
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3150

Underlay aware approach to
support quality of service in
publish-subscribe systems

Christian Schieberle

Course of Study: Software Engineering

Examiner: Prof. Dr. Dr. h. c. Kurt Rothermel

Supervisor: M. Sc. M. Adnan Tariq

Commenced: March 1, 2011

Completed: August 31, 2011

CR-Classification: C.2.4, C.2.2

Contents

1 Abstract 7

2 Introduction 9

3 Related work 11
3.1 QoS in publish-subscribe systems . 11
3.2 QoS in overlays . 12
3.3 Topology inference . 13
3.4 Approximation algorithms for Minimum Routing Cost Spanning Trees 13

4 System model and problem statement 15
4.1 System model . 15
4.2 Problem statement . 18

5 Approach overview 19

6 Topology discovery 23
6.1 Prefixes . 24
6.2 Joining the overlay . 25
6.3 Limited flooding strategy . 27
6.4 Random walk strategy . 28
6.5 Leaving the overlay and node failure . 29
6.6 Evaluations . 29

6.6.1 Complexity analysis . 29
6.6.2 Simulations . 30

Experimental setup . 30
Metrics . 31
Result discussion . 32

6.6.3 Anonymous routers and router aliases 41

7 Routing overlay 49
7.1 Approximation by a Minimum Spanning Tree (MST) 49
7.2 Approximation by a Shortest Path Tree (SPT) rooted at the median 50
7.3 Approximation by Campos’ algorithm . 50

3

7.4 Approximation by our core-based approach . 51
7.4.1 Structure of an MRCT . 51
7.4.2 Desired structure of the core . 53

7.5 Distributed algorithm . 54
7.5.1 Voting phase . 54
7.5.2 Connection phase . 55

Termination . 57
7.5.3 Routing overlay formation . 59
7.5.4 Churn . 59

7.6 Publish/subscribe routing . 59
7.7 Evaluations . 60

7.7.1 Complexity analysis . 60
Voting phase . 60
Connection phase . 60

7.7.2 Simulations . 61
Experimental setup . 61
Metrics . 61
Results . 61

7.7.3 Summary of results . 64
7.8 Upper and lower bounds on cost and stretch . 64

8 Conclusion and future work 69
8.1 Conclusion . 69
8.2 Future work . 69

Bibliography 71

4

List of Figures

5.1 Different layers of abstraction having different optimization objectives. 19
5.2 Unicast-like message delivery from producer p to consumers c1 and c2 (a)

compared to underlay-aware message forwarding based on router-level path
matching (b). Multiple link usage is depicted by bold lines. 20

6.1 Simple underlay network. Which connections need to be maintained in a
peer-to-peer overlay to accurately represent this situation? 23

6.2 An exemplary join process of a peer F joining an established discovery overlay. . 26
6.3 Router coverage for the limited flooding strategy for different λ-values. The

maximum number of neighbors is limited to n, n
2 and

√
n. 33

6.4 Link coverage for the limited flooding strategy for different λ-values. The
maximum number of neighbors is limited to n, n

2 and
√

n. 34
6.5 Stretch for the limited flooding strategy for different λ-values. The maximum

number of neighbors is limited to n, n
2 and

√
n. 35

6.6 Average number of neighbors on the limited flooding strategy for different
λ-values. The maximum number of neighbors is limited to n, n

2 and
√

n. 36
6.7 Number of traceroutes with the limited flooding strategy for different λ-values.

The maximum number of neighbors is limited to n, n
2 and

√
n. 37

6.8 Number of join messages with the limited flooding strategy for different λ-
values. The maximum number of neighbors is limited to n, n

2 and
√

n. 38
6.9 Link stress ratio with the limited flooding strategy for different λ-values. The

maximum number of neighbors is limited to n, n
2 and

√
n. 40

6.10 Router coverage for the random walk strategy for different σ-values. 42
6.11 Link coverage for the random walk strategy for different σ-values. 43
6.12 Stretch for the random walk strategy for different σ-values. 44
6.13 Link stress ratio for the random walk strategy for different σ-values. 45
6.14 Average number of neighbors for the random walk strategy for different σ-values. 46
6.15 Number of traceroutes for the random walk strategy for different σ-values. . . . 47
6.16 Number of join messages for the random walk strategy for different σ-values. . 48

7.1 A Minimum Spanning tree failing to approximate a Minimum Routing Cost Tree
of a given topology. A similar observation was made by Chao et al.[7] 50

7.2 The core of the graph is a tree connecting the relay nodes. 53

5

7.3 Overlay routing stretch compared to discovery overlay for different λ-values.
The maximum number of neighbors is limited to n. 62

7.4 Overlay routing stretch compared to the underlay network for different λ-values.
The maximum number of neighbors is limited to n. 63

7.5 Overlay routing stretch compared to discovery overlay for different λ-values.
The maximum number of neighbors is limited to

√
n. 65

7.6 Overlay routing stretch compared to the underlay network for different λ-values.
The maximum number of neighbors is limited to

√
n. 66

List of Tables

6.1 Characteristics of generated router-level topologies 31

List of Algorithms

7.1 Init Peer (at node u) . 56
7.2 OnReceive(at node u) . 57
7.3 CheckSync(at node u) . 57
7.4 OnReceive(at node u) . 58
7.5 CheckSync(at node u) . 58

6

1 Abstract

Providing delay-reduced routing is important in publish-subscribe systems where timely de-
livery of event notifications is a critical factor affecting system operation or user experience.
However, common research focused primarily on alleviating false-positives. More recent ef-
forts aim towards quality related issues through adapting the overlay according to subscriber
requirements but leaving underlying network characteristics aside.

It is commonly accepted that efficient routing can only be achieved when underlying network
characteristics are respected. Even so, incorporating underlay-aware strategies to build low-
stretch overlays is not considered in many distributed environments.

This work focuses on solving the problem of establishing an efficient underlay-aware routing
mechanism in a content-based publish-subscribe system. In particular, we strive to reduce
end-to-end delay among communication partners. Thereby, our contributions are twofold:
We will develop a topology inference scheme for unstructured peer-to-peer networks and
introduce a routing mechanism reducing overall end-to-end delay among peers. Experimental
evaluations will be given for different Internet-like router topologies showing that the approach
is capable of modeling an underlay network in an efficient and accurate manner. Furthermore,
we will show the positive impact on the stretch of the overlay to outline the concept as a source
for efficient event notification delivery in a publish-subscribe environment.

7

2 Introduction

Operation of distributed applications in dynamic environments is influenced by many factors.
In general systems, poor performance may only cause impaired user experience, while in more
sophisticated systems like stock exchange applications or environmental monitoring systems,
providing timely delivery of event notifications is an essential requirement. Du to the tight
coupling of the latter applications to real-world incidents where squandering time may directly
result in loss of economic wealth or even physical inviolability.

A crucial factor to performance in that context is reducing end-to-end delay between hosts.
It is therefore critical to relate overlay connections to network links exhibiting low latency.
Necessary information to implement such a behavior is not at hand without prior efforts. Being
able to take network characteristics into account requires inferring of topology information
first. Approaches that gain and incorporate such knowledge to a certain degree are said to be
underlay-aware.

The ratio between the end-to-end latency of the overlay and the network-level delay can be
measured and is commonly referred to as stretch. It has significant impact on routing cost as it
defines the lower bound of the achievable performance.

Dealing with environments where communication partners are dynamically changing and
decoupled adds to the complexity of the problem. The publish-subscribe paradigm is a typical
representative of such environments as message consumers are addressed indirectly by the
content of a message rather than by name or identifier. Participants may express their interests
in specific events by issuing subscriptions. Events are emitted by publishers without knowledge
of receivers, therefore notifications have to be propagated throughout the network deliberately
to reach subscribers.

The expressiveness varies in the different types of subscriptions. Topic-based subscriptions
for instance are limited to predefined subjects, while content-based subscriptions permit the
definition of attributes and allow filtering on content making them serve a more expressive
purpose.

One can categorize the different architectures providing the upper mentioned capabilities of
publish-subscribe systems as follows: The common approach implements message brokers.
Each participant connects to a broker using a dedicated overlay where event notifications are
disseminated solely among brokers. Most recent research however is focusing on techniques
that implement peer-to-peer overlays where participants have equal abilities.

9

2 Introduction

In this thesis, we will study the problem of establishing an efficient, underlay-aware routing
mechanism for unstructured peer-to-peer environments. The objective is to contribute to
quality of service in content-based publish-subscribe systems. We are proposing a distributed
topology inference scheme that maintains a peer-to-peer overlay based upon overlapping
paths on the router-level. Our second contribution will be the development of a mechanism
reducing overall routing cost by decreasing end-to-end delay between peers. Therefore, we
will introduce a distributed algorithm building and maintaining an approximate minimum
routing cost spanning tree. The routing overlay is used to establish a content-based publish-
subscribe system that uses a filter-based approach to propagate event notifications and to
reduce false-positives.

We will show experimentally that the inference scheme is able to draw an accurate low-stretch
representation of the underlying network. Simulations reveal that achievable stretch is not
exclusively related to inference overhead, but also to the amount of dedicated local space.
Values close to the optimum can be reached calling for significantly less communication
overhead compared to the naive n-by-n approach. Furthermore, simulations show that the
routing mechanism is capable of achieving improved results compared to other approaches.

This thesis is structured as follows: After discussing related work in the following chapter, we
will define the system model and formulate the problem statement. An approach overview
is given in chapter 5, while the process of topology discovery and routing are detailed in
chapters 6 and 7. The last chapter concludes the work and offers a prospect of possible future
work.

10

3 Related work

In the following, we will briefly introduce related work that aims towards providing quality of
service in terms of routing cost reduction in publish-subscribe systems and general overlays.

3.1 QoS in publish-subscribe systems

Tariq et al. [25] recently proposed an approach to satisfy subscriber-defined delay require-
ments in a publish-subscribe environment: Subscribers maintain the overlay by establishing
connections in a peer-to-peer system. To balance the trade-off among reducing false-positives
and improving scalability. The authors distinguish between two types of subscriptions, namely
user-level and peer-level subscriptions. User-level subscriptions represent the original interest,
while the peer-level subscriptions define the notifications a peer receives due to forwarding.
The peer-level subscription is generated by spatial indexing within a decomposed event space.
Subscribers satisfy their delay requirements by connecting to peers having tighter requirements
and covering subscriptions. They rely on the conjuncture that those peers in turn will connect
to proper peers.

While the authors show that their proposed system is robust and scales well, the given
approach is not considering underlay characteristics in detail. Since we are focusing on
underlay-awareness, the proposed concepts are not implicitly conferrable.

Majumder et al. [18] developed a routing framework that groups subscriptions based on
similarity to reduce communication overhead: Each group maintains a dissemination tree with
minimized cost. Computing such a tree is a generalization of the Steiner tree problem. The
authors designed approximation algorithms that use low-stretch spanning trees and prove that
the cost is within a poly-logarithmic factor of the optimum.

The dissemination tree is built using a centralized approach and deployed in a broker-based
publish/subscribe environment. Our work is paying special attention on decentralized peer-to-
peer systems postulating that every participant is capable of fulfilling all tasks involved.

The approach of Jaeger et al. [12] considers broker overlays and seeks a delivery tree that
spans only brokers that are interested in a specific notification: The authors define the cost
for the distribution of a single notification as the sum of processing costs induced by involved
brokers and the communication cost of using links between them. The overall cost to distribute

11

3 Related work

all notifications shall be minimized which gives the Pub/Sub Overlay Optimization Problem
(PSOOP). The authors show that the corresponding decision problem is NP-complete and
develop a Cost and Interest heuristic that aims to respect cost and reduce the distance between
brokers that consume many identical notifications. Therefore, brokers cache their notifications
and compare them to other caches by using Bloom filters. Since brokers only have local
knowledge, they run a evaluation and consensus phase before reconfigurations may occur.

While the approach certainly contributes to quality of service, a broker-based approach again
serves different prerequisites.

3.2 QoS in overlays

Beyond the scope of publish-subscribe systems more effort is spent on considering network
characteristics in overlay construction. The approaches summarized in this section were
contributing to our work by gaining a wider knowledge of established techniques to support
quality of service.

Zhu et al. [34, 33] modeled link correlations as linear constraints and proposed a distributed
algorithm constructing flow-rate optimized overlays through finding hidden bottlenecks. Over-
lay links are considered to be correlated if they correspond to paths in the underlay, sharing
at least one physical link. The distributed algorithm uses multiple steps. First, it utilizes a
probing tool to detect shared bottlenecks based on inter-arrival times of packets among a group
of hosts. The groups are partitioned to derive linear capacity constraints (LCC) from smaller
subgroups while maintaining a global set of constraints. The step of dividing is repeated until
all constraints are found. The authors further study two network flow problems, maximum
flow and widest path with the addition of LCC and show that the latter is NP-complete.

