
Fundamental Storage Mechanisms
for Location-based Services in

Mobile Ad-hoc Networks

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der

Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Dominique Dudkowski

aus Ruit auf den Fildern

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Dr. rer. nat. habil. Pedro José Marrón

Tag der mündlichen Prüfung: 15. September 2009

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stuttgart

2009

To my parents and the memory of my beloved Oma,

with love and gratitude

Abstract

The proliferation of mobile wireless communication technology has reached a considerable mag-
nitude. As of 2009, a large fraction of the people in most industrial and emerging nations is
equipped with mobile phones and other types of portable devices. Supported by trends in
miniaturization and price decline of electronic components, devices become enhanced with lo-
calization technology, which delivers, via the Global Positioning System, the geographic position
to the user. The combination of both trends enables location-based services, bringing informa-
tion and services to users based on their whereabouts in the physical world, for instance, in the
form of navigation systems, city information systems, and friend locators.

A growing number of wireless communication technologies, such as Wireless Local Area Net-
works, Bluetooth, and ZigBee, enable mobile devices to communicate in a purely peer-to-peer
fashion, thereby forming mobile ad-hoc networks. Together with localization technology, these
communication technologies make it feasible, in principle, to implement distributed location-
based services without relying on any support by infrastructure components. However, the
specific characteristics of mobile ad-hoc networks, especially the significant mobility of user
devices and the highly dynamic topology of the network, make the implementation of location-
based services extremely challenging. Current research does not provide an adequate answer to
how such services can be supported. Efficient, robust, and scalable fundamental mechanisms
that allow for generic and accurate services are lacking.

This dissertation presents a solution to the fundamental support of location-based services in
mobile ad-hoc networks. A conceptual framework is outlined that implements mechanisms on
the levels of routing, data storage, location updating, and query processing to support and
demonstrate the feasibility of location-based services in mobile ad-hoc networks.

The first contribution is the concept of location-centric storage and the implementation of
robust routing and data storage mechanisms in accordance with this concept. This part of the
framework provides a solution to the problems of data storage that stem from device mobility
and dynamic network topology. The second contribution is a comprehensive set of algorithms
for location updating and the processing of spatial queries, such as nearest neighbor queries.
To address more realistic location-based application scenarios, we consider the inaccuracy of
position information of objects in the physical world in these algorithms.

Extensive analytical and numerical analyses show that the proposed framework of algorithms
possesses the necessary performance characteristics to allow the deployment of location-based
services in purely infrastructureless networks. A corollary from these results is that currently
feasible location-based services in infrastructure-based networks may be extended to the infra-
structureless case, opening up new business opportunities for service providers.

5

Zusammenfassung

Die Verbreitung mobiler drahtloser Kommunikationstechnologie hat ein beträchtliches Aus-
maß erreicht: Im Jahre 2009 ist bereits ein großer Teil der Menschen in den Industrie- und
Schwellenländern mit Mobiltelefonen sowie einer Vielzahl weiterer Arten von tragbaren Geräten
ausgestattet. Unterstützt durch die technologischen Entwicklungen in der Miniaturisierung
sowie dem Preisverfall elektronischer Komponenten werden Geräte zunehmend mit Lokali-
sierungstechnologien ausgerüstet, mit deren Hilfe die geographische Position von Benutzern
ermittelt werden kann. Zu diesen Technologien zählen beispielsweise leistungsfähige inte-
grierte Schaltungen, die mit Hilfe des satellitengestützten Global Positioning System (GPS)
die geographische Position eines Benutzers mit hoher Genauigkeit ermitteln können. Durch
die Verknüpfung dieser beiden Entwicklungen werden lokationsbasierte Dienste ermöglicht, die
Benutzern Informationen und Dienste in Abhängigkeit von ihrem Ort in der physischen Welt
zur Verfügung stellen können. Beispiele solcher Anwendungen sind Navigations- und Stadtin-
formationsysteme sowie Systeme zur gegenseitigen Lokalisierung von Personen.

Eine wachsende Zahl drahtloser Kommunikationstechnologien, darunter drahtlose lokale Netze
(WLANs), Bluetooth und ZigBee, ermöglichen den mobilen Geräten eine Kommunikation nach
dem Peer-to-Peer-Schema, wonach Geräte so genannte mobile Ad-hoc-Netze bilden. Gemein-
sam mit den Lokalisierungstechnologien wird dadurch grundsätzlich die Umsetzung verteilter
lokationsbasierter Dienste möglich, ohne dabei auf infrastrukturbasierte Netze zurückzugreifen.
Die spezifischen Merkmale mobiler Ad-hoc-Netze, vor allem die beträchtliche Mobilität von
Geräten und die hochdynamische Topologie dieser Netze, machen jedoch die Implementierung
lokationsbasierter Dienste zu einer Herausforderung. Die aktuelle Forschung gibt keine hin-
reichende Antwort auf die Frage, wie solche Dienste in mobilen Ad-hoc-Netzen unterstützt
werden können. Effiziente, robuste und zugleich skalierbare Grundverfahren, welche die Imple-
mentierung leistungsfähiger lokationsbasierter Dienste ermöglichen, fehlen gänzlich.

Die vorliegende Dissertation befasst sich mit dem Entwurf, der Implementierung und der Bewer-
tung eines Rahmenwerkes, das grundlegende Verfahren für die Speicherung und Verwaltung von
Daten in mobilen Ad-hoc-Netzen bereitstellt. Das Rahmenwerk trägt dabei insbesondere den
Merkmalen mobiler Ad-hoc-Netze Rechnung, indem es Strategien und Mechanismen definiert,
die diesen Merkmalen wirksam begegnen. Die Dissertation zeigt ferner, wie unter Ausnutzung
der vorgestellten Grundverfahren solche Funktionalität bereitgestellt werden kann, die für loka-
tionsbasierte Dienste von Bedeutung ist. Dies wird beispielhaft anhand räumlicher Anfragen
gezeigt, wobei insbesondere die Ungenauigkeit der geographischen Positionen von Benutzern
in der physischen Welt berücksichtigt wird. Ausführliche Messergebnisse zeigen, dass die be-
trachteten Verfahren als Grundlage für die Umsetzung einer Vielzahl von lokationsbasierten
Diensten in mobilen Ad-hoc-Netzen geeignet sind.

7

8

Eigenschaften mobiler Ad-hoc-Netze

Die vorliegende Arbeit grenzt sich vom Stand der Forschung ab durch die Betrachtung von
Grundverfahren der Datenspeicherung in reinen mobilen Ad-hoc-Netzen. Im Gegensatz zu
den klassischen mobilen Netzen besitzen diese Netze eine Reihe spezifischer Merkmale, die den
Entwurf von Verfahren für die Datenspeicherung besonders schwierig gestalten. Diese Eigen-
schaften umfassen die beschränkten Rechen-, Speicher- und Energiekapazitäten von Geräten,
einer im Vergleich zu Festnetzen geringeren Bandbreite und der sich stets ändernden Qualität
des Kommunikationskanals, sowie der Gerätemobilität und -dichte.

In Abhängigkeit von der zu lösenden Aufgabe beeinflussen diese Merkmale die Gestaltung von
Verfahren in mobilen Ad-hoc-Netzen unterschiedlich stark. Aus diesen Grund ist zunächst zu
untersuchen, welche der Eigenschaften für den Entwurf von Speicherverfahren besonders zu
berücksichtigen sind. Hierbei zeigt sich, dass Gerätemobilität und -dichte den größten Einfluss
ausüben, da die Dynamik dieser Größen unmittelbar zu Änderungen in der Netztopologie führen
kann, wodurch die Datenübertragung über mehrere benachbarte Geräte erschwert wird.

Insbesondere kann die Mobilität bei einer geringen Gerätedichte zur Entstehung von Netzparti-
tionen führen, da die Kommunikationsreichweite von Geräten (im Folgenden Netzknoten oder
Knoten genannt) nicht mehr ausreicht, um einen zusammenhängenden Netzgraphen zu bilden.
Hingegen führt der nichtdeterministische Charakter mobiler Ad-hoc-Netze, die z.B. durch die
Geräte von Personen in Stadtgebieten gebildet werden, auch zu der vorteilhaften Situation, bei
der sich zuvor getrennte Netzpartitionen wieder vereinigen.

Grundsätzlich können Netzpartitionen die Datenspeicherung stark beeinträchtigen, da zwischen
Partitionen naturgemäß weder Daten ausgetauscht noch Anfragen verarbeitet werden können.
Aus diesem Grund ist ein Verständnis des Partitionierungsverhaltens mobiler Ad-hoc-Netze für
den Entwurf möglichst robuster Speicherverfahren von grundlegender Bedeutung. Zu diesem
Zweck stellt die Dissertation eine Menge von Partitionsmetriken vor, die in der Lage sind,
verschiedene Eigenschaften der Netzpartitionierung geeignet zu beschreiben.

Im Folgenden wird dies beispielhaft anhand zweier Partitionsmetriken gezeigt. Um die Rele-
vanz der Netzpartitionierung hervorzuheben wird zunächst die Partitionsanzahl in einem be-
stimmten Netzszenario betrachtet. Bei dieser Metrik handelt es sich um eine so genannte
netzzentrische Metrik, da sie das Partitionsverhalten eines mobilen Ad-hoc-Netzes als Ganzes
beschreibt. Abbildung 1.a zeigt die mittlere Partitionsanzahl in einem typischen Innenstadt-
szenario am Beispiel von Manhattan. Zunächst steigt die mittlere zu erwartende Anzahl der
Partitionen stark an, da mehr und mehr einzelne Knoten isoliert voneinander existieren. Nach
Durchschreiten eines Maximums vermindert sich mit steigender Dichte die Partitionsanzahl,
was durch die allmähliche Verschmelzung kleinerer zu immer größeren Partitionen zu erklären
ist. Insbesondere zeigt Abbildung 1.a, dass auch bei der höchsten gemessenen Dichte noch
immer eine signifikante Anzahl von Netzpartitionen auftritt.

Zur Verdeutlichung der möglichen Dynamik des Partitionierungsverhaltens mobiler Ad-hoc-
Netze wird anhand der Partitionsänderungsrate gezeigt, wie häufig ein einzelner Netzknoten
seine eigene Partition wechselt. Da hierbei die Sicht eines einzelnen Knotens im Vordergrund
steht, handelt es sich bei dieser Metrik um eine so genannte knotenzentrische Partitionsmetrik.
Abbildung 1.b zeigt den Verlauf der mittleren knotenzentrischen Partitionsänderungsrate in

9

0

10

20

30

40

50

60

70

80

0 400 800 1200 1600 2000 2400

M
itt

le
re

P
ar

tit
io

ns
an

za
hl

Knotenanzahl

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 400 800 1200 1600 2000 2400

M
itt

le
re

P
ar

tit
io

ns
än

de
ru

ng
sr

at
e

[1
/s

]

Knotenanzahl

a. Mittlere Partitionsanzahl b. Mittlere Partitionsänderungsrate

Abbildung 1: Mittlere Partitionsanzahl und knotenzentrische Partitionsänderungsrate in
Abhängigkeit von der Knotenanzahl im Stadtgebiet von Manhattan.

Abhängigkeit von der Knotendichte. Während bei sehr geringen Dichten aufgrund der weit
voneinander entfernten Knoten Änderungen der Partitionszugehörigkeit nur selten stattfinden,
treten diese Änderungen bei mittleren Dichten häufig auf. Dieses Verhalten zeigt insbesondere,
dass ein einzelner Knoten durchaus in der Lage ist, auch Knoten in anderen Partitionen bereits
nach einer relativ kurzen Zeit erneut zu kontaktieren.

Die Ergebnisse im Hauptteil der Dissertation führen zu zwei Schlussfolgerungen. Einerseits ist
das Auftreten von Netzpartitionen von den Verfahren der Datenspeicherung als häufig auftre-
tender Normalfall anzusehen. Andererseits zeigt sich bei einer zumindest für eine Kommunika-
tion sinnvollen Mindestknotendichte eine Dynamik, die zu einer endlichen Dauer von Parti-
tionierungssituationen führt. Das bedeutet, dass Speicherverfahren eine Partitionierung zwar
berücksichtigen müssen, den durch eine Partitionierung entstehenden möglichen Inkonsistenzen
in der Datenverwaltung jedoch mit Hilfe geeigneter Maßnahmen entgegenwirken können.

Grundverfahren der Datenspeicherung

Um den Eigenschaften mobiler Ad-hoc-Netze wirksam entgegenzutreten, definiert die vor-
liegende Arbeit das Paradigma der lokationszentrischen Speicherung, das Ausgangspunkt für
die Grundverfahren der Datenspeicherung ist. Bei diesem Ansatz werden räumliche Daten, also
Daten mit einer zugehörigen räumlichen Position, auf denjenigen Knoten eines mobilen Ad-hoc-
Netzes gespeichert, die sich in der Nähe einer geographischen Referenzposition befinden. Diese
Position befindet sich ihrerseits in der Nähe derjenigen geographischen Position, die durch das
Datum selbst definiert ist. Beide Nähebegriffe lassen sich nun so flexibel gestalten, dass geringe
Knotendichten, hohe Mobilität und Netzpartitionierungen zeitweise toleriert werden können.
Grundlegend ist hierbei auch der Begriff der räumlichen Kohärenz, welche definiert ist als die
mittlere geographische Entfernung zwischen einem Datum und der zugehörigen Referenzposi-
tion. Diese Metrik ist für die Bewertung von Speicherverfahren grundlegend, und ein Verfahren
ist umso effizienter, desto geringer diese Entfernung ist.

10

a. Verwerfung bei unidirektionaler Paketweiterleitung

cr

up
us

...
......

>> 3

verwerfen

b. Konvergenz bei bidirektionaler Paketweiterleitung

cr up

us

...

......
>> 3

Startknoten

(1)

(2)

(3)

(4)

Abbildung 2: Unidirektionale und bidirektionale Paketweiterleitung entlang von langen
Umkreisen (z.B. aufgrund von physischen Hindernissen).

Die in der Dissertation vorgestellten Speicherverfahren setzen die lokationszentrische Speiche-
rung auf der Grundlage des Umkreises um. Bei diesem handelt es sich um eine Menge von
Knoten, die um eine gegebene geographische Referenzposition einen geschlossenen Pfad bilden
(Abbildung 2.a). Die in der Abbildung dargestellte Punktlinie deutet an, dass ein Umkreis
beispielsweise beim Auftreten einer Netzpartitionierung unterbrochen sein kann.

Um den durch nicht geschlossene oder auch sehr lange Umkreise auftretenden Problemen ent-
gegenzuwirken, vermeiden die Grundverfahren der Datenspeicherung Annahmen, die auf der
Geschlossenheit und Endlichkeit von Umkreisen beruhen, vollständig. Im Gegensatz zu unidi-
rektionalen Verfahren der Paketweiterleitung, wie sie z.B. in [KK00] betrachtet werden, verwen-
den die Grundverfahren die so genannte bidirektionale Paketweiterleitung, welche beispielhaft
in Abbildung 2.b dargestellt ist. Ausgehend von einem Startknoten durchläuft dabei ein Daten-
paket zunächst eine begrenzte Anzahl von Knoten in eine Richtung des Umkreises. Danach wer-
den Knoten in der umgekehrten Richtung besucht, bis die gleiche Entfernung zum Startknoten
erneut erreicht wird. Unabhängig von der Form eines Umkreises terminiert dieser Algorithmus
stets und ein Paket wird schließlich zum Startknoten des Umkreises zurückgeleitet.

Im Gegensatz zu den auf unidirektionaler Paketweiterleitung beruhenden Verfahren, die z.B.
in [RKY+02, ACNP07] eingesetzt werden, ist dieser Knoten jedoch nicht unmittelbar als Spei-
cherknoten geeignet, da sich aufgrund der Knotenmobilität im Gegensatz zu Sensornetzen dieser
Knoten ständig ändert. Das Grundverfahren der Datenspeicherung geht deshalb davon aus,
dass ein Speicherknoten grundsätzlich ein anderer als der Startknoten auf einem Umkreis sein
kann, so wie dies beispielhaft in Abbildung 3.a dargestellt ist. Ein Speicherknoten übermittelt
zunächst in die Richtung einer zugeordneten Referenzposition so genannte Bekanntmachungen,
welche die Zuständigkeit des Knotens für diese Referenzposition signalisieren. Dies geschieht
mit Hilfe der bidirektionalen Paketweiterleitung, während deren jeweils ein Bekanntmachungs-
eintrag des Speicherknotens auf den besuchten Knoten gespeichert wird. Insbesondere wird
so die Verfügbarkeit des Speicherknotens auf den Knoten eines Umkreises rund um die geo-
graphische Referenzposition veröffentlicht.

Anfragen an ein bestimmtes Datenobjekt, das auf einem Speicherknoten abgelegt ist, werden in
zwei Schritten weitergeleitet. Im Gegensatz zu knotenzentrischen Ansätzen wird bei der loka-

11

...

...

...

cr

a. Weiterleitung der Bekanntmachungen eines
Speicherknotens mittels BPR zum Zeitpunkt t1

Speicherknoten

ADV-Eintrag

u1

u2

u3

b. Weiterleitung von Klientanfragen zu
einem Speicherkonten zum Zeitpunkt t2

Speicherknoten

cr

Klient

Klient

ADV-Eintrag

Abbildung 3: Weiterleitung der Bekanntmachungen von Speicherknoten.

tionszentrischen Speicherung jedoch das Datenobjekt nicht auf einen Knoten direkt, sondern
zunächst auf die Referenzposition abgebildet, ähnlich wie dies in datenzentrischen Ansätzen
(z.B. [RKY+02, GGC03]) geschieht. Eine Anfrage wird in einem ersten Schritt in die Richtung
der Referenzposition geleitet (Abbildung 3.b). Sobald ein mit der Referenzposition assoziierter
Bekanntmachungseintrag eines Speicherknotens lokalisiert werden kann, wird die Anfrage in
einem zweiten Schritt zu dem Speicherknoten weitergeleitet. Abbildung 3.b zeigt, wie Anfra-
gen von Klienten im Falle eines sehr kleinen Umkreises schnell auf Bekanntmachungseinträge
stoßen, woraufhin sofort eine Weiterleitung zum Speicherknoten stattfindet.

Weil ein Speicherknoten nur lose mit einem Umkreis und der umschlossenen Referenzposition
assoziiert ist, muss aufgrund von Knotenmobilität zur Erhaltung der räumlichen Kohärenz
regelmäßig ein neuer Speicherknoten bestimmt werden. Hierzu stellt die Dissertation geeignete
Verfahren zur Verfügung, die eine Migration der von einem Speicherknoten verwalteten Daten
bei Abschwächung der räumlichen Kohärenz vornehmen. Die Migrationsverfahren lassen sich
dabei unterteilen in Strategien einerseits und Mechanismen andererseits. Erstere dienen dazu,
Entscheidungen zu treffen hinsichtlich der Notwendigkeit, des Nutzens und des zu erwartenden
Erfolgs einer potentiellen Datenmigration. Dies ist wichtig, da eine Migration von Daten
zu einem Zielknoten beispielsweise nur dann sinnvoll ist, wenn die Netztopologie zwischen
Ausgangs- und Zielknoten ausreichend stabil ist, sodass eine erfolgreiche Migration aller Daten
mit hoher Wahrscheinlichkeit erwartet werden kann.

Die Migrationsstrategien werden dabei weiter unterteilt in solche, die den lokalen Zustand
des migrierenden Knotens analysieren, und erweiterte Strategien, die auch entfernte Knoten
berücksichtigen, um letztlich einen geeigneten Zielknoten der Migration zu bestimmen. Die
lokalen Migrationsstrategien untersuchen, ob eine Migration ausschließlich aus der Sicht des
zu migrierenden Knotens notwendig und nützlich ist, das heißt, ob eine Migration mit hoher
Wahrscheinlichkeit zu einer Verbesserung der räumlichen Kohärenz führt. Die vorläufige Be-
trachtung von ausschließlich dem aktuellen Speicherknoten ist dabei von Bedeutung, da dieser
Zustand ohne Kommunikation erfasst werden kann. In diese Bewertung fließen die aktuelle
Distanz d0 des Speicherknotens zur Referenzposition ein, sowie die Zeitdauer t0, mit welcher
der aktuelle Speicherknoten bereits für die Speicherung von Daten zuständig war. Anhand

12

dieser Größen wird das Prädikat PMRP bestimmt, das die notwendige Bedingung einer Migra-
tion definiert und genau dann wahr ist, wenn d0 oder t0 einen durch dthresh und tthresh gegebenen
räumlichen bzw. zeitlichen Grenzwert überschreitet:

PMRP := d0 > dthresh ∨ t0 > tthresh (1)

Nur bei einem wahren Prädikat wird in einem zweiten Schritt eine Menge entfernter Knoten
betrachtet, um einen Zielknoten zu bestimmen, der für den Empfang der zu migrierenden
Daten geeignet ist (im anderen Fall wird nach Ablauf eines Zeitintervalls eine erneute Prüfung
des Prädikats in (1) vorgenommen). Grundsätzlich sind in diesem Schritt solche Knoten zu
bevorzugen, die sich näher an der Referenzposition aufhalten. Ebenfalls zu berücksichtigen ist
die Geschwindigkeit von Knoten, da sich Knoten mit hoher Geschwindigkeit schneller von der
Referenzposition entfernen als langsame Knoten, und somit bereits nach kurzer Zeit erneut eine
Migration erforderlich ist. Ferner spielt die Zeitdauer eine Rolle, mit der ein Knoten bereits in
der Vergangenheit als Speicherknoten fungierte. Dies ist vor allem für die Lastverteilung zwi-
schen möglichst allen Knoten eines mobilen Ad-hoc-Netzes von Bedeutung. Zusammenfassend
lässt sich aus diesen Betrachtungen die Gesamteignung eines Knotens bestimmen. Diese setzt
sich multiplikativ aus den individuellen Eignungen εd

i , ε
δt
i und εΔt

i zusammen, welche die zuvor
beschriebenen Eigenschaften modellieren:

εi := εd
i · εδt

i · εΔt
i (2)

Neben der Bestimmung der Eignungswerte εi einer Menge von Knoten ist die Stabilität der
möglichen Netzpfade zu diesen Knoten eine wichtige Größe, da die Eignung der Knoten allein
nicht für die Bewertung einer erfolgreichen Migration ausreicht. Die Dissertation stellt hierfür
einen Algorithmus zur Verfügung, der effizient möglichst stabile Pfade zwischen dem aktuellen
Speicherknoten und der Menge möglicher Zielknoten einer Migration bestimmt. Gemeinsam
mit den Eignungswerten εi wird am Ende des zweiten Bewertungsschrittes ein Knoten als Migra-
tionsziel endgültig festgelegt. Wird kein geeigneter, über einen ausreichend stabilen Netzpfad
erreichbarer Knoten gefunden, so beginnt die Auswertung der Strategien nach Ablauf eines
zweiten Zeitintervalls von Neuem.

Für die anschließende Migration vom Ausgangs- zum Zielknoten über den gewählten Netzpfad
stellt die Dissertation einen Mechanismus vor, der Migrationen möglichst effizient ausführt
und das Auftreten von Migrationsfehlern vermeidet. Bei diesem Mechanismus wird insbeson-
dere die Distanz zwischen Ausgangs- und Zielknoten berücksichtigt, um den Datentransfer auf-
grund von Eigenschaften des gemeinsamen drahtlosen Kommunikationsmediums zu optimieren.
Nach erfolgter Migration aller Daten wird der ursprüngliche Speicherknoten deaktiviert und der
Zielknoten übernimmt dessen Aufgabe. Während dieser Übergabe wird auch die Versendung
von Bekanntmachungen konsistent vom ursprünglichen auf den zukünftigen Speicherknoten
übertragen, sodass dieser seine Zuständigkeit im Netz so mitteilt, dass Anfragen von Klienten
nun an diesen neuen Knoten geleitet werden.

Aufgrund der Problematik der Netzpartitionierung wird der Migrationsmechanismus von einem
Konsolidierungsmechanismus ergänzt, der in der Lage ist, auftretende Redundanzen von Spei-
cherknoten aufzulösen. Aufgrund kommunikationstheoretischer Eigenschaften und unter be-
stimmten Fehlermodellen kann ein Migrationsprozess in einer solchen Art fehlschlagen, dass

13

a. Vor Partitionsvereinigung zum Zeitpunkt t1 b. Nach Partitionsvereinigung zum Zeitpunkt >t t2 1

ADV-
Eintrag

u1

cr

u2

cr

u1
ADV-

Eintrag
u2

ADV-
Eintrag

u1

u1

u2

u3

u3

ADV-
Eintrag

u2

Redundanz-
erkennung

RED RED

Abbildung 4: Erkennung von redundanten Speicherknoten.

eine Entscheidung, welcher Speicherknoten die Datenspeicherung fortführt, nicht möglich ist.
Dieser Sachverhalt ist für den Fall einer Netzpartitionierung in Abbildung 4.a dargestellt. In
jeder Partition existiert nach einer fehlgeschlagenen Migration jeweils ein Speicherknoten. Beide
Speicherknoten sind in dieser Situation dazu bestimmt, ihre eigenen Bekanntmachungen in die
Richtung der geographischen Referenzposition zu senden.

Der Konsolidierungsmechanismus ist in solchen Situationen in der Lage, Redundanzen ohne
zusätzliche Kommunikation zu erkennen, sobald eine Wiedervereinigung von Partitionen statt-
findet. Abbildung 4.b zeigt die Vereinigung der zuvor dargestellten Partitionen. Da nun
ein einziger Umkreis die Referenzposition umschließt, führt das Bekanntmachungsverfahren
dazu, dass Bekanntmachungen beider Speicherknoten schließlich in einem Knoten (Knoten u3

in Abbildung 4.b) zusammentreffen. Dieser Knoten kann somit unmittelbar eine Redundanz
feststellen, die er sodann an die beteiligten Speicherknoten signalisiert. Die Speicherknoten
ihrerseits stoßen daraufhin einen Konsolidierungsprozess an, der nach einem ähnlichen Ver-
fahren wie dem der Migration verfährt. Nachdem einer der Speicherknoten seinen Datenbestand
zum anderen übermittelt hat, werden beide Datenbestände verschmolzen und anschließend der
übermittelnde Speicherknoten, ähnlich wie im Falle der Migration, abgelöst. Im Ergebnis ex-
istiert somit nach einer Konsolidierung lediglich ein Speicherknoten.

Hinsichtlich der Grundverfahren stellt die Dissertation ausführliche analytische und simulative
Ergebnisse zur Verfügung. Ein Auszug aus der simulativen Leistungsbewertung zeigt, dass die
Grundverfahren der Datenspeicherung effizient, robust und skalierbar sind. Für die Bewertung
wird eine Gesamtfläche von 600 · 600 m2 angenommen, in deren Zentrum eine Zelle der Größe
200 · 200 m2 platziert ist. Insgesamt bewegen sich 150 Knoten nach dem Random-Waypoint-
Mobilitätsmodell mit einer Geschwindigkeit von 1,5 m/s und Verweilzeit von 30 s innerhalb des
Simulationsgebiets. Die Kommunikationsreichweite der Knoten ist 100 m.

Zunächst wird die Leistungsfähigkeit der Grundverfahren anhand der Erfolgsrate von Klient-
anfragen dargelegt. Die Erfolgsrate von Anfragen ist definiert als derjenige Bruchteil von An-
fragen, die erfolgreich zu einem Speicherknoten übermittelt werden können. Als Vergleichs-
verfahren wurde die datenzentrische Speicherung (DCS/GPSR) nach [RKY+02] gewählt, um
die Vorteile des lokationszentrischen Ansatzes dieser Dissertation zu zeigen. Für das daten-
zentrische Verfahren ist die Erfolgsrate derjenige Bruchteil von Anfragen, die erfolgreich am
Startknoten des Umkreises (Abbildung 2), der den Speicherknoten definiert, eintreffen.

14

Zur Darlegung der Leistungsfähigkeit der Grundverfahren vor allem bei geringen Knotendichten
zeigt Abbildung 5 die Erfolgsrate von Anfragen zweier LCS-Varianten sowie des DCS/GPSR-
basierten Verfahrens in Abhängigkeit von der Knotenanzahl. Die Unterscheidung der bei-
den LCS/BPR-Varianten erfolgt anhand unterschiedlicher Methoden, mit denen Bekanntma-
chungen von Speicherknoten verteilt werden. Die Verteilung geschieht entweder mit Hilfe der
bidirektionalen Paketweiterleitung (LCS/BPR) oder durch einfaches Fluten (LCS/Geocast).
Abbildung 5 zeigt, dass beide LCS-Varianten bei sehr geringen Knotendichten eine Erfolgsrate
von über 94% erzielen. Im Gegensatz dazu fällt die Leistung von DCS/GPSR bei 70 und weniger
Knoten stark ab. Dies ist mit der ansteigenden Länge von Umkreisen bei abnehmender Kno-
tendichte zu erklären, wodurch das Durchlaufen eines vollständigen Umkreises für DCS/GPSR
immer aufwändiger wird. Bemerkenswert ist die Beobachtung, dass für eine Knotenanzahl
von über 120 Knoten die Leistungsfähigkeit von DCS/GPSR ebenfalls abnimmt, während sie
für beide LCS-Varianten konstant hoch bleibt. Dies hängt mit den Eigenschaften der für die
geometrische Weiterleitung notwendigen Planarisierungsverfahren für Netzgraphen zusammen,
die einen weitaus geringeren Einfluss auf die Erfolgsrate von LCS als von DCS haben.

50

60

70

80

90

100

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

A
n
fr

a
g
e
g
e
n
a
u
ig

k
e
it

[%
]

Knotenanzahl

LCS/BPR und LCS/Geocast: Datenempfang DCS/GPSR: Datenempfang

L
C

S
/B

P
R

L
C

S
/G

e
o
c
a
s
t

Abbildung 5: Anfragegenauigkeit des untersuchten Grundverfahrens der Datenspeicherung in
Abhängigkeit von der Knotenanzahl.

Zur Beurteilung der Datenmigration wird im Folgenden die Robustheit von Migrationen im
Vergleich zu einigen naheliegenden Verfahren untersucht. Hierbei muss unterschieden werden
zwischen Migrationsfehlern, die ohne zusätzliche Maßnahmen aufgelöst werden können, und
solchen, die zu den nicht unmittelbar auflösbaren Redundanzen der Speicherknoten führen.
Im ersten Fall ist es möglich, dass die jeweils an einer Migration beteiligten Speicherkno-
ten einen Migrationsfehler selbständig feststellen und sich in ihren jeweiligen Anfangszustand
zurückführen. Die zweite Art von Fehlern führt jedoch zu den eingangs beschriebenen Redun-
danzen, die nur durch den zusätzlichen Konsolidierungsmechanismus aufgelöst werden können.
Dieser Mechanismus wird jedoch nicht von den Vergleichsverfahren eingesetzt, sodass sich die
nicht auflösbaren Redundanzen bei diesen Verfahren über die Zeit vervielfältigen.

15

Abbildung 6 zeigt die Häufigkeit kritischer Migrationsfehler in einem typischen Szenario. Hier-
bei wurde angenommen, dass während einer Migration eine Datenmenge von insgesamt 320 Kilo-
bytes übertragen wird, die bei einer Größe von 32 Bytes pro Datenobjekt und einer Paketka-
pazität von 1500 Bytes einer Gesamtzahl von 212 Datenpaketen entspricht. Ferner wurde
eine Simulationszeit von 3600 Sekunden angenommen. Abbildung 6 zeigt zwei Varianten des
in der Dissertation vorgestellten Migrationsverfahrens, die zwei weiteren naheliegenden Ver-
fahren gegenübergestellt werden. Während auf die spezifischen Unterschiede der einzelnen
Verfahren an dieser Stelle verzichtet werden kann, ist von Bedeutung, dass die in der Disser-
tation entwickelten Verfahren in Abhängigkeit von der Knotenanzahl (d.h. der Knotendichte)
im Gegensatz zu den naheliegenden Verfahren eine wesentlich höhere Robustheit besitzen.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

50 75 100 125 150 175 200 225 250

M
ig

ra
ti
o
n
s
fe

h
le

r
[1

/m
in

]

Knotenanzahl

Progressive Migration
Gierige Migration

DataMiP (BPR)
DataMiP (Quellweiterleitung)

Abbildung 6: Mittlere Anzahl kritischer Migrationsfehler der vier untersuchten Migrations-
mechanismen in Abhängigkeit von der Knotenanzahl.

Während die Anzahl der kritischen Migrationsfehler im untersuchten Szenario grundsätzlich
sehr niedrig ist, muss berücksichtigt werden, dass ein realistisches Szenario aus einer Vielzahl
von Referenzpositionen und somit Speicherknoten besteht und sich über einen langen Zeitraum
erstreckt. Wird das Szenario der Simulation linear auf eine Gebietsgröße von 2 · 2 km2 skaliert,
so führt dies bei einer Fehlerrate von 0.005 Fehlern pro Minute im Falle der naheliegenden
Verfahren zu etwa 30 kritischen Fehlern pro Stunde. Da kritische Fehler von diesen Ver-
fahren nicht behandelt werden, entwickeln sich so über einen längeren Zeitraum erhebliche
Redundanzen von Speicherknoten. Im Gegensatz dazu tritt bei den vorgestellten Varianten
der Datenmigration eine sehr viel geringere Anzahl kritischer Fehler auf, die außerdem durch
den Konsolidierungsmechanismus aufgelöst werden. Dadurch ergeben sich auch bei sehr großen
Flächen und langen Zeiträumen nur zeitlich und geographisch punktuelle Redundanzen.

Lokationsaktualisierung und Anfrageverarbeitung

Die im letzten Abschnitt beschriebenen Grundverfahren sind in der Lage, den speziellen Eigen-
schaften mobiler Ad-hoc-Netze so entgegenzuwirken, dass eine robuste, effiziente und skalier-

16

bare Datenspeicherung ermöglicht wird. Für lokations- und kontextbasierte Dienste und An-
wendungen sind diese Verfahren jedoch nicht von unmittelbarer Bedeutung, da nur einzelne
Datenobjekte ohne Berücksichtigung ihrer Semantik aktualisiert und angefragt werden können.
Das in der Dissertation vorgestellte Rahmenwerk umfasst deshalb zusätzlich Dienste, die erwei-
terte Funktionalität bereitstellen. Im Folgenden wird gezeigt, wie Verfahren zur Lokationsaktu-
alisierung einerseits und zur Verarbeitung räumlicher Anfragen andererseits durch Ausnutzung
der grundlegenden Speicherverfahren umgesetzt werden können.

Wichtig für die Entwicklung von Verfahren zur Lokationsaktualisierung ist die Erkenntnis, dass
jedes Modell der physischen Welt mit Hilfe von Sensorik nur innerhalb bestimmter Genauigkeits-
grenzen erfasst werden kann. Insbesondere gilt dies für die Position physischer Objekte,
denen stets eine Ungenauigkeit anhaftet. Positionsungenauigkeiten können mit Hilfe einer
Wahrscheinlichkeitsdichte und einem zugehörigen kreisförmigen Gebiet beschrieben werden, in-
nerhalb dessen sich das Objekt mit einer gewissen Wahrscheinlichkeit aufhält. Die Lokation L
eines Objektes lässt sich formal wie folgt darstellen:

L := (�(X), CEPY) (3)

In (3) bezeichnet �(X) die Wahrscheinlichkeitsdichte und CEPY das so genannte circular error
probable (CEP) für die Wahrscheinlichkeit Y , mit der ein Objekt innerhalb des durch CEPY

definierten kreisförmigen Gebietes lokalisiert werden kann.

Auf der Grundlage der durch (3) gegebenen Semantik von Lokationen eines Objekts definiert
die Dissertation einen Algorithmus zur Lokationsaktualisierung, dessen Funktionsweise im Fol-
genden anhand von Abbildung 7 erläutert wird. Das geographische Gebiet, innerhalb dessen
sich das mobile Ad-hoc-Netz befindet, ist dabei in Zellen unterteilt, für die jeweils ein Spei-
cherknoten (DS) zuständig ist. Jeder Knoten ist in der Lage, die Lokation eines Objekts mit
Hilfe seiner eigenen Sensorik zur Positionsbestimmung zu erfassen und eine Lokationsinforma-
tion nach (3) zu erzeugen. Sodann wird diejenige Menge von Zellen bestimmt, die mit dem
durch CEPY definierten kreisförmigen Lokationsgebiet überlappen. In Abbildung 7.a überlappt
beispielsweise Lokationsgebiet Li(t1) mit Zelle C2, Li(t2) mit den Zellen C2 und C1.

Im nächsten Schritt wird jeweils eine Kopie der Lokationsinformation an die für die zuvor
bestimmten Zellen zuständigen Speicherknoten gesendet. An dieser Stelle greift das Verfahren
der Lokationsaktualisierung auf die indirekte Paketweiterleitung des Grundverfahrens zurück,
das die Lokationsinformationen in zwei Schritten an die zuvor bestimmten Zellen und danach
an die Speicherknoten DS2 und DS1 weiterleitet. Die empfangenen Lokationsinformationen des
aktualisierten Objekts werden sodann in der lokalen Datenbank des jeweiligen Speicherknotens
aktualisiert, in der sie für die weitere Verarbeitung von Anfragen zur Verfügung stehen.

Das Verfahren zur Lokationsaktualisierung stellt ferner Methoden bereit, die Kopien eines
Datenobjekts auf mehreren Speicherknoten löscht, wenn diese nach einer erneuten Lokations-
aktualisierung nicht mehr auf die entsprechenden Zellen abbilden. Damit wird stets eine
möglichst hohe Konsistenz von Datenobjekten erzielt, wodurch insbesondere die Genauigkeit
von den im Folgenden betrachteten räumlichen Anfragen erhöht wird.

Am Beispiel von Nachbarschaftsanfragen soll nun gezeigt werden, wie effiziente Algorithmen
für die Verarbeitung von räumlichen Anfragen in mobilen Ad-hoc-Netzen effizient gestaltet
werden können. Dabei ist zu beachten, dass Positionsungenauigkeiten auch bei der Defini-
tion einer geeigneten Semantik für Nachbarschaftsanfragen zu berücksichtigen sind. Hierzu

17

DS2

C2 C1

Cs

Upd()t1

Li()t1

Upd()t2

Li()t2
Upd()t2

DS1

a. Lokationsaktualisierungen zu den Zeitpunkten t1, t2

anfragender
Knoten

Stellvertreter-
knoten

Cr

b. Beispiel einer Nachbarschaftsanfrage mit = 2k

cr
DSr

DSs

cs

pNN

L1

L2

L3

2

1

Heuristische Phase

Aggregationsphase

Disk(,)p rNN agg

1

2

Abbildung 7: Funktionsweise von Lokationsaktualisierung und Nachbarschaftsanfragen.

wird in der Dissertation unter Verwendung von Begriffen aus der Wahrscheinlichkeitstheo-
rie ein Nähebegriff definiert, der für jeweils zwei Objekte beschreibt, welches dieser Objekte
sich mit welcher Wahrscheinlichkeit näher zu einer gegebenen Anfrageposition aufhält. Dieser
Nähebegriff lässt sich formal wie folgt fassen:

oj < ok|pNN
⇔ Pjk > 0.5 · Pmax (4)

Für zwei Objekte oj , ok befindet sich nach (4) das Objekt oj genau dann näher an der Anfragepo-
sition pNN als ok, wenn die Wahrscheinlichkeit, mit der oj das näher gelegene Objekt ist, größer
ist als die Hälfte der maximal möglichen Wahrscheinlichkeit Pmax. Der Wert für Pmax ergibt sich
aus der paarweisen Integration der Wahrscheinlichkeitsdichten �j , �k der beiden Objektlokatio-
nen. Unter Verwendung von (4) lässt sich das Ergebnis RPNQ einer wahrscheinlichkeitsbasierten
Nachbarschaftsanfrage definieren, das genau k Objekte enthält:

RPNQ := {o1, . . . , ok} : ∀or ∈ RPNQ, os �∈ RPNQ : or < os |pNN
(5)

Für den Entwurf eines geeigneten Verfahrens zur Verarbeitung wahrscheinlichkeitsbasierter
Nachbarschaftsanfragen ist von Bedeutung, dass zwar die Anzahl k der zu bestimmenden Ob-
jekte bekannt ist, nicht aber, bis zu welcher geographischen Entfernung zur Anfrageposition
sich diese Objekte in der physischen Welt aufhalten. Der in der Dissertation vorgestellte
Algorithmus verwendet deshalb ein zweiphasiges Verfahren, das im Folgenden anhand von
Abbildung 7.b beispielhaft für eine Nachbarschaftsanfrage mit k = 2 erläutert wird.

Zunächst wird von dem anfragenden Knoten die Anfrage an einen Stellvertreterknoten gesendet,
der die eigentliche Anfrageverarbeitung ausführt. Dieses Vorgehen erhöht die Effizienz der
Anfrageverarbeitung, da die Aggregation des Endergebnisses in räumlicher Nähe zu den zu
lokalisierenden Objekte ausgeführt wird. Sodann wird in der ersten Phase, der so genannten
heuristischen Phase, eine begrenzte Anzahl von Speicherknoten abgefragt, um eine genäherte
Menge von Objekten zu erhalten. In Abbildung 7.b wird während der heuristischen Phase der
Speicherknoten der Zelle Cr mit Hilfe einer partiellen Nachbarschaftsanfrage angefragt. Unter
Anwendung von (5) liefert der Speicherknoten DSr als Teilergebnis die beiden Objekte zurück,
die sich am nächsten zur Anfrageposition pNN aufhalten. Im Beispiel sind dies die mit den
Lokationen L1 und L2 gekennzeichneten Objekte.

18

Nach der Bestimmung der Näherungsmenge von Datenobjekten werden in der anschließenden
Aggregationsphase diejenigen Objekte festgestellt, die sich räumlich näher an der Referenzpo-
sition befinden als die zuvor bestimmten. Dazu wird ein Kreis mit Mittelpunkt pNN konstru-
iert, der die Lokationsgebiete der zuvor bestimmten Objekte enthält (Abbildung 7.b). Anhand
dieses Kreises lässt sich durch Überlapp mit weiteren Zellen bestimmen, welche Speicherknoten
Objekte verwalten, die noch näher an der Anfrageposition liegen als die bereits bestimmten
Objekte. Im Beispiel existiert ein solches Objekt auf DSs, dargestellt durch Lokationsgebiet
L3. Während der Aggregationsphase werden schließlich weitere partielle Nachbarschaftsanfra-
gen versendet, um die verbleibenden Speicherknoten zu kontaktieren. Im Beispiel ist dies DSs,
der daraufhin das Objekt mit der Lokation L3 an den Stellvertreterknoten zurückliefert. Der
Stellvertreterknoten führt die durch partielle Anfragen erhaltenen Objekte schließlich mittels
(4) so zusammen, dass nur die tatsächlich nächsten k Objekte im Endergebnis der Anfrage ent-
halten sind. In Abbildung 7.b sind dies L3 und L1, während L2 nach Aggregation nicht mehr
Bestandteil des Ergebnisses ist. Am Ende wird das Endergebnis der Nachbarschaftsanfrage an
den anfragenden Knoten zurückgesendet.

Im Folgenden wird die Leistungsfähigkeit der Verarbeitung von Nachbarschaftsanfragen anhand
einer Beispielmessung aus dem Hauptteil der Dissertation aufgezeigt. Das durch das mobile
Ad-hoc-Netz abgedeckte geographische Gebiet hat eine Fläche von 600 · 600 m2, welches in
vier Zellen der Größe 300 · 300 m2 unterteilt ist. Die Bewegung der Knoten wird wie im
Falle der Speicherverfahren mit Hilfe des Random-Waypoint-Mobilitätsmodells beschrieben,
das mit einer Knotengeschwindigkeit von 1.5 m/s und einer Verweilzeit von 30 s parametrisiert
ist. Ferner wird eine Positionsungenauigkeit von 5 m angenommen, was den Eigenschaften
moderner GPS-Empfänger entspricht. Der Anfrageparameter ist k = 3.

Zur Qualitätsbewertung von Anfrageergebnissen werden zwei Metriken verwendet. Einerseits
wird durch die Anfragegenauigkeit definiert, welcher Bruchteil der zurückgelieferten Objekte
mit einer idealen Ergebnismenge übereinstimmt. Die ideale Ergebnismenge ist dabei definiert
als das Resultat der Ausführung des Anfragealgorithmus unter idealen Bedingungen, bei der
eine zentrale Datenbank sowie eine verzögerungsfreie Lokationsaktualisierung und Anfragever-
arbeitung angenommen werden. Andererseits beschreibt der Anfrageversatz, um welche Anzahl
von Objekten ein Anfrageergebnis vom idealen Anfrageresultat entfernt ist. Beispielsweise ist
der Anfrageversatz genau eins, falls die zurückgelieferten Objekte einer 3-Nachbarschaftsanfrage
vollständig in der Ergebnismenge einer idealen 4-Nachbarschaftsanfrage liegen.

Abbildung 8 zeigt die Ergebnisse der Anfragegenauigkeit und des Anfrageversatzes als Funk-
tion der Anzahl der Objekte, die mit der Aktualisierungshäufigkeit korreliert, für drei unter-
schiedliche Zellgrößen. Die Ergebnisse zeigen, dass in einem Bereich von bis zu 300 Datenob-
jekten, d.h. bis zu einer Aktualisierungshäufigkeit von 80/s, die Anfragegenauigkeit und der
Anfrageversatz knapp unterhalb der maximal möglichen Werte liegen. Ab einer Anzahl von 300
Datenobjekten zeigt sich ein starker Abfall der Anfragegenauigkeit. Dies hängt mit dem Ein-
fluss der Positionsungenauigkeiten bei hohen Objektdichten zusammen. Wird die Objektdichte
erhöht, so erhöht sich ebenso die Wahrscheinlichkeit von sich überlappenden Lokationsgebieten
unterschiedlicher Objekte. Aufgrund von diskreten Aktualisierungsereignissen ergeben sich
ständig Änderungen in der Art und Weise, wie sich Objektlokationen überlappen. Aufgrund
der Tatsache, dass Anfragen zu ihrer Bearbeitung eine gewisse Zeit in Anspruch nehmen, führen
die während dieser Bearbeitungszeit auftretenden Aktualisierungsereignisse zu einer größeren

19

0

10

20

30

40

50

60

70

80

90

100

10
2.7

15
4.0

20
5.3

30
8.0

50
13

70
19

100
27

150
40

200
53

300
80

500
130

700
190

1k
270

10
2.7

20
5.3

50
13

100
27

200
53

500
130

1k
270

0

1

2

3

4

5

6

7

8

9

10

A
n
fr

a
g
e
g
e
n
a
u
ig

k
e
it

[%
]

A
n
fr

a
g
e
v
e
rs

a
tz

Objektanzahl / Aktualisierungshäufigkeit [1/s]

modellbasiert, 2x2 Zellen

realweltbasiert, 2x2 Zellen

Abbildung 8: Anfragegenauigkeit und Anfrageversatz von k-Nachbarschaftsanfragen (k = 3) in
Abhängigkeit von der Objektanzahl bzw. Aktualisierungshäufigkeit.

Anzahl an Inkonsistenzen, je höher die Objektdichte ist. Dennoch lässt sich erkennen, dass
sich der Anfrageversatz relativ zur Anzahl der Objekte stark in Grenzen hält. Dies zeigt, dass
auch bei hohen Dichten räumlich sehr nahe Objekte zurückgeliefert werden. Dadurch ergibt
sich trotz der Positionsungenauigkeiten ein großer Nutzen für lokationsbasierte Anwendungen,
da diese häufig nicht auf ideale Ergebnisse angewiesen sind.

Zusammenfassung und Ausblick

Die in dieser Dissertation vorgestellten Verfahren bilden ein umfassendes Rahmenwerk für die
robuste, effiziente und skalierbare Speicherung und Verarbeitung dynamischer Daten in mobilen
Ad-hoc-Netzen. Auf der einen Seite tragen die vorgestellten Speicherverfahren den speziellen
Merkmalen mobiler Ad-hoc-Netze Rechnung, vor allem, deren Mobilität und Dichte und der
daraus resultierenden Gefahr der Netzpartitionierung. Auf der anderen Seite sind die Verfahren
zur Lokationsaktualisierung und Anfrageverarbeitung in der Lage, unter Ausnutzung der Spei-
cherverfahren die für lokations- und kontextbasierte Dienste wichtigen Grundfunktionalitäten
zur Verfügung zu stellen. Durch die Trends im Bereich des Internets, in dem infrastruktur-
basierte und mobile Netze in einem hybriden Netzverbund verschmelzen werden, ist damit
ein wichtiger Grundstein gelegt, um im Bereich der Mobilkommunikation existierende Anwen-
dungen auch in die Domäne der mobilen Ad-hoc-Netze zu übertragen.

Acknowledgements

Publishing my work would not have been possible without a great deal of help at every stage
along the journey from conception to its realization in this final form.

This dissertation has been developing in my mind for several years, and I would like to thank
my advisor, Professor Kurt Rothermel, for guiding me through this intriguing and challenging
topic. I am also thankful to my co-advisor, Professor Pedro José Marrón, for the support and
feedback while being my colleague and my friend at the Distributed Systems Group.

Many colleagues helped me shape my ideas over the years, and I must thank them for their
fellowship and priceless comments on my work. I am fortunate to have worked with wonderful
people, such as Martin Bauer, Christian Becker, Susanne Bürklen, Frank Dürr, Tobias Farrell,
Lars Geiger, Jörg Hähner, Boris Koldehofe, Ralf Lange, Steffen Maier, Annemarie Rösler,
Harald Weinschrott, and many others, to whom I offer my heartfelt thanks.

During my time at the Distributed Systems Group, I had the opportunity to work with some
bright and talented students who greatly inspired my work and with whom I shared some good
times. Many thanks to you guys.

Last but not least, I would like to thank the German Research Foundation for their financial
support through the Nexus project, which enabled my research in the first place.

In writing this dissertation, as in all else, I am specially indebted to my parents Stan and Anita,
my grandmother Maminka, my aunt Brigitte, my best friend Holger, and my partner Elena, for
their patience and sustained moral support, and for granting me in the past years the privilege
of worrying about nothing else but my work.

21

Contents

1 Introduction 35
1.1 Motivation . 35
1.2 Technological and Paradigmatic Trends . 36

1.2.1 Computing . 37
1.2.2 Communication . 38
1.2.3 Sensing . 38

1.3 Background . 39
1.3.1 Explicit Context Models . 39
1.3.2 SFB 627 (Nexus) . 40

1.4 Focus and Contributions . 41
1.4.1 Focus . 41
1.4.2 Contributions . 43

1.5 Structure of the Dissertation . 44

2 Fundamentals 45
2.1 Mobile Ad-hoc Networks (MANETs) . 45

2.1.1 Network Model . 45
2.1.2 Discussion of Network Characteristics . 47

2.2 Partitioning in Mobile Ad-hoc Networks . 49
2.2.1 Related Work . 50
2.2.2 Simulation Model . 51
2.2.3 Preliminary Notations . 51
2.2.4 Definition of Partition Metrics . 52
2.2.5 Simulation Study . 58
2.2.6 Conclusions: Network Partitioning . 72

2.3 Location-centric Storage (LCS) . 72
2.4 Requirements and Reference Model . 74
2.5 Related Work . 77

2.5.1 Context-aware Systems and Middlewares 78
2.5.2 Core Data Storage and Data Migration 81
2.5.3 Location Updating and Query Processing 85
2.5.4 Summary of Related Work . 90

3 Core Data Storage 91
3.1 System Model . 91

23

24 CONTENTS

3.2 Bidirectional Perimeter Routing . 92
3.3 Core Data Storage Algorithms . 95

3.3.1 Server Advertisement . 96
3.3.2 Request Forwarding . 97

3.4 Analytical Study . 99
3.4.1 Examined Approaches . 99
3.4.2 Analytical Model . 100
3.4.3 Analytical Derivations . 101
3.4.4 Discussion . 112
3.4.5 Analytical Study: Summary . 122

3.5 Performance Analysis . 122
3.5.1 Generic Methodology . 123
3.5.2 Core Data Storage: Methodology . 124
3.5.3 Performance Metrics . 126
3.5.4 Request Accuracy . 126
3.5.5 Request Latency . 131
3.5.6 Request Cost . 135
3.5.7 Evaluation Summary: Core Storage . 140

4 Data Migration 141
4.1 Migration Framework Overview . 141
4.2 Migration Recommendation Policy . 142
4.3 Network Topology Exploration . 145
4.4 Migration Decision Policy . 146

4.4.1 Node Eligibility . 147
4.4.2 Path Stability . 151
4.4.3 Output of the Migration Decision Policy 156

4.5 Migration Mechanism . 157
4.5.1 Data Migration . 157
4.5.2 Data Consolidation . 162

4.6 Performance Analysis . 167
4.6.1 Performance Metrics . 168
4.6.2 Spatial Coherence . 169
4.6.3 Migration Efficiency and Duration . 173
4.6.4 Migration Robustness . 177
4.6.5 Evaluation Summary: Data Migration 180

5 Service Tier 181
5.1 Semantics of Inaccurate Locations . 181
5.2 System Model Extensions . 183
5.3 Location Updating . 184
5.4 Query Processing . 190

5.4.1 Semantics of Probabilistic Spatial Queries 190
5.4.2 Probabilistic Query Algorithms . 194

5.5 Performance Analysis . 199
5.5.1 Performance Metrics . 201

CONTENTS 25

5.5.2 Query Accuracy and Query Offset . 202
5.5.3 Query Latency and Query Cost . 205
5.5.4 Evaluation Summary: Service Tier . 209

6 Conclusion 211
6.1 Summary and Conclusions . 211

6.1.1 Network Characteristics and Network Partitioning 212
6.1.2 Location-centric Storage Paradigm and Framework 213
6.1.3 Core Data Storage and Data Migration 213
6.1.4 Probabilistic Location Updating and Query Processing 214
6.1.5 Analytical and Simulative Performance Evaluation 215

6.2 Promising Research Directions . 215
6.2.1 Data Replication . 216
6.2.2 Extensions of Data and Model Characteristics 216
6.2.3 Extension of Service Functionality . 218
6.2.4 Hybrid System Structures . 218

A List of Abbreviations 221

B Network Partitioning: Addendum 225

C Preliminaries 231
C.1 LCS Core Mechanism . 231

C.1.1 Correlation between Topology and Geometry 231
C.1.2 Derivation of Traversal Distances . 232

C.2 Derivation of the Location PDF . 235

D Network Topology Exploration Region 237
D.1 Area Restriction on the NTE Region . 237
D.2 NTE Region Base Shapes . 238

D.2.1 Special Case . 238
D.2.2 Circular Case . 238
D.2.3 Elliptical Case 1: Curvature Subcase . 239
D.2.4 Elliptical Case 2: Tangent Subcase . 240
D.2.5 Summary of Cases . 242

D.3 NTE Region Specification . 242
D.3.1 Special Case . 242
D.3.2 Circular Case . 243
D.3.3 Elliptical Case 1: Curvature Subcase . 243
D.3.4 Elliptical Case 2: Tangent Subcase . 246
D.3.5 Summary of Cases . 248

Refereed Publications 249

Bibliography 251

List of Figures

1.1 FutureNet 21: Mobile Ad-hoc Network Scenario in the Year 2015 35
1.2 Enabling Technologies for Mobile, Ubiquitous, and Context-aware Computing . 37
1.3 Computing Paradigms, Explicit Context Models, and the SFB 627 (Nexus) . . . 39
1.4 High-level Architecture of the Nexus Platform 41
1.5 Design Space: System Structure, Location Model, and Data Characteristics . . . 42

2.1 Taxonomy of Network Partition Metrics in Mobile Ad-hoc Networks 53
2.2 Input Graphs to the Graph Mobility Model . 59
2.3 Average Number of Partitions . 60
2.4 Frequency Distribution of the Number of Partitions (1) 60
2.5 Frequency Distribution of the Number of Partitions (2) 61
2.6 Average Size of Partitions . 62
2.7 Frequency Distribution of the Partition Size (1) 62
2.8 Frequency Distribution of the Partition Size (2) 63
2.9 Average Partition Change Rate . 64
2.10 Average Partition Size Ratio . 64
2.11 Frequency Distribution of the Partition Size Ratio 65
2.12 Average Node Partition Change Rate . 66
2.13 Frequency Distribution of the Node Partition Change Rate (1) 66
2.14 Frequency Distribution of the Node Partition Change Rate (2) 67
2.15 Average over the Sum of Node Separation Times 68
2.16 Sum of Node Separation Times . 68
2.17 Number of Node Separations . 69
2.18 Frequency Distribution of Node Separation Times 69
2.19 Cumulative Frequency Distribution of Node Separation Times 70
2.20 Average Size of Continuous Node Visibility Sets 71
2.21 Average Size of Accumulative Node Visibility Sets 71
2.22 Conceptual Architecture of the Location-centric Storage Framework 76
2.23 Reference Models for Context Management in the Literature 78
2.24 Classification of Mechanisms for Data-centric Storage 82
2.25 Position-based and Cell-based Data-centric Storage 83

3.1 Unidirectional Perimeter Routing in the Case of Malformed Perimeters 93
3.2 Bidirectional Perimeter Routing in the Case of Malformed Perimeters 94
3.3 Bidirectional Perimeter Routing: Perimeter Radius and Length 96
3.4 Core Data Storage: Server Advertisement . 97

27

28 LIST OF FIGURES

3.5 Core Data Storage: Request Forwarding in the Case of Closed Perimeters 98
3.6 Core Data Storage: Request Forwarding in the Case of Network Partitions . . . 98
3.7 Analytical Study: Classification of Considered Approaches 100
3.8 Analytical Study: Fraction of Malformed Perimeters 102
3.9 Analytical Study: Mean Route Length and Distance Between Nodes 103
3.10 DCS/GPSR: Fraction of Occurrences of Unidirectional Perimeters 110
3.11 Global Approaches: Variation of the Update Frequency 113
3.12 Global Approaches: Variation of the Query Frequency 113
3.13 Cell-based Approaches: Variation of the Update Frequency 114
3.14 Cell-based Approaches: Variation of the Query Frequency 115
3.15 Cell-based Approaches: Idle Mode (1) . 116
3.16 Cell-based Approaches: Idle Mode (2) . 116
3.17 Global Approaches: Variation of the Number of Data Items (1) 117
3.18 Cell-based Approaches: Variation of the Number of Data Items (1) 118
3.19 Global Approaches: Variation of the Number of Data Items (2) 118
3.20 Cell-based Approaches: Variation of the Number of Data Items (2) 119
3.21 Cell-based Approaches: Variation of the Cell Size (1) 119
3.22 Cell-based Approaches: Variation of the Cell Size (2) 120
3.23 Cell-based Approaches: Variation of the Cell Size (3) 121
3.24 Cell-based Approaches: Variation of the Cell Size (4) 121
3.25 Request Accuracy as a Function of the Cell Size 127
3.26 Request Accuracy as a Function of the Number of Nodes 128
3.27 Request Accuracy as a Function of the Node Speed (1) 129
3.28 Request Accuracy as a Function of the Node Speed (2) 130
3.29 Request Accuracy as a Function of the Number of Data Items 130
3.30 Request Accuracy as a Function of the Number of Requests 131
3.31 Request Latency as a Function of the Cell Size 132
3.32 Request Latency as a Function of the Number of Data Items (1) 133
3.33 Request Latency as a Function of the Number of Data Items (2) 133
3.34 Request Latency as a Function of the Node Speed (1) 134
3.35 Request Latency as a Function of the Node Speed (2) 135
3.36 Communication Cost as a Function of the Cell Size 136
3.37 Request Cost as a Function of the Cell Size . 136
3.38 Communication Cost as a Function of the Number of Nodes 137
3.39 Communication Cost as a Function of the Node Speed 138
3.40 Communication Cost as a Function of the Number of Data Items 139
3.41 Communication Cost as a Function of the Number of Requests 140

4.1 Overview of the Data Migration Framework . 143
4.2 Migration Recommendation Predicate . 144
4.3 Topology Exploration Region: Example Shapes 146
4.4 Migration Decision Policy: Distance-based Eligibility 147
4.5 Migration Decision Policy: Combined Node Eligibility 151
4.6 Data Migration: Occurrence and Detection of a Server Redundancy 162
4.7 Data Consolidation . 165
4.8 Concurrent Data Subset Consolidation . 166

LIST OF FIGURES 29

4.9 Spatial Coherence as a Function of the Threshold Distance 170
4.10 Spatial Coherence as a Function of the Number of Nodes 171
4.11 Spatial Coherence as a Function of the Number of Data Items (1) 172
4.12 Spatial Coherence as a Function of the Number of Data Items (2) 172
4.13 Migration Efficiency and Duration as a Function of the Threshold Distance . . . 173
4.14 Migration Efficiency and Duration as a Function of the Number of Nodes 174
4.15 Migration Efficiency as a Function of the Number of Nodes 175
4.16 Migration Efficiency and Duration as a Function of the N. of Data Items (1) . . 175
4.17 Migration Efficiency and Duration as a Function of the Speed Ratio (1) 176
4.18 Migration Efficiency and Duration as a Function of the Speed Ratio (2) 176
4.19 Number of Migration Failures as a Function of the Number of Nodes 178
4.20 Number of Fatal Migration Failures as a Function of the Number of Nodes . . . 178
4.21 N. of Recoverable Migration Failures as a Function of the N. of Data Items . . . 179
4.22 Number of Fatal Migration Failures as a Function of the N. of Data Items 180

5.1 Example: Location Update Algorithm . 189
5.2 Example: Probabilistic Range Queries . 192
5.3 Semantics of Probabilistic k-Nearest Neighbor Queries 193
5.4 Probabilistic Range Query Algorithm . 195
5.5 Probabilistic k-Nearest Neighbor Query Algorithm 198
5.6 Query Accuracy and Offset as a Function of the Number of Objects 202
5.7 Query Accuracy and Offset as a Function of the Query Frequency 204
5.8 Query Accuracy and Offset as a Function of the Query Parameter k 205
5.9 Query Latency as a Function of the Number of Objects 206
5.10 Query Cost as a Function of the Number of Objects 206
5.11 Query Latency as a Function of the Query Frequency 207
5.12 Query Cost as a Function of the Query Frequency 208
5.13 Query Latency as a Function of the Query Parameter k 208
5.14 Query Cost as a Function of the Query Parameter k 209

6.1 Hybrid System Structure . 219

B.1 Average Number of Partitions . 226
B.2 Average Size of Partitions . 226
B.3 Average Partition Change Rate . 227
B.4 Average Node Partition Change Rate . 227
B.5 Average Partition Size Ratio . 228
B.6 Average over the Sum of Node Separation Times 228
B.7 Average Size of Continuous Node Visibility Sets 229
B.8 Average Size of Accumulative Node Visibility Sets 229

C.1 Mean Route Length Functions (1) . 231
C.2 Mean Route Length Functions (2) . 232
C.3 Mean Route Length Functions (3) . 232
C.4 Mean Route Length Functions (4) . 233
C.5 Derivation of Square/Circle Traversal Distances 233

30 LIST OF FIGURES

D.1 Base Shapes of the Network Topology Exploration Region 238
D.2 Elliptical Case: Curvature and Tangent Subcases 239
D.3 Elliptical Case 1: Curvature Subcase Variants 243
D.4 Elliptical Case 2: Tangent Subcase Variants . 246

List of Tables

2.1 Characteristics of Mobile Ad-hoc Networks . 47
2.2 Network Partitioning: Notations . 52
2.3 Classification of Related Work in the Field of Update and Query Processing . . 86
2.4 Classification of Related Work in the Field of Probabilistic Query Processing . . 89

3.1 Analytical Model: Notations . 101
3.2 Analytical Model: Individual Communication Cost Terms 102
3.3 General System Parameters for All Experiments 124
3.4 Core Data Storage: System Parameters . 125

4.1 Data Migration: System Parameters . 168

5.1 Relation between Location Area Radius and Circular Error Probable 183
5.2 Query Processing: System Parameters . 200

31

Listings

4.1 Computation of Network Paths . 153
4.2 Data Migration . 158
4.3 Data Consolidation . 163

5.1 Location Updating . 185
5.2 Processing of Probabilistic k-Nearest Neighbor Queries 196

33

Chapter 1

Introduction

1.1 Motivation

Paris, rush hour, Saturday, September 12, 2015 - Crowds of people populate the city’s avenues,
from La Villette to Montparnasse, from Bercy to La Défense, in their hundreds of thousands
they surge the streets. Equipped with invisible, unobtrusive technology, each individual seam-
lessly becomes part of a vast pervasive and ambient interconnection network, which extends
across hundreds of intermediate participants in every direction. Running at previously unimag-
inable end-to-end rates beyond the 1 Gbit/s, terabits of information are transferred in each
second through the complement of devices in the network. While everyone is on the move, the
dynamic network organizes itself to sustain continuous and uninterrupted operation, making
each and everyone to become a part of “FutureNet 21” (Figure 1.1).

Figure 1.1: FutureNet 21: mobile ad-hoc network scenario in the year 2015.

35

36 CHAPTER 1. INTRODUCTION

Alice, who is new to the city, carries some of the most advanced mobile equipment on her,
branched into FutureNet 21 in an autonomous way. Through her devices, she gains access to
an abundance of services dispersed throughout the network, which continuously collect and
process information across the city, adjusted to her personal profile and her whereabouts.
Supported by sophisticated visual displays, she perceives her environment in an augmented
way, delivering to her familiarity with the city from the very first moment.

Scenarios of this kind will become possible by the amalgamation of trends in computing and
communication technology and the paradigms of mobile, ubiquitous, and context-aware com-
puting. In contrast to current location-based services, which operate through the support of
service and information infrastructures implemented in the fixed part of communication net-
works, the previous scenario foregoes the use of any infrastructure-based support and relies on
the collaborative utilization of user devices only.

Such a radically different system structure would allow to exploit the vast storage and commu-
nication capacity available in wireless ad-hoc networks, in addition to existing infrastructure-
based networks, for the purpose of realizing location-based services. Not only would core
and radio access networks be relieved of large loads that inevitably come with the delivery of
location-based services to a large number of users, but service and information coverage could,
in general, be significantly extended by the ad-hoc communication paradigm.

However, a missing link in enabling large-scale location-based application scenarios are sophisti-
cated mechanisms that operate at the basis of the information and service infrastructure, which
are able to defy the harsh characteristics of infrastructureless networks. Only by providing a
level of efficiency, robustness, and scalability that qualitatively matches the characteristics of
fixed networks to the best possible extent, will it be possible to build accurate location-based
services in a generic way also in infrastructureless networks.

This dissertation targets at the development of such a set of fundamental mechanisms that
will enable scenarios as the one described in the first place. In this chapter, we provide the
background for and develop the specific objectives addressed by this dissertation.

We first require to highlight in more detail the essential technological and parallel paradigmatic
trends in Section 1.2, which enable, in principle, scenarios of the described kind. In Section 1.3,
we embed our work into the Nexus Center of Excellence, in whose context this dissertation was
pursued. We will ultimately frame the specific focus and contributions of this dissertation in
Section 1.4, in relation to the objectives addressed by Nexus. In Section 1.5 we outline the
structure that we will pursue in the chapters to follow.

1.2 Technological and Paradigmatic Trends

During the past three decades, some significant technological revolutions have occurred that act
as enablers for the realization of scenarios based on the paradigms of mobile, ubiquitous, and
context-aware computing. Some of the most influential leaps in technological advancements
are depicted in Figure 1.2, annotated with key paradigms presented in parallel. The depiction
allows us to identify three main branches, which become manifest in the realms of computing,
communication, and sensing technology. The grey-shaded funnel indicates the degree of tech-

1.2. TECHNOLOGICAL AND PARADIGMATIC TRENDS 37

nological diversity and convergence, in which a growing number of individual computing and
communication technologies are combined into single and highly capable mobile devices.

1.2.1 Computing

In the 1980s, computing technology has achieved an essential breakthrough and triggered the
era of portable computing. Thanks to the general advances in computing and miniaturization,
the first commercially available portable computer, Osborne 1, entered the market in 1981.
This event preceded the revolution of mobile computing, pertaining to all aspects of computing
performed by users on a mobile computing device. Putting the individual user with his ability
to change location in the center, nomadic computing [IB93, Kle95] reflects this newly gained
freedom of users (Figure 1.2).

200520001995199019851980

1981: Osborne 1, first portable computer

1984: Psion 1 pocket computer

1992: First IBM Thinkpads

1996: First Palm Pilot PDA

2001: First WiFi Notebook

2003: 1st gen. Centrino

2008: Centrino 2

2005: Palm LifeDrive, Bluetooth + WiFi

2003: Palm TungstenC IEEE 802.11b

1982: GRiD Compass 1100 first laptop

1986: IBM PC Convertible, IBM's first laptop

1989: Macintosh Portable, first Apple notebook 2007: Apple iPhone

1997: IEEE 802.11 legacy

1994: Ericsson starts Bluetooth

1998: Bluetooth SIG

2004: Bluetooth v. 2.0 2008: Bluetooth version 3.0

1999: 802.11a/b 2003: 802.11g 2009: 802.11n

2004: ZigBee Spec. ratified

2009: 802.11s WMN

1983: First handheld 1G

1992: First GSM mobile phones

1997: First camera phone

2002: First UMTS mobile phones

2005: Mobile phones with GPS

1979: First commercial cellular network

1981: fully automatic 1G network 1991: First 2G network

2001: First UMTS (3G) network

2004: UMTS commercial

2005: WiMAX (4G) commercial

Mobile Phones

1995: GPS fully operational

2000: Selective Availability off

2003: Foundation GJU 2005: Sirf Star III in Garmin

2010: Galileo operational

1991: Weiser: Ubiquitous Computing

1994: Shilit/Theimer: Context-aware Computing

2001: Data Centricity

2005: Nexus: World Wide Space

Local Wireless Communication

Devices

Visions and Paradigms

Localization

Telecommunications

1995: Kleinrock: Nomadic Computing

2010

Figure 1.2: Enabling technologies for mobile, ubiquitous, and context-aware computing.

The benefit of this new autonomy experienced by business and later private users, ignited the
development of a sheer variety of mobile devices. Parallel to the ever increasing diversity of
mobile devices besides the notebook, such as the first personal digital assistant (PDA) in 1984,
massive enhancements occurred. More features were constantly added to single devices, such
as high resolution displays and mobile hard disks.

Starting with the first kind of wireless technology integrated into notebooks in 2001 and the on-
going downsizing of devices, an important step from portability to true mobility was achieved.

38 CHAPTER 1. INTRODUCTION

Since then, by substantial advances in energy efficiency of mobile computation and communi-
cation technology, with edge-breaking technologies such as Intel’s Centrino generations since
2003, an important ingredient to sustainable nomadic computing has become available.

1.2.2 Communication

With the progress in computing and device technology, the realm of communication technology
has experienced in parallel a number of significant developments, which can be roughly classified
into cellular networks and local wireless networks.

Developments in cellular network technology started in 1981, where the first fully automated
first-generation (1G) network was set up, two years after the analogue cellular age had been
introduced with the first commercial cellular network. Since then, rapid advances via second
(2G) and third generation (3G) cellular technology have occurred. With the first commer-
cial WiMAX infrastructure, operational in Germany since 2005, the 100 Mbit/s barrier was
breached. Together with cellular networks and fuelled by miniaturization, appropriate devices
were developed. While these devices were first used only for the purpose of telephoning, they
have continuously integrated additional features, for instance, the first camera phone in 1997,
which emphasizes one more time the trend towards technological convergence.

In the realm of local wireless networks, the first initiative started with Bluetooth in 1994, which
was achieving at that time a maximum data transfer rate of 732 kbit/s. Bandwidth of wireless
local area networks (WLAN) and related technologies have increased ever since. While IEEE
802.11 legacy, introduced in 1997, was able to achieve data rates of up to 2 Mbit/s, IEEE
802.11a/g, omnipresent in today’s mobile devices, is able to communicate at up to 54 Mbit/s.
IEEE 802.11n, projected for 2009, is designed for up to 600 Mbit/s, which shows impressively
the trend towards the 1 Gbit/s limit that we have assumed in the described scenario.

A key feature supported by these technologies from the beginning is a special type of ad-hoc
communication mode, which allows devices to communicate with one another independently of
any infrastructure components. This mode, together with the general trends in technological
miniaturization and computing, were essentially responsible for the advent of ubiquitous com-
puting. This paradigm, foreseen by Mark Weiser [Wei91] in 1991, describes the scenario where
information and communication devices are embedded into objects of everyday life [HHSW05],
forming ad-hoc networks themselves. Pervasive computing, a frequently used synonym, em-
phasizes the hidden character of this computing paradigm.

1.2.3 Sensing

The third essential ingredient vital to the support of new computing paradigms are the still
ongoing achievements in sensor technology. While the employment of sensors has a long tra-
dition, progress in technological miniaturization was essential for the feasibility of embedding
sensors into devices. This opened up a vast new field of possible applications, most of all, in
wireless sensor networks and localization systems.

On one side, the advent of wireless sensor networks (WSNs) literally opened the window to
the physical world for computing platforms. For the first time, highly distributed computation

1.3. BACKGROUND 39

and communication infrastructures were able to gather and process information about the
physical world for specific applications. On the other side, localization systems, such as the
Global Positioning System (GPS) [EM99], operational since 1995, were able to deliver accurate
position information to the user’s end device. With the high-performance SiRFstar III chipset,
first incorporated in Garmin handheld devices in 2005, highly accurate position acquisitions in
the range of only a few meters became possible.

These developments allowed for a whole new class of applications in mobile communication
networks, based on the paradigm of context-aware computing, a term presumably first coined
in [ST94]. Also referred to as sentient computing, this paradigm incorporates information that is
relevant for a user’s current situation in order to adapt the services and information accordingly.
The special case of location-based computing puts the position as a specific type of context in
the center, enabling the delivery of services and information to the user in dependence of his
current position in the physical world.

1.3 Background

1.3.1 Explicit Context Models

In a broader sense, context can be defined according to [RBB03, RDD+03] and based on [DA99]
as “the information which can be used to characterize the situation of an entity”. In this
definition, entities may refer to “persons, locations, or objects which are considered to be
relevant for the behavior of an application.”

When dealing with a large number of users with similar but also different needs regarding their
personal context, it is of great value to provide structured context information in the form of
explicit context models. Appropriately implemented, such models can provide each user with
his particular subset of relevant information. Research related to all aspects of explicit context
models can be positioned, based on the analysis provided in [HHSW05], in the intersections
of mobile, ubiquitous, and context-aware computing according to Figure 1.3, with the backing
enabling technologies discussed in the previous section.

