
A Viable Architecture for Autonomic Management

of Distributed Software Components

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Emil Stoyanov

aus Ruse, Bulgarien

Hauptberichter: Prof. Dr. Dieter Roller
Mitberichter: Prof. Dr. rer. nat. habil. Paul Levi

Tag der mündlichen Prüfung: 27.04.2010

Institut für Rechnergestützte Ingenieursysteme

der Universität Stuttgart

2010

Acknowledgement

This dissertation was developed as a cooperation between the Institut für Rechn-
ergestützte Ingenieursysteme (IRIS) at Universität Stuttgart and Siemens Corporate
Technology.

I would like to express my gratitude to everyone who in�uenced me, helped me
and supported me during the years of work dedicated to this dissertation.

Thank you, Professor Dr. Dieter Roller, for giving me the chance to experience
the real research spirit at IRIS and to work in a team of real professionals, for the
provided support, the understanding, your valuable advices and feedback. Thank
you, all IRIS colleagues for the kind attitude, support and help. A special "thank
you" to Stavros and his whole family for the unconditional help, guidance and
personal attitude.

Thank you, all colleagues from Siemens Corporate Technology. Markus, thank
you for being the one to support me and to introduce me to this great working en-
vironment, for the comments, ideas, advices and for your professional spirit. Thank
you, Asa, for the feedback, for sharing your wisdom and for showing me attitude, in
both professional and personal aspects. Thank you Andreas, Marcos, Ivo, Anton,
Charek, Xun and Matthias for being the best o�ce-mates and for your support
during the innevitable di�cult moments.

Thank you Velislav and Alexander, for being great friends, always available and
ready to share valuable thoughts and feedback.

I would like to thank my parents for their faith and moral support. Special
gratitude to my wife, Miglena, for her love, help and endless patience.

3

Contents

List of Abbreviations 11

List of Figures 13

List of Tables 17

Abstract 19

1 Introduction 23

1.1 Autonomic Computing . 23

1.2 Challenges in Autonomic Management of Software Components . . . 26

1.3 Proposed Solution . 27

1.4 Research Hypothesis . 28

1.5 Approach . 28

1.6 Contribution . 29

2 Autonomic Systems Engineering 30

2.1 De�nition and vision . 30

2.2 Examples for Application of Autonomic Solutions 31

2.2.1 Dynamic Database Tuning 31

2.2.2 Dynamic Web Server Tuning 31

2.2.3 Component Self-healing . 32

2.2.4 Dynamic network routing . 32

2.2.5 Autonomic System Upgrade Support in Production Environ-
ments . 33

2.2.6 Pro-active Intrusion Detection Systems 34

2.2.7 Integrated on-line service management 34

2.2.8 Distributed Service Delivery Solution Management 35

2.2.9 Rapid Prototyping Systems Support 35

2.2.10 Distributed Component Systems Management 38

5

2.2.10.1 Management Consoles 39

2.2.10.2 Runtime Management 39

2.2.10.3 Management Adapters 39

2.3 Architectural Elements for Autonomic System Design 40

2.3.1 Managed Element . 40

2.3.2 Autonomic Manager . 41

2.3.3 Control Loop . 41

2.3.4 Shared Knowledge . 42

2.3.5 Autonomic Manager Communication and Cooperation 42

2.4 Principles of System Control . 43

2.4.1 Cybernetic Control Mechanisms 43

2.4.2 Variety and Knowledge Management 45

2.4.3 The Viable Systems Model . 46

2.5 Autonomic Component Management Challenges 48

2.5.1 Overhead in component deployment management 49

2.5.2 Management Granularity . 49

2.5.3 Parallel component evolution 50

2.5.4 Deep component dependencies 51

2.5.5 Management Complexity Overhead 52

2.6 Participating and interested parties in autonomic systems 53

2.6.1 Users . 53

2.6.2 System Administrators . 53

2.6.3 Developers . 54

2.6.4 Cooperating Service Providers 54

2.6.5 Manufacturers and suppliers 54

3 Related work 55

3.1 Autonomic Computing Research Projects 55

3.1.1 AMUSE - Autonomic Management of Ubiquitous Systems for
e-Health . 55

3.1.2 AutoMate . 56

3.1.3 Autonomia . 56

3.1.4 IBM Autonomic Toolkit . 57

3.1.5 Organic Computing -AMUN (Autonomic Ubiquitous Middle-
ware) . 58

3.1.6 SARDES - Jade . 58

3.1.7 PUSH - Policy-Based Update Management in Smart Home . 59

6

3.2 Software Component Management Research 59

3.2.1 SOFA - Software Appliances 60

3.2.2 IRISA �PARIS� - Adaptive Software Components 60

3.2.3 ADAPT - Middle-ware Technologies for Adaptive and Com-
posable Distributed Components 61

3.3 Research Projects on Software Evolution 61

3.3.1 FEAST Projects . 61

3.3.2 ESPRIT RENAISSANCE Project 62

3.3.3 COSE - Controlling Software Evolution Group: Software Evo-
lution and Architecture Lab, University of Zurich 63

3.4 Research Projects on Reliable Systems Design 63

3.4.1 ROC, Recovery Oriented Computing 63

3.4.2 SABER - Survivability Architecture: Block, Evade, React . . 64

3.5 Common Approaches . 64

3.5.1 Architectures for run-time management 65

3.5.2 Directory Services . 65

3.5.3 Information Models . 66

3.5.4 Management Agents . 66

3.5.5 Connectors . 67

3.5.6 Component Descriptors . 67

3.5.7 Component Repositories . 67

3.5.8 Aspect-Oriented Component Engineering 68

3.5.9 Web Services . 68

3.5.10 Log Adapters and Event Correlation 69

3.5.11 CORBA . 69

3.5.12 Policy-Based Management . 70

3.5.13 Pro-active Monitoring and Management 71

3.6 Summary . 71

4 Overview of the Proposed Solution 72

4.1 Feedback Control Loops in Autonomic Component Management . . . 72

4.2 Component Communication Management 74

4.2.1 Meta-Model For Description of Management Organization . . 77

4.2.2 Middle-ware for component communication management . . . 77

4.3 E�ects on Autonomic Component Management Challenges 79

4.3.1 Overhead in component deployment management 79

4.3.2 Management granularity . 79

7

4.3.3 Parallel component evolution 80

4.3.4 Deep component dependencies 80

4.3.5 Management complexity overhead 80

4.4 E�ects on Participating and Interested Parties 81

4.5 Applying the architecture in Real World scenarios 82

4.5.1 Smart Home . 82

4.5.2 Product Development Support Systems 85

4.6 Prototype . 87

5 The Architecture for Autonomic Management of Distributed Soft-
ware Components 91

5.1 Self-awareness . 92

5.2 Meta-model Elements . 93

5.2.1 Variety . 93

5.2.2 Transducer . 95

5.2.3 Channel . 97

5.2.4 System . 100

5.2.5 Operation Manager . 100

5.2.6 Manager . 102

5.2.7 Operation . 102

5.2.8 Target . 103

5.3 Management Adaptation Elements 103

5.3.1 Management Channel Adapters 105

5.3.1.1 Eventing Channel Adapters 105

5.3.1.2 Messaging Channel Adapters 106

5.3.1.3 Interface Access Channel Adapters 106

5.4 Meta-model Bindings . 108

5.4.1 Meta-model Bindings Interpreter 109

5.4.2 Channel Management Adapters Bindings 110

5.5 Communication Management Middle-ware 111

5.5.1 Communication Channel Life-Cycle 112

5.5.2 Channel Prototyping . 113

5.5.3 Manager Cycle . 113

5.5.4 Channel Instance Creation . 114

5.5.5 Channel Activation and Deactivation 114

5.5.6 Channel Destruction . 114

5.5.7 Middle-ware-Manager Interaction 114

8

5.5.8 Interfacing . 116

5.5.8.1 Endpoint Interfacing 116

5.5.8.2 Manager Interfacing 117

5.5.9 Channel Meta-data . 117

5.5.10 Declaring and Consuming Meta-data 119

5.5.11 Static declarations . 120

5.5.12 Dynamic declarations . 120

5.5.13 Consuming Meta-Data . 120

5.6 Cybernetic Viability Requirements for Software Systems 121

5.6.1 Requisite Variety Management 123

5.6.1.1 Requisite Variety of a Component 123

5.6.1.2 Requisite Variety of a Communication Channel . . . 123

5.6.1.3 Formal Expression of LRV for Software 124

5.6.2 Requisite Knowledge Management 126

5.6.3 Vertical and Horizontal Variety Balance Management 127

5.6.4 Communication Dynamics Management 128

5.7 Rule-based VSM Policy Enforcement 129

5.7.1 Channel Events Set . 130

5.7.2 Condition Sets . 132

5.7.3 Actions Set . 134

6 Implementing a Middle-ware for Management of Component Com-
munication in Heterogeneous Software Environment 136

6.1 Components . 136

6.1.1 Management Adaptation Layer 138

6.1.2 Middle-ware run-time . 139

6.1.2.1 Object Adapter (CORBA) 139

6.1.2.2 CIM-Client . 140

6.1.2.3 Life-cycle State machine 140

6.1.2.4 Channel Manager Adapter 141

6.1.3 Operation Manager . 141

6.1.4 Communication Adapters . 142

6.1.5 Meta-Model . 142

6.1.5.1 VSM Adaptation . 144

6.1.5.2 System State Adaptation and Access 145

6.2 Extending The Middleware System 146

6.3 VSM Mapping . 148

9

6.3.1 Structural Map . 148

6.3.2 Communication Map . 149

7 Results 150

7.1 Referencing Real World Scenarios . 150

7.2 Smart Home . 151

7.3 Distributed Product Development Systems 152

7.4 Performance . 156

7.5 Management Model Adaptation . 157

7.6 Architecture Implementation . 158

7.7 E�ect on Autonomic Management Challenges 158

7.7.1 Trade-o�s . 160

8 Conclusion 161

8.1 Approach Overview . 161

8.2 Relevance of Contribution . 162

8.3 Limitations . 162

8.4 Future work . 163

8.4.1 Research in optimization of performance 163

8.4.2 Research in integration of non-component logic 164

8.4.3 Better tools for monitoring . 164

Bibliography 165

Curriculum Vitae 177

10

List of Abbreviations

ABLE - Agent-building and Learning En-
vironment, 57

AI - Arti�cial Intelligence, 23, 71
API - Application Programming Inter-

face, 67, 89, 90, 116, 118, 120,
121, 130, 135, 149, 167

CAD - Computer-Aided Design, 26
CDL - Component Description Language,

60, 70
CDS - Channel Dynamics Status, 129
CIM - Common Information Model, 66,

88, 89, 140�149, 171
CIM-OM - CIM Operation Manager, 88,

89, 159
CLR - Common Language Runtime, 39,

51, 65
COM - Component Object Model, 65, 67,

108, 121
CORBA - Common Request Object Ar-

chitecture, 60, 69, 70, 88�90, 139�
142, 145, 146, 149, 158, 171

DBMS - Database Mangement System,
31, 67

DMTF - Distributed Management Task
Force, 40, 66, 171

DPD - Distributed Product Development,
26, 151, 155

EJB - Enterprise Java Beans, 25, 26, 49,
65, 70, 76, 82, 83, 85, 87�89, 107,
120, 121, 138, 142, 150�152, 154,
155, 157, 158

IT - Information Technology, 23�25, 30,
33, 41, 54, 58, 88, 89, 91, 100,
101, 141, 162

J2EE - Java 2 Enterprise Edition, 39, 49,
50, 65, 67, 68, 70, 76, 120, 145

JCP - Java Community Process, 51
JMX - Java Management Extensions, 39,

49, 65, 66, 82, 85, 89, 90, 121,
138, 145, 158, 163, 167

JNDI - Java Naming and Directory In-
terface, 65

JVM - Java Virtual Machine, 39, 74, 76

LRK - Law of Requisite Knowledge, 46,
126, 129, 132

LRV - Law of Requisite Variety, 46, 47,
123, 124, 126

MAS - Multi-Agent System, 85, 87, 154,
155

MCC - Managed Communication Chan-
nel, 74, 76, 77, 97, 99, 156

RCP - Rich Client Platform, 26, 85, 87,
154, 155

RMI - Remote Method Invocation, 65,
173

RPC - Remote Procedure Call, 52, 68�
70, 83, 141, 154

RPD - Rapid Product Development, 35,
38, 85, 154, 155

SLEE - Service Logic Execution Environ-
ment, 39, 121, 138, 145

SMC - Self-managed Cell, 55, 56

UPnP - Universal Plug and Play, 35, 172

VSM - Viable System Model, 19, 46�48,
77, 89, 90, 92�95, 97, 100�102,
121�123, 127�130, 132�134, 136,

11

141, 144, 148, 149, 151, 157, 159,
161, 164

WBEM - Web-based Enterprise Manage-
ment, 88, 89, 140�142, 147

WQL - WBEM Query Language, 141,
143

12

List of Figures

1.1 Levels of Management Maturity . 24

2.1 Dependencies in distributed environment for on-line-service provision. 36

2.2 Communication dependencies of service delivery in Smart Home sce-
nario. 37

2.3 Components in a managed distributed RPD support system 38

2.4 Autonomic Element with MAPE Loop-Control 41

2.5 Communication between autonomic elements 43

2.6 Hierarchy of managers. 44

2.7 The Viable System Model . 48

4.1 Autonomic Management Feedback Loops supporting the three phases
of component life-cycle . 73

4.2 Component Communication . 75

4.3 Components of Managed Communication Channel: 76

4.4 Autonomic Management Capabilities. 78

4.5 Elements of Smart Home environment. 83

4.6 Communication management. 84

4.7 Architecture for Distributed Product Development with multi-user
collaboration. 86

4.8 Communication management of a heterogeneous product develop-
ment system with the help of channel management framework. . . . 87

4.9 Implementation of the channel management middle-ware. 88

5.1 Management architecture with self-aware controller. 92

5.2 Meta-model of the cybernetically viable architecture. 94

5.3 Abstracting from a concrete variety exchange method. 95

5.4 Representing interface adapter as a transducer selected by a manager. 96

5.5 Distributed event handling with supervision by a manager. 98

5.6 The concept of MCC. 99

5.7 Application of the MCC concept in software engineering. 99

13

5.8 Management of an IT system with networked servers and communi-
cating components. 101

5.9 Types of Manager Systems. 102

5.10 Management adaptation layer. 104

5.11 Event channel adapters. 105

5.12 Message channel adapters. 107

5.13 Factory channel adapters. 108

5.14 Service Resolver Channel Adapter. 109

5.15 A simpli�ed representation of meta-model binding. 110

5.16 Binding the elements of the management adaptation layer to the
meta-model. 111

5.17 Managed Communication Channel Life-Cycle. 112

5.18 Full life-cycle of a managed communication channel. 115

5.19 Endpoint Interfacing with the middle-ware. 116

5.20 Interfacing between Middle-ware and the Manager. 118

5.21 Consuming variety meta-data. 121

5.22 Relations between the VSM model, its software adaptation and the
respective requirements. 122

5.23 An example for a communication channel. 124

5.24 Application of a communication channel in interaction between soft-
ware components. 124

5.25 Communicative act with feedback. 126

5.26 Event-Condition-Action rules implemented as a policy in manager. . . 130

5.27 Rule-sets representing executable policies upon evaluation of event. . 132

5.28 Rule evaluation by channel manager. 133

6.1 Structure of the prototype of the channel management middle-ware. . 137

6.2 Component in Management Adaptation Layer. 138

6.3 Management Adapter Structure. 139

6.4 Elements of the Middle-ware runtime. 140

6.5 Structure of the Operation Manager. 142

6.6 WQL query results visualized in CIM-Client User Interface 143

6.7 Accessing data about instances associated with the CIM base. 143

6.8 The Meta-model. 144

6.9 Adaptation of the environment state. 146

6.10 Extending the system. 147

6.11 Prototype elements mapped on the VSM meta-model. 148

7.1 Smart Home Mapping Associations 153

14

7.2 Distributed RPD MAS mapping associations. 155

7.3 Channel Performance Measurement 156

15

List of Tables

1.1 The meaning of system management changes with the development
of IT. 24

5.1 Meta-data classes and representatives. 119

5.2 Set of Values for Management Feedback for Variety Disposal 128

5.3 Payload properties of the Channel Event. 131

5.4 Channel State-event mapping. 131

5.5 Action properties. 134

5.6 Action names and parameters for channel management. 135

7.1 Real-world scenarios and used component technologies. 151

7.2 Architectural elements of the management adaptation in Smart Home
Scenario . 151

7.3 Adaptation methods for Smart Home scenario 152

7.4 Mapping of Smart Home elements . 152

7.5 Architectural elements of the management adaptation in Distributed
Product Development Scenario . 154

7.6 Adaptation methods for distributed PDP scenario 154

7.7 Mapping of DPD Elements . 155

17

Abstract

Autonomic Computing is a brand of system design approaches which enable IT
systems with self-management capabilities such as self-con�guration, self-healing,
self-protection and self-optimization. Although the �eld of distributed system man-
agement has achieved considerable advances, building autonomic management so-
lutions for heterogeneous component-based systems presents �ve major challenges.
First, component deployment and its management gets di�cult with the growth of
the system, because of the variety of component models with their own speci�cs.
Second, each component framework provides its own way and interface for man-
agement creating redundancy and variety of management routines. Third, software
components evolve separately which introduces problems with compatibility upon
system upgrade. Forth, there are remote dependencies which are di�cult to tack
and this may cause unpredicted inconsistency of the system after component up-
date. Finally, the integration of a management sub-system in�uences the overall
system complexity by making it dependent on interfaces and functionality of the
management module.

This thesis introduces an architectural approach which addresses these chal-
lenges. An organizational meta-model represents the architectural constraints for
encapsulation of software components and de�nes requirements for feedback loops
adapted from the Viable System Model (VSM) for software components. It enables
modeling of viable organization and communication management on the levels of
component deployment and runtime operations.

The autonomic management architecture consists of modules that facilitate mon-
itoring component states, an operation manager that allows inspection of distributed
dependencies by utilizing the notion of the managed communication channel. Its
design conforms with the recommendations of the proposed organizational model. A
channel management middleware implements the necessary functionality for estab-
lishing communication channels and provides interfaces for integration of autonomic
managers which follow the requirements of the organizational and communication
model.

A prototype of the middleware has been developed to implement the architec-
tural approach for real-world scenarios in two separate domains - Smart Home and
Distributed Product Development Support Systems. It has demonstrated the usabil-
ity of the architecture by satisfying the management requirements of these domains
and addressing the management challenges.

19

Zusammenfassung

Autonomic Computing ist ein spezieller Ansatz des System-Designs, der die
Entwicklung von IT-Systemen mit Selbst-Management-Fähigkeiten ermöglicht, die
Eigenschaften wie Selbst- Kon�guration, Selbst-Heilung, Selbst-Schutz und Selbst-
Optimierung integrieren. Obwohl der Bereich der verteilten System-Verwaltung er-
hebliche Fortschritte erzielt hat, sind die Lösungen für heterogene Komponenten-
basierte Management-Systeme von fünf groÿen Herausforderungen gekennzeichnet.
Zunächst wird der Komponenten-Einsatz und die Verwaltung schwierig mit dem
Wachstum des Systems; ein Grund dafür ist die Vielzahl von Komponenten- Mod-
ellen, die ihre eigenen Besonderheiten haben. Ein zweiter Punkt ist, dass jedes
Komponenten- basierte Framework über seine eigenen Abläufe und seine eigenen
Schnittstellen verfügt, was zu zusätzlicher Redundanz und Vielfalt von Management-
Routinen führt. Drittens werden Software-Komponenten weiterentwickelt, und erzeu-
gen so Probleme mit der Kompatibilität beim System-Update. Besonders verteilte
Abhängigkeiten, die schwer zu beheben sind können nach einem System-Update zu
unvorhersehbaren Inkonsistenzen führen. Schlieÿlich beein�usst die Integration eines
Management-Sub-Systems die Gesamt-Komplexität des Systems, so dass eine starke
Abhängigkeit von den Schnittstellen und von den Funktionen des Management-
Moduls erzeugt wird.

Diese Dissertation stellt einen Architektur-Ansatz vor, um diesen Herausforderun-
gen zu begegnen. Ein organisatorisches Meta-Modell stellt die Architektur -An-
forderungen für die Kapselung von Software-Komponenten bereit und de�niert an-
gepasste Feedback-Schleifen, die das Viable Systems Model für Software-Komponen-
ten realisieren. Es ermöglicht die Modellierung von komplexen Strukturen und
Kommunikationswegen auf der Ebene der Komponenten-Implementierung und der
Runtime-Operationen.

Die Management Architektur besteht aus Modulen, die die Analyse von Kompo-
nenten erleichtern und aus einem Operation-Manager, der verteilte Abhängigkeiten
durch den Einsatz der verwalteten Kommunikationskanäle (Managed Communca-
tion Channels) kontrolliert. Eine Channel-Management-Middleware implementiert
die notwendige Funktionalität für die Einrichtung von Kommunikationskanälen und
bietet Schnittstellen für die Integration von Autonomen Managern, die die An-
forderungen des Organisations- und des Kommunikations-Modells erfüllen.

Ein Prototyp der Middleware wurde entwickelt, um das Konzept für die Real-
World-Szenarien in zwei getrennten Bereichen zu demonstrieren - Smart Home und
verteilte Produkt-Entwicklung. Hierdurch wurde die Nutzbarkeit der entwickelten
Architektur demonstriert, wobei die speziellen Herausforderungen und Management-
Anforderungen dieser Bereiche erfüllt werden.

21

Chapter 1

Introduction

Autonomic Computing is a brand of system design approaches that enable Infor-
mation Technology (IT) systems with self-management capabilities such as self-
con�guration, self-healing, self-protection and self-optimization. During the last sev-
eral years the need of automated management and system self-diagnosis has grown
steadily as a consequence of the increasing system complexity, heterogeneity and de-
gree of system distribution. Although the �eld of distributed system management has
achieved considerable advances, autonomic computing raises the requirements to a
higher level of security and return of investments. This aim however, introduces new
challenges, part of which this dissertation addresses.

This dissertation proposes an architectural approach, the cybernetically viable
architecture for heterogeneous component-based software management, which sup-
ports integration of self-management capabilities in distributed software component
systems focusing on the stability and adaptability throughout their evolution in pro-
duction environments.

This dissertation describes the �eld of autonomic computing and distributed com-
ponent management together with the existing challenges demanding attention. It
shows how the cybernetically viable autonomic architecture addresses these challenges
by usage of cybernetic principles and extending already developed architectural ap-
proaches in the �eld. To achieve this it presents a meta-model, architecture and a
middle-ware using real-world examples and deployment scenarios. The thesis con-
cludes with results from experimental work using a developed prototype.

1.1 Autonomic Computing

Autonomic Computing [47, 53] is a trend in the development of system management
approaches which focuses on enabling systems with self-management capabilities. It
combines elements from the �elds of distributed management, adaptive systems,
arti�cial intelligence (AI) and reliable computing. It emerged as a reaction to the

23

Term Evolution 1982 2003+
System Service Local standalone

application on a single host
Composite services running
on a network of serving

hosts
System Components Microprocessors, Disk

drives, TCP-IP Stack,
Operating System

Servers, Network accessed
storage arrays, Networks,
Network control platform

System Management Management of discrete
component con�guration

Management of clustered
and networked resources

Table 1.1: The meaning of system management changes with the development of IT.

�����

�����	

��	
����	

�
����	

��������

������ � � � � �

�
�
�
�
�
��
�

Figure 1.1: Levels of Management Maturity

growing complexity of the IT systems, the increasing human-error factor and the
higher requirements for security and system availability.

The variety of standards, the dynamically changing requirements and distribu-
tion for system functionality resulted in a mix of technological solutions that hardly
communicate and even worse, became hardly manageable. A single organization
deploys in its infrastructure a number of di�erent solutions that are either not de-
signed to be managed or had limited and proprietary interfaces for management.
The developments of Internet and the recognition of IT value inside organizations
of any size has additionally boosted the growth and the transformation of locally
run systems with local programs to distributed clusters of serving equipment with
network services processing enormous amount of data.

Table 1.1 [140] shows how the meaning of the word �system� has changed over
the time along with the development of IT.

24

The IT research community recognized the need of self-management capabilities
with dedicated international conferences and workshops that speci�cally investigate
issues like architectures and algorithms for self-con�guration, self-protection, self-
optimization and self-healing. Figure 1.1 illustrates the levels of management matu-
rity [46] in which autonomic management takes highest place. Most of the systems
today still use systems that belong to level 1 (basic) and level 2 (managed) while a
very small percentage utilizes management systems from level 3 (predictive). The
autonomic computing initiative aims to deliver the needed tools and the necessary
bridge for successful management support on the autonomic level.

In a typical autonomic environment the system administrator de�nes a policy for
automated self-management. The system tracks the values of its own parameters like
health condition, system load, security intrusion symptoms, component errors and
executes the de�ned policy which may activate actions demanding human assistance
or trigger completely automated chain of procedures acting on the performance,
security, con�guration or its overall �health� condition re�ecting the stability and
reliability of the system.

The automated sequence of monitoring, analysis, planning and execution is
known as autonomic control loop [5]. For a dynamic and adaptive self-management
a single control loop for a whole system is not su�cient because of the distributed
nature of the modern systems. That is why an autonomic management environ-
ment has to foresee and support the management interoperability and cooperation
in distributed parts of the system. Autonomic management consolidates di�erent ap-
proaches of monitoring and reaction. For example, passive monitoring activates the
control loop upon a generated event. In the case of pro-active monitoring [134], the
system parameters are inspected autonomously and independently from the rest of
the system. Both passive and pro-active monitoring contribute to discovery and pre-
diction of problems before it is too late and critical for the operational health of the
system. Examples for autonomic self-management are web-server load-balancing,
dynamic database and storage con�guration [36], network routing optimization, au-
tomated restart (self-healing) in case of component failure, reliable and redundant
component communication and many others wherever an autonomic loop controls
important parameter values and system behavior.

In a typical industrial IT deployment setup multiple versions of di�erent tech-
nologies have to be integrated for a system functional completeness. One reason
for this is the need for communication across the boundaries of a particular organi-
zation that adopts a technology solution [117]. This technological heterogeneity is
accompanied by the problem of evolution in the technology itself resulting in con-
�icting components or system wide communication problems. The distributed com-
ponent technologies [69] that are currently being used in production environments
do not have intrinsic methods of handling such kind of problems. These include
well-established software frameworks such as Enterprise Java Beans (EJB), OSGi
Framework, Windows components, assemblies and Web Services. An environment

25

that integrates these technologies exhibits di�culties in the general management of
the system as a whole and speci�cally problem tracking, dependency in communi-
cation and version management.

An example for deployment of component-based systems include service pro-
vision for smart home [116] where a component framework, for example OSGi, is
deployed on a home gateway that communicates with a service provider via web
service interfaces. The service provider on his own has a separate component based
service provision back-end based, for example, on EJB. Although these are two sep-
arate systems, there are critical dependencies between the home gateway and the
service provision back-end.

Another example for heterogeneous environment is a distributed product develop-
ment (DPD) system [118, 123]. Such a system typically deploys a variety of hardware
devices and software for both management and development purposes. The adoption
of new functionality is important for the e�ciency, for example in prototyping and
testing phases, but at the same time software stability during project development
is a critical requirement for successful project completion. The distributed nature of
the technical documentation bases, for example using EJB, and the Computer-Aided
Design (CAD) environments, based on custom plug-in architectures, or Rich Client
Platforms (RCP) [25, 28] have functional dependencies. Careful maintenance has to
bring the system to a consistent state and assure healthy component communication.

These common di�culties can be addressed by an autonomic architecture that
facilitates self-inspection, heterogeneity management and communication. It would
contribute to a more reliable and cost-e�cient system control. However, the develop-
ment of such system exhibits a number of architectural challenges and requirements
that have to be addressed.

1.2 Challenges in Autonomic Management of Soft-

ware Components

Development of autonomic systems has seen a signi�cant progress during the last
several years [1, 20, 85, 95, 99] despite the di�culties it faces in the �eld of auto-
mated management, reasoning, control design and interfaces. Previously manual
management of system elements has been partially replaced with the help of au-
tonomic design. Among the notable advances are self-con�guration for databases,
auto-discovery of network devices, self-optimization of grid resources. However few
of the projects address some of the signi�cant obstacles for autonomic management
in distributed environment. In the �eld of component based management nothing
meaningful is yet developed to face these issues. Currently there is no architectural
approach that enables component management in heterogeneous environment with
a common model, common architecture and using a common middle-ware. This the-
sis addresses �ve challenges that are related to the development and integration of

26

autonomic support for such systems.

First, di�erent frameworks de�ne their component models with speci�c life-
cycles, access methods, levels of encapsulation and meta-data descriptions. In a
distributed environment deployment and continuous human support of several dif-
ferent component frameworks is an error-prone process that puts the system stability
in risk. This risk increases with the growth of the system as more components are
being deployed. This creates the problem of overhead in component deployment
management.

Second, component frameworks usually provide management interfaces for mon-
itoring of and access to resources but the management standards [73] and interfaces
that framework vendors develop are di�erent. This introduces management hetero-
geneity inside a single business domain, thus additional management overhead and
higher risk of error.

Third, depending on the degree of system distribution and the methods of de-
velopment, components that are loosely coupled may evolve with di�erent paces.
The coordination of their integration is conditioned to be di�cult and the risk of
incompatibility or lack of communication interoperability is increasing with time
[117]. This creates the problem of parallel component evolution.

Forth, software components may have local dependencies within a single con-
tainer, including dependencies on local framework services, but in distributed en-
vironment there are remote dependencies that may be mutually important for the
antecedent and depending components, including dependencies on remote services
[90]. This creates the problem of deep component dependencies.

Fifth, the integration of management facilities such as autonomic managers, pol-
icy engines, sensors and pro-active monitoring managers requires adaptation of the
existing infrastructure, communication interfaces or component logic. This creates
the problem of management complexity overhead.

1.3 Proposed Solution

To address the �ve problems of overhead in component deployment management,
management granularity, parallel component evolution, deep component dependen-
cies and management complexity overhead the use of an organizational software
management model for component description is proposed; a cybernetically viable
architecture for autonomic component management and supporting middle-ware for
dynamic communication channel management.

The model de�nes the organizational layout and information �ow that suits the
description of component encapsulation to address the problems in deployment and
multi-version component communication. The architecture implements a traditional

27

autonomic loop adapted to both �t and to integrate the organizational model with-
out management complexity overhead, but capable of handling management inter-
face adaptation. The middle-ware facilitates dynamic selection of communication
interfaces to address inter- and intra-component dependencies and allow communi-
cation brokering between parallel evolving components.

1.4 Research Hypothesis

The research hypothesis is as follows:

The cybernetically viable software architecture, coordinated by a
channel management middle-ware and integrated organizational system
model for software, facilitates integration of autonomic management ca-
pabilities by addressing the problems of overhead in component deploy-
ment management, management granularity, parallel component evolu-
tion, deep component dependencies and management complexity over-
head. The architecture can be used with a number of popular software
frameworks for distributed computing to increase system reliability by
supporting consistency in component communication between evolving
components.

1.5 Approach

To express the validity of this thesis an overview of the currently applied approaches
in this �eld is given and a new approach is proposed based on the reviewed methods
with extensions and modi�cations which target problems and requirements that were
previously not met. Then, the feasibility of the approach is explored in concrete
scenarios for distributed component deployment and its usefulness evaluated with
the help of a developed prototype.

Chapter 2 overviews existing techniques for development of autonomic manage-
ment systems and particularly management of distributed component systems. It
discusses several example applications of those approaches and de�nes existing prob-
lems, requirements and challenges.

Chapter 3 reviews existing research projects that developed architectures for
integration and implementation of autonomic management in software systems. It
then illustrates common development approaches that are helpful in addressing the
challenges.

Chapter 4 presents the solution and shows its application in scenarios from two
di�erent domains - Smart Home and Distributed Product Development.

28

Chapter 5 and Chapter 6 look into the details of the model, the architecture and
the middle-ware of the solution.

Chapter 7 presents results and impressions from a built prototype that imple-
ments the solution.

Chapter 8 concludes the thesis with a summary of the contribution, presents the
limitations of the approach and shows the directions for future developments.

1.6 Contribution

This dissertation contributes to the development and research of autonomic com-
puting architectures with a model of component systems organization, an architec-
ture for integration of autonomic management capabilities and a middle-ware for
communication-based coordination of evolving software components. The system
design approach proposed in this thesis can be used as an example for integration
and organization of management facilities in other systems where components ex-
hibit hierarchical and recursive type of containment.