In group multicasting every member may multicast to others belonging to the same group. The
problem of group multicasting routing with delay constraints (DCGMRP) is addressed by Low
et al. [17]: Since the problem is NP-complete, a heuristic algorithm is developed. Each member
of the group maintains its own delay-bounded multicast tree. The algorithm constructs a set of
minimum delay multicast trees using Dijkstra’s algorithm as an initial solution. Then the overall
solution is iteratively improved by finding the busiest link (which is the one with the largest
link usage), locating the multicast trees that contain that link, and adjusting the trees to reduce
the usage of that link while at the same time satisfying delay constraints.

Parmer et al. [21] show several multicast tree construction algorithms to meet subscriber-
defined QoS constraints. The authors define functions that detect nodes that perform best
and worst in several latency and route related metrics. They propose algorithms that swap
those nodes within the multicast tree to support different subscription policies. They conclude
that none of the algorithms can be considered as the best, instead they vary in terms of delay
penalty, link stress and cost.

12

3.3 Topology inference

3.3 Topology inference

Kwon et al. [16] addressed the construction of a multicast overlay by exploiting underlying
router information: Overlaps among routes from a single source to other group members
are used to reduce delay and duplicate packets. They define a process of (shortest) path
matching, where the overlay tree is partially traversed to determine parents that forward
packets originating at the source to its children. This is done when the group of participants
changes. The goal is to balance the trade-off among delay and bandwidth. The paths have
a significant overlap with the paths determined by routing algorithms, and sharing route
prefixes and establishing forwarding lessens the number of identical packet copies sent along
underlying links.

The nature of this single-source concept is not targeting towards peer-to-peer overlays. But, we
will show that the process of path matching can be extended from trees to general graphs.

A distributed router-level topology inference approach was developed by Jin et al. [13]. It
is based on a previously proposed centralized approach, called Max-Delta: A server collects
traceroute results from a group of hosts. It selects a set of representative paths for the hosts
to discover. The goal is to reveal undiscovered topology information while at the same time
tracing less routes from each host. In the distributed version each host sends gained traceroute
information to all other hosts. Doing that, every host maintains a partially discovered topology.
Information is exchanged via an overlay tree that tries to minimize the tree diameter via a
node-degree based heuristic. Also, the authors integrate the Doubletree approach which is
aimed to reduce measurement redundancies using a modified version of traceroute.

The proposed concept of recommending targets for traceroute executions differs from our
approach. Even though the paper substantiates our assumption that giving such suggestions
during the path matching process will reduce message overhead and will scale even for large
environments.

3.4 Approximation algorithms for Minimum Routing Cost
Spanning Trees

Among all possible spanning trees of a graph, the Minimum Routing Cost Spanning Tree shows
the lowest routing cost possible. Finding such a tree is proven to be an NP-hard problem
(see the network design problem called shortest total path length spanning tree in [14, 11]).
Therefore, heuristics have to be applied.

Important related work in that particular context of this thesis is proposed by Wu et al. [29, 28]:
The authors develop several algorithms that achieve different approximation ratios of the
optimal solution. They utilize a special approximation solution based on a structure referred to

13

3 Related work

as general stars. Ratios between 2 and 4
3 + ε are achieved by seeking specific subtrees called

separators breaking the overall tree in smaller components. Finding good separators yields
lower approximation ratios.

The algorithms are centralized and runtime is increasing rapidly with tighter approximation
bounds. This originates from the fact that the main intention of the authors is to prove the
existence of several approximation ratios, rather than claiming to derive efficient approaches.

The same authors develop algorithms for generalized problems called the Optimal Communica-
tion Spanning Tree problems in [28]. Additionally, to an undirected and positively-weighted
graph, a requirement is given for every pair of vertices. The cost between two vertices is
expressed by the requirement multiplied by the path length between them; the special case
where all requirements are set to 1 is the MRCT problem.

Extending our approach by concepts of this paper is proposed in chapter 8.

A recent paper by Campos et al. [6] proposed an MRCT approximation that we will use among
other approaches to compare our achieved stretch. The authors claim to provide a solution
exhibiting the same routing cost as an MRCT in practice. It is a centralized approach which
modifies Prim’s well-known MST algorithm: Degree of a node and its adjacent nodes is taken
into account additionally to distance information. By composing those factors a spanning
potential is derived which is used to select a parent node in the spanning tree.

However, to the best of my knowledge there has not been published any distributed algorithm
that approximates an MRCT till to the time of the writing of this thesis.

14

4 System model and problem statement

In the following, we will give a formal description of the system model and formulate the
problem statement. An approach overview is given in chapter 5.

4.1 System model

We strive to provide an underlay-aware approach, therefore we will make certain assumptions
about the properties of the underlying network. While the approach can easily be extended to
asymmetric routes, we will assume that paths on the underlay are stable and symmetric. This
is necessary for the path matching routine in the join process of peers.

While it is not problematic to presume that peers have distinguishable identifiers, we will also
require that property for routers. This may not reflect reality properly due to the existence of
anonymous routers, router aliases and routers with multiple interfaces having different network
addresses. We will detail in chapter 6.6.3 how such undesired behavior can be addressed using
existing mechanisms.

The underlay network model of routers and peers exhibits a rather natural graph-theoretic
formulation. It is given as follows:

Definition 4.1 (Underlay network) We model the underlay network as an undirected, con-
nected graph with non-negative edge weights. It is given by N = (RN ∪ PN , EN , ωN). The
set of vertices is a union of the disjoint finite sets of routers RN and peers PN. The set
of links between two arbitrary routers and between routers and peers is defined by EN ⊆
(PN × RN) ∪ (RN × RN) ∪ (RN × PN). All links are mapped to their corresponding latency
value by the weight function ωN : EN → R≥0.

We require that each peer p ∈ PN is connected to a single router rp ∈ RN and that the edge
(p, rp) is contained in EN. We will assume that the last mile delay exhibits low latency and that
processing time on a peer to forward messages is negligible. The intuition is that forwarding
between peers should not be distinctly more expensive than a direct connection as long as the
same underlying routes are involved. The process of forwarding is detailed in chapter 6.

15

4 System model and problem statement

Definition 4.2 (Route) A route ρN : PN × PN → P(EN) is a set of edges that con-
nect a peer s to another peer t via a shortest path on N. It is given by ρN(s, t) =

{(s, r1), (r1, r2), ..., (rk−1, rk), (rk, t)} if it traverses the routers ri, i ∈ {1, ..., k} using only edges
from that set. For s 6= t, ρN(s, t) contains no cycles.

Definition 4.3 (Delay of a route) The function dN : PN × PN → R≥0 returns the end-to-end
latency of a route between two given peers. It is defined as dN(s, t) = ∑e∈ρN(s,t) ωN(e)

Each peer s ∈ PD is able to infer the route to another t ∈ PD via executing traceroute. The
result is the actual path on the underlay network that a packet uses by traveling from a router
to another. It is given by ρN(s, t). Each peer s may also ping a target peer t and receives dN(s, t)
as a result which is given by:

Both functions ρN and dN are used during the topology discovery process. We will now model
the discovery overlay D which aims towards giving an accurate representation of the underlay
network N based on comparing routes and distances between peers. It emerges from peers
inferring routes to other peers and seeking overlaps. The process is discussed in detail in
chapter 6. We will only state the preliminaries here.

Definition 4.4 (Topology discovery overlay, neighbor sets) The topology discovery overlay
is modeled by an undirected, positively weighted and connected graph D = (PD, ED, ωD). The set
PD ⊆ PN is a subset of peers of the network model. It holds all peers that have joined the discovery
overlay.

Each p ∈ PD is aware of a neighbor set Np ⊂ PD that includes all peers to that it maintains a
direct connection. The edge set ED is the union of all those connections of all peers. It is defined as
ED =

⋃
p∈PD
{(p, q)|q ∈ Np}. The weight function ωD : ED → R≥0 returns the distance on the

underlying network. So for e = (p, q) we set ωD(e) = dN(p, q).

Neighbor sets are common in peer-to-peer overlays and represent in our case the fact that a
peer should only have limited knowledge about the whole topology.

Definition 4.5 (Path on the discovery overlay) Let u, v ∈ PD be peers on the discovery overlay.
A path on D is given by a set of edges {(u, h1), (h1, h2), ..., (hk, v)} if it uses the peers hi ∈ PD, i ∈
{1, ..., k} as intermediate hops from u to v in the given order. For every edge (f , g) in a path
g ∈ N f holds. We will denote the shortest path from u to v by ρD(u, v).

Definition 4.6 (Distance on the discovery overlay) The distance dD(u, v) is given by the sum
of edge weights of the shortest path that connects u, v ∈ PD, so dD(u, v) = ∑e∈ρD(u,v) ωD(e)

16

4.1 System model

It is common in overlay networks, especially in peer-to-peer networks, to have one or more
designated bootstrapping nodes, sometimes called rendezvous hosts. They provide information
to newly joining nodes concerning the mechanism of opting in. We will not go into detail about
how such nodes can be identified, but assume that at least one such host exists and that new
participants are able to contact it.

The routing overlay R is modeled as an acyclic subgraph of D. All peers of D are spanned in R
but with a reduced set of edges.

Definition 4.7 (Routing overlay) The routing overlay R is an acyclic, connected subgraph of D.
We define R = (PD, ER ⊆ ED, ωD).

Definition 4.8 (Path on the routing overlay) Let u, v be peers in PD. Then the path ρR(u, v)
is the unique set of edges that connects that peers on the routing overlay R.

The distance of paths on the routing overlay R is given by the sum of weights of links between
forwarding peers. It is defined as:

Definition 4.9 (Distance on the routing overlay) Let u, v be peers in PD. The distance on the
routing overlay R is given by the corresponding edge weights in D, so

dR(u, v) = ∑
e∈ρR(u,v)

ωD(e)

The stretch on R compared to N is related to the overall routing cost of R.

Definition 4.10 (Overall routing cost) The overall cost of the routing overlay R is given by

c(R) = ∑
u,v∈PD

dR(u, v)

Definition 4.11 (Stretch) Given a network N and a routing overlay R, we define stretch to be
the ratio of the overall routing cost of R over the sum of minimal achievable end-to-end latency on
N for all peers in PD.

stretchN(R) =
∑u,v∈PD

dR(u, v)
∑u,v∈PD

dN(u, v)

We will now define preliminaries for the process of event notification propagation in the
content-based publish-subscribe system. We define attributes to have a type, a name and a
domain.

17

4 System model and problem statement

Definition 4.12 (Attribute) An attribute attr is given by a tuple (typeattr, nameattr, domainattr).

We define notifications to be a set of typed attributes having a specific value for each attribute.

Definition 4.13 (Constraints) A constraint φ is a tuple (typeφ, nameφ, operatorφ, domainφ). If
an attribute attr matches a constraint φ we denote that by a ≺ φ.

A filter selects notifications by specifying a set of attributes and a set of constraints on their
domain. A subscriber can express its interest using a filter as subscription. If a filter contains
multiple constraints for the same attribute, then they are interpreted as a conjunction which
means that all constraints must be matched.

So, a notification n matches a filter f if for every constraint φ of that filter, there is an attribute
a in the notification such that a is matched by φ, formally:

n ≺ f ⇔ ∀φ ∈ f : ∃a ∈ n : a ≺ φ

4.2 Problem statement

Our aim is to solve the problem of establishing an efficient underlay-aware routing mechanism
in an unstructured peer-to-peer environment. In particular, we strive to reduce end-to-end delay.
In the context of content-based publish-subscribe systems that implies having to propagate
event notifications cost-efficiently through a routing overlay exhibiting low-stretch with respect
to the underlying network.

Since we will take network characteristics into account explicitly, we have to derive a discovery
overlay first. Driving objective is an accurate representation of the underlying network. The
overhead in terms of both local space and communication shall be as small as possible.
Furthermore, we need to maintain a routing overlay that exhibits low overall routing cost to
achieve a low stretch.

18

5 Approach overview

The following chapter presents an overview of our solution. We will divide the problem and
explain how the resulting sub-problems are conquered separately (see chapter 4.2 for the
problem statement).

routing overlay

topology discovery overlay

underlay network

Figure 5.1: Different layers of abstraction having different optimization objectives.

The problem decomposition is depicted in Figure 5.1 and follows along the separation into
underlay network, topology discovery overlay and routing overlay, as stated in the system
model. We will first focus on the process of topology inference and discovery overlay con-
struction. Subsequently, we will detail the distributed algorithm for the minimum routing cost
tree approximation forming the routing overlay. Finally, we will explain the adoption of the
publish-subscribe model into this approach.

Topology inference by tracing routes between hosts is costly regarding network operations. An
important objective of the discovery process is to keep the amount of the operations small.
Nevertheless, we have to derive an accurate representation of the underlay network to build of
a low-stretch overlay. Our distributed inferring scheme maintains an unstructured peer-to-peer
environment. Neighbor sets of peers are rearranged by applying a path matching process based
on router-level information.

19

5 Approach overview

The path matching routine was inspired by the Topology Aware Grouping (TAG) approach by
Kwon et al.[16]. The authors build an acyclic multicast overlay by applying a process that
exploits overlaps among underlay routes originated from a single source. Following this idea,
we will adapt the process to be used in a peer-to-peer overlay. As a result, neighbor sets are
managed to form a general graph, instead of parent-child relations in a tree. We will permit
the formation of cycles in the discovery overlay to reach a more accurate representation by
considering routes from all peers.