Explicit Context Models

Center of Excellence
627 (Nexus)

Nomadic Computing
Mobile Computing

Ubiquitous Computing
Pervasive Computing

Context-aware Computing
Sentient Computing

Figure 1.3: Computing paradigms, explicit context models, and the SFB 627 (Nexus).

40 CHAPTER 1. INTRODUCTION

Regarding the collection of large quantities of context information, an essential distinction
between primary and secondary context according to [RBB03, RDD+03] is useful. Primary
context, shared by virtually all possible types of entities, encompasses identity, location, and
time, which designate the most essential properties of an entity. Secondary context, comprising
any other conceivable context information, e.g., a car’s current speed and direction of movement,
may model other relevant aspects of individual entities.

Besides the mere provisioning of context information in a generic form, the specific way of
how context is used is a key indicator for selecting methods that provide context information
efficiently. For example, if the location information of a user is not required distant from him,
it makes no sense to set up a distributed index structure that materializes the information at
distant storage locations, which would require constant maintenance with no benefit.

For our convenience, the authors of [RBB03, RDD+03] have identified three basic ways in which
applications make use of context information: context-based selection, presentation, and action.
These functionalities provide essential hints to more basic required services. For instance, in
order to select information relevant to a user’s current location, that location needs to be
continuously available. Another example is the presentation of information in the vicinity of a
user’s current location, which implies the usage of spatial queries that retrieve information such
as a defined number of nearest objects of a specific type relative to the user’s current location.
Yet another example is to perform certain functions when defined spatial constellation between
the user and other entities in the world occur (spatial events), such as the popping up of a
message based on the user reaching a certain geographic region (e.g., a building).

1.3.2 SFB 627 (Nexus)

The provisioning of explicit context models for context-based applications has been addressed
by a large number of efforts in the research community. In a nutshell, the majority of these
attempts provide context models for a specific purpose only [BCQ+07].

Dealing with a broad range of issues related to the provisioning of context models on a large scale
has been addressed by the Center of Excellence 627 (Nexus)1 [HKL+99, GBH+05, REF+06].
The project deals with many objectives related to the modelling, acquisition, processing, and
provisioning of context to context-aware applications. Figure 1.3 shows the location of the
Center’s research scope relative to mobile, ubiquitous, and context-aware computing.

Central to the Nexus project is the architecture of the Nexus platform, depicted in Figure 1.4
and based on an adaptation of [REF+06]. It provides not only an extensive context model of the
real world, but also the basic services to accomplish the context-based interactions selection,
presentation, and action), which we have described in the previous section.

The Nexus platform architecture can be divided into three main tiers: the client, federation,
and service tier [FV03]. Each server in the service tier stores the context information of a
specific geometric region in the physical world. This is due to the fact that context information
is frequently queried by referring to a geometric location, which emphasizes the importance of
context models to location-based applications in particular.

1German: Sonderforschungsbereich (SFB) 627

1.4. FOCUS AND CONTRIBUTIONS 41

Sensor
Sensor

Sensor

Area Service
Register

Federation

Query
Processing

Event
Management

Navigation Support
(Add-On Service)

AWQL/AWML-Interface

Application 1 ...Application 2 Application n

AWQL/AWML-Interface

Context
Server B

GeoDB

Context
Server C

Context
Server C1

Context
Server C2

Context
Server A

C
li
e
n

t
T

ie
r

F
e
d

e
ra

ti
o

n
T

ie
r

S
e
rv

ic
e

T
ie

r

Figure 1.4: High-level architecture of the Nexus platform.

Each context server may store any type of context information provided by some context
provider, such as dynamic sensor information (Context Server A) or geographical data (Context
Server B). A context server may also abstract over an extensive geometric area that contains
multiple context servers. Each of these servers may in turn be responsible for a specific subregion
(Context Server C, combining context information from server C1 and C2).

Altogether, the Nexus vision describes the scenario where the collective of a large number of
context servers stores a comprehensive global model of the physical world. This equates to
an extensive digital representation of the real world, which is also referred to by the notion of
World Wide Space [RJM+06], in the style of the World Wide Web.

In order to provide a unified and consistent view on the combined context model, the federation
tier provides all necessary mechanisms for merging individual model subsets stored at each con-
text server. For each reference to a context model subset, the Area Service Register is consulted
to locate the relevant context servers based on the geometric region that each server’s context
model captures. Consequently, the federation tier also provides a unified view for context-based
applications with respect to essential base services for the previously discussed context-based
interactions. Most importantly, these services encompass the processing of queries and the
observation of real-world events based on the digital representation of the physical world.

1.4 Focus and Contributions

1.4.1 Focus

After the foregoing elaborations, we are now in the position to specify the focus and contribu-
tions of this dissertation. Regarding the demarcation of its scope, we can identify three major

42 CHAPTER 1. INTRODUCTION

dimensions, namely, system structure, location model, and data characteristics, which we have
depicted in Figure 1.5. Two additional properties, which we refer to as context quality and
service functionality, will be discussed thereafter.

system structurefixed ad-hoc

assisted ad-hochybrid

data characteristics

location model

symbolic

hybrid

geometric

static, large data items

dynamic, small data items

heterogenous (mix)

Nexus
(fixed)
1st FP

Nexus (hybrid)
2nd FP

(complete cube)

this
dissertation

Nexus
(fixed)

2nd FP

Figure 1.5: Design space: system structure, location model, and data characteristics.

The dimension of the system structure describes the structure of the underlying physical network
assumed for the provisioning of context models and context-based services. Figure 1.5 indicates
the relative location of this dissertation’s scope with respect to the system structure addressed
by Nexus in the first (1st FP, 2003-2006) and second funding period (2nd FP, 2007-2010).

Based on the discussions in Section 1.2.2, the trends in technology suggest a strong potential of
wireless ad-hoc networks not only as a stand-alone, but also as a complementary system struc-
ture in conjunction with infrastructure-based networks. The likely increasing desire for users to
”become more nomadic” according to mobile and nomadic computing paradigms (Section 1.2.1)
suggests to migrate functionality related to context management closer to the user, that is, to
the wireless ad-hoc network itself. In the system structure, this dissertation focuses for these
reasons on context management in pure wireless ad-hoc networks. This will be the prerequi-
site for the future consideration of hybrid context management approaches in a hybrid system
structure combining infrastructure-based and infrastructureless networks.

The dimension of the location model is of importance due to the primary context of location,
which possesses a special role and leads to the important class of location-based services and
the vision of a World Wide Space (Section 1.3.2). Apart from geometric location models, which
are based, for instance, on geometric coordinates obtained from GPS (Section 1.2.3), we can
identify symbolic location models and a combination of both into hybrid location models.

In general, the complexity of location models increases from geometric, via symbolic to hybrid
location models, including more complex definitions and relations between individual locations
in the physical world. To restrict the complexity in this dimension, this dissertation focuses on
geometric location models only. This choice is sufficient for showing the principal techniques
necessary for efficient context management in mobile ad-hoc networks.

1.4. FOCUS AND CONTRIBUTIONS 43

The dimension of the data characteristics describes general properties of the data items to be
managed. Apart from many different characteristics that can be consulted for classification
purposes, the dynamics and the size of data items can be regarded as the most influencing
ones. This is due to the fact that the product of dynamics and size directly correlates to an
increase in the cost of keeping data items in the system up to date.

A key observation is that the dynamics and size of data items generally exhibit a strong corre-
lation. For example, city maps, constituting large amounts of data, are mostly static, whereas
the rather small items of location information are likely to be highly dynamic in a scenario of
mobile users. Therefore it is valid and absolutely sufficient for our purposes to arrange both
characteristics in a combined form in Figure 1.5.

From the discussion about the importance of the primary context of location for location-based
applications in particular (Section 1.3.1), this dissertation focuses on dynamic and small data
items. In addition, straightforward solutions are conceivable for rather static data items in
mobile ad-hoc networks, e.g., their replication on a predefined subset of network nodes.

An additional fact that complicates the provisioning of model data and the implementation of
functionality on top of it is that a model of the physical world can be captured in the system
only within certain limits of accuracy. This is due to technological limitations in the acquisition
of data pertaining to physical objects, as discussed in Section 1.2.3 for the case of GPS.

In general, the imperfections in any observation of the physical world can be subsumed by the
term data quality, or context quality when referring to the management of context information.
In this dissertation, we will address the issue of data quality by taking into consideration the
inaccuracy of geometric locations of objects of the real world and its impact on the mechanisms
for the management of dynamic location information.

Besides the provisioning of context models, it is important to demonstrate the applicability
and practicability of the concepts developed in this dissertation. To this end, we make use of
selected base service functionality that builds on the previously discussed items and which is
essential in the support of the diverse types of context-based applications.

During our discussion on forms of interaction in Section 1.3.1 and the base service functionality
provided by the Nexus platform (Figure 1.4), we can identify queries and events as two of
the most fundamental services required for context-based and location-based services. In this
dissertation, we will take up the processing of spatial queries, which are centered around the
primary context of location and constitute a fundamental type of query especially for location-
based services. We will briefly discuss events in the outlook Section 6.2.

1.4.2 Contributions

The objectives of this dissertation are the design, implementation, and evaluation of a frame-
work for fundamental strategies and mechanisms for context management in mobile ad-hoc
networks. The dissertation lays the foundation for enabling the development and deployment
of location-based and context-based services in these networks.

The individual contributions within this framework follow from the derivation of the focus in
the previous section and can be concisely stated as follows:

44 CHAPTER 1. INTRODUCTION

(1) We present a quantitative analysis of the topological characteristics of mobile ad-hoc
networks by looking at the partitioning behavior of these networks;

(2) We derive a compact framework comprising the essential components for dynamic data
storage in mobile ad-hoc networks and discuss in detail the related literature;

(3) We introduce a fundamental set of algorithms for the management of dynamic data, which
is robust against the specific characteristics of mobile ad-hoc networks;

(4) We devise an analytical model for the assessment of storage costs in mobile ad-hoc net-
works and present a taxonomy and comparison of fundamental storage approaches;

(5) We define a formal accuracy model for the semantics of location information and spatial
queries, the latter including geometric range and nearest neighbor queries;

(6) We introduce algorithms for the updating of dynamic and inaccurate location information
and probabilistic spatial queries based on the defined formal accuracy model;

(7) We provide an extensive simulative performance analysis to validate the algorithms for
fundamental storage and query processing in mobile ad-hoc networks.

1.5 Structure of the Dissertation

The main part of the dissertation is structured as follows. In Chapter 2 we introduce funda-
mental notions regarding mobile ad-hoc networks and data storage relevant for the scope of
this dissertation. This chapter also presents the analysis of the partitioning behavior of mobile
ad-hoc networks, and derives the principal structure of the storage framework. The chapter
concludes with an extensive discussion of the related literature.

Chapter 3 introduces a resilient core approach to the storage of dynamic data items in mobile
ad-hoc networks based on the paradigm of location-centric storage. This chapter presents the
analytical comparison of our own storage approach with other fundamental approaches, and a
simulative performance analysis of a set of key performance metrics.

In Chapter 4, we complement the core storage approach with comprehensive strategies and
mechanisms of data migration to address the impact of node mobility on data storage. Addi-
tional simulative performance results compare our own migration approach with a number of
other conceivable approaches and demonstrate its superiority over these approaches.

Chapter 5 defines the formal accuracy models for location information and spatial queries. This
chapter also introduces the algorithms for location updating and query processing in mobile ad-
hoc networks and provides a simulative analysis to point out the impact of imperfect location
information on the performance of these algorithms.

The dissertation is concluded in Chapter 6 by summarizing key results and stating some impor-
tant implications for future considerations. Finally, a repertory of promising research directions
deduced from the work in this dissertation is highlighted to stimulate future efforts in the field
of data and context management in mobile ad-hoc networks.

Chapter 2

Fundamentals

In this chapter we specify the fundamental constraints, assumptions, and requirements that
underly the algorithms developed in the remainder of this dissertation. The key differentiation
to other work is the model of mobile ad-hoc networks and its unique characteristics, which
make the design of fundamental algorithms a highly challenging task and which we describe in
detail in Section 2.1. To emphasize the importance of MANET characteristics, we present a
detailed analysis of the partitioning behavior in these networks in Section 2.2.

In Section 2.3 we develop the notion of location-centric storage, the fundamental paradigm
that follows from arguments based on the important role the primary context of location plays
for context-based applications, and which underlies our algorithms. Based on the constraints
and assumptions of Section 2.1 through 2.3, we derive the key requirements that the storage
algorithms must take into account and derive our reference model for context management in
MANETs based on these requirements in Section 2.4. Finally, we discuss related work that is
relevant in the scope of our reference model in Section 2.5.

2.1 Mobile Ad-hoc Networks (MANETs)

2.1.1 Network Model

Mobile ad-hoc networks (MANETs, e.g. [LC04]) are a class of communication networks formed
by portable devices that communicate with one another over wireless communication (radio)
links. Devices may comprise any of the equipment described in Section 1.2 and Figure 1.2, such
as mobile phones, personal digital assistants (PDAs), and notebooks.

Due to the limited radio range of wireless communication technologies, such as IEEE 802.11
and Bluetooth (Section 1.2.2), any device is able to communicate directly only with a subset
of other devices at any time. Due to the ability of devices to move about freely while be-
ing carried by users, however, devices continuously discover new devices by moving into one
another’s communication range. Thus, communication links between mobile devices are estab-
lished and severed in a spontaneous manner. Viewed across the whole network, mobility leads
to a constantly changing topology of the physical network.

45

46 CHAPTER 2. FUNDAMENTALS

Another type of wireless multihop networks are wireless sensor networks (WSNs). In contrast
to MANETs, the devices in WSNs possess significantly less capabilities in terms of battery
lifetime, processing, storage, and communication. Typical WSNs furthermore exhibit much
lower degrees of device mobility than MANETs. A further important differentiator is that
WSNs are designed for specific applications based on the processing of sensor information
gathered from their environment, and, in contrast to MANETs, they do generally not allow for
more general services due to their limited capabilities.

A second type of wireless multihop networks are wireless mesh networks (WMNs). Different
from MANETs, nodes of WMNs consist of stationary devices, forming a relatively stable ”mesh”
of nodes through wireless radio links. Furthermore, the nodes in WMNs are powered externally
and have significantly more capabilities with respect to processing and storage. WSNs are
sometimes also considered to be more general and to comprise not only wireless mesh routers,
but also MANETs as a complementary network structure [AWW05]. In this view, MANETs
can be regarded as a special case of WMNs.

In MANETs, in order to coordinate access to the shared medium when devices attempt to
transmit at the same time, protocols for medium access control (MAC) that are specific to
wireless media are employed. Such protocols are designed to minimize the number of collisions
on the medium to avoid frequent retransmissions and congestions. Due to the limited com-
munication range of devices, configurations such as the hidden and exposed terminal situation
may occur where collision detection schemes cannot be applied. Therefore, protocols employ
alternative methods, for instance, the CSMA/CA with RTS/CTS mechanism in IEEE 802.11,
which builds on collision avoidance instead by negotiating which device is to transmit next. In
this dissertation, we will assume the aforementioned protocol, without limiting the generality
of our approaches to be developed in the remainder of this dissertation.

To function as a network, an essential property is that communication between two nodes gener-
ally occurs over multiple hops of intermediary nodes, since communication range strongly limits
direct communication between nodes. While routing is also essential in infrastructure-based
networks, for instance the Internet, the constantly changing network topology make routing
one of the major challenges in MANETs. For this reason, a large number of routing protocols
have been devised that attempt to establish efficient routes on-demand, for instance AODV,
rather than pre-computing routes beforehand. While these protocols are able to significantly
minimize the overhead for route establishment, route failures are still critical because they re-
quire costly route discoveries. For this reason, geometric routing protocols, such as GPSR, are
preferred over topological routing protocols, like AODV, when the geometric position is known
to network nodes. In this protocol class, routing is virtually stateless in the sense that explicit
route maintenance and discovery are not required. Instead, routing is accomplished based on
decisions that are taken from the viewpoint of a single node.

In this dissertation, we will assume that the nodes in MANETs are able to acquire their position
information, for example, based on an embedded GPS receiver (Section 1.2.3). Therefore, geo-
metric routing protocols may be employed for packet routing. We will investigate in Chapter 3
in more detail additional routing mechanisms required for our purposes.

Besides routing, the transport of messages that exceed the size of single packets is an important
mechanism also in MANETs. While TCP’s faulty assumptions of its congestion control mech-
anism in wireless networks is a well-known problem, additional properties further complicate

2.1. MOBILE AD-HOC NETWORKS (MANETS) 47

message transport in MANETs. The dynamic network topology challenges the establishment
of communication paths between nonadjacent nodes, because fixed routes cannot generally be
maintained for a prolonged period of time. Furthermore, the length of a path over which a
connection is established, and thus, the incurred latency, may vary significantly, which is not
a critical issue in the Internet. Plus, on the shared medium adjacent nodes frequently request
the medium at the same time, which is not the case in switched networks, and which has a
significant impact on performance. We will revisit this problem in Chapter 4 in the treatment
of data migration protocols, which move potentially large amounts of data between nodes.

In summary, MANETs adhere to the paradigm of peer-to-peer networking, according to which
all devices function in an equal way with respect to essential tasks to be performed for the
network to operate as a whole, including medium access control, packet routing, and message
transport. In further chapters, we will assume that this peer-to-peer characteristic also holds
for data storage and service provisioning.

2.1.2 Discussion of Network Characteristics

In this section we elaborate in more detail on the specific characteristics of mobile ad-hoc
networks that make the design of efficient algorithms for data storage and services challenging.
The purpose is to understand the significance of each of the discussed characteristics in relation
to the goal to be achieved, and in order to prioritize the most critical ones. Table 2.1 shows a
summary of each of the discussed characteristics, in order of increasing importance.

Computing capabilities (CPU) less critical

Memory capacity (RAM) less critical

Energy resources (battery) critical

Link bandwidth and quality critical

Node mobility very critical

Network density and topology very critical

Table 2.1: Characteristics of mobile ad-hoc networks.

Computing capabilities are required by each node to perform operations related to data stor-
age and services. For instance, data items are stored in an index structure that needs to
be maintained, and the calculation of query results requires to perform computations based
on inaccurate position information, which involve mathematical integration methods. In gen-
eral, the computational resources required for the algorithms developed in this dissertation
are outweighed by much more complex processes that occur in the context-based applications
themselves, such as the dynamic displaying of geographic maps, which is already well supported
by today’s devices. Furthermore, the tasks any node must execute for the purpose of data stor-
age and query processing will change with a node moving through the network. Thus, in the
long term, processing is shared by the combined computational resources of all nodes in the
network in a uniform way. We therefore rate computing capabilities as less critical, according
to Table 2.1, while we take general algorithmic complexity considerations into account.

48 CHAPTER 2. FUNDAMENTALS

While devices in MANETs are generally less powerful than those in infrastructure-based net-
works and the previously discussed wireless mesh networks, even the smallest state-of-the-art
mobile device according to Figure 1.2 today is equipped with several GB of memory. An ad-
ditional constraint is our focus on small data items in the dimension of data characteristics
(Figure 1.5), which allows to store a potentially large quantity of data items on a single node.
We will further discover in Chapter 4 that other performance issues related to the managed
amount of data will become relevant before do memory constraints. Therefore, the memory
capacity can be classified as less critical, but will nevertheless be addressed in the form of
load-balancing concepts if this is required in some cases.

In MANETs, more critical than the previous characteristics are the limited energy resources
due to the utilization of only batteries in mobile devices. Two main processes significantly
accelerate battery consumption. First, transmission over the wireless interface is extremely
power-consuming. The authors of [BA06] state that the ”energy required for transmission of a
single bit has been measured to be over 1000 times greater than a single 32-bit computation”.
Secondly, each position fix performed by an embedded receiver for positioning technology also
consumes significant amounts of energy [DLR07]. On the opposite site, two properties reduce
the significance of energy constraints. First, the time a device participates in typical MANET
scenarios is strongly limited due to the involvement of users carrying the devices, and batteries
may be recharged in the meantime. Second, technological trends as stated in Section 1.2.1
indicate that energy constraints will become a less significant issue in the long run.

Having identified energy resources as an important influencing parameter, its impact on the
network is more relevant. The effects of a battery depletion while a device is active in a network
is either a controlled device shutdown or a device failure. In the case of a controlled shutdown,
a device is able to take the necessary measures to yield its role in data management to other
nodes. Therefore, such shutdowns are only critical when a large fraction of devices are detached
from the network, which then adversely impacts overall operation of the MANET in the first
place. Device failures, however, are more critical because each device in the network may be
in a state that is relevant for data management. In this case, only proactive measures, like
data replication, are a remedy. In this dissertation, we assume that device failures are rare
events, which is consistent with the observation of today’s mobile devices that are in service.
Nevertheless, we will point out in Chapter 6 the importance and role of data replication when
node failures are also to be taken into account.

Based on these discussions, we rank energy resources as critical in Table 2.1. In all algorithms,
we will therefore put strong emphasis on general communication efficiency. Research with
specific emphasis on energy-efficient position acquisition in the tracking of mobile objects is
e.g. [DLR07], which is complementary to this dissertation.

At the current technological state-of-the-art in communication technology, link bandwidth and
quality are still perceived as critical parameters. While trends in communication technology
indicate a significant improvement in the case of link bandwidth (Section 1.2.2) in the near
future, it is still necessary, due to the shared medium in MANETs, to avoid frequent access
to the medium when possible. This may otherwise lead to undesirable congestions and as a
consequence, to congestion-related packet loss. According to the data characteristics considered
in Section 1.4.1, we focus on dynamic data items that are also small. The magnitude of wireless
transmissions required to keep an accurate context model with these characteristics in the

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 49

MANET can therefore be considered, roughly speaking, somewhere between small and static
data items on one end, and large and dynamic data items on the other end. We therefore
consider this issue as critical and emphasize, similar to the case of energy resources, on a
general consideration of communication efficiency in the design of our algorithms.

Regarding link quality, a major observation in wireless networks is its degradation with the dis-
tance between communicating peers. This may lead to additional mobility-related packet loss,
where devices attempt to communicate with each other while no longer within transmission
range. Packet loss, undesired in general, may then lead to an increased number of retrans-
missions that may in turn lead to congestions again. Therefore, we also consider link quality
to be a critical characteristic, and we will address mobility-related packet loss that is due to
distance-related link degradation explicitly in Chapter 4 in the context of data migration.

The most relevant property to be considered in MANETs is mobility, the primary differentiator
from infrastructure-based networks, WMNs and WSNs. The impact of mobility on algorithm
performance is twofold: immediate impact of mobility itself, and the impact of mobility on
secondary characteristics, namely, node density and network topology. The immediate impact
of mobility is on the performance of data access. This is due to the fact that data, which is
stored at nodes, is transported by these nodes while they are carried along by users. This effect
in turn leads to a significant dispersion of data items throughout the network and makes the
access to subsets of context information inefficient due to extensive searches required. With
increasing mobility, this effect is amplified, which is the reason for our indicating the impact
of mobility as highly critical in Table 2.1. Chapter 4 is dedicated exclusively to the design of
adequate countermeasures against the translocation of data.

Node density, in its static form, becomes critical when it assumes extreme values. This is in fact
true for both large as well as low node densities. For large node densities, broadcast storms may
occur [NTCS99], and even routing may be adversely impacted as we will show in Section 4.6.
Much more critical, however, are small node densities, where the topology of the network is
strongly impacted. The additional impact of node mobility leads to dynamics in node density
and network topology. While on the small timescale, density and topology are only affected
in the vicinity of individual nodes, large timescales may lead to globally significant changes in
these parameters. In particular, heterogeneous node distributions may lead to both densely
and sparsely populated regions in different parts of a single network.

Altogether, the impact of mobility and the complex correlations between density and topology
must be considered as highly critical (Table 2.1). The impact of these parameters will be
addressed by the large part of the contributions in Chapter 3 and 4.

2.2 Partitioning in Mobile Ad-hoc Networks

In the previous section we have classified node density as a highly critical MANET property,
because low values lead to weak network connectivity. With node mobility, communication
links between pairs of devices may be established and lost, yet overall connectivity of the
network will still be maintained for sufficiently dense node population. With further decrease
of node density, however, parts of the network separate into disjoint networks that are no longer
connected, each part forming a network partition of its own.

50 CHAPTER 2. FUNDAMENTALS

Network partitioning in MANETs is especially critical because algorithms running in the net-
work are not able to access data in more than one partition at a time. For instance, in the
context of this dissertation, data that is acquired by a network node in one partition cannot be
updated to a potential storage node in another network partition. On the other side, mobility
acts in a beneficial way because it induces constant changes in network connectivity, and in
turn, in the partitioning situation. Effectively, this means that disconnected network partitions
will eventually join again after a finite amount of time.

An understanding of the characteristics of network partitioning is therefore crucial to deduce
constraints that are relevant for the algorithm design. For that purpose, we present the following
quantitative analysis of network partitioning, which addresses Contribution 1 in Section 1.4.2
and which is published in [HDM+05, HDM+07]. For the proposed set of partition metrics,
each quantifying a specific aspect of the partitioning situation in MANETs, we underpin their
relevance with example algorithms that are related to mobile data management in MANETs.
Furthermore, we will consider conclusions we draw from the results in this section in the fun-
damental storage algorithms in Chapter 3 and 4.

In Section 2.2.1 we review existing work related to modelling network partitioning in MANETs.
Section 2.2.2 defines the simulation model, and Section 2.2.3 basic notions used in subsequent
sections. Section 2.2.4 provides a taxonomy of network partition metrics and introduces formal
definitions of the set of partition metrics that we use to characterize different types of MANET
scenarios. A comprehensive set of simulation experiments is discussed in Section 2.2.5, before
we conclude the quantitative analysis of network partitioning in Section 2.2.6.

2.2.1 Related Work

Related work with respect to metrics that target at the quantification of the impact of den-
sity and mobility on connectivity in MANETs can be classified into the analysis of basic link
properties and the analysis of higher-level properties beyond single links.

The author of [Bet02] provides an analytical model for minimum node degree and graph con-
nectivity. The analysis of k-connectivity shows a relationship between the transmission range of
nodes and the probability of the graph being k-connected for different k. The analytical model
has been compared with simulation results. However, the results do not allow an interpretation
concerning the number and size of partitions. In [Bet03] the author analyzes the connectivity
of an ad-hoc network regarding the transmission range and number of nodes for the random
waypoint mobility model. However, the results do not allow an interpretation of partitioning
characteristics in mobile ad hoc networks. The authors of [GdWFM02] only consider the dura-
tion of links between adjacent nodes. All of these analytical studies provide a detailed insight
into the nature of mobility, node distribution, and the properties of individual links in mobile
networks. However, the cause for partitions in general is due to temporal aggregations of link
failures between different pairs of nodes and requires a more abstract set of parameters.

Some previous work has been conducted that examines network properties that go beyond
the state of individual links. The authors of [NTCS99] consider MANETs where nodes are
distributed with high density. They concentrate on the fact that message flooding leads to
an increasing number of collisions in such dense networks (broadcast storms) and propose

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 51

optimizations to effectively reduce flooding overhead. In contrast, we focus on the impact
of low node density on network connectivity. The authors of [HS01] introduce an algorithm
to overcome partitioning in MANETs by increasing the transmission power of the wireless
interfaces in the presence of network partitions. Their evaluation only states whether partitions
were present at all in the given scenarios. In our work we went further by examining, among
others, the number of partitions over time and the frequency of changes in partitioning.

2.2.2 Simulation Model

We assume a mobile ad-hoc network comprising a set of n mobile nodes. Each node occupies a
position (x, y) inside of a fixed geographic area, denoted by A. The transmission properties of
all nodes are based on the unit disc model, in accordance with the free space radio propagation
model. Thus, two nodes ni, nj are within transmission range rtx, if the Euclidean distance
d(ni, nj) between ni and nj is less than or equal to rtx. The topology graph G(N, E) consists
of a set of vertices, denoted by N , representing the nodes of the network, and the set E of
undirected edges, corresponding to communication links between nodes. An undirected edge
{ni, nj} ∈ E exists, if and only if d(ni, nj) < rtx. A network partition is a subset P ⊆ N where
i) a path exists between all pairs of vertices ni, nj ∈ P , and ii) no path exists between any pair
of vertices ni ∈ P, nk ∈ N \ P . Finally, by PART(G) we denote the set of partitions in G.

2.2.3 Preliminary Notations

Let T = (tmin, tmax) denote a physical time interval. The topology graphs at tmin and tmax are
defined to be Gmin and Gmax, respectively. A partition event e occurring at a discrete point in
time t ∈ T , is defined by a tuple e = (type, t, P1, P2, G, G′). By e.type, e.t, e.P1, e.P2, e.G, and
e.G′ we refer to each of tuple e’s element. The type attribute is either split or join, indicating
that partitions P1 and P2 are split or joined, respectively. G and G′ are the topology graphs
before and after the occurrence of the event e. For a join event, both partitions P1 and P2 are
contained in set PART(G) and P1 ∪ P2 is in G′. For split events the opposite holds.

The effect of events with equal timestamps on the topology graph is commutative, i.e., it leads
to the same topology graph, independent from the order in which these events are applied.
Informally, removing an edge l1 ∈ E and adding another edge l2 ∈ E for a given topology
graph G at the same time will result in the same topology graph G′ independent of the order
of these modifications. Thus, we can arrange all events linearly according to a total order <o

based on timestamps and a specific (arbitrary) order for events that occur at the same time.
By Epart(T) = {e | e.t ∈ T} we denote the set of partition events in T . The indexing function
ε : {1, . . . , |Epart(T)|} → Epart(T) is the bijection that preserves the total order on Epart(T), i.e.
∀i, j ∈ {1, . . . , |Epart(T)|} : i < j ↔ ε(i) <o ε(j).

The two types of events indicated by the type attribute are defined as follows: A partition join
event e = (join, t, P1, P2, G, G′), or join event for short, is a partition event in Epart transforming
a topology graph G into G′ such that P1, P2 ∈ PART(G) and ∃P ∈ PART(G′) for which
P = P1 ∪ P2. A partition split event e = (split, t, P1, P2, G, G′), or split event for short, is a
partition event transforming a topology graph G into G′ such that P1, P2 ∈ PART(G′) and
∃P ∈ PART(G) for which P = P1 ∪ P2. A summary of the notations is given in Table 2.2.

52 CHAPTER 2. FUNDAMENTALS

Notation Definition Section

n number of nodes in the network 2.2.2

rtx transmission range of nodes

G(N, E) topology graph with node set N and edge set E

P ⊆ N network partition

PART(G) set of partitions in G

T = (tmin, tmax) physical time interval 2.2.3

Gmin, Gmax topology graph at tmin, tmax

e = (type, t, P1, P2, G, G′) partition event of type type ∈ {split, join}
Epart(T) set of partition events in physical time interval T

Π(e) set of partitions for event e 2.2.4.2

|Π(e)| number of partitions for event e

|Π|avg(T) average number of partitions in T

Savg(e) average size of partitions for e

Savg(T) average size of partitions over T

H(x, T) number of partitions with size x in T

Rpart(T) average partition change rate in T

PSR(e) partition size ratio for e

PSRavg(T) average partition size ratio in T

Rn(nk, T) node partition change rate for nk in T 2.2.4.3

Rnavg(T) average node partition change rate in T

τsep(n1, n2, T) separation time between n1 and n2 in T

τcon(n1, n2, T) connection time between n1 and n2 in T

Ksep(n1, n2, T) number of separations between n1 and n2 in T

Kcon(n1, n2, T) number of connections between n1 and n2 in T

Ncont(nk, T) size of continuous node visibility set for nk in T

Nacc(nk, T) size of accumulative node visibility set for nk in T

Table 2.2: Network partitioning: notations.

2.2.4 Definition of Partition Metrics

2.2.4.1 Taxonomy

We consider two classes of metrics: network-wide partition metrics and node-centric partition
metrics, shown in Figure 2.1. Network-wide partition metrics characterize the partitioning
situation in a MANET viewed as a single entity. In this class, we define the following metrics:
number of partitions, size of partitions, partition change rate, and partition size ratio.

Node-centric partition metrics characterize the partitioning behavior in the network from the
perspective of single nodes. This class of metrics comprises node partition change rate, the sep-
aration and connection time and number, and two visibility sets, which describe the continuous
and accumulative sets of nodes visible to a single node during the formation of partitions.

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 53

Network Partition Metrics

Network-wide Partition Metrics Node-centric Partition Metrics

Number of
Partitions

Size of
Partitions

Partition
Size Ratio

Node Partition
Change Rate

Node Separation
and Connection

Size of Node
Visibility Sets

Partition
Change Rate Number

Time Continuous
Accumulative

Figure 2.1: Taxonomy of network partition metrics in mobile ad-hoc networks.

2.2.4.2 Network-wide Partition Metrics

Number of Partitions

Let Π(e) = PART(e.G′) be the set of partitions that exist after a given event e has occurred.
If the number of partitions that exist in the network after the occurrence of event e is denoted
as |Π(e)|, then the average number of partitions over the time interval T is defined as follows:

|Π|avg(T) = 1
tmax−tmin

|Epart(T)|−1∑
i=1

(ε(i+1).t − ε(i).t) · |Π(ε(i))| (2.1)

In other words, the average number of partitions is the time-weighted average of all partitions
that exist in the system after each (split or join) event. For ease of exposition, we have not
explicitly stated the number of partitions before the first event and after the last event in the
above equation, although we have considered these corner cases in the simulation study. For
the number of partitions, the optimum case is defined as |Π|avg(T) = 1, that is, all nodes
are contained in a single partition and are connected at all times. The worst case occurs if
|Π|avg(T) = n, that is, every node nk ∈ N is isolated.

Given an ad hoc networking scenario, the average number of partitions |Π|avg(T) is the primary
metric that can be used to identify how many partitions can be expected. Many distributed
algorithms, e.g. data replication and distributed data aggregation, rely on communication prim-
itives such as broadcasting or multicasting, which operate best in the presence of high connec-
tivity within the network. For example, in the case of data replication, the average number
of partitions is an important indicator for the number of replicas that should be created in
a particular network scenario. Obviously, if the number of replicas is much smaller than the
average number of partitions, there is a high probability that some nodes will not be able to
access any replica in the system. On the other hand, if the number of replicas is greater than
the average number of partitions, the probability of reaching at least one replica in a partition
is much higher. If the number of replicas is much larger than the number of partitions, too
many redundant replicas might be available that may not be required.

54 CHAPTER 2. FUNDAMENTALS

As an extension to (2.1), the distribution of the number of partitions gives additional in-
formation which can be of use, for example, for algorithms that employ network-wide data
dissemination. If the distribution of Π(e) indicates that the network is never fully connected,
that is, ∀e ∈ Epart(T) : |Π|(e) > 1, a complete dissemination will never be possible without
buffering messages temporarily at intermediate nodes.

Size of Partitions

Let |P | denote the size of a partition P , that is, the number of nodes in that partition. The
average size of partitions, written Savg(e), that exist in the system after a given event e can be
derived from the average number of partitions by computing n/|Π(e)|. Thus, the average size
of partitions over T is

Savg(T) =
n

|Π|avg(T)
(2.2)

For given size x, the number of partitions with size x over the interval T is calculated as:

H(x, T) = |{P ∈ PART(Gmin) | |P | = x}| (2.3)

+ |{e | e.type = join ∧ |e.P1 ∪ e.P2| = x}|
+ |{e | e.type = split ∧ |e.P1| = x}|
+ |{e | e.type = split ∧ |e.P2| = x}|

where e ∈ Epart(T). The domain of x is {1, . . . , n}, because the minimum and maximum size
of a partition is 1 and n, respectively. The graph of H(x, T) is the frequency distribution of
partition sizes within time interval T . With H(x, T) it is possible to identify characteristic
distributions of partition sizes. For example, peaks in the graph defined by H indicate that
many partitions are nearly equally sized, e.g. many small and few large partitions.

Concerning the impact on data management algorithms, a distribution of partition sizes that
reveals many large partitions implies high connectivity of the network. This enables a single
node to reach many nodes with a high probability, e.g., during a message broadcast. If, however,
many small partitions exist, many nodes are isolated and cannot be reached. For the particular
case of broadcast algorithms, this metric can be used to determine whether simple flooding or
gossiping mechanisms [NTCS99] are sufficient, or if algorithms, which are optimized for settings
where many partitions exist, are necessary, for instance, Adaptive Flooding [OT98].

Partition Change Rate

The average partition change rate Rpart(T) is defined as the number of partition events that
have occurred over time interval T , divided by tmax − tmin:

Rpart(T) =
|Epart(T)|
tmax − tmin

(2.4)

The partition change rate is an indicator for the frequency of partition changes in general. On
one hand, high partition change rates are beneficial for data dissemination algorithms in order
to deliver data to nodes in different partitions. The higher the rate, the more contacts between

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 55

different partitions occur per unit of time. On the other hand, low partition change rates
are beneficial for algorithms that require a relatively stable topological structure, for instance,
aggregation trees. Here, any partition split event may damage the tree if the structure extends
over multiple partitions after a split. These two examples show that the interpretation of the
partition change rate strongly depends on the concrete application scenario.

Partition Size Ratio

Whenever two partitions P1 and P2 are joined or a partition is split in two, in the case of a join
or split event e, respectively, we consider the ratio between the size of these two sets of nodes.
This ratio is called the partition size ratio and is defined as:

PSR(e) =
max(|e.P1|, |e.P2|)

|e.P1 ∪ e.P2| (2.5)

for a partition event e ∈ Epart(T). The average partition size ratio over all events in T is

PSRavg(T) =
1

|Epart(T)|
∑

e∈Epart(T)

PSR(e) (2.6)

PSR(e) maps to values in the interval [0.5, 1[. If PSR(e) is 0.5, two equally sized partitions are
joined into one partition for a join event, or one partition is split into two equally sized partitions
for a split event. Values close to 0.5 indicate that the involved partitions are approximately
equally sized. For values close to 1, the sizes of the partitions involved in the respective partition
event are more and more unbalanced.

An example for a potential application of this metric is the situation where a node wants to
detect if it has experienced a partition change. For that, we assume that PSRavg(T) is close to 1
for many partition events and that a node is able to observe its k-hop neighborhood. Depending
on the selection of k and the frequency of occurrence of strongly unbalanced partition size ratios,
a node can determine with a certain probability whether it has moved from a very small to a
very large partition, or vice versa.

2.2.4.3 Node-centric Partition Metrics

Node Partition Change Rate

For this metric, we first determine the number of partition events that a node nk experiences.
For a partition event e to be counted, it must hold that nk ∈ e.P1 ∪ e.P2, where e.P1 and e.P2

are the partitions involved in the event e. We define the set of partition events that a node
nk is involved in over time interval T by Epart(nk, T) = {e ∈ Epart(T) | nk ∈ e.P1 ∪ e.P2}. We
define the node partition change rate for a node nk as follows:

Rn(nk, T) =
|Epart(nk, T)|
tmax − tmin

(2.7)

56 CHAPTER 2. FUNDAMENTALS

For every node nk, it holds that Rn(nk, T) ≤ Rpart(T), because Epart(nk, T) ⊆ Epart(T). The
average node partition change rate for interval T is

Rnavg(T) =
1

n

n∑
k=1

Rn(nk, T) (2.8)

and will be used in comparison to the network-wide partition change rate Rpart(T).

Patterns in the distribution of node partition change rates provide helpful insights into the
characteristics of algorithms operating in a given geometric area. For example, if the network-
wide partition change rate Rpart(T) is high, the node partition change rate is able to reveal,
for example, if a few nodes being involved in frequent partition changes dominate the global
rate, while other nodes may experience only a few partition changes. Especially the latter case
would indicate stable, but isolated partitions.

Node Separation and Connection

In the presence of network partitions, nodes being located in different partitions become pairwise
separated. Due to the evolution of the partitioning situation over time, nodes also become
connected again when being located in the same partition. In order to describe the impact
of partitioning on node separation and connection characteristics, we define metrics related to
both the time and number of separations and connections.

The node separation time, denoted by τsep(n1, n2, T) and defined between pairs of nodes n1, n2

during time interval T , describes the time for which nodes are located in different partitions and
thus, cannot communicate with each other. To derive this node-centric metric, two events e1, e2

have to be found for which the following is true: e1.type = split and e2.type = join and n1 ∈ e1.P1

and n2 ∈ e1.P2 (w.l.g.) and the next join event e2 ∈ Epart(T) for which n1, n2 ∈ (e2.P1 ∪ e2.P2).
The set of all such pairs of events is denoted as Esep(T). The sum of all node separation times
during interval T is defined as follows:

τsep(n1, n2, T) =
∑

(e1,e2)∈Esep(T)

e2.t − e1.t (2.9)

Note that no further join event might exist after the last split of the node pair and before tmax.
In this case, we assume that the node separation time extends up to tmax.

The node separation time is a fundamental metric that allows algorithms to make assumptions
about the expected time other nodes may be out of the scope of communication of a particular
node. Notice that for this metric, we assume that nodes that are able to communicate via
multiple hops are not considered separated. If the node separation time is small, an algorithm
might simply tolerate node separations by applying simple timeout strategies. However, in the
case of large node separation times, it may be required for algorithms to take explicit steps
before a separation occurs, e.g., the explicit exchange of larger amounts of data.

The node connection time is the inverse of the separation time and describes to which extents
pairs of nodes are located in the same network partition. The sum of all connection times is thus
defined similarly to the sum of node separation times as the time difference between two events
e1, e2 for which the following holds: e1.type = join and e2.type = split and n1, n2 ∈ (e1.P1∪e1.P2)

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 57

and the next split event e2 ∈ Epart for which n1 ∈ e2.P1 and n2 ∈ e2.P2 (w.l.g.). The sum of all
connection times of n1 and n2 over T is denoted as τcon(n1, n2, T).

The node connection time is crucial because it determines how much data can potentially be
exchanged between nodes. For example, if the network characteristics are such that sufficiently
large connection times never exist, an algorithm may explicitly perform remote operations in
multiple steps in the first place.

While the node separation and connection time give a picture of the aggregated time that
can be expected for nodes to be separated or connected, it does not specify the frequency of
separations and connections that occur. In other words, each of the separation and connection
time do not state whether the expressed sum is due to a small number of large intervals, or,
vice versa, to a large number of small intervals. Therefore, we also examine the number of
node separations Ksep(n1, n2, T) and connections Kcon(n1, n2, T) per node pairs, which define
the number of separations and connections that occur during time interval T , respectively.

The relevance of this further specification of node separation and connection behavior is shown
by the following example. Consider the transmission of a large message between two nodes
currently located in the same partition, and for which it is known that both nodes are connected
in the same partition during 90 % of the time. However, if the number of connections indicate
high frequency in the separation and reconnection of the two nodes, it is not likely that a
transmission between both nodes can be maintained for a prolonged period of time. This is due
a node separation that may follow shortly after a reconnection, and which is due to a recurring
partition split. Such situations may require additional precautions to optimize transmission
protocols, depending on the magnitude of node separation and connection frequencies.

Node Visibility Sets

We define two metrics related to the set of nodes visible to a specific node nk during the splitting
and joining of partitions: the continuous and accumulative node visibility set.

The continuous node visibility set Econt(nk, T) ⊆ Epart(T) is the subset of nk’s split events within
the time interval T defined as Econt(nk, T) = {e ∈ Epart(T) | nk ∈ e.P1∧e.type = split∧e.t ∈ T}.1
The size of this set is defined as

Ncont(nk, T) =
∣∣ ⋂

e∈Econt(nk,T)

e.P1

∣∣ (2.10)

Ncont(nk, T) gives information about how many nodes are located in the same partition as nk

during the time interval T . The gradient of Ncont(nk, T) based on a variation of T is an indicator
of how fast the individual nodes in nk’s partition are separated into other partitions.

Data management algorithms that fragment information across multiple nodes are only suitable
for systems with a reasonably small gradient, because only a slowly decreasing continuous node
visibility set ensures a sufficiently long availability of information stored on remote nodes.
The value of the gradient tolerable for algorithms depends on how long remote data has to
be available. In the area of distributed query processing, for example, this includes the time
between sending a query and receiving all answers from remote nodes.

1Without loss of generality, we assume that nk is always contained in the first partition P1 of e.

58 CHAPTER 2. FUNDAMENTALS

The accumulative node visibility set Eacc(nk, T) is the subset of nk’s join events within T defined
as Eacc(nk, T) = {e ∈ Epart(T) | nk ∈ (e.P1 ∪ e.P2) ∧ e.type = join ∧ e.t ∈ T}. Its size is

Nacc(nk, T) =
∣∣ ⋃

e∈Eacc(nk,T)

e.P1 ∪ e.P2

∣∣ (2.11)

Nacc(nk, T) increases monotonically as partitions with new nodes are joined with nk’s partition
and converges towards the set of all nodes; it will be N , if nk has been in the same partition
with all nodes over the time interval T at least once. In the context of data dissemination the
gradient of Nacc(nk, T) is an upper bound for how fast an individual node can access all other
nodes throughout the network.

2.2.5 Simulation Study

To conduct our experiments, we have used an event-based simulator which, given a mobility
trace, constructs and alters the topology graph over time. The event-based approach is able
to capture every occurring state of the topology graph over time. The mobility traces were
obtained using the simulation environment presented in [SHB+03]. The random waypoint model
operates on an area of 2 × 2 km2. For the graph-based random walk mobility model, we have
modelled two graphs, representing a typical Central European city (Figure 2.2.a) and Midtown
Manhattan (Figure 2.2.b). Each graph spans a total area of approximately 2.5× 1.8 km2. The
similar areas of the mobility models allow us to compare the simulation results for different
mobility patterns with one another. The speed of nodes was randomly chosen from the interval
[0.5, 2.0] m/s. The total simulation time was 3600 s.

The key parameters for performance evaluation of algorithms in MANETs are the spatial area
in which the mobile nodes may move, the number of nodes in the network, the mobility model
the nodes follow, and the transmission range of the wireless communication technology. The
spatial node density is defined by the size of the spatial area and the number of nodes. In the
following simulations, we provide detailed results for the various metrics and focus on node
density and a discussion of the impact of each of the mobility models. A discussion of the
impact of the transmission range is provided in Appendix B.

We assume that all network nodes are mobile, thus inducing changes in the topology graph over
time. We use two mobility models in our experiments: the random waypoint mobility model
[BMJ+98] and the graph-based mobility model [THB+02], which model typical scenarios in an
open field and urban area, respectively. In the random waypoint model, nodes move on straight
lines inside of the simulation area by repetitively selecting a random destination and random
speed. Because this model has the property of a steadily decreasing average node speed over
time [YLN03], we choose the random speed from an interval [vmin, vmax], with vmin > 0. In the
graph-based model, the mobility of nodes is spatially constrained by a graph. Each vertex in
the graph represents a particular location (x, y) within a geographic region, such as points of
interest or road intersections. Graph edges connect these locations, and represent routes in the
region, such as streets. Each node chooses a vertex of the graph as its destination and a speed
from a given interval randomly and moves to that destination on the shortest path of the graph
at the chosen speed. In contrast to the random waypoint mobility model, the graph-based
random walk mobility model is more restrictive and prohibits completely arbitrary movement,
reflecting more closely scenarios in urban areas.

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 59

Church

Hospital

Museum

Concert Hall

Court

City Hall

Shopping Mall

Gallery
Castle

Theater

Post Office

University

Central Station

Church

a. Central European city graph.

Theater
Row Bus

Terminal

Penn Station

Macy's

Empire State Building

Bloomingdale's

United
Nations

Subway

Music
Hall

HiltonTheater

Subway

Rockefeller Center

St. Patrick's
Cathedral Church

Briant
Park

Public
Library

Daily
News

Chrysler
Building

Grand Central
Terminal

Museum

Times
Square

Theater

Theater

Carnegie
Hall

Columbus Circle

Library

Hotel

Store

Stern's

Jewelry Way

Synagogue

Hotel

b. Midtown Manhattan graph.

Figure 2.2: Input graphs to the graph mobility model.

2.2.5.1 Network-wide Partition Metrics

Number of Partitions

Figure 2.3 shows the results for the average number of partitions |Π|avg(T) as a function of the
number of nodes in the network. For small networks, |Π|avg(T) is mostly determined by the
number of nodes in the network, which define the upper bound of the number of partitions.
Once the node density is higher than 75 nodes/km2, which corresponds to 300 nodes in our
simulations, |Π|avg(T) steadily decreases. However, even for larger networks with a density of
600 nodes/km2, corresponding to 2400 nodes, the relatively high number of partitions (5 to 10
on average) still needs to be taken into account, especially for the implementation of algorithms
that require a reachability of all nodes in the network, such as reliable broadcast techniques.

60 CHAPTER 2. FUNDAMENTALS

0

10

20

30

40

50

60

70

80

0 400 800 1200 1600 2000 2400

A
ve

ra
ge

 N
um

be
r

of
 P

ar
tit

io
ns

Number of Nodes

Random Waypoint

Midtown Manhattan

European City

Figure 2.3: Average number of partitions |Π|avg(T) as a function of the number of nodes n for
rtx = 100 m and all three mobility models.

100
400

800
1200

1600
2000

2400
Number of Nodes

0

20

40

60

80

100

Number

of Partitions
0

5

10

15

20

Occurrences

[%]

Figure 2.4: Frequency distributions of the number of partitions |Π|(e) as a function of the
number of nodes n for rtx = 100 m and the random waypoint mobility model.

A more detailed view of Figure 2.3 is depicted in Figure 2.4 for the random waypoint mobility
model scenario. Each average number of partitions in Figure 2.3 is the frequency distribution
of the number of partitions for a particular number of nodes.

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 61

0

1

2

3

4

5

6

7

25 30 35 40 45 50 55 60 65

O
cc

ur
re

nc
es

 [%
]

Number of Partitions

Figure 2.5: Frequency distribution of the number of partitions |Π(e)| for n = 400 nodes,
rtx = 100 m and the random waypoint mobility model.

Figure 2.5 shows an extract of the 3D plot for the case where the number of nodes is 400.
For the graph-based models, we have observed a very similar distribution with respect to the
averages in the number of partitions. A key observation is the fact that no arbitrary number
of partitions occur for any selected number of nodes. With increasing number of nodes, the
distribution is even more distinct around the average. Assuming that nodes are able to detect
the node density in their vicinity, the selection of a matching distribution allows reasoning
about the number of partitions in regions of the network for the presented mobility models.

Size of Partitions

The results for the average size of partitions Savg(T) as a function of the number of nodes is
presented in Figure 2.6. Savg(T) increases with the number of network nodes. Furthermore,
the standard deviation of the average partition size also increases with the size of partitions.

Figure 2.7 shows the distribution of partition sizes for each measured average in Figure 2.6
and reveals the reason for the high standard deviation. In all scenarios, the occurrence of very
small partitions, e.g., isolated nodes and partitions of up to 5 nodes, is very common. In the
settings with low node density, these small sizes dominate the distribution. With increasing
node density, the occurrence of very large partitions becomes more frequent and leads to a large
standard deviation for the size of partitions.

Figure 2.8 displays the distribution of partition sizes for the 400 node random waypoint scenario,
which is extracted from Figure 2.7. It shows the situation where the elevation at around 280
nodes is becoming more distinct, which is more and more the case towards the high-density
end of the considered density spectrum.

The result that average sized partitions are rare leads to the conclusion that, if a node is not
located inside a small partition, there is a high probability that it is located in a large partition.

62 CHAPTER 2. FUNDAMENTALS

0

100

200

300

400

500

600

700

800

0 400 800 1200 1600 2000 2400

A
ve

ra
ge

 S
iz

e
of

 P
ar

tit
io

ns
 [#

 n
od

es
]

Number of Nodes

Random Waypoint

Midtown Manhattan

European City

Figure 2.6: Average size of partitions Savg(T) as a function of the number of nodes n for
rtx = 100 m and all three mobility models.

400
800

1200
1600

2000
2400Size of Partition 100

400

800

1200

1600

2000

2400

Number of Nodes

0

5

10

15

20

Occurrences

[%]

Figure 2.7: Frequency distribution of the partition size H(x, T) as a function of the number of
nodes n for rtx = 100 m and the random waypoint mobility model.

A node may distinguish these cases with relatively low communication overhead by calculating
the k-hop neighborhood, where, for example, k = 4 to decide whether or not the node is in a
partition with at most 5 nodes. In our results, simply checking for partitions of a size smaller
than 5 would allow us to determine with a high probability (≥ 80%) whether or not a node
is located in a large partition. This information could be valuable for many data management

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 63

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400

O
cc

ur
re

nc
es

 [%
]

Size of Partition

Figure 2.8: Frequency distribution of the partition size H(x, T) for n = 400 nodes, rtx = 100 m
and the random waypoint mobility model.

algorithms involving, for example, multicasting or broadcasting, where it would be useful to
send important information while being inside a large partition.

Partition Change Rate

Figure 2.9 shows the average partition change rate Rpart(T) over the number of nodes. For a
very small number of nodes, the partition change rate is low and increases up to approximately
300 nodes. For this low density, the number of partitions containing only one or a few nodes is
high. Such partitions are connected with a small number of links only. Therefore, a link change
leads to a partition change very frequently. Partitions become connected with more links as
the number of nodes increases further, leading to partitions which are more robust against link
changes. As a consequence, the partition change rate decreases.

Partition Size Ratio

The results for the average partition size ratio PSRavg(T) as a function of the number of nodes
is presented in Figure 2.10. While PSRavg(T) steadily increases with the size of the network,
it asymptotically approaches its maximum value of one. This is due to the fact that join
and split events mostly involve a large and a small partition. It is interesting to notice that
independent from the specific mobility model used in the experiments, the partition size ratio
metric indicates that there is a stable, well-connected core and a series of “satellite” groups
that join and split throughout the simulation.

To underline this effect, we have visualized the sizes of both partitions involved in a partition
event in Figure 2.11. The complete plot corresponds to the measuring point at 400 nodes
for the random waypoint mobility model in Figure 2.10. The number of occurrences of any
possible pair of partition sizes has been drawn as columns on the plane. The distribution shows

64 CHAPTER 2. FUNDAMENTALS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 400 800 1200 1600 2000 2400

A
ve

ra
ge

 P
ar

tit
io

n
C

ha
ng

e
R

at
e

[1
/s

]

Number of Nodes

Random Waypoint

Midtown Manhattan

European City

Figure 2.9: Average partition change rate Rpart(T) as a function of the number of nodes n for
rtx = 100 m and all three mobility models.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 400 800 1200 1600 2000 2400

A
ve

ra
ge

 P
ar

tit
io

n
S

iz
e

R
at

io

Number of Nodes

Random Waypoint

Midtown Manhattan

European City

Figure 2.10: Average partition size ratio PSRavg(T) as a function of the number of nodes n for
rtx = 100 m and all three mobility models.

that bursts dominate in two regions. For large partition size ratios, which is visible from the
elevation at approximately 250 nodes of partition 1, many pairs of one large and one small
partition are involved in partition splits and joins. In addition, a high peak occurs at a very
low number of nodes of partition size 1, where very small partitions are split and joined.

We observed that with increasing node density, this pattern evolves similarly as that of partition
sizes presented in Figure 2.7, resulting in two narrow peaks at the low and high end of the
partition 1 scale. Correlating both of these metrics leads to the conclusion that large partitions
remain large over time and are only affected by small groups of joining and leaving nodes.

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 65

0

100

200

300

400Size of Partition 1 0

100

200

300

400

Size of Partition 2

0

1

2

3

4

5

Occurrences

[%]

Figure 2.11: Frequency distribution of the partition size ratio PSR(e) for n = 400 nodes,
rtx = 100 m and the random waypoint mobility model. The isolated dots are located on the
x-y-plane and indicate single occurrences of certain partition change ratios.

Therefore, the existence of a well-connected core, backed up by the experimental evidence
provided in these graphs, indicates that independently of the mobility model used, important
data that needs to be accessed by a large number of nodes can be stored at the core. It might
be interesting to determine whether or not there is a geographical correlation between the
presence, the size and the location of such a core.

2.2.5.2 Node-centric Partition Metrics

Node Partition Change Rate

Figure 2.12 shows the results of the average node partition change rate Rnavg(T) as a function
of the number of nodes. The change rate as experienced by individual nodes on average shows
the same characteristic behavior as the network-wide partition change rate in Figure 2.9. This
indicates that the partition changes across networks of different sizes behave similar as those
experienced by individual nodes. On average, Rnavg(T) is lower than the network-wide partition
change rate, because not every node is affected by every change. Nevertheless, as the size of
the network increases, the difference between the node rate and the system-wide rate becomes
smaller. This corresponds to the increasing size of partitions observed in Figure 2.6, so that
changes in large partitions have an effect on a larger number of nodes.

In Figure 2.13 we have extended the diagram in Figure 2.12 by including the distribution of
Rnavg(T) across nodes. A closeup for the distribution is shown in Figure 2.14 for the case of

66 CHAPTER 2. FUNDAMENTALS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 400 800 1200 1600 2000 2400

A
ve

ra
ge

 N
od

e
P

ar
tit

io
n

C
ha

ng
e

R
at

e
[1

/s
]

Number of Nodes

Random Waypoint

Midtown Manhattan

European City

Figure 2.12: Average node partition change rate Rnavg(T) as a function of the number of nodes
n for rtx = 100 m and all three mobility models.

100
400

800
1200

1600
2000

2400Number of Nodes
0

0.2

0.4

0.6

0.8

Node Partition

Change Rate [1/s]

0

20

40

60

80

Occurrences

[%]

Figure 2.13: Frequency distribution of the node partition change rate Rn(nk, T) as a function
of the number of nodes n for rtx = 100 m and the random waypoint mobility model.

the random waypoint mobility model with 400 nodes. The frequency distribution reveals that
Rnavg(T) is evenly dispersed towards its average for network sizes of up to approximately 400
nodes. For a larger number of nodes, the node partition change rate distribution is more and
more skewed to the right, reaching a peak towards the end of the considered density spectrum.
In such networks, large partitions dominate and the node partition change rate of many nodes

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 67

is affected, if such partitions experience a join or a split. According to our results, developers
of distributed algorithms can assume that the partition change rate experienced by individual
nodes lies within a small range of frequencies for all nodes in a given network scenario.

0

4

8

12

16

20

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
cc

ur
re

nc
es

 [%
]

Node Partition Change Rate [1/s]

Figure 2.14: Frequency distribution of the node partition change rate Rn(nk, T) for n = 400
nodes, rtx = 100 m and the random waypoint mobility model.

Node Separation and Connection

Figure 2.15 shows the average of the sum of node separation times τsep over the number of
nodes. We selected n/2 disjoint node pairs for each experiment at random, i.e. every node is
contained in exactly one of the pairs. As the number of nodes in the network increases, the
average node separation time decreases. For networks between 300 and 500 nodes the slope is
very steep. This is associated with the decreasing partition change rate presented in Figure 2.9
which leads to more stable partitions in networks with a larger number of nodes.

Figure 2.16 provides a detailed view on τsep for n = 400 and the random waypoint mobility
model. In this scenario, 50% of the selected node pairs are separated for more than 1500 s.

Figure 2.17 shows the number of separations Ksep for the same setting, revealing that more than
50% of the pairs are separated 30 times during the experiment. This leads to the conclusion that
the number and duration of separations for node pairs should not be neglected when designing
distributed data management algorithms, because nodes may not be available for long periods
of time and connection times are limited.

The distribution of node separation times as a function of the number of nodes is shown in
Figure 2.18. For a small number of nodes, the node separation times are distributed across the
whole time spectrum. For instance, out of 100 nodes, many are separated for the duration of
the experiment. This results in a peak at a node separation time of 3600 s, e.g., for 20% of
node pairs. As the number of nodes increases, the node separation times become smaller and
show a distinct distribution with many occurrences of low separation times between nodes.

68 CHAPTER 2. FUNDAMENTALS

0

600

1200

1800

2400

3000

3600

0 400 800 1200 1600 2000 2400

A
ve

ra
ge

 N
od

e
S

ep
ar

at
io

n
T

im
e

[s
]

Number of Nodes

Random Waypoint

Midtown Manhattan

European City

Figure 2.15: Average over the sum of node separation times τsep(n1, n2, T) for n/2 disjoint pairs
of nodes (n1, n2) as a function of the number of nodes n for rtx = 100 m and the random
waypoint mobility model.

0

600

1200

1800

2400

3000

3600

1 25 50 75 100 125 150 175 200

T
ot

al
 N

od
e

S
ep

ar
at

io
n

T
im

e
[s

]

Number of Node Pair

Figure 2.16: Sum of node separation times τsep(n1, n2, T) for 200 disjoint pairs of nodes (n1, n2),
n = 400 nodes, rtx = 100 m and the random waypoint mobility model.

Figure 2.19 shows a two-dimensional extraction for the distribution of 400 nodes. About 75% of
the node separation times are below 50 seconds, and about 35% are even below 10 seconds. This
information is very valuable for algorithms that need to estimate when a node will be reachable
again after a communication failure has occurred. For example, a node that has not succeeded
in sending information to a particular other node may retry to initiate communication after
10 and 20 seconds, because 35% and 55% of all separations in a network with 400 nodes are
shorter than 10 and 20 seconds, respectively.

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 69

0

10

20

30

40

50

60

1 25 50 75 100 125 150 175 200

S
ep

ar
at

io
n

C
ou

nt

Number of Node Pair

Figure 2.17: Number of node separations Ksep(n1, n2, T) for 200 disjoint pairs of nodes (n1, n2),
n = 400 nodes, rtx = 100 m and the random waypoint mobility model.

100
400

800
1200

1600
2000

2400
Number of Nodes

600

1200

1800

2400

3000

Node

Separation Time

Interval Length [s]

0

5

10

15

20

25

30

35

40

Occurrences

[%]

Figure 2.18: Frequency distribution of node separation times as a function of the number of
nodes n for rtx = 100 m and the random waypoint mobility model.

Node Visibility Sets

Figure 2.20 and 2.21 show the evolution of the continuous and accumulative node visibility
sets, respectively, as a function of time for five representative network sizes. The measurements
for the average size of both sets were started in the middle of the experiment at t = 1800 s to

70 CHAPTER 2. FUNDAMENTALS

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

O
cc

ur
re

nc
es

 [%
]

Node Separation Time Interval Length [s]

Figure 2.19: Cumulative frequency distribution of node separation times for n = 400 nodes,
rtx = 100 m and the random waypoint mobility model.

avoid the influence of transient effects of the mobility models. The size of the continuous node
visibility set shows a steady decrease over time. Note that at the start of the measurement,
the size of this set is equal to the size of the partition the node of this set is located in. The
average size of the continuous node visibility set is significantly higher than the average size
of partitions, because its average is dominated by the large set sizes of many nodes that are
located in large partitions. The average size of the accumulative node visibility set steadily
increases over time with the same average value as the continuous node visibility set at the
beginning of the measurements. How fast the average size approaches the maximum of 100 %
depends on the number of nodes in the network.

For distributed algorithms, the continuous node visibility set gives an approximation if and for
how long a given number of nodes remain in the same partition as a particular node. This
information may be used for algorithms that share their local data or perform distributed
calculations over longer periods of time, e.g., applications in mobile ad-hoc networks that
perform distributed data aggregation. The average size of the accumulative node visibility
set is an indicator for the amount of time it takes until a node containing a data source for
particular information may be queried by a certain number of nodes in the network, e.g., a
node that contains data about a particular location.

2.2.5.3 Impact of the Mobility Models

When comparing the results of the different mobility models used in the experiments, i.e.
the random waypoint mobility model and the two instances of the graph-based random walk
mobility model, it is noticeable that they share the same characteristic behavior for all metrics
examined. However, the particular results measured vary significantly in quantitative terms.

In general, it can be observed that the quantities obtained for the random waypoint experiments
are between those used for the two graphs (Figure 2.2). Taking the results for the average
number of partitions |Π|avg(T) as an example, the Manhattan graph reveals a significantly

2.2. PARTITIONING IN MOBILE AD-HOC NETWORKS 71

0

20

40

60

80

100

1800 2100 2400 2700 3000 3300 3600

A
v
e
ra

g
e

S
iz

e
o
f

C
N

V
S

[%
]

Time of Time Interval [s]t Tmax

n = 100
n = 250
n = 500

n = 1000
n = 2000

Figure 2.20: Average size of n continuous node visibility sets Ncont(nk, T) as a function of T
for different n, rtx = 100 m and the random waypoint mobility model.

0

20

40

60

80

100

1800 2100 2400 2700 3000 3300 3600

A
v
e
ra

g
e

S
iz

e
o
f
A

N
V

S
[%

]

Time of Time Interval [s]t Tmax

n = 100

n = 250

n = 500

n = 1000

n = 2000

Figure 2.21: Average size of n accumulative node visibility sets Nacc(nk, T) as a function of T
for different n, rtx = 100 m and the random waypoint mobility model.

higher average number of partitions than the other two mobility models, which becomes more
prominent for network sizes between 500 and 1500 nodes. The comparison of the two graphs
yields a longer total edge length for the Manhattan graph, while it has approximately the same
number of vertices. Additionally, the European city graph has a smaller average edge degree.
Both graphs have a base area of approximately 4 km2. In the Manhattan graph the movement
of nodes is restricted to an almost regular grid pattern with distances in between those grid
rows that are larger than the assumed transmission range. As a consequence, nodes moving on
parallel grid rows/columns are separated for longer periods of time.

72 CHAPTER 2. FUNDAMENTALS

The results obtained with the two different city graphs underline that the partitioning behavior
depends especially on the spatial structure of the system’s environment. The analysis of this
dimension is out of the scope of this dissertation and left to future work.

2.2.6 Conclusions: Network Partitioning

The analysis of partitioning has shown that network partitions occur frequently even in networks
with reasonably high node densities. For example, in a network containing 800 nodes on a 4 km2

area and a transmission range of 100 m, we found more than 20 partitions on average. For such
scenarios, the partitioning situation should not be neglected in the design of distributed data
management algorithms in mobile ad-hoc networks.

For the scope of this dissertation, we can draw two main conclusions. First, the fundamental
algorithms to be developed shall consider the occurrence of partitioning as a common case that
is likely to occur. While the situation of a partitioned network implies that communication
is not possible between partitions while they exist, algorithms must still be designed in a way
that partitioning does not lead to unresolvable failures in the algorithms’ operation. We will
address this issue in particular in the design of the core storage approach in Chapter 3.

The second important result is the fact that the mobility of mobile ad-hoc networks leads to the
situation where different network partitions eventually join again, assuming some sensible node
density that allows the general operation of the network in the first place. This observation
has the key implication that the duration of partitions is finite in general. After a partition
join, therefore, measures shall be taken to also unify potential temporary inconsistencies in the
operation of the algorithms. We will consider this observation specifically in the design of the
data migration approach, which we introduce in Chapter 4.

2.3 Location-centric Storage (LCS)

Location-centric storage is a fundamental paradigm in the field of mobile data management
(MDM) that lies at the basis of our algorithms. The general goal of MDM is to provide mobile
clients (network nodes) with the data they need, when they need it, and where they need
it [PJC06]. With respect to these three aspects, MDM addresses all problems related to how
data can be obtained, stored, processed, and delivered to the mobile clients.

In its original form, MDM means data management in mobile (nomadic) computing [IB93, IB94]
(Section 1.2.1), where mobile clients are connected to the infrastructure via a direct radio
uplink. Due to the mobility of clients, many new challenges related to MDM arise, such as
the general impact of mobility on data management, disconnected operation (e.g. prefetching,
hoarding), energy-efficient data access, and wireless data broadcasting. These issues have been
considered by a large body of related work (see, for example, [PS97, Bar99, GS02, Kum06])
and are orthogonal to the scope of this dissertation.

In mobile ad-hoc networks, not only is the data delivered to mobile devices, it is also man-
aged by the mobile devices themselves, according to the peer-to-peer networking paradigm
(Section 2.1.1). Intuitively, this is much more challenging due to the characteristics of MANETs
as discussed in Section 2.1.2 and the potential occurrence of network partitioning as shown in
Section 2.2. For these reasons, besides the requirement of new protocols on link, routing, and

2.3. LOCATION-CENTRIC STORAGE (LCS) 73

transport layer (Section 2.1.1), many new challenges arise for MDM in areas including data
acquisition and propagation, caching and replication, as well as aggregation and processing, in
order to provide data to the services running in these networks.

In MANETs, one of the key questions that needs to be answered at the basis of mobile data
management is the specific location where data is to be stored in the network, which is, opti-
mally, close to where clients will need it. The storage location comes in two flavors: the where
regarding the geographic region in the network on one side, and the where regarding which
nodes are recruited to store the data in the end.

Regarding the geographic region, an important hint comes from the primary context of location
(Section 1.3.1), which is of utmost importance for context-based applications. In the classes of
context-based applications considered in Nexus (Section 1.3.2), we can observe the important
property of locality regarding the access to spatial data. For example, in a geographic range
query, data items are retrieved based on their inclusion within the specified region, implying a
close proximity between the reference region and the items’ location. Another example is the
observation of spatial events, such as the meeting of two entities, which also naturally involves
a close spatial relation, that is, locality, between the involved entities. This locality assumption
is true for many context-based applications and can be exploited in algorithm design.

The second issue pertaining to which nodes should store data is challenging in any wireless
multihop network due to the following reasons. Assuming classical node-centric routing, each
data access implies that a client must know in advance which particular node to address in order
to retrieve a specific data item. This advance knowledge requires, in general, the implementation
of explicit location servers that provide global information about the whereabouts of each
node in the network. Due to the maintenance of a globally distributed location database
(e.g. [LJC+00, Bha03, KFWM04]), they incur significant additional communication overhead.

However, due to the information-centric nature of context-based applications, the node iden-
tities should be considered secondary, and a more appropriate solution should focus on the
data itself. Such a data-centric storage (DCS) approach was introduced by Ratnasamy et al.
in [RKY+02, RKS+03, SRK+03] in the context of wireless multihop networks and targets at
this problem. In contrast to node-centric storage, the data itself serves as a reference to the
geographic location in the network where a specific data item is to be stored. The question
which particular node stores that data item is then reduced to a local resolution protocol, such
as Greedy Perimeter Stateless Routing (GPSR) in the specific case of DCS. In contrast to
node-centric approaches, DCS is highly scalable, because a location service is not required.

Based on a combination of locality and data centricity according to the previous elaborations,
we are now in the position to define the paradigm of location-centric storage. By the term
spatial data, we designate data that is associated with a geographic position.

Definition 2.1. Canonical location-centric storage (C-LCS) refers to the storage of spatial
data in a wireless multihop network, where each spatial data item is stored on the network
node that is located closest to the geographic position specified by the spatial data item.

By canonical, we refer to the fact that a direct relation exists between pairs of data items and
storage nodes. This rather strict definition, however, has two main drawbacks for being of
practical value. First, C-LCS implies that data items are associated with storage nodes on an

74 CHAPTER 2. FUNDAMENTALS

individual basis. This association inherently leads to a very fine-grained storage of data items
over virtually all nodes in the network. Second, the mobility of either nodes or the entities
modelled by the data items may lead to frequent reassociations, which requires to relocate data
items between nodes on a continuous basis.

For these reasons, we define the following important twofold relaxation of C-LCS, which we
assume in the remainder of this dissertation and which brings the essential quantum of flexibility
to the design of our algorithms.

Definition 2.2. Location-centric storage (LCS) refers to the storage of spatial data in a wire-
less multihop network, where each spatial data item is stored on any network node that is
in proximity to a geometric reference location. This location is in turn in proximity to the
geographic position specified by the spatial data item.

The relaxation introduced in the definition of LCS in comparison to its canonical form is twofold
due to the introduction of a reference location that decouples between storage nodes and data
items. Consequently, for both data items and storage nodes, the proximity relation in terms
of geometric distance is specified separately. The use of the vague term proximity is deliberate
and provides the essential flexibility and tuning knob for algorithm design. Both proximity
relations will be specified in detail in Chapter 3 through 5.

At this point, we are, nevertheless, able to formalize the notion of proximity by the term spatial
coherence, which quantifies the magnitude by which proximity between a data item and its
associated reference location is maintained.

Definition 2.3. The spatial coherence of a data item is defined as the mean geometric distance
between the data item and its associated reference location over time.

Assuming a data item is stored on the same node over time, this definition is effectively appli-
cable to the mean distance that the storage node itself maintains to the reference location. As
a general rule of thumb, smaller values of spatial coherence imply more efficient overall storage
solutions. We will employ spatial coherence as a performance metric when assessing storage
efficiency in detail in the data migration approach (Chapter 4).

2.4 Requirements and Reference Model

Based on the discussions in the preceding sections and Chapter 1, we are now able to state the
following set of key requirements that the fundamental storage mechanisms for context-based
services in mobile ad-hoc networks shall consider. These requirements bundle the characteristics
of mobile ad-hoc networks from Section 2.1.2, the conclusions from network partitioning in
Section 2.2.6, and the focus of this dissertation according to Section 1.4.1.

(1) Communication efficiency addresses the MANET-specific constraints regarding energy
resources and link bandwidth according to Section 2.1.2, Table 2.1. High communication
efficiency will enable the execution of diverse context-based applications concurrently,
without incurring critical network traffic that would adversely impact user experience,
such as decreasing the quality of query results.

2.4. REQUIREMENTS AND REFERENCE MODEL 75

(2) Robustness against significant node mobility addresses the inherent mobility of nodes in
MANETs according to Section 2.1.2, Table 2.1. The mechanisms to be developed shall
tolerate node mobility of various degrees, from pedestrian to vehicular traffic in typical
urban context-based scenarios. Optimally, robustness shall not be achieved at the expense
of communication efficiency.

(3) Robustness against low node density and weak network topology according to Section 2.1.2,
Table 2.1 is essential to provide uniform performance to the best possible extent, inde-
pendent of the specific magnitude of these two parameters. As in the case of (2), this
type of robustness shall not adversely impact communication efficiency.

(4) Robustness against temporary network partitioning addresses the conclusions we have
drawn in Section 2.2.6. This requirement ensures the long-term resilience of the storage
mechanisms against the forming and merging of network partitions over time. The same
behavior regarding the impact on communication efficiency as in (2) and (3) is desired.

(5) Scalability with network and data model size is essential to guarantee efficient operation
of the storage mechanisms for a potentially large number of nodes or data items. If the
storage mechanisms do not scale, context services will eventually show undesired behavior,
such as reduced query performance or incomplete query results.

(6) Support for rich location and query semantics addresses the intrinsic inaccuracy char-
acteristics of data acquisition as discussed in Section 1.4.1. These inaccuracies must be
taken into account in the modelling of location and query semantics and incorporated
into algorithm design, in order to provide useful query results to the user.