29

Chapter 2

Autonomic Systems Engineering

Design of autonomic systems requires speci�c knowledge about the nature of the sys-
tems for which self-management capabilities are provided. The speci�c architecture
which an IT system implements in�uences how the management sub-system receives
events and management information or how it a�ects the system state. However,
there are basic principles of organization, automation and control that autonomic
systems exhibit. This chapter presents general methods for building autonomic sys-
tems abstracted from details about concrete implementations of interfaces for moni-
toring and management.

2.1 De�nition and vision

Autonomic is often misunderstood or misinterpreted as �automatic or �autonomous�.
Although autonomic systems might exhibit characteristic of automation and au-
tonomous behavior the meaning of autonomic clearly de�nes the context of self-
management.

Webster's Revised Unabridged Dictionary de�nes the meaning of autonomic as
follows:

Autonomic \Au`to*nom"ic\, a.
Having the power of self-government; autonomous

Wordnet Dictionary de�nes autonomic as follows:

autonomic adj : relating to or controlled by the autonomic nervous
system; "autonomic re�exes"

The main aim of the autonomic computing as a research �eld is to bring know-
how for building IT systems that allow people to focus on the big picture and let

30

the low level of the system to monitor and manage itself. In a typical corporate
network, there is a wide range of clients, servers and multiple databases connected
via network crossing internal and external �rewalls. To manage this network one
has to consider dozens of systems and applications, hundreds of components, and
thousands of tuning parameters. Autonomic computing aims for engineering of such
complex systems that can accept business process-related high-level rules as input
and manage their own infrastructure, con�guration and functionality.

2.2 Examples for Application of Autonomic Solu-

tions

This section provides an overview of scenarios that apply to the domain of autonomic
management. The examples 2.2.1 - 2.2.6 demonstrate concrete cases of need for
autonomic support in order to improve the reliability, availability or security of
system services. Sections 2.2.7 - 2.2.9 show how these standalone scenarios are used
in a real-world setup of on-line service provision where the elements are dependent
on each other in networked environment.

2.2.1 Dynamic Database Tuning

Database Management Systems (DBMS) are notorious for the large set of parame-
ters [110] that govern the behavior and performance and the optimal performance
con�guration of the system is usually dependent on the speci�c scenario of database
access and data organization. An autonomic management system contributes to the
optimization and system health management by an automated con�guration of the
database in order to save time and decrease the risk of human error. The parameters
that an autonomic manager monitors are adjusted according to the dependencies
on concrete setup speci�cs and scenario of utilization, for example, present system
resources and expected database load. In the case of load management the database
needs to be dynamically tuned by adjusting parameters, such as cache sizes, type of
indexing, process forking strategy and others. Additionally an autonomic manager
can monitor irregularities and oddities, such as corrupted database indexes that can
be restored automatically by the system. The reaction of the manager and its ability
to detect problems on-time is critical for the functional health of the system.

2.2.2 Dynamic Web Server Tuning

Web server tuning is usually a static procedure of common con�guration that suites
most cases of web server utilization [36]. However a dynamically tuned server uti-
lizes system resources in a better way and increases system responsiveness. An

31

example is the Apache Web server. The desired and feasible CPU and memory uti-
lization can be achieved by properly selecting the tuning parameters �MaxClients�
and �KeepAlive�. A higher value of the �MaxClients� parameter allows the Apache
server to process more client requests, and increases both CPU and memory uti-
lization. Decreasing the value of �KeepAlive� parameter potentially allows worker
processes to be more active, which directly results in higher CPU utilization and
indirectly increases memory utilization, since more clients can connect to the server.
In practice, adjusting these parameters is time-consuming, error-prone, and skills-
intensive. For an automated approach the meaning of a �better system resource
utilization� can be de�ned by means of management policy that is executed by an
autonomic manager according to the load of the server. The manager monitors the
values of the load metrics and adjusts the �MaxClients� and �KeepAlive� parameter
values.

2.2.3 Component Self-healing

The component-based systems often exhibit problems with unpredicted component
behavior. Partially this is due to loosely coupling in both runtime and development
phases. The logic behind the implementation of a component is not always prepared
for the input from other components in the system and in the case of untested or
fault design of the component's variable states, di�erent events may result in a com-
plete termination of the process (often called �crash�), or a continuous loop (often
described as �hanging�). In such situations the fastest and practically e�ective mea-
surement is to set the component in initial state, or with other words to restart it.
In autonomic computing terms this is the primitive form of component healing. In a
distributed system this kind of system repairing is error-prone and time-consuming
procedure [80]. An autonomic management system can address this problem by
using monitoring of type �watchdog� [52]. The system monitors the state of the
component by expecting service pulse within a set period of time-out. If the compo-
nent does not report its status on time, the manager does the necessary to bring the
component in normal operation. This approach of self-healing reduces the time to
reaction to bring the system in a healthy state and contributes to problem reports,
such as crash conditions and faulty component localization.

2.2.4 Dynamic network routing

The general meaning of network implies connected and communicating nodes. Whether
it is a network of servers, network of clients and servers or just supporting network of
routing devices, the concrete path of information between nodes is known as a route
and the process of message delivery through selected set of nodes is called routing.
The way routing is done has impact on the performance and the operation of the
network as medium. For the di�erent architectures and system communication �ow

32

di�erent routes are used to fully utilize system resources. The topic of dynamic
routing in communication networks has been researched in detail [85] and there are
existing approaches to auto-con�guration of the routing algorithms, but the general
notion of routing optimization with the accent of general management and depen-
dencies with other system assets still remains in the �eld of research. An autonomic
approach to dynamic networking routing con�guration implies a common monitoring
and management interface on the di�erent levels of routing (packet routing, message
routing, etc) and managers integrated into a common autonomic architecture [135].
This integration of the network-management with a database, application server or
web servers provides �exibility and opportunity to optimize the information �ow
dynamically, on-demand and according to the current system con�guration and the
activity of the environment that it serves, for example high-volume tra�c to spe-
ci�c nodes, unexpected node failure or scheduled o�-line maintenance of a serving
equipment.

2.2.5 Autonomic System Upgrade Support in Production En-
vironments

IT systems are dynamically changing according to the demands of its users and
the environment in which they operate. Agility and adaptability using software ar-
chitectures has been a long-time research process that produced signi�cant results
[94]. Even in everyday life we see this progress by using programs based on mod-
ular approaches for adding functionality, we can see our operating system which
updates itself automatically with the necessary security �xes. However, desktop
system updates have presumably lower requirements when it comes for keeping the
functionality of the system intact. The systems used in production and corporate
environments, on the opposite, are sensitive to the updates of the system because
small changes in either interfaces of the used components or their functional behav-
ior may have unexpected in�uence on the behavior of the whole system. This is
partially due to the complex infrastructure of such environments and partially be-
cause of the lack of coordination in development of the di�erent frameworks [54, 63].
Before deployment, the updated components are tested in an isolated from live en-
vironment conditions. This does not give the necessary assurance that the deep
dependencies between the updated components and other parts of the system do
not con�ict and will not damage the rest of the system operation. An autonomic
management system for upgrade of software components in production environment
has to facilitate the procedures of step-wise, gradual deployment by allowing deploy-
ment of new components in the live environment for purposes of real-world tests.
This can be achieved by autonomic support for dynamic selection of interfaces for
communication between non-con�icting components. In this way, new versions of
components may reside together with the old ones and can be tested against the
real environment. The bigger part of the prototype development that supports this

33

thesis is dedicated to this scenario. The cybernetically viable architecture and the
communication channel management environment allow for dynamic selection of
component interfaces.

2.2.6 Pro-active Intrusion Detection Systems

System security has a high priority in open operating environments. Although
investigation in methods for reaching high-levels of system security has advanced
signi�cantly, the majority of production systems still exhibit only passive security
measures, such as restriction of physical, network or user access. The vision for an
autonomic security support implies self-defense by means of passive and pro-active
management [134]. A pro-active protection de�nes how a system reacts to events
coming from the operating environment in order to predict potential security risks,
such as intrusion or �Denial of Service� attacks. Approaches may include the ability
of service migration, and network recon�guration governed by decisions taken by
autonomic managers that sense the events and plan according to a dynamic base
of symptoms. The role of the managers is to support the decisions that potentially
would absorb undesired condition and perturbations coming from open system in-
terfaces. Reasoning for such kinds of purposes requires methods from the �eld of
machine learning [127, 136] and stochastic models for prediction.

2.2.7 Integrated on-line service management

The mentioned examples of management (web server, database, network and soft-
ware components) were analyzed only as stand-alone operating elements. However
a scenario of on-line service provision requires integration of these components into
a single domain of cooperation or communication. Such an example is when users
access an on-line service through a web server which on its behalf activates ser-
vice component for process of content served by a database over the network. This
de�nes a clear set of dependencies between the elements and for the successful com-
pletion of the service they have to be satis�ed. In a real-world scenario the elements
are clustered to facilitate load balancing and network tra�c-routing optimization.
Then, the management procedures such as con�guration and update have to be
applied on the level of clusters and with regard to the existing dependencies inside
the clusters [103] and outside them. The necessary actions have to be executed to
adapt the elements in the remaining part of the system. On a higher level, the
management system has to be able to follow the de�ned policy and execute it across
the di�erent elements and groups in a seamless manner. Figure 2.1 illustrates the
dependencies in such administration domain and the management elements in its
heterogeneous environment. The illustrated management interfaces are of di�erent
nature and must be integrated in a common management unit, noted on the pic-
ture as �Global System Management�. The cybernetically viable architecture would

34

facilitate this scenario with its organizational model of recursive and nested levels
re�ecting the way components are grouped and managed.

2.2.8 Distributed Service Delivery Solution Management

The penetration of IP connectivity in the recent years has allowed mobile devices
to connect to local networks or to the Internet and serve content directly in the
palm of their users [21, 99]. The possibilities of this development are expanding
and practically di�cult to measure. There are many research projects in the area
of pervasive and ubiquitous computing that investigate scenarios and architectures
for location and context-based services [108], however, there are many problems to
be addressed in important aspects of device communication, such as common policy
and dependency management. While there are already standards, such as Universal
Plug and Play (UPnP) [98] that facilitate partially these two aspects, the problem of
common management persists. An environment that hosts the devices has to be able
to de�ne policies for access and interaction between devices, devices and users, and
users and services. Figure 2.2 illustrates the existing communication functional and
management dependencies and the need of management integration in the scenario
of a Smart Home Solution. The end-user side on the left of the picture consists of
communicating devices which access services through a deployed service gateway.
The devices are dependent on it and on the network equipment, either wired or
wireless. The solution provider integrates security services along with an architecture
for delivery of services from third party service providers. This setup demonstrates
the usage of heterogeneous management and functional dependencies and has similar
characteristics as the scenario from Section 2.2.7 - distributed communication that
demands common management framework. An autonomic architecture may help
in this situation with a middle-ware for adaptation of communication channels and
remote dependency management.

As seen from Figure 2.2, there are multiple points of management, where there is
a need for co-ordination, policy distribution and a common information base. An au-
tonomic solution provides these missing features to enable automated management
and reduce the costs.

2.2.9 Rapid Prototyping Systems Support

The systems that support the process of Rapid Product Development (RPD) [118]
have high requirements for adaptability and functional richness. Modern RPD sys-
tems are by intent designed for distributed deployment and include a number of
technologies that demand integration and maintenance [123]. An example scenario
for management of a system that supports the process of RPD is illustrated on Fig-
ure 2.3. A typical RPD system consists of a large variety of components, such as
image acquisition systems, simulation software, modeling software, documentation

35

���������� ���������� ����������

�	
����

������

������ ������ ������

(a)

�������

���	
���
�

��������	�����

�������

��������

��������	�����

������

���
�����

�	��	

������

����������

���

������

�	�����

������

������

������
������

������

(b)

Figure 2.1: Dependencies in distributed environment for on-line-service provision.

Dependencies in a cluster of managed web servers (a) and dependencies between
managed clusters as elements of a system for on-line service provision (b).

36

������

������

����	
�

��������

�	����	��

�	����

����������

�
����
��

��
����

�	����	����

����������

��
����

��������

��
����

�������

���� 	
�

������

������

������

������

������

������

������

������

�	�� ���
��	����	����	�
�
	����

��
������
	����

Figure 2.2: Communication dependencies of service delivery in Smart Home scenario.

On the left side home-wide dependencies between devices, network equipment and
service gateway platform, on the right bottom third-party service delivered through
an integration with a back-end on right top.

37

�������

��	
������

�����������������

�����������

�������	���������

������

������������

���������

���������

��������

 	���������

 ��������������

!�������"��������

������

������

������������

������������

������

Figure 2.3: Components in a managed distributed RPD support system

and model knowledge base, pro-active data retrieval, etc. A speci�c characteristic of
RPD is that the requirements and the speci�cations of the modeled product change
dynamically and that requires functionality of the supporting systems (hardware,
image processing software) to be updated with new features while the communi-
cation process is still active. At the same time, the requirements for stability are
high because a small glitch in the intensive communication between development
teams and respectively between the components of the supporting system can cause
undesired delays in the progress of the project. That is why all these technologies
need management infrastructure and coordinated software deployment. The man-
agement component has to integrate the various interfaces in order to coordinate
the managed resources and facilitate comfortable management of the heterogeneous
dependencies in such system.

An architecture that supports integrated communication management would
play an important role in stability control in the process of system adaptation.

2.2.10 Distributed Component Systems Management

This section gives an overview of required software elements for management of
component-based systems that enable a system's state to be monitored and manip-
ulated. They form the basis of a management infrastructure with the help of which
autonomic support assets can be built, such as policy management, self-con�guration
and adaptive communication.

38

2.2.10.1 Management Consoles

Regardless of the e�orts for fully-automated system management, the end consumer
on the side of the management system remains the human being with assigned role
�administrator�. The administration tools of the modern frameworks for distributed
computing provide means for visual and graphic representation of the management
data. These tools and applications are called management consoles. Their single
purpose is to make the data easy to handle and to give the administrator a comfort-
able way for interacting with the system con�guration, system tuning and pro�ling.
The degree of integrated management of a management system and the environment
depends highly on the heterogeneity of the deployed systems.

2.2.10.2 Runtime Management

Because the components are hosted in an environment that manages their life-cycle
it is a common practice the monitoring and the management of the components and
their containers to be performed through interfaces provided by the environment
itself. An example of such integrated management is the Java Management Ex-
tensions (JMX)-based management of Java 2 Enterprise Edition (J2EE) platform
[27, 82]. Per speci�cation it is built on top of the management framework that cre-
ates a �exible and manageable environment. Additionally, the latest speci�cation
of the Java Virtual Machine (JVM) that virtually hosts the platform uses the same
framework to expose its management data. That way management of components of
a distributed system can be managed through a single console remotely, on di�erent
levels of encapsulation. Similar example is the management of Service Logic Exe-
cution Environment (SLEE) containers and its building blocks the implementations
of which take exactly the same approach towards integrated management. .NET
Common Language Runtime (CLR) provides management interfaces for monitoring
of the hosted components and similarly .NET-based applications can be monitored
remotely and using single integrated management console.

2.2.10.3 Management Adapters

Although the software vendors are trying to deliver integrated solutions for their
technologies the heterogeneous nature of the distributed systems in production and
corporate environments requires speci�c management interfaces to be adapted for
uni�ed management access in order to reduce the problem of management granular-
ity. This is achieved by using adapters that translate the events and management
operations in both directions - from the management application to the concrete
management interface in case of operations and from the interface to the applica-
tion in case of events or indications. The place where adapters are used depends
on the approach and the architecture of the unifying management framework. For
example, an adapter that is used on the side of the end-user management applica-

39

tion or console translates the target management interface operations and events
into uni�ed graphical representation. The other way for design of common access to
management interfaces is to use middle-ware that abstracts the management oper-
ations into a common access interface and exploits a normalized information base.
Then the adapters are used as pluggable building blocks [22] for re�ection of environ-
ment's real state. This approach can be seen in the way DMTF framework speci�es
the architecture for building CIM-based management instrumentation systems.

2.3 Architectural Elements for Autonomic System

Design

This section makes an overview of the used in system design elements and de�nes
the nature of autonomic systems in abstract terms. These include de�nitions of
building blocks such as autonomic managers, elements and control loop �ow that
constitute the autonomic character of a management system.

The autonomic systems are integrative collection of autonomic elements [46] -
individual system constituents that contain resources and deliver services to humans
and other autonomic elements. System self-management arises as the result of in-
teraction of the autonomic elements according to a prede�ned management policy
and shared knowledge.

An autonomic element consists of:

• Managed element(s) - equivalent to the elements in non-autonomous sys-
tems but can be adapted to enable to be controlled and monitored (by the
autonomic manager)

• Autonomic manager - monitors the managed element and its external en-
vironment, constructs and executes plans based on an analysis of this infor-
mation.

An autonomic manager is a component that implements a particular control loop
over a managed element of the following form.

2.3.1 Managed Element

A managed element in an autonomic system may be any of the elements that par-
ticipate in the system's functional or resource inventory. A managed element have
clearly de�ned interfaces for management which serve as access points for monitor-
ing and control. Autonomic computing de�nes the access points for monitoring as
sensors and those for control are de�ned as e�ectors [131]. Sensors and e�ectors are
both formally de�ned and the actual implementation of the autonomic system treats
them accordingly to achieve parameter monitoring and management operations.

40

���������	
�����

������

������ ����

�����
�������

����� �������

�����	�����

������������

���������	�����

Figure 2.4: Autonomic Element with MAPE Loop-Control

The manager reads elements' state from its sensor (S) and executes management
operations through its e�ector (E).

2.3.2 Autonomic Manager

An autonomic manager has the responsibility to monitor, analyze, plan and exe-
cute management operations over the sensors and e�ectors of a managed element
[29, 56]. A main characteristic of the autonomic manager is that it is a standalone,
autonomous and communicative element. Autonomic managers can on their side
provide sensor and e�ector interfaces to allow higher-levels of management to have
access to management information. The numerous autonomic managers in a complex
IT system can work together to deliver autonomic computing to achieve common
goals. For example, a database system needs to work with the server, storage sub-
system, storage management software, Web server and other elements of the system
in order for the IT infrastructure as a whole to become a self-managing system [4].

2.3.3 Control Loop

The �ow of information and the steps of management interaction between man-
ager and elements form an autonomic control loop. The control loop is conducted
by the autonomic manager either by signals coming from the managed element's
sensors, or by its autonomously initiated actions for monitoring and control. The
process of management through autonomic control loop is divided into four major
phases: monitoring, analysis, p lanning and execution, known in the autonomic re-

41

search community as MAPE . Figure 2.4 illustrates coupled managed element and
an autonomic manager with its belonging elements responsible for handling the four
phases of the autonomic control loop.

Monitoring is either passive, event-driven or proactive, initiated by the man-
ager, the monitoring phase processes incoming data from the managed element and
adapts it to understandable for the analyzer format.

Analysis is the process in which the value of collected data is analyzed for
particular patterns and constraints. This is the phase where the manager applies its
policy and evaluates the state of the managed element.

Planning is a phase in which depending on the results of the analysis phase,
the manager creates a plan for execution of actions on the managed element. The
created plan should a�ect the state of the element in desired by the element manner
and according to the system policy.

During the execution phase the manager performs management operations us-
ing the e�ector interface of the element.

2.3.4 Shared Knowledge

An important aspect of autonomic system management is the ability of the man-
agers to reason with the help of a shared knowledge base. The knowledge base
contains necessary policy instructions, history data or rules that all together help
the manager in the analysis and planning phases of the control loop. Depending on
the way the knowledge-base is organized in terms of knowledge representation and
storage, it may vary from system to system [91]. A common understanding is that
interoperability between autonomic systems is dependent on the degree of adoption
of standards-based knowledge representation models, such as ontologies and usage of
standard information models that can be understood and implemented inside every
management system.

2.3.5 Autonomic Manager Communication and Cooperation

The sensors and e�ectors provided by the autonomic manager facilitate collaborative
interaction with other autonomic managers. The managers cooperate in order to
bring the system to a desired state communicating either by using direct peer-to-
peer access (Figure 2.5) to each-others resources or by using communication services
designed for the purpose. This way of cooperative control has been investigated
in the research domain of multi-agent systems with e�orts spent on protocols for
communication, negotiation and brokering.

Managers may form hierarchies of management levels that determines the distri-
bution of tasks and policies. Figure 2.6 shows how a manager may become managed

42

Figure 2.5: Communication between autonomic elements

It is achieved using exchange of information directly between peers.

element for another manager from a higher level of the system management hierar-
chy. This approach simpli�es the management and de�nes clear way of policy and
task distribution.

2.4 Principles of System Control

An important aspect of system management is the understanding of core principles of
control. These include types of loops, balancing and models for system organization
and control [5, 86]. This section makes an overview of the theory basics in the
�eld of cybernetics related directly to system control. Section 2.4.3 reviews a model
for complexity management based on cybernetic principles used as a reference and
starting point in the design of a cybernetically viable software architecture.

2.4.1 Cybernetic Control Mechanisms

As seen in Section 2.3 the autonomic managers operate using control loops to reg-
ulate the state of the software elements. The �eld of cybernetics is covering the
topic of system control and investigates practical and formal de�nition of regulation
and of control loops operation. There are three fundamental methods to achieve
regulation [70]:

Bu�ering is the passive absorption or damping of perturbations. For example,
the wall of a thermostatically controlled room is a bu�er: the thicker or the better
insulated it is, the less e�ect �uctuations in outside temperature will have on the

43

���������

	
�
��

����� ������

���������	�����

���������
	
�
��
������������������

�����

������������������

������

�����
����������

���������
���

�
��
������	
�
������

�������

	��������
��
�����

��
�����

�������
����

�������
�������������
	
�
��
������������������

�����

������������������

������

���������������

 ������ ������������
!����
�������������"

Figure 2.6: Hierarchy of managers.

Managers can be hierarchically grouped and controlled by higher level of manage-
ment.

inside temperature. Feedback and feed-forward both require activity on the side of
the system, to suppress or compensate the e�ect of the �uctuation.

Feed-forward control will suppress the disturbance before it has had the chance
to a�ect the system's essential variables. This requires the capacity to anticipate
the e�ect of perturbations on the system's goal. Otherwise the system would not
know which external �uctuations to consider as perturbations, or how to e�ectively
compensate their in�uence before it a�ects the system.

Feedback is a compensation of an error or deviation from the goal after it has
happened. Thus, feedback control is also called error-controlled regulation, since
the error is used to determine the control action.

The methods feedback and feed-forward are embedded in control loops.
Feedback control loops have several characteristics that are related to sys-
tem stabilization and growth:

Deviation in Time Performing a control loop means to measure the di�erence
of the current state of a system compared to a state in di�erent moment of time.

Dy = y − y0 (2.1)

44

where y is the current observed state, and y0is a comparative (e.g. equilibrium)
state. If we introduce change of time as Dt it can be presented in this way:

Dy(t + Dt) = kDy(t) (2.2)

Depending on the sign of k there are two types of feedbacks:

Negative Feedback Control loop which has a positive deviation at given moment
t (increase with respect to given state y0) leads to a negative deviation (decrease
with respect to y0) at the following time step t+Dt. Negative feedback is ubiquitous
as a control mechanism in machines of all sorts, in organisms (for example in home-
ostasis and the insulin cycle), in ecosystems, and in the supply/demand balance in
economics.

Positive Feedback The opposite situation, where an increase in the deviation
produces further increases, is called positive feedback. For example, more people in-
fected with the cold virus will lead to more viruses being spread in the air by sneezing,
which will in turn lead to more infections. An equilibrium state surrounded by posi-
tive feedback is necessarily unstable. For example, the state where no one is infected
is an unstable equilibrium, since it su�ces that one person become infected for the
epidemic to spread. Positive feedbacks produce an explosive growth, which will only
come to a halt when the necessary resources have been completely exhausted. For
example, the virus epidemic will only stop spreading after all people that could be
infected have been infected. While negative feedback is the essential condition for
stability, positive feedbacks are responsible for growth, self-organization, and the
ampli�cation of weak signals.

2.4.2 Variety and Knowledge Management

An important notion in system control is the absorption of variety. The controller
has to be able to recognize perturbations coming from the environment and the
element under control in order to take appropriate measures concerning the goal
of regulation. This requirement is known as the law of requisite variety and is a
fundamental principle in construction of management systems. It has the following
formal de�nition: a model system or controller can only model or control something
to the extent that it has su�cient internal variety to represent it [86].

For example, in order to make a choice between two alternatives, a controller
must be able to represent at least two possibilities, and thus one distinction. If we
take into account the constant reduction of variety K due to bu�ering, the principle
can be stated more precisely as:

VE ≥ VD − VR −K (2.3)

45

where:

VE represents the variety of the essential variables of the system.

VD represents the variety of the disturbances acting to the system

VR represents the variety of the regulator of the system

K is a bu�ering constant, aimed to reduce the e�ect of the disturbances (reduce
the variety of disturbances)

A trivial implication of this law is the operation of a thermostat. The thermostat
percepts the room's temperature and has the goal to keep it in a prede�ned value.
In order to do this, the limits of temperature deviation it is able to sense has to be
at least equal to the extreme values of temperature change outsides the room. The
bu�er in this situation are the walls which compensate the temperature deviation
to a certain degree.

An implication of the law within a scenario of software security management can
involve a controller in the form of a port monitoring �rewall bound to the network
and analyzing the network activity which represent the disturbing factor. The goal
of the controller then would be to keep the functional parameters of the network
service (the essential variables) in range that satis�es the operation of the system.
The controller has to be able to recognize variety of events that relate either to the
normal operation of the system or those belonging to potential attacks and either
mediate them or reject them. The functionality of the bu�er in this implication can
be represented by cascaded �rewalls or other �ltering facility in position to mediate
the events coming from the network environment and directed to the service.

While variety absorption is important for the controller, it has to be able to
decide and reason depending on the knowledge it has about the absorbed variety.
That means, the controller has to have the requisite knowledge [5] in order to perform
management operations. This knowledge can be in the form of rules and chains of
rules that evaluate the conditions and map them onto actions that the controller
has to execute to bring the system to a desired state.

The Law of Requisite Variety (LRV) and the law of requisite knowledge (LRK)
are fundamental principles for veri�cation of the ability of a controller to perform
correctly and as expected. They are heavily used and required for a construction of
a management model.

2.4.3 The Viable Systems Model

This section presents the basic characteristics of the Viable System Model (VSM),
a system model organizational and communication principles for management of
complex structures [9, 10, 20, 55].

Systems that adapt and sustain their operation in a changing environment are
known as viable. The VSM Model developed by Stanford Beer focuses on manage-
ment of organization, knowledge and communication �ow in viable systems. Figure

46

2.7 illustrates graphically the organization, the relations and the encapsulation of
elements according to VSM. The following conceptual properties characterize the
model:

• The law of requisite variety (LRV) is the critical and most important law
which has to be ful�lled for guaranteed system viability. The communication
requirement is applied to the communication channels between the elements
and and the elements themselves.

• Self-reference - each part makes sense in terms of the other parts. The system
de�nes or produces itself based on the parts and their arrangement. This
property is also called logical closure and is related to identity, self-awareness,
self-repair and recursion itself.

• Homeostatic, morphostatic, morphogenetic capabilities - maintenance
of critical variables within certain limits to ensure stability of a system in
response to changes in the environment for both on the level of element man-
agement and structural adaptation.

The �rst thing to note about the cybernetic theory of organizations encapsulated
in the VSM is that viable systems are recursive - viable systems contain viable sys-
tems that can be modeled using an identical cybernetic description as the higher
(and lower) level systems in the containment hierarchy. Beer de�nes this property
of viable systems as cybernetic isomorphism. Several principles and axioms of or-
ganization form de�ne how a system using the VSM can keep its adaptability and
stability in changing environment.

The ellipses on Figure 2.7 represent the external environment in which the sys-
tem is embedded. The environment is interpreted as a set of current and future state
of external parameters that in�uence the operation of the system. On the right side
of the diagram there is a management system that controls plants and balances its
communication and organizational structure to re�ect current and future changes
of the environment and keep the controlling system in balance. The set of rect-
angles labeled with System 3, System 4 and System 5 represents a higher level of
management that performs the executive, planning and operations functions. The
rectangle labeled as System 2 de�nes a regulator with main function scheduling and
synchronization. These functions provide needed feedback loops to ensure smooth
operation of the overall system. The regulator is responsible for maintenance of
the operation schedules and for coordination with other controllers. An �algedonic�
signal representing positive and negative (pain and pleasure) values of estimation
for operational health of the controlling units is shown going from the controllers
at the lower level directly to the executive function at the next level. This can be
thought of as a �panic override� alert that bypasses all �ltering in the System 3 and
System 4.

47

��������

�������	

�������

����������������

�����

��������

��������

��������

�������	

�������

��������

��������

������

��������

������

��������

 ��������������

�������� ��!������

Figure 2.7: The Viable System Model

VSM has homeostatic, morphostatic and morphogenetic capabilities of adapta-
tion. These correspond to System 3 and the combined Systems 4-3 and 5-4-3 (see
Figure 2.7).

Homeostasis is the maintenance of critical variables within certain limits to en-
sure stability of a system in response to changes in the environment. This is normal
control system behavior. Morphostatic and morphogenetic adaptation relate to the
structural adaptation of the system. Morphostatic behavior is "simple adaptation"
such as changing internal control algorithms. This corresponds to the 4-3 function.
Morphogenetic systems maintain meta-properties of the system (�identity�) through
evolution of the structure and/or components that make up the system itself. That
is, the ability to acquire new components and discard others. This is the full 5-4-3
controller function. This combination forms a �supervisory-adaptive� controller for a
management system that implements homeostatic, morphostatic and morphogenetic
policies to manage and maintain the stability of a controlled plant. The viability of
a system according to VSM is a measure of how well these policies are realized in a
particular environment.

2.5 Autonomic Component Management Challenges

The task of enabling autonomic support in existing systems requires resolution of
several problems related to the heterogeneous nature and the distributed communi-
cation in component-based software. The problems addressed by this dissertation
are only a part of a larger set of challenges in this �eld. More speci�cally, it ad-
dresses problems that relate to system organization and integration providing a basis

48

for experimenting with and development of approaches that may address challenges
beyond the scope of this work.

2.5.1 Overhead in component deployment management

The variety of applications that can be deployed in a production environment in-
troduces di�culties in the support of the system during its lifetime. The support
may include installation of new components, frameworks and services, upgrade, or
de-installation. The necessary carefulness with which every step of modi�cation in
the system increases with system growth. In a distributed environment these di�-
culties are even bigger due to the decoupling of the elements and mediation of their
communication over a network [23].

Variety of component models: The administrative human force that is respon-
sible for the support of the system has to consider the di�erences in the deployment
life-cycle of the component and adjust its con�guration according to the require-
ments of the hosting container. Sometimes, although by speci�cation the component
models of di�erent component-based framework implementation are the same, there
may be speci�c con�guration settings that have to be kept in mind in the process
of system modi�cation. An example for such allowed deviations are the speci�c
container con�gurations of J2EE implementations with services de�ned out of the
framework speci�cation.

Intra-model variety: The same way the functionality of components may evolve,
the component models that facilitate deployment of the functionality evolve too. A
component container may support several versions of the same technology speci-
�cations depending on the concrete pace of evolution, but in the case of a major
re-design of the model it may be required to deploy of a separate container sup-
porting the new version of the component model speci�cation [39]. This introduces
additional need of attention and carefulness in the support process of the component
systems.

2.5.2 Management Granularity

The variety of platforms and frameworks that a heterogeneous environment may
deploy introduces variety of management solutions accompanying these frameworks.
For example a J2EE EJB container can be managed by means of JMX beans [43] and
enabled consoles, while the management of a OSGi framework may be independently
selected by the implementation vendor. The management of system assets, such as
databases or operating system services is achieved using di�erent sets of management
standards, agents and consoles.

49

Proprietary management solutions: Include proprietary management back-
end and closed speci�cations of the interfaces and protocols. These solutions limit
themselves to a set of interfaces and extensions on the side of the management con-
sole. Deployment of proprietary management solutions is so far used in a specialized
cases of high-end or advanced systems, such as virtual machine appliances, corpo-
rate search appliances and device management interfaces. A main disadvantage of
proprietary management is the limitations of �exibility in bridging, generalizing and
integrating the management into a single model. That is why autonomic computing
requires the elements of the system to support open and standards-based solutions
for access to their management information.