Consider the exemplary situation of a message producer p and the two consumers c1 and
c2 in Figure 5.2. The two paths (p, c1) and (p, c2) have a significant overlap of underlying
routers. If p sends a message to c1 and to c2 subsequently, the overlapping path will be used
twice. Incorporating the path matching routine, p is able to force a change neighborhood sets.
After completion of a rearrangement phase, p can reach c2 by sending a message to c1 that is
delegated to c2. A positive side-effect may arise from link stress reduction. In the decoupled
environment of publish-subscribe systems, every participant may act as a producer (publisher)
as well as a consumer (subscriber).

r1 r2 r3 r4p c2

c1

(a)

r1 r2 r3 r4p c2

c1

(b)

Figure 5.2: Unicast-like message delivery from producer p to consumers c1 and c2 (a) com-
pared to underlay-aware message forwarding based on router-level path matching
(b). Multiple link usage is depicted by bold lines.

When introducing the routing overlay, the main objective is reducing overall end-to-end delay
between peers. When considering structures that provide efficient propagation and avoid
multiple delivery, minimum routing cost trees (MRCTs) are the optimal solution, if the distance
on the discovery overlay is used as the cost function.

Since finding such a structure is proven to be an NP-hard problem, we will develop a heuristic
that approximates the MRCT in a distributed manner. We will first derive an alternative way to
calculate the overall routing cost. Subsequently, we show by the resulting formula that the
contribution of an edge to the overall routing cost is not only determined by its weight. The
number of times an edge is used on unique shortest paths on the tree highly influences its
contribution. This means in our context that stretch of the routing overlay is influenced by
end-to-end delay between peers, and furthermore by the forwarding load of peers.

Our algorithm aims to determine those links having high load forming the future basis of the
routing overlay. The first of two phases is called the voting phase, where peers are motivated to
vote for their neighbors. Lacking deeper knowledge of the peer-to-peer topology, the choice

20

has to be made solely based on latency information. The peers obtaining the most votes are
considered to be important for efficient forwarding and therefore incorporated as relay nodes.
Furthermore, these peers are connected to each other in order to form a subgraph of the
routing overlay that we will call the core. In a second phase, all other peers are connecting to
the core through shortest paths on the discovery overlay.

Considering the publish-subscribe model, we will establish an event routing approach that
benefits from the shortest path connections in the routing overlay. As a consequence event
notifications are only propagated in the direction of subscribers having claimed interest before.
The routes to be taken are determined by a reverse path mechanism. A reverse path is
established once a subscription is received, by installing a filter on the receiving peer.

21

6 Topology discovery

In the following, we will describe in detail how the process of network topology inference
is designed. The overall aim is to build a peer-to-peer overlay that represents an underlying
router-level topology in an accurate manner.

We presume the utilization of traceroute-like network diagnostic tools to infer topology charac-
teristics. While this enables us to build a precise model of the underlay, the process of gaining
this information is costly. It involves sending multiple ICMP packets with increasing time-to-
live to determine intermediate routers on the path to a target host. The routers decrease the
time-to-live of the packet and will respond with an error message once the value reaches zero.
The source host is able to construct the list of intermediate routers based on that responses. An
obvious objective for the inference scheme is to avoid as many expensive network operations
as possible.

The driving mechanism of the discovery process is a distributed underlay path matching
routine.

r1 r2 r3 r4p q

o

Figure 6.1: Simple underlay network. Which connections need to be maintained in a peer-to-
peer overlay to accurately represent this situation?

Assume the simplified situation in Figure 6.1: The three peers o, p and q connected through
the routers r1 to r4. The peers could simply form a mesh where each peer accepts all other
peers as neighbors. While this might result in a representation exhibiting low-stretch, such
a solution is obviously not scalable. The objective question is: Which overlay edges can be
abandoned compared to a mesh overlay, while still maintaining an accurate representation?

Our system model presumes last-mile delay being low and processing time on a peer being
negligible. Under these assumptions, the question is answered for the example given in
Figure 6.1 as follows: If p wants to send a message to q, it will first send a message to o using
the routers r1 and r2. The message is subsequently forwarded from o to q via the routers r2, r3

and r4.

23

6 Topology discovery

In a situation where all peers can be consumers and producers of messages at the same time,
the neighborhood must be set as follows, to keep the number of overlay edges as low as
possible: Np = {o}, No = {p, q} and Nq = {o}. This guarantees not only a space-efficient
representation, but also maintains a low end-to-end delay for all peers.

As a nice side-effect the links stress in the topology discovery overlay is reduced. If for instance,
q intends to send the same message to o and p, the forwarding mechanism via o guarantees
that all links except of o’s connection to its own router are used only once.

Obviously, there is more overhead involved in the management of a peer-to-peer overlay than
maintaining a set of neighbors, for instance, maintaining socket connections to neighbors. But
in the following chapters, we will allow ourselves a simplification and refer to this problem
only in the context of local space reduction, since the additional overhead is directly related to
the size of the neighbor sets.

In the following, we will give a formal description of the underlay path matching process
and the implementation for building and maintaining the discovery overlay. Following that,
complexity analysis and evaluations are given below.

6.1 Prefixes

We previously presumed that a peer p stores the resulting route of ρN(p, q) to all its neighbors
q ∈ Np. That information enables p to rearrange its neighbor set once it receives a join request
from another peer. As mentioned before, the size of the set is a crucial factor to accuracy and
space efficiency of the overall process.

Before the detailed maintenance of the neighbor sets is discussed, we will define the formal
foundation behind the rationale of the process. Therefore, we define prefixes that represent the
shared routes.

Definition 6.1 (Prefix) Let p, o, q be peers in PD (p 6= o 6= q). Let ρN(p, o) =

{(p, ro,1), ..., (ro,k, o)} and ρN(p, q) = {(p, rq,1), ..., (rq,k+l , q)} be shortest paths on the network
N (k ≥ 1, l ≥ 0). We call o a prefix of q with respect to p if ro,i = rq,i, ∀i ∈ {1, ..., k}. We will
denote such a situation by o ≺p q.

Consider again the situation in Figure 6.1. In that situation, ρN(p, o) is given by
{(p, r1), (r1, r2), (r2, o)}, and ρN(p, q) is {(p, r1), (r1, r2), (r2, r3), (r3, r4), (r4, q)}. Obviously, the
paths overlap on the links from p via the routers r1 and r2. Since additionally, r2 is the router
that connects o to the network, we say o is a prefix of q with respect to p, denoted by o ≺p q.

Furthermore, if o ≺p q holds, we want to change the neighbor sets such that o forwards
messages from p to q. Formally expressed we strive to have {(p, o), (o, q)} ⊆ ED, and (p, q) /∈
ED. We will now generalize the process to achieve that.

24

6.2 Joining the overlay

6.2 Joining the overlay

Assume the non-trivial case where there are already peers in the discovery overlay (i.e. PD 6= ∅).
A peer n (n ∈ PN, but n /∈ PD) wants to opt in, so it contacts a rendezvous node as described
in the system model. We presume that the rendezvous node responds with the name of a
randomly chosen peer j ∈ PD. The peer n will now contact j with a join request.

To perform the path matching process, j need to trace the route to n. Knowing the route to
n enables j to perform the path matching process and compare the newly discovered route
with routes to its neighbors. There are three mutually exclusive conditions leading to different
actions. For a better understanding, an exemplary join process for a simple unit-weight
topology is given in Figure 6.2.

The first condition handles the case, where j knows a neighbor a that is connected to a router
that lies on the underlay path from j to the newly joining peer n:

(6.1) : ∃a ∈ Nj : (a ≺j n) ∧ |ρN(j, n)| > |ρN(j, a)|

In that case, n and j will not become neighbors, since they want to benefit from the shared
route, so j suggests n to join with a instead. Consequently, n will send a join request to a. An
example for that situation is depicted in Figure 6.2(c).

We will later prove that there is at most one a ∈ Nj that fulfills that condition. In other words,
j can’t know any node a′ ∈ Nj (a′ 6= a) that had a shorter prefix of n, having less hops.

If a ≺j n holds, but the second term of the condition does not, the situation is covered by the
following condition.

(6.2) : ∃a ∈ Nj : n ≺j a

The peers n and j become neighbors while a and j cancel their current neighborhood relation.
The peer n additionally sends a join request to a. Metaphorically speaking, n somehow adopts
a from j.

An example for that situation is depicted in Figure 6.2(d) and 6.2(e).

In the emerging situation, n acts as forwarding peer between j and a. We achieve the desired
result where (a, j) is removed from ED, while the edge (n, j) is added. The connection between
a and n is established in the separate join process.

If the above conditions did not hold, n and j become neighbors.

(6.3) : neither (6.1) nor (6.2) evaluate to true

25

6 Topology discovery

r10 E

F r11 r9

r12

A r1 r2 r3 r4 r5 r6 r7 r8 D

B C

(a) For simplicity, we assume unit weights
on all edges.

E

F

A D

B C

(b) The peers A-E are already part of the
discovery overlay. Now, F wants to
join the overlay. Therefore, it ran-
domly selects a peer, say D (the worst
case), and sends a join request.

E

F

A D

B C

(c) C is a neighbor of D. The paths from F
to D and from C to D have the routers
r5, r6, r7 and r8 in common. So F
sends a join message to C (Condition
1).

E

F

A D

B C

(d) E had a shared route with F w.r.t. C,
but this time, F is the prefix for E. As
a result, E and C cancel their neigh-
borhood. F becomes neighbor of C.
And F sends a join request to E (Con-
dition 2).

E

F

A D

B C

(e) F shares a prefix with E’s former neigh-
bor A. So, E and A cancelled their
neighborhood. F accepts E as a neigh-
bor. F sends a join request to A (Con-
dition 2).

E

F

A D

B C

(f) F just joined A which has only one
other neighbor, B. Since neither F is
a prefix of B, nor B is a prefix of A, A
accepts F as neighbor and vice versa
(Condition 3). At the end, the overall
link stress is minimized successfully.

Figure 6.2: An exemplary join process of a peer F joining an established discovery overlay.

26

6.3 Limited flooding strategy

That last condition evaluates to true, if there could not be any path matched on the underlay
between n and j, or any of j’s neighbors. This is not necessarily an undesired behavior, but may
also be an indicator that j was not a good choice for n. We will cover that situation later.

The last situation is depicted in Figure 6.2(f).

In the simulations, we will additionally restrict the maximum size of the neighbor sets. In that
case, a peer will only be added to the neighbor set if it is closer than the currently farthest
neighbor in the set which it will replace. If adding n to Nj failed because the maximum size of
the set is reached and j is not accepted, n is allowed to request a new peer using bootstrapping
mechanism.

We will now prove that if there is an a in Nj that is a prefix of n then j cannot know any better
prefix a′ ∈ Nj (a′ 6= a) such that a′ is a possibly shorter prefix of n.

Lemma 6.1 If n joins j and there is an a ∈ Nj : a ≺j n then there cannot be any a′ ∈ Nj : (a′ ≺j

n) ∧ |ρN(j, a′)| < |ρN(j, a)|.

Proof 6.1 Assume, that not only a ∈ Nj but there is also an a′ ∈ Nj : (a′ ≺j n) ∧ |ρN(j, a′)| <
|ρN(j, a)|. In that case, a′ would be in the set Nj. Also, a must have joined j to be put in Nj. But,
then a path matching between a′ and a would have happened before. During that path matching,
condition 6.2 would have evaluated to true, and a would have joined a′ instead, and implies that
a /∈ Nj. We reached a contradiction.

We will introduce in the following two strategies designed to cover the situation where no path
matching was possible on condition 6.3. The strategies are called limited flooding and random
walk and will be evaluated in combination with the overall join process subsequently.

6.3 Limited flooding strategy

Assume the situation, where a peer n opted in the overlay but unluckily ends up at a position
that not accurately represents the underlay network condition. As described, this happens if
no successful path matching was possible during the join process.

We propose a strategy covering that situation as follows: Currently, n is connected to a node
j. Since path matching failed, n will now perform a less expensive underlay-aware matching
routine by starting to measure its distance to peers in the neighborhood of j.

The distance measurement is a valuable indicator whether there are better nearby choices than
j. Even if the neighbors of j did not have overlapping routes, other peers that are multiple
hops away on the overlay, may perform better. Since, n doesn’t know these peers, it sends a
designated message to j: That message contains the tuple (n, d, ttl), where d is the underlay

27

6 Topology discovery

distance of n to its nearest neighbor. That message can afterwards be forwarded by j to its
neighbors. Subsequently, the message can be forward again while decreasing the time-to-live.
Forwarding is stopped, once a value of 0 is reached.

We introduce the system parameter λ, which we call the locality factor, as it determines the
degree of locality for improvements to n. Peers that receive the previously described tuple are
able to guess, whether they would be an improvement for n. They simply evaluate whether
the following inequality holds:

(6.4) dN(a, n) < λ ∗ d

If that evaluates to true, the peer a knows that it would be an improvement to n, so it acts as if
it would have received a join request from n. Using a higher λ, increases the probability that
even distant peers are sending a join request to n. During that process the path matching is
executed. So we implemented a lighter version of flooding the neighborhood by using only
distance measurements, and still get the benefit of possibly overlapping paths of physically
close peers after execution of a path matching.

