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Abstract

In modern times, integrated circuits (ICs) are used in almost all electronic equipment

ranging from household appliances to space shuttles and have revolutionized the world

of electronics. Continuous reductions in the manufacturing costs as well as the size of

this technology have allowed the development of very sophisticated ICs for common use.

Post fabrication testing is necessary for each IC in order to ensure the quality and the

safety of human life. The improvement in technology as well as economies of scale are

continuously reducing fabrication costs. On the other hand, the increasing complexity of

circuits is leading to higher test costs. These increasing test costs affect the market price

of a chip.

A test set is a set of binary patterns that are applied on the circuit inputs to detect

the potential faults. Only a small number of bits in a test set are specified to 0 or

1 called care bits while other bits called don’t care bits may assume random values.

Test sets volume is characterized by the number of patterns as well as the size of each

pattern in a test set. The increasing number of gates in nanometer ICs has resulted in

an explosive increase in test sets volume. This increase in test sets volume is the major

cause for rapidly growing test costs. An IC is tested either by using an automatic test

equipment (ATE) or with the help of special hardware added on-chip that performs a

self-test. These two approaches as well as their hybrid derivatives offer various trade-offs

in test costs, quality, reliability and test time. In ATE testing high test sets volume leads

to the requirement of expensive testers with large storage capacity while in self-test it

results in significant hardware overhead.

A test set is highly compressible due to the presence of a large number of don’t

care bits. The Test data compression techniques are used to limit test sets volume and

hence the involved test cost. These compressed test sets are applicable to both ATE and

Self-test methodologies. Compression of a test set depends on its statistical attributes

such as the percentage and the distribution of care bits. The available test compression
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schemes assume that all the test sets have similar statistical attributes which is not

always true. These attributes vary considerably among various test sets depending on

the circuit structure and the targeted trade-offs. To get optimized reduction in test sets

volume, test sets with different statistical attributes have to be addressed separately.

In this work we analyze various test sets of industrial circuits and categorize them

into three classes based on their statistical attributes. By examining each class differently,

three novel compression methods and decompression architectures are proposed. The

proposed test compression methods are equally adaptable in ATE testing and self-test.

Three low cost programmable self-test schemes offering various trade-offs in testing are

developed by applying these methods.

The experimental results obtained with the test sets of large industrial circuits show

that the proposed compression methods reduce storage requirements by more than half

compared to the most efficient available methods. First time in literature the total

number of bits in a compressed test set are lesser than the number of care bits in the

original test set. The additional advantages of proposed methods include guaranteed

encoding, significant reduction in decompression time overhead and programmability of

decompression hardware.



Zusammenfassung

Heute haben Integrierte Schaltkreise (ICs) in fast allen elektronischen Geräten vom

Haushalt bis hin zur Raumfahrt Einzug gehalten und die Welt der Elektronik revolu-

tioniert. Ständige Senkungen der Herstellungskosten bei gleichzeitiger Miniaturisierung

erlauben die Entwicklung von komplexen ICs für den jeden Bedarf. Jeder produzierte

Chip muss getestet werden, um die Qualität sicherzustellen und menschliches Leben

nicht zu gefährden. Die Verbesserung der Fabrikationstechnologie sowie die Gesetze

der Skalierung reduzieren kontinuierlich die Herstellungskosten. Auf der anderen Seite

führt die zunehmende Komplexität der Schaltungen zu höheren Testkosten. Diese

zunehmenden Kosten schlagen sich im Marktpreis eines Chips nieder.

Ein Test ist eine Menge von binären Mustern, die an die Schaltungseingänge angelegt

werden, um potentielle Fehler zu erkennen. Nur eine kleine Anzahl von Bits in einem

Testmuster sind auf 0 oder 1 spezifiziert (sog. Care-Bits), während die anderen Bits (sog.

Don’t-Care Bits) beliebige Werte annehmen können. Das Testdatenvolumen ist durch die

Anzahl von Mustern und die Größe eines einzelnen Musters gegeben. Die zunehmende

Anzahl von Gattern in Nanometer-ICs hat zu einem explosiven Anstieg dieses Testdaten-

volumens geführt. Dieser Anstieg des Datenvolumens ist die Hauptursache für die rasch

wachsenden Testkosten. Ein IC wird entweder von einem externen Testgerät (Automatic

Test Equipment, ATE) getestet oder der Chip führt einen Selbst-Test mit Hilfe von

speziellen Hardwarestrukturen durch. Diese beiden Ansätze sowie deren Kombinatio-

nen bieten zahlreiche Möglichkeiten, Testkosten, Qualität, Zuverlässigkeit und Testzeit

gegeneinander abzuwägen. Beim externen Test werden bei hohem Testdatenvolumen

teure Testgeräte mit viel Speicher benötigt, während ein hohes Datenvolumen beim

Selbst-Test einen erheblichen Hardware-Overhead nach sich zieht.

Eine Testmenge kann stark komprimiert werden, da sie viele nicht spezifizierte

Bits enthält. Die Techniken zur Testdatenkompression werden verwendet, um das

Testdatenvolumen zu verringern und damit die anfallenden Testkosten zu senken. Sie
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können sowohl auf den externen Test als auch beim Selbst-Test angewendet werden.

Die Kompression einer Testmenge hängt von ihren statistischen Eigenschaften wie dem

prozentualen Anteil und der Verteilung der spezifizierten Bits ab. Die verfügbaren

Test-Kompressionsverfahren gehen davon aus, dass alle Testmengen ähnliche statistische

Eigenschaften haben, was jedoch nicht immer der Fall ist. Die Attribute unterscheiden

sich erheblich zwischen verschiedenen Testmengen je nach Schaltungsstruktur und den

angesprochenen Abwägungen. Für eine optimale Reduzierung des Testdatenvolumens

müssen Testmengen mit unterschiedlichen statistischen Eigenschaften getrennt behandelt

werden.

Diese Arbeit untersucht verschiedene Testmustermengen von industriellen Schal-

tungen und kategorisiert sie anhand ihrer statistischen Eigenschaften in drei Klassen.

Durch die getrennte Untersuchung jeder Klasse werden drei neue Kompressionsmethoden

und Dekompressions-Architekturen entwickelt. Die vorgeschlagenen Methoden sind

auf den externen Test als auch auf den Selbst-Test gleichermaßen anwendbar. Durch

die Anwendung dieser Methoden werden drei günstige, programmierbare Selbst-Test

Verfahren vorgestellt, die unterschiedliche Ziele und Schwerpunkte bedienen.

Die experimentellen Ergebnisse mit Testmustern für große industrielle Schaltungen

zeigen, dass die vorgeschlagenen Kompressionsverfahren den Speicherbedarf verglichen

mit den besten bekannten Methoden nochmals auf weniger als die Hälfte reduzieren.

Zum ersten Mal in der Literatur konnte die Zahl der Bits in der komprimierten Test-

menge unter die Zahl der spezifizierten Bits der ursprünglichen Testmenge gedrückt

werden. Die zusätzlichen Vorteile der vorgeschlagenen Methoden sind die garantierte

Kodierung, die signifikante Reduzierung der Zeit-Overheads und Programmierbarkeit

der Dekompressions-Hardware.
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CHAPTER 1

Introduction

1.1 Motivation and Goals of this work

Defects may be introduced during the fabrication of integrated circuits (IC) due to

unavoidable flaws in materials and manufacturing process. These manufacturing defects

can cause a malfunction in the circuit and result in system failure. Every IC needs to

be tested after fabrication in order to ensure that only a good circuit is delivered to

the customer. This test has to be comprehensive for the ICs used in safety critical and

mission critical systems. The advancement of semiconductor industry into the age of

nanometer technology has resulted in an explosive increase in gate count and complexity

of integrated circuits. These nanometer ICs have brought new test challenges from the

chip level to the board and system level which has made testing one of the important

issues in the design and development of nanometer system-on-chip (SOC).

To test a circuit, a binary test pattern is applied on its inputs and the response

on the outputs is compared with the expected response of a fault free circuit. Timing

related faults need a two pattern test where the first pattern sets initial values and the

second pattern propagates the circuit response to the outputs. In order to ensure high

test quality particular test patterns based on circuit structural information have to be

applied. Fault models, reflecting the behavior of defects in a circuit, are used to generate

these patterns. No single fault model accurately represents the behavior of all possible

defects that can occur, so a combination of different fault models is often employed in

the generation and evaluation of test patterns. The set of all potential faults of a specific

fault model and the set of patterns generated to detect them are termed as fault set and

deterministic test set respectively. Only a few inputs of a circuit need to be assigned a 0

1



2 CHAPTER 1. INTRODUCTION

or 1 to detect a fault while other inputs may assume random values. The bits specified

to 0 and 1 in a test pattern are called care bits and the remaining bits represented with

an X are called don’t care bits.

Sizes of fault sets and in turn deterministic test sets are increasing rapidly with

circuit complexity. Beside this, small feature sizes of modern devices lead to many

new defect mechanisms. The representation of these defects needs new complex fault

models and their detection requires large deterministic test sets with many more care

bits. These facts have resulted in an explosive increase in test sets volume. According

to international technology road map for semiconductors 2007 [ITRS 07], the test sets

volume will increase up to 120 times during next decade.

The automatic test equipment (ATE) testing and the self-test are two major ap-

proaches to perform test out of which many hybrid schemes are derived to achieve

different trade-offs in test quality, cost and time-to-market. In ATE testing, determin-

istic test sets are stored in the memory of an ATE and during the test the patterns

are transmitted to the circuit under test (CUT) and the responses are read back for

comparison with expected responses. Bandwidth between ATE and CUT is restrained

by slower speed of testers and their limited number of I/O pins. In self-test, the test

functionality is implemented in hardware. This hardware performs an autonomous test

and delivers a pass/fail judgment after completion of a test. Here a deterministic test

set is stored either in a memory or as a logic function.

The self-test may provide advantages over ATE testing in terms of test time, quality

and reliability. Since self-test can be performed at circuit speed, test time is reduced

and timing related fault detection is improved. Unlike ATE testing, the test hardware

is available in the field. This test hardware can be used for periodic self-test in order

to enhance the reliability of circuits and the entire system. If a circuit fails the in-field

test, same test hardware can be used to perform an economical diagnosis and repair

[Wang 08a].

The rapid growth in test sets volume is causing a rapid increase in the capital and

operational costs to test nanometer ICs. In ATE testing, expensive ATE with additional

memory depth per I/O pin is required to store high test sets volume and long test time

per IC is needed to apply this data. In self-test, high test sets volume results in significant

hardware overhead. Today test cost per transistor is almost as high as its fabrication

cost [Wang 08a]. The high test cost negatively impacts the market price of a chip. For

the successful operation of semiconductor industry in the future, it is inevitable to search
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for new test solutions that can drastically reduce test costs without compromising the

quality of fabricated chips.

Since rapid increase in test cost is the result of growing test sets sizes, test data

compression is widely used to reduce test sets volume. Test sets are inherently highly

compressible because of the presence of large number of don’t care bits. In test data

compression test sets are stored in compressed form which are later decompressed during

test with the help of additional hardware on-chip. Test compression schemes are broadly

classified into code based and linear decompressor reseeding based schemes. Code based

schemes exploit the regularity in test sets where regularity in a test set is defined as the

presence of repeating sequences of bits. The efficiency of reseeding depends on number of

care bits in a test set. If encoding efficiency (EE) is defined as the number of encoded care

bits divided by the required amount of storage bits, the maximum achievable encoding

efficiency with reseeding is 1 [Wang 08a]. The code based schemes do not have this

limitation.

In ATE testing the test data compression enables the use of low cost testers with

smaller memories and reduces the test time as well because lower volume of data has to

be transferred across the limited bandwidth between the ATE and the chip. However,

the fundamental gap between the speeds of ATE and CUT puts limits on test time

reduction. In addition, the decompression hardware added on chip cannot be reused

later in the field.

The test data compression reduces the cost of self-test by scaling down the area

overhead needed to store deterministic test sets. Nevertheless the decompression hardware

of employed scheme must be able to decompress test sets fast enough in order to retain

the speed advantage of self-test. Compressed test sets are stored either in the memory

of a circuit or as a hardwired logic function. The advantage of memory based self-test

over hardwired logic self-test is its programmability. If CUT structure and as a result

test sets are changed due to late design changes, the new test sets could be compressed

and stored in the same memory structure. The disadvantage is that it needs more area

compared to hardwired logic self-test [Wund 96].

Available test compression methods significantly reduce test cost but the rapid

increase in test sets volume demands the development of novel test data compression

method that can drastically reduce storage requirements while overcoming the limitations

in available methods. Compression of a test set depends on its statistical attributes

like care bits percentage and distribution of zeros and ones. Available compression
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methods assume that all test sets have similar attributes which is not always true.

Depending on the circuit structure and the required trade-offs, the statistical attributes

vary considerably among different test sets. Due to varying attributes, no single test

compression solution is possible that can guarantee optimized efficiency for all test sets.

In order to have optimized compression, test sets with different statistical attributes

have to be addressed differently.

The goals of our research are to analyze test sets of industrial circuits and categorize

them into different classes based on their statistical attributes. Then by addressing each

class differently, invent highly optimized test compression methods and decompression

hardware. Self-test schemes are attractive for ensuring high quality and reliability of

modern day ICs. Therefore our research shall take special care that the developed

compression methods can be employed in self-test without compromising any of its

benefits. Considering very large sizes of future circuits, the hardwired logic self-test does

not seem practical because a re-synthesis of self-test circuitry would be required after

each late design change resulting in significant resources and time overhead. Accordingly,

the developed schemes would facilitate a fully programmable self-test. Using each of the

proposed method, efficient programmable self-test schemes offering different trade-offs in

testing would be implemented in order to demonstrate their application and effectiveness.

1.2 Major contributions

After the analysis of different test sets, it has been discovered that test sets with different

statistical attributes could generally be categorized into three classes namely strongly

regular, weakly regular and irregular test sets. Consequently three novel compression

methods and decompression architectures have been proposed that offer optimized com-

pression and decompression for each class. The proposed test compression methods are

equally adaptable in ATE testing and self-test and three low cost programmable deter-

ministic self-test schemes offering different trade-offs have been developed by applying

these methods.

Test sets with low care bits percentages show strong regularities. These regularities

are efficiently exploited with the proposed method restrict encoding (RE) [Hakm 09] by

restricting successive repeating sequences to a single precomputed value. The portions of

test set showing irregularity are encoded with the seeds. For the first time in literature

the restrict encoding always offers an encoding efficiency higher than 1. The self-test
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scheme developed by employing restrict encoding achieves high test quality with very

less storage cost.

Test sets with high percentages of care bits do not contain strong regularity. However

if 0 and 1 are in unbalanced proportions, a weak regularity can be found in such test sets.

The proposed run-length encoding with parallel decompression (REWPD) [Hakm 05] uses

this regularity to offer compression ratio close to theoretical limit. Unlike conventional

run-length decompressors, the proposed decompressor regenerates a complete run-length

symbol in a single clock that significantly reduces the test time. A self-test scheme

offering small on-chip area overhead has been developed using REWPD. Comparing

to the state of the art similar method [El M 08], employing REWPD offers significant

reductions in test time and storage requirements.

The third scheme nearly complete reseeding (NCR) [Hakm 07] offers higher encoding

efficiency for irregular test sets by discovering regularity in encoding capabilities of a

linear decompresser. The NCR is based on the observation that ignoring few inconsistent

bits during seed computation enables to encode significantly large number of care bits in

the seed of a linear decompressor in a regular way. The ignored bits are stored separately

and embedded into generated patterns during test. Unlike other reseeding methods

the size of linear decompressor is independent of maximum number of care bits in a

test pattern and an encoding is always guaranteed that eliminates the possibility of any

degradation in test quality. The self-test scheme developed by utilizing NCR offers an

efficient test with short test time. The NCR reduces the self-test hardware overhead up

to half compared to the most efficient similar method.

1.3 Outline

Chapter 2 gives an overview of basic concepts that are necessary to better understand

this work and describes the state of the art. In chapter 3 statistical analysis of different

test sets generated for industrial circuits are presented. Chapter 4 describes the proposed

compression methods. Chapter 5 is devoted to demonstrating the employment of RE

in self-test in order to accomplish higher test quality with lesser test cost. Chapter 6

explains the development of a self-test scheme to efficiently achieve small on-chip area

overhead using REWPD. Chapter 7 describes efficient self-test to attain short test time

by employing NCR. Chapter 8 summarizes the whole work.
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CHAPTER 2

Preliminaries and State of the Art

Testing is the process of applying a set of binary patterns to the inputs of the circuit

under test (CUT) and analyzing the output responses. If the output responses match

the expected responses then the circuit is considered good otherwise it is assumed to be

defective. Each applied pattern is called a test pattern .

Defect in a circuit is the physical imperfection that causes a circuit to fail to perform

in a required manner. A fault is the representation of a defect at the abstract function

level. In order to assume that a combinational logic circuit with n inputs does not contain

functional faults, all 2n possible patterns have to be applied to its inputs. This approach

is called exhaustive testing . Since n is very large for modern circuits, exhaustive

testing is not feasible. The structural testing is a practical approach where specific

test patterns are generated based on the circuit’s structural information and a set of

fault models. A fault model reflects the behavior of defects in a circuit. The fault

models are used for pattern generation because the diversity of real defects has made it

difficult to generate patterns for defects. A combination of different fault models is often

used for testing a circuit since no single fault model accurately reflects the behavior of

all possible defects [Wang 06].

The stuck-at fault model is the most widely used fault model because it detects

the majority of defects in a circuit. Here a circuit is assumed to be modeled as an

interconnection of boolean gates. A stuck-at fault is assumed to affect only the inter-

connections between gates. A stuck-at fault transforms the correct value on the faulty

connecting line to appear to be stuck at a constant logic value, either a logic 0 or a logic

1, referred to as stuck-at-0 or stuck-at-1 , respectively [Abra 94, Bush 00, Wang 06]. In

7
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the example circuit of figure 2.1, a stuck-at-1 fault at the output of NAND1 forces the

output to remain 1 irrespective of the values at the gate inputs. Generally detecting

each stuck-at fault only once provides sufficiently high defect coverage. However for

critical applications the defect coverage is enhanced by detecting each stuck-at fault

multiple times with different patterns [Ma 95, Redd 97, Chan 98, Grim 99, Pome 99].

The developed compression schemes could be used for storing test sets of any fault model

cost effectively but for the sake of simplicity we shall assume only the stuck-at fault

model in the rest of our discussion. A test pattern generated to detect a specific fault of

a given fault model using the circuit’s structural information is called a deterministic

pattern . Every bit of a deterministic pattern may take one of three values {0,1,X}
where 0,1 are called care bits and X is a don’t care bit . If no pattern can be found to

test a fault, that fault is called undetectable fault . The process of pattern genera-

tion for modern circuits is automated using Automatic test pattern generation (ATPG)

[Roth 66, Goel 81, Fuji 83, Glas 95] tools.