Figure 2.22 sketches the reference model for the storage mechanisms for context-based services
in MANETs that will be implemented in subsequent chapters of this dissertation, comprising
Contribution 2 to 6 as stated in Section 1.4.2. Each component in the figure addresses one
or more of the preceding requirements and is annotated with the section in which it will be
specified in detail. References to the corresponding evaluation sections are also indicated. The
client tier is out of the scope of this dissertation and omitted in subsequent discussions. A more
detailed account of the reference model in a broader scope is contained in [DWM08].

Routing Tier

The routing tier implements fundamental routing and aggregation functionality that is the basis
for algorithms in the storage tier. It addresses several deficiencies of existing protocols in this
layer that do not satisfactorily support the stated requirements.

Bidirectional perimeter routing is a customization of geometric routing protocols that we em-
ploy in the core data storage in Chapter 3. It addresses Requirement (1), (3), and (4) and
is primarily responsible for delivering communication efficiency and robustness against weak
network connectivity. Network topology exploration is a mechanism for distributed data aggre-
gation that delivers essential local network information to data migration (Chapter 4) in the
storage tier. This information is in turn used by resilient source routing to implement stable
temporary routes between nodes on behalf of data migration. In combination, both mechanisms
address the robustness-related Requirement (2) to (4).

76 CHAPTER 2. FUNDAMENTALS

Bidirectional
Perimeter Routing

Section 3.2

Network Topology
Exploration
Section 4.3

Resilient
Source Routing

Section 4.4.2

Analytical
Section 3.4

Policies
Section 4.2-4.4

Mechanisms
Section 4.5

Data MigrationCore Data Storage
Section 3.3

Update Processing
Section 5.3

Query Processing
Section 5.4

Experimental
Section 5.5

Context-based and Location-based Applications

S
to

ra
g

e
T

ie
r

R
o

u
ti

n
g

T
ie

r

Evaluation

S
e
rv

ic
e

T
ie

r
C

li
e
n

t
T

ie
r

Experimental
Section 3.5

Experimental
Section 4.6

Service Interface

Storage Interface

Figure 2.22: Conceptual architecture of the location-centric storage framework.

Storage Tier

The storage tier implements, in collaboration with the routing tier, efficient, robust, and scalable
location-centric storage. Both tiers represent the main contribution of this dissertation and
are also addressed in [DMR06a] and [DMR07]. Based on lightweight data servers, core data
storage provides efficient base mechanisms for data storage by exploiting the location-centric
storage paradigm. In conjunction with bidirectional perimeter routing, it specifically addresses
Requirement (1), (3), and (4). By breaking down data management into geographic cells of
limited size, core storage also implements Requirement (5) on the level of the storage tier.

Data migration constitutes an integral part of core data storage that addresses specifically
data server mobility that is due to the movement of network nodes. Migration policies, on
one hand, implement, supported by network topology exploration, strategies to decide on the
best conditions under which the migration of data is to be performed. On the other hand,
data migration mechanisms implement these decisions and translate them into robust network
paths, in turn performing data migration via the underlying resilient source routing.

Policies and mechanisms cooperatively achieve continuous spatial coherence (Definition 2.3) un-
der dynamic network density and topology. Thus, data migration is essential in the achievement
of Requirement (1) to (3). Data migration also incorporates merging mechanisms to consolidate
redundant servers upon the joining of network partitions, thereby addressing Requirement (4).
Furthermore, data migration supports core data storage in achieving Requirement (5) in terms
of the data size that is supported by individual migration processes.

2.5. RELATED WORK 77

Service Tier

The service tier contains the base services that context-based applications may exploit to im-
plement their specific forms of context-based interaction (Section 1.3.1). This layer makes
extensive use of the mechanisms provided by the storage tier. Contributions in the service tier
are published in [DDM05] and [DMR06b].

In the form presented in this dissertation, the service tier comprises services for update and
query processing. On one hand, update processing is responsible for delivering the data that is
acquired by individual network nodes to the light-weight data servers provided by the storage
tier. The essential added value in comparison to the core data storage is the consideration
of data semantics in the form of models for inaccurate position information. Thereby, update
processing addresses Requirement (6) on the update side.

On the other hand, query processing implements fundamental spatial queries, including range
and nearest neighbor queries, which are processed based on the information provided by update
processing. Query processing introduces appropriate query semantics, which are compliant with
the position inaccuracy model of update processing, thus addressing Requirement (6) on the
query side. By exploiting the locality assumption, query processing is also able to provide
efficient localized query processing, which leads to the fulfillment of Requirement (1) and (5).

Comparison to the Nexus High-level Architecture

At this point we are able to match the conceptual architecture of the LCS framework in
Figure 2.22 with the Nexus high-level architecture in Figure 1.4. A comparison of tiers shows
the following two significant differences.

First, the Nexus architecture associates basic services, including query processing, with the
federation tier, which in the LCS framework are located in the service tier. This discrepancy
is due to the fact that Nexus’ assumptions of how context information is provided are more
general and include additional challenges that are related to the federation of multiple models
each representing possibly overlapping aspects of the physical world. In contrast, the LCS
framework assumes a single context model, which only requires basic data merging functionality
that update and query processing are able to implement directly.

Second, the LCS framework architecture provides the additional storage and routing tier, which
collaboratively absorb the MANET-specific characteristics that make these networks distinct
from infrastructure-based networks. Specifically, we can observe from the previous discussions
that the robustness-related Requirement (2) to (4) are addressed by the storage and routing
tier alone and need no further consideration in the service tier. As a result of the encapsulation
of MANET-specific characteristics in the service and routing tier, services and applications to
be provided in higher tiers of the framework for LCS may draw more easily on results from
infrastructure-based context management, such as Nexus.

2.5 Related Work

In this section, we review existing work related to our framework of fundamental storage mech-
anisms for location-based services in mobile ad-hoc networks. We begin with a discussion

78 CHAPTER 2. FUNDAMENTALS

of related context-aware systems and middlewares in Section 2.5.1, followed by more detailed
analyzes of the routing and storage tier in Section 2.5.2 and the service tier in Section 2.5.3.

2.5.1 Context-aware Systems and Middlewares

For the discussion of the spectrum of context management systems and middlewares we consult
two reference models presented in [PJC06] and [BDR07]. The data management framework
for MANETs in [PJC06], shown in Figure 2.23.a, contains several layers that each address
a specific aspect of data management. In this model, the communication and data manage-
ment layer correspond to the routing and storage tier in Figure 2.22, respectively. The authors
of [BDR07] present a layered conceptual architecture for mobile computing environments, shown
in Figure 2.23.b. This model contains, among others, layers for raw data retrieval, preprocess-
ing, and storage / management, which together roughly correspond to our storage and routing
layer. In both reference models, common services, including update and query processing
(Figure 2.22), are included in the data management and storage / management layer.

Sensors

Raw Data Retrieval

Preprocessing

Storage / Management

Application

Transaction Management

Data Management

Discovery Location

Communications
(transport, routing, link, physical)

Application-specific Logic
(API, user interface,
transcoding, logic)

Security and Privacy

S
y
st

em
M

an
ag

em
en

t

a. Layered data management framework
for MANETs according to [PJC06]

b. Abstract layer architecture for context-
aware systems according to [BDR07]

Figure 2.23: Reference models for context management in the literature.

Related system and middleware approaches that consider aspects of context management and
which fit into the reference models in Figure 2.23 are abundant. An overview of approaches
that are more closely related to the scope of this dissertation can be found in [Khe06, BDR07,
DHH07, Kja07]. In the following, we discuss a number of significant representative approaches
with a focus on the data management layer and the kind of storage mechanisms used by each
approach. The discussion follows a classification by system structure (Figure 1.5).

Mobile Computing Environments

Many context management platforms for mobile computing environments implement the data
management layer in Figure 2.23 in the fixed communication network. Apart from the Nexus
platform [GBH+05], which we have previously discussed in Section 1.3.2 and 2.4, the following
representative approaches shall be considered.

2.5. RELATED WORK 79

The authors of [LSD+02] describe a middleware for the collection of context information and its
dissemination to mobile users. Context information is stored in a centralized Context Service
in the fixed network, and distributed to strategic proxies in the infrastructure that are close
to where a mobile user’s access is expected to take place. The Contextual Information Server
introduced in [JS03] implements a virtual database abstraction over contextual information
that is supplied by infrastructure-based context providers. A rich query language allows mobile
clients to access application-specific context information of the virtual database.

The Context-awareness Sub-Structure (CASS) proposed by [FC06] is a middleware for context-
aware mobile applications running on mobile devices. CASS implements mechanisms for gath-
ering low-level sensor data from mobile nodes and for deriving higher-level context information
from sensor data. In CASS, all data is stored in the fixed network in a centralized database.
The authors of [DHH07] describe the Context-aware Service Platform (CASP), a framework
to gather context information from heterogeneous sensors. The approach works mainly on the
sensors layer according to Figure 2.23.b and focuses on the gathering of sensor data in periodic
time intervals. The authors only give vague information about the location where context is
stored, which is presumably the introduced Context Storage central component.

In the describe systems, context information is always stored in dedicated infrastructure-based
context servers and made available to clients via a single-hop wireless link to the fixed net-
work. As such, no MANET-specific requirements for context management have to be taken
into consideration. Specifically, these systems give no answer on how the robustness-related
Requirement (2) to (4) in Section 2.4 can be fulfilled.

Pervasive Computing Environments

The authors of [GPZ05] introduce the Service-Oriented Context-aware Middleware (SOCAM)
for building context-based applications in pervasive computing environments. SOCAM consists
of three layers, namely, the sensing layer, context middleware layer, and the context application
layer. Each layer maps to the corresponding layer in Figure 2.23. The paper has a strong focus
on context reasoning based on comprehensive context models, which are stored at a central
context interpreter in the context middleware layer.

The authors of [PLK05] introduce an architecture of a context-aware service middleware (CASM)
which is targeted at the implementation and support of context-aware services. CASM sup-
ports applications by acquiring and interpreting low-level context data to derive and disseminate
high-level context information. CASM also supports context storage and querying by means of
context managers. However, the ubiquitous environment in which CASM is designed for is not
specified in sufficient detail, and solutions to how context storage and querying is performed to
satisfy corresponding requirements are left open.

Mobile Gaia [CAMCM05] is a middleware for ad-hoc pervasive computing environments. It
builds on clusters of devices, where a number of devices are managed as a whole to provide a
single entity of interaction. The middleware supports the development of applications based
on such device clusters. Each cluster has a central coordinator that manages devices in the
vicinity. In the coordinator, a context server that provides context information to the devices
that are participating in the cluster can be identified as the context storage component.

80 CHAPTER 2. FUNDAMENTALS

All of the preceding systems for pervasive computing environments consider a central node to
store context information, which hinders scalability (Requirement (5)). As in the case of mobile
computing environments, the papers do not address mobile multihop networks with their spe-
cific characteristics. Furthermore, the previously discussed systems are strongly service-oriented
and context-dependent rather than context management systems for a broader spectrum of
context-based applications.

Mobile Ad-hoc Network Environments

An early context management system for mobile ad-hoc networks is the Ad hoc Context Aware
Network (ACAN) presented in [KK02]. It implements a layered approach for the retrieval of raw
data from sensors, the preprocessing of data into higher-level context by a context manager,
and the provisioning of context data to applications in the ad-hoc network. While ACAN
focuses on context-based service discovery, data management issues are secondary. Further,
the presumably mobile ad-hoc network assumed in ACAN addresses scalability, but does not
consider MANET-specific characteristics and most of the requirements in Section 2.4.

The authors of [SWS+04] present a context-aware middleware for mobile ad-hoc environments,
which is based on cooperating realtime sentient objects. Mechanisms related to context man-
agement are implemented by the context component framework (Context CF), including sensor
data gathering, the derivation of higher-level context information and reasoning based thereon.
The proposed approach does, however, not describe explicit context management mechanisms.
Rather, it allows the construction of services that follow event-based interactions between neigh-
boring nodes, such as cars in a vehicular ad-hoc network (VANET). Furthermore, no mecha-
nisms are specified that deal with the MANET-specific requirements in Section 2.4.

MoGATU, described in [PJC06], is a data management framework tailored to mobile ad-hoc
networks. It implements many aspects of the reference model in Figure 2.23.a, which is provided
by the same authors, including data storage and querying. Similar to our model, the framework
explicitly considers the specific characteristics of MANETs and assumes that all nodes are
peers. The authors also recognize that the data management and communication layer need
to be closely integrated, which in our case is addressed by interactions that take place between
the storage and routing tier (Figure 2.22). However, MoGATU is fundamentally different in
that it follows the approach of local data storage. In that approach, data is retained on a single
device and queries must be distributed to all possible information providers. At this point, we
have to refer to Section 3.4, which provides a detailed analysis of the communication cost of
local data storage (there termed global partitioning). The results show that the approach does
not scale in terms of the frequency by which queries are used to access portions of the stored
data. Thus MoGATU does not fulfill an essential part of Requirement (5).

The authors of [PPJ+06] introduce a holistic data management framework for mobile ad-hoc
networks with a strong focus on providing trustworthy data exchange between peers. Like
MoGATU, the approach implements local data storage and therefore does not scale with query
frequency. Additionally, the authors assume that nodes move according to mobility models
for which the devices’ relative movement is negligible. This assumption is, however, only valid
for very specific scenarios, like the considered vehicular ad-hoc network (VANET). In contrast,
we allow for any mobility pattern and show how large degrees of mobility up to the speed of
vehicles in urban environments can be effectively supported.

2.5. RELATED WORK 81

Finally, the authors of [CYC07] present a framework for context management to support con-
text applications in mobile ad-hoc networks. The proposed framework builds on clusters of
nodes, each containing a single mobile context manager that stores context information that
it obtains from context providers located in close vicinity. Multiple clusters are interconnected
by constructing an explicit topological structure, referred to as Segment-Tree Virtual Network
(STVN). This structure is then used to route queries to those context managers that contain
relevant data for each query issued by the context-aware applications.

Due to the mobility of nodes, however, the proposed STVN requires explicit reconstruction
and maintenance. The authors provide measurement results that confirm the significant over-
head which is even greater than a straightforward publish/subscribe approach based on Ad-hoc
On-Demand Distance Vector Routing (AODV) that the authors present for comparison. In
contrast, the proposed framework in this dissertation does not require any maintenance of
structures, since it relies on a rendezvous-based approach between data updates and queries.
This is vital also for achieving robustness against low node density and weak topological struc-
tures (Requirement (3)) and temporary network partitioning (Requirement (4)).

2.5.2 Core Data Storage and Data Migration

Let us now discuss previous approaches that relate to the storage tier of our framework in
Figure 2.22 with respect to the requirements in Section 2.4. Figure 2.24 presents a classification
of related data-centric storage approaches. The close relation to LCS is based on the fact that
all DCS mechanisms implement fundamental mechanisms in order to store data at particular
locations in the network. Based on this classification, we can distinguish between position-based
DCS, cell-based DCS, and miscellaneous DCS approaches.

Position-based DCS

Approaches that can be associated with position-based data-centric storage employ geometric
routing to determine individual storage nodes. A reference position is circumscribed by a packet
that visits subsequent nodes located close to that position until a node is visited twice. By
definition, this node is deemed to be the storage node (Figure 2.25.a).

Data-centric Storage (DCS) was proposed for wireless sensor networks in [RKY+02, RKS+03,
SRK+03]. DCS uses the Greedy Perimeter Stateless Routing (GPSR) [KK00] protocol to locate
a storage node, termed home node in DCS, responsible for storing data. The authors extended
DCS by Structured Replication (SR-DCS) to load-balance data associated with the same key
to multiple home nodes at different locations. To achieve data consistency in the presence of
limited node mobility and node failures, DCS employs the Perimeter Refresh Protocol (PRP)
to replicate data around a perimeter in addition to the home node.

The authors of [GGC03] propose an extension to DCS which they call Resilient Data-centric
Storage (R-DCS). Using replica and monitoring nodes, they optimize knowledge about data
availability in different regions and the exchange of data between different cells to provide a
certain degree of replication. Similar to DCS, the authors apply GPSR to locate storage nodes
and optionally support PRP to partially recover data from departing or failing nodes.

82 CHAPTER 2. FUNDAMENTALS

Data-centric Storage (DCS)

Position-based DCS Cell-based DCS

Data-centric Storage (DCS)
[RKY+02,RKS+03,SRK+03]

Resilient DCS [GGC03]

Core Data Storage

Resiliency Scheme for DCS [TNK+04]

Rendezvous Regions (RR) [Sh03, Sh04]

Cell Hash Routing (CHR) [ARK+05]

Miscellaneous

VPCS / VPCR [Ns03]

pathDCS [ERS06]

Q-NiGHT [ACaP07]

Figure 2.24: Classification of mechanisms for data-centric storage.

Besides GPSR, more efficient face routing protocols that can be employed as an alternative were
proposed in the literature. Representative approaches include Adaptive Face Routing (AFR)
and its extensions GOAFR and GOAFR+ proposed in [KWZ02, KWZ03, KWZZ03] and the
Face-aware Routing (FAR) protocol in [HLR04, HBLR05]. To optimize face routing in more
practical scenarios where the unit disc graph model does not apply, the Cross-Link Detection
Protocol (CLDP) and Greedy Distributed Spanning Tree Routing (GDSTR) were proposed
in [KGKS05] and [LLM06], respectively.

Especially in MANETs, DCS and R-DCS incur significant communication cost in the vicinity
of storage nodes for each data request and PRP-based refreshing cycle. This is due to the
fact that each request and refresh requires the traversal of a closed perimeter, whose length
frequently involves a significant number of nodes in comparison to the total route length. While
subsequent face routing protocols improve overall routing efficiency and packet delivery ratio,
they do not provide mechanisms that would make routing in the vicinity of storage nodes more
efficient. The discussed approaches are therefore in opposition to Requirement (1).

In addition to efficiency issues, the presence of malformed perimeters impose challenges on the
storage and routing robustness. Figure 2.25.b shows the situation of a malformed perimeter,
where a closed perimeter cannot be completed and a packet fails while in transit. This situation
occurs for low node densities and weak network topologies (Requirement (3)) and network
partitions (Requirement (4)). In the first case, long perimeters lead to timeouts due to the
exceeding of the maximum number of hops a packet may travel. In the second case, a closed
perimeter around the reference position cannot be traced at all.

All of the previously discussed storage and routing approaches are vulnerable to both situations.
Only the authors of [CGP04] propose a customization of geometric routing, termed On-Demand
GPSR (OD-GPSR), which targets at the optimization of perimeter traversal in particular.
This approach, however, works well only for stationary networks, because OD-GPSR relies
on control information that is reused to detect previously traversed perimeters. In mobile
environments such control information is of little use due to constant changes of perimeter
shapes. Bidirectional Perimeter Routing (BPR), which we introduce in Section 3.2, implements
a mechanisms that is resilient to both the situations addressed by Requirement (3) and (4).

2.5. RELATED WORK 83

OKclient storage
node

failure

client

OK

cr

failure

cr

client

storage node

storage node

a. Position-based DCS: closed perimeter

b. Position-based DCS: malformed perimeter

c. Cell-based DCS: populated target cell

d. Cell-based DCS: empty target cell

client

Figure 2.25: Position-based and cell-based data-centric storage.

Cell-based DCS

Cell-based DCS approaches do not rely on the traversal of perimeters in order to locate a storage
node. They instead make use of geometric cells, inside of which a number of nodes are recruited
to store data items. Each request is first routed towards a specific destination cell, until it is
delivered to one or more nodes based on a local dissemination algorithm (Figure 2.25.c).

The authors of [TNK04] propose a cell-based approach for wireless sensor networks where
data items are stored on a single node inside of a cell. The algorithm makes use of multiple
destination cells in order to store a data item at diverse locations in the network. This way, the
approach increases efficiency on the query side, because each data item can be retrieved from
the location closest to the querying node. Rendezvous Regions (RR), proposed in [SH03, SH04],
is a very similar cell-based variant for mobile ad-hoc networks. After a data item is routed to a
single destination cell, it is flooded to all nodes within that cell. Because all nodes have a copy
of each data item, a query only requires to locate any one of the storage nodes.

The authors of [ARK+05] introduce Cell Hash Routing (CHR) for wireless ad-hoc networks,
which builds on cells inside of which multiple nodes are recruited for data storage. The authors
argue that the particular strategy used to decide which nodes inside of a cell store which data
items is a free design choice. However, the authors do not consider node mobility, which has
large implications on this choice because the data itself becomes mobile. Furthermore, the
authors acknowledge the problem that a cell may not be populated with any nodes. In that
case, the approach considers nodes in neighboring cells for storing data.

As noted by the authors of [ARK+05], the population of cells with a sufficient number of
nodes is a critical issue for the cell-based approaches. Figure 2.25.d illustrates the situation
where a request is destined to the upper right cell, which does not contain any nodes. Both
mechanisms in [TNK04] and [SH03, SH04] do not provide a solution for this problem, which
leads to request failures in such situations. While [ARK+05] considers this problem, the authors
make the decision that a cell is strictly limited in size such that any node inside of one cell

84 CHAPTER 2. FUNDAMENTALS

can communicate directly with all other nodes in adjacent cells. This is a particularly strong
assumption, which works only for the idealized unit disc graph model and the absence of node
mobility. Thus, under the conditions of mobile ad-hoc networks, Requirement (3) in Section 2.4
cannot be supported by the aforementioned approaches.

Miscellaneous DCS Approaches

Besides the discussed position-based and cell-based DCS variants, a number of approaches were
proposed that apply entirely different strategies in achieving data-centric storage.

The authors of [NS03] introduce a DCS variant for wireless sensor networks that is based on the
notion of a Virtual Polar Coordinate Space (VPCS). Different from all other DCS approaches,
network nodes are not aware of their physical location. Instead, a virtual polar coordinate
system is constructed as an overlay to the network. Virtual Polar Coordinate Routing (VPCR)
is then used to route requests to specific nodes that occupy a well-defined location in the
VPCS. Similar to [ARK+05], if a node is not available in the supposed location, a more distant
alternative node is selected for storing the data item. While the approach also provides recovery
mechanisms in case of node failures, the authors acknowledge that it is inefficient for networks
with significant node mobility. Hence, VPCS/VPCR is clearly designed for stationary wireless
sensor networks and not practical in mobile ad-hoc networks.

An approach to DCS that builds on the abstraction of paths is introduced in [ERS06] and
named pathDCS. In this approach, a number of trees are constructed in the network that each
root at one of several well-known landmark nodes. Each request is then routed to a specific
landmark and then forwarded on a sequence of segments along multiple trees. Similar to PRP
in [RKY+02], pathDCS incurs significant overhead in refreshing data in the presence of mobile
nodes. Furthermore, pathDCS requires the maintenance of a number of network-wide trees,
which incurs significant overhead for dynamic network topologies. The maintenance of such
structures, is, in general, not feasible in MANETs, due to potentially low node densities and
the risk of network partitioning. In summary, pathDCS is not suitable for MANETs.

The authors of [ACNP07] introduce Q-NiGHT, a DCS mechanism which focuses on QoS control
and load balancing. To increase data availability, the approach is based on the concept of a
ball. A ball is defined as the circular region around a node that contains a specific number of
additional nodes. The center node corresponds to the home node as defined in [RKY+02]. A
dispersal protocol distributes each data item to the nodes located within this ball. Furthermore,
the authors address the issue that perimeter routing according to [KK00] traverses perimeters
only in one direction. Q-NiGHT instead dynamically chooses between left-hand and right-hand
traversal in dependence of the destination location. The main drawback of Q-NiGHT is that
it lacks a suitable protocol to maintain data within a ball in the presence of node mobility.
Furthermore, the decision in which direction a parameter is to be traversed is taken before
each request and does not solve the problems related to long and open perimeters, as discussed
previously. Therefore, Q-NiGHT is unsuitable for mobile ad-hoc networks.

Specific Approaches to Data Migration

In order to maintain spatial coherence according to Definition 2.3, a number of approaches exist
that implement explicit approaches to data migration. From the discussed DCS mechanisms,
Rendezvous Regions (RR) [SH03, SH04] is the only approach that explicitly maintains data

2.5. RELATED WORK 85

inside of a geographic cell. For that, a dedicated node keeps track of currently active servers
inside of a cell. If feedback from one or more servers is missing, an election message is flooded
throughout the cell and nodes assume the server role with a given probability. The newly
elected servers in turn query for the data stored at previous servers. The main drawback of this
cell-based approach is that it is prone to insufficient node population as discussed previously,
and thus in violation with Requirement (3).

Several location and query service architectures make use of cell-based structures that require
the handover of position information within cells eventually. The Hierarchical Location Service
(HLS) by [KFWM04] and the Virtual Home Region-based Distributed Position Service (VDPS)
by [Wu05] are closest to our work. In the distributed hash table (DHT) approach proposed in
[LGW06] migration of data comes into play when a server reaches some threshold distance, in
which case data is transferred to another node. Similar to cell-based structures, the approach
assumes sufficient node population so that nodes exist at a certain distance to a reference
coordinate. Thus, the aforementioned approaches are vulnerable to Requirement (3).

Data migration based on server abstractions is also used in the realm of geocasting in MANETs.
Two representative approaches are the GeoGRID geocasting protocol in [LTLS00] and abiding
geocast in [MLS05]. Due to mobility and the requirement to maintain data at a specific ge-
ographic location, the authors make use of light-weight migration approaches. However, only
a very limited amount of data in the form of routing tables must be transferred. Robustness
issues addressing Requirement (2) therefore are insignificant. In particular, [LTLS00] assumes
that the data is broadcast within a geometric region, before it is retained at a single node only.
This approach is not feasible for larger amounts of data that require a significant number of
packets, violating an essential part of Requirement (5).

Common to all mentioned approaches to data migration is the fact that the characteristics
of the mobile ad-hoc network are not considered in the selection of migration target nodes.
Specifically, if fast-moving nodes are selected, such nodes are likely to depart quickly from
the original position, leading to a large number of successive migrations. The data migration
approach introduced in Chapter 4 accounts for a number of essential node characteristics to
achieve robustness against significant node mobility captured by Requirement (2).

2.5.3 Location Updating and Query Processing

In this section we discuss previous work that is related to the processing of position updates and
spatial queries in mobile ad-hoc networks. Due to the dynamics of position information, most
of the following approaches implement both update and query algorithms that complement
each other to provide the query service. An overview of the discussed approaches, structured
by network model, query type, and position model is presented in Table 2.3.

Distributed Object Storage and Location Services

The first group of approaches in Table 2.3 implement object-based queries, which allow to
retrieve individual objects by identifer. All of the previously discussed DCS-based approaches in
Section 2.5.2, including Data-centric Storage (DCS) [RKY+02], Resilient Data-centric Storage
(R-DCS) [GGC03], Rendezvous Regions (RR) [SH04], Cell Hash Routing (CHR) [ARK+05],
pathDCS [ERS06], and Q-NiGHT [ACNP07] implement this type of query.

86 CHAPTER 2. FUNDAMENTALS

Related Work Network Model Query Type Position Model
Distributed Object Storage for WSNs and MANETs
DCS [RKY+02], WSN object queries not applicable

R-DCS [GGC03] · · ·
RR [SH04], MANET · ·

GCLP [TV04] · · ·
CHR [ARK+05], WSN · ·

pathDCS [ERS06], · · ·
Q-NiGHT [ACNP07] · · ·

Location Services for Mobile Ad-hoc Networks
GLS [LJC+00], mobile ad-hoc position queries accurate point

RLS [Bha03], network · coordinates
HLS [KFWM04], · · ·
LLS [ADM04], · · ·
dead reckoning- · · ·

based [KD04], · · ·
PLS [LCN05], · · ·
MLS [FW06] · · ·

Spatial Query Processing in Infrastructure-based Networks
NNQ [RKV95], centralized k-NNQ accurate point

k-NNMP [SR01] database · coordinates
CNN [FSAA01] · constrained NNQ ·
RNN [BJKS02] · reverse, k-NNQ ·
GNN [PSTM04] · group NNQ ·
FNNQ [SIG+04] federated k-NNQ accurate 2D

databases locations
Spatial Query Processing in Wireless Sensor Networks
DIFS [GEG+03, GRS+03] wireless sensor 1D range queries accurate point
DIM [LKGH03] network multi-dimensional coordinates

· range queries ·
Peer-Tree [DF03] · k-NNQ; reverse, ·

· constrained NNQ ·
STQP Framework [CNS04] · historical range ·

· queries ·
KPT [WL04], · k-NNQ ·

k-NN [WXL05], · · ·
Itinerary-based · · ·
[XFLW07, FPL07]

Spatial Query Processing in Mobile Ad-hoc Networks
Window queries [XL03] mobile ad-hoc range queries accurate point
DHT-based [ZWS06] network · coordinates
DIKNN [WCCC07] · NN queries ·
Probabilistic Spatial · range and probability-based

Query Processing · k-NN queries location model

Table 2.3: Classification of related work in the field of update and query processing.

2.5. RELATED WORK 87

The Geographic Content Location Protocol (GCLP) [TV04] implements object-based queries
by relying on the intersection of object update and query paths. Each update of a specific
object is sent into four orthogonal geographic directions in the network and stored at the
visited intermediary nodes. In order to request an object, a query is disseminated using the
same strategy. Eventually, a query intersects at a node that was updated previously and the
object information is returned to the querying node.

The second group of approaches contains representative work on location services for mobile
ad-hoc networks, including the Geographic Location Service (GLS) [LJC+00], Randomized
Location Service (RLS) [Bha03], Hierarchical Location Service (HLS) [KFWM04]), Locality-
aware Location Service (LLS) [ADM04], the dead reckoning-based location service in [KD04],
Prediction Location Service (PLS) [LCN05], and MLS location service in [FW06]. All location
services target at the efficient provisioning of node position information to other nodes in a
mobile ad-hoc network. For that, each location service uses a specific strategy to replicate a
node’s position information at selected nodes in the network, from which it can be queried by
other nodes using an appropriate complementary scheme.

All of the previously mentioned approaches to object-based queries allow objects to be queried
based on identifiers only. In contrast, spatial queries retrieve a set of objects based on location
information, which requires alternative index structures and query processing algorithms.

Spatial Query Processing in Stationary Networks

Representative work on nearest neighbor queries for infrastructure-based systems is summa-
rized in the third group of Table 2.3. Many variants of nearest neighbor queries were proposed,
including the classic k-nearest neighbor query (k-NNQ) found in [RKV95, SR01, BJKS02],
constrained NNQ [FSAA01], reverse NNQ [BJKS02], and group NNQ [PSTM04]. Indepen-
dent of the specific query type, these approaches build on a centralized database, which is
fundamentally different from the distributed storage model considered in this dissertation.

More closely related to our work is the system presented in [SIG+04] for processing federated
k-nearest neighbor queries (FNNQ) over loosely coupled data sources connected through the
Internet. The authors employ a two-phase strategy to optimize the aggregation and achieve
fast convergence of query results. The primary difference to our work is the focus on static two-
dimensional spatial data, rather than dynamic position information. Furthermore, all of the
described approaches in the third group consider a fixed rather than a mobile ad-hoc network,
thus occupying a disjoint region in the design space of Figure 1.5.

The fourth group in Table 2.3 contains work on spatial queries in wireless sensor networks.
While the Distributed Index for Features in Sensor Networks (DIFS) [GEG+03, GRS+03] and
the Distributed Index for Multi-Dimensional Range Queries (DIM) [LKGH03] support range
queries in one or more dimensions, the Peer-Tree approach [DF03] is suitable for spatial queries
in general. The authors of [CNS04] and [WL04, WXL05] propose algorithms for processing
historical range and k-nearest neighbor queries, respectively.

More recently, itinerary-based techniques for processing k-nearest neighbor queries were pro-
posed in [FPL07, XFLW07]. These algorithms work by visiting a sequence of nodes during which
the query result is aggregated iteratively based on the computation of specific itineraries. A
particular drawback of these approaches is that an itinerary is difficult to trace for low node

88 CHAPTER 2. FUNDAMENTALS

densities, and impossible to trace in the presence of network partitions. These facts make the
approach vulnerable to Requirement (3) and (4). Altogether, the approaches in this group of
algorithms have in common that they are designed for stationary wireless sensor networks and
thus do not address Requirement (2).

Spatial Query Processing in Mobile Ad-hoc Networks

The fifth group in Table 2.3 contains approaches for processing spatial queries in mobile ad-hoc
networks and can be regarded closest to the scope of this dissertation.

The authors of [XL03] propose algorithms for processing spatial window queries in highly mobile
sensor networks. Assuming local data storage (Section 2.5.1), a window query is propagated
to its target region first, where it is disseminated to all nodes that are located inside of this
region. After a query result is aggregated in a distributed way it is returned to the querying
node. While the authors do not substantiate their claims with experimental results, the main
drawbacks of the proposed approach are, presumably, efficiency and scalability. The reason
is that for larger query windows, query dissemination occurs over a large number of nodes.
In contrast, our work builds on a set of light-weight data servers, which provide well-defined
subsets of data in the network based on which queries are evaluated.

An approach to implementing geographic range queries in mobile ad-hoc networks based on
structured distributed hash tables (DHTs) [LCP+05] is pursued in [ZWS06]. The authors
assume that Mobile Ad-hoc Pastry (MADPastry) [ZS05, Zah06], an adaptation of the fixed
network-based Pastry DHT [RD01], is executing in the network. On top of MADPastry, an
implementation of distributed segment trees [ZSLS06] is added to support the processing of
range queries. The proposed approach is complex, because it builds on a two-level distributed
index structure. On the first level, the DHT requires continuous maintenance to sustain efficient
underlay routing in the presence of node mobility. On the second level, the maintenance of
the distributed segment tree adds another significant portion to the overall communication
overhead. For these reasons, only limited scenarios with small node speed (1.4 m/s) and
large transmission range (250 m) are considered. These parameter settings strongly favor the
construction of the DHT overlay. In contrast, we address much harsher MANET environments
where nodes move up to 15 m/s and a transmission range of only 100 m is assumed.

The authors of [WCCC07] propose an itinerary-based algorithm for processing k-nearest neigh-
bor queries. In contrast to [FPL07, XFLW07], the authors claim that the approach is specifically
designed for mobile ad-hoc networks. In terms of mobility, the provided evaluation shows that
Requirement (2) is well supported. However, the authors explicitly assume uniform node dis-
tribution and sufficient node density, which is not in line with Requirement (3) and (4). This
assumption is valid in those WSN scenarios where node placement and movement can be influ-
enced during network deployment. However, in MANETs, the assumption is that nodes move
autonomously and thus may lead to any form of network topology.

Consideration of Inaccurate Position Information

All of the discussed approaches in Table 2.3 have in common that position information is
considered to be accurate for the processing of position updates and spatial queries. Thus,
the approaches do not address Requirement (6), which demands for more general location and
query semantics to account for the intrinsic inaccuracies of sensor systems.

2.5. RELATED WORK 89

In contrast, the consideration of inaccurate data has received much attention in the database
community. While these approaches are designed for database systems and thus are not ap-
plicable to MANETs, various query semantics have been proposed until recently. Table 2.4
summarizes the approaches we describe in the following and indicates the types of query that
each contribution covers by means of probabilistic methods. The table further states whether
a threshold probability can be specified to include only objects that obey a given minimum
probability in a query result. The last column indicates whether a maximum inaccuracy can
be specified for objects that are to be excluded from a query result.

Related Work RQ 1-NNQ k-NNQ Threshold Maximum

Probability Inaccuracy

[WSCY99] + − − + −
[CPK03, CKP04] + + − − −
[CKP03] + + − − −
[CP03] + − − + −
[KKR07] − + − + −
[CC07] + − − + −
[CCMC08] − + − + −
[LC08] group NNQ + −

Table 2.4: Classification of related work in the field of probabilistic query processing.

Wolfson et al. propose a probabilistic model for range queries for moving objects [WSCY99].
A range query returns only those objects that satisfy a minimum threshold probability with
respect to being located within a geographic region. The authors of [CPK03, CKP04] consider
Probabilistic Range (PRQ) and Nearest Neighbor Queries (PNNQ). Both queries return all
objects whose probability either of being located inside of the specified geometric range or of
being the nearest object to a specified position is greater than zero.

Cheng et al. propose in [CKP03] general definitions for different types of probabilistic queries
over imprecise data. The proposed Probabilistic Range Queries (ERQ) and Nearest Neighbor
Queries (ENNQ) are generalizations of the PRQ and PNNQ in [CPK03, CKP04], respectively.
In [CP03], Cheng and Prabhakar define generic probabilistic threshold queries. Specifically, the
proposed Probabilistic Threshold Range Query (PTRQ) is similar to PRQ in [CPK03, CKP04],
but, like [WSCY99], allows to specify a non-zero threshold probability.

The authors of [KKR07] provide a definition for probabilistic nearest neighbor queries. Apart
from the uncertainty of the result objects, the authors also assume that the query position itself
is inaccurate. In a similar way, Chen and Cheng consider in [CC07] probabilistic range queries
that take into account inaccurate reference locations. The provided definitions for Imprecise
Location-dependent Range Query over Uncertain Objects (IUQ) and Constrained IUQ (C-IUQ)
allow queries to be specified with and without a threshold probability, respectively.

The authors of [CCMC08] propose Constrained Nearest Neighbor Queries (C-PNN) over un-
certain data. Apart from a threshold probability, the authors take into account a variance in
the threshold. The additional parameter is exploited to provide more efficient query evaluation.

90 CHAPTER 2. FUNDAMENTALS

Finally, Probabilistic Group Nearest Neighbor Queries (PGNN) are proposed in [LC08]. The
work extends the query definition in [PSTM04] by taking into account position inaccuracies.
This query type is, however, different from the ones considered in this dissertation.

In summary, Table 2.4 reveals that none of the proposed definitions supports probabilistic k-
nearest neighbor queries. Furthermore, none of the approaches considers that objects shall
be filtered out from query results due to their exceeding a specified maximum inaccuracy.
This feature is, however, essential for many practical scenarios, because objects with large
inaccuracies might not be of any value to the querying user.

2.5.4 Summary of Related Work

In the previous sections, we have analyzed in detail a representative number of approaches that
relate to each of the tiers presented in the reference model in Figure 2.22. The assessment in
Section 2.5.1 and 2.5.2 show that mobility (Requirement (2)) and robustness (Requirement (3)
and (4)) are not sufficiently addressed in combination. Chapter 3 and 4 will introduce in detail
the storage tier that addresses these requirements in a combined way.

Section 2.5.3 discussed a large number of approaches that address update and query processing
in various system structures. In summary, the approaches for mobile ad-hoc networks are sparse
and violate efficiency and scalability (Requirement (1) and (5)). In particular, probabilistic
concepts are unavailable for k-nearest neighbor queries, thus Requirement (6) needs further
consideration. We will address these issues in Chapter 5.

Chapter 3

Core Data Storage

This chapter elaborates the algorithms that implement the core data storage component ac-
cording to the storage tier in Figure 2.22. In Section 3.1 we describe more formally the system
model that we assume in this chapter and also in Chapter 4. Section 3.2 introduces Bidirec-
tional Perimeter Routing (BPR) that is situated in the routing tier according to Figure 2.22.
The core data storage algorithms are presented in Section 3.3.

To analyze the performance of the devised algorithms, we adopt a twofold methodology. In order
to understand the performance of core data storage in a broader scope, Section 3.4 presents an
analytical study of its communication cost in comparison to a number of more straightforward
approaches. A detailed analysis of supplementary performance metrics is presented in the
experimental performance analysis of Section 3.5.

3.1 System Model

We consider a mobile ad-hoc network (MANET) deployed inside of a Euclidean 2-space. Let ui

denote network nodes communicating via wireless links, characterized by the nominal transmis-
sion range rtx. We assume no specific propagation model, hence the effective transmission range
of nodes may vary from rtx with time. Let ri(t) denote the trajectory of node ui. We put no
restrictions on how coordinates are obtained, both physical (e.g. WGS84 through GPS [EM99])
or virtual coordinates (e.g. [RPSS03]) are supported by our model.

Let D denote a set of data items oi ∈ D stored in the network. Let C denote a set of reference
coordinates cr ∈ C. By R ∈ D × C we denote a relation between data items and reference
coordinates, known to all nodes. Relation R induces data subsets D(cr) ⊆ D, containing data
items related to the same reference coordinate. A network node ui is said to be the data server
for data subset D(cr) if it is responsible for storing all data items of that subset. A data server
may manage several data subsets at the same time.

According to our discussions in Section 2.1.2 we assume that nodes do not fail nor leave the
network without explicit notice. Specifically, this allows a data server to take the necessary
actions regarding the migration of any stored data prior to logging off the network. We further
assume that network partitions may occur at any time, but that the duration of a partition is

91

92 CHAPTER 3. CORE DATA STORAGE

finite. We assume further that the forming of partitions follows a nondeterministic pattern. In
conjunction with finite partition durations, this property implies that any two nodes are even-
tually able to communicate with each other in the same partition. Finally, we allow messages
to be lost, arbitrarily delayed or reordered by the communication system.

Two types of requests are used to access data items that are stored at data servers: updates
and queries. Updates are performed by clients with respect to a single data item oi. An update
on data item oi is considered successful when it is reflected in a write operation on oi at least at
one data server. An update may be lost while being propagated to a data server (best effort),
e.g. due to a routing failure, in which case it is considered to have not occurred. Queries are
complex requests by clients that lead to read operations on multiple data items at one or more
data servers. Processes that update never query data items, and vice versa.

According to the CAP Theorem [Bre00], at most two of the properties of data consistency, sys-
tem availability, and tolerance to network partitioning can be achieved at any given time [GL02].
Because we explicitly take into account network partitioning, we must therefore decide on a
tradeoff between consistency and availability. Under consideration of the many types of con-
ceivable context-based applications that do not require strict data consistency, we decide to
relax consistency in favor of availability. Formally, we assume that the storage system obeys
eventual consistency, defined according to [TDP+94, GA02, TS06]:

Definition 3.1. A storage system provides eventual consistency when it guarantees that if no
updates on the data items take place for a long time, any access to any data item will eventually
return the most recently updated value of that data item.

Apart from eventual consistency, no further guarantees are given. More concretely, eventual
consistency allows that for two consecutive queries for the same data item, the read associated
with the first query may occur on a more recent value of the data item than the read that is
due to the second query. It is further possible that successive queries that involve the reading
of the same data item may not see all updated values of that data item. However, it is not
possible that a data item which is successfully updated to a data server is lost at a later point
in time, which would otherwise be in violation with Definition 3.1

3.2 Bidirectional Perimeter Routing

In Section 2.5.2 we have discussed how existing approaches to data-centric storage (DCS) are
unable to sufficiently support the robustness-related requirements in Section 2.4. We have
specifically shown in Figure 2.25 how position-based and cell-based DCS are deemed to fail in
situations of low node density and network partitions.

To tackle these shortcomings, we introduce Bidirectional Perimeter Routing (BPR), a cus-
tomization of geometric routing protocols (Section 2.5.2) that apply face routing while relaying
packets towards their destination. BPR adapts perimeter routing in such a way that it allows
to deterministically locate practical data servers even in the presence of malformed perimeters.
While BPR may be applied to any geometric routing protocol that uses face routing, we take
GPSR as an example throughout this chapter and Chapter 4.

3.2. BIDIRECTIONAL PERIMETER ROUTING 93

When considering the approaches that employ perimeter routing, such as DCS [RKY+02] and
Q-NiGHT [ACNP07], we can observe that all approaches make use of only unidirectional peri-
meter traversal. That is, after the perimeter entry node is visited, a packet circumscribes the
reference coordinate in only one direction. This rigid method does not allow a packet to exploit
potential alternatives that might be given in a perimeter’s opposite direction.

Figure 3.1 illustrates the two situations in a mobile ad-hoc network in which malformed perime-
ters occur. In Figure 3.1.a, reference coordinate cr lies inside of a region (sometimes called void)
that does not contain any network nodes. This may typically occur in urban scenarios, where
buildings create obstacles such that voids are formed. In this case, a packet that originates
from node us is routed to the perimeter entry node up first, before is is forwarded along the
perimeter around the empty region.

a. Long perimeter (e.g. physical obstacle) b. Open perimeter (network partition)

cr

up
us

...

......
>> 3

drop

cr

up

us

...

......
>> 3

drop

Figure 3.1: Unidirectional perimeter routing in the case of malformed perimeters.

In Figure 3.1.b, cr lies outside of the network partition, but the packet originates from node
us, which is located inside of the partition. This constellation reflects the situation where a
temporary partition is formed in the network. As a consequence, the packet reaches perimeter
entry node up first, then travels on the perimeter that spans the interior of the partition. In
both Figure 3.1.a and 3.1.b, if the total perimeter length is greater than the residual time-to-
live (TTL) of a packet after starting at up, the packet will be dropped before it is able to reach
up for the second time, which is necessary to decide on the home node.

In order to avoid the forwarding of packets into a single direction that is deemed to fail after
a large number of hops, BPR adopts a strategy based on the sequential traversal of a partial
perimeter in two directions. BPR specifies a perimeter radius Rp, which defines the maxi-
mum number of hops that a perimeter may be traversed in either direction, starting from the
perimeter entry node. Thus, the traced partial perimeter comprises at most the set of nodes
reachable from the perimeter entry node up in Rp hops, taking into account both directions
of traversal. This strategy effectively results in the identification of a “practical” home node,
rather than a home node that is defined based on a “perfect” full perimeter traversal. The
motivation for this strategy is that if a perimeter traversal fails in both directions after the
limited number of Rp hops, a network partition exists with high probability.

94 CHAPTER 3. CORE DATA STORAGE

Figure 3.2.a illustrates how the modified face routing strategy of a geometric routing protocol,
such as GPSR, works. Consider source node us and reference coordinate cr. A packet begins
to be forwarded in greedy mode, until it is impossible to find consecutive nodes closer to cr.
In this event, BPR switches to bidirectional perimeter mode at the perimeter entry node up,
where a packet is forwarded according to the right-hand rule (1). Each node that is visited on
the perimeter is recorded in the packet header. Forwarding continues while each visited node is
further away from the reference coordinate than the perimeter entry node up and the perimeter
radius Rp is not reached. If it is not possible to find a node closer to cr in the first direction,
the packet is returned to up via the previously recorded source route (2). The procedure of
perimeter routing is then repeated in the opposite direction (step (3) and (4) in Figure 3.2.a).
Again, if a node closer to the reference coordinate than up cannot be found, up becomes, by
definition, the home node with respect to reference coordinate cr.

a. Convergence in the situation of long perimeter
b. Convergence by exploitation of alternative
direction during perimeter traversal

cr up

us

...

......
>> 3

home
node

(1)

(2)

(3)

(4)

cr

us

home
node

up

(1)(2)

(3)

P

... >> 3P’

Figure 3.2: Bidirectional perimeter routing in the case of malformed perimeters.

Our choice of using bidirectional perimeter traversal allows, in particular, the consideration of
topologies that contain asymmetric perimeters. Figure 3.2.b shows an example of an asym-
metric perimeter, denoted P ′. BPR starts perimeter traversal at node u′

p in one direction (1)
and encounters that P ′ cannot be completed. After reaching u′

p for the second time (2), the
opposite direction is traced. It happens that after a single hop (3), BPR is able to return
to greedy mode. Eventually, it reaches perimeter entry node up that is related to the closed
perimeter around cr. BPR will terminate at up, which becomes the designated home node.

The choice of traversing perimeters in two directions implies that a source route must be taken
back to the perimeter entry node before the second direction can be traversed. This redundant
visiting of nodes is not present in unidirectional perimeter routing and necessitates a closer
look. In Figure 3.3 we have depicted the relation between the communication cost of traversing
both unidirectional and bidirectional perimeters for different perimeter shapes.

In Figure 3.3.a, the perimeter length LP is smaller than or equal to the perimeter radius RP .
In the example, LP = 3, which is the smallest possible length of a perimeter. If LP ≤ RP , BPR
and unidirectional perimeter routing behave in the same way, because the perimeter radius is
sufficiently large to traverse the full perimeter in one direction. Hence, for LP ≤ RP , BPR and
unidirectional perimeter routing incur the same communication cost.

3.3. CORE DATA STORAGE ALGORITHMS 95

In Figure 3.3.b, LP is larger than RP , but smaller than or equal to 2 · RP . In this case, the
perimeter is traversed in one direction up to the perimeter radius RP , then travelled back until
the perimeter entry node is reached for the second time. In the second direction, BPR must
traverse the perimeter only up to the node that terminated the partial perimeter in the opposite
direction. The same number of hops must be travelled back to the perimeter entry node. In
comparison to unidirectional perimeter routing, BPR incurs significantly larger overhead for
RP < LP ≤ 2 · RP . The total number of hops is H = 2 · RP + 2 · (LP − RP) = 2 · LP , namely,
twice as large as for unidirectional perimeter traversal.

In Figure 3.3.c, LP is larger than 2 ·RP , thus, BPR must traverse a perimeter in both directions
up to the full perimeter radius. In this case, BPR requires the constant overhead of 4 ·RP hops,
whereas unidirectional perimeter traversal requires LP hops. Assuming that a perimeter is
always closed, the advantage of unidirectional versus bidirectional traversal diminishes with
increasing LP by the difference of 4 · RP − LP . For LP = 4 · RP , the overhead of BPR and
unidirectional perimeter routing breaks even.

The aforementioned considerations indicate that BPR incurs significantly larger overhead than
unidirectional perimeter routing for LP > RP . However, two additional aspects need to be taken
into account. Firstly, the arguments regarding Figure 3.3 only apply to closed perimeters. In
situations where node density is low, the traversal of a large number of hops may indicate a
long or open perimeter. For a malformed perimeter, the effective number of hops traversed
by unidirectional perimeter routing is limited only by the packet’s TTL, which may be large.
In contrast, BPR’s overhead is limited by the upper bound 4 · RP , which is assumed to be
significantly smaller than the TTL.

The second aspect pertains to the specific purpose for which BPR is used. In the discussed DCS
approaches in Section 2.5.2, every request implies the application of unidirectional perimeter
routing in order to determine a home node. In contrast, we will show in the next section
how BPR’s use of bidirectional perimeter traversal can be strongly reduced by completely
decoupling it from request forwarding. We will furthermore revisit BPR’s communication cost
in Section 3.4, where we will analyze it within the scope of core data storage.

3.3 Core Data Storage Algorithms

Core data storage comprises the mechanisms that allow clients to forward requests to data
servers according to the location-centric storage paradigm. In this section, we will discuss the
static aspect of location-centric storage. With the mobility of nodes, data migration becomes
necessary, which is discussed in detail in Chapter 4.

In order to forward requests, the common strategy in the position-based DCS approaches dis-
cussed in Section 2.5.2 is to use a local routing scheme to deterministically select a storage node.
For instance, in DCS [RKY+02], GPSR’s customized perimeter routing is used to consistently
locate a home node. Hence, the identification of a storage node takes place implicitly, without
the need of node-centric routing. The robustness of node selection, however, depends strongly
on the schemes’ ability to cope with the characteristics of mobile ad-hoc networks that are
addressed by Requirement (3) and (4) in Section 2.4. If a storage node cannot be determined,
request accuracy will in turn be adversely affected.

96 CHAPTER 3. CORE DATA STORAGE

cr

us

home
node

up

(1)

(2)

b. < 2 · RPR LP P < c. 2 · RPL >P

cr

home
node

up

(1)

(2)

cr

home
node

up
us us

a. RPL <P

Figure 3.3: BPR: perimeter radius RP in comparison to perimeter length LP .

Core data storage acknowledges this inherent drawback of previous DCS approaches and instead
employs an explicit identification of dedicated data servers. For that, data servers announce
their location and association with a reference coordinate via server advertisement. Only in
this scheme bidirectional perimeter routing is always required to its full extent (Figure 3.3.c).
Request forwarding to a data server then takes place in two steps via the distributed adver-
tisement information. The key qualitative difference to previous DCS approaches is that the
localization of such information does neither depend on a perfectly deterministic scheme nor
on perfectly consistent advertisement information. This design provides the essential flexibility
to guarantee compliance with Requirement (3) and (4).

3.3.1 Server Advertisement

Server advertisements are sent by each data server on a regular basis to the server’s associated
reference coordinate. By regular, we mean that the frequency of server advertisements must
be high enough that it remains sufficiently accurate to reliably route packets to a data server.
An advertisement contains relevant information to identify currently available servers and their
association with particular reference coordinates. That information comprises the server’s ID
and current position, and the ID of the reference coordinate the server is associated with.

In the first phase, advertisement information is distributed to populate a partial perimeter
using bidirectional perimeter routing (BPR). This phase is illustrated in Figure 3.4.a, where
a perimeter radius of 1 is used. Hence, nodes u1, u2, u3, which are located on the perimeter
that circumscribes cr, receive the server advertisement. The information contained in a server
advertisement is stored at each visited node, together with a lifetime that determines when the
information is to be considered stale. Observe that for the distribution of server advertisements,
it is not required to return to the perimeter entry node u2 after the perimeter radius has been
reached in the second direction. Furthermore, for small perimeters according to Figure 3.3.a,
server advertisements are distributed around the full perimeter.

With the distribution of subsequent server advertisements on a partial perimeter, the mobility
of nodes may eventually lead to an alteration in the perimeter’s shape. While some nodes will
join a perimeter, others will move off to a more distance location. In the case of high node
mobility (Requirement (2)), such dynamics may impact the ability to reliably find advertisement
information. We provide the following extension to server advertisement for additional resilience
to node mobility during request forwarding.

3.3. CORE DATA STORAGE ALGORITHMS 97

...

...

...

cr

a. Server advertisement via BPR at t1

data server

ADV record

b. Server advertisement via beacons at >t t2 1

cr

data server

ADV record

u1

u2

u3

u1

u2

u3

u4

u5

...

...

...

Figure 3.4: Core data storage: server advertisement.

To support the distribution of server advertisements beyond the nodes on the partial perimeter,
we exploit existing HELLO beacons that are available in the geometric routing protocol. Hence,
no additional packets are required. Two reasons make HELLO beacons particularly attractive.
First, nodes send beacons on a regular basis via single broadcasts to inform neighbors about
their current position. Second, server advertisements consist of only a small piece of information
and are suitable for being piggybacked onto HELLO beacons.

Our approach is to emit a HELLO beacon with server information immediately after a node has
received a server advertisement in the first phase. This scheme provides fresh server information
to nodes in the 1-hop vicinity of the partial perimeter. Figure 3.4.b shows two nodes u4, u5,
which have received the information of a server advertisement via a single cycle of HELLO
beaconing. Note that the information is stored using a soft state approach and discarded after
a timeout period that correlates with the sever advertisement frequency. To avoid the sending
of redundant regular beacons, the next beacon is rescheduled after the beaconing interval of
the geometric routing protocol. Using a suitable synchronization between server advertisement
and regular beacons, no additional beacons are required.

3.3.2 Request Forwarding

Client requests, including updates and queries (Section 3.1), are forwarded to data servers in
two phases. In the first phase, each client request is forwarded into the direction of the reference
coordinate cr, illustrated in Figure 3.5.a. During this phase, geometric routing is performed
towards the reference coordinate in either greedy or perimeter mode, depending on the network
topology. For instance, in Figure 3.5.a, the client request reaches a perimeter node u1 after two
hops. This situation is equivalent to the one shown in Figure 3.2.b. After perimeter routing
via u2 and u3, greedy mode is entered again. At each visited node, a lookup is performed to
check whether fresh advertisement information is available for a data server that is associated
with the reference coordinate specified in the request.

In the case where fresh server information is found, the request enters the second phase and is
forwarded to the data server. In Figure 3.5.a, node u4 is the first such node. In Figure 3.5.b,

98 CHAPTER 3. CORE DATA STORAGE

cr

client

request via BPR
in indirect mode

data server

request via BPR
in direct mode

a. Update processing: long perimeter
b. Update processing: small
closed perimeter

data server

cr

client

client

ADV
record

ADV record

u1

u2u3
u4

Figure 3.5: Request forwarding: closed perimeters.

which shows the situation of a small perimeter, advertisement information is found accordingly
faster. At this point, the ID and location of the data server are necessary for routing to the
server, which can be obtained from the advertisement information. Upon reaching the data
server, the request is processed and a reply is sent to the client via geometric routing. The
assumption is that the client has previously included its own location in the request, such that
the data server is able to return the reply directly to the client.

To emphasize the resilience of core data storage with respect to the robustness Requirement (3)
and (4), we illustrate its behavior in the presence of a network partition in Figure 3.6.

In Figure 3.6.a, at t1, a network partition leads to the situation where no closed perimeter
exists around reference coordinate cr. Because bidirectional perimeter routing is limited by
the perimeter radius RP , the dissemination of server advertisements is restricted to a partial
perimeter. For consecutive advertisements, thus, communication cost remain fixed. While

a. Two network partitions at t1 b. After partition join at >t t2 1

ADV
record

data server

cr

u1

u2

drop
ADV
record

data server

cr

u1

u2

Figure 3.6: Request forwarding: network partition.

3.4. ANALYTICAL STUDY 99

clients in the same partition (e.g. u1 in Figure 3.6.a) are able to locate that information, clients
in a different partition (e.g. u2) are, naturally, not.

Figure 3.6.b shows the joining of the network partitions at t2 > t1. Observe that the joining
of partitions implies the forming of a different partial perimeter along which consecutive server
advertisements are distributed. Clients are now able to find server information at a new set
of nodes, such as client u2. In addition, if the previously distributed server information is still
considered fresh, it may be used by clients as well (e.g. by client u1).

In contrast to server advertisements, requests require a full traversal of partial perimeters
only in the case of routing failures (e.g. client u2 in Figure 3.6.a). This essential difference to
existing DCS approaches, as discussed in Section 3.2, leads to an overall benefit in terms of
communication efficiency, which we will analyze in more detail in the following sections.

3.4 Analytical Study

In this section, we compare the communication cost of the core data storage approach with
several alternative approaches that may be considered to implement location-centric storage.
Specifically, we justify that despite the indirection scheme used during request forwarding
(Section 3.3.2), the overall communication cost incurred by core data storage is generally low
in comparison to the other approaches. To this end, we present an analytical study that allows
to analyze system parameters on a larger range than simulative methods.

3.4.1 Examined Approaches

A detailed and purely analytical treatment of complex protocols is unfeasible in scenarios
with mobility and constantly changing network topologies. Simulative methodologies must be
used to treat particular representative scenarios to consider detailed protocol and algorithmic
behavior. Nevertheless, analytical considerations with adequate simplifications are useful to
discuss a broader range of approaches, which would require significant implementation efforts
in a simulation environment. We consider the following storage approaches for a comparative
analytical study, whose classification is depicted in Figure 3.7.

In the group of position-based approaches, we can find core data storage, which we denote
by LCS/BPR (location-centric storage via Bidirectional Perimeter Routing). Besides server
advertisement and request forwarding overhead, we will consider maintenance overhead, which
includes data migration overhead that is discussed in Chapter 4. This consideration is necessary
to provide a fair comparison to the other approaches. The second approach in the group of
position-based approaches is DCS [RKY+02], as described in Section 2.5.2 and abbreviated
DCS/GPSR (data-centric storage via Greedy Perimeter Stateless Routing).

In the group of cell-based approaches, we consider three variants. In cell-based replicated (C-
REP) storage, all data that is associated with the cell is stored on every node inside of that
cell. This approach is implemented in Rendezvous Regions [SH03, SH04]. Cell-based single-
copy (C-SC) storage refers to the situation where all data associated with a cell is stored on
a single node. Migration is required to relocate the data once that node leaves the cell. The
data-centric storage approach in [TNK04] chooses this variant. In cell-based partitioning (C-

100 CHAPTER 3. CORE DATA STORAGE

G-REP

G-SC

G-PART

global

LCS/
BPR

DCS/
GPSR

cr

position-based

cr

data server

home node

C-REP

C-SC

C-PART

cell-based

Figure 3.7: Analytical study: classification of considered approaches.

PART) storage, a data item is stored on any node inside of its associated cell. This approach
also requires migration of data subsets when nodes leave the cell. This storage mechanism is
implemented by Cell Hash Routing in [ARK+05].

We further include the following approaches that make use of global storage strategies. Global
replication (G-REP) refers to the approach where all data is fully replicated on all nodes in the
network. This is used, for example, in [HBR04]. Global partitioning (G-PART) denotes the case
where data is stored at the node that originally generated the data item. In global single-copy
(G-SC), all data is stored in a single copy at a single node. G-PART and G-SC are equivalent
to local and external storage, respectively, as discussed in the evaluation in [RKS+03].

3.4.2 Analytical Model

We assume a quadratic area A with side length a inside of which the network is deployed. The
number of nodes inside of A is denoted by n. Nodes are homogeneously distributed in A and
move into uniformly distributed directions. All nodes move at the same and constant speed v.
By S ⊆ A we denote the area of a quadratic cell with side length s that is located in the center
of A. Cell S contains nS = n · (S/A) nodes in the average over time.

We assume a spatial data model, hence, each data item is associated with a geometric position.
A data item is generated upon observation by a randomly chosen node from the set of nS nodes
and acquires the position of that node. Hence, data items are only generated inside of cell S.
Thereafter, an update for the data item is sent according to one of the algorithms in Figure 3.7.
The update frequency for all data items is constant and denoted fu.

Given cell S, we define a data subset of size DS to comprise all data items whose position is
included in S. By ds ≤ DS we denote the size of a portion of that data subset. We consider an
arbitrary query type that retrieves a query result containing a data subset of size dS. In order
to evaluate this query, we require that a range query over S must first retrieve the full data
subset of size DS at a single node. At this node, the arbitrary query is evaluated, before dS

data items are returned in the final query result to the query client. Finally, queries are issued
with a frequency of fq, in units of queries per second.

3.4. ANALYTICAL STUDY 101

Notation Definition
A quadratic region from which queries originate

a =
√

A side length of square A
n mean number of nodes in square A
v constant speed of all network nodes
S ⊆ A quadratic cell in the center of A

s =
√

S side length of square S
nS mean number of nodes in square S
fu update frequency per data item
DS total number of data items per data subset
dS ≤ DS number of queried data items
fq query frequency relative to DS

fa server advertisement frequency
C packet capacity in number of data items
R migration threshold in LCS/BPR

Table 3.1: Analytical model: notations.

We further assume that the capacity of a single data packet is C, which is the maximum number
of data items that can be carried in the packet. For LCS/BPR, we define the migration threshold
R. This is the distance from the data server to the associated reference coordinate that triggers
data migration. Upon reaching R, the data server migrates all data items it currently stores in
its local database. A summary of the used notations is given in Table 3.1.

Mean Communication Cost

We consider the analytical quantification of the communication cost for each of the approaches
in Figure 3.7. The mean communication cost, denoted K, that a single data subset incurs,
are measured in number of packets per second. K is composed of a number of individual
contributions, which depend on the considered approach. Table 3.2 lists the contributions that
each approach involves. On the update side, Ku denotes the mean communication cost of data
updates in number of packets per second. On the query side, Kq denotes the cost for querying
data subsets of size dS. On the management side, Km denotes the mean cost for maintaining
the data subset of size DS over time. Ka denotes the cost incurred by server advertisement.

3.4.3 Analytical Derivations

In this section we analytical derive mean communication cost for each of the considered ap-
proaches in Figure 3.7. The results will be discussed in Section 3.4.4.

3.4.3.1 Preliminary Results

First, we require some preparatory results to analytically quantify basic communication primi-
tives that are required for our model. First of all, flooding comes at asymptotic communication
cost, that is, for k nodes, flooding overhead is O(k). In the case of simple flooding, which is
assumed subsequently, O(k) corresponds to k packets.

102 CHAPTER 3. CORE DATA STORAGE

G
-R

E
P

G
-P

A
R
T

G
-S

C

C
-R

E
P

C
-P

A
R
T

G
-S

C

D
C

S
/G

P
S
R

L
C

S
/B

P
R

Update Side
Ku data update × 0 × × 0 × × ×

Query Side
Kq data subset query 0 × × × × × × ×

Management Side
Km data maintenance 0 0 0 × × × × ×
Ka server advertisement 0 0 ×/0 0 0 ×/0 0 ×

Table 3.2: Individual communication cost terms.

Next, we need to quantify the cost for geometric routing. As noted in the beginning of this
section, we focus on the operation of any of the considered storage approaches under normal
network conditions. That is, we assume a node density where routing succeeds in the large
majority of cases, and perimeters are not malformed. Only in this case, geometric routing cost
can correctly be assumed to be in the order of O(

√
k) for k nodes. It is then possible to derive

valid correlations between distance and the number of required hops.

Let us first identify the node density range where virtually no malformed perimeters occur. For
that, we use Figure 3.8, which displays the fraction of malformed perimeters. Note that the
figure uses logarithmic scale on the ordinate. In the figure, a malformed perimeter is defined
where a timeout occurs during routing without making a full perimeter traversal. In the figure,
we consider area A = 1200 · 1200 m2.

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700 800 900 1000

fr
a

c
ti
o

n
o

f
m

a
lf
o

rm
e

d
p

e
ri
m

e
te

rs

number of nodes

Figure 3.8: Fraction of malformed perimeters.

3.4. ANALYTICAL STUDY 103

From the figure, we can identify right away the lower range of node densities from which on
malformed perimeters do not play a significant role. We fix the limit where the fraction of
malformed perimeters is below one percent. From around 600 nodes and above, the fraction is
safely achieved. Thus, we will assume 600 nodes for our reference scenario.

In the second step, we need to establish the relation between network topology and geometry.
That is, we need to determine the mean number of hops that are required between a pair of
nodes that is separated by a given geometric distance.

Figure 3.9 shows the mean number of hops as a function of the distance between two nodes.
Each point captures an interval of 1 m, which is the assumed computational granularity. We
have performed a nonlinear least-square (NLLS) fitting, shown along with the data points.
In the lower range (approximately below 400 m), there are in fact noncontinuous transitions.
Due to the large number of 106 iterations, the profile of the curve is sufficiently smooth to be
mapped to a continuous function. Above 1000 m, the number of data points for computing the
mean becomes too small, because individual distances occur rarer with increasing length. In
the range above 1000 m, we therefore assume linear interpolation.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

m
ea
n
nu
m
be
ro
fh
op
s

geometric distance [m]

Figure 3.9: Mean route length H0(d) as a function of the distance d between nodes.

3.4.3.2 Global Approaches

Global Replication (G-REP)

Global replication assumes that each data item of a considered data subset is stored on every
node in the network. Consequently, queries can be evaluated on any node immediately. There-
fore, only update cost are required (Table 3.2). Since each update must be flooded in the whole
network, the mean communication cost for G-REP are:

KG-REP = fu · DS · n (3.1)

104 CHAPTER 3. CORE DATA STORAGE

Global Partitioning (G-PART)

In G-PART, each data item of a data subset is only stored at the node that generated the
update in the first place. This implies that no cost are required on the update side. Because
of global storage, the data items remain within the network at no additional management cost.
Because the data of a single data subset is potentially distributed over many nodes, server
advertisements do not make sense to locate each node of the subset and are omitted.

We therefore have to consider only the query cost fq, that is, the cost for requesting a partial
data subset with dS ≤ DS data items. Initially, all nodes that may potentially hold data items
that belong to the requested data subset must be identified. For that, we have to consider the
speed v of nodes and the update frequency fu of data items. From the latter, it follows that
the time between two updates on the same data item is 1/fu. The maximum distance a data
item can travel from its original position before the next update is v/fu.

Because all the nodes of one data subset need to be contacted, the total size of the area S ′

inside of which nodes may be located that hold relevant data items is

S ′ =

(√
S +

2v

fu

)2

(3.2)

Based on the assumption that nodes are homogeneously distributed in area A, the number of
nodes n′, located inside of area S ′ is

n′ = n · S ′

A
(3.3)

Efficient querying in terms of overall communication cost works in four steps, where a proxy
node is considered that is located in the center of region S ′. First, the query is sent from a
node inside of region A to the proxy node. In step two, the proxy node distributes the query
inside of region S ′. In the third step, data items are collected at the proxy node inside of S ′,
and sent back by the proxy to the querying node in step four.

While the second step can be readily quantified by n′ packets per query, the other portions
require numerical integrations based on the results in Figure 3.8 and 3.9. For that, we will use
function H1 provided in Appendix C.1.1, Figure C.1 (left). The first step requires H1(a) with
a =

√
A packets (hops). The fourth step, returning the reply from the proxy to the querying

node, requires �dS/C� · H1(a) packets.

Bringing together the model at the proxy node requires each node to send back its data items
that belong to the requested data subset. The total size of the data subset is DS data items
(Table 3.1). We assume that the data items are distributed among the n′ nodes homogeneously,
that is, the distribution of data items to nodes follows a uniform random distribution. The
number of packets required, denoted d′ = d′(n′, DS, C), is a function of the number of nodes,
the number of data items in the data subset, and the packet capacity C.

Let us first consider a single node. We can state the number of packets required from the
viewpoint of a single node, d′′, based on the Bernoulli distribution’s expectation value:

d′′ =

�DS�∑
k=0

⌈
k

C

⌉(�DS�
k

)
1

n′k

(
1 − 1

n′

)�DS�−k

(3.4)

3.4. ANALYTICAL STUDY 105

The total number of packets that are required in the mean is the product

d′ = n′ · d′′ (3.5)

Each of the d′ packets is then returned to the proxy with cost H1(s
′), where s′ =

√
S ′, thus

requiring a total of d′ · H1(S
′) packets. We can now state the total communication cost for

G-PART, which is composed of the four contributions of querying only:

KG-PART = fq ·
[
n′ + d′ · H1(s

′) +

(
1 +

⌈
dS

C

⌉)
· H1(a)

]
(3.6)

Global Single-Copy (G-SC)

In G-SC, all model data is stored on a single network node in A. Server advertisements may
or may not be used to advertise the location of the server in the network. This choice will
influence performance on the query side. We will in the following address both variations.

Let us consider the case without server advertisement first. Each update and each query require
flooding at cost n to reach the server, because the location of the server is not available. Since
all model data is stored at the server forever, no maintenance cost are required.

Returning the query result depends on the amount of data to be returned and the mean number
of hops between the querying node and the server. The amount of data can be quantified as
in the case of G-PART, and is equal to �dS/C� packets. The number of hops requires function
H2, an intermediary result we provide in Appendix C.1.1, Figure C.1 (right).

The mean communication cost for G-SC without advertisement sum up to:

KG-SC = fu · DS · n + fq ·
(

n +

⌈
dS

C

⌉
· H2(a)

)
(3.7)

Let us now consider the case with server advertisement, which adds cost of fa · n for a single
server in the network. With the availability of the server location information at every node,
the cost for both updating and the first phase of query forwarding can be significantly reduced.
Because queries can originate from anywhere inside of region A, each query incurs cost of
H2(a). Updates, however, originate only from within S. For that, we can apply function H5

from Figure C.3 (left), hence, each update requires H5(s) packets. The total cost in the case
where server advertisement is used are:

Kadv
G-SC = fa · n + fu · DS · H5(a) + fq ·

[(
1 +

⌈
dS

C

⌉)
· H2(a)

]
(3.8)

3.4.3.3 Cell-based Approaches

In the cell-based storage approaches, some or all nodes inside of the geometric cell of size S,
with which the data subset DS is associated, store parts of the data subset.

106 CHAPTER 3. CORE DATA STORAGE

Cell-based Replicated (C-REP)

In C-REP, all nodes inside of the cell of size S store the complete data subset. Let us consider
update cost first. Based on the association between node position and cell, a node is located
inside of the cell where it performs an update. Thus, the update does not have to be routed to
the cell, but only needs to be flooded to all nodes inside of the cell. A cell contains nS nodes
in the mean. Thus, the update cost are fu · DS · nS.

Maintenance cost are required to retain the data subset inside of the cell. The assumed node
population of 600 nodes in A is sufficiently high to assume that new nodes entering the cell will
virtually immediately encounter other nodes that are already located inside of the cell. Nodes
entering the cell must request a copy of the model from a node already located inside of the
cell. Nodes leaving the cell can simply drop their stored data items.

Two magnitudes are required, the amount of data to be transferred and the rate at which
nodes enter the cell. The size of a data subset is DS (Table 3.1). This amount of data must be
transferred via a single hop to the entering node, which requires �DS/C� data packets.

Based on the assumption that movement occurs in every direction at the same probability,
and a node is moving in a straight line, we can determine the average time a node is located
inside of a cell. By tcell we denote the mean time a node stays within a cell. From (C.8) in
Appendix C.1.2 we know the average distance a node will travel in the same cell, which is

l̄1 = −2
√

2s

π
ln
(√

2 − 1
)

(3.9)

From this result, we can immediately derive the magnitude of tcell:

tcell =
l̄1
v

(3.10)

Conversely, the frequency with which a single node leaves a cell is 1/tcell, and the mean cell
leave rate for nS nodes is nS · 1/tcell. This frequency dictates the rate at which data subsets are
to be transferred between nodes. Thus, the maintenance cost for one data subset are

nS

tcell
·
⌈

DS

C

⌉
(3.11)

While updates are restricted to within the cell according to our notion of location-centric
storage, requests are executed from anywhere in the network area A. Thus, each query must
be forwarded to any node inside of the respective cell if the request originates from outside the
cell, and the reply is returned via the same route. If a request originates from inside of the cell,
no cost are incurred, similar to the case of global replication.