Even if no overlaps exist, once again the condition 6.3 may hold and a and n become neighbors
anyway. This is at least an improvement in delay, although paths must not necessarily overlap.
The flooding can be regarded as a mechanism that pushes the peer into the right direction
based on distance measurements.

One drawback of that strategy is that the mechanism may still causes many path matching
processes. Especially if λ is set to a high value, many peers may consider themselves an
improvement for n and will cause traceroute executions. We are able to overcome that
situation by being more selective when evaluating the inequality 6.4. This can either be done
by a tighter setting for λ, or by limiting the number of neighbors that are flooded. This is the
key factor in the second strategy called random walk.

6.4 Random walk strategy

As described, limited flooding may cause a considerable amount of distance measurements,
join messages and traceroute executions in situations, where many hops are necessary on
the overlay. It might cost some hops on the overlay until a peer reaches a decent position,
representing the underlay accurately.

The idea behind random walk originates in the assumption, that it might not be necessary to
flood the whole neighborhood on every hop. Instead, only a subset of neighbors is selected.
Therefore, we introduce the selectivity factor σ representing the chance of each neighborhood
peer to be chosen for flooding (0 < σ < 1).

28

6.5 Leaving the overlay and node failure

A tight setting for σ lessens the amount of flooding per hop, but raises the probability that a peer
is missed, although might have meant an improvement. While discussing the evaluations later
on, we will see that a setting lower as 0.375 performs poorly. Interestingly, taking every second
neighbor into account, performs reasonable, while reducing the amount of join processes and
the number of expensive network operations involved.

6.5 Leaving the overlay and node failure

In the following we will describe, how different situations arising are handled, when a peer p
is dropped from the discover overlay through node failure, or intentionally leaves it.

We will consider graceful leave first: Before p disconnects, it can easily determine which of its
neighbors q should send a join message to another neighbor q′. For every situation in which
p ≺q q′ holds, it motivates q to join q′. This restores the underlay-awareness of the overlay.

When p is disconnected caused by node failure, there are two cases that can easily be managed:
If a neighbor q ∈ Np is disconnected from the overlay because p fails, it has to rejoin the
network by contacting a rendezvous node. If q is not disconnected, it will restore underlay-
awareness by running one of the improvement strategies described before.

6.6 Evaluations

We will give a brief complexity analysis of the path matching process and will subsequently
provide evaluations.

6.6.1 Complexity analysis

Space complexity is crucial to accuracy of the derived discovery overlay and depends on the
system parameter maxN : A peer p has to store the routes ρN(p, q) and their length dN(p, q) to
its neighbors q ∈ Np. This is necessary to process the underlay path matching process when
receiving a join request. The number of stored routes is limited by that parameter, so each peer
stores at most maxN routes that consist of a number of router identifiers.

It is difficult to give bounds on message complexity, as a join process may lead to other join
processes. The number of traceroute executions is proportional to the number of join messages,
since at most two of them are executed during that process. We will therefore examine the
number of join messages and traceroute execution via simulations.

29

6 Topology discovery

6.6.2 Simulations

Experimental setup

In topology generation there exist two major model categories, namely domain-level and
router-level topologies. Both of them are represented as graphs, but with different meanings
of the components: In the domain-level model, nodes depict domains and edges represent
inter-domain connections, while on the router-level, nodes refer to routers and edges represent
a one hop connection between them.

Topology generation is an ongoing research topic, so there naturally exist multiple concepts.
Caused by the sheer size, lack of persistence and system administrators’ efforts to obscure
routing behavior within a domain, it is very difficult, if not impossible, to verify those models.
We can at least try to judge their eligibility. There’s little doubt that the Internet has a significant
degree of hierarchy on both levels: at the router level this is mainly induced by backbones
and at the domain level service providers are broken into tiers [24]. That is one reason, why
AS-level topologies mainly focus on degree distribution (for which a power-law was detected
[8, 23]), while imitating hierarchy and locality is the focus of router-level topologies.

For evaluations of our approach, only the latter models are aplicable. To acknowledge diversity,
we will generate two models that follow completely different concepts. We aim to determine
whether hierarchy influences the overall accuracy and efficiency of our approach, as well if
different locality affect the quality of the overall process.

We will use BRITE [19] to generate a non-hierarchical Waxman topology [26], and we will
utilize GT-ITM [32] to generate a hierarchical transit-stub topology [31] with different domain-
roles.

Waxman topologies are commonly used models for generation of random networks. The nodes
are placed at random positions in a two-dimensional grid. All possible pairs of nodes are
considered and the decision whether a link should exist between two nodes is made according
to a probability function that models locality. One of the parameters, α, increases the general
probability of edges between any two nodes. The second parameter, β, yields the ratio of
long edges to short edges in the overall topology. The number of links added per node, m,
determines the overall number of edges of the topology. We will use the standard settings
α = 0.15 and β = 0.2, but increase the number of links per node (m = 4).

The transit-stub model is used to represent a hierarchical topology. It also places routers in a
two-dimenstional space. One or more transit-domains of routers are inter-connected and a
number of stub-domains is connected to the transit domains. Both domain types are populated
with a number of routers that are inter-connected based on given probabilities for the domain
type [31, 30]. Our topology contains 4 transit-domains, each consisting of 12 routers and a
chance of 60% that a link between any two routers exists in a transit domain. The 12 stub
domains are fully linked, each containing 21 routers.

30

6.6 Evaluations

With that setting, both topologies have exactly 1008 routers. The characteristics of the generated
topologies are given in table 6.1.

Characteristic Transit-stub model Waxman model

Number of routers 1008 1008
Number of links 9436 4032
Average node degree 9.36 4

Table 6.1: Characteristics of generated router-level topologies

We will run experiments using the PeerSim [20] peer-to-peer simulator. If not otherwise
stated, we will randomly connect 150 peers to the router-level topology models. In transit-stub
topologies, peers are only connected to stub domains. Consistent to our assumptions in the
system model, we will set the last-mile latency between a peer and a router to 0. This will also
give us the possibility to better judge achieved stretch values, since it is at least possible in
theory to reach a stretch of 1.

We already introduced three system parameters that are designed to control certain trade-
offs among accuracy and efficiency. We will run simulations with different values for those
parameters, to determine reasonable settings. The parameters are:

• maximum number of neighbors maxN - used in both strategies

• locality factor λ - used in both strategies

• selectivity factor σ - used in the random walk strategy only

When discussing the results for the random walk strategy, we will reduce the number of
variables. Therefore, the locality factor is set to a fixed value, namely λ = 1.5. The intuition
is results showing reasonable results in the limited flooding strategy while exhibiting a fair
trade-off among overhead and locality.

Metrics

To observe accuracy, we are interested in the coverage of routers and links. The metrics are
given by:

Definition 6.2 (Router coverage, link coverage) Given a network N and a topology discovery
overlay D, the router coverage of N by D is the ratio |RD |

|RN | ∗ 100 where RD ⊆ RN is the set of
routers that were discovered and used when constructing D. Respectively, the link coverage of N
by D is given by |ED |

|EN | ∗ 100.

The most important metric for accuracy is stretch with respect to the underlay network, it is
given by:

31

6 Topology discovery

Definition 6.3 (Stretch of the discovery overlay) Given a network N and a topology discovery
overlay D we define stretch to be the ratio of the shortest path length on D and the network delay

on N between any two peers, which is given by
∑u,v∈PD

dD(u,v)
∑u,v∈PD

dN(u,v) .

To determine the efficiency of the process, we will also observe the average number of
neighbors that are connected to a peer, as well as the number of join messages that were sent
per peer. Furthermore, the overall amount of traceroute executions compared to a naive n-by-n
approach.

As described before, we expect reduction in link stress as a side-effect of message forwarding.
We define link stress as the number of times an underlay link is used when a peer is sending to
a set of targets. To derive sample values for link stress, we assume for the experiments that
peer identifiers are globally known. Each peer p selects k randomly chosen other peers, where
k ∈ [1, |PD|[. We will plot the ratio of average usage of a link when using unicast-like, but
shortest path based routing would be used in N compared to a forwarding mechanism that
uses shortest paths in the overlay D.

Result discussion

As mentioned before, there is a trade-off between the achievable accuracy and the overhead
regarding local space and messages. We have introduced the underlay path matching process
and two strategies to cover the situation where the matching process fails.

We will first focus on the accuracy of the limited flooding strategy.

Accuracy of limited flooding

It is evident from Figure 6.3(a) that overall router coverage for hierarchical transit-stub
topologies is very high for all values the locality factor λ takes. In the Waxman topology the
router coverage starts low at barely over 50% and needs an increase of λ to grow close to 90%
for different settings of maximum allowed neighbors (Figure 6.3(b)).

Nevertheless, the overall router coverage does not seem to be heavily influenced by maxN .
That might stem from the fact that the coverage is increasing as new routers are discovered by
using traceroute during the join process, and is not determined by the current values of the
dynamically changing neighbor sets. Increasing coverage is an indicator that the choices made
to gain more knowledge are reasonable, asnew routers are discovered.

Link coverage for the Transit-stub topology needs increasing λ to reach values over 90%.
Similar to the router coverage, the link coverage for the Waxman topology (figure 6.4b) is
improving with higher λ-values. An explanation for that behavior lies in the building process of
that type of topology. There is basically a random nature opposed to the hierarchical structure

32

6.6 Evaluations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.75 1 1.25 1.5 1.75 2 2.25

%
 o

f r
ou

te
rs

lambda

overall router coverage

n
n/2

sqrt n

(a) Transit-stub topology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.75 1 1.25 1.5 1.75 2 2.25

%
 o

f r
ou

te
rs

lambda

overall router coverage

n
n/2

sqrt n

(b) Waxman topology

Figure 6.3: Router coverage for the limited flooding strategy for different λ-values. The
maximum number of neighbors is limited to n, n

2 and
√

n.

of the transit-stub topologies. Since Waxman topologies are not channeled through a transit
domain, many paths between distant peers may exist.

However, while coverage of links and routers determines the effect of greediness of the process
at a glance, it is apparent from Figures 6.5a and 6.5b that coverage is not a good indicator for

33

6 Topology discovery

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.75 1 1.25 1.5 1.75 2 2.25

%
 o

f l
in

ks

lambda

overall link coverage

n
n/2

sqrt n

(a) Transit-stub topology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.75 1 1.25 1.5 1.75 2 2.25

%
 o

f l
in

ks

lambda

overall link coverage

n
n/2

sqrt n

(b) Waxman topology

Figure 6.4: Link coverage for the limited flooding strategy for different λ-values. The maxi-
mum number of neighbors is limited to n, n

2 and
√

n.

accuracy. For example when at most
√

n neighbors are allowed, the router coverage increases
for λ ≥ 1.75 while stretch stalls or even slightly increases. In the transit-stub topology the
stretch underlies the same effect when the size of neighbor set is limited. Accordingly, the

34

6.6 Evaluations

 1.05

 1.2

 1.35

 1.5

 1.65

 1.8

 1.95

 2.1

 2.25

 2.4

 0.75 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

n
n/2

sqrt n

(a) Transit-stub topology

 1.05

 1.2

 1.35

 1.5

 1.65

 1.8

 1.95

 2.1

 2.25

 2.4

 0.75 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

n
n/2

sqrt n

(b) Waxman topology

Figure 6.5: Stretch for the limited flooding strategy for different λ-values. The maximum
number of neighbors is limited to n, n

2 and
√

n.

achievable stretch highly depends on maxN and λ. We will now observe, how these values
influence the efficiency of the approach.

Efficiency of limited flooding

35

6 Topology discovery

When investigating the induced overhead, we are interested in average space used by neighbor
sets and message overhead caused by join messages on the one hand and traceroute messages
on the other hand. We will discuss the results for the different system parameters.

 10

 20

 30

 40

 50

 0.75 1 1.25 1.5 1.75 2 2.25

nu
m

be
r

of
 n

ei
gh

bo
rs

lambda

average number of neighbors per peer

n
n/2

sqrt n

(a) Transit-stub topology

 10

 20

 30

 40

 50

 0.75 1 1.25 1.5 1.75 2 2.25

nu
m

be
r

of
 n

ei
gh

bo
rs

lambda

average number of neighbors per peer

n
n/2

sqrt n

(b) Waxman topology

Figure 6.6: Average number of neighbors on the limited flooding strategy for different λ-values.
The maximum number of neighbors is limited to n, n

2 and
√

n.

36

6.6 Evaluations

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.75 1 1.25 1.5 1.75 2 2.25

%
 o

f n
^2

lambda

traceroute executions

n
n/2

sqrt n

(a) Transit-stub topology

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.75 1 1.25 1.5 1.75 2 2.25

%
 o

f n
^2

lambda

traceroute executions

n
n/2

sqrt n

(b) Waxman topology

Figure 6.7: Number of traceroutes with the limited flooding strategy for different λ-values.
The maximum number of neighbors is limited to n, n

2 and
√

n.

