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Abstract

This work deals with theoretical energy minimization principles and the development
of associated computational tools for the description of microstructure evolution and
fracture in solid mechanics. The thesis consists of two parts: (i) The description of
inelastic deformation microstructures and their evolution in non-convex unstable solids
and (ii) the development of a variational framework for configurational-force-driven brittle
fracture based on energy minimization principles.

In the first part, a general framework is developed for the treatment of material in-
stabilities and microstructure developments in inelastic solids. Material instabilities and
microstructure developments are interpreted as the outcome of non(quasi)-convex varia-
tional problems which often suffer from the lack of solutions in the classical sense. The
proposed framework is based on a mathematical relaxation theory which is associated
with the replacement of non-quasiconvex potentials with their generalized convex en-
velopes. Furthermore, deformation microstructures and their evolution are studied for
three different constitutive material responses: the symmetry-breaking martensitic phase
transformations, the single-slip crystal plasticity and the isotropic damage mechanics.
For this purpose specific numerical relaxation algorithms are proposed for each constitu-
tive response. The performance of numerical relaxation schemes is presented by several
representative examples.

In the second part, a variational formulation of quasistatic brittle fracture in elastic
solids is outlined and a finite-element-based computational framework is proposed for the
two- and three-dimensional crack propagation. The starting point is a variational setting
that recasts a monotonic quasistatic fracture process into a sequence of incremental energy
minimization problems. The proposed numerical implementation exploits this variational
structure. It introduces discretized crack patterns with configurational-force-driven incre-
mental crack segment and crack surface releases. These releases of crack segments and
surfaces constitute a sequence of positive definite subproblems with successively decreas-
ing overall stiffness, providing an extremely robust algorithmic setting in the postcritical
range. The formulation is embedded into an accompanying r-adaptive crack-pattern ad-
justment procedure with configurational-force-based indicators in conjunction with crack
front constraints. The performance of the proposed algorithm is demonstrated by means
of several two- and three-dimensional crack propagation examples and comparisons with
experiments.



Zusammenfassung

Die Arbeit befaßt sich mit Theorie und Numerik der Entwicklung von Mikrostrukturen
und Bruch in der Festkörpermechanik. Sie besteht aus zwei Teilen: (i) Beschreibung von
inelastischen Deformationsmikrostrukturen und ihrer Evolution in nichtkonvexen insta-
bilen Körpern und (ii) Entwicklung einer Variationsformulierung für konfigurationskraft-
getriebenen spröden Bruch basierend auf Energieminimierungprinzipien.

Im ersten Teil wird eine allgemeine Struktur für die Behandlung von materiellen In-
stabilitäten und Mikrostrukturentwicklungen in inelastischen Körpern entwickelt. Ma-
terielle Instabilitäten und Mikrostrukturentwicklungen werden als Resultate nicht-(quasi)-
konvexer Variationsprobleme gedeutet, für die häufig keine klassichen Lösungen existieren.
Die vorgeschlagene Methodik basiert auf einer mathematischen Relaxierungstheorie, bei
der die nicht-(quasi)-konvexen Potentiale durch ihre generalisierten konvexen Hüllen er-
setzt werden. Außerdem werden Deformationsmikrostrukturen und ihre Entwicklung
für drei unterschiedliche Klassen von Materialverhalten analysiert: symmetriebrechende
martensitische Phasenumwandlungen, Kristallplastizität und isotrope Bruchmechanik.
Zu diesem Zweck werden spezifische numerische Relaxierungsalgorithmen für jede der
erwähnten Klassen von Materialverhalten vorgeschlagen. Die Leistungsfähigkeit der nu-
merischen Relaxierungsmethoden wird durch einige repräsentative Beispiele dargestellt.

Im zweiten Teil wird eine Variationsformulierung für quasistatischen spröden Bruch in
elastischen Körpern behandelt und ein auf der Methode der Finiten Elemente basierender
Ansatz für die zwei- und dreidimensionale Rißausbreitung vorgeschlagen. Ausgangspunkt
ist eine Variationsstruktur, die einen monotonen quasistatischen Bruchprozeß als eine
Folge inkrementeller Energieminimierungsprobleme darstellt. Die vorgeschlagene nume-
rische Implementierung nutzt diese Variationsstruktur aus. Auf diese Weise werden
diskrete Rißmuster durch die konfigurationskraftgetriebene Ausbreitung von Rißsegmenten
und Rißoberflächen erzeugt. Das Entstehen von Rißsegmenten und -oberflächen stellt eine
Folge positiv definiter Teilprobleme mit sukzessiv abnehmender Gesamtsteifigkeit dar, was
zu einem extrem robusten Algorithmus im postkritischen Bereich führt. Die Formulierung
ist außerdem in ein r-adaptives Verfahren zur Anpassung des Rißmusters mit konfigura-
tionskraftbasierten Indikatoren und Zwangsbedingungen durch die Rißfront eingebettet.
Die Leistungsfähigkeit des vorgeschlagenen Algorithmus wird anhand einiger zwei- und
dreidimensionaler Rißausbreitungsbeispiele und dem Vergleich mit Experimenten demon-
striert.
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Stuttgart, August 2007 Ercan Gürses
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1

1. Introduction

Variational minimization and maximization principles have been successfully employed
in the study of many problems from several branches of sciences. These include, for ex-
ample, the principle of minimum potential energy in elasticity theory, the Hamiltonian
principles in classical field theories, applications of the free discontinuity problem to frac-
ture mechanics, signal and image reconstruction and the Fermat’s principle in optics. In
recent years, the activity of research on variational minimization principles, particularly
in the areas theoretical, applied and computational mechanics and applied mathematics
has been increased. It is the aim of this contribution to develop theoretical and computa-
tional approaches for the description of some aspects of solid mechanics based on energy
minimization principles. More precisely, the goals of this work are: (i) Description of
inelastic deformation microstructures and their evolution in non-convex unstable solids
and (ii) development of a variational framework for configurational-force-driven brittle
fracture based on energy minimization principles.

1.1. Motivation and State of the Art

1.1.1. Description of Microstructures based on Energy Relaxation. Mi-
crostructures that are observed in nature often show complex patterns with length scales
much smaller than characteristic macroscopic dimensions of the problem considered. It
is possible mathematically to describe these microstructures by non-convex variational
problems. Furthermore, it has been shown that non-existence of minimizers in these vari-
ational problems are closely related to fine scale oscillatory infimizing sequences which
are interpreted as microstructures. In particular, there is a strong parallelism between
the microstructures that develop in martensitic phase transformations and fine scale os-
cillatory infimizing sequences of energy functionals describing phase transforming elastic
crystals, see Ball & James [14, 15], Chu & James [44], James & Hane [107], Bhat-

tacharya [22] among others.

The boundary value problems of non-linear elasticity can be formulated as variational
minimization problems, i.e. find the deformation map ϕ : B ⊂ Rn → Rm such that,

inf
ϕ∈W1,p(B)

{

I(ϕ) =

∫

B
ψ(∇ϕ)dV

∣
∣ ϕ = ϕ̄ on ∂B

}

(1.1)

where ψ denotes the energy storage function. The existence of solutions for this problem
demands the sequential weak lower semicontinuity of the functional I which is ensured
provided that the energy storage function ψ possesses particular weak convexity and
growth conditions. For vector valued variational problems the crucial weak convexity
notion is the quasiconvexity (Morrey [157]) which is indeed equivalent to the sequential
weak lower semicontinuity of the energy functional under suitable growth assumptions.
Other important notions which provide lower and upper bounds for quasiconvexity are
the polyconvexity (Ball [12]) and the rank-one convexity.

Non-convex variational problems which often suffer from the lack of solutions in the
classical sense can be treated by the relaxation theory, see Dacorogna [51]. That is the
replacement of the non-quasiconvex storage function ψ by its quasiconvex envelope

ψQ(∇ϕ) = inf
w∈W1,p

0
(D)

1

|D|

∫

D

ψ(∇ϕ + ∇w)dV (1.2)
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in (1.1). In contrast to the original problem, the relaxed functional IQ is well posed and
has a minimizer. Moreover, minimums of the relaxed problem IQ are exactly the weak
limits of infimizing sequences for the original functional I, i.e. min IQ(ϕ) = inf I(ϕ).
Unfortunately, ψQ is defined through an integral minimization problem without a local
characterization and there is no general methodology known for the determination of this
envelope. However, there are some exceptional cases in which the quasiconvex envelope
is obtained analytically, see Kohn [116] and Pipkin [184] for double-well energies and
DeSimone & Dolzmann [57, 58] for nematic elastomers. Moreover, there exist upper
and lower bounds of quasiconvex envelopes which can be employed to design numerical
schemes for the computation of suitable approximations, see Bhattacharya & Dolz-

mann [23], Bartels et al. [19] and Dolzmann [60]. The canonical bounds are the
so-called polyconvex and rank-one convex envelopes. In particular, the computation of
rank-one convex hulls have been extensively studied, e.g. Aranda & Perdregal [7]
and Dolzmann [59], since the rank-one convexification describes intrinsically laminate
type microstructures (Pedregal [179]) that are observed in many materials.

The martensitic phase transformation in crystalline solids is one of the most success-
ful application areas of the relaxation theory, see Müller [163], Bhattacharya [22],
Dolzmann [60] and Carstensen [38]. The martensitic solids exhibit abrupt changes
in their crystalline structure if they are cooled down below or heated up above a critical
temperature. The high and low temperature phases are often denoted as the austenite and
the martensite, respectively. The austenite has a greater symmetry than the martensite
and this gives rise to symmetry-related variants of the martensite during a transforma-
tion. The material response of this kind can be described by multi-well energy storage
functions

ψ(F ) = min
i=0...N

{ψi(F )} with ψi(F ) =

{
= 0 if F = QU i

> 0 otherwise
(1.3)

which are clearly non-convex. These energies yield multiple stress-free states and lead
to fine scale mixture of martensite variants during a phase transformation. In recent
years, simulation of martensitic microstructures based on different relaxation approaches
have been performed by Luskin [128], Govindjee & Miehe [80], Carstensen [38],
Govindjee, Mielke & Hall [81], Dolzmann [60], Aubry, Fago & Ortiz [11],
Bartels et al. [19], Kruž́ık, Mielke & Roub́ıček [120], Govindjee, Hackl &

Heinen [79] among others. Furthermore, there are applications of the relaxation theory
beyond the analysis of crystalline microstructures in martensitic transformations. DeS-

imone & Dolzmann [57, 58] and Conti, DeSimone & Dolzmann [47] have studied
nematic elastomers which undergo a nematic to isotropic phase transformation.

The relaxation theory can be applied to inelastic materials similar to the elastic con-
stitutive response of martensitic phase transformations if a variational formulation of
inelasticity is constructed. However, this is only possible in an incremental sense within
discrete time steps. The set up of a general incremental variational formulation of inelas-
ticity has been developed in the recent works Miehe [142] and Miehe, Schotte & Lam-

brecht [149] which are conceptually in line with the papers Ortiz & Repetto [175],
Ortiz & Stainier [177] and Carstensen, Hackl & Mielke [40]. The key idea can
be described as follows, for further details see aforementioned works. The general internal
variable formulation of inelasticity for generalized standard media is governed by two scalar
functions: the energy storage function ψ and the dissipation function φ. The general set
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up of this generic type of material model can be related to the works Biot [24], Ziegler

& Wehrli [218], Germain [78], Halphen & Nguyen [92], see also the recent treat-
ments by Maugin [132] and Nguyen [167]. It covers a broad spectrum of constitutive
models in viscoelasticity, plasticity and damage mechanics. For this class of materials we
consider a variational formulation

W (F n+1) = inf
I

∫ tn+1

tn

[ ψ̇ + φ ] dt with I(tn) = In (1.4)

where a quasi-hyperelastic stress potential at discrete time steps is obtained from a local
minimization problem of the constitutive response with respect to internal variables I.
The underlying basic approach is the determination of a path of internal variables in a
finite increment of time that minimizes a generalized incremental work expression.

The incremental variational formulation outlined above gives the opportunity to ana-
lyze inelastic microstructures and define the stability of the incremental inelastic response
in terms of terminologies used in elasticity theory, see for instance Dacorogna [51],
Ciarlet [45], Marsden & Hughes [130] and Šilhavý [200]. Here, the incremental
potential obtained from the incremental energy minimization principle (1.4) for standard
dissipative solids plays a crucial role. The inelastic solid is considered to be stable if this
potential is quasiconvex. On the other hand, the lack of quasiconvexity gives rise to the
formation of microstructures. This formulation extends rate-type energetic definitions of
material stability by Petryk [181, 182] in terms of velocity fields to a finite-step-sized
setting in terms of absolute placement fields. However, as noted already, quasiconvexity is
a global integral condition which is hard to verify in practice. More manageable condition
is the slightly weaker rank-one convexity notion that is considered to be a close approx-
imation of quasiconvexity. The incremental potential W is said to be rank-one convex
if

W (ξF 1 + (1 − ξ)F 2) ≤ ξW (F 1) + (1 − ξ)W (F 2) for F 2 − F 1 = m ⊗ N (1.5)

holds for every 0 ≤ ξ ≤ 1, m,N ∈ R3 and F 1,F 2 ∈ R3×3
+ . As already pointed out in

Miehe & Lambrecht [147, 146] classical conditions of material stability of elastic-plastic
solids outlined in Hill [100] and Rice [191] are consistent with the infinitesimal form of
the rank-one convexity, i.e. the strong ellipticity or Legendre-Hadamard condition. In
the context of inelasticity, relaxation methods have been recently started to be studied.
A relaxation algorithm based on rank-one convexification and sequential lamination has
been developed by Ortiz & Repetto [175] and Ortiz, Repetto & Stainier [176]
and applied for the modeling of dislocation structures in single crystal plasticity. On
the basis experimental observations, they employed strong assumptions with respect to
the form and type microstructure, e.g. constant volume fraction of phases. Miehe &

Lambrecht [147, 146] have investigated small and large strain phenomenological strain
softening plasticity models by using relaxation theory with substantial restrictions on
possible microstructures. Furthermore, a one-dimensional softening plasticity model have
been studied in Lambrecht, Miehe & Dettmar [122]. Carstensen, Hackl &

Mielke [40] analyzed the relaxation of single slip multiplicative plasticity which became
later a canonical model problem, see for example Hackl & Hoppe [91], Miehe, Lam-

brecht & Gürses [148], Bartels et al. [19], Conti & Ortiz [48] and Conti &

Theil [49]. Note that strain softening and slip plasticity models have different origins of
non-convexity. The former has a non-monotonic stress function governed by non-convex
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incremental potentials while in the latter one non-convexity raises due to geometrical
constraints imposed by the slip system. Another softening mechanism in constitutive
material models is due to damage which provides an alternative area of application for
relaxation, see Francfort & Marigo [71] and Gürses & Miehe [86].

