA, Norfolk, Virginia,

1999.

[55] R. Hardy. Theory and applications of the multiquadric-biharmonic method.

Computers and Mathematics with Applications, 19:163–2082, 1990.

[56] C. G. Healey. Choosing effective colours for data visualization. In Pro-

ceedings of IEEE Visualization, pages 263–270, 1996.

[57] A. Hertzmann and K. Perlin. Painterly rendering for video and interac-

tion. In Proceedings of 1st International Symposium on Non-Photorealistic

Animation and Rendering, pages 7–12, 2000.

192 Bibliography

[58] L. Hesselink and J. Helman. Evaluation of flow topology from numerical

data. AIAA, (87-1811), 1987.

[59] K. D. Hinsch. Particle image velocimetry. In R. S. Sirohi, editor, Speckle

Metrology, pages 235–324. Marcel Dekker, New York, 1993.

[60] B. K. P. Horn and B. G. Schunk. Determining optical flow. Artificial Intel-

ligence, 17:185–201, 1981.

[61] A. Huang, G. E. Farin, D. P. Baluch, and D. G. Capco. Thin structure

segmentation and visualization in three-dimensional biomedical images: A

shape-based approach. IEEE Transactions on Visualization and Computer

Graphics, 12(1):93–102, 2006.

[62] V. Interrante and C. Grosch. Visualizing 3D flow. IEEE Computer Graphics

& Applications, 18(4):49–53, 1998.

[63] Y. Jang, R. P. Botchen, A. Lauser, D. S. Ebert, K. P. Gaither, and T. Ertl.

Enhancing the interactive visualization of procedurally encoded multi-

field data with ellipsoidal basis functions. Computer Graphics Forum,

25(3):587–596, 2006.

[64] Y. Jang, M. Weiler, M. Hopf, J. Huang, D. S. Ebert, K. P. Gaither, and

T. Ertl. Interactively visualizing procedurally encoded scalar fields. In Pro-

ceedings of EUROGRAPHICS / IEEE TCVG Symposium on Visualization,

2004.

[65] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid

Mechanics, (285):69–94, 1995.

[66] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-Eulerian advec-

tion of noise and dye textures for unsteady flow visualization. IEEE Trans-

actions on Visualization and Computer Graphics, 8(3):211–222, 2002.

[67] B. Jobard and W. Lefer. The motion map: Efficient computation of steady

flow animations. In Proceedings of IEEE Visualization, pages 323–328,

1997.

[68] B. Jobard and W. Lefer. Unsteady flow visualization by animating evenly-

spaced streamlines. In Proceedings of EUROGRAPHICS, pages 31–40,

2000.

[69] C. R. Johnson. Top scientific research problems. IEEE Computer Graphics

& Applications, 24(4):13–17, 2004.

Bibliography 193

[70] C. R. Johnson and A. R. Sanderson. A next step: Visualizing errors and

uncertainty. IEEE Computer Graphics & Applications, 23(5):6–10, 2003.

[71] A. Kaufman and N. Stolte. Discrete implicit surface models using inter-

val arithmetics. In Proceedings of 2nd CGC Workshop on Computational

Geometry, 1997.

[72] D. N. Kenwright. Automatic detection of open and closed separation and

attachment lines. In Proceedings of IEEE Visualization, pages 151–158,

1998.

[73] G. Kindlmann, E. Reinhard, and S. Creem. Face-based luminance matching

for perceptual colormap generation. In Proceedings of IEEE Visualization,

pages 299–306, 2002.

[74] M. Kiu and D. C. Banks. Multi-frequency noise for LIC. In Proceedings

of IEEE Visualization, pages 121–126, 1996.

[75] R. V. Klassen and S. J. Harrington. Shadowed hedgehogs: A technique for

visualizing 2D slices of 3D vector fields. In Proceedings of IEEE Visual-

ization, pages 148–153, 1991.

[76] A. Klein, P. Sloan, A. Colburn, A. Finkelstein, and M. Cohen. Video cu-

bism. Technical report, Microsoft Research Technical Report MSR-TR-

2001-45, 2001.

[77] J. M. Kniss, R. V. Uitert, A. Stephens, G.-S. Li, T. Tasdizen, and C. Hansen.