It is not surprising, that higher values for λ yield a higher amount of communication overhead.
Since more neighbors are accepted by peers, more path matching processes are executed. In a
similar way a higher value for maxN influences that behavior: The number of routes stored on
a peer is determined by the number of peers in the neighbor set. We observe for an unbounded

37

6 Topology discovery

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0.75 1 1.25 1.5 1.75 2 2.25

nu
m

be
r

of
 m

es
sa

ge
s

lambda

join messages per peer

n
n/2

sqrt n

(a) Transit-stub topology

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0.75 1 1.25 1.5 1.75 2 2.25

nu
m

be
r

of
 m

es
sa

ge
s

lambda

join messages per peer

n
n/2

sqrt n

(b) Waxman topology

Figure 6.8: Number of join messages with the limited flooding strategy for different λ-values.
The maximum number of neighbors is limited to n, n

2 and
√

n.

number of neighbors (i.e. maxN = |PD|) that these values rise rapidly. While having more
underlay information locally available at each peer, consequently yields better results in terms
of accuracy, but also affects efficiency negatively. A higher number of neighbors increases
the chance of a successful path matching, but in turn may cause a split of an existing overlay

38

6.6 Evaluations

connection, resulting in new join messages being issued. As stated before, the number of
traceroute messages is directly related to the number of join messages. The coupling stems
from the behavior in path matching, where peers are motivated to to join others (condition 6.1)
or are adopting neighbors from other peers (condition 6.2).

We see that in Waxman topologies the amount of join and traceroute messages rises up to 90%
for higher values of λ. While transit-stub topologies reach a sort of upper limit as soon as about
40% of traceroute messages are executed. As described, the same holds for join messages.
While this might be a strange observation on the first sight, we will do another experiment that
will help to explain that behavior.

We observe that link stress can be reduced by a factor of 2 to 3 for transit-stub topologies,
while in Waxman topologies, it is at least possible to achieve ratios from 0.5 to 0.75 compared
to unicast. This is caused by the same reason, that increases join and traceroute messages. The
difference in stress reduction derives from messages being channeled through one or more
transit domains. The chance of finding matching prefixes is therefore much higher than in
Waxman topologies, where no such separation is enforced, leading to more different paths
being available. The path matching process is less likely to find overlapping underlay routes in
such topologies.

Accuracy of random walk

The main focus lies on the different values of σ which determine the amount of probed peers in
the neighborhood. The intention is to randomly choose only a subset of neighboring peers for
distance measurements, which should reduce communication overhead and we will investigate
to what extent results are comparable.

We will use the same metrics as in the first strategy and will again examine efficiency of the
process after having considered accuracy.

Investigating on less peers also lowers link coverage, while router coverage remains stable. It
is still reasonable for the transit-stub topology that link coverage is increasing with higher σ,
reaching similar results as in limited flooding for σ ≥ 0.375. We will determine that this is a
critical value.

Keeping in mind that for Waxman topologies, the coverage was highly dependent on the
value of the locality factor, the random walk results are quite the same for fixed λ, as long
as σ ≥ 0.375. High values for λ are necessary to reach 90% router coverage and 80% link
coverage in limited flooding for Waxman topologies. We also observed that coverage may not
be a good indication for accuracy.

Considering stretch, once again values for σ < 0.375 lead to unreasonable results. We observe
stretch being bounded even when having σ > 0.5. While not evident from the stretch figure,
we can find the reason for this particular behavior while investigating the figure for the average
number of neighbors following.

39

6 Topology discovery

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.75 1 1.25 1.5 1.75 2 2.25

ra
tio

lambda

link stress

n
n/2

sqrt n

(a) Transit-stub topology

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.75 1 1.25 1.5 1.75 2 2.25

ra
tio

lambda

link stress

n
n/2

sqrt n

(b) Waxman topology

Figure 6.9: Link stress ratio with the limited flooding strategy for different λ-values. The
maximum number of neighbors is limited to n, n

2 and
√

n.

Efficiency of random walk

The values for the average number of neighbors are much lower than in the limited flooding
approach, but even if n

2 or more neighbors are potentially allowed, the values are not increasing.

40

6.6 Evaluations

So, maxN can be withdrawn as an explanation for the mentioned behavior. It is evident that
important peers might get missed during the random walk, which is a reasonable explanation.

When neighbors are missed, the chance of gaining benefit from the path matching in the
join process is decreasing. This is also apparent from the results of the number of traceroute
and join messages. They indicate how intensive the path matching mechanism is used. The
number is much lower than in the limited flooding approach and is not increasing with higher
σ values.

As a synopsis for the random walk strategy, we can derive that the setting of σ has the desired
effect on reducing message overhead during the process. The reduced number of join requests
and traceroute execution have a negative effect on underlay-awareness and therefore, are
related to the achievable stretch. We observe that there is a critical minimum value of σ being
0.375 in the random walk strategy.

We ran several other experiments for the random walk strategy that showed repeated execution
has influence on the overall performance. Caused by neighbor sets of peers changing over
time, and joining peers are gaining benefit from new information to find overlapping paths. As
in the limited flooding approach, high settings for λ have positive influence on peers gaining
knowledge on distant other peers.

Overall, the results suggest the assumption that this might be worth further research. A
hybrid strategy could be used performing as follows to benefit from both approaches:: Starting
with a low σ ≥ 0.375 should reduce the amount of flooding and therefore reduce overall
communication overhead for both, join messages and especially traceroutes. Using a high λ ≥ 2
helps gaining more information about the underlay and enables the peer to make the right
hops on the overlay looking for a peer that being close in terms of distance measurements. The
parameter values should change reciprocally over time, meaning increasing σ and decreasing
λ.

6.6.3 Anonymous routers and router aliases

An unfortunate issue when deriving topology representations based on traced routes is the
existence of routers with no names, multiple aliases or multiple interfaces with different
network addresses.

However, such behavior is not represented in the system model and this work is not intended
to handle the occurrence of anonymous routers, but we will briefly discuss how such routers
affect the process and refer to existing strategies that can handle such behavior.

That measurement noise might influence the delay reduction during the topology discovery. It
would certainly result in more edges on the discovery overlay, but the approach would still not
fail. Most efforts that handle the noise simply skip non-responding routers or collapse them
with adjacent routers that respond to ICMP messages.

41

6 Topology discovery

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

%
 o

f r
ou

te
rs

sigma

overall router coverage

n
n/2

sqrt n

(a) Transit-stub topology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

%
 o

f r
ou

te
rs

sigma

overall router coverage

n
n/2

sqrt n

(b) Waxman topology

Figure 6.10: Router coverage for the random walk strategy for different σ-values.

For instance, Barford et al. [3] studied the use of traceroute as a tool for Internet topology
discovery. They render a solution for interface disambiguation and router alias resolution that
detects and collapses routers with multiple interfaces. Broido et al. [4] propose two methods
to bypass anonymous routers in topology inference. They skip non-responding routers and
connect valid routers located before and after the inquired router by so called arcs. The authors

42

6.6 Evaluations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

%
 o

f l
in

ks

sigma

overall link coverage

n
n/2

sqrt n

(a) Transit-stub topology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

%
 o

f l
in

ks

sigma

overall link coverage

n
n/2

sqrt n

(b) Waxman topology

Figure 6.11: Link coverage for the random walk strategy for different σ-values.

alternatively propose the usage of so called placeholders that are aiming towards preserving
both connectivity and hops.

It’s difficult to determine the amount of routers on the Internet that do not accept and respond
to traceroute messages. Barford et al. [3] report that less than 13% of router interfaces in the

43

6 Topology discovery

 1.05

 1.2

 1.35

 1.5

 1.65

 1.8

 1.95

 2.1

 2.25

 2.4

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

st
re

tc
h

sigma

n
n/2

sqrt n

(a) Transit-stub topology

 1.05

 1.2

 1.35

 1.5

 1.65

 1.8

 1.95

 2.1

 2.25

 2.4

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

st
re

tc
h

sigma

n
n/2

sqrt n

(b) Waxman topology

Figure 6.12: Stretch for the random walk strategy for different σ-values.

Internet did not respond to traceroute ICMP messages [3]. Broido et al. observe that less than
33% of the probed paths in their study contained anonymous or invalid routers.

44

6.6 Evaluations

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

ra
tio

sigma

link stress

n
n/2

sqrt n

(a) Transit-stub topology

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

ra
tio

sigma

link stress

n
n/2

sqrt n

(b) Waxman topology

Figure 6.13: Link stress ratio for the random walk strategy for different σ-values.

45

6 Topology discovery

 10

 20

 30

 40

 50

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

nu
m

be
r

of
 n

ei
gh

bo
rs

sigma

average number of neighbors per peer

n
n/2

sqrt n

(a) Transit-stub topology

 10

 20

 30

 40

 50

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

nu
m

be
r

of
 n

ei
gh

bo
rs

sigma

average number of neighbors per peer

n
n/2

sqrt n

(b) Waxman topology

Figure 6.14: Average number of neighbors for the random walk strategy for different σ-values.

46

6.6 Evaluations

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

%
 o

f n
^2

sigma

traceroute executions

n
n/2

sqrt n

(a) Transit-stub topology

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

%
 o

f n
^2

sigma

traceroute executions

n
n/2

sqrt n

(b) Waxman topology

Figure 6.15: Number of traceroutes for the random walk strategy for different σ-values.

47

6 Topology discovery

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

nu
m

be
r

of
 m

es
sa

ge
s

sigma

join messages per peer

n
n/2

sqrt n

(a) Transit-stub topology

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0.125 0.25 0.375 0.5 0.625 0.75 0.875

nu
m

be
r

of
 m

es
sa

ge
s

sigma

join messages per peer

n
n/2

sqrt n

(b) Waxman topology

Figure 6.16: Number of join messages for the random walk strategy for different σ-values.

48

7 Routing overlay

As described in the system model, we are building an acyclic routing overlay on top of the
discovery overlay. Since the discovery overlay is already an accurate representation of the
underlay network, we will focus on the establishment of an efficient routing mechanism that
reduces stretch of the routing overlay. That stretch is given by the ratio of the overall routing
cost c(R) over the achievable routing cost on the underlay network. Since the main goal is the
achievement of a low-stretch routing overlay and we cannot influence cost on the underlay,
the only available approach is to reduce the overall routing cost c(R).

Definition 7.1 (Minimum Routing Cost Spanning Tree (MRCT)) Let T (D) denote the set of
all spanning trees of a graph D. Then, M ∈ T (D) is a MRCT of D iff c(M) = minT∈T (D) c(T).

As stated before, finding the minimum routing cost spanning tree is NP-hard. In the following,
we will discuss three existing centralized approaches that can be used as heuristics for the
problem, and we will briefly explain their shortcomings. Subsequently, we will describe our
newly developed distributed algorithm to build a maintainable structure that approximates the
MRCT. But first, we will discuss the other approaches.

7.1 Approximation by a Minimum Spanning Tree (MST)

A simple heuristic is a minimum spanning tree since it would at least reduce the cost between
any two adjacent peers.

Using an MST would be a handy solution, since it is well-researched and there exist accepted
distributed algorithms to build the tree [9, 2]. Considering the fact that the structure focuses
on minimum weight edges, the assumption could be valid, MST is approximating an MRCT
accurately. But an MST is only serving a good approximation when edges have unit weights or
the graph is in general homogeneous.

It is apparent from Figure 7.1 that an MST might produce bad approximations for our purpose,
even if the underlying graph is only slightly in-homogeneous. Nevertheless, we will run the
experiments with an MST algorithm for comparison.

49

7 Routing overlay

ω

ω

ω

ω

ω

ω

ω

ω

ω− ε

ω− ε ω− ε

ω− ε

ω− ε

ω− εω− ε

ω− ε

(a) Topology. Weights are
given by ω > ε > 0.

ω

ω− ε

ω− ε ω− ε

ω− ε

ω− ε

ω− εω− ε

(b) Minimum Spanning
Tree (others possible).

ω

ω

ω

ω

ω

ω

ω

ω

(c) Minimum Routing Cost
Tree.

Figure 7.1: A Minimum Spanning tree failing to approximate a Minimum Routing Cost Tree of
a given topology. A similar observation was made by Chao et al.[7]

7.2 Approximation by a Shortest Path Tree (SPT) rooted at the
median

A shortest path tree rooted at the median of a graph was proposed by Wong et al. [27] as an
approximation for the shortest total path length spanning tree problem [11]. It is possible to
achieve a 2-approximation of the MRCT using that approach [28].

Obviously, this structure is highly fragile. When churn occurs, even slight change may cause a
different node being the median of the graph and will lead to a different tree. That causes the
shortest path tree having to be recalculated to keep approximation bounds valid.

Another reason making this structure unfeasible for our purpose, is that median information
is based on summing up all distances from every node to all other nodes. This involves
shortest-path knowledge for all pairs. Determining such global information is inefficient both
in terms of space and messages exchange.

7.3 Approximation by Campos’ algorithm

Campos et al. [6] proposed a fast and simple centralized MRCT approximation. The authors
claim to be able to provide a solution having the same routing cost as an MRCT in practice.
The approach modifies Prim’s minimum spanning tree algorithm: Instead of taking solely edge
weights into account, the algorithm calculates a spanning potential to select a parent node. It
combines degree of a node, incident edge weights and information about adjacent nodes.