1.1.2. Configurational Force Driven Brittle Fracture. Fracture is one of the
main failure mechanisms of engineering materials and structural components. The assess-
ment of fracture through theoretical and computational models is not only a challenging
task in mechanics but also of great importance from the engineering point of view. The-
oretical foundations of the classical theory of brittle fracture can be traced back to the
seminal works of Griffith [84, 85], where a framework based on energetic considerations
were employed for equilibrium crack problems. Griffith proposed that solids have a sur-
face energy which must be compensated for a given crack to propagate. Then the critical
load level for a given crack is found by the principle of minimum potential energy of elas-
ticity with an extension that takes into account the surface energy of the solid. Although
Griffith was the first to relate the strength of materials to the crack size quantitatively,
fracture mechanics is accepted mainly as an engineering discipline after Irwin’s contribu-
tions, Irwin [103, 104, 105]. Instead of considering the energy of the whole system with
a given crack, Irwin [104, 105] examined the stress field in the neighborhood of the crack
tip and introduced the celebrated concept of stress intensity factors K as functions of the
crack geometry and the loading. Based on the works of Irwin, it has been shown that the
stress field in a linear elastic cracked solid can be expressed as

σij = (
K√
2πr

)fij(θ) +

∞∑

n=0

Anr
n/2gn

ij(θ) (1.6)

in terms of functions fij(θ) and gij(θ) in a polar coordinate system r − θ attached to
the crack tip. The second term on the right hand side represents the higher order (non-
singular) contributions to the solution which depend on the geometry of the problem.
Note that the solution given above contains for any particular configuration a leading
term depending on 1/

√
r which approaches to infinity as r → 0, while the other term

vanishes. Irwin also related the stress intensity factors K to the energy release rate of
Griffith. An alternative approach to elastic brittle fracture originated in the work of
Barenblatt [16], which accounts for the cohesive forces at the crack tip. In the theory
of Barenblatt, possible fracture surfaces ahead of a crack are allowed to separate with a
resistance due to atomic cohesive forces. As a consequence of these forces, the singularity
at the crack tip disappears and stresses become bounded. Later, Rice [189] introduced
the path independent J-integral describing the energy flux into the crack tip for two-
dimensional crack problems, see also Cherepanov [42], who proposed independently the
same path independent integral. The vectorial J-integral in the large strain framework is
defined by

J =

∫

Γ

[ ψ(F )1 − F T∂Fψ(F ) ]N dS , (1.7)

where Γ is an arbitrary curve that surrounds the crack tip with an outward normal N . A
precedent in a different application was established by Eshelby [66]. Eshelby introduced
the Maxwell-elasticity tensor Σ (later called the energy momentum tensor, Eshelby [68])

Σ = ψ(F )1 − F T P with P = ∂Fψ(F ) (1.8)



1.1 Motivation and State of the Art 5

in order to characterize forces acting on dislocations and defects which are often referred
to as configurational or material forces. Its normal component, when integrated over a
closed surface, is identical to the path independent J-integral. We refer in this context to
the review articles by Cotterel [50] and Erdogan [64], which provide an overview on
the history and the current status of the fracture mechanics or the books by Kanninen

& Popelar [111] and Anderson [6] for comprehensive treatments of the topic. Later,
Stumpf & Le [207] and Maugin & Trimarco [135] developed local variational formu-
lations for the evolution problem of brittle fracture based on material configurational forces
acting on crack tip singularities in the sense of Eshelby [66, 68, 69] and Rice [189]. We
refer to Maugin [133], Gurtin [88] and Kienzler & Herrmann [113] for a treatment
of configurational forces in a broader context. Gurtin & Podio-Guidugli [89, 90] em-
ployed configurational forces for crack propagation in a non-variational framework, where
configurational forces are considered as primitive objects with their own balance equation.

Engineering numerical treatments of discrete fracture based on cohesive zone consti-
tutive formulations in the sense of Barenblatt [16] and Dugdale [61] started with the
work of Hillerborg, Modeer & Petersson [98] and have been dramatically increased
in recent years. In this context, a broad spectrum of alternative finite element based com-
putational strategies for the modeling of discontinuities were developed in the last two
decades. We refer to the interface element formulations of Needleman [166] for void nu-
cleation and interfacial debonding and Xu & Needleman [216], Camacho & Ortiz [37]
for two-dimensional dynamic fracture and fragmentation. Ortiz & Pandolfi [174] ex-
tended these formulations to three dimensional setting where triangular interface elements
are embedded into a quadratic tetrahedral mesh for the modeling of dynamic cohesive frac-
ture. Later Pandolfi & Ortiz [178] further developed their approach to incorporate
an adaptive insertion of the interface elements when they are required. Furthermore,
element enrichment strategies were proposed in the context of enhanced-assumed strain
finite element design (EAS) of strong discontinuities by Simó, Oliver & Armero [202],
Oliver [171]. See also Jirasek [109] and Mosler [158] for a comparative study and a
review of strong discontinuity approaches. The third category of approaches is concerned
with nodal enrichment strategies, usually denoted as extended finite element (XFEM) or
partition of unity finite element (PUFEM) methods. This approach was developed first
for two-dimensional linear elastic fracture mechanics by Belytschko & Black [20]
and Moës, Dolbow & Belytschko [154] and is based on the partition of unity con-
cept of Melenk & Babuška [139]. Later, a three-dimensional model for non-planar
crack propagation has been developed by Moës, Gravouil & Belytschko [155] and
Gravouil, Moës & Belytschko [82] based on XFEM together with level sets. In
addition to linear elastic fracture mechanics applications, XFEM was also employed for
cohesive crack modeling by Wells & Sluys [212], Moës & Belytschko [153] in two
dimensions and recently by Gasser & Holzapfel [75] and Areias & Belytschko [8]
in three dimensions. In the very recent work of Oliver, Huespe & Sanchez [172], the
element and the nodal enrichment strategies are compared in detail with regard to their
accuracy, robustness and computational costs both in two and three dimensions. Similar
to XFEM formulations, a cohesive segments method has been developed by Remmers,

de Borst & Needleman [187], where the discontinuity is modeled by unconnected
piecewise linear segments. The method also exploits the partition of unity property of the
shape functions. As a fourth basic concept, discontinuous Galerkin formulations based
on Nitsche’s method were proposed by Hansbo & Hansbo [93] for the simulation of the
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discontinuities in a general framework not restricted to crack modeling. Following this
concept, a mixed discontinuous Galerkin interface-element-type method was developed by
Mergheim, Kuhl & Steinmann [140]. We refer to the review articles by Karihaloo

& Xiao [112] for the modeling of cracks in finite element context without remeshing and
de Borst, Remmers & Needleman [55] for cohesive zone models in FEM. In all above
mentioned methods the underlying mesh structure remains more or less unchanged. In
contrast, various types of remeshing techniques have been developed for the modeling of
a crack propagation, see Bittencourt et al. [25] and Bouchard et al. [27]. The
very recent works of Mediavilla, Peerlings & Geers [137, 136] combine continuum
damage models with discrete crack modeling based on adaptive remeshing and propose a
new continuous-discontinuous approach for ductile fracture simulations.

Computational implementations of brittle fracture propagation based on the Griffith-
type criterion are rare in the literature. Fracture formulations based on a minimization of
the energy (alternatively a maximization of dissipation) is thermodynamically motivated
and related to configurational forces, see Maugin & Trimarco [135], Gurtin & Podio-

Guidugli [89] and Miehe & Gürses [143]. The computation of the configurational
forces in the context of finite element discretizations goes back to the work of Braun

[33], where these forces were employed as an indicator for the discretization error in a
physically homogeneous body. FE-computation of configurational forces gI for elastic
solids having defects like cracks, dislocations or phase boundaries have been outlined
by Steinmann, Ackermann & Barth [206], Denzer, Barth & Steinmann [56],
Mueller, Kolling & Gross [161] and Heintz, Larsson, Hansbo & Runesson

[96] and has an analogous structure to the standard nodal force vector f I , i.e.

f I := −
E

A
e=1

∫

Be

BT
I P dV and gI := −

E

A
e=1

∫

Be

BT
I Σ dV . (1.9)

An attempt towards the implementation of configurational-force-driven fracture propa-
gation was first performed by Mueller & Maugin [162], where the crack direction is
related to the nodal configurational force at the crack tip obtained from the finite ele-
ment computation, see also Kolling & Mueller [118] for an application to dynamic
fracture. Recently, alternative configurational-force-driven elastic fracture implementa-
tions appeared in Larsson & Fagerström [124] and Fagerström & Larsson [70]
for XFEM-based and Heintz [95] for discontinuous-Galerkin-based methods. Miehe &

Gürses [143, 144] and Miehe, Gürses & Birkle [145] proposed an approach to brittle
fracture propagation based on node doubling, interface release and alignment algorithms
which are adaptively controlled by configurational forces. It is based on the exploitation
of a global dissipation postulate and yields the crack propagation ȧI in the same direction
of the configurational force gI

D =
∑

I∈∂Γ

gI · ȧI ≥ 0 =⇒ ȧI = γ̇
gI

|gI |
(1.10)

locally at crack front nodes I ∈ ∂Γ. The dissipation D is obtained from the inner product
of the material forces gI acting on crack tip nodes and the material velocity ȧI of the
node I in the material structural configuration.

The classical Griffith-type theory of brittle fracture is restricted to problems where an
initial crack is present. In other words, it cannot predict the crack initiation in a body
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free of defects. This restriction of the classical Griffith theory of brittle fracture can be
overcome by incremental global variational formulations as suggested by Francfort &

Marigo [72] and Buliga [36]. The aspect of global energy minimization is considered as
one of the important theoretical impacts on fracture mechanics in recent years. An initial
attempt towards the computational implementation of global minimization as a regularized
global minimization problem was proposed by Francfort & Marigo [72], Bourdin,

Francfort & Marigo [30] similar to finite element formulations of image segmentation,
see also Bourdin [28] and Bourdin & Chambolle [29] based on a minimization of the
Mumford-Shah functional (Mumford & Shah [165]). These global variational problems
are governed by functionals involving volume and surface energies and appear in a variety
of areas in applied sciences. They are denoted as free discontinuity problems and their
numerical approximation as outlined for example in Braides [31] is often performed with
the help of the theory of Γ-convergence, see Dal Maso [53], Braides [32], and special
functions of bounded variations (SBV), see Ambrosio, Fusco & Pallara [5].

1.2. Outline of the Thesis

Chapter 2 outlines the mathematical preliminaries and fundamental principles which
are needed for further developments. Therein, function spaces, strong and weak conver-
gence of sequences, convexity and weak convexity notions – polyconvexity, quasiconvexity
and rank-one convexity – are discussed. Furthermore, the existence theorems in non-linear
elasticity theory and their relation to the convexity properties of energy storage functions
are provided.

In Chapter 3 we briefly describe the incremental variational formulation of inelastic
materials and extend the results of non-linear elasticity provided in Chapter 2 to incre-
mental response of inelastic materials. The main focus is then put on the relaxation theory
for non-convex incremental variational problems of inelasticity. In particular, relaxation
methods based on approximations of quasiconvex envelopes by rank-one convex envelopes
are discussed.

We give a short review on the martensitic phase transformations in Chapter 4. It in-
cludes the concepts of transformation matrices, symmetry breaking variants, energy wells
and compatibility conditions. In addition, the relaxation theory outlined in Chapter 3 is
applied to the simple double- and three-well problems which show some fundamental fea-
tures of the phase transformations. We demonstrate also the evolution of microstructures
in terms of first- and second-order laminates.

Chapter 5 is concerned with the constitutive modeling of single-slip plasticity which
can be considered as the limit case of the multi-slip crystal plasticity with infinite latent
hardening. A semi-analytical computational relaxation algorithm is proposed based on the
first-order rank-one relaxation. Consequently, this leads to the solution of the non-convex
minimization problem of relaxation for boundary value problems within a reasonable time.
The results of the relaxation algorithm are presented by several numerical examples which
include the visualization of microstructures and their evolution.

In Chapter 6 as a model problem the damage mechanics is treated. First, we
start with a scalar one-dimensional model and develop a relaxation algorithm. In two-
dimensional setting, an isotropic damage model is considered that affects only the isochoric
part of the constitutive response. We then propose a computational relaxation scheme
based on isotropic microstructures contrary to previous applications with laminate-type
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microstructures. This relaxation procedure is shown to be equivalent to the first-order
rank-one convexification. Finally, we extend the formulation to three dimensional setting
and present some numerical examples.

Chapter 7 contains a brief overview about brittle fracture theories. We present some
of the well-known approaches in the literature. These cover the stress intensity factors of
Irwin, the energetic approach and the energy release rate of Griffith and the J-integral of
Rice. The relations among different theories are provided as well. Further information of
more technical nature such as the derivation of the singular stress fields and the closed
form solutions of stress intensity factors are provided in Appendices D and E. In addition,
the atomistic treatments and the cohesive theories of brittle fracture are shortly discussed.

The configurational forces are addressed in Chapter 8 with a particular focus on their
application to fracture mechanics. Starting with the Eshelby’s thought experiment alter-
native derivations of the energy momentum tensor are outlined. These cover approaches
based on a Lagrangian density, a projection of balance laws onto material manifold, the
Noether’s theorem and particular invariance requirements. Furthermore, we develop a
thermodynamically consistent variational framework for quasi-static crack propagation in
elastic solids and show that both the elastic equilibrium response as well as the local crack
evolution follow in a natural format by exploitation of a global Clausius-Planck inequal-
ity in the sense of Coleman’s method. Consequently, the crack propagation direction is
identified by the material configurational force which maximizes the local dissipation at
the crack front.

In Chapter 9 a staggered computational algorithm for quasi-static crack propagation
is developed. The variational formulation outlined in Chapter 8 is realized numerically by
a spatial discretization with standard three-noded constant strain triangles and four-noded
linear tetrahedral finite elements in two and three dimensions, respectively. Therefore, the
constitutive setting of crack propagation in the space-discretized finite element context
is naturally related to discrete nodes of a typical finite element mesh. In a consistent
way with the node-based setting, the discretization of the evolving crack discontinuity
is performed by the doubling of critical nodes and interfaces between finite elements.
The crucial step for the success of this procedure is its embedding into an r-adaptive
crack-segments and facets reorientation procedure based on configurational-force-based
indicators in conjunction with crack front constraints. Here, successive crack releases
appear in discrete steps associated with the given space discretization. These are per-
formed by a staggered loading-release algorithm of energy minimization at frozen crack
state followed by the successive crack releases at frozen deformation. This constitutes
a sequence of positive definite discrete subproblems with successively decreasing overall
stiffness, providing a very robust algorithmic setting in the postcritical range.

We demonstrate in Chapter 10 the predictive capabilites of the proposed formula-
tion of brittle crack propagation by means of representative numerical simulations and
comparisons with experiments from the literature. These cover a broad spectrum of
two- and three-dimensional examples such as simple tension, symmetric and asymmetric
bending, Brazilian splitting, shear and torsion tests. Moreover, studies with respect to
the accuracy of the numerical computation of configurational forces are performed and
comparisons with other crack propagation criteria are presented.
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2. Mathematical Preliminaries and Notions of Convexity

In this chapter we briefly review important mathematical concepts and definitions
which are required for the subsequent treatments. These include some vector and func-
tion spaces, weak convergence of sequences and different convexity notions. These play
important roles in existence theorems of variational problems and will be utilized in the
development of relaxation methods in Chapter 3. For more detailed discussions or in depth
mathematical studies, readers are referred to Rockafellar [193], Dacorogna [51, 52],
Reddy [186] and Kreyszig [119]. See also Ciarlet [45], Marsden & Hughes [130],
Šilhavý [200] and Pedregal [180] for mathematical treatments of non-linear elasticity.

2.1. Mathematical Preliminaries

An abstract space is a set of elements which can be numbers, matrices, sequences
or functions satisfying certain axioms. By choosing different sets of axioms one obtains
various types of abstract spaces. The most important ones for our considerations are
vector spaces. A vector spaceX is a set which has vector addition and scalar multiplication
operations. Furthermore, the set has to be closed under addition and scalar multiplication,
and these operations have to satisfy following axioms for all u,v,w ∈ X and α, β ∈ R

u + v = v + u

u + 0 = u

α(βu) = (αβ)u
α(u + v) = αu + αv

u + (v + w) = (u + v) + w

u + (−u) = 0

1u = u

(α + β)u = αu + βu

(2.1)

where 0 ,−u ∈ X are the zero element and the additive inverse of u, respectively. For
example, the real line R and the set Rn of n−tuples are vector spaces. In addition, by
endowing a vector space X with a norm ‖�‖, an inner product 〈�, �〉 or a metric d(�, �) one
obtains normed, inner product and metric spaces. Definitions of norm, inner product and
metric on a vector space X are not unique, however, they need to fulfill some axioms,
see for example Reddy [186] and Kreyszig [119]. For instance, let u,v ∈ Rn then
the length (Euclidean norm) of u defines a norm, the scalar product u · v specifies an
inner product and the distance between u and v is a metric. It is common to generate a
metric d(u,v) by using a norm, i.e. d(u,v) = ‖u−v‖, and a norm by inner product, i.e.
‖u‖ = 〈u,u〉1/2. Hence, inner product spaces are normed spaces and normed spaces are
metric spaces as well. Complete normed spaces (complete in the metric defined by the
norm) and complete inner product spaces (complete in the metric defined by the inner
product) are known to be Banach and Hilbert spaces, respectively. While a Hilbert space
is always a Banach space, the converse does not necessarily hold. For further details and
notion of completeness see for instance Kreyszig [119] and Reddy [186].