To understand the process of pattern generation suppose we have the small circuit

shown in figure 2.1. In order to generate the test pattern that detects the stuck-at-1 at

NAND1 output, the inputs of NAND1 are set such that its output becomes 0. This is

only possible if both of its inputs are 1. A fault in a circuit can only be detected if its

expected response differs from the faulty response. For this the second input of NAND3

must be 1, which is justified by setting the inputs of NAND2 as 0X. Hence by applying

the test pattern 110X at the inputs of this example circuit, a 0 at the circuit output

tells that the output of NAND1 is stuck-at-1 and a 1 shows vice versa.

1
1

0
X

1 (0)

1

0 (1)
X

stuck-at-1
NAND1

Test 
Pattern

Expected 
Response

Faulty 
Response

NAND2

NAND3

Figure 2.1: An example of stuck-at fault and the pattern generation

A set of deterministic patterns targeting the faults of a specific fault model is termed

as deterministic test set . In our discussion, unless specified otherwise, a test pattern

and a test set would refer to a deterministic test pattern and deterministic test set

respectively. The care bits density of a test set is the percentage of care bits among

total bits of the test set. A test set with high care bits density is called a dense test

set while the one with low density is a sparse test set . Two patterns in a test set are
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called compatible patterns if there is no conflicting care bit at any position between

them. For example, the test patterns p1 and p2 shown at left hand side in figure 2.2

are compatible with each other. The compatible patterns can be merged into a single

pattern such that the resulting pattern carries all the care bits of both patterns. Test

set compaction is the process of reducing number of patterns in a test set by merging

pairwise compatible patterns into one pattern. It generally results in smaller but denser

test sets. Since test set compaction has exponential algorithmic complexity, heuristic

solutions [Kaji 94, Hamz 00, Lin 01, Galk 06] are often used to compact large test sets.

Figure 2.2 presents a small example of test set compaction. In the uncompacted test

set, patterns p1, p2 and p4 are pairwise compatible while p3 is compatible with p5. So p1,

p2 and p4 are merged to form the pattern p1 of the compacted test set and the pattern

p2 of this test set is formed by merging p3 and p5. The test set size has been reduced

from 5 to 2 due to compaction. This reduced test set still detects all the faults for which

the uncompacted test set was generated. However the care bits density has significantly

increased because of compaction.

Uncompacted test set

p1 1 0 X X X 0 X 1
p2 1 X X 1 0 X X X
p3 X 1 X 0 X X 0 X
p4 X X 1 X 0 X 1 X
p5 0 X 0 X 1 X X X

⇒

Compacted test set

p1 1 0 1 1 0 0 1 1
p2 0 1 0 0 1 X 0 X

Figure 2.2: Examples of uncompacted and compacted test sets

A symbol is a continuous sequence of bits in a test set. Two symbols are compatible

if they are of equal length and have no conflicting care bits at any position. Regularity

in a test set is the repetition of pairwise compatible symbols. A test set may show

regularity because of two main reasons:

� The care bits are sparse

� The care bits of the test set are biased toward 0 or 1

In sparse test sets the majority of symbols are compatible with each other that results

in strong regularity . The compatibility between symbols is very low in dense test sets.

However a weak regularity exists in dense test sets if their care bits are biased towards

0 or 1. We shall refer such a regularity as weak regularity or biased regularity .
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The test sets without any regularity are named irregular test sets. Generally dense

test sets without care bits biasness are irregular. Figure 2.3 shows the regularity in

the example test sets of figure 2.2 after dividing the test sets into 4 bit symbols. The

pairwise compatible symbols are represented with the similar background. The figure

shows that compatible symbols appear repeatedly in the uncompacted test set while no

symbol is repeated in the compacted test set.

Uncompacted test set

p1

p2

p3

p4

p5

1 0 X X
1 X X 1
X 1 X 0
X X 1 X
0 X 0 X

X 0 X 1
0 X X X
X X 0 X
0 X 1 X
1 X X X

⇒

Compacted test set

p1

p2

1 0 1 1
0 1 0 0

0 0 1 1
1 X 0 X

Figure 2.3: Regularity in the uncompacted and compacted test sets

The fault detection capabilities of a given test set for a given fault list are measured

in terms of fault coverage (FC) and fault efficiency (FE) which are defined as

FC =
Number of detected faults

Total number of faults
(2.1)

FE =
Number of detected faults

Total number of faults− Number of undetectable faults
(2.2)

Design for testability (DFT) enables structural test for complex circuits. ATPG

and test of sequential circuits is hard due to the existence of numerous internal states

that are difficult to set and check from external pins. Scan design [Eich 77], the most

widely used DFT methodology, transforms the problem of testing a sequential circuit

into the problem of testing a combinational logic. Every storage element is converted

into a scan cell by adding one additional scan input port and one additional scan

output port to provide them with external access. Scan cells are also termed as pseudo

primary inputs and pseudo primary outputs. Scan cells are connected together

to form multiple shift registers, called scan chains.

Conventionally a circuit is tested using an automatic test equipment (ATE). The

test data containing deterministic test sets and expected responses is stored in the

memory of tester. During test, the patterns are applied to the circuit and the responses

are collected, which are then compared to the expected responses to detect potential

faults. While the speed of circuits has increased in 100 folds over time due to reduction
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in feature sizes, the speed of ATE has increased only in 10 folds. Beside this testers have

limited number of I/O pins to transfer data between ATE and CUT. The gap between

the speeds of ATE and CUT and the limited number of tester pins results in bandwidth

bottleneck. Specialized expensive ATE with large storage capacity and large number

of I/O pins are required to test new generation circuits. In addition, in-field test and

diagnosis are not possible using ATE.

The self-test schemes are used to reduce test costs and to improve test quality

by eliminating the need of ATE and its related limitations. Here pattern generation,

response evaluation and test control are implemented in hardware. Depending on required

trade-offs in on-chip hardware overhead and test time, pattern generation, response

evaluation and test control can be constructed either in a special chip or as part of the

circuit itself. The former is termed as built-out self-test (BOST) and the latter as built-in

self-test (BIST). Higher defect coverage, inherent at-speed testing for timing related

faults and in-field test and diagnosis [Wang 08a] are additional advantages of self-test

beside ATE and bandwidth bottleneck riddance.

Test compression is used to reduce the storage cost of applied patterns and

expected responses. Test compression is of two types: the lossless compression and

the lossy compression . In lossless compression no test information is lost and the

original test data can be regenerated from the compressed one. In lossy compression,

commonly called compaction , the original data can not be retrieved because the long

sequences of the test data are converted into the short signatures. Lossless compression is

used for test patterns in order to preserve the fault efficiency. A decoded pattern shifted

into the scan chains exactly matches the original pattern in all the care bits. The output

responses are compacted because it suffices for test response analysis that the signature

of a faulty circuit differs from the signature of a good one. Since compaction extremely

reduces the volume of expected responses its storage requirements are insignificant

compared to compressed test sets. In the rest of our discussion the term test compression

will solely be used for lossless compression of a test set.

Test compression presents an example of test resource partitioning (TRP) in ATE

testing where test functionality is divided between circuit and the tester. Since test

compression reduces the storage and the bandwidth requirements, a low cost tester with

less memory and fewer I/O pins could be used. Figure 2.4 illustrates the idea of test

compression in ATE testing for a circuit with scan design. Here test data is stored in

ATE memory in compressed form. Additional hardware is added on-chip before the scan

chains to decompress the patterns coming from the ATE and after the scan chains to
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compact the responses going to the ATE.

.

.

.
CUT

.

.

.

.

.

.

Figure 2.4: An example of test resource partitioning for a scan enabled circuit

A number of pattern generation approaches are adopted in self-test to minimize the

hardware overhead needed to generate the input test data. In exhaustive self-test all

2n possible patterns are applied to a circuit where n is the total number of primary and

pseudo primary inputs. Any n-bit binary counter or a shift register that can cycle through

all states could be used as exhaustive pattern generator [McCl 81, McCl 86, Wang 86].

This technique guarantees complete fault efficiency but the extremely long test time due

to the large n has made this technique impractical for the modern day circuits.

A subset of 2n test patterns is generated in pseudo random testing [Bard 82]

in order to reduce the test length. The self-test using MISR and parallel shift register

sequence generator (STUMPS) scheme [Bard 82] shown in figure 2.5 is the canonical

approach of self-test where a pseudo random pattern generator (PRPG) is used as test

pattern generator, and a multiple input signature register (MISR) is used as a response

compactor. The storage elements as well as the primary inputs and the primary outputs

of the circuit are converted into multiple scan chains. A PRPG produces, at each clock,

a test vector of k bits, which are shifted into k scan chains in parallel. With t being

the maximum scan chain length, t test vectors are loaded into the scan chains to form a

complete test pattern. Once a complete pattern is shifted in, system clock is applied to

capture the responses of the circuit. These responses are then transferred to MISR for

compaction. The shifting in of the next pattern and the shifting out of the responses are

done at the same time.

In the rest of our discussion, we shall assume that the circuit under test (CUT)

complies with the STUMPS architecture. Pattern generation with PRPG offers minimum

hardware overhead and an easy implementation, but fault coverage is often sacrificed

due to the presence of the faults that are difficult to detect with random patterns. Such

faults are called random pattern resistant (RP-resistant) faults. The faults that are

detectable with random patterns are termed random pattern testable (RP-testable) faults.



13

.

.

.
CUT

.

.

.

.

.

.

M
I
S
R

P
R
P
G

vector

t 2 1
1

2

k

Figure 2.5: STUMPS scheme

Additionally achieving a certain level of fault efficiency is not possible in a reasonable

amount of time with pseudo random testing [Bard 87, Rajs 98, Bush 00, Jha 03].

Better fault efficiency and shorter test time are achieved with weighted random

pattern generation [Schn 75, Chin 84, Wund 87, Wund 90, Stro 91]. These patterns

are generated by inserting a combinational circuit between the PRPG and the CUT

to bias the random patterns with the help of stored weights such that the detection

probability of RP-resistant faults increases. In many cases a large number of weights

are required for complex circuits [Waic 89, Bers 93, Kapu 94, Lai 05] which limits its

feasibility.

Pseudo exhaustive testing is another approach to shorten test length while

retaining many advantages of exhaustive testing [McCl 81, Hell 90, Bush 00, Wang 08a].

When each output of the n-input CUT at most depends on w inputs, only 2w patterns

need to be generated and applied. The disadvantage of this approach is that if the value

of w exceeds certain limits, hardware segmentation is required to ensure practical test

time.

Deterministic self test schemes [Daeh 81, Dand 84] store precomputed deter-

ministic patterns to guarantee desired fault efficiency. But very often as the number of

required patterns increases with the size of the circuit under test, the required chip area

to store these patterns becomes unaffordable.

The advantages of low cost of pseudo random testing and guaranteed coverage of

deterministic testing are combined in mixed-mode self-test . These schemes offer a

trade-off between hardware overhead and test time while achieving desired fault efficiency.

In mixed-mode self-test RP-testable faults are detected by applying a limited number of

pseudo random patterns while the desired fault efficiency is achieved by targeting RP-

resistant faults with deterministic patterns. The pseudo random patterns are generated
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cost effectively by running a counter or shift register in autonomous mode. To reduce

the storage requirements of deterministic patterns different test compression schemes

[Koen 91, Wund 96, Toub 96, Gher 04] are used.

Test compression schemes

Code based Linear decompressor based

Fixed-to-fixed

Reseeding

Fixed-to-variable Variable-to-fixed Variable-to-variable

Dictionary 

encoding

Huffman 

encoding

Run-length 

encoding

Figure 2.6: Overview of compression schemes

A large number of test compression schemes have been proposed because of their

effectiveness in ATE testing and self-test. The chart in figure 2.6 gives a brief overview

of test compression. Available compression schemes are broadly classified into two main

categories namely code based schemes and linear decompressor based schemes.

Code based schemes exploit the regularity in test sets. Here the test data is partitioned

into symbols and every symbol is replaced with a codeword to form the compressed

data. A decoder converts each codeword into the corresponding symbol to regenerate the

original data. Two quantitative measures that are often used to merit the performance

of a code based scheme are compression percentage (CP) and compression ratio (CR)

which are defined as

CP =
Bits in uncompressed test set− Storage bits

Bits in uncompressed test set
× 100 (2.3)

CR =
Bits in uncompressed test set

Storage bits
(2.4)

The CP of a compression scheme depends on the partition of test data into symbols

and the frequency of occurrence of each symbol. The compression potential of a code

based scheme is estimated by determining its entropy H that is computed using the

formula
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H = −
n∑
i=1

αi · log2 αi (2.5)

where αi is the probability of occurrence of symbol si in the test set and n is the total

number of unique symbols. Since H gives the minimum average number of bits required

for each code, the maximum compression percentage CPmax that can be achieved for

these symbols is calculated as

CPmax =
avg(|s|)−H

avg(|s|)
× 100 (2.6)

where avg(|s|) =
n∑
i=1

αi · |si| with |si| = length of symbol si

A linear decompressor consists of XOR gates and flip-flops. In linear decompressor

based schemes a deterministic pattern is encoded as the initial state, called seed, of the

linear decompressor. The seed for a given pattern is computed by solving a system of

linear equations where each equation corresponds to a care bit in the given pattern and

each variable represents a seed bit. To decode the pattern, the linear decompressor is

initialized with the seed and the output space of the decompressor gives the encoded

pattern. The compression of a linear decompressor based scheme is independent of the

regularity in a test set and depends on number of care bits in it. A measure used to

indicate the performance of linear decompressor based schemes is encoding efficiency

(EE) which is defined as

EE =
Care bits in uncompressed test set

Storage bits
(2.7)

The decompression time overhead and programmability are also important in judging

overall performance of a compression scheme. Prolonged decompression time may limit

the feasibility of a compression method while a resynthesis of the decompression hardware

might be required after every change in test sets if the scheme is not programmable.

Code base schemes are further classified into four categories depending on whether

the symbols and the codewords are of fixed or variable length. In fixed-to-fixed schemes,

the test set is divided into fixed length symbols and each symbol is assigned a fixed

length code. Here a small set of fully specified symbols is stored in the memory on-chip.

These fully specified symbols are generated by merging the pairwise compatible unique

symbols. The address of each symbol in the memory then becomes the codeword of
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all the unique symbols compatible to it. Fixed-to-fixed schemes are called dictionary

encoding since each symbol in the memory can be viewed as an entry in a dictionary

and the codeword as an index into the dictionary. If all the unique symbols occurring in

the test set are compatible with one of the dictionary entry then it is called a complete

dictionary otherwise it is a partial dictionary . If a complete dictionary contains U

entries of the length Ls, the code a is a = dlog2Ue bits. After receiving a bits code, the

decompressor regenerates Ls bits symbol in a single clock. The compression ratio using

complete dictionary is 2Ls−a. A high compression ratio is achieved if a is much smaller

than Ls.

A dictionary encoding scheme for the multiple scan chain architecture is proposed in

[Redd 02] which is illustrated in figure 2.7. Each test vector is considered as a symbol

and a complete dictionary is formed that is able to generate all the unique test vectors

in the test set. This scheme does not causes any decompression time overhead. However

if many conflicting test vectors exist in the test set, the size of dictionary could become

prohibitively large.

.

.

.

CUT

.

.

.

Dictionary

ROM
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Address

Figure 2.7: Overview of dictionary encoding

In [Li 03] this problem is solved by using a partial dictionary whose size is selected

according to the available on-chip area for decompressor. A predefined number of most

frequently occurring symbols are stored in the dictionary. A symbol is encoded as a

fixed-length index of the dictionary if it could be generated by any of the dictionary entry

otherwise it is left unencoded. A flag bit is used to distinguish between the encoded and

the unencoded symbols during test. This scheme limits the hardware overhead caused

by the dictionary but the compression of this scheme is affected by the fact that a large

number of symbols are left unencoded because they do not match any dictionary entry.

The dictionary encoding proposed in [Wurt 04] allows a fixed number of corrections

in the dictionary entries to limit the size of the dictionary. A symbol is encoded with the

status bit, the dictionary index and the positions of required corrections. A correction

logic is used in between the decoder and the scan chains to modify the dictionary entry
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before shifting it into the scan chains. This scheme reduces the dictionary size but the

savings due to the reduced dictionary size are diminished by the correction information

storage. Better compression is achieved with hybrid dictionary encoding in [Kim 08] but

the decompression hardware of this scheme is not flexible and depends on the test set.

In fixed-to-variable encoding schemes, the fixed length symbols in the test set are

assigned variable length codes. The basic idea behind variable length codes is to minimize

the average length of codewords by assigning shorter codewords to those symbols that

occur most frequently in the test set. The Huffman encoding [Huff 52] is an example

of the fixed-to-variable encoding that is proven to provide the shortest average codeword

length among all other schemes of this category. The codes are assigned by constructing

a Huffman tree according to the frequency of occurance of each symbol as described in

[Huff 52]. The Huffman encoding provides the optimum compression but the decoder

size increases exponentially with the increasing size of the symbols. In [Jas 03, Kavo 07]

the hardware overhead of decoder is limited by using selective Huffman codes. Only a

limited number of most frequently occurring symbols are encoded with Huffman codes

while others are left unencoded. An extra bit is used with each code to differentiate

between the encoded and the unencoded symbols. Though the decoder size grows linearly

in these scheme, the compression ratio is sacrificed. Moreover, a hardwired decoder is

the common drawback in all the test compression scheme employing Huffman codes.

The run-length encoding is another famous example of code based schemes.

In run-length encoding the test set is divided into variable length symbols such that

consecutive 0’s and 1’s form a single symbol. The symbols are then assigned a fixed

[Jas 98] or variable length [Chan 01, Gonc 02, Chan 03, El M 08] code. The run-length

encoding performs better for the biased regular test sets. In [Jas 98], the test information

is made biased by ordering the test patterns such that similar test patterns come after

each other. A difference pattern is then computed between two adjacent test patterns

which is more likely to be biased towards 0. This difference pattern is encoded instead of

the test patterns. A cyclic scan architecture is used during the test to regenerate the test

patterns from the difference pattern. In cyclic scan architecture, an XOR operation is

performed between the test data currently being shifted in and the previous test pattern.

In [Chan 01] it has been shown that the compression ratio significantly improves if

the run-length symbols are encoded with the variable length Golomb code [Golo 66]. The

efficiency of run-length encoding was further improved in [Chan 03, Ruan 07, El M 08]

by proposing frequency directed (FDR), matching pattern and extended frequency directed

(EFDR) run-length codes respectively. A more optimized run-length encoding scheme
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is variable input Huffman code (VIHC) presented in [Gonc 02]. Since Huffman codes

[Huff 52] are used, the decompression architecture of this scheme is test set dependent.

The decompression architecture of a run-length scheme mainly consists of a finite state

machine (FSM) and a counter. The FSM detects the codewords while the counter is

used to generate a continuous stream of 0s or 1s according to the length of encoded

symbol. The run-length encoding is useful for the test patterns showing biased regularity

however since the run-length symbols are regenerated serially with counters, it results in

significant decompression time overhead.