We will include that centralized algorithm in our evaluations.

50

7.4 Approximation by our core-based approach

7.4 Approximation by our core-based approach

Due to unstable results, a distributed minimum spanning tree algorithm is unsuitable, especially
in heterogeneous topologies.

Developing a distributed algorithm for Campos’ approach is thinkable as it primarily based
on concept of minimum spanning trees. . Even if Campos’ algorithm overcomes some of the
drawbacks of MSTs, the authors admit that it is not possible to derive any propositions about
the quality of the outcome [6].

As stated, a problem of using median-rooted SPT is that the properties of the tree depend
on a single node that is derived by global knowledge. Small changes in the topology might
influence the overall structure. There are some distributed algorithms available, detecting the
median of a graph by comparing all possible SPTs, lacking the possibility of future scaling (see
[15, 22]).

Therefore, we will focus to find a more sophisticated structure within the discovery overlay
to derive the router overlay: An optimized subgraph of the discovery overlay is constructed,
that will be called the core of the graph. The core will consist of nodes that are important for
overall routing cost improvement. It is composed of the high-routing load peers and aims to
improve distant paths between peers. Consequently, we will connect the remaining peers to
the core by using shortest paths on the discovery overlay.

The core is meant to serve a similar purpose on the peer-level as transit-domains do on the
router level. An important difference is allowing the core to change dynamically over time.
The core is therefore elected by other peers.Choosing the right edges ER ⊆ ED is the critical
factor. We will detail that requirements in the following section by analyzing the structure of
minimum routing cost trees and looking for efficient ways to build the routing overlay.

7.4.1 Structure of an MRCT

As a first step, we will analyze the general structure of minimum routing cost trees to explain
the intuition of our solution: The original formula for the routing cost c(R) sums up the
distances between each pair of vertices on the routing overlay. As we cannot derive structural
information from the edge weights, we have to observe how often an edge weight is actually
summed up. The formula counts the usage of each edge e ∈ ρR(u, v) for all u, v ∈ PD. On
multiplying the usage by the weight of e, we get e’s contribution to overall routing cost.

Lemma 7.1 An edge e ∈ ER that connects the two subtrees induced by the vertex sets V ′ ⊂ VR

and V ′′ ⊂ VR that result by removing e from R is used 2|V ′||V ′′| times.

51

7 Routing overlay

This is evident, if we regard the number of vertices in every emerged subtree. Consider the set
of vertices V ′. Every vertex u ∈ V ′ uses e on a path to every v ∈ V ′′. That holds as well for the
opposite direction.

Proof 7.1 As in [28]:

∑
u∈PD

|{v ∈ PD|e ∈ ρR(u, v)}| = ∑
u∈V′
|V ′′|+ ∑

u∈V′′
|V ′| = 2|V ′||V ′′|

We will call that usage of an edge the load of it. Using the above observation, we can define
the load of an edge by:

Definition 7.2 (Load) The load of an edge e in a tree R that connects the two subgraphs S′ and
S′′ that result by removing e is given by

ldR(e) = 2|VS′ ||VS′′ |

Multiplying the load of an edge by its weight permits to calculate the overall routing cost of
the tree. It leads to the following lemma:

Lemma 7.2 An alternative formula of the overall routing cost c(R) of a tree R is given by

c(R) = ∑
e∈ER

ldR(e)ωR(e)

Proof 7.2 As in [28]: Let ρR(u, v) denote the path from a node u to a node v on the tree R. Then,

c(R) = ∑
u∈PD

(
∑

v∈PD\{u}
dR(u, v)

)

= ∑
u∈PD

 ∑
v∈PD\{u}

 ∑
e∈ρR(u,v)

ωR(e)


= ∑

e∈ER

(
∑

u∈PD

|{v ∈ PD|e ∈ ρR(u, v)}|
)

ωR(e)

= ∑
e∈ER

ldR(e)ωR(e)

While not solving the actual problem, we can at least observe that there are certain edges that
might contribute more to the overall routing cost than others. Edges with a high routing load
contribute multiple times with their weight. Therefore, finding edges exhibiting both high
routing load and low weight, will overall yield a low routing cost.

52

7.4 Approximation by our core-based approach

r1

r2

r3

r4

r5

rel(u)

SPTrel(u)

u

Figure 7.2: The core of the graph is a tree connecting the relay nodes.

Obviously, peers are not able to locally detect the routing load of edges in the future overlay.
We will establish a mechanism that collects local guesses of peers to derive an estimated
contribution. Therefore, we will generate the estimations based on peers, rather than on their
links. As it is virtually impossible to constitute in advance whether links will be part of the
future overlay. As peers will be naturally part of the tree, they will be used as a representation
of the load on the adjacent edges.

Having exposed the intuition of the approach, we will now describe the desired structure
in detail and discuss the distributed algorithm. At the end of this section the approach is
evaluated and compared to existing mechanisms. Since the other approaches are centralized,
message and space complexity will be evaluated analytically.

7.4.2 Desired structure of the core

The decomposition of the discovery overlay in multiple connected trees provides several
benefits. The graph is split into multiple shortest path trees, where one among them is forming
our core. As a consequence, trees might be maintained at least partially independent keeping
topological changes mostly local.

Nevertheless, the structure needs to stay connected and the marginal core-peers will serve this
purpose. They will serve as a connection for non-core peers in a shortest path tree. We will call
those peers relay nodes:

53

7 Routing overlay

Definition 7.3 (Core, Relay node) We will denote the set of peers in the core by C. We call a
node rel(u) ∈ C the relay node of u if it has the minimum distance to u among all nodes in C. So,
dR(u, rel(u)) = minr∈CdR(u, r). The shortest path tree rooted at rel(u) is denoted by SPTrel(u).

Paths on the routing overlay in general start at a peer u in a branch of the tree SPTrel(u), using
a shortest path to the relay node rel(u) ∈ C, allowing them to reach other overlay peers, as
depicted in Figure 7.2.

Using that structure, enables us to give an upper bound on the path distance in R:

dR(u, v) ≤ dSPTrel(u)
(u, rel(u)) + dC(rel(u), rel(v)) + dSPTrel(v)

(rel(v), v)

More detailed bounds are discussed in chapter 7.8. But firstly, we will focus on the algorithm
in the following section.

7.5 Distributed algorithm

Our approach forms the routing overlay by connecting multiple shortest path trees. Solving
shortest path related problems is a sub-problem of many routing protocols or network opti-
mization algorithms in general. It often turns out to be the performance bottleneck of them
as well. Depending on the algorithm used, it has negative influence on either time, space or
message complexity.

Most of the algorithms have in common to use the basic formulation of the Bellman inequality.
It is a rather local property that expands globally. It describes the optimal substructure property
of shortest paths stating that any shortest paths is composed of further shortest paths [28]. We
will take advantage of that property in the following.

Peers are influenced by that local property to optimize routes by determining shortest paths in
their neighborhood. We may assume that nodes connected to edges causing an improvement
are important.

The main algorithm consists of two separate phases: The voting phase and the connection
phase.

7.5.1 Voting phase

The peers form a spanning tree for temporary communication. Any distributed spanning tree
algorithm is sufficient, for instance as proposed by Awerbuch [2]. The peers will attempt to
influence the formation of the core to their advantage. Each peer elects among its neighboring
peers while all votes are gathered by sending them along the spanning tree. Peers receiving

54

7.5 Distributed algorithm

higher votes are considered to be important due to their low-latency link. Peers that acquired
more than the average amount of votes will form the core after being informed by the root of
the temporary spanning tree. Each relay node r ∈ C is aware of being part of the core.

In detail, the algorithm is implemented similar to the synchronizer β by Awerbuch [1]: In an
initialization phase a spanning tree is formed and the root is a temporary leader in the network.
The leader sends a message along the tree, notifying other nodes that the voting process may
commence. Starting at the leaves of the temporary spanning tree, the votes are summed up
and propagated towards the leader. The temporary root can now distinguish non-core peers
from the relay nodes by summing up the votes each peer has received from other peers. The
temporary structure is then used to inform all peers about the relay nodes.

7.5.2 Connection phase

The remaining non-core peers have to choose one of the relay nodes from the core as it is not
guaranteed that one of the peers they voted for eventually made it to the core. The challenge
is that peers have to choose the closest of the core even if it is multiple hops away and they are
not aware of the distance.

A peer u has to find the closest relay node rel(u) ∈ C and take a position in the shortest path
tree SPTrel(u) rooted at that relay node. Therefore, each peer executes the Init Peer procedure
proposed in Algorithm 7.1: In this state, no routing information to the core is known. If a peer
detects that itself as being part of the core, it will immediately inform its neighbors. Non-core
peers need to send a 〈sync〉-message. After the initialization exactly 2 messages have been sent
along each link.

The peers keep track of an estimated distance to the relay nodes. They might receive messages
from neighbors containing the neighbor’s distance estimate to a relay node. A peer recomputes
the value by adding the distance to the neighbor and might set the neighbor as the next hop to
the relay node, in case of providing an improvement.

Each distance update would potentially cause a flood of updates to other nodes. We strive to
avoid such a distance update causing a complete change on all connected descendants in the
shortest path tree. Therefore, our algorithm uses a synchronization approach as introduced by
Awerbuch et al. [1], reducing the amount of messages produced. Peers consider a phase to be
finished once they have received a message from all of their active neighbors.

55

7 Routing overlay

Algorithm 7.1 Init Peer (at node u)
1: var dist : C → R∪ {∞}
2: var nextHop : C → Nu ∪ {⊥} // one hop routing table
3: var Cupdated : set of C // may contain s after receiving a (r, dvr) message
4: var Nrcvd : set of Nu // track responses
5:

6: procedure INIT

7: Cupdated ← ∅ ; Nrcvd ← ∅
8: for all r ∈ C do
9: nextHop[r]← ⊥ ; dist[r]← ∞

10: if u ∈ C then
11: nextHop[u]← u ; dist[u]← 0
12: send (u, 0) to all v ∈ Nu // updates tables and rcvd-set at neighbors
13: else
14: send 〈sync〉 to all v ∈ Nu // needed for synchronization

There are two types of messages that a peer may receive from a neighbor in the OnReceive
procedure (see Algorithm 7.2): Distance updates of the form (r, dvr) and status updates of the
form 〈state〉.

Once a peer u receives a distance update from a neighboring peer v, it evaluates whether the
new information would be an improvement in reaching the core through the neighbor. It might
happen, that this is the first time that u can estimate its distance to the relay node. It updates
its routing information and adds the relay node to Cupdated. Note that u does not instantly
inform the other neighbors about improved paths to a relay node. Instead, it adds the neighbor
v to Nrcvd and waits until the synchronization phase has come to an end. By maintaining the
set Nrcvd a node can determine whether it has received messages from all of its neighbors.

56

7.5 Distributed algorithm

Algorithm 7.2 OnReceive(at node u)
1: procedure ONRECEIVE(r, dvr) // dvr is v’s current distance estimate to a relay node r ∈ C
2: if (u /∈ C) ∧ (dist[r] > ω(u, v) + dvr) then // would (u, v) help to better reach r?
3: nextHop[r]← v // update routing table
4: dist[r]← ω(u, v) + dvr

5: Cupdated ← Cupdated ∪ {r} // because dist[r] was improved

6: Nrcvd ← Nrcvd ∪ {v} // We will not send the improvement right now...
7: CheckSync() // ...but wait until received from all (’sync’)

8:

9: procedure ONRECEIVE(state) // sent by neighbor v
10: if state = 〈sync〉 then
11: Nrcvd ← Nrcvd ∪ {v}
12: CheckSync()

Once having received a message from a neighbor, a peer runs CheckSync (see Algorithm 7.3).
It evaluates, whether it has reached the end of a phase which is the case when Nrcvd = Nu. If
the phase has ended, it examines whether the route information to any relay node has been
updated since the last phase (i.e. Cupdated 6= ∅). In that case, then the closest relay node is
chosen and a distance update is sent to the neighbors. Otherwise, if the peer has finished the
phase but no route information was updated, a 〈sync〉-message is sent.

Algorithm 7.3 CheckSync(at node u)
1: procedure CHECKSYNC

2: if Nrcvd = Nu then // u received messages from all active neighbors
3: if Cupdated 6= ∅ then
4: ropt ← rmin such that dist[rmin] ≤ dist[r′], ∀r′ ∈ Cupdated // closest relay
5: send (ropt, dist[ropt]) to all v ∈ Nu

6: else
7: send 〈sync〉 to all v ∈ Nu

8: Nrcvd = ∅
9: Cupdated = ∅

Termination

We will now enhance the termination behavior of the algorithm. In the current state the
algorithm ends implicitly after a certain amount of messages sent, which is called message
termination. Since the peers are not aware of the size of the overlay, they are not capable
to determine whether a stable state is reached. We will improve that to explicit process

57

7 Routing overlay

termination without having the peers to know |PD|. This is achieved similar as in proposed by
Bui et al. [5]. Therefore, we introduce the set Ninactive containing all inactive neighbors, being
set to ∅ in Init Peer.