Standards-based management: Current software component frameworks allow
management using management interfaces and protocols that are open and publicly
available. However, depending on the type of managed elements, the policy of the
vendor and its preferred management protocol, the frameworks are shipped with
management back-ends and consoles based on a variety of standards di�ering in
their architecture, implementation or version of the speci�cation. This creates a
large variety of management channels that are di�cult to integrate. The problems of
integration can be related to interaction, architectural or semantic. The interaction
problems are related to the way a managed element communicates with a manager,
including protocols and data types. The architectural problem arises in the case
where the management interfaces are provided by components on di�erent level of
containment. For example management of J2EE components happens through the
management interfaces of the runtime, while OSGi environment is accessed through
a regularly deployed bundle. A management architecture has to consider this type of
arrangement in order not to break any dependencies. Semantic di�culties in man-
agement integration are related to the way the di�erent management frameworks are
mapped onto a common terminology. For example the information bases of SNMP
and CIM de�ne di�erent deepness of relations in the hierarchies of classes. Mapping
onto a common model by de�nition will miss semantics that may be important for
the management of certain components.

2.5.3 Parallel component evolution

Distributed systems are not only separately maintained but often their development
happens independently [117]. A component in one part of the system may be subject
of continuous development and upgrade from one software vendor, while others are
developed by di�erent vendor. This may introduce inconsistency in the functional
and communication aspects of component's evolution and cause severe damages,
regression and in�uence negatively the overall system health, thus regression testing
and veri�cation [2, 40, 64, 107, 114] becomes extremely di�cult.

50

Evolution in component communication: The interfaces that a component
provides for communication with other components have direct dependency with its
functional function. Often components serve as a common functional element in
systems of di�erent nature that were created for di�erent purposes, thus changes
in component interfaces re�ect not only the functional or architectural evolution of
its internal implementation but also the goals and the needs of a larger set of sys-
tems or subsystems, known or unknown in the domain of component deployment.
The aspect of interface compatibility is not the only requirement. The act of com-
munication involves interpretation of the semantics of the interfaces and while the
interface vocabulary or way of access remains the same the meanings of the concrete
messages in the interface may di�er. The di�ering semantics are often related to
the concrete implementation and functional evolution of the component that often
remains uncoordinated between parties dependent on it.

Lack of coordination in development: Broken functional or semantic depen-
dencies between components in separate parts of the system may cause inconsistency
in the evolution of the whole system. An example is deployment of components that
were developed by third parties having multiple customers. Without oversight on
the direction of development the way a component will evolve is uncertain and not in
the domain of control of the deploying party. Community based development solves
this kind of problems but this happens usually on the level of system interfaces or
on the level of abstract component model de�nition. Concrete examples for such
kind of development are the Java Community Process (JCP) [26] responsible for the
evolution of Java core interfaces and speci�cations, OGSA Consortium developing
the OSGi standard or the working groups for development of the CLR standard.
However, on the level of component communication evolution is strictly bound to
the concrete business needs of the consumer and the problem remains unsolved.

2.5.4 Deep component dependencies

Components are used as building blocks for functional re-usage. A system con-
tains multiple components that are dependent in a di�erent ways. A distributed
component system has the characteristic of remote component dependency where
components from a local container depends on functionality that is provided by a
component located in remote container. Additionally component functionality may
be dependent on its container, both for because of its life-cycle management function
and concretely on services provided by the container.

Local dependencies: A component-based application is usually delivered as a set
of bundled components that are deployed in a hosting component container. These
components may depend on each other's functionality in local manner, by using
the interfaces directly or with the help of services provided by the container. The

51

communication is not dependent on network operations, such as marshaling and
unmarshalling of data parameters and can be monitored by means of interception
of local events. The closed nature of such communication allows for faster problem
discovery such as inconsistencies in communication interfaces, con�guration and
deployment parameters. In the category of local dependencies belong those between
components and local container services, such as naming directories, timers, access
to data sources and others.

Remote dependencies: Distributed applications are deployed on multiple host-
ing containers in a networked environment. The components may perform both local
and remote interactions with other components, thus there are local and remote de-
pendencies. A remote dependency adds a degree of complexity with the need for
networked communication in the form of remote procedure call, interception or event
handling. These require network availability and successful marshaling and unmar-
shalling of data types and values upon sending and receiving of data. This way, a
remote dependency is not determined only by the component interface semantics but
also by the capabilities of the elements that build the communication medium, such
as Remote Procedure Call (RPC) proxies, network service access points, etc. Re-
mote dependencies are hard to handle if both communication points do not provide
information about their provided and used interfaces. A workaround for managing
remote dependencies is the usage of a central deployment tool that keeps track of
the deployed units and analyzes the dependencies prior to deployment. However in a
distributed environment the need of a common component distribution and deploy-
ment infrastructure complicates the integration and introduces heavy dependencies
between the components and the central deployment tool.

2.5.5 Management Complexity Overhead

If a system was not planned with management in mind the e�orts of integration
may vary and are expressed by modi�cations in the internal logic or larger re-design
of the system. Similarly, integration of autonomic support for such systems may
introduce problems with making the architecture more complex.

Automated management: Automation requires careful coordination of manage-
ment �ow with component life-cycle. To achieve this, a framework has to be able to
expose its internal state to the management unit. Depending on the event system
and internal organization of a component framework the control �ow may be itself a
complex system and as such in�uence the stability of the whole system. That is why
an architecture for automated management integration has to be able to integrate
with the rest of the system in an as simple as possible way using open interfaces
for monitoring and management, with as little as possible required modi�cations on
the side of the managed element. Ideally, the management sensing elements would

52

have access to management interfaces and system state when they are deployed as
components and co-exist with the rest of the deployed components.

Policy migration problems: While autonomic management promises more �ex-
ible and better control over the previously human-managed devices, the migration
to a new system is accompanied by problems with adaptation and policy transfer.

2.6 Participating and interested parties in autonomic

systems

Autonomic systems operate in an environment with many participators, such as
users of the system, administrative sta�, developers and service providers. This
section shows how these groups bene�t from autonomic management support and
the problems that this thesis addresses.

2.6.1 Users

An autonomic system behavior serves the purpose of automated management, some
aspects of which are accessible to the end user. Autonomic support for personal
devices can enable intelligent user assistance depending on the location of the device
or on provided context. Concrete example is the Smart Doorplates project [128]
where door displays guide a visitor to the visited person, depending on the current
location of both.

Another useful aspect of autonomic support for end-user applications is the au-
tomated setup [48]. When a user starts a newly installed application it can help
con�gure itself with a high-level interactive policy setup. The details of the con�g-
uration are hidden from the consumer. Further changes of the con�guration may
happen either through the high level policy or through direct access to the settings.
An example for this kind of interaction is the installation procedure of the IBM
Autonomic Toolkit [37].

The user experience can be enriched with trouble-shooting procedures where
problems are handled by the application itself by means of autonomic self-healing.
The application of the proposed in this thesis architecture can facilitate self-diagnosis
of end-user application and troubleshooting related to software updates.

2.6.2 System Administrators

Systems administrators are bene�ting from autonomic systems in various ways, but
mostly from the automation of error-prone and time consuming routines that auto-
nomic managers perform according to the high-level policies set by them for noti�ca-
tion, automated reaction and control. The security aspect of system administration

53

in recent years is assigned a �rst priority in many organizations. In current IT
systems distributed security updates are handled by centralized security authorities
that have an overview and monitoring capabilities on the existing in the inventory
systems. While this is e�cient way for analysis of system dependencies it is often
limited to non-heterogeneous sub-domains, while di�ering deployments are managed
either manually or by a separate deployment scheme. An autonomic architecture
that facilitates heterogeneous dependency modeling and automated distributed de-
ployment can increase the level of automation, thus the level of security.

2.6.3 Developers

A major problem in �nding malfunctioning components in distributed environment
is due to the quantity of dependencies and interactions between the distributed
elements [41]. The developers who are involved in the development of the system
will have a direct bene�t from the ability of the proposed architecture to manage
and monitor remote interactions that help in discovery of inconsistencies and wrong
operation. For example, the developers can have the opportunity to easily �nd the
place in the code for an intended communicative act.

2.6.4 Cooperating Service Providers

A distributed environment that spans several business domains may involve multiple
service providers that share functionality and depend on each others' services [79].
An aspect of interest for them in deploying autonomic support is the ability to share
common evolution policy or track parallel evolving components in a way to keep
the operation of their dependent systems in healthy conditions. The architecture
proposed in this thesis supports this kind of interoperability and policy distribution.

2.6.5 Manufacturers and suppliers

On a global scale, the deployment of autonomic support for IT systems helps organi-
zations, such as manufacturers and service suppliers, to adapt their systems faster to
the changing requirements of their customers, increase the security and availability
of the system. Besides IT-related bene�ts companies can achieve savings on system
support with automation of routines and optimize their human resource power.

54

Chapter 3

Related work

This chapter presents the state of the art in research relevant for the subject of this
work. The list of projects is separated in the following categories - projects directly
dedicated to autonomic self-management, projects related to automated component
management, research in software evolution, reliable systems research and related
techniques and methods in development of distributed component systems.

3.1 Autonomic Computing Research Projects

The projects presented in this section focus on development of architectures and tools
that enable autonomic self-management. They target directly the speci�c autonomic
assets self-con�guration, self-healing, self-defense, self-optimization and are incepted
with autonomic architectural style as a main approach for system design.

3.1.1 AMUSE - Autonomic Management of Ubiquitous Sys-
tems for e-Health

Group: Imperial College, London, University of Glasgow

Research goals: Investigation of models and architecture to facilitate e�cient us-
age of mobile devices and physiological sensors for the health industry. Speci�c area
of research is deployment of autonomic applications in ubiquitous e-health environ-
ments. Additional goals of the research include de�nition of architecture, interaction
and implementation of a self-managed cell (SMC) as a basic architectural pattern
for implementing self-management at both local and integrated system levels, peer-
to-peer coordination for dynamic composition with the help of SMCs, identi�cation
and implementation of protocols for interactions and investigation of techniques and
tools for management of small and and large scale networks and applications.

55

System description: The system is built on top of the concept of self-managed
cells where cells are combination of hardware and software elements that form an
administrative domain being able to function autonomously and are capable of self-
management. Interaction between cells is achieved with the help of exchanging
events over an event bus. The SMC includes management components that provide
contextual information and service discovery.

Interesting aspects: The SMC is not dependent on the underlying hardware and
in this way the operational details are transparent for the higher levels of manage-
ment and communication.

Related Publications: [38, 124]

3.1.2 AutoMate

Group: Applied Software Systems Laboratory (TASSL), Rutgers University, State
University of New Jersey

Research goals: Investigation of key technologies, including programming mod-
els, frameworks, and middle-ware services, to enable the development of autonomic
Grid applications that can address the challenges of complexity, dynamism, het-
erogeneity and uncertainty in Grid environments. Its overall goal is to develop
conceptual models and implementation architectures that can enable the develop-
ment and execution of such self-managing Grid applications. Speci�c issues that the
group is investigating is design, development and deployment of autonomic middle-
ware services that support policy and context driven execution and management
of autonomic applications. Other research e�ort includes dynamic composition of
autonomic applications for dynamic deployment and execution in run-time.

System description: The developed system integrates a component framework,
deductive engine, dynamic role-based access engine, a peer-to-peer messaging sub-
strate and a decentralized discovery service. These components govern the com-
munication and composition on the di�erent layers of the system - system layer,
component layer and application layer.

Related Publications: [1]

3.1.3 Autonomia

Group: High Performance Distributed Computing Laboratory (HPDC), Univer-
sity of Arizona

56

Research goals: Investigation of autonomic computing infrastructures. Main
goal of the project is to develop an environment with a complete set of tools to
specify the appropriate control and management schemes to maintain any quality
of service requirement or application functionality.

System description: The system is composed of several modules: The Appli-
cation Management Editor for speci�cation of control and management policies,
The Autonomic Middle-ware Services module for provision of common middle-ware
services and tools needed by application and systems to automate operation, The
Application Delegated Manager responsible for con�guration of application execu-
tion environment and a runtime requirement maintenance and a Monitoring Services
module for components and system resource monitoring. The main principle of op-
eration is template processing according to application component and resources
registered in a distributed repository.

Related Publications: [59, 60]

3.1.4 IBM Autonomic Toolkit

Group: IBM Almaden Research Center Research goals: research in architectures
for autonomic systems, development of toolkit for enabling autonomic management,
communication and interfacing, investigation of e�cient algorithms for event corre-
lation and problem determination in distributed environments.

System description: The ongoing development of the toolkit is directed in �rst
place towards scenarios for autonomic management, such as installation and de-
ployment. It provides several application programming interfaces for development
of autonomic managers, managed resources, communication protocols, policy engine
and a heterogeneous workload management solution that implement the guidelines
of autonomic computing design with a MAPE management cycle. A key component
of the framework is the Log and Trace analysis tool which enables log normalization
and event-correlation from di�erent sources, such as web servers, databases, appli-
cation servers, etc. Reasoning is facilitated by an integrated agent toolkit ABLE
(Agent-building and Learning Environment).

Interesting aspects: IBM coined the term �autonomic computing�

Related Publications: [37]

57

3.1.5 Organic Computing -AMUN (Autonomic Ubiquitous
Middle-ware)

Organic Computing (SPP1183) is a program funded by the German Research Foun-
dation.

Group: Embedded and Ubiquitous Computing Lab, University of Augsburg

Research Goals: Research goals: autonomic management in ubiquitous envi-
ronment with accent on self-con�guration, self-optimization and self-healing. The
belonging projects are investigating biologically-inspired approaches for IT system
management with accent on self-management capabilities and complexity manage-
ment. Other research topics include recon�gurability, emergence and self-organization.
The project �Autonomic Ubiquitous Middle-ware� investigates autonomic manage-
ment in ubiquitous environments.

System description: The developed middle-ware is based on peer-to-peer tech-
nology. For realization of self-management the middle-ware is extended by an au-
tonomic manager and interfaces to add monitoring capabilities. The manager itself
is responsible for the con�guration of a single node, where communication between
managed nodes happens by exchanging messages containing information about the
state of the monitored node. The manager is abstracted from actual control algo-
rithms that govern the decisions for recon�guration of the node.

Related Publications: [129, 130]

3.1.6 SARDES - Jade

Group: Institut National de Recherche en Informatique et Automatique (INRIA),
France

Research goals: Investigation of the construction of distributed software infras-
tructures (operating system and middle-ware) to support global computing. Global
computing is concerned with a projected environment in which processors will be
everywhere and will be interconnected by a diverse array of networks, from ad-hoc
pico networks to the global Internet.

System description: The system implements a middle-ware for management of
distributed software components. It uses the traditional control loop and man-
aged elements principles, but with the addition that it de�nes a common compo-
nent model for speci�cation of interfaces for di�erent aspects of management such

58

as con�guration and recon�guration. The architecture supports management of
distributed elements with layered and nested type of composition. For the di�er-
ent types of management aspects the framework uses di�erent classes of controllers
such as attribute controller, life-cycle controller, content-controller and bindings con-
troller. The architecture proposed in this work uses similar approach for abstraction
of components on di�erent levels of system organization.

Interesting aspects: The component model is described using ADL and addi-
tionally to the support for nested and layered managed components, it is able to
represent the composition of the autonomic administration software itself the same
way.

Related Publications: [13, 14, 24, 113]

3.1.7 PUSH - Policy-Based Update Management in Smart
Home

Group: Mobile and Distributed Systems Group, LMU Munich Research goals:
the project investigates the adaptive con�guration and autonomic bug-�xing in em-
bedded systems with focus on Smart Home scenarios.

System description: Device �rmware updates are scheduled by a dependency
manager and policy engine that takes in considerations the preferences of the device
users in a way to bring the system to a consistent state. Dependencies are modeled
as a non-cyclic graph and are traversed according to version compatibility tables.
The dependency manager detects con�icts in update phases and reschedules the
update accordingly.

Related Publications: [33]

3.2 Software Component Management Research

Research initiatives in the domains of system and software management, software
evolution and reliable computing accumulated valuable knowledge that can be di-
rectly applied in the development of approaches for autonomic system design. The
following sections make an overview of the existing projects from these domains for
their relevance to the subject of this work. The projects presented in this section
are related to software components and distributed system management. Important
and relevant to autonomic management aspect of this research is the automation of
component life-cycle and framework integration.

59

3.2.1 SOFA - Software Appliances

Group: Distributed Systems Research Group, Department of Software Engineer-
ing, Charsles University, Czech Republic

Research goals: to design and implement a platform for dynamically updatable
software components and integration with Common Request Broker Architecture
(CORBA) middle-ware

System description: the project de�nes a Component Description Language
(CDL) with the help of which components are de�ned and their description is stored
into a common repository. The connectors provide support for software systems
where all application components contain application logic only, while the connectors
implement the necessary interaction semantics and cover deployment dependent
details. The connectors solve the deployment anomaly problem.

Interesting aspects: The system provides a set of templates for connectors of
di�erent types, for example procedure calls, event delivery and streaming. An envi-
ronment for development of SOFA applications consists of set of nodes distributed
and bound to hosts in a network. The architecture allows update of the components
in runtime where updated parts of the components are associated to their versions.
The system de�nes control objects for the purpose of component management.

Related Publications: [66, 115]

3.2.2 IRISA �PARIS� - Adaptive Software Components

Group: Institut National de Recherche en Informatique et en Automatique (IN-
RIA), Institut National des Sciences Appliquees (INSA)

Research goals: Project PARIS aims at improving to the programming of large
scale parallel and distributed systems. The projects has several sub-projects dedi-
cated to research in di�erent software development domains, one of which is adaptive
components. The Adaptive Components project targets component run-time adap-
tation and optimization with accent on component deployment in Grid computing.

System description: The basic approach taken for implementation of the sys-
tem is very similar to the architectural guidelines for autonomic computing. Man-
agement of components is separated from the components themselves and by means
of event monitoring the management unit executes actions according to a prede�ned
policy.

60

Related Publications: [3, 34]

3.2.3 ADAPT - Middle-ware Technologies for Adaptive and
Composable Distributed Components

Group: cooperative work of several universities with coordinator Technical Uni-
versity of Madrid

Research Goals: to provide open-source middleware support for the creation of
adaptive and composable web services. Concrete subjects of research are develop-
ment of self-descriptive basic services, composite service de�nition and enactment
of business processes, adaptable both basic and complex services.

System description: The core principle of system operation is abstraction of
work-�ow and interfaces for composition of web services. The developed middle-ware
is capable to perform replication and dynamic implementation execution de�ned by
selective, optimization and information policies. The service composition character-
istics can be described by means of a service speci�cation language. Non-functional
compositional service properties govern the decisions of the work-�ow engine accord-
ing to the speci�ed policies.

Related Publications: [132, 133]

3.3 Research Projects on Software Evolution

The research projects in this section had as a goal to abstract a system of processes
and rules that govern the development of complex software systems. This �eld of
research is relevant for the topic of the thesis for giving a higher and common view
on the processes that are involved in software engineering and are accompanying
part of the system development.

3.3.1 FEAST Projects

Group: Department of Computing, Imperial College

Research Goals: Studying of presence in and impact of feedback on the global
software process of software evolution. Additional subjects of research are analysis
of metrics for software evolution and its dynamics in small and large systems

61

Method description: The project examines a set of metrics and behaviors that
govern the feedback loops in the process of software evolution in E-type systems
[75, 76]. Main target of the project was to explore the FEAST hypothesis: �As
complex feedback systems, E-Type software processes evolve strong system dynamics
and a tendency towards feedback based global stability�. The approach of analysis in-
cludes tracking of the metrics throughout the development of several large projects.
Among the investigated characteristics that in�uence system stability are system
growth and system dynamics. FEAST/1 concluded respective system growth and
dynamics models on base of which predictions can be made for how software manage-
ment in�uences system development. FEAST/2 extended the research to examine
the concluded laws of evolution with deep analysis by more evidences found in de-
velopment of large projects. The results of the FEAST projects show an side of
software development unexplored until that time with its own laws that have to be
taken into consideration when developing the system. The laws of software evolution
are valuable guide for planning software process with no regard to the type or the
size of the system. The relevance of this research to autonomic system management
is expressed in the Eighth Law of Software Evolution: �E-type evolution processes
are multi-level, multi-loop, multi-agent feedback systems�. It shows that solutions
based on feedback systems can be applied not only inside the system, but on the
level of software management and development processes.

Related Publications: [75, 76, 77, 78]

3.3.2 ESPRIT RENAISSANCE Project

Group: University of Lancaster and numerous companies as partners, project
funded by the European Union Technologies RTD program.

Research Goals: To develop a systematic method for system evolution and
re-engineering which is geared to the requirements of the commercial systems do-
main. The research involves development abstract model for software evolution and
investigates evolution strategies.

Method description: The developed abstract model consists of layer role cat-
egories: strategic, operational and service categories. There several view points for
studying of legacy systems: technical, economic, managerial views that �lter respec-
tively the di�erent sets of factors driving the evolution. While the abstract model
represent a static assignment of roles and views, the process model describes activi-
ties that involved individuals have to perform. The research dedicated to evolution
strategies de�nes the concrete methods for modi�cation of the system classi�ed in
three groups: continued maintenance, re-engineering, replacement.

62

Interesting aspects: the orchestration of roles, their assignment in the process
of system evolution and the evolution strategies identi�es the forces for concrete
development steps.

3.3.3 COSE - Controlling Software Evolution Group: Soft-
ware Evolution and Architecture Lab, University of
Zurich

Research goals: To investigate means to analyze and control the evolution of a
software system at various levels. Particularly interesting for the project are the
relations of architecture and evolution, hidden dependencies in system's evolution,
�ltering and visualization of software data, including source code, bug history and
release data.

Method description: The method is a combination of visual representation of
data collected and techniques of code inspection or reverse-engineering. The analysis
is separated in three aspects: Architectural Control, Change Dependency Control
and Evolution Visualization. Structural dependencies in systems are analyzed and
visualized in a way to demonstrate the in�uence and e�ect of code change in di�erent
parts of the system. The development of software architecture is tracked throughout
the development of the system in order to see the driving forces for its changes and
respectively the negative e�ect on maintainability. History reconstruction helps in
identifying the concrete reasons for architectural decaying.

Related Publications: [42, 97]

3.4 Research Projects on Reliable Systems Design

This section describes research projects in the �eld of reliable computing. Methods
and software architectures developed in these project in�uence design of autonomic
systems in aspect self-protection and service availability.

3.4.1 ROC, Recovery Oriented Computing

Group: Reliable Oriented Computing Group, Berkeley and Stanford Research
goals: system wide undo, integrated diagnostics support, survivability architecture

System description: Recovery Oriented Computing is a method of system
design where error is accepted as an inevitable occurring event. The system tries
to support discovery of errors and recovery of system services using mechanisms

63

like monitoring, redundancy and automated restart, undo. System wide undo is
achieved using an �undo proxy� and �rewindable storage� that wrap the application
service in order to track events and user actions. The user service remains virtually
unchanged. The proxy and the storage are managed by an �undo manager� that
tracks the system time-line log. The rewindable storage is a system layer that
allows roll-backing of system state to a prior point in time.

Interesting aspects: The system provides a model that is capable of de�ning
domains of undo without modi�cation of the user applications.

Related Publications: [17, 18, 96]

3.4.2 SABER - Survivability Architecture: Block, Evade, Re-
act

Group: Department of Computer Science and Electrical Engineering, Columbia
University

Research Goals: Development of software architecture for system self-protection
and service survivability under active attacks. Intrusion detection and reaction, DoS
attacks.

System description: The architecture integrates Secure Overlay Services com-
ponent, a set of intrusion detection systems, process migration, autonomic software
patching and event-based command and control organization. The autonomic soft-
ware patching system takes care of isolating patched and previously vulnerable soft-
ware elements in parallel with the operating system, tests it against the known issues
and deploys them into back into the environment.

Related Publications: [67, 71]

3.5 Common Approaches

This chapter reviews commonly used methods for interaction with and manage-
ment of distributed components. Understanding of these methods is essential for
developing a management architecture for heterogeneous component environment.

64

3.5.1 Architectures for run-time management

Modern component systems run on platforms and containers that provide manage-
ment interfaces for introspection of internal parameters. These interfaces can be
accessed either locally or remotely. Examples are the JMX management framework
and the .NET Common Language Runtime (CLR) [84] management interface. With
their help system analysis can be performed in runtime, on demand and indepen-
dently from the application logic of the deployed in the container applications. In
the process of testing of di�erent aspects of system performance and resource al-
location the frameworks and the runtime itself can be pro�led for later analysis
and optimization. Among metrics of interest for monitoring are memory allocation,
thread states, network tra�c and database access speed. The management back-
end of such platforms allow virtually full transparency of the system resources and
framework speci�c parameters. These facilities make the monitoring of component
system simpler and allow system observation without interference in with the in-
ternals of the framework [44]. The operations performed by a console connected
to the back-end may be setting and getting parameter values, remote or local exe-
cution of management procedures. The communication is bi-directional where the
communication from the back-end to the console happens by sending indications
or events for which the management console or client has been subscribed. Some
implementations of J2EE use the management framework JMX as a platform for
micro-kernel design. A speci�c representative of this approach is the JBOSS EJB
micro-kernel implementation.

3.5.2 Directory Services

When distributed component communicate with each other or with services provided
by their container they often need as a �rst step to locate component or service imple-
mentations. As a common practice for this purpose component frameworks provide
directory services [83, 89]. They are an important element in distributed compo-
nent design and management for their central role in deployment and distributed
access. Using a directory service components are able to announce their presence
to other components and the way to �nd them. When there is no need to access
the component any more it is unregistered from the directory. Implementations of
such services are the Java Naming and Directory Interface (JNDI) used in EJB and
programs communicating using Remote Method Invocation (RMI) [104]. OSGi has
its own implementation of service registry to support the blackboard-pattern for
service-oriented component interactions. Windows Common Object Model (COM)
component framework links dynamically communicating components that registered
themselves with the framework's registry.

65

3.5.3 Information Models

System management would be impossible if there was no common way for the man-
agement system to describe the managed elements, their relations, properties and
operations. This description is known as information model or information base
[62, 81]. The information model is an abstraction of elements' management proper-
ties from the concrete implementation of the interface for access to the properties.
Additionally, the model serves as a common vocabulary for the way a management
console or agent communicate regarding the existing types of managed elements.
Distributed Management Task Force (DMTF) de�nes as information model for their
architecture the Common Information Model (CIM) [81]. CIM is an object oriented
approach for describing of managed systems. CIM consists of a meta-model and a
set of prede�ned models that de�ne the relations between commonly used managed
elements, such as policy models, software and hardware elements, con�guration
and deployment. The Tele Management Forum (TMF) has de�ned an advanced
model for the Telecommunication Service domain - the Shared Information/Data
model(SID). SID provides the common language for communicating the concerns
of the four major groups of constituents represented by the four Views: Business,
System, Implementation and Deployment de�ned in the NGOSS Life-cycle [51]. The
model allows to create a bridge between the business and Information Technology
groups within an organization, providing de�nitions that are understandable by the
business, but are also rigorous enough to be used for software development. Both
DMTF CIM and TMF SID use the UML notation to express their models.

3.5.4 Management Agents

A common approach in system management is based on the client-server model with
a management console as client and management agents performing the server role.
The management consoles are applications that visualize monitored system param-
eters and send management requests. The agents are usually located on the system
under control and have access to its resources. They can perform the task of manage-
ment request translation if the monitored device has its own management interface.
This behavior is similar to a management adapter. Another purpose of management
agents can be aggregation of system parameter aggregation or management request
proxy operations. In the case of Simple Network Management Protocol (SNMP)
[61], for example, the management architecture utilizes this model with the help
of management daemons running in background and serving as an interface for the
management console. In JMX the approach is very similar. DMTF does not de�ne
clearly the role of an agent, instead access to system resources is done through an
operation manager that handles system resources with the help of speci�c adapters.

66

3.5.5 Connectors

Distributed components communicate with each other and with services provided
by their environment. A common approach to abstract this communication is to use
connectors [87]. They serve as medium and provide common interface for commu-
nication without the need of any speci�c information about the way communication
is achieved. For example a component may communicate with a database using a
common connector or driver Application Programming Interface (API) while the
underlying mechanism selects the appropriate communication protocol implemen-
tation. This adds �exibility and simplicity to distributed component architectures.
For example, in the case of a database connector, an application may be enabled
to operate with a set of Database Management System (DBMS) according to the
distribution available for the user. For example, in SOFA connectors are explicitly
used as a mean of component communication.

3.5.6 Component Descriptors

When deploying a component a framework has to be able to recognize it and extract
information about it in order to know how to deploy and con�gure it. component
descriptors [15] contain meta-data which describe component properties, such as in-
terface de�nitions, version, used packages, vendor information, dependencies. Com-
ponent meta-data de�nition is an important aspect of software management because
it gives a basis for deployment reasoning and dependency management. For example
the OSGi framework uses bundle meta-data to manage the version of services and
select appropriate packages to be used with a particular package. The J2EE heav-
ily uses component meta-data to map remote and home interfaces, data sources,
con�guration and security realms. COM uses component version meta-data to link
dynamically server parts and clients. A necessary requirement for properly function-
ing management is a well de�ned meta-data that supports the desired management
functionality.

3.5.7 Component Repositories

A widely accepted approach for con�guration and management of component-based
systems is to use a common component repository [74] where component information
is kept and optionally components are stored for the purpose of downloading prior
to their deployment. The repositories keep meta-data such as component versions,
formal names of components, vendor information and dependency data. Depen-
dency data is used to achieve consistent state of the system where components are
deployed. Usually repositories contain complete history of a system's evolution by
keeping multiple versions of evolving components throughout the lifetime of the sys-
tem. When a deployment tool needs to install a component, the dependency chains
de�nes a set of components that need to be deployed or undeployed in appropriate

67

sequence before the concrete component. Repository meta-data may contain spe-
cial information about branches that represent milestones in system development
as whole and thus simpli�es dependency management and decreases the chance of
wrongly speci�ed dependencies which is a possible case when the number of inter-
related packages is large. Examples for component repository are the OSGi Bundle
Repository (OBR) [19] and the existing Linux package repositories repositories sup-
porting variety of package management formats [12].

3.5.8 Aspect-Oriented Component Engineering

Complex software requires modularization and component based programming solves
partially this problem by functionally separating the program into units called com-
ponents. However, in a relatively complex systems components duplicate part of
their operation code for access to framework facilities and services. The integration
of this communication remains granulated and di�cult to maintain when imple-
mentation of either components or frameworks changes. Aspect-oriented design [53]
addresses this problem by providing encapsulation of crosscutting parts between
software elements and component frameworks. This encapsulation is called aspect.
Examples for aspects are logging, security, persistence and con�guration. It is impor-
tant to note that component and aspect design are complementing each other and
not con�icting. Aspects �ll the gap of common component facilities by modularizing
it in aspects, while components are functionally separated by business logic. A rel-
atively new trend in software development is aspect-oriented component engineering
that has the goal to provide methods and frameworks that facilitate aspect-oriented
approaches in component architectures. An example for implementation of compo-
nent framework using aspect-oriented approach is the JBOSS J2EE implementation.
The approach of aspect component support is an interesting opportunity for �exible
run-time component management and is relevant to the subject of this thesis as a
possible way of integration with the proposed management architecture.

3.5.9 Web Services

Communication between distributed components and frameworks often occurs across
the borders of business domains. To support the interoperability in communication
between software systems a bundle of standards known as web services was devel-
oped to utilize the established web standards and provide comfortable communica-
tion over the Internet. Web services support several aspects of system design most
notably Remote Procedure Call (RPC) and Service Oriented Architectures (SOA).
There is a set of speci�cations that forms the core of the web services standards. The
communication protocol Simple Object Access Protocol (SOAP) de�nes the standard
way of message transport between communicating peers. A Web Service Description
Language (WSDL) is designed for speci�cation of the web service bindings to spe-
ci�c protocols. The Universal Description Discovery and Integration (UDDI) [35]

68

speci�cation de�nes a standard way of registering and look-up of services in pub-
lic or private service registries. Additionally, the WS-Security speci�cation de�nes
the usage of the Extensible Mark-up Language (XML) [126, 138] for Encryption in
SOAP messages for secure peer communication. The web service approach for ser-
vice access gains popularity in modern business applications and is considered to be a
milestone of the e�orts for global inter-operable communication. Modern component
frameworks are able to provide access to component functionality through interfaces
exported as web services. Systems implementing this architectural approach usually
exhibit multiple layers of functional separation which requires further management
e�ort, including demand for self-management [50]. The open nature of web-service-
enabled systems provide new possibilities for communication, but at the same time
introduce new challenges and requirements for component management. Among
the issues concerning management of web service enabled components is SOAP and
WSDL evolution and incomplete or improper implementations of the standards.