The probability that a node is located inside the cell is S/A. With a probability of 1 − S/A,
thus, the node is located outside and additional routing cost are required. The average of these
cost depend on S. We have numerically integrated the mean number of hops required for a node
to reach S if it is located in A \ S. For that, we use function H3, defined in Appendix C.1.1,
Figure C.2 (left). Returning a request is at the same cost, but depending on the requested
number of data items a function of dS. The communication cost for queries sum up to

fq ·
(

1 − S

A

)
·
(

1 +

⌈
dS

C

⌉)
· H3(s) (3.12)

3.4. ANALYTICAL STUDY 107

The total cost for cell-based replication are thus:

KC-REP =
nS

tcell
·
⌈

DS

C

⌉
+ fu · DS · nS + fq ·

(
1 − S

A

)
·
(

1 +

⌈
dS

C

⌉)
· H3(s) (3.13)

Cell-based Partitioning (C-PART)

In C-PART, all nodes located inside of a cell store the data subset associated with that cell.
Different to G-PART, migration is required of the data that a node stores while leaving the
cell to another node that is still located inside of the cell. As in the case of global partitioning,
we assume that the data subset is homogeneously distributed, this time among the nS nodes
in the respective cell. Therefore, we can state the expected number of packets, d(4), based on
the Bernoulli distribution’s expectation value again, similar to (3.4):

d(4) =

�DS�∑
k=0

⌈
k

C

⌉(�DS�
k

)
1

nk
S

(
1 − 1

nS

)�DS�−k

(3.14)

From C-REP, We know that nodes leave their cell at the rate of nS/tcell. Each time that a node
leaves the cell the data it stores must be migrated by one hop to any other node inside of cell
S. This results in the following migration cost:

nS

tcell
· d(4) (3.15)

Note that the data is migrated to a node that is already inside of the cell, thus its mean time
to leave the cell is below the global average. However, transferring data back into the cell does
not affect the rate at which nodes leave the cell.1

As in the case of G-PART, no update cost occur because updates are performed within the
cell and occur only locally at the node that generates the update. However, this comes at a
price on the query side, similar to the case of G-PART. Again, four contributions add up to
the query cost. This time, the second step, query dissemination within S, comes at nS packets.
For the other three portions, we make use of H1 again. In addition, we take (3.14), to state the
number of packets required to transfer the data subset back to a proxy located in the center of
S:

d′′′ = nS · d(4) (3.16)

Thus, a total of d′′′ ·H1(s) packets are required in this third step. Altogether, the request cost
plus management cost add up to the mean communication cost for C-PART:

KC-PART =
nS

tcell
· d(4) + fq ·

[
nS + d′′′ · H1(s) +

(
1 +

⌈
dS

C

⌉)
· H1(a)

]
(3.17)

1Strictly speaking, it is possible that data aggregates towards the border of a cell, and thus is not perfectly
homogeneously distributed in a cell. However, the presented calculations are more optimistic and thus lead to
smaller total communication cost for C-PART, which is valid for comparison to LCS/BPR.

108 CHAPTER 3. CORE DATA STORAGE

Cell-based Single-Copy (C-SC)

In C-SC, the complete data subset associated with a cell is stored on a single server inside of
that cell. As in the case of G-SC, server advertisements may be used or not, leading to an
influence on the query side. We will again examine both alternatives.

We first consider the case without server advertisements. For each update, flooding at cost nS

is required inside of the cell because the location of the single server is unknown.

Migration of the complete data subset is required when the node leaves the cell. For that, we
make the idealization (in favor of C-SC) that the target node of a migration will always be
located optimally inside of the cell for migration, that is, in the center of the cell. For that,
we require the result from (C.12) in Appendix C.1.2, which states the average distance a node
will travel to leave a cell, starting from the center of the cell:

l̄2 =
2s

π
ln(

√
2 + 1) (3.18)

At the constant speed v, the mean time it takes to leave the cell is

tcell2 =
l̄2
v

(3.19)

This value determines the frequency of migrations. In addition, we need to quantify the dis-
tance, i.e. the number of hops over which migration will be carried out, to the center of S. For
that we assume that migration occurs from the border of S to the center, and we can use H4,
shown in Figure C.2 (right). The migration cost sum up to

1

tcell2
·
⌈

DS

C

⌉
· H4(s) (3.20)

Requesting a partial data subset requires to locate the single storage node inside of S. For
queries originating from outside the cell, the query must first reach the interior of S, as in the
case of cell-based replication. Locating the node inside the cell can only be achieved by flooding
in the absence of server advertisements. Returning the reply depends on the requested data
subset’s size. In addition, the number of hops over which the reply is returned can be obtained
from H5, depicted in Figure C.3 (left). The total request cost are

fq ·
[(

1 − S

A

)
· H3(s) + nS +

⌈
dS

C

⌉
· H5(s)

]
(3.21)

Thus, the total costs for C-SC without advertisement are:

KC-SC = fu · DS · nS +
1

tcell2
·
⌈

DS

C

⌉
· H4(s)

+ fq ·
[(

1 − S

A

)
· H3(s) + nS +

⌈
dS

C

⌉
· H5(s)

] (3.22)

Let us now consider the case with advertisements. Then, each advertisement is flooded inside
of cell S which requires nS packets. Like in the case of G-SC, advertisement results in smaller
cost of update and query propagation in the cell.

3.4. ANALYTICAL STUDY 109

Let us consider updates first, which are generated by nodes inside of the cell only. We use
function H2 to quantify the communication cost for each update sent, because a node is able
to immediately route to the sever based on available advertisement information.

In contrast to updates, queries may also origin from the exterior of cell S. For queries that origin
inside of S, which is with probability S/A, we can use function H2. For queries originating
from the cell’s exterior, we first use H3 to quantify the number of hops for a request to reach
any node inside of A. Then, we use H6, shown in Figure C.3 (right), which gives the mean
number of hops for the request being forwarded inside of S to the server. Thus, a single request
incurs cost of H3(s)+H6(s). The result of a query is then routed directly to the querying node,
which comes at H5. While a query fits into a single packet, the number of packets required for
a query result depend on dS again. Query cost in the case of advertisement add up to:

Fq = fq ·
[(

1 − S

A

)
· (H3(s) + H6(s)) +

S

A
· H2(s) +

⌈
dS

C

⌉
· H5(s)

]
(3.23)

Altogether, the total cost for C-SC with advertisement are:

Kadv
C-SC = fa · nS +

1

tcell2
·
⌈

DS

C

⌉
· H4(s) + fu · DS · H2(s) + Fq (3.24)

3.4.3.4 Position-based Approaches

Data-centric Storage (DCS/GPSR)

Data-centric storage according to [RKY+02] proposes to locate a node for both queries and
updates via the full traversal of a closed perimeter.

The mean length of perimeters that can be expected in a network depends on the topology
and the planarization algorithm used. Due to complexity reasons, the analytical derivation
is unfeasible, thus, we have assessed the perimeter length by means of measurement. For
that, we have produced a large number of topologies with homogeneous node distribution and
applied the Gabriel Graph planarization to the network topology. We have then determined the
mean length of the perimeter in the center of the region. Figure 3.10 shows the distribution of
perimeter lengths in the selected scenario of 600 nodes, measured on an area of 1200 · 1200 m2.
For a sufficiently small error below one percent, we have performed over 106 measurements.

Let Fp(k) denote the function that returns the fraction of occurrences of a particular perimeter
length k according to the graph in Figure 3.10.

We begin with determining the update cost. Again, updates occur only within a cell of area S,
and we assume that the reference coordinate of DCS/GPSR is located in the center of that cell.
Function H1 gives the mean number of hops required to reach the center of cell S. In addition,
the full perimeter needs to be traversed. For that, we must determine the expectation value Lu

of the perimeter length based on Fp(k), which is:

Lu =
31∑

k=0

k · Fp(k) (3.25)

110 CHAPTER 3. CORE DATA STORAGE

0

0.05

0.1

0.15

0.2

0.25

0 4 8 12 16 20 24 28 32

fr
a

c
ti
o

n
o

f
o

c
c
u

rr
e

n
c
e

s

perimeter length

Figure 3.10: Fraction of occurrences of unidirectional perimeters for DCS/GPSR.

The cost for updating thus sums up to

Ku = fu · DS · (H1(s) + Lu) (3.26)

Queries may originate from anywhere within A. In addition to updates, a reply must also be
sent to the querying node, for which H1 applies as well. Thus, the total query cost sum up to:

Kq = fq ·
[(

1 +

⌈
dS

C

⌉)
· H1(a) + Lu

]
(3.27)

On the management side, DCS/GPSR implements the perimeter refresh protocol to retain
data in case of movement of individual nodes. For that, a home node periodically sends refresh
messages around the perimeter. According to [RKY+02], a refresh message must contain all
data associated with the key, which means in our case the complete data subset. Therefore,
management cost occur at the following magnitude:

Km = fa · Lu ·
⌈

DS

C

⌉
(3.28)

Note that we have used the advertisement frequency for the frequency of the perimeter refresh
protocol, because advertisement and refresh messages both relate to the mobility in the network.
The total cost for DCS/GPSR are thus

KDCS/GPSR = fu · DS · (H1(s) + Lu)

+ fq ·
[(

1 +

⌈
dS

C

⌉)
· H1(a) + Lu

]
+ fa · Lu ·

⌈
DS

C

⌉
(3.29)

3.4. ANALYTICAL STUDY 111

Location-centric Storage (LCS/BPR)

LCS/BPR has four contributions to the overall communication cost. We will start by update
cost again, and we assume that no additional distribution by HELLO beacons is used. There-
fore, any node on a perimeter must be located first to find information about the location of
the server. This phase can be quantified with H1 again. Next, geometric routing to the server
is required. Because a server will be located within a circle, we can use function H7 given in
Figure C.4 (left) in Appendix C.1.1. Assuming radius R, the number of hops required for a
single packet to reach a server from the circle’s center is H7(R). The update cost are

Ku = fu · DS · (H1(s) + H7(R)) (3.30)

Next, we consider the cost for a single query, originating in A. We need function H8 shown
in Figure C.4 (right), which quantifies the mean distance between nodes located inside of the
circle and square A. Query cost sum up to

Kq = fq ·
(

H1(a) + H7(R) + H8(R) ·
⌈

dS

C

⌉)
(3.31)

Regarding the cost for server advertisement, each advertisement is distributed using bidirec-
tional perimeter routing. The cost for a single advertisement depend on the length of the
perimeter, as shown in Figure 3.10. Instead of unidirectional traversal, bidirectional perimeter
traversal is used. Let RP denote the perimeter radius setting of BPR. The number of hops
required for a particular perimeter length k is given by the following equations:

Hb(k, RP) =

⎧⎨
⎩

k if k ≤ RP

2 · RP + (k − RP) = k + RP if RP < k ≤ 2 · RP

3 · RP if k > 2 · RP

(3.32)

Note that a perimeter is never traced back in the second direction, which is sufficient for a server
advertisement. Thus, the expectation value Lb(RP), which gives the expected mean number of
hops for bidirectional perimeter routing for a perimeter radius of RP , is

Lb(RP) =

31∑
k=0

Hb(k, RP) · Fp(k) (3.33)

In addition to Lu, each advertisement requires to be sent from the server to the perimeter,
which we already quantified by H7(R). Altogether, server advertisement cost are

Ka = fa · (H7(R) + Lb(RP)) (3.34)

Finally, we derive the migration cost. For that, we assume that a server is initially located at
the center of the circle, thus, using (C.13), the time required for it to leave the circle is

tcell3 =
R

v
(3.35)

112 CHAPTER 3. CORE DATA STORAGE

Further, the number of hops required for the migration of the data is determined by the radius
only, and we can use the graph from Figure 3.9, whose function we have denoted by H0(d) with
distance d. Migration incurs the following cost:

Km =
1

tcell3
·
⌈

DS

C

⌉
· H0(R) (3.36)

Written in an abbreviated form, the total cost for LCS/BPR are

KLCS/BPR = Ku + Kq + Ka + Km (3.37)

3.4.4 Discussion

Based on the analytical derivations we now discuss the performance of LCS/BPR in relation
to the other approaches from Figure 3.7. We use the following default parameter settings:
Let A = 1200 · 1200 m2, S = 400 · 400 m2, n = 600, and v = 1.5 m/s, which corresponds
to typical pedestrian speed. Let DS = 67, which results in one data item per node with the
aforementioned setting of S. Let C = 32, which corresponds to approximately 50 bytes per
data item for a packet payload of 1600 bytes. This setting allows to include all necessary
information in the data packet, like object identifier and position, and the time of observation.
For the migration radius of LCS/BPR, we assume the default value R = 100 m.

We further assume the update frequency fu = 0.3, that is, an update on an object occurs every
3.3 seconds. This case reflects an accuracy of 5 m in the position of pedestrians moving at the
speed of 1.5 m/s, using a time-based update protocol. The query frequency is fq = 10, which
corresponds to one query every 60 seconds per node. The number of data items requested by
default corresponds to the size of the data subset, that is dS = DS. This reflects the case where
the complete data subset is requested by a client for further processing.

3.4.4.1 Update and Query Performance Relative to Global Approaches

We begin by examining the relation of LCS/BPR with respect to the global approaches. We
will use the default settings and vary the update and query frequency individually. Figure 3.11
and 3.12 display the variation of fu and fq, respectively. Note the use of a logarithmic scale,
because our analytical model allows us to evaluate the approaches over a wide range of value
settings. We also indicate in the following four figures the parameter range where core data
storage operates best in comparison to all other approaches.

Both diagrams show the extremal cases where global replication and partitioning have their
advantage. In Figure 3.11, the performance of global replication is best when the update
frequency is low. However, performance quickly degrades. Based on our analytical model,
the intersection with LCS/BPR occurs at about fu = 0.007, which corresponds to about one
update every 2.5 minutes. This is well below the degree of dynamics we are interested in.

Figure 3.12 reveals the strength of global partitioning for small values of the query frequency
fq. Above approximately fq = 0.5, LCS/BPR performs better than global partitioning. Note
that fq = 0.5 corresponds to one query every two seconds, that is, for 600 nodes, one query

3.4. ANALYTICAL STUDY 113

1

10

100

1000

10
4

10
5

10
6

10
-5

10
-4

0.001 0.01 0.1 1 10

update frequency [1/s]fu

K_G-REP

K_G-PART

K_G-SC

K_G-SC (adv)

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.11: Global approaches: variation of the update frequency fu.

1

10

100

1000

10
4

10
5

0.01 0.1 1 10 100

query frequency [1/s]fq

K_G-REP

K_G-PART

K_G-SC

K_G-SC (adv)

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.12: Global approaches: variation of the query frequency fq.

every 20 minutes per node. This is also safely below the dynamics we consider in the scope of
location-centric storage. Observe in Figure 3.11 the decreasing slope of global partitioning from
about 1/300 and above. The performance is increasing because with higher update frequency,
the area in which queries must be resolved decreases.

Global single-copy without advertisement is never adequate, because both updates and queries
need to be flooded in the network. With advertisements, global single-copy becomes signifi-

114 CHAPTER 3. CORE DATA STORAGE

cantly more efficient, because both routing and update cost are reduced significantly. However,
due to the global scope, communication cost are still higher by an order of magnitude, and the
approach is outperformed in general by LCS/BPR.

3.4.4.2 Update and Query Performance Relative to Cell-based Approaches

Figure 3.13 and 3.14 show the analogous results for the cell-based approaches as in Figure 3.11
and 3.12, respectively. We can observe that the behavior of cell-based replication and partition-
ing is qualitatively very much like the global replication and partitioning case, respectively. This
is because only the area has changed from A to S, which adds a small amount of management
cost (not visible due to its small magnitude).

100

1000

10
4

10
5

10
-5

10
-4

0.001 0.01 0.1 1 10

update frequency [1/s]fu

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.13: Cell-based approaches: variation of the update frequency fu.

Cell-based single-copy (C-SC) storage without advertisement has again low performance due
to the many instances of flooding required for each update and query. In both Figure 3.13
and 3.14, the cost for C-SC without advertisement are larger by one order of magnitude.

In contrast, C-SC with advertisement performs comparatively well with respect to LCS/BPR.
This is clear from the fact that this time only advertisements are flooded, and all queries and
updates can be routed more efficiently. Because the fraction of cost for advertisements is small
compared to the overall cost, both C-SC with advertisement and LCS/BPR perform similar.
We will detail on the effects of a variation in the size of S below.

Also observe that LCS/BPR performs significantly better than DCS/GPSR. The reason is that
for each update and query, a full perimeter traversal is required. In contrast, LCS/BPR only
requires to distribute advertisements on a partial perimeter, and both updates and queries can
be efficiently routed to the server even with the indirection in place.

3.4. ANALYTICAL STUDY 115

1

10

100

1000

10
4

10
5

0.01 0.1 1 10 100

query frequency [1/s]fq

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.14: Cell-based approaches: variation of the query frequency fq.

3.4.4.3 Performance of Cell-based Approaches in Idle State

In the following, we restrict our analysis to the cell-based approaches. The idle state is defined
as the state where no updates and no queries occur, that is, fu = fq = 0, and only management
cost exist. Due to the fact that model data is retained in a geometric cell in all cell-based
approaches, management cost also occur for all of the cell-based approaches.

Figure 3.15 and 3.16 show the mean communication cost in idle state, with a variation of DS

and v, respectively. Let us consider Figure 3.15 first. First of all, we can see that the approaches
C-REP, C-PART, and C-SC without advertisements generally incur smaller management cost.
However, this fact is responsible for the worse performance in Figure 3.13 and 3.14, because
management cost effectively enhance update and query costs. Therefore, management cost are
essential to enhance overall performance in the long term. For times of idle state, it is thus
important that management cost remain within reasonable limits while they do not bring any
benefit. Clearly, this requirement is confirmed by the given results.

Concerning the approaches where management cost imply the highest performance gain relative
to C-REP, C-PART and C-SC without advertisement, LCS/BPR remains within reasonable
performance limits in idle state. LCS/BPR also performs best compared to DCS/GPSR, which
requires to maintain the perimeter refresh protocol, and to C-SC with advertisement, which
involves flooding that incurs cost of one additional order of magnitude. Note that 10 packets
per second and per data subset are distributed among all nodes in the mean. For 67 nodes
being located in cell S, only approximately 1 packet every 7 seconds occurs per node.

Observe the significantly steeper gradient for C-REP and DCS/GPSR in relation to C-SC
with advertisements and LCS/BPR. While management cost in idle state are a function of the
data subset in all four approaches, C-REP’s and DCS/GPSR’s idle cost increase much faster
because the complete data subset must be either migrated frequently in the case of C-REP, or
transmitted with the perimeter refresh protocol in DCS/GPSR. In contrast, both LCS/BPR

116 CHAPTER 3. CORE DATA STORAGE

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200

data subset size DS

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.15: Cell-based approaches: idle mode (fu = fq = 0) with a variation of DS.

0.001

0.01

0.1

1

10

100

0.1 1 10 100

node speed [m/s]v

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.16: Cell-based approaches: idle mode (fu = fq = 0) with a variation of v.

and C-SC with advertisement only involve occasional migrations of the data subset.

Let us now consider Figure 3.16, which shows the idle cost as a function of the node speed.
We can immediately see that a variation of the speed even across several orders of magnitude
does not have a significant influence on LCS/BPR, C-SC with advertisement and DCS/GPSR.
Still, the influence is highest for LCS/BPR, whose increase can be observed in the upper range
at around 10 m/s. The reason is that a relatively small migration radius R leads to a larger
number of migrations than in the case of C-SC for S = 400 · 400 m2.

3.4. ANALYTICAL STUDY 117

3.4.4.4 Impact of Variation in the Number of Data Items

We will now focus on the variation in the number of data items in a data subset, while keeping
S as its default value. This effectively means an increase in the density of data items.

Figure 3.17 and 3.18 show the communication cost as a function of the number of data items
in a data subset for the global and cell-based approaches, respectively. In both diagrams, the
complete data subset is also returned to the querying node. The figures show that LCS/BPR
has the best performance in comparison to the other approaches.

100

1000

10
4

10
5

10
6

0 200 400 600 800 1000 1200

data subset size DS

K_G-REP

K_G-PART

K_G-SC

K_G-SC (adv)

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.17: Global approaches: variation of the number of data items DS and returning the
full data subset DS to the querying node.

Figure 3.19 and 3.20 show the results for the same settings as in Figure 3.17 and 3.18, respec-
tively, with the difference that only a single packet is returned in the reply to the querying
node. A single packet corresponds to up to 32 data items for a packet capacity of C = 32. For
larger data subsets, returning only a few data items leads to a significant decrease of the overall
cost. This case is particularly relevant for such queries that resolve to a few data items only,
such as k-nearest neighbor queries or range queries with small target range.

3.4.4.5 Impact of the Cell Size

The relation of the cell size S to the migration radius R is critical because it decides on the
performance gain or penalty for LCS/BPR with varying cell size. In the following, we keep
the migration radius of LCS/BPR constant at 100 m. This corresponds to a mean number of
13 nodes within the so-defined circle, leaving a sufficient number of candidates for migration.
In the cell-based approaches, no individual migration limit and node selection criteria exist.
However, we will elaborate in Chapter 4 that LCS/BPR does not depend on any nodes being
located within radius R, while still functioning fine. In contrast, cell-based approaches always
require reasonable node population for proper operation.

118 CHAPTER 3. CORE DATA STORAGE

100

1000

10
4

10
5

0 200 400 600 800 1000 1200

data subset size DS

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.18: Cell-based approaches: variation of the number of data items DS and returning
the full data subset DS to the querying node.

100

1000

10
4

10
5

10
6

0 200 400 600 800 1000 1200

K_G-REP

K_G-PART

K_G-SC

K_G-SC (adv)

K_LCS/BPR

data subset size DS

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.19: Global approaches: variation of the number of data items DS and returning up to
32 data items in a single packet.

Figure 3.21 and 3.22 show the communication cost for the default setting and a variation of the
cell size. Figure 3.21 shows the complete spectrum of cell sizes considered, while Figure 3.22
presents a magnification of the most significant part. Also observe the noncontinuous transition
at a cell width of around 275 m. This is due to the packet capacity of C = 32 data items,
because at this setting more than 32 items are part of a data subset. Note that this shape

3.4. ANALYTICAL STUDY 119

100

1000

10
4

10
5

0 200 400 600 800 1000 1200

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

data subset size DS

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.20: Cell-based approaches: variation of the number of data items DS and returning
up to 32 data items in a single packet.

100

1000

10
4

10
5

10
6

0 200 400 600 800 1000 1200

cell width [m]s

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.21: Cell-based approaches: variation of the cell size S with default values, in particular,
constant query rate fq across the complete considered range.

appears less distinct for higher communication cost only due to the logarithmic scale.

Let us first consider LCS/BPR in relation to cell-based storage with advertisement. The per-
formance of both approaches according to Figure 3.22 is very similar. This is also true in
Figure 3.23 and 3.24. A break-even point can be identified slightly above 200 m. At this point,
both the advertisement mechanism’s performance and the query/update performance are very

120 CHAPTER 3. CORE DATA STORAGE

100

1000

10
4

100 150 200 250 300 350 400

cell width [m]s

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.22: Cell-based approaches: variation of the cell size S with default values, in particular,
constant query rate fq in the magnified range.

similar. First, LCS/BPR has better performance above the break-even point. Second, LC-
S/BPR’s performance increases only slowly. These facts make the selection of cell sizes more
flexible than for the cell-based storage approach with advertisement.

Let us further examine the intersection between C-REP and LCS/BPR, occurring at approxi-
mately 180 m. This is the point where replication is more efficient for the given default settings
of fu = 0.3 and fq = 10. However, this advantage of C-REP will rapidly diminish with an
increase of fu, as discussed in conjunction with Figure 3.11 and 3.13.

In Figure 3.21 and 3.22, we have assumed default values for all settings except the single varied
parameter. However, we have neglected the more subtle fact that the query frequency per
model subset is in general a function of the data subset size, which itself depends on the cell
size S. Let us examine this fact in more detail and assume that the size of a cell is decreased.
Then, the number of data items managed in the cell also decreases. In the case of queries that
require access to a small portion of a data subset only, which will generally be the case in a
varied query mix, queries will now be distributed over multiple subsets, naturally leading to a
decrease in the query rate at an individual subset.

When the query rate decreases per cell the benefit of replication decreases with larger ratios
between query rate and update rate. Therefore, deviating from the maximum query rate
obtained in the default case, we have illustrated two more variations in Figure 3.23 and 3.24.
In Figure 3.23, the query rate fq is a function of the ratio between cell size S and area size
A. That is, for twice the cell width s, the update frequency is quadrupled. In Figure 3.24, the
query rate fq is changed proportionally to the ratio between cell width s =

√
S and area width

a =
√

A. That is, for twice the cell width s, the query rate is doubled.

Both diagrams indicate that LCS/BPR is generally to be preferred over C-REP. Also note

3.4. ANALYTICAL STUDY 121

10

100

1000

10
4

100 150 200 250 300 350 400

cell width [m]s

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.23: Cell-based approaches: variation of the cell size S with default values, but with
changing query rate fq according to a square-root variation.

1

10

100

1000

10
4

100 150 200 250 300 350 400

cell width [m]s

K_C-REP

K_C-PART

K_C-SC

K_C-SC (adv)

K_DCS/GPSR

K_LCS/BPR

c
o

m
m

u
n

ic
a

ti
o

n
c
o

s
t

[p
a

c
k
e

ts
/s

]

Figure 3.24: Cell-based approaches: variation of the cell size S with default values, but with
changing query rate fq according to a linear variation.

in Figure 3.24 that C-PART is more efficient than LCS/BPR for smaller settings of the cell
width. However, we have argued in conjunction with Figure 3.12 and 3.14 that the query
rate fq adversely impacts both the global and cell-based partitioning approaches. Hence, the
arguments that apply to C-REP and fu also hold for C-PART when fq is changed instead.

122 CHAPTER 3. CORE DATA STORAGE

3.4.5 Analytical Study: Summary

The analytical study shows that LCS/BPR is an efficient base mechanism in comparison to the
considered alternative approaches. Specifically, LCS/BPR’s performance remains high for a
large range of update frequencies fu and query frequencies fq. This behavior makes LCS/BPR
very predictable in scenarios where both of these parameters may change significantly over
time. At the same time, LCS/BPR incurs only small communication cost in idle state, thus, it
does not stress the network in times of low update and query load.

Only the approach of cell-based single-copy (C-SC) with advertisement shows similar perfor-
mance in terms of communication cost in comparison to LCS/BPR. However, in our study, we
have considered a network with a relatively large node population, in order for providing valid
basic analytical assumptions. In contrast, for small node densities, cell-based approaches are
suboptimal, as we have discussed previously in Section 2.5.2. We will analyze the robustness-
related Requirement (2) to (4) in more detail in the next section.

3.5 Performance Analysis

This is the first of three sections whose purpose is to rigorously analyze the performance of
the LCS framework in Figure 2.22 using simulative methods. The objective is to give evidence
for that the LCS framework implementation provides sufficient performance in terms of the
requirements in Section 2.4. On one hand, we investigate in detail the performance charac-
teristics of the algorithms that implement location-centric storage, including core storage (this
section) and data migration (Section 4.6). On the other hand, we show the efficient processing
of probabilistic spatial queries in Section 5.5 using the concepts of Section 5.3.

An exhaustive performance study that accounts for all conceivable parameters that might have
an impact on the various algorithms is unfeasible. This is true especially for the analysis
of algorithms in MANETs, where the large space of algorithm parameters is complemented
with the many-dimensional space of system parameters. We therefore take particular care in
analyzing a subset of parameters that adequately describe the algorithms’ key performance
characteristics and reveal both their strengths and limitations in an unbiased way.

An additional aspect of algorithm evaluation that is of special importance in MANETs is the
fact that both absolute and comparative quantitative performance statements are limited. This
is true not only because of simplifications in the model, which every evaluation is subject to,
but also because of the significant impact that individual system parameters may have on the
magnitude of certain performance metrics. For example, small changes in the network topology
or variations in mobility patterns may heavily impact accuracy performance metrics due to the
sudden degradation of the underlying routing performance.

We therefore carefully select sensible default values for those parameters that are fixed in each
simulation run, in order to provide a solid base configuration to allow for meaningful absolute
performance statements. In each simulation, we modify only a single parameter at a time, in
order to be able to properly differentiate the performance of multiple algorithms with respect
to one another on both a microscopic and macroscopic quantitative scale.

3.5. PERFORMANCE ANALYSIS 123

The overall performance analysis is preluded with an overview and justification of the generic
evaluation methodology in Section 3.5.1. This generic part of the evaluation will be assumed
in the remainder of this section and also in Section 4.6 and 5.5. In Section 3.5.2 and 3.5.3,
we discuss the core data storage-specific evaluation methodology and performance metrics,
respectively. Section 3.5.4 through 3.5.6 discuss the detailed evaluation results for core data
storage. We conclude the evaluation with a brief summary in Section 3.5.7.

3.5.1 Generic Methodology

The analysis of algorithms can be principally accomplished by any of the four methods of real
system-based evaluation, emulation, simulation, and mathematical analysis. While we have
applied the latter in Section 3.4 to the detailed analysis of communication cost, we have chosen
a simulation-based methodology in this section due to the following desired properties.

In order to obtain statistically useful and deterministic evaluation results, a sufficiently large
geographic area and number of nodes need to be considered, while at the same time a large
number of evaluation runs need to be performed. With respect to these facts real systems are
impractical, since they require large setup efforts and runtime overhead, sequential execution
of individual evaluation trials, and thus lead to a significant expenditure of time. Real sys-
tems furthermore make it virtually impossible to repeat the same experiment under similar
conditions, which naturally may lead to inconclusive results.

In order to be able to approximate the performance behavior that algorithms would exhibit
in a real system, a comprehensive protocol stack implementation that mimics its real system
counterpart is indispensable. Due to the shared nature of wireless media and the extremely
high timing requirements in the emulation of shared medium access protocols, emulation en-
vironments provide only simplified versions of the MAC sublayer. This fact makes current
emulation systems unsuitable for our purposes.

Network topology and node mobility are two of the fundamental system parameters that will
significantly impact algorithm performance and therefore must be considered in any mobile
ad-hoc network-based evaluation. While real systems and emulation are able to support these
parameters, analytical approaches become overwhelmingly complex when attempting to capture
these parameters by the analytical model. They may, therefore, only be used to provide a
picture under specific constraints and individual performance metrics, which was our goal in
the analytical study of the storage tier in Section 3.4.

For these reasons, we have chosen a simulation-based methodology. All evaluations were based
on version 2.29 of the ns-2 simulator, using the wireless extensions introduced by Broch et
al. in [BMJ+98]. These extensions provide an adequate implementation of the CSMA/CA2

protocol with the RTS/CTS3 mechanism according to the IEEE 802.11 standard.

A total of three experiments, corresponding to core data storage, data migration (Section 4.6)
and query processing (Section 5.5) were conducted. Each experiment comprises a number of
simulations, which depends on the number of system parameters (e.g. node speed, number of
nodes) that were modified. All simulations were set up with the following general parameters
and their default values, also listed in Table 3.3.

2Carrier Sense Multiple Access / Collision Avoidance
3Request to Send / Clear to Send

124 CHAPTER 3. CORE DATA STORAGE

System Parameter Default Value
Simulation runs 10
Simulation area 600 · 600 m2

Number of nodes 150
Mobility model random waypoint
Node speed (fixed for all nodes) 1.5 m/s
Pause time (fixed for all nodes) 30 s
Communication model unit disc graph
Communication range 100 m
Propagation model two-ray ground
Medium bandwidth 11 Mbit/s (IEEE 802.11b)
Beaconing interval 1 s
Beacon information node identifier and position

Table 3.3: General system parameters for all experiments.

For each simulation, a total of 10 simulation runs was carried out with different mobility and
traffic patterns. All performance metrics were taken as the mean over the 10 simulation runs.
This number was maintained in all simulations and accounts for a sensible compromise between
statistical determinacy and accuracy, and the feasibility to carry out a variety of different
simulations in a reasonable amount of time.

All simulations were set up in a geographic region whose size is 600·600 m2. Inside of this region,
150 nodes were placed that move according to the random waypoint mobility model [BMJ+98].
The mobility model is parameterized with a fixed node speed of 1.5 m/s and a fixed pause
time of 30 s, applicable to all nodes. Nodes communicate according to the unit disc graph
model, for which a communication range of 100 m is assumed for all nodes. The two-ray
ground propagation model applies. The channel bandwidth is set to 11 Mbit/s, equivalent to
the specification of the IEEE 802.11b standard. It is further assumed that each node performs
MAC-layer beaconing to announce its identifier and current position to neighboring nodes that
are within communication range, which occurs in regular time intervals of 1 second.

3.5.2 Core Data Storage: Methodology

We make use of comparative performance analysis to discuss the performance of core data
storage with two other approaches. The core data storage approach is considered in the form
described in Section 3.3, based on location-centric storage over Bidirectional Perimeter Routing
(LCS/BPR). We compare LCS/BPR with a variant thereof, which we term LCS over geocast
(LCS/geocast). The third approach is Data-centric Storage over Greedy Perimeter Stateless
Routing (DCS/GPSR), as proposed by Ratnasamy et al. in [RKY+02].

LCS/geocast corresponds to cell-based single-copy (C-SC), introduced in the analytical study of
Section 3.4.3.3. It differs from LCS/BPR in the type of mechanism used to disseminate server
advertisements. In LCS/geocast, a server employs simple flooding to distribute advertisements
inside of the cell that is associated with that server via a reference coordinate. Requests are

3.5. PERFORMANCE ANALYSIS 125

routed the same way as in LCS/BPR, however, during routing, server advertisement information
is likely to be found on the first node encountered inside of the respective cell.

DCS/GPSR is implemented according to the approach in [RKY+02] and was considered ana-
lytically in Section 3.4.3.4. A data server is implicitly defined as the node being located nearest
to the reference coordinate. We recall that GPSR achieves the selection of this node via a full
perimeter traversal around the reference coordinate. The same node is reached by requests that
are forwarded using GPSR. To account for mobility, the Perimeter Refresh Protocol (PRP) is
applied to retain data on the nearest node to the respective reference coordinate.

Table 3.4 lists the default system parameters that are used in the evaluation of the core data
storage algorithms in addition to the general system parameters given in Table 3.3.

System Parameter Default Value
Simulation time 360 s
Number of cells 1, centered at (x,y) = (300,300)
Cell size 200 · 200 m2

Number of requests 1000
Request execution interval [30 s, 330 s]
Request frequency 3.33 requests/s
BPR perimeter radius 3
LCS server advertisement interval 1 s
PRP refresh interval 1 s
Number of data items 1000
Total data size 32 kB (32 bytes / data item)

Table 3.4: Core data storage: system parameters.

The total simulation time is set to 360 s, which is sufficient to process a large number of requests
in order to provide adequate statistical stability. To show the performance of core data storage
on a large range of cell sizes, we limit the setup to a single cell that is located at the center
(300,300) of the overall simulation area. We set the default cell size to 200 · 200 m2, which
corresponds to a cell width that is equal to twice the communication range.

By default, 1000 requests are issued during the interval [30 s, 330 s] of the simulation time.
Requests are executed in regular time intervals, resulting in 3.33 requests per second. For each
request, one node is chosen randomly from all nodes located in the single cell based on a uniform
distribution. The initial delay of 30 seconds guarantees that the system is in a state of stability
regarding mobility patterns and the distribution of initial server advertisements. The delay at
the end of the simulation takes into consideration that requests might still be processed and
are able to be completed before the simulation ends.

For both variants of LCS, the perimeter radius is set to 3, which is in particular applicable to the
way server advertisements are distributed in LCS/BPR. In both LCS/BPR and LCS/geocast,
the server advertisement interval is constant at 1 second. To allow for a fair comparison, the
refresh interval of DCS/GPSR’s PRP is also set to one second.

We further assume that a default fixed number of 1000 data items is stored on the single data
server that is associated with the only reference coordinate. Each data item has a payload of 32

126 CHAPTER 3. CORE DATA STORAGE

bytes, resulting in a total of 32 kB of data. This parameter is relevant due to the fact that core
data storage must run with data migration in place. Thus, this amount of data corresponds
to the data that is transferred during a migration process. A precise analysis of the impact of
data size on migration performance follows in Section 4.6.

3.5.3 Performance Metrics

The performance metrics considered in the evaluation of the core data storage approach are
request accuracy, request latency, and request cost.

Request Accuracy

For LCS/BPR and LCS/geocast, request accuracy is defined as the fraction of requests suc-
cessfully delivered from the node that issued the request to the current data server. In the case
of a migration in progress, it is not essential whether the migrating node or the target node is
reached by the requests, since this situation is handled by the migration process.

For DCS/GPSR, request accuracy is defined as the fraction of requests successfully delivered to
the perimeter entry node of the perimeter that encloses the reference coordinate. We assume it
is sufficient that a closed perimeter around the reference coordinate can be traced, independent
of whether the respective perimeter entry node is up to date according to the PRP. This
simplification is in favor of DCS/GPSR and provides an upper bound for its performance, thus,
it can validly be assumed in the comparative performance analysis.

Request Latency

Request latency is defined as the mean time between the sending of a request at the requesting
node and the reception of that request at the target node, taken over all successful requests.
More specifically, for both LCS variants, only requests that are delivered to the current data
server are considered. For DCS/GPSR, only those requests that are delivered to the perimeter
entry node after the successful traversal of a closed perimeter are considered.

Request Cost

Request cost are defined as the mean number of packets sent per second over all requests of the
simulation, including both successful and unsuccessful requests.

In addition to the request cost, we also state the cost incurred by server management (data
migration, perimeter refresh protocol, topology exploration) and server advertisement. These
cost will be further elaborated in the evaluation of data migration in Section 4.6.

3.5.4 Request Accuracy

Figure 3.25 through 3.30 show the simulation results for the request accuracy as a function of
different system parameters. Let us start by considering Figure 3.25, which shows the request
accuracy as a function of the cell width. The default cell width is 200 m. Depicted are two bars
for LCS/BPR (left bar) and LCS/geocast (right bar), overlayed with a graph for DCS/GPSR.
For the LCS variants, two colors indicate whether a request is received while a data server is
in active or receiving state (cf. Section 4.5 for a discussion of these states).

We firstly observe that the request accuracy of all approaches drops gently and with a similar
slope with increasing cell size. The cause for this behavior is that requests are only performed

3.5. PERFORMANCE ANALYSIS 127

80

84

88

92

96

100

100 150 200 250 300 350 400 450 500 550 600

re
q
u
e
s
t
a
c
c
u
ra

c
y

[%
]

cell width [m]

LCS/BPR and LCS/geocast: data receive (init)
LCS/BPR and LCS/geocast: data receive (active)

DCS/GPSR data receive: total

LCS/BPR

LCS/geocast

Figure 3.25: Request accuracy as a function of the cell size.

by nodes from inside of the single cell used in the experiment. With increasing cell size, the
routing distance becomes larger, leading to an increase in the number of routing failures.

The second observation is that the request accuracy of both LCS variants clearly outperforms
that of DCS/GPSR. This can be attributed to DCS/GPSR’s difficulty to trace a full perimeter
in a significant number of cases, in which a perimeter entry node cannot be identified.

Third, we observe that the request accuracy of LCS/BPR is slightly larger than that of
LCS/geocast, which becomes apparent especially with increasing cell size. This is in par-
ticular interesting because intuition suggests that a larger distribution of server advertisements
should make the localization of data servers during requests more successful. The reason for
the performance differences can be understood from the two phases of request routing.

During the first phase, a request is routed towards the reference coordinate. Any node that
holds advertisement information is a qualifying target node. Thus, this phase is very likely to
succeed. In the second phase, unicast routing is used to finally reach a data server. This phase
fails more often due to the addressing of a specific target node, which may not be reached if
its position information is too outdated for the underlying geometric routing to locate it. This
argumentation yields the fact that the first routing phase is generally more successful than the
second routing phase if the same geometric distance has to be traversed.

Looking at the two LCS variants, we observe that in LCS/BPR, server advertisements are dis-
tributed always in the same way from the data server. In LCS/geocast, however, advertisements
are distributed more and more distant from the server with increasing cell size. Whereas in
LCS/BPR the ratio between the routing length in the first and second phase is constant in the
average, in LCS/geocast the routing length in the second phase becomes larger in comparison
to the first phase. Based on our argumentation in the previous paragraph, the overall routing
failures thus increase more quickly for LCS/geocast.

128 CHAPTER 3. CORE DATA STORAGE

Figure 3.26 shows request accuracy as a function of the number of nodes. Note that 150 nodes
is the default value. In this figure, we have decreased the number of nodes down to 50. This
is very low concerning the transmission range of only 100 m, where partitions begin to form
(Section 2.2). We observe that even in the lowest density range, both LCS variants achieve
a greater than 94% request accuracy. We also observe a small advantage of LCS/BPR over
LCS/geocast which is due to the same reasons discussed in the previous figure.

50

60

70

80

90

100

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

re
q
u
e
s
t
a
c
c
u
ra

c
y

[%
]

number of nodes

LCS/BPR and LCS/geocast: data receive (init)
LCS/BPR and LCS/geocast: data receive (active)

DCS/GPSR data receive: total
L
C

S
/B

P
R

L
C

S
/g

e
o
c
a
s
t

Figure 3.26: Request accuracy as a function of the number of nodes.

In contrast, DCS/GPSR’s performance drops sharply starting at around 70 nodes and below.
This is because the length of perimeters increases significantly with lower node density, and it
becomes more difficult for DCS/GPSR to trace a closed perimeter. Mobility complicates this
situation, where a small change of a node’s position will lead to many inconsistencies between
the planarized graph used for perimeter routing and the actual physical network topology.

With increasing node density, once the request accuracy of the LCS variants has reached its
maximum at around 80 nodes already, it remains virtually constant. An additional observation
is that starting at around 120 nodes, the performance of DCS/GPSR begins to drop again. This
behavior is due to the graph planarization required by GPSR that is the basis for perimeter
routing ([KK00]). With increasing node density, the number of nodes eliminated from a node’s
neighbor list to build its view of a planarized graph also increases. At the same time, mobility
leads to the situation where each node’s neighbor set fluctuates more strongly. Thus, with
increasing node density, the inconsistencies increase between a node’s planarized view on the
graph and the physical graph, as well as between the planarized views on the graph of different
nodes. In turn, perimeter routing is operating on a more inconsistent overall planarized graph
with increasing node density, making it more difficult to terminate on a closed perimeter.

Figure 3.27 depicts request accuracy as a function of node speed. The first observation is the
strong performance of both LCS variants up to the maximum tested speed of 15 m/s. At
this speed, LCS/BPR is roughly 1% better than LCS/geocast due to the reasons discussed

3.5. PERFORMANCE ANALYSIS 129

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

re
q
u
e
s
t
a
c
c
u
ra

c
y

[%
]

node speed [m/s]

LCS/BPR and LCS/geocast: data receive (init)
LCS/BPR and LCS/geocast: data receive (active)

DCS/GPSR data receive: total

L
C

S
/B

P
R

L
C

S
/g

e
o
c
a
s
t

Figure 3.27: Request accuracy as a function of the node speed.

previously. This extremely good performance can be attributed to the fact that the rendezvous
approach implemented in LCS is a resilient mechanism for request routing.

The performance gain of both LCS variants over DCS/GPSR is also significant, starting at
small speeds already and increasing rapidly for larger node speeds. The reason is that the
perimeter strategy is not able to cope well with node mobility. We further observe that with
increasing mobility, requests are more frequently received at a data server while in receiving
state. This is because migrations occur more frequently when a server is moving at a higher
speed. This behavior is more pronounced in Figure 3.29, where we discuss it in more detail.

Figure 3.28 shows request accuracy as a function of node speed for LCS/BPR in direct com-
parison to DCS/GPSR. Larger cell sizes clearly have a negative impact on request accuracy,
which increases significantly for larger node speeds for both LCS/BPR and DCS/GPSR. This
is due to the limitations of geographic routing in general where neighbor information cannot
be kept sufficiently accurate. The figure indicates clearly that smaller cells should be preferred
over larger cells, especially when nodes moving at higher speeds can be expected.4 However,
we will show in Section 5.5 that smaller cell sizes adversely impact query performance. This
implies a tradeoff that we will take up again in Section 5.5.4.

Figure 3.29 shows request accuracy as a function of the number of data items that are stored
at a node. For convenience, also the data size in bytes is annotated below the abscissa. The
figure reveals the impact of data migration on LCS.

Up to a relatively small number of about 2000 data items, corresponding to 64 kB of data, mi-
gration is able to complete quickly. Thus, most of the requests are received while the migrating

4Observe that for extremely small cells, request accuracy will eventually reach 100%, since every node will
be a server and deliver requests to itself. However, this case corresponds to cell-based partitioning data storage
(C-PART), treated analytically in Section 3.4, where we showed that it is not appropriate in our scope.

130 CHAPTER 3. CORE DATA STORAGE

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

re
q

u
e

s
t
a

c
c
u

ra
c
y

[%
]

node speed [m/s]

LCS/BPR:
100 x 100

LCS/BPR:
300 x 300

LCS/BPR:
600 x 600

DCS/GPSR:
100 x 100

DCS/GPSR:
300 x 300

DCS/GPSR:
600 x 600

Figure 3.28: Request accuracy as a function of the node speed for different cell sizes.

60

65

70

75

80

85

90

95

100

20
640

50
1.6k

100
3.2k

200
6.4k

500
16k

1k
32k

2k
64k

5k
160k

10k
320k

20k
640k

50k
1.6M

100k
3.2M

re
q
u
e
s
t
a
c
c
u
ra

c
y

[%
]

number of data items / data size [bytes]

LCS/BPR and LCS/geocast: data receive (init)
LCS/BPR and LCS/geocast: data receive (active)

DCS/GPSR data receive: total

Figure 3.29: Request accuracy as a function of the number of data items.

data server is in active state. For about 5000 data items and above, a significant number of
requests is received at the target server, which is in receiving state, during an active migration.
Considering the additional indirection involved during a migration, it is remarkable that up
to the maximum considered 100000 data items, corresponding to 3.2 MB of data, the request
accuracy of LCS/BPR is about 98%. About 25% (the dark colored portion of the right-most
column of LCS/BPR) of the successful requests can be attributed to the forwarding of these
requests by our data migration approach during a migration in progress.

For DCS/GPSR, data migration is implicitly performed by the perimeter refresh protocol.

3.5. PERFORMANCE ANALYSIS 131

However, this mechanism operates differently and does not have a direct impact on the request
accuracy, which is determined by the reaching of the correct perimeter entry node at a given
point in time. Therefore, the accuracy performance of DCS/GPSR can be depicted as a straight
line. Nevertheless, the performance of both LCS variants is well beyond that of DCS/GPSR
for all considered settings of the data size.

Figure 3.30 shows the request accuracy as a function of the number of requests. This result is of
significance because with an increasing number of requests, a data server will eventually become
a bottleneck due to the many requests routed to the same spot. The immediate observation is
that while both LCS variants perform without any decrease in the request accuracy across the
whole considered spectrum, the performance of DCS/GPSR starts to drop significantly above
3000 requests, corresponding to a rate of 10 requests per second.

40

50

60

70

80

90

100

100 150 200 300 500 700 1k 1.5k 2k 3k 5k 7k 10k

re
q
u
e
s
t
a
c
c
u
ra

c
y

[%
]

number of requests

LCS/BPR and LCS/geocast: data receive (init)
LCS/BPR and LCS/geocast: data receive (active)

DCS/GPSR data receive: total

Figure 3.30: Request accuracy as a function of the number of requests.

This can be explained based on the characteristics of routing in the vicinity of the data server.
In both LCS variants, a request can immediately be routed after any server advertisement has
been found on some node other than the server. Thus, only the directly routed packets during
the second phase of request forwarding (Section 3.3.2) aggregate in close proximity to the server.
In DCS/GPSR, for every request it is necessary to perform a full perimeter traversal, which
leads to the aggregation of a large number of packets along the perimeter.

3.5.5 Request Latency

The results for request latency are shown in Figure 3.31 through 3.35. Let us start with
Figure 3.31, in which the request latency is shown a a function of the cell width. A key
observation is that the latency of both LCS variants is much smaller than that of DCS/GPSR.
Additionally, the difference between both location-centric storage variants and DCS/GPSR
remains roughly constant across the whole considered spectrum. This is due to the fact that
routing paths become proportionally longer in all three approaches.

132 CHAPTER 3. CORE DATA STORAGE

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

100 150 200 250 300 350 400 450 500 550 600

re
q

u
e

s
t

la
te

n
c
y

[m
s
]

cell width [m]

LCS/BPR
LCS/geocast
DCS/GPSR

Figure 3.31: Request latency as a function of the cell size.

We further observe that the linear slope of all approaches leads to an increased performance
gain for the LCS variants over DCS/GPSR. While at 600 m the latency of DCS/GPSR is about
twice as large as that of LCS/BPR, at 100 m it is by a factor of approximately 5 larger. This
is because DCS/GPSR incurs an initial overhead, which is due to the full perimeter traversals
that are independent of the cell size and always required.

The generally very low latency incurred by the LCS variants leads to another important conclu-
sion. When thinking of requests as data updates related to some particular context information,
low latencies are essential to provide high quality of provisioned data at a low level of storage
as a basis for the context services that build on top of it.

To see that LCS/BPR meets this requirement at a fundamental level, consider the following
example. Assume that a request corresponds to a position update. Let the initial position
information be acquired by the update initiator based on GPS with a typical inaccuracy of
5 m. Assume further a node speed of 15 m/s (which is the maximum speed we assume in our
experiments), and an update latency of 5 ms (which corresponds to the cell width default value
of 200 m), Based on these values, an update leads to an inaccuracy of 5 ms · 15 m/s = 0.075 m
that can be attributed to update latency. Compared to GPS’ inaccuracy of 5 m, this is only a
small contribution that will have no significant impact on overall data accuracy.

Figure 3.32 and 3.33 show the request latency as a function of the number of data items. In
Figure 3.32, the request latency of DCS/GPSR is depicted as a straight line, due to the same
reasons related to the perimeter refresh protocol as in Figure 3.29. Note that the request latency
of both LCS variants is well below that of DCS/GPSR as discussed in Figure 3.31.

We focus specifically on the impact of a large number of data items on the performance of
the LCS variants. Up to 20000 data items, the request latency is roughly constant. Above
this value, it increases significantly. This is due to the migration mechanism that incurs more
time to complete for a very large number of data items. Note that it takes between 20000 and
50000 data items to match the request latency of DCS/GPSR. This is a remarkable number

3.5. PERFORMANCE ANALYSIS 133

0

5

10

15

20

25

30

20
640

50
1.6k

100
3.2k

200
6.4k

500
16k

1k
32k

2k
64k

5k
160k

10k
320k

20k
640k

50k
1.6M

100k
3.2M

re
q

u
e

s
t

la
te

n
c
y

[m
s
]

number of data items / data size [bytes]

LCS/BPR
LCS/geocast
DCS/GPSR

Figure 3.32: Request latency as a function of the number of data items.

0

10

20

30

40

50

20
640

50
1.6k

100
3.2k

200
6.4k

500
16k

1k
32k

2k
64k

5k
160k

10k
320k

20k
640k

50k
1.6M

100k
3.2M

re
q

u
e

s
t

la
te

n
c
y

[m
s
]

number of data items / data size [bytes]

LCS/BPR:
100 x 100

LCS/BPR:
300 x 300

LCS/BPR:
600 x 600

DCS/GPSR:
100 x 100

DCS/GPSR:
300 x 300

DCS/GPSR:
600 x 600

Figure 3.33: Request latency as a function of the number of data items for different cell sizes.

of data items. In terms of data size, this number corresponds to 1 MB of data, well within
the envisioned data characteristics of the core data storage approach. In the case of an even
larger data size, it is advisable to split a single cell into multiple smaller cells to account for a
distribution of the load. Alternatively, in the case of static data, it is recommended to apply a
different kind of storage approach, e.g., global replication as discussed in Section 3.4.4.

Figure 3.33 shows the request latency of just LCS/BPR and DCS/GPSR for different cell sizes.
We observe that for smaller cell sizes there is a clear performance increase for both approaches
in terms of request latency. Especially in the region where data migration incurs a larger time
overhead, the increase in latency over a cell size of 100 · 100 m2 is about 20 ms for 300 · 300 m2

134 CHAPTER 3. CORE DATA STORAGE

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

re
q

u
e

s
t

la
te

n
c
y

[m
s
]

node speed [m/s]

LCS/BPR
LCS/geocast
DCS/GPSR

Figure 3.34: Request latency as a function of the node speed.

and 30 ms for 600 · 600 m2 at 100000 data items.

An additional observation is that the intersection of curves between LCS/BPR and DCS/GPSR
for the same cell size shifts to the right with decreasing cell size. In other words, with decreasing
cell size, LCS/BPR is more efficient than DCS/GPSR for a larger number of data items. For
example, at 300 · 300 m2, the intersection of the LCS/BPR and DCS/GPSR graph occurs
roughly at 30000 data items, whereas in the case of 100 · 100 m2, this happens not until
about 60000 data items. This shift is due to the constant perimeter overhead always present
in DCS/GPSR as discussed in Figure 3.31, becoming more influential at smaller cell sizes.

This shift is helpful when considering the discussed option to split a single data server into
several ones. Assume, for instance, a cell size of 100 · 100 m2 and consider the case where a
data server storing 100000 data items is split into two servers each holding 50000 data items.
In this case will not only the request latency on both data servers decrease, but will also the
performance of LCS/BPR surpass that of DCS/GPSR.

Figure 3.34 and 3.35 show request latency as a function of the node speed. In Figure 3.34,
besides the clear performance advantage of both LCS variants over GPSR, we focus on the
slight disadvantage of LCS/BPR over LCS/geocast. The difference can be explained based on
the characteristics of the two-step routing applied in LCS/BPR and LCS/geocast.

Because in LCS/geocast an advertisement is likely to be found more quickly than in LCS/BPR,
the second routing phase towards the data server can be initiated faster. This results in a slightly
more optimal route of LCS/geocast compared to LCS/BPR in terms of total geometric distance.
However, in the evaluation we assume that no additional advertisement distribution takes place.
While we consider the performance in Figure 3.34 sufficient, additional advertisement based on
beaconing can also be used to increase the availability of advertisement information within a
scope similar to LCS/geocast, but at no additional cost.

In Figure 3.35 we have displayed the comparison of LCS/BPR with DCS/GPSR for different

3.5. PERFORMANCE ANALYSIS 135

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

re
q

u
e

s
t

la
te

n
c
y

[m
s
]

node speed [m/s]

LCS/BPR:
100 x 100

LCS/BPR:
300 x 300

LCS/BPR:
600 x 600

DCS/GPSR:
100 x 100

DCS/GPSR:
300 x 300

DCS/GPSR:
600 x 600

Figure 3.35: Request latency as a function of the node speed for different cell sizes.

cell sizes for a variation of the node speed. Small cells are clearly to be preferred over large
cells, and for the same cell size, LCS/BPR outperforms DCS/GPSR in all cases.

3.5.6 Request Cost

Figure 3.36 through 3.41 show the request cost as a function of different parameters. Let us
consider Figure 3.36 and 3.37 first, which show the request cost as a function of the cell size.
Figure 3.36 provides a detailed view on the request cost together with all other maintenance
and advertisement cost that occur in the different approaches.

The immediate observation is that the overall communication cost of LCS/BPR remains at a
very low level throughout the considered spectrum of cell sizes. This is due to the fact that the
particular scheme employed by LCS/BPR is independent of cell sizes, thus maintenance cost,
including migration cost and the cost for topology exploration (Section 4.3), remain constant.
Only the cost for requests increase due to the larger routing path length that itself increases
with cell size, shown in more detail in Figure 3.37.

This fact is important for the following reason noted previously. We will show in Section 5.5
that in contrast to the core storage approach, larger cell sizes lead to a more efficient processing
of spatial queries. Therefore, a tradeoff in the cell size needs to be achieved. The fact that
the overall communication cost for request processing changes only insignificantly means higher
flexibility in modifying the cell size for the benefit of more efficient query processing.

Figure 3.36 also reveals the major drawback of LCS/geocast, which was pointed out previously
in the analytical study in Section 3.4. Because the advertisement mechanism of LCS/geocast is
based on cell-wide flooding, advertisement cost increase significantly. Note that it is in principle
possible that LCS/geocast applies a smaller cell area to disseminate server advertisements.
This, however, is the very problem at the root of this approach due to the dependability on a
specific node population within a cell, which is unknown beforehand. In contrast, this problem

136 CHAPTER 3. CORE DATA STORAGE

0

20

40

60

80

100

120

140

160

100 150 200 250 300 350 400 450 500 550 600

c
o
m

m
u
n
ic

a
ti
o
n

c
o
s
t:

p
a
c
k
e
t
ra

te
[1

/s
]

cell width [m]

LCS/BPR and LCS/geocast: request
LCS/BPR and LCS/geocast: server advertisement
LCS/BPR and LCS/geocast: topology exploration
LCS/BPR and LCS/geocast: data migration

DCS/GPSR: request

DCS/GPSR: perimeter refresh

L
C

S
/B

P
R

L
C

S
/g

e
o
c
a
s
t

D
C

S
/G

P
S

R

Figure 3.36: Communication cost as a function of the cell size.

0

5

10

15

20

25

30

35

40

100 150 200 250 300 350 400 450 500 550 600

re
q

u
e

s
t

c
o

s
t:

p
a

c
k
e

t
ra

te
[1

/s
]

cell width [m]

LCS/BPR request
LCS/geocast request
DCS/GPSR request

Figure 3.37: Request cost as a function of the cell size.

does not occur in LCS/BPR, because the applied scheme to distribute server advertisements is
independent of the specific node population in a given region.

In Figure 3.37 we observe a strong correlation between communication cost and request latency
from Figure 3.31. The significant larger overhead of DCS/GPSR compared to both LCS vari-
ants can be explained based on the previously stated fact that for each request, a full perimeter
has to be traversed, independent of the cell size.

3.5. PERFORMANCE ANALYSIS 137

Figure 3.38 shows the communication cost of all three examined approaches in more detail. This
figure and also Figure 3.39 through 3.41 are structured as follows. The graphs to the left show
the total communication cost, which include cost of requests, maintenance and advertisement
(solid lines), and the cost for requests only (dashed lines). The graphs to the right show
maintenance and advertisement cost in separate curves and are included for reference to be
able to understand the composition of the total cost. Observe the logarithmic scale on the
ordinate in all of these figures. Further note that in the right part of the figures, the two curves
for data migration + topology exploration for each of the LCS variants collapses into a single
curve, because of their equivalent operation in both approaches.

0.5

1

2

5

10

20

50

100

200

500

50 100 150 200 50 100 150 200

c
o
m

m
u
n
ic

a
ti
o
n

c
o
s
t:

p
a
c
k
e
t
ra

te
[1

/s
]

number of nodes

LCS/BPR total
LCS/BPR request
LCS/geocast total
LCS/geocast request
DCS/GPSR total
DCS/GPSR request

LCS/BPR server advertisement
LCS/BPR data migration + topology exploration
LCS/geocast server advertisement
LCS/geocast data migration + topology exploration
DCS/GPSR perimeter refresh

Figure 3.38: Communication cost as a function of the number of nodes.

We observe that LCS/BPR’s total communication cost are smaller than that of LCS/geocast
across the whole spectrum. Additionally, the performance gain becomes larger with increasing
number of nodes. This is due to the increased flooding cost incurred by LCS/geocast for higher
node densities, since every node has to send each advertisement once.

The total communication cost for DCS/GPSR are clearly above the cost for both LCS variants.
This can be attributed to the routing overhead incurred by DCS/GPSR along perimeters. This
overhead is required for both each request (left graph) and each refresh performed by the
perimeter refresh protocol (right graph). This is also the reason why these two curves have
similar characteristics across the spectrum of the number of nodes.

For small numbers of nodes, LCS/BPR shows one of its major strengths. Even down to
50 nodes, LCS/BPR’s total communication cost only increase up to a very small amount. This
increase is due to the fact that for small node densities, the chance to traverse a closed perimeter
decreases, and more partial perimeters are fully traversed by bidirectional perimeter routing.
However, the perimeter radius restricts the maximum number of hops traversed on a perimeter

138 CHAPTER 3. CORE DATA STORAGE

to a small value, keeping the total cost at a very low level.

This is different in the case of DCS/GPSR, where for low node densities, both longer and also
more perimeters have to be traversed. Furthermore, the number of perimeters that cannot be
completely traced also increases. The latter case leads to significant routing overhead until a
packet finally experiences a timeout, which makes the packet cost increase significantly.

It is important to note that the small communication cost for LCS/BPR even at low node den-
sities does not imply a severe degradation in the request accuracy, as was shown in Figure 3.26.
Both results taken together substantiate the superior overall performance of LCS/BPR.

Figure 3.39 shows the communication cost as a function of the node speed. LCS/BPR in-
curs significantly lower overhead than the two other approaches across the whole considered
spectrum. This is because LCS/geocast requires significant overhead in server advertisement
compared to LCS/BPR, and DCS/GPSR has high request and perimeter refresh cost due to
the traversal of full perimeters for each request and refresh, respectively.

0.2

0.5

1

2

5

10

20

50

100

200

0 5 10 15 0 5 10 15

c
o
m

m
u
n
ic

a
ti
o
n

c
o
s
t:

p
a
c
k
e
t
ra

te
[1

/s
]

node speed [m/s]

LCS/BPR total
LCS/BPR request
LCS/geocast total
LCS/geocast request
DCS/GPSR total
DCS/GPSR request

LCS/BPR server advertisement
LCS/BPR data migration + topology exploration
LCS/geocast server advertisement
LCS/geocast data migration + topology exploration
DCS/GPSR perimeter refresh

Figure 3.39: Communication cost as a function of the node speed.

However, with increasing node mobility, LCS/BPR’s overhead also increases. This is due to the
larger cost for data migration and topology exploration, shown in the right part of Figure 3.39.
The observed increase is a natural occurrence because with larger node speed, more migrations
are required to maintain spatial coherence. This also requires the execution of more topology
explorations, which precede each migration attempt.

Figure 3.40 shows the communication cost as a function of the number of data items. LCS/BPR
performs best compared to LCS/geocast and DCS/GPSR. This is because LCS/geocast, on one
hand, needs a significant number of packets just for advertisement. On the other hand, the
communication cost of DCS/GPSR increase rapidly in a linear way due to the proportionally

3.5. PERFORMANCE ANALYSIS 139

increasing overhead in the PRP (note the logarithmic scale on both axes). This is because
the PRP requires to send every data item during a single refresh cycle to all nodes on the
perimeter. While this is a feasible approach in [RKY+02], where only a few data items (events)
are considered, it clearly does not provide sufficient performance for larger amounts of data.

1

10

100

1k

10k

20
640

100
3.2k

1k
32k

10k
320k

100k
3.2M

20
640

100
3.2k

1k
32k

10k
320k

100k
3.2M

c
o
m

m
u
n
ic

a
ti
o
n

c
o
s
t:

p
a
c
k
e
t
ra

te
[1

/s
]

number of data items / data size [bytes]

LCS/BPR total
LCS/BPR request
LCS/geocast total
LCS/geocast request
DCS/GPSR total
DCS/GPSR request

LCS/BPR server advertisement
LCS/BPR data migration + topology exploration
LCS/geocast server advertisement
LCS/geocast data migration + topology exploration
DCS/GPSR perimeter refresh

Figure 3.40: Communication cost as a function of the number of data items.

The second observation is that the communication cost of LCS/BPR increase noticeably in the
upper range of the number of data items. This is due to migration, which incurs significant
overhead, as can be seen in the right part of Figure 3.40, and which correlates immediately with
the request latency discussed in Figure 3.32. However, since this also applies to LCS/geocast,
the total communication cost of LCS/BPR remain below that of LCS/geocast.

An additional observation is that the request cost for both LCS variants increase at above 20000
data items. This is also due to the additional migration overhead, because packets are redirected
by the migrating to the target server. The redirection effectively prolongs the distance a packet
must travel until it reaches the target server, and adds to the overall request cost. Note the
previous statement that this region of operation suggests to split the data subset across multiple
servers, in order to reach a smaller number of data items on each resulting server.

Figure 3.41 shows the communication cost as a function of the number of requests. This
figure emphasizes again the performance advantage of LCS/BPR over the other approaches,
specifically, DCS/GPSR. The figure also reveals in detail that up to the maximum of 10000
requests, which corresponds to approximately 33 requests per second, LCS/BPR does not
experience congestions. On the other hand, DCS/GPSR experiences heavy congestions starting
at around 5000 data items, which occurs both for requests and refreshes. This behavior can be
seen especially in the right graph of the perimeter refresh protocol overhead.

140 CHAPTER 3. CORE DATA STORAGE

0.5

1

2

5

10

20

50

100

200

500

1k

100 200 500 1k 2k 5k 10k 100 200 500 1k 2k 5k 10k

c
o
m

m
u
n
ic

a
ti
o
n

c
o
s
t:

p
a
c
k
e
t
ra

te
[1

/s
]

number of requests

LCS/BPR total
LCS/BPR request
LCS/geocast total
LCS/geocast request
DCS/GPSR total
DCS/GPSR request

LCS/BPR server advertisement
LCS/BPR data migration + topology exploration
LCS/geocast server advertisement
LCS/geocast data migration + topology exploration
DCS/GPSR perimeter refresh

Figure 3.41: Communication cost as a function of the number of requests.

3.5.7 Evaluation Summary: Core Storage

The following key results can be summarized based on the evaluation of the previous sections.
Firstly, the request accuracy of LCS/BPR is extremely high even under challenging conditions,
such as low node densities and large numbers of data items. This fact shows well the general
effectiveness of the core data storage approach, because the accuracy metric reflects well the
overall conditions that algorithms must face in specific mobile ad-hoc network scenarios.

Second, LCS/BPR performs extremely well in the presence of low node densities in terms
of request latency and request cost. At the same time, it is able to maintain high request
accuracy. This makes it a strong candidate for scenarios where low node densities may occur
quite frequently, and underpins its independency of any assumptions that are based on sufficient
node population in any geographic regions.

Third, only for a very large number of data items, LCS/BPR’s request latency and overall
communication cost increase noticeably. This behavior suggests to split the data subset of a
single server into multiple (e.g. two) subsets managed by individual servers in split cells, which
would result in a significant improvement of both performance metrics. However, even in the
case of large data subsets, migration does not severely impact accuracy.

Finally, the evaluation results show that small cells are to be preferred over large cells. However,
across the spectrum of considered cell sizes, the performance of LCS/BPR can be maintained
at a generally high level. This fact is particularly important for query processing, which shows
the opposite performance characteristics and which we discuss in Section 5.5.

Chapter 4

Data Migration

In the previous chapter we have introduced core data storage, which provides the base mecha-
nisms for data storage according to the location-centric storage paradigm (Definition 2.2). The
main objective of core data storage was to address Requirement (1), (3), and (4) in Section 2.4,
which capture storage efficiency and robustness. In the presence of node mobility, however,
core data storage does not enforce spatial coherence according to Definition 2.2 between a data
server’s stored data and its associated reference coordinate.

To this end, we present the data migration component, which complements the core data storage
component in the storage tier of the LCS framework of Figure 2.22. Data migration provides
the strategies and mechanisms to maintain spatial coherence by migrating data subsets between
data servers and thereby addresses specifically Requirement (2) in Section 2.4.

We begin with an overview of the migration framework in Section 4.1. In Section 4.2 through 4.4,
we detail on migration policies, followed by a description of the migration mechanisms in
Section 4.5. The evaluation of data migration will follow in Section 4.6.

4.1 Migration Framework Overview

Figure 4.1 presents the high-level structure of the framework for data migration. In the storage
tier (Figure 2.22), the framework contains two components: migration policies and migration
mechanisms. In the routing tier, these are supported by components that implement network
topology exploration and resilient source routing.

The migration policies’ task is to estimate the necessity, benefit, and success that a potential
migration will bring in terms of achieving strong and continuous spatial coherence. Our ap-
proach works by splitting the migration policies in two parts: the migration recommendation
and the migration decision. The migration recommendation policy (MRP, Section 4.2) uses the
local state of the current data server to determine whether migration is needed and beneficial,
that is, whether it leads to an increase in spatial coherence and thus storage efficiency. For
that, it evaluates the migration recommendation predicate (PMRP).

Only when PMRP is true, that is, a migration is recommended, the migration decision policy
(MDP, Section 4.4) is invoked to refine the recommendation in order to bring about a decision.
The MDP examines the remote state of a set of possible candidate target nodes and attempts

141

142 CHAPTER 4. DATA MIGRATION

to find the most eligible one. In order to do so, the MDP is supported by the network topology
exploration component (Section 4.3), which provides efficient distributed aggregation of the
remote state. The MDP also considers the network stability of the current topology to determine
whether a sufficiently stable path exists to perform a successful migration. A migration is only
performed if the migration decision predicate (PMDP) and the MRP agree to do so. In that
case, a selected target server, an initial source route, and the priority value Π indicating the
urgency of the migration, are handed to the data migration component (Figure 4.1).

The migration mechanisms are composed of two components: data migration and data consol-
idation. The data migration component is responsible for carrying out individual migrations
based on the initial target server and source route provided by the migration policy. This com-
ponent makes extensive use of resilient source routing (Section 4.5), which takes as input the
provided source route and supports the transport of data between remote servers. The data
migration component also relies on network topology exploration to update the source route
during the migration of large quantities of data. Furthermore, the data migration provides as
much transparency as possible for requests, both updates and queries.

Data consolidation is invoked asynchronously to the rest of the described processes in the
event of migration failures. Such failures cannot be avoided in the system model we assume in
Section 3.1 and require the consolidation of data stored at several servers. In close collaboration
with core data storage, data consolidation is, however, able to detect server redundancies and
initiate the merging of multiple servers, and thus, data subsets, into a single one.

4.2 Migration Recommendation Policy

The migration recommendation policy (MRP) is the initial step in the process of checking for
whether or not a migration makes sense under the current network conditions. Each data server
in the network monitors in regular time intervals ΔtMRP if the MRP ought to be invoked for
a particular data subset. After each ΔtMRP, the MRP examines the server’s local state and
evaluates the migration recommendation predicate, denoted PMRP.

If PMRP = true, local state indicates that migration is necessary from the point of view of the
current data server, and that it will likely increase spatial coherence between the respective data
subset and its associated reference coordinate (Section 3.1). If PMRP = false, the evaluation
of the MRP is deferred to the next migration cycle after ΔtMRP. The length of the migration
cycle is determined by the application and is a configurable parameter.

Besides this predicate, we introduce the notion of migration priority Π ∈ [0, 1]. This priority
value dictates the strictness by which the subsequent MDP must determine a target server
(Figure 4.1). If Π = 0 (minimum priority), the MDP has full freedom on choosing a candidate
to receive the data to migrate. If Π = 1 (maximum priority), the MDP is forced to find a target
node at any cost, even if the most eligible node may not be an optimal choice.

Let us first consider predicate PMRP, which is composed of several partial predicates, each
modelling a relevant aspect of a server’s local state. The spatial predicate, denoted Pspatial,
ensures that a data server will migrate upon moving too far away from its associated reference
coordinate. Thus, it is the primary indicator for weak spatial coherence. Let t0 denote the
current time, r0(t0) the position of the server at t0, and d0 = d0(t0) = |r0(t0) − cr|.

4.2. MIGRATION RECOMMENDATION POLICY 143

Migration Mechanisms
Section 4.5

Network Topology
Exploration
Section 4.3

Resilient
Source Routing

Section 4.5.1Migration Decision Policy
(MDP) - Section 4.4

Migration Recommendation Policy
(MRP) - Section 4.2

Migration Policies
Section 4.2 - 4.4

Data Migration
Section 4.5.1

Data Consolidation
Section 4.5.2

true

target server, initial source route,

and migration priority Π

Control Flow Interaction

Redundancy
Detection

false

PMDP

PMRP

truefalse

PMRP : migration recommendation predicate

PMDP : migration decision predicate

updated
source

route

Figure 4.1: Overview of the data migration framework.

Figure 4.2 depicts several distances that are used to reason about how critical a migration is
from the point of view of spatial considerations. By dopt, we denote the optimal distance to
the reference coordinate. Nodes located between dthresh and dcrit are still suitable candidates.
Beyond dcrit, nodes are considered no longer adequate to take the role of a data server. We
normally choose dopt, dthresh, dcrit to be multiples of rtx but this is not strictly necessary.

The spatial predicate is defined based on the server’s current position d0(t0) and dthresh:

Pspatial := true ⇔ d0 > dthresh (4.1)

In other words, a data server first considers a migration if it is located more than dthresh away
from the reference coordinate cr. This parameter decides on the degree of spatial coherence
that is desired in a particular scenario. Depending on request frequency and node density,
dthresh can be used to fine-tune overall network performance. We will show in Section 4.6 how
different settings for dthresh and node density influence spatial coherence.

When a data server moves beyond dcrit, it will indicate that a migration must occur from the
spatial perspective, because sufficient spatial coherence is no longer given. In that case, the
MDP may not have any freedom to decide whether or not to postpone migration. Since the loss
of spatial coherence is a gradual process, it is possible to design the following linear function
for the spatial priority Πspatial:

Πspatial :=

⎧⎨
⎩

1 if d0 > dcrit
d0−dthresh

dcrit−dthresh
if dcrit ≥ d0 ≥ dthresh

0 if d0 < dthresh

(4.2)

Intuitively, with increasing Πspatial, a migration is recommended more urgently.

In the temporal domain, we define in analogy to the spatial domain the temporal predicate,
denoted Ptemporal, with associated temporal priority Πtemporal. The temporal priority realizes

144 CHAPTER 4. DATA MIGRATION

cr

...

...

inner nodes

rtx

2rtx 3rtx

dthresh dcrit

dopt dΠ

Π = 0.4

d t0 0()

data
server

Figure 4.2: Migration recommendation predicate.

basic load balancing between nodes, even if nodes are low-mobile or stationary, in which case
the spatial predicate might not trigger.

Let tact denote the time a server became active for a particular data subset. Let Δtthresh

denote the temporal threshold, at which migration is to be first considered from the temporal
viewpoint. Setting tthresh = tact + Δtthresh, the temporal predicate is

Ptemporal := true ⇔ t0 > tthresh (4.3)

Let Δtcrit denote the critical time after which a migration must occur in any case. The general
guideline is to choose a reasonable amount of time that allows nodes to take turns in the long
term, typically several minutes. Setting tcrit = tact + Δtcrit, the temporal priority is defined as

Πtemporal :=

⎧⎨
⎩

1 if t0 > tcrit
t0−tthresh

tcrit−tthresh
if tcrit ≥ t0 ≥ tthresh

0 if t0 < tthresh

(4.4)

It is possible to model additional predicates and priorities, for example, to take into account
the computing capabilities, memory capacity, or energy resources of a device (Table 2.1). We
omit this details but note that they may easily be accommodated based on the previously given
notions of migration predicates and priorities.

Based on an assumption in the system model (Section 3.1), we further support the modelling
of a node’s explicit departure from the network. We define exit predicate Pexit to be true when
a node explicitly indicates that it is about to leave the network. Because this is not a gradual
process, the exit priority is defined as Πexit := (Pexit = true ? 1 : 0).

Considering the semantics of each of the stated partial predicates, a migration should be con-
sidered if any of these predicates is true. Therefore, we define the migration recommendation
predicate PMRP to be the disjunction of the partial predicates:

PMRP := Pspatial ∨ Ptemporal ∨ Pexit (4.5)

In the case of the partial priorities, the largest priority dictates the overall importance of
performing a migration. Thus, we define the migration priority Π as follows:

Π := max{Πspatial, Πtemporal, Πexit} (4.6)

If PMRP is true, the migration decision policy will be triggered and delivered the value Π.
Otherwise, the recommendation process repeats with the next migration cycle after ΔtMRP.