Statistically quantitative volume visualization. In Proceedings of IEEE Vi-

sualization, pages 287–294, 2005.

[78] A. N. Kolmogorov. The local structure of turbulence in incompressible

viscous fluid for very large Reynolds numbers. C. R. (Doklady) Acad. Sci.

URSS (N.S.), 30:301–305, 1941.

[79] O. Konrad-Verse, A. Littmann, and B. Preim. Virtual resection with a de-

formable cutting plane. In Proceedings of SimVis, pages 203–214, 2004.

[80] L. H. Koopmans. The Spectral Analysis of Time Series. Academic Press,

1995.

[81] K. Kreeger and A. Kaufman. Mixing translucent polygons with volumes.

In Proceedings of IEEE Visualization, pages 191–198, 1999.

194 Bibliography

[82] W. Krueger. The application of transport theory to visualization of 3D

scalar data fields. In Proceedings of IEEE Visualization, pages 273–280,

1990.

[83] J. Krüger and R. Westermann. Acceleration techniques for GPU-based

volume rendering. In Proceedings of IEEE Visualization, pages 287–292,

2003.

[84] Y. Kurzion and R. Yagel. Interactive space deformation with hardware-

assisted rendering. IEEE Computer Graphics & Applications, 17(5):66–77,

1997.

[85] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and

D. Weiskopf. The state of the art in flow visualization: Dense and texture-

based techniques. Computer Graphics Forum, 23(2):143–161, 2004.

[86] V. Lavrenko, S. L. Feng, and R. Manmatha. Statistical models for automatic

video annotation and retrieval. In Proceedings of the IEEE ICASSP Inter-

national Conference on Acoustics, Speech and Signal Processing, pages

17–21, 2004.

[87] Y. Levy, D. Degani, and A. Seginer. Graphical visualization of vortical

flows by means of helicity. AIAA Journal, 28:1347–1352, 1990.

[88] Z. P. Liu and R. J. Moorhead. AUFLIC: An accelerated algorithm for un-

steady flow line integral convolution. In Proceedings of EROGRAPHICS /

IEEE TCVG Symposium on Visualization, pages 43–52, 2002.

[89] S. K. Lodha, A. Pang, R. E. Sheehan, and C. M. Wittenbrink. UFLOW:

Visualizing uncertainty in fluid flow. In Proceedings of IEEE Visualization,

pages 249–254, 1996.

[90] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D sur-

face construction algorithm. ACM SIGGRAPH Computer Graphics Con-

ference Series, 21(4):163–169, 1987.

[91] D. Lovely and R. Haimes. Shock detection from computational fluid dy-

namics results, 1999.

[92] A. Lu, C. J. Morris, D. S. Ebert, P. Rheingans, and C. D. Hansen. Non-

photorealistic volume rendering using stippling techniques. In Proceedings

of IEEE Visualization, pages 211–218, 2002.

Bibliography 195

[93] B. Lucas and T. Kanade. An iterative image registration technique with an

application to stereo vision. In Proceedings of DARPA Image Understand-

ing Workshop, pages 674–679, 1981.

[94] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least

squares problems, 1999.

[95] K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, and K. Joy. Topo-

logical segmentation in three dimensional vector fields. IEEE Transactions

on Visualization and Computer Graphics, 2(10):198–205, 2004.

[96] X. Mao, M. Kikukawa, N. Fujita, and A. Imamiya. Line integral convo-

lution for 3D surfaces. In Proceedings of EUROGRAPHICS Workshop on

Visualization, pages 57–70, 1997.

[97] D. Marcum and K. Gaither. Solution adaptive unstructured grid generation

using pseudo pattern recognition techniques. AIAA, (97-1860), 1997.

[98] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for

volume rendering. In Proceedings of IEEE Visualization, pages 100–107,

1994.

[99] O. Marxen, M. Lang, U. Rist, and S. Wagner. A combined experimen-

tal/numerical study of unsteady phenomena in a laminar separation bubble.

Flow, Turbulence and Combustion, 71(1-4):133–146, 2003.

[100] J. Mattson and M. Simon. The Pioneers of NMR and Magnetic Resonance

in Medicine: The Story of MRI. Bar-Ilan University Press, 1996.

[101] N. Max. Optical models for direct volume rendering. IEEE Transactions

on Visualization and Computer Graphics, 1(2):99–108, 1995.