3.5.10 Log Adapters and Event Correlation

An old but simple and e�cient practice for access and monitoring of system events
is by creating logs of component activity. Logs are read and analyzed periodically
or in the case of problem identi�cation. The format of the log records and the log
information in form of messages is of critical importance for debugging and problem
handling. In distributed and heterogeneous environment correlation of events logged
in di�erent formats can be a complicated task. This is achieved with the help of
log adapters the purpose of which is to monitor a target log base and transform its
log format to a normalized system form for the management. Such framework that
was designed to solve the problem of log normalization across distributed systems is
the Common Base Event (CBE) [8] speci�cation. It provides means for description
of event �ow, communicating components and levels of severity. Once there is a
normalized log base with the help of the references to communicating components
and the timestamps of the records, the sequence of calls leading the problem occur-
rence can be traversed and the problematic component located [30]. Sometimes log
analysis is the only available method for system inspection and has to be taken into
consideration when managing heterogeneous environments.

3.5.11 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard devel-
oped by OMG with the similar to web services purpose to facilitate interoperability
in communication between distributed applications. The communication protocol
used for transport of calls and parameters for the purpose of RPC is the Internet
Inter-ORB Protocol (IIOP) [65]. It uses compact binary message format opposed
to SOAP which is based on XML. Similarly, objects access functionality of remote

69

or local objects via interfaces which are de�ned by Interface Description Language
(IDL). IDL serves as a source input for automated generation of stubs and skele-
tons for di�erent programing languages. Objects use facilities of Object Request
Broker (ORB) which automates the routines for marshaling and un-marshaling of
calls and parameters to other objects. For the purpose of locating objects CORBA
speci�es naming services which provide yellow-pages functionality for object loca-
tion. CORBA is a well developed middle-ware speci�cation with a track of stable
implementations, heavily used in critical applications for transactional purposes.
Newer versions of the speci�cation de�ne a component model which describes com-
ponents as well as interfaces. Similarly to IDL the Component Description Language
(CDL) is used for component interfaces description. The J2EE speci�cation de�nes
CORBA's IIOP as standard transport protocol for RPC between distributed EJBs.
Programing of standard Java applications that need to connect to remote CORBA
applications are supported by an ORB implementation and IDL compiler integrated
in the Standard Edition of Java2 (J2SE).

Because of its mature speci�cation and lightweight communication protocol CORBA
is used in this work as an interoperability framework for integration of management
interfaces.

3.5.12 Policy-Based Management

Automation in system management in general is dependent on concrete decisions
about the state of system at a given point in time. Changes in the state of the
system trigger management loops with decisions and actions according to a prede-
�ned behavior called management policy. Policy-based Management [88] refers to
an architectural style of automated system management with a certain accent on
decision making speci�ed by the system administrator in a way to keep the sys-
tem in certain conditions. A policy may de�ne a large variety of conditions and
actions for di�erent situations or states for concrete part of the system. This pol-
icy has to represent a valid set of constraints, corresponing to the characteristics
of the managed system [68]. An example for a simple constraint-based policy is
the speci�cation of minimal and maximal values of system parameters and corre-
sponding actions for the cases when these values exceed the speci�ed limitations.
Policy languages are developed to make the de�nition of concrete policy �exible
and easier for system administrators. A common approach for de�nition of policies
is to use Event-Condition-Action (ECA) rules which consist of three elements: a
concrete event emitted by the managed environment, a condition that evaluates the
event and relates it to other parameters, and an action that is �red depending on
the condition output. This is a simple but very �exible approach of policy de�-
nition that can be implemented with a number of reasoning approaches including
rule engines with forward chaining algorithms and ontology-based reasoners. The
presented architecture includes a reasoning module that implements a simple ECA
policy.

70

3.5.13 Pro-active Monitoring and Management

For the purpose of on-time problem discovery and failure prediction the manage-
ment part of system has to be pro-active. Pro-active design involves autonomous
management units that independently from the passive event-oriented management
inspect the state of the system and use event history in order to foresee possible
e�ect on system stability. SABER [2] and ROC apply such design for prediction of
intrusion detection or error prediction respectively. The proposed architecture fore-
sees similar functionality by active monitoring of external for system access point
interfaces.

3.6 Summary

The techniques and projects described in this chapter exhibit di�erent aspects of
autonomic management: distributed deployment, automated monitoring, policy-
based behavior. Certainly, each of them contributes to the common aim of reducing
management e�ort by combining existing software and hardware management con-
cepts and applying reasoning methods from the �eld of Arti�cial Intelligence ().
However, in the current state of the art in this �eld there is no signi�cant contribu-
tion which investigates the close relationship between existing and veri�ed abstract
organizational management models and concrete software architectures to address
heterogeneity and software evolution.

This dissertation outlines an approach which �lls this gap by exploiting basic
organizational and communication principles adapted from an existing and already
investigated management model (The Viable Systems Model). The design of the
proposed architecture and the communication mechanics re�ect these principles,
thus contributing to a new way of component relationship mapping and de�nition
of requirements for communication in evolving distributed systems.

71

Chapter 4

Overview of the Proposed Solution

This chapter gives an overview of the principles and the ideas which the proposed
architecture includes in order to address the challenges in autonomic management
of component-based software systems. An organizational meta-model represents the
architectural constraints for encapsulation of software components and requirements
for feedback loops implemented by autonomic management support. The meta-model
allows for formal modeling of viable organization and communication management
on the levels of component deployment and runtime operations. The autonomic man-
agement architecture consists of modules that facilitate monitoring component states,
operation manager that allows inspection of distributed dependencies. The architec-
ture is modeled following the guidelines of the meta-model and provides interfaces for
control according to its requirements. A middle-ware establishes managed commu-
nication channels between components and frameworks to support the architectural
requirements.

4.1 Feedback Control Loops in Autonomic Compo-

nent Management

There are three feedback control loops that a software management system may im-
plement to support autonomic behavior. The �rst loop implements runtime control
of components that are already deployed and functioning. In this loop managers are
monitoring their respective managed elements and react according to pre-de�ned
management policy to support control of system functional and operational health
and assist with on-time problem discovery, dynamic re-con�guration and intelligent
runtime tuning for optimization purposes.

The second loop is the deployment feedback loop operating at the moment when
the component is introduced to the system and becomes a functional part of it. A
control loop examines the component meta-data and information it can acquire in
order to resolve dependencies and adapt the rest of the system before the actual

72

!"#"$%&'"()
*+,-"

!"&$%.'"()
*+,-"

/0()1'"
*+,-"

!"#"$%&"2 34'1(1-)2,)%2 5-"2

2"&%2)-

2"&%2)-

'%(1)%2-
6%(71802"-

30)%(%'16
9,(,8"'"()

0-"-:)"-)-4"&$%.-'%4"$-:4"#"$%&-

'%(1)%2-
4";08-

'%(1)%2-
,(,$.<"- '%(1)%2-

%&)1'1<"-
&2%)"6)-

Figure 4.1: Autonomic Management Feedback Loops supporting the three phases of

component life-cycle

functionality to become available in the system. This loop is important for depen-
dency management and adjustment of communication channels to support the �ow
of data between components.

With the third feedback loop an autonomic system may support components in
their development phase with relevant information about the runtime, con�icts and
noti�cation for possible problems in the overall system health.

Figure 4.1 illustrates the feedback loops operated by participating parties in com-
ponent life-cycle phases of development, deployment and runtime operation. The
development phase is in�uenced by the actions of developers, the deployment is
governed by the system administrator while in the runtime phase users are inter-
acting with the functionality of the component and report problems either to the
administrative body or the development team. The autonomic management sys-
tem supports the three phases of a software component and helps directly with the
management facilities in debugging in development phase, dependency analysis in
deployment phase and with optimization and security in the runtime phase. The
picture does not illustrate details in the organization of the management system, it
focuses only on its purpose of control and analysis support.

The proposed meta-model for component encapsulation and management facil-
itates autonomic support for the three phases by taking into account the role of

73

the participators in component life-cycle and organizing the management levels ac-
cordingly. Every management level is responsible for particular sub-system with
particular type of management set of communication channels and management
policy.

4.2 Component Communication Management

Software components communicate using interfaces, events or messages and depend-
ing on the purpose of communication it may be with the management framework,
with other components or with traditional (non-component) software entities, such
as external functions and interfaces of classes outside the components. Figure 4.2
illustrates these aspect of communication. Communication with the framework is
usually performed by the components in the case where they need resources or in-
formation about certain states of the system. Communication between components
happens on two levels: semantic (functional) and sequential (executive). Semantic
communication is related to the way client interacts functionally with the component
on the level of their functional interfaces. The executive communication is usually
handled with the help of the framework and is related to the concrete steps with
which the actual information and variety transfer is achieved between the compo-
nents. This includes marshaling/unmarshaling of data-types, data transfer protocol
implementation and type mapping.

To achieve semantic communication the successful executive operation has to be
present. Another important aspect of component communication is that the compo-
nent itself is dependent on the underlying framework and essential resources, such
as network and database access, are utilized through communication with the upper
management levels. The vertical arrows coming out of a component (a) represent
queries for resource or communication adapter to achieve the actual communication
with other components or the component framework itself (b). That is why an es-
sential point of heterogeneous management is the understanding of the hierarchical
grouping and encapsulation of elements.

The approach to component communication management proposed in this dis-
sertation introduces the notion of Managed Communication Channel (MCC). MCC
represents both semantic and executive communication pathway that imply man-
agement unit to ensure proper communication between components the level on
both levels. A MCC is an abstract representation of a medium for variety transfer,
similar to the general notion of communication channel from the �eld of Information
Theory, but simpli�ed to accommodate management and analysis of communication
between components which are based on management strategy.

Managed communication channels model communication dependencies between
components and components and containers. The notion of component container has
the broader meaning of a software entity that has degree of control over operation
of elements inside it. For example, the Java Virtual Machine (JVM) is a container

74

���������	���

�	���	��

�������	�

�������	
���������	���

�	���	��

�������	�

���������	����
�	�

	����	������

���	
����	�	��

���������	���

�	������
���

(a)

�����	�����

���	
��

��	�	��

�������	�

����
���

��	�����

(b)

Figure 4.2: Component Communication

75

��

��������	�

�

��������	�

��
�

��

��	���	���

��	���	���

�

Figure 4.3: Components of Managed Communication Channel:

M - Channel Manager, T - Transducer, P - Source Communication Port, I - Desti-
nation Communication Interface

handling the operation Java programs hosted in it. A J2EE Application server is
a component container that manages Enterprise Java Beans (EJB). On their turn,
components that reside inside containers may also serve the purpose of management
of other components. For example the J2EE application server is a component man-
aged by the JVM, but at the same time container for EJB components. The location
of a managed element in the hierarchy of containment determines the type of depen-
dencies it may have, thus the type of communication data bound to the communi-
cation channel. There are two types of communication within a component system
according to the hierarchy of component containment: component-component and
container-component communication. In the deployment phase this kind of separa-
tion allows for monitoring of dependencies on the level of component deployment
and in run-time component communication. The abstraction of MCC provides a
�exible way of static and dynamic dependency inspection with the option for per-
channel autonomous distributed management. Figure 4.3 shows the dependencies
of elements that form a MCC.

A manager is responsible for the activation and setting up the delegates inside the
channel that connects a components that demands communication with a component
that provides communication interface - remote or local. The actions of the manager
are determined by the variety of target and source interfaces in a way to satisfy
the law of requisite variety. The actual transformation of variety is handled by a
transducing unit, which may be interpreted with terms more commonly known in
software engineering as adapter or bridge.

76

4.2.1 Meta-Model For Description of Management Organiza-
tion

Another aspect of modeling component semantics is the role they have in the sys-
tem containment and control hierarchy. The proposed organizational meta-model
enables modeling of systems with characteristics like self-reference and recurring
nested management and utilizes the concept of MCC.

The concrete management solution is able to describe its own architecture, thus
make analysis of its own components and discover inconsistencies or communication
di�culties to protect the system from management faults.

A key element in using the meta-model is the understanding of the two aspects
of variety and knowledge management adaptation.

The �rst one is the coupling of management entities with other elements to form
feedback control loops. Every management unit is assigned a responsibility role that
corresponds to a level of the VSM model and is coupled to a managed element using
managed communication channels.

The second aspect of adaptation is the mapping of VSM 's principles, axioms
and requirements to a management policy which represents the constraints de�ning
�healthy� communication inside the management system.

The meta-model can be used to model management architectures and at the
same time serve as augmenting meta-data for existing component-based systems.

4.2.2 Middle-ware for component communication manage-
ment

The developed middle-ware for component communication management assists in
setting up transparently communication channels and handles the provision of man-
agement information from and to other components of the management system. A
component may need little or no change in its implementation code in order to be
able to utilize the channel communication framework. The services that the middle-
ware provides are made available through an interface for registration of component
communication requests, adapter capabilities and available component services and
remote interfaces.

The meta-model and the middle-ware for component communication manage-
ment are the base on top of which managed applications can be built.

A management adaptation layer (Figure 4.4) provides a set of helper and base
classes that can be sub-classed and re-used to facilitate fast adoption of the communi-
cation functionality. Such classes include activator classes, aspects and proxy classes
that provide transparent registration of components and activation of the channel
management middle-ware from components on the applications level. These classes
include monitoring and management elements which serve respectively as sensors
and e�ectors for the VSM Manager.

77

���������	���
�������	
��������

�� ��

��

�����

������

�����

����

�������	

�����

�����

������

�����

���	

������

�����

�������

�������	

�����

���	�

� ����

������!
����	���

!

!!

!

!
!

"

""

"

�	�#����

$��
%�����
������

� ����
�������	
���	��

�������

&��	��

	�
!

"

�������	
����	�	���
'���

��	������
�������	
���	�

�(����

)�	�(��

�������

�����	�

Figure 4.4: Autonomic Management Capabilities.

They are integrated as top-level elements on top of the cybernetically viable
software architecture. A management adaptation layer provides management-ready

abstract classes on basis of which autonomic components can be produced.

78

Additionally every component framework can provide management information
with the help of a set of generic sensors and e�ectors implemented as native com-
ponents for the platform. The speci�c choice of sensor integration depends on deci-
sions related to the degree of coupling with the management system. Sub-classing
base components implies that software development is in its initial phase. In-direct
monitoring by generic sensor components is useful when applications do not allow
additional modi�cations or any change in their design.

4.3 E�ects on Autonomic Component Management

Challenges

The proposed architecture, communication management middle-ware and the orga-
nizational meta-model address the challenges of component management described
in Section 1.2.

4.3.1 Overhead in component deployment management

The problem of deployment management overhead is addressed by the management
architecture which is designed to �lter the reasons leading to those problems.

The architecture allows integration of deployment and communication models of
various component systems within a single common model of interdependency and
containment. The integration of additional models does not require explicit usage of
the common management scheme as basis for development, rather they are indirectly
associated to the meta-model and are modeled separately . This approach allows for
technical separation and independent existence of the components but still relates
them to the common domain of management using the same dependency model.

The communication middle-ware addresses the problem of intra-model variety
by its capability to manage its own communication �ow with the help of the com-
munication management middle-ware. In this way a management system is able to
monitor its own assets and discover inconsistencies that may lead to wrong operation
or undesired in�uence on the system under control.

4.3.2 Management granularity

The problem of management granularity is addressed by the Communication Man-
agement Middle-ware which provides a common interface for monitoring of and
access to management information on di�erent levels of containment and distribu-
tion.

The middle-ware is capable to operate standards based and proprietary manage-
ment interfaces by means of a standardized interfaces for integration of management
adapters.

79

4.3.3 Parallel component evolution

The proposed architecture and communication middle-ware address the issues of
parallel communication evolution and lack of coordination in software development
by providing opportunity for multiple deployment of components and dynamic in-
terface binding.

The possibility to deploy multiple versions of the same component and access
their interfaces selectively provides the opportunity to test new or modi�ed (opti-
mized) component functionality inside the production environment and gradually
extend the area of component's activity. Old component versions can be kept to
provide stable functionality until the new version of the component full satis�es the
tests or the requirements for healthy system operation. This approach indirectly
helps overcoming of di�culties related to lack of coordination in development.

4.3.4 Deep component dependencies

The problem of deep component dependencies in a distributed environment is ad-
dressed by both the communication management middle-ware and the meta-model.

The meta-model is able to represent existing dependencies between components
residing in separated containers as channels and associate them to concrete corre-
sponding elements of the communication infrastructure supporting the distributed
communication. Elements, such as communication adapters, connectors and inter-
face resolving services have associated channel meta-data handled by the communi-
cation management middle-ware. Because the requirements veri�cation is performed
on the abstract level of channel, there is virtually no di�erence between local and re-
mote communication dependencies. The variety of managed channels is determined
by the observable set of communicating elements and the available meta-data for
both components and container services.

4.3.5 Management complexity overhead

To address the problem of management complexity overhead, the architecture ad-
vises integration of management sensors and e�ectors as �rst-class manageable com-
ponents deployed in the managed environment.

The phases of monitoring and control are separated logically from the operation
of the managed element where the monitoring is achieved by either passively receiv-
ing noti�cation by the sensors, actively probing the state without interrupting them,
or using interception with blocking in the case of synchronized operations, such as
channel activation or component deployment.

Component state synchronization is achieved by monitoring events using inter-
ception by either implicit wrapping of communication interfaces, or using aspect-
oriented approach for interception of communication requests. The communication

80

is blocked until actions from the management systems are undertaken, for example
re-con�guration or channel initialization. This approach may involve minor changes
to the way component communicates but rather small to a�ect seriously its work-
�ow.

4.4 E�ects on Participating and Interested Parties

The proposed solution for autonomic management has e�ects on participating and
interested parties operating in a managed by the proposed system environment.

As a consequence from the transparent communication management, the man-
agement approach a�ects the overall system availability throughout the process of
system update and supports auto-con�guration of application communication mech-
anisms on the user side. The approach may be applied for automated con�guration
of application dependencies without user intervention.

The architecture a�ects the experience of the administrators by reducing the
overhead of management, especially in deployment and health monitoring, by using
the common management model. The administrators will eventually tune only the
parameters related to the strategy of component compatibility and communication
settings. The rest of the management, such as adjusting concrete dependencies and
selection of appropriate interfaces is automated by the system. Additionally the
system is able to produce concrete problem reports to simplify the localization of
problems relative to the role of the system administrator.

The system facilitates communication troubleshooting in the process of devel-
opment. Software component developers are helped with reduced time to problem
localization and discovery of communication inconsistencies related to initiation of
communication, broken interfaces or network problems. The process of problem dis-
covery can be escalated on the level of integrated development environment (IDE) by
plugging monitoring functionality in the IDE itself to produce meaningful debugging
messages.

Cooperating service providers will bene�t from the dynamic communication
management by allowing them to develop new versions of services independently
from the consumers, deploy them separately and discover potential dependency
problems in service composition.

The system management abilities for communication management provides ad-
vantage for manufacturers and suppliers for fast technology adoption and require-
ments satisfaction by extending of system functionality while the system retains
reliable service consumption and provision.

81

4.5 Applying the architecture in Real World sce-

narios

To prove the usefulness of the approach, the architecture, the meta-model and the
communication management middle-ware are applied to build a management system
for two real world scenarios in separated domains of operation - Smart Home and
Product Development Support Systems.

4.5.1 Smart Home

A typical Smart Home scenario involves at least three component technologies with
interdependent components interacting in local and remote network environment:
Service Gateway as a platform for integration of device communication and service
access; Service Back-end for third party service integration, authentication and ac-
counting, User Interface Control Software for user interaction and control remote
and Third Party Service Provision Software as a third party service access point.
The concrete scenario depicts OSGi as component technology on the service gate-
way, EJB on the back-end, .NET runtime on the user control device and SOAP as
communication protocol for third party service access.

Architecture Elements: The management architecture de�nes sensors and ef-
fectors for the OSGi platform as �rst-class OSGi Bundles. In deployment phase
management information is extracted with the help of OSGi-JMX adapter, which
is also deployed as a bundle. EJB monitoring and management occurs through the
integrated JMX architecture. On the .NET platform communication sensors are in
the form of web service interface resolver wrappers.

Communication Management: Runtime channel initiation for component-to-
component communication occurs with the help of service resolver wrapper, the
purpose of which is to provide correct service implementation by using channel man-
agement middle-ware. The sensor bundle monitors deployment of OSGi bundles on
the gateway and resolves the possible communication channels across the network
with the Back-end server and the service provision. EJB and .NET communica-
tion channel establishment on the back-end, the user control device and the service
provider is achieved with a common interface resolver wrapper communicating with
the channel management middle-ware.

Meta-model bindings: The architecture is mapped on two levels of recursion.
The OSGi Framework deployed on the gateway, the EJB server on the back-end-
server and the .NET Framework on the remote control device are mapped to level
�System 1� as containers. The channel management framework itself is mapped on

82

 Mob i le

U s e r I n t e r f a c e

 D e s k t o p

U s e r I n t e r f a c e

S e r v i c e G a t e w a y

S o l u t i o n B a c k - e n d

T h i r d - p a r t y s e r v i c e

 p rov ide rs

Figure 4.5: Elements of Smart Home environment.

User interface devices, service gateway are deployed in the home of the user running
OSGi framework, solution back-end based on EJB and third-party service providers
accessed remotely using Web Services or other RPC approach. Management of
communication in such environment is critical for the quality of provided services,
as well as for the end-user experience.

83

������

���	
�

�������������

��������

������

�����

���������������

������

��
�������������	

� !��

������

!"#�"������

��

��

 ��

 ��

 ������� ������� �������
������

������

������

������

������

������

������

������

�$����

�"���������

"�		
������

"������

"����� "�����

"�����

Figure 4.6: Communication management.

Channel management middle-ware handling the act of communication. Sensor
components deliver management information for channel establishment. Concrete

channels are managed by a channel manager. The �gure notes a sample call
interface to illustrate dependency on interface communication.

84

the level of �System 3� on the same level of recursion, while the bundles, beans and
assemblies are mapped to management levels �System 1� as operation management
elements on the next management level of recursion. The elements responsible for
execution of EJB remote interfaces from the gateway, the web service proxies on the
remote control .NET platform and the EJB back-end are mapped on the level of
operation.

4.5.2 Product Development Support Systems

Product development support systems often involve a large variety of software tech-
nologies distributed across the environment serving the process of product develop-
ment in its di�erent phases - speci�cation, design, prototyping and production. The
speci�c scenario used as a demonstration of the proposed architecture references
developed approach for integration of these four aspects with technologies for imple-
mentation of rich client platforms (RCP), process knowledge-base back-end (KB),
and knowledge-communication (KN) frameworks in RPD environment. The rich
client platform is a base on top of which design and document base applications are
built. A clear representative of such framework is the Eclipse Platform. Its com-
ponent design, based entirely on the OSGi component model determines the ability
to extend the variety of the tools and provide fast integration of demanded func-
tionality. The knowledge-base back-end provides services for knowledge-acquisition
and integration and is implemented using an Active Semantic Network meta-model
based on the EJB technology. The knowledge communication framework serves as
middle-ware for automated retrieval from the knowledge-base, its aggregation and
and coordination across the members of a design team according to the speci�ed
process of development or prototyping. It has been implemented with the help of
a multi-agent framework, internally developed at IRIS [118] in the frame of Project
SFB 374.

Architecture Elements: Similarly to the setup of the scenario in 4.5.1 the RCP
integrate sensors in the form of �rst-class components residing inside the platform,
while the EJB knowledge-base is managed over its JMX layer. Both platforms are
dependent on the multi-agent system which leverages multicast architecture, thus
allowing monitoring of messages of the communication between agents internal for
the system. For this purpose a special agent connected to the same multicast group
monitors the events between the elements. Sensors for provision of management
information related to the external for the Multi-Agent System (MAS) components
is tracked using agent client wrapper.

Communication Management: As in 4.5.1 the communication management
middle-ware handles establishment and control of communication activities of the
RCP components, the agents and the knowledge-base using the sensors and e�ectors

85

M u l t i - A g e n t S y s t e m

 R i c h - C l i e n t
A p p l i c a t i o n
 (m o d u l a r)

 K n o w l e d g e B a s e
A c t i v e S e m a n t i c N e t w o r k
 (EJB)

 R i c h - C l i e n t
A p p l i c a t i o n
(m o d u l a r)

D i r e c t l y E n t e r D a t a

P u s h D a t a

S h a r e K n o w l e d g e
t h r o u g h t h e w o r k i n g
e n v i r o n m e n t

Figure 4.7: Architecture for Distributed Product Development with multi-user collabo-

ration.

Multi-agent framework serves as communication middle-ware between the designers
and between the designers and the knowledge-base. The knowledge-base can be
accessed directly for input of information.

86

������

���		��

���������

�����������������

������

������

������������������

��� ��

!��"������#����

���������$����%&��

������

&�'��������

�������� ���� ����

%������� %������� %�������
������

������

������

������

������

������

������

������

������

�����������

�������"���

�������

������ ������

������

Figure 4.8: Communication management of a heterogeneous product development system

with the help of channel management framework.

Sensors are �rst-class components delivering communication meta-data to the
middle-ware for evaluation by a channel manager.

in the form of service invocation wrappers (OSGi), remote procedure call invocation
proxies (EJB) and agent client wrappers (MAS).

Meta-model bindings: Bindings are very similar to those from 4.5.1. The RCP
platform, the knowledge-base and the master agent from the MAS are associated
with System 1, the management middle-ware with System 3, while the hosted com-
ponents and the non-master agents belong to the next level of recursion and are
associated with System 3. System 1 is represented by the service resolver, agent
client and the remote interface invoker wrappers.

4.6 Prototype

To support the evidence of working management architecture for scenarios described
in Section 4.5 A prototype was developed which implements the proposed meta-

87

��������	
�

��������

������������

	
�����������

��������������

�����������

������

������

�������������

������� �������

� �����

 ������������

��������!"#

� ����������������

�����������

#����$����%��������

�#���&�#����$���

�#����

�������

��"#

����

!��'���

��"#

	
�

!��'���

�'���������������

&���������������������� �����

�������

����! ����!

����!%##�" ����!%##�"

&����

�#����'�������

�#���&

Figure 4.9: Implementation of the channel management middle-ware.

In this con�guration an OSGi bundle and an EJB are communicating via communi-
cation channel of type Interface or Messages. The channel management middle-ware
is monitoring communicative acts of both elements through integrated �rst-class sen-
sor components. An Operation Manager handles model semantics and instantiation
of management instances and creates mappings stored in Repository.

model, architecture and communication management middleware.

The objective was to develop a standards-based and platform-independent ap-
proach to IT assets modeling, monitoring and handling of management information
in distributed environment. For this purpose CORBA was selected as a communi-
cation layer and WBEM [81] as management architecture with CIM as a modeling
base. Figure 4.7 illustrates the concrete relations between the prototype elements
below.

Meta-model: The developed meta-model is imported as a CIM extension-schema
into the responsible for management CIM operation manager (CIM-OM) along with
schema for the managed component frameworks, in the concrete case OSGi and
EJB. The models are then mapped onto concrete management adapters that provide
access to the managed instances - such as EJB Server, OSGi Framework and Bundles.

88

Management CMPI Providers: The role of management adapters in a WBEM
management architecture is to extract necessary information from the environment
and provide it to the CIM-OM within the constraints of the existing CIM model.
For example, in the case of OSGi, the adapter creates CIM instances and initializes
its property model with values corresponding to the information delivered from the
OSGi Framework and the deployed bundles. Another task of the adapter is to
create persistent associations with the meta-model. The associations are needed to
reference the belonging of a component to a concrete element from the meta-model.
Association can be traversed in both directions to express group relation or to serve
as re�ection path respectively. An adapter is needed for every managed component
framework, however the access to the communication is uni�ed by the CORBA
communication layer.

Channel Management Middle-ware: The channel management middle-ware
is a component delivering the essential framework interfaces for communication be-
tween sensors and VSM-adapted channel expertise. It is developed in Java with ex-
ported remote interfaces available through CORBA. This allowed platform-independent
channel management with information delivered from applications programmed in
languages supported by CORBA - Java, C++, Python, Perl, etc.

Management Expertise API: Evaluation of concrete situations of communi-
cation, component integration and management occurs in a component that im-
plements a management strategy. The developed Expertise API provides a simple
interface that allows integration of modules providing management expertise to pro-
vide �exibility in policy de�nition and distribution.

JMX-CORBA Adapter: JMX information is accessed traditionally through
Java-speci�c interfaces, although the lower communication layer may involve the
protocol used by CORBA - IIOP. To address this issue, a communication adapter
has been developed which translates JMX interfaces to CORBA interfaces accessible
through a remote CORBA Client. This enables a single interface for extraction of
management information from both OSGi and EJB containers.

Re-used components: The work on the prototype has been supported by three
components licensed with open source licenses that were needed to complete it.

One of them is the OSGi JMX- Agent developed within a project funded by
Telefonica. It was needed for exporting internal OSGi framework functionality and
interfaces as JMX manageable instances.

The second re-used component is the CIM-OM itself, an open source, enterprise-
grade solution, successfully deployed in large IT environments. The third component
is a CIM-Browser allowing to visualize and manipulate information in the CIM-OM.

89

Self-Management: The prototype itself implements a management architecture
according to the adapted requirements of the VSM. It uses the meta-model to de-
scribe its own components and enforce management monitoring upon changes in
the system the same way components are managed. In this way the management
system is able to discover inconsistencies in its own components and issue a problem
report, alarm and react by disabling its e�ective operations to prevent potential
negative consequences from fault in management. The e�ector-components that are
deployed as components in the managed component frameworks are mapped on level
�Operation�, the channel management middle-ware is related to �System 1� while the
management expertise module (API) is on level �System 3�. The corresponding chan-
nels connecting the elements - the CORBA interfacing, CMPI adapters and JMX
adapter are monitored by the channel management middle-ware without interfering
operations regarding channel adaptation. Instead, the middle-ware in this case only
responds with either alarm, noti�cation, or stop its own operation as a prevention
measure.

90

Chapter 5

The Architecture for Autonomic

Management of Distributed Software

Components

This chapter describes the cybernetically viable architecture for autonomic manage-
ment of heterogeneous component-based software systems. It can be used to add
autonomic management support for systems composed of a variety of components
deployed in a number of di�erent component containers.

The viability aspect (survival in changing environment) of the architecture is
achieved by adaptation of the Viable System Model - a cybernetic model for system
organization, variety and knowledge communication designed to solve complexity in
management of large-scale systems involving knowledge propagation and dynamic
communication. A meta-model de�nes the way the system percieves managed data
and its own organization and communication �ow, thus remaining self-descriptive
and self-monitoring. It can be used for the implementation of management instru-
mentation for autonomic computing, and applications that remain viable in changing
IT environment.

The architecture consists of several elements that address the problems related
to management of components, associated with the following key management ca-
pabilities:

• modeling of perception for the managed data - the management system has to
be able to interpret management elements and its association with other com-
ponents as a base for dependency reasoning and policy enforcement. This is
facilitated by the meta-model providing means for mapping managed elements
and relations.

• observable elements - managed elements have to be able to provide information
about their status - facilitated by a management adaptation layer for state
inspection, pro-active monitoring and management

91

�������

����	�

��������

��������

�������

����	�

��������

����	�

����	�

�����

����������

��������

��������

����������

��������

���������	���

�������

������	�

��������

��������

�������
��������
���������������

����������	�

Figure 5.1: Management architecture with self-aware controller.

• assistance for adaptive communication - facilitated by the channel management
middle-ware

• self-awareness and self-management - facilitated by the meta-model and re-
�ection

5.1 Self-awareness

The meta-model and the abstract classes belonging to it serve as a descriptive mech-
anism for the management system to be able to deduce about the structure of the
managed system and its own communication capabilities.

Figure 5.1 illustrates the principle of self-awareness using a meta-model. The
management unit references a meta-model to maintain a model of the system. To be
self-aware it represents itself in the model by mapping an instance of its management
representation model to a meta-model along with the representation of the elements
it manages. Because the management system architecture and the managed element
share the same meta-model for representation of their structures, the requirements
for system consistence has to cover both operational and management aspects of the
system. The VSM includes principles related to communication �ow between low
level operations on the environment together with the distribution of variety and
knowledge across the management sub-systems.

92

5.2 Meta-model Elements

The meta-model is shown on Figure 5.2 as a class diagram consisting of classes and
associations between them separated visually in two distinctive parts and enabling
description of both communication and structural organization in complex systems.
On the left side are the elements representing the organizational aspect of the system
while the right half of the diagram includes the classes for description of channel
communication.