4.3. NETWORK TOPOLOGY EXPLORATION 145

4.3 Network Topology Exploration

In order to obtain the necessary information about the remote state of the current data server
prior to the evaluation of the MDP, we execute a two-phase distributed collection algorithm,
which we call network topology exploration (NTE). In the first phase, we disseminate a topology
request to a relevant subset of nodes and set up a reverse aggregation tree. In the second
phase, each node reached sends a topology reply via the previously built aggregation tree,
which contains information about its own local state relevant to the MDP.

Both dissemination and aggregation algorithms in this scope are well studied in the literature,
see, for example, the survey on geocast routing protocols in [Mai04] and in-network aggregation
in wireless sensor networks in [FRWZ07]. We therefore omit the details of these mechanism and
focus on the shape of a suitable region ANTE that will likely contain highly eligible candidate
nodes. Note that the information returned by NTE is not specified here, but described in detail
in conjunction with the migration decision policy in Section 4.4.

Let ANTE = |ANTE| denote the area of the NTE region. Let d0 = |r0(t0)−cr| denote the distance
between data server u0’s current position and reference coordinate cr at time t0. ANTE must
meet the following three requirements:

(1) To set up the aggregation tree in the vicinity of the server, it must be guaranteed that
some initial nodes are reached, even when there are no nodes in the direction of cr. This is
a known technical problem in the literature, and discussed e.g. in [Mai04]. We address this
issue by defining a minimum distance R0 around the current server u0. We guarantee that
requests will be flooded in the so-defined disk in any case. Therefore, u0 must maintain
at least the distance R0 to any point on the boundary of ANTE. An example where this
restriction applies is given in Figure 4.3.a.

(2) Second, in order to limit the overall communication cost and total aggregation delay for
the collection process, we limit ANTE to a fixed maximum size always, independent of the
distance d0. We define R = min{max{d0, dthresh}, dcrit}. Then, ANTE = π · R2

0 if R0 ≥ R
(Figure 4.3.a), and ANTE = π ·R2 otherwise (Figure 4.3.b-e). Note that while the area is
fixed, the shape of region ANTE is not and depends largely on d0.

(3) Third, in accordance with the migration recommendation predicate and priority in (4.1)
and (4.6), respectively, eligible nodes are likely to be found near cr and are to be preferred.
Because a server may decide on a migration when tthresh is reached or when it explicitly logs
off from the network, such a server may be located near cr. In that case, nodes further
from cr than the current server (Figure 4.3.b) need also to be considered to provide a
sufficiently large set of candidate nodes. On the other side, if the current server is located
far from the reference coordinate, network stability may not allow to consider nodes all
the way up to the reference coordinate (Figure 4.3.e). We therefore require that ANTE is
always oriented towards cr, but limited by its own area ANTE.

Depending on parameters d0, R0 and R, region ANTE takes various shapes, some of which are
shown together with their formal specification in Figure 4.3. Observe that these parameters
are sufficient to reconstruct ANTE, so the more complex representations need not be transferred
during the flooding phase of network topology exploration. The details on how to obtain the
complete set of possible shapes is derived in Appendix D.

146 CHAPTER 4. DATA MIGRATION

a. ,

(circular disk with center)

R R0 NTE 0

0

� ��A C

r

cr

R0 d0
R

E

C

E

E

r0

C0

x
R0

d0 R

r0 cr

C0

C

b. < ,

(circular disk with center)

R R0 NTEA C

c

��

r

c. R R x

x x
0 NTE< , : 0 }

{ : } (semi-elliptical

disk plus inverse circular segment)

A r E

r C

���� � �

	 � �
r

r

r0

R0
d0

C0

cr

R

C

d. R R x0 NTE< , : 0}

(semi-elliptical disk)

A r E���� � �r

R0

r0

C0

d0

R

cr C

e. R R x x0 NTE< , : } (elliptical disk)A r E���� � �r

R0

C0

x

cr

r0

R

C

Figure 4.3: Example shapes of network topology exploration region.

4.4 Migration Decision Policy

The task of the migration decision policy (MDP) is to issue the final decision on whether to
perform a migration once the migration recommendation predicate (4.5) is true. Taking into
consideration migration priority Π in (4.6), the MDP determines the values of three parameters
(Figure 4.1): the migration decision predicate PMDP, the selected target server utarget, and an
initial source route Utarget via which the migration will be carried out (Figure 4.1).

The MDP combines two aspects into a model for server selection. First, in order to rate the
eligibility of a possible candidate node ui, we introduce the notion of node eligibility εi ∈ [0, 1]
in Section 4.4.1. This value describes how suitable a node is in terms of spatial and temporal
characteristics to be used as migration target. At the same time, we will incorporate migration
priority Π to relax node selection if a sufficiently eligible node cannot be determined.

Second, the topological properties of the network must be taken into account to avoid starting
a migration in the case the topology is not sufficiently stable. For that purpose, we present a
model for path stability in Section 4.4.2, which leads to the selection of only the most stable
network paths via which migration is eventually performed.

In the following derivations of the MDP output values, we assume that an instance of network
topology exploration was executed, and nodes inside of ANTE have reported i) the geometric
position ri(ti) of each node ui at fixing time ti, ii) the estimated speed v̄i(ti) of each reporting
node, and iii) the fixing time ti itself. By u0, r0(t0), and v̄0 we denote the current server, its
position at t0, and its estimated speed, respectively. The final values for PMDP, utarget, and
Utarget are defined in Section 4.4.3.

4.4. MIGRATION DECISION POLICY 147

4.4.1 Node Eligibility

Based on the information reported by network topology exploration, the node eligibility εi ∈
[0, 1] combines three properties of a node ui at fixing ti into a single value.

Following from the definition of spatial coherence (Definition 2.3), the eligibility of a node is
generally larger when it is located closer to the reference coordinate. This property was also
modelled in the spatial domain of the MRP and is implemented by the distance-based node
eligibility, denoted εd

i , in the MDP (Section 4.4.1.1).

A second magnitude not present in the MRP is the property that a node is more eligible when
it is likely to move at low speed, therefore remaining in proximity to the reference coordinate
for a longer period of time. We will characterize this magnitude by the notion of sojourn-based
eligibility, denoted εδt

i and discussed in Section 4.4.1.2.

Third, the time-based eligibility, denoted εΔt
i and defined in Section 4.4.1.3, captures the du-

ration for which a node is assigned the server role. Hence, this property corresponds to the
temporal domain in the MRP. Finally, the node eligibility εi combines these three values into
a single one, which will be accomplished in Section 4.4.1.4.

4.4.1.1 Distance-based Node Eligibility

Let us first characterize distance-based eligibility, and estimate the benefit that some node ui

relative to the current server u0 will have in terms of its distance to reference coordinate cr.

We distinguish two cases, according to whether Π < 1 or Π = 1. The case where Π < 1
implies that cr is contained inside of ANTE (Figure 4.4.a). This follows from the definition of
the migration recommendation predicate in (4.1) and the definition of ANTE.

R

r0 cr

d

d 0�

ri

dj

dk

rj rk

di

d0
di

R

r0
cr

d 0�

ri rj rk

�� 1

ANTE

d0
dthresh

dj dk dthresh
dcrit

dNTE

a. 1,
�� �c Ar NTE b.
�� �1, c Ar NTE

ANTE

Figure 4.4: Migration decision policy: distance-based eligibility

Generally, nodes are more eligible when located closer to cr. However, when the network is
only sparsely populated, there might not be any nodes located close to cr. In that case, the
benefit of a migration will be small in comparison to what can be achieved for higher node
densities. In such situations, it is more desirable to postpone migration to the next migration

148 CHAPTER 4. DATA MIGRATION

cycle until more suitable candidates become available. This is exactly the purpose of priority
Π, which we apply to implement a deferral of a migration in such situations as follows.

Using the migration priority Π from (4.6), we are able to define a distance limit dΠ (Figure 4.4.a)
that any candidate node must not exceed. Nodes located further from cr than dΠ will not be
considered as valid candidates. For Π < 1, we define:

dΠ = 0.5 · (1 + Π) · dthresh (4.7)

The interpretation of (4.7) is as follows: Consider Π = 0, which by definition leaves maximum
freedom to the MDP to decide on a target server. In spatial terms, if cr ∈ ANTE, a node
must gain at least 0.5 times the distance dthresh in order to be considered eligible. Choosing
dthresh instead of d0 in (4.7) makes sure that progress is always relative to the threshold. This is
important if u0 is almost co-located with the reference coordinate, in which case no candidate
nodes may exist in a very small region. For larger values of Π, distance dΠ increases, which
effectively increases the set of nodes that will be considered in the selection process.

The choice of the factor 0.5 can be understood from Figure 4.2. In the example, the distance of
the current server to the reference coordinate is d0(t0). According to (4.6), Π = 0.4. Then, (4.7)
yields dΠ = 0.7 · dthresh, indicated in Figure 4.2. We can see that now not only nodes located
up to dopt are considered in the selection process, but also nodes located up to dΠ. That is,
once the current server moves beyond dthresh, priority Π together with the factor 0.5 effectively
assures that migration will only occur over a distance of at least rtx.

In the second case where Π = 1, migration must occur according to the MRP’s recommendation,
which effectively turns into a decision in this case. Therefore, we set dΠ = dNTE, where dNTE

is the maximum distance between the NTE region, ANTE, and the reference coordinate cr

(Figure 4.4.b). That is, any node located inside of ANTE is considered, even if it is located
further away from the reference coordinate than u0 itself.

We are ready now to define the distance-based eligibility εd
i of every node ui. It is always defined

relative to dthresh to be compatible with the MRP. Let di(t0) = di(ti) + v̄i · (t0 − ti), then

εd
i =

{
1 − di(t0)

dthresh
if Π < 1

1 − di(t0)
dNTE

if Π = 1
(4.8)

In the previous equation, we set εd
i = 0 if di(t0) > dthresh.

We further require the notion of the minimum distance-based eligibility, denoted εΠ
d , which

denotes the eligibility that a node must satisfy in order to be a valid candidate:

εΠ
d =

{
1 − dΠ

dthresh
if Π < 1

0 if Π = 1
(4.9)

4.4.1.2 Sojourn-based Node Eligibility

The sojourn-based node eligibility, denoted εδt
i , is related to the expected speed that a node

ui takes relative to the considered reference coordinate cr. We define the notion of estimated

4.4. MIGRATION DECISION POLICY 149

residual sojourn time, based on notions in [TDC01, MMM05], in such a way that it can be
adopted for the definition of the sojourn-based eligibility.

Using the assumption that a data migration will occur after Δtthresh if the spatial migration
predicate in (4.1) does not trigger, we can define Δtthresh as the maximum residual sojourn
time. We first consider the case where Π < 1 ⇒ cr ∈ ANTE. We define the sojourn time δti of
node ui relative to the current time t0 as follows:

δti = min

{
dthresh − di(t0)

v̄i
, Δtthresh

}
(4.10)

If di(t0) > dthresh, we set δti = 0. If v̄i = 0 for some i, we set δti = Δtthresh. For Π = 1, we take
the distance dNTE as the reference:

δti = min

{
dNTE − di(t0)

v̄i

, Δtthresh

}
(4.11)

If di(t0) > dNTE, we set δti = 0.

In contrast to the distance-based node eligibility, an absolute reference for the sojourn-based
eligibility does not make sense. This is because the sojourn time distribution of nodes can
potentially be arbitrary, depending on the mobility of network nodes. We thus divide the set
of nodes into two partitions, each having a size that is a function of migration priority Π.

Let us first consider Π < 1. Let δt′0, . . . , δt
′
n denote the estimated residual sojourn time values

in increasing order, with equal values in arbitrary order. If δt′n > 0, we define k′ ∈ {0, . . . , n/2}
to be k′ = �(1 − Π) · (n/2)�. Then we define k = k′ if δt′k′ > 0, and if δt′k′ = 0, we set
k = min{k′′ : Δt′k′′ > 0}. Then we set the minimum residual sojourn time to δtΠ = δtk. If
δt′n = 0, we set δtΠ = δtthresh. In the case where Π = 1 we immediately set δtΠ = δt′0.

The set of nodes to be considered is defined as all nodes whose sojourn time is equal to or greater
than the sojourn time δt′k. In particular, value Π = 0 corresponds to the case where only nodes
whose sojourn time is above or equal to δtn/2 are considered (in the case where δtn/2 > 0). If
Π � 1, then k = 0 and all nodes (for which δti > 0) are considered as valid candidates. Thus,
for smaller Π, the requirements regarding the residual sojourn time are relaxed in the sense
that also nodes with larger sojourn time are considered in the selection process.

We can now define the sojourn-based eligibility of a node ui as follows. For that, we define
δtlim = δt′n if δt′n > 0 and δtlim = Δtthresh otherwise. We obtain:

εδt
i =

δti
δtlim

(4.12)

The minimum sojourn-based node eligibility is defined as

εδt
Π =

δtΠ
δtlim

(4.13)

Observe that if δt′n = 0, which implies that all δti = 0, then εδt
i = 0 for all i, and εδt

Π = 1. Note
that this special case implies that there are no nodes within threshold distance dthresh to cr at
t0, and thus εd

i = 0 for all i also holds.

150 CHAPTER 4. DATA MIGRATION

4.4.1.3 Time-based Node Eligibility

While the MRP uses the temporal predicate to share load from the viewpoint of the current
server, the MDP generalizes the notion to a set of nodes such that the management of data
subsets is more evenly balanced and migration oscillations between a few nodes are avoided.

Let us first define the load factor Li ∈ [0, 1] of a node ui. Let Δtbusy
i denote the total time node

ui was server for any number of data subsets. Let Δtup
i denote the up time of a node since its

joining the network (e.g. by being turned on). The load factor is

Li =
Δtbusy

i

Δtup
i

(4.14)

Li assumes its minimum if a node has never served, and the upper bound 1 if a node was always
server for some data subset. Note that the load factor is already computed at remote nodes
based on busy and up times, and the single value Li is returned during topology exploration.

Relaxation by priority Π is implemented similar to the sojourn-based node eligibility. We use
the reported subset of nodes from network topology exploration as the reference, because the
goal is to distribute load evenly among these nodes. This time, we assume that L′

0, . . . , L
′
n

denote load factors in decreasing order. The load limit is LΠ = L′
k with value k being defined

based on the procedure in the sojourn-based node eligibility. The set of considered nodes is
again split into two partitions according to Π. This time, only nodes with a sufficiently small
load factor are considered. A node’s time-based eligibility is

εΔt
i = 1 − Li (4.15)

The maximum time-based node eligibility is defined as follows:

εΔt
Π = 1 − LΠ (4.16)

4.4.1.4 Combined Node Eligibility

We will now combine the individual notions of eligibility into a single eligibility value εi for
each node ui. First, a sensible combination requires that each of the individual eligibility
values obey their own limit. Second, compensation for one dimension may be allowed if one
or both of the other dimensions dominate. For example, this may occur when a fast-moving
node is almost co-located with the reference coordinate, in which case the distance-based node
eligibility dominates over the sojourn-based eligibility.

We therefore choose a multiplicative approach that we illustrate in Figure 4.5. We have put
the distance-based and sojourn-based eligibility magnitudes on the vertical and horizontal axis,
respectively. The time-based node eligibility extends into the third dimension. For ease of
exposition, we have not detailed it in the figure.

The combined eligibility εi of a node ui is defined as follows:

εi := εd
i · εδt

i · εΔt
i (4.17)

4.4. MIGRATION DECISION POLICY 151

1

2

3

4

1

0

1

2

1

3

4

u

u

u

A

i r

j r

k r

slow, far from , valid candidate

fast, close to , no candidate

slow, close to , valid candidate

area as governed by

c

c

c

d

k

d

j

d

d

i

distance-based node eligibility

time-based
node eligibility

0
�t

j
�t

�t

i
�t

k

sojourn-based node eligibility

1

Figure 4.5: Migration decision policy: combined node eligibility.

Likewise, the combined minimum eligibility εΠ that a node must obey is

εΠ := εd
Π · εδt

Π · εΔt
Π (4.18)

Value εΠ combines the requirements in each dimension into a one-dimensional value. In the case
where a node ui satisfies each individual eligibility, the overall limit is also satisfied, thus a node
is considered eligible according to priority Π. For Π = 1, area AΠ, labelled ➍ in Figure 4.5,
vanishes, thus any node is considered in the election process. In the figure, uk clearly satisfies
both the distance-based and sojourn-based eligibility requirements, thus it is eligible. Nodes
ui and uj do not satisfy both individual eligibility values. However, ui is able to compensate,
since the value defined by εd

i · εδt
i is larger than εd

Π · εδt
Π , while uj is not. Note again that we have

excluded the time-based node eligibility in this example, which works analogously.

4.4.2 Path Stability

In this section we introduce the concepts that incorporate the stability of network paths between
the current server u0 and target nodes ui into the migration decision policy. Together with node
eligibility εi in (4.17), the stability considerations will form a part of the migration decision
predicate in Section 4.4.3 and influence the selection of the designated target server.

Several previous work considers models of link and path stability for different purposes, for
example, [TDC01, GdWFM02, HSC03, YLG03, MMM05]. While we share some basic notions
with this work, our proposed model and algorithm involve additional constraints that are not
present in this form in the mentioned work.

We begin by defining our model for the estimated residual link lifetime in Section 4.4.2.1. In
Section 4.4.2.2, we present the algorithm that determines the most suitable paths from the
current server u0 to potential candidate target servers ui.

152 CHAPTER 4. DATA MIGRATION

4.4.2.1 Estimated Residual Link Lifetime

Let us first consider the following model of link quality, which is based on geometric information
that includes node positions ri(ti) and node speeds v̄i(ti), as returned from network topology
exploration. We assume that the quality of a link connecting nodes ui, uj is modelled by a
variable qi,j(t) ∈ [0, 1] that describes the packet loss probability on that link. Let di,j(t0)
denote the Euclidean distance between nodes ui and uj at time t0. We define:

qi,j(t) =

{
1 if di,j(t0) ≤ rtx

0 otherwise
(4.19)

The given model is an idealization in that it considers a link to be perfect up to the nominal
transmission range rtx. Instead of modelling the imperfection of a wireless link at all times, we
address this issue implicitly by assuming a decreased available bandwidth for migration. We
will come back to this aspect in Section 4.4.2.2.

Let t0 denote the current time and observe that ∀i : t0 ≥ ti. Assume further, w.l.g., that ti ≥ tj .
The distance di,j(t0) between any two nodes ui, uj at t0 is defined as follows:

di,j(t0) := |ri(ti) − rj(tj)| + v̄j · (ti − tj) + (v̄i + v̄j) · (t0 − ti) (4.20)

The distance di,j(t) between ui, uj at any future time t ≥ t0 is

di,j(t) = di,j(t0) + (v̄i + v̄j)(t − t0) (4.21)

Excluding special cases, the residual link lifetime is described by the difference t− t0 in (4.21).
Reorganizing the equation yields

t − t0 =
di,j(t) − di,j(t0)

v̄i + v̄j
(4.22)

Substituting rtx for di,j(t) in (4.22) yields the residual link lifetime τi,j between nodes ui, uj:

τi,j =

⎧⎪⎪⎨
⎪⎪⎩

min

{
Δτmax,

rtx − di,j(t0)

v̄i + v̄j

}
if di,j(t0) ≤ rtx ∧ v̄i + v̄j > 0

Δτmax if di,j(t0) ≤ rtx ∧ v̄i + v̄j = 0
0 if di,j(t0) > rtx

(4.23)

In (4.23), we assume τmax to be a sensible upper bound, which is for numerical reasons only. If
both v̄i and v̄j are zero, there is no relative movement between ui and uj and we also choose
this value. If the distance between two nodes is larger than the nominal transmission range rtx

at the current time t0, the residual link lifetime is, naturally, zero.

4.4.2.2 Algorithm for Path Computation

We now present the algorithm for determining appropriate paths from the current server
u0 to candidate nodes ui via a sequence of intermediary nodes. The algorithm, shown in
Listing 4.1, is executed by u0 once the residual link lifetimes τi,j have been calculated according

4.4. MIGRATION DECISION POLICY 153

to Section 4.4.2.1. Procedure ComputePaths takes five arguments: G = (U, E, τ) denotes the
graph that is constructed from the information returned by NTE (Section 4.3) and values τi,j.
U denotes the set of nodes ui and E contains all edges ei,j for which τi,j > 0 according to (4.23).
Function τ : E �→ R+

0 returns τi,j for each edge ei,j, that is, τ(ei,j) = τi,j .

Let D denote the total size in kB of the data subset to be migrated, and Dres the residual
size of the data yet to be migrated. By B we denote the available bandwidth for migration
in kB/s. This parameter models the fact that the full bandwidth of the communication channel
may not be available to migration due to cross traffic or fluctuating link quality, as noted in
Section 4.4.2.1. While a reasonable value can be statically assigned (e.g. 1 kB/s, as assumed
in the evaluation of data migration in Section 4.6), it is also possible to estimate B on the fly
by an additional algorithm. This detail, however, is out of the scope of this dissertation.

An important fact to consider in the path selection process is that it is unknown beforehand
whether a sufficiently stable path exists to migrate the complete data subset from u0 to some
other node ui. In this case, an initial path has to be determined, which may subsequently
be updated while a migration is in progress. To distinguish between the two cases, procedure
ComputePaths takes the parameter Ptarget, which is false if a path is determined for the first
time, and true otherwise. The fifth argument, Utarget, which is passed by reference, contains a
feasible suitable path to each node ui once the procedure returns.

We further assume two global parameters. Firstly, Δtpath denotes the time required to re-
determine a path while a migration is in progress. This value includes the time incurred by
topology exploration, and the CPU time for path computations. Note that both values can be
estimated by parameter settings of network topology exploration, such as aggregation delays,
and, e.g. trial runs of path computations. Second, ΔtMDP denotes the blocking interval of the
migration decision policy. Similar to the migration recommendation policy’s monitoring inter-
val ΔtMRP (Section 4.2), this parameter becomes effective when the migration decision policy
is not able to determine an eligible node that can be reached via a sufficiently stable path. In
that case, migration is deferred for the duration of ΔtMDP. While ΔtMRP can be set to a small
value because the MRP involves only local computations, ΔtMDP is typically set to a larger
value such that the network topology will likely have changed. Note that independent of the
setting of ΔtMDP, migration will eventually occur when the migration priority Π reaches its
maximum value of 1. This is guaranteed by the temporal priority according to (4.4).

Listing 4.1: Computation of network paths.

1 procedure ComputePaths (G : Graph ; Dres : integer ; B : real ;
2 Ptarget : boolean ; var Utarget : Path [n])
3 begin
4 var τreqmax, τreqmin, τreq : real
5 var predBFS : integer [|G.V |]
6 var lmin, lmax, lstretch : integer [|G.V |]
7 var H : Graph
8 var lH : integer [|G.V |]
9 var predH2 : integer [|G.V |] [|G.V |]

10 var dfinal : integer [|V |] // final path distances
11 var τfinal : real [|V |] // final residual path lifetimes
12 var EG : Pr ior ityQueue
13 var e : Edge
14 var j : integer

154 CHAPTER 4. DATA MIGRATION

15

16 τreqmax := Dres/B
17 i f Ptarget then
18 τreqmin := 0.001
19 else
20 τreqmin := max{(1 − Π) · min{τreqmax, Δtpath}, 0.001}
21 end i f
22

23 BreadthFir s tSearch (G, u0, predBFS, lmin)
24 for each i ∈ {1, . . . , |G.V |} do lmax[i] := min{�lmin[i] · lstretch�, lmax}
25

26 τreq := τreqmax

27 while τreq ≥ τreqmin do
28 EG . I n i t (G.E, G.τ) // largest residual link lifetime first
29 while |EG| > 0 do
30 e := GetAndRemoveNext(EG)
31 i f G.τ(e) < τreq then break
32 H.E := H.E ∪ e
33 H.V := V ∪ G . GetAdjacentVert i ces (e)
34 i f u0 �∈ H.V then continue
35 ClearArray (predBFS, −1)
36 ClearArray (lH , 0)
37 BreadthFir s tSearch (H, u0, predBFS, lH)
38 for each i ∈ {1, . . . , |H.V |} do
39 i f predBFS[i] = −1 then continue // no predecessor
40 i f predH2[i][i] > −1 then continue // previous predecessor
41 i f lH [i] > lmax[i] then continue // path length exceeded
42 j := i
43 while predBFS[i] �= −1 do
44 predH2[i][j] := predBFS[j]
45 j := predBFS[j]
46 end while
47 dfinal[i] := lH [i]
48 τfinal[i] := G.τ(e)
49 end for
50 end while
51

52 ConvertPaths (predH2, Utarget)
53 i f Eva lua teMigrat ionDec i s ionPred icate (Utarget) = true then return
54 τreq := τreq/2
55 end while
56

57 i f Ptarget

58 DeferMigrat ion (ΔtMDP)
59 else
60 GreedyMigration (Δtgreedy)
61 end i f
62 end

After the initialization of variables in lines 4-14 in Listing 4.1, the first objective is to set
sensible upper and lower bounds for the required path lifetime. The upper bound, τreqmax, is
the quotient of Dres and B (line 16) and denotes the estimated time required to migrate the
complete data subset. This is the optimum value in the sense that if a path satisfies τreqmax,
migration is likely to succeed without the necessity of subsequent path recomputations.

4.4. MIGRATION DECISION POLICY 155

The lower bound, denoted τreqmin, depends on whether a migration is already in progress or
the designated target server is yet to be determined. In the former case, no other option than
finding the most stable alternative path to the already selected designated target server exists.
In this case, we set the minimum required lifetime to a value that is close to but larger than
zero in order for the following while loop to terminate eventually. In the procedure, we have
arbitrarily set this value to 0.001, that is, one millisecond (line 18).

In the latter case, all options to determine a designated target server are still open and it is
not mandatory to tolerate situations in which only unstable paths exist. In this case, τreqmin

designates the minimum lifetime that a path must satisfy, otherwise, migration is deferred to
the next blocking interval ΔtMDP. At this point, we are able to incorporate migration priority
Π from (4.6) one more time, which quantifies the urgency of a migration and which we have
used previously to describe sufficiently eligible nodes ((4.18)).

Let us first consider the expression min{τreqmax, Δtpath} in the assignment of τreqmin as shown
in line 20 of Listing 4.1. The rationale behind this term is that it is desirable to find a network
path that lasts for at least the time it takes to redetermine a subsequent path. This means that
subsequent path recomputations can be initiated sufficiently in advance so that a new path
is available in time for a transparent switch of paths during migration (Section 4.5). When
τreqmax < Δtpath, however, only a small number of data items are to be transferred, and a path
with smaller lifetime is already sufficient.

Let us now assume a small value for the migration priority Π, in which case τreqmin is set to
a value close to the expression min{τreqmax, Δtpath}. This reflects the semantics of Π in that
Π ≈ 0 corresponds to the strongest restrictions on τreqmin. However, for larger Π, indicating a
more urgent migration, the value of the expression is relaxed. Eventually, Δtreqmin assumes its
minimum value, which represents virtually no requirements on the path lifetime.

The purpose of lines 23-24 is to determine the maximum length that shall be allowed for a
specific path. The motivation for this restriction is due to the following property of path lengths.
Because the link lifetime model in Section 4.4.2.1 is based on the geometric distance between
nodes, more stable paths imply a larger number of hops. However, with every additional hop
communication cost increase.

For that reason, we restrict the maximum length of paths as follows. In line 23, the breadth
first search (BFS) initially determines the shortest path from u0 to all other target nodes ui

without considering the stability of links. Procedure BreadthFirstSearch returns, apart from
the predecessor list that is not required here, the array lmin, which contains the length of the
shortest path to each node ui. In line 24, the minimum path length between u0 and each ui is
stretched by the factor lstretch, which gives the maximum allowed path length lmax between u0

and ui. This allows to specify a sensible degree of flexibility in the subsequent path selection
process. To avoid arbitrarily long paths, we limit the length of any path to the maximum value
lmax. Considering the dimensions of typical network topology exploration regions (Section 4.3),
this value can typically be set in the range of a few hops.

Lines 26-50 perform the actual computation of the most stable paths from u0 to each node
ui based on the restrictions on path lifetime and path length in the intervals [τreqmin, τreqmax]
and each [lmin[i], lmax[i]], respectively. The outer while loop (lines 27-50) is initialized in line 26
with the required path lifetime τreq. This value initially takes the most optimistic value τreqmax

156 CHAPTER 4. DATA MIGRATION

to seek out highly stable paths first, before less stable paths are explored. Next, the priority
queue EG is initialized in line 28 with the set of edges E of graph G in descending order of
the residual link lifetimes τi,j . Right after entering the inner while loop (lines 29-49), edge e
with the next largest residual link lifetime is retrieved from EG (line 30). While the lifetimes
of retrieved edges obey the required lifetime τreq (line 31), edge e and its adjacent vertices are
added to graph H (lines 32 and 33). If the start vertex u0 has not yet been added to H.V
(line 34), no path exists that originates at u0 and the while loop is continued. Otherwise, the
predecessors and path lengths of the following BFS are reset (lines 35 and 36).

At this point, graph H contains only edges whose lifetime is at least τreq, and a breadth first
search is run on H in line 37. The task of lines 38-49 is to determine the paths between u0 and
each ui such that each path’s length falls within the valid interval [lmin[i], lmax[i]]. Lines 39-41
test various conditions under which a path cannot be updated. Firstly, in line 39, BFS could
not determine a predecessor, in which case no path from u0 to the considered node ui exists.
Second, in line 40, a previous predecessor was already determined, hence, a valid path with
a larger residual path lifetime was already found in a previous iteration. Third, line 41 tests
the length restriction, and no path larger than the restriction is allowed. If all restrictions are
satisfied, the newly found path from u0 to some ui is updated in lines 42-46. Finally, the length
and residual path lifetime of this path are set in lines 47 and 48, respectively.

The inner while loop eventually terminates due to the inability to find additional edges that
satisfy the required lifetime (line 31). After leaving the while loop, the helper procedure in
line 52 converts the predecessor list of each path from u0 to ui to the array of paths Utarget.
Note that only paths that satisfy the stability requirements are present, hence, a path to every
ui does not necessarily have to exist. Observe also that lmin[i] ≤ dfinal[i] ≤ lmax[i]. Next, the
migration decision predicate is evaluated via a call to EvaluateMigrationDecisionPredicate in
line 53, taking Utarget as argument. Note that we have omitted node eligibility εi for ease of
exposition (Section 4.4.3). If the MDP returns true, it was able to determine an eligible node
that is also reachable via a sufficiently stable path. In this case, the procedure returns and
the migration mechanism is subsequently fed with the designated target server and the path to
it. If the migration decision is negative, then τreq is relaxed according to an exponential decay
function (line 54), and the process of finding sufficiently stable paths is repeated.

Eventually, τreq drops below τmin, in which case the outer while loop is exited. If the migration
was just initiated and the target server was not yet selected, the migration is deferred to the
next migration cycle, which occurs after ΔtMDP (line 58). In the case where a migration is
already in progress and a source route is not available, geometric routing is used instead. This
decision is motivated by the fact that migration should continue in the hope that it will succeed
without specific robustness measures. We will investigate both source routing and geometric
routing with respect to the impact on migration performance in Section 4.6.

4.4.3 Output of the Migration Decision Policy

We now define the migration decision predicate PMDP, which decides on whether or not a
migration is to be carried out. The input to the MDP comprises the node eligibility values
εi and εΠ from (4.17) and (4.18), respectively, and the set of paths Utarget as returned from
procedure EvaluateMigrationDecisionPredicate(Utarget) in Listing 4.1.

4.5. MIGRATION MECHANISM 157

Let us first construct the auxiliary set I containing only indexes for target nodes that are
sufficiently eligible and to which a sufficiently stable path from u0 exists:

I = {i | εi ≥ εΠ ∧ ∃ path Utarget[i] to ui} (4.24)

The migration decision predicate can be directly stated as follows:

PMDP := |I| > 0 or, alternatively, PMPD := ∃i ∈ I (4.25)

Hence, migration will occur if a node exists that has at least the eligibility that priority Π
dictates, and a sufficiently stable target path exists to that node. Observe that an eligible node
may not be reachable because no sufficiently stable path exists and vice versa.

The target node utarget and the target path Utarget to that node are defined as follows:

(utarget, Utarget) := (ui,Utarget[i]) : i ∈ I ∧ ∀j �= i : j ∈ I ⇒ (εi, i) > (εj , j) (4.26)

In the previous equation, we have established a total order of tuples (a, b) with component-wise
comparison, where the first element beats the second element in a comparison.

If the migration decision predicate in (4.25) is true, the most eligible target node reachable via
a sufficiently stable path is input to the migration mechanism. Otherwise, the policy is deferred
to the next migration cycle after the blocking interval ΔtMDP (Section 4.4.2.2).

4.5 Migration Mechanism

This section describes the mechanism of the data migration component, shown in Figure 4.1
and 2.22. The task of the mechanisms is to implement the robust and efficient transfer of a
data subset from its current (source) server u0 to the designated target server utarget.

The objective of the mechanisms is twofold. Firstly, data migration is carried out upon the
triggering of the migration decision policy. We describe this process in Section 4.5.1. Second,
data consolidation is required when two servers are handling the same data subset concurrently
due to a previous migration failure. This process is described in Section 4.5.2.

4.5.1 Data Migration

The migration process is initiated by the source server u0 after the positive evaluation of
the migration decision predicate in (4.25). The algorithm shown in Listing 4.2 specifies the
interactions between u0 and utarget that take place during a migration. The interactions are
governed by the following states. A data server operating in active state receives and processes
updates and queries on the data subset, which it receives based on the core data storage
mechanism in Section 3.3.2. The migrating and receiving states denote the condition where
source and target server, respectively, are involved in a running migration process. During
these states, a data subset is transferred from the source server u0 to the target server utarget.
By retired we denote the state where the source server has completed its migration and the
target server has fully taken over, that is, assumed the active state.

158 CHAPTER 4. DATA MIGRATION

The entry point of the data migration process is procedure InitMigration in Listing 4.2 (line 11),
which takes target server utarget and path Utarget from (4.26) as input. Every migration is set up
by an explicit migration request that u0 sends to utarget (line 15). The request contains Utarget

so that both nodes will communicate via that path. When utarget receives the migration request
(line 18) and if it is able to accept a migration, it assumes the receiving state (line 22) and
replies with a migration acknowledgement (line 23). However, if, for example, utarget is already
involved in the processing of another migration, it may decline the request to avoid becoming
a communication bottleneck (not shown in Listing 4.2).

When the migration acknowledgement is received from the target server (line 26), u0 assumes
the migrating state (line 28). The subsequent transfer of the serialized data subset from u0 to
utarget is initiated by an asynchronous call to InitSendDataSubset (line 29). During the complete
transfer, a customized transport/routing layer protocol is used, optimized for the source route
Utarget that is used between both nodes. On the transport layer, any transport protocol suitable
for mobile environments may be used. However, we optimize flow control by using a sliding
window-based mechanism that is tuned to wireless ad-hoc networks. In this approach, window
sizes are determined as a function of the number of hops between u0 and utarget. In order to
achieve maximum throughput, the window size is selected based on the results obtained in
[CXSN04]. The rationale is to consider the special nature of the wireless medium. In contrast
to a switched network, where the full bandwidth on both the inbound and outbound line of a
switch/router is concurrently available, this does not hold in MANETs. Instead, a router, i.e.
any network node, must share the medium for inbound and outbound traffic.

On the routing tier, resilient source routing is used, which takes the initially determined path
Utarget as input. The path’s validity is determined by the residual path lifetime τ(Utarget). The
timer in line 30 controls when path recomputation is due, such that a new path is available for
a transparent switch before the previous path becomes stale. For that, the timer is initialized
with the difference between τ(Utarget) and Δtpath, where the latter denotes the time to redeter-
mine a path (Section 4.4.2.2). Observe that if the path’s residual lifetime was already below
Δtpath, the timer will immediately expire. Upon expiration, procedure TimerExpired (line 33)
initiates the recomputation of a new path (line 35). While data migration continuous to use
the current path Utarget, network topology exploration according to Section 4.3 and procedure
ComputePaths in Listing 4.1 are run in the background to redetermine a new path. Once de-
termined, procedure PathChangeNotification is invoked (line 38) and the migration mechanism
transparently switches from the current path to this new path (line 40). The timer is initiated
again in line 41 for subsequent path computations.

Every data item received at the target server (line 44) is stored locally (line 46) and acknowl-
edged (line 47). When the last data item is received by the target server (line 48), it immedi-
ately moves into active state (line 49). Then it begins sending server advertisements (line 50,
Section 3.3.1), becoming known to other nodes in the vicinity of its associated reference co-
ordinate and accepting incoming requests. Upon the reception of a data acknowledgement
at the source server (line 54), u0 checks whether all data items of the subset to be migrated
were acknowledged, that is, whether the data transfer is complete (line 56). In that case, the
source server becomes aware that utarget has taken over. It stops sending server advertisements
(line 57), goes to retired state (line 58), and migration terminates. At this point, the target
server has fully taken over the data subset and is the only one that is now in active state.

4.5. MIGRATION MECHANISM 159

Listing 4.2: Data migration.

1 module DataMigration
2 begin
3 var utarget : Node // used by u0

4 var u0 : Node // used by utarget

5 var Utarget : Path // used by u0 and utarget

6 var pathRecomputationTimer : Timer // used by u0

7 var s t a t e : Migrat ionState := a c t i v e // used by u0 and utarget

8 var s to rage : Set of Object // used by u0 and utarget

9 var bu f f e r : Set of Object // used by u0

10

11 procedure In i tMig ra t i on (utarget : Node ; Utarget : Path)
12 begin // executed by u0

13 this .utarget := utarget

14 this .Utarget := Utarget

15 SendMigrationRequest (utarget , Utarget , u0)
16 end
17

18 procedure ReceiveMigrat ionRequest (u0 : Node ; Utarget : Path)
19 begin // executed by utarget

20 this .u0 = u0

21 this .Utarget := Utarget

22 s t a t e = r e c e i v i n g
23 SendMigrationAck (u0)
24 end
25

26 procedure ReceiveMigrationAck ()
27 begin // executed by u0

28 s t a t e := migrat ing
29 InitSendDataSubset (utarget , Utarget)
30 SetTimer (pathRecomputationTimer , max{0, τ(Utarget) − Δtpath})
31 end
32

33 procedure TimerExpired ()
34 begin // executed by u0

35 RecomputePaths ()
36 end
37

38 procedure PathChangeNoti f i cat ion (Utarget : Path)
39 begin // executed by u0

40 this .Utarget := Utarget

41 SetTimer (pathRecomputationTimer , max{0, τ(Utarget) − Δtpath})
42 end
43

44 procedure ReceiveData (oi : Object)
45 begin // executed by utarget

46 ExecuteUpdate(s to rage , oi) // executed while utarget is in r e c e i v i n g state
47 SendDataAck (u0, oi)
48 i f DataComplete () then
49 s t a t e := a c t i v e
50 In i tSe rve rAdver t i s ement ()
51 end i f
52 end

160 CHAPTER 4. DATA MIGRATION

53

54 procedure ReceiveDataAck(oi : Object)
55 begin // executed by u0

56 i f DataTransferComplete () then
57 Unin i tServerAdver t i sement ()
58 s t a t e := r e t i r e d
59 end i f
60 end
61

62 procedure ReceiveUpdate (oi : Object)
63 begin // executed by u0 and utarget

64 i f s t a t e = ac t i v e then
65 ExecuteUpdate (s to rage , oi) // executed by u0

66 else i f s t a t e = migrat ing then
67 ExecuteUpdate (bu f f e r , oi) // executed by u0

68 ForwardUpdate (utarget , oi)
69 else i f s t a t e = r e t i r e d then
70 ForwardUpdate (utarget , oi) // executed by u0

71 else i f s t a t e = r e c e i v i n g then
72 // this case cannot occur
73 end i f
74 end
75

76 procedure ReceiveForwardedUpdate (oi : Object)
77 begin // executed by utarget

78 ExecuteUpdate(s to rage , oi)
79 SendUpdateAck(u0 , oi)
80 end
81

82 procedure ReceiveUpdateAck(oi : Object)
83 begin // executed by u0

84 ExecuteUpdate(s to rage , GetObject (bu f f e r , oi))
85 end
86

87 procedure ReceiveQuery(Q : Query)
88 begin
89 i f s t a t e = ac t i v e or s t a t e = migrat ing then
90 ExecuteQuery (s torage , Q) // executed by u0

91 else i f s t a t e = r e t i r e d then
92 SendQuery (utarget , Q) // executed by u0

93 else i f s t a t e = r e c e i v i n g then
94 // this case cannot occur
95 end i f
96 end
97 end

Lines 62-96 of Listing 4.2 contain the relevant pseudocode that deals with the handling of
requests, that is, updates and queries, while a migration is in progress. This part is responsible
for guaranteeing that eventual consistency according to Definition 3.1 is maintained. Recall
that for eventual consistency to hold, the most recently updated value on a data item will
eventually be returned if for a long time no updates occur in the system.

4.5. MIGRATION MECHANISM 161

The way requests are handled essentially depends on the current state that the source and
target server are in while receiving updates (line 62) and queries (line 87). Let us first consider
the handling of updates. While u0 is in active state (line 64), it accepts any incoming updates
from remote nodes and processes them locally (line 65). When an update occurs on a data
item that is received while u0 is in migrating state (line 66), then that update is put in a local
buffer (line 67) and forwarded to the target server as well (line 68). Note that the data item
is not updated on the local storage of the source server. Any data update received by utarget

is immediately written to the local data storage (line 78) of that server. After that, the target
server sends an acknowledgement for that data item back to the source server (line 79). Once
an acknowledgement of a data item is received at the source server (line 82), the update can
be moved from the buffer to the persistent storage (line 84).

From the point where the source server is in retired state (line 69), it forwards updates immedi-
ately to the target server without further processing (line 70). Finally, note that while utarget is
in receiving state (line 72), it does not receive any requests other than those forwarded from u0.
This is because it does not yet disseminate advertisements (Section 3.3.1), which are required
for client requests to locate utarget in the first place.

Queries, on the other hand, are received through the ReceiveQuery procedure in line 87. In
both active and migrating state (line 89) a query received at the source server u0 is immediately
evaluated based on the local storage (line 90). In retired state (line 91), queries are forwarded
by the retired server to the now current server (line 92). Note that as in the case of updates,
no queries are received during receiving state (line 93).

With respect to eventual consistency, the handling of updates in lines 62-85 guarantees that no
update is lost once made persistent in the local storage of any data server. While it is trivial
to achieve eventual consistency when a server is in active or retired state, the situation is more
complicated while a migration is in progress. The following problem occurs in the event where
a data update that is forwarded from the source to the target server is lost.

Assume that a data update is received at u0 while a migration is in progress (line 66). Assume
further that instead of executing the update on the buffer of u0, as shown in line 67, it is
immediately written to the local storage instead. Next, let us assume that the data item,
which is forwarded in line 68, is lost on the way to the target server utarget while migration is in
progress. Note that this is allowed according to the system model we stated in Section 3.1. Let
us finally assume that the migration of the data subset eventually succeeds, that is, the target
server transits to active state, while the source server drops the data subset and goes to retired
state. In this event, the original update on the data item is lost. If no further updates on this
object occur, this update was the most recent one, hence, eventual consistency is violated.

To avoid this situation, data migration first updates a request in an intermediary buffer in
line 67. Only when the source server has received the update’s corresponding acknowledgement
in line 82 from the target server, it makes the update persistent in its local storage (line 84).
In case a forwarded data update is lost between the source and the target server, that update
is never made persistent due to the absence of a corresponding acknowledgement.

Observe that for the above arguments to hold, node failures must not occur, which is what we
have assumed in the system model in Section 3.1. The handling of node failures in conjunction
with data replication will be discussed briefly in the outlook in Section 6.2.1.

162 CHAPTER 4. DATA MIGRATION

4.5.2 Data Consolidation

In the situation where a network partition occurs during migration, it is possible under certain
circumstances that the two servers involved in the migration process cannot definitely decide on
which of the two is to remain the only one responsible. The critical situation occurs when utarget

has just moved into active state, but u0 will not receive all of utarget’s data acknowledgements
due to both now being located in different network partitions. Because u0 has no way to find
out about utarget’s decision, it must eventually return to active state in order for the data subset
to not become lost and to retain eventual consistency. As a result, two servers remain that are
both in active state and which handle the same data subset. Thus, both servers disseminate
server advertisements independently, which are used by the core storage’s request forwarding
algorithm (Section 3.3.2). This situation is shown in Figure 4.6.a for two servers u1, u2.

a. Before partition join at t1 b. After partition join at >t t2 1

ADV
record
of u1

cr

u2

cr

u1
ADV
record
of u2

ADV
record
of u1

u1

u2

u3

u3

ADV
record
of u2

redundancy
detection

RED RED

Figure 4.6: Occurrence and detection of a server redundancy.

Due to the increased management cost incurred by multiple servers and unwanted data incon-
sistencies that may result from multiple versions of the same data subset, it is highly desirable
to resolve such redundancies as early as possible. For this purpose, the migration mechanism
implements a complementary data consolidation algorithm that merges multiple data subsets
back into a single one once a redundancy has been detected.

In the situation of a partitioned network, the earliest possible time to become aware of a server
redundancy is upon the rejoining of two network partitions. Note that we assume in the system
model in Section 3.1 that partitions always join after a finite amount of time. The following
redundancy detection scheme, which is an extension to the server advertisement mechanism
described in Section 3.3.1, is able to efficiently detect multiple active servers.

Let us assume that initially, two servers u1, u2 exist in different network partitions (Figure 4.6.a).
Advertisements from both servers are confined to the respective network partition. Once these
partitions join (Figure 4.6.b), advertisements of both data servers will eventually coincide for
the first time at some network node. Note that this is guaranteed by the way server advertise-
ments are distributed (Section 3.3.1). In Figure 4.6.b, this is node u3, which already stores an
ADV record of u2 and which has just received u1’s first advertisement information.

As an extension to the server advertisement mechanism introduced in Section 3.3.1, we assume
that advertisements are always disseminated in redundancy detection mode. When a server

4.5. MIGRATION MECHANISM 163

advertisement is received by a node in this mode, that node queries for any other existing ad-
vertisement information it might store. Each existing record is checked for matching identifiers
of the data subsets and reference coordinates, but for different server identifiers. This condition
uniquely defines the existence of a server redundancy. In that event, the detecting node sends
a redundancy notification message to both servers. This is shown in Figure 4.6.b, where node
u3 sends a notification (RED) to both u1 and u2. The decision to send the notification to both
servers is to increase the chance to quickly detect a redundancy. Once the redundancy notifi-
cation is sent, the advertisement continues to propagate. However, the advertisement does not
propagate in redundancy detection mode anymore, in order to have only a single redundancy
detection per advertisement cycle and give servers sufficient time to handle it.

We now describe the algorithm by which two data servers initiate and handle the consolida-
tion of multiple versions of the same data subset. The algorithm’s pseudocode is shown in
Listing 4.3. We assume that, initially, all servers are in active state (line 4), and that ui, uj

denote two servers whose data subsets need to be merged. The consolidation process is trig-
gered by the reception of any redundancy notification message at a data server ui (line 9).
The notification contains the ID of the other server uj. The redundancy notification is only
considered by the receiving server ui if this server is in active state (line 11). In any other state,
either a redundancy is already being handled or a migration is taking place. For reasons that
we discuss later on, a redundancy is always handled by the server with the larger ID, which we
refer to as the higher-ID server, in contrast to the lower-ID server. If the receiving server has
the smaller ID (line 12), therefore, it sends the redundancy notification to its higher-ID partner
(line 13). Otherwise, server ui requests consolidation from the lower-ID server (line 15).

Listing 4.3: Data consolidation.

1 module DataConsol idation
2 begin
3 var ui : Node // own ID
4 var s t a t e : Migrat ionState := a c t i v e
5 var s t a t e s : Set of State
6 var s to rage : Set of Object
7 var bu f f e r : Set of Object
8

9 procedure Rece iveRedundancyNot i f i cat ion (uj : Node)
10 begin // the detected redundancy is between ui and uj

11 i f s t a t e = ac t i v e then
12 i f i < j then // the server with the largest ID must handle the redundancy
13 SendRedundancyNoti f icat ion (uj, ui)
14 else // i > j
15 SendConsol idationRequest (uj, ui)
16 end i f
17 end
18

19 procedure Rece iveConso l idat ionRequest (uj)
20 begin
21 i f s t a t e = ac t i v e then // accept any consolidation request while in active state
22 Add(s ta te s , {prepare , ui, uj })
23 SendConsol idat ionAck (uj, ui)
24 end i f
25 end
26

164 CHAPTER 4. DATA MIGRATION

27 procedure Rece iveConsol idationAck (uj)
28 begin
29 i f s t a t e = ac t i v e then
30 Clear (s t a t e s) // remove possibly existing prepare states
31 s t a t e := { conso l ida t ing , ui, uj}
32 InitSendDataSubset (uj)
33 end i f
34 end
35

36 procedure ReceiveData (uj , oi)
37 begin
38 i f Ex i s t s (s ta t e s , {prepare , uj, ui }) then // the first server gets its turn
39 Clear (s t a t e s)
40 s t a t e := { conso l ida t ing , ui, uj}
41 ReceiveData (uj , oi) // call recursively
42 else i f s t a t e = { r e c e i v i n g , ui, uj} then
43 ExecuteUpdate (bu f f e r , oi)
44 SendDataAck (uj , oi)
45 i f DataComplete () then
46 for each oi in bu f f e r do
47 ExecuteUpdate (s to rage , GetObject (bu f f e r , oi))
48 end for
49 s t a t e := a c t i v e
50 end i f
51 end i f
52 end
53

54 procedure ReceiveDataAck(uj : Node ; oi : Object)
55 begin
56 i f DataTransferComplete () then
57 s t a t e := r e t i r e d
58 end i f
59 end
60

61 procedure DataTransferTimeout ()
62 begin
63 TerminateDataTransfer ()
64 s t a t e := a c t i v e
65 end
66 end

The next step is to negotiate the initiation of the consolidation process (lines 19-34), during
which the involved servers must be in active state (line 21 and 27). While negotiation works
similar to the migration process in Listing 4.2, lines 18-31, data consolidation additionally
utilizes an auxiliary set of prepare states (line 5). Note that for ease of exposition, we have
not considered path recomputation, which works in analogy to the migration process. When a
consolidation request from the higher-ID server is received at the lower-ID server (line 19), the
latter stores a prepare state for the corresponding server pair (line 22). This state essentially
makes the lower-ID server aware of a potentially following data transfer from a higher-ID server.
The lower-ID server immediately acknowledges the request (line 23). Upon the reception of the
acknowledgement at the higher-ID server (line 27), that server clears possibly existing prepare
states (line 30), since it now gets involved in a data transfer (line 31) and cannot accept any
other concurrent requests. The higher-ID server then initiates the sending of the data subset
asynchronously (line 32), just like in the case of a migration in Listing 4.2, line 29.

4.5. MIGRATION MECHANISM 165

The actual data transfer takes place between lines 36 and 59. When a data item is received at
the lower-ID server (line 36), it is first checked whether a prepare state exists for the higher-ID
server that sent the item (line 38). If this is the case, the transfer is initiated by clearing all
auxiliary prepare states (line 39), switching to receiving state (line 40), and calling procedure
ReceiveData recursively (line 41). Since the lower-ID server is now in receiving state (line 42),
it executes (line 43) and acknowledges the update (line 44). In contrast to migration, the data
item is updated on an intermediary buffer, because the receiving server also has a data subset in
the storage. For simplicity, we omit the details of how a server is able to handle requests on the
storage while data is received during a consolidation, which can easily be distinguished. When
the data subset is complete (line 45), the buffer will be merged with the local storage (lines 46-
48) and the server moves back into active state (line 49). For each received acknowledgement at
the higher-ID server (line 54), that server checks whether all data items have been acknowledged
(line 56). If yes, the server retires (line 57), which completes the transfer. If an outstanding
acknowledgement is not received by the higher-ID server after some limited amount of time, a
data transfer timeout will occur (line 61). In this case, the currently processed migration will
be terminated (line 63) and the server assumes active state again (line 64).

While the consolidation of a data subset always takes place between two servers at a time,
redundancies between three and more servers may also occur. The algorithm in Listing 4.3
supports such situations by breaking ties so that two servers will eventually enter a consolidation

u1 u2

active

RED(2,1)

CREQ(2,1)

prepare
(2,1)

migrating
(2,1)

CACK(2,1)

DATA(2,1)

DACK (2,1)

retired
(2,1)

receiving
(2,1)

DATA(2,1)

DACK(2,1)
active

RED(2,1)

a. Consolidation of two servers.

u1 u2

active

RED(2,1)

CREQ(2,1)

prepare
(2,1)

migrating
(2,1)

CACK(2,1)

D
ATA

(2
,1

)

DACK(3,1)

retired
(3,1)

u3

active

RED(3,1)

prepare
(3,1)

CACK(3,1)

CREQ(3,1)

receiving
(3,1)

DATA (3,1)

DATA(3,1)

active DACK(3,1)

timeout

b. Breaking ties between three servers.

active

migrating
(3,1)

RED(2,1)
active active

Figure 4.7: Data subset consolidation.

166 CHAPTER 4. DATA MIGRATION

process. This is made possible by the previously mentioned decision to always choose the higher-
ID server to take the lead in a consolidation. This way, no circular consolidation requests can
occur, which is a sufficient condition to break any ties between three or more servers.

We illustrate some typical cases in which ties are broken in the communication diagrams shown
in Figure 4.7 and 4.8. Figure 4.7.a depicts the normal case where two servers perform the
consolidation process according to the algorithm in Listing 4.3. By RED(i, j), CREQ(i, j),
CACK(i, j), DATA(i, j), and DACK(i, j) we denote a redundancy notification, consolidation
request, consolidation acknowledgement, data, and data acknowledgement message, respec-
tively. In all figures, only two data messages are required to transfer the full data subset.

u1 u2

active

u3

active

timeout
active

active

prepare
(3,2)

RED(2,1)

migrating
(3,2)

DACK (2,1)

retired(2,1)

DATA(2,1)

DACK(2,1)
active

RED(2,1)

CREQ(2,1)
CREQ(3,2)

RED(3,2)

prepare
(2,1) CACK(3,2)

migrating
(2,1)

CACK(2,1)

DATA(2,1)

receiving
(2,1)

DATA(3,2)

Figure 4.8: Concurrent data subset consolidation.

In Figure 4.7.b we show a situation where
a tie is broken based on a first come, first
served basis at the lower-ID server. Ob-
serve that two redundancy notifications
are received at u2 and u3, indicating a re-
dundancy between u2 and u1 on one side,
and u3 and u1 on the other side. Two con-
solidation requests are subsequently sent
from u2 and u3 to u1. As a consequence,
u1 buffers two prepare states, one for each
server. After u2 has received the consol-
idation acknowledgement, its first data
message is delayed by the network. In
this situation, the first data message sent
by u3 overtakes the other data message
and u3 gets its chance, which is reflected
by u1 entering receiving state. Eventu-
ally, a timeout occurs at u2, which sim-
ply moves back into active state. In the
meantime, u1 and u2 continue the consol-
idation process until the end.

Figure 4.8 illustrates the case where a tie is broken based on an override of a prepare state by a
migrating state. The diagram shows how two redundancies between servers u1, u2 on one side
and u2, u3 on the other side are concurrently detected by u2 and u3, respectively. After the
corresponding consolidation requests have been received at u1 and u2, both servers temporarily
buffer a prepare state. Once the consolidation acknowledgements have been returned, u2 and
u3 both move into migrating state. At this time, u2 has deleted the existing prepare states
according to line 30 in Listing 4.3. Hence, the migrating state overrides any prepare state.
From this point forward, u1 and u2 carry out the consolidation process until its completion.
However, server u3 still sends its first data message to u2, but which will be ignored by u2 due
to another previously confirmed migration. Because u2 does not send back a corresponding
data acknowledgement, a timeout will eventually occur at u3, which will move back into active
state. Note that for ease of exposition, we have omitted the possibility of sending negative
acknowledgements in both Figure 4.7.b and 4.8. Such messages can be used to provide explicit
feedback for those servers whose migration request is denied.

4.6. PERFORMANCE ANALYSIS 167

4.6 Performance Analysis

In this section we examine in detail the performance of the data migration approach by means
of a comparative experimental analysis. We have implemented two variants of data migration,
which employ source routing and geometric routing, and which we denote by DataMiP (source
routing) and DataMiP (BPR), respectively.1 In addition, we have implemented two further
approaches, termed greedy migration and progressive migration.

DataMiP (source routing) designates the migration approach that relies on network paths that
are computed by the algorithm in Listing 4.1. According to this approach, a source route
is updated during a migration process whenever the previous one is about to weaken. This
migration approach is shown in Listing 4.2. In the DataMiP (BPR) variant, the stability
analysis in Section 4.4.2 is also performed during the determination of a target node. The
difference to DataMiP (source routing) is that the output path of the algorithm in Listing 4.1 is
omitted during migration. Instead, geometric routing based on bidirectional perimeter routing
(BPR, Section 3.2) is used for the migration of the data subset.

In greedy migration, once the current server reaches the threshold distance dthresh, greedy routing
is used as the means for network topology exploration to find a suitable target node. A request
is sent by the current server into the direction of the reference coordinate until a node is reached
at which greedy routing fails. BPR is then used as the underlying routing protocol to migrate
data to the selected target node. Progressive migration is also initiated upon reaching dthresh. In
contrast to greedy migration, the selection of a target server is based solely on the set of known
neighbors of the current server. From this set, the neighbor is chosen that is located closest to
the reference coordinate, but only if a node exists that is nearer to the reference coordinate than
the current server. Upon completion of migration to the selected node, subsequent iterations of
progressive migration follow where data is migrated to nodes located even closer to the reference
coordinate. This procedure continues until no further node can be determined. Both greedy
and progressive migration are re-initiated once dthresh is reached again.

The following system parameters, which are also shown in Table 4.1, are applicable in the
evaluation of the migration approaches. The general system parameters that are assumed in
all experiments presented in this dissertation are listed in Table 3.3.

A total simulation time of 3600 seconds was chosen, corresponding to an increase by a factor of
10 compared to the evaluation of core data storage (Section 3.5.2). This is necessary to achieve
good statistical values, because migrations occur at a much lower frequency than requests in
most of the simulations. As in the case of core data storage, only a single reference coordinate
is placed in the center of the simulation area, with a default size of 200 ·200 m2. No requests are
processed in order to avoid possible side effects on the migration performance. Furthermore,
server advertisements are sent with a rate of 1/second.

The default number of data items is increased also by a factor of 10 compared to core data
storage and set to 10000. This value corresponds to 320 kB of data for each migration, assuming
32 bytes per data item. We assume a data packet capacity of 1500 bytes, thus approximately
47 data items can be carried in a single data packet. The threshold distance dthresh, which is
applicable in all four discussed approaches, is set to 100 m. The critical distance dcrit, which is
only applicable in the two DataMiP variants, is set to 150 m.

1DataMiP standing for Data Migration Protocol.

168 CHAPTER 4. DATA MIGRATION

System Parameter Default Value
Simulation time 3600 s
Number of cells 1, centered at (x,y) = (300,300)
Cell size 200 · 200 m2

Number of requests 0 (no requests)
LCS server advertisement interval 1 s
Number of data items 10000
Total data size 320 kB (32 bytes / data item)
Data packet capacity 1500 bytes ∼= 47 data items
Threshold distance dthresh 100 m
Critical distance dcrit 150 m = 1.5 · dthresh

Speed ratio 1:5
Speed of low-mobile nodes 1.5 m/s (20% of nodes)
Speed of high-mobile nodes 15 m/s (80% of nodes)

Table 4.1: Data migration: system parameters.

In order to assess the susceptibility of the migration decision policy in Section 4.4 to different
node speeds, we partition the overall set of nodes into two sets by a speed ratio of 1:5. According
to this ratio, 20% of the nodes are parameterized with a speed of 1.5 m/s, and 80% of the nodes
are parameterized with 15 m/s. All nodes maintain motion according to the random waypoint
mobility model [BMJ+98] with a pause time of 30 s.

4.6.1 Performance Metrics

We consider four performance metrics, which are averaged over the total simulation time:
spatial coherence, migration efficiency, migration duration, and migration robustness.

Spatial Coherence

Spatial coherence follows directly from Definition 2.3 and quantifies the ability of each migration
approach to maintain proximity between a data subset (that is, the active data server) and the
associated reference coordinate. Hence, the mean spatial coherence is defined as the mean
geometric distance of the current server from the reference coordinate over the simulation time.
While a migration is in progress, spatial coherence is calculated with respect to the migrating
server, because this server continuous to receive requests.

Migration Efficiency

Migration efficiency quantifies the communication cost that are required by migration processes
over time. It is defined in units of mean aggregated packet size per unit time. It includes all
traffic that is incurred by migration processes, including network topology exploration.

Migration Duration

The duration of a single migration is defined as the time from the initiation of a migration to
the switching to retired state at the migrating server. The aggregated migration duration is
defined as the sum over all durations of individual migrations over the simulation time. We
define the migration duration fraction as the aggregated migration duration divided by the

4.6. PERFORMANCE ANALYSIS 169

total simulation time. For example, a migration duration of 0.1 corresponds to the situation
where migrations occur during 10% of the total simulation time.

Migration Robustness

Migration robustness describes how many of the total number of initiated migrations can be
successfully completed. We quantify the robustness of migrations by distinguishing two metrics
for the assessment of migration failures. The number of recoverable migration failures counts
those migrations that fail, but where the involved servers can deterministically agree on which
of the servers shall remain responsible for the corresponding data subset. The number of fatal
migration failures counts only those failures where both servers will move into active state,
because they are unaware of the other server’s decision. This kind of failure is especially critical
because it always leads to redundant data subsets that need consolidation (Section 4.5.2). In
contrast to both DataMiP variants, greedy and progressive migration do not possess the ability
to consolidate multiple data subsets.

4.6.2 Spatial Coherence

Before we discuss the results of spatial coherence in Figure 4.9 through 4.12, it is important to
note that the magnitude of the achieved coherence is tunable by adjusting parameters dthresh and
dcrit (Section 4.2). Therefore, comparing different approaches in quantitative terms is limited.
Rather, we will focus on qualitative interpretations and on whether a sufficient level of spatial
coherence can be maintained. The details on how to set algorithm parameters to achieve specific
magnitudes for spatial coherence is out of the scope of this dissertation.

Figure 4.9 shows spatial coherence as a function of the threshold distance. We observe that
DataMiP’s coherence is noticeably larger than that of progressive migration below a threshold
distance of approximately 50 m. The best values for progressive migration and DataMiP
(source routing) are 25 m (at dthresh = 20 m) and 45 m (at dthresh = 60 m), respectively. The
key observation is that both values are well within a single communication range, which is
100 m in the simulations. This implies that in both cases the degrees of spatial coherence are
virtually equivalent in terms of routing performance, because a packet reaching the vicinity of
the reference coordinate will reach the data server in only one hop in both cases.

The second observation in the lower range of threshold distance is that the value of the spatial
coherence achieved by DataMiP increases. At first glance, this might look like a problem with
DataMiP. However, based on the argumentation of virtually equivalent routing performance
in the previous paragraph, DataMiP exploits this range by taking a deliberate decision in the
migration recommendation policy (MRP) that can be explained as follows. In the figure, we
have used dcrit = 1.5 · dthresh for all settings of the threshold distance. Thus, for small values of
dthresh, when the MRP first recommends a migration according to Equation (4.1), no migration
will occur, because a node that is more eligible than the current data server will not be found.
However, after several more cycles of policy evaluation, the server will eventually reach dcrit, in
which case migration priority Π = 1 according to Equation (4.6). From the point of view of the
current server, migration is thus necessary, and will be performed to another node that may
be even less eligible in terms of the geometric distance. Therefore, the graph is an important
indicator in determining the operational domain in terms of dthresh. As a simple rule, for
dthresh ≈ rtx, there is a always a good chance to find a fair amount of candidate nodes.

170 CHAPTER 4. DATA MIGRATION

0

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

s
p

a
ti
a

l
c
o

h
e

re
n

c
e

[m
]

threshold distance [m]

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

Figure 4.9: Spatial coherence as a function of the threshold distance dthresh.

Finally, we can observe a rather erratic behavior of greedy migration both in the lower range
of threshold distances, and between threshold distances of 80 m and 120 m. In contrast, both
DataMiP variants, specifically DataMiP (source routing), show a very stable trend. The irregu-
lar behavior is characteristical for approaches that employ geometric routing. From progressive
migration we could see previously that spatial coherence can be maintained at around 25 m.
This indicates that nodes exist even closer to the reference coordinate, since 25 m is the mean
value. Between 80 m and 120 m, therefore, a transition from one-hop to two-hop greedy mi-
gration occurs. Until the occurrence of this transition, greedy routing will attempt to bridge a
single hop over an increasing geometric distance during migration. The target node selection
thus becomes worse in terms of path stability, and a larger fraction of migrations will fail. This
leads to the situation where migrations will occur at a later point in time, thus increasing mean
spatial coherence. This situation is improving once more two-hop migrations occur in greedy
routing, leading to more stable paths again. We will encounter this behavior for both greedy
and progressive migration also in some of the following simulations. In the case of DataMiP,
the source routing-based variant performs better than the BPR variant due to the using of a
more stable path that is based on the stability analysis in Section 4.4.2.2.

Figure 4.10 shows the spatial coherence as a function of the number of nodes. In the lower range
of node densities we can observe that DataMiP (source routing) does not achieve the spatial
coherence of the other approaches. From the viewpoint of the MDP, changing the number of
nodes while maintaining the threshold distance is virtually equivalent to changing the threshold
distance instead and maintaining the number of nodes, which was done in Figure 4.9. In both
cases, the number of candidate nodes that the MDP considers in the selection of a target server
effectively decreases. We can therefore attribute the performance degradation of DataMiP to
the deliberate decisions in the MDP, as discussed with respect to Figure 4.9.

We further observe that DataMiP (BPR) has slightly better performance than DataMiP (source
routing). This is because the source route employed by DataMiP (source routing) generally

4.6. PERFORMANCE ANALYSIS 171

0

20

40

60

80

100

120

50 75 100 125 150 175 200 225 250

s
p

a
ti
a

l
c
o

h
e

re
n

c
e

[m
]

number of nodes

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

Figure 4.10: Spatial coherence as a function of the number of nodes.

involves a larger number of hops than the greedy route selected by DataMiP (BPR). This incurs
a slightly larger migration duration (Figure 4.14, right graph) during which the magnitude of
spatial coherence remains at a larger value, thus leading to a stronger increase in the mean
spatial coherence of DataMiP (source routing). Regarding greedy migration we observe once
more a deteriorating performance with an increasing number of nodes. This is due to the
characteristics of greedy routing, as discussed in conjunction with Figure 4.9.

Figure 4.11 and 4.12 show spatial coherence as a function of the number of data items. Specifi-
cally, Figure 4.11 depicts the results for a maximum node speed of 15 m/s, the default value in
our experiments. The graphs indicate that for any considered data size of 160 kB and below,
all of the four approaches perform in a similar way.

In the region above about 640 kB, both DataMiP variants perform significantly better than
the other mechanisms. The reason is related to a combination of two facts. Firstly, greedy
and progressive migration do not differentiate between slow and fast moving nodes. Therefore,
migrations occur more often (Figure 4.21). As a consequence, a data server will contribute to
spatial coherence while being located further away from the reference coordinate for a larger
number of migrations. The second fact is directly related to the increasing number of data
items. Because the larger the data subset to be migrated, the longer the duration of an
individual migration. Multiplied by the frequency of migrations and considering the previously
given argument, the overall migration duration will increase more significantly for greedy and
progressive migration (Figure 4.16). This leads to the fact that large values of spatial coherence
are contributed to the mean spatial coherence over a longer period of time. This argumentation
emphasizes that it is key to decrease as much as possible the number of migrations, which the
MDP achieves by its preferring of slow over fast moving nodes. Note that the speed ratio is
1:5, thus only 20% of the nodes are moving at a low speed, which is sufficient for the MDP to
provide a significant performance gain.

Figure 4.12 shows the same scenario as Figure 4.11, with the difference that the maximum node

172 CHAPTER 4. DATA MIGRATION

0

20

40

60

80

100

120

140

160

180

10
320

20
640

50
1.6k

100
3.2k

200
6.4k

500
16k

1k
32k

2k
64k

5k
160k

10k
320k

20k
640k

50k
1.6M

100k
3.2M

s
p

a
ti
a

l
c
o

h
e

re
n

c
e

[m
]

number of data items / data size [bytes]

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

Figure 4.11: Spatial coherence as a function of the number of data items (maximum node speed:
15 m/s).

0

20

40

60

80

100

120

140

160

180

10
320

100
3.2k

1k
32k

10k
320k

100k
3.2M

10
320

100
3.2k

1k
32k

10k
320k

100k
3.2M

s
p

a
ti
a

l
c
o

h
e

re
n

c
e

[m
]

number of data items / data size [bytes]

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

Figure 4.12: Spatial coherence as a function of the number of data items (maximum node speed:
5 m/s (left) and 10 m/s (right)).

speed in the speed ratio is 5 m/s (left) and 10 m/s (right). The results confirm the positive
influence of DataMiP’s MDP policy on spatial coherence, which increases with the speed of
nodes. For lower speeds, the performance gain is smaller because the MDP’s exploitation
potential is smaller for nodes moving at 5 m/s than those moving at 10 m/s and 15 m/s.
However, at 10 m/s the advantage of the MDP is already significant.

4.6. PERFORMANCE ANALYSIS 173

4.6.3 Migration Efficiency and Duration

Figure 4.13 through 4.18 show the results for migration efficiency and duration. Both perfor-
mance metrics are presented side by side to point out their strong correlations. Figure 4.13
shows migration efficiency (left) and migration duration (right) as a function of the threshold
distance. We observe that greedy and progressive migration have an advantage in the lower
range of threshold distance. The argumentation follows that of Figure 4.9 with respect to the
operational domain of DataMiP, which is a calibration issue only.

0

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

m
ig

ra
ti
o
n

e
ff
ic

ie
n
c
y
:
p
a
c
k
e
t
ra

te
[1

/s
]

m
ig

ra
ti
o
n

d
u
ra

ti
o
n

(f
ra

c
ti
o
n
)

threshold distance [m]

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

top four curves: total packet rate
bottom: topology exploration only
right graph: migration latency

Figure 4.13: Migration efficiency and duration as a function of the threshold distance.

The advantage of DataMiP over greedy and progressive migration becomes apparent when
considering the different gradients in the slopes of each curve. At a threshold distance of
roughly 60 m and above, both the migration efficiency and duration of DataMiP are better
than that of greedy and progressive migration. The steep slope of DataMiP can be explained
using the following arguments. For small threshold distances, DataMiP is forced to perform a
migration even when a more suitable server does not exist at all. This fact can be observed
well by the large additional packet rate incurred by network topology exploration (left, bottom
curves), which is present in both DataMiP variants. With increasing threshold distance, the
set of candidate nodes from which an optimal node can be chosen increases accordingly, which
leads to two situations. Firstly, a sufficient number of candidate nodes become available, such
that target nodes that are more suitable than the current server can be determined in the first
place. Second, the growing candidate node set will contain more nodes that move at a lower
speed, and the MDP will prefer these nodes over the fast moving ones. Both effects add up
and lead to a steeper slope than for greedy and progressive migration.

Figure 4.14 shows the migration efficiency and duration as a function of the number of nodes.
We observe that DataMiP’s migration efficiency increases while its duration decreases. This
occurs because for a growing number of nodes, DataMiP’s MDP is able to select suitable nodes
based on a larger candidate node set. The steep slope in the lower range of node densities is
due to the previously discussed effects in Figure 4.13.

174 CHAPTER 4. DATA MIGRATION

0

20

40

60

80

100

120

50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250

0.00

0.04

0.08

0.12

0.16

0.20

0.24

m
ig

ra
ti
o
n

e
ff
ic

ie
n
c
y
:
p
a
c
k
e
t
ra

te
[1

/s
]

m
ig

ra
ti
o
n

d
u
ra

ti
o
n

(f
ra

c
ti
o
n
)

number of nodes

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

top four curves: total packet rate
bottom: topology exploration only
right graph: migration latency

Figure 4.14: Migration efficiency and duration as a function of the number of nodes (maximum
node speed: 15 m/s).

Both the graphs on the left and right side of Figure 4.14 further illustrate well the negative
impact that a larger number of nodes has on the performance of greedy and progressive migra-
tion. The deterioration in performance is again due to the greedy routing problem associated
with high node densities, as discussed in Figure 4.9 and also Figure 3.26.

Figure 4.15 presents the migration efficiency also for the maximum node speed of 5 m/s (left)
and 10 m/s (right), which complements the right side of Figure 4.14. Observe the naturally
larger overhead of network topology exploration at low node densities and higher node speeds
due to the larger number of migrations required in both cases. For DataMiP, the gradient of
the slope increases from 5 m/s to 10 m/s. This observation confirms that the stronger gradient
is due to MDP’s ability to better exploit large differences in node speed. The exploitation
potential of higher node speeds by the MDP can be well observed as follows. Consider the
migration efficiency at 50 nodes in Figure 4.15 (left) and 4.14 (left). From 5 m/s via 10 m/s
to 15 m/s, the packet rate of DataMiP (source routing) increases by 20 packets/s in each step.
In contrast, at 150 nodes, the packet rate increases only insignificantly. This confirms the
exploitation potential of the MDP at higher node densities, where based on a sufficiently large
candidate node speed, faster moving nodes can be skipped in the selection.

Next, increasing the node speed from 5 m/s to 15 m/s shows clearly the decrease in performance
of greedy and progressive migration. This is because higher node speeds lead to neighbor tables
becoming outdated more quickly. In conjunction with the greedy forwarding problem discussed
in Figure 4.9, this means that especially those nodes that are selected as the next hop in greedy
forwarding are, in many cases, not reachable anymore. Furthermore, greedy and progressive
migration do not consider the different speed of nodes in their selection of target nodes, thus
more frequently select fast moving nodes over slow moving nodes.

Figure 4.16 shows migration efficiency and latency as a function of the number of data items.
In the small range of the number of data items, all approaches incur no significant overhead
in the network. This is due to the fact that the migration of a very small number of data

4.6. PERFORMANCE ANALYSIS 175

0

5

10

15

20

25

30

35

40

45

50

50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250

m
ig

ra
ti
o

n
e

ff
ic

ie
n

c
y
:
p

a
c
k
e

t
ra

te
[1

/s
]

number of nodes

top four curves: total packet rate
bottom: topology exploration only
left graph: max. node speed: 5 m/s
right graph: max. node speed: 10 m/s

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

Figure 4.15: Migration efficiency as a function of the number of nodes (maximum node speed:
5 m/s (left) and 10 m/s (right)).