Other examples of code based compression schemes include packet-based compression

[Volk 02], nine-coded compression [Tehr 05], multilevel Huffman coding [Kavo 08] and

selective scan slice encoding [Wang 08b]. Code based schemes are advantageous in

exploiting the regularities in test sets. However if the test set is irregular then the

compression ratio is poor. In addition some of these schemes may also result in significant

decompressor area and decompression time penalties.

Linear decomprssor based schemes are efficient in encoding irregular test sets. The

linear feedback shift register (LFSR) reseeding is an example of it. Figure 2.8(a) shows

the process of LFSR seed computation. Here a 12 bit pattern with 4 care bits is encoded

with a 4 bit LFSR. To compute the seed, each of the seed bit is assumed as a free

variable and the linear equations of these variables corresponding to each care bit in

the pattern are generated. The resulting system of equations is then solved and the

solution gives the seed. Figure 2.8(b) shows this seed along with the decoded pattern. If

no solution exists for the employed system of linear equations, that pattern can not be

encoded using the given LFSR. If cmax represents the maximum number of care bits in

a pattern of a test set, it has been shown in [Koen 91] that by keeping the LFSR size

equal to cmax + 20, the probability of not finding a seed is less than 10−6. The scheme

in [Hell 95] maintains this small probability of failure with a cmax + 1 bit LFSR using

multiple polynomials. Further reductions in storage were achieved using variable-length

seeds [Rajs 98], partial-reseeding [Kris 01], continuous reseeding [Volk 03], seed encoding

[Al Y 05] and state skip LFSRs [Tene 08].

Other linear decompressor based schemes include scan chain concealment [Bayr 01],

adjustable linear decompressor [Kris 03], ring generators [Mrug 04] and align encode

[Sina 08]. Linear decompressor based schemes offer a small and simple decoder. In

addition, the linear decompressors can generate a complete test vector at each clock

(figure 2.9) for random or deterministic testing. Due to this reason a linear decompressor

is an integral part of every self-test scheme. However linear decompressor based schemes
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TP = {X,0,X,X,X,0,X,X,X,X,1,1}

a0 = 1
a1                     = 1
a2 + a3             = 0
a0 + a1 + a2 = 0

0123

TP = {1,0,1,1,0,0,1,0,0,0,1,1}

1100

Figure 2.8: Example of LFSR seed computation

can not exploit the regularities in a test set and their compression is limited by the

number of care bits in it. In general, the maximum encoding efficiency that could be

achieved using linear decompressor based schemes is 1 [Wang 06]. Moreover, though by

keeping linear decompressor large enough the probability of failure could be kept quite

small, but still the encoding of a complete test set is not guaranteed. This results either

in the degradation of test quality or the repetition of ATPG process. The repetition of

ATPG process is not possible in core based designs where structural information of the

circuits is not known.
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CUT
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k
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Figure 2.9: Pattern generation with LFSR

Test compression schemes significantly reduce the storage requirements for the ATE

and the self-test. Mixed-mode self-test schemes are more attractive since only a subset

of the deterministic patterns need to be stored to achieve the complete fault efficiency.

The storage requirements are further reduced by storing the deterministic patterns in

compressed form. In available mixed-mode schemes one of the two approaches known as

reseeding [Koen 91] and test set embedding [Wund 96, Toub 96, Gher 04] are used to

compress the deterministic patterns.

In reseeding, the deterministic patterns are encoded as the seeds of the same linear

decompressor that is used to generate the random patterns. The seeds are stored

in a memory on-chip. After pseudo random testing finishes; the linear decompressor
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is reseeded to generate the desired patterns. Main advantage of this approach is its

programmability. If the test set is changed due to last minute design changes, new seeds

could be computed and stored in the same memory. The disadvantages of this approach

are that the storage requirements remain significant and the encoding of a pattern is not

guaranteed which may affect fault coverage.

In test set embedding, the deterministic patterns are embedded into the pseudo

random sequence by changing some bits in useless pseudo random patterns. The

embedding information is stored on-chip as a combinational logic called bit flipping

[Wund 96, Gher 04] or bit fixing [Toub 96] logic and its area overhead is reduced using

logic minimization techniques. The advantage of this approach is less on-chip area

overhead compared to the seeds memory [Wund 96, Gher 04] while the disadvantage

is that the test information is stored hardwired which makes it test set dependent,

introducing serious challenges in the design flow.



CHAPTER 3

Test Set Analysis

A test set is a set of test patterns that are applied in a sequence to achieve a desired

fault efficiency. The fault efficiency for STUMPS complying circuits is independent of

the order in which the patterns are applied. In STUMPS (figure 2.5), each test pattern

is a set of test vectors. A complete test vector is shifted into scan chains at each clock.

To initialize the storage elements correctly, the test vectors must be shifted into the scan

chains in a specific order. For the rest of our discussion we define few notations:

Let k represent the number of scan chains and t the maximum scan chain length.

Then a test vector v is k bits long containing care and don’t care bits. The bit position i

of v is represented as v(i). The number of care bits in vector v is noted as |v|. A test

vector where |v| > 0 is called a care vector while a test vector with |v| = 0 is a don’t

care vector . Two vectors vi, vj are compatible (vi ∼ vj), if there is no conflicting care

bit at any position. Compatible vectors can be merged v = vi + vj so that v carries

all the care bits of both vi and vj. If a vector set V contains only pairwise compatible

vectors, the whole set can be merged into one vector which is noted as v = ΣV .A pattern

p = (v1, v2, . . . , vt) is a sequence of vectors. Let P be a test set with |P | = q, the test

vector at position j of pattern pi is noted as pi(j) = vij. Figure 3.1 shows an example

test set for STUMPS with k = 4, t = 3 and |P | = 3.

To analyze the statistical attributes of test sets we consider few industrial circuits.

Figure 3.2 shows some important characteristics of these circuits. The name of each

circuit represents the number of nets in it. For example p35k means that the circuit

contains 35 thousand nets. In figure 3.2(a) total number of inputs and pseudo primary

inputs are presented while the test vector size k and test vectors per pattern t are shown

21
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Figure 3.1: An example test set for STUMPS

in figures 3.2(b) and 3.2(c) respectively.
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Figure 3.2: Characteristics of experimented circuits

For each circuit wo test sets achieving complete fault efficiency were generated

for each circuit using a commercial ATPG tool. The test set compaction by merging
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compatible patterns was turned off for the first test set P1 while the merging efforts were

set to high for the second test set P2. As a result P1 is an uncompacted test set where

each pattern detects at least one such fault not detected by any other pattern. The test

set P2 is a fully compacted test set containing the smallest number of patterns needed to

achieve complete fault efficiency. The number of patterns in each test set are shown in

figure 3.3.
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(a) Uncompacted test set P1
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(b) Compacted test set P2

Figure 3.3: Number of patterns in each test set

The comparison of figures 3.3(a) and 3.3(b) reveals that pattern merging highly

reduces the size of a test set. However the reduction in test set size is not similar for all

circuits. The compaction ratio for each circuit is shown in figure 3.4 which is calculated

by dividing |P1| with |P2|. The figure tells that the compaction ratio fluctuates between

8 to 248 times. The high fluctuation in compaction ratio shows that the test sets of

various circuits are quite different from each other.

The most important attribute of a test set with respect to test data compression is its

care bits density. The care bits density of P1 and P2 is presented in figure 3.5. The graphs

reveal that the care bits density not only significantly differs between uncompacted and

compacted test sets but it also varies largely within both type of test sets. The density

of uncompacted test sets lies in the range of 0.02 to 1.47%. In general it could be said
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Figure 3.4: Compaction ratio (|P1|/|P2|)

for P1 that the care bits density is lower for the larger test sets. In compacted test sets

the variation in density is higher and it ranges from 0.12 to 35.5%. This is since different

compaction ratios are achieved for each test set.
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Figure 3.5: Care bits density in each test set

In STUMPS a complete test vector of k bits is shifted into scan chains in parallel.

Therefor we analyze test sets for the presence of k bit symbols. For fixed length symbols

each care vector presents a complete symbol. Figure 3.6 shows the percentages of care

vectors in P1 and P2. The figure demonstrates that in uncompacted test sets up to 18.8%

test vectors are care vectors while they reach up to 87% in compacted test sets. The

percentage of care vectors in a test set depends on its care bits density and test vector

size k. For example k is 40 for p239k and p259k. The care bits density of both circuits
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is similar in P1, so their percentages of care vectors in P1 are also similar. However,

care bits density of p259k is higher than p239k in P2 that results in higher percentage

of care vectors for p259k. On the other hand the care bits density of p286k is equal to

the density of p259k in P1 and it is less than the density of p259k in P2, but for both P1

and P2, the care vectors percentage of p286k is much higher than 259k due to its larger

value of k.
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Figure 3.6: Percentage of care vectors in each test set

The regularity in a test set depends on how many times a symbol repeats itself

and also on the compatibility among the symbols. The repetition of symbols in a test

set could be estimated by computing the percentage of unique symbols among all the

symbols. Since each care vector represents a symbol, the percentage of unique test

vectors among total care vectors is computed and shown in figure 3.7. The very low

unique vectors percentage in P1 of all circuits shows that each symbol is repeated many

times in sparse test sets. This percentage is high in most of the compacted test sets with

high care bits density. The 61.2% for p35k indicates that a large number of symbols

occur only once in the test set. It should be noted that despite highest care bits density

in p81k, its unique vectors percentage is low. It is because of the very small test vector

size in p81k that is 8. The number of maximum possible symbols that may occur in a

test set depends on symbols size.
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Figure 3.7: Percentage of unique vectors among care vectors

A complete dictionary for a test set is the minimum cover for all of its unique vectors.

The number of dictionary vectors could be considered a quantitative measure to judge

compatibility between test vectors. The number of entries in a complete dictionary for P1

and P2 are shown in figure 3.8. Since finding minimum set of vectors that can generate

all the unique vectors has an exponential complexity, a greedy algorithm based on clique

partitioning was used. The unique vectors were divided into maximum size cliques of

pairwise compatible vectors and a dictionary vector was generated by merging all the

vectors in a clique. It could be seen from figure that the test sets with low care bits

density could be generated from very few dictionary vectors irrespective of their test

vector size. Depending on care bits density and test vector size the number of dictionary

entries is high for dense test sets. The dictionary of p81k contains all possible 256 entries

for 8 bit long symbols.

Looking at unique vectors percentage and the number of dictionary vectors we can

conclude that the test sets with low care bits density contain very strong regularity. This

regularity decreases with an increase in care bits density. The larger the symbol size,

the higher the impact of care bits density. The test sets with high care bits density are

irregular since the symbols rarely repeat and the compatibility among different symbols
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Figure 3.8: Number of dictionary entries

is low.

A closer look into dense test sets reveals that if the 0 and 1 are in unequal proportions

then the symbols containing only majority bits repeat quite often. We call it a weak

regularity. The distribution of 0 and 1 among the care bits of experimented test sets are

shown in figure 3.9. As can be seen from the figure 3.9(b), among dense test sets p35k is

biased 6% toward 0 and p81k is biased 17% toward 1. The percentages of majority and

minority bit test vectors among total care vectors are computed for both circuits using

different values of k. These percentages are shown in figure 3.10. The figure reveals that

significant portion of care vectors contain majority bit vectors and the percentage of

majority bit vectors is always higher than the percentage of minority bit vectors. In p35k

that is slightly biased toward 0, the percentage of 0 vectors decreases with the increasing

test vector size. This is not the case in p81k that is highly biased toward 1. In p81k the

varying test vector size has no significant impact on the percentage of 1 vectors.
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Figure 3.9: Care bits distribution in each test set
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CHAPTER 4

Efficient Test Data Compression

In this chapter we present basics of the three novel test compression methods that offer

optimized efficiency for test sets with strong, weak and no regularities. Section 4.1

explains encoding of a test set with strong regularities. The compression of a test set

with weak regularities is described in section 4.2 while section 4.3 is devoted to explain

the encoding of irregular test sets. These methods will be explained in detail in the

subsequent chapters by implementing a self-test scheme using each method.

4.1 Restrict Encoding

The proposed method restrict encoding (RE) minimizes storage requirements for strongly

regular test sets. It is based on the observation that in a strongly regular test set portions

of the test set could be identified where long sequences of test vectors at similar vector

positions are pairwise compatible. By restricting vectors in a sequence to a single value,

all care bits in the sequence are generated. Such a sequence of test vectors is called

a restrict and the value injected continuously for all the test vectors in the sequence

is called a restrict vector . Due to high compatibility among the vectors of a strongly

regular test set, all the restricts are generated by storing a very small set of restrict

vectors.

The restrict encoding could be considered an instance of dictionary encoding where the

restrict vectors storage represents a dictionary. However unlike conventional dictionary

encoding schemes [Redd 02, Li 03, Wurt 04] a dictionary index is stored for a restrict

29
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instead of individual vectors. The encoding of a restrict contains its starting position,

ending position and address of the associated restrict vector.

The cost to store a restrict is constant and does not depend on the number of test

vectors or care bits in it. A vast majority of test vectors are part of long restricts therefore

most of the test vectors in the test set are encoded very efficiently. This efficiency is

further improved by carefully reordering the test patterns in order to increase the lengths

of restricts. The portions where regularity does not appear in consecutive vectors are

encoded with seeds.

Suppose figure 4.1 shows the first 4 patterns of a test set. Each pattern consists

of 4 vectors. The first two restricts start with the first pattern and continuously inject

restrict vectors va and vb into the vector positions 1 and 2 respectively. The third restrict

starts at pattern p2 replacing vector position 4 with the restrict vector va. The care-bits

in unrestricted vector positions (v14, v13, v23 . . . ) are encoded with seeds.
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Figure 4.1: Start of a pattern application with three restricts

The total cost of restrict encoding consists of the restrict vectors, the restricts

information and the seeds storage. The cost of storing the restrict vectors dcost is

estimated as

dcost = |RV | · k

where |RV | is the total number of restrict vectors that need to be stored to generate all

the restricts.

The cost of storing a restrict is constant. Let l be the number of bits to be stored for

one restrict and R the total number of restricts, then the cost of storing restricts rcost

would be

rcost = l ·R
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The seeds storage is proportional to the number of encoded care bits. If e represents the

encoding efficiency of reseeding and c the number of care bits encoded with the seeds

then the cost of storing seeds rscost is estimated as

rscost =
c

e

The total cost of encoded test set PE then becomes

PE = dcost+ rcost+ rscost

= |RV | · k + l ·R +
c

e

The smallest achievable size of encoded test set PE,min is estimated by assuming that all

the test vectors at each vector position form a single restrict. In this case the test set

will contain a total of t restricts and no seeds need to be stored. So PE,min becomes

PE,min = |RV | · k + l · t

In the worst case no restricts are found and as a result the test set is encoded with

seeds. In this case encoding is an instance of conventional reseeding and the maximum

size of encoded test set PE,max will be

PE,max =
c

e

A built-in self-test scheme implementing restrict encoding will be presented in chapter

5.

4.2 Run-length Encoding with Parallel Decompres-

sion

A weak regularity exists in dense test sets if the care bits are biased towards 0 or 1. The

proposed run-length encoding with parallel decompression (REWPD) is a variable-to-

variable encoding scheme that offers efficient compression and decompression of weakly

regular test sets. The test set is divided into run-length symbols. Each test vector is

considered separately in this process. It keeps test control simple for STUMPS complying

circuits and limits the decompression hardware size as well. The Xs in the test set are
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filled with majority bits. Every test vector is seen as a sequence of majority bit runs,

each of which stops with a minority bit. If a test vector ends with a majority bit, an

extra minority bit is assumed at its end. This extra bit does not add any overhead in

the communication or storage. Rather it reduces the maximum number of run-length

symbols from 2k to k+ 1 and provides a way to regenerate a complete run-length symbol

within a single clock cycle. If all the bits in a test vector are majority bits then we have

just one symbol of length k + 1 and if all are minority bits then we have k symbols each

of length 1.

Figure 4.2 shows an example of dividing a test set with k = 3, t = 3 and |P | = 2

into run-length symbols. In this example test set, 0 is majority bit and 1 is minority

bit. After replacing Xs with 0s, four test vectors v11, v13, v21 and v22 end with 0. So a

1 is assumed at k + 1 bit position to ensure that every run-length ends with a 1. By

assuming this extra bit, maximum possible run-length symbols have been reduced from

6 to 4.

p2

v23 v22 v21

0 1 0

X 0 1

1 0 0

p1

v13 v12 v11

X 0 X

0 X X

0 1 X

⇒

p2
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0 1 0

0 0 1

1 0 0

1 1

p2

v13 v12 v11

0 0 0

0 0 0

0 1 0

1 1

Figure 4.2: Dividing a test set into run-length symbols

Starting from a code of length 1, the symbols are assigned variable length binary

codes according to their frequency of occurrences. In every test set a large number of

test vectors are don’t care vectors. Among the care vectors of a biased test set, a vast

majority of the care vectors contain only majority bits. The don’t care vectors and the

vectors with only majority bits form a single symbol of length k + 1. In practice this

symbol has the highest frequency and is assigned a 1 bit code.

When it is known in advance that every run-length symbol ends with a minority

bit, the only information needed to regenerate a symbol is its length. Figure 4.3 shows

the basic idea of regenerating a run-length symbol in parallel. A k bit register is reset

to majority bits and after knowing the symbol length l, the lth bit with reference to

previously generated symbol is flipped in the register. When k + 1th, bit is needed to

be flipped, no flip operation is performed. Once a test vector is completely generated,

the register values are shifted into scan chains and the register is reset to majority bits.

This way as soon as the length of a symbol is known, it is regenerated in a single clock.

To regenerate and retain 0 run-length symbols (figure 4.3(a)) OR gates are used. The
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output of the binary decoder is 1 for the flip position and 0 for the rest. In case of 1

run-length symbols AND gates are used. Here the decoder outputs 0 for flip position

and 1 for others.
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Figure 4.3: Regeneration of run-length symbols

Using the proposed scheme, the size of encoded test set PE is estimated as:

PE =
k+1∑
i=1

fi · li

where fi is the frequency of occurrence of the symbol si and li is the length of codeword

assigned to si.

In proposed parallel regeneration of run-length symbols, a single clock overhead is

caused by every minority bit appearing at any of the bit positions 1, 2, . . . , k − 1 in the

vectors of a test set. So the total overhead of symbol regeneration Or in terms of clock

cycles is determined as:

Or = Number of minority bits in test set− Number of minority bits at bit position k

The total number of clocks TP needed to regenerate the complete test set becomes:

TP = (t× |P |) +Or

These regeneration clocks are t × |P | for STUMPS and t × |P | × k for conventional

run-length regenerators [Jas 98, Chan 01, Gonc 02, Chan 03, El M 08]. Since Or is very

small for the biased test sets, the test patterns regeneration time of the proposed schemes

is far less than available methods and it is very close to STUMPS.