The organizational part re�ects the VSM model by relating classes representing
the management levels and component containment. The class System aggregates
all other classes to represent a reduced version of the viable system model. The
class Operation Manager is on its own a whole new system by deriving class System
and inheriting all its characteristics, including the recursion. At the same time it is
a �rst-level management unit. This implements the containment principle of VSM
- viable systems consist of viable systems. Class Manager represents a higher level
of management that is monitoring the actions of the system on the lower recursion
level in the management system. The Operation class represents the elements that
perform the acts that e�ect other elements or the environment in which the system
resides.

The communication part on the right side of the picture includes classes that
enable abstract representation of endpoints that communicate using communication
channels. The channel class represents the communication medium assisting in
transmitting of variety between elements by either �ltering it, translating it or just
passing it through if no of the former is applicable or needed.

The central class from which all other elements derive is the Endpoint. It repre-
sents a communicating element, practically every element in a software environment
that has abilities to transmit information, invoke methods provided by other ele-
ments, to provide own methods, listen for events or trigger events. The Endpoint is
associated with a channel representation to express its ability to communicate.

5.2.1 Variety

While the general notion of variety can be expressed quantitatively using a general
unit for measurement, the bit, the heavy semantic meaning and the symbolic repre-
sentation of the exchanged variety between elements do not provide ways to express
it with a uniform, generally meaningful quantitative unit.

In this work the notion of variety embraces the variety of structural content
between software elements. In this narrowed de�nition, the variety can be classi�ed
by two major factors - variation in di�erent classes of information exchange, and
variation in a single class - the main force of its existence being the evolution of the
structure in time.

The software-engineering currently has several outlined patterns for variety in

93

������

������	
�

��������

�������

�������

������	���

�������

������

�
�	�
��

����
	��

�
����	�����

�	��

��
�	���

����	���

����������

������

!��	���

�������

�
����	�����

�	��
�

��

�""#
$�����	���

�� ���	
�
�

�""%

�""%
�""%

Figure 5.2: Meta-model of the cybernetically viable architecture.

The channel model on the right consists of endpoints providing variety and channels
utilizing transducers for translation or �ltering of the variety between the commu-
nication endpoints. The VSM-based organizational model is presented on the left
side by levels of nested management systems with a terminating Operations unit
directly a�ecting the target of control.

94

�������

����	
���

������

�����

��������

������	

��	����
�	�������	����	��

�������

����	���������

������	���	��������

������	�������

������� 	����	�

Figure 5.3: Abstracting from a concrete variety exchange method.

The manager reasons on the basis of the common notion of variety while the endpoint
represents the actual software element initiating the communicative act.

software element communication - messages, events and interfaces. All of them
care the common meaning of communication ability, but are associated with di�er-
ent dialects of communication organization. The notion of variety used within the
adapted VSM model uni�es them and abstracts the management subsystem from
details related to the concrete way of its perception and processing.

Figure 5.3 illustrates a simpli�ed management approach using variety abstrac-
tion. The element and its three styles of communication are mapped on the meta-
model of the manager, respectively to the Variety class and the Endpoint. The
Manager operates on the abstract level and when necessary, refers to the mappings
to perform actual management operations.

5.2.2 Transducer

Adaptivity is a key requirement for a system to survive changes, thus to be vi-
able. An unique aspect of adaptivity is the ability to communicate, regardless of the
changing circumstances. Only then an intelligent management system is able to per-
ceive and react accordingly. The VSM requirements associated with communication
�ow de�ne a mandatory presence of capacity or ability to transmit variety between
its constituents. To achieve this a communication channel has to have Requisite Va-

95

�������� ��	��

��
�������

���
��

����������

��	���� ��	�����
�

�	�	�
�

�
�
���

��	���	�
���	��
�����

	�	���� �
��������!

	�	��

 �
��������!

�	�	����!���	������ �	�	��

!���	��

�

��

�������

Figure 5.4: Representing interface adapter as a transducer selected by a manager.

riety regardless of the type of transduction which the exchanged variety may need.
Transducers are cybernetic structures that act as variety adapters. Given an input
of state values for a set of variables, the transducer produces output according to a
state transition table.

The notion of transducer is applied to the meta-model and the architecture under
the limitations of the variety de�nition for software element communication.

In the case of interface adaptation the existing and commonly used pattern
Object Adapter can be treated as transducer. The added value of this mapping
is the capability for a dedicated manager to select a proper adapter according the
requirement for Requisite Variety in aspects interface di�erentiation and interface
evolution. The latter is often neglected as a necessity for consideration of system
design although especially in heterogeneous and loosely coupled systems it may have
a considerable impact on system stability. Among the other commonly used design
patterns that can bene�t the abstraction of transducer are the Mediator and the
Bridge patterns.

In a scenario of remote event handling it is very important to be aware of the
variety which a component is allowed or is able to accept from an open network
environment. The forces of parallel component evolution and lack of development
coordination in a distributed system may cause system malfunction, and in the
worse case security-related compromising or exploit. The common approach to re-
mote eventing in distributes system is the Reactor behavioral pattern. The notion of

96

transducer in this case can be applied to assist in a re�ned selection of event handlers
by the initiation dispatcher which invokes the handler callbacks for event processing.
This scenario is illustrated on Figure 5.5. Similarly to the case of interface adapta-
tion, a regulated dispatching of events among multiple versions of components is an
important requirement for evolving and adaptive system. The principles discussed
here for adaptation are the foundation and the motivation to abstract the way two
components communicate following the cybernetic requirements for communication
by the introduction of a �virtual� managed communication medium - the Managed
Communication Channel (MCC).

5.2.3 Channel

Communication channels represent medium for exchange of variety between com-
munication software elements, the same way VSM de�nes communication channels
for exchange of variety between elements of a VSM-modeled system.

As shown by 5.2.1 and 5.2.2 adding management of variety creates the opportu-
nity to control the �ow of the events, messages and execution of methods provided
by interfaces.

The main reason for the introduction of MCC as a standalone element of the
meta-model is to facilitate management of the system communication �ow and to
allow enforcement of VSM requirements by a dedicated manager. The meta-model
de�nes MCC as a way of communication for any endpoint that provides information
for the provided or required by it variety as a way to de�ne dependencies. In the
custom case of no variety translation or no component evolution, channels can be
treated as dependencies in the accepted by software engineering general meaning.

In the general case where variety is transformed from one endpoint to the other, a
channel has a heavier semantic value than a dependency for its ability to be adapted
while keeping the semantic dependency between elements intact in both run-time
phase and deployment phase. In development phase, channels may become accessible
for inspection by developer's integrated environment which using the information
may assist in code-generation or con�ict resolution.

Examples for concrete application of MCC as a concept for communication man-
agement in software system are illustrated on Figure 5.7. The main purpose of the
manager is to regulate the variety communication and satisfy the requirement for
requisite variety of channels and transducers, thus keeping the capabilities of the
channel in tact to transfer correctly variety from the �rst endpoint to the second.
Figure 5.7 is an illustration of the abstract meaning of the channel as a medium for
variety transformation. Transformation happens on the level of user interface - part
of the system state is represented and �transmitted to the user in understandable
for him way. A potential application for this speci�c scenario is development of au-
tonomic user interfaces providing �exible composition of appearance and behavior
according to user's role and the available for him information.

97

�������������	
�����

����������	���

����	��������������

����������������

����	���� ���
����

������

������	�	���������

����	 �������	

�����

�����������

��������������
�

������������

� �	

�����������
�!�

�	������
"�����������������

������	

#		

	�����������	�$

�������������	����

�������%�������������
�

������

Figure 5.5: Distributed event handling with supervision by a manager.

Manager is monitoring supporting types by event handlers (endpoint variety) and
selecting corresponding transducer to translate events (variety) coming from the
event multiplexer. In the absence of transducer and its management the system
lacks the needed adaptive mechanism throughout its evolution.

98

������� ���	
����

��	����

���		��

��	���

�	����	�

�������	�

������	���

�����	����
�

����

�

��	����

� � �

�����	����

����
�������

�������

 !!"

Figure 5.6: The concept of MCC.

Channels associate endpoints and translate variety using selected by managers trans-
ducers. Managers are responsible for channel creation and initiation.

�������

������	��

��
�	��
�
�������
���
�������
�

��������

�������
���	�
����
�������

������

�
���	��
������������
������

��������
��
����
���������
���

��
�	����	��

�� ��
������
��

�������

!	���	��
�
���
����
������

�������� ���
����
 ���	����������

����"��
��
�

���

��	�����
���� �����������

�����������������������

�������
���	�����������

�����������

��	�����

���#�� ��
������
��

��������!������
������
$

����������%��

��������
��������

���������
������������

Figure 5.7: Application of the MCC concept in software engineering.

The endpoints exchange variety with the help of transducer (between them). The
correspondent transducer ful�lling the requisite variety requirement is selected by
the manager which also takes care of channel composition and initialization.

99

5.2.4 System

On the left hand side of the meta-model illustrated on Figure 5.2 is expressed the
adaptation of VSM in organizational aspect. The key characteristics that determine
the value of the model are: complexity management through recursion, separation of
management roles, and requirements for variety distribution among the management
units.

Assignment of management roles is an important element in the design of a
system that allows for concrete policy propagation and task distribution. The man-
agement organizational model proposed here outlines four basic elements that de-
scribe management roles, policy distribution and recursive management-subsystems
- Manager, Operation Manager, Operation and Target. These elements are all asso-
ciated to a single class System which symbolizes belongingness to a distinctive unit
of organization. System is an abstract class that is never used directly to describe a
real system, rather it serves as a base class for units containing self-referring systems
of the same type.

5.2.5 Operation Manager

The class of management elements associated with Operation Manager are recursive,
self-referring systems containing the same set of management roles, management or-
ganization and communication capabilities as the system to which they belong and
to which the same regulations and principles are applied. This approach of con-
tainment is the foundation for building viable systems, as speci�ed by the Viable
System Model. Example in software architectures are visible on the level of operat-
ing systems, virtual machines, component containers and components, resembling
the separation of roles and tasks on every level of recursion respectively as process
management, program management, component management and service manage-
ment.

Figure 5.8 illustrates an example of organization of administrative support of an
IT system. The system shows a recursive containment by encapsulating components
into containers, such as applications, which on their turn are resided in servers, which
are connected through a network. The task for management is assigned to a single
unit �Administration�. The lower levels of containment rely on the support of the
upper management level.

This kind of mapping of elements to representations of their containment and
applying the VSM management requirements shows the weak spots in an IT system
- in this example, the upper management level (administration) has to be able to
handle a higher amount of variety in order to manage the subsystems bellow it, thus
missing Manager3 and Manager4 system elements contributes to a higher probability
for management error.

This conclusion corresponds directly with the key objective of Autonomic Com-

100

���������	
�
���������

�����������		�	�

���������	�������
	

������
��
	�	�

������
��� ������
���

������
��
	�	�

�������� ���
��	��!	��"
�#����	$��
	��	�%

&���

&����'��$��

����

��������������
	

����

&����'��$��

����

��������������
	

����

($��
	��	�

()���	����
������

�����������	��

�

Figure 5.8: Management of an IT system with networked servers and communicating

components.

Elements are indexed with major digit as level of containment, minor as level of
management. An IT system managed by the Administration unit on level 1.3. Levels
2, 3 and 4 are entirely dependent on the higher level of management. According to
the principles of VSM, higher levels of management absorb a smaller set of variety,
which should be �ltered across the low-level management. This example illustrates
the need of additional management support on levels 2, 3 and 4 to reduce amount
of handled variety and the probability of error.

101

��������������

������	
�����

���������������

��������	
�������

������

�������������������������

�����	����������

����������������

�������	���������

Figure 5.9: Types of Manager Systems.

Manager 4 is responsible for planning and prediction and requires access to the
environment, monitoring it pro-actively as a requirement for viability in changing
environment.

puting to reduce human intervention with automated management and set of con-
�guration parameters on the level of applications and components.

5.2.6 Manager

The manager class in the meta-model represents a set of elements that are responsi-
ble for the distribution of tasks, planning and supervision of operation management
units (Figure 5.9).

These are visible on Figure 5.8 as elements indexed with 1.5, 1.4 and 1.3 re-
spectively, corresponding to VSM elements System 5 (Policy, Identity), System 4
(prediction,planning) and System 3 (supervision,resource management). This type
of management elements may require access for monitoring of the environment in
which the system operates, especially concerning management function for predic-
tion and planning and are an important and necessary element in systems with
autonomic management support.

5.2.7 Operation

Entities that have direct in�uence on the internal or external for the system environ-
ment state are associated with the Operation class of elements. Their role is solely
to execute procedures scheduled and propagated by the management units and to
react to events, messages and communication acts from the elements of the envi-
ronment in which they reside. The VSM model suggests that the amount of variety
which Operation elements absorb is considerably larger than the variety needed to
be communicated between the management units, decreasing in direction Manager5,

102

thus the organization of operations, their behavior and the way they perceives the
environment is essential for the overall system stability.

The meta-model describes Operation elements as endpoints communicating with
their environment using channels, the same way other elements in the environment
communicate, however, their communication is in direct relation to the state of the
system and a�ects the functionality of the system, di�ering from the management
communication which primarily a�ects the aspect of con�guration, adaptation and
incident management.

5.2.8 Target

The Target class represents all elements that are not associated with the managed
system but in�uence it by communicating with it and introducing variety in form
of messages, local and remote events or by means of established communication
protocol. The di�erence between Target and Endpoint is the ability of the Target
elements to be visible and managed by managers of the systems to which they belong
or communicate with, while Endpoint represents any element that may provide to
or require variety from the environment.

5.3 Management Adaptation Elements

A vital requirement for a managed system is the ability of managers to observe the
state of the managed components and eventually modify it. While certain amount
of information may be acquired by using the standard management capabilities
of the existing software frameworks, it may be not necessarily enough to achieve
desired communication monitoring and control for communication assistance and
adaptation.

The architecture de�nes a package of elements associated with a layer for ac-
quisition of management data through both standard means and explicitly de�ned
software elements used in components communication activity. There are two major
functions that a management adaptation element may perform - monitoring state of
an element and in�uencing it. Monitoring elements are perceiving state of manged
elements and are known in the autonomic computing literature as sensors. Elements
that in�uence the state of an element are known as e�ectors for their performing
operations that e�ectively change the state of the management element. The sensors
and e�ectors represent the intersection points between a system environment and
management units accessing it. The aim for communication assistance and man-
agement requires not only information regarding software component state, but also
sensing of information related to channel establishment, such as mediating services
provided by either the hosting component frameworks.

The communication management middle-ware uses both, sensors and e�ectors,

103

����������	 ����������

����� �������

	���������������

��������

���� ����

�����������

�
	�����	

�����������	���������

����

����������

������

������

������

������

��������������

������

������������������������

Figure 5.10: Management adaptation layer.

It provides management information to the manager through sensors and e�ectors
embedded in base classes. The channel management framework on the management
level evaluates the transmitted variety and sets up element's parameters through its
e�ectors.

104

����������	
������

�����	
����
�������������������������������
����������������������������

������

������������������������

�������������	

������������������������

������

 !�"���

�������������������������������
����������������������������
�!����������������������������

#

�������

#

�������������$

������������������������

%��������������

��&

��������������

�������������

����������������#

'�������

Figure 5.11: Event channel adapters.

They mediate information about event handler registration and event delivery to
event adapter selecting a concrete observer implementation.

for respectively evaluation of communication dependencies and setting up parame-
ters relevant to communication channel establishment or behavior. To achieve this
the package includes abstract components incorporating necessary sensors and e�ec-
tors to facilitate transparent communication establishment in derivative elements.
These are called Channel Management Adapters and can be distinguished on the
example diagrams by the stereotype <�<Channel Adapter>�> Figure 5.10 illustrates
management of communication between two elements. A detailed description of the
structure of a channel adapter is given in Chapter 6.

5.3.1 Management Channel Adapters

Depending on the type of information the management adapters provide there is vari-
ation in the way it is perceived and transmitted to the management level. According
to the constrained de�nition of variety supported by the management channels chan-
nel adapters are responsible for transmitting of information about events, messages
and interfaces provided by interfaces belonging to communicating elements.

5.3.1.1 Eventing Channel Adapters

Event-based component communication is a well developed technique in software
engineering. A commonly used pattern that implements event communication is
the Observer pattern, where participating observers are noti�ed about events from
subjects by iteration on handling interfaces belonging to registered with the subject
observers.

105

The task of an event adapter is to notify the channel middle-ware about the act
of sending event from the subject to the observer in order to verify the ability of
the observer to handle the events which have been sent. This can be achieved in
two di�erent phases of the interaction between the participators - the �rst being the
registration of the observer with the subject, where the observer declares its intention
to receive events, and secondly in the phase of the actual event broadcast from the
side of the observer. Figure 5.11 illustrates the actual usage of the sensors with
the observer pattern. This application of channel-based management information
delivery is particularly useful in scenarios with remote eventing, where the events
are coupling architecturally separated and parallel evolving software elements in a
networked environment and the change in event semantic or type is important for
the operation of the system as whole.

5.3.1.2 Messaging Channel Adapters

Loosely coupled components use messages to exchange information or trigger de-
sired behavior with the preposition that the components do not necessarily know
about their existence before they have been deployed in production environment.
Similarly to the event-based communication, message-driven sub-components react
to incoming messages which can be interpreted or internally converted to events,
however a message may provide little or no information about the context of its us-
age by the sending element, on the opposite of event-based behavior where observer
and subject are linked prior to message exchange. This kind of communication is
used in stateless components or services that have no implicit relation to the system
they react to. Message adapters are elements that intercept intention for message
transmitting on the side of the sender or intercept message receiving on the side of
the receiver to facilitate channel management for exchange of messages. A direct
e�ect from this particular channel management is the ability to detect intrusion
detection or denial of service attacks.

The e�ects of parallel evolution in loosely coupled messaging systems may result
to unde�ned behavior by both communicating parties and management of their
communication is an important factor for the successful operation of the systems
including the components. Figure 5.12 illustrates management of message sending
and receiving in aspects assistance in delivery and adaptation and enabling �ltering
of incoming for the receiver messages.

5.3.1.3 Interface Access Channel Adapters

Object oriented design de�nes the concept of object as entities that communicate
by sending messages. The concrete implementation of the message exchange mech-
anism highly varies depending on the programing language and the design of the
object support in program runtime. Widely adopted object-oriented languages such
as C++ and Java implement communication using methods de�ned in so called

106

����������	
������

�����������

����
��

����������	
������

�������������

����������
�����������

�������

����
��

	�������

���
������

	�������

�������������

���
��

��������

����
��

��������

�
������������

����������

 ������������

���
���������

��������!������������

�������!���
�����

Figure 5.12: Message channel adapters.

They provide management information to connectors (mapped on to the meta-model
as channels) which assist the sender in message adaptation if necessary and protects
the receiver from unexpected messages delivered to it through the network.

interfaces that are known and accessible by other objects. Depending on the knowl-
edge of the methods contained in the interface of a target object communication
happens by the methods being �invoked� usually by specifying method name and
passing a set of arguments. Distributed computing heavily relies on interface def-
initions for communication as unit of reference to object's communication ability.
That is why interception of access to methods of an interface, whether remote or
local, is an important way of tracking communication between objects in distributed
and local environment.

Software engineering has achieved signi�cant developments in speci�cation of
mechanisms for separation of object interfaces from the implementation of the func-
tionality that they manifests. There are established patterns that are used to facili-
tate �exibility, evolution and integration of software components communicating by
invocation of methods.

A common way to obtain an object's interface is to use a third component for
querying the object implementation by a speci�ed name. The returned reference
to the implementation is then narrowed to a known by the calling object interface.
This approach can be implemented locally using the Factory pattern, or remote
using Naming Service, similarly to the way EJB interfacing works.

In this case, a channel adapter may become active in the moment of object
request after which the consequent management operations are able to in�uence
the selection of object implementation. Similarly to 5.3.1.1 and 5.3.1.2 the adapter
elements wrap functionality that is responsible for the actual communication es-
tablishment and assists in management data delivery to the channel management
element.

107

������� ���	
��

������

������

�����������	�������

���������	�����

���� �������

��������������

��������

��������

������

��������

������������

� �

Figure 5.13: Factory channel adapters.

They deliver management information about intention of the Client to consume
functionality provided by the Product.

An object may obtain a reference to an interface that matches object func-
tionality not only in the phase of target instantiation as seen in the example with
factories. Another way of decoupling interface from implementation is the service-
oriented approach used in modern distributed systems and embedded devices. An
object requests a list of supported by an already created and functioning component
interfaces by querying a registry holding object details published by an object. Once
the interfaces are retrieved, the calling object selects an interface and communicates
directly with the object. This approach supports true loose-coupling, however there
are drawbacks that one has to consider when designing service-oriented applications
- the remote object keeps the right to change and re-publish its interfaces, often
without feedback to the interested parties, thus inconsistencies in truly distributed
but �exible environment may occur with a higher probability.

Partially this is being solved by the abilities of the registries to support multiple
versions of interfaces, letting the important choice of selection of proper interface
entirely depend on the the callee object. An adapter in this case may provide
vital information about the intention of an object to communicate, and thus facil-
itate assistance in interface selection in a way to satisfy existing dependencies and
the requirement for requisite variety. Service-oriented communication as approach
is not applied only in distributed systems. For example the OSGi Framework is
built around the notion of component services, thus this kind of communication
interception is entirely valid for systems that integrate OSGi components. Similar
organization has the COM model, where components register interfaces accessible
by other elements on demand.

5.4 Meta-model Bindings

The meta-model and its elements presented in Section 5.2 are not useful without
de�ning of concrete relations that associate them with the software entities which

108

�����������	
�����������

�����	

�����������
���������������

���	
������
�������

�����	��

�������

�������
��������������	����

���������������

���������������	
�����	����
������

���� ��

!"������
������

#

#

����	���

�����	�

$�	�%���

Figure 5.14: Service Resolver Channel Adapter.

It informs the manager about the intention of a client to communicate with services
published by a component. The manager decides about the selection of a concrete
interface by monitoring the component that provides the services and the adapter
information delivered by the service resolver about the required variety.

it aims to describe - the elements of the management system for re�ection purposes
and the managed elements.

The elements of the management adaptation layer have to be mapped on to the
meta-model in order supply the system with information about its own infrastruc-
ture and to achieve self-awareness with ability to react accordingly and prohibit fault
management operations. The map has to be able to cover the communication by
exchange of messages, eventing and invocation of methods and the speci�c organiza-
tion associated with these variety types of the system for communication assistance
as described in Section 5.3. The bindings are a set of relations that connect meta-
model elements with software elements and augment the system with management
semantics interpreted in the process of management strategy enforcement.

5.4.1 Meta-model Bindings Interpreter

The information provided by the mapping relations is interpreted by a module the
task of which is to monitor the relations of the meta-model and to have the requi-
site knowledge for the interpretation of the relations binding the meta-model and
manageable software elements. It is a required module that contributes to the com-
pleteness of the management model in aspect organizational knowledge. Figure 5.14
illustrates the dependencies in the management model and the role of the meta-
model interpreter for resolving the bindings.

The example on Figure 5.15 illustrates how elements of the management system
having requisite knowledge about the semantics of the bindings are able to enforce

109

�������
�������

�������

�����	�����

������

������ ������

���	����	�������

�������������� �������

�����

����������

�������

�������������

�����

�������
���������

Figure 5.15: A simpli�ed representation of meta-model binding.

Elements are mirrored by a model that binds its elements to the meta-model and
is stored into model repository. The manager is able to query the repository and
respectively retrieve contained instances of the model and inspect their semantics
with the help of bindings interpreter that translates the associations between the ele-
ments instances and the meta-model to enforce management strategy on a managed
Element.

management actions on managed elements, including their own operations.

5.4.2 Channel Management Adapters Bindings

Making the management infrastructure re�ective using its own means of information
acquiring, descriptive and reasoning methods adds �exibility in the way the system
perceives its own state.

Having in mind the semantics in the meta-model elements and the implications
of their meaning, the management adaptation layer can be bound to the meta-model
following the principles from sections 5.1, 5.2 and 5.3 of this work:

• Events are provided and required variety that components emit and process

• Messages are provided variety to which a service component responds

• Interfaces are provided and required variety which elements use and provide

• Software Elements are communicating endpoints exchanging variety of type
events, messages and interfaces

• Channel Adapters are represented as Transducers that can be associated with
channels serving the intention of a component to use variety of another compo-
nent or the ability of a component to accept variety from elements of a system
in the form of messages, events or interfaces.

110

��������

���	�
�

�����
���������

�����
������

�������������

���������
�����

������

�������
��

���������������

�������
��

����������

�������

�����

�������

�������
�

��������

��������������

 ���������

����
����!��

"�������

��#�����

$

%&&'

$$
������
����

(���
)

������
����

���$
$

���������

Figure 5.16: Binding the elements of the management adaptation layer to the meta-

model.

These prepositions reference the complete variety the management adaptation layer
provides in terms of its variety communication and the ability of a management unit
to perceive its own state.

Figure 5.16 illustrates the bindings, represented as subclass relations between
the classes of the meta-model and the classes representing software entities. The
three basic categories of variety transfer - messaging, eventing and interface access -
are bound to the variety concept which serves as a criteria for communication chan-
nel management and determines the way it is transformed using Channel Adapters
corresponding to the Transducer class from the Meta-model. The communicat-
ing endpoints, sub-classed by the three types of communicating parties, and the
transducer on the meta-model level are coupled into the virtual medium Channel
to provide management semantics both for the adaptation and application layers
which are interpreted by the semantic interpreted of the respective channel manager
monitoring and controlling the communication between elements.

5.5 Communication Management Middle-ware

Before the information about a channel is being passed on to the level of require-
ments management, the procedures for establishment or initialization of channels
and communication coupling is �rst served by a middle-ware that the architecture
de�nes as Communication Management Middle-ware.

111

���������

��	�����

�����

������� ������

������

���

������

�����

�����

����
�����

��	����

��	����

�������

������	
����

���
�

Figure 5.17: Managed Communication Channel Life-Cycle.

The main task of the middle-ware is to assist in the management of the life-cycle
of a communication channel.

5.5.1 Communication Channel Life-Cycle

A managed communication channel has a life-cycle that de�nes six distinctive states,
which the middle-ware handles and in which procedures related to creation, initiation
and destruction of a channel are consequently executed before and after the actual
communication between elements occurs. Figure 5.17 illustrates the states of a
channel and the transition handled by the middle-ware.

The channel is created �rst as a prototype re�ecting the intention of the commu-
nicating elements, after which a manager prescribes concrete values of its parameters
to be created. In the moment of actual component communication channel state is
marked as active and not-active after the act of communication. When the compo-
nents no-longer reference each other the channel is destroyed.

The states of a manager correspond to procedures which the middle-ware exe-
cutes upon association of a state:

• Channel Prototyping - This phase includes steps for creation of a prototype
of a channel having the same characteristics of a �nal channel, but without a
speci�cally associated variety transducer.

• Manager Cycle - performed when the channel is in stateManaged. The man-
ager analyzes the prototype and selects an appropriate transducer to satisfy
the requirement of Requisite Variety.

112

• Channel Instance Creation - a channel instance is created having instan-
tiated and associated transducer for variety transformation.

• Channel Activation and De-Activation - the phases in which the pro-
cedures of channel activation and deactivation can be executed are varying
and are related to the concrete mechanism of variety exchange, as outlined in
Section 5.4.

• Channel Destruction - procedure performed when the communicating com-
ponents no-longer reference each other. The states indicates no direct in�uence
of one object on the state of others.

5.5.2 Channel Prototyping

When a component declares attempt or intention to communicate with a component
in or outside the system, the channel middle-ware creates aChannel Prototype. It
is a regular channel instance, containing references to the communicating endpoints,
but with an empty �eld for transducer for variety adaptation. A channel prototype
can be monitored and accessed, thus its existence allows �ne-grained monitoring of
interaction, e.g. communication establishment logging, visualization, etc., on the
level of channels.

5.5.3 Manager Cycle

Once a channel prototype has been created, a channel manager can be activated
in order to perform management operations on it. The speci�c operation that has
to be completed in this speci�c phase is the selection of an appropriate variety
transducer the reasoning for which is based on the existing data contained in the
channel prototype. The assignment of concrete transducer is a result from the four-
step autonomic MAPE management cycle. The management process is decoupled
from the speci�cs of channel information in order to stimulate the utilization of
common autonomic management interfaces. The four phases of the management
cycle are as follows:

• Monitoring: Once a channel prototype has been created, the information
relating to the act of communication is being passed to the sensors of the
manager.

• Analysis: The information is processed and normalized for the internal rea-
soning mechanism to interpret them, for example rule engine and belonging to
it rule sets. The analysis evaluates the communication abilities of the channel
against requirements for requisite variety.

113

• Planning: The output of the analysis phase consists of a set of transducer
selection options which are then prepared to be used for transducer initializa-
tion.

• Execution: A transducer is initialized and assigned as subscription for cre-
ation of channel instance.

5.5.4 Channel Instance Creation

During the phase of channel instance creation, the prototype is assigned the status of
a real channel which is ready to serve variety communication and adaptation between
the participating in the act peers. This phase, however only de�nes the ability and
readiness of a channel conforming to the requirements of the management system and
does not involve any actions related to communication. The act of communication
is declared available, but for actual transformation the channel has to be in state
�active�.

5.5.5 Channel Activation and Deactivation

The procedure of channel activation includes except �agging of the channel as one
that is capable to transmit and transform variety, also necessary noti�cation of the
communicating peers. Deactivating the channel indicates the end of communication
with the presumption that the two pears still refer to each other and further itera-
tions of communicative acts is possible. Activation and deactivation is handled by
the middle-ware itself and is transparent for the peers.

5.5.6 Channel Destruction

When two components are no longer referencing each other this is indication that
there is no present intention for communication, thus the existing channel that was
created earlier can be destroyed in order to �ag inactive dependency between the
elements.

5.5.7 Middle-ware-Manager Interaction

The primary role of the middle-ware is to co-ordinate interaction between elements
and provide the necessary information about the communication to the channel
manager (Figure 5.18).

The mechanism relies on manager decisions to complete the life-cycle and com-
pletely satis�es the requirements for transparency of communication, by providing
management feedback on every essential point of interaction. Events triggered by
the middle-ware are responded by a detailed actions sets, described in detail in 5.7.

114

���������	�
�������������	
�������

�������������

��������

�������������

��������

�	�����

���������

�������

���������

�	�����

���������

������

������

������

���������

���� ����

��������

��������

��������

���������

���������

����	���

Figure 5.18: Full life-cycle of a managed communication channel.

The middle-ware manages the state transition in coordination with channel manager
before and after actual communication. 115

������

���	����

���	����

���	����
����
����

�������

�������

���������

��
 ��

��

��

��

Figure 5.19: Endpoint Interfacing with the middle-ware.

The middle-ware is accessed through its interfaces by regular components that com-
municate and by sensor components that monitor deployment events. The middle-
ware access the components through the container's management interfaces.

5.5.8 Interfacing

The middle-ware provides services for channel handling and endpoint monitoring
by access to application programming interfaces (API). The two major groups of
interfaces are Endpoint-Middle-ware interfaces and Middle-ware-to-Management in-
terfaces.

5.5.8.1 Endpoint Interfacing

The endpoints declare their intention to communicate by providing necessary infor-
mation prior to the actual communicative act. In the case of software components
there are two ways to do this - by explicitly de�ning required and provided commu-
nication type and interfaces using descriptors (heavily used in component deploy-
ment), or in case the dependencies are not clear prior to component deployment
this is done through interfaces provided by the middle-ware, the methods of which
can be used to achieve actual communication in the forms of events, messages or
methods and interfaces. While the �rst way of communication dependency decla-
ration facilitates preliminary channel types observation, the second indicates exact
runtime communicative act and facilitates dynamic management.

The optimal way in which a component can de�ne its dependencies and intentions
to communicate is to use deployment descriptors for on-deployment declaration of
dependencies, and to utilize the middle-ware API in run-time upon communication
with a local or remote component.

The two ways of channel observation outline two main access points to the inter-
faces of the middle-ware. Endpoints declaring in run-time access the middle-ware di-
rectly, while descriptor-based declaration requires interception of deployment events

116

on the level of component container, because the endpoints are not active in the
moment of deployment. While the �rst type of access is obvious, the second one
may introduce di�culties when the architecture of the component container does
now allow interception of certain events. This thesis focuses on well known indus-
try standards that allow such observation, thus these kinds of problems are not
discussed.

Figure 5.19 illustrates the interception of intentions for communicative acts based
on the discussed two types of endpoint-middleware interfacing. The delivery of com-
munication events is driven by noti�cation either from the components themselves
or from components that intercept deployment events and read data related to
communication dependencies. The information is passed to the middle-ware layer
respectively in run-time or in deployment time.