As a next step some function spaces will be defined. Sets Cm(B) with integer m ≥ 0
and Lp(B) with 1 ≤ p < ∞ denote m-times continuously differentiable and p-integrable
functions on B, respectively. The Lp norm of a function f : B → R is defined as

‖f‖Lp(B) =
[ ∫

B
|f(x)|pdx

]1/p

for 1 ≤ p <∞ . (2.2)
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A function f : B → R is said to be in Lp(B) provided that the corresponding norm is
bounded, i.e. ‖f(x)‖Lp(B) < ∞. If f : B → Rn, f = (f1, . . . , fn) is a vector valued
function and fi ∈ Lp(B) (or fi ∈ Cm(B)) for every i = 1, . . . , n then we write f ∈ Lp(B)
(or f ∈ Cm(B)). The standard choice of an inner product of two functions f : B → R
and g : B → R in L2(B) is given by

〈f, g〉L2(B) =

∫

B
f(x)g(x)dx . (2.3)

The spaces Cm(B) and Lp(B) characterize the differentiability and integrability of func-
tions, respectively. According to their order of differentiability and integrability following
relations Cm(B) ⊂ Cn(B) and Lp(B) ⊂ Lq(B) hold for m ≥ n and p ≥ q. The latter is
valid provided that B is bounded. The Sobolev space Ws,p(B) with integer s ≥ 0 and
1 ≤ p <∞ is defined by

Ws,p(B) =
{
f ∈ Lp(B)

∣
∣∇αf ∈ Lp(B)

}
for α = 1 . . . s , (2.4)

where ∇αf denotes the αth order weak partial derivative of f . If a function f ∈ C1(B) then
notions of the weak derivative and the usual one coincide. The Sobolev spaces specify not
only the order of integrability of function f itself but derivatives ∇αf as well. A norm
associated with Ws,p(B) reads

‖f‖Ws,p(B) =
[ s∑

α=0

‖∇αf‖p
Lp(B)

]1/p

for 1 ≤ p <∞ . (2.5)

A function f : B → R is then said to be in Ws,p(B) if ‖f(x)‖Ws,p(B) < ∞. In the case
of vector valued functions, i.e. f : B → Rn, f = (f1, . . . , fn) is said to be in Ws,p(B) if
fi ∈ Ws,p(B) for every i = 1, . . . , n. The Sobolev spaces are related among each other
such that Ws,p(B) ⊂ Wt,q(B) for s ≥ t and p ≥ q. The case p = ∞ in both Lp and Ws,p

spaces is allowed provided that the corresponding definitions (2.2) and (2.5) are modified
as follows

‖f‖L∞(B) = inf
{
α

∣
∣ |f | ≤ α a.e. in B

}

‖f‖Ws,∞(B) = max
0≤α≤s

{
‖∇αf‖L∞(B)

}
. (2.6)

Note that the function spaces Cm(B), Lp(B) and Ws,p(B) are vector spaces.

The existence theory that will be outlined in the next section requires the notions
of convergence and weak convergence. Therefore, they are addressed now. Let X be a
normed vector space. A scalar or vectorial sequence ϕn ∈ X is said to be (strongly)
convergent if there exists a ϕ ∈ X such that

lim
n→∞

‖ϕn − ϕ‖ = 0 . (2.7)

This is written either limn→∞ ϕn = ϕ or in short ϕn → ϕ and reads as ϕ is the (strong)
limit of ϕn. Note that the strong convergence in a finite dimensional vector space X = Rn

requires the convergence of each component of n-tuple. A generalization of the conver-
gence condition (2.7) is required particularly for function spaces. To this end, the notion
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of weak convergence has been introduced. A sequence ϕn in a normed vector space X
weakly converges to ϕ if

lim
n→∞

l(ϕn) → l(ϕ) for all l ∈ X∗ , (2.8)

where X∗ and l : X → R stand for the dual space of X and a bounded linear functional,
respectively. Weak convergence of a sequence ϕn is denoted by ϕn ⇀ ϕ where ϕ is the
weak limit of ϕn. The weak convergence ϕn ⇀ ϕ in Lp(B) for 1 ≤ p <∞ is of particular
interest and reads

∫

B
ϕnξdx→

∫

B
ϕξdx for all ξ ∈ Lq(B) (2.9)

where Lq(B) is the dual space of Lp(B) satisfying 1/p+1/q = 1. For instance, in Lp([0, 2π])
with 1 ≤ p < ∞ the sequences ϕn = cos(nx) and ϕn = sin(nx) converge weakly to 0 but
not strongly, i.e. ϕn ⇀ 0 and ϕn 9 0. In the case of p = ∞ the definition of weak
convergence is formally the same as (2.9). However, one talks about weak ∗ convergence,

i.e. ϕn
∗
⇀ ϕ, if (2.9) holds for all ξ ∈ L1(B). Necessity of this differentiation is due to fact

that the dual of L∞(B) is strictly larger than L1(B), see for example Dacorogna [52]
pp.17-18. In Sobolev spaces W1,p(B), which is of particular importance in non-linear
elasticity, the weak convergence of ϕn requires that both ϕn and ∇ϕn converge weakly in
Lp(B). Note that strong convergence implies weak convergence with the same limit but
the converse is not true in general. However, for finite dimensional normed spaces, i.e.
X = Rn, weak convergence implies strong convergence. In order to clarify further the
concept of weak convergence we consider an example.

Example: (Marsden & Hughes [130] p.380) A sequence ϕn ∈ L2(B) with B = [0, 1]
is given by

ϕn(x) =

{

u1 if x ∈ [ (i− 1)/n, iξ/n ]

u2 if x ∈ [ iξ/n, i/n ]
for i = 1 . . . n (2.10)

where ξ ∈ [0, 1] and u1, u2 ∈ R. First three elements of the sequence ϕn are plotted in
Figure 2.1 for the case ξ = 0.5. Even though the sequence ϕn is not strongly convergent,
it converges weakly. The weak limit of ϕn is ξu1 + (1 − ξ)u2, i.e. ϕn ⇀ ξu1 + (1 − ξ)u2.

ξ ξξ
ξ

4

ξ

2

ξ

2

3ξ

4

3ξ

2

3ξ

2

5ξ

4

7ξ

4
111 000

u1u1u1

u2u2u2

ϕ1 ϕ2 ϕ3

XXX

Figure 2.1: An example of weakly convergent but strongly non-convergent sequence. The
sequence ϕn weakly converges to ξu1 + (1 − ξ)u2.
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2.2. Existence of Global Minimizers

In the subsequent treatments we will be interested in minimization problems of func-
tionals which in a general setting can be recast into the form

inf
u∈X

{

I(u) =

∫

B
f(x,u,∇u)dx

∣
∣u = ū on ∂B

}

. (2.11)

Particularly, the minimization problem (2.11) can be reformulated for the boundary value
problems of non-linear elasticity as follows. Find the deformation map

ϕt :

{
B → S ⊂ R3

X 7→ x = ϕt(X)
(2.12)

such that the energy functional I(ϕ) is minimized, i.e.

inf
ϕ∈W1,p(B)

{

I(ϕ) =

∫

B
ψ(∇ϕ)dV

∣
∣ ϕ = ϕ̄ on ∂B

}

(2.13)

where ψ denotes the energy storage function. Non-empty, open and bounded set B denotes
the reference configuration of the body. It is often assumed that the deformation map
belongs to the Sobolev space W1,p(B) so that the deformation gradient F = ∇ϕ is well
defined for X ∈ B. In (2.13) we consider for simplicity no external energy contribution
and only the displacement boundary conditions on the boundary ∂B of the body.

As pointed out by Ball [13] and Ciarlet [45] the existence of equilibrium solutions
of the non-linear boundary value problems can be proven by different ways. The first
one does not consider the minimization problem (2.13) and applies the implicit function
theorem directly to the strong form, i.e. equilibrium equations together with boundary
conditions. This approach will not be discussed here and a detailed treatment can be
found for example in Ciarlet [45] chapter 6. The second route, frequently referred to as
the classic method, is based on finding solutions ϕ∗ of δI(ϕ) = 0 and further analyzing
higher order variations of I(ϕ) to determine whether ϕ∗ is a minimum, maximum or
just a stationary point. The first variation of the functional δI(ϕ) = 0 yields the so-
called Euler-Lagrange equations. For further details of the classic method see for instance
Lanczos [123] and Dacorogna [52]. The last approach makes use of the direct methods
of calculus of variations and will be outlined briefly. The starting point is, similar to
the preceding method, the minimization of the energy functional I(ϕ) defined in (2.13).
There exists at least a solution of the minimization problem (2.13) if the functional I is

(i) sequentially weakly lower semicontinuous (swlsc), i.e.

lim
n→∞

inf I(ϕn) ≥ I(ϕ) for all ϕn ⇀ ϕ in W1,p(B) (2.14)

(ii) coercive over W1,p(B), i.e. for some c0 ∈ R+ and c1 ∈ R

I(ϕ) ≥ c0‖ϕ‖W1,p(B) + c1 for all ϕ ∈ W1,p(B) (2.15)
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see for example Dacorogna [51] p.48. Note that the minimization (2.13) is defined
in an infinite dimensional space. This brings opposite to finite dimensional problems
the necessity of weak convergence notions. In case of finite dimensional minimization
problems, i.e. for I : X ⊂ Rn → R find infϕ∈X{I(ϕ)}, the swlsc is replaced by the lower
semicontinuity

lim
n→∞

inf I(ϕn) ≥ I(ϕ) for all ϕn → ϕ . (2.16)

Note that the lower semicontinuity condition (2.16) requires, contrary to (2.14), the strong
convergence of sequences. The condition (2.14) is in general hard to verify directly. How-
ever, the swlsc of I can be guaranteed if the function ψ in (2.13) satisfies some convexity
conditions. In the case of scalar problems, i.e. ϕ : B ⊂ R → R and ψ : R → R, the
convexity of ψ is a necessary condition for the swlsc of I. In vectorial problems, e.g.
ϕ : B ⊂ R3 → R3 and ψ : R3×3

+ → R, convexity is a sufficient condition, however it is far
from being a necessary condition, see Dacorogna [51] p.97. The relevant generalization
for vectorial problems is the quasiconvexity condition introduced by Morrey [157]. Fol-
lowing the approach based on direct methods of calculus of variations, the minimization
problem (2.13) is solved in three steps:

(i) Show that the functional I is bounded below and then select a minimizing
sequence ϕn, i.e. there exists α ∈ R such that

α = inf
ϕ∈W1,p

I(ϕ) and I(ϕn) → α as n→ ∞ ,

(ii) Find a subsequence ϕnk
of ϕn that converges weakly, i.e.

ϕnk
⇀ ϕ∗ as k → ∞ ,

(iii) Show that I(ϕ) is sequentially weakly lower semicontinuous, see (2.14)

for further details see Dacorogna [52] chapter 3, Jost & Li-Jost [110] chapter 4 and
Marsden & Hughes [130] p.377.

Since the existence of minimizers of the functional I is closely related to the convexity
or weak convexity conditions of the free energy function ψ in what follows various convexity
notions and related topics will be addressed.

2.3. Convex Sets

We consider a finite-dimensional real vector space X = Rn equipped with a scalar
(inner) product 〈�, �〉 and a norm operator ‖�‖ = 〈�, �〉1/2. U denotes a subset of Rn and
elements u ∈ Rn are called as vectors. A closed line segment [u,v] in Rn is defined by
the set

[u,v] =
{
w |w = ξu + (1 − ξ)v

}
with ξ ∈ [0, 1] and u,v ∈ Rn . (2.17)

A subset U of Rn is said to be convex if any closed line segment

[u,v] ∈ U for every u,v ∈ U . (2.18)



14 Mathematical Preliminaries and Notions of Convexity

a. b. c.

U1 U2

a b

Figure 2.2: Examples of convex sets. a.) A closed interval [a, b] ∈ R as a convex set. b.)
A bounded convex set U1 ⊂ Rn. c.) An unbounded convex set U2 ⊂ Rn.

From (2.18) it is clear that in one dimension X = R any interval generates a convex set.
Hyperplanes in any dimension Rn

H(v, α) =
{
u ∈ Rn | 〈u,v〉 = α

}
(2.19)

are other examples of convex sets. Furthermore, it is possible to convexify non-convex
sets. The resulting set after the convexification of U ⊂ Rn is the smallest convex set that
contains U . This set is denoted as

con(U) =
{ p

∑

i=1

ξiui |ui ∈ U, ξi ≥ 0,

p
∑

i=1

ξi = 1, p ≥ 1 and arbitrary
}

(2.20)

and called as the convex hull of U . For instance, a closed line segment [u,v] is a convex
hull of two distinct points u and v. In Figures 2.2 and 2.3 some convex sets and convex
hulls of a non-convex sets are visualized.

2.4. Convex Functions

Let U ⊂ Rn be a non-empty convex set. A function f : U ∈ Rn → R̄ := R ∪ {+∞}
is called convex if

f(ξu + (1 − ξ)v) ≤ ξf(u) + (1 − ξ)f(v) ∀ ξ ∈ [0, 1] and u,v ∈ U . (2.21)

f is referred to as strictly convex when (2.21) holds for u 6= v strictly. The epigraph of a
function f : U ∈ Rn → R̄ is defined as the set of points lying on or above its graph

epi f = {(u, α) ∈ U ×R | f(u) ≤ α} ⊂ Rn+1 . (2.22)

a. b. c.

a b c d

Figure 2.3: Examples of non-convex set and convex hulls. a.) Union of two closed intervals
U = [a, b] ∪ [c, d] is not convex, and con(U) = [a, d]. b.) A set of points � is not convex and
its convex hull is shown by the grey area. c.) A non-convex set is shown with the dashed
line and its convex hull with the solid line.
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As noted by Rockafellar [193] a function f : U ∈ Rn → R̄ is convex if and only if its
epigraph epi f ⊂ U ×R is a convex set. In Figures 2.4a and 2.4b convex and non-convex
scalar functions f : [a, b] ∈ R → R̄ and their epigraphs are visualized. It is possible to
extend the condition (2.21) for functions that are not necessarily defined on convex sets,
see Ciarlet [45] p.167 and Šilhavý [200] p.257. A function f̃ : U ∈ Rn → R̄ is convex if
there exists according to (2.21) a convex function f : con(U) → R̄ such that f̃(u) = f(u)
for all u ∈ U .

Before starting with the discussion of convexity properties of stored energy functions we
give the definitions of subgradient and subdifferential of functions. Let f : U ∈ Rn → R̄
and u ∈ U . λ ∈ Rn is said to be a subgradient of f at u if the following holds

f(v) ≥ f(u) + λ · (v − u) (2.23)

for every v ∈ U . The set of all subgradients of f at u is called as the subdifferential of
f at u and often denoted by ∂f(u). To illustrate, consider the scalar convex function
f(u) = |u|. The subdifferential of f at u = 0 is then the closed interval [−1, 1]. For the
cases u < 0 and u > 0 the subdifferential coincides with the usual derivative and takes
the values −1 and 1, respectively.

2.5. Convexity and Weak Convexity Notions of Free Energy Function

In the sequel, we concentrate on different convexity notions of free energy functions
that are assumed to be given in terms of the deformation gradient F .

2.5.1. Convexity of Free Energy Function. The free energy function ψ : R3×3
+ →

R̄ is said to be convex if for every ξ ∈ [0, 1] the following condition holds,

ψ(ξF 1 + (1 − ξ)F 2) ≤ ξψ(F 1) + (1 − ξ)ψ(F 2) ∀ F 1,F 2 ∈ R3×3
+ , (2.24)

where R3×3
+ stands for the set of all second order tensors with positive determinant. Note

that the set R3×3
+ is not convex and its convex hull constitutes the set of all second

order tensors, i.e. con(R3×3
+ ) = R3×3. The proof can be found in Ciarlet [45] p.162.