[102] N. Max and B. Becker. Flow visualization using moving textures. In Pro-

ceedings of ICASW / LaRC Symposium on Visualizing Time-Varying Data,

pages 77–87, 1995.

[103] D. Meyer. Discrete numerische Simulation nichtlinearer Transitionsmech-

anismen in der Strömungsgrenzschicht einer ebenen Platte. Phd thesis,

Luft- und Raumfahrttechnik, Universität Stuttgart, 2003.

[104] T. B. Moeslund and E. Granum. A survey of computer vision-based hu-

man motion capture. Computer Vision and Image Understanding: CVIU,

81(3):231–268, 2001.

196 Bibliography

[105] D. R. Nadeau. Volume scene graphs. In Proceedings of IEEE Symposium

on Volume Visualization, pages 49–56, 2000.

[106] K. G. Nguyen and D. Saupe. Rapid high quality compression of volume

data for visualization. Computer Graphics Forum, 20(3):49–56, 2001.

[107] G. M. Nielson. Scattered data modeling. IEEE Computer Graphics &

Applications, 13(1):60–70, 1993.

[108] G. M. Nielson and B. Hamann. The asymptotic decider: resolving the

ambiguity in marching cubes. In Proceedings of IEEE Visualization, pages

83–91, 1991.

[109] S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank. Brain magnetic resonance

imaging with contrast dependent on blood oxygenation. Proceedings of

National Academy of Sciencs USA, 87(24):9868–9872, 1990.

[110] R. Oi, M. Magnor, and K. Aizawa. A solid-state, simultaneous wide angle-

detailed view video surveillance camera. In Proceedings of Vision, Model-

ing and Visualization, pages 329–336, 2003.

[111] K. Okada, D. Comaniciu, and A. Krishnan. Robust anisotropic gaussian

fitting for volumetric characterization of pulmonary nodules in multislice

ct. IEEE Transactions on Medical Imaging, 24(3):409–423, 2005.

[112] A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. Approaches to uncertainty

visualization. The Visual Computer, 13(8):370–390, 1997.

[113] N. V. Patel and I. K. Sethi. Video shot detection and characterization

for video databases. Pattern Recognition, Special Issue on Multimedia,

30(4):583–592, 1997.

[114] R. Peikert and M. Roth. The parallel vectors operator - A vector field visu-

alization primitive. In Proceedings of IEEE Visualization, pages 263–270,

1999.

[115] T. Porter and T. Duff. Compositing digital images. ACM SIGGRAPH Com-

puter Graphics, 183(3):253–259, 1984.

[116] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state

of the art in flow visualization: Feature extraction and tracking. Computer

Graphics Forum, 22(4):775–792, 2003.

[117] A. Prasad. Particle image velocimetry. Current Science, 79(1):101–110,

2000.

Bibliography 197

[118] L. Q, W. D., P. R., V. J., G. G., and W. J. Implicit fitting using radial basis

functions with ellipsoid constraint. Computer Graphics Forum, 23(1):55–

69, 2004.

[119] C. Rao, A. Yilmaz, and M. Shah. View-invariant representation and recog-

nition of actions. International Journal of Computer Vision, 50(2):203–

226, 2002.

[120] C. Rezk-Salama, M. Scheuering, G. Soza, and G. Greiner. Fast volumet-

ric deformation on general purpose hardware. In Proceedings of EURO-

GRAPHICS / ACM SIGGRAPH Workshop on Graphics Hardware, pages

17–24, 2001.

[121] P. J. Rhodes, R. S. Laramee, R. D. Bergeron, and T. M. Sparr. Uncertainty

visualization methods in isosurface rendering. In Proceedings of EURO-

GRAPHICS Short Papers, pages 83–88, 2003.

[122] F. Rößler, R. P. Botchen, and T. Ertl. Dynamic shader generation for flexible

multi-volume visualization. In Proceedings of IEEE Pacific Visualization

Symposium, pages 17–24, 2008.

[123] F. Rößler, R. P. Botchen, and T. Ertl. Dynamic shader generation for GPU-

based multi-volume raycasting. IEEE Computer Graphics & Applications,

28(5):66–77, 2008.

[124] R. J. Rost and J. M. Kessenich. OpenGL Shading Language. Addison-

Wesley, 2003.