0

40

80

120

160

200

240

280

10
320

100
3.2k

1k
32k

10k
320k

100k
3.2M

10
320

100
3.2k

1k
32k

10k
320k

100k
3.2M

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

m
ig

ra
ti
o
n

e
ff
ic

ie
n
c
y
:
p
a
c
k
e
t
ra

te
[1

/s
]

m
ig

ra
ti
o
n

d
u
ra

ti
o
n

(f
ra

c
ti
o
n
)

number of data items / data size [bytes]

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

top four curves: total packet rate
bottom: topology exploration only
right graph: migration latency

Figure 4.16: Migration efficiency and duration as a function of the number of data items.

items does not require any significant effort to succeed. According to Table 4.1, up to 47 data
items can be carried in a single packet. Thus, for 1000 data items, roughly 21 data packets are
required, which all approaches can handle without any problems.

When the number of data items is increased beyond 1000, DataMiP starts to show a clear
performance advantage over greedy and progressive migration. This is due to the resilience of
DataMiP’s selected path based on the stability analysis in Section 4.4.2. Thereby, most of the
initiated migrations can be completed successfully. This is in contrast to greedy and progressive
migration, which repeat those migrations that have failed in the first attempt.

176 CHAPTER 4. DATA MIGRATION

0

20

40

60

80

100

120

0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.04

0.08

0.12

0.16

0.20

0.24

m
ig

ra
ti
o
n

e
ff
ic

ie
n
c
y
:
p
a
c
k
e
t
ra

te
[1

/s
]

m
ig

ra
ti
o
n

d
u
ra

ti
o
n

(f
ra

c
ti
o
n
)

speed ratio

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

top four curves: total packet rate
bottom: topology exploration only
right graph: migration latency

Figure 4.17: Migration efficiency and duration as a function of the speed ratio (maximum node
speed: 15 m/s).

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0

m
ig

ra
ti
o

n
d

u
ra

ti
o

n
(f

ra
c
ti
o

n
)

speed ratio

left graph: max. node speed: 5 m/s
right graph: max. node speed: 10 m/s

DataMiP (source routing)
DataMiP (BPR)
greedy migration
progressive migration

Figure 4.18: Migration duration as a function of the speed ratio (maximum node speed: 5 m/s
(left) and 10 m/s (right)).

Further, we observe that DataMiP’s cost for network topology exploration increases at 20000
data items and above. This is due to the fact that several topology explorations are required
during a single migration in order to update the network path via which migration occurs.
Also observe that in the range of large migration overhead and duration, a direct relation with
Figure 3.29 and 3.40 of the core data storage analysis can be observed.

Figure 4.17 shows migration efficiency and duration as a function of the speed ratio. While
DataMiP (BPR) performs best for all settings of the speed ratio, DataMiP (source routing)
degrades noticeably at a speed ratio of zero. This is due to the presence of only fast-moving

4.6. PERFORMANCE ANALYSIS 177

nodes, in which case the MDP’s stability analysis yields paths with a larger number of hops
in order to achieve longevity of paths (Section 4.4). However, the communication overhead
of DataMiP (source routing) is justified when considering the benefit that can be achieved
in migration stability. In Figure 4.21 and 4.22, for the default case of 10000 data items and
a speed ratio of 0.2, virtually no recoverable nor fatal migration failures occur for DataMiP
(source routing) due to the affectiveness of the stability analysis.

We further observe the steep gradient of both variants of DataMiP in Figure 4.17, which is
responsible for DataMiP’s performance advantage starting from a speed ratio of just 0.1. This is
due to the MDP’s election process that is based on the distance-based eligibility (Section 4.4.1.1)
and sojourn-based eligibility (Section 4.4.1.2) of network nodes. Once a certain level of slowly
moving nodes becomes available, DataMiP immediately prefers these over fast moving ones.
This leads to a significantly smaller number of migrations and in turn to an immediate increase
in migration efficiency and decrease in migration latency.

Figure 4.18 shows the migration duration as a function of the speed ratio for a maximum
speed of 5 m/s (left) and 10 m/s (right), complementing the right part of Figure 4.17. We
observe that with an increasing maximum speed in the speed ratio, the performance of DataMiP
(source routing) not only increases faster, but also achieves better performance than greedy
and progressive migration at a smaller speed ratio already. This is again because of the higher
exploitation potential when faster nodes become available in the network.

4.6.4 Migration Robustness

We conclude the analysis of migration performance with Figure 4.19 through 4.22 to show
DataMiP’s strong robustness. Figure 4.19 shows a detailed view on the migration failures in
relation to the overall number of migrations. For the default of 150 nodes and above, virtually
no migration failures of any kind occur in the case of both DataMiP variants. The high
performance can be attributed to the benefit of the MDP’s stability analysis, which has great
flexibility in determining a suitable path and target node in the presence of a large number of
nodes. In contrast, greedy migration in particular but also progressive migration are subject
to a comparatively large number of failures. This is due to the previously discussed problem of
geometric forwarding (Figure 4.9 in Section 4.6.2) in both approaches.

In the lower range of the number of nodes we can observe that the number of recoverable failures
increases noticeably for both DataMiP variants. The reason can be attributed to DataMiP’s
migration recommendation policy. At very low node densities, the critical distance dcrit is
reached by the current server more frequently, which implies Π = 1 and thus forces the MDP
to perform a migration. Such a migration will be attempted even when no target node can be
found that is reachable from the current server via a relatively stable path. This situation has
been previously discussed in conjunction with Figure 4.9 and suggests that the threshold and
critical distances should be appropriately calibrated.

Figure 4.20 provides a zoom of Figure 4.19 to reveal the magnitude of fatal migration failures.
The important difference to recoverable migration failures is that fatal failures result in the
forming of redundant data servers. Because greedy and progressive migration do not implement
a consolidation mechanism, this kind of failure is especially critical for these approaches.

While the magnitude of fatal failures is significantly smaller than the one of recoverable failures

178 CHAPTER 4. DATA MIGRATION

0

2

4

6

8

10

12

14

16

18

20

50 75 100 125 150 175 200 225 250

m
ig

ra
ti
o
n

fa
ilu

re
s

[1
/m

in
]

number of nodes

successful migrationsrecoverable failuresfatal failures

progressive migration
greedy migration

DataMiP (BPR)
DataMiP (source routing)

Figure 4.19: Number of migration failures as a function of the number of nodes.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

50 75 100 125 150 175 200 225 250

m
ig

ra
ti
o

n
fa

ilu
re

s
[1

/m
in

]

number of nodes

progressive migration
greedy migration

DataMiP (BPR)
DataMiP (source routing)

Figure 4.20: Number of fatal migration failures as a function of the number of nodes.

in our evaluation scenario, the following arguments show the significance in more realistic
scenarios. Consider a total area of 2 ·2 km2, divided into 100 cells, each measuring 200 ·200 m2.
This results in 100 reference coordinates, with 100 associated data servers in the case of no
replication.2 This scenario can be easily conceived, e.g., in a city center. Let us assume a fatal
failure rate of just 0.005 per minute, which is roughly the best value for greedy and progressive
migration achieved at the default setting of 150 nodes. This results, by average, in one fatal
migration failure every 2 minutes, or 30 fatal failures in one hour. The key point is that these

2Applying replication makes our case even stronger.

4.6. PERFORMANCE ANALYSIS 179

failures are not resolved by greedy and progressive migration. Thus, after one hour, roughly
130 data servers will form significant undesired redundancy that even continues to grow.

Considering DataMiP, on the other hand, the number of fatal migration failures is lower than
those of greedy and progressive migration in all but one of the cases, and vanishes completely
for node densities of 175 and above. In contrast to greedy and progressive migration, DataMiP
is able to recover also from fatal migration failures by its consolidation mechanism. Both
facts together provide significant resilience for both types of failures and justify the increased
communication cost in some cases that was observed in previous figures.

Figure 4.21 and 4.22 show the number of migration failures as a function of the number of
data items. Let us first focus on the overall picture and the recoverable migration failures in
Figure 4.21. We can observe that the number of recoverable failures for both DataMiP variants
is virtually not present up to 10000 data items, and up to 20000 data items for DataMiP
(source routing). In contrast, greedy and progressive migration both show a significant amount
of failures even for small numbers of data items. In particular, greedy migration fails frequently
even for a single packet to be migrated, which is due to the greedy forwarding problem discussed
previously in Section 4.6.2. These observations definitely back up the significance of the stability
analysis and path selection of the migration decision policy.

0

1

2

3

4

5

6

10
320

20
640

50
1.6k

100
3.2k

200
6.4k

500
16k

1k
32k

2k
64k

5k
160k

10k
320k

20k
640k

50k
1.6M

100k
3.2M

m
ig

ra
ti
o
n

fa
ilu

re
s

[1
/m

in
]

number of data items / data size [bytes]

successful migrationsrecoverable failuresfatal failures

progressive migration
greedy migration

DataMiP (BPR)
DataMiP (source routing)

recoverable failures: 10.4
successful migrations: 3.73

Figure 4.21: Number of recoverable migration failures as a function of the number of data
items.

With an increasing number of data items, the number of recoverable migration failures increases
for all approaches. However, in all cases, the number of failures is significantly smaller for both
DataMiP variants and in particular for DataMiP (source routing). This can be attributed to
the stability analysis one more time, which performs path recomputations that explicitly take
into account the size of the data subset to be migrated.

Figure 4.22 provides a zoom into the fatal migration failure rate. The figure shows well the
strength of DataMiP’s stability analysis with respect to the number of fatal failures. While

180 CHAPTER 4. DATA MIGRATION

for greedy and progressive migration a significant number of fatal failures occur, virtually no
failures are present for both DataMiP variants up to 10000 data items. Beyond 10000 data
items, some failures occur for DataMiP (BPR), whereas DataMiP (source routing) does not
show any failures up to the maximum of 100000 data items. This figure underpins that DataMiP
(source routing) is the first choice for migration in the case of large data subsets.

0

0.004

0.008

0.012

0.016

0.002

0.024

0.028

0.032

10
320

20
640

50
1.6k

100
3.2k

200
6.4k

500
16k

1k
32k

2k
64k

5k
160k

10k
320k

20k
640k

50k
1.6M

100k
3.2M

m
ig

ra
ti
o

n
fa

ilu
re

s
[1

/m
in

]

number of data items / data size [bytes]

progressive migration
greedy migration

DataMiP (BPR)
DataMiP (source routing)

Figure 4.22: Number of fatal migration failures as a function of the number of data items.

4.6.5 Evaluation Summary: Data Migration

The performance analysis of data migration allows us to summarize the following key results.
First of all, the resilience of the proposed migration mechanisms is extremely strong. This is
due to the migration decision policy’s strategies for selecting stable network paths that are
used during migration. While some recoverable failures occur due to the fact that migration
is sometimes forced by the migration recommendation policy, virtually no fatal failures occur,
which would result in undesired server redundancies. In the few cases where redundancies
still occur, the consolidation mechanism is able to resolve these redundancies eventually when
partitions join to avoid the long-term forming of many redundant servers.

While both migration via source and geometric routing have similar performance in terms of
resilience, using source routing based on the path that is output by the stability analysis is
generally to be preferred. This choice holds especially for the case of large data subsets, where
virtually no failures occur for source routing-based migration. However, when a smaller number
of data items is to be managed, using migration via geometric routing delivers sufficient stability,
and its additional performance gain over source routing then makes it the better choice.

DataMiP also shows superior performance when the set of nodes from which a target server
is elected contains nodes that move at low speed. The performance gain already occurs for a
speed ratio of just 1:5, where only 20% of the nodes move at a low speed. The stability analysis
quickly exploits the difference in node speeds and selects better nodes, in contrast to greedy
and progressive migration that do not distinguish between node speeds. This choice leads to
fewer migrations, which contribute to the overall minimization of migration failures.

Chapter 5

Service Tier

The previous two chapters described the main contribution of this dissertation, consisting of
the algorithms of the storage and routing tier according to the LCS framework in Figure 2.22.
In close collaboration, both tiers provide robust, efficient, and scalable data storage based on
the location-centric storage paradigm of Definition 2.2.

In this chapter, we show how the storage tier can be exploited by concrete services of the
LCS framework’s service tier, in order to deliver suitable base functionality to a variety of
location-based applications. We begin by addressing Requirement (6) from Section 2.4 and
introduce suitable location semantics in Section 5.1 that incorporate the natural imperfection
of localization technology. In Section 5.2 we extend the system model from Section 3.1 assumed
so far to also capture these semantics and to provide a storage structure on top of core data
storage that is tailored to the extended location semantics.

Section 5.3 introduces a location updating algorithm that builds on the location semantics
and the extended system model. The service tier of the LCS framework is complemented in
Section 5.4 with the presentation of the semantics and algorithms for the processing of proba-
bilistic spatial queries, including range and k-nearest neighbor queries. Evaluation results are
discussed in Section 5.5 to show the performance of the proposed update and query algorithms.

5.1 Semantics of Inaccurate Locations

Let us now formalize the notion of location in the presence of sensor measurements that lead to
inaccurate location information. We apply concepts of two-dimensional (bivariate) probability
distributions, which are able to model inaccurate locations in a general way.

Definition 5.1. The location probability density function (location pdf) �(X) with X = (x, y) ∈
R2 is any two-dimensional pdf in the Euclidean plane R2 that satisfies∫

X∈R2

�(X)dX = 1 (5.1)

In many cases, the technical means by which position information is gathered lead to an in-
definite area where the location pdf is greater than zero at any point X of that area. For

181

182 CHAPTER 5. SERVICE TIER

example, localization technology based on the Global Positioning System (GPS) may, theoret-
ically, possess an arbitrarily large error, but with a negligible probability, which is sufficient for
most applications. Therefore, we provide a more practical notion of location that restricts the
location pdf to a finite supporting area L ⊂ R2. Let p ∈ [0, 1] denote the probability by which
a single position is contained inside of L. We can write∫

X∈L

�(X)dX = p (5.2)

In general, p < 1 holds. Value p can be set close to 1 such that the supporting area L contains
the corresponding physical object with a sufficiently high probability that is suitable for some
specific application, such as the processing of spatial queries considered in Section 5.4.

The following example illustrates the application of the general concept. Let us consider the
characteristics of a typical GPS sensor, using the state-of-the-art Garmin GPSMAP 76CSx
hand-held device [Gar09], which uses the highly accurate SiRFstarIII chipset.

Inaccuracies in the position information of devices like the given one are usually specified in
meters, indicating the so-called circular error probable (CEP). The CEP is a measure for a
circle of radius r and specifies the probability by which a single position reading can be found
within that circular area. If not stated otherwise, the CEP indicates the probability of 0.5, and
the notation CEP95, for instance, indicates that an object’s position can be found inside of the
considered location with a probability of 0.95.

In the case of a GPS sensor, it is valid to approximate the probability distribution of the
position reading by a bivariate normal distribution, which in its general form is

f(X) =
1

2π
√|Σ|e

− 1
2
(X−μ)T Σ−1(X−μ) (5.3)

In (5.3), Σ denotes the covariance matrix, and |Σ| its determinant. The probability Pr to find
a point inside of a circle with center μ and radius r is defined as:

Pr =

∫∫
x2+y2≤r2

f(X)dxdy (5.4)

This equation can be integrated (cf. Appendix C.2 for details) and yields the closed form

Pr = 1 − e−
r2

2σ2 (5.5)

The CEP (50%) can be obtained by setting Pr = 0.5 in (5.5) and solving by r:

r50 = σ
√

2 ln 2 (5.6)

Any other CEP can be obtained by using the specific value for Pr.

The derivation of this equation is important in order to easily derive CEP values other than
the 50% CEP that a GPS receiver yields. Coming back to the example, we require (5.5) to
compute, e.g., CEP95 or any other CEP for larger probabilities. However, if a CEP is selected

5.2. SYSTEM MODEL EXTENSIONS 183

Circular Error Probable Radius Circular Error Probable Radius
1CEP = CEP50 r50 CEP95 2.08 · r50

CEP60 1.15 · r50 CEP96 2.15 · r50

CEP70 1.32 · r50 CEP97 2.25 · r50

CEP80 1.52 · r50 CEP98 2.38 · r50

CEP90 1.82 · r50 CEP99 2.58 · r50

2CEP = CEP93.8 2 · r50 3CEP = CEP99.8 3 · r50

Table 5.1: Radius of the supporting circular location area in relation to CEP values. The
CEP value can be obtained by using 1 − e−k2 ln 2 where k denotes a multiple of radius r50

for CEP50. The calculation of r from a given CEP probability can be accomplished by using
k = − ln(1 − p)/ ln 2, where k is the factor preceding r50 and p the CEP probability.

to high, then the radius r will increase to a value that will make location information inefficient
to be managed by the update algorithm in Section 5.3. Table 5.1 lists radius values for selected
CEP values. Assume, for example, that the CEP reported by the GPS device is 3 m. If CEP95

is required, then the radius to be used is 6.24 m.

We now define the location semantics that we use in subsequent sections based on the CEP
notion, which is practical to characterize the required accuracy for a location, and which can
be easily translated to different CEP values based on the reading of a GPS device.

Definition 5.2. The location L of an object is defined as the location pdf that models the
localization system and a circular supporting area for which a particular CEP is given:

L := (�(X), CEPY) (5.7)

In the previous definition, Y denotes the required probability that the object is located inside
of the supporting location area defined by CEPY .

Let us use the GPS hand-held device for illustrating the notion of location. We assume bi-
variate normal distribution, in general notation N (μ, Σ), where Σ denotes the two-dimensional
covariance matrix. Assuming symmetric covariances in x and y, we can use (5.6) to compute
σ2 for a given r50 = 3 m, yielding σ2 ≈ 6.49. For an example probability value of Y = 95%,
the location of an object can be specified as follows:

L :=

(
N
((

2
4

)
, 6.49

)
, CEP95

)
(5.8)

In this example, the supporting location area is a circle with radius 6 m around position
(2, 4)T . With a probability of 95%, a position that is acquired by the localization system is
actually located inside of this circle in the physical world. In subsequent sections, Li denotes
the supporting location area of an object oi’s location Li.

5.2 System Model Extensions

We now extend the system model of Section 3.1 to accommodate a geometric overlay that
supports the mapping of data objects oi to reference coordinates cr and in turn to data servers

184 CHAPTER 5. SERVICE TIER

in the network. Let A ⊂ R2 denote a bounded service area that shall contain the network under
consideration. We assume a subdivision of A into cells Cj ⊆ A, an approach used previously
by many storage approaches in wireless multihop networks, e.g. [LJC+00, SH04, KFWM04].
The cell structure shall be known to all nodes inside of A. Cells Cj may be of arbitrary
shapes, which specifically allows the adaptation to individual underlying topographies, such as
in urban scenarios with buildings that form obstacles. We further demand that A is completely
covered by the union of cells Cj. While it is allowed for cells to overlap, a structuring into
non-overlapping cells is most appropriate for our purposes in this chapter.

Data items oi ∈ D are mapped to a set of reference coordinates cr in two steps. First, each
object oi is mapped to a set of cells Cj based on location Li of that object. The mapping
takes an object’s location as argument and is denoted as relC(L). The mapping is realized by
considering the overlap between the supporting location area Li of a location Li and each cell
Cj ⊆ A. Using C := {Cj : Cj ⊆ A}, the set of cells Cj to which oi is mapped is

Ci := fC(Li) = {Cj ∈ C : Li ∩ Cj �= ∅} (5.9)

In a second step, this mapping is concatenated with a mapping from cells to reference coor-
dinates, the mapping being denoted as fc. This mapping may be arbitrarily defined, which
allows great flexibility in associating a specific cell with any number of reference coordinates.
In the following, we assume a one-to-one mapping in which each cell is mapped to a single ref-
erence coordinate. More complex mappings are possible in conjunction with replication, which
is briefly discussed in the outlook in Section 6.2.1.

5.3 Location Updating

In the following, we derive the location updating algorithm that efficiently delivers location
information to the servers of the underlying LCS infrastructure based on the location semantics
defined in Section 5.1. While the focus is on location information only, the proposed concepts
equally hold for many other types of dynamic information that is gathered by individual network
nodes, for instance, temperature readings that are obtained from a node’s local temperature
sensor. Consequently, the following results have validity not only for location-based services,
but also for more general context-based services and applications.

For a mobile object, we assume a location fix is performed by a client node after constant but
arbitrary time intervals. In the case of the example GPS device, this interval is 1 s. Each
location fix captures the current position of an object and constructs a location in the form of
(5.7) from it. Using the results from Section 5.1, the value CEPY can be defined for any Y .

Because no restrictions are put on the duration of the location fixing time interval, it is necessary
to remove old copies that are no longer valid after the most current location update has occurred.
Upon the delivery of the most recent location update to a data server, some copies of stale
location information might exist on a number of other servers that need to be removed. While
a soft state approach is sufficient to eventually remove stale object copies, it may leave a
potentially large number of outdated copies in the system even in the presence of more recently
executed updates. The reason is that object information is generally shared by multiple servers,
and the set of servers receiving an object update may change over time.

5.3. LOCATION UPDATING 185

Therefore, the following location updating algorithm attempts to proactively remove copies that
are known to be superseded. This leads to a significant decrease in the number of outdated
copies and in turn increases overall data consistency. This is especially important for the
complementary services, such as query processing, which are able to achieve accurate results
only if the location updating mechanism makes sure that the data store is consistent in the
first place. Still, proactive measures can only be efficient when best effort, which is due to the
system model (Section 3.1) that assumes that messages may be lost and network partitioning
may occur. We therefore assume, in addition to the proactive removal of object copies, an
object timeout that is rather large, and that updates occur at least with a frequency such that
an object is refreshed before that timeout occurs.

Let us now turn to the location update algorithm, shown in Listing 5.1. The algorithm can be
roughly divided into the SendObjectUpdate procedure (lines 15-23) and the remaining proce-
dures in lines 25-79. While the former is executed by any node in the network that performs
object location fixes, the latter are executed by data servers only.

Upon the construction of location Li for a data item oi as a result of a location fix, SendOb-
jectUpdate is invoked (line 15). This procedure essentially creates a record of type Object
(lines 17-21) from the object identifier, observation time, and object location. The special data
field oi.Lprev (line 21) is used in conjunction with object tracing, which is elaborated later on.
After the creation of the object record, the information is sent towards all reference coordinates
that are associated with a cell of the set fC(Li) (line 22). The mapping from cells to reference
coordinates is accomplished by function fc in the second argument of the SendObjectUpdate
procedure. Note the definition of both fC and fc in Section 5.2.

Listing 5.1: Location updating.

1 module LocationUpdating
2 begin
3 type
4 Object = record
5 ID : integer
6 tobs : Time
7 L : Location
8 Lprev : Location // for object tracing
9 end record

10

11 var s to rage : Set of Object
12 var C : Set of integer // global set of cells
13 var Cj : integer // this node’s associated cell
14

15 procedure SendObjectUpdate (Li : Location)
16 begin
17 var oi : Object
18 oi . ID := i
19 oi . tobs := CurrentTime ()
20 oi .L := Li

21 oi .Lprev := null
22 for each Cj in fC(Li) do SendObjectUpdate (oi , fc(Cj))
23 end
24

186 CHAPTER 5. SERVICE TIER

25 procedure ReceiveObjectUpdate (oi : Object)
26 begin
27 var Ccurr, Cprev, C′ : Set of integer
28 var Cnext : integer
29 i f ∃o′ ∈ s to rage : o′.ID = oi.ID then
30 i f oi.tobs < o′.tobs then return
31 oi.Lprev := o′.L
32 Cprev := fC(o′.L)
33 else // no previous object copy exists
34 Cprev := ∅
35 end i f
36 Ccurr := fC(oi.L)
37 ExecuteUpdate(s to rage , oi)
38 i f Cj = min(Ccurr) then
39 i f Cprev �= ∅ then
40 C′ := Cprev \ Ccurr

41 for each C′ ∈ C′ do SendObjectDelete (oi, fc(C′))
42 else // no previous object copy exists
43 i f �C′ ∈ C \ Ccurr : d(C′, oi.L) < dtrace then return
44 C′ := C \ {Cj}
45 Cnext := C′ ∈ C′ : ∀C′′ ∈ C′ : d(C′, oi.L) < d(C′′, oi.L)
46 SendObjectTrace(oi, fc(Cnext))
47 end i f
48 end i f
49 end
50

51 procedure Rece iveObjectDe lete (oi : Object)
52 begin
53 i f ∃o′ ∈ s to rage : o′.ID = oi.ID then
54 i f oi.tobs > o′.tobs then ExecuteDelete (s to rage , oi)
55 end i f
56 end
57

58 procedure ReceiveObjectTrace (oi : Object)
59 begin
60 var Cprev, C′ : Set of integer
61 var Cnext : integer
62 Cprev := ∅
63 i f ∃o′ ∈ s to rage : o′.ID = oi.ID then
64 i f oi.tobs < o′.tobs then return
65 i f oi.tobs = o′.tobs then // identical object copy
66 Cprev := (Lprev = null) ? ∅ : fC(o′.Lprev)
67 else // oi.tobs > o′.tobs

68 Cprev := fC(o′.L)
69 end i f
70 end i f
71 i f Cprev �= ∅ then
72 C′ = Cprev \ fC(oi.L)
73 for each C′ ∈ C′ do SendObjectDelete (oi, fc(C′))
74 else // object tracing continues
75 C′ := {C′ ∈ C : d(C′, oi.L) > d(Cj , oi.L)}
76 Cnext := C′ ∈ C′ : ∀C′′ ∈ C′ : d(C′, oi.L) < d(C′′, oi.L)
77 i f d(Cnext, oi.L) ≤ dtrace then SendObjectTrace (oi, fc(Cnext))
78 end i f
79 end
80 end

5.3. LOCATION UPDATING 187

After a data server has received an object update (line 25), it checks whether a copy of that
object, denoted o′, with the same ID already exists in the server’s local storage (line 29). If yes,
it is further checked whether the observation time of o′ is more current than that of the received
object oi (line 30). If this is the case, no further actions are taken and the procedure returns.
Otherwise, o′ is a less current object copy whose location is buffered in the current object
for future object tracing purposes (line 31). The set of cells with which the object’s location
overlaps is calculated by fC(o′.L) and stored in the previous list variable Cprev (line 32). If no
copy of the received object exists, the previous list is initialized with the empty set (line 34).
In line 36 the current set of cells, Ccurr, is assigned the set of cells with which the location of
the updated object oi overlaps. Both lists are used for the subsequent proactive object removal
process. The object update is finally executed on the local storage (line 37).

The proactive object removal process is handled in lines 38-48. Because an object’s location
may overlap with multiple cells, multiple servers may receive an update for the same object.
It is therefore necessary to assure that only a single server takes responsibility in handling the
removal of previous object copies. This selection is accomplished in line 38, where the server
having the smallest associated cell ID is deemed responsible. If a previous object copy exists,
which is indicated by a nonempty previous cell set (line 39), one object delete message is sent to
each data server that is responsible for a cell contained in the set of cells denoted C′ (line 40).
This set contains all cells of the previous cell set, but not the cells of the current cell set, because
the latter contains cells that are associated with servers that receive the current object copy.
Object delete messages relating to each cell in C′ are eventually received in line 51. Each delete
is performed on the receiving server’s local storage only if the object exists and that object’s
observation time is smaller than that of the received object.

The case where no previous object copy exists, indicated by an empty previous cell set (line 42),
can be due to one of two reasons. Firstly, the location update on the object may be the first
one that has ever occurred due to the object being observed for the first time. Second, the
location update may have occurred on an object that has entered a new cell, in which case a
previous object copy may still exist at a server that is responsible for another cell. Because the
two cases cannot be distinguished, a tracing process is considered in the following lines of code.
The condition in line 43 checks whether a cell exists that satisfies a specific tracing distance
dtrace, but which is not one of the cells that overlaps the object’s location. By setting dtrace to a
value larger than the maximum distance an object may travel between two consecutive location
updates, it is guaranteed that all cells with which the location of a potential previously updated
object overlaps are considered. If no such object exists, the procedure returns. Otherwise, a set
of cells, denoted C′, is constructed, which contains all cells in the considered network except
the current cell (line 44). From this set, the cell that is closest to the supporting location area
of the current object oi is selected (line 45). This cell is the one with the highest probability to
find a previous object copy after an object has entered a new cell. The procedure terminates
with the sending of an object trace message towards the reference coordinate that is associated
with this cell (line 46). Note that based on the check in line 43 this cell is guaranteed to have
a distance to oi’s location area that is smaller than dtrace.

After the reception of an object trace message at a data server (line 58), a previous cell set
is first initialized with the empty set (line 62). Next, it is checked whether the object to be
traced exists in the local storage of the server (line 63). If a matching object copy exists but its

188 CHAPTER 5. SERVICE TIER

observation time is more current, the procedure returns (line 64). Otherwise, either an identical
copy of the object exists (line 65) or a less current one (line 67). In the former case, the previous
cell set is initialized with the set of cells with which the previous location of object o′ overlaps
(line 66). This set is empty if no previous location is available. In the latter case, the set is
initialized with the set of cells with which the existing object’s location overlaps (line 68). The
subsequent program code (lines 71-78) determines whether the object can be deleted or is to be
further traced. A non-empty previous cell set (line 71) indicates that the trace was successful,
that is, a previous object was found and its deletion can be initiated. Just like in line 41 of
procedure ReceiveObjectUpdate, one delete message is sent towards each reference coordinate
(line 73) that is associated with each cell of the set of cells denoted C′ (line 72).

In the case where the previous cell set is empty, a previous object copy could not be found
and the tracing process is continued (line 74). For that, the set of candidate cells is assigned
only those cells that are located further from the current object’s location than the current cell
(line 75). This implies a total order of cells in a sequence of increasing distance that is followed
for subsequent tracing attempts, consecutively selecting more distant cells. After choosing the
next cell (line 76), the tracing process continues by sending an object trace message to the
reference coordinate that is associated with this cell (line 77). Note that the tracing process
eventually terminates when dtrace is no longer satisfied.

The following example, depicted in Figure 5.1, illustrates the operation of the location update
algorithm. Note that the depiction is not to scale and cell borders are generally crossed much
rarer than shown. Let t1, . . . , t4 denote the time of a location fix, with ti+1 > ti. We write Li(ti)
for the supporting location area of an object oi at time ti, and dtrace for the tracing distance. Let
DSi and Ci denote data servers and cells, respectively. Let further Upd(t), Del(t), and Trc(t)
denote an object update, delete, and trace, respectively, sent to one or more data servers.

Figure 5.1.a and 5.1.b show a sequence of location fixes along the physical path of the object
oi, indicated by the dotted line. In Figure 5.1.a, at t1, object oi is observed by a mobile node
for the first time and an update is sent to DS2. Upon the reception of the update at DS2,
the update is inserted into the server’s local storage. Because no previous object copy exists
at DS2, an object trace process is considered (line 42 et sqq.). However, because the tracing
distance spans a circle that is completely located inside of cell C2, no tracing is performed.
Recall that from the setting of this distance, it is guaranteed that no other cell exists that may
have a previous copy of the object if the object had been observed previously.

At t2, the second location fix occurs, which results in a supporting location area that overlaps
with both C2 and C1. As a consequence, two updates are sent to DS2 and DS1 (line 22). By
definition, the server that is associated with the lowest-ID cell, which is DS1 in the example,
handles the object removal process. Because DS1 has not received an object update before,
it considers to perform an object trace to find out about possibly existing previous object
copies (line 42 et sqq.). According to the tracing distance, cell C2 needs to be considered, but
no other cell. However, the location associated with the update at t2 also overlaps with C2.
Hence, according to line 43, there is no other cell within the tracing distance that can possibly
store a previous object copy, and thus, no object tracing process occurs.

Continuing in Figure 5.1.b, the location fix at t3 results in a single update that is sent to DS1.
This time, DS1 stores a previous object copy (line 29). Because cell C2 is not covered by the
most recent update’s supporting location area, the server associated with cell C2 is the one from

5.3. LOCATION UPDATING 189

DS2

C2 C1

C3 C4

Upd()t1

dtrace
Li()t1

Upd()t2

Li()t2

C2 C1

C3 C4

Upd()t4

Li()t4dtrace

DS2 DS1

Trc()t4

DS4

Del()t4

DS4

Upd()t2

DS1

local
delete

DS2

C2 C1

C3 C4

Upd()t3

Upd()t4

Li()t3

Li()t4
dtrace

DS4

DS1

Trc()t4

Trc()t4

local
delete

C2 C1

C3 C4

Upd()t3

Li()t3

DS2 DS1

DS3

Upd()t3

Del()t3

DS4

DS3

DS3DS3

Upd()t4

a. Location updates at t1 and t2 b. Location updates at andt t3 4

c. Variation: location update at t3 d. Variation: location update at t4

Del()t3
local delete

local delete

local
delete

'

'

'

'

'

' '

'

' '

Figure 5.1: Example: location update algorithm.

which a previous object copy must be removed (line 40). As a result, a single delete message
is sent to DS2, which deletes the object copy from its local storage.

The last update occurs at t4. This time, the supporting location area overlaps with both C4 and
C3, and two updates are sent to each of the servers DS4 and DS3. Because DS3 is associated with
the lowest-ID cell, it is responsible for handling the removal of old object copies. Because DS3

has received the first update for the object, it considers to perform an object trace. DS3 first
determines if a cell exists that may hold a previous object copy that has not been overwritten
in the meantime by the current object copy (line 43). In the example, C3 and C2 satisfy this
condition. Excluding cell C3, a trace message is thus sent to the nearest cell, C4. Upon the
reception of the trace message at DS4, that server finds that it has also executed the current
update on the object (line 63). Since the object copies are identical, the observation times match

190 CHAPTER 5. SERVICE TIER

(line 65). Because the object has traversed the border from C1 to C4 completely, no previous
location Lprev is known to DS4. Thus, the previous cell set is empty (line 66). Consequently,
object tracing continues (line 74) with the sending of a trace message to the next closer cell,
C1. At DS1, the previous object copy is finally found. Because its supporting location area is
fully contained inside of C1, only a local delete is executed at DS1.

Figure 5.1.c and 5.1.d show a variation of the third and fourth update, occurring at time t′3 > t3
and t′4 > t4. In Figure 5.1.c, the third update leads to location Li(t

′
3), overlapping with both

C1 and C4. Hence, updates are sent to DS1 and DS2. Because DS1 knows about the previous
copy of the object, it can directly issue a delete message to DS2.

Shown in Figure 5.1.d, at t′4, an update occurs with the object’s supporting location area being
completely located inside of cell C3. Thus, DS3 does not know of any previous object copy
and considers to perform an object trace. According to line 43, C4 is one candidate cell that
is below the tracing distance and not among the cells with which Li(t

′
4) overlaps. Thus, the

tracing is actually performed. The nearest cell to Li(t
′
4), excluding C3, is C4, thus, the trace

message is sent to DS4. At DS4, the object copy still contains the previous copy’s location
Lprev, which can be consulted by DS4 to determine the servers from which the previous object
copy is to be deleted. This is both C4 and C1, thus, a local delete occurs at DS4 and a delete
message is sent to DS1, which then also performs a delete on its local storage.

5.4 Query Processing

This section describes the algorithms for processing spatial queries in mobile ad-hoc networks
based on the LCS framework’s core storage mechanisms. Two types of spatial queries, relevant
for many location-based applications, are considered: On the one hand, a range query returns
all objects that are located inside of a specific geometric region. On the other hand, a k-nearest
neighbor query returns the k objects that are located closest to a given geometric reference
position. Because the proposed query semantics and algorithms build on the location notion
introduced in Section 5.1, the queries are referred to as probabilistic spatial queries.

Section 5.4.1 introduces the semantics of probabilistic range and k-nearest neighbor queries.
The algorithms for processing both types of queries are described in Section 5.4.2. The discus-
sion of a representative set of evaluation results of query algorithms in conjunction with the
location update algorithm from Section 5.3 is presented in Section 5.5.

5.4.1 Semantics of Probabilistic Spatial Queries

5.4.1.1 Probabilistic Range Queries

We now define the semantics of probabilistic range queries (PRQ) using the notion of location.
These semantics consist of two parts: the inclusion condition and the accuracy threshold. The
inclusion condition decides whether or not an object is considered to be located inside of a
geometric region R based on the object’s supporting location area. By extending Equation (1)
in [DGM+04] to two dimensions in Cartesian space, this condition is defined as follows:

5.4. QUERY PROCESSING 191

Definition 5.3. The inclusion condition for an object oi is satisfied if and only if the probability
that oi is located inside of a geometric region R is greater than or equal to the inclusion threshold
0 < PPRQ ≤ 1. Having X denote any position inside of the supporting location area Li, and �i

the pdf of location Li, the inclusion condition is formally given by

P (X ∈ R) =

∫
R∩Li

�i(X)dX ≥ PPRQ (5.10)

An important fact not considered in previous work (Table 2.4 in Section 2.5) is that the position
of some objects might be too inaccurate to be of use for some types of application. For example,
in an application where the objects returned are to be located in the physical world, such as
in the streets of a city center, a location too inaccurate might render it impossible for the user
to find the object. To consider this fact, we introduce an additional query parameter that
allows us to omit data objects from query processing if the degree of inaccuracy in the position
information of these objects is too large.

Definition 5.4. The accuracy threshold defines the maximum degree of inaccuracy allowed
for an object to take part in the evaluation of a probabilistic spatial query in general, and a
probabilistic range query in particular. It is formally defined as a pair of values, (χ, υ)1, where
χ ≥ 0 and υ ≥ 0 denote the maximum circular error probable (CEP) index and maximum
radius, respectively, that the supporting location area’s CEP is allowed to have.

The combination of both parameters is essential, because the supporting location area of an
object’s location can have a small CEP radius with a very small CEP index, or vice versa.

Based on the aforementioned notions, we now define the probabilistic range query:

Definition 5.5. Let R denote the range query’s target geometric region. Let CEPY,i and Yi

denote the circular error probable and probability of an object oi’s location, respectively. The
probabilistic range query result, denoted RPRQ, is defined as:

RPRQ = {oi | P (Xi ∈ R) ≥ PPRQ ∧ CEPY,i ≤ χ ∧ Yi ≤ υ} (5.11)

In the following example, let L = (�(X), CEPY) denote an object’s location, with

�(X) =

{
Y/(100π · CEP2

Y) if (X − M)2 ≤ CEP2
Y

0 otherwise
(5.12)

specifying a uniform distribution over a circular location area with center M and radius CEPY .
Let further R denote a rectangular region, the argument of the range query. Further assume
the inclusion threshold PPRQ = 0.75, and (χ, υ) = (3 m, 80).

Figure 5.2 illustrates the location of a number of objects. Object o1 is included in the query
result, because all restrictions in Definition 5.5 are satisfied. Object o2 and o3 do not satisfy

1χ and υ denote the greek letters Chi and Upsilon.

192 CHAPTER 5. SERVICE TIER

R L2

L3

CEP 1.5 mY,3 �

Y3 50�CEP 4 mY.2 �

Y2 100�

L1

CEP 2 mY,1 �

Y1 100�

L4

CEP 3 mY,4 �

Y4 100�

L5

CEP 3 mY,5 �

Y5 80�

R L� �i Li R L� � �i 0.8 Li

P X R() 0.645 � �P X R() 0.84 � �

Figure 5.2: Example: probabilistic range queries.

the range query, because the CEP radius of o2’s location is too large, and o3 does not satisfy
υ. Object o4 again satisfies the range query, because it fulfills the restrictions of both χ and
υ and the probability of it being located inside of R is greater than PPRQ. Object o5 does not
satisfy the range query, which is due to the smaller Y5 in comparison to Y4 of o4, resulting in a
probability of only 0.64 < PPRQ of being located inside of R.

5.4.1.2 Probabilistic k-Nearest Neighbor Queries

Let us now define the semantics of probabilistic k-nearest neighbor queries (PNQ). As in the
case of range queries, no accuracy threshold is considered in the related work. Furthermore,
previous work does not consider a probabilistic model for the case where k > 1 (Table 2.4 in
Section 2.5). The following semantics define exactly k objects that are considered nearest to a
reference position and which are returned in the query result.

Let us first determine the probability by which an object oj is closer to a reference position
than ok. Let pNN = (xp, yp) denote the reference position of the k-nearest neighbor query from
which the k nearest objects are to be determined. To simplify notations, we introduce a polar
coordinate system whose origin is pNN. Figure 5.3.a illustrates the location area Lj of an object
in a polar coordinate system. The location pdf is then rewritten as �j(X), with X = (r, ϕ),
where r2 = (x − xp)

2 + (y − yp)
2 and tanϕ = (y − yp)/(x − xp).

The notion of nearer is illustrated in Figure 5.3.b for the location areas Lj , Lk of two objects
oj , ok. Intuitively, oj is closer to pNN than ok if oj is closer in “most of the cases”. In Figure 5.3.b,
oj is closer to pNN for all pairs of positions X1 ∈ Lj, X2 ∈ Lk for which X1 is closer to pNN than
X2. By integrating over products �j · �k of the location pdfs of oj , ok for all pairs of positions
for which oj is nearer to pNN than ok, we obtain the following definition:

Definition 5.6. The estimated probability Pjk|pNN
, by which an object oj is located closer to

the reference position pNN than ok, is defined as:

Pjk|pNN
=

r1=rmax
ϕ1=ϕmax∫∫
r1=rmin
ϕ1=ϕmin

�j(X1)

⎡
⎢⎢⎣

r2=rmax
ϕ2=ϕmax∫∫

r2=r1
ϕ2=ϕmin

�k(X2)dR2

⎤
⎥⎥⎦dR1, (5.13)

5.4. QUERY PROCESSING 193

�max

�min

rmin

rmax

r1

r2

pNN

Lj

Lk
X1

X2

Lj

()r,�

y

p x yNN � (,)p p

x

y'

x'

(,)x y0 0

a. Polar coordinate transformation. b. Nearer relation between objects.

Figure 5.3: Semantics of probabilistic k-nearest neighbor queries.

where X1 = (r1, ϕ1) and X2 = (r2, ϕ2), as well as dR1 = r1dr1dϕ1 and dR2 = r2dr2dϕ2.

The term estimated indicates that the probability computations might not be complete in the
following sense. Recall that the location semantics defined in (5.2) in Section 5.1 may lead to
p < 1. This implies that the sum of the probabilities by which two objects are mutually closer
to each other is not necessarily 1, but assumes the maximum value

Pmax = Pjk|pNN
+ Pkj|pNN

(5.14)

Using (5.13) and (5.14) we can now define the nearer relation between two objects.

Definition 5.7. For two objects oj , ok, object oj is nearer than ok to the reference position pNN

if and only if the probability that oj is nearer than ok is greater than one half of the maximum
possible probability. Written formally:

oj < ok|pNN
⇐⇒ Pjk > 0.5 · Pmax (5.15)

Based on Definition 5.7, it is also possible that oj and ok have equal distance to pNN:

Definition 5.8. Two objects oj, ok, have equal distance to pNN if the following holds:

oj = ok|pNN
⇐⇒ Pjk|pNN

= Pkj|pNN
(5.16)

The definition of the k-nearest neighbor query result RPNQ is based on Definition 5.7 and 5.8.
In addition, we use the accuracy threshold (χ, υ) of Definition 5.4 to only include objects in
the query processing whose location satisfies that threshold.

Definition 5.9. The probabilistic k-nearest neighbor query result, denoted RPNQ, is defined as:

RPNQ = {o1, . . . , ok} : ∀or ∈ RPNQ : CEPY,r ≤ χ ∧ Yr ≤ υ ∧
∀or ∈ RPNQ, os �∈ RPNQ : CEPY,s ≤ χ ∧ Ys ≤ υ ⇒ or ≤ os |pNN

(5.17)

Note that if property (5.16) in Definition 5.8 holds for two objects o′k, o
′′
k that are both k’th

distant objects to pNN, then the query result is non-unique.

194 CHAPTER 5. SERVICE TIER

5.4.2 Probabilistic Query Algorithms

This section introduces the algorithms for processing probabilistic range and k-nearest neighbor
queries in mobile ad-hoc networks based on the location-centric storage framework described
in Section 2.4 and shown in Figure 2.22. While the underlying core data storage algorithms
address the efficiency and robustness-related Requirement (1) to (4) in Section 2.4, the query
algorithms focus on Requirement (1), (5) and (6) in order to provide efficient and scalable query
processing based on the query semantics defined in Section 5.4.1.

5.4.2.1 Probabilistic Range Queries

The distributed processing of probabilistic range queries (PNQs) is rather straightforward
due to the following two reasons. Firstly, according to the location-centric storage paradigm
(Definition 2.2 in Section 2.3), objects are stored in close proximity to where they are observed.
This property is implemented by the mapping from an object’s supporting location area to cells
by function fC and in turn to reference coordinates by function fc (Section 5.2). Second, the
spatial parameter of a range query, R, is a static geometric region, which can be mapped di-
rectly to the set of cells and in turn to the relevant data servers that contain data subsets that
need to be considered in the evaluation of the query.

Figure 5.4 illustrates the processing of probabilistic range queries on the service tier (top plane)
in collaboration with the storage tier (bottom plane) within the location-centric storage frame-
work. The figure shows that the cell structure employed in the service tier is not visible at the
storage tier, but translated by function fc. Likewise, the reference coordinates used by the core
storage algorithms are not visible at the service tier.

The processing of a PRQ is initiated by the issuing of the query on the client tier on some
arbitrary node in the network, in the following referred to as the query client (Figure 5.4).
Because the query client may be located at any distance from the geometric region specified
in the query, and thus, relevant data subsets may be located on distant data servers, it is
inefficient to process the query from this node. Therefore, a query proxy that is located near
the query region is selected first, which processes the range query on behalf of the query client.
A simple yet effective method is to select the mobile node that is nearest to some coordinate
inside of the query range, for instance, the center of a rectangular geometric region. The query
is then sent to the query proxy (➊ in Figure 5.4). To do so, it is handed over to the storage tier,
which uses geometric routing to relay the query from u1 towards the reference coordinate. For
that, bidirectional perimeter routing (Section 3.2) is applied to determine the node u2 closest
to the query region’s reference coordinate. Upon delivery of the message to the service tier, the
current node is selected by the service tier as the query proxy.

The aggregation of the query result is accomplished on the query proxy by sending a number
of partial range queries (➋ in Figure 5.4) to data servers that possibly store objects that are
located inside of the query region. The set of relevant cells is determined based on the overlap
between cells and the query region. The query proxy subsequently determines, using mapping
fc, to which reference coordinate each cell maps and hands over the query to the storage tier.
The storage tier in turn forwards each partial query via a node that holds an advertisement
(ADV) record (Section 3.3.1) to its corresponding data server using the request forwarding

5.4. QUERY PROCESSING 195

L2

L3

L1

L4

cr

ADV record

storage tier

service tier

cs

DSs

DSr

ur

query client

Cr

Cs

query proxy

R

us

f () { }

f () { }

c

c

C

C

r r

s s

�

�

c

c

pR

ADV record

u1

u2

1

2

2

1 proxying

2 aggregation

Figure 5.4: Probabilistic range query algorithm.

algorithm in Section 3.3.2. While the partial queries are under way, the query proxy stands by
for receiving query results to be aggregated.

On reception of a partial query, each data server processes the range query locally based on
Definition 5.5. The partial range query result is then returned to the query proxy by invoking
the storage tier’s forwarding mechanisms. The storage tier is able to route the result to the
query proxy based on its address and last known geometric position, which we assume was
previously transmitted in the partial query. For each partial query result received, the query
proxy aggregates the data objects and constructs the final query result. Note that for each
object it it possible to determine independently whether or not the object is included in the
query result. In the event that two copies of the same data object are returned by multiple
partial queries, the most recent one is included in the final result. Once all partial queries have
been received, the aggregated range query result is returned to the query client by making use
of the storage tier’s forwarding mechanisms one more time.

5.4.2.2 Probabilistic k-Nearest Neighbor Queries

In contrast to range queries, the processing of probabilistic k-nearest neighbor queries (PNQs)
is more complicated because a bounding region that contains the k nearest objects is unknown
beforehand. For that reason, the PNQ algorithm uses the following two-phase approach. During
the heuristic phase, k objects are preselected to determine the maximum range within which

196 CHAPTER 5. SERVICE TIER

additional objects must be considered to compute the final query result. The selection strategy
is realized by using partial k-nearest neighbor queries executed in a sequence that allows to find
k candidate objects quickly and whose distance to the real k nearest neighbors is small. This
step is essential to minimize additional communication cost required to complete the query
during the aggregation phase. In this phase, all data servers that may contain objects that
are closer to pNN than any of the objects determined during the heuristic phase are queried by
means of additional partial k-nearest neighbor queries. The final query result is then aggregated
by using the nearer relation in Definition 5.7 and 5.8.

The principal operation of the algorithm for processing probabilistic k-nearest neighbor queries
is shown in Listing 5.2 and Figure 5.5 on page 198. For simplicity, we assume that the query
client is also the query proxy and derives the query position pNN from its own location. In the
case where a query client is located anywhere in the network and uses a query reference position
pNN that is not its own position, routing between query client and proxy is accomplished just
as in the case of range query processing in Section 5.4.2.1 (➊ in Figure 5.5). In the case of a
k-nearest neighbor query, the proxy is the node closest to the query position pNN.

Listing 5.2: Processing of probabilistic k-nearest neighbor queries.

1 module QueryProcess ing
2 begin
3 var s to rage : Set of Object
4 var C : Set of integer // global set of cells
5 var Cj : integer // this node’s associated cell
6 var RPNQ : Set of Object // final query result, Object structure see Listing 5.1
7 var C′ : Pr ior ityQueue // remaining set of cells ordered by distance to pNN

8 var phase : (h e u r i s t i c , a gg r ega t i on)
9 var aggregationTimer : Timer

10 var rlim : real
11

12 procedure ProcessPNQ(k : integer ; pNN : Point ; χ : real ; υ : real)
13 begin
14 RPNQ := ∅
15 phase := h e u r i s t i c
16 C′ := SortByDistanceTo(C, pNN)
17 SendPart ia lQuery (k, pNN, χ, υ, fC(GetAndRemoveNext(C′)))
18 end
19

20 procedure Rece ivePar t i a lRe su l t (Rpart
PNQ : Set of Object)

21 begin
22 // all objects in partial result satisfy the accuracy threshold
23 for each oi in Rpart

PNQ do
24 i f not Contains (RPNQ, oi) then
25 i f |RPNQ| < k then
26 RPNQ := RPNQ ∪ oi

27 else // |RPNQ| = k

28 i f ∃oj ∈ RPNQ : oi < oj |pNN ∧ ∀ok ∈ Rpart
PNQ : oi ≤ ok|pNN then

29 Replace (RPNQ, oj , Remove(Rpart
PNQ, oi))

30 end i f
31 end i f
32 end i f
33 end for

5.4. QUERY PROCESSING 197

34 i f phase = h eu r i s t i c then
35 i f |RPNQ| < k then
36 i f d(GetNext(C′), pNN) < rlim then
37 SendPart ia lQuery (k, pNN, χ, υ, GetAndRemoveNext(C′))
38 else
39 De l ive rResu l t (RPNQ) // no more cells to aggregate from
40 end i f
41 else // |RPNQ| = k
42 phase = agg r ega t i on
43 AggregateResult (k, pNN, χ, υ)
44 end i f
45 else // phase = agg r ega t i on
46 i f AggregationComplete () then
47 De l ive rResu l t (RPNQ) // deliver result to client tier
48 end i f
49 end i f
50 end
51

52 procedure AggregateResult (k : integer ; pNN : Point ; χ : real ; υ : real)
53 begin
54 var Cagg : Disk (pNN, 0)
55 var ragg, dmax : real
56 ragg := 0
57 for each oi ∈ RPNQ do
58 dmax := Maxp∈Li{d(p, pNN)}
59 ragg := Min{Max{ragg, dmax}, rlim}
60 end for
61 i f not Overlaps (GetNext (C′) , Disk (pNN, ragg)) then
62 De l ive rResu l t (RPNQ) // no more cells to aggregate from
63 else
64 while Overlaps (GetNext (C′) , Disk (pNN, ragg)) do
65 SendPart ia lQuery (k, pNN, χ, υ, GetAndRemoveNext(C′))
66 end while
67 SetTimer (aggregationTimer , tagg)
68 end i f
69 end
70

71 procedure TimerExpired ()
72 begin
73 De l ive rResu l t (RPNQ) // deliver result to client tier
74 end
75 end

The processing of a PNQ starts at the query proxy by a call to procedure ProcessPNQ (line 12).
After initializing the final query result, RPNQ, with the empty set (line 14), the heuristic phase
is entered (line 15) and a copy of the global cell set, C′, is created (line 16). This set is a
priority queue that contains cells in ascending order of distance to the query reference position
pNN. The first partial query is sent towards the reference coordinate that is associated with the
nearest cell (line 17, ➋ in Figure 5.5). This is the point where the partial query is handed from
the service to the storage tier, as was shown previously in Figure 5.4.

After the processing of a partial query at a data server in accordance with Definition 5.9, the
corresponding partial query result is received by the query proxy and handled in procedure

198 CHAPTER 5. SERVICE TIER

Cr

Cs

DSr

DSs
query client

query proxy

1
3

cr

cs

2

pNN

Disk(,)p rNN agg

L1

L2

L3

1 proxying

2

3

heuristic phase

aggregation phase

Figure 5.5: Probabilistic k-nearest neighbor query algorithm.

ReceivePartialResult (line 20). In Figure 5.5, after the issuing of a 2-nearest neighbor query,
two objects with location area L1, L2 are returned by the heuristic phase’s first partial query
from DSr to the query proxy. For both the heuristic and aggregation phase, the incoming
partial result is merged into the final query result (lines 23-33). For this, every object oi in
Rpart

PNQ is tested for containment in RPNQ (line 24). Only if a copy oi does not already exist in
RPNQ and RPNQ contains less than k objects (line 25), oi is inserted (line 26). If RPNQ already
contains k objects (line 27), oi replaces some oj in RPNQ only if oi is nearer to pNN than oj and
oj is the object farthest away from pNN from all other objects ok in Rpart

PNQ (lines 28-29).

The heuristic phase continues by testing if k objects were not yet found (line 35). In this case, it
is further tested whether more cells exist that may contain data objects whose distance to pNN

is less than the maximum search radius rlim (line 36). This radius is essential to limit the search
scope of a PNQ in case object density is low or for large values of k. It may either be specified
by the query client or upper bound by the algorithm to avoid the dissemination of partial
queries across the complete network. If additional relevant cells within rlim exist, the query
proxy sends consecutive partial queries towards the cells in C′ in order of increasing distance
to pNN (line 37). Otherwise, the query terminates and delivers a final result that contains less
than k objects to the client tier (line 39). If k objects were found during the heuristic phase,
the aggregation phase is entered by a call to AggregateResult (line 41-43).

The objective of the aggregation phase is to find any other object that might be closer to pNN

than any of the objects gathered during the heuristic phase and currently stored in RPNQ. Such
objects may exist due to the fact that the cell structure in the network can be arbitrary and
servers may thus store objects that are closer to the ones already collected. An example is
shown in Figure 5.5, where the location area L3 belongs to an object that is stored at DSs and
which is closer to pNN than L1. The first task of the aggregation phase is to determine the set of
additional cells that must be queried to complete the final query result. For that, the smallest
disk, Disk(pNN, ragg), with center pNN and radius ragg is constructed and which contains the
location area of every determined object in RPNQ (lines 56-60). For each object (line 58), the
most distant point inside this object’s location area is determined and the aggregation radius
ragg is updated (line 59). Note that the radius of the disk is in any case limited by the maximum
radius rlim. Figure 5.5 illustrates the construction of Disk(pNN, ragg) for the two objects with

5.5. PERFORMANCE ANALYSIS 199

location areas L1 and L2. In the example, the disk contains the location area L3 of another
object that is stored on DSs and thus, was not retrieved during the heuristic phase.

Based on the determined radius ragg, the next potential cell from the priority queue is checked
for overlap with Disk(pNN, ragg) (line 61). Note that all cells that were already queried in the
heuristic phase are left out in the aggregation phase, which is guaranteed by the fact that for
each partial query sent during the heuristic phase, the corresponding cell is removed from the
priority queue (line 17 and also 37). If no overlap occurs, the query result is already complete
and is delivered to the client tier (line 62). Note that because the priority queue contains
cells in increasing order to pNN, it is not possible that another cell exists that overlaps with
Disk(pNN, ragg). In the case where the disk overlaps with at least the next cell in the priority
queue (line 63), one partial query is sent for each overlapping cell to the server that is associated
with this cell. In Figure 5.5, only cell Cs overlaps with Disk(pNN, ragg) and thus, the associated
data server DSs is queried (➌). The sending of a partial query to this server makes sure that the
corresponding object is eventually retrieved and merged into the final query result according to
lines 23-33. After the sending of the partial queries, the aggregation timer is set to guarantee
that the aggregation phase terminates eventually (line 67).

Once the partial queries of the aggregation phase are being propagated and processed at the
corresponding server(s), the aggregation phase completes in either one of two cases. The reg-
ular case occurs in procedure ReceivePartialResult, lines 45-49. With the reception of each
partial query result, it is checked whether the aggregation is complete (line 46). This can be
accomplished by matching the number of received partial query results with the number of
partial queries sent during the aggregation phase. If the result is complete, the query result
is delivered to the client tier (line 47). Otherwise, the procedure finishes and the query proxy
waits for the outstanding partial query results.

In the second case, aggregation is terminated due to the expiration of the aggregation timer,
which was set in line 67 and which occurs prior to the reception of all outstanding partial query
results. Upon expiration, procedure TimerExpired is invoked (line 71). In Listing 5.2, the
query result, which may be suboptimal, is immediately delivered to the client tier (line 73). In
the presented algorithm, only best-effort delivery of query messages is supported. It is straight-
forward to extend the algorithm by any level of additional robustness to increase accuracy, also
in collaboration with the storage tier. However, these details are omitted in this dissertation.
Instead, it is shown in Section 5.5 that even under best-effort delivery, a large degree of query
accuracy can be achieved in typical mobile ad-hoc network scenarios.

5.5 Performance Analysis

This section discusses a representative set of evaluation results of the service tier. We will show
that the service functionality provided for context-based applications can be supported in an
efficient way based on the storage tier introduced in Chapter 3 and 4 and in conjunction with
the location updating mechanism elaborated in Section 5.3.

When considering the algorithms for probabilistic range and k-nearest neighbor queries in
Section 5.4, we can observe that both types of queries are decomposed into a number of partial
queries that process the overall query result. While the individual strategy of each query

200 CHAPTER 5. SERVICE TIER

varies considerably, the decomposition in the case of range queries is much more deterministic
than for k-nearest neighbor queries, where the query parameter k and the node density both
influence the required number of partial queries. We can therefore understand the performance
of range queries well in qualitative terms from the analysis of k-nearest neighbor queries. In
the following, we will therefore restrict our analysis to k-nearest neighbor queries only.

In the performance evaluation of k-nearest neighbor queries, we make use of comparative anal-
ysis in a way that allows us to understand in particular the impact of position inaccuracy on
the accuracy of query results. For that, we define two optimum cases that will be used as a
reference for our comparison. The details of these cases will be presented in conjunction with
the performance metric of query accuracy in Section 5.5.1.

Table 5.2 shows the default system parameters used in this section in addition to the general
system parameters that were introduced in Table 3.3.

System Parameter Default Value
Simulation time 360 s
Number of cells 4, equally-sized
Cell size 300 · 300 m2

Number of objects 300
Mobility model (for objects) random waypoint
Object speed (fixed for all objects) 1.5 m/s
Pause time (fixed for all objects) 30 s
Sensing range 20 m (≈ RFID)
object observation interval 3 s and upon discovery
Position inaccuracy 5 m (≈ GPS)
object lifetime 10 s (soft state)
Query parameter k 3
Number of queries 300
Query execution interval [30 s, 330 s]
Query frequency 1 query/s

Table 5.2: Query processing: system parameters.

The simulation time is set to 360 s, which is sufficient to issue a large number of queries in order
to achieve statistical stability in the simulation results. In contrast to core data storage and
data migration, the total simulation area is subdivided into four disjoint cells, each 300 · 300
m2 in size and covering the total simulation area.

The evaluation scenario further considers, in addition to network nodes, observable objects
that are located inside of the simulation area. These objects are assumed to be observed by
sensor technology embedded in the nodes, and they may represent any type of other entities
located in the vicinity of network nodes. These objects are used to show how query accuracy
is impacted by inaccurate position information and an incomplete view of the physical world
in the model data stored in the network. We assume 300 observable objects by default, each
moving according to the random waypoint mobility model, with a fixed speed of 1.5 m/s and
a fixed pause time of 30 s. These values correspond to the settings used for nodes.

5.5. PERFORMANCE ANALYSIS 201

We assume that the sensing range of embedded sensors is 20 m. Any observable object located
within the sensing range of a node is observed by that node. An object is observed for the first
time when it enters the sensing range of a node and is thereby discovered by that node, then
in regular time intervals of 3 seconds until it leaves the sensing range of the node again.

We assume that a node determines the position of an object upon observation and is able to
do so with a position inaccuracy of 5 m, which corresponds to values that can be obtained
from typical GPS receivers. After each observation, a data object is created and sent to the
server that is located in those cells whose area overlaps with the location area of the object’s
determined location according to Listing 5.2. Any object that is not updated within at most
10 seconds at a server is removed from that server by a soft state approach.

5.5.1 Performance Metrics

We define three key performance metrics to assess the performance of k-nearest neighbor queries:
query accuracy and query offset, query latency, and query cost.

Query Accuracy and Query Offset

Query accuracy and query offset are two related performance metrics that describe the quality
of the result returned by a k-nearest neighbor query. We express both metrics with respect to
two optimum cases, which we term model-based optimum and real world-based optimum.

The purpose of comparing the k-nearest neighbor query result to the model-based optimum
result is to assess the pure performance of the query algorithm, that is, which level of accuracy
it is able to achieve with respect to a perfect reference implementation. Such an implementa-
tion assumes that a query is processed instantaneously, based on the most recently observed
information that is stored at a single server at query time. This reflects the best possible case
that is, in theory, achievable in a mobile ad-hoc network at all.

Let Rmod = {o1, . . . , os} and R = {o1, . . . , ot} denote the model-based optimum result and the
result returned by the k-nearest neighbor query implementation, respectively. The accuracy
of a single k-nearest neighbor query with respect to the model-based optimum result, denoted
Amod, is defined as Amod = |R ∩ Rmod| / |Rmod|.
The query offset is a second intuitive way to assess the quality of a k-nearest neighbor query
result and it expresses by how much the objects returned in the result are “off” from the
reference result. Assume, for instance, that in a 3-nearest neighbor query, a single object is
missed and the fourth-nearest instead of the third-nearest object is returned. The query offset
in this case is one. The important property is that for highly inaccurate query results, the query
offset can still have a small value and indicates how “far”, literally, the returned objects are
from the reference result. In other words, even if the query accuracy is very low, the offset may
indicate that the result is still useful for specific applications. The offset of a single k-nearest
neighbor query with respect to the model-based optimum result is defined as follows.

Let w.l.g. ∀i : d(ri, cr) < d(ri+1, cr) for a reference coordinate cr. Let further R′
mod =

{o1, . . . , o
′
s} denote the smallest set of objects for which R ⊆ R′

mod. The offset of a single
k-nearest neighbor query with respect to the model-based optimum result, denoted Omod, is
defined as Omod = |R′

mod| − |R| ≥ 0. Note that Omod = 0 ⇔ Amod = 1.

202 CHAPTER 5. SERVICE TIER

The real world-based optimum result reveals the impact of incomplete and inaccurate obser-
vations of the physical world on query performance. It is defined as the result that would be
returned by a “perfect” k-nearest neighbor query that is executed instantaneously based on the
configuration of physical objects in the real world. The query accuracy Aphy and query offset
Ophy with respect to this optimum are defined analogous to the model-based optimum.

Query Latency

According to the query algorithm described in Section 5.4, a query is first sent to a query
proxy, which aggregates the query result from a number of partial query results, before it
sends the result back to the proxy again. Because the latency from the original query client to
the proxy and back corresponds to a request, whose performance we have evaluated in detail
in Section 3.5, we exclude it from the computation of the query latency. Rather, we define
query latency as the mean time from the beginning of the heuristic phase to the termination
of the aggregation phase of a number of k-nearest neighbor queries. This value yields the pure
performance of the distributed algorithm that actually processes the query result.

Query Cost

As in the case of query latency, query cost only considers packets that are part of the distributed
query processing algorithm. Thus, query cost are defined as the mean number of packets sent
during the heuristic and aggregation phase of a number of k-nearest neighbor queries.

5.5.2 Query Accuracy and Query Offset

Figure 5.6 through 5.8 show the results for query accuracy and offset. Figure 5.6 shows both
metrics as a function of the number of objects. Note that according the the observation model
with the parameters given in Table 5.2, a specific number of objects corresponds to a certain
update frequency, which is displayed in the second row below the abscissa.

0

10

20

30

40

50

60

70

80

90

100

10
2.7

15
4.0

20
5.3

30
8.0

50
13

70
19

100
27

150
40

200
53

300
80

500
130

700
190

1k
270

10
2.7

20
5.3

50
13

100
27

200
53

500
130

1k
270

0

1

2

3

4

5

6

7

8

9

10

q
u
e
ry

a
c
c
u
ra

c
y

[%
]

q
u
e
ry

o
ff
s
e
t

number of objects / update frequency [1/s]

model-based, 2x2 cells

real world-based, 2x2 cells

model-based, 3x3 cells

real world-based, 3x3 cells

model-based, 4x4 cells

real world-based, 4x4 cells

Figure 5.6: Query accuracy and offset as a function of the number of objects / update frequency.

5.5. PERFORMANCE ANALYSIS 203

The first observation is that both query accuracy and offset with respect to the model-based
optimum show strong performance for all considered cell sizes. This holds in the range of up to
about 300 objects, which corresponds to approximately 80 updates per second. In this range,
objects are at a sufficient distance from each other such that position inaccuracies do not have
an impact on performance in terms of query accuracy and offset.

Above 300 objects, in the region that is indicated by the grey-shaded area, query accuracy with
respect to both optima drops significantly, and query offset increases. From Figure 5.6 alone
we cannot deduce directly whether this is due to congestion-related packet loss that occurs at
higher update frequencies or due to position inaccuracies. We can, however, distinguish this
fact by consulting Figure 5.9 and 5.10. In Figure 5.9, we can observe that for 500 and more
objects, latencies increase significantly, which clearly supports congestions due to high packet
rates. However, Figure 5.10 does not confirm that these congestions also lead to packet loss,
because in the considered higher range of update frequencies, the decrease in the query cost
follows the regular behavior that we discuss later on with respect to this figure.

Having excluded the above possibility, we can conclude that the drop in the query accuracy
and increase in query offset is due to the influence of position inaccuracies at high object
densities. With increasing object densities, the chance of overlapping location areas of different
objects also increases. Due to limited update frequencies, the configurations of overlapping
location areas also develop in the form of discrete events over time. For example, objects whose
location areas have not overlapped before a position update might do so after the update has
occurred. This fact together with the observed latency in Figure 5.9 explains the steep gradient
in the query accuracy with respect to both the model-based and real world-based result. With
increasing query latency, the processing of a query extends over a longer period of time during
which many position updates occur. However, in both optimum cases, a query is processed
instantaneously and is not exposed to interleaved position updates.

A further observation is that the query accuracy with respect to the real world-based optimum
is significantly smaller than with respect to the model-based optimum. This is due to the
incomplete observation of the real world. When considering the query offset, we observe that
the difference between both optima is only about 1.5. This effectively means that only between
1 and 2 objects are missed by average in each query result in comparison to the real world-based
optimum. This is an important result with respect to the fact that a complete observation of
the physical world is limited by the sensing technology’s coverage and cannot be changed. Even
in the case of an incomplete view of the physical world, the k-nearest neighbor query result
as perceived by the user still reflects an acceptable result for applications that do not rely on
perfect information, which holds for many kinds of location-based applications.

Examining the different settings for the cell size, we identify a slight advantage for larger cell
sizes. This observation is due to an undesired but unavoidable artefact in the simulation. Any
queries executed near the border of the simulation area incur smaller communication cost,
because they do not have neighboring cells in some directions. For fewer cells, this effect has a
larger impact and decreases query cost to a larger extent.

The final observation in Figure 5.6 is that the slope of query accuracy with respect to the
model-based query result increases slightly between about 30 and 300 objects. This occurs
because for a very low number of objects, a larger number of partial queries are required per
query. This increases the chance that at least one partial query per k-nearest neighbor query

204 CHAPTER 5. SERVICE TIER

fails, in turn leading to the missing of some objects from a specific data server.

Figure 5.7 shows the query accuracy and offset as a function of the query frequency. We observe
that query accuracy is high and query offset low in the range where there is no congestion.
Further, the difference between the model-based and real world-based result shows up clearly.
In both cases, the same arguments as in Figure 5.6 hold.

0

10

20

30

40

50

60

70

80

90

100

0.1

0.15

0.2

0.3

0.5

0.7

1

1.5

2

3

5

7

10 0.1 0.2 0.5 1 2 5 10

0

1

2

3

4

5

6

7

8

9

10

q
u
e
ry

a
c
c
u
ra

c
y

[%
]

q
u
e
ry

o
ff
s
e
t

query frequency [1/s]

model-based, 2x2 cells

real world-based, 2x2 cells

model-based, 3x3 cells

real world-based, 3x3 cells

model-based, 4x4 cells

real world-based, 4x4 cells

Figure 5.7: Query accuracy and offset as a function of the query frequency.

Similar to increasing the number of objects and in turn the number of requests in Figure 5.6,
an increase in the number of queries eventually leads to congestion. For the examined query
frequencies, this occurs only for the case of 4 × 4 cells. This frequency is in fact extremely
high and can be pictured by imagining that every single one of the 150 nodes in the scenario is
able to execute a 3-nearest neighbor query every 15 seconds.2 The region of congestion further
indicates that larger cells are to be preferred over smaller cells. This fact can be understood in
terms of query cost and will be discussed in more detail in conjunction with Figure 5.10.

Figure 5.8 depicts the results for query accuracy and offset as a function of the query parameter
k. The first observation is that with respect to the model-based optimum, parameter k has no
significant influence on query accuracy. Even for k = 15, accuracy is well above 95%. Note
the slight and linear increase in the corresponding query offset. This is due to the fact that
with larger k, the probability to miss objects increases linearly, because objects are roughly
homogeneously distributed in the network due to the random waypoint mobility model. Note
that even at k = 15, the query offset is only about 0.5, indicating that in at least 50% of the
queries, all 15 objects match the model-based optimum result.

The second observation is that the query accuracy with respect to the real world-based optimum
decreases noticeably for smaller values of k and shows an asymptotic behavior with larger values

2Note that the continuous observation of a certain number of nearest objects is in fact a different class of
queries, namely, continuous queries, which we do not consider in this dissertation. For such queries, rather
than a continuous sequence of k-nearest neighbor queries being executed at a high frequency, very specialized
algorithms are required to deliver sufficient performance.

5.5. PERFORMANCE ANALYSIS 205

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

0

1

2

3

4

5

6

7

8

9

10

q
u
e
ry

a
c
c
u
ra

c
y

[%
]

q
u
e
ry

o
ff
s
e
t

query parameter k

model-based, 2x2 cells

real world-based, 2x2 cells

model-based, 3x3 cells

real world-based, 3x3 cells

model-based, 4x4 cells

real world-based, 4x4 cells

Figure 5.8: Query accuracy and offset as a function of the query parameter k.

of k. This is because for small values of k, the chance of only a single object being missed in
the query result increases. With increasing k, the number of the missed objects then increases
linearly, because the missed objects are roughly homogeneously distributed in the network. The
linear increase is confirmed by the query offset relative to the real world-based model.

5.5.3 Query Latency and Query Cost

Similar to migration efficiency and migration cost, a strong correlation can be observed between
query latency and query cost. We therefore present both simulations together in Figure 5.9
through 5.14. Figure 5.9 and 5.10 show query latency and cost as a function of the number of
data items. The update frequency, which is a function of the number of objects, is displayed in
the second line below the abscissa of both figures. Each bar has two parts, showing the latency
and cost portions that are due to the heuristic and aggregation phase.

We observe that with an increasing number of objects, the total query latency decreases and
reaches its optimum of between 80 ms and 190 ms, depending on the considered cell size.
These values are remarkably small given a distributed query algorithm that is based on two
sequentially executed phases. The decrease of query latency is due to an increase in the object
density, where most objects relevant for the query evaluation can be retrieved already in the
single cell that contains the query position. In turn, fewer partial queries need to be sent, which
can be seen in the correlating decrease of query cost in Figure 5.10.

This performance behavior becomes especially clear when considering the latency incurred by
the heuristic phase only. In this phase, the latency decreases significantly, because for small
object densities, partial queries of the heuristic phase may have to be disseminated in sequential
order to more distant cells, based on the algorithm in Listing 5.1. In contrast, the latency of the
aggregation phase drops, however, slower than the latency of the heuristic phase. The decrease
is due to the fact that the heuristic phase is able to determine a set of candidate objects that

206 CHAPTER 5. SERVICE TIER

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
2.7

15
4.0

20
5.3

30
8.0

50
13

70
19

100
27

150
40

200
53

300
80

500
130

700
190

1k
270

q
u
e
ry

la
te

n
c
y

[s
]

number of objects / update frequency [1/s]

150 x 150
200 x 200
300 x 300

aggregation phase
heuristic phase

Figure 5.9: Query latency as a function of the number of objects / update frequency.

0

20

40

60

80

100

120

140

10
2.7

15
4.0

20
5.3

30
8.0

50
13

70
19

100
27

150
40

200
53

300
80

500
130

700
190

1k
270

q
u
e
ry

c
o
s
t:

n
u
m

b
e
r

o
f
p
a
c
k
e
ts

[1
/q

u
e
ry

]

number of objects / update frequency [1/s]

150 x 150
200 x 200
300 x 300

aggregation phase
heuristic phase

Figure 5.10: Query cost as a function of the number of objects / update frequency.

are closer to the actual result with increasing number of objects. Thus, fewer partial queries
have to be sent during the aggregation phase to collect the remaining relevant objects. The
magnitude of the drop is smaller because the partial queries of the aggregation phase are all
sent simultaneously to the servers associated with the remaining cells.