Observe that the convexity condition (2.24) does not require any differentiability of the
free energy ψ. Provided that ψ : R3×3

+ → R̄ is differentiable, (2.24) can be reformulated

a. b.
x1x1 x2x2 aa bb xx

f(x)f(x)

λf(x1) + (1 − λ)f(x2)
epi fepi f

Figure 2.4: Examples of convex and non-convex functions. a.) A convex function f :
[a, b] ∈ R → R with a convex epigraph. b.) A non-convex function f : [a, b] ∈ R → R with
a non-convex epigraph.
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a. b.
x1 x1 x1 + ∆xx1 + ∆x xx

f(x1)
f(x1)

f(x1 + ∆x)

f(x1 + ∆x)

f(x)f(x)

Figure 2.5: Examples of convex and non-convex differentiable functions. a.) The convex
function f : [a, b] ∈ R → R is everywhere above its tangent plane. b.) The non-convex
function f : [a, b] ∈ R → R is not everywhere above its tangent plane.

with substitutions ∆F = F 1 − F 2 and F = F 2 as follows,

ψ(F + ξ∆F ) − ψ(F )

ξ
≤ ψ(F + ∆F ) − ψ(F ) for ξ > 0 . (2.25)

Taking the limit ξ → 0 yields the definition of directional derivative

d

dξ

[
ψ(F + ξ∆F )

]

ξ=0
≤ ψ(F + ∆F ) − ψ(F ) . (2.26)

Computation of this derivative at ξ = 0 gives an alternative definition of convexity. A
differentiable free energy function ψ : R3×3

+ → R̄ is said to be convex if

ψ(F ) + P (F ) : ∆F ≤ ψ(F + ∆F ) ∀ F , (F + ∆F ) ∈ R3×3
+ , (2.27)

where P = ∂Fψ(F ) is the first Piola-Kirchhoff stress tensor. The condition (2.27) is illus-
trated in Figures 2.5a and 2.5b for convex and non-convex scalar functions, respectively.
From equation (2.27) one can also write

ψ(F 2) + P (F 2) : (F 1 − F 2) ≤ ψ(F 1)
ψ(F 1) + P (F 1) : (F 2 − F 1) ≤ ψ(F 2)

. (2.28)

Summing up two equations given above provides another definition of convexity for dif-
ferentiable functions

[P (F 1) − P (F 2)] : (F 1 − F 2) ≥ 0 ∀ F 1,F 2 ∈ R3×3
+ . (2.29)

For twice differentiable free energy functions ψ, division of (2.29) twice by ξ > 0 after
the following substitutions F 1 = F + ξ∆F and F 2 = F yields in the limit ξ → 0 the
definition of directional derivative

d

dξ

[
P (F + ξ∆F )

]

ξ=0
: ∆F ≥ 0 . (2.30)

Evaluation of the derivative at ξ = 0 results in another alternative convexity condition.
A twice differentiable free energy function ψ : R3×3

+ → R̄ is said to be convex if

(F 2 − F 1) : C(F 1) : (F 2 − F 1) ≥ 0 ∀ F 1,F 2 ∈ R3×3
+ , (2.31)
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where C(F 1) = ∂2
FFψ(F 1) denotes the usual tensor of elastic moduli. If the free energy

function of a hyperelastic solid satisfies any of the convexity conditions (2.24), (2.27),
(2.29) or (2.31) together with some coercivity, continuity and measurability requirements
then there exist at least a function which minimizes the associated minimization problem
(2.13), see Ciarlet [45] p.355 for the proof. On the other hand, as outlined for example
in Marsden & Hughes [130], the convexity restriction on the free energy ψ is too strong
and physically unacceptable due to the following reasons:

(i) Hill [99] pointed out that strict convexity of the free energy implies uniqueness of
solutions and therefore precludes global buckling of solids under consideration.

(ii) Coleman & Noll [46] observed that convexity of the free energy function is
incompatible with material frame invariance.

(iii) As remarked by Ball [12] convexity of the free energy precludes the physical limit
condition

ψ(F ) → ∞ as det F → 0+ . (2.32)

Incompatibility of convexity with material frame indifference. The principle
of material frame indifference states that ψ(F ) = ψ(QF ) for all Q ∈ SO(3). Consider
for example two deformation gradients

F 1 = 1 =





1 0 0
0 1 0
0 0 1



 and F 2 = Q =





0 1 0
−1 0 0

0 0 1



 . (2.33)

F 1 and F 2 correspond to the identity tensor and a clockwise 90◦ rotation around the
third axis, respectively. If ψ is convex, then according to (2.24) the following condition
has to hold

ψ(F̄ ) ≤ 1

2
(ψ(F 1) + ψ(F 2)) with F̄ =

1

2
(F 1 + F 2) =





0.5 0.5 0
−0.5 0.5 0

0 0 1



 (2.34)

where ξ = 1
2

is chosen. Note that ψ(F 1) = 0 since F 1 = 1 represents the undeformed
state and ψ(F 2) = 0 due to principle of material frame indifference, i.e. ψ(QF 1) = ψ(F 1)
and F 2 = QF 1. Therefore, the right hand side of the above inequality is zero. On the
other hand, F̄ describes a clockwise rotation of 45◦ around third axis superimposed to a
volumetric deformation with det[F̄ ] = 0.5. Consequently, as a physical requirement ψ(F̄ )
has to be greater than zero. This leads to a contradiction with the convexity condition
which was pointed out first in Coleman & Noll [46], see also Truesdell & Noll [209]
p.163. For further details and discussion of the other physical conflict (ψ(F ) → ∞ as
det F → 0+) see Ciarlet [45] and Schröder [197].

2.5.2. Polyconvexity. Due to previously mentioned drawbacks of the convexity cri-
terion, a weaker requirement, namely the polyconvexity of the free energy was introduced
by Ball [12]. A function ψ : R3×3

+ → R̄ is called polyconvex if there exists a convex
function ψ̄ : R3×3

+ ×R3×3
+ ×R+ → R̄ such that

ψ(F ) = ψ̄(F , cof F , det F ) (2.35)
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where cof F stands for the cofactor defined by cof F = (det F )F−T . In other words,
ψ(F ) is said to be polyconvex if ψ̄(F , cof F , det F ) is convex with respect to F , cof F

and det F . In contrast to the convexity, the polyconvexity condition does not conflict
with any physical requirement, nevertheless it still guarantees together with some growth
conditions the existence of minimizing deformations. Following Ball [12], later Müller,

Qi & Yan [164] provided an existence theorem. It states that there exists a global
minimizer of (2.13) if ψ is polyconvex and satisfies the growth condition

ψ(F ) ≥ c0(‖F ‖2 + ‖cof F ‖3/2) − c1 ∀ F ∈ R3×3
+ (2.36)

for some constants c0 ∈ R+ and c1 ∈ R. Note that if a function is convex then it is also
polyconvex. Next some concrete functions are examined to clarify the difference between
the notions of convexity and polyconvexity.

Example: (Ciarlet [45] p.176) The function ψ(F ) = ‖cof F ‖2 is polyconvex but
not convex. In order to see that consider the following deformation gradients F 1 and F 2

F 1 =





2 0 0
0 1 1
0 0 1



 and F 2 =





1 0 0
0 2 0
0 0 1



 (2.37)

and compute

ξψ(F 1) + (1− ξ)ψ(F 2) = 9 and ψ(ξF 1 + (1− ξ)F 2) = ξ4 − 2ξ3 − ξ2 + 2ξ+ 9 . (2.38)

Insertion of the above results into the convexity condition (2.24) renders the following
inequality

ξ4 − 2ξ3 − ξ2 + 2ξ ≤ 0 (2.39)

which is not satisfied for all 0 ≤ ξ ≤ 1. Thus, the convexity condition is not fulfilled.
On the other hand, ψ(F ) = ψ̄(cof F ) = ‖cof F ‖2 is a polyconvex function. The function
ψ̄(H) = ‖H‖2 is a convex function according to (2.31), i.e.

(H2 − H1) : ∂2
HHψ̄(H1) : (H2 − H1) = ‖H2 − H1‖2 ≥ 0 (2.40)

confirming that ψ(F ) = cof F is a polyconvex function.

Example: (Ciarlet [45] p.176) The function ψ(F ) = det F is polyconvex but not
convex. In order to prove this we consider the deformation gradients given in (2.37) and
compute

ξψ(F 1) + (1 − ξ)ψ(F 2) = 2 and ψ(ξF 1 + (1 − ξ)F 2) = −ξ2 + ξ + 2 . (2.41)

Insertion of (2.41) into the convexity condition (2.24) leads to the inequality −ξ2 + ξ ≤ 0
which is not satisfied for 0 ≤ ξ ≤ 1. But ψ(F ) = ψ̄(det F ) = det F is a polyconvex
function since ψ(δ) = δ is a convex function of δ.

Example: The last example is concerned with the polyconvexity of compressible
Neo-Hookean Material

ψ(F ) =
µ

2
[ ‖F ‖2 − 3 ] +

µ2

λ
[ (det F )−

λ
η − 1 ] . (2.42)
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The polyconvexity of (2.42) can be shown by proving that ψ̄(F , det F ) = ψ(F ) is convex
with respect to F and det F . Since det F is a scalar, the convexity with respect to det F

requires the second derivative

∂2ψ̄

∂(det F )2
= (λ+ µ)(det F )−

λ+2µ
µ ≥ 0 (2.43)

to be positive and it is satisfied for all det F > 0 and material parameters λ, µ > 0. Hence,
the free energy function is convex with respect to det F . Convexity with respect to F is
fulfilled as well while

(F 2 − F 1) :
∂2ψ̄

∂F 2 : (F 2 − F 1) = ‖F 2 − F 1‖2 ≥ 0 (2.44)

where ∂2
FF ψ̄ = I. Consequently, the Neo-Hookean free energy given in (2.42) is polycon-

vex.

Ogden- and Mooney-Rivlin-type models also satisfy the polyconvexity condition. On
the other hand, free energy functions of St.Venant-Kirchhoff-type and models based on
Hencky tensor are known to be non-polyconvex, see Ciarlet [45]. Apart from above
mentioned works, which are concerned with isotropic hyperelastic models, Schröder &

Neff [198] have recently proposed the construction of polyconvex free energy functions
based on invariant formulations for transversally isotropic elastic solids.

2.5.3. Quasiconvexity. The concept of quasiconvexity, introduced by Morrey [157],
is a more general and weaker condition than polyconvexity. Polyconvexity of a func-
tion implies quasiconvexity as well. The quasiconvexity of the free energy ψ augmented
with some additional growth conditions ensures the sequential weak lower semicontinuity
(swlsc) of the corresponding functional I(ϕ) in (2.13). Furthermore, as already pointed
out, the existence of solutions of the minimization problem is guaranteed if the energy
functional I(ϕ) is swlsc. As noted in Šilhavý [200] p.387, the quasiconvexity of ψ is a
necessary, and under technical hypotheses also sufficient, condition for the swlsc of the
functional I(ϕ). More precisely, as pointed out in Ball [13], according to the results
of Morrey [157] and Acerbi & Fusco [1], the minimization problem (2.13) attains a
global minimum if ψ(F ) is quasiconvex and fulfills the growth condition

c1‖F ‖p − c0 ≤ ψ(F ) ≤ c2(‖F ‖p + 1) ∀ F ∈ R3×3
+ (2.45)

for some constants p > 1, c0 ∈ R and c1, c2 ∈ R+. Note that the growth condition (2.45)
is not consistent with (2.32). A free energy ψ : R3×3

+ → R is said to be quasiconvex if the
following inequality

1

vol(D)

∫

D
ψ(F + ∇w) dV ≥ ψ(F ) (2.46)

holds for every bounded open set D ∈ B and w ∈ R3 with w = 0 on the boundary ∂D.
D stands for a part of the body B and vol(D) is the corresponding volume of that part.
This condition states that for all possible fluctuations w in D with w = 0 on ∂D, the
homogeneous deformation given by F provides a minimizer of the total stored energy in
D. In other words, the inequality (2.46), when considered for a fixed domain D, describes
the principle of minimum potential energy for the reference body D under homogeneous
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displacement boundary conditions. Although the definition of quasiconvexity seems to
be dependent on a chosen domain D, in fact it is not. If the condition (2.46) holds for a
domain D then it holds for every such domain, see Dacorogna [51] p.101 for the proof.
Note that quasiconvexity is not a pointwise condition on the stored energy function and
is difficult to verify in practice. Even though quasiconvexity is a mathematically natural
hypothesis for the existence of solutions, non-quasiconvex energy storage functions are
of high interest since they can model materials that undergo phase transformations or
broadly speaking microstructure formations.

2.5.4. Rank-One Convexity. Rank-one convexity is a more general condition than
quasiconvexity. Thus, the quasiconvexity of ψ(F ) implies rank-one convexity. A free
energy ψ : R3×3

+ → R̄ function is said to be rank-one convex if for every 0 ≤ ξ ≤ 1

ψ(ξF 1 + (1 − ξ)F 2) ≤ ξψ(F 1) + (1 − ξ)ψ(F 2) for F 2 − F 1 = m ⊗ N (2.47)

holds where m,N ∈ R3 and F 1,F 2 ∈ R3×3
+ . In other words, ψ(F ) is rank-one convex

provided that it is convex along rank-one lines. The condition (2.47) reads equivalently
as follows, if

ψ̃(ξ) = ψ(F + ξm ⊗ N) (2.48)

is convex in ξ for all F ∈ R3×3
+ and m,N ∈ R3 then ψ : R3×3

+ → R̄ is rank-one convex.
Similar to alternative derivations of convexity (2.24-2.31), rank-one convexity can also be
formulated in different ways. For twice differentiable functions, following the same steps
with additional condition F 2 − F 1 = m ⊗ N one obtains analogous to (2.31)

(m ⊗ N) : C(F 1) : (m ⊗ N) ≥ 0 ∀F 1 ∈ R3×3
+ and m,N ∈ R3 , (2.49)

where C(F 1) = ∂2
FFψ(F 1). The inequality (2.49) is also referred to as the Legendre-

Hadamard or the ellipticity condition. If (2.49) holds strictly for non-zero vectors m,N ∈
R3 then it is called as the strong Legendre-Hadamard or the strong ellipticity condition.
In geometrically linear elasticity theory the strong ellipticity is a necessary and sufficient
condition for the existence traveling waves having real wave speeds, see Marsden &

Hughes [130] p.240.

Four convexity notions discussed so far are related for arbitrary finite valued vectorial
problems, e.g. ψ : R3×3

+ → R, as follows:

convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank-one convexity . (2.50)

The inverse relations are not valid in general. However, for scalar functions ψ : R → R
all four notions are equivalent. Note that if the function is quadratic then polyconvexity,
quasiconvexity and rank-one convexity coincide for n = 2 and quasiconvexity and rank-
one convexity coincide even for higher dimensions (n ≥ 3), see Dacorogna [51] p.126.
Before the consideration of non-existence of minimizers, we close the discussion of different
convexity notions with an example.

Example: (Alibert & Dacorogna [4]) Let f : R2×2 → R be defined as

f(F ) = ||F ||2
(
||F ||2 − 2γ det F

)
(2.51)
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where γ ∈ R and F ∈ R2×2. Then there exist ǫ > 0 such that

f is convex ⇔ |γ| ≤ 2
3

√
2

f is quasiconvex ⇔ |γ| ≤ 1 + ǫ

f is polyconvex ⇔ |γ| ≤ 1
f is rank-one convex ⇔ |γ| ≤ 2√

3
.

(2.52)

In the above example as noted by Alibert & Dacorogna [4] it is not known whether
1 + ǫ = 2/

√
3 is possible or not.

2.6. Lack of Convexity and Non-Existence of Minimizers

In the sequel, we demonstrate in simple one-dimensional setting how non-convex stor-
age functions lead to non-existence of solutions of the minimization problem (2.13). Con-
sider a bar of unit length B = (0, 1) under a simple longitudinal deformation with ho-
mogeneous boundary conditions ϕ(0) = ϕ(1) = 0. We denote the scalar deformation
gradient by F = dϕ/dX. The energy density is given as

ψ(F ) = (F 2 − 1)2 . (2.53)

Besides, the total energy functional is assumed to be

I(ϕ) =

∫ 1

0

[
ψ(F ) + ϕ2

]
dX =

∫ 1

0

[
(F 2 − 1)2 + ϕ2

]
dX . (2.54)

An attempt to minimize the total energy I(ϕ) over all possible continuous deformations ϕ
automatically leads to a fine scale mixtures between the two deformation gradients F = 1
and F = −1. Since both contributions to the energy functional (ψ(F ) and ϕ2) are non-
negative the smallest possible value of I(ϕ) is zero, i.e. inf{I(ϕ)} = 0. In order to reach a
zero energy level the deformation has to satisfy simultaneously two conditions (i) F = ±1
and (ii) ϕ = 0. However, if ϕ = 0 almost everywhere, then the deformation gradient F
becomes zero and this leads to I(ϕ) > 0. On the other hand, if we set F = ±1 a.e. then
ϕ 6= 0 which yields I(ϕ) > 0. Therefore, we conclude that both requirements (i) and (ii)
can not be fulfilled at the same time. However, a sequence of continuous deformations,
ϕn for n = 1, . . . ,∞, can be used to make the energy closer to zero by increasing n. In
order to construct such a sequence, we start with

ϕ1(X) =

{
X if 0 < X < 1/2
1 −X if 1/2 ≤ X < 1

(2.55)

as seen in Figure 2.6. Therefore, the total energy in (2.54) becomes

I(ϕ1) =

∫ 1/2

0

X2dX +

∫ 1

1/2

(1 −X)2dX =
1

12
. (2.56)
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Figure 2.6: A minimizing sequence ϕn of deformations for a.) n = 1 and I(ϕ1) = 1/12, b.)
n = 2 and I(ϕ2) = 1/48, c.) n = 4 and I(ϕ4) = 1/196. The total energy for a member of
the sequence is I(ϕn) = 1/12n2. So the minimizing sequence yields I(ϕn) → 0 as n→ ∞.
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Figure 2.7: A minimizing sequence ϕn of deformations alternative to the one in Figure 2.6
for a.) n = 1, b.) n = 2 and c.) n = 4. The sequence yields I(ϕn) → 0 as n→ ∞.