[125] S. Röttger, S. Guthe, D. Weiskopf, and T. Ertl. Smart Hardware-

Accelerated Volume Rendering. In Proceedings of EUROGRAPHICS /

IEEE VGTC Symposium on Visualization, pages 231–238, 2003.

[126] T. Salzbrunn and G. Scheuermann. Streamline predicates. IEEE Transac-

tions on Visualization and Computer Graphics, 12(6):1601–1612, 2006.

[127] W. Sander and B. Weigand. Direct numerical simulation and analysis of in-

stability enhancing parameters in liquid sheets at moderate reynolds num-

bers. Geophysical Research Letters, (to appear), 2008.

[128] N. Sauber, H. Theisel, and H.-P. Seidel. Multifield-graph: An approach to

visualizing correlations in multifield scalar data. In Proceedings of IEEE

Visualization, pages 917–924, 2006.

198 Bibliography

[129] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii. Function rep-

resentation of solids reconstructed from scattered surface points and con-

tours. Computer Graphics Forum, 14(4):181–188, 1995.

[130] R. Scardovelli and . S. Zaleski. Direct numerical simulation of free-surface

and interfacial flow. Annual Review of Fluid Mechanics, 31:567–603, 1999.

[131] T. Schafhitzel, J. Vollrath, J. Gois, D. Weiskopf, A. Castelo, and T. Ertl.

Topology-preserving lambda2-based vortex core line detection for flow vi-

sualization. Computer Graphics Forum, 27(3):1023–1030, 2008.

[132] T. Schafhitzel, D. Weiskopf, and T. Ertl. Interactive exploration of unsteady

3D flow with linked 2D/3D texture advection. In Proceedings of the 3rd In-

ternational Conference on Coordinated and Multiple Views in Exploratory

Visualization, pages 96–105, 2005.

[133] O. Schall, A. Belyaev, and H.-P. Seidel. Robust filtering of noisy scat-

tered point data. In Proceedings of EUROGRAPHICS Symposium on Point-

Based Graphics, pages 71–77, 2005.

[134] I. O. Sebe, J. Hu, S. You, and U. Neumann. 3D video surveillance with

augmented virtual environments. In Proceedings of IWVS ’03: First ACM

SIGMM international workshop on Video surveillance, pages 107–112,

2003.

[135] E. Shechtman and M. Irani. Space-time behavior based correlation. In

Proceedings of IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pages 405–412, 2005.

[136] H.-W. Shen, C. R. Johnson, and K.-L. Ma. Visualizing vector fields us-

ing line integral convolution and dye advection. In Proceedings of IEEE

Symposium on Volume Visualization, pages 63–70, 1996.

[137] H. W. Shen and D. L. Kao. UFLIC: A line integral convolution algorithm

for visualizing unsteady flows. In Proceedings of IEEE Visualization, pages

317–323, 1997.

[138] J. Smagorinsky. General circulation experiments with the primitive equa-

tions. Monthly Weather Review, 91(3):99–164, 1963.

[139] C. G. M. Snoek and M. Worring. Multimodal video indexing: A review of

the state-of-the-art. Multimedia Tools and Applications, 25(1):5–35, 2005.

Bibliography 199

[140] Y. Song, L. Goncalves, and P. Perona. Unsupervised learning of human

motion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

25(7):814–827, 2003.

[141] P. R. Spalart, W. H. Jou, M. Strelets, and S. R. Allmaras. Comments on

the feasibility of LES for wings, and on a hybrid RANS/LES approach. In

Proceedings of 1st AFOSR International Conference on DNS/LES, pages

137–147, 1997.

[142] J. Stam. Stable fluids. In Proceedings of ACM SIGGRAPH, pages 121–128,

1999.

[143] S. Stegmaier and T. Ertl. A graphics hardware-based vortex detection and

visualization system. In Proceedings of IEEE Visualization, pages 195–

202, 2004.

[144] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible vol-

ume rendering framework for graphics-hardware–based raycasting. In Pro-

ceedings of EUROGRAPHICS / IEEE VGTC Workshop on Volume Graph-

ics, pages 187–195, 2005.

[145] D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector fields.

Technical Report 95-1715, Deptartment of Aeronautics and Astronautics,

MIT, Cambridge, 1995.