Implementation of the proposed run-length compression would be demonstrated in
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chapter 6 by developing a built-out self-test scheme.

4.3 Nearly Complete Reseeding

We present a novel linear decompressor based scheme named nearly complete reseeding

(NCR) that offers higher encoding efficiency for irregular test sets while guaranteeing

complete encoding. This has been achieved by discovering the regularity in the encoding

capabilities of a linear decompressor. The NCR is based on the observation that ignoring

few inconsistent bits during seed computation enables to encode significantly large

number of care bits in the seed of a linear decompressor in a regular way.

To demonstrate the basic idea of NCR with a small example, suppose we have the

circuit in figure 4.4(a) where an 8-bit LFSR feeds 8 scan chains. Here test vector size is 8

and a test pattern is formed by three vectors. Figure 4.4(b) shows seed computation for

an encodable pattern p1 of this circuit. In order to compute a seed for p1, we represent

each care bit of p1 with an equation in terms of the seed variables a0, a1, . . . , a7. The

solution of the obtained system of equations results in the seed s1.

Some equations may cause the linear equation system to become unsolvable because

of the linear dependency which prevents certain patterns from being encoded. The

pattern p2 in figure 4.4(c) is an example of it. As can be seen in the figure, it is not

possible to satisfy the first two equations simultaneously. Same is true for the last three

equations. So this system of equations can not be solved and hence no seed exists that

can encode p2. If the equations a3 = 0 and a1 + a2 = 1 in the equation system of p2 are

ignored, the system becomes consistent and a seed can be computed.

The ignored bits are separately stored and embedded into the LFSR generated

patterns during the test. In the following we analytically estimate the encoding efficiency

of the presented idea and compare it with existing methods.

In the sequel, we use the probabilistic model developed in [Hell 95, Toub 96] in

order to estimate the impact of ignoring a certain number of equations. The probability

Pseed(l, c, imax) of encoding a pattern with c care bits using an l-bit LFSR while allowing

imax bits to be ignored can be estimated by considering the process of equation generation

as a Markov chain (Xτ )1≤τ≤c over a set of states {0, 1, . . . , l}. Suppose Xe,d,i represents

the state of Markov chain at time τ and is interpreted as, e + i equations have been
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Figure 4.4: The seed computation using NCR

generated up to τ , e of them are solvable with rank d while i equations have been ignored

in order to make the system of e equations solvable. Generating a new equation at

interval τ + 1 has one of the following consequences

Xe,d,i

Xe,d,i+1Xe+1,d,iXe+1,d+1,i

Either the new equation increases the rank d of the system and the system remains

solvable or the rank does not increase but the system is still solvable. The third possibility

is that the system becomes inconsistent and the currently generated equation is ignored

to make it solvable. The transition probabilities for above three cases can be derived as

follows

Since the rank is d in state Xe,d,i there are in total 2d−1 equations that are dependent

on the e+ i equations. 2d− 1− e− i of them are not in the current system and the total

number of equations that are not contained in the system are 2l − 1− e− i. Assuming
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that the 2d − 1− e− i equations are uniformly distributed within 2l − 1− e− i possible

equations, the fraction of them that corresponds to the linearly dependent equations in

the current m bits long pattern will be:

(m− e− i) · 2d − 1− e− i
2l − 1− e− i

Let

Λ = m− e− i

Γ = 2d − 1− e− i

Υ = 2l − 1− e− i

The number of linearly independent equations in the test pattern then becomes

Λ− Λ · Γ

Υ

Hence the probability to generate a linearly independent equation out of Λ possible

equations is:
Λ− Λ · Γ

Υ

Λ
=

2l − 2d

Υ

With this probability the new equation will increase the rank of the system and a

solution is guaranteed.

The probability that the new equation will not increase the rank of the system will

be:

1− 2l − 2d

Υ
=

Γ

Υ

If the rank of the current system does not increase, the new equation may or may not

cause the system of equations to become inconsistent. The probability that the system

becomes unsolvable in this case is considered as:

1

2
· Γ

Υ

Any combination of i out of e+ i equations can be ignored to make the system solvable.

The number of all the combinations of i bits is

ς =
(e+ i)!

i! · e!

So the probability that we can not find a combination of i equations such that the
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remaining e equations become solvable will be(1

2
· Γ

Υ

)ς
The probability that the new equation does not increase the rank d but the system of

equations still remains solvable becomes

Γ

Υ
−
(1

2
· Γ

Υ

)ς

If i < imax, the probability that current system of equations is made solvable by

ignoring the new equation is (1

2
· Γ

Υ

)ς
Assuming the initial probability distribution of Markov chain as P (X1,1,0) = 1, the

transition probabilities can be summarized as

P (Xe+1,d+1,i|Xe,d,i) =

2l−2d

Υ
if 1 < d+ 1 ≤ l,

0 otherwise

P (Xe+1,d,i|Xe,d,i) =

 Γ
Υ
− (1

2
· Γ

Υ
)ς if d > 0 & τ + 1 + i ≤ 2d − 1 & i ≤ imax,

0 otherwise

P (Xe,d,i+1|Xe,d,i) =

(1
2
· Γ

Υ
)ς if d > 0 & τ + 1 + i ≤ 2d − 1 & i < imax,

0 otherwise

The total probability of finding an l-bit seed to encode a pattern with c care bits

while allowing to ignore imax bits can be computed as

Pseed(l, c, imax) =

min(l,c)∑
d=dlog2(c+1)e

imax∑
i=0

P (Xc−i,d,i)
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Figure 4.5: Values of Pnoseed(l, c, imax) for l = 128

Where P (Xe,d,i) is computed with the recursive function

P (Xe,d,i) = P (Xe−1,d,i) · P (Xe,d,i|Xe−1,d,i) +

P (Xe−1,d−1,i) · P (Xe,d,i|Xe−1,d−1,i) +

P (Xe,d,i−1) · P (Xe,d,i|Xe,d,i−1)

Figure 4.5 shows the set of curves Pnoseed(l, c, imax) as the function of c with param-

eters l = 128 and imax = {0, 1, 2, 3}. Here, Pnoseed(128, c, 0) represents the probability

for the conventional reseeding in [Koen 91]. Obviously, by ignoring a small number of

equations, a seed can be computed for a significantly larger number of care bits compared

to conventional reseeding. The largest gain is achieved by ignoring a single equation and

the coding efficiency increases almost linearly if further equations are ignored.

In this example, we are able to save approximately 20 bits of a seed compared with

conventional reseeding if we are allowed to ignore one equation. However, the ignored

bits have to be encoded by their position in the scan chain. Hence, a rough estimation

of the savings in this case is 20− log(m), where m is the pattern length.

In practice, additional savings are obtained for two reasons:

� For the ignored equations, the corresponding value in the pattern generated by the

LFSR will assume the opposite value. In some cases, this pattern still detects the

target fault, an effect that is exploited in test set compaction [Pome 91], and the

LFSR pattern may remain unchanged.

� For circuits complying with STUMPS, the embedding information can even be

shared between the scan chains, thereby further increasing coding efficiency.
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A built-in self-test scheme implementing nearly complete reseeding will be presented

in chapter 7
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CHAPTER 5

Self-Test with High Defect Coverage

In this chapter we develop a built-in self-test scheme that achieves high defect

coverage with small hardware overhead. The hardware overhead is reduced by applying

restrict encoding to efficiently encode large test sets. The problem of having high defect

coverage self-test with small hardware overhead is explained in section 5.1. The overview

of self-test scheme employing restrict encoding is given in section 5.2. A heuristic to find

minimum number of restrict vectors is described in section 5.3. Section 5.4 explains the

generation of restrict candidates while the section 5.5 presents a heuristic to reorder test

patterns such that the length of restrict candidates is maximized. An analysis procedure

to recognize the restrict efficient candidates is described in section 5.6. Section 5.7 gives

the encoding of restrict information and section 5.8 evaluates the efficiency of restrict

encoding using experimental results.

5.1 Introduction

Many circuits are used in life critical and mission critical applications. A malfunction

in such a circuit may lead to substantial loss of human life or wealth. Therefore it is

necessary to ensure that such circuits are free of any defects. The defect coverage of a

chip is enhanced by detecting each stuck-at fault multiple times with different patterns

[Ma 95, Redd 97, Chan 98, Grim 99, Pome 99]. The defect coverage is increased with

multiple detections because each fault is generally targeted in several different ways,

increasing the probability to activate a particular defect when the observation path to

the fault site opens up [Wang 08a]. In order to ensure high reliability and defect coverage

for life critical and mission critical ICs, a self-test with multiple detection of stuck-at

41
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faults is required. The size of a test set detecting each fault multiple times is large and

its storage on-chip requires significant chip area.

In general, multiple detect test sets have low care bits density. These test sets show

strong regularity for two main reasons:

1. Due to low care bits density many test vectors are compatible to each other.

2. Some input assignments appear repeatedly in many patterns at the same positions.

This is because certain circuit parts get sensitized by these assignments, and multiple

patterns that test the faults in these parts keep these assignments constant.

Dictionary encoding is suitable for test sets with strong regularity. However the

available dictionary based encoding schemes are not able to fully exploit the regularity

in large test sets since an index of the dictionary is required to encode each care and

don’t care vector. A large test set contains large number of don’t care vectors. Due to

the encoding cost of don’t care vectors, employing available dictionary encoding schemes

for large test sets may result in storage requirements worse than reseeding.

In this chapter we develop a built-in self-test scheme that minimizes the storage

requirements of large test sets using restrict encoding (RE). The next section gives an

overview of realizing restrict encoding in BIST.

5.2 Overview of the Proposed Scheme

The restrict encoding combines reseeding of an LFSR with a small dictionary of previously

calculated restrict values. Figure 5.1 shows the basic structure of restrict encoding. The

LFSR is provided with seed information and the restrict vector (RV) ROM is addressed

by a bits. For each test vector, either the output of the LFSR, or a restrict value from

the ROM is selected using the Slct signal. The ROM addresses and the selection signal

for each test vector are read from a register file which holds the current states of all the

vector positions. The registers are updated using the instructions stored in test program

(TP) memory.

Figure 5.2 gives an overview of the status registers . Each of the t registers is a+ 1

bits long and a register is updated with new information if the write–enable signal Wen
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Figure 5.1: BIST with restrict encoding

is 1. By addressing the status registers with a modulo t counter, the same sequence of

addresses and selection signals is generated for each pattern. Therefore, restrict values are

continuously injected at the same vector position over multiple patterns. The injection

starts and ends by updating the values of the status register accordingly. This way a

single dictionary index is stored for a restrict rather than individual test vectors.

Addrs, Slct

Mod t Counter

1
Addr,s

2
Addr,s . . . . t

Addr,sWen

a+1 a+1

Figure 5.2: Status register for generating restrict information

Maximizing the gain for restrict encoding leads to the following optimization goals:

� Construct a small RV ROM with restrict values that can be injected as often as

possible.

� Maximize the run lengths of the restricts so that the required updates in the status

register and hence the size of the test program memory are minimized.

5.3 Generation of the Restrict Vector ROM

Let P be a test set with |P | = q. The vector set VP of the test set P is the set of all

unique test vectors present in p1, . . . , pq ∈ P . A vector v at position i in VP is expressed

as VP (i) = vi. The cardinality of a vector vi with respect to P is cP (vi) = n with n

being the number of vectors in p1, . . . , pq ∈ P that are equal to vi, and the weight of vi
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is wP (vi) = cP (vi) · |vi|. The vector slice set Vi of the pattern set P at vector position

1 ≤ i ≤ t is equal to {p(i)|p ∈ P}.

A set of 5 patterns for a circuit with t = 6 and k = 4 is shown in figure 5.3. For

easier demonstration of restrict encoding concepts, it is assumed that scan chains are

vertical. In rest of the chapter same presentation of test patterns will be followed. In

this figure V1, V2, V3 and V4 represent vector slice sets for all 4 vector positions. The

corresponding unique vector set VP is shown in figure 5.3 along with the cardinality and

weight of vi ∈ VP . There are 4 instances of v1 in the example test set so its cardinality is

4 and weight is 12 since it contains 3 care bits.

V1 V2 V3 V4

P1

P2

P3

P4

P5

X 1 1 X X 0

1 X 0 1 0 X

0 X 1 X 0 1

X 0 0 1 X X

X 0 0 X X 1

0 X 1 X 0 1

X 0 0 X X 1

X 0 1 1 X X

X 0 0 1 X X

1 X 0 1 0 X

1 X 1 0 X X

1 X 1 0 X X

X 1 1 X X 0

1 X X 0 0 X

1 X X 0 0 X

X 0 0 1 X X

1 X X 0 0 X

X 1 1 X X 0

X 0 0 X X 1

X 1 1 X X 0

Figure 5.3: Example test set with k = 6, t = 4 and |P | = 5

v1

v2

v3

v4

v5

v6

v7

v8

VP

X 1 1 X X 0

0 X 1 X 0 1

1 X 1 0 X X

X 0 0 1 X X

1 X 0 1 0 X

X 0 0 X X 1

1 X X 0 0 X

X 0 1 1 X X

cP (vi)

4

2

2

3

2

3

3

1

wP (vi)

12

8

6

9

8

9

9

3

Figure 5.4: Unique vectors in example test set

In restrict encoding only those sequences of consecutive test vectors are restricted

where restricting offers a gain over reseeding. So it is not required to have a complete

dictionary rather a set of fully specified vectors is needed that can produce all the

restricted vectors. In this case the goal is to find a minimum set RV of fully specified

restrict vectors, so that a large number of care bits can be encoded by replacing the

original vectors with compatible restrict vectors.
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More formally, the sum over the weights of vectors restrictable with a set RV∑
v∈VP

w(v)[∃vr ∈ RV with v ∼ vr]

should be large. The final restrict vector set is determined in a two-step process. The

first step constructs a candidate set RVc of restrict vectors. The second step selects the

final restrict vectors RV ⊆ RVc as will be described in the next section.

To construct restrict candidate set RVc, we represent unique vector set VP as a

node–weighted compatibility graph G(E, VP , w) with

(vi, vj) ∈ E ⇔ vi ∼ vj ∀vi, vj ∈ VP

The compatibility graph G(E, VP , w) is partitioned into cliques. Each clique contains

pairwise compatible vectors which are merged into a single restrict vector candidate

vr ∈ RVc. If a vr contains don’t cares, they are filled according to the compatible vectors

with maximum weight from other cliques.

The clique partitioning problem has exponential complexity and the following simple

heuristic is used:

COMPUTE-RESTRICTS:

1. Let RVc = ∅.

2. C=FIND-NEXT-CLIQUE.

3. Let VP = VP − C and add vr = ΣC to RVc.

4. Unless VP = ∅ go to step 2.

5. Return RVc.

FIND-NEXT-CLIQUE:

1. Choose a v ∈ VP with w(v) maximum, let C = {v}.

2. Let N = {v′|v′ ∈ VP − C, (v, v′) ∈ E ∀v ∈ C} be the set of all common neighbors.

Unless N = ∅, add v′ with largest w(v′) to C and repeat step 2.
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3. Return C.

Figure 5.5 shows an example of clique partitioning for the unique vectors shown in

figure 5.3. Each node is labeled with the vector index and its weight. The compatibility

between two vectors is represented by connecting them with an edge. Initially, being the

highest weight node, a clique is started with v1. Then v7 is added in the clique because it

has maximum weight amongst the neighboring nodes. As v3 is the only common neighbor

of v1 and v7, the clique is completed by adding v3 in it. The process continues after

removing v1, v3 and v7 from the graph. As a result the graph in the figure is partitioned

in three cliques which are shown next to it. The unique vectors in each clique are merged

together to form restrict candidate set RVc. This restrict candidate set is shown in figure

5.3 for our example.

G(E,VP,w)

v1/
12

v2/8

v7/9

v3/6

v4/9v6/9

v5/8

v8/3

vector/weight

C1

C2

C3

v1/
12v7/9

v3/6

v4/9v6/9

v5/8

v2/8 v8/3

Figure 5.5: Example of clique partitioning

After clique partitioning, every v ∈ VP is compatible with at least one of the vr ∈ RVc.
The next section will use some of these candidates for restricting and therefore determine

the subset of RVc, that has to be stored in a ROM.

vr1

vr2

vr3

RVc

1 1 1 0 0 0

1 0 0 1 0 1

0 0 1 1 0 1

Figure 5.6: Candidates of restrict vectors
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5.4 Generation of the Restrict Candidates

A set Rc of restrict candidates is generated by scanning through the vector slice sets

Vi. A restrict candidate r = (s, e, i, vr) ∈ Rc is a four tuple consisting of a starting

index s, an ending index e, a vector position i and the restrict vector vr. The following

procedure scans through the list of vectors at a certain position 1 ≤ i ≤ t and generates

restrict candidates in a greedy manner. The candidates are determined by successively

computing the intersections of the sets of restrict values compatible to the considered

vectors.

1. Let starting index s = 1.

2. Let ending index e = s.

3. Let T contain all the restrict values compatible with the ith vector in the sth

pattern:

T = {vr ∈ RVc|ps(i) ∼ vr}.

4. Intersect T with the restrict values compatible with the ith vector of the next

pattern:

T ′ = T ∩ {vr ∈ RVc|pe+1(i) ∼ vr}

5. If T ′ 6= ∅ then T = T ′, e = e+ 1 and go to step 4.

6. Now, T holds the last non–empty intersection. Add the restrict (s, e, i, vr ∈ T ) to

Rc.

7. Set s = e+ 1 and if s < |P |, go to step 3.

8. Return Rc.

Figure 5.7 highlights restrict candidates for our example test set in figure 5.3. As

every test vector is compatible with only a single restrict value in our example, consecutive

vectors in a vector slice set form a single restrict candidate if they belong to the same

restrict value and multiple restrict candidates otherwise. Vector slice set V3 contains a

single restrict candidate because all the vectors are compatible with vr1 while V1 consists

of 4 restrict candidates because only last two consecutive vectors belong to the same

restrict value.
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r1P1 X 1 1 X X 0 ~ vr1 0 X 1 X 0 1 ~ vr3 1 X 1 0 X X ~ vr1 X 0 0 1 X X ~ vr2

1 X 0 1 0 X ~ vr2 X 0 0 X X 1 ~ vr2 1 X X 0 0 X ~ vr1

X 0 1 1 X X ~ vr3

P2

P3

P4

P5

1 X 1 0 X X ~ vr1
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X 0 0 X X 1 ~ vr2 1 X 0 1 0 X ~ vr2 1 X X 0 0 X ~ vr1 X 1 1 X X 0 ~ vr1

V1 V2 V3 V4

Figure 5.7: Example test set before reordering

5.5 Test Set Ordering

In the proposed scheme a single restrict vector from ROM is used to encode all the

test vectors in a restrict candidate. This is similar to static test pattern compaction

[Kaji 94, Hamz 00, Lin 01] where multiple compatible patterns are merged to shorten the

test set. In this approach, multiple compatible vectors are jointly encoded with minimum

information to improve coding efficiency. The gain of restrict encoding increases if large

number of care bits are covered with minimum number of restrict candidates. This can

be achieved by ordering the patterns such that the total number of restrict candidates

decreases in the test set.