We introduce a new state, namely 〈inactive〉, which needs to be handled by OnReceive. It
causes a minor, straight-forward enhancement. Once a node receives such a state update from
its neighbor v, it will add v to Ninactive. That is shown in Algorithm 7.4.

Algorithm 7.4 OnReceive(at node u)
1: procedure ONRECEIVE(state) // sent by neighbor v
2: if state = 〈sync〉 then
3: Nrcvd ← Nrcvd ∪ {v}
4: else if state = 〈inactive〉 then
5: Ninactive ← Ninactive ∪ {v}
6: CheckSync()

The new state can now be used by CheckSync such that it treats all inactive neighbors as
if they had sent a message. So, a phase is finished once Nrcvd = Nu \ Ninactive holds (see
Algorithm 7.5).

A peer sends 〈inactive〉 when optimization is finished. That is the case, when all neighbors
are either inactive or have sent a distance update without improvement. That happens if the
neighbors do not know a better distance to the core, so the update had no effect on Cupdated.

Remember that the overall process starts at the core peers and distance information is sent
downwards the future shortest path tree. A peer can process terminate as soon asNinactive = Nu

and it has sent 〈inactive〉 to all neighbors. Such a message is only sent once to all neighbors. It
is therefore the last message from u to its neighbor v.

Algorithm 7.5 CheckSync(at node u)
1: procedure CHECKSYNC

2: if Nrcvd = Nu \ Ninactive then // u received messages from all active neighbors
3: if Cupdated 6= ∅ then
4: ropt ← rmin such that dist[rmin] ≤ dist[r′], ∀r′ ∈ Cupdated \ Ninactive
5: send (ropt, dist[ropt]) to all v ∈ Nu

6: else
7: send 〈inactive〉 to all v ∈ Nu // inactivation message

// process termination check goes here
8: Nrcvd = ∅
9: Cupdated = ∅

58

7.6 Publish/subscribe routing

7.5.3 Routing overlay formation

The remaining steps are straight-forward. Once a peer process terminates in the previous step,
it is aware of its closest relay node in the core. It also knows the next hop on the shortest
path. By sending a request to the next hop peer, all non-core nodes can form the shortest
path tree which is rooted at the relay node. If a peer has process terminated and receives
such a request, it marks the incident link as part of the routing overlay. Using the described
distributed algorithm, we managed to connect all non-core nodes to their closest relay node
using only shortest paths on the discovery overlay.

For our evaluations, we will presume that all relay nodes in the core also form a shortest path
tree. We will also assume that once a request for using a next hop peer is received, this will be
counted and as a result the relay node knows the number of connected peers. The relay node
serving the most non-core peers will be the root of the shortest path tree.

We will show in the evaluations that this structure already performs very well compared to
other approaches. Further investigation is possible and may yield even better results.

7.5.4 Churn

We will now discuss the process of new peers opting in to the routing overlay, as well as
removing peers that disconnect. This is caused by churn that is handled in the topology
discovery overlay (see chapters 6.2 and 6.5).

If a new peer p joins the routing overlay and no tree overlay edge was affected by rearrangement
in the discovery overlay, the peer can determine the distance to relay nodex through Np. After
receiving all distance messages the peer performs OnReceive and CheckSync.

If the structure of R was changed by rearrangement in the discovery overlay, the affected
shortest path trees may have to be recalculated. This can be triggered through the discovery
overlay. The corresponding relay node needs to run Init assuming that any neighboring
core-peers being inactive.

7.6 Publish/subscribe routing

Any publish/subscribe system that benefits from end-to-end delay reduction can be established.
As an example, we will describe in the following how a simple, but efficient publish/subscribe
system that uses subscription forwarding can be established.

The publish/subscribe system uses the routing overlay to propagate event notifications. There-
fore, each peer maintains a covering filter for every adjacent edge in ER. The routes are
determined by filters on peers and notification events follow a corresponding reverse path. The

59

7 Routing overlay

filters are determined by the subscriptions sent by other peers: If a subscription is received, the
filter of the corresponding edge is extended, so that the edge can act as a reverse path when
event notifications are received.

When exploiting similarities among subscriptions resource usage can be improved. This is
achieved by propagating subscriptions only along paths that have not been covered by previous
forwarding of subscriptions. Whether subscriptions are forwarded along the other adjacent
links is determined by the corresponding filter. If that filter already covers the subscription, it
does not need to be forwarded, since the necessary route is already established.

Once an event notification is received or a peer wants to publish an event, it can determine by
the corresponding filters whether it should forward the event notification along a neighboring
link. So, we will guarantee to send notifications only towards the direction of interested
subscribers.

7.7 Evaluations

7.7.1 Complexity analysis

Voting phase

Let n = |PD|, m = |ED|. Any off-the-self distributed algorithm is sufficient to form a temporary
spanning tree. For instance, Awerbuch’s MST algorithm [2] which uses O(m+ nlogn) messages
and runs in O(n) time can be considered. There exist minimum spanning tree algorithms
that run in sub-linear time (see [10]). Actually, it is not necessary for the spanning tree to be
minimum-weighted, but it is beneficial.

During the voting exactly n− 1 messages are sent. The temporary root informs all other peers
with n− 1 messages about the relay nodes with a message of size O(|C|).

The algorithm starts at the core peers. So, actually only the |C| core nodes need to be informed.
The message size is in O(|C|). The time needed is proportional to the height of the tree, which
might be n− 1 in the worst case.

Connection phase

The algorithm has to store dist and nextHop to the core, so the space complexity is given by
O(|C|).

The process consists of synchronized phases in which the sets Nrcvd and Ninactive are filled.
At the end of each phase, a peer sends at most one message per neighbor. So up to O(mn)
messages are sent in the whole process for m = |ED|. Each peer in turn sends n messages in

60

7.7 Evaluations

the worst case to each neighbor in the whole process (in either Init or CheckSync) along each
link.

This yields O(mn) messages in the worst case of O(n) phases. In every phase at least one peer
finds the optimum relay, if the algorithm starts at the relay nodes.

The messages are either status or distance updates, so message size is constant.

7.7.2 Simulations

Experimental setup

We will use the same topologies and the number of peers as described in chapter 6.6.2. The
first simulations are run allowing unlimited size in neighbor sets. A subsequent run will limit
the size to maxN =

√
n.

We consider minimum spanning tree, a shortest path tree rooted at the median of the discovery
overlay, and Campos’ minimum routing cost approximation algorithm [6]. We use a discovery
overlay derived by utilizing the limited flooding strategy. Consistently, we are comparing
again the two different topologies, Waxman and Transit-stub (see chapter 6.6.2 for topology
characteristics).

Metrics

Since the other approaches are centralized, we are not able to compare metrics related to effi-
ciency. For our approach, efficiency and complexity is previously discussed in chapter 7.7.1.

We will concentrate on two different values for stretch: The stretch of the routing overlay on
top of the discovery overlay, as well as stretch of the routing overlay on top of the underlay
network.

Results

It is evident from Figure 7.3 that the difference in topologies seems to be more influential than
during the building of the discovery overlay. For Waxman topologies, the approach outperforms
all other approaches, producing a stretch on the discovery overlay lower than 1.8 for all settings
of λ.

The results on the transit-stub topology is promising for λ ≤ 1.5, providing less than 1.3 stretch
on the discovery overlay. However, a slight increase of the locality factor (λ = 1.75) causes
doubling of the stretch. An explanation for this phenomenon will be given in chapter 7.8
showing that the stretch of the core-based approach is solely dependent on the right choice of

61

7 Routing overlay

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-D
medianSPT-D

MST-D
Campos-D

(a) Transit-stub topology

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-D
medianSPT-D

MST-D
Campos-D

(b) Waxman topology

Figure 7.3: Overlay routing stretch compared to discovery overlay for different λ-values. The
maximum number of neighbors is limited to n.

relay nodes. That leads to the conclusion that the behavior is caused by a wrong selection of
relay nodes.

The described behavior for the transit-stub topology also occurs when considering the stretch
compared to the underlay network as shown in figure 7.4. Starting at stretch values lower

62

7.7 Evaluations

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-N
medianSPT-N

MST-N
Campos-N

(a) Transit-stub topology

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-N
medianSPT-N

MST-N
Campos-N

(b) Waxman topology

Figure 7.4: Overlay routing stretch compared to the underlay network for different λ-values.
The maximum number of neighbors is limited to n.

than 1.8, and performing distinctly better than the other approaches, the stretch again nearly
doubles for higher setting of the locality factor.

63

7 Routing overlay

In the Waxman topology again the stretch on the underlay is slightly higher compared to
transit-stub, ranging from about 1.75 to 2.3. The same is valid for stretch on the discovery
overlay, ranging from 1.4 to 1.8.

We will extent simulations on the same topologies, by limit maxN to a more reasonable setting
of
√

n.

Considering the transit-stub topology, the stretch on D of the core-based overlay is again
lower than that of the other approaches for λ < 1.75. We can observe that the same holds for
the stretch on the underlay network, which is obviously higher. The observed effect is again
occurring for λ ≥ 2. The discovery overlay should clearly focus on locality when running the
core-based approach.

For Waxman topologies the improvement over the other approaches is - similar to transit-stub -
given for smaller values of λ ≤ 1.5. The achieved improvement in stretch is not that distinct as
in transit-stub topologies with unbounded number of neighbors, but still the approach yields
the best results of all.

7.7.3 Summary of results

Overall, we can suggest that the discovery overlay should focus on locality when running the
core-based approach. We have shown in simulations, that for values of λ < 1.5 the approach
outperforms all other approaches on both topologies under these conditions.

7.8 Upper and lower bounds on cost and stretch

We will first investigate to what extent upper and lower bounds of overall routing cost and
stretch are determined by the core-based structure of the routing overlay. Bounds and approxi-
mation ratios on MRCTs were extensively researched by Wu, Chao, Tang et al. [29, 28].

We are considering lower bounds first. All distances on the routing overlay are obviously at
least as high as the distances in the discovery overlay, since R is a subgraph of D. So, for all
u, r ∈ PD, dR(u, v) ≥ dD(u, v) holds. A trivial lower bound of the overall routing cost on R can
be given by:

c(R) = ∑
u,v∈PD

dR(u, v)

≥ ∑
u,v∈PD

dD(u, v)

64

7.8 Upper and lower bounds on cost and stretch

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-D
medianSPT-D

MST-D
Campos-D

(a) Transit-stub topology

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-D
medianSPT-D

MST-D
Campos-D

(b) Waxman topology

Figure 7.5: Overlay routing stretch compared to discovery overlay for different λ-values. The
maximum number of neighbors is limited to

√
n.

A path on the tree between two peers u, v can generally be divided in at most three sub-paths
if the peers are not connected to the same relay node: The path from u to the core, the path on
the core, and the path from the core to v. The following holds:

dR(u, v) ≤

dR(u, rel(u)) + dR(rel(u), rel(v)) + dR(rel(v), v), if rel(u) 6= rel(v)

dR(u, rel(u)) + dR(rel(u), v), else

65

7 Routing overlay

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-N
medianSPT-N

MST-N
Campos-N

(a) Transit-stub topology

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 1 1.25 1.5 1.75 2 2.25

st
re

tc
h

lambda

routing stretch

core-N
medianSPT-N

MST-N
Campos-N

(b) Waxman topology

Figure 7.6: Overlay routing stretch compared to the underlay network for different λ-values.
The maximum number of neighbors is limited to

√
n.

So the case where paths on the core are used determines the upper bound of the distance for
any u, v on R. We will denote the tree induced by the relay nodes as TC . It is a subgraph of
R, so the set of edges of a path ρR that are part of the core is given by ρR(u, v) ∩ ETC . Their

66

7.8 Upper and lower bounds on cost and stretch

contribution to the distance is calculated by the summed weight of all edges that are part of
the core when using a shortest path from u to v:

dTC (u, v) = ∑
e∈ρR(u,v)∩ETC

ωD(e)

Summing up the upper distance bounds of dR for all pairs of peers, we get an upper bound of
the overall routing cost by [28]:

c(R) = ∑
u,v∈PD

dR(u, v)

≤ ∑
u,v∈PD

dR(u, rel(u)) + dR(rel(u), rel(v)) + dR(rel(v), v)

≤ ∑
u,v∈PD

dR(u, rel(u)) + dR(rel(v), v) + ∑
u,v∈PD

dTC (u, v)

≤ 2|PD| ∑
u∈PD

dR(u, rel(u)) + ∑
u,v∈PD

dTC (u, v)

Consider the first sum-term of that inequality. Since for all non-core peers u the path to rel(u)
is the same as the shortest path on the discovery overlay, we can substitute dR(u, rel(u)) in the
above inequality by dD(u, rel(u)), giving:

c(R) ≤ 2|PD|∑u∈PD
dD(u, rel(u)) + ∑u,v∈PD

dTC (u, v)

The second sum term, representing the sub-paths through the core, cannot be substituted
accordingly, as we do not know the exact structure of the core. But we can derive bounds on
the routing load of all edges of the routing overlay e ∈ ER.