The energy can be made smaller if we consider other elements of the sequence ϕn with
n > 1, see Figure 2.6. Therefore, for any integer n let ϕn be the deformation given by

ϕn =

{
X if 0 < X < 1/2n
1/n−X if 1/2n ≤ X < 2/2n

(2.57)

and its periodical extension to the interval (0, 1). Note that this minimizing sequence
is not unique, see for example Müller [163] and Figure 2.7 for another construction.
The total energy for the nth member of the sequence is 1/12n2, i.e. I(ϕn) = 1/12n2.
Consequently, as n → ∞ the energy I(ϕn) → 0. On the other hand, although ϕ = 0 is
not a minimizer, the minimizing sequence converges to zero as n → ∞. In other words,
energy of the limit of deformation sequences is greater than the limit of energy

I( lim
n→∞

ϕn) > lim
n→∞

I(ϕn) (2.58)

which violates the weak lower semicontinuity of the functional I. As a consequence, we
say that due to non-convex stored energy function (2.53) this minimization problem has
no solution in the classical sense and generates fine scale alternating gradients. These os-
cillating gradients are often referred to as fine scale microstructures. In the minimization
problem (2.54), contrary to the original one (2.13), there is an additional term ϕ2 in the
energy functional I(ϕ). This is required in order to get this interesting behavior in simple
one dimensional problem. A detailed investigation of this problem for different boundary
conditions with and without lower order term ϕ2 can be found in Carstensen [38, 39]. It
has been shown there depending on the boundary conditions non-convex variational prob-
lems may have infinitely many, unique or no solution. Another interesting one-dimensional
example stems from the optimization of an elastic two phase composite beam. As a con-
sequence of non-convex cost function the optimal composite beam also shows an infinitely
fine oscillatory mixture of two constituents, see Cherkaev [43] for further details. Note
that in higher dimensions without any need of an extra term a similar oscillatory behavior
of minimizing sequences is attainable, see for example Bhattacharya [22] pp.89-92.
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3. Variational Formulation of Inelasticity and Relaxation Theory

In this chapter the key ingredients of the constitutive variational formulation for stan-
dard dissipative materials proposed in Miehe [142] and Miehe, Schotte & Lam-

brecht [149] are briefly summarized. Furthermore, the existence results of non-linear
elasticity based on weak convexity properties of energy storage functions (given in Section
2.2) are extended to the incremental response of inelasticity. Finally, the relaxation theory
is outlined and an algorithmic relaxation method based on a rank-one convexification is
addressed.

3.1. Incremental Variational Formulation of Inelastic Materials

3.1.1. Internal Variable Formulation of Inelastic Materials. Let ϕ : B ×R+ →
R3 denote the non-linear deformation map of an inelastic continuum B ⊂ R3 at a mate-
rial point X ∈ B and time t ∈ R+, see Figure 3.1. We denote the deformation gradient
in a standard way as F = ∇ϕ with J = det[F ] > 0. Focusing on purely mechanical
problems, the stress response of the material is physically constrained by the so-called
Clausius-Planck inequality for the dissipation of the material

D = P : Ḟ − ψ̇ ≥ 0 , (3.1)

where P denotes the first Piola-Kirchhoff stress tensor. ψ is an energy storage function
that is assumed to depend on the deformation F and a generalized vector I ∈ G of inter-
nal variables. It describes an energy storage mechanism in a deforming solid material. G
indicates a vector space Rn of n scalar functions of internal variables which may be con-
strained to a manifold, e.g. the Lie group SL(3) of unimodular tensors in isochoric finite
inelasticity. The storage function must satisfy the principle of material frame invariance,
i.e. ψ(QF ,I) = ψ(F ,I) for all Q ∈ SO(3). Furthermore, as a physical constraint it
is assumed to be normalized to a zero energy level and a stress free state at the refer-
ence configuration, i.e. ψ(1 ,I0) = 0 and ∂Fψ(1 ,I0) = 0 . Insertion of the free energy
ψ(F ,I) into (3.1) yields, by a standard argument often denoted as Coleman’s method,
the constitutive equation for the stresses

P = ∂Fψ(F ,I) (3.2)

and the reduced dissipation inequality

D = F · İ ≥ 0 with F := −∂Iψ(F ,I) , (3.3)

where F ∈ Rn is a generalized vector of internal forces conjugate to the variables I.
The model of finite inelasticity needs to be supplemented by constitutive equations which
determine the evolution of the internal variables I in time. A broad spectrum of in-
elastic solids is covered by the so-called standard dissipative media, where the evolution
İ of the internal variables on G is governed by a scalar dissipation function φ(İ,I) de-
pending on the flux İ of the internal variables and the internal variables I themselves.
Time-dependent viscoelastic response can be described by smooth dissipation functions.
However, plasticity and dry friction are (partially) time-independent or non-viscous ir-
reversible processes, governed by non-smooth dissipation functions. Rate-independent
dissipation functions are positively homogeneous of degree one with respect to the flux
İ , i.e. φ(ǫİ,I) = ǫφ(İ,I) for all ǫ ∈ R+. Such a function has a cone-like graph and
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is not differentiable at the point İ = 0 . As a consequence, it needs a generalization of
the differential operator of smooth functions to the notion of a subdifferential operator ∂
of non-smooth convex functions as in (2.23), see Moreau [156], Halphen & Nguyen

[92], Nguyen [167] and references therein. The set

E = ∂
İ
φ(0,I) = { F | F · İ ≤ φ(İ,I) for all İ } (3.4)

is a convex domain of admissible forces, often denoted as the elastic domain of the forces.
The element F ∈ E of the subdifferential is a subgradient of the non-smooth function φ
at İ = 0 , see (2.23). In terminologies of convex non-smooth analysis, the dissipation
function φ is then the support function of the convex set E . The dissipation function
governs the evolution of I in time by the constitutive differential equation

0 ∈ ∂Iψ(F ,I) + ∂
İ
φ(İ,I) with I(0) = I0 (3.5)

often referred to as Biot’s equation of standard dissipative systems, see Biot [24], Ziegler

& Wehrli [218], Germain [78], Halphen & Nguyen [92], Nguyen [167]. The two
constitutive equations (3.2) and (3.5) determine the stress response of a smooth normal-
dissipative material in a deformation-driven process where F is prescribed.

Based on the definition (3.3)2 of the internal forces F , one introduces a dual dissipation
function φ∗ by the Legendre-Fenchel transformation, see for example Rockafellar [193],

φ∗(F ,I) = sup
İ

{ F · İ − φ(İ,I) } (3.6)

depending on the forces F and the internal variables I. The definitions (3.3)2 and (3.6)
induce the two alternative representations

F ∈ ∂
İ
φ(İ,I) and İ ∈ ∂Fφ

∗(F ,I) (3.7)

of Biot’s equation (3.5)1. The reduced dissipation inequality (3.3)1 then takes the form

D = ∂
İ
φ(İ,I) · İ ≥ 0 . (3.8)

This inequality serves as a fundamental, physically-based constraint on the dissipation
function φ. It is a priori satisfied by assuming φ convex with respect to the first argument,
i.e. the flux İ, and prescribing the properties φ(0 ,I) = 0 and φ(İ,I) ≥ 0. Positively
homogeneous of degree one dissipation functions in rate-independent theories have the
property ∂

İ
φ(İ,I) · İ = φ(İ,I) due to φ(ǫİ,I) = ǫφ(İ,I) for all ǫ ∈ R+. Therefore,

equation (3.8) yields D = φ(İ,I) ≥ 0 which states that the evaluation of the dissipation
function yields the dissipation for the case of a rate-independent response.

3.1.2. Local Incremental Minimization for Standard Dissipative Solids. We
now proceed with the construction of an integrated version of the constitutive equations
giving a consistent approximation of the continuous differential equation (3.5) in a finite
time increment [tn, tn+1] ∈ R+. Here, a key point is the definition of an incremental stress
potential function W depending on the deformation F n+1 = F (tn+1) at time tn+1 that
determines the stresses at tn+1 by the quasi-hyperelastic function evaluation

P n+1 = ∂FW (F n+1) . (3.9)
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B S

∂Bϕ
∂Bt

ϕ

F = ∇ϕ
X ∈ B x ∈ S

Figure 3.1: Deformation of a solid. The deformation map ϕt : X 7→ x is defined on B
and maps initial points X ∈ B to current ones x ∈ S. The boundary ∂B decomposes into
a part where the deformation is prescribed and a part where the tractions are given, i.e.
∂B = ∂Bϕ ∪ ∂Bt and ∂Bϕ ∩ ∂Bt = ∅.

Clearly, this function must cover characteristics of the storage function ψ and the dissi-
pation function φ introduced above. To this end, the variational problem

W (F n+1) = inf
I∈G

{∫ tn+1

tn

[ ψ̇ + φ ] dt
}

with I(tn) = In (3.10)

is considered for standard dissipative materials proposed in Miehe [142] and Miehe,

Schotte & Lambrecht [149]. For prescribed deformation, this problem defines the
incremental stress potential function W as a minimum of the generalized work

W(F n+1,In+1) =

∫ tn+1

tn

[ψ̇ + φ] dt (3.11)

done on the material in the time increment [tn, tn+1] under consideration. Starting with
the given initial condition I(tn) = In, the minimum problem defines an optimal path of
the internal variables I(t) for t ∈ [tn, tn+1], including the right boundary value In+1 =
I(tn+1). We refer to Martin [131] and the recent works of Ortiz & Repetto [175],
Ortiz & Stainier [177], Carstensen, Hackl & Mielke [40] and Mielke [150, 151,
152] for discussions of extremum paths and energetic formulations in linear and non-linear
plasticity.

The two equations (3.9) and (3.10) provide an approximate variational counterpart of
the continuous setting (3.2) and (3.5) of the constitutive equations in the discrete time
step [tn, tn+1] under consideration. The consistency of the finite-step-sized variational
formulation (3.10) with the continuous evolution problem for the limit [tn, tn+1] → dt,
when the finite increment becomes infinitely small, has already been shown in Miehe,

Schotte & Lambrecht [149]. Here an alternative argumentation is demonstrated, see
also Miehe, Lambrecht & Gürses [148]. Observe that the variational principle (3.10)
can be recast into

W̃ (∆F n+1) = inf
∆I

{∫ tn+1

tn

[ ψ̇ + φ ] dt
}

with ∆I(tn) = 0 , (3.12)

where the current deformation and internal variables were expressed by F n+1 = F n +
∆F n+1 and I(t) = In +∆I(t) for t ∈ [tn, tn+1]. We then obtain for the limit [tn, tn+1] →
dt the incremental variational problem

W̃ (dF ) = inf
dI

{
[ ψ̇ + φ ] dt

}
(3.13)
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at infinitesimally small steps. Setting [ψ̇ + φ]dt = ∂Fψ(F ,I) : dF + ∂Iψ(F ,I) : dI +
φ(dI/dt,I)dt, we obtain at once Biot’s equation (3.5) as the associated Euler equation.
This shows the consistency of the variational formulation (3.10) with the continuous
evolution problem. When (3.10) is applied to problems in plasticity, it defines for the
finite-step-sized incremental problem of the flow theory of plasticity a minimization path
as used in the deformation theory of plasticity, see Martin [131] for more details. This
provides a consistent symmetry-preserving basis for time-discrete numerical formulations
of finite plasticity. Note that a further derivative of (3.9) with respect to F yields the
tangent moduli

Cn+1 = ∂2
FFW (F n+1) (3.14)

at time t = tn+1.

3.1.3. Dissipation Functions for Single-Surface Models of Inelasticity. An
elastic domain of the internal forces is a key feature of rate-independent models of elasto-
plasticity and damage. In classical treatments of these models, the convex elastic domain
E defined in (3.4) is directly described in the constitutive modeling. To this end, consider
a function f(F ,I) depending on the internal forces F and the internal variables I. The
level surface f(F ,I) = c(I) with the threshold function c(I) is assumed to describe the
boundary ∂E of the convex domain E . Then

E = { F | f(F ,I) ≤ c(I) } (3.15)

is called the elastic domain of the internal forces. We denote f as the level set function.
The function is assumed to be (i) convex with respect to the forces f(θF2+(1−θ)F 1,I) ≤
θf(F2,I)+(1−θ)f(F2,I) for all {F1,F2} ∈ E and θ ∈ [0, 1], (ii) positively homogeneous
of degree one

f(θF ,I) = θf(F ,I) for θ > 0 (3.16)

and (iii) zero at the origin f(0 ,I) = 0. The level set function f and the threshold
function c together define a flow criterion function χ(F ,I) = f(F ,I)−c(I), a standard
terminology of rate-independent plasticity. Representations of the functions f and c for
specific materials are obtained from combined hardening and caloric experiments. For a
known elastic domain (3.15), i.e. known functions f and c, the dissipation function φ for a
rate-independent model of inelasticity may be defined by a generalization of the classical
principle of maximum dissipation of plasticity theory. It defines the dissipation function
by the constrained maximum problem

φ(İ,I) = sup
F∈E

{F · İ} . (3.17)

The maximization problem (3.17) with the inequality constraint f(F ,I) − c(I) ≤ 0 can
be solved by a Lagrange method

φ(İ,I) = sup
F,γ̇≥0

{
F · İ − γ̇[f(F ,I) − c(I)]

}
. (3.18)

The associated Karush-Kuhn-Tucker equations determine the evolution of the internal
variables along with the loading-unloading conditions

İ = γ̇∂Ff(F ,I) ∧ γ̇ ≥ 0 ∧ f ≤ c ∧ γ̇(f − c) = 0 . (3.19)
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Insertion of (3.19) into (3.3)1 and exploiting the homogeneity (3.16) of the level set func-
tion gives the dissipation of the rate-independent formulation

D = f(F ,I)γ̇ = c(I)γ̇ ≥ 0 . (3.20)

Thus, the thermodynamical consistency of the rate-independent model is ensured by
choosing a threshold function

c(I) ≥ 0 (3.21)

with positive image. Insertion of (3.19) into (3.18) gives, after some algebraic manipula-
tions, the simple representation of the dissipation function

φ = c(I)γ̇ (3.22)

with an image identical to the dissipation. Thus, as already mentioned, in the rate-
independent inelasticity evaluation of the dissipation function yields the dissipation.

3.1.4. Global Incremental Minimization for Standard Dissipative Solids.

The existence of the constitutive minimization problem (3.10) allows the introduction of an
incremental minimization formulation of the boundary-value problem of finite inelasticity
for standard dissipative solids. For this purpose, consider a functional of the current
deformation field ϕn+1 at the right boundary of the increment [tn, tn+1]

I(ϕn+1) =

∫

B
W (F n+1) dV − [ Πext(ϕn+1) − Πext(ϕn) ] (3.23)

with the global load potential function

Πext(ϕn+1) =

∫

B
ϕn+1 · γ dV +

∫

∂Bt

ϕn+1 · t dA (3.24)

of dead body forces γ(X, t) in B and surface tractions t(X, t) on ∂Bt. W is the in-
cremental stress potential function defined in (3.10). As outlined in Miehe & Lam-

brecht [146, 147], the current deformation map of inelastic standard dissipative mate-
rials can then be determined by a principle of minimum incremental energy for standard
dissipative solids

I(ϕ∗
n+1) = inf

ϕn+1∈W1,p(B)

{
I(ϕn+1)

}
(3.25)

subject to the essential boundary condition ϕn+1 = ϕ̄(X, tn+1) on ∂Bϕ associated with
prescribed deformations ϕ̄ at X ∈ ∂Bϕ. As usual, we consider a decomposition of the
surface into a part where the deformation is prescribed and a part where the tractions
are given, i.e. ∂B = ∂Bϕ ∪ ∂Bt and ∂Bϕ ∩ ∂Bt = ∅. The minimization problem (3.25)
governs the response of the inelastic solid in the finite increment [tn, tn+1] in a structure
identical to the principle of minimum potential energy in finite elasticity. The discretiza-
tion of the variational principle (3.25) can be performed in a straightforward manner by a
displacement-type finite element method and is commented on for the relaxed problem in
Section 3.3.3. The minimization problem (3.25) has formally the same structure as (2.13).
However, (3.25) is valid for an incremental problem and solved at the right boundary of
a time increment [tn, tn+1] while (2.13) is also applicable for processes continuous in time.
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3.2. Existence and Stability of Incremental Solutions

As already pointed out in Miehe & Lambrecht [146, 147] and Miehe, Lambrecht

& Gürses [148], a key advantage of the above outlined variational formulation is the op-
portunity to analyze the incremental stability of inelastic solids in terms of terminologies
used in finite elasticity. In what follows we relate the material stability of standard dissi-
pative solids to global weak convexity properties of the incremental stress potential. Recall
that weak convexity notions discussed in Section 2.5.3, in particular the quasiconvexity,
play a key role in the existence results of vectorial variational problems. As far as the
stability of inelastic solids is concerned the subsequent treatments may be understood as
consistent extensions of the energetic rate formulations proposed by Petryk [181, 182]
in terms of velocity fields to the finite-step-sized incremental setting in terms of absolute
placement fields.