To order the patterns, a gain function is defined that expresses the benefit of sorting

two patterns adjacent to each other. This benefit increases with the number of compatible

restrict vectors shared by these two patterns. However, each vector v can be compatible

to multiple restrict vector candidates vr ∈ RVc and it is not yet clear, which restrict

vector is likely to be used at the end. The following procedure determines for each vector

v a single restrict value vr that is most capable in restricting large amounts of care bits.

Each vector position 1 ≤ i ≤ t is considered separately. The weight of a restrict

vector with respect to a vector position i is defined as the overall weight of its compatible

vectors in Vi:

wi(vr) =
∑
v∈Vi

|v|[vr ∼ v]

Figure 5.5 shows the weights of restrict vectors in figure 5.3 for all 4 vector slice sets.

As no vector is compatible with vr1 in vector slice set V2, its weight is 0 with respect

to V2 and it is 15 with respect to V3 because it is compatible with all the test vectors

containing a total of 15 care bits.
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vr1

vr2

vr3

V1 V2 V3 V4

3 0 15 9

10 10 0 6

4 7 0 0

Figure 5.8: Weights of the restrict candidate vectors for the vector slice sets

The more care bits a certain restrict vector can cover at position i, the higher is

the weight. The restrict vectors with a higher weight should have priority over restrict

vectors with a lower weight because it is more likely, that they are able to cover more

care bits in longer runs. Thus, each vector v ∈ Vi is associated with the compatible

restrict vector vr of highest weight wi(vr). This single restrict vector associated with v is

noted as r(v). Each pattern now has t restrict vectors associated with it; one at each

vector position.

The benefit gained by putting two patterns pm, pn in the pattern set adjacent to

each other depends on the following factors:

� The number of vector positions for which these two patterns share the same restrict

vector (r(pn(i)) = r(pm(i))).

� The amount of care bits covered by these common restrict vectors.

Based on these factors, the similarity of a pair of patterns pm, pn ∈ P is defined as:

s(pm, pn) =
t∑
i=1

(|pm(i)|+ |pn(i)|) · y(pm(i), pn(i)) with

y(vj, vk) =


2 if |vj| · |vk| > 0 and r(vj) = r(vk),

1 if |vj| · |vk| = 0,

−1 otherwise.

The first term weights the outcome of y by the number of care bits at each position. y is

positive only if the two vectors are compatible. It evaluates to 2, if both vectors have

care bits and are associated with the same restrict vector.

For a given pattern set P and with the metric defined above, a similarity graph

S(P, s) is constructed. This graph is edge weighted, undirected, and complete. Each

node represents a pattern and the edges between the patterns are weighted with the
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similarity of the two adjacent nodes. The patterns are ordered by finding a maximum

weight path in S such that every node is visited only once. It is an instance of the

travelling salesman problem, so the best solution cannot be found in polynomial time.

The following greedy heuristic however, provides sufficient results.

1. Let s(p0, p1) is maximum in S

2. Let L = (p0, p1) be a pattern list and p = p1.

3. Find a p′ ∈ P with s(p, p′) maximum. Let p = p′, P = P − {p} and append p to

list L.

4. Unless P = ∅, go to step 2

5. Return L.

Figure 5.9 shows similarity graph for our example. The traversal starts by selecting the

pattern pair (P2, P5) because of its maximum similarity. Amongst the remaining patterns

P5 has the maximum similarity with P4, so it is selected next. This way traversal yields

the pattern order (P2, P5, P4, P1, P3). The ordered patterns along with the new restrict

candidates are shown in figure 5.10. The total number of restrict candidates have been

reduced from 13 to 9 because of the new pattern order. Please note that either we

select P2 as the first pattern or P5, it yields the same total similarity as well as the total

number of restrict candidates.

P2, P5, P4, P1, P3

32

1032

10

52

-8 -8
1311

P1

P2

P3P4

P5

-7

Figure 5.9: Similarity graph for example test set
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r6

r5

r4

r2

r3

r1

X 1 1 X X 0 ~ vr1P1 0 X 1 X 0 1 ~ vr3 1 X 1 0 X X ~ vr1 X 0 0 1 X X ~ vr2

X 0 1 1 X X ~ vr3P3 0 X 1 X 0 1 ~ vr3 X 1 1 X X 0 ~ vr1 X 1 1 X X 0 ~ vr1

P4 X 0 0 1 X X ~ vr2 X 0 0 1 X X ~ vr2 1 X X 0 0 X ~ vr1 X 0 0 X X 1 ~ vr2

P5 X 0 0 X X 1 ~ vr2 1 X 0 1 0 X ~ vr2 1 X X 0 0 X ~ vr1 X 1 1 X X 0 ~ vr1

1 X 0 1 0 X ~ vr2 X 0 0 X X 1 ~ vr2 1 X X 0 0 X ~ vr1P2 1 X 1 0 X X ~ vr1

V1 V2 V3 V4

Figure 5.10: Example test set after reordering

5.6 Restrict Candidates Analysis

The goal of restrict candidates analysis is to distinguish between restrict efficient and

reseed efficient candidates. For this purpose restrict and reseed storage cost of every

candidate ri ∈ Rc is estimated and the candidates for whom restricting offers a gain over

reseeding are selected as final restricts.

During the test an action indicates a required update of status register or LFSR

seed. The status register needs to be updated to indicate the start of a restrict or

start of seed encoding while LFSR needs to be reseeded whenever a test vector raises

a conflict with the current seed. Every action needs to be executed at a certain shift

cycle which could be determined by the pattern indices and the vector positions. This

information is stored efficiently if encoded as the number of shift cycles to the next action,

called delay. The number of bits required to store this delay information is estimated as

d = dlog2(max delay)e. Since three different types of actions are required, a 2-bit flag

is needed to distinguish between them. So total storage cost to indicate an action is

Saction = 2 + d bits.

The address of associated restrict value needs to be stored with a restrict start action

while the cost of storing LFSR seeds should be considered for the candidates encoded

with seeds. The address of a restrict value is a = dlog2(|RVc|)e bits long, which fixes the

total cost of restricting a candidate to

Srestrict = Saction + a

The seeds storage of a candidate is always proportional to the number of care bits in

it. Let |ri| denote the number of care bits in a candidate and e the expected encoding

efficiency of LFSR then the ratio Sseed = |ri|
e

gives an estimate of the seeds storage for ri.
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The total cost of encoding a candidate with seeds then becomes

Sseedenc = Saction + Sseed

The action information Saction is needed only at the beginning of first candidate if

a group of candidates adjacent to each other is encoded with seeds. So in the first

step of our analysis we only consider the minimum cost Sseed that has to be paid for

every candidate encoded with the seeds. The seeds cost Sseed is estimated for each

candidate and the candidates for whom Sseed > Srestrict are selected to be encoded with

restricts. In the second step undecided consecutive candidates are considered together.

Let G = {r1, r2, . . . , rn} denotes a group of adjacent restrict candidates then the seed

encoding cost of this group is estimated as

Sseedenc,G = Saction +
n∑
i=1

Sseed,i

while the restrict cost for G becomes

Srestrict,G = Srestrict · n

If Srestrict,G < Sseedenc,G then all the candidates in G are marked as restricted otherwise

they are encoded with the seeds.

In our example (figure 5.10) maximum delay between two actions is 7 which makes

d = 3 and Saction = 5. There are three restrict values in RVc, hence a = 2 and Srestrict = 7.

Maximum encoding efficiency that could generally be achieved with an LFSR seed is 1

[Bala 07]. Assuming e = 1 yields

Sseed = 10r1 , 3r2 , 4r3 , 10r4 , 7r5 , 15r6 , 6r7 , 6r8 , 3r9

In the first step candidates r1, r4, r6 are selected as final restricts because their minimum

cost of seed encoding is higher than restrict cost which is 7. In the second step remaining

candidates are collected in groups G1 = {r2, r3}, G2 = {r5}, G3 = {r7, r8, r9}. The

seed encoding cost of first group Sseedenc,G1 is 12 which includes 5 bits to store action

information and 7 bits as cumulative seed storage cost for r2 and r3. The restricting cost

for the same group is 14 because it contains 2 candidates. Since seed encoding cost of G1

is less than its restricting cost, r2 and r3 are encoded with the seeds. Same way G2 is

selected for restricting and G3 for seed encoding. Figure 5.11 shows the final restricted

and the seed encoded portions of our example patterns. The vectors written in black
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text are encoded with restrict values while the vectors with white text are encoded with

the seeds. The dark Grey and black backgrounds of vectors represent start of a restrict

and seed encoding respectively. The status register is updated at these positions using

the information stored in the memory.

X 1 1 X X 0 P1 0 X 1 X 0 1 1 X 1 0 X X X 0 0 1 X X
X 0 1 1 X XP3 0 X 1 X 0 1 X 1 1 X X 0 X 1 1 X X 0

P4 X 0 0 1 X X X 0 0 1 X X 1 X X 0 0 X X 0 0 X X 1
P5 X 0 0 X X 1 1 X 0 1 0 X 1 X X 0 0 X X 1 1 X X 0

1 X 0 1 0 X X 0 0 X X 1 1 X X 0 0 XP2 1 X 1 0 X X

V1 V2 V3 V4

Figure 5.11: Restricted and reseeded portions of example patterns

5.7 Test Program Encoding and Decompression

The compressed test data consists of a sequence of actions. An action is either an update

for the status register (fig. 5.2) or a reseeding of the LFSR. Each action corresponds to

a command in a test program. Each command consists of the action to be performed

and the number of shift cycles to the next command, called delay. A dictionary address

or an LFSR seed is also part of the command if the required action is a restrict or LFSR

reseed respectively.

Three actions namely restrict start, seed encoding start and LFSR reseeding are

possible. A two bit prefix is used to specify the required action. The length of delay field

is determined by maximum delay between two consecutive actions making delay field

dlog2(max delay)e bits wide while dlog2(|RV |)e bits encode the address of RV ROM.

The length of seed data is equal to the size of LFSR. Figure 5.12 shows the format of

commands to express the actions of starting seed encoding, starting a restrict and the

need to reseed LFSR.

These commands are stored in a bit addressable memory and a small decoder is used

to decode these commands sequentially. Initially decoder reads 2 + dlog2(max delay)e
bits. If the 2 bit prefix indicates that the required action is a restrict start then next

dlog2(|RV |)e bits are read and if the action is reseeding of LFSR then the bits equal

to LFSR size are read. The decoder works independently and sets ready signal high
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seed

delayaction

address

Seed encoding start

Restrict start

LFSR reseed

Figure 5.12: Commands for restrict encoding

whenever the next instruction is ready to be executed. A pipeline is used to ensure that

after the execution of a command the control unit does not has to wait the decoding of

the next command to continue its operation. Since mostly there is a large delay between

two consecutive actions a single level pipeline suffices to avoid any noticeable degradation

in the test time. The chances of any possible degradation in the test time can further be

reduced by increasing the depth of the pipeline.

Suppose two 11 bit seeds 10101010101 and 01010101010 encode the unrestricted

vectors in our example and a reseed action is required at shift cycle 0 and shift cycle 11.

Figure 5.13 shows the resulting test program for our example, stored in a 16 bits wide

memory. It is assumed that the status registers are reset to seed encoding before starting

the test. The first two commands in the test program indicate the loading of LFSR seed

and setting the status register for the first restrict prior starting scan shift. Since the

first restrict is encoded with the second value in the RV ROM, the address field contains

01. The third and the fourth commands update the status register, after one shift cycle

each, to start the second and the third restrict. If seed encoding for some vector position

starts from first pattern, no action is required because the status register is set to seed

encoding in the beginning. That is why no command is stored to indicate the start of

seed encoding from the fourth vector position of the first pattern in our example (figure

5.11). The last three commands represent LFSR reseeding, start of seed encoding and

start of a restrict respectively.

5.8 Experimental Evaluation

Experiments were performed on considerably large industrial circuits. The experimental

setup and the results are explained in appendix A.1. The experiments reveal that in large
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Figure 5.13: Test program for the example

test sets with low care bits density, on average, 80% care bits are encoded with restricts

and only 20% with the seeds. The encoding efficiency of care bits encoded with restricts

is two to four times higher than the encoding efficiency of remaining care bits that are

encoded with seeds. The cumulative encoding efficiency of restrict encoding for all the

experimented circuits always remains higher than 1. Among the test data compression

methods published so far, no compression method has ever achieved encoding efficiency

greater than 1. It is first time in the literature that such high encoding efficiency is

achieved. It is made possible only by efficiently exploiting strong regularities in sparse

test sets.

The results of restrict encoding are compared with continuous reseeding [Volk 03]

which offers the best compression for low care bits density test sets compared to other

methods. The comparison reveals that restrict encoding offers an improvement in

encoding efficiency ranging from 62 to 186 percent. The average improvement remains

higher than 100% reducing the storage requirements to more than the half. Considering

the large sizes of high defect coverage test sets for nanometer ICs, this reduction in

storage results in great savings in test cost. The most important advantage of restrict

encoding over continuous reseeding is that it offers an encoding efficiency higher than the

maximum theoretical limit of reseeding. The encoding efficiency of continuous reseeding

is as high as 0.9 in our experiments showing that any new reseeding scheme can at most

achieve an improvement of 11% only. While in the proposed method an improvement up

to 186% has been achieved.

Comparisons are also made with available dictionary encoding schemes [Redd 02,

Li 03, Wurt 04, Kim 08]. The comparisons show that restrict encoding offers many

times better compression. It is due to the fact that in dictionary encoding an index of

dictionary has to be stored for each test vector irrespective of the number of care bits in

it and employing dictionary encoding for large test sets with low care bits density results

in very high storage requirements. While in the proposed scheme a single index is shared

by a large number of test vectors and if it is not possible to encode significantly large
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number of care bits with dictionary index, reseeding is applied to avoid degradation in

the compression.



CHAPTER 6

Self-Test with Minimal Hardware

Overhead

This chapter demonstrates the use of run-length encoding with parallel decompression

(REWPD) by developing a new built-out self-test (BOST) scheme for deterministic

testing. This external deterministic self-test minimizes the on-chip test hardware overhead

while keeping the test time in the built-in self-test (BIST) range. Section 6.1 defines

the problem. The proposed scheme is based on bit-flipping deterministic logic BIST

(DLBIST) [Wund 96]. An overview of DLBIST along with the target architecture is

presented in section 6.2. The detailed implementation of REWPD compression and

decompression are explained in section 6.3. To simplify the test at board level IEEE

1149.1 JTAG boundary scan standard is used as communication protocol for sending

data from the test chip to the circuit under test (CUT). Section 6.4 describes this

communication protocol while section 6.5 gives an overview of the test configuration.

The outcome of experiments performed on large industrial circuits is presented in section

6.6.

6.1 Introduction

In many applications small dimensions of a chip and lowest fabrication cost are desired.

For such applications reducing on-chip area overhead to minimal is of prime concern.

Deterministic BIST [Daeh 81, Dand 84] required to ensure high quality of fabricated

chips need an amount of on-chip area that is expensive. Because of this reason mixed-

mode deterministic BIST schemes [Koen 91, Hell 95, Wund 96, Toub 96, Gher 04] are

57
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more popular to get desired fault efficiency with lesser area overhead. Though hardware

overhead of mixed-mode BIST is much smaller compared to a pure deterministic BIST,

still the test hardware may take up to 30% of overall chip area [Gher 04] with an ever

increasing tendency. For area critical applications this amount of test hardware is not

affordable.

Built-out self-test (BOST) schemes [Bard 82, Eich 83, Hell 90, Stro 91] try to com-

bine the advantages of external testing and BIST by implementing test resources in

a special chip. Figure 6.1 shows basic structure of BOST. Here a dedicated test chip

replaces the expensive tester and pattern generation, response evaluation and test control

are performed by the test chip. The main challenge in the design of a test chip is to

keep test information storage as well as communication overhead under acceptable limits.

The BOST is attractive for area critical applications because it reduces the on-chip

test hardware overhead to a minimal. If the test chip is programmable, a single test

chip could be shared by several ICs at board (figure 6.2). Test chips producing random

[Bard 82, Eich 83], weighted random [Stro 91] and pseudo-exhaustive [Hell 90] patterns

are already presented. Due to high storage requirements and communication overhead a

test chip producing deterministic patterns has not been considered feasible up to now.

.

.

.

Circuit Under Test
Boundary Scan

Boundary Scan

B
oundary Scan

B
oundary Scan

Test Chip

Pattern 
Generation

Response 
Evaluation

Test Control

Figure 6.1: The BOST Scheme

CUT 2

CUT 3CUT 4

Test Chip

CUT 1

Figure 6.2: BOST at board level

While a pure deterministic BOST solution seems expensive, a mixed-mode deter-

ministic BOST scheme may be developed to achieve complete fault efficiency with very
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small on-chip area overhead. By adapting test resource partitioning (TRP) and test

data compression for built-out self-test, the communication overhead and the storage

requirements for test chip are minimized. The design of a test chip with mixed-mode

deterministic pattern generation poses the following challenges:

� Partition the self-test circuitry between off-chip and on-chip such that the best

trade-off is found between the area overhead and the test time

� Minimize the storage requirements for the test chip

� Maintain the test time close to mixed-mode BIST

� Keep the test chip programmable

� Keep the on-chip test hardware independent of the test set

� Use a standard communication interface between the test chip and the CUT

A test chip meeting aforementioned challenges is developed based on bit-flipping

DLBIST [Wund 96, Gher 04]. The overview of bit-flipping DLBIST along with the

overview of the proposed method will be explained in the next section.

6.2 Overview of the Proposed Scheme

The bit-flipping DLBIST requires less on-chip area compared to programmable mixed-

mode deterministic BIST solutions [Wund 96]. Figure 6.3 shows this DLBIST architec-

ture. Here an LFSR is used to generate the pseudo random patterns while an XOR gate

is used in front of each scan chain to embed the deterministic patterns into the LFSR

generated pseudo random patterns. The XOR gates are controlled by a combinational

logic called bit-flipping logic (BFL). The bit-flipping logic (BFL) changes a few bits of the

random vectors generated by the LFSR in order to produce precomputed deterministic

patterns. In [Wund 96] it is shown that random vectors can be found which leave most

of the bits of the BFL output not specified, the remaining bits are mostly 0 as they

match with the random vectors, and only very few bits must be 1. The LFSR, the XOR

gates and the BFL form the pattern generator of this scheme.

At each clock the LFSR produces a random vector vr and the BFL generates an

embedding vector ve. Both r and e are k bits long. A deterministic vector vd, shifted into

the scan chains at each clock, is obtained as vd(i) = vr(i)⊕ ve(i) for 1 ≤ i ≤ k. Figure
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6.4 shows an example of random (PR), embedding (PE) and deterministic (PD) test sets

for a circuit with k = 4, t = 3 and |P | = 3.