In contrast to query latency, Figure 5.10 shows that the magnitude of the decrease in query
cost with increasing number of objects is at a similar magnitude for both the heuristic and
aggregation phase. This is because whether partial queries are executed sequentially or in
parallel does not have any effect on the query cost.

Coming back to Figure 5.9, we observe a slight decrease in query latency starting from about

5.5. PERFORMANCE ANALYSIS 207

200 objects. The magnitude of query latency becomes very significant at 500 and more objects,
which is indicated by the congestion region. As we have discussed previously in conjunction with
Figure 5.6, the latency does not imply congestion-related packet loss. This can be understood
in more detail by considering the mechanisms that cause packet latency in the first place. While
802.11’s CSMA/CA protocol in conjunction with the RTS/CTS scheme avoids many collisions
of data frames on the wireless medium, a growing number of packets yet to be transmitted
become queued up in a node’s packet queue. Thus, query latencies that increase with the
number of objects are due to increasing queueing delays, which are in turn the result of larger
update frequencies that incur many packets sent over the shared medium. The observation that
no congestion-related packet loss occurs is confirmed by Figure 5.10, which shows that query
cost decrease up to the maximum number of 1000 objects.

Comparing different cell sizes, we observe that larger cells are to be preferred over smaller
ones in terms of both query latency and cost. The arguments for the advantages in both the
aggregation and heuristic phase are identical to the case where node density increases, because
increasing either cell size or node density has the same effect on the query algorithm.

Figure 5.11 and 5.12 show query latency and cost, respectively, as a function of the query
frequency. We observe that both query latency and cost are virtually constant for all settings
of the cell size up to three queries per second. For the largest cell size, query latency remains
below 150 ms, a good value taking into account the quite high query frequency.

0

0.1

0.2

0.3

0.4

0.5

0.1 0.15 0.2 0.3 0.5 0.7 1 1.5 2 3 5 7 10

q
u
e
ry

la
te

n
c
y

[s
]

query frequency [1/s]

150 x 150
200 x 200
300 x 300

aggregation phase
heuristic phase

Figure 5.11: Query latency as a function of the query frequency.

In the upper range of query frequencies, congestions occur for cell sizes of 200 · 200 m2 and
150 · 150 m2, in which cases a significant increase in the query latency can be observed. How-
ever, only the latency occurring for the smallest cell size impacts query accuracy, as shown in
Figure 5.7. As discussed in conjunction with Figure 5.10, the impact on query accuracy stems
from the increased number of interleaved position updates that occur during a longer query
processing time. Query cost are, nevertheless, not adversely impacted in the congestion region
of Figure 5.12. This is because latencies occur as a result of queuing delays and do not lead to
packet loss, as elaborated in detail in the discussion of Figure 5.10.

208 CHAPTER 5. SERVICE TIER

0

5

10

15

20

25

30

35

40

45

50

0.1 0.15 0.2 0.3 0.5 0.7 1 1.5 2 3 5 7 10

q
u
e
ry

c
o
s
t:

n
u
m

b
e
r

o
f
p
a
c
k
e
ts

[1
/q

u
e
ry

]

query frequency [1/s]

300 x 300
200 x 200
150 x 150

aggregation phase
heuristic phase

Figure 5.12: Query cost as a function of the query frequency.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

q
u
e
ry

la
te

n
c
y

[s
]

query parameter k

150 x 150
200 x 200
300 x 300

aggregation phase
heuristic phase

Figure 5.13: Query latency as a function of the query parameter k.

Figure 5.13 and 5.14 show the query latency and cost, respectively, as a function of the query
parameter k. We observe that with larger values of k, query latency and cost increase noticeably.
This is because a larger number of objects to be included in the result implies more distant
objects that need to be considered. Thus, a larger number of partial queries have to be processed
to retrieve such objects from a larger number of adjacent cells.

We further observe that the query latency and cost of the heuristic phase increase noticeably
slower than in the case of the aggregation phase. This behavior is due to the fact that the
heuristic phase’s first partial query is mostly sufficient to retrieve the required k initial objects.
With growing k, the need for additional queries increases only slowly. However, as k increases,

5.5. PERFORMANCE ANALYSIS 209

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

q
u
e
ry

c
o
s
t:

n
u
m

b
e
r

o
f
p
a
c
k
e
ts

[1
/q

u
e
ry

]

query parameter k

aggregation phase
heuristic phase

150 x 150
200 x 200
300 x 300

Figure 5.14: Query cost as a function of the query parameter k.

the aggregation phase must query a larger number of more distant cells. In order to reach servers
in these cells, a longer routing path must be traversed, which incurs increased latency and cost
that contribute to the overall latency and cost of the aggregation phase. Additionally, the
chance of failures of partial queries that are routed via longer paths increases gradually, which
leads to a slight increase in the probability of aggregation timeouts. This effect additionally
contributes to the increase in the query latency of the aggregation phase.

Finally, Figure 5.13 and 5.14 show that large cell sizes incur significantly lower query latency
and cost, which confirms that larger cells are generally to be preferred over smaller ones.

5.5.4 Evaluation Summary: Service Tier

From the evaluation of the processing of k-nearest neighbor queries we are able to summarize
the following key observations. Firstly, the results show that the algorithms for probabilistic
k-nearest neighbor queries perform generally well over various system parameters and a wide
range of parameter values. Specifically, query accuracy, the key metric that is immediately
visible to the user, shows good results with respect to what the algorithm implementation
in a mobile ad-hoc network is able to achieve within the limitations of inaccurate position
information and an incomplete view of the physical world.

Second, the results show that larger cells are generally to be preferred over smaller cells. This
behavior is inverse to the observations of the core data storage and data migration algorithms
in Section 3.5 and 4.6, respectively, and necessitates further studies that examine the most
suitable cell size in specific scenarios, which is beyond this dissertation.

Third, we can confirm that the significantly smaller query accuracy achieved with respect to
the real world-based result is due to the incomplete view of the physical world available in the
stored model of the databases distributed in the network. The key fact is that this limitation is
of a general kind and cannot be directly improved by algorithm extensions. Instead, additional

210 CHAPTER 5. SERVICE TIER

technical modifications become necessary, such as the increase of sensor coverage to capture a
larger fraction of objects. Because the optimum cases are idealizations based on a global view
and cannot be determined in real systems, a fundamental additional research challenge is how
completeness of the data that is available in the distributed storage of the mobile ad-hoc network
can be measured by potential indirect means. This is essential for providing applications with
an idea of what is known about the physical world at all. This topic is clearly a research
challenge of its own right and beyond the scope of this dissertation.

Fourth, we have observed that for a large number of objects, accuracy is strongly impacted
with respect to both the model-based and real world-based optimum results. We were able to
attribute this to the impact of inaccuracy that eventually hinders the resolution of the relative
location of objects in the physical world. The decrease in accuracy is amplified by the influence
of query latency, which adds a significant temporal window that allows for more inaccuracies to
aggregate during the processing of a single query. These results have clearly shown that latency
is to be treated as a key system parameter, due to its indirect impact on query accuracy. While
many algorithms for wireless multihop networks are mainly designed towards achieving efficient
communication, latency becomes similarly important when it comes to increasing the accuracy
of spatial queries. This shift in priorities suggests to consider a more detailed analysis of query
cost versus query latency, e.g., by introducing concurrent sending of partial queries also during
the heuristic phase of the k-nearest neighbor query algorithm.

While achieving perfect query results in terms of query accuracy was shown to be unfeasible
due to an incomplete view of the physical world and significant position inaccuracies, it still
remains possible to achieve query results with a practical offset. This is an important result
since applications that are able to work with slightly “off” k-nearest neighbor query results can
still use these results to a sufficient extent for many useful scenarios.

Chapter 6

Conclusion

6.1 Summary and Conclusions

With the advancements in computer, communication, and sensor technology, it is becoming
feasible to collect and process large amounts of dynamic information from the physical world
and to distribute it to context-based applications. In order to provide such information in an
efficient and scalable way and to support its sharing among many types of applications, storage
facilities that take over the management of such data are indispensable.

This dissertation pursued the goal of managing dynamic context information in infrastructure-
less networks. To this end, a framework was proposed that implements a set of algorithms for
the efficient, robust, and scalable management and querying of dynamic data in mobile ad-hoc
networks. In particular, the dissertation provides the following innovative contributions:

(1) We have discussed and organized the specific characteristics of mobile ad-hoc networks
with respect to their impact on the management of dynamic data in these networks. As
a result of weak network connectivity and device mobility, network partitioning occurs,
which we have analyzed in detail in quantitative terms.

(2) Based on (1), we have defined a number of key requirements that act as constraints
for the management of dynamic data in infrastructureless networks. A suitable data
storage framework was proposed, comprising tiers for routing, storage, and services, each
addressing a subset of the identified requirements. A thorough study of the relevant
literature was presented in connection with the framework.

(3) We have designed fundamental mechanisms for data storage in mobile ad-hoc networks
that form the main contribution of this dissertation. A set of algorithms for data stor-
age and data migration was presented in conjunction with routing tier mechanisms that
collaboratively achieve efficient and robust storage of dynamic data subsets at dedicated
geometric locations in large-scale mobile ad-hoc networks.

(4) We have devised an analytical model of previously unmatched detail for the assessment
of the communication cost incurred by the storage tier algorithms. We have provided a
taxonomy and analytical study of a wide range of related storage approaches in compari-
son to our own approach and identified the suitable and advantageous operational ranges
of the storage tier in terms of the most relevant system parameters.

211

212 CHAPTER 6. CONCLUSION

(5) On the level of the storage framework’s service tier, we have defined a probabilistic model
for inaccurate position information for the realistic case where only inconclusive state-
ments regarding a physical object’s whereabouts are possible. On this basis, new seman-
tics for spatial queries were defined, including probabilistic range and k-nearest neighbor
queries, which give useful results based on the probabilistic location notion.

(6) Using the probabilistic models for inaccurate position information, we have proposed a
corresponding position updating algorithm that builds on a geometric overlay on top of
the storage tier. Consistent with location information updating, scalable algorithms for
creating accurate range and k-nearest neighbor query results were developed to operate
in accordance with the probabilistic query definitions under (5).

(7) Complementing the analytical results in (4), we have carried out an extensive comparative
framework evaluation that assesses key performance metrics in dependence of the most
relevant system parameters based on a uniform simulation methodology. The presented
simulation results show the excellent performance of the developed algorithms and confirm
that the storage framework meets its design requirements.

6.1.1 Network Characteristics and Network Partitioning

As an important prerequisite to the understanding of which factors need special consideration
in the management of dynamic data in mobile ad-hoc networks, we have discussed in detail the
particular characteristics of this type of network. In strong contrast to fixed networks, we have
identified node mobility and network density as being the most important parameters. This is
true because both parameters strongly impact the connectivity of infrastructureless networks,
which is vital to the ability of nodes to communicate with each other when they are not within
mutual transmission range. An important observation was that even highly dense networks
are likely to form multiple network partitions at a time, allowing only the nodes in the same
partition to communicate with one another. Due to the importance of this observation, we
have conducted a detailed quantitative study of the partitioning behavior in mobile ad-hoc
networks. For that purpose, we have introduced a compact set of metrics that meaningfully
describe various properties of network partitioning. For instance, the rate at which partitions
split and join was a suitable observable to judge whether the network is sufficiently stable to
rely on static management structures, e.g., distributed aggregation trees.

While node mobility and partitioning in wireless multihop networks are generally undesirable
properties, we were able to conclude that their acting together can also be beneficial. From
the analysis of the metrics describing dynamic partition characteristics, such as the mentioned
partition change rate, we found that the joining of once separated parts of the network occurs
with a certain regularity under the assumption that the nodes’ mobility is rather unpredictable.
Because this is the general case in mobile ad-hoc networks formed by autonomous mobile users,
we consistently took these results into consideration in the storage tier, and in particular, in the
data migration approach. We advocate that network partitioning is worth to be more explicitly
considered also in other domains, and that the proposed partition metrics will provide a valuable
basis to be exploited in the improvement of algorithm performance, e.g., in the domain of delay-
tolerant data dissemination and communication.

6.1. SUMMARY AND CONCLUSIONS 213

6.1.2 Location-centric Storage Paradigm and Framework

Equipped with an understanding of the relative importance of network characteristics and net-
work partitioning, a framework for data management in mobile ad-hoc networks was developed.
Three important additional constraints had to be considered with respect to the characteristics
of the data to manage. Firstly, we focused on highly dynamic data, whose efficient management
is challenging due to the need for frequent updates. Second, because of the natural imperfection
of sensor technology, the sensing of data inevitably leads to degradation in the observed data,
which requires to consider data quality aspects. Third, the specific context type location was
considered due to its importance for location- and context-based applications. The third aspect
lead us to the definition of the paradigm of location-centric storage, according to which data
items are stored in close vicinity to a geometric location in the network.

Based on the discussion of network and data characteristics and the concept of location-centric
storage, a framework for dynamic data storage in mobile ad-hoc networks was introduced. The
framework is composed of three tiers, namely, routing, storage, and service, each addressing
specific problems that relate to the network and data characteristics. On one side, the routing
and storage tier contain the necessary mechanisms to make data storage efficient, robust, and
scalable. On the other side, aspects of data quality were considered in the service tier, without
impacting the more basic mechanisms in the storage tier.

In conclusion, we agree with the related literature on the general layout of a data management
framework for wireless multihop networks. However, a stronger emphasis on the lower tiers
is still needed, specifically, on the storage tier. This is largely due to the mobile ad-hoc net-
works’ peculiarities that have an immediate impact on the lower tiers’ performance. From the
discussion of literature, we see significant open research challenges, some of which we raise in
Section 6.2. We further state that while location-centric storage was used in conjunction with
only geometric coordinates, it is flexible enough for being used also with more general location
models, such as symbolic and hybrid ones, which we briefly discuss in Section 6.2.2.

6.1.3 Core Data Storage and Data Migration

The main contribution of this dissertation is the design of the framework’s storage tier mech-
anisms. To tackle the complexity of this task, the storage tier was structured into two closely
collaborating parts around the paradigm of location-centric storage. Based on geometric ref-
erence coordinates, core data storage algorithms implement the necessary mechanisms to store
data on suitable nodes in the vicinity of defined geometric locations. In contrast to related
approaches in the literature, the proposed approach is independent of any critical geometric or
topological assumptions. Additional mechanisms in the routing tier make sure that requests
are reliably routed between clients and storage nodes. To address the mobility of data when
storage nodes are on the move, a data migration approach provides mechanisms to relocate
data between nodes. This functionality is essential to retain data close to its assigned locations
in order to be in line with the location-centric storage paradigm. The fact that network par-
titions may occur but can be expected to eventually join again was exploited in both the core
data storage and data migration approach. In both cases, network partitioning was tolerated
without corrupting overall efficiency. Upon the joining of partitions, suitable detection and
consolidation mechanisms were implemented to recover from undesired redundancies.

214 CHAPTER 6. CONCLUSION

The proposed storage and routing tier have shown to outperform related approaches in terms
of efficiency, robustness, and scalability in the targeted range of operation. Comparative eval-
uations have revealed that the strength stems in particular from the independence of specific
geometric assumptions. In contrast, related approaches heavily rely on geometric and topolog-
ical structures and are inefficient for dynamic data storage in our context. The results clearly
show the feasibility of implementing storage mechanisms that are able to deal with a large
number of dynamic data items that lead to many updates in the network. It was also shown
that the storage tier is able to maintain performance when the critical system parameters are
varied over a wide range of settings. This fact makes the algorithms suitable for mobile ad-hoc
networks that are unpredictable due to the autonomy of network nodes.

It is nevertheless obvious that mobile ad-hoc networks pose a number of unsurmountable limits
with respect to data management performance. Firstly, the high geographical dispersion of
network nodes and the wireless communication channel’s capacity limitations eventually lead to
efficiency problems that are due to increasing network loads. Second, some physical limitations
are still applicable to the network topology, and it is impossible to guarantee connectivity in a
pure ad-hoc network. While the proposed algorithms are able to tolerate network partitions of
finite duration and it is conceivable to use forms of adaptation to further improve efficiency, it
is naturally impossible to recover from permanent network partitioning. Thus, in a pure ad-hoc
network model, uncertainties will remain with respect to which degree of accuracy, timeliness,
and consistency of the managed data can be provided. It will be worthwhile to see how hybrid
system structures can be used to support the ad-hoc network in critical situations. This kind
of assisted ad-hoc will be briefly discussed in Section 6.2.4.

6.1.4 Probabilistic Location Updating and Query Processing

To show the suitability and practical value of the proposed storage tier algorithms for higher-
level services and applications, we have implemented algorithms in the service tier for location
updating and spatial query processing. To account for the imperfection of physical sensor
technology, we have defined a probabilistic model for location information that considers the
fact that the position of an object cannot be pinpointed with absolute certainty in a bounded
spatial region. Based on these semantics, we have defined compatible semantics for probabilistic
spatial queries, focusing on range and k-nearest neighbor queries as two of the most important
types of spatial queries in many location-based application scenarios.

To support the storage of location information with the proposed inaccuracy semantics, a
geometric overlay was introduced to map location information of the service tier to the reference
coordinates of the storage tier. A key benefit of this overlay is that it can be set up independently
from the storage tier’s management structures, thereby allowing its layout to be adapted, e.g.,
to topographical constraints that are more appropriate in the environment where the network
is deployed. We have shown that probabilistic range and k-nearest neighbor queries can be
processed efficiently even under a probabilistic model for location information. Further, it was
shown that accurate results can be delivered within the limits of the accuracy model.

Two important conclusions can be drawn from the analysis of probabilistic location updating
and query processing. Firstly, due to the location inaccuracies, it is impossible to achieve query
results that perfectly match the physical reality. We found that with increasing object density,

6.2. PROMISING RESEARCH DIRECTIONS 215

certain types of queries, such as the considered k-nearest neighbor query, introduce unavoidable
uncertainties in the query result. The reason was due to the relative location between objects
that cannot be resolved with perfect confidence. Second, it was shown that the managed data
is prone to incompleteness due to only partial sensor coverage. A subset of objects in the
physical world may simply not be available at some times and thus, incompleteness becomes an
important metric to consider. While many applications are able to deal with query results that
diverge from the physical reality due to incomplete stored data, more critical applications may
as well be unable to do so. However, the incompleteness aspect of managed data could only
be revealed in the evaluations, and it is an important part of the more general consideration of
data quality, which we briefly discuss in Section 6.2.2.

6.1.5 Analytical and Simulative Performance Evaluation

The algorithms proposed in this dissertation were extensively evaluated by means of analyt-
ical and simulative methodologies. A significant contribution to the research of analytical
performance evaluation is the proposition of an analytical model that allows to analyze the
communication cost of data-centric storage-related approaches. In contrast to existing ones,
the proposed model significantly exceeds the detail at which the local routing overhead in the
vicinity of storage nodes is modelled. The results obtained from the analytical evaluation of
many approaches relating to our storage tier showed that the local communication overhead is
a significant contribution to the overall overhead. While exploiting the ability of the analytical
model to perform evaluations of system parameters on many orders of magnitude, we were able
to identify the most appropriate domains of operation of our algorithms in terms of data and
query dynamics. We found that the domains where the storage tier consistently outperforms
the analyzed related approaches match well the design goals of this dissertation.

The analytical model was complemented with an extensive comparative simulation study of all
proposed algorithms to understand the algorithms’ performance also in terms of metrics other
than the communication cost. The considered metrics describe the properties that are directly
related to the efficiency, robustness, scalability, and accuracy requirements. In conjunction
with the analytical results, the overall performance evaluation presents a sound picture of the
performance of all framework tiers and confirms what has been claimed in the requirements.
However, the simulations have also revealed the limits of any data management approach in
mobile ad-hoc networks that are due to small node densities on one side and high network
mobility on the other side. In such extreme situations, no sufficient connectivity can be achieved
on the routing tier between distant nodes. This fact emphasizes to consider data management
approaches that are supported by hybrid system structures (Section 6.2.4).

6.2 Promising Research Directions

Promising research directions that follow from the proposed location-centric storage framework
are extensive. While there is potential for elaborations and optimizations of various details of
the devised concepts, strategies, and algorithms, we outline in the following some of the broader
research topics worth considering, without any claim of completeness.

216 CHAPTER 6. CONCLUSION

6.2.1 Data Replication

Data replication is probably the most straightforward extension to the proposed framework’s
storage tier mechanisms. For its consideration, it helps looking at the two major purposes of
replication in mobile ad-hoc networks. Firstly, replication increases data availability. This prop-
erty is especially relevant in mobile ad-hoc networks due to the forming of network partitions
(Section 6.1.1). For instance, nodes in different partitions are unable to share data that each of
the nodes may need for query processing. Such problems can be improved by replicating data
in strategic places to make it available in other network partitions. Our quantitative analysis
of network partitioning already gives some hints on how suitable replica placement strategies
could look like. For example, the number of partitions that can be expected in average is valu-
able information for deciding on a suitable number of replicas stored in the network. It will be
beneficial to understand more generally how replica placement strategies can take advantage
of information that is derived from observing a network’s partitioning behavior.

Second, replication increases robustness. While the system model in this dissertation considers
that nodes do not fail, taking into account and tolerating certain degrees of node failures
requires replication so that data stored at failing storage nodes does not become permanently
lost. Because node failures are just another unpredictable property of mobile ad-hoc networks,
probabilistic approaches will most likely be the strategies of choice. How such approaches
will be parameterized to predict just the right number of replicas for a certain degree of failure
resilience is a challenging problem that is still open. Furthermore, it is conceivable to reconstruct
dynamic data items even in the case of complete data losses. For which degrees of data dynamics
reconstruction methods are suitable is just one other question to be answered.

When considering replication, questions follow on how to integrate data replication with the
proposed migration mechanisms. As a starting point, some elementary mechanisms are already
provided by data migration that can be used for replication purposes right away. For instance,
the mechanisms allow to duplicate the copy of a data subset at another node and to merge two
copies in the case of a partition join. This is a good basis for looking into a general storage
approach that consistently combines migration and replication mechanisms.

From the introduction of replication, significant questions arise that deal with the consistency
of the managed data and query results. In this dissertation, we have assumed only eventual
consistency, which is tolerable for applications that do not rely on a strict chronological ordering
of the data objects involved in the processing of the considered spatial query types. However,
for some more critical applications, such ordering is likely to be more important. For instance,
it might be required that the second of two consecutive nearest neighbor queries is processed
based on object copies that are at least as recent as the object copies used in the first query.
Related suitable consistency concepts that are also feasible to be implemented in mobile ad-hoc
networks are certainly a research topic worth to be considered in more detail.

6.2.2 Extensions of Data and Model Characteristics

Extensions pertaining to the characteristics of the managed data and data model correspond
to the design space discussed in Section 1.4 of this dissertation and comprise, among others,
the dimensions of data dynamics, location model, and data quality.

6.2. PROMISING RESEARCH DIRECTIONS 217

With respect to the first extension, the following two details are possible candidates for further
study. Firstly, it is yet to be understood more completely which storage approach is suitable
along the transition from dynamic to virtually static data. Especially the latter class of data is
very common, because it includes many types of geographical data, like city maps and building
plans, which are relevant for location-based applications. The results of the analytical study
(Section 6.1.5) are a good starting point and indicate some transitions where different storage
approaches become more appropriate in relation to others. Second, this dissertation did not
consider the relation between data dynamics and query dynamics. In the present state, all
considered data items are updated to storage nodes, independent of how frequently they might
be requested by spatial queries. There is clearly a large potential for adaptation, where the
relative magnitudes of update and query rate may be used to adapt the strategy with which
certain data items are managed. For instance, if a data item is queried only very rarely, it
is possible to use a storage approach where that data item is stored locally at the node that
created the item in the first place. The analytical evaluation also gives some valuable hints in
this direction by its considering both a variation of the update and query rate.

Regarding location models, the proposed concepts in this dissertation build solely on geometric
location models that are founded on Cartesian coordinates. However, depending on the envi-
ronment where a mobile ad-hoc network forms, symbolic location models that describe locations
by an expressive name (e.g. “Room 2.01”, “2nd Floor”) are more intuitive for users than their
geometric counterpart. Because users are likely to move between domains that use either one
of these model types, the combination of both into hybrid location models is also relevant. The
fundamental question is how efficient, robust, and scalable data management structures can be
implemented in mobile ad-hoc networks also in these hybrid models. In contrast to geometric
location models, it is impossible to store data nearby a geometric reference coordinate, because
an Euclidean metric is not immediately available. This is complicated by the fact that sym-
bolic coordinates may cover geographic areas of different shape and extent, such as the rooms
of a building in contrast to the radio cells of a mobile communication network. Extending the
considerations to hybrid location models, the development of suitable management structures
that are compatible with both geometric and symbolic model portions is an open problem that
impacts all tiers of this dissertation’s data storage framework.

Regarding data quality, it was shown in this dissertation that both the inaccuracy and in-
completeness of the data captured by a node’s embedded sensor lead to a deterioration in the
quality of spatial query results. A systematic approach is needed to consider data quality-
related questions in more general terms, specifically for the case of data management in mobile
ad-hoc networks. A key question is how data and query results can be provided not only with
best effort, but with defined quality characteristics. For that, suitable metrics that are able
to quantify the specific quality dimension of data and query results are required in the first
place. A first step in this direction may be to analyze how more fundamental characteristics
of mobile ad-hoc networks, including coverage, local object density, and mobility, can be used
to derive more abstract quality metrics. With the availability of suitable metrics, it is then
possible to adapt mechanisms of the storage and service tier to provide data and query results
with specific quality requirements that are given, e.g., by the user’s application. Because the
updating of data is only necessary to the extent of the required data and query quality, but not
more, it can be expected that there is also significant potential to apply adaptation techniques
to further tune the performance of the data storage algorithms.

218 CHAPTER 6. CONCLUSION

6.2.3 Extension of Service Functionality

In this dissertation, we have considered two types of spatial queries: range and k-nearest neigh-
bor queries. It is straightforward to consider several other types of spatial queries, for instance,
group and reverse nearest neighbor queries. The importance of such query types is supported
by the large body of related literature, which considers implementations for processing these
queries mainly based on centralized index structures (Section 2.5.3). However, it is unexplored
how such queries can be processed in mobile ad-hoc networks in conjunction with probabilis-
tic location semantics. Further generalizations of supported query types eventually lead to
approaches where spatial or even more general queries are expressed by a dedicated query lan-
guage. The design of a suitable query processing framework for mobile ad-hoc networks that
supports such a general approach is a largely open research challenge.

While queries are synchronous operations that are immediately processed by the query system,
the consideration of asynchronous services is also of interest. Spatial event management is one
important instance of such services and describes, by means of event predicates, when objects
in the real world assume certain spatial constellations. In contrast to query processing, event
observation works entirely different and introduces many additional questions to the storage
and service tier. For instance, the suitable strategy of how to observe the predicate of an event
that triggers when two objects meet at a given distance depends on the current distance the two
objects maintain to each other. For small distances, a single storage node may be able to observe
the predicate alone because it stores information about both objects. With increasing distance,
two objects are likely to be known to different servers and their information must be brought
together in order to detect possible occurrences of the event. With further increasing object
distance, also this approach becomes impractical due to updates that need to be propagated
over many network hops. In this latter case, it might be more appropriate to make use of dead
reckoning-based approaches. This example illustrates the bandwidth of possible approaches
to observe just a single type of event under different object constellations. In mobile ad-hoc
networks, the observation of events is a challenging and still open task.

In Section 6.2.1, data replication was proposed as an extension of the storage tier in order to
increase the robustness of the data store. Due to the fact that event observation is stateful, it
makes sense to consider the replication of the event observation functionality itself to make it
more robust against node failures in wireless multihop networks. In the situation of an event
occurring in the real world, it is then possible to observe the occurrence of the event even if a
node that contains essential observation state has failed. While applying replication to event
observation sounds promising, it is absolutely unclear how to guarantee that event observation
is always consistent. For example, it is possible that based on inconsistent data, observations
taking place in parallel at different servers lead to predicate evaluations that contradict each
other. A framework of algorithms for the scalable and consistent observation of spatial events
in mobile ad-hoc networks is a complex research field worth further consideration.

6.2.4 Hybrid System Structures

In this dissertation we have focused on the design and implementation of a framework for
location-centric storage in mobile ad-hoc networks. In Section 6.1.3 and 6.1.5 we have con-

6.2. PROMISING RESEARCH DIRECTIONS 219

cluded that the data management performance in pure mobile ad-hoc networks is limited by
the physical constraints that the network may impose, such as limited node density and network
connectivity. Therefore, the ultimate extension to the purely infrastructureless system model
occurs along the system structure dimension in the design cube in Figure 1.5, Chapter 1. In a
hybrid networked system, both ad-hoc and fixed network structures are combined to comple-
ment each other for the purpose of collaborative data management.

Figure 6.1 illustrates the layout of a conceivable hybrid system structure that is derived from
a combination of our location-centric storage framework in Figure 2.22, Section 2.4, and the
Nexus system architecture in Figure 1.4, Section 1.3.2. Along the figure’s central vertical axis
(dashed line), we have added three components: “Hybrid: Service I/O”, “Hybrid: Data I/O”,
and “Assisted Ad-hoc”. These components mediate on different functional levels between
the infrastructure-based Nexus management facilities on one side, and the infrastructureless
location-centric storage framework’s components on the other side.

Hybrid:
Service I/O

Routing and Dissemination

Data Migration

Event
Management

Query
Processing

Update Processing

Hybrid:
Data I/O

data
control

H
y
b

ri
d

F
e
d

e
ra

ti
o

n
T

ie
r

S
e
rv

ic
e

T
ie

r S
to

ra
g

e
T

ie
r

R
o

u
ti

n
g

T
ie

r
S

e
rv

ic
e

T
ie

r

Event
Management

Query
Processing

Infrastructure-based (Fixed) Network

GeoDB
Context

Server C1

Context
Server C2

Application 1 ...Application 2

C
li
e
n

t
T

ie
r

Mobile Ad-hoc (Infrastructureless) Network

Service-level Federation

Core Data Storage
Assisted
Ad-hoc
(Bypass

via Fixed
Network)

Storage-level
Federation

Context
Server C

Context
Server B

Application n

C
li
e
n

t
T

ie
r

Figure 6.1: Hybrid system structure.

As a first step towards a hybrid system structure, we propose the introduction of an assisted
ad-hoc mode. While in this mode data is retained for storage on the nodes in the mobile ad-
hoc network, infrastructure-based communication links may be used to bypass, for instance,
congested parts of the network or network partitions. If such bypass links are wisely used, we can
expect to improve the performance of data storage in the mobile ad-hoc network considerably
in situations of low node density and many network partitions. Clearly, this means that some

220 CHAPTER 6. CONCLUSION

mobile devices must support networking technology that allows to setup a wireless uplink to the
infrastructure. Many handheld devices today indeed support different wireless communication
technologies, as we have illustrated in our brief survey on technological trends in Section 1.2.
This fact makes the assisted ad-hoc mode feasible from a technological point of view. However,
many issues remain open on the algorithmic side. For instance, it is unclear how to locate
suitable downlink nodes that are close to the geographic region to which some data or query
is to be delivered. A first idea may be to randomly select a set of beaconing nodes in the
ad-hoc network, which announce to the infrastructure their presence in a geometric region and
optionally, additional information about their neighboring nodes.

In the hybrid management case, both infrastructureless and infrastructure-based network com-
ponents are interconnected to collaboratively manage data and provide service functionality.
Two levels can be considered at which integration may take place (Figure 6.1). “Hybrid: Data
I/O” refers to all functions required for interconnecting both system structures on the level of
data storage. For instance, a mobile ad-hoc network could be regarded as just another type of
context server that is accessed via its update processing interface. A node in the mobile ad-hoc
network may take the role of a federation proxy that mediates updates between the infrastruc-
ture and ad-hoc network in both directions. “Hybrid: Service I/O” refers to functionality that
allows for collaboration on the level of services. For example, a spatial query may be split into
partial queries that are independently processed in the infrastructure and ad-hoc network until
their results are joined in the infrastructure again. The partial query processing mechanisms
proposed in this dissertation may be a valuable starting point in this direction. Splitting tech-
niques are also conceivable for event management. For example, the observation of the parts
of a more complex event predicate (Section 6.2.3) may be delegated to either infrastructure-
based or infrastructureless observation nodes. Finally, to provide a uniform view on the hybrid
storage and service facility to location- and context-based applications, additional components
for both storage- and service-level federation are likely to be required.

In conclusion, the open research challenges discussed in this section could only scratch the
surface of the complexity and may raise even more questions towards hybrid data management
systems. Until the fixed mobile convergence will have reached a point where the deployment
of full-fledged context-based services would be technically feasible, many efforts to attain rich
functionality, sound performance, and maximum user experience are yet required.

Appendix A

List of Abbreviations

Abbreviation Description

1G First Generation (in telecommunications)
2G Second Generation (in telecommunications)
3G Third Generation (in telecommunications)
4G Fourth Generation (in telecommunications)
ACAN Ad hoc Context Aware Network
ADV, adv (server) advertisement
AFR Adaptive Face Routing
ANVS accumulative node visibility set
AODV Ad hoc On-Demand Distance Vector (Routing)
AWML Augmented World Modelling Language
AWQL Augmented World Query Language
BPR Bidirectional Perimeter Routing
BFS Breadth First Search
CACK consolidation acknowledgement
CAP Consistency, Availability and Partition Tolerance
CASM context-aware service middleware
CASP Context-Aware Service Platform
CASS Context-Awareness Sub-Structure
CEP circular error probable
CHR Cell Hash Routing
C-IUQ Constrained Imprecise Location-dependent Range

Query over Uncertain Objects
C-LCS canonical location-centric storage
CLDP Cross-Link Detection Protocol
CNN(Q) constrained nearest neighbor (query)
CNVS continuous node visibility set
Context CF context component framework
C-PART cell-based partitioning
C-PNN Constrained Probabilistic Nearest Neighbor Query

221

222 APPENDIX A. LIST OF ABBREVIATIONS

Abbreviation Description

CPU Central Processing Unit
C-REP cell-based replication
CREQ consolidation request
C-SC cell-based single-copy
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
DACK data acknowledgement
DataMiP data migration protocol
DCS data-centric storage
DCS/GPSR data-centric storage via Greedy Perimeter Stateless

Routing
DHT distributed hash table
DIFS Distributed Index for Features in Sensor Networks
DIKNN Density-aware Itinerary KNN query processing
DIM Distributed Index for Multi-Dimensional Range Queries
ENNQ (Entity-based) Probabilistic Nearest Neighbor Query
ERQ (Entity-based) Probabilistic Range Query
FAR Face-aware Routing
FNNQ federated k-nearest neighbor query
FP funding period
GB gigabyte
Gbit/s gigabit per second
GCLP Geographic Content Location Protocol
GDSTR Greedy Distributed Spanning Tree Routing
GeoDB Geographic Database
GJU Galileo Joint Undertaking
GLS Geographic Location Service
GNN(Q) group nearest neighbor (query)
GOAFR Greedy Other Adaptive Face Routing (“gopher”)
G-PART global partitioning
GPS Global Positioning System
GPSR Greedy Perimeter Stateless Routing
G-REP global replication
G-SC global single-copy
GSM Global System for Mobile Communications
HLS Hierarchical Location Service
IBM International Business Machines Corporation
IEEE Institute of Electrical and Electronics Engineers
I/O input/output
IUQ Imprecise Location-dependent Range Query over

Uncertain Objects
kB kilobyte
kB/s kilobyte per second

223

Abbreviation Description

kbit/s kilobit per second
k-NNMP k nearest neighbors for moving query point
k-NN(Q) k-nearest neighbor (query)
LCS location-centric storage
LLS Locality-aware Location Service
MAC medium access control
MANET mobile ad-hoc network
MB megabyte
Mbit/s megabit per second
MDM mobile data management
MDP migration decision policy
MRP migration recommendation policy
NLLS nonlinear least-square
NN(Q) nearest neighbor (query)
NTE network topology exploration
OD-GPSR On-Demand Greedy Perimeter Stateless Routing
PC personal computer
PDA personal digital assistant
pdf probability density function
PGNN Probabilistic Group Nearest Neighbor Query
PLS Prediction Location Service
PNNQ probabilistic Nearest Neighbor Query
PNQ probabilistic k-nearest neighbor query
PRP Perimeter Refresh Protocol
PRQ probabilistic range query
PTRQ Probabilistic Threshold Range Query
QoS Quality of Service
RAM Random Access Memory
R-DCS Resilient Data-centric Storage
RED redundancy notification
RFID Radio Frequency Identification Tag
RLS Randomized Location Service
RNN(Q) reverse nearest neighbor (query)
RQ range query
RR Rendezvous Regions
RTS/CTS Request to Send/Clear to Send
SFB Sonderforschungsbereich (German)
SIG Special Interest Group
SOCAM Service-Oriented Context-Aware Middleware
SR-DCS Structured Replication-Data-centric Storage
STQP spatiotemporal query processing
STVN Segment-Tree Virtual Network

224 APPENDIX A. LIST OF ABBREVIATIONS

Abbreviation Description

TCP Transmission Control Protocol
TTL time-to-live
UMTS Universal Mobile Telecommunications System
VANET vehicular ad-hoc network
VDPS Virtual Home Region-based Distributed Position Service
VPCR Virtual Polar Coordinate Routing
VPCS Virtual Polar Coordinate Space
WGS84 World Geodetic System 1984
WiFi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WLAN wireless local area network
WMN wireless mesh network
WSN wireless sensor network

Appendix B

Network Partitioning: Addendum

In this appendix we provide additional results for the simulation study of network partitioning
in Section 2.2. In the following, we examine the impact of different values for the transmission
range rtx on each of the partition metrics for the random waypoint mobility model. In qualita-
tive terms, the results show similar behavior independent of the transmission range. However,
in quantitative terms, the results of most of the metrics vary significantly across several orders
of magnitude, even for the variation of rtx being only linear. This general observation has a
strong influence on the performance of many kinds of algorithms.

Figure B.1 and B.2 show the results for the average number |Π|avg(T) and average size Savg(T)
of partitions, respectively, as a function of the number of nodes in the network. For rtx = 250 m,
the largest considered transmission range in our experiments, |Π|avg(T) decreases sharply and is
below 2 for networks with more than 200 nodes inside a 4 km2 area. As a consequence, Savg(T)
increases almost linearly for more than 200 nodes. On the other side of the spectrum, i.e. for
rtx = 50 m, |Π|avg(T) is virtually equal to the number of nodes in the network for about up to
100 nodes and remains above 100 even for as many as 2400 nodes. This observation directly
relates to Savg(T), which grows slower for smaller transmission ranges. This large number of
partitions for an already large network with 600 nodes/km2 and five times the transmission
range of standard Bluetooth seems considerably high.

Figure B.3 and B.4 show the results for the average partition change rate Rpart(T) and the
average node partition change rate Rpart(nk, T), respectively, as a function of the number of
nodes. The results of Rpart(T) show a large discrepancy between transmission ranges. For
example, networks with 1000 nodes experience one partition change on average every 1000
seconds for a transmission range of 250 m. On the other hand, the same number of nodes
in a network with 50 m transmission range is affected by more than 10 changes per second.
This is a difference of 4 orders of magnitude for the rate while using a transmission range that
is only five times higher. The average partition change rates from the perspective of a given
node, Rpart(nk, T), are significantly smaller for both, low transmission ranges over the complete
spectrum of the number of nodes and the higher transmission ranges with low node count.
This matches the observation that in these cases many small partitions exist where only a
small number of nodes is affected by each change at a time. Whenever the number of partitions
is low, the average node partition change rate comes close to the network-wide rate.

225

226 APPENDIX B. NETWORK PARTITIONING: ADDENDUM

1

2

5

10

20

50

100

200

500

0 400 800 1200 1600 2000 2400

A
v
e

ra
g

e
N

u
m

b
e

r
o

f
P

a
rt

it
io

n
s

Number of Nodes

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200 m

rtx = 250 m

Figure B.1: Average number of partitions |Π|avg(T) as a function of the number of nodes n for
different transmission ranges rtx and the random waypoint mobility model.

1

10

100

1000

0 400 800 1200 1600 2000 2400

A
v
e

ra
g

e
S

iz
e

o
f

P
a

rt
it
io

n
s

[#
n

o
d

e
s
]

Number of Nodes

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200 m

rtx = 250 m

Figure B.2: Average size of partitions Savg(T) as a function of the number of nodes n for
different transmission ranges rtx and the random waypoint mobility model.

The results for the average partition size ratio as a function of the number of nodes shown
in Figure B.5 indicates that for very different transmission ranges, between 100 m and 250 m,
the partition size ratio converges towards 1 very quickly as the number of nodes increases in
the network. This means that typically, the sizes of two partitions being joined or split is very
uneven and does not depend on rtx. However, Figure B.1 shows that the average number of
partitions in our experiments is very different. For example, in that figure, it ranges from 1 to
20 partitions at 800 nodes for transmission ranges of 100 m to 250 m, while the partition size
ratio in Figure B.5 is larger than 0.9 in all of these cases.

227

0.0001

0.001

0.01

0.1

1

10

0 400 800 1200 1600 2000 2400

A
v
e

ra
g

e
P

a
rt

it
io

n
C

h
a

n
g

e
R

a
te

[1
/s

]

Number of Nodes

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200 m

rtx = 250 m

Figure B.3: Average partition change rate Rpart(T) as a function of the number of nodes n for
different transmission ranges rtx and the random waypoint mobility model. Missing points for
rtx = 200 and 250 m indicate that Rpart(T) = 0.

0.0001

0.001

0.01

0.1

1

10

0 400 800 1200 1600 2000 2400

A
v
e

ra
g

e
N

o
d

e
P

a
rt

it
io

n
C

h
a

n
g

e
R

a
te

[1
/s

]

Number of Nodes

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200 m

rtx = 250 m

Figure B.4: Average node partition change rate Rnavg(T) as a function of the number of nodes
n for different transmission ranges rtx and the random waypoint mobility model. Missing points
for rtx = 200 and 250 m indicate that Rpart(T) = 0.

The average node separation times for pairs of nodes shown in Figure B.6 decrease sharply for
different transmission ranges. For networks with a transmission range of 75 m and 800 nodes,
the average separation time of node pairs is almost half of the overall simulation time. For
networks with 250 m transmission range the average separation time converges towards zero
quickly as the number of nodes in the network increases. Observe that for small transmission
ranges of 125 m and less, the average separation time remains at almost its maximum and
starts decreasing with a larger number of nodes for smaller transmission ranges.

228 APPENDIX B. NETWORK PARTITIONING: ADDENDUM

0.5

0.6

0.7

0.8

0.9

1

0 400 800 1200 1600 2000 2400

A
v
e

ra
g

e
P

a
rt

it
io

n
S

iz
e

R
a

ti
o

Number of Nodes

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200 m

rtx = 250 m

Figure B.5: Average partition size ratio PSRavg(T) as a function of the number of nodes n for
different transmission ranges rtx and the random waypoint mobility model.

0

600

1200

1800

2400

3000

3600

0 400 800 1200 1600 2000 2400

A
v
e

ra
g

e
N

o
d

e
S

e
p
a

ra
ti
o

n
T

im
e

Number of Nodes

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200 m

rtx = 250 m

Figure B.6: Average over the sum of node separation times τsep(n1, n2, T) for n/2 disjoint pairs
of nodes (n1, n2) as a function of the number of nodes n for different transmission ranges rtx

and the random waypoint mobility model.

Figure B.7 shows the results for the average size of the continuous node visibility set Ncont(nk, T)
over time for 400 nodes. The gradient of the individual functions describes how fast the group
of nodes found permanently in the same partition decays. The general observation for all
transmission ranges is the extreme slope at the beginning of the considered time interval. This
is an artifact of the random waypoint mobility model, where small groups of nodes break apart
from the main group of nodes in the center. At first, the average is very high, because all
individual visibility sets of each node are the size of the single large partition. When small
groups of nodes are separated from the large partition, the value of Ncont(nk, T) for the nodes

229

0

20

40

60

80

100

1800 2100 2400 2700 3000 3300 3600

A
v
e
ra

g
e

S
iz

e
o
f

C
N

V
S

[%
]

Time [s]

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200 m

rtx = 250 m

Figure B.7: Average size of n continuous node visibility sets Ncont(nk, T) as a function of T for
n = 400 nodes, different transmission ranges rtx and the random waypoint mobility model.

0

20

40

60

80

100

1800 2100 2400 2700 3000 3300 3600

A
v
e
ra

g
e

S
iz

e
o
f
A

N
V

S
[%

]

Time [s]

rtx = 50 m

rtx = 75 m

rtx = 100 m

rtx = 125 m

rtx = 150 m

rtx = 200, 250 m

Figure B.8: Average size of n accumulative node visibility sets Nacc(nk, T) as a function of T
for n = 400 nodes, different transmission ranges rtx and the random waypoint mobility model.

of these groups drops to a very small number, which strongly pushes the average size of the node
visibility set towards smaller values. At later times, many small visibility sets already exist,
and additional separations of nodes have little influence on the average size of the metric. The
steep gradient of the continuous node visibility set for the lower transmission ranges indicates
that reasonably stable groups of nodes are small and can be assumed to be available only for
small time spans of 100 seconds or less. For higher transmission ranges the speed of decay slows
down significantly and the size of the stable groups grows.

230 APPENDIX B. NETWORK PARTITIONING: ADDENDUM

Figure B.8 shows the average size of the accumulative node visibility set over time for networks
with 400 nodes at different transmission ranges. Obviously, the accumulative node visibility
set grows faster for larger transmission ranges. For rtx = 50 m, the results show that even
after 30 minutes of simulation time, only 20 percent of the nodes have been contained in a
node’s same partition. This is due to the small average number of partitions (Figure B.1).
While moving, nodes encounter only a small number of other nodes in the same partition.
Because the partitions are small with respect to their geographical extent, they provide a small
contact area, so that the fusion of individual partitions occurs only rarely. Also note the strong
initial growth for higher transmission ranges. The reason is similar to the Ncont(nk, T) case in
Figure B.7. At the point of initialization of the accumulative node visibility set, a few isolated
nodes or very small groups of nodes exist. At the same time, one large partition exists, in which
all nodes have a large accumulative node visibility set consisting of the nodes in that partition.
The average size is relatively small because of the small visibility sets. After the addition of the
small groups of nodes to the large partition, their individual accumulative visibility sets grow
rapidly, resulting in a large increase of the average during the first seconds. These phenomena
are observed independent of a variation in the transmission range (Figure B.7) or in the number
of nodes for a given transmission range (Figure 2.21 in Section 2.2.5).

Appendix C

Preliminaries

C.1 LCS Core Mechanism

This section provides additional preliminary results, which are used in the analytical study of
the core data storage approach in Section 3.4.

C.1.1 Correlation between Topology and Geometry

Section 3.4.3 makes use of functions H1, . . . , H8 in the derivation of the communication cost of
each discussed approach. These functions capture basic cost terms using different configurations
of geometric shapes and communication patterns. Figure C.1 to C.4 show the graphs of each of
these functions, computed to an error of below one percent. Each graph gives the mean route
length in number of hops. For any of the Hi, a base area of 1200 · 1200 m2 is assumed, with
600 nodes placed randomly according to a uniform distribution.

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

m
ea
n
nu
m
be
ro
fh
op
s

width of square area [m]

0

2

4

6

8

10

0 200 400 600 800 1000 1200

m
ea
n
nu
m
be
ro
fh
op
s

width of square area [m]

Figure C.1: Left: Mean route length H1(a) between node in square A = a2 and node at center
of A. Right: Mean route length H2(a) between any two nodes in A.

231

232 APPENDIX C. PRELIMINARIES

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

m
ea
n
nu
m
be
ro
fh
op
s

width of square area [m]

0

2

4

6

8

10

0 200 400 600 800 1000 1200

m
ea
n
nu
m
be
ro
fh
op
s

width of square area [m]

Figure C.2: Left: Mean route length H3(a) between node located outside of A = a2 to any
node inside of A, and vice versa. Right: Mean route length H4(a) between node located on the
border of A to node located at the center of A.

0

2

4

6

8

10

0 200 400 600 800 1000 1200

m
ea
n
nu
m
be
ro
fh
op
s

width of square area [m]

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

m
ea
n
nu
m
be
ro
fh
op
s

width of square area [m]

Figure C.3: Left: Mean route length H5(s) between a node located in region A = a2 and node
located in S = s2, centered in A. Right: Mean route length H6(a) between a node located in
the outer stripe of square A = a2 with width rtx/2 and any other node inside of A.

C.1.2 Derivation of Traversal Distances

In the cell-based approaches of the analysis, we require some preliminary results that are related
to the time a node requires to traverse a region or to reach the edge of a region. The basic
integrals are based on the work of [Dun97].

The first magnitude is the mean distance of an object travelling on a straight line inside of a
cell. This distance can be determined by quantifying the number of cells that are traversed
in horizontal and vertical direction. We assume that objects travel in straight lines, and that
every direction of travel is chosen with equal probability. Figure C.5 contains the necessary
symbols that we use in the following calculations.

C.1. LCS CORE MECHANISM 233

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

m
ea
n
nu
m
be
ro
fh
op
s

radius of circle [m]

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600

m
ea
n
nu
m
be
ro
fh
op
s

radius of circle [m]

Figure C.4: Left: Mean route length H7(r) between a node inside of circle with radius r to the
center of that circle. Right: Mean route length H8(r) between a node located in region A and
a node located in the circle with radius r, centered in A.

a

dy()�

d()�

a

x

y

�

a. Computations on square A

R

c. Computations on circle C

�

y

x

s/2

s/2

b. Computations on square S

d()�

Figure C.5: Derivation of Square/Circle Traversal Distances

We will compute the number of cells that are traversed horizontally and vertically when travel-
ling distance d(ϕ). Due to symmetry, we only have to consider the grey-shaded region indicated
in Figure C.5.a. It holds that d(ϕ) = s/ cos ϕ, and dy(ϕ) = s tanϕ.

The number of cells that are traversed in horizontal and vertical direction is given by

ns = 1 +
dy(ϕ)

s
(C.1)

since the cell is completely traversed in horizontal, and only partially in vertical direction. For
a given angle ϕ, the mean distance that needs to be travelled until a cell is entered in either
horizontal or vertical direction is

d(ϕ)

ns

(C.2)

234 APPENDIX C. PRELIMINARIES

We then determine the mean of such distances for all angles 0 ≤ ϕ ≤ π/4:

l̄1 =
4

π

π
4∫

ϕ=0

d(ϕ)

ns
dϕ =

4

π

π
4∫

ϕ=0

a
cos ϕ

1 + a tan ϕ
s

dϕ =
4s

π

π
4∫

ϕ=0

1

cos ϕ + sin ϕ
dϕ (C.3)

In order to integrate this intermediate result, we make use of the following trigonometric identity
about linear combination of the sine:

a sin α + b cos α =
√

a2 + b2 · sin
(

α + arctan
b

a

)
(C.4)

Applying this identity yields

l̄1 =
4s

π

π
4∫

ϕ=0

1√
2 sin

(
ϕ + π

4

)dϕ (C.5)

Because the argument of the sine contains only the variable of integration and a constant value,
it can immediately be integrated using the following identity:∫

csc xdx = ln | csc x − cot x| + C (C.6)

The result after integration is

l̄1 =
2
√

2s

π

[
ln

∣∣∣∣∣ 1

sin
(
ϕ + π

4

) − 1

tan
(
ϕ + π

4

)
∣∣∣∣∣
]π

4

ϕ=0

(C.7)

Evaluating and simplifying to the end yields

l̄1 = −2
√

2s

π
ln
(√

2 − 1
)

(C.8)

The second result we require is the mean distance an object travels from the center of a square of
length s to its border. Again, every direction is assumed equally probable. Symmetry properties
of the square allow us to integrate over an angle of only ϕ/4. It holds that d(ϕ) = (s/2)/ cosϕ
(Figure C.5.b). We can then set up the following integral and simplify:

l̄2 =
4

π

∫ π
4

ϕ=0

d(ϕ)dϕ =
4

π

∫ π
4

ϕ=0

s

2 cos ϕ
dϕ =

2s

π

∫ π
4

ϕ=0

1

cos ϕ
dϕ (C.9)

This time we can use the following integration rule:∫
sec xdx = ln | sec x + tanx| + C (C.10)

C.2. DERIVATION OF THE LOCATION PDF 235

Integrating by this rule yields

l̄2 =
2s

π

[
ln

∣∣∣∣ 1

cos ϕ
+ tan ϕ

∣∣∣∣
]π

4

ϕ=0

(C.11)

After simplifying we have the final result

l̄2 =
2s

π
ln(

√
2 + 1) (C.12)

In the case of a circle, shown in Figure C.5.c, the distance required from the center of the circle
C to the border is always the circle’s radius, independent of direction. Thus:

l̄3 = R (C.13)

C.2 Derivation of the Location PDF

In this section we derive the closed form of the bivariate location probability density function
(location pdf), which we use in (5.5) of Section 5.1.

We first restate the full equation in integral form, based on (5.1) and (5.2):

Pr =
1

2π
√|Σ|

∫∫
(x−μx)2+(y−μy)2≤r2

e−
1
2
(X−M)T Σ−1(X−M)dxdy (C.14)

In the previous equation, we have used M = (μx, μy)
T to denote the center of the circle, and Σ

to denote the covariance matrix.

The random variables x and y are independent, and we assume that they are equal for both
the x and y dimension, which is a reasonable assumption in case of a positioning system that is
approximately isotropic with respect to position inaccuracy. Thus, we set σ = σx = σy, and the
covariance matrix assumes the form σ2E where E denotes the unit matrix. Thus, the inverse of
Σ is Σ−1 = E as well. Further, the determinant is |Σ| = σ4. We can now simplify the argument
of the exponential function:

−1

2
(X − M)T Σ−1(X − M) (C.15)

= − 1

2σ2
(x − μx, y − μy)

(
1 0
0 1

)(
x − μx

y − μy

)
(C.16)

= − 1

2σ2

[
(x − μx)

2 + (y − μy)
2
]

(C.17)

We plug this result and the determinant into (C.14) and we have

Pr =
1

2πσ2

∫∫
(x−μx)2+(y−μy)2≤r2

e−
1

2σ2 [(x−μx)2+(y−μy)2]dxdy (C.18)

236 APPENDIX C. PRELIMINARIES

Next, we substitute x′ = x − μx, which gives dx′ = dx and likewise, y′ = y − μy, which gives
dy′ = dy. Then

Pr =
1

2πσ2

∫∫
x′2+y′2≤r

e−
1

2σ2 (x′2+y′2)dx′dy′ (C.19)

We now substitute polar coordinates, using the identity

∫∫
C

f(x, y)dxdy =

∫ ϕ′=2π

ϕ′=0

∫ r′=r

r′=0

f(r cos ϕ, r sin ϕ)rdrdϕ (C.20)

Applying the substitution yields

Pr =
1

2πσ2

∫ ϕ′=2π

ϕ′=0

∫ r′=r

r′=0

r′e−
1

2σ2 r′2dr′dϕ′ (C.21)

We now use the integral identity ∫
xeax2

dx =
1

2a
eax2

+ C (C.22)

with a = − 1
2σ2 to solve the integral in (C.21) by first integrating via r′:

Pr =
1

2πσ2

∫ ϕ′=2π

ϕ′=0

[
−σ2e−

1
2σ2 r′2

]r′=r

r′=0
dϕ′ (C.23)

= − 1

2π

∫ ϕ′=2π

ϕ′=0

(
e−

1
2σ2 r2 − 1

)
dϕ′ (C.24)

Integration by ϕ′ yields

Pr = − 1

2π

[
ϕ
(
e−

1
2σ2 r2 − 1

)]ϕ′=2π

ϕ′=0
(C.25)

= −
(
e−

1
σ2 r2 − 1

)
(C.26)

Hence, the final result is

Pr = 1 − e−
1

σ2 r2

(C.27)

Appendix D

Network Topology Exploration Region

This appendix provides the step-by-step derivation of the network topology exploration region
(NTE region) that was introduced in Section 4.3.

The starting point are the Requirement (1) to (3), stated in Section 4.3. The following basic
notations are assumed: By ANTE and ANTE = |ANTE| we denote the NTE region and its
corresponding area, respectively. The reference coordinate is denoted by cr. Let r0 denote the
current position of data server u0, and d = |r0 − cr| the distance between r0 and cr.

D.1 Area Restriction on the NTE Region

The first objective is to satisfy Requirement (1), which dictates a circular region around position
r0 of the current server u0. This region must always be included in the NTE region, which must
therefore satisfy the following minimum area:

A′
NTE = π · R2

0 (D.1)

Parameter R0 can be understood as a real multiple of the nominal transmission range rtx

(Section 3.1), that is, R0 = ν · rtx for some ν ≥ 0.

The second objective is to satisfy Requirement (2), stating that the NTE region must obey an
upper limit, independent of its shape. For that, we let us guide by the spatial domain of the
migration recommendation policy (Section 4.2) and Requirement (3). First of all, the threshold
distance dthresh determines the outcome of the spatial predicate of the MDP (Equation (4.1)).
Thus, nodes inside of the circle defined by dthresh and cr are potentially eligible and should
be considered, independent of the server’s current position r0 (note that the overall migration
recommendation predicate may be true, but the spatial predicate may not).

If the server is located further away than dthresh, any node closer to cr than the server is more
eligible when only considering the geometric distance. In this case, r0 and cr define the shape
of the NTE region. However, when the server is located beyond the critical distance dcrit, region
ANTE must be restricted in order to prevent the forming of an increasingly large scope. This
restriction shall be defined based on the circle that is formed around cr with radius dcrit.

237

238 APPENDIX D. NETWORK TOPOLOGY EXPLORATION REGION

Based on the aforementioned reasoning, the NTE region’s area must satisfy:

A′′
NTE =

⎧⎨
⎩

π · d2
thresh for d ≤ dthresh

π · d2 for dthresh < d < dcrit

π · d2
crit for d ≥ dcrit

(D.2)

In the following, we set R = min{max{d, dthresh}, dcrit}, which implies R ∈ [dthresh, dcrit].

Combining (D.1) and (D.2), the NTE region is fixed to the following magnitude:

ANTE = max{A′
NTE, A′′

NTE} (D.3)

D.2 NTE Region Base Shapes

We first derive a number of base shapes that we require in Section D.3 to define the precise
shapes of possible NTE regions. In the following discussions, we assume that a coordinate
transformation was performed in a Cartesian coordinate system, such that cr is located at the
origin (0, 0) and r0 is located at (−d, 0).

D.2.1 Special Case

We make the following distinction based on the relative magnitudes of R0 and R. If R0 ≥ R,
the only design option is to take a circular shape around r0 with radius R0 (special case,
Figure D.1.a). In all other cases where R0 < R, either a circular shape (circular case, d ≤
R − R0, Figure D.1.b) or a more complex shape involving the intersection of circle and ellipse
(elliptical case, d > R − R0, Figure D.1.c) is to be determined.

a. Special case: R R0 �

cr

R0 d
R

E

C

r0

C0

x
R0

d R

r0 cr

C0

C E�

b. Circular case: ,R R d R0 � � � R0 c. Elliptical case: R R d R R0 0,� � �

R0 d

C0

cr

R

C
r0

Figure D.1: Base shapes of the network topology exploration region.

D.2.2 Circular Case

The circular shape in Figure D.1.b is defined by the condition that d ≤ d0 = R − R0. In that
case, the radius of the NTE region is R, and the region is centered at cr. Thus, the semimajor

D.2. NTE REGION BASE SHAPES 239

axis a of ellipse E (which in the circular case simply takes the form of a circle and is equivalent
to C) in the circular case is given by

a = R for d ≤ d0 (D.4)

D.2.3 Elliptical Case 1: Curvature Subcase

When the distance d between r0 and cr reaches d0, circle C0 around r0 touches circle C around
cr. To guarantee that r0 maintains at least a distance d to any point on the NTE region, circle
C is stretched into an ellipse E with increasing distance d > d0. An ellipse is suitable because
it allows the smooth stretching with increasing distances and provides both, good directionality
and propagation characteristics (Requirement (1) in Section 4.3).

The ellipse E may first stretch until the curvature of the ellipse in its vertex V is equal to the
curvature of the circle C0. This extremal case is shown in Figure D.2.a.

r0
V

E

R0

C0

d1

a1

R

cr
Ccr

R

d

a

C0
T2

T1

V

R0

(0,0)(,0)�d

r0

E

a. Elliptical case 1: curvature subcase. b. Elliptical case 2: tangent subcase.

C

Figure D.2: Elliptical case: curvature and tangent subcases.

While the curvature of E is greater than the curvature of C0, there is always a single point of
intersection (tangent point) at V between E and C0. Thus, the second critical distance d1 is
defined as the situation where E and C0 have equal curvature. The curvature radius of E in
vertex V of the major axis is defined as follows:

rV =
b2

a
(D.5)

The curvature radius of circle C is simply its radius R0. The problem is to find the ellipse with
length of the semiminor axis b = R and rV = R0. Thus, we solve (D.5) for extremal a1:

R0 =
R2

a1
(D.6)

a1 =
R2

R0
(D.7)

240 APPENDIX D. NETWORK TOPOLOGY EXPLORATION REGION

We obtain the critical distance d1 as follows:

d1 = a1 − R0 (D.8)

d1 =
R2

R0
− R0 (D.9)

d1 =
1

R0

(
R2 − R2

0

)
(D.10)

Because (D.8) always holds (Figure D.2.a) it can be used to calculate a in general:

a = R0 + d for d0 < d ≤ d1 (D.11)

Observe that for d = d0 = R − R0, (D.4) and (D.11) take the same form.

D.2.4 Elliptical Case 2: Tangent Subcase

If ellipse E is stretched further, that is, distance d exceeds d1, the curvature of E becomes
smaller than that of C0. To maintain radius R0 (Requirement (1) in Section 4.3), E must be
placed tangent to C0 in two tangent points T1 and T2, as illustrated in Figure D.2.b. This
case is applicable for all d > d1.

The procedure to determine a as a function of d in the tangent subcase is to solve the equations
for E and C0 under the constraints that i) there exists exactly two points of tangency T1,T2

between E and C0 and ii) that the length of the semiminor axis of E is b = R.

The general equation of a circle is

(x − xm)2 + (y − ym)2 = r2 (D.12)

where (xm, ym) denotes the center of the circle. In our particular case, the special equation for
the circle located at (xm, ym) = (−d, 0) with radius r = R0 is

C0 : (x + d)2 + y2 = R2
0 (D.13)

The general equation of an ellipse is

(x − x0)
2

a2
+

(y − y0)
2

b2
= 1 (D.14)

where (x0, y0) denotes the center of the ellipse. In our case, we have (x0, y0) = (0, 0) and b = R.
Thus, the special form of the ellipse equation takes the form

E :
x2

a2
+

y2

R2
= 1 (D.15)

The problem is to solve the set of equations (D.13) and (D.15) for a under the constraint that
C0 and E intersect at tangent points T1,T2 for d > d2. We first transform (D.13) and get

y2 = R2
0 − (x + d)2 (D.16)

D.2. NTE REGION BASE SHAPES 241

Then, we substitute y2 in (D.15) with (D.16) and solve for x:

1 =
x2

a2
+

R2
0 − (x + d)2

R2
(D.17)

1 =
x2

a2
+

R2
0 − (x2 + 2dx + d2)

R2
(D.18)

1 =
x2

a2
+

R2
0 − x2 − 2dx − d2

R2
(D.19)

0 =
x2

a2
− x2

R2
− 2dx

R2
+

R2
0 − d2

R2
− 1 (D.20)

0 =

(
1

a2
− 1

R2

)
x2 − 2d

R2
x +

R2
0 − d2

R2
− 1 (D.21)

We can state the solutions of the quadratic equation in general form as follows:

x1,2 =
−β ±√

β2 − 4αγ

2α
(D.22)

where

α =
1

a2
− 1

R2
(D.23)

β = − 2d

R2
(D.24)

γ =
R2

0 − d2

R2
− 1 (D.25)

We are interested in the solutions where x1 = x2, which mark the tangent points T1,T2. Thus,
we solve the discriminant such that

β2 − 4αγ = 0 (D.26)

Plugging (D.23), (D.24), and (D.25) into (D.26) and solving for a yields:

0 =

(
− 2d

R2

)2

− 4

(
1

a2
− 1

R2

)(
R2

0 − d2

R2
− 1

)
(D.27)

0 =
4d2

R4
− 4

(
1

a2
− 1

R2

)(
R2

0 − d2

R2
− 1

)
(D.28)

d2

R4
=

(
1

a2
− 1

R2

)(
R2

0 − d2

R2
− 1

)
(D.29)

d2

R4
=

(
1

a2
− 1

R2

)(
R2

0 − d2 − R2

R2

)
(D.30)

1

a2
− 1

R2
=

d2R2

R4(R2
0 − d2 − R2)

(D.31)

1

a2
=

d2

R2(R2
0 − d2 − R2)

+
1

R2
(D.32)

242 APPENDIX D. NETWORK TOPOLOGY EXPLORATION REGION

1

a2
=

d2 + R2
0 − d2 − R2

R2(R2
0 − d2 − R2)

(D.33)

a2 =
R2(R2

0 − d2 − R2)

R2
0 − R2

(D.34)

a2 =
R2(R2

0 − R2) − R2d2

R2
0 − R2

(D.35)

a2 = R2 − R2d2

R2
0 − R2

(D.36)

a2 = R2

(
1 − d2

R2
0 − R2

)
(D.37)

From the two solutions for a, only the positive value is relevant, thus we have:

a = R

√
1 +

d2

R2 − R2
0

for d > d1 (D.38)

Observe that for d = d1, equations (D.38) and (D.11) yield the same value for a.

D.2.5 Summary of Cases

In summary, for given d = |r0 −cr| we are able to determine the semimajor axis a of the ellipse
E as a function of d. Taking the aforementioned three cases for the shapes the NTE region
may take, from equations (D.4), (D.11), and (D.38), we have:

a(d) =

⎧⎪⎨
⎪⎩

R for d ≤ d0

R0 + d for d0 < d ≤ d1

R
√

1 + d2

R2−R2
0

for d > d1

(D.39)

with extremal values d0 = R−R0 and d1 = 1
R0

(R2 − R2
0) taken from Section D.2.2 and (D.10),

respectively. Note that R > R0 is always assumed, and that d1 ≥ d0 always holds.

D.3 NTE Region Specification

Based on ellipse E and circle C0 from Section D.2 we now define the NTE region ANTE under
the area constraint ANTE and different configurations of d and a according to (D.39).

D.3.1 Special Case

We first consider the special case R0 ≥ R, where the NTE region is defined solely by the
circle C0 around r0 (Figure D.1.a). Let ri = (xi, yi)

T denote any position in the transformed
coordinate system where cr marks the origin and the x-axis extends on the straight line through

D.3. NTE REGION SPECIFICATION 243

r0 and cr. Then, r0 = (−d, 0)T , and C0 : (x + d)2 + y2 ≤ R2
0 denotes the circle around r0. The

NTE region is defined as follows in the transformed coordinate system:

ANTE := {ri ∈ C0} for R0 ≥ R (D.40)

D.3.2 Circular Case

In the circular case, where R0 < R, the NTE region is the disk that is formed by circle C
(Figure D.1.b) and becomes C : x2 + y2 ≤ R2 in the transformed coordinate system. The
definition of the NTE region can be stated immediately:

ANTE := {ri ∈ C} for R0 < R ∧ d ≤ d0 (D.41)

D.3.3 Elliptical Case 1: Curvature Subcase

When d > d1 the ellipse E forms and the elliptical case occurs. For the curvature subcase, a
distinction in two different subcase variants is necessary, shown in Figure D.3.

r0
a

V

d

a
V

d
�C

t

�E

a

t

ANTE � 0.5A A AE C C0.5� � seg

ADseg

ANTE � AEseg

ACseg

r0

E

R R

C

cr

R

cr

C

E

a. Curvature subcase: 2R a R� � � b. Curvature subcase: 2a R� �

Figure D.3: Elliptical case 1: curvature subcase variants.

The distinction is made based on the condition that the NTE region is either completely
located on the left or right side of the minor axis b. First, the area of the trivial ellipse (circle)
is Aa=b

E = πb2. If a = 2b, then Aa=2b
E = πab = π2bb = 2πb2 = 2Aa=b

E . Thus, for b < a ≤ 2b,
the area of the ellipse is extending beyond the minor axis, where for a > 2b the area is located

244 APPENDIX D. NETWORK TOPOLOGY EXPLORATION REGION

completely on the left side of the minor axis b. Note that this distinction is independent of the
previously determined limit d1 and that the possible cases depend on the proportion R/R0.

First, (D.7) defines limit a1 = R2/R0. Second, the critical distance for the area switch is
a′ = 2b = 2R. Thus, if the area switch’ critical distance a′ is beyond a1, it will never be
relevant, that is, when a′ > a1 ⇔ 2R > R2R0 ⇔ 2 > R/R0 ⇔ R > 2R0. In other words,
if R is at least two times R0, there will never be the case where the area is located only
on the left side. For example, if R = 1.5R0, then a = 2b = 2R and according to (D.7),
a1 = R2/R0 = R2 · 1.5/R = 1.5R, in which case both possibilities exist, i.e., the NTE may be
located on the left side or on both sides of the semiminor axis.

Case R < a ≤ 2 · R (Figure D.3.a)

In this case, area ANTE consists of one half of the area AE, plus half the area of circle C, which
is denoted AC, minus the circular segment ACseg:

ANTE =
1

2
AE +

1

2
AC − ACseg (D.42)

Applying the formula for the area of ellipse, circle, and circular segment, (D.42) becomes:

ANTE =
πaR

2
+

πR2

2
− R2

2
(ϕC − sin ϕC) (D.43)

Solving (D.43) for ϕC requires numerical methods because the angle appears both by itself
and as the argument of the sine. In our situation, an approximation is sufficient because the
NTE region is used for flooding topology requests. Thus, we achieve efficient approximation
by specifying some ΔAerr � ANTE, the maximum areal error that we will tolerate. This value
is at the same time the exit condition of the following iterative algorithm to determine ϕC.
Observe that ϕC may run from > 0 up to π and that the area increases strongly monotonic
with decreasing ϕC (Figure D.3.a).

Initially, we set t = Δt = R/2. Note that t ∈ [0, R]. Observe that the maximum deviation
from the actual area ANTE is upper bound by Δt · R. We execute the following procedure:

(1) compute angle ϕ′ = 2 · arccos(t/R)

(2) compute A′
NTE using (D.43) with ϕC = ϕ′

(3) if Δt · R < ΔAerr or A′
NTE = ANTE then exit

(4) set Δt := Δt/2

(5) if A′
NTE > ANTE then set t := t − Δt and goto (1)

(6) if A′
NTE < ANTE then set t := t + Δt and goto (1)

The result A′
NTE is an approximation that is within the bounds specified by ΔAerr. At the same

time, the algorithm outputs value t that fixes the extension of ANTE to the right-side.

D.3. NTE REGION SPECIFICATION 245

The full specification of the NTE region is as follows. Let ri = (xi, yi)
T . Then, E : x2

a2 + y2

R2 ≤ 1.
The NTE region is defined as follows in the transformed coordinate system:

ANTE := ri ∈ E ∧ xi ≤ 0 ∨ ri ∈ C ∧ xi ≤ t

for R0 < R ∧ d0 < d ≤ d2 ∧ R < a ≤ 2 · R (D.44)

Case a > 2 · R (Figure D.3.b)

In the case where the NTE region does not extend beyond the semiminor axis R of ellipse E,
area ANTE consists only of a single elliptical segment:

ANTE = AEseg =
b

a
ADseg (D.45)

Note that the identity used in (D.45) between ellipse and circle holds, because if we write the

y coordinate as a function of x in the general ellipse equation, ye = b
√

1 − x2

a2 , and that of a

circle for which r = a, yc = a
√

1 − x2

a2 , then ye/yc = b/a.

Applying the formula for the area of a circular segment, (D.45) becomes:

ANTE =
b

a

a2

2
(ϕE − sin ϕE) =

ab

2
(ϕE − sin ϕE) (D.46)

We use again numerical approximation with an error bound ΔAerr � ANTE. Observe that
ϕE may run from > 0 up to < π. This time, ANTE increases strongly monotonic with ϕE

(Figure D.3.b). Setting t = Δt = a/2 with t ∈ [0, a], the following procedure is executed:

(1) Compute angle ϕ′ = 2 · arccos(t/a)

(2) Compute ANTE using (D.46) with ϕE = ϕ′

(3) if Δt · R < ΔAerr or A′
NTE = ANTE then exit

(4) set Δt := Δt/2

(5) If A′
NTE > ANTE then set t := t + Δt and goto (1)

(6) if A′
NTE < ANTE then set t := t − Δt and goto (1)

Again the algorithm outputs value t that determines the dimensions of ANTE on the x-axis.

Let ri = (xi, yi)
T , E and C as before. With a modified restriction in xi, the NTE region is

defined as follows in the transformed coordinate system:

ANTE := ri ∈ E ∧ xi ≤ −t

for R0 < R ∧ d0 < d ≤ d2 ∧ a > 2 · R (D.47)

246 APPENDIX D. NETWORK TOPOLOGY EXPLORATION REGION

D.3.4 Elliptical Case 2: Tangent Subcase

In the tangent subcase, the NTE region is composed of elliptical and circular segments, illus-
trated in Figure D.4. Depending on distance d and values R, R0, area ANTE may or may not
extend beyond the semiminor axis R of ellipse E. However, note that it is not possible that
ANTE extends only up to the line connecting T1 and T2, because AC0 < AC always holds due
to R > R0. Also, it is not possible that the NTE region extends beyond circle C, because
ANTE = AC in the ideal case without approximation.

r0

C0

a
V

d

T1

T2

�E1

�C0

a

A1 � 0.5A A AE E C� �seg1 0seg

A A A ANTE seg seg1 0seg� � �E E C t

t

A A A ANTE 1 0.5� � �C Cseg

AEseg1

AEseg

ACseg

�E

�C

RR

cr

C

AC0seg

R0

Figure D.4: Elliptical case 2: tangent subcase variants.