B

∂B

D ⊂ B

D ∂D

F n+1 F n+1+ ∇w

W (F n+1) <
1

|D|

∫

D

W (F n+1 + ∇w)dV W (F n+1) >
1

|D|

∫

D

W (F n+1 + ∇w)dV

Figure 3.2: Interpretation of incremental energetic stability conditions of an inelastic
material in terms of quasiconvexity. A given homogeneous deformation state F n+1 of the
material is stable if superimposed fine scale fluctuation patterns ∇w with support on the
boundary ∂D increase the averaged incremental stress potential on D.

Extending results of the existence theory in finite elasticity summarized in Section
2.2 (see also Ball [12], Ciarlet [45], Dacorogna [51], Marsden & Hughes [130]
and Šilhavý [200]) to the incremental response of standard dissipative solids in a finite
time step [tn, tn+1], we consider the sequentially weakly lower semicontinuity (swlsc) of
the functional (3.23) as the key property for the existence of minimizers of the variational
problem (3.25). The internal part of the functional (3.23) is assumed to be sequentially
weakly lower semicontinuous, if the incremental stress potential defined by the constitutive
minimization problem (3.10) is quasiconvex and satisfies some growth conditions, see for
example Dacorogna [51] and Acerbi & Fusco [1]. We regard the quasiconvexity of the
incremental stress potential W as the fundamental criterion for the incremental material
stability of the inelastic solid, see Figure 3.2 for an illustration. This weak convexity
property was introduced by Morrey [157] and already discussed in Section 2.5.3.

As noted before in the context of non-linear elasticity, the well-motivated concept of
quasiconvexity is based on a spatial integral condition which is hard to verify in practice.
Recalling the relations of weak convexity conditions (2.50), we consider the slightly weaker
rank-one convexity condition as a close approximation of the quasiconvexity and focus on
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Figure 3.3: Qualitative representation of a non-convex incremental potential and its con-
vexification. l and g characterize the ranges where the local and the global convexity criterion
are not satisfied, respectively. a.) At F n+1 the potential W is not rank-one convex (dashed
line). As a consequence, the macroscopic deformation state F n+1 is not stable and decom-
poses into micro-phases F± which determine the rank-one convex envelope (solid line). b.)
The relaxed stress-strain relation characterizes a snap-through behavior between the two
micro-phases F± due to the constant slope of the rank-one convex envelope.

the rank-one convexity as a practically usable criterion for material stability. In addition
to its practical applicability, as noted by Šilhavý [200] p.278, “the experience shows that
the difference between global quasiconvexity and rank-one convexity is relatively small”.

3.2.1. Check of Rank-One Convexity for the Incremental Stress Potential.

The notion of rank-one convexity is already discussed in Section 2.5.4 and in the framework
of non-linear elasticity its necessary condition is given in (2.47). In the sequel, we consider
the following equivalent reformulation of (2.47). The incremental stress potential W is
said to be rank-one convex if the condition

W (ξF + + (1 − ξ)F−) ≤ inf
ξ,F+,F−

{ ξW (F +) + (1 − ξ)W (F−) } (3.26)

holds for all laminate deformations F + and F− which satisfy the condition

rank[F + − F−] ≤ 1 (3.27)

in terms of the volume fraction ξ ∈ [0, 1]. Condition (3.27) ensures the compatibility
of the micro-phases (±) along their interface. The rank-one convexity condition (3.26)
rules out the development of local fine scale microstructures in the form of first-order
laminates. Hence, the material is stable if the superimposed first-order laminate-type
fluctuation field yields a higher energy level than the homogeneous deformation F n+1.

A qualitative picture of a non-convex, unstable incremental response is given in Figure
3.3. Observe carefully that (3.26) is a global stability criterion that needs the knowledge
about the global range of instability between F− and F +. The material stability cannot be
directly decided in terms of a given local deformation F n+1, but needs the rank-one convex
hull construction governed by F− and F +. As shown in Miehe & Lambrecht [146, 147]
and Lambrecht [121] classical conditions of material stability of elastoplastic solids out-
lined in Hill [100] and Rice [191] are consistent with this local convexity condition, which
are often motivated by the consideration of wave propagation in solids. The Hadamard
condition (2.49) when computed for a single deformation state F n+1 defines a material
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instability in terms of a negative curvature of the stress potential W locally at F n+1. Note
that the definition C = ∂2

FFψ(F ) in (2.49) has to be replaced with Cn+1 = ∂2
FFW (F n+1)

in the context of incremental variational formulation of inelasticity. As shown in Figure
3.3, the associated range of instability is different from the one predicted by the global
condition (3.26). In the sequel, we focus on the global stability condition (3.26), which
is much harder to evaluate than its local counterpart (2.49). However, the effort needed
for the check of (3.26) is already a part of the convexification analysis for the incremental
energy relaxation discussed in the subsequent Section 3.3.

3.2.2. Global Formulation for Two-Dimensional Problems. In what follows
the rank-one convexity condition (3.26) is rewritten for two-dimensional problems. To
this end, we introduce the ansatz

F± = F n+1L
± with

{
L+ = 1 +(1 − ξ)dM ⊗ N

L− = 1 − ξdM ⊗ N
(3.28)

for the two deformation phases that satisfies the condition (3.27). It models a first-order
laminate in terms of the two Lagrangian unit vectors M and N . For two-dimensional
problems, these vectors can be parameterized by two angles ϕ and χ

M(ϕ) = [cosϕ sinϕ]T and N(χ) = [cosχ sinχ]T . (3.29)

The scalar d describes the intensity of the bifurcation on the micro-scale. ξ is the volume
fraction of the phase (+) and can be understood as a probability measure in the sense of
Young [217]. Hence, deformations microstructures consisting of two phases (+) and (−)
are characterized by four micro-variables

q = [ξ, d, ϕ, χ]T ∈ Q (3.30)

for a two-dimensional description of the rank-one laminate. These are constrained to lie
in the admissible domain

Q = {q | 0 ≤ ξ ≤ 1 , d ≥ 0 , 0 ≤ ϕ ≤ π , 0 ≤ χ ≤ π} . (3.31)

With this notation at hand, we write the global rank-one convexity condition (3.26) for
two-dimensional problems as the minimization problem

W (F n+1) ≤ inf
q∈Q

{
W̄ h(F n+1, q)

}
(3.32)

in terms of the function

W̄ h(F n+1, q) = ξW (F +(F n+1, q)) + (1 − ξ)W (F−(F n+1, q)) (3.33)

that represents the volume average of the potentials over the two deformation phases. Ob-
viously, (3.32) holds as an equality if the micro-variables assume the values ξ = 0, ξ = 1
or d = 0. In these cases one or both micro-phases F± are identical to the macroscopic
deformation F n+1. Figure 3.3a provides a visual demonstration of a non-convex incre-
mental stress potential W (F n+1) which is greater than the interpolation of the potentials
W (F +) and W (F−) corresponding to the phases (+) and (−). As a consequence, the
homogeneous deformation state is not stable and decomposes into the micro-deformations
F± which minimize the function W̄ h with respect to the variables q.
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Box 3.1: Overview: Minimization Principles for Standard Dissipative Solids

(M) Constitutive Model. F = ∇ϕ at X ∈ B is the local deformation of
the material and I ∈ G a generalized vector of internal variables. A
normal-dissipative set of local material equations has the structure

stresses P = ∂Fψ(F ,I)

evolution equation ∂Iψ(F ,I) + ∂
İ
φ(İ,I) = 0 , I(0) = I0

defined in terms of an energy storage function ψ and a dissipation func-
tion φ.

(C) Incremental Variational Formulation of Constitutive Model. In a finite
time increment [tn, tn+1], the minimization problem of the constitutive
response

stresses P n+1 = ∂FW (F n+1)

stress potential W (F n+1) = inf
I

∫ tn+1

tn

[ ψ̇ + φ ] dt , I(tn) = In

determines the current internal state In+1 ∈ G and provides a potential
for the stresses at time tn+1.

(S) Stability of Incremental Constitutive Response. In [tn, tn+1] the material
is locally stable if the incremental stress potential W is quasiconvex

stable response W (F n+1) ≤ inf
w

{ 1

|D|

∫

D

W (F n+1 + ∇w) dV
}

for all possible fluctuations w on the domain D.

(R) Microstructure Development in Unstable Materials. For an unstable non-
convex response, the incremental minimization problem of quasiconvex-
ification

macro-stresses P̄ n+1 = ∂FWQ(F n+1)

relaxation WQ(F n+1) = inf
w

{ 1

|D|

∫

D

W (F n+1 + ∇w)dV
}

provides a relaxed quasiconvex hull WQ of W and determines the current
microstructure fluctuation field w.

3.2.3. Algorithmic Implementation for Two-Dimensional Problems. In a
typical incremental analysis of an inelastic solid, the accompanying check of incremental
rank-one convexity in [tn, tn+1] needs the solution of the local minimization problem (3.32)

inf
q∈Q

{W̄ h(F n+1, q)}
{

= W (F n+1) : for rank-one convex W at F n+1

< W (F n+1) : for not rank-one convex W at F n+1
(3.34)

for the four variables q defined in (3.30). The necessary condition of the minimization
problem

∂qW̄
h = 0 (3.35)
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is a non-linear equation for the determination of the micro-variables q. As the function
W̄ h is non-convex with respect to q, a standard Newton iteration scheme for arbitrary
initial values cannot be directly applied. In order to overcome the difficulty in finding the
global minimum for the non-convex problem under consideration, the following elementary
solution procedure is applied. In a first step, we discretize the admissible range of the
micro-variables and filter out the minimum

q0 = arg
{

inf
qh∈Q

{
W̄ h(F n+1, q

h)
}}

with qh = [ i
n
, j

n
, k

n
π, l

n
π]T (3.36)

on a given raster for n ∈ N and {i, j, k, l} ∈ {1...n}. Note that the admissible range for
the variable d is unbounded. However, by conducting numerical studies the relevant range
can be figured out. q0 then serves as a starting value for subsequent Newton-Raphson
updates

q ⇐ q − [ ∂2
qqW̄

h ]−1[ ∂qW̄
h ] for ||∂qW̄

h(F n+1, q)|| > tol . (3.37)

The derivatives of the function W̄ h with respect to the micro-variables q are summarized
in the Appendix A. An alternative probabilistic solution strategy for the non-convex
minimization problem can be found in Bartels et al. [19]. The approach is based on
the computation of the objective function (3.33) several (100 to 10000) times, construction
of clusters from these sampling points and then identification of a best point from these
clusters.

3.3. Relaxation of a Non-Convex Constitutive Response

As pointed out in the recent papers Miehe & Lambrecht [146, 147] and Miehe,

Lambrecht & Gürses [148] the incremental variational formulation for the constitutive
response in Section 3.1 opens up the opportunity to resolve the developing microstructure
in unstable standard dissipative solids by a relaxation of the associated non-convex incre-
mental variational problem. If the above outlined material stability analysis detects a non-
convex incremental stress potential W , an energy-minimizing deformation microstructure
is assumed to develop as conceptually pointed out in Section 2.6. A relaxation is as-
sociated with a quasiconvexification of the non-convex function W by constructing its
quasiconvex envelope WQ as schematically indicated in Figure 3.3. Formally it replaces
the variational problem (3.23) which may have no solution by the one (3.38) which has a
solution. On the other hand, physically, quasiconvexity is the passage from a microscopic
energy to a macroscopic energy that is obtained by an averaging over fine scale oscilla-
tions. This section develops a framework for a relaxation of standard dissipative solids
based on a first-order rank-one convexification. A summary of the incremental variational
formulation together with the stability of inelastic response and the relaxation of unstable
materials is given in Box 3.1. For a detailed mathematical discussion on the relaxation
theory readers are referred to Dacorogna [51], Müller [163] and Carstensen [38].

3.3.1. Quasiconvexified Relaxed Incremental Variational Problem. If mate-
rial instabilities are detected at a point X ∈ B of the solid by a failure of conditions
(3.26) or (3.32), we face with the incremental potential W that is not rank-one convex in
some region of the inelastic solid. If the incremental potential function W is not rank-one
convex, the internal part of the functional (3.23) is assumed not to be sequentially weakly
lower semicontinuous. Hence, the existence of solutions of (3.25) is not ensured. In other
words, the minimum of the incremental boundary-value problem (3.25) is not attained.
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Following Dacorogna [51] and Acerbi & Fusco [1] we consider the relaxed energy
functional

IQ(ϕn+1) =

∫

B
WQ(F n+1) dV − [ Πext(ϕn+1) − Πext(ϕn) ] , (3.38)

where the internal part of the relaxed energy functional is obtained by replacing the non-
convex integrand W in (3.23) by its quasiconvex envelope WQ. The current deformation
field of the elastoplastic solid is then determined by the relaxed incremental variational
principle

IQ(ϕ∗
n+1) = inf

ϕn+1∈W1,p(B)

{
IQ(ϕn+1)

}
(3.39)

that minimizes the relaxed incremental potential energy IQ for the admissible deformation
field. The quasiconvexified incremental stress potential WQ is defined by the minimization
problem

WQ(F n+1) = inf
w∈W1,p

0 (B)

{ 1

|D|

∫

D

W (F n+1 + ∇w)dV
}

(3.40)

with respect to the microscopic fluctuation field w that constitutes the development of
a deformation microstructure, subject to the boundary condition w = 0 on ∂D which
provides a support on ∂D. The first and second derivatives of the relaxed potential WQ

function define relaxed stresses and tangent moduli

P̄ n+1 = ∂FWQ(F n+1) and C̄n+1 = ∂2
FFWQ(F n+1) (3.41)

in an analogous format to (3.9) and (3.14). The relaxed problem (3.39) is considered to
be a well-posed problem as close as possible to the original unstable problem (3.25) which
has no solution. The minimization problem (3.40) of quasiconvexification is similar to the
minimization problem of homogenization of heterogeneous materials, see Miehe [142] and
Miehe, Schotte & Lambrecht [149]. It determines a micro-fluctuation field w on an
arbitrarily chosen domain D ⊂ R3. Although the relaxation is originally related with the
construction of a quasiconvex envelopeWQ, it is often approximated by convex, polyconvex
or rank-one convex envelopes due to difficulty in determining the quasiconvex hull. See
for example, Bartels et al. [19], Aranda & Perdregal [7], Dolzmann [59] and
Aubry, Fago & Ortiz [11] for different numerical polyconvexification and rank-one
convexification algorithms. The convex (C), polyconvex (P ), quasiconvex (Q) and rank-
one convex (R) envelopes of W are formally given by

WC = sup{ W̃ ≤W | W̃ is convex }
WP = sup{ W̃ ≤W | W̃ is polyconvex }
WQ = sup{ W̃ ≤W | W̃ is quasiconvex }
WR = sup{ W̃ ≤W | W̃ is rank-one convex } .

(3.42)

They are obviously related by

WC ≤WP ≤WQ ≤WR (3.43)
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as a consequence of (2.50) and (3.42). Rarely, in some applications quasiconvex envelopes
WQ can be determined analytically. One of the approaches for the computation of WQ is
as follows: (i) Find upper and lower bounds of WQ, e.g. canonical choices would be WP

and WR, and (ii) show that they coincide WP = WR. Consequently, it yields from (3.43)
clearly that WP = WQ = WR. In DeSimone & Dolzmann [57, 58] and Dolzmann [60]
such an analytical construction is developed for nematic elastomers. Having in mind the
implications (3.43) and the experience that shows the difference between WQ and WR is
in general small, in what follows we focus on a rank-one convexification as a practically
manageable numerical relaxation method.