The test application is managed by a finite state machine called test control unit

(TCU). The TCU mainly contains a vector counter (VC) and a pattern counter (PC).

The VC is used to control the shifting of a new pattern into the scan chains while the

PC is used to control the length of the test set.

Figure 6.3: Bit-flipping DLBIST
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Figure 6.4: An example of random, embedding and deterministic test sets

In order to find the best partitioning between off-chip and on-chip, major parts of

bit-flipping DLBIST and their inputs and outputs are analyzed. The analysis reveals that

the LFSR, the XOR gates, the MISR and the TCU do not add much hardware overhead

on-chip while their implementation externally would require extensive communication

and will result in long test time. So these parts are implemented on-chip. The significant

area overhead of DLBIST is caused by the bit-flipping logic that represents hardwired

storage of the compressed deterministic test set. So deterministic test set storage is

moved from on-chip to the test-chip. To make the test chip programmable we have to

store the compressed deterministic patterns in memory. Unlike deterministic patterns

with no regularity, the embedding information of DLBIST shows weak regularity due

to biasness towards 0. So we compress bit flip information instead of the deterministic

patterns.
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Figure 6.5 shows an overview of the targeted self-test scheme. The embedding

information is compressed and stored in an external chip memory. The on-chip BFL

is replaced by a decoder while other test circuitry is still on-chip. The test chip also

contains some control logic along with the memory to regulate the test operations. The

encoded embedding information is read from the memory bit by bit and sent to the

on-chip decoder. The decoder detects the codeword and regenerates the embedding

information, which is then applied to the XOR inputs. The on-chip control unit manages

the synchronization between the LFSR and the decoded embedding information.

Figure 6.5: External test based on bit-flipping

Challenges like minimizing the on-chip decoder size, keeping the decoder independent

of the test set, reducing the off-chip storage and maintaining the test time under

throughput all depend upon the compression and the decompression of the embedding

patterns. Using our proposed test compression method for weak regularity test sets “run-

length encoding with parallel decompression”, all these challenges are successfully met.

In the next section, the application of the compression method and the decompression

architecture are described in detail.

6.3 Compression/Decompression of Embedding In-

formation

6.3.1 Compression Algorithm

Figure 6.6 shows the compression algorithm. The algorithm starts by replacing Xs in PE

with 0s since 0 is the majority bit in PE. Then an extra bit, that is always 1, is assumed

at the end of all the test vectors which end with a 0. After this, assuming maximum

symbol length of k + 1, the test vectors are divided into the runs of 0. If all the bits in a
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test vector are 0 then we have just one symbol of the length k + 1 and if all are 1 then

we have k symbols each of length 1.

1. Fill Xs in PE with 0

2. Let v(k + 1) = 1 ∀ vmn ∈
PE & vmn(k) = 0

3. Let sl is 0 runlength symbol with
|sl| = l & s(l) = 1

4. Let maximum symbol length lmax =
k + 1

5. Divide each vmn ∈ P into sl with
|sl| ≤ lmax

6. Generate a dictionary D with all sl
and their frequency f in P

7. Sort D in descending order of f

8. Let D starting index i = 1

9. Let D ending index j = k + 1

10. Let code c = 0

11. Assign c to i

12. Set i = i+ 1

13. Set c = 1c

14. Go to step 11 until i < j

15. Truncate least significant bit from c

16. Assign c to i

Figure 6.6: Compression Algorithm of REWPD

In the next step a dictionary D of these 0 run-length symbols along with their

frequencies of occurrence in PE is built. The dictionary is sorted in the descending order

of the symbol frequency. Then binary codes are assigned to all the symbols in a way

that the symbol with the highest frequency gets the shortest code. So the first symbol in

D is assigned code 0. The subsequent symbols, except the last one, are assigned a code

by appending a 1 in the code of the previous symbol. This way the second symbol in

the dictionary will get the code 10 and the third one will get 110. The code of the last

symbol is generated by replacing the 0 with 1 in the code of previous symbol. Although

the Huffman codes might offer better compression they are not used as they require

a decoder that depends on test set. Figure 6.7 shows the application of the proposed

compression method on embedding test set PE from figure 6.4.
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Figure 6.7: An example of REWPD compression algorithm
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6.3.2 Decompression Architecture

The block diagram of the decompression architecture is shown in figure 6.8. It mainly

consists of a binary decoder, a small memory and a generate unit. The binary decoder

receives a codeword serially and produces the address of the memory word that stores the

length of the encoded symbol. The length is passed to the generate unit that regenerates

the run-length symbol. When the test vector is complete it is shifted into the scan chains.

Detection of a binary code, reading of a memory word and generation of a run-length

symbol are performed in parallel.

Generate Unit

Memory

Binary Decoder

address

symbol 

length

reset

clock

complete

…...
embedding vector to XOR

k1 2

code

reset

clock

Figure 6.8: Block diagram of REWPD decoder

The binary decoder is a simple finite state machine consisting of at most k states

and implemented by dlog2ke flip-flops. It receives a code bit by bit through the code

line, and when the code is complete it generates an address of a memory word. This

decoder is designed in a way that on the detection of the shortest code (i.e. 0) it gives

the address of the first memory word, on the second shortest (i.e. 10) the address of

the second memory word and so on. If the code is not complete, the address of the last

memory word appears at the decoder output. This decoder is only dependent on k i.e.

number of scan chains in the design and is independent of the test set.

The memory is used to store the lengths of the symbols according to the descending

order of their frequencies. So the length of the symbol with the highest frequency and

the shortest code (i.e. 0) is always stored in the first word of the memory, the length

of the symbol with the second shortest code (i.e. 10) is in the second word and so on.

The last memory word, the address of which is produced during the reception of a code,

always stores 0. The length of each memory word is dlog2(k + 1)e and the maximum

number of required words is k + 2. Therefore the size of the maximum memory required
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becomes (k + 2) ∗ dlog2(k + 1)e bits. If the test set is changed and hence the frequencies

of the different 0 run-length symbols, the memory words are initialized according to the

new frequencies. In this way the decoder is independent of the test set. Figure 6.9 shows

the state diagram of the binary decoder and the memory contents for the example in

figure 6.7.
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Figure 6.9: Example of the binary decoder and the memory contents

The detailed design of the generate unit is shown in figure 6.10. This architecture is

similar as was presented in 4.3(a) except few additional components. The Register1 is

used to store the total number of generated bits and is dlog2(k + 1)e bits wide. Initially

all the registers are set to 0. The length of an encoded symbol is read from the memory

and passed to the adder. It adds this length to the contents of the Register1 and stores

back the results in the Register1 while flipping the corresponding bit from 0 to 1 in the

Register2. This process continues until the comparator detects that the value of the

Register1 is greater or equal to k i.e. complete test vector has been generated. At this

point the generated vector is shifted into the pipeline register and the registers are set

back to 0.
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Figure 6.10: Design of the generate unit
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6.4 Communication Protocol

The IEEE 1149.1 JTAG boundary scan standard defines a test access protocol and a

boundary-scan architecture for digital ICs. Since its approval by the IEEE as a test

standard in 1990, the standard has been employed by most electronics companies when

building large chips. Today, almost all general-purpose CPU, DSP, and FPGA and many

application-specific designs comply with the 1149.1 standard. Because boundary scan

provides a simple and efficient protocol for data communication, this standard has also

been employed in many other applications, including power management, embedded

instrumentation control, clock/PLL control, debugging/diagnosis, verification, and chip

reconfiguration [Rear 05].

Figure 6.11 shows a chip with the boundary-scan architecture. It mainly contains a

test access port (TAP), a TAP controller, instruction register (IR) and several test data

registers. The TAP consists of four mandatory pins called test data input (TDI), test

data output (TDO), test mode select (TMS) and test clock (TCK). The TAP controller

is a 16-state finite state machine that controls each step of the boundary scan operations.

The instruction register is serially loaded with an instruction through TDI, which enables

various different operation modes of the test hardware. Several instruction modes are

mandatory, others are optional, and user-defined instructions can be added.
Boundary Scan and Core-Based Testing 563
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Boundary-scan architecture.

boundary-scan operations. Each instruction to be carried out by the boundary-scan
architecture must be serially loaded into the instruction register through the test
data input (TDI) pin. The test signals to configure the boundary-scan-related test
hardware for the current test instruction are provided by the associated decoder.
The test data registers are used to store test data or some system-related information
(such as the chip ID, company name, etc.).
In addition to the hardware components, IEEE Std. 1149.1 also defines a set of

test instructions, including four mandatory ones (BYPASS, SAMPLE, PRELOAD,
and EXTEST) and several optional ones, including INTEST, RUNBIST, CLAMP,
IDCODE, USERCODE, and HIGHZ. It also allows the users to define their own
instructions. An outline of a typical test procedure using boundary scan, which will
be detailed in the following sections, is as follows:

1. A boundary-scan test instruction is shifted into the IR through the TDI.

2. The instruction is decoded by the decoder associated with the IR to generate
the required control signals so as to properly configure the test logic.

3. A test pattern is shifted into the selected data register through the TDI and
then applied to the logic to be tested.

4. The test response is captured into some data register.

Figure 6.11: Boundary scan architecture [Wang 06]

Easy integration of the test chip is facilitated by adopting boundary scan standard to

transmit codes from the off-chip to the on-chip. For the external deterministic self-test

only one extra instruction named BFTEST is added. Whenever this instruction is loaded

into the instruction register and the TAP controller reaches Run-Test state, it sends
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a start signal to the on-chip test controller and the TDI is connected with the binary

decoder.

6.5 Test Configuration

The testing procedure starts by setting the start test input of the external chip. When

this input is set, the external chip controller transfers the BFTEST instruction into the

instruction register through instruction scan cycle and then changes the TAP controller

mode to Run-Test. When the TAP controller reaches this state, transformation of the

codes from the test chip starts. The codes are read bit by bit from the test chip memory

and are sent to the binary decoder of the CUT through TDI. The binary decoder detects

a codeword and provides the address of the memory word containing the length of

the encoded block. This length is passed to the generate unit that regenerates this

block using the procedure described in section 6.3.2. When the embedding vector is

complete, the comparator sends a signal to the on-chip controller that sets the scan line

to shift XOR outputs into scan chains. The controller also decrements the bit counter

and changes the state of the LFSR. When bit counter reaches 0, the pattern counter is

decremented by 1 and one system clock is applied. Responses of the circuit are captured

again in scan chains. Shift in new pattern and shift out responses go in parallel. This

process continues until the pattern counter reaches 0.

6.6 Experimental Evaluation

The experimental setup for external deterministic self-test is described in appendix

A.2. The experimental results reveal that the proposed compression algorithm offers

significantly higher compression percentage for embedding information compared to the

most efficient known run-length encoding [El M 08] scheme. The achieved compression is

close to the maximum theoretical compression achievable using run-length encoding. The

test time comparison with DLBIST demonstrates that the proposed decompression archi-

tecture successfully achieves the goal of keeping test time close to DLBIST. Compared to

other state of the art run-length encoding schemes [Chan 01, Gonc 02, Chan 03, El M 08]

the speed up achieved due to the novel decompression architecture is significant. While

minimum 637 million cycles are required using conventional run-length decompressors to

complete a test for one of the industrial circuits, only 11 million cycles are required with
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the proposed method which is close to 8 million cycles required in DLBIST.

Comparing the size of the on-chip test hardware with state of the art deterministic

logic BIST (DLBIST) [Gher 04] reveals that significant savings in on-chip test hardware

are achieved using the proposed built-out self-test. The on-chip area overhead caused by

proposed method could be considered insignificant for large circuits. The tables show

that the test hardware of proposed scheme only depends upon the number of scan chains

in the circuit and is fully independent of the circuit size or the test set.
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CHAPTER 7

Self-Test with Short Test Application

Time

In this chapter a built-in self-test scheme aimed to achieve short test time with

minimum hardware overhead on-chip is developed by employing nearly complete reseeding

(NCR). The problem of achieving short test time with smaller hardware overhead is

described in section 7.1. An overview of the target BIST scheme realizing the idea of

NCR is presented in section 7.2. Section 7.3 describes the seed computation algorithm for

“nearly complete reseeding”. The compression and the decompression of NCR embedding

information is explained in section 7.4 while efficiency of the proposed scheme is evaluated

in section 7.5 using the experimental results.

7.1 Introduction

In today’s highly competitive semiconductor industry, time-to-market is crucial for many

products. The test application time is one of the major contributors in time-to-market.

Since the test time is directly proportional to the number of applied patterns, the rapid

increase in the test sets sizes of nanometer ICs is posing a serious challenge in speeding

up time-to-market within affordable costs.

The size of a test set is shortened by applying full compaction in order to reduce

the test time. In built-in self-test, this test set is stored on-chip. The on-chip hardware

overhead caused by test set storage is scaled down using the test data compression. The

available compression schemes yield poor compression for a fully compacted test set due
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to high care bits density. This poor compression results in higher hardware cost needed

to achieve short test time.

In general, such test sets are irregular so the code based compression schemes are not

appropriate for them. The linear decompressor based schemes are more suitable for the

test sets without regularity. However, the compression of available linear decompressor

based schemes is limited by the number of care bits encoded per seed. In addition,

possible failure in finding the seeds of few patterns results in fault coverage loss.

In this chapter we demonstrate the use of nearly complete reseeding in built-in self-

test to overcome these problems. The use of NCR significantly increases the efficiency

of an irregular test set while guaranteeing complete fault efficiency. The next section

presents an overview of the BIST scheme implementing nearly complete reseeding.

7.2 Overview of the Proposed Scheme

Figure 7.1 shows the realization of nearly complete reseeding in BIST. A complete test

vector is shifted into the scan chains in parallel in STUMPS. During seed computation

of nearly complete reseeding one or more bits of a test vector may raise conflicts and

will need to be ignored. Addressing the ignored bits of a test vector individually may

introduce significant overhead in the test time and the hardware. Hence, we address a

complete vector and ignore it if any of its bits causes a conflict during seed computation.

The seeds for a test set are computed by allowing to ignore a fixed number of vectors.

The positions of ignored vectors are stored along with the seeds.

When decoding an ignored test vector, the LFSR will generate the desired values at

the compatible bit positions, and the opposite values at the conflicting bit positions. In

order to retain the values at compatible bit positions and to flip the opposite values, a flip

vector is assigned to each ignored position. The seeds, the ignored positions and the flip

vectors are stored in the memory. In order to reduce the memory requirements, ignored

positions are encoded as the distance between two ignored positions, and flip vectors are

compressed using a compression method similar to [Wurt 04]. A small decoder is then

used to generate the flip vectors. An XOR operation is performed at all the ignored

positions between LFSR generated vector and the associated flip vector in order to get

the desired values.



7.3. SEEDS COMPUTATION 71

CUT

M

I

S

R

   Decoder

...

...

... ...

...

Compressed 

Flip Vectors

Memory

Ignored 

Positions

Memory

Seeds 

Memory

Figure 7.1: Overview of BIST employing NCR

Two main approaches to seed computation are popular in current literature. Either a

complete pattern is encoded in a single seed [Koen 91, Hell 95, Rajs 98, Kris 01, Al Y 05],

or continuous subsequences of a single or multiple patterns are encoded in each seed

[Volk 03]. For the latter approach, it was shown that storage requirements are improved

and shorter LFSRs can be employed [Volk 03]. Although nearly complete reseeding

can be employed with any of the two reseeding techniques, the second approach has

been selected here, as multiple patterns can be encoded before the number of ignored

vectors exceeds a predefined limit. Furthermore, control information for the start of the

next seed can be derived implicitly by starting the next seed just after the last ignored

position associated with a seed. This control information had to be stored separately in

[Volk 03].

In the next section we describe the seed computation algorithm for the proposed

scheme.

7.3 Seeds Computation

Let P be a test set with |P | = q, then P could be viewed as a sequence of t∗q test vectors.

A v at position j in P is represented as P (j) = vj. If a care vector vj is considered

during seed computation it is called an encoded vector otherwise it is termed as ignored

vector and its position j as ignored position. For a seed S, VE and VI represents the sets

of encoded and ignored vectors respectively. For each vj ∈ VI a flip vector f is assigned

such that vj = rj ⊕ f where rj is the random vector generated by LFSR at position j.

During seed computation, a complete test vector is ignored if any of its bits raises
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conflicts. A limit I is set that defines the number of vectors that are allowed to be ignored

for each seed. Figure 7.2 shows the seeds computation algorithm of nearly complete

reseeding. Seeds computation is done in an iterative manner. It starts with empty sets

of encoded and ignored vectors. A care vector is added to the set of encoded vectors,

the linear equation system is generated and it is established whether or not a solution

exists. If it does, the process continues with the next care vector. Otherwise, the current

vector is moved from the encoded set to the ignored set first. The process of adding a

care vector into the encoded or ignored set continues until the number of ignored vectors

exceeds the defined limit I.

1. Let j = 0

2. Let encoded vector set VE = ∅
3. Let ignored vector set VI = ∅
4. Until vj is don’t care vector j + +

5. VE = VE + vj

6. Find seed for VE

7. Unless VE becomes unsolvable go to
step 4

8. VE = VE − vj

9. VI = VI + vj

10. Unless |VI | ≤ I go to step 4

11. Unless FIND-OPTIMIZED-IGNORE-
POSITIONS fails go to step 4

12. Store seed, ignored positions and com-
pute flip vectors go to step 2

Figure 7.2: Seeds computation algorithm for NCR

When the addition of a certain care vector makes the linear equation system un-

solvable, most times, the current vector is not the only choice to be ignored in order to

make the set solvable again. The ignored vector can be chosen from a number of possible

candidates and choosing another vector instead of the most recent one, might result in

fewer conflicts later on. But as the best choice of ignored positions might change with

every new vector, the current vector is chosen as the victim until the allowed limit is

crossed. If n is the total number of vectors considered so far, then as soon as the defined

limit I is exceeded, the ignored set contains I + 1 vectors and the encoded set contains

n− I − 1 vectors. At this point, a search is executed for a combination of I vectors such

that ignoring these I instead of I + 1 vectors, causes the other n− I vectors to become

encodable.

If a subset of vectors is found for which the system of linear equations is consistent,

the sets of encoded and ignored vectors are updated and the process continues. If

no such subset exists, the current vector is used to delimit the start of the next seed,

which means that I + 1 vectors are actually ignored for each seed instead of I vectors

. The I + 1th ignored position is different from the first I ignored positions in that

no new vector is encoded after it, but a new seed is started. Before starting the next
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iteration with empty sets of encoded and ignored vectors, the flip vectors are derived

from the ignored vectors and are stored together with the seed and ignored positions. By

simulating the unchanged pattern (i.e. without flip vectors applied), we can determine if

this information is required for fault detection. The fault simulation is done only w.r.t

the target faults of the pattern and does not add significant computational overhead.