5.5.8.2 Manager Interfacing

The middle-ware performs the operations required for extraction of information from
the peers and the managing the life-cycle of communication channels.

The rest of the required functions are delegated to the management layer, which
takes decision about the future state of a channel. That is why the middle-ware
serves as a mediation layer between the endpoints and the channel managers. The
di�erent strategies and the way a manager works may vary, depending on the type
of managed variety, that is why the speci�cation of interfaces through which the
middle-ware accesses manager's functionality and the interfaces used by the manager
to access middle-ware have to be speci�ed carefully and with re-usability in mind
and to enable dynamic integration of managers. For this purpose the design pattern
Abstract Factory can be used, assuming prede�ned interfaces. For potential changes
in both manager and middle-ware access interfaces the Extension Objects Pattern
o�ers the ability to de�ne additional interfaces to existing objects. Figure 5.20
illustrates usage of these patterns within the context of middle-ware - manager
interaction, with the ability to change the managers, depending on the type of the
managed channel that is being handled.

5.5.9 Channel Meta-data

One of the most important aspects of component management is the way relevant
information about the state of a component, used resources or dependencies is de-
livered to the management module. In the case of component communication, and
the introduced concept of communication channel, the relevant information for the
management modules comprises the following elements:

• Type of communicated variety - the type of communicated variety (variety
class) can be message, event or interface. Every concrete variety of one of
these types is associated a version number indicating the evolution.

117

���������	�

���
�����������

��������
������
����������

�
��������	�

���
�����������

��������
������
����������

���
��	�

���
�����������

��������
������
����������

�����������������

 �������
��
����

!�"������
��
����

���������
��������
����

�����������
��
����

#$%�$�������
����

�
�����&��
���

���������
�����&��
���

�'(!�"����
��������
����

�
���
�����

�
���
�����

�"����

�"����

�
�����)�

�����&��
���
������
�����&��
���
������
���"����&��
���
������
�����
���������)����

Figure 5.20: Interfacing between Middle-ware and the Manager.

The middle-ware delegate uses the manager API to access the core interface for
creation of the integrated manager types. The API can be extended with additional
functionality using the Object Extensions pattern, by specifying the concrete type
of extension.

118

Meta-Data Class Representatives Description
Variety Type Event, Message, Interface Type of exchanged variety
Required Variety EventHandler,

MessageParser,Interface
Endpoint

Declared by endpoints to
express intention of
communication

Provided Variety Event, Message,
MethodInvoker

Declared by endpoints to
express availability of
variety handler

Transducer EventVersion,
InterfaceVersion,
EventHandlerVersion,
MessageVersion

Declared by the
management system to
express availability of
variety transformation

Table 5.1: Meta-data classes and representatives.

• Variety requirements - every communicating peer declares requirements about
a concrete variety that it expects or requires during communication with other
elements. This information can be used to construct a table of possible inter-
actions and dependencies with towards other elements of a system.

• Provided variety of sender and receiver - every communicating peer declares
concrete variety that it provides as means of communication that is initiated
from other elements.

• Available variety transducers - management units need to know what type of
variety transformation is available in order to select appropriate transducer.
A Transducer Variety Class is composed of element of element variety require-
ments and provided variety (see above) for its input and output. A version is
associated to indicate transducer's evolution.

The concrete formulation of meta-data records used with the middle-ware is de-
scribed in Appendix B.

5.5.10 Declaring and Consuming Meta-data

The nature of the heterogeneous component systems determines a large variety of
meta-data expression. Some of the frameworks exploit the �exibility of XML as a
way to express extensive sets of data, but others are still using plain text based,
custom formatted �elds or system-dependent registry mechanisms.

In order to support independent and loose relation between the managed system
and the management system, there are no meta-data declaration requirements re-
lated to the alien for the particular framework formats of declaration. This leads to
the requirement the elements (sensors) that are responsible for data acquisition to

119

be able to parse the channel meta-data records that various elements are declaring
or are exhibiting in run-time.

An endpoint may declare its variety meta-data in two ways - static and dynamic.

5.5.11 Static declarations

Static declarations are needed in the phase of component deployment. This is the
moment where new variety is introduced in the system, and the moment in which
the system management has to be able to observe possible dependencies and com-
munication of the newly introduced component with other parts of the system.

The declaration of variety happens with the help of explicitly de�ned list of at-
tributes attached to the actual code of the component. In the case of EJBs the
meta-data is encapsulated in the form of XML �les. The J2EE speci�cation de�nes
the proper place for explicit, non-speci�cation related meta-data which is accessible
and readable by the framework environment. In the case of OSGi additional meta-
data is attached to the bundle manifest �le together with the standard meta-data
records de�ned in the framework speci�cation. However, the concrete implementa-
tion of the OSGi framework may introduce di�erent ways of meta-data storage.

Static declarations are recommended way to inform the framework and its man-
aging components about possible interactions at run-time.

5.5.12 Dynamic declarations

Dynamic meta-data declarations are used to indicate a concrete act of communica-
tion that may correspond to meta-data declared statically, but it may also be used
to inform the framework management about previously undeclared dependencies.
Dynamic declaration is achieved by simply passing argument to the channel API
provided by the middle-ware in the moment of acquisition of references to other
elements. The middle-ware then compares the meta-data with the existing channel
dependencies de�ned in advance and drives the preparation of channels through the
cycle described in Section 5.5.

5.5.13 Consuming Meta-Data

The way variety meta-data is consumed does not depend on whether it is statically
or dynamically de�ned. The middle-ware provides internal interface through which
the core accesses speci�c meta-data parsers and normalizes it to the internal rep-
resentation of the channel structures. Dynamic declaration is achieved through the
channel API. Figure 5.21 illustrates the basic approach for normalization of variety
meta-data in statically and dynamically de�ned meta-data records.

As illustrated on Figure 4.7 a deployment sensor is a �rst-class component in
the domain of a framework hosting the communicating components. In the case of

120

���������	
�����

������	

���	���	��	���	�������

����	���	��������
����	���	�������

�������	�� ����������

�����

���������������

	�	����������

Figure 5.21: Consuming variety meta-data.

Parsers are independently reading meta-data information from statically de�ned
records, initiated by the deployment sensor on component deployment, while end-
points are declaring variety meta-data dynamically. Both types of declaration are
handled through the Channel API.

the OSGi Framework a deployment sensor is a bundle that is subscribed to receive
bundle deployment noti�cations from the framework. The passed to it context object
allows it to access the deployment descriptor of the bundle in question. In the case
of EJB deployment sensors are JMX dynamic beans which are con�gured to receive
noti�cation from the JMX framework when a bean is deployed. Both methods are
standard way for monitoring element activities in their hosting environment and do
not in�uence the operation logic neither of the hosting framework in the process of
deployment nor the components themselves.

The way static meta-data can be acquired from other component technologies
such as COM and SLEE is similar to the presented one - by subscribing for deploy-
ment events delivered through the underlying management framework.

5.6 Cybernetic Viability Requirements for Software

Systems

The adaptation of the Viable System Model requires to be associated with the
meta-model representation explained in Sections 5.1 and 5.2 but this mapping is
insu�cient as it is only associates software entities with the abstract concepts of
the model. VSM includes a set of rules, axioms and guidelines that re�ect the
way a system has to react depending on the changes in its environment. Thus, an
adaptation of the VSM requirements for the purpose of its application with software

121

����

�����

	�
�����

���������

������������

�	

�����������

�	�����

	�
�����

����

��������

��
�����

��������������

��
�����

���������

�

��������

��
����

Figure 5.22: Relations between the VSM model, its software adaptation and the respec-

tive requirements.

The real-world domain is a point of reference for both software model and VSM,
but at the same time the software-model re�ects the VSM model to comply with its
constraints through adapted management requirements.

is needed to complete the model with its corresponding policy for management.

Such an adaptation has to re-de�ne the original requirements in terms of software
entities as described in the base meta-model. The evaluation of requirements have
to be enforced by the management modules over the entities that are associated
with the meta-model.

Figure 5.22 illustrates the adaptation process and enforcing of VSM rules over
software entities. It can be easily compared to Figure 4.1 in terms of model relations
to the real-world domain. Introducing the VSM model as an additional reference
model for the software model contributes to a formal method of requirements de�-
nition and management. Among the many advantages of automation is the ability
to introduce parametric handling of management routines.This aspect of manage-
ment is re�ected in autonomic system design practices by integration of management
modules that can be governed by a modi�able policy.

The VSM requirements which have priority in the process of adaptation are the
already introduced law of Requisite Variety and Requisite Knowledge. Additionally
VSM introduces axioms related to the �ow of knowledge in two dimensions - hori-
zontal and vertical - expressing guidelines for amount of variety absorption on the
di�erent levels of management. Finally, the dynamics component of the requirements
set deals with the speed of variety �ow across the boundaries of communication, as
well as speed of management decisions.

122

5.6.1 Requisite Variety Management

Communicating components exchange information through their communication
channels which de�ne the existing variety of possible way of interaction between
them. Arguably the most important one in the set of VSM requirements is the Law
of Requisite Variety (LRV).

5.6.1.1 Requisite Variety of a Component

An adaptation of LRV for software has the following de�nition:

For a component to remain stable in its hosting environment it has to be
able to handle at least the variety of events, messages or communication
interfaces used by other components to communicate with it.

This de�nition references the already de�ned types of communication used to ab-
stract the di�erent classes of communication channels in the proposed meta-model.
The rule applies not only to the ability to transmit the variety, but also to be able
to process it �awlessly before it has been consumed in the pipeline of the business
process that the component supports.

5.6.1.2 Requisite Variety of a Communication Channel

In the de�nition of Beer's VSM (Section 2.4.3) LRV is applied to the communica-
tion channels connecting the operations and management layers of the model. The
adapted version for software communication channels is de�ned as:

The communication channels used for communication between software
components must have the requisite variety to be able to transmit the
variety of events, messages and interfaces exchanged between the com-
municating endpoints.

The ability of the communication channel to transmit correctly variety from one
endpoint to the other requires the transducers involved in speci�c variety transfor-
mation to have the requisite variety to be able to modify, amplify or �lter variety in
a way to prevent variety loss on the receiving end of the channel. This requirement
is also part of the directives related to LRV applied in VSM communication man-
agement. Its adaptation in software terms de�nes speci�c modi�cation interfaces,
events and messages in the following way:

A software variety transducer involved in channel communication be-
tween two software elements has to be able to transmit communication
data in the form of events, messages or interface communication, modify
it or �lter it in such a way that the receiving endpoint is able to consume

123

��

�

�������	
���

�

�������	
����
��

�

Figure 5.23: An example for a communication channel.

Channel C with port P and destination reference I, having transducer T with source
variety Rt and destination It.

��
���

��������	
 �	
��	

Figure 5.24: Application of a communication channel in interaction between software

components.

Components Es is the source and Ed is the destination.

variety with a semantic load equivalent to the one sent by the transmit-
ting endpoint but adapted to the communication interface, event handler
or message handler of the receiving part.

The rule states that although a transducer may modify transmitted through it vari-
ety, it has to provide the receiving party an understandable interface, but at the same
time meaningful data, enough to be processed as meant by the sending endpoint.

5.6.1.3 Formal Expression of LRV for Software

While expressing the requirements with natural language gives a narrative way of
understanding the mapping, a formal representation contributes to the algorithmic
way of expression which is directly used for the implementation of a strategy for
veri�cation of the requirement for every communication channel.

The annotations on Figure 5.23 and Figure 5.24 are used to create a discrete
function for evaluation of the Channel compatibility and the requirements for requi-
site variety.

There are two components Es and Ed and Es, where is initiating communication
to Ed for its actual variety Ied. Expected variety of Es is notated as Res. A channel
C is determined by its input port P and its output I. Figure 5.24 shows a selected

124

channel C(Res, Ied) for Res and destination variety Ied.

Di�erentiation between the P and Res, I and Ied exists to constitute channel
existence as a �rst class element in component communication.

A channel transducer T is determined by its input variety Rt and its output It

and is selectable among a set of available transducers N :

Tx(Rt, It) where X = 1 . . . N (5.1)

with requirement for requisite variety of a channel :

Rt = P, It = I (5.2)

The expected variety Res indicates the type of communication the source element
is expecting when initiating communication to the destination element - a concrete
type of event, message or interface.

Actual variety Ies is the type of communication the destination element can
handle - a concrete type of event, message or interface. A concrete type of element
is a software element tagged with evolution identi�er, such as version number having
semantics assigned to its minor and major components.

If we are able to translate these semantics to meaningful values in the set of com-
patibility in communication between two elements, then the channel compatibility
function is:

B(V (P), V (I)) = [−1, 0, +1] where P = Res, I = Ied (5.3)

where the set of values [-1, 0, 1] have the following semantics and represent the
set of values for management feedback for communication:

(-1) - communication impossible, no transducer available

(0) - no transducer needed for communication

(1) - communication possible with transducer

In the case when no transducer is needed for communication (1), the channel simply
connects the two endpoints. This type of channel is referred to as Null-Channel C0
and represents a basic dependencies in its classical meaning.

C0Res = Ied (5.4)

This is a special case where the channel has the requisite variety and is enough
to indicate proper component communication but generally, any value of B greater
then 0 indicates requisite variety V r:

Vr : B(R, I) ≥ 0 (5.5)

Expression 5.5 de�nes the requisite variety when 5.1,5.2 and 5.3 being satis�ed.

125

������ ��	
���

������

������ �������

Figure 5.25: Communicative act with feedback.

It requires processing from the side of the requested. The variety exchanged between
the two elements has to be supported by existing knowledge about it for adequate
answer.

5.6.2 Requisite Knowledge Management

Although LRV has to be applied and without it the communication is unpredictable
there is the need the received variety to be interpreted.

Without the knowledge about how information has to be processed and what se-
mantic value it carries a manager is incapable of taking fully backed with arguments
decisions about its reaction on event or situation change.

This statement is known as the Law of Requisite Knowledge (LRK) and is a re-
quirement for meaningful communication between managers and managed elements
and more generally, communicative acts with feedback iterations (Figure 5.25). The
adapted version of this requirement for software elements states:

The logic that implements a provided interface, event or message han-
dling has to represent the required knowledge for adequate processing of
variety upon receiving. When the processing logic only provides means
for delegation to dynamically loadable modules, there have to be at least
as many of them to support the provided variety.

Often event or message handlers implement directly event processing, however in the
case of frameworks (containers, platforms, etc) handling is abstracted to the point
where event is only absorbed but no processing logic is triggered implicitly. Then,
explicit event handling by loading of components that are capable of adequately
process the incoming events (plugins, bundles, etc) represent the requisite knowledge
only in the case where the combination of one, two or more of them is able to process
the supported by the framework events or messages.

In a software environment with loadable modules for processing of incoming
variety the monitoring of available modules and the provided variety to external for

126

the system elements may prevent unexpected security issues or potentially improve
stability by ensuring that there are no open or no handled situations where the
whole system may be exposed to unexpected behavior. The declaration of processing
knowledge is already available in the overviewed component platforms.

5.6.3 Vertical and Horizontal Variety Balance Management

As a preposition for e�ciency of management VSM de�nes additional requirements
which assert equality of variety in di�erent checkpoints in the model. The �rst axiom
of management states the following:

Axiom 1: The sum of horizontal variety disposed by all the operational
elements equals the sum of vertical variety disposed on the vertical com-
ponents of system cohesion.

This axiom expresses the basic importance of homeostasis where additional variety
coming from the environment into the operation then into the management of the
operation, has to be canceled out by the variety coming down the vertical channels
of the supervision system (System 3).

The adaptation of this axiom and its application as a management policy for
software systems with autonomic control can in�uence the planning and assignment
of concrete roles to management and and to operations according to the active soft-
ware environment in which the system operates. The second axiom of management
states:

Axiom 2: The variety disposed by the supervision system (System 3)
resulting from the operation of the �rst axiom equals the variety disposed
by the planning system (System 4).

The axiom sets the requirement for balance between the senior management and
environment prediction, where System4 has to be aware of the future state of the
environment but not to force System 3 in directions where the system may not pro�t
or realize operations, but make expenses on system resources.

The axioms involve quantitative measurement of variety, while software man-
agement operates only with discrete variety, thus the function for evaluation of
management disposal throughout the system has to be re-de�ned with the discrete
values of in the set of management feedback for variety disposal (Table 5.2). The
set maps an aspect parameter to a balance value, giving the opportunity to re�ne
the monitoring and analyze concrete unbalanced areas. Horizontal disposal refers
to Axiom 1 while Vertical aspect refers to Axiom 2. The implementation of this
policy ensures proper management organization and directly relates to the ability
of a system to be self-aware.

This mapping is used in the implementation of the prototype (Chapter 6).

127

Aspect Value Description
Horizontal 0 Unbalanced variety � the

operation disposes more
than the manager can
handle

1 Balanced
Vertical 2 Unbalanced vertical

disposal
3 Balanced

Table 5.2: Set of Values for Management Feedback for Variety Disposal

5.6.4 Communication Dynamics Management

VSM de�nes a principles for organization which are both static and dynamic. While
static ones relate purely to the functional separation of duties and roles, the dynamic
are introducing the element of time.

The channels carrying information between the management unit, the
operation and the environment must each have a higher capacity to trans-
mit a given amount of information relevant to variety selection in a given
time than the originating subsystem has to generate it in that time.

This principle states that a channel has to be able to transmit as fast as possible the
information between the communicating components, for a shorter time than then
the element that produces variety sent over the channel. If this rule does not hold
the system becomes unstable.

This rule is directly applicable to the speci�cs of software component communi-
cation with the requirement for distributed systems to be able to communicate in
timely fashion, especially in high load of generated variety of events, messages or
remote procedure calls. Critical for the operation of the systems are communica-
tions related to database querying and synchronous remote operations. The ability
of a channel to transmit a required amount of information is often identi�ed by
measuring the time for receiving a message passed through it. A policy monitoring
communication dynamics can observe these values and depending on a threshold
de�ned in its management policy a channel may be marked as faulty in respect to
this requirement.

Another method of measuring dynamics or responsiveness in communication is
the average number of variety units waiting in a queue to be sent over the channel
in a certain period of time - an established practice in system load measurement
in Unix-Like systems process scheduler queue. System administrators may monitor
the load values for three consequent periods of time and depending on the variation
of these values the administrator can be automatically informed about the system

128

being unresponsive or under heavy load which indicates impossibility to react to
introduced amount of information.

The proposed adaptation of this requirement for channel communication between
software components introduces a similar strategy for monitoring the responsiveness
of the middle-ware in connecting requested peers by the ability to set up a thresh-
old value for duration of channel establishment. When this border value Tmax is
being crossed, the middle-ware indicates the communication failure in the log with
a value within the set of Channel Dynamics Status (CDS) and optionally noti�es
the administrator. The discrete function that evaluates a concrete channel C with
threshold value Tmax the status is:

D (C, Tmax), {CDS}, where CDS = {0,1} (5.6)

The semantics of the values within CDS are 0 for dynamics in allowed range, 1
for indication of di�culties in communication.

This approach e�ectively discovers communication problems and di�culties which
otherwise are fairly invisible to the system management sta�.

5.7 Rule-based VSM Policy Enforcement

The formal elements and requirements for management of software component com-
munication described in sections 5.3 through 5.6 have to be implemented within the
logic of the channel managers. In order to facilitate tuning, easy addition of rules,
that may not be inside the set of VSM management or other modi�cations, the
middle-ware provides a �exible mechanism for de�nition of policies with the help of
rule sets. A rule set is a chain of conditions and associated actions executed upon
occurrence of events. Rule-based management is the foundation of knowledge-base
management and general policy enforcement within modern, intelligent systems with
integrated mechanisms for automated behavior.

The proposed set of events, conditions and action declarations aims to enable
custom implementations of channel management routines in general, and in the con-
crete case the adaptation of the general VSM rules, axioms and guidelines. The set
consists of declarations of events delivered by the channel management middle-ware,
conditions for de�nition of constraints applied to these events, and a set of actions
executed upon condition ful�llment. The actions a�ect �nal channel con�guration
and deliver feedback in the form of log, mirroring the status of communication
channel (Figure 5.26) with its Management Feedback for Communication, Variety
Disposal and Channel Dynamics Status.

A manager that implements channel management policy has to be aware of the
whole event set delivered by the middle-ware in order to comply with the LRK.

129

���������

�����	
��		�	���	

������

�����	�

��	��

���	

���	�	�����	��������

���	�

��	���	�

������� 	���	��

	�	������

Figure 5.26: Event-Condition-Action rules implemented as a policy in manager.

5.7.1 Channel Events Set

The middle-ware communicates with the channel managers through event-driven
API, where for every communication act there is a set of events responding to peer
and communication channel's state in its life-cycle. The payload (Table 5.3) that an
event carries includes all elements needed for a manager to start the manager cycle,
reason with its condition set and create an instance to complete it, after which the
middle-ware takes over and activates the channel.

Every event carries information about itself and information related to the initi-
ation of the channel. The Ref_Channel_Prototype property refers to the created by
the middle-ware channel prototype and is used by both manager and middle-ware
in the prior to management phase and after the manager has applied its operations.
Ref_Src_Endpoint and Ref_Dst_Endpoint are used to refer to the actual instances
of the elements in order to be accessed directly if needed.

The elements are produced sequentially and every event is assigned a unique ID
and a time-stamp, indicating the precedence order and the actual time of creation.
Both properties, respectively Event_UID and Event_TimeStamp are important for
purposes of dynamics management as described in Section 5.6.4. Although the man-
ager cycle is performed once during the life-cycle of a channel, the existing set of
event types assures manager feedback on every single state transition. That is why
there are several types of events that the middle-ware may assign to the Event_Type
�eld of the event class. Whether the manager will trigger a complete cycle over the
triggered event depends on the concrete strategy implemented by the rule-sets. In
the default implementation of the VSM adaptation manager feedback is performed
only when the channel is in state �Manager_Cycle�, however, in a custom imple-
mentation the state-transition may be modi�ed according to the feedback delivered

130

Property Description
Ref_Channel_Instance Reference to the channel

prototype or created
instance

Ref_Src_Endpoint Initiating communication
endpoint

Ref_Dst_Endpoint Destination communication
endpoint

Event_Type Type of event
Event_UID Unique ID of event
Event_TimeStamp Time-stamp of event

instance

Table 5.3: Payload properties of the Channel Event.

Channel State Event Type Description
Prototype ChanState_Prototype Channel has been

intercepted and prototype
created

Managed ChanState_Managed Manager cycle needed
Created ChanState_Created Channel has been created

successfully
Not-Active ChanState_NotActive Channel is inactive, both

peers are not exchanging
any information, but are
still referencing each other

Active ChanState_Active Channel is active, both
peers are communicating

Destroyed ChanState_Destroyed Channel was destroyed

Table 5.4: Channel State-event mapping.

The manager is able to respond to any change in the state of the communication
channel.

131

���������	
�����

��������	
�����

�������

��������	
��

��������	
��

���������

�����

���	
����� 	
������������� ������

����
����

	��
���

����
������������
	��
����

Figure 5.27: Rule-sets representing executable policies upon evaluation of event.

The VSMRuleSet is required by the interpreter for intrinsic VSM LRK completeness,
while an ExtensionRuleSet de�nes additional requirements that a speci�c environ-
ment may demand in order to be managed.

by the manager for every new state. Table 5.4 shows the mapping of channel state
and events with brief description of their purpose. The events that the manager
processes have to carry enough information about both dynamic and static char-
acteristics of the communication. The event ChanState_Prototype supports both
variety management information with its reference to the endpoint meta-data and
at the same time it includes time-stamp information that helps in discovery of time-
delays in management. This enables every management operation to be measur-
able in term of duration in time and contributes to the ability of the management
framework to monitor its own operation dynamics. Events ChanState_Active and
ChanState_NotActive have additional meaning for manager because their order in
the channel state transition together with the time-stamp information that the event
caries determine exactly the duration of every communication, thus providing the
rules evaluating dynamics metrics the necessary information for accurate reasoning.

5.7.2 Condition Sets

Distinctive characteristic of policy-based reasoning is the ability to change and adjust
policies according to the requirements for management.

That is why an important aspect in channel management is the ability to dy-
namically de�ne the decision logic according to which the middle-ware handles com-
munication, thus allow for tuning and speci�c con�guration of channel handling in
general autonomic computing management, and VSM-based parameter tuning for
the speci�c case of VSM requirements management for software.

A VSM condition set represents the needed reasoning logic that a manager can

132

���������	� ��
��	 ����
��	�	���	

���	������

�����������������

�������������

��������

��

���	
�����	�

�����������������

�������������

�����������������

�������������

�������������

�������������

Figure 5.28: Rule evaluation by channel manager.

The �rst routine that a manager executes is evaluation of the VSM set of rules upon
its own creation. When the middle-ware requests evaluation for concrete channel,
the manager takes into consideration both sets - VSM and Extended rule-set.

interpret to evaluate the state of component communication, abilities and needed
parameters for software components to achieve expected communication behavior.

Autonomic management implies the characteristic of self-awareness, and for
compliance with this requirement the proposed here architecture assumes intrin-
sic speci�cation of routines that perform self-monitoring and decisions related to
self-analysis. While self-monitoring capabilities were discussed in Section 5.1, the
self-analysis requirement is met by the speci�cation of a core rule set, corresponding
to the adapted principles for VSM management in three aspects - channel variety
management, knowledge variety management, and dynamics management. In addi-
tion, an extension set of rules can de�ne additional constraints or rules that trigger
desired actions. Figure 5.27 illustrates the hierarchy and the bound requirement of
a manager for existence of the core VSM requirements set.

The core set is not a subject of change and decoupling from the management
whole rule-set is avoided in order to provide the pre-conditions for management
health in aspects su�cient ability to handle channel events and knowledge for rea-

133

Action Property Description

Src_Event_UID declares which event has
triggered the rule

Action_UID unique action id
Report contains understandable by

humans reason for the
action

Timestamp time of action issuing
Action_Name concrete action name
Action_ParamSet parameter values

Table 5.5: Action properties.

Property values have to ensure human-readable reports and concrete action instruc-
tions.

soning about them. Figure 5.28 illustrates the sequence of calls preceding the actual
evaluation of a communication channel by the channel manager. In the moment of
manager creation, the core VSM requirements rule-set is loaded to assure su�cient
knowledge for channel management, after which the channel is evaluated against
them and optionally against the additional set of extension rules. Using the same
communication scheme the middle-ware may require evaluation by the manager on
every event from Table 5.4, thus increasing the verbosity of management feedback
and respectively the opportunity to inspect communication between distributed el-
ements in greater details, a characteristic that potentially saves time for expensive
inspection and manual event correlation.

5.7.3 Actions Set

The role of the manager is to prescribe a list of actions along with reports about a
situation, which will be carried out by the middle-ware in the appropriate time for
channel tuning. This prescription is in the form of list of action structures initialized
by the manager with the appropriate values and represents the planning step in the
standard MAPE management cycle.

An action is a structure with several properties that are needed by the middle-
ware to continue operation.

In order for the middle-ware to correlate the event and the action, the manager
has to provide the needed information.

This is done through a �eld Src_Event_UID carrying the ID of the event trig-
gered by the middle-ware. In order to indicate the speed of reaction of the manager,
the action provides a Timestamp �eld having as value the exact time at which the
action was issued. Additionally, every action in the list has its own ID which is later
used for the actual execution log. Although autonomic systems aim to reduce the

134

Action Name Parameters Description

SetTransducer Ref_Channel,
Ref_Transducer

sets a transducer for the
speci�c channel

NotifyEndpoint Ref_Endpoint,
Message

noti�es endpoint with a
message

DestroyChannel Ref_Channel force channel state to
destroyed

ActivateChannel Ref_Channel activate channel and set
state active

DeactivDeactivateChannel Ref_Channel de-activate channel and set
state to inactive

NullAction - used only for report
purposes

Table 5.6: Action names and parameters for channel management.

human role in management, the �nal instance of management is the human admin-
istration, that is why every management decision carries a human-readable report,
which may be logged in the process of system inspection or debugging. The �elds
Action_Name and Action_ParamSet are providing the necessary instructions for
the actual execution of the management decisions. The two �elds form a seman-
tically valid call that corresponds to the channel API functions for control of the
channel instance.

As it can be seen from Table 5.6 the actions can be used in any of the states in
which a channel is set. This way for every state transition, the middle-ware refers
to manager decisions, which are queued and executed in order of issuing.

135

Chapter 6

Implementing a Middle-ware for

Management of Component

Communication in Heterogeneous

Software Environment

This chapter overviews an implementation of a middle-ware for distributed manage-
ment of component communication and focuses on the ful�llment of requirements
presented in Chapter 5 in order to demonstrate a proof of concept for the proposed
approach.

The middle-ware was implemented according to the guidelines of the proposed
architecture and provides the necessary characteristics for a distributed management
of component communication and addresses the autonomic management challenges
described in Chapter 2 and Chapter 3. In order to achieve this, the middle-ware
includes a model repository, interface channel adapters from the management adap-
tation layer, a channel management run-time and VSM requirements manager. The
implementation can be extended for monitoring of component communication for a
additional set of technologies by implementing standard management adapters for
the concrete framework.

6.1 Components

The implementation consists of elements which communicate in a distributed fashion
without a concrete limitation for their geographical location, as far as network delays
do not a�ect the dynamics of its operation. The communication is achieved through
platform-independent protocols for both access to core management functions and
delivery of management information (Figure 6.1).

136

��������	
�

��������

������������

	
�����������

��������������

�����������

������

������

�������������

������� �������

� �����

 ������������

��������!"#

� ����������������

�����������

#����$����%��������

�#���&�#����$���

�#����

�������

��"#

����

!��'���

��"#

	
�

!��'���

�'���������������

&���������������������� �����

�������

����! ����!

����!%##�" ����!%##�"

&����

�#����'�������

�#���&

Figure 6.1: Structure of the prototype of the channel management middle-ware.

It is a communication hub and channel coordination component in the cybernetically
viable architecture. Communication channels which connect its interfaces with the
rest of the system are implemented in entirely platform-independent manner for
greater extensibility and management capability.

137

��������	
��������

������
����������

���������������

���
����� �����������

��
������

��������

�����	
���

������
��������

������
�

������

� ������

�!����!

� ������

��������

��"���	���

�"

Figure 6.2: Component in Management Adaptation Layer.

Deployment events are delivered to the middle-ware runtime through JMX noti-
�cations, while connector services are responsible for provision of connectors and
transparent channel representation.

6.1.1 Management Adaptation Layer

The management adaptation layer in the sample implementation consists of a two
sets of components that deliver the necessary management information to the run-
time. The �rst group is responsible for communication of events related to deploy-
ment of components, while the second delivers information about communication
acts in run-time phase.

Deployment information is delivered through Java Management Extensions (JMX)
integrated components which are aware of events reported by component hosting
frameworks, such as OSGi, EJB or Service Logic Execution Environment (SLEE)
Building Blocks (BB) including deployment of component, registration of service,
undeployment and unregistering service.

The run-time event sensors are components which either provide wrappers for
system interfaces or standalone services with the help of which components declare
the necessary meta-data for representation of communication channel handled by
the middle-ware run-time.

A component that has the role of sensor has to be able to inspect the state of
the framework and the life-cycle or communication activity of other elements. In
the case of deployment awareness this can be achieved by registering a management
extension that translates internal system events to events understandable by the
middle-ware. In the case of run-time declaration of intention for communication,
the provided services for establishment of connection between the elements have
to trigger events or calls understandable by the middle-ware. This functionality is

138

�����������

	
������

	������������

�������

��������

������������

�������

������������� �����

	����

	����

����

!!��

Figure 6.3: Management Adapter Structure.

Events generated by the management extension component and the service provider
are delegated as calls to the CORBA object adapter sending them over the network
to the middle-ware runtime.

realized with the help of a generic event handler that processes events from both
deployment monitor and connector service providers (Figure 6.3). Once the events
are normalized and consumed by the handler it delegates the execution of calls to
the middle-ware by using the CORBA Object Adapter.

The common event handler provides both generic interface for channel moni-
toring and singularity in the way the middle-ware perceives channel events, thus
simplifying the architecture.

6.1.2 Middle-ware run-time

The central element in channel handling is the middle-ware run-time. It acts as a hub
for communication, channel life-cycle support, integration of channel management
expertise and model re�ection.

It has three main components that support the three aspects of its role - a
CORBA Object Adapter for platform-independent communication, a life-cycle state
machine for management of the channel's state-transition, a model management
client for operations related to element mapping, semantics retrieval and querying
in the model-driven management sub-system (Figure 6.4).