3.3.2. Rank-One-Convexified Relaxed Incremental Variational Problem. A
failure of rank-one convexity conditions (3.26) or (3.32) indicates the instability of the
homogeneous deformation state F n+1 and the development of a pattern of first- and
higher-order laminates. We consider the relaxed energy functional

IR(ϕn+1) =

∫

B
WR(F n+1) dV − [ Πext(ϕn+1) − Πext(ϕn) ] , (3.44)

where the internal part of the relaxed energy functional is obtained by replacing the non-
convex integrand W in (3.23) by its rank-one-convex envelope WR, which is considered to
be close to the quasiconvex envelopeWQ. The current deformation field of the elastoplastic
solid is then determined by the relaxed incremental variational principle

IR(ϕ∗
n+1) = inf

ϕn+1∈W1,p(B)

{
IR(ϕn+1)

}
(3.45)

that minimizes the relaxed incremental potential energy IR for the admissible deformation
field. The rank-one convexified function is defined by the minimization problem

WR(F n+1) = inf
ξi,F i

{∑N
i=1ξiW (F i)

}
with (ξi,F i) ∈ {H ∩RN} . (3.46)

Here, H denotes the set of all volume fractions ξi and phases F i for which the following
two conditions hold: (i) The sum of the volume fractions equals one and the sum of the
weighted phases ξiF i yields the homogeneous macro-deformation, i.e.

H = {(ξi,F i) |
∑N

i=1ξi = 1 ∧ F n+1 =
∑N

i=1ξiF i} , (3.47)

where N is the number of phases. The volume fractions ξi ∈ [0, 1] can be understood to
play the role of a probability measure in the sense of Young [217], see also Müller [163]
for further details. (ii) The fractions ξi and phases F i must be elements of the set RN .
For the development of one laminate (N = 2) the set is defined as

R2 = {(ξi,F i) | rank[F 1 − F 2] ≤ 1]} with i ∈ {1, 2} . (3.48)

Elements of R2 have the property that the difference between the two phases gives a
rank-one tensor. In case of a decay of the homogeneous state into three or more phases
the set RN has the non-trivial representation

RN =







(ξi,F i)

∣
∣
∣
∣
∣
∣
∣

rank[F 1 − F 2] ≤ 1

ζ1 = ξ1 + ξ2, β1 = (ξ1F 1 + ξ2F 2)/ζ1

ζi = ξi+1, βi = F i+1 ∀ 2 ≤ i ≤ N − 1







, (3.49)
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Figure 3.4: Rank-one convexification and development of sequential laminates. The rank-
one convexification WRk

(F n+1) based on Kohn-Strang’s recursion formula implies the de-
velopment of a sequential laminate. Starting from the homogeneous deformation state F n+1

any phase of level k−1 decomposes into two phases (+) and (−) of level k. As a consequence,
a typical binary tree structure emerges.

see Dacorogna [51] p.114 for a detailed discussion. The rank-one convexification theo-
rem (3.46) has the serious drawbacks that (i) one cannot a priori prescribe the N emerging
phases and (ii) the set RN is difficult to evaluate. Kohn & Strang [117] proposed a
very similar construction to (3.46) in order to characterize the rank-one convexification
based on a recursion formula. Starting with

WR0
(F n+1) = W (F n+1) , (3.50)

one computes the functions

WRk
(F n+1) = inf

ξ+,ξ−,F+,F−

{
ξ+WRk−1

(F +) + ξ−WRk−1
(F−)

}
with k ≥ 1 (3.51)

for the scales k = 1, 2, 3.... After an infinite number of steps k → ∞ the exact rank-one
convexified incremental stress potential

WR(F n+1) = lim
k→∞

WRk
(F n+1) (3.52)

is obtained. The first and second derivatives of this convexified function then define
relaxed stresses and tangent moduli

P̄ n+1 = ∂FWR(F n+1) and C̄n+1 = ∂2
FFWR(F n+1) . (3.53)

According to this approach any phase of order k − 1 decomposes into two phases (+)
and (−) of order k which are elements of the sets H and R2, and minimize the average
of the corresponding incremental stress potentials. The developing micro-phases form a
sequential laminate. For instance, Figure 3.3.2 shows a typical binary tree structure of a
rank-2 laminate. The unstable macroscopic deformation state F n+1 decomposes into two
micro-phases F + and F− of micro-level 1 which again split into two pairs of micro-phases
A+, A− and B+, B− of micro-level 2. The rank-one convexified potential WR2

then
consists of the volume average of the stress potentials W at the root of the tree.

3.3.3. First-Order Rank-One-Convexified Incremental Variational Problem.

First-Order Rank-One-Convexification for 2-D Problems. We approximate
the exact rank-one convexification procedure outlined above by a two-scale analysis that
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takes into account only the first micro-level. Hence, an unstable macro-deformation
F n+1 decomposes into the two phases F + and F− modeled by ansatz (3.28). Then
the first-order rank-one convexification of the non-convex function W is obtained for two-
dimensional problems by the minimization problem

WR1
(F n+1) = inf

q∈Q

{
W̄ h(F n+1, q)

}
(3.54)

for the function W̄ h defined in (3.33) with respect to the micro-variables q defined in
(3.30). Note that the exploitation of this minimization problem is already needed for the
check (3.32) of rank-one convexity. The solution procedure has already been outlined in
Section 3.2.3.

A problem similar to (3.54) was solved in Lambrecht, Miehe & Dettmar [122] for
a one-dimensional strain-softening elastic-plastic bar. A schematic visualization is given
in Figure 3.3. It depicts the shape of a non-convex incremental potential W , its convexifi-
cation WR and the associated derivatives which define the stresses. Obviously, the stress
potential W is not rank-one convex at the current deformation F n+1. As a consequence,
the homogeneous deformation state is not stable and decomposes into the phases F + and
F− depicted in Figures 3.3a and 3.3b. The solution of the minimization problem (3.54)
yields solutions of ξ, d, ϕ, χ, which in the two-dimensional context determine two stable
phases.

Computation of Relaxed Stresses and Tangent Moduli. The relaxed stresses
and moduli are obtained by straightforward evaluation of derivatives (3.53) of the function
(3.33). The first derivative of (3.54) with respect to the deformation F n+1 at the solution
point q∗ reads

∂FWR1
= ∂FW̄

h + [ ∂qW̄
h ][ ∂Fq ] . (3.55)

Here, the last term vanishes due to the necessary condition (3.35) of the minimization
problem. Thus we identify the macro-stresses

P̄ n+1 = ∂FW̄
h . (3.56)

The second derivative reads

∂2
FFWR1

= ∂2
FFW̄

h + [ ∂2
FqW̄

h ][ ∂Fq ] . (3.57)

Here, the sensitivity of the fluctuation with respect to the macro-deformation is obtained
by taking the linearization of (3.35), yielding ∂Fq = −[∂2

qqW̄
h]−1[∂2

qFW̄
h]. Insertion into

(3.57) finally specifies the definition (3.53)2 of the macro-moduli to

C̄n+1 = ∂2
FFW̄

h − [ ∂2
FqW̄

h ][ ∂2
qqW̄

h ]−1[ ∂2
qFW̄

h ] . (3.58)

Observe that the macro-moduli consist of the volume average of the micro-moduli and a
softening part. The latter is the consequence of the flexibility of the rank-one laminate due
to the phase decay. The algorithm of first-order rank-one convexification is summarized
in Box 3.2. All derivatives of the function W̄ h which are needed for the local Newton
scheme (3.37) and the above stresses and moduli are summarized in the Appendix A.
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Box 3.2: First-Order Rank-One Convexification of Incremental Response

1. Database {F n+1,I
+
n ,I

−
n } and starting value q0 = {ξ, d,N ,M}0 given.

2. Set micro-deformation phases

F± = F n+1L
± with

{
L+ = 1 +(1 − ξ)dM ⊗ N

L− = 1 − ξdM ⊗ N

3. Evaluate minimization function

W̄ h(F n+1, q) = ξW (F +) + (1 − ξ)W (F−)

and its derivatives ∂FW̄
h, ∂qW̄

h, ∂2
FFW̄

h, ∂2
qqW̄

h, ∂2
qFW̄

h which are
provided in Appendix A.

4. Convergence check: If (‖ ∂qW̄
h ‖ ≤ tol) go to 6.

5. Newton update of micro-variables

q ⇐ q − [ ∂2
qqW̄

h ]−1[ ∂qW̄
h ]

6. Set relaxed macro-stresses and tangent macro-moduli

P̄ n+1 = ∂FW̄
h and C̄n+1 = ∂2

FFW̄
h − [ ∂2

FqW̄
h ][ ∂2

qqW̄
h ]−1[ ∂2

qFW̄
h ]

Update of the Internal Variables. As mentioned above, the convexification anal-
ysis can be considered as a two-scale homogenization analysis of two micro-phases (+)
and (−) which develop due to an instability of the homogeneous deformation state. As
a consequence, in each phase different internal variables I

+ and I
− emerge. After the

transition to the next time increment the constitutive response at the beginning of the
new increment must coincide to that at the end of the previous increment. This statement
induces the separate update of the internal variables for each phase

I
+
n ⇐ I

+
n+1 and I

−
n ⇐ I

−
n+1 . (3.59)

As a consequence, the loss of rank-one convexity of the incremental stress potential marks
the transition from a homogeneous one-phase analysis to a two-phase relaxation analysis.
In the subsequent increments, the minimizing phases may further develop. However, a
stable homogeneous state can be recovered if the volume fraction ξ becomes zero or one.
Then only one phase remains, i.e. F− = F n+1 or F + = F n+1. Accordingly, we perform
the update of the homogeneous internal variables

In ⇐ I
−
n+1 if ξ = 0 or In ⇐ I

+
n+1 if ξ = 1 (3.60)

and continue with the homogeneous analysis including the accompanying check of rank-
one convexity outlined in Section 3.2. After the loss of rank-one convexity two micro-
phases arise which bifurcate and continuously change their orientation and volume frac-
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tions. Finally, it may happen that only one phase remains indicating a recovery of the
stable homogeneous state.

Finite Element Formulation of the Relaxed Problem. An approximative nu-
merical solution of the minimization problem (3.45) for the relaxed dissipative solid with
the first-order rank-one-convexified stress potential (3.54) can be obtained by a finite
element method. To this end, we discretize the macroscopic deformation map and its
gradient by

ϕh
n+1(X) = N e(X)de

n+1 and ∇ϕh
n+1(X) = Be(X)de

n+1 in Be (3.61)

in terms of ne finite elements Be ⊂ B. Then dn+1 = A
ne

e=1 de
n+1 ∈ Rm is the finite-

dimensional vector of nodal positions associated with the finite element mesh of the macro-
structure. Insertion of approximations (3.61) into (3.45) defines the function

Ih
R1

(dn+1) =
ne

A
e=1

∫

Be

WR1
(Bed

e
n+1)dV − [ Πh

ext(dn+1) − Πh
ext(dn) ] . (3.62)

The first and second derivatives of this function define all finite element arrays

Ih
R1 ,d =

ne

A
e=1

∫

Be

BT
e ∂FWR1

dV − f ext
n+1

Ih
R1 ,dd =

ne

A
e=1

∫

Be

BT
e ∂

2
FFWR1

BedV







(3.63)

needed below. Here, the first and second derivatives of the convexified stress potentialWR1

are the relaxed stresses P̄ n+1 and moduli C̄n+1 defined in (3.56) and (3.58), respectively.

f ext
n+1 =

ne

A
e=1

{ ∫

Be

NT
e (γn+1 − γn)dV +

∫

∂Be
t

NT
e (tn+1 − tn)dA

}

(3.64)

is the deformation-independent vector of incremental external nodal forces. ∂dI
h
R1

is the
so-called residual vector, i.e. the difference between internal and external nodal forces.
∂2

ddI
h
R1

is the tangential stiffness matrix of the finite element mesh. The finite-dimensional
discretized form of the variational principle (3.39) then reads

Ih
R1

(d∗
n+1) = inf

dn+1∈Rm

{
Ih
R1

(dn+1)
}
. (3.65)

The necessary condition of this discrete minimum problem ∂dI
h
R1

= 0 provides a non-
linear algebraic system for the determination of the vector dn+1 of nodal positions of the
macro-structure. It can be solved by a Newton-Raphson iteration, yielding the update
equations

dn+1 ⇐ dn+1 − [ ∂2
ddI

h
R1

]−1[ ∂dI
h
R1

] for ||∂dI
h
R1
|| > tol , (3.66)

performed by some solver of linear equations. The iteration is terminated when d∗
n+1 is

considered to be the solution of (3.65).
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4. Application of Relaxation Theory to Phase Transformations

In the sequel, some aspects of the martensitic phase transformation, which is one of
the most successful application area of the relaxation theory, are studied. The main focus
is put on equilibrium microstructures that are obtained by the relaxation of non-convex
energy storage functions of multi-phase solids. The investigation of microstructures in
phase transformations using the mathematical relaxation theory as the underlying princi-
ple is traced back to Ball & James [14, 15]. The recent books by Bhattacharya [22]
and Dolzmann [60], the monograph by Müller [163] and the review article by James

& Hane [107] provide comprehensive treatments of equilibrium microstructures in con-
nection with the mathematical relaxation theory.

4.1. The Model Problem: Martensitic Phase Transformations

There are certain crystalline materials which can exist in more than a single solid phase
where each phase is characterized by a specific crystal structure. Normally, under certain
conditions, e.g. stress or temperature, one phase is favored whereas another is preferred
under different conditions. Furthermore, these materials may transform abruptly from
one phase to another due to a change of the stress or temperature. If the transition
occurs without diffusion then it is called as a displacive transformation. Some examples
of such materials are the shape memory alloy NiTi and the ferroelectric alloy BaTiO3.

A martensitic phase transformation is a diffusionless, solid to solid phase transforma-
tion from an austenite which is stable at high temperatures to a martensite which is stable
at low temperatures. The atomic structure of the high temperature austenite phase has
greater crystallographic symmetry than the low temperature martensite. This leads to the
multiple symmetry-related variants of martensite. The variants of martensite have iden-
tical crystalline structure but they are oriented differently with respect to the austenite
lattice, see Figure 4.1a. The number of variants is determined by the change of symmetry
during the transformation. For example, a cubic to tetragonal transformation shown in
Figure 4.1a gives rise to three martensite variants. In general, a crystalline solid does not
transform from the austenite phase to a single variant of the martensite. However, the
variants can arrange themselves by making a mixture of different variants and produce
complex fine scale microstructures. The ability of martensitic materials to generate such
microstructures together with the ability to change them lead to very unusual and unique
properties such as the shape memory effect.

4.1.1. Transformation Matrices and Energy Storage. The lattice of austenite
and martensite phases are characterized by the vectors {eA

1 , e
A
2 , e

A
3 } and {eMi

1 , eMi

2 , eMi

3 }
defining the corresponding unit cells, respectively. The transformation from the austen-
ite lattice to martensite lattice can be described as a deformation since the process is
diffusionless, i.e. there is no rearrangement of atoms. Therefore, one can introduce a
second-order tensor U i such that

eMi

j = U ie
A
j for j = 1 . . . 3 and i = 1 . . . N (4.1)

where N is the number of martensitic variants. The tensor U i maps the austenite lattice
to that of the ith martensite variant and is called as the transformation or Bain matrix.
The number of Bain matrices in a phase transformation is the same as the number of
variants of martensite. In other words, each transformation matrix represents the one
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variant of martensite. For instance, there are three transformation matrices in a cubic to
tetragonal transformation with ξ > 1 > η

U 1 =





ξ 0 0
0 η 0
0 0 η



 , U 2 =





η 0 0
0 ξ 0
0 0 η



 and U 3 =





η 0 0
0 η 0
0 0 ξ



 (4.2)

corresponding to three variants of the martensite. Note that the values of ξ and η depend
on the lattice parameters of the material and can be measured experimentally. Cubic to
orthorhombic and cubic to monoclinic transformations are some other most commonly
observed transformations having six and twelve martensitic variants, respectively.

The energy storage function of crystalline materials can be assumed to depend on the
lattice vectors and the temperature. The austenite lattice vectors minimize the free energy
at high temperatures whereas the martensite lattice vectors minimize at low temperatures.
Consequently, there is a temperature called as the critical or transformation temperature
θc at which both phases have equal energy. A continuum energy storage is obtained
from the energy function depending on the lattice vectors by employing the Cauchy-Born
hypothesis, i.e. the lattice vectors deform according to the deformation gradient. In other
words, the lattice vectors are assumed to behave like infinitesimal line elements in a solid
continuum. We choose our reference configuration as the undeformed austenite lattice at
the critical temperature θc. Then it is possible to identify the identity tensor U 0 = 1 as

Austenite

Martensite

θ > θ0

θ < θ0

a0
a0

a0

a

a

a

a

a

a

c

c

c

ψ(F )

θ > θc

θ = θc

θ < θc

F

U1
U2

U3
a. b.