Figure 7.3 demonstrates seeds computation for NCR with the help of an example:

suppose 5 test patterns (7.3(a)) for the circuit in 4.4(a) have to be encoded and we

are allowed to ignore 2 care vectors per seed. The seed computation procedure starts

by adding the 1st vector of p1 (right most vector) to the encoded set. The equations

are generated and it is determined that this equation system has a solution. Then, the

2nd vector is added and equations for both vectors in the set are generated to observe

solvability. The encoded set remains solvable until the 4th vector is added. As the limit

is not yet exceeded this vector is moved to the set of ignored vectors. Then the 6th and

the 8th vectors are found to cause the equations to be unsolvable, so they are moved to

the ignored set, too. By ignoring the 8th vector, the size of the ignored set becomes 3,

which is greater than allowed. Now it is attempted to optimize the selection of ignored

vectors so that instead of three vectors only two vectors have to be ignored and the rest

of the vectors become solvable. For this, we generate equations and check solvability of

all the possible 6 out of 8 vectors. We find that none of these subsets are solvable, so the

seed of the encoded set 1, 2, 3, 5, 7 is saved. In order to derive flip vectors for the ignored

set, the location of the bits related to the conflicting equations are determined and the

flip vector is assigned 0 for matching bits, 1 for conflicting bits, and X for the rest. The

remaining seven vectors are encoded by the second seed using the same method. Figure

7.3(b) shows both seeds along with their ignored positions and associated flip vectors.

7.4 Compression/Decompression of Embedding In-

formation

The embedding information contains flip positions and flip vectors associated with

them. The flip positions are efficiently encoded by encoding the distances between two

consecutive flip positions instead of their absolute numbers. These distances are used

during the test to identify the ignored vectors and start of the next seed. For the flip

vectors, a compression method similar to [Wurt 04] is used. The embedding information

of NCR is different in statistical attributes compared to embedding information of
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Figure 7.3: Example of seed computation with NCR

DLBIST. In DLBIST a deterministic pattern is mapped to a random pattern after

searching a random pattern that matches it in majority of care bits. So the embedding

information of DLBIST is biased towards 0. However in NCR an ignored deterministic

test vector has to be mapped to a random vector generated at ignored cycle. The number

of matching and conflicting bits between two vectors is random. So the embedding

information of NCR is not biased.

The number of flip vectors is very small compared to the total number of test vectors.

The flip vectors show strong regularity and most of the flip vectors are compatible with

each other or differ at very few bit positions. This regularity is exploited to develop a

compression method and decompression architecture that offers reduction in storage of

embedding information without prolonging test time.
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7.4.1 Compression Algorithm

The main idea in the compression of flip vectors is that a reference vector is computed

with which the flip vectors have a minimum number of conflicts. In most cases, a

large number of the flip vectors are fully compatible with the reference vector, and

the ignored position and the flip vector is encoded as a tuple (i, 0) where i is the

address of the ignored vector relative to the previous ignored. Otherwise, the encoding

is (i, 1, (p0, 0) . . . (pn−1, 0), (pk, 1)), where p0...pk are the positions in which the flip-vector

differs from the reference vector.

The reference vector contains a 1 at a certain bit position, if the flip vectors have

more 1s than 0s, otherwise it contains a 0. Figure 7.4 shows the compression of the flip

vectors computed in the previous example. Each flip vector is a column of a matrix, and

we determine which of 0 or 1 has the highest frequency in each row. This value is entered

in the reference vector RV. In the example, we find that the first row has more 0s than

1s, so the first bit of the reference vector RV is assigned a 0. The complete reference

vector is computed this way and is shown in the column next to the flip vectors. In our

experiments a single reference vector was sufficient for all the flip vectors. But if the

number of flip vectors is too large, the flip vectors can be divided into the groups of

consecutive test vectors and a reference vector is computed for each subsequence.

Figure 7.4 also illustrates the encoding of the ignored positions and the flip vectors.

A comparison of the flip vectors with the reference vector reveals that the first 4 flip

vectors are fully compatible, while the last two vectors have conflicts. So, the first 4

flip vectors are encoded by storing a single status bit 0 with the ignored positions. For

the second last vector, the bit number 0 and the bit number 7 have conflicts with the

reference vector. This vector is encoded as (3, 1, (0, 0), (7, 1)) which indicates that the

reference vector can be used as the flip vector after modifying the bits 0 and 7. The status

bit 1 in (7, 1) means that the reference vector is ready to be used after this modification.

Using the proposed technique the test set of figure 7.3(a), containing 5 patterns and

53 care bits, can be encoded with a total of 54 bits where 16 bits are required to store

the seeds, 12 bits to store the ignored positions and 26 bits to store the flip vectors. The

same patterns would have required 210 bits and 90 bits in case of conventional [Koen 91]

and variable pattern length [Volk 03] reseeding techniques respectively.
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Figure 7.4: Flip vectors compression example

7.4.2 Decompression Architecture

To decode the encoded flip vectors, we need the reference vector, the information whether

the flip vector of an ignored position is compatible with the reference vector, and the

conflicting positions. Figure 7.5 shows the architecture of the flip vector generator. It

contains a register to store the reference vector (RV Register), a modify unit to generate

incompatible flip vectors, and a multiplexer to select between the reference and the

incompatible flip vector depending on the status bit of the ignored position.
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Figure 7.5: Decompression Hardware of NCR

The modify unit is similar to the generate unit of “run-length encoding with parallel

decompression”. It creates flip vectors serially during shifting by using the reference

vector in the RV Register and the encoded conflict positions in the compressed flip
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vectors memory. On receiving the start signal, the incompatible flip vector register (IFV

Register) is reset to the reference vector and the conflicting positions are read from the

memory and flipped in the IFV Register until the comparator detects that the status bit

of a conflicting position is ’1’. The complete signal is set to high at this point, indicating

that the flip vector is ready to be used. The number of clocks needed to produce a

complete incompatible vector is equal to the number of conflicts between an incompatible

flip vector and the reference vector.

Here it should be noted that the modify unit is completely independent and it does

not need to wait until the ignored position of an incompatible flip vector is met. It

produces the next incompatible flip vector in advance and waits for its use. As ignored

positions are randomly distributed and very few flip vectors require modification, the

decompression does not cause any noticeable speed degradation in general. Some cycles

could be wasted only in the case if there are two consecutive flip positions and both of

them have incompatible flip vectors, an extremely rare case. Moreover, the flip vector

generator only depends on the number of scan chains in the circuit and is independent

of the test set or size of the circuit.

7.5 Experimental Evaluation

In order to validate the efficiency of the presented algorithm and test architecture,

experiments were performed on industrial circuits. The experimental setup and the

results are explained in appendix A.3. Evaluating the encoding efficiency as a function

of the number of ignored vectors per seed reveals that coding efficiency increases linearly

with the number of ignored vectors. The gain achieved by increasing the number of

ignored vectors is higher for first few ignores. It is because the linear dependence

is low in the beginning and by ignoring few inconsistent equations many subsequent

equations can be encoded with the same seed. While the achieved gain per ignored

vector decreases if more and more vectors per seed are ignored, the computation time

increases significantly. It was found that for majority of the circuits 2 and 3 are good

values to achieve significantly higher encoding efficiency within a reasonable time.

The results are compared to the variable pattern length per seed technique known as

continuous reseeding [Volk 03], which is the most efficient single polynomial technique

published so far and is equivalent to evaluating the presented algorithm using 0 allowed

ignore per seed. The comparison shows that the proposed scheme offers an increase in
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encoding efficiency ranging from 35 to 118 percent. For majority of the experimented

circuits the gain remains higher than 50 percent offering significant reduction in storage

requirements.

The major draw back of reseeding is that encoding of a pattern is not guaranteed.

The size of LFSR have to be kept larger than the maximum number of care bits in a

pattern or vector in order to ensure the high probability of encoding. In nearly complete

reseeding, any standard size LFSR could be employed. If some vectors are left unencoded

by LFSR, they are encoded as flip vectors. In our experiments, a standard 64 bit LFSR

was used for NCR while in case of continuous reseeding larger LFSR had to be employed

for some circuits.

In nearly complete reseeding a small decoder is required to regenerate compressed

flip vectors. Experimental results reveal that the hardware overhead associated with

this decoder is negligible compared to the size of the circuit under test. In addition this

decoder only depends on the number of scan chains in the circuit and is independent of

the test set or size of the circuit.
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Conclusions

8.1 Summary

In this work novel test solutions offering optimized reductions in test cost have been

presented. Explosive increase in test sets volume is causing a rapid growth in test cost and

Test data compression techniques are used to curtail it. Since the compression of a test

set depends on its statistical attributes, our work started with the analysis of various test

sets generated for the large industrial circuits. Using the findings of the analysis the test

sets are categorized into three classes based on their statistical attributes namely strongly

regular, weakly regular and irregular test sets. Optimized compression is obtained by

examining each class differently and hence proposing three novel compression methods

and decompression architectures. The decompression hardware of each proposed method

is independent of the encoded test set. Three low cost programmable deterministic

self-test schemes offering different trade-offs are developed by employing each method.

A large number of repeating sequences of bits are found in the test sets with low

care bits percentages. We have classified such test sets as strongly regular test sets. The

strong regularity in such test sets is exploited by restricting the successive repeating

sequences to a single precomputed value called restrict value. The irregular portions

of the test set are encoded with the seeds. This compression method is named restrict

encoding (RE). Minimum number of restrict values are found using a clique partitioning

heuristic while length of successive sequences is maximized by solving traveling salesman

problem. A built-in self-test scheme achieving high quality with very less storage is

developed using restrict encoding. The experimental results showed that restrict encoding

79
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always offers an encoding efficiency greater than 1.

The test sets with high percentages of care bits but biased toward 0 or 1 are

categorized as weakly regular test sets. A variable-to-variable run-length encoding

method is proposed for such test sets that achieves a compression ratio close to the

entropy limit. A major drawback of conventional run-length decoders is the large

decompression time overhead due to their serial regeneration of run-length symbols. This

problem is overcome by presenting a novel run-length decoder that is able to regenerate a

complete run-length symbol in a single clock. This encoding method is named run-length

encoding with parallel decompression (REWPD). A built-out self-test scheme minimizing

the on-chip hardware overhead is developed by employing REWPD.

The repeating sequences of care bits are rare in the unbiased test sets with high

percentages of care bits. Such test sets are classified as irregular test sets. The proba-

bilistic analysis as well as various experiments showed that a significant number of care

bits could be encoded in the seed of a linear decompressor if a small number of bits

causing inconsistency are ignored during seed computation. This finding is used in the

proposed compression method for irregular test sets called nearly complete reseeding

(NCR). In NCR the ignored bits are separately encoded and stored in memory. During

the test the ignored bits are embedded into the generated patterns. The built-in self-test

scheme implemented by using NCR tries to achieve short test time with minimal storage

requirements.

8.2 Future Work

In our work we have assumed a core based design style where structural information of

the circuits is not available. For the test environments where structural information is

known, the restrict encoding and the run-length encoding with parallel decompression

could be extended by embedding the test compression algorithms into the ATPG and

guiding the pattern generation process such that the encoding efficiency is maximized.

One interesting issue that is not covered in the scope of this thesis is the evaluation

of restrict encoding for low power test. In restrict encoding, a vast majority of the test

vectors are generated during test using very few restrict vectors and a single restrict

vector is injected continuously for long runs of consecutive test vectors. This results in

significant reductions in switching activity. A thorough study should be performed to
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quantify the power savings achieved with restrict encoding.



82 CHAPTER 8. CONCLUSIONS



Bibliography

[Abra 94] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital systems testing

and testable design. IEEE Press, Piscataway, NJ, 1994.

[Al Y 05] A. Al-Yamani, S. Mitra, and E. McCluskey. “Optimized reseeding by seed

ordering and encoding”. IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, Vol. 24, No. 2, pp. 264–270, Feb. 2005.

[Bala 07] K. J. Balakrishnan and N. A. Touba. “Relationship between entropy and

test data compression”. IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, Vol. 26, No. 2, pp. 386–395, Feb. 2007.

[Bard 82] P. H. Bardell and W. H. McAnney. “Self-testing of multichip logic modules”.

In: Proceedings of International Test Conference (ITC), pp. 200–204, 1982.

[Bard 87] P. H. Bardell, W. H. McAnney, and J. Savir. Built-in test for VLSI:

pseudorandom techniques. John Wiley & Sons, 1987.

[Bayr 01] I. Bayraktaroglu and A. Orailoglu. “Test volume and application time

reduction through scan chain concealment”. In: Proceedings of Design

Automation Conference (DAC), pp. 151–155, 2001.

[Bers 93] M. Bershteyn. “Calculation of multiple sets of weights for weighted random

testing”. In: Proceedings of International Test Conference (ITC), pp. 1031–

1040, 1993.

[Bush 00] M. L. Bushnell and V. D. Agrawal. Essentials of electronic testing for digital,

memory and mixed-signal VLSI circuits. Springer Science, New York, 2000.

[Chan 01] A. Chandra and K. Chakrabarty. “System-on-a-Chip test data compression

and decompression architectures based on golomb codes”. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 3,

pp. 355–368, 2001.

83



84 BIBLIOGRAPHY

[Chan 03] A. Chandra and K. Chakrabarty. “Test data compression and test resource

partitioning for systom-on-a-chip using frequency-directed run-length (FDR)

codes”. IEEE Transactions on Computers, Vol. 52, No. 8, pp. 1076–1087,

2003.

[Chan 98] J. T.-Y. Chang, C.-W. Tseng, C.-M. J. Li, M. Purtell, and E. J. McCluskey.

“Analysis of pattern-dependent and timing-dependent failures in an experi-

mental test chip”. In: Proceedings of International Test Conferece (ITC),

pp. 184–193, 1998.

[Chin 84] C. K. Chin and E. J. McCluskey. “Weighted pattern generation for built-in

self-test”. In: Technical report (CRC TR) No. 84-7, Center for Reliable

Computing, Stanford University, p. , August 1984.

[Daeh 81] W. Daehn and J. Mucha. “Hardware test pattern generation for built-in

testing”. In: Proceedings of International Test Conference (ITC), pp. 110–

120, 1981.

[Dand 84] R. Dandapani, J. H. Patel, and J. A. Abraham. “Design of test pattern

generators for built-in test”. In: Proceedings of International Test Conference

(ITC), pp. 315–319, 1984.

[Eich 77] E. B. Eichelberger and T. W. Williams. “A logic design structure for LSI

testability”. In: Proceedings of Design Automation Conference (DAC),

pp. 462–468, 1977.

[Eich 83] E. B. Eichelberger and E. Lindbloom. “Random-pattern coverage enhance-

ment and diagnosis for LSSD logic self-test”. IBM Journal of Research and

Development, Vol. 27, No. 3, pp. 265–272, 1983.

[El M 08] A. El-Maleh. “Test data compression for system-on-a-chip using extended

frequency-directed run-length code”. IET Computers and Digital Techniques,

Vol. 2, No. 3, pp. 155–163, May 2008.

[Fuji 83] H. Fujiwara and T. Shimono. “On the acceleration of test generation

algorithms”. IEEE Transactions on Computers, Vol. 32, pp. 1137–1144,

1983.

[Galk 06] C. Galke, U. Gätzschmann, and H. T. Vierhaus. “Scan-based SOC test using

space/time pattern compaction schemes”. In: Ninth Euromicro Conference

on Digital System Design (DSD), pp. 433–438, 2006.



BIBLIOGRAPHY 85

[Gher 04] V. Gherman, H.-J. Wunderlich, H. P. E. Vranken, F. Hapke, M. Wittke,

and M. Garbers. “Efficient pattern mapping for deterministic logic BIST”.

In: Proceedings of International Test Conference (ITC), pp. 48–56, 2004.
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APPENDIX A

Tables with Experimental Results

The experiments were performed on large industrial circuits. Same set of circuits was

used to evaluate the efficiency of the three developed schemes. A commercial ATPG

tool was used to generate required test sets. The algorithms were implemented in JAVA

while the hardware was modeled in VHDL. The efficiency of each scheme was compared

with the most efficient similar methods. The storage requirements are given in terms

of bits assuming that the compressed test sets are stored in a bit addressable memory.

The hardware size is presented in two input NAND equivalent, estimated by using a

commercial tool and a free library.

Table A.1 presents some of the properties of the employed circuits and the generated

test sets. In the first column name of the circuit corresponds to the number of nets in the

circuit. Second column with header k reports the number of scan chains in circuits. The

original scan chain configurations were used. Next column named t tells the maximum

length of scan chains. In the subsequent three columns the test set size and care bits

density are given for the test sets encoded with restrict encoding (RE), run-length

encoding with parallel decompression (REWPD) and nearly complete reseeding (NCR)

respectively. Here the first sub-column labeled |P | reports the number of patterns in

each test set while the sub-column named %cb tells the care bits density. The test sets

for RE and REWPD were generated for RP-resistant faults after applying 10,000 random

patterns while the test set for NCR was generated for all faults. Pattern merging efforts

were set to low for RE and high for REWPD and NCR.
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Circuit k t RE REWPD NCR
|P | %cb |P | %cb |P | %cb

p35k 23 127 8506 4.88 1291 21.75 1681 21.5
p45k 97 333 3406 0.06 2042 0.10 2102 0.14
p77k 13 305 5883 0.85 294 7.46 490 7.54
p81k 8 504 30706 1.23 204 30.15 273 31.81
p89k 18 963 13514 0.23 807 2.08 1220 2.25
p100k 18 792 3437 0.14 228 1.27 2048 0.55
p141k 24 486 10984 0.37 496 4.55 675 7.43
p239k 40 541 6034 0.12 321 1.50 508 3.85
p259k 40 541 8482 0.11 439 1.43 637 4.37
p267k 45 494 14123 0.18 639 2.23 963 2.65
p269k 45 494 14615 0.18 588 2.37 963 2.63
p279k 55 416 17575 0.13 567 2.33 739 3.83
p286k 55 416 25645 0.13 862 2.08 1082 3.77
p330k 64 317 17322 0.24 1705 1.32 1765 2.13
p388k 50 546 14109 0.11 298 2.96 462 6.67
p418k 64 831 33704 0.05 718 0.97 798 1.92
p483k 71 900 22168 0.03 180 1.41 264 4.55

Table A.1: Statistics of the experimented circuits and the test sets

A.1 Restrict Encoding

Table A.2 shows the results of restrict encoding. The first part of the table deals with

the restricts only. The first sub-column labeled %cb shows the percentage of care bits in

each test set encoded with the restrict vectors. Then, the total number of restricts are

given in sub-column #rest followed by the total number of commands in sub-column

#com. Sub-column rcost shows the amount of storage spent on these commands while

sub-column dcost represents the size of the RV ROM in bits. The next sub-column scost

reports the size of status register in bits. The second last sub-column of the first part

named tcost tells the total cost of storing the restrict information while the encoding

efficiency for the care bits covered by restricts is given in the final sub-column EE. On

average 80% of the care bits in a test set are encoded with the restricts. Encoding

efficiencies ranging from 1.8 to 3.9 are achieved for the care bits encoded with the restricts.

These efficiencies are much higher than the maximum efficiency achievable by a linear

decompressor.