Removing e from ER would result in two subtrees. The set of vertices would be given by
P′D(e) and PD \ P′D(e). We set x = |P′D(e)|, then, the routing load of e is given by ld(e) =

2x(|PD| − x) = 2|PD|x− 2x2, where x is an integer and x ∈ [1, (|PD| − 1)]. So, we are able to
conclude that:

∀e ∈ ER : (ldR(e) ≥ 2(|PD| − 1)) ∧ (ldR(e) ≤
|PD|2

2
)

So we can give an upper bound for the contribution of the core by [28]:

∑
u,v∈PD

dTC (u, v) = ∑
e∈ETC

ldR(e)ωD(e)

≤ |PD|2

2 ∑
e∈ETC

ωD(e)

67

7 Routing overlay

That enables us to derive the upper bound of the overall routing cost directly by the structure
of the topology discover overlay D and the core of the tree C. It is given by [28]:

c(R) ≤ 2|PD| ∑
u∈PD

dD(u, rel(u)) +
|PD|2

2 ∑
e∈ETC

ωD(e)

Since the stretch of R on top of N can only be influenced via c(R), the choice of relay nodes
forming the core is very important.

Indeed, more explicit bounds could be derived when the size of shortest path trees at the relay
nodes would be enforced. Core nodes would need the ability to rearrange the shortest path
trees rooted at them by explicitly rejecting or accepting non-core peers. If nodes would be
rejected, they had to connect to a different relay node (still through a shortest path to that
relay). This would involve much higher configuration overhead.

But, it can be shown that it is at least possible to keep the approximation ratio of the minimum
routing cost tree in [4

3 , 2] under certain circumstances (see [28]).

68

8 Conclusion and future work

8.1 Conclusion

We studied the problem of establishing an efficient underlay-aware routing mechanism in the
context of event dissemination in content-based publish/subscribe overlays. A multi-overlay
approach that divides the problem into sub-problems and conquers them separately was
developed. Another benefit of that technique is that single components of the approach are
reusable or can be exchanged. Our work leads to multiple contributions:

1. We proposed a new topology inference scheme that generates an accurate representation
of the underlying router-level network using a new distributed algorithm. The scheme is
configurable via parameters to limit space usage, message overhead and to control its focus on
locality which turned out to be important for our routing approach. We showed in simulations
that it performs well on different types of Internet-like network topologies and that the emerged
peer-to-peer overlay exhibits low stretch. As a side-effect, underlay link stress is reduced. It is
possible to reach stretch values less than 7% higher than underlay routing. Even when limiting
the local space on each peer to O(

√
n) stretches lower than 1.5 can be reached with about

10% of traceroute executions necessary compared to an n-by-n approach.

2. A new routing mechanism that focuses on reducing overall cost between the peers by
approximating an minimum routing cost tree was introduced. The distributed algorithm
detects a high-load subgraph of the routing overlay, which we called the core. We are able to
connect peers through shortest path to the core and showed in simulations that it is possible to
achieve reasonable underlay stretch. We compared the results to different other spanning tree
algorithms where it performs very well as long as the discovery overlay focuses on locality.

3. We showed how the derived structure can provide underlay-awareness to a content-based
publish/subscribe systems that benefits from the focus on routing cost minimization.

8.2 Future work

We focused on end-to-end delay as cost metric for the routing overlay throughout this work.
With a slight enhancement, it is possible to add support for all sorts of constraints. Assume, we
are also given the requirement r(p, q) for each pair of peers. We redefine the communication

69

8 Conclusion and future work

cost to be the path length between the two peers on R multiplied by the requirement. The aim
is approximating the spanning tree with the minimum communication cost. That problem is
called the optimum communication spanning tree (OCT) problem, which is a generalization of
the MRCT problem [28].

70

Bibliography

[1] B. Awerbuch, “Complexity of network synchronization,” J. ACM, vol. 32, no. 4, pp.
804–823, 1985. (Cited on page 55)

[2] B. Awerbuch, “Optimal distributed algorithms for minimum weight spanning tree, count-
ing, leader election, and related problems,” Proceedings of the nineteenth annual ACM
symposium on Theory of computing (STOC ’87), 1987. (Cited on pages 49, 54 and 60)

[3] P. Barford, A. Bestavros, J. Byers, and M. Crovella, “On the marginal utility of network
topology measurements,” Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement (IMW ’01), 2001. (Cited on pages 42, 43 and 44)

[4] A. Broido and K. C. Claffy, “Internet Topology: connectivity of IP graphs,” Proceedings
from the SPIE International Symposium on Convergence of IT and Communication, pp.
172–187, 2001. (Cited on page 42)

[5] M. Bui, F. Butelle, and C. Lavault, “A distributed algorithm for constructing a minimum
diameter spanning tree,” Journal of Parallel and Distributed Computing, vol. 64, no. 5, pp.
571–577, 2004. (Cited on page 58)

[6] R. Campos and M. Ricardo, “A fast algorithm for computing minimum routing cost
spanning trees,” Computer Networks, vol. 52, no. 17, pp. 3229–3247, 2008. (Cited on
pages 14, 50, 51 and 61)

[7] K. Chao. (2006) Minimum Routing Cost Spanning Trees. [Online]. Available:
http://www.csie.ntu.edu.tw/~kmchao/tree06spr/mrct.ppt (Cited on pages 5 and 50)

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the Internet
topology,” Proceedings of the conference on Applications, technologies, architectures, and
protocols for computer communication (SIGCOMM’99), pp. 251–262, 1999. (Cited on
page 30)

[9] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A Distributed Algorithm for Minimum-
Weight Spanning Trees,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 5, no. 1, pp. 66–77, 1983. (Cited on page 49)

[10] J. A. Garay, S. Kutten, and D. Peleg, “A SubLinear Time Distributed Algorithm for
Minimum-Weight Spanning Trees,” SIAM Journal on Computing, vol. 27, no. 1, p. 302,
1998. (Cited on page 60)

71

http://www.csie.ntu.edu.tw/~kmchao/tree06spr/mrct.ppt

Bibliography

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, ser. Series of Books in the Mathematical Sciences. W.H.Freeman & Co,
1979. (Cited on pages 13 and 50)

[12] M. A. Jaeger, H. Parzyjegla, G. Mühl, and K. Herrmann, “Self-organizing broker topologies
for publish/subscribe systems,” Proceedings of the 2007 ACM symposium on Applied
computing (SAC ’07), 2007. (Cited on page 11)

[13] X. Jin, W. Tu, and S.-H. G. Chan, “Scalable and Efficient End-to-End Network Topology
Inference,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 6, pp.
837–850, 2008. (Cited on page 13)

[14] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan, “The complexity of the network
design problem,” Networks, vol. 8, no. 4, pp. 279–285, 1978. (Cited on page 13)

[15] E. Korach, D. Rotem, and N. Santoro, “Distributed algorithms for finding centers and
medians in networks,” ACM Trans. Program. Lang. Syst, vol. 6, no. 3, pp. 380–401, 1984.
(Cited on page 51)

[16] M. Kwon and S. Fahmy, “Path-aware overlay multicast,” Computer Networks, vol. 47,
no. 1, pp. 23–45, 2005. (Cited on pages 13 and 20)

[17] C. P. Low and X. Song, “On Finding Feasible Solutions for the Delay Constrained Group
Multicast Routing Problem,” IEEE Transactions on Computers, vol. 51, no. 5, pp. 581–588,
2002. (Cited on page 12)

[18] A. Majumder, N. Shrivastava, R. Rastogi, and A. Srinivasan, “Scalable Content-Based Rout-
ing in Pub/Sub Systems,” Proceedings of the 28th Conference on Computer Communications
(INFOCOM 2009), pp. 567–575, 2009. (Cited on page 11)

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers. (2001) BRITE: Universal
Topology Generation from a User’s Perspective. [Online]. Available: http:
//www.cs.bu.edu/brite/publications/usermanual.pdf (Cited on page 30)

[20] A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simulator,” Proceedings of the 9th
Int. Conference on Peer-to-Peer (P2P’09), pp. 99–100, 2009. (Cited on page 31)

[21] G. Parmer, R. West, and G. Fry. (2006) Scalable Overlay Multicast Tree
Construction for QoS-Constrained Media Streaming. [Online]. Available: http:
//cs-pub.bu.edu/faculty/richwest/papers/TR-2006-020.pdf (Cited on page 12)

[22] M. B. Sharma, J. Chen, and S. Iyengar, “Distributed algorithms for locating centers and
medians in communication networks,” Proceedings of the 1992 ACM/SIGAPP symposium
on Applied computing (SAC’92), pp. 808–817, 1992. (Cited on page 51)

[23] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos, “Power laws and the AS-level
internet topology,” IEEE/ACM Trans. Netw, vol. 11, no. 4, pp. 514–524, 2003. (Cited on
page 30)

72

http://www.cs.bu.edu/brite/publications/usermanual.pdf
http://www.cs.bu.edu/brite/publications/usermanual.pdf
http://cs-pub.bu.edu/faculty/richwest/papers/TR-2006-020.pdf
http://cs-pub.bu.edu/faculty/richwest/papers/TR-2006-020.pdf

Bibliography

[24] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. (2002)
Network Topology Generators: Degree-Based vs. Structural: Technical Report 02-760.
[Online]. Available: http://www.cs.usc.edu/research/02-760.pdf (Cited on page 30)

[25] M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and K. Rothermel, “Dynamic publish/sub-
scribe to meet subscriber-defined delay and bandwidth constraints,” Proceedings of the
Sixteenth International Conference on Parallel Computing (EURO-PAR), 2010. (Cited on
page 11)

[26] B. M. Waxman, “Routing of Multipoint Connections,” IEEE Journal on Selected Areas in
Communications, vol. 6, no. 9, pp. 1617–1622, 1988. (Cited on page 30)

[27] R. T. Wong, “Worst-Case Analysis of Network Design Problem Heuristics,” SIAM Journal
on Algebraic and Discrete Methods, vol. 1, pp. 51–63, 1980. (Cited on page 50)

[28] B. Y. Wu and K. M. Chao, Spanning trees and optimization problems. Boca Raton, FL:
Chapman & Hall/CRC, 2004. (Cited on pages 13, 14, 50, 52, 54, 64, 67, 68 and 70)

[29] B. Y. Wu, K. M. Chao, and C. Y. Tang, “Approximation algorithms for the shortest total
path length spanning tree problem,” Discrete Applied Mathematics, vol. 105, no. 1-3, pp.
273–289, 2000. (Cited on pages 13 and 64)

[30] E. W. Zegura, “Modeling Internet Topology,” 2002. (Cited on page 30)

[31] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to Model an Internetwork,” Pro-
ceedings of the Fifteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 1996), pp. 594–602, 1996. (Cited on page 30)

[32] E. Zegura. (2000) Modeling Topology of Large Internetworks. [Online]. Available:
http://www.cc.gatech.edu/projects/gtitm/ (Cited on page 30)

[33] Y. Zhu and B. Li, “Correlation-Aware Multimedia Content Distribution in Overlay Net-
works,” Proceedings of the Thirteenth Annual SPIE/ACM Conference on Multimedia Com-
puting and Networking (MMCN 2006), pp. 127–138, 2006. (Cited on page 12)

[34] Y. Zhu and B. Li, “Overlay Networks with Linear Capacity Constraints,” IEEE Transactions
on Parallel and Distributed Systems, vol. 19, no. 2, pp. 159–173, 2008. (Cited on page 12)

All links were last followed on August 3, 2011.

73

http://www.cs.usc.edu/research/02-760.pdf
http://www.cc.gatech.edu/projects/gtitm/

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Christian Schieberle)

	1 Abstract
	2 Introduction
	3 Related work
	3.1 QoS in publish-subscribe systems
	3.2 QoS in overlays
	3.3 Topology inference
	3.4 Approximation algorithms for Minimum Routing Cost Spanning Trees

	4 System model and problem statement
	4.1 System model
	4.2 Problem statement

	5 Approach overview
	6 Topology discovery
	6.1 Prefixes
	6.2 Joining the overlay
	6.3 Limited flooding strategy
	6.4 Random walk strategy
	6.5 Leaving the overlay and node failure
	6.6 Evaluations
	6.6.1 Complexity analysis
	6.6.2 Simulations
	Experimental setup
	Metrics
	Result discussion

	6.6.3 Anonymous routers and router aliases

	7 Routing overlay
	7.1 Approximation by a Minimum Spanning Tree (MST)
	7.2 Approximation by a Shortest Path Tree (SPT) rooted at the median
	7.3 Approximation by Campos' algorithm
	7.4 Approximation by our core-based approach
	7.4.1 Structure of an MRCT
	7.4.2 Desired structure of the core

	7.5 Distributed algorithm
	7.5.1 Voting phase
	7.5.2 Connection phase
	Termination

	7.5.3 Routing overlay formation
	7.5.4 Churn

	7.6 Publish/subscribe routing
	7.7 Evaluations
	7.7.1 Complexity analysis
	Voting phase
	Connection phase

	7.7.2 Simulations
	Experimental setup
	Metrics
	Results

	7.7.3 Summary of results

	7.8 Upper and lower bounds on cost and stretch

	8 Conclusion and future work
	8.1 Conclusion
	8.2 Future work

	Bibliography