[146] Z. Sun and W. Jiang. Diagnostic value of multislice computed tomogra-

phy angiography in coronary artery disease: A meta-analysis. European

Journal of Radiology, 60(2):279–286, 2006.

[147] A. Sundquist. Dynamic line integral convolution for visualizing streamline

evolution. IEEE Transactions on Visualization and Computer Graphics,

9(3):273–283, 2003.

[148] N. Svakhine, Y. Jang, D. S. Ebert, and K. P. Gaither. Illustration and pho-

tography inspired visualization of flows and volumes. In Proceedings of

IEEE Visualization, pages 687–694, 2005.

[149] E. Tejada, J. P. Gois, L. G. Nonato, A. Castelo, and T. Ertl. Hardware-

accelerated extraction and rendering of point set surfaces. In Proceedings

of EUROGRAPHICS / IEEE VGTC Symposium on Visualization, pages 21–

28, 2006.

200 Bibliography

[150] E. Tejada, T. Schafhitzel, and T. Ertl. Hardware-accelerated point-based

rendering of surfaces and volumes. In Proceedings of International Con-

ference in Central Europe on Computer Graphics, Visualization and Com-

puter Vision (WSCG), pages 41–48, 2007.

[151] A. M. K. Thomas, A. K. Banerjee, and U. Busch. Classic papers in modern

diagnostic radiology. Springer, 2005.

[152] J. J. Thomas and K. A. Cook. Illuminating the Path: The Research and

Development Agenda for Visual Analytics. IEEE Press, 2005.

[153] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahe-

dra: improved iso-surface extraction. Computers & Graphics, 23(4):583–

598, 1999.

[154] G. Turk and J. F. O’Brien. Modelling with implicit surfaces that interpolate.

ACM Transactions on Graphics (TOG), 21(4):855–873, 2002.

[155] J. J. van Wijk. Image based flow visualization. ACM Transactions on

Graphics (TOG), 21(3):745–754, 2002.

[156] J. E. Vollrath, D. Weiskopf, and T. Ertl. A generic software framework for

the GPU volume rendering pipeline. In Proceedings of Vision, Modeling,

and Visualization, pages 391–398, 2005.

[157] Y. Wang, D. M. Krum, E. M. Coelho, and D. A. Bowman. Contextualized

videos: Combining videos with environment models to support situational

understanding. IEEE Transactions on Visualization and Computer Graph-

ics, 13(6):1568–1575, 2007.

[158] C. Ware. Color sequences for univariate maps. IEEE Computer Graphics

& Applications, 8(5):41–49, 1988.

[159] C. Ware. Information Visualization: Perception for Design. Elsevier, Am-

sterdam, second edition, 2004.

[160] R. Wegenkittl, E. Gröller, and W. Purgathofer. Animating flow fields: Ren-

dering of oriented line integral convolution. In Proceedings of Computer

Animation, pages 15–21, 1997.

[161] M. Weiler, R. P. Botchen, S. Stegmeier, T. Ertl, J. Huang, Y. Jang, D. S.

Ebert, and K. P. Gaither. Hardware-assisted feature analysis of procedu-

rally encoded multifield volumetric data. IEEE Computer Graphics & Ap-

plications, 25(5):72–81, 2005.

Bibliography 201

[162] D. Weiskopf. Dye advection without the blur: A level-set approach for

texture-based visualization of unsteady flow. Computer Graphics Forum

(Proceedings of EUROGRAPHICS), 23(3):479–488, 2004.

[163] D. Weiskopf, R. P. Botchen, and T. Ertl. Interactive visualization of di-

vergence in unsteady flow by level-set dye advection. In Proceedings of

SimVis, pages 221–232, 2005.

[164] D. Weiskopf, K. Engel, and T. Ertl. Interactive clipping techniques for

texture-based volume visualization and volume shading. IEEE Transac-

tions on Visualization and Computer Graphics, 9(3):298–312, 2003.

[165] D. Weiskopf and G. Erlebacher. Overview of flow visualization. In C. D.

Hansen and C. R. Johnson, editors, The Visualization Handbook, pages

261–278. 2005.