6.1.2.1 Object Adapter (CORBA)

The adapter exposes the functions for channel manipulation and event processing
as a platform-independent remotely accessible application interface, accessible by
deployment and real-time communication sensors. The remote calls are then trans-
lated by the run-time to events passed to the state-machine. Platform independence

139

�����

����	
���
��

�������

��
����	�

�����	�	��

�
�
����	����

���������

������
�

������� !���"����� !�

���������

�������#�����$�
���

���������
����	�

���% ���%

���%

�������

Figure 6.4: Elements of the Middle-ware runtime.

The run-time interacts with sensors over CORBA interfaces, while communication
with the operation manager is achieved through platform-independent and standard
XML message-based protocol.

in communication is an important requirement for extensibility and multi-framework
support. CORBA is a mature platform which focuses on inter-operable communica-
tion and allows remote procedure calls between elements implemented on di�erent
platforms with a large set of programming languages.

6.1.2.2 CIM-Client

In the process of acquisition of management information from the frameworks, the
middle-ware utilizes the standard management platform, implementation of the
WBEM speci�cation which provides a management abstraction (see Section 6.1.3)
and is physically separated from the middle-ware. The communication occurs with
the standard for the management platform protocol CIM-XML. The function of
the client incorporates execution of management procedures, subscription for indi-
cations, querying using a standardized language, association traversal, creation and
manipulation of management instances.

6.1.2.3 Life-cycle State machine

The life-cycle of a channel (see Chapter 5) is managed by a �nite state automate that
reacts to the raised by the management sensors events, and by internal events, �red
by a channel management or the runtime itself. The output of the state-machine is

140

a set of action instructions that are applied by the run-time to a�ect channel state.
The state-machine is the element that coordinates the autonomic management loop.

6.1.2.4 Channel Manager Adapter

The run-time allows selection of a channel management strategy, implemented by
a speci�c manager class. The channel manager adapter allows selection on-demand
and can be used as an interface for integration of external incident expertise, for
example a remotely accessible expert system or knowledge-base for incident manage-
ment. The prototype includes a static set of ECA rules implemented as a Manager
class implementing the VSM requirements policy described in Section 5.7.

6.1.3 Operation Manager

The primary aim of autonomic computing is to provide tools and methods for man-
agement of heterogeneity in IT systems. For this purpose a management system has
to be able to act simultaneously with management interfaces of di�erent kind. The
Operation Manager (Figure 6.5) is a re-usable management framework, part of the
WBEM set of management components, the role of which for the developed proto-
type is to provide an abstract object-oriented level and model-driven management
on a common base of interfaces. It realizes instance representation of the existing
managed elements in the form of accessible and query-enabled knowledge-base im-
plemented using the standard Common Information Model (CIM) speci�cation. A
speci�c positive characteristic of this approach is its open speci�cation and platform-
independent communication mechanisms. Another reason for the selection of CIM
as information base is that it virtually dominates the market of management solu-
tions being integrated in the major commercial operating systems, such as Solaris,
Microsoft Windows, and recently in commercially supported Linux-based solutions.
This ensures a potentially good integration and guaranteed homogeneity in the do-
main of management.

Figure 6.5 illustrates the internal communication �ow by arrows. The CIM-OM
receives indications and executes management calls by routing requests to the appro-
priate management adapters which on their turn communicate with the managed
elements over CORBA. The CIM-OM is capable of supporting model persistence
by utilizing relational database systems, but at the same time to integrate object-
oriented real-time state re�ection and persistent models.

The particular features that are heavily used in the prototype are the query
mechanism Web-based Enterprise Management (WBEM) Query Language (WQL)
(see Figure 6.6) and the platform independent XML-based Remote Procedure Call
(RPC) protocol, speci�cally designed for management operations between CIM-
Client and Operation Managers. In addition, for better integration with graph-based
algorithms for semantic interpretation, clustering or others, the framework provides

141

����

����

	
����

����

���

	
����

������

������

����������������

�������

����

���

�������������

����	�����

��
� ���� ��!!��!!

Figure 6.5: Structure of the Operation Manager.

Accessible for queries and graph-oriented association traversal through platform
independent protocol. The adapters communicate with the components over

CORBA interfaces and provide a re�ection of the real world which the CIM-OM
maps on-to its model schema stored in the CIM repository.

ways to access and traverse associations between managed elements. Every element
which has been associated with the CIM model is observable by standard means of
the WBEM framework.

6.1.4 Communication Adapters

Figure 6.5 shows that the CIM-OM incorporates and depends on management
adapters (OSGi Adapter, EJB adapter). Their single role is to transform the state
of the managed elements which they are able to observe into understandable for
the CIM-OM form. Every adapter utilizes an embedded CORBA adapter in order
to communicate with the management environment. Both component sensors and
management adapters deliver management information to the middle-ware, but it
di�ers in the aspect of information usability: the component sensors initiate the
management cycle, while the management adapters retrieve an actual environment
state. The �rst is important for the middle-ware run-time operation, the latter for
the ability to access complex environment dependencies in a generic manner.

6.1.5 Meta-Model

A notable opportunity opened by the selection of WBEM as a management inte-
gration approach is the ability to map and later query re�ections of the real state
of the management domain. For this purpose the CIM-OM allows extensions of its
management base model to be imported dynamically, corresponding management

142

Figure 6.6: WQL query results visualized in CIM-Client User Interface

The result from executing the query is a list of available instances of managed
elements.

Figure 6.7: Accessing data about instances associated with the CIM base.

143

��������	

��������	�����	
��	
	��

��������	�

���������������� ����������������

�����	������

�������	

�������	�

����������������

���������� ���	��
��������� ���	��

��������	�����	

��������	
��
���	��
�����	
	��!���	
	���"	������	�

#

���������	
	���������	�

�$

$

$

$ $

$
���!���	�"	������	�

�

#
�����	�!���	��"	������	�

�������	�!���	�������"	������	� $ �

�

#�������	�!�����	��"	������	�

$

� ��������	
	��������	�

��������	
	������	������

�
�

�����	����������	

�

�

�

�������	�����	

$

�������	������	

�

Figure 6.8: The Meta-model.

The adaptation of VSM structural requirements in the form of CIM extension.

adapters to link to them and respectively handle the re�ection. As a consequence
this functionality introduces the ability to model and later import the discussed in
Chapter 5 meta-model as extension of the rich management base and link it dynam-
ically to already existing management elements.

6.1.5.1 VSM Adaptation

An adaptation of the structural requirements of VSM has to su�ciently provide
means for modeling of recursive systems, layers of management and a descriptive
mechanism for de�nition of communication channels, as perceived by the cybernetic
de�nition in VSM. The developed meta-model incorporates these features into a sin-
gle CIM extension in order to allow easy and standards-based means for augment-
ing existing management base (Figure 6.8). This approach converts the introduced
CIM-OM capabilities into advantages for the possibility to dynamically link existing
managed systems and elements without any modi�cations in their already deployed
CIM representation or management adapters.

In this case reasoning about the managed system is determined through anal-
ysis performed by the channel management framework on the current state of the
environment and semantic relations of the elements with the introduced adaptation.

Figure 6.8 represents the complete CIM extension as it is imported in the MO.
AC stands for Autonomic Computing and is the pre�x for CIM and implementation
classes in the prototype. The CIM model is capable of describing recursive structures
by using the concept AC_System and AC_Manager. While the �rst is the base
class aggregating manageable elements in a VSM-like system, the second extends
with the notion of management. At the same time it is a regular System as de�ned
by CIM. The resting two extending classes AC_Operation and AC_Channel are
accomplishing the model by introducing respectively the the notion of �nal element

144

of system containment - the operations, and the medium for information transfer -
the channel.

In order to retain relation to the existing management base, the model de�nes
relations that enable description of communicating external for the system elements.
The associationAC_CIMElementAsOperation andAC_CIMElementAsManager help
in identifying of depending Manager-Operation pairs in the existing set of man-
aged CIM elements using the notion of communication channel. The association
AC_ElementToElementOverChannel is the associating relation for the purpose of
identifying any dependency between two CIM elements. The model does not de-
�ne explicitly the way two end-points declare their variety - required and provided,
but for this purpose the prototype uses the already de�ned by the CIM model
way for association of software element identi�cation (CIM_SoftwareIdentity and
CIM_Dependency).

6.1.5.2 System State Adaptation and Access

The meta-model is used by the CIM-OM as a reference to the associations between
elements in order to narrow the selection of entities from which the CIM-OM acquires
the real state of the managed environment. The information must be relevant and
up-to-date. For this purpose the CIM-OM uses a specialized interface through which
it calls native functions responsible for the aggregation of the data - the Common
Management Protocol Interface (CMPI). Modules which implement this interface
are called management providers and can be loaded dynamically or statically in
the run-time environment and register themselves to serve speci�c sets of imported
classes in the repository and provide in real-time the current state of the observed
managed elements. The implemented management providers are able to retrieve
this information on demand by the CIM-OM, or to act independently and send
noti�cations to it, signaling about particular event of interest.

In the process of query processing the CIM-OM takes into consideration the re-
sponsible for every class management provider and delegates the task of retrieving
the information in the correct sequence, with the appropriate protocol or any neces-
sary interactions, for example aggregation of data and normalizing the presentation.
The developed prototype utilizes CMPI to deliver information about the component
states and their hosting frameworks by a connection between the providers and the
management interfaces with the help of CORBA interfaces.

This creates a standard communication mechanism for a large variety of frame-
works and depending on their location (remote or local) can be adjusted accordingly
to optimize performance for local or remote interaction. The concrete implemen-
tation is a CORBA adapter for the JMX interface and opens the opportunity by
using a single interface to interact with all component technologies which use JMX as
management platform, such as J2EE, SLEE or OSGi with the help of JMX-enabling
bundles.

145

��������	
� ��������
�

����	
����
��
����

���
��
�
�����	��

����������
�

������������
�

����	��������	���

����

���
��

����������	
�

������
�	!���
"��#

$

Figure 6.9: Adaptation of the environment state.

An operation manager is able to observe the state of a component framework with
the help of management providers that utilize a CORBA-JMX adapter.

6.2 Extending The Middleware System

The middleware implements a system that may be integrated either locally or with
distributed components communicating over a network connection. It allows inte-
gration of new elements for extension of its spectrum of management. Extensible
aspects are:

• Management adaptation layer - the number of management adapters is not
limited to the implemented set of communication handlers. The new elements
are not required to be pre-registered for their operation because they imple-
ment a common channel activation interface.

• Framework runtime - the speci�c way that a manager handles the communi-
cation establishment and reasoning can be speci�ed by implementation of the
manager's interface which assures interoperability with the framework handles
for manager interaction.

• CIM-Modeling - the operation manager ensures a �exible, dynamic registration
of new classes in the information base. Any new extension schema related to
new managed frameworks are not strictly bound to the management meta-
model and can exist standalone, if required.

• Management Providers - the set of management providers can be easily ex-
tended by just plugging them into the CIM-OM environment (dynamically or
statically). This is implicitly de�ned by the management framework.

The system is extensible with modules by integrating new elements on every level
of operation (Figure 6.10) - management adaptation layer is a loose set of adapters,

146

ManagerImpl_EXT

ManagerImpl_VSM

Channel Middle-ware

OSGi_Bundle

OSGi_Service

ChannelManager

OSGiDeploymentSensor

EJBJMXDeploymentSensor

CIMProviderCIM-OM

CIMModel CIMClass

ProviderImplOSGi

ProviderImplEJB

*

References

Queries

Notifies

*

*

ExtensionsManagementAdaptor

Figure 6.10: Extending the system.

Extending the system on every level (left) of operation is a matter of adding new
elements (right) and registering them with the corresponding layer.

not related to each other, the communication managers provide di�erent strategies
for handling communication and can be selected according to the speci�cs of the
communication. Pluggable CIM management providers are responsible for the per-
ception of the state of the environment, while the set of imported into the CIM
repository classes is extensible by speci�cation (WBEM).

As it can be seen, the prototype allows extension of its functional richness of
the system without changing its architecture and breaking its self-description mech-
anism. Following the architectural approach will ensure the ability to map itself
using the meta-model.

147

���������	
����		��

��	�����	
����
��

��		�������������� �����	�	

�����	������		����	����

������

�������� ��������

����������� ��������
��	

��������	
�����
��

���������
��

�����		��

�

�

�

������	���

���������	
����		��

 �
�����

!"�����
�����������	
����	����

�����������	
����	����

������������	
�������
��	

������������	
����	����

������������	
�������
��	

Figure 6.11: Prototype elements mapped on the VSM meta-model.

Associations AC_CIMElementAsOperation and AC_CIMElementAsManager help
for treating the framework as Operation Manager, channel manager as Manager3
and the communication between them is expressed as event and interface channels.

6.3 VSM Mapping

The described prototype of a management middleware is capable of monitoring
interactions between software components that are not part of itself. For a full self-
management the middleware system has to be able to recognize its own elements
with the same set of management routines used to monitor the rest of the system.
The only missing part for this ful�llment is a proper mapping of the elements of
management system with the help of the CIM model. Once their relations to the
management meta-model have been de�ned the middleware is capable of provid-
ing communication details related to the management operations to the respective
managers. This enables discovery of potential inconsistencies in the communication
between management adapters, middleware and operation manager.

6.3.1 Structural Map

Figure 6.11 illustrates the relations between the elements of the implemented archi-
tecture and the VSM meta-model used by a manager to reason on the compositional
aspect of the system. The middleware is associated as a containing manager (Sys-
tem/Operation Manager) for its role of interaction and management of sensors.

148

The managers belonging to it are associated as Manager3 for their role of higher
management function (System/Manager3). The operational set of VSM elements is
associated with the sensors and management providers which are the �nal point of
interaction of the management framework with the system under control.

6.3.2 Communication Map

The three components communicate using either CORBA interfaces or CIM-XML.
For the purpose of communication management inside the management middleware
itself these elements provide meta-data in the form of statically de�ned �elds submit-
ted to the framework and evaluated by a manager using the channel API described
earlier, with a rule-set implementing no concrete correction actions, but mainly
noti�cation mechanism for reporting of inconsistencies. The CORBA adapter re-
sponsible for invocation of remote channel middleware interface and the CIM client
adapter are mapped with the association AC_CIMElementAsChannel to indicate
an actual instance of a channel between the components.

149

Chapter 7

Results

The Viable Software Architecture for Autonomic Management of Distributed Het-
erogeneous Component-based Systems has been implemented in the form of prototype
described in Chapter 6. This chapter overviews the results gathered in the process of
its development and deployment.

The introduced management model, software architecture and communication
middleware create a new concept for autonomic management. Advantages of this
new approach are the consistent model for system organization management, trans-
parent dynamic interfacing for component communication and self-aware architec-
ture. A key feature of the demonstrated approach is the support for common com-
munication patterns implemented with standards-based components.

The proposed architecture satis�es the management requirements of real-world
scenarios with distributed components and addresses the challenges of the autonomic
management of software components.

7.1 Referencing Real World Scenarios

The presented in this dissertation model, architecture and middleware for auto-
nomic software component communication targets the development of a concept for
management of existing mixed component-based environments.

The developed middleware has been designed to operate with the popular com-
ponent technologies OSGi and EJB to refer to Smart Home real-world scenario for
solution developed at Siemens AG, CT and a custom container for knowledge au-
tonomous knowledge acquisition developed in the frame of Sfb 374 as a technology
component of a scenario for Distributed Product Development System. Table 7.1
presents a map of those technologies related to the target scenarios.

The application of the architecture in two completely di�erent and separated
domains of application is a demonstration of its �exibility with both existing and
custom implementation of component technologies. The communication in both sce-

150

Technologies Smart Home DPD
OSGi Gateway Remote Interfaces
EJB Back-end Knowledge-base
Software AgentContainer - Communication Framework
CommunicationProtocols Web Services, Local

Interfaces, Remote
Interfaces

Protocols Interfaces,
Custom XML, Local
Interfaces, Remote
Interfaces

Table 7.1: Real-world scenarios and used component technologies.

Every scenario involves at least two communication protocols, making them complex
to manage and support.

VSM Mappings Number
Number of System 1 Elements 8
Number of System 3 Elements 2
Number of Management Channels 3
Number of Transducers 1
Number of Mapping Associations 11

Table 7.2: Architectural elements of the management adaptation in Smart Home Scenario

narios involves at least two di�erent communication protocols making both systems
distributed and exhibiting the problems of overhead in component deployment man-
agement, management granularity, parallel component evolution, deep component
dependencies and management complexity overhead.

7.2 Smart Home

The investigated solution for Smart Home was developed as a concept at Siemens
AG, CT. Particularly interesting characteristic of the adopted architecture is its
modularity and total integration of user interface devices, platform services and
third party services in a single domain of management. Its con�guration was a
good use-case for a heterogeneous distributed system that needed a higher level of
management support that integrates cross-container dependency management. The
environment had to provide services running without interruption to a potentially
large number of end-user subscribers and back-end service provision to third party
services. This scenario o�ered the possibility to verify the ability of the VSM man-
agement model adaptation to describe the existing assets of a completely distributed,
service-oriented, component-based system and had directive role in the development
of the management adaptation layer.

The management adaption of the Smart Home solution consisted of sixteen map-

151

Framework Aspects Adaptation Method
OSGi Bundle Deployment No change
EJB Deployment No change
OSGi Monitoring Adapter
EJB Monitoring No change
Bundle Communication Resolver Channel Adapter
EJB Communication Interface Channel Adapter

Table 7.3: Adaptation methods for Smart Home scenario

Types of Instances System 1 System 3 Transducer
OSGi Framework x x

OSGi Service Resolver x
EJB Container x x

EJB Interface Resolver x x
OSGi Framework Monitor x
EJB Framework Monitor x

OSGi Bundle x
EJB x

Table 7.4: Mapping of Smart Home elements

ping relations in total, having three container systems (EJB, OSGi, .NET), three
points of variety transduction and three management channels, respectively sensors
(Table 7.2).

As it can be seen on Table 7.3 and Figure 7.1, the adaptation of the solution
elements for integration of the management system requires little or no modi�cation
of the existing component technology. Deployment monitoring utilized the services
already available in both OSGi and EJB to deliver information about the internal
state of the component life cycle.

For the purpose of dynamic meta-data declaration in actual component com-
munication the service and interface resolvers are implemented as proxies. However
proxy-based service resolving is a trivial approach in development of distributed sys-
tems, which virtually does not a�ect the way of development of new applications.

7.3 Distributed Product Development Systems

The system serving as a reference for a modern distributed product development
support was implemented in the frame of Sfb 374 - Innovative Solutions for Rapid
Product Development, at the Institute for Product Development Support Systems,
IRIS, University of Stuttgart. The con�guration of the system included a set of
completely distributed elements, based on component frameworks, including an in-

152

����������	�

������

���
�������	�

������

��������������
�������

�������������
�������

���

����
���������

���
���������

�����

�����	��
������
 ������

!������	��

���������

	����	��
�"���#"

�$�����
�������� ��������

	����	��
�"���#"

	����	����"���#"

���������

�������%
�$������$�����

�������	��&"����
 ������

Figure 7.1: Smart Home Mapping Associations

153

VSM Mappings Value
Number of System 1 Elements 10
Number of System 3 Elements 3
Number of Management Channels 3
Number of Transducers 3
Number of Mapping Associations 16

Table 7.5: Architectural elements of the management adaptation in Distributed Product

Development Scenario

Framework Elements Adaptation Method
Agent Deployment No change
EJB Deployment No change
MAS Monitoring No change
EJB Framework Monitoring No change
Agent Communication Message Channel Adapter
EJB Communication Interface Channel Adapter

Table 7.6: Adaptation methods for distributed PDP scenario

ternally developed communication platform with autonomous components. This
scenario was particularly interesting for its decentralized communication �ow and
because it served as a reference to the ability of the management architecture to
support in-house developed component frameworks.

Additionally the knowledge-base implemented as EJB container had its own
meta-model for description of RPD process participators and resources. This feature
opens the opportunity for the meta-model to be able to monitor not only software-
elements, but representations of real-world process entities appearing as instances
of persistent EJB components.

The management adaption solution consisted of nineteen mapping relations in
total, including three container systems (EJB, RCP, MAS), three points of variety
transduction and three management channels (Table 7.5, Figure 7.2).

As it can be seen on Table 7.6, the adaptation of system elements for integration
of the management system required little or no modi�cation of the existing compo-
nent technology. Deployment monitoring utilized the already available services of
both Agent Container and EJB server to deliver information about the internal state
of the component life cycle. In the case of software agent framework, monitoring
was facilitated by the multicast environment and implemented as �rst-class element
in the network - a monitoring agent. The same approach is applicable with any
FIPA-compliant software agent framework, for example the popular JADE. For the
purpose of dynamic meta-data declaration in actual component communication the
RPC clients of agent calling remote EJB methods are implemented as proxies.

154

������
�����	��

��
����
��	�
�������

���
������

����
�����
�
������

��

����������
����������

��
����������

�����

���������������
� ����

!
��� "	�

����������

	����	��
��
�"��

�#��� �
������
�

������
�

	����	��
��
�"��

	����	�����
�"��

����������

�������
��� �

�#��� �

�������$

����
��	���������
� ����

�#��� �

�#��� ��#��� �

Figure 7.2: Distributed RPD MAS mapping associations.

Types of Instances System 1 System 3 Transducer
Agent Deployment x x
EJB Container x x
RCP Platform x x
RCP Module x
EJB Entity x

EJB Interface Resolver x x
Agent Connector x x

Module Interface Resolver x x
MAS Monitor x
Agent Entity x

Table 7.7: Mapping of DPD Elements

155

��������� �		
		 �		 �		 		

	

�	

�	

�	

�	

�		

��	

��	

��	

���������������

��������������������

���������� �����������

��������������� ����

�������

����������� ��������

�������

��������������� ����

�����������

��

Figure 7.3: Channel Performance Measurement

7.4 Performance

The concept of communication management introduces unavoidable load for the
operating environment. In order to see the dynamic behavior of communicating
endpoints with MCC, measurements have been conducted using local objects, com-
municating over Interface Channel Adapter, the implementation of which is based
on a dynamic proxy approach, using matching interface delegator. This approach
involves re�ection, which is known for being a not high-performant method, but
still a consistent, predictable and su�cient for the purpose of investigating the dy-
namic communication behavior. Communication between local objects was selected
in order to avoid network tra�c �uctations which may introduce undesirable noise.

There are two stages which are important for the operation of a component
during its life-cycle - its creation and the establishment of connections to other
component interfaces. These two stages have been tested with a set of 700 instances
of objects in three modes - pure instantiation and communication (no middleware
involved), instance creation and communication assisted by the channel framework
(without caching resolved and instantiated elements) and a caching version of the
channel runtime. Figure 7.3 shows the results.

As it can be easily noticed, the channel assisted interaction is signi�cantly slowed
down, largely due to the ine�ective proxy interaction. However, introducing a simple

156

hash-based instance cache mechanism reduced the average time of making an inter-
face call. The linear growth of time for creating instance is due to the increasing pool
of deployed compoennts, which naturally increases the time for creating or �nding
a reference to a managed component. The cache mechanism in this measurement
is useless, as the number of cached elements equals the number of instances. These
results clearly illustrate the existing trade-o� ��exibility-performance�. Increasing
performance using managed communication is a subject of further research.

7.5 Management Model Adaptation

A key motivation for building autonomic systems is the desire to reduce complexity
and heterogeneity. The existing management systems failed to provide adequate
solution for this aim. On the opposite, the implemented adaptation of VSM as a
management model with communication and architectural requirements provided
a uni�ed and su�cient basis to build management support for those systems. Its
ability to describe complex distributed relations in deployment scenarios with pop-
ular in the industry component frameworks has proved its usefulness and viability
as a reference model. Despite of its relatively compact set of structural elements
the adaptation managed to facilitate the modeling of the implemented management
middleware with no changes expressing the target autonomic requirement for self-
awareness and homogeneity. The model can be extended and mapped for a larger
variety of application exhibiting recursive structural organization and management
hierarchies.

The developed implementation illustrated the usefulness of the channel notation
by being able to express local interaction and distributed communication and to
facilitate veri�cation of communication consistency for external managed elements
and with its own internal requisite knowledge and requisite variety requirements
without having the need to introduce variations of dependency management ab-
stractions or mechanisms. This characteristic con�rms the su�ciency of the model
to enable dependency observation, management strategies and transparent com-
munication handling of distributed elements. The implementation of the model's
constraints for variety management and dynamics proved to be useful in dynami-
cally changing environment of evolving components. The tested scenarios included
multiple deployment di�erent development snapshots of communicating OSGi bun-
dles and EJB components as a scenario for evolving communicating system and the
adaptation of the VSM principles for organization were su�cient for expression of
component containment and distribution of variety. Further more the adaptation
handled successfully with no needed for additional modi�cation or editing the in-
ternal management elements variation resembling possible variety in strategies or
version of management interfaces. These results illustrate the validity of the VSM
management constraints and their adaptation for software component management.

The three basic aspects of the model showed have su�cient characteristics for

157

modeling of autonomic management systems for component-based software in het-
erogeneous environment.

7.6 Architecture Implementation

The prototype described in Chapter 6 implements the architecture for autonomic
management of component-based systems which served as a reference management
environment addressing the challenges in autonomic management of component-
based systems. The aim was every challenge as described in Chapter 1 to be ad-
dressed by the abilities of the architecture and its respective implementing elements
in the developed prototype.

7.7 E�ect on Autonomic Management Challenges

The overhead in component deployment management is usually manifested by the
need to have knowledge about the component life-cycle and dependency de�nition,
thus human management has higher probability of fault decision. The implementa-
tion of a per-framework deployment monitor and the normalization of the meta-data
reduces this risk. The concrete elements responsible for this process in the prototype
are the JMX-based monitors which receive noti�cations from the OSGI and the EJB
containers and deliver the information to the middleware by means of normalized
interfaces implemented with CORBA-based communication.

Management granularity is a problem mainly triggered by the heterogeneity in
management interfaces provided by the vendors of the deployed frameworks. The
prototype (respectively the architecture) addressed this problem by a adaptation of
the management information from the JMX, OSGi and custom XML-messages to
calls in an uni�ed interface for monitoring of communication activity. This interface
is implemented by the middleware. Additionally for the purpose of environment
state monitoring and not only communication, the middleware includes a standard
component for normalized management information querying - the CIM Operation
Manager. This eliminated the need to separately monitor the state of the OSGi
framework, the EJB server and the Agent container and manually aggregate the
needed information.

The problem of parallel component evolution is inevitable for it being a major
characteristic of component-based software development. Components re-usability
is a main economic factor driving encapsulation of functionality and its re-usage in
third-party applications. To address the problems related to evolution, semantic and
communication incompatibility the architecture uses the notion of variety without
a concrete semantic about the �type of variety� transmitted between two commu-
nicating components. A higher-level of delegated management for speci�c decision
based on concrete interpretation determines the selection of communication inter-

158

face and optional adaptation element. The implementation of this mechanism in
the prototype is in the form of separation of channel management middleware and
delegation of decisions to a selectable manager. This con�guration brought �exibil-
ity in the selection of decision making algorithm and action sets for speci�c cases
of communication for dynamic interface selection. For example the self-monitoring
feature was implemented with the help of a separate manager with reduced action
set, while external system management could be implemented with a complete set
of response action for channel set-up. Decisions about communication to deploy-
ment of components with variable versions were brought to a speci�cation of a set
of rules, instead of hard-coding them in the components. The architecture allowed
to still follow the re-usability principle of encapsulated code, but helped in avoiding
the drawback of components evolving separately.

A drawback of introducing management mechanisms and automated monitoring
is the additional amount of code and respectively complexity needed to bind man-
aged elements with the management infrastructure, hence the management com-
plexity overhead. Indeed, currently developed autonomic management solutions are
complex in both architectural and implementation aspects. The proposed architec-
ture allowed implementation using mainly standard approaches for communication,
both for the purpose of mature interoperability and for support of existing develop-
ment community. The prototype proved to allow integration with minimum amount
of intervention in the existing component-software con�guration. The adaptation
layer allowed to develop independent sensors and e�ectors that used the existing
management capabilities of the frameworks under control, thus reduced complexity
on the level of application infrastructure and respectively the business process im-
plementation. Integration of a standard management framework, such as CIM-OM
provided an even more open and �exible solution for easy extension and implemen-
tation of management tools, for example GUI consoles or policy programming and
deployment.

The developed concept of managed communication channels applied with the
VSM-adaptation proved to provide much greater �exibility in the de�nition of de-
pendencies between elements on di�erent levels of containment. Current dependency
models do not take the location of a component inside the hierarchy of containment
as necessary preposition for reasoning, creating a large graphs of dependencies with-
out semantic charge for concrete domains and sub-domains of dependency relevancy,
thus component dependencies are major hurdle in management of complex systems.
The architecture proved to facilitate semantically charged dependency management
by using the value VSM adaptation as hierarchic and recursive model. Dependencies
can be de�ned on the levels of servers, frameworks, components and services creat-
ing di�erent views/layers of dependency chains which allows for easier localization
of communication problems.

159

7.7.1 Trade-o�s

The implementation of the architecture, however, proved to exhibit a traditional for
the automated management trade-o� - the larger the system, the more information
about the system has to be provided before its actual deployment, respectively a
longer testing phase. Initial di�culties in implementation are rewarded by further
automation of the management routines. This was manifested during the imple-
mentation of the prototype, which required inclusion of numerous speci�c adapters,
extension models and specialized code for monitoring the state of the frameworks.
Additionally, because of the heterogeneity and the need for normalization, the imple-
mentation includes code implemented in several programming languages. However
this drawback does not a�ect the initial target of handling management complexity
overhead in aspect coupling of management with managing elements.

A second trade-o� was demonstrated in the implementation of the prototype -
a higher level of abstraction tends to slow the operational performance in favor of
greater �exibility and independent components.

The prototype manifested the ability of the proposed architecture to address the
problems of overhead in deployment management, granulated management, paral-
lel component evolution, management complexity overhead and deep component
dependencies by a relatively simple management concept and standard communica-
tion and management components. The major drawbacks of the system proved to
be the traditional automation-complexity trade-o� and the slowed reaction during
deployment process and initial resolving of target communication channel variety,
the latter being a subject of further research and development.

160

Chapter 8

Conclusion

This dissertation focused on the problems of modern distributed software manage-
ment, scenarios, existing architectures and methods for development of self-managed
systems (Chapter 2 and Chapter 3) and proposed an architecture for autonomic
management of distributed component-based software environments (Chapter 4 and
Chapter 5). Chapter 6 described an implementation of the architecture in the form
of distributed monitoring and communication management middleware followed by
the results of the adaptation in Chapter 7. This chapter summarizes the approach
and results, outlines the relevance of the contribution and discusses the approach
limitations as well as potential directions for future development.

8.1 Approach Overview

Distributed software exhibits a growing complexity in management of communica-
tion and deployment of individual components. The major di�culties that follow as
a result of this growth are re�ected in higher probability of human administration
error due to one of the �ve challenges that this dissertation addresses: deployment
management overhead, deep dependencies, parallel component evolution, manage-
ment complexity overhead and management granularity. As a starting point of the
research, this work examined the available concepts for distributed management
and autonomic computing approaches as a main direction for reducing human error
caused by system complexity. The approach that this work used to address the chal-
lenges and minimize human-error is based on adaptation of the mature management
organization model, The Viable System Model (VSM), and a software architecture
that re�ects its requirements as a foundation for a consistent system management
model in both structural and dynamic aspects. A communication management mid-
dleware based on the adaptation and the architectural approach helped to examine
its bene�ts and drawbacks and prove its applicability in heterogeneous component-
based environments with the improvements addressing the autonomic management
challenges. The scenarios of Smart Home and Distributed Product Development

161

Systems were target domains exhibiting software heterogeneity and distributed com-
munication. Both domains had di�erent use cases and target domain of operation
but shared the concept of component encapsulation. The implementation of the
middleware satis�ed the management demand and con�rmed the applicability of
the introduced concept for managed communication. Main drawbacks of the system
is the relatively complex implementation due to the requirement to serve hetero-
geneity and its impact on dynamics metrics in both deployment and communication
aspect.

8.2 Relevance of Contribution

The presented in this dissertation research contributes to the research �eld of auto-
nomic management with a consistent management model that suits the goals and
vision of Autonomic Computing - heterogeneity, complex system management, de-
creasing of human error. In aspect heterogeneity management this thesis contributes
with a common concept for communication management and a set of assertions for
communication health. A key advantage of the concept is the added value of evolu-
tion semantics in communication between decoupled components.

The �eld of complex system management will bene�t from the adaption of the
Viable System Model. Current autonomic frameworks miss to provide a consistent
complexity management model designed especially for this purpose. Beside the IT
oriented adaptation, the model is extensible on higher levels of IT operation and
integration potentially allowing even higher order of management on the level of
business processes and project management.