The second part of the table shows the results for encoding the remaining care bits

with reseeding. For reseeding, a 128 bit LFSR was used in combination with a randomly

generated phase shifter having a single XOR gate for every scan chain. Here sub-column
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%cb reports the percentages of care bits encoded with the seeds. Sub-column rscost

shows the amount of seed information stored to encode the unrestricted care bits and

sub-column EE gives the encoding efficiency for the care bits encoded with reseeding.

The rscost is comprised of the seeds bits and the additional delay information in each

seeding command. As expected, encoding efficiency for reseeding alone is below 1. But

on average only 20% of the care bits in test sets need to be encoded in this way. The

overall encoding efficiency of restrict encoding remains greater than 1 in all cases as

shown in last part of the table.

Table A.3 compares the performance of restrict encoding with continuous reseeding

[Volk 03] which is the most efficient LFSR reseeding scheme published so far and among

available compression schemes offers the best compression for a test set with low care

bits density. Similar 128-bit LFSR was used in both methods. The results of continuous

reseeding are presented in the second column while in the third column the results of

proposed scheme are shown. The sub-columns Storage tell the total storage requirements

in terms of bits and the sub-columns EE report the encoding efficiencies. The last column

shows the improvement in encoding efficiency achieved using restrict encoding. The

encoding efficiency of restrict encoding is always higher than the maximum theoretical

limit of reseeding. Compared to the experimented encoding efficiency of the most efficient

reseeding method, an improvement ranging from 62 to 186 percent is achieved. This

results in reducing the storage requirements up to one third. Considering the very large

test set sizes of nanometer ICs, this reduction in storage offers great savings in test cost.

In table A.4 the results of proposed method are compared with the available dictionary

encoding schemes [Redd 02, Li 03, Wurt 04, Kim 08]. The best case storage for all

available schemes is similar. In both columns Dictionary Encoding and Restrict Encoding,

sub-column Storage reports the total storage while sub-column CR tells the achieved

compression ratio. The CR is computed using the equation 2.4 at page 14. As can be

seen from the table, the compression ratio of restrict encoding is much higher compared

to dictionary encoding. This difference is due to the fact that in dictionary encoding

an index of the dictionary has to be stored for each test vector while in the proposed

scheme a single index of the RV ROM is shared by large number of test vectors.
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Restricts Reseeding Total
Circuit %cb #rest #com rcost dcost scost tcost EE %cb rscost EE Storage EE
p35k 90.1 22561 30092 616806 12075 1397 628881 1.73 9.9 226446 0.53 856724 1.41
p45k 73.8 850 1264 23624 1164 1665 24788 2.27 26.2 23472 0.86 49925 1.54
p77k 83.5 2307 3568 46169 91 1220 46260 3.6 16.5 41700 0.79 89180 2.23
p81k 93.1 30828 49489 636863 64 2016 636927 2.24 6.9 117594 0.90 756537 2.02
p89k 79.8 6913 11277 223725 108 3852 223833 1.92 20.2 130232 0.84 357917 1.51
p100k 69.5 939 1358 19113 108 3168 19221 2.62 30.5 24220 0.91 46609 1.55
p141k 84.3 6906 10826 146710 312 2430 147022 2.76 15.7 84651 0.90 234103 2.06
p267k 86.1 9281 14469 283097 405 2470 283502 1.8 13.9 95265 0.87 381237 1.55
p269k 86.4 10433 15078 197157 360 1976 197517 2.63 13.6 91740 0.90 291233 2.06
p279k 77.0 8058 13047 240984 825 2080 241809 1.78 23.0 154656 0.83 398545 1.4
p286k 78.4 10248 16432 231992 990 2496 232982 2.67 21.6 197797 0.86 433275 1.83
p330k 85.2 15921 27080 469884 704 1585 470588 1.56 14.8 159874 0.80 632047 1.36
p388k 73.5 5467 9057 130552 450 2730 131002 2.54 26.5 136360 0.88 270092 1.68
p418k 84.6 11448 17478 348948 512 3324 349460 2.46 15.4 180164 0.86 532948 1.9
p483k 75.5 4027 6069 84909 426 3600 85335 3.9 24.5 118860 0.91 207795 2.12

Table A.2: Restrict encoding results

Continuous Reseeding Restrict Encoding Improvement
Circuit Storage EE Storage EE (%)
p35k 2411094 0.5 856724 1.41 182
p45k 85960 0.89 49925 1.54 73
p77k 254380 0.78 89180 2.23 186
p81k 2138360 0.71 756537 2.02 185
p89k 611452 0.88 357917 1.51 72
p100k 79947 0.9 46609 1.55 72
p141k 667635 0.72 234103 2.06 186
p267k 777615 0.76 381237 1.55 104
p269k 786216 0.76 291233 2.06 172
p279k 655900 0.85 398545 1.4 65
p286k 918400 0.86 433275 1.83 113
p330k 1016400 0.84 632047 1.36 62
p388k 530442 0.85 270092 1.68 98
p418k 1194930 0.85 532948 1.9 124
p483k 491746 0.89 207795 2.12 138

Table A.3: Comparison of RE with continuous reseeding

A.2 Run-length Encoding with Parallel Decompres-

sion

In bit-flipping DLBIST [Wund 96, Gher 04] the deterministic patterns to detect RP-

resistant faults are embedded into long sequence of pseudo random patterns by applying

the embedding patterns. In [Gher 04] it is suggested that 10,000 is a good number to

detect majority of the RP-testable faults in reasonable time. Consequently the length

of pseudo random phase was set to 10,000 patterns. For RP-resistant faults a fully

compacted test set was generated with the help of a commercial tool. Then every pattern
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Dictionary Encoding Restrict Encoding
Circuit Storage CR (times) Storage CR (times)
p35k 10802620 2 856724 29
p45k 4536792 24 49925 2203
p77k 5382945 4 89180 261
p81k 46427472 2 756537 163
p89k 39041946 6 357917 654
p100k 8166312 6 46609 1051
p141k 21352896 6 234103 547
p267k 27907048 11 381237 823
p269k 21659430 15 291233 1115
p279k 29244800 13 398545 1008
p286k 53341600 11 433275 1354
p330k 21964296 16 632047 556
p388k 30814056 12 270092 1426
p418k 84024072 21 532948 3363
p483k 59853600 23 207795 6816

Table A.4: Comparison of RE with available dictionary encoding schemes

in the generated test set was mapped to one of the useless random patterns such that

total number of conflicts were minimized. The corresponding embedding information

was stored.

Table A.5 compares the compression of the proposed algorithm with the maximum

theoretical limit and state of the art run-length encoding scheme. The column with

header CPmax tells the maximum compression that can be achieved for the embedding

information of each circuit. This theoretical limit is computed using the equation 2.6 at

page 15. Next column labeled EFDER reports the compression achieved using extended

frequency directed run-length coding (EFDR) [El M 08]. In the last column compression

of the proposed algorithm is shown. For all circuits compression of the proposed algorithm

is significantly higher compared to state of the art run-length encoding scheme while it

is very close to theoretical limit for majority of the circuits.

Table A.6 shows the gain of the proposed decompression architecture in test appli-

cation time. It presents the number of clocks in millions that are required by different

techniques to complete a test containing 10,000 patterns. It is assumed that on-chip

and external chip frequencies are identical. The column named DLBIST represents the

number of clocks required in the DLBIST approach [Wund 96, Gher 04]. The column

with header Conventional shows the number of clocks if the embedding information

is decompressed by using available run length compression/decompression methods

[Chan 01, Gonc 02, Chan 03, El M 08]. Only the ideal case for these schemes is consid-
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Circuit CPmax EFDR Proposed
(%) (%) (%)

p35k 89.28 72.48 84.19
p45k 99.88 92.74 98.82
p77k 98.54 61.10 91.49
p81k 96.68 49.06 85.90
p89k 98.78 71.88 93.93
p100k 99.75 72.17 94.30
p141k 98.34 78.69 94.24
p239k 99.59 84.87 97.10
p259k 99.47 84.84 96.97
p267k 98.96 86.29 96.45
p269k 98.99 86.30 96.50
p279k 99.02 88.75 96.62
p286k 98.72 88.63 95.98
p330k 98.50 88.46 96.02
p388k 99.31 87.77 97.15
p418k 99.42 88.84 97.66
p483k 99.76 90.06 98.27

Table A.5: Compression ratio comparison for REWPD

ered when there is no data transfer overhead. The lower bounds for all these schemes

is equal because their decoders regenerate the test vectors serially using counters. The

last column reports the number of clocks for the proposed scheme. It is evident from

the table that the presented compression method and decompression architecture makes

the external self test significantly faster compared to available techniques and external

self-test time is close to the internal BIST schemes.

Table A.7 compares the on-chip area overhead of the proposed scheme with state

of the art deterministic logic BIST (DLBIST) [Gher 04]. The cell area of the proposed

decompression architecture as well as of the circuit is shown in two input NAND

equivalent. The second column named Decoder Area shows the area required by the

proposed decompression hardware. This includes the area of the binary decoder, the

memory and the generate unit. The third column labeled Circuit Area reports the

total cell area of the circuit while the fourth column with header Decoder Overhead

tells the overhead that would be caused in circuit size if the proposed decoder is added.

The last column presents the average area overhead caused by the bit-flipping logic

(BFL) as reported in [Gher 04]. Here only average area overhead is reported because the

experimented circuits are different in both cases. The numbers in the table demonstrate

that the area overhead of the proposed decompression architecture is very small compared

to size of the circuit and compared to DLBIST significant savings in hardware are achieved.
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Circuit DLBIST Conventional Proposed
p35k 1.26 29.18 4.61
p45k 3.33 323.01 3.78
p77k 3.03 39.47 3.35
p81k 4.98 39.84 5.61
p89k 9.59 172.69 10.47
p100k 7.92 142.56 8.11
p141k 4.84 116.54 6.7
p239k 5.39 215.68 6.24
p259k 5.39 215.64 6.52
p267k 4.92 221.45 7.85
p269k 4.91 221.03 7.72
p279k 4.13 227.97 7.69
p286k 4.13 228.09 9.15
p330k 3.16 202.65 8.05
p388k 5.38 269.42 7.65
p418k 8.27 529.87 12.35
p483k 8.97 637.08 11.0

Table A.6: Test time comparison for REWPD in million cycles

Moreover the size of the proposed decoder is constant with respect to the number of

scan chains and does not depend on the circuit complexity. For example, p418k is more

complex than p330k but both contain the same number of scan chains (64) and so the

same size of the decoder (1203). This also explains why the overhead of p45k is the

largest. The p45k is one of the smallest in size but contains the largest number of scan

chains. Because of this, decoder size of p45k is larger than the decoder size of the biggest

circuit p483k.

A.3 Nearly Complete Reseeding

A modular 64-bit LFSR was used for test sets encoding in NCR. A randomly generated

phase shifter containing single XOR gate for each scan chain was used in conjunction

with each LFSR. The encoding efficiency of proposed scheme is evaluated as a function of

the number of ignored vectors per seed in table A.8. The total storage requirements and

encoding efficiency are given for I = 1, 2, 3, 4 where I represents the number of ignored

vectors per seed. Sub-column Storage reports the total storage while the sub-column

labeled EE tells the encoding efficiency. The total storage includes the amount of memory

required to store seeds and the embedding information. Fixed length data fields are used

to encode the embedding information.
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Circuit Decoder Circuit Decoder Avg. BFL
Area Area Overhead (%) Overhead (%)

p35k 707 65,228 1.08
p45k 1456 61,486 2.37
p77k 504 105,545 0.48
p81k 396 179,131 0.22
p89k 632 132,292 0.48
p100k 632 135,339 0.47
p141k 722 245,365 0.29
p239k 979 370,672 0.26
p259k 979 500,625 0.19 14
p267k 1027 352,755 0.29
p269k 1027 354,903 0.29
p279k 1132 405,666 0.27
p286k 1132 537,518 0.21
p330k 1203 498,815 0.24
p388k 1088 712,576 0.15
p418k 1203 594,629 0.20
p483k 1294 682,568 0.18

Table A.7: Hardware overhead comparison

The table reveals that except p100k, encoding efficiency increases with the increasing

number of ignored vectors per seed. The highest improvement in encoding efficiency is

achieved by incrementing I from 1 to 2. For the larger values of I the gain per ignored

vector keeps decreasing. The reason for this decreasing gain is that when more and

more care bits are encoded with the same seed, dependence among linear equations

increases. With the increasing linear dependence, the chances of encoding significantly

large number of care bits that can offset the cost of ignored bits storage decreases. The

gain in encoding efficiency turns negative with the increasing number of ignored vectors

if the gain achieved by ignoring a vector fails to offset embedding information cost. The

circuit p100k is an example of this. Because of the significant increase in test time with

the increasing number of ignored vectors, I = 2 and I = 3 seems a good choice that offer

significantly higher encoding efficiency within affordable time.

Table A.9 compares the storage requirements of nearly complete reseeding with

continuous reseeding [Volk 03]. In this table second and third columns labeled Continuous

Reseeding and Proposed report the storage requirements and the encoding efficiency

of continuous reseeding and nearly complete reseeding respectively. For some circuits,

continuous reseeding was not able to encode the complete test set using 64-bit LFSR.

Sufficiently larger LFSRs were used in this case for continuous reseeding. For the

proposed scheme number of vectors ignored per seed were limited to 3. The last column
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I=1 I=2 I=3 I=4
Circuit Storage EE Storage EE Storage EE Storage EE
p35k 2,241,845 0.47 2,023,947 0.52 1,873,293 0.56 1,751,832 0.60
p77k 252,430 0.57 244,906 0.59 239,817 0.61 235,519 0.62
p81k 708,761 0.49 622,380 0.56 586,713 0.59 561,024 0.62
p89k 827,764 0.56 773,055 0.62 737,058 0.65 731,210 0.66
p100k 305,248 0.52 285,230 0.56 288,538 0.55 291,315 0.54
p141k 1,162,899 0.50 1,053,054 0.55 974,888 0.60 962,794 0.62
p239k 758,168 0.55 691,155 0.61 652,920 0.64 627,714 0.66
p259k 1,059,826 0.56 957,819 0.62 893,107 0.67 862,320 0.69
p267k 1,255,887 0.45 1,182,622 0.48 1,143,952 0.49 1,131,678 0.50
p269k 1,238,287 0.45 1,168,761 0.48 1,127,298 0.50 1,110,524 0.51
p279k 1,203,978 0.53 1,119,299 0.58 1,090,302 0.60 1,072,617 0.61
p286k 1,650,841 0.56 1,551,156 0.60 1,504,748 0.62 1,460,569 0.63
p330k 1,254,112 0.61 1,161,974 0.65 1,105,879 0.67 1,080,213 0.68
p388k 1,450,873 0.57 1,341,627 0.62 1,281,657 0.65 1,255,324 0.66
p418k 1,779,436 0.46 1,639,122 0.49 1,568,934 0.51 1,542,219 0.52

Table A.8: Impact of increasing ignored vectors per seed on encoding efficiency

named Improvement shows the improvement achieved over continuous reseeding. The

table reveals that using the proposed scheme a gain up to 118 percent can be achieved

in encoding efficiency which in turn reduces the storage requirements more than half as

compared to state of the art reseeding method. Most importantly the gain is higher for

the difficult to test circuits having the test sets with more care bits.

Continuous Reseeding Proposed Improvement
Circuit Storage EE Storage EE %
p35k 3,034,584 0.34 1,873,293 0.56 64.7
p77k 293,175 0.50 239,817 0.61 22.0
p81k 1,259,925 0.27 586,713 0.59 118.5
p89k 982,832 0.48 737,058 0.65 35.4
p100k 430,430 0.37 285,230 0.56 51.4
p141k 1,647,825 0.35 974,888 0.60 71.4
p239k 1,255,444 0.33 652,920 0.64 93.9
p259k 1,808,268 0.33 893,107 0.67 103.0
p267k 1,703,692 0.33 1,143,952 0.49 48.5
p269k 1,684,236 0.33 1,127,298 0.50 51.5
p279k 1,638,150 0.39 1,090,302 0.60 53.8
p286k 2,249,475 0.41 1,504,748 0.62 51.3
p330k 1,842,374 0.41 1,105,879 0.67 63.4
p388k 2,224,800 0.37 1,281,657 0.65 75.7
p418k 2,603,370 0.31 1,568,934 0.51 64.5

Table A.9: Comparison of NCR with continuous reseeding
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Table A.10 shows the on-chip area overhead of the proposed scheme in two input

NAND equivalent. The second column labeled Decoder Area shows the area required

by the proposed decompression architecture. This includes the area of the flip vector

generator, the flipping logic and the memory access mechanism to write and read data

from memory. The third column reports the total cell area of the circuit while the fourth

column tells the overhead that would be caused in circuit size with the addition of the

proposed decoder. The numbers in the table demonstrate that the area overhead of the

proposed decompression architecture is very small compared to the size of the circuit.

Moreover the size of the proposed decoder is constant with respect to the number of

scan chains and does not depend on the circuit complexity. For example, p418k is more

complex than p330k but both contain the same number of scan chains (64) and so the

same size of the decoder (2094).

Circuit Decoder Circuit Decoder
Area Area Overhead (%)

p35k 1016 65,228 1.56
p77k 847 105,545 0.80
p81k 608 179,131 0.34
p89k 968 132,292 0.73
p100k 968 135,339 0.72
p141k 1028 245,365 0.42
p267k 1603 352,755 0.45
p269k 1603 354,903 0.45
p279k 1973 405,666 0.49
p286k 1973 537,518 0.36
p330k 2094 498,815 0.42
p388k 1865 712,576 0.26
p418k 2094 594,629 0.35

Table A.10: Decompression hardware overhead for NCR



APPENDIX B

Published Papers

Conference Proceedings

1. A. W. Hakmi, S. Holst, H.-J. Wunderlich, J. Schlöffel, F. Hapke, and A. Glowatz.
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”Implementing a scheme for external deterministic self-test”. In: Proceedings of

VLSI Test Symposium (VTS), pp. 101-106, 2005.

Workshop Contributions

1. A. W. Hakmi, H.-J. Wunderlich, C. G. Zoellin, A. Glowatz, , J. Schlöffel, F.
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Workshop Testmethoden und Zuverlässigkeit von Schaltungen und Systemen, pp.

27-31, 2005.



APPENDIX C

Short Presentation of the Author

Abdul-Wahid Hakmi received the B.Sc. degree in

Computer Science from International Islamic Uni-

versity Islamabad, Pakistan, in 2001, and M.Sc.

degree in Information Technology from the Univer-

sity of Stuttgart, Germany, in 2003. From 2004 to

2010, he was working as research assistant and pur-

suing the doctor degree at the Institute of Computer

Architecture and Computer Engineering, Univer-

sity of Stuttgart, Germany. He was involved in

the projects AZTEKE and MAYA supported by

the German Federal Ministry of Education and

Research (BMBF).

Abdul-Wahid Hakmi is member of IEEE.

His research interests include self-test, test compression and logic diagnosis.

105