[166] D. Weiskopf, M. Hopf, and T. Ertl. Hardware-accelerated visualization

of time-varying 2D and 3D vector fields by texture advection via pro-

grammable per-pixel operations. In Proceedings of Vision, Modeling, and

Visualization, pages 439–446, 2001.

[167] D. Weiskopf, T. Schafhitzel, and T. Ertl. Texture-based visualization of 3D

unsteady flow by real-time advection and volumetric illumination. IEEE

Transactions on Visualization and Computer Graphics, 13(3):569–582,

2007.

[168] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume

rendering applications. ACM SIGGRAPH Computer Graphics Conference

Series, 32(4):169–179, 1998.

[169] B. Wilson, E. B. Lum, and K.-L. Ma. Interactive multi-volume visualiza-

tion. In Proceedings of Computational Science-Part II, pages 102–110,

2002.

[170] C. M. Wittenbrink, A. T. Pang, and S. K. Lodha. Glyphs for visualizing

uncertainty in vector fields. IEEE Transactions on Visualization and Com-

puter Graphics, 2(3):266–279, 1996.

[171] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects.

The Visual Computer, 2(4):227–234, 1986.

[172] L. Zelnik-Manor and M. Irani. Event-based video analysis. IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition.,

2(2):123–130, 2001.

202 Bibliography

[173] Y. Zhang, R. Rohling, and D. K. Pai. Direct surface extraction from 3D

freehand ultrasound images. In Proceedings of IEEE Visualization, pages

45–52, 2002.

	List of Abbreviations and Acronyms
	Abstract and Chapter Summaries (in English and German)
	Abstract
	Chapter Summaries
	Zusammenfassung
	Kapitelzusammenfassungen

	Introduction
	Goal of this Thesis
	Acknowledgments

	Graphics and Visualization Fundamentals
	Visualization
	The Visualization Pipeline
	Grid Types and Data
	Structured Grids
	Unstructured Grids
	Point Clouds
	Grid Interpolation

	Introduction to Flow Visualization
	Particle Based Techniques
	Line Integral Convolution

	Introduction to Volume Visualization
	Indirect Volume Visualization
	Direct Volume Visualization

	The Rendering Pipeline
	Graphics Processing Units

	Visualization of Multi-field Flow Data
	Basic Ideas on Fluid Dynamics
	Simulation and Measuring Techniques in a Nutshell
	Feature Classification
	Strategies for Uncertainty Visualization
	Texture-based Flow Visualization
	Texture-Based Uncertainty Visualization
	Color-Based Uncertainty Visualization
	Application Cases

	Combined Feature Visualization
	Definition of Feature Criteria
	Using First-Order Fuzzy Logic
	Interactive Combined Feature Visualization for Analysis

	Flexible Multi-volume Visualization
	Medical Imaging Techniques in a Nutshell
	Multi-volume Rendering
	Slice-based Multi-volume Rendering
	Multi-Volume Raycasting

	The Render Graph Framework
	The Scene Node
	Structural Nodes
	Shader Nodes
	A Render Graph Example

	Dynamic Shader Generation
	Two-pass Shader Assembly

	Application Cases

	Multi-field Video Visualization
	Concepts and Definitions for Video Visualization
	Video Processing
	Video Transfer Function
	Optical Flow
	Seed Point Generation
	Classifying Actions
	Object Relations

	The Multi-field Video Visualization Framework
	Distorted Video Volumes
	Scalable Multi-field Bricking
	Integrating Optical Flow in Volume Visualization
	Flow Geometry Bricks

	Types of Visual Signatures
	A User Study on Visual Signatures
	Evaluation of Visual Signatures
	Application Cases

	A Survey on Visual Effects for VideoPerpetuoGrams
	The Extended VideoPerpetuoGram Framework
	Illustrating Focus Information
	Conveying Context Information
	Efficient Focus and Context Rendering

	Evaluation of VideoPerpetuoGram Visualization

	Visualization of Encoded Multi-field Data
	Radial Basis Functions
	Spherical and Ellipsoidal Gaussians
	Functional Approximation
	Scalar vs. Vector Encoding

	Interactive Rendering
	Data Structure and Texture Layout
	Slicing Planes and Volume Visualization
	Feature Extraction
	Particle Advection
	Texture-based Flow Visualization

	Application Cases

	Multi-field Techniques in Visualization
	Conclusion
	Future Challenges

	Bibliography