The work supports the e�ort to decrease human error in IT operation by utilizing
the proposed model for automation in management of component communication.
The middleware implementation provides a component-based approach to life-cycle
management of communication channels on the abstract level, potentially opening
the possibility for integration of communicating elements that were not previously
known or intrinsically de�ned in the management framework.

8.3 Limitations

There are some limitations that this architecture in its current state of research does
not address. The �rst of them is due to its focus on component-based architectures.
Heterogeneity in real-world applications implies deployment of software, which does
not strictly follow the concept of encapsulation and life-cycle management. There
are cases in which a system may be �patched� by a standalone piece of code which
does not have the notion of component, meta-data or container, but simply provides
functionality. These cases are not covered in this work in both aspect management
model and architecture.

162

The second limitation which the presented architecture has is related to the abil-
ity of the middleware to inspect component containers that do not have integrated
management interface. While the notion of component-based sensor (deployment or
dynamic) is convenient on the level of component communication, the management
of component containers is highly dependent on the ability of the speci�c compo-
nent framework to inspect component state and provide this information through
a management interface. While this limitation does not a�ect currently available
and popular component technologies, there are cases in which in-house developed
frameworks are di�cult to adapt to this requirement.

The large variety of frameworks requires a larger variety of sensors - dynamic
communication and deployment sensors. Although the architecture is not dependent
on the concrete way of sensor implementation and provides common interfaces for
meta-data delivery, a larger system with higher degree of heterogeneity will require
a larger set of implemented sensors which determine the quality of management
feedback, thus the requirement for rich set of management sensors. This limitation is
a manifest of the law for requisite variety in control systems and can be overcome by
common development practices following the ideas behind management architecture
frameworks, such as JMX. The research presented in this dissertation did not focus
on performance of management, thus the architecture may introduce limitations
on improvements in aspects deployment and communication establishment speed.
Variable performance impact is due to the overhead of communication wrapping,
management queries, synchronization and meta-data processing.

8.4 Future work

This dissertation introduced a novel approach for autonomic heterogeneity manage-
ment for the domain of distributed computing. The domain of Distributed Product
Development and systems for home automation were investigated. It addressed the
�ve challenges related to automated management of component-based system and
illustrated successful implementation of the proposed architecture but because of its
architectural focus and it still needs improvements in several aspects.

8.4.1 Research in optimization of performance

Every management system adds a degree of overhead a�ecting the performance. The
proposed architecture needs optimization of the mechanics for evaluation of channel
requirements. Possible approaches that may address performance is the adoption
of caching algorithms for faster channel resolving and channel establishment hints
for pre-caching of channels in relation to the announced deployment dependencies
in the meta-data declarations of the deployed components.

163

8.4.2 Research in integration of non-component logic

Component-based application development is not always the choice of software ven-
dors. Sometimes, in-house development produces standalone solutions that does not
always �t any component model. Additional research e�ort is needed to outline the
possible ways for encapsulation of in-house developed solutions that do not adopt
component-models, or are di�cult to be wrapped in component interfaces.

8.4.3 Better tools for monitoring

System management is highly dependent on accessibility. The administration tools
which a system provides often determines the ease of use and the degree of con�gu-
ration errors. The proposed approach provides an excellent opportunity to build rich
administrative applications for visualization of component dependencies, component
communication activity, VSM requirements satisfaction and dynamics metrics.

164

Bibliography

[1] Agarwal, M., Bhatt, V., Liu, H., Putty, V., Schmidt, C., Zhang, G., Zhen,
L. and Parashar, M., AutoMate: Enabling Autonomic Grid Applications, In:
Proceedings of the Autonomic Computing Workshop, 5th Annual Interna-
tional Active Middleware Services Workshop (AMS2003). Seattle, WA, USA
(2003) pp. 48-57, IEEE, 2003

[2] Agrawal, H., Horgan, J.R., Krauser, E. W. and London, S.A., Incremental
regression testing, In Proceedings of the Conference on Software Maintenance
� 1993, pages 1�10, 1993

[3] Antoniu, G., Bouziane, H. L., Breuil, L., Jan, M. and Pérez, Ch., Enabling
Transparent Data Sharing in Component Models, Technical report, Research
Report RR-5796, INRIA, IRISA, Rennes, France, November 2006

[4] Arnautovic, E., Kaindl, H., Falb, J., Gradual transition towards autonomic
software systems based on high-level communication speci�cation, Proceedings
of the 2007 ACM symposium on Applied computing, Seoul, Korea, ACM Press
New York, NY, USA, 2007, Pages: 84 � 89

[5] Ashby, W. R., Introduction to Cybernetics, Chapman & Hall, London, 1956

[6] Aulin, A., The Cybernetic Laws of Social Progress, Pergamon, Oxford, 1982

[7] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Business Pro-
cess Execution Language For Web Services Version 1.1 Speci�cation,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[8] Common Base Event Speci�cation, http://www-
106.ibm.com/developerworks/webservices/library/ws-cbe/

[9] Beer, S., Diagnosing the System of Organizations, John Wiley & Sons, 1995

[10] Beer, S., Cybernetics and Management, English Universities P., 1967

[11] Bertalan�y, L., General System Theory, George Braziller, 1969

165

[12] Blackman, D., Debian Package Management, Part 1: A User's Guide, Linux
Journal, Volume 2000 , Issue 80es (November 2000), Specialized Systems Con-
sultants, Inc., 2000

[13] Bouchenak, S., De Palma, N., Hagimont, D., Krakowiak, S., Taton, C., Auto-
nomic Management of Internet Services: Experience with Self-Optimization
(short paper), in: 3rd International Conference on Autonomic Computing
(ICAC), Dublin, Ireland, June 2006

[14] Bouchenak, S., De Palma, N., Hagimont, D., Taton, C., Autonomic Manage-
ment of Clustered Applications, in: IEEE International Conference on Cluster
Computing, Barcelona, Spain, September 2006

[15] Brada, P., Metadata support for safe component upgrades, 26th Annual Inter-
national Computer Software and Applications Conference, COMPSAC 2000,
pp. 1017 � 1021, 2000

[16] Brooks, R.A., Intelligence Without Reason, in 'Proceedings, IJCAI-91', Syd-
ney, Australia, 1991

[17] Brown, A., A Recovery-Oriented Approach to Dependable Services: Repairing
Past Errors With System-Wide Undo, UC Berkeley Computer Science Division
Technical Report UCB//CSD-04-1304, December 2003

[18] Brown, A. and Patterson, D. A., Embracing Failure: A Case for Recovery-
Oriented Computing (ROC), High Performance Transaction Processing Sym-
posium, Asilomar, CA, October 2001

[19] OSCAR Bundle Repository, http://oscar-osgi.sourceforge.net/

[20] Bustard, D., Sterritt, R., Bendiab, A., Laws, A., Randles, R., Keenan, F., To-
wards a Systemic Approach to Autonomic Systems Engineering, Proceedings
of 12th IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS'05) , pp. 465-472, 2005

[21] Cheng, S., Garlan, D., Schmerl, B., Sousa, J., Spitznagel, B., Steenkiste, P.,
Hu, N., Software Architecture-based Adaptation for Pervasive Systems, Inter-
national Conference on Architecture of Computing Systems Trends in Network
and Pervasive Computing, Karlsruhe, Germany, Volume 2299, April 8-11, 2002

[22] Chen, G., Kong, Q., Integrated Management Solution Architecture, Network
Operations and Management Symposium, IEEE Press, 2000, ISBN 0-7803-
5930-5

[23] Chung, S., An, J., Davalos, S., Service-Oriented Software Reengineering :
SoSR, 40th Annual Hawaii International Conference on System Sciences, 2007.
HICSS 2007, E-ISBN: 0-7695-2755-8

166

[24] Claudel, B., De Palma, N., Lachaize, R., Hagimont, D., Self-protection for
Distributed Component-Based Applications, in: 8th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (formerly Sym-
posium on Self-stabilizing Systems) (SSS 2006), Dallas, TX, USA, November
2006

[25] Eclipse Community Page, http://www.eclipse.org

[26] Java Community Process, http://www.jcp.org

[27] Java Community Process JMX Remote API Speci�cation (JSR 160),
http://jcp.org/en/jsr/detail?id=160

[28] NetBeans Community Page, http://www.netbeans.org

[29] IBM Corporation, An architectural blueprint for autonomic computing, third
edition, June 2005, White Paper

[30] IBM Corporation, Log and trace analyzer for auto-
nomic computing, Online documentation available at:
http://www.alphaworks.ibm.com/tech/logandtrace

[31] Dalakakis, S., Dieterich, M., Roller, D., Warschat, J., Multiagentensystem zur
Wissenskommunikation in der Produktentstehung-Rapid Product Develoment.
In: Wirtschaftsinformatik 2005, "eEconomy eGovernment eSociety". Eds.: O.
K. Ferstel, E. J. Sinz, S. Eckert, T. Isselhorst, Physica-Verlag, Heidelberg,
2005, ISBN 3-7908-1578-8, pp. 1621-1640

[32] Dalakakis, S., Stoyanov, E., Roller, D., A Retrieval Agent Architecture for
Rapid Product Development, In: Perspectives from Europe and Asia on Engi-
neering Design and Manufacture, X.-T

[33] Danciu, V., König, R., Treu, G., Weiss, D., Policy�based Update Manage-
ment in Smart Home Environments (PUSH), Kooperationsbericht Siemens �
MNM�Team, Siemens/TUM�Kooperation, Technical Report, Dezember, 2006

[34] Alexandre Denis, Christian Pérez, Thierry Priol and André Ribes, A
Component-Based Software Infrastructure for Grid Computing. Technical re-
port, Research Report RR-4974, INRIA, IRISA, Rennes, France, October
2003Alexandre Denis, Christian Pérez, Thierry Priol and André Ribes. Padico:
A Component-Based Software Infrastructure for Grid Computing. Technical
report, Research Report RR-4974, INRIA, IRISA, Rennes, France, October
2003

[35] Universal Description, Discovery and Integration (UDDI),
http://www.uddi.org/

167

[36] Diao, Y., Hellerstein, S.L., Parekh, S., Bigus, J.P., Managing Web Server
Performance with AutoTune agents, IBM Systems Journal, Vol. 42, No 1,
2003

[37] Dudzik, S., Einhorn, J., Schönleber, T., Untersuchung des IBM Autonomic
Computing Toolkits, Fachstudie, Universität Stuttgart, Institut für Paralelle
und Verteilte Systeme, 2004

[38] Dulay, N., Heeps, S., Lupu, E., Mathur, R., Sharma, O., Sloman, M., Sventek,
J., AMUSe: Autonomic Management of Ubiquitous e-Health Systems, Pro-
ceedings of the UK e-Science All Hands Meeting 2005

[39] Java 2 Enterprise Edition Speci�cation, http://java.sun.com/javaee/ refer-
ence/index.jsp

[40] Wong, W. E., Horgan, J. R., London, S., Agrawal, H., A Study of E�ective
Regression Testing in Practice, IEEE TENCON Digital Signal Processing Ap-
plications Proceedings, 1996

[41] Fidge, C., Fundamentals of Distributed System Observation, IEEE Software,
Vol. 13, No 6, pp. 77-83, November 1996

[42] Fischer, M., Gall, H. C., EvoGraph: A Lightweight Approach to Evolutionary
and Structural Analysis of Large Software Systems, In proceedings of the 13th
Working Conference on Reverse Engineering (WCRE), Pages: 179-188, IEEE,
2006

[43] Fleury, E., Frénot, S., Building a JMX management interface inside OSGi,
INRIA Rhône-Alpes ARES, 2003

[44] Fleury, M., Reverbel, F., The JBoss Extensible Server, Middleware 2003 -
ACM/IFIP/USENIX International Middleware Conference, 2003

[45] Foster, I. and Kesselman, C., The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1999

[46] Ganek, A. G., Corbi, T.A., The Dawning of The Autonomic Computing Era,
IBM Systems Journal, Vol. 42, NO 1, 2003

[47] Gall, H., Klösch, R., Mittermeir, R., Object-Oriented Re-Architecturing, in 5th
European Software Engineering Conference, September 1995

[48] García, V.G., Sobrado, I. and Uhring, D., On Auto-con�gurable Network De-
vices, From Proceeding (462) Internet and Multimedia Systems and Applica-
tions, 2005

168

[49] Garlan, D., Robert, T., David Wile, D., Acme: Architectural Description of
Component-Based Systems. In Gary T. Leavens and Murali Sitaraman editors,
Foundations of Component-Based Systems, Pages 47-68, Cambridge Univer-
sity Press, 2000

[50] Gjørven, E., Rouvoy, R., and Eliassen, F., Cross-layer self-adaptation of
service-oriented architectures, In Proceedings of the 3rd Workshop on Mid-
dleware For Service Oriented Computing (Leuven, Belgium, December 01 -
05, 2008), MW4SOC '08. ACM, New York, NY, 37-42, 2008

[51] Next Generation Operations Support System (NGOSS) Lifecycle,
http://www.tmforum.org/browse.aspx?catID=1683

[52] Gray, J., Why do computers stop and what can be done about it?, Symposium
on Reliability in Distributed Software and Database Systems, 1986

[53] Griswold, W.G., Shonle, M., Sullivan, K., Modular software design with cross-
cutting interfaces, IEEE Software, Volume 23, Issue 1, Pages 51 � 60, 2006

[54] Hale, J. C., Seamless and Secure Interoperation of Heterogeneous Distributed
Objects, Doctoral Thesis, University of Tulsa, 1997

[55] Herring, C. and Kaplan, S., The Viable System Model for Software, In 4th
World Multiconference on Systemics, Cybernetics and Informatics, 2000

[56] Hinchey, M. G. and Sterritt, R., Self-managing software, IEEE Computer,
39(2):107� 109, 2006

[57] Hnetynka, P., A Model-driven Environment for Component Deployment, Pro-
ceedings of SERA 2005, Mount Pleasant, Michigan, USA, IEEE CS, ISBN
0-7695-2297-1, pp. 6-13, Aug 2005

[58] Horn, P., Autonomic Computing: IBM's Perspective on the State of Informa-
tion Technology, IBM Corporation, October 15, 2001

[59] Chen, H., Kim, B., Yang, J., Hariri, S., Parashar, M., Autonomic Runtime
System for Large Scale Parallel and Distributed Applications, UPP Workshop
(Unconventional Programming Paradigms), Sept 15-17, 2004

[60] Chen, H., Hariri, S., Kim, B., Zhang, M., Zhang, Y., Khargharia, B., Parashar,
M., Self-Deployment and Self-Con�guration of Network Centric Service, IEEE
International Conference on Pervasive Computing (IEEE ICPC), 2004

[61] The Internet Society, Network Working Group, Version 2 of the Protocol Op-
erations for the Simple Network Management Protocol (SNMP), 2002

[62] The Internet Society, SNMPv3 Management Information Base Speci�cation,
http://tools.ietf.org/html/rfc3418, 2003

169

[63] Iqbal, R., James, A., Gatward, R., A framework for interoperability of hetero-
geneous systems, Proeceedings from 14th International Workshop on Database
and Expert Systems Applications, 1-5 Sept. 2003, pp.768 � 772, 2003

[64] Hutcheson, M. L., Software Testing Fundamentals: Methods and Metrics, Wi-
ley, 1st edition, April 11, 2003

[65] Corba IIOP Speci�cation, http://www.omg.org/technology/documents/ for-
mal/corba_iiop.htm

[66] Kalibera, T., Tuma, P., Distributed Component System Based On Architecture
Description: The SOFA Experience, Proceedings of DOA 2002, Irvine, CA,
USA, Copyright (C) Springer-Verlag, pp. 981-994, LNCS2519, ISBN 3-540-
00106-9, ISSN 0302-9743, Oct 2002

[67] Keromytis, A. D., Parekh, J., Gross, Ph. N., Kaiser, G., Misra, V., Nieh,
J., Rubenstein, D., Stolfo, S., A holistic approach to service survivability,
Proceedings of the 2003 ACM workshop on Survivable and self-regenerative
systems: in association with 10th ACM Conference on Computer and Com-
munications Security, Pages: 11 - 22, 2003

[68] Kikuchi, S., Tsuchiya, S., Adachi, M., Katsuyama, T., "Policy Veri�cation and
Validation Framework Based on Model Checking Approach", Autonomic Com-
puting, International Conference on, vol. 0, no. 0, pp. 1, Fourth International
Conference on Autonomic Computing (ICAC'07), 2007

[69] Kozaczynski, W., Booch, G.Software, Component-Based Software Engineer-
ing, IEEE Volume 15, Issue 5, Sep/Oct 1998 Page(s):34 � 36

[70] Kuo, Benjamin C., Automatic Control Systems (6th ed.), New Jersey: Prentice
Hall. ISBN 0-13-051046-7, 1991

[71] Kwiat, K., Ren, Sh., A Coordination Model for Improving Software System
Attack-tolerance and Survivability in Open Hostile Environments, sutc, pp.
394-402, IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing -Vol 1 (SUTC'06), 2006

[72] Kyaruzi, J., van Katwijk, Concerns on Architecture-Centered Software Devel-
opment, A Survey, Transactions of the SDPS, Sep 2000, Vol. 4., No 3, pp.
13-35

[73] Lahmadi, A., Andrey, L., Festor, O., On the Impact of Management on the
Performance of a Managed System: A JMX-Based Management Case Study,
In: 16th IFIP/IEEE International Workshop on Distributed Systems: Oper-
ations and Management - Management of Ambient Networks - DSOM 2005,
Barcelona, Spain, Springer-Verlag, Oct 2005, vol. 3775, p. 24�35

170

[74] Lee, J., Kim, J., Gyu-Sang Shin, Facilitating Reuse of Software Components
using Repository Technology, apsec, p. 136, 10th Asia-Paci�c Software Engi-
neering Conference (APSEC'03), 2003

[75] Lehman, M.M., Programs, Life Cycles, and Laws of Software Evolution, Pro-
ceedings of the IEEE 68(9), pp. 1060�1076, September 1980

[76] Lehman, M.M., On Evidence Supporting the FEAST Hypothesis and the
Laws of Software Evolution, with DE Perry and JF Ramil, Proc. Metrics'98,
Bethesda, Maryland, 20-21 Nov. 1998

[77] Lehman, M.M., The Future of Software - Managing Evolution, inv. contr. to
sp. ed. of IEEE Software, pp. 40-44, Jan. 1998

[78] Lehman, M.M., Models in Software Development and Evolution, Int. Conf. on
the Software Process Modelling in Practice, London, 22-23 Apr. 1993

[79] Liu, D., Peng, J., Law, K.H., Wiederhold, G., Sriram, R.D., Composition
of engineering web services with distributed data-�ows and computations, Ad-
vanced Engineering Informatics 19(1): 25-42 (2005)

[80] Mahmooda, S., Laia, R., A survey of component based system quality assurance
and assessment, Information and Software Technology, Volume 47, Issue 10,
pp. 693-707, 2005

[81] Distributed Management Task Force (DMTF), Common Management Model
(CIM) Standards, http://www.dmtf.org/standards/cim

[82] Sun Microsystems, Java Management Extensions (JMX),
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

[83] Object Management Group, CORBA Naming Service,
http://www.omg.org/technology/documents/formal/naming_service.htm

[84] Meijer, E., Gough, J., Technical Overview of the Common Language Runtime,
Microsoft Research, 2000

[85] Melcher, B., Mitchell, B., Towards an Autonomic Framework: Self-
Con�guring Network Services and Developing Autonomic Applications, Intel
Technology Journal, Volume 8, Section 4, November 17, 2004

[86] Meyers, R.A., Cybernetics and Second-Order Cybernetics , Encyclopedia of
Physical Science & Technology, Academic Press, New York USA, 2001

[87] Mezini, M., Seiter, L., Lieberherr, K., Component integration with pluggable
composite adapters In Software Architectures and Component Technology,
Kluwer, 2000

171

[88] Moore, B., Ellesson, E., Strassner, J., Westerinen, A., RFC 3060 - Policy Core
Information Model, Version 1, Speci�cation

[89] Sun Microsystems, Java Naming and Directory Services -
http://java.sun.com/products/jndi/

[90] Nett, E., Mock, M., Theisohn, P., Managing dependencies-a key problem in
fault-tolerant distributedalgorithms, Fault-Tolerant Computing, FTCS-27. Di-
gest of Papers., Twenty-Seventh Annual International Symposium 24-27 Jun
1997, pp. :2 � 10, 1997

[91] Nosek, J. T., Roth, I., A comparison of formal knowledge representation
schemes as communication tools; predicate logic vs semantic network, Inter-
national Journal of Man-Machine Studies, Volume 33 , Issue 2 (August 1990),
Pages: 227 - 239, 1990

[92] Opdyke, W. F., Refactoring Object-Oriented Frameworks, PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, Dept. of Computer Science, 1992

[93] Opletal, S., Dalakakis, S., Roller, D., Towards Semantic-Based CAD User
Interface and Core Components, In: "Applications of Digital Techniques in
Industrial Design Engineering", Proceedings of the 6th International Confer-
ence on Computer-Aided Industrial Desingn & Conceptual Desingn. Eds: Pan,
Y., Vergeest, J., Lin, Z., Wang, Ch., Sun, S., Hu, Z., Tang, Y., Zhou, L., Inter-
national Academic Publishers, World Publishing Corporation, Beijing, ISBN
7-5062-7444-2, pp. 497-502, 2005

[94] Oreizy, P., Gorlick, M.M., Taylor, R. N., An Architecture-Based Approach to
Self-Adaptive Software, IEEE Intelligent Systems, Volume 14 , Issue 3 (May
1999), Pages: 54 - 62 , 1999

[95] Parashar, M., AutoMate: Enabling Autonomic Applications, IBM Visit, Rut-
gers University, NJ, USA, November 2003

[96] Patterson, D. A., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J.,
Enriquez, P., Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry,
N., Tetzla�, W., Traupman, J., Treuhaft, N., Recovery-Oriented Computing
(ROC): Motivation, De�nition, Techniques, and Case Studies, U.C. Berke-
ley Computer Science Technical Report, UCB//CSD-02-1175, University of
California, Berkeley, March 15, 2002

[97] Pinzger, M., Fischer, M. and Gall, H.C., Towards an Integrated View on Archi-
tecture and its Evolution, Electronic Notes in Theoretical Computer Science,
Pages: 183-196, 2005

[98] Universal Plug&Play (UPnP) Community, http://www.upnp.org

172

[99] Ranganathan, A. and Campbell, R. H., Pervasive Autonomic Computing
Based on Planning, IEEE International Conference on Autonomic Computing
(ICAC 2004), New York, NY, US,. May 17-18, 2004

[100] FIPA, Recruiting Interaction Protocol Speci�cation, Foundation for Intelligent
Physical Agents, http://www.�pa.org

[101] Riel, A. J., Object Oriented Design Heuristics, Addison-Wesley Pub Co, 1st
edition, April 30, 1996

[102] Ritsko, J. J., Birman, A., Evolution of Grid Computing Architecture and Grid
Adoption Models, IBM Systems Journal Vol. 43, No 4, 2004

[103] Sahoo, R. K., Rish, I., Oliner, A. J., Autonomic Computing Features for Large-
scale Server Management and Control., et. al. IJCAI-03 workshop on AI and
Autonomic Computing, August 2003

[104] Sun Microsystems, Java RMI Speci�cation,
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html

[105] Roller, D., Me²ina, M., Lampasona, C., Concurrency Control and Locking in
Knowledge Base for Rapid Product Development, In: Luo, Y. (Ed.), Coopera-
tive Design, Visualization, and Engineering.Lecture Notes in Computerscience,
Springer-Verlag, Berlin Heidelberg New York, ISBN 3-540 28948-8, pp. 79-85,
2005

[106] Rothermel, G. and Harrold, M., Analyzing regression test selection techniques,
IEEE Transactions on Software Engineering, 22(8):529�551, August 1996

[107] Rothermel, G. and Harrold, M.J., A safe e�cient regression test selection
technique, ACM Transactions on Software Engineering and Methodology,
6(2):173�210, April 1997

[108] Rothermel, K., Dürr, Fr., Location-based Services: Auf dem Weg zu kon-
textbezogenen Informations- und Kommunikationssystemen, In: ITG (ed.):
Jubiläumsfachtagung 50 Jahre ITG: Zukunft durch Informationstechnik �
Schnell-Mobil-Intelligent., Universität Stuttgart : Sonderforschungsbereich
SFB 627 (Nexus: Umgebungsmodelle für mobile kontextbezogene Systeme).,
pp121-128, deutsch, VDE-Verlag, ISBN: 3-8007-2825-7, 2004

[109] Open Services Gateway Initiative (OSGi) Aliance, http://osgi.org

[110] Oh, S., J., Sang Ho Lee, Resource Selection for Autonomic Database Tuning,
ICDEW archive, Proceedings of the 21st International Conference on Data
Engineering Workshops, IEEE Computer Society, Washington, DC, USA, pp
1218, 2005

173

[111] Schmidt, D., Stal, M., Rohnert, H., Buschmann, Fr., Pattern Oriented Soft-
ware Architectures, Volume 2 : Patterns for Concurrent and Networked Ob-
jects, John, Wiley & Sons, 2000

[112] Shannon, C. E., The Mathematical Theory of Communication, University of
Illinois Press, Chicago, 1963

[113] Sicard, S., Boyer, F., and De Palma, Using components for architecture-based
management: the self-repair case, In Proceedings of the 30th international
Conference on Software Engineering (Leipzig, Germany, May 10 - 18, 2008).
ICSE '08. ACM, New York, NY, 101-110, 2008

[114] Namjoshi, K. Sh., Ameliorating the State Space Explosion Problem, PhD the-
sis, UT Austin, 1998

[115] Sobr, L., Tuma, P., SOFAnet: Middleware for Software Distribution over In-
ternet, In proceedings of Symposium on Applications and the Internet (SAINT
2005), Trento, Italy, Copyright (C) IEEE, Piscataway, New Jersey, USA, ISBN
0-7695-2262-9, pp. 48-53, Feb 2005

[116] Sridharan, B., Mathur, A. P., Infrastructure for the Management of Smart
Homes, Whitepapaper, Spring SERC Showcase 2001

[117] Stevens, G., Quaisser, G., Klann, M., Breaking it up: an Industrial Case Study
of Component-Based Tailorable Software Design, Springer, 2005

[118] Stoyanov, E., Roller, D., Robust Software Architecture Design of Distributed
Product Development System, in: D.; Roller, S. Opletal. (Hrsg.): ELEK-
TROTECHNIK CAD � Intelligente Genetische Algorithmen Aktuelle En-
twicklungen, Aachen: Shaker, ISBN 3-8322-5568-0, pp. 21-32, 2006

[119] Stoyanov, E., Roller, D., Wischy, M., Using Managed Communication Chan-
nels in Software Components, 20th International Conference on Advanced In-
formation Networking and Applications, Volume 2 (AINA'06), IEEE Com-
puter Society, Vienna, Austria, ISBN: 0-7965-2466-4, pp. 499-503, 2006

[120] Stoyanov, E., MacWilliams, A., Wischy, M., Roller, D., Distributed Software
Maintenance Using an Autonomic System Management Approach based on
the Viable System Model, in P.Dini, D. Ayed (Eds), Proceedings of icas,
International Confernce on Autonomic and Autonomous Systems (ICAS'06),
IEEE Computer Society, San Jose, ISBN: 0-7695-2653-5, pp. 58-64 17, 2006,

[121] Stoyanov, E., Wischy, M., Roller, D., Using Managed Communication Chan-
nels in Software Components, Proceedings of ACM International Conference
on Computing Frontiers, Ischia, Italy, 2006, session: Reconference on auto-
nomic computing, ACM Press, New York NY, USA, ISBN: 1-59593-302-2,
pp. 177-186, 33 NS

174

[122] Stoyanov, E., Wischy, M., Roller, D., Cybernetics and General Systems Theory
(GST) Principles for Autonomic Computing Design, S. Kawada (Ed), Pro-
ceedings of icac, Second International Conference on Autonomic Computing
(ICA'05), IEEE Computer Society, Los Alamitos USA, ISBN 0-7695-2276-9,
pp. 389-390, 2005

[123] Stoyanov, E., Dalakakis, S., Roller, D., Wischy, M., Supporting the Rapid
Product Development Requirements by a viable Software Architecture. In: En-
gineering Design and the Global Economy. Eds.: Samuel, A., Lewis, W., In-
stitution of Engineers Australia, Barton, ISBN 0-85825-788-2, pp. 636-637,
2005

[124] Sventek, J., Badr, N., Dulay, N., Heeps, S., Lupu, E., Sloman, M., Self-
Managed Cells and their Federation, Proceedings of the 17th Conference on
Advanced Information Systems Engineering, 2005

[125] Takemiya, H., Shudo, K., Tanaka,Y., Constructing Grid Applications Using
Standard Grid Middleware, Journal of Grid Computing, Kluwer Academic
Publishers 117-131, 2004

[126] W3C Technical Reports and Publications, http://www.w3.org/TR/

[127] Thiel, S., Dalakakis, S., Roller, D., A Learning Agent for Knowledge Extraction
from an Active Semantic Network. IEC (Prague) 2005: 217-220, 2005

[128] Trumler, W., Bagci, F., Petzold, J., Ungerer, T., Smart Doorplates - toward
an autonomic computing, Autonomic Computing Workshop, 2003, Page: 42 �
47, 2003

[129] Trumler, W., Klaus, R. and Ungerer, T., Self-con�guration via Cooperative
Social Behavior, Third International Conference, ATC 2006, Wuhan, China,
2006

[130] Trumler, W., Bagci, F., Petzold, J., Theo Ungerer, AMUN - autonomic mid-
dleware for ubiquitous environments applied to the smart doorplate, ELSE-
VIER Advanced Engineering Informatics, Volume 19 Issue 3, Pages 243-252,
2005

[131] Valetto, G., Kaiser, G., Phung, D., A Uniform Programming Abstraction for
E�ecting Autonomic Adaptations onto Software Systems, Proceedings from
Second International Conference on Autonomic Computing (ICAC'05), IEEE
Press, 2005, pp. 286-297

[132] van Moorsel, A.P.A. and Wolter, K., Analysis of Restart Mechanisms in Soft-
ware Systems, IEEE Transactions on Software Engineering, Vol. 32, Issue 8,
pp. 547-558

175

[133] van Moorsel, A.P.A., Grid, Management and Self-Management, The Com-
puter Journal, Vol. 48, Issue 3, pp. 325-332

[134] Want, R., Pering, T. and Tennenhouse, D., Comparing Autonomic and Proac-
tive Computing, IBM Systems Journal 42, No. 1, 129-135 2003

[135] Whiteson, S., Stone, P., Towards autonomic computing: adaptive network
routing and scheduling, Proceedings from International Conference on Auto-
nomic Computing, 2004, 17-18 May 2004, pp 286 � 287

[136] Witten, I. H., Frank, E., Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition, Morgan Kaufmann; 2 edition (June 10, 2005),
ISBN-13: 978-0120884070

[137] Yan, Ch., Jiang, Y., Juster, N. P. (eds.), Perspectives from Europe and Asia on
Engineering Design and Manufacture: A Comparison of Engineering Design
and Manufacture in Europe and Asia, Kluwer Academic Publishers, Dordrecht
Boston London, ISBN 1-40202211-5, pp. 41-58, 2004

[138] Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Exten-
sible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation,
4th February 2004

[139] Zao, F., Intelligent Computing, About Complex Systems, Mathematics and
Computers Simulation, 36: 423-432, 1994

[140] �N1: Revolutionary IT Architecture for Business�
www.sun.com/software/solutions/n1/overview.html, visited Feb. 13, pp.
1-3, 2003

176

Curriculum Vitae

Emil Stoyanov was born in the town of Ruse, Bulgaria. In the summer of 1997, three
months after graduating the highschool he was enrolled into the course "Computer
Systems and Technologies" at the University of Ruse. During his studies for the
degree of �Master of Science� he participated in a series of international academic
projects related to distributed control, measurement and simulation. In December
of year 2002 Emil Stoyanov was assigned a helping function with the research team
of Institut für Rechnergestützte Ingenieursysteme (IRIS) at Universität Stuttgart
where he assisted in the development of a distributed knowledge and communication
platform. An year later he started his PhD studies in the frame of a cooperation be-
tween IRIS and Siemens Corporate Technology, Munich. Main topic of his research
is development of distributed software components and system management. As of
2008 Emil Stoyanov is leading a team of software engineers at a Bulgarian provider
of research and development services in the �eld of telecommunications and mobile
applications.

177