We begin by determining the critical area A1 that extends up to the semiminor axis R of E:

A1 =
1

2
AE − AEseg1 + AC0seg (D.48)

=
π

2
ab − b

a
ACseg1 + AC0seg (D.49)

=
π

2
ab − b

a

a2

2
(ϕE1 − sin ϕE1) +

R2
0

2
(ϕC0 − sin ϕC0) (D.50)

=
π

2
ab − ab

2
(ϕE1 − sin ϕE1) +

R2
0

2
(ϕC0 − sin ϕC0) (D.51)

Area A1 can be calculated for known ϕE1, ϕC0, which are given by the following identities:

cos
(ϕE1

2

)
=

|xT1 |
a

and cos
(ϕC0

2

)
=

|xT1| − d

R0

(D.52)

D.3. NTE REGION SPECIFICATION 247

Value |xT1 | can be obtained from (D.22) under the assumption that β2 − 4αγ = 0, thus:

|xT1 | =

∣∣∣∣−β

2α

∣∣∣∣ (D.53)

Plugging in α and β from equations (D.23) and (D.24), respectively, we obtain:

|xT1| =

∣∣∣∣∣ − (− 2d
R2

)
2
(

1
a2 − 1

R2

)
∣∣∣∣∣ =

∣∣∣∣∣ d

R2
(

1
a2 − 1

R2

)
∣∣∣∣∣ =

∣∣∣∣∣ d
R2

a2 − 1

∣∣∣∣∣ =

∣∣∣∣ da2

R2 − a2

∣∣∣∣ (D.54)

Based on the critical area A1, we make the following distinction to determine ANTE.

Case ANTE ≤ A1 (Figure D.4, Upper Shaded Region)

In this case, we obtain from Figure D.4 the following equation:

ANTE = AEseg − AEseg1 + AC0seg (D.55)

We use the following intermediary result that is a transformation of (D.48):

− AEseg1 + AC0seg = A1 − 1

2
AE (D.56)

We can substitute the right side of (D.56) for the rightmost two terms in (D.55) and obtain

ANTE = AEseg + A1 − 1

2
AE =

ab

2
(ϕE − sin ϕE) + A1 − π

2
ab (D.57)

which leaves only ϕE variable. Note that the first term is obtained from (D.46).

Like in the previous calculations we use numerical approximation with an error bound ΔAerr �
ANTE. (D.57) is applicable for ϕE between ϕE1 to π. Initially, we set t = Δt = 1

2
|xT1|. We then

execute the following iterative algorithm:

(1) Compute angle ϕ′ = 2 · arccos(t/a)

(2) Compute A′
NTE using (D.57), with ϕE = ϕ′

(3) if Δt · R < ΔAerr or A′
NTE = ANTE then exit

(4) set Δt := Δt/2

(5) if A′
NTE > ANTE then set t := t + Δt and goto (1)

(6) if A′
NTE < ANTE then set t := t − Δt and goto (1)

The algorithm outputs A′
NTE within bounds ΔAerr and t that fixes the dimensions of ANTE.

Let ri = (xi, yi)
T and r0 = (−d, 0)T in the transformed coordinate system. Then, C0 : (x +

d)2 + y2 ≤ R2
0 and E : x2

a2 + y2

R2 ≤ 1 with a = R
√

1 + d2

R2+R2
0

according to (D.38). The NTE

region is defined as follows for A ≤ A1:

ANTE := ri ∈ C0 ∧ xi ≤ xT1

∨ ri ∈ E ∧ xT1 < xi ≤ −t

for R0 < R ∧ d > d1 ∧ ANTE ≤ A1

(D.58)

248 APPENDIX D. NETWORK TOPOLOGY EXPLORATION REGION

Case ANTE > A1 (Figure D.4, Lower Shaded Region)

In this case, Figure D.4 yields the following equation:

ANTE = A1 +
1

2
AC − ACseg = A1 +

π

2
R2 − R2

2
(ϕC − sin ϕC) (D.59)

The following algorithm yields t, where ϕC runs from π to > 0. Initially, t = Δt = R/2.

(1) Compute angle ϕ′ = 2 · arccos(t/R)

(2) Compute A′
NTE using (D.59) with ϕC = ϕ′.

(3) if Δt · R < ΔAerr or A′
NTE = ANTE then exit

(4) set Δt := Δt/2

(5) if A′
NTE > ANTE then set t := t − Δt and goto (1)

(6) if A′
NTE < ANTE then set t := t + Δt and goto (1)

Let ri = (xi, yi)
T and C0, E, and a be defined as above, and let C : x2 + y2 ≤ R2 in the

transformed coordinate system. Then, for ANTE > A1, the NTE region is defined as follows:

ANTE : ri ∈ C0 ∧ xi ≤ xT1

∨ ri ∈ E ∧ xT1 < xi ≤ 0

∨ ri ∈ C ∧ 0 < xi ≤ t

for R0 < R ∧ d > d1 ∧ ANTE > A1

(D.60)

D.3.5 Summary of Cases

The set of equations, (D.40), (D.41), (D.44), (D.47), (D.58), and (D.60), defines all possible
shapes and thus completely the NTE region. The full set of definitions is implemented by the
prototype in the evaluation of data migration in Section 4.6.

Refereed Publications

[DWM08] Dominique Dudkowski, Harald Weinschrott, and Pedro José Marrón. Design and
Implementation of a Reference Model for Context Management in Mobile Ad-Hoc
Networks. In Proceedings of the 22nd International Conference on Advanced Infor-
mation Networking and Applications - Workshops (AINAW 2008), pages 832–837,
Gino-wan, Okinawa, Japan, March, 2008. IEEE Computer Society.

[DMR07] Dominique Dudkowski, Pedro José Marrón, and Kurt Rothermel. Migration Poli-
cies for Location-Centric Storage in Mobile Ad-Hoc Networks. In Proceedings of
the 3rd International Conference on Mobile Ad-hoc and Sensor Networks (MSN
2007), pages 197–208, Beijing, China, December 2007. Lecture Notes in Computer
Science, Volume 4864/2007, Springer Berlin / Heidelberg.

[HDM+07] Jörg Hähner, Dominique Dudkowski, Pedro José Marrón, and Kurt Rothermel.
Quantifying Network Partitioning in Mobile Ad Hoc Networks. In Proceedings
of the 8th International Conference on Mobile Data Management (MDM 2007),
pages 174–181, Mannheim, Germany, May 2007. IEEE.

[DMR06b] Dominique Dudkowski, Pedro José Marrón, and Kurt Rothermel. Efficient Algo-
rithms for Probabilistic Spatial Queries in Mobile Ad Hoc Networks. In Proceed-
ings of the First International Conference on Communication System Software
and Middleware (COMSWARE 2006), New Delhi, India, January 2006. IEEE.

[DMR06a] Dominique Dudkowski, Pedro José Marrón, and Kurt Rothermel. An Efficient Re-
silience Mechanism for Data Centric Storage in Mobile Ad Hoc Networks. In Pro-
ceedings of the 7th International Conference on Mobile Data Management (MDM
2006), Nara, Japan, May 2006. IEEE Computer Society.

[DDM05] Dominique Dudkowski, Tobias Drosdol, and Pedro José Marrón. Towards Scalable
and Efficient Processing of Probabilistic Spatial Queries in Mobile Ad Hoc and
Sensor Networks. In Mobile Datenbanken: heute, morgen und in 20 Jahren. 8.
Workshop des GI-Arbeitskreises “Mobile Datenbanken und Informationssysteme”,
Karlsruhe, February/March, 2005.

[HDM+05] Jörg Hähner, Dominique Dudkowski, Pedro José Marrón, and Kurt Rothermel.
A Quantitative Analysis of Partitioning in Mobile Ad Hoc Networks. Extended
Abstract in Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2004/Performance 2004), pages
400–401, New York, NY, USA, June 2004. ACM Press.

249

Bibliography

[ACNP07] Michele Albano, Stefano Chessa, Francesco Nidito, and Susanna Pelagatti. Q-
NiGHT: Adding QoS to data centric storage in non-uniform sensor networks.
In Proceedings of the 8th International Conference on Mobile Data Management
(MDM’07), pages 100–107, Mannheim, Germany, May 2007. 10, 84, 85, 86, 93

[ADM04] Ittai Abraham, Danny Dolev, and Dahlia Malkhi. LLS: a locality aware location
service for mobile ad hoc networks. In Proceedings of the 2004 Joint Workshop
on Foundations of Mobile Computing, pages 75–84, Philadelphia, Pennsylvania,
USA, October 2004. 86, 87

[ARK+05] Filipe Araújo, Lúıs Rodrigues, Jörg Kaiser, Changling Liu, and Carlos Mitidieri.
CHR: a distributed hash table for wireless ad hoc networks. In Proceedings of the
25th IEEE International Conference on Distributed Computing Systems Work-
shops (ICDCSW’05), pages 407–413, Columbus, Ohio, USA, June 2005. 83, 84,
85, 86, 100

[AWW05] Ian F. Akyildiz, Xudong Wang, and Weilin Wang. Wireless mesh networks: A
survey. Computer Networks, 47(4):445–487, March 2005. 46

[BA06] Kenneth C. Barr and Krste Asanović. Energy-aware lossless data compression.
ACM Transactions on Computer Systems (TOCS), 24(3):250–291, August 2006.
48

[Bar99] Daniel Barbará. Mobile computing and databases - a survey. IEEE Transactions
on Knowledge and Data Engineering, 11(1):108–117, January 1999. 72

[BCQ+07] Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, and
Letizia Tanca. A data-oriented survey of context models. ACM SIGMOD Record,
36(4):19–26, December 2007. 40

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on
context-aware systems. International Journal of Ad Hoc and Ubiquitous Com-
puting, 2(4):263–277, 2007. 78

[Bet02] Christian Bettstetter. On the minimum node degree and connectivity of a wireless
multihop network. In Proceedings of the 3rd ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc’02), pages 80–91, Lausanne,
Switzerland, June 2002. 50

251

252 BIBLIOGRAPHY

[Bet03] Christian Bettstetter. Topology properties of ad hoc networks with random way-
point mobility model. ACM SIGMOBILE Mobile Computing and Communica-
tions Review, 7(3):50–52, July 2003. 50

[Bha03] Sangeeta Bhattacharya. Randomized location service in mobile ad hoc networks.
In Proceedings of the 6th International Workshop on Modeling Analysis and Sim-
ulation of Wireless and Mobile Systems (MSWiM’03), pages 66–73, San Diego,
California, USA, September 2003. 73, 86, 87

[BJKS02] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas Saltenis.
Nearest neighbor and reverse nearest neighbor queries for moving objects. In Pro-
ceedings of the International Database Engineering and Applications Symposium
(IDEAS’02), pages 44–53, Edmonton, Canada, July 2002. 86, 87

[BMJ+98] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta
Jetcheva. A performance comparison of multi-hop wireless ad hoc network rout-
ing protocols. In Proceedings of the Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pages 85–97, Dallas, Texas,
USA, October 1998. 58, 123, 124, 168

[Bre00] Eric A. Brewer. Towards robust distributed systems (invited talk). In Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, page 7, Portland, Oregon, USA, July 2000. ACM New York, NY, USA. 92

[CAMCM05] Shiva Chetan, Jalal Al-Muhtadi, Roy Campbell, and M. Dennis Mickunas. Mobile
Gaia: A middleware for ad-hoc pervasive computing. In Second IEEE Consumer
Communications and Networking Conference (CCNC’05), pages 223–228, Las
Vegas, Nevada, USA, January 2005. 79

[CC07] Jinchuan Chen and Reynold Cheng. Efficient evaluation of imprecise location-
dependent queries. In Proceedings of the IEEE 23rd International Conference on
Data Engineering (ICDE’07), pages 586–595, Istanbul, Turkey, April 2007. 89

[CCMC08] Reynold Cheng, Jinchuan Chen, Mohamed Mokbel, and Chi-Yin Chow. Proba-
bilistic verifiers: Evaluating constrained nearest-neighbor queries over uncertain
data. In Proceedings of the IEEE 24th International Conference on Data Engi-
neering (ICDE’08), pages 973–982, Cancun, Mexico, April 2008. 89

[CGP04] Jian Chen, Yong Guan, and U. Pooch. Customizing GPSR for wireless sensor
networks. In Proceedings of the 2004 IEEE International Conference on Mo-
bile Ad-hoc and Sensor Systems, pages 549–551, Fort Lauderdale, Florida, USA,
October 2004. 82

[CKP03] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating prob-
abilistic queries over imprecise data. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pages 551–562, San Diego,
California, USA, June 2003. 89

BIBLIOGRAPHY 253

[CKP04] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Querying imprecise
data in moving object environments. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1112–1127, September 2004. 89

[CNS04] Alexandru Coman, Mario A. Nascimento, and Jörg Sander. A framework for
spatio-temporal query processing over wireless sensor networks. In Proceedings
of the First Workshop on Data Management for Sensor Networks (DMSN’04),
Toronto, Canada, August 2004. 86, 87

[CP03] Reynold Cheng and Sunil Prabhakar. Managing uncertainty in sensor databases.
ACM SIGMOD Record. Special Issue: Special Section on Sensor Network Tech-
nology and Sensor Data Managment, 32(4):41–46, December 2003. 89

[CPK03] Reynold Cheng, Sunil Prabhakar, and Dmitri V. Kalashnikov. Querying imprecise
data in moving object environments. In Proceedings of the 19th International
Conference on Data Engineering (ICDE’03), pages 723–725, Bangalore, India,
March 2003. 89

[CXSN04] Kai Chen, Yuan Xue, Samarth H. Shah, and Klara Nahrstedt. Understanding
bandwidth-delay product in mobile ad hoc networks. Computer Communications,
27(10):923–934, June 2004. 158

[CYC07] Tzung-Shi Chen, Gwo-Jong Yu, and Hsin-Ju Chen. A framework of mobile
context management for supporting context-aware environments in mobile ad
hoc networks. In International Wireless Communications and Mobile Computing
Conference 2007 (IWCMC’07), pages 647–652, Honolulu, Hawaii, USA, August
2007. 81

[DA99] Anind K. Dey and Gregory D. Abowd. Towards a better understanding of context
and context-awareness. Technical Report GIT-GVU-99-22, Georgia Institute of
Technology, Atlanta, Georgia, USA, 1999. 39

[DF03] Murat Demirbas and Hakan Ferhatosmanoglu. Peer-to-peer spatial queries in
sensor networks. In Proceedings of the Third International Conference on Peer-
to-Peer Computing (P2P’03), pages 32–39, Linköping, Sweden, September 2003.
86, 87

[DGM+04] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein,
and Wei Hong. Model-driven data acquisition in sensor networks. In Proceedings
of the 30th VLDB Conference, pages 588–599, Toronto, Canada, August 2004.
190

[DHH07] Anusuriya Devaraju, Simon Hoh, and Michael Hartley. A context gathering
framework for context-aware mobile solutions. In Proceedings of the 4th Interna-
tional Conference on Mobile Technology, Applications, and Systems and the 1st
International Symposium on Computer Human Interaction in Mobile Technology,
pages 39–46, Singapore, September 2007. 78, 79

254 BIBLIOGRAPHY

[DLR07] Tobias Drosdol, Ralph Lange, and Kurt Rothermel. Energy-efficient tracking of
mobile objects with early distance-based reporting. In Proceedings of the Fourth
Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous’07), Philadelphia, PA, USA, August 2007. 48

[Dun97] Steven R. Dunbar. The average distance between points in geometric figures. The
College Mathematics Journal, 28(3):187–197, May 1997. 232

[EM99] P. Enge and P. Misra. Scanning the issue/technology - special issue on global
positioning system. Proceedings of the IEEE, 87(1):3–15, 1999. 39, 91

[ERS06] Cheng Tien Ee, Sylvia Ratnasamy, and Scott Shenker. Practical data-centric
storage. In Proceedings of the 3rd Symposium on Networked Systems Design and
Implementation (NSDI’06), pages 325–338, San Jose, California, USA, May 2006.
84, 85, 86

[FC06] Patrick Fahy and Siobhán Clarke. CASS: Middleware for mobile, context-aware
applications. In MobiSys 2004 Workshop on Context Awareness, Boston, Mas-
sachusetts, USA, June 2006. 79

[FPL07] Tao-Young Fu, Wen-Chih Peng, and Wang-Chien Lee. Optimizing parallel
itineraries for KNN query processing in wireless sensor networks. In Proceedings
of the Sixteenth ACM Conference on Information and Knowledge Management,
pages 391–400, Lisboa, Portugal, November 2007. 86, 87, 88

[FRWZ07] Elena Fasolo, Michele Rossi, Jörg Widmer, and Michele Zorzi. In-network aggre-
gation techniques for wireless sensor networks: A survey. IEEE Wireless Com-
munications, 14(2):70–87, April 2007. 145

[FSAA01] Hakan Ferhatosmanoglu, Ioanna Stanoi, Divyakant Agrawal, and Amr El Abbadi.
Constrained nearest neighbor queries. In Proceedings of the 7th International
Symposium on Advances in Spatial and Temporal Databases (SSTD’01), pages
257–278, Redondo Beach, California, USA, January 2001. 86, 87

[FV03] Dieter Fritsch and Steffen Volz. Nexus - the mobile GIS-environment. In Proceed-
ings of the Joint First Workshop on Mobile Future and Symposium on Trends in
Communications (SympoTIC’03), pages 1–4, Bratislava, Slovak Republic, Octo-
ber 2003. 40

[FW06] Roland Flury and Roger Wattenhofer. MLS: An efficient location service for
mobile ad hoc networks. In Proceedings of the Seventh ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc’06), pages 226–
237, Florence, Italy, May 2006. 86, 87

[GA02] Sanny Gustavsson and Sten F. Andler. Self-stabilization and eventual consistency
in replicated real-time databases. In Proceedings of the First Workshop on Self-
healing Systems (WOSS’02), pages 105–107, Charleston, South Carolina, USA,
November 2002. 92

BIBLIOGRAPHY 255

[Gar09] Garmin GPSMAP 76CSx. http://www.garmin.com/, September 2009. 182

[GBH+05] Matthias Grossmann, Martin Bauer, Nicola Hönle, Uwe-Philipp Käppeler,
Daniela Nicklas, and Thomas Schwarz. Efficiently managing context information
for large-scale scenarios. In Proceedings of the 3rd IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom’05), pages 331–340,
Kauai, Hawaii, USA, March 2005. 40, 78

[GdWFM02] Michael Gerharz, Christian de Waal, Matthias Frank, and Peter Martini. Link
stability in mobile wireless ad hoc networks. In Proceedings of the 27th Annual
IEEE Conference on Local Computer Networks (LCN’02), pages 30–39, Tampa,
Florida, USA, November 2002. 50, 151

[GEG+03] Benjamin Greenstein, Deborah Estrin, Ramesh Govindan, Sylvia Ratnasamy,
and Scott Shenker. DIFS: A distributed index for features in sensor networks.
In Proceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications (SNPA’03), pages 163–173, Anchorage, Alaska, USA,
May 2003. 86, 87

[GGC03] Abhishek Ghose, Jens Grossklags, and John Chuang. Resilient data-centric stor-
age in wireless ad-hoc sensor networks. In Proceedings of the 4th International
Conference on Mobile Data Management (MDM’03), pages 45–62, Melbourne,
Australia, January 2003. 11, 81, 85, 86

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59,
June 2002. 92

[GPZ05] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented middleware for
building context-aware services. Journal of Network and Computer Applications,
28:1–18, 2005. 79

[GRS+03] Benjamin Greenstein, Sylvia Ratnasamy, Scott Shenker, Ramesh Govindan, and
Deborah Estrin. DIFS: A distributed index for features in sensor networks. Ad
Hoc Networks, 1(2-3):333–349, September 2003. 86, 87

[GS02] Sandeep K. S. Gupta and Pradip K. Srimani. Handbook of Wireless Networks and
Mobile Computing, chapter Data Management in Wireless Mobile Environments,
pages 553–579. Wiley & Sons, February 2002. 72

[HBLR05] Qingfeng Huand, Sangeeta Bhattacharya, Chenyang Lu, and Gruia-Catalin Ro-
man. FAR: Face-aware routing for mobicast in large-scale sensor networks. ACM
Transactions on Sensor Networks, 1(2):240–271, November 2005. 82

[HBR04] Jörg Hähner, Christian Becker, and Kurt Rothermel. Update-linearizability: A
consistency concept for the chronological ordering of events in MANETs. In
Proceedings of the 2004 IEEE International Conference on Mobile Ad-hoc and
Sensor Systems, pages 1–10, Fort Lauderdale, Florida, USA, October 2004. 100

256 BIBLIOGRAPHY

[HHSW05] Jessica Heesen, Christoph Hubig, Oliver Siemoneit, and Klaus Wiegerling. Leben
in einer vernetzten und informatisierten Welt. Context-Awareness im Schnittfeld
von Mobile und Ubiquitous Computing. SFB 627 Bericht 2005/05, Center of
Excellence 627, Universität Stuttgart, March 2005. 38, 39

[HKL+99] Fritz Hohl, Uwe Kubach, Alexander Leonhardi, Kurt Rothermel, and Markus
Schwehm. Next century challenges: Nexus - an open global infrastructure for
spatial-aware applications. In Proceedings of the 5th Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (MobiCom’99), pages
249–255, Seattle, Washington, USA, August 1999. 40

[HLR04] Qingfeng Huang, Chenyang Lu, and Gruia-Catalin Roman. Reliable mobicast via
face-aware routing. In Proceedings of the Twenty-third Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM’04), volume 3,
pages 2108–2118, Hong Kong, China, March 2004. 82

[HS01] Hung-Yun Hsieh and Raghupathy Sivakumar. Performance comparison of cel-
lular and multi-hop wireless networks: A quantitative study. In Proceedings
of the 2001 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’01), pages 113–122, Cambridge,
Massachusetts, USA, June 2001. 51

[HSC03] Michail Hauspie, David Simplot, and Jean Carle. Partition detection in mobile
ad-hoc networks using multiple disjoint paths set. In Proceedings of the 1st In-
ternational Workshop on Objects Models and Multimedia Technologies, Geneva,
Switzerland, September 2003. 151

[IB93] Tomasz Imielinski and B. R. Badrinath. Data management for mobile computing.
ACM SIGMOD Record, 22(1):34–39, March 1993. 37, 72

[IB94] Tomasz Imielinski and B. R. Badrinath. Mobile wireless computing: Challenges
in data management. Communications of the ACM, 37(10):18–28, October 1994.
72

[JS03] Glenn Judd and Peter Steenkiste. Providing contextual information to pervasive
computing applications. In Proceedings of the First IEEE International Con-
ference on Pervasive Computing and Communications (PerCom’03), page 133,
Dallas-Fort Worth, Texas, USA, March 2003. 79

[KD04] Vijay Kumar and Samir R. Das. Performance of dead reckoning-based location
service for mobile ad hoc networks. Wireless Communications and Mobile Com-
puting, 4(2):189–202, 2004. 86, 87

[KFWM04] Wolfgang Kieß, Holger Füßler, Jörg Widmer, and Martin Mauve. Hierarchical
location service for mobile ad-hoc networks. Mobile Computing and Communi-
cations Review, 1(2):47–58, October 2004. 73, 85, 86, 87, 184

[KGKS05] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Geographic
routing made practical. In Proceedings of the 2nd Symposium on Networked

BIBLIOGRAPHY 257

Systems Design & Implementation (NSDI’05), pages 217–230, Boston, Mas-
sachusetts, USA, May 2005. 82

[Khe06] Kavi K. Khedo. Context-aware systems for mobile and ubiquitous networks. In
Proceedings of the International Conference on Networking, International Confer-
ence on Systems and International Conference on Mobile Communications and
Learning Technologies 2006 (ICN/ICONS/MCL’06), page 123, Morne, Mauri-
tius, April 2006. 78

[Kja07] Kristian E. Kjaer. A survey of context-aware middleware. In Proceedings of
IASTED Software Engineering Conference 2007, August 2007. 78

[KK00] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wire-
less networks. In Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking (MobiCom’00), pages 243–254, Boston, Mas-
sachusetts, USA, August 2000. 10, 81, 84, 128

[KK02] Mohamed Khedr and Ahmed Karmouch. ACAN - ad hoc context aware network.
In Proceedings of the Canadian Conference on Electrical & Computer Engineering
(CCECE’02), pages 1342–1346, Winnipeg, Canada, May 2002. 80

[KKR07] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. Probabilistic nearest-
neighbor query on uncertain objects. In Proceedings of the 12th International
Conference on Database Systems for Advanced Applications (DASFAA’07), pages
337–348, Bangkok, Thailand, April 2007. Springer Berlin / Heidelberg. 89

[Kle95] Leonhard Kleinrock. Nomadic computing - an opportunity. ACM SIGCOMM
Computer Communication Review, 25(1):36–40, January 1995. 37

[Kum06] Vijay Kumar. Mobile Database Systems (Wiley Series on Parallel and Distributed
Computing). Wiley-Interscience, June 2006. 72

[KWZ02] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically opti-
mal geometric mobile ad-hoc routing. In Proceedings of the 6th International
Workshop on Discrete Algorithms and Methods for Mobile Computing and Com-
munications (DIALM’02), pages 24–33, New York, NY, USA, September 2002.
82

[KWZ03] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case optimal and
average-case efficient geometric ad-hoc routing. In Proceedings of the 4th ACM
International Symposium on Mobile Ad Hoc Networking and Computing (Mobi-
Hoc’03), pages 267–278, Annapolis, Maryland, USA, June 2003. 82

[KWZZ03] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric
ad-hoc routing: Of theory and practice. In Proceedings of the Twenty-Second
Annual Symposium on Principles of Distributed Computing (PODC’03), pages
63–72, Boston, Massachusetts, USA, July 2003. 82

258 BIBLIOGRAPHY

[LC04] Jennifer J.-N. Liu and Imrich Chlamtac. Mobile Ad Hoc Networking, chapter Mo-
bile Ad-Hoc Networking with a View of 4G Wireless: Imperatives and Challenges,
pages 1–46. Wiley-Interscience, 2004. 45

[LC08] Xiang Lian and Lei Chen. Probabilistic group nearest neighbor queries in un-
certain databases. IEEE Transactions on Knowledge and Data Engineering,
20(6):809–824, June 2008. 89, 90

[LCN05] Xinwei Luo, Tracy Camp, and William Navidi. Predictive methods for location
services in mobile ad hoc networks. In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05), page 6, Denver, Col-
orado, USA, April 2005. 86, 87

[LCP+05] Eng K. Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A
survey and comparison of peer-to-peer overlay network schemes. IEEE Commu-
nications Surveys & Tutorials, 7(2):72–93, 2005. 88

[LGW06] Olaf Landsiegel, Stefan Götz, and Klaus Wehrle. Towards scalable mobility in
distributed hash tables. In Proceedings of the Sixth IEEE International Con-
ference on Peer-to-Peer Computing (P2P’06), pages 203–209, Cambridge, UK,
September 2006. 85

[LJC+00] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris. A scalable location service for geographic ad hoc routing. In Proceedings of
the Sixth Annual International Conference on Mobile Computing and Networking
(MobiCom’00), pages 120–130, Boston, Massachusetts, USA, August 2000. 73,
86, 87, 184

[LKGH03] Xin Li, Young-Jin Kim, Ramesh Govindan, and Wei Hong. Multi-dimensional
range queries in sensor networks. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (SenSys’03), Los Angeles, California, USA,
November 2003. ACM Press. 86, 87

[LLM06] Ben Leong, Barbara Liskov, and Robert Morris. Geographic routing without
planarization. In Proceedings of the 3rd Symposium on Networked Systems Design
and Implementation (NSDI’06), pages 339–352, San Jose, California, USA, May
2006. 82

[LSD+02] Hui Lei, Daby M. Sow, John S. Davis, Guruduth Banavar, and Maria R. Ebling.
The design and applications of a context service. ACM SIGMOBILE Mobile
Computing and Communications Review, 6(4):45–55, October 2002. 79

[LTLS00] Wen-Hwa Liao, Yu-Chee Tseng, Kuo-Lun Lo, and Jang-Ping Sheu. GeoGRID:
a geocasting protocol for mobile ad hoc networks based on GRID. Journal of
Internet Technology, 1(2):23–32, December 2000. 85

[Mai04] Christian Maihöfer. A survey of geocast routing protocols. IEEE Communications
Surveys and Tutorials, 6(2):32–42, 2004. 145

BIBLIOGRAPHY 259

[MLS05] Christian Maihöfer, Tim Leinmüller, and Elmar Schoch. Abiding geocast: Time-
stable geocast for ad hoc networks. In Proceedings of the 2nd ACM International
Workshop on Vehicular Ad Hoc Networks (VANET’05), pages 20–29, Cologne,
Germany, September 2005. 85

[MMM05] Bratislav Milic, Nikola Milanovic, and Miroslaw Malek. Prediction of partitioning
in location-aware mobile ad hoc networks. In Proceedings of the 38th Hawaii Inter-
national Conference on System Sciences (HICSS’05), page 306c, Hilton Waikoloa
Village, HI, USA, January 2005. 149, 151

[NS03] James Newsome and Dawn Song. GEM: Graph EMbedding for routing and
data-centric storage in sensor networks without geographic information. In Pro-
ceedings of the First ACM Conference on Embedded Networked Sensor Systems
(SenSys’03), pages 76–88, Redwood, California, USA, November 2003. 84

[NTCS99] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The broad-
cast storm problem in a mobile ad hoc network. In Proceedings of the 5th An-
nual ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom’99), pages 151–162, Seattle, Washington, USA, August 1999. 49, 50,
54

[OT98] Katia Obraczka and Gene Tsudik. Multicast routing issues in ad hoc networks.
In Proceedings of the 1998 International Conference on Universal Personal Com-
munications, pages 751–756, Florence, Italy, October 1998. 54

[PJC06] Filip Perich, Anupam Joshi, and Rada Chirkova. Enabling Technologies for Wire-
less E-Business, chapter Data Management for Mobile Ad-Hoc Networks, pages
132–176. Springer-Verlag, 2006. 72, 78, 80

[PLK05] Nam-Shik Park, Kang-Woo Lee, and Hyun Kim. A middleware for supporting
context-aware services in mobile and ubiquitous environment. In Proceedings
of the International Conference on Mobile Business (ICMB’05), pages 694–697,
Sydney, Australia, July 2005. 79

[PPJ+06] Anand Patwardhan, Filip Perich, Anupam Joshi, Tim Finin, and Yelena Yesha.
Querying in packs: Trustworthy data management in ad hoc networks. Interna-
tional Journal of Wireless Information Networks, 13(4):263–274, October 2006.
80

[PS97] Evaggelia Pitoura and George Samaras. Data Management for Mobile Computing
(Advances in Database Systems). Springer, 1997. 72

[PSTM04] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group
nearest neighbor queries. In Proceedings of the 20th International Conference
on Data Engineering (ICDE’04), pages 301–312, Boston, Massachusetts, USA,
March 2004. 86, 87, 90

[RBB03] Kurt Rothermel, Martin Bauer, and Christian Becker. Digitale Weltmodelle -
Grundlage kontextbezogener Systeme, chapter 5, pages 123–141. Springer-Verlag,
Berlin, Heidelberg, New York, May 2003. German. 39, 40

260 BIBLIOGRAPHY

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms, pages
329 – 350, Heidelberg, Germany, November 2001. Springer-Verlag. 88

[RDD+03] Kurt Rothermel, Dominique Dudkowski, Frank Dürr, Martin Bauer, and Chris-
tian Becker. Ubiquitous computing - more than computing anytime anyplace?
In Dieter Fritsch, editor, Proceedings of Photogrammetric Week ’03, pages 1–9,
Stuttgart, 2003. 39, 40

[REF+06] Kurt Rothermel, Thomas Ertl, Dieter Fritsch, Paul J. Kühn, Bernhard
Mitschang, Engelbert Westkämper, Christian Becker, Dominique Dudkowski,
Andreas Gutscher, Christian Hauser, Lamine Jendoubi, Daniela Nicklas, Steffen
Volz, and Matthias Wieland. SFB 627 - Umgebungsmodelle für mobile kontextbe-
zogene Systeme. Informatik Forschung und Entwicklung, 21:105–113, June 2006.
German. 40

[RJM+06] Alexander Roßnagel, Silke Jandt, Jürgen Müller, Andreas Gutscher, and Jessica
Heesen. Datenschutzfragen mobiler kontextbezogener Systeme. DuD-Fachbeiträge.
Deutscher Universitäts-Verlag, Wiesbaden, October 2006. German. 41

[RKS+03] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin, Ramesh Govin-
dan, Li Yin, and Fang Yu. Data-centric storage in sensornets with GHT, a
geographic hash table. Mobile Networks and Applications, 8(4):427–442, August
2003. 73, 81, 100

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor
queries. In Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data (SIGMOD’95), pages 71–79, San Jose, California, USA,
May 1995. 86, 87

[RKY+02] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govin-
dan, and Scott Shenker. GHT: a geographic hash table for data-centric storage. In
Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA’02), pages 78–87, Atlanta, Georgia, USA, September
2002. 10, 11, 13, 73, 81, 84, 85, 86, 93, 95, 99, 109, 110, 124, 125, 139

[RPSS03] Ananth Rao, Christos Papadimitriou, Scott Shenker, and Ion Stoica. Geographic
routing without location information. In Proceedings of the 9th Annual Inter-
national Conference on Mobile Computing and Networking, pages 96–108, San
Diego, California, USA, September 2003. ACM Press. 91

[SH03] Karim Seada and Ahmed Helmy. Rendezvous regions: A scalable architecture for
service location and data-centric storage in large-scale wireless networks. Techni-
cal report, University of Southern California, Los Angeles, California, USA, July
2003. 83, 84, 99

[SH04] Karim Seada and Ahmed Helmy. Rendezvous regions: A scalable architecture
for service location and data-centric storage in large-scale wireless networks. In

BIBLIOGRAPHY 261

Proceedings of the 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS’04), page 218a, Santa Fe, New Mexico, USA, April 2004. 83, 84,
85, 86, 99, 184

[SHB+03] Illya Stepanov, Jörg Hähner, Christian Becker, Jing Tian, and Kurt Rothermel. A
meta-model and framework for user mobility in mobile networks. In Proceedings
of the 11th IEEE International Conference on Networks (ICON’03), pages 231–
238, Sydney, Australia, September 2003. 58

[SIG+04] Thomas Schwarz, Markus Iofcea, Matthias Grossmann, Nicola Hönle, Daniela
Nicklas, and Bernhard Mitschang. On efficiently processing nearest neighbor
queries in a loosely coupled set of data sources. In Proceedings of the 12th An-
nual ACM International Workshop on Geographic Information Systems (GIS’04),
pages 184–193, Washington, DC, USA, November 2004. 86, 87

[SR01] Zhexuan Song and Nick Roussopoulos. K-nearest neighbor search for moving
query point. In Proceedings of the 7th International Symposium on Advances
in Spatial and Temporal Databases (SSTD’01), pages 79–96, Redondo Beach,
California, USA, July 2001. 86, 87

[SRK+03] Scott Shenker, Sylvia Ratnasamy, Brad Karp, Ramesh Govindan, and Deborah
Estrin. Data-centric storage in sensornets. Computer Communication Review,
33(1):137–142, January 2003. 73, 81

[ST94] Bill N. Schilit and Marvin M. Theimer. Disseminating active map information
to mobile hosts. IEEE Network, 8(5):22–32, 1994. 39

[SWS+04] Carl-Fredrik Sørensen, Maomao Wu, Thirunavukkarasu Sivaharan, Gordon S.
Blair, Paul Okanda, Adrian Friday, and Hector Duran-Limon. A context-aware
middleware for applications in mobile ad hoc environments. In Proceedings of the
2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC’04),
pages 107–110, Toronto, Canada, October 2004. 80

[TDC01] Damla Turgut, Sajal K. Das, and Mainak Chatterjee. Longevity of routes in
mobile ad hoc networks. In Proceedings of the IEEE Semiannual Vehicular Tech-
nology Conference (VTC Spring’01), volume 4, pages 2833–2837, Rhodes, Greece,
May 2001. 149, 151

[TDP+94] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M.
Theimer, and Brent B. Welch. Session guarantees for weakly consistent repli-
cated data. In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems (PDIS’94), pages 140–149, Austin, Texas, USA,
September 1994. 92

[THB+02] Jing Tian, Jörg Hähner, Christian Becker, Illya Stepanov, and Kurt Rothermel.
Graph-based mobility model for mobile ad hoc network simulation. In Proceedings
of the 35th Annual Simulation Symposium (ANSS’02), pages 337–344, San Diego,
California, USA, April 2002. 58

262 BIBLIOGRAPHY

[TNK04] Ravinder Tamishetty, Lek Heng Ngoh, and Pung Hung Keng. An efficient re-
siliency scheme for data centric storage in wireless sensor networks. In Proceed-
ings of the IEEE 60th Vehicular Technology Conference (VTC Fall’04), volume 4,
pages 2936–2940, Los Angeles, California, USA, September 2004. 83, 99

[TS06] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems Principles
and Paradigms. Prentice Hall, second edition, October 2006. 92

[TV04] Jivodar B. Tchakarov and Nitin H. Vaidya. Efficient content location in wireless
ad hoc networks. In Proceedings of the 2004 IEEE International Conference on
Mobile Data Management (MDM’04), pages 74–85, Berkeley, California, USA,
January 2004. 86, 87

[WCCC07] Shan-Hung Wu, Kun-Ta Chuang, Chung-Min Chen, and Ming-Syan Chen.
DIKNN: An itinerary-based KNN query processing algorithm for mobile sen-
sor networks. In IEEE 23rd International Conference on Data Engineering
(ICDE’07), pages 456–465, Istanbul, Turkey, April 2007. 86, 88

[Wei91] Mark Weiser. The computer for the twenty-first century. Scientific American Spe-
cial Issue on Communications, Computers, and Networks, pages 94–104, Septem-
ber 1991. 38

[WL04] Julian Winter and Wang-Chien Lee. KPT: A dynamic KNN query processing
algorithm for location-aware sensor networks. In Proceedings of the First Work-
shop on Data Management for Sensor Networks (DMSN’04), Toronto, Canada,
August 2004. 86, 87

[WSCY99] Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, and Yelena Yesha. Updat-
ing and querying databases that track mobile units. Distributed and Parallel
Databases, 7(3):257–387, July 1999. 89

[Wu05] Xiaoxin Wu. VPDS: Virtual home region based distributed position service in
mobile ad hoc networks. In Proceedings of the 25th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS’05), pages 113–122, Columbus,
Ohio, USA, June 2005. 85

[WXL05] Julian Winter, Yingqi Xu, and Wang-Chien Lee. Energy efficient processing of
K nearest neighbor queries in location-aware sensor networks. In Proceedings of
the Second Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous’05), pages 281–292, San Diego, California,
USA, July 2005. 86, 87

[XFLW07] Yingqi Xu, Tao-Yang Fu, Wang-Chien Lee, and Julian Winter. Itinerary-based
techniques for processing K nearest neighbor queries in location-aware sensor
networks. Signal Processing, 87(12):2861–2881, December 2007. 86, 87, 88

[XL03] Yingqi Xu and Wang-Chien Lee. Window query processing in highly dynamic
geo-sensor networks: Issues and solutions. In Proceedings of NSF Workshop Geo
Sensor Networks (GSN’03), Portland, Maine, USA, October 2003. 86, 88

BIBLIOGRAPHY 263

[YLG03] Dan Yu, Hui Li, and Ingo Gruber. Path availability in ad hoc network. In Pro-
ceedings of the 10th International Conference on Telecommunications (ICT’03),
volume 1, pages 383–387, Papeete, French Polynesia, February 2003. 151

[YLN03] Jungkeun Yoon, Mingyan Liu, and Brian Noble. Random waypoint considered
harmful. In Proceedings of the 22nd Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM’03), San Francisco, California,
USA, March 2003. 58

[Zah06] Thomas Christian Zahn. Structured Peer-to-Peer Services for Mobile Ad Hoc
Networks. Dissertation, Freie Universität Berlin, Berlin, Germany, July 2006. 88

[ZS05] Thomas Zahn and Jochen Schiller. MADPastry: A DHT substrate for practicably
sized MANETs. In Proceedings of the 5th Workshop on Applications and Services
in Wireless Networks (ASWN’05), Paris, France, June 2005. 88

[ZSLS06] Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed seg-
ment tree: Support of range query and cover query over DHT. In Proceedings
of the 5th International Workshop on Peer-to-Peer Systems (IPTPS’06), Santa
Barbara, California, USA, February 2006. 88

[ZWS06] Thomas Zahn, Georg Wittenburg, and Jochen Schiller. Towards efficient range
queries in mobile ad hoc networks using DHTs. In Proceedings of the 1st Inter-
national Workshop on Decentralized Resource Sharing in Mobile Computing and
Networking, pages 72–74, Los Angeles, California, USA, September 2006. 86, 88

Index

A
accumulative node visibility set 52, 55

size .58
accuracy

data accuracy. .43, 217
location accuracy 43, 75, 132, 182-183,

200-201, 214
query accuracy 201-202, 210
request accuracy . 126

accuracy threshold 190, 191, 192-193
active state 157, 158, 161-166
Adaptive Flooding . 54
ad-hoc communication. .36
Ad hoc On-Demand Distance Vector Routing

46, 81
aggregation phase.196, 198-199
aggregation radius 198, 199
AODV see Ad hoc On-Demand Distance

Vector Routing
assisted ad-hoc 42, 214, 219, 220

B
bandwidth

link bandwidth . 47, 48
battery . 47-48
battery consumption . 48
battery depletion . 48
Bernoulli distribution. 104, 107

expectation value 104, 107
best effort

data update . 92, 185
query processing 199, 217

bidirectional perimeter mode 94
Bidirectional Perimeter Routing 75, 82,

92-95, 111
routing convergence 94
source route . 94

bidirectional perimeter traversal 111

bivariate covariance matrix 235
bivariate normal distribution 182-183

covariance matrix 182-183
determinant . 182

bivariate probability distribution 181-183
bivariate uniform distribution 191
blocking interval 153, 155, 157
BPR. see Bidirectional Perimeter Routing
breadth first search 155-156
broadcast storms . 49, 50

C
canonical location-centric storage 73-74
capacity

memory capacity 47-48, 144
packet capacity 101, 104

CAP Theorem. .92
Carrier Sense Multiple Access.see

CSMA/CA
cell

lowest-ID cell . 188-189
mapping of data items.184
mapping to reference coordinate184,

185
cell-based data-centric storage 83-84
cell-based DCS see cell-based data-centric

storage
cell-based partitioning 99-100, 107
cell-based replicated 99, 106-107
cell-based single-copy. 99, 108-109
cell-based storage 99-100, 105-109

cell-based partitioning.99-100, 107
cell-based replicated 99, 106-107
cell-based single-copy 99, 108-109

Cell Hash Routing 83, 85, 100
cell structure184, 194, 198
CEP see circular error probable
Chi . 191

264

INDEX 265

CHR see Cell Hash Routing
circular error probable 182-183, 191
C-LCS.see canonical location-centric

storage
Clear to Send see RTS/CTS
client tier (Nexus platform) 40-41, 219
client tier (reference model) 76, 197-199,

219
closed perimeter 83, 94, 98
coherence see spatial coherence
collision avoidance see CSMA/CA
collision detection see CSMA/CA
collisions . 46
combined eligibility see combined node

eligibility
combined minimum eligibility. . .see combined

minimum node eligibility
combined minimum node eligibility 151
combined node eligibility 150
communication range . 45
computing

context-aware computing 37, 39
location-based computing 39
mobile computing . . . 37, 39-40, 72, 78-79
nomadic computing 37, 38-39, 42, 72
pervasive computing 38, 39, 79-80
sentient computing . 39
ubiquitous computing 36-37, 38, 39-40

computing capabilities 47-48, 144
congestion control

of TCP. 46
congestion-related packet loss48
congestions . 46
connection time see node connection time
connectivity

k-connectivity . 50
network connectivity 50-51

consistency
data consistency 81, 92, 162, 185, 216
eventual consistency92, 160-162, 216

Consistency, Availability, and Partition Toler-
ance see CAP Theorem

consolidation acknowledgement 164-166
consolidation request 164-166
context . 39

primary context . 40
secondary context . 40

context-aware computing 37, 39
context-aware middlewares 78-81
context-aware systems 78-81
context-based applications . . . 40-41, 73, 76-77
context-based interactions 40-41, 77
context-based services 42-43
context management

in hybrid system structures 42,
218-220

in mobile ad-hoc networks.42, 80-81
middlewares . 78
Nexus . 40-41, 77
reference models . 78
systems . 78

context model . 39-41
context quality . 42-43
context server . 41, 219
continuous node visibility set 52, 57

size .57
continuous query . 204
core data storage 76, 95-99, 194-195,

213-214
home node . 95-96
request forwarding . . . 97-99, 162, 194-195
server advertisement96-97, 111, 158,

161, 162-163
system model .91-92

covariance matrix
bivariate covariance matrix 235

coverage
network coverage . 217
sensor coverage 210, 215

C-PART. see cell-based partitioning
C-REP see cell-based replicated
critical distance 143-144, 237-238
critical time . 144
C-SC see cell-based single-copy
CSMA/CA . 46, 123, 207

D
data

spatial data . 73
static data . 42-43, 217

data accuracy . 43, 217

266 INDEX

data availability
through data replication 216
tradeoff with data consistency 92

data centricity . 37, 73
data-centric storage73, 81-85, 92-95

cell-based data-centric storage 83-84
classification. .82
position-based data-centric storage

81-83
Data-centric Storage 81, 85

home node 81, 84, 100, 110
data-centric storage via Greedy Perimeter

Stateless Routing see DCS/GPSR
data characteristics 43, 216-217

data accuracy. .43, 217
data completeness 210, 217
data consistency 81, 92, 162, 185, 216
data dynamics.43, 213, 216-217
data quality43, 213, 217
data size . 43
spatial data . 73
static data . 42-43, 217

data completeness 210, 217
data consistency 81, 92, 162, 185, 216

tradeoff with data availability.92
data consolidation 142, 157, 162-166

active state . 162-166
consolidation acknowledgement . . . 164-166
consolidation request 164-166
data acknowledgement 165-166
data server redundancy 162, 163-166
data transfer . 165
higher-ID data server163, 164, 166
lower-ID data server 163, 164
migrating state . 166
negotation. .164
prepare state 164-165, 166
receiving state.165-166
redundancy detection 162, 166
redundancy notification.163, 165-166
retired state . 165

data dynamics 43, 213, 216-217
relation to query dynamics 217

data inaccuracy see data accuracy
data incompleteness . . . see data completeness

data item . 91
mapping to cell .184
mapping to reference coordinate 184

data maintenance cost.101
data migration 76, 84-85, 95, 141-161,

213-214
available bandwitdh 153
benefit . 141, 146
blocking interval 153, 155, 157
DataMiP . 167
deferral 146, 148, 153, 155-157
framework . 141-142
greedy migration 154, 167
handling of data requests 160-161
necessity . 141-142
network partitions . 162
initial network path 153
integration with data replication.216
network path recomputation 153
oscillations . 150
progressive migration 167
source server . 157
states . 157, 164
success . 141-142
target network path 157
target server151, 156, 157, 158
termination . 158
urgency . 143
variants . 167
via geometric route 156, 167
via source route 156, 167

data migration mechanism see migration
mechanism

data migration policies see migration
policies

data migration protocolsee DataMiP
DataMiP. 167
data quality. .43, 213, 217

data accuracy. .43, 217
data completeness 215, 217
defined data quality 217

data query . 92
data replication 48, 53, 161, 184, 216

integration with data migration.216
number of replicas 53, 216

INDEX 267

replica placement .216
data request . 92

data query . 92
data update . 92
handling during data migration. . .160-161

data server .91, 183-184
active state 157, 158, 161-166
higher-ID data server163, 164, 166
lightweight data server.76
lower-ID data server 163, 164
migrating state157, 158, 166
prepare state 164-165, 166
receiving state 157, 165-166
retired state 157, 158, 161, 165
server advertisement 96-97, 162-163
states . 157, 164

data server redundancy 162, 163-166
breaking ties . 165-166
detection . 162-163
multiple server redundancies 165-166
resolution . 162

data size . 43
data subset . 91, 100, 157

migration time . 154
multiple versions . 162
query cost . 101
residual size . 153

data update . 92
best effort . 92, 185
cost . 101

DCS see data-centric storage
DCS/GPSR.99, 109-110, 124-125
dead reckoning . 87, 218
density

node density. .47, 49
object density 198, 217

device failure . 48
device mobility . 45-46
distance-based eligibility . . .see distance-based

node eligibility
distance-based node eligibility 147-148,

149, 150-151
distributed object storage 85-87
distribution

Bernoulli distribution 104, 107

bivariate normal distribution 182-183
bivariate probability distribution

181-183
bivariate uniform distribution 191
node distribution . 49
uniform random distribution.104

duration
link duration . 50
migration duration 168-169
of network partitions91-92, 162

dynamics
data dynamics.43, 213, 216-217
query dynamics . 217

E
eligibility.see node eligibility
energy resources 47, 48, 144
event management 41, 218

in hybrid system structures.218-220
event observation 41, 73, 218

in hybrid system structures 218
eventual consistency92, 160-162, 216
exit predicate . 144
exit priority . 144
exposed terminal . 46
external data storage.see external storage
external storage . 100

F
face routing . 82
failure

device failure . 48
fatal migration failure169, 177-180
node failure . 161, 216
recoverable migration failure 169,

177-180
failure resilience

through data replication 216
fatal failure see fatal migration failure
fatal migration failure.169, 177-180
federation proxy. .220
federation tier (Nexus platform) 40-41
flooding

Adaptive Flooding. .54
cost . 101
simple flooding 54, 101

268 INDEX

free space radio propagation model 51
frequency

Perimeter Refresh Protocol 110
query frequency . 101
server advertisement 97, 101, 110
update frequency . 101

G
Gabriel Graph . 109
geocast routing .145
geometric location model42, 217
geometric overlay . 183-184
geometric routing 46, 81-82, 92

cost . 102
greedy mode. .94
void . 93

global partitioning 100, 104-105
Global Positioning System.see GPS
global replication 100, 103
global single-copy 100, 105
global storage 100, 103-105

global partitioning.100, 104-105
global replication.100, 103
global single-copy 100, 105

G-PART see global partitioning
GPS . 37, 39, 42, 182

circular error probable.182-183
Garmin . 37, 39
Garmin GPSMAP 76CSx.182
location accuracy . . . 132, 182-183, 200-201
location fix . 184
location model . 182
location updating interval 184
selective availability 37
SiRFstar III chipset.37, 39, 182
WGS84. .91

GPSR see Greedy Perimeter Stateless
Routing

GPS receiver 37, 39, 46, 182, 201
graph-based random waypoint mobility model

58
graph planarization . 109

Gabriel Graph. .109
greedy migration . 154, 167
Greedy Perimeter Stateless Routing . . . 46, 73,

81, 92-95

G-REP see global replication
G-SC see global single-copy

H
heuristic phase195-196, 197-199
hidden terminal . 46
home node

core data storage 95-96
Data-centric Storage 81, 84, 100, 110
practical home node 93
selection . 93-95

hybrid federation tier .219
hybrid location model 42, 217
hybrid system structures 42, 218-220

I
IEEE 802.11 37-38, 45-46, 123

CSMA/CA 46, 123, 207
legacy . 37, 38
RTS/CTS.46, 123, 207

inclusion condition 190, 191
inclusion threshold . 191
information-centric storage 73
infrastructure-based network . . . 36, 42, 48-49,

77
in hybrid system structures 219

J
join event.see partition join event

K
k-connectivity . 50
k-nearest neighbor query 87-88
k-NNQ.see k-nearest neighbor query

L
latency

query latency . 202, 210
request latency . 126

LCS see location-centric storage
LCS/BPR . 99, 124-125
LCS/geocast . 124-125
link . see network link
link bandwidth . 47, 48
link duration . 50
link lifetime

model . 155

INDEX 269

residual link lifetime 152, 156
link quality . 47, 48, 153
link stability . 155

models . 151
load factor . 150
local data storage see local storage
locality . 73
local storage . 80, 88, 100
location

accuracy model 44, 77, 181-183, 212
practical notion . 182
reference location . 74
storage location . 73

location accuracy 43, 75, 132, 182-183,
200-201, 214

location area.183, 187-192
in polar coordinates 192

location-based computing .
location-based services 36, 42
location-centric storage . . .72-74, 95, 194, 213

canonical location-centric storage . . . 73-74
reference location . 74
reference model 74-77, 219

location-centric storage via Bidirectional Peri-
meter Routing see LCS/BPR

location-centric storage via geocast.see
LCS/geocast

location error see location accuracy
location fix. .184, 185, 188
location model . 217

complexity . 42
geometric location model 42, 217
hybrid location model 42, 217
symbolic location model 42, 217

location pdf . 181
derivation . 235
in polar coordinates 192
supporting area . 182

location probability density function see
location pdf

location semantics 75, 77, 181-183, 218
location servers .73
location services . 85, 87
location updating . . . 85-90, 184-190, 214-215

data consistency. .185

lowest-ID cell . 188-189
object delete . 187-188
object record . 185
object tracing 187-188, 189-190
object update . 187-188
outdated location information 184
previous cell set 187-188, 190
proactive copy removal 185
proactive object removal 187, 188-189
soft state . 184
tracing distance 187, 188, 190

M
MAC. see medium access control
malformed perimeter 82, 92-95

fraction of malformed perimeters 102
Mark Weiser.see Weiser, Mark
maximum inaccuracy.89-90, 191
MDM.see mobile data management
MDP see migration decision policy
medium see shared medium
medium access control 46-47
memory capacity 47-48, 144
mesh networksee wireless mesh network
migrating state157, 158, 166
migration acknowledgement 158
migration cycle 142, 144, 156-157
migration decision.141, 156-157
migration decision policy 141-142, 145,

146-157
combined node eligibility 150-151
distance-based node eligibility.

147-148, 149, 150-151
estimated migration time 154
migration decision predicate.142, 151,

156, 157
network topology exploration 145-146
node eligibility 146, 147-151, 156-157
path stability . 151-156
remote state 141-142, 145
residual sojourn time 149
sojourn-based node eligibility 147,

148-149, 150-151
stretch factor . 155
time-based node eligibility 147, 150,

151

270 INDEX

triggering . 144
migration decision predicate142, 151, 156,

157
migration duration 168-169
migration duration fraction.168-169
migration efficiency. .168
migration failure 142, 157, 169, 177-180

fatal migration failure169, 177-180
recoverable migration failure 169,

177-180
migration mechanism. . .76, 141-142, 157-166

active state.157, 158, 161
geometric routing . 167
migrating state.157, 158
migration acknowledgement 158
migration request 158, 166
receiving state . 157
retired state157, 158, 161
source routing . 167
transport protocol . 158

migration policies.76, 141, 142-157
blocking interval 153, 155, 157
eligible nodes . 142
local state 141, 142, 145
migration cycle 142, 144, 156-157
migration decision policy 146-157
migration recommendation policy

142-144
tasks . 141

migration priority 142-144, 147-151, 153,
155, 157

migration recommendation 141
migration recommendation policy 141,

142-144, 237
computing capabilities144
critical distance 143-144
critical time . 144
deferral. .142
energy resources . 144
exit predicate . 144
exit priority . 144
local state . 141
memory capacity . 144
migration cycle 142, 144
migration priority 142-144

migration recommendation predicate
141, 142-144

optimal distance 143-144
spatial predicate.142, 143, 144
spatial priority143, 144
temporal predicate 143, 144, 145
temporal priority 143144, 145
temporal threshold 144
threshold distance 143-144

migration recommendation predicate 141,
142-144, 237

migration request . 158
denial . 166

migration robustness . 169
migration threshold . 101
minimum required path lifetime 155-156
mobile ad-hoc network 45-49

as context server . 220
characteristics . 47-49
context management 42, 80-81
federation proxy . 220
in hybrid system structures 219
mean route length 231-232
medium access control 46-47
network model . 45-47
routing layer . 46
spatial query processing 88
system model91-92, 183-184
transport layer . 46-47

mobile computing 37, 39-40, 72, 78-79
mobile data management 72

frameworks . 78
mobility

device mobility . 45-46
node mobility . . . 45, 47, 49, 123, 149, 217

mobility model
graph-based random waypoint mobility

model . 58
random waypoint mobility model 58,

124
mobility-related packet loss 49
mode

bidirectional perimeter mode 94
greedy mode. .94
redundacy detection mode.162-163

INDEX 271

model-based optimum result 201, 210
MRP. . .see migration recommendation policy

N
nearer relation . 193
nearest neighbor query . 87
network

infrastructure-based network 36, 42,
48-49, 77, 219

mobile ad-hoc network 45-49, 91-92
switched network 47, 158
vehicular ad-hoc network 80
wireless mesh network 37, 46, 49
wireless sensor network 38, 46, 49

network characteristics47-49, 212
computing capabilities 47-48, 144
energy resources 47, 48, 144
link bandwidth . 47, 48
link quality 47, 48, 153
memory capacity 47-48, 144
network connectivity 50-51
network coverage . 217
network topology . 47
node density. .47, 49
node mobility . . . 45, 47, 49, 123, 149, 217

network connectivity 50-51
network coverage . 217
network density see node density
network geometry

correlation with network topology. . . .103,
231-232

network link
bandwidth. .47, 48
duration . 50
lifetime . 152, 156
lifetime model . 155
quality . 47, 48, 153
stability . 155
stability models . 151

network mobility see node mobility
network partition 49, 51, 91-92, 162, 216

duration . 91-92, 162
during data migration 162
during request forwarding 98
exterior. .93
forming . 49, 91-92, 162

interior . 93
joining of network partitions 99, 162
set of network partitions 52

network partition change rate . . . see partition
change rate

network partition event . . . see partition event
network partitioning 49-58, 92, 212
network partition metrics see partition

metrics
network partition size see partition size
network partition size ratiosee partition

size ratio
network path

computation . 152-156
initial network path for data migration . . .

153
length . 155
length restriction 155-156
lifetime . 154-155
maximum length for data migration.

155
minimum length . 155
minimum required lifetime 155-156
recomputation. .155
recomputation due time 158
residual lifetime 156, 158
selection of network path 155
stability . 142, 151-156
sufficiently stable network path 153,

156
target network path for data migration. . .

157
transparent switching.155

network topology . 47, 123
correlation with network geometry . . . 103,

231-232
network topology exploration 75-76,

141-142, 145-146, 152-153, 158
aggregation delay 145, 153
aggregation tree . 145
geocast routing . 145
reverse aggregation tree 145
topology reply . 145
topology request. .145

network topology exploration region

272 INDEX

145-146, 155, 237-248
area restrictions 237-238
base shapes . 238-242
circular case 238-239, 243
curvature subcase 239-240, 243-245
elliptical cases.239-242, 243-248
special case 238, 242-243
summary of cases 242, 248
summary of shapes 146
tangent subcase 240-242, 246-248

network topology graph 51, 52
network-wide partition metrics 52, 53-55
Nexus . 39, 40-41, 42

context server . 41, 219
platform . 40-41, 77
World Wide Space 37, 41, 42

NLLS see nonlinear least-square fitting
NNQ.see nearest neighbor query
node

home node 81, 84, 93-96, 100, 110
perimeter entry node93-95, 96
proxy node 104-105, 107

node-centric partition metrics 52, 55-58
node-centric routing . 95
node-centric storage . 73
node connections see number of node

connections
node connection time 52, 56
node density . 47, 49
node distribution . 49
node eligibility 146, 147-151, 156-157

combined minimum node eligiblity. . . .151
combined node eligibility 150
distance-based node eligibility.

147-148, 149, 150-151
sojourn-based node eligibility 147,

148-149, 150-151
time-based node eligibility . . . 147150, 151

node failure . 161, 216
node mobility 45, 47, 49, 123, 149, 217
node partition change rate 52, 55-56
node separations see number of node

separations
node separation time.52, 56-57
node visibility set

accumulative node visibility set 52, 58
continuous node visibility set 52, 57

node visibility sets 52, 57-58
nomadic computing 37, 38-39, 42, 72
nonlinear least-square fitting 103
normal distribution

bivariate normal distribution 182-183
NTE see network topology exploration
NTE region.see network topology

exploration region
number of node connections 52, 57
number of node separations.52, 57
number of partitions 52, 53-54

frequency distribution 54

O
object density . 198, 217
object query. .85-87
open perimeter . 83, 93
optimal distance . 143-144

P
packet capacity . 101, 104
packet loss . 48-49

congestion-related packet loss 48
mobility-related packet loss 49

packet loss probability.152
partial perimeter 93-95, 96, 98-99
partial query.194-195, 196, 197-199
partition change rate 52, 54-55

node partition change rate 52, 55-56
partition event . 51

partition join event . 51
partition split event 51
total order of partition events.51

partition join event . 51
partition metrics . 52-58

accumulative node visibility set 52, 58
continuous node visibility set 52, 57
network-wide partition metrics

52, 53-55
node-centric partition metrics

52, 55-58
node connection time 52, 56
node partition change rate 52, 55-56
node separation time 52, 56-57

INDEX 273

node visibility sets 52, 57-58
number of node connections 52, 57
number of node separations 52, 57
number of partitions 52, 53-54
partition change rate 52, 54-55
partition size ratio 52, 55
size of partitions 52, 54
taxonomy . 52-53

partition size see size of partitions
partition size ratio. .52, 55
partition split event . 51
path . see network path
path lifetime

minimum required path lifetime
155-156

residual path lifetime 156, 158
path stability 142, 151-156

models . 151
perimeter . 81, 92-95

asymmetric perimeter 94
bidirectional perimeter mode 94
bidirectional perimeter traversal 111
closed perimeter 83, 94, 98
entry node . 93-95, 96
length . 93-95, 111
length distribution 109
long perimeter . 93
malformed perimeter 82, 92-95, 102
mean length . 109
open perimeter . 83, 93
partial perimeter 93-95, 96, 98-99
routing overhead 94-95
shapes . 93-94, 96
smallest possible length 94
small perimeter . 96
traversal 92-95, 102, 109, 111
unidirectional perimeter 110

perimeter radius 93-95, 96, 111
Perimeter Refresh Protocol 81

frequency. .110
perimeter routing. .92-95

graph planarization.109
right-hand rule . 94

perimeter traversal . 92-95
bidirectional perimeter traversal 111

full perimeter traversal 102, 109
unidirectional perimeter traversal 111

pervasive computing 38, 39, 79-80
piggybacking . 97
planarization see graph planarization
PNQ see probabilistic k-nearest neighbor

query
position accuracy see location accuracy
position-based data-centric storage 81-83
position-based DCS.see position-based

data-centric storage
position-based storage

DCS/GPSR.99, 109-110, 124-125
LCS/BPR.99, 124-125
LCS/geocast . 124-125

position errorsee location accuracy
prepare state164-165, 166
primary context . 40
probabilistic k-nearest neighbor query

aggregation phase196, 198-199
aggregation radius 198, 199
algorithm . 195-199
candidate objects . 196
concurrent partial queries.210
final result . 197-198
heuristic phase 195-196, 197-199
maximum search radius 198
nearer probability 192, 193
nearer relation. .193
partial query196, 197-199
query reference position. . . .190, 192, 193,

196, 197
result . 193
semantics . 192-194

probabilistic nearest neighbor query 89-90
probabilistic queries . 88-90

classification. .89
probabilistic range query 89-90

aggregation of query result 195
algorithm . 194-195
inclusion condition 190, 191
inclusion threshold 191
partial query . 194-195
query region 191-192, 194
result . 191

274 INDEX

semantics . 190-192
probabilistic spatial queries 214-215

algorithms . 194-199
semantics . 190-194

probability distribution
bivariate probability distribution

181-183
progressive migration .167
proxy

federation proxy . 220
query proxy.194, 195, 196, 197-199

proxy node . 104-105, 107
PRP.see Perimeter Refresh Protocol
PRQ. see probabilistic range query

Q
quality

context quality . 42-43
data quality43, 213, 217
link quality 47, 48, 153

query
arbitrary query . 100
continuous query . 204
data query . 92
k-nearest neighbor query 87-88
nearest neighbor query 87
object query . 85-87
partial query 194-195, 196, 197-199
probabilistic k-nearest neighbor query

192-194, 195-199
probabilistic nearest neighbor query

89-90
probabilistic queries 88-90
probabilistic range query 89-90,

190-192, 194-195, 214-215
probabilistic spatial queries190-199,

214-215
range query 73, 88, 100
spatial query . 77, 218

query accuracy . 201
impact of query latency 210
with respect to the model-based optimum

result .201
with respect to the real world-based opti-

mum result . 202
query client 194, 195-196, 198

query cost . 101, 202
query dynamics

relation to data dynamics 217
query frequency . 101
query latency . 202

impact on query accuracy 210
query offset . 201-202, 210

with respect to the model-based optimum
result .201

with respect to the real world-based opti-
mum result . 202

query processing 77, 85-90, 190-199
accuracy threshold 190, 191, 192-193
best effort . 199, 217
classification. .86
in hybrid system structures.218-220
in wireless sensor networks 87-88
spatial query processing . . . 87-90, 214-215

query proxy 194, 195, 196, 197-199
query region. .191-192, 194
query result

defined quality . 217

R
Radio Frequency Identification Tag 200
radio propagation model

free space radio propagation model 51
two-ray ground radio propagation model

124
radio range.see transmission range
random waypoint mobility model 58, 124

graph-based random-waypoint mobility
model . 58

range query . 73, 88, 100
real world-based optimum result 201, 202,

210
receiving state 157, 165-166
recoverable failure see recoverable

migration failure
recoverable migration failure 169, 177-180
redundancy detection. .162

concurrent redundancy detection 166
redundancy detection mode 162-163
redundancy notification 163, 165-166
reference coordinate 91, 93-95, 147-148

mapping of cells184, 185

INDEX 275

mapping of data items.184
reference location. .74
reference model (location-centric storage)

74-77, 219
Rendezvous Regions 83-85, 99
request . see data request
request accuracy . 126
request cost . 101, 126
request forwarding 97-99, 162, 194-195

closed perimeter . 98
network partitions . 98
phases . 97-99

request latency . 126
Request to Send see RTS/CTS
residual link lifetime 152, 156
residual path lifetime 156, 158
residual sojourn time . 149
resilient source routing. . . .75-76, 141-142, 158
retired state157, 158, 161, 165
RFID see Radio Frequency Identification

Tag
routing

Ad hoc On-Demand Distance Vector Rout-
ing. .46, 81

Bidirectional Perimeter Routing . . . 75, 82,
92-95, 111

Cell Hash Routing 83, 85, 100
face routing . 82
geocast routing . 145
geometric routing . . . 46, 81-82, 92-94, 102
Greedy Perimeter Stateless Routing . . . 46,

73, 81, 92-95
node-centric routing 95
overhead . 46
perimeter routing92-95
resilient source routing 75-76, 141-142,

158
stateless routing . 46
topological routing . 46
unidirectional perimeter routing 93-95

routing layer . 46
routing protocols . 46, 82

geometric routing protocols 46, 82
topological routing protocols46

routing tier (reference model) 75-76,

77-78, 219
RR see Rendezvous Regions
RTS/CTS . 46, 123, 207

S
secondary context . 40
selective availability . 37
sensing range . 200, 201
sensor coverage . 210

partial sensor coverage 215
sensor technology 38-39, 213
sentient computing . 39
separation time see node separation time
server advertisement96-97, 111, 158, 161,

162-163
cell-based single-copy.108-109
cost . 101
extension . 97
frequency . 97, 101, 110
global single-copy . 105
HELLO beacons . 97
phases . 96
piggybacking . 97
redundancy detection mode 162-163
server advertisement information 96,

98
server advertisement record 163, 194
soft state . 97

server redundancy see data server
redundancy

service tier (Nexus platform).40-41, 219
service tier (reference model) 76, 77, 219
shared medium 46-47, 123, 158
simple flooding . 54, 101

cost . 101
SiRFstar III chipset 37, 39, 182
size of partitions. .52, 54

frequency distribution 54
soft state . 97, 184
sojourn-based eligibility see sojourn-based

node eligibility
sojourn-based node eligibility 147,

148-149, 150-151
spatial coherence . . . 74, 84, 141-143, 146, 168
spatial data . 73
spatial event . 73, 218

276 INDEX

spatial predicate 142, 143, 144, 149, 237
spatial priority .143, 144
spatial query . 77, 218
split event see partition split event
stability of network links see link stability
stability of network paths. . .see path stability
stateless routing . 46
static data . 42-43, 217
storage location . 73
storage tier (reference model) 76, 77-78,

194-195, 219
supporting location area see location area
switched network . 47, 158
symbolic location model 42, 217
system availability .92

T
TCP . 46

congestion control . 46
temporal predicate 143, 144, 145, 150
temporal priority 143, 144, 145, 153
threshold

accuracy threshold 190, 191, 192-193
inclusion threshold 191
migration threshold 101
temporal threshold 144

threshold distance143-144, 145, 237-238
threshold probability . 89
tiers

Nexus platform 40-41, 219
reference model 75-77, 219

time-based eligibility.see time-based node
eligibility

time-based node eligibility.147, 150, 151
load factor . 150

time-to-live . 93, 95
residual time-to-live 93

topological routing . 46
topology exploration see network topology

exploration
topology exploration region see network

topology exploration region
topology graph . . . see network topology graph
Transmission Control Protocol see TCP
transmission range . 152
transport layer . 46-47

TTL . see time-to-live
two-dimensional covariance matrix see

bivariate covariance matrix
two-dimensional normal distribution see

bivariate normal distribution
two-dimensional probability distribution

see bivariate probability distribution
two-dimensional uniform distribution see

bivariate uniform distribution
two-ray ground radio propagation model

124

U
ubiquitous computing 36-37, 38, 39-40
unidirectional perimeter 110

fraction of length occurrences 110
unidirectional perimeter routing 93-95
unidirectional perimeter traversal 111
uniform distribution

bivariate uniform distribution 191
uniform random distribution 104
unit disc graph model see unit disc model
unit disc model 51, 82, 124
update

data update . 92
update frequency . 101
Upsilon . 191

V
VANET see vehicular ad-hoc network
vehicular ad-hoc network 80
visibility sets see node visibility sets
void . 93

W
Weiser, Mark . 38
WGS84 . 91
wireless medium see shared medium
wireless mesh network 37, 46, 49
wireless sensor network 38, 46, 49

query processing .87-88
WMN see wireless mesh network
World Geodetic System 1984 see WGS84
World Wide Space 37, 41, 42
WSN see wireless sensor network

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Technological and Paradigmatic Trends
	1.2.1 Computing
	1.2.2 Communication
	1.2.3 Sensing

	1.3 Background
	1.3.1 Explicit Context Models
	1.3.2 SFB 627 (Nexus)

	1.4 Focus and Contributions
	1.4.1 Focus
	1.4.2 Contributions

	1.5 Structure of the Dissertation

	2 Fundamentals
	2.1 Mobile Ad-hoc Networks (MANETs)
	2.1.1 Network Model
	2.1.2 Discussion of Network Characteristics

	2.2 Partitioning in Mobile Ad-hoc Networks
	2.2.1 Related Work
	2.2.2 Simulation Model
	2.2.3 Preliminary Notations
	2.2.4 Definition of Partition Metrics
	2.2.5 Simulation Study
	2.2.6 Conclusions: Network Partitioning

	2.3 Location-centric Storage (LCS)
	2.4 Requirements and Reference Model
	2.5 Related Work
	2.5.1 Context-aware Systems and Middlewares
	2.5.2 Core Data Storage and Data Migration
	2.5.3 Location Updating and Query Processing
	2.5.4 Summary of Related Work

	3 Core Data Storage
	3.1 System Model
	3.2 Bidirectional Perimeter Routing
	3.3 Core Data Storage Algorithms
	3.3.1 Server Advertisement
	3.3.2 Request Forwarding

	3.4 Analytical Study
	3.4.1 Examined Approaches
	3.4.2 Analytical Model
	3.4.3 Analytical Derivations
	3.4.4 Discussion
	3.4.5 Analytical Study: Summary

	3.5 Performance Analysis
	3.5.1 Generic Methodology
	3.5.2 Core Data Storage: Methodology
	3.5.3 Performance Metrics
	3.5.4 Request Accuracy
	3.5.5 Request Latency
	3.5.6 Request Cost
	3.5.7 Evaluation Summary: Core Storage

	4 Data Migration
	4.1 Migration Framework Overview
	4.2 Migration Recommendation Policy
	4.3 Network Topology Exploration
	4.4 Migration Decision Policy
	4.4.1 Node Eligibility
	4.4.2 Path Stability
	4.4.3 Output of the Migration Decision Policy

	4.5 Migration Mechanism
	4.5.1 Data Migration
	4.5.2 Data Consolidation

	4.6 Performance Analysis
	4.6.1 Performance Metrics
	4.6.2 Spatial Coherence
	4.6.3 Migration Efficiency and Duration
	4.6.4 Migration Robustness
	4.6.5 Evaluation Summary: Data Migration

	5 Service Tier
	5.1 Semantics of Inaccurate Locations
	5.2 System Model Extensions
	5.3 Location Updating
	5.4 Query Processing
	5.4.1 Semantics of Probabilistic Spatial Queries
	5.4.2 Probabilistic Query Algorithms

	5.5 Performance Analysis
	5.5.1 Performance Metrics
	5.5.2 Query Accuracy and Query Offset
	5.5.3 Query Latency and Query Cost
	5.5.4 Evaluation Summary: Service Tier

	6 Conclusion
	6.1 Summary and Conclusions
	6.1.1 Network Characteristics and Network Partitioning
	6.1.2 Location-centric Storage Paradigm and Framework
	6.1.3 Core Data Storage and Data Migration
	6.1.4 Probabilistic Location Updating and Query Processing
	6.1.5 Analytical and Simulative Performance Evaluation

	6.2 Promising Research Directions
	6.2.1 Data Replication
	6.2.2 Extensions of Data and Model Characteristics
	6.2.3 Extension of Service Functionality
	6.2.4 Hybrid System Structures

	A List of Abbreviations
	B Network Partitioning: Addendum
	C Preliminaries
	C.1 LCS Core Mechanism
	C.1.1 Correlation between Topology and Geometry
	C.1.2 Derivation of Traversal Distances

	C.2 Derivation of the Location PDF

	D Network Topology Exploration Region
	D.1 Area Restriction on the NTE Region
	D.2 NTE Region Base Shapes
	D.2.1 Special Case
	D.2.2 Circular Case
	D.2.3 Elliptical Case 1: Curvature Subcase
	D.2.4 Elliptical Case 2: Tangent Subcase
	D.2.5 Summary of Cases

	D.3 NTE Region Specification
	D.3.1 Special Case
	D.3.2 Circular Case
	D.3.3 Elliptical Case 1: Curvature Subcase
	D.3.4 Elliptical Case 2: Tangent Subcase
	D.3.5 Summary of Cases

	Refereed Publications
	Bibliography
	Index