Figure 4.1: a.) Austenite and three variants of martensite in a cubic to tetragonal trans-
formation. b.) Schematic representation of the evolution of the energy density with tem-
perature for materials showing martensitic phase transformations.
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the corresponding deformation gradient to the austenite phase. In an analogous way a
deformation gradient equal to transformation matrix U i with i = 1 . . . N corresponds to
the undeformed ith martensite variant. Therefore, the continuum energy storage function
fulfills, as shown in Figure 4.1b, the following conditions

ψ(1 , θ) ≤ ψ(F , θ) if θ > θc

ψ(1 , θ) = ψ(U i, θ) ≤ ψ(F , θ) if θ = θc

ψ(U i, θ) ≤ ψ(F , θ) if θ < θc

(4.3)

for i = 1 . . .N and F ∈ R3×3
+ .

4.1.2. Energy Wells. The austenite lattice has greater symmetry than the marten-
site lattice in most of the martensitic transformations. This leads to the fact that the
point group, i.e. the set of rotations that map a lattice back to itself, of the austenite
PA includes completely the point group of the martensite PM . Indeed, the number of
variants N are determined by the ratio of number of rotations in PA to that of PM . Since
the variants of martensite are symmetry-related, the transformation matrices U i can be
obtained from each other by

U i = R U jR
T for R ∈ PA ⊂ SO(3) and i, j = 1 . . .N (4.4)

and all martensite variants have the same energy

ψ(U i, θ) = ψ(U j , θ) for i, j = 1 . . .N . (4.5)

Note that the energetic state of the crystal does not change if it is subjected to a rigid
rotation, e.g. the austenite lattice stays as the austenite if it undergoes a rotation. Hence,
(4.5) can be further generalized as

ψ(QiU i, θ) = ψ(QjU j, θ) for Qi,Qj ∈ SO(3) and i, j = 1 . . .N . (4.6)

In the following, we focus on processes around a close neighborhood of the critical tem-
perature θc and consequently suppress the temperature dependence from the notation.
Without loosing generality by adding appropriate constant to ψ(F ) we may assume that
the energy density satisfies

ψ(F ) =

{
= 0 if F ∈ K or F = QU 0 = Q1 = Q

> 0 otherwise
(4.7)

where the set K denotes the energy wells of the martensite and is defined as

K =
N⋃

i=1

SO(3)U i = SO(3)U 1 ∪ SO(3)U 2 ∪ . . . ∪ SO(3)UN . (4.8)

A schematic visualization of martensitic energy wells K together with the austenite well
is given in Figure 4.2. In what follows we consider piecewise twice differentiable energy
storage functions of the form

ψ(F ) = min
i=0...N

{ψi(F )} with ψi(F ) =

{
= 0 if F = QU i

> 0 otherwise
(4.9)
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which fulfills the condition (4.7). In (4.9) ψi denotes the energy storage functions corre-
sponding to the ith variant of martensite for i = 1 . . . N and to the austenite for i = 0.
An energy storage function that satisfies (4.9) is clearly not convex. Notice that the en-
ergy wells are disjoint, in other words, there exist no rotation such that QU i = U j for
i, j = 1 . . .N and i 6= j. Furthermore, if there exist a rotation Q ∈ SO(3) and Eulerian
and Lagrangian vectors m,N ∈ R3 such that

QU i − U j = m ⊗ N ⇐⇒ rank [QU i − U j] = 1 (4.10)

then the energy wells U i and U j are said to be rank-one connected or compatible. There
exist planar interfaces with the Lagrangian normal vector N between two variants U i and
U j provided that (4.10) holds. This equality is also known as the Hadamard’s jump con-
dition. The compatibility of wells has important consequences for the relaxation analysis.
In the case of incompatible wells the computation of relaxed potential is generally more
cumbersome. Furthermore, the variants with compatible transformation matrices can
form different kind of twin microstructures. For a given two variants of martensite having
transformation matrices U i and U j it is possible to determine whether they are compat-
ible or not in the sense of (4.10). The solution procedure is due to Ball & James [14]
and also can be found in Bhattacharya [22] p.69. For example, it is possible to show
that in cubic to tetragonal transformations governed by the transformation matrices (4.2)
martensite variants can form twins among them. On the other hand, the austenite phase
is incompatible with any of the martensite variants however, it can form a compatible
interface with fine layered mixtures of the martensitic phases. The results of this proce-
dure with regard to the prediction of possible microstructure formations coincide very well
with the experimental observations, see Chu & James [44] and Bhattacharya [22] for
further details.

U1

U2

U3

U4

UN

QU1

QU2

QU3

QU4

QUN

U0 = 1

Q

Figure 4.2: A schematic visualization of energy wells. In the space of all second order
tensors characterized by the plane of the paper energy wells are represented by circles.

4.1.3. The Geometrically Linear Theory. The subsequent treatments in this
chapter will be based on the geometrically linear theory. Therefore, here the decisive
ingredients of the theory that is described so far are modified to the linearized kinematics.
In the geometrically linear theory, the positions x ∈ B of material points are referred to
as the current material coordinates. The small-strain deformation at time t ∈ R+ is
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governed by the displacement field on B

ut :

{
B → R3

x 7→ ut(x)
. (4.11)

We introduce the displacement gradient

h = ∇ut(x) (4.12)

where its norm is assumed to be bounded ||h|| < ǫ by a small number ǫ. The displacement
gradient can be decomposed additively into symmetric (infinitesimal) strain and skew-
symmetric rotation tensors

h = ε + ω with ε =
1

2
(h + hT ) and ω =

1

2
(h − hT ) (4.13)

which is an approximation of the polar decomposition of the deformation gradient F

in the geometrically linear theory. The frame indifference with respect to infinitesimal
rotations, i.e. ψ(h) = ψ(h + ω) for all skew matrices, induce that the energy storage
depends only on the symmetric part ε of the displacement gradient h. In what follows,
we assume that the energy in the neighborhood of the energy wells can be assumed to be
quadratic. Therefore, the energy storage is described by a piecewise quadratic function

ψ(ε) = min
i=0...N

{1

2
(ε − εi) : Ci : (ε − εi) + ηi

}

(4.14)

where ηi describes the minimum energy value of the well i and is often referred to as the
chemical energy. Ci and εi stand for the elastic moduli and the transformation strain of
the variant i, respectively. Transformation strains in the geometrically linear theory are
related those of large strain theory by εi = U i − 1 provided that U i is symmetric.

The compatibility condition for energy wells given in (4.10) reads in the geometrically
linear theory as

hi − hj = m ⊗ n (4.15)

in terms of the displacement gradients hi and hj corresponding to the variants i and j.
Contrary to the finite strain case (4.10), here we do not make any differentiation for the
vectors m,n ∈ R3 with respect to the configuration they belong to. The compatibility
condition (4.15) can be written also in terms of the linearized strain tensors

εi − εj =
1

2
(m ⊗ n + n ⊗ m) . (4.16)

We consider in the following discussions (4.16) as the necessary condition for energy wells
to be compatible.

4.1.4. Relaxation of Two-Well Potentials. In the sequel, the relaxation of an
energy storage function with two energy wells is discussed. A closed form expression
of the quasiconvex envelope (relaxed energy) for the double-well energy is available and
derived independently by Kohn [116] based on the Fourier analysis, and by Pipkin [184]
based on the so called translation method. The energy storage function has the piecewise
quadratic form

ψ(ε) = min
i=1...2

{1

2
(ε − εi) : C : (ε − εi) + ηi

}

(4.17)
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Figure 4.3: Schematic representation of energy wells the in ε11-ε22 plane and the decom-
position of two homogeneous strains εA and εB into phases for a.) the double-well and b.)
the three-well energies.

which is a simplification of (4.14) by assuming identical moduli (C1 = C2) for both
variants. The contour plot of the energy storage in ε11 − ε22 plane is given in Figure 4.4.
The quasiconvex envelope of (4.17) for arbitrary wells, not necessarily compatible, reads

ψQ(ε) =







ψ1(ε) if ψ2(ε) − ψ1(ε) ≥ γ/2

ψ2(ε) − [ψ2(ε) − ψ1(ε) + γ/2 ]2

2γ
if |ψ2(ε) − ψ1(ε)| < γ/2

ψ2(ε) if ψ1(ε) − ψ2(ε) ≥ γ/2

(4.18)

where γ is defined as

γ = max
|a|=|b|=1

[ (a ⊗ b + b ⊗ a) : C : (ε1 − ε2) ]2

(a ⊗ b + b ⊗ a) : C : (a ⊗ b + b ⊗ a)
. (4.19)

In the case of compatible wells satisfying (4.16), γ is simplified to

γ = (ε1 − ε2) : C : (ε1 − ε2) . (4.20)

As already mentioned before, the compatibility of the wells has important consequences.
In the case of rank-one connected wells, the relaxed energy is convex and the line joining
the wells is flat. On the other hand, incompatible wells lead to a non-convex relaxed
energy that exhibits a hump between ε1 and ε2 size of which depends on the amount of
incompatibility, see Bhattacharya [22] p.219.

In the examples below we consider the following rank-one connected energy wells

ε1 =





α 0 0
0 0 0
0 0 0



 and ε2 =





0 0 0
0 α 0
0 0 0



 (4.21)



4.1 The Model Problem: Martensitic Phase Transformations 45

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

a.

b.

c. ε11

ε11

ε11

ε11

ε11

ε11

ε22

ε22

ε22

A

A

A

B1

B1

B1

B2

B2

B2

Figure 4.4: Double-well potential and its relaxation for various cases. Contours describe
the energy levels. Two columns denote the unrelaxed and relaxed energies for a.) the moduli
C = I and η1 = η2 = 0, b.) the moduli C = κ1 ⊗ 1 + 2µP and η1 = η2 = 0, c.) the moduli
C = κ1 ⊗ 1 + 2µP and η1 = 0, η2 > 0.

and study the effects of the moduli C and the minimum energy values ηi on the relaxation
of the energy (4.17), see Figure 4.4a for an illustration with α = 0.3 in the ε11−ε22 plane.
The minimization problem

ψR(ε) = min
ξ,ε+,ε−

{
ξψ(ε+)+(1−ξ)ψ(ε−)

}
with







ε+ − ε− =
1

2
(m ⊗ n + n ⊗ m)

ε = ξε+ + (1 − ξ)ε−
(4.22)
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Figure 4.5: Unrelaxed and relaxed potential and stress for ε1 = diag[ 0.5 0 0 ] and ε2 = 0

with a.) η1 = 0 and η2 = 300 MPa and b.) η1 = 0 and η2 = 600 MPa. Note that for both
cases ε+11 − ε−11 remains the same and the differences ε+ − ε2 and ε− − ε1 are proportional
to η2 − η1.

for ξ ∈ [0, 1] and m,n ∈ R3 yields the rank-one convexification of ψ(ε) defined in (4.17).
Here, ε+ and ε− denote the strain states in the phases (+) and (−), and ξ is the volume
fraction of the phase (+). Owing to the specific choice of the wells (4.21), the minimization
problem becomes two-dimensional. In this simplified two-dimensional double-well energy
the rank-one convex envelope (4.22) can be computed numerically. As a result of the
experience acquired by conducting numerical studies, the rank-one convexified potential
is constructed as follows.

In the first case we assume that the elastic moduli are the fourth order identity tensors,
i.e. C = I and (ε − εi) : C : (ε − εi) = ‖ε − εi‖ for both variants, and η1 = η2 = 0 in
(4.17). Note that in the following discussions only ε11 and ε22 components of the strain
are taken into account since the other components have no influence on the relaxation
algorithm. In other words, the decomposition of homogeneous deformation takes place
exclusively for those two components without effecting the rest of the strain tensor. The
wells ε1 and ε2 are connected in the ε11 − ε22 plane by a line denoted as I, see Figure
4.3a. Two lines II and III which are perpendicular to I and pass through ε1 and ε2

are drawn. The lines II and III divide the ε11-ε22 plane into three unbounded regions
A,B1 and B2 as shown in Figure 4.3a. If a given strain tensor εA (more precisely the
point defined by 11 and 22 components of εA) lies on the line I then ε− and ε+ defined
in (4.22) coincide with the wells ε1 and ε2. Then the phase fraction ξ is computed by the
ratio of corresponding distances from the wells, i.e.

ξ =
|εA − ε−|
|ε+ − ε−| ,

see Figure 4.3a. Any other strain state εA in the region A (not on the line I) splits in a
similar way, however ε+ and ε− are not equal to ε1 and ε2 anymore. The line joining ε+
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Table 4.1: The ε11 component of the phases for different material parameters

η2 [MPa] ε+
11 ε−11 ε+

11 − ε−11

300 0.01873 0.518726 0.5
600 0.03746 0.537453 0.5

and ε− is parallel to I and furthermore ε+ and ε− lie on II and III, respectively. In the
regions B1 and B2 the relaxed potential is equal to the original one and the homogeneous
strain ε does not decompose into the phases. More precisely, in B1 and B2 the material
is in the phase governed by ε1 and ε2, respectively. The contour plots of the original
and the relaxed energies are given in Figure 4.4a. Since the transformation strains are
compatible the relaxed energy is convex and zero along the line I that connects the wells.

The second case corresponds to the isotropic linear elastic moduli C = κ1 ⊗ 1 + 2µP

and η1 = η2 = 0 with the material parameters bulk modulus κ = 17800MPa and the shear
modulus µ = 10680MPa. The main difference to the previous case is that the contours
of the unrelaxed energy become elliptical instead of being circular. Figure 4.4b shows the
the original and relaxed energy plots where the relaxed energy is still zero along the line
connecting the wells.

In the last case, in addition to the isotropic linear elastic moduli, we modified the
minimum value of one of the wells, i.e. η1 = 0 and η2 > 0. The major difference to the
former examples is the change of the lines II and III. These lines do not pass through
the wells ε1 and ε2 anymore. In other words, ε− and ε+ do not coincide with ε1 and
ε2 even for a strain state on the line I. Indeed the lines II and III move same amount
towards the well with higher energy. In Figure 4.5 the potential and the stress are plotted
along ε11-axis for ε22 = 0 where the wells are chosen as ε1 = diag[ 0.5 0 0 ] and ε2 = 0 .
The values of ε+ and ε− obtained from the minimization problem (4.22) are provided in
Table 4.1. Note that the amount of the movement from the wells is proportional to the
difference between η1 and η2, but it is the same for both phases, i.e. ε+

11 − ε−11 is constant.

4.1.5. Relaxation of Three-Well Potentials. The energy storage function has the
piecewise quadratic form

ψ(ε) = min
i=0...2

{1

2
(ε − εi) : C : (ε − εi) + ηi

}

(4.25)

where ε0, ε1 and ε2 are assumed to be the undeformed austenite and two stress free
martensite variants. We consider the following transformation strains

ε0 =





0 0 0
0 0 0
0 0 0



 , ε1 =





α 0 0
0 0 0
0 0 0



 and ε2 =





0 0 0
0 α 0
0 0 0



 (4.26)

and study, similar to double-well problem, the effects of C and ηi on the relaxation of the
energy (4.25), see Figure 4.6a for a particular illustration with α = 0.3 in the ε11 − ε22

plane. Note that the wells (4.26) are pair-wise compatible.

For the three-well problem considered (with compatible wells), the rank-one convex



48 Application of Relaxation Theory to Phase Transformations

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

a.

b.

c.

ε11

ε11 ε11

ε11 ε11

ε11

ε22

ε22

ε22

A

A

A

B1

B1

B1

B2

B2

B2

B3

B3

B3

C1

C1

C1

C2

C2

C2

C3

C3

C3

Figure 4.6: Three-well potential and its relaxation for various cases. Contours describe the
energy levels. Two columns denote the unrelaxed and relaxed energies for a.) the moduli
C = I and η1 = η2 = η3 = 0, b.) the moduli C = κ1 ⊗ 1 + 2µP and η1 = η2 = η3 = 0, c.)
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envelope ψR is computed based on a second-order lamination, i.e.

ψR(ε) = min
ξ,λ,ε+,ε−−,ε−+

{

ξψ(ε+) + (1 − ξ)
[
λψ(ε−+) + (1 − λ)ψ(ε−−)

] }

with







ε = ξε+ + (1 − ξ)ε− and ε+ − ε− =
1

2
(m1 ⊗ n1 + n1 ⊗ m1)

ε− = λε−+ + (1 − λ)ε−− and ε+− − ε−− =
1

2
(m2 ⊗ n2 + n2 ⊗ m2)

(4.27)
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for ξ, λ ∈ [0, 1] and m1,n1,m2,n2 ∈ R3. The choices of the wells (4.26) lead to a
minimization problem that is essentially two-dimensional and can be represented in the
ε11-ε22 plane. In this simplified case the rank-one convex envelope (4.27) can be computed
numerically.

Note that in the following, similar to the previous double-well study, only ε11 and
ε22 components of the strain are taken into consideration as the other components have
no influence on the relaxation algorithm. We connect the three wells and construct a
triangle, see Figure 4.3b. In addition, two parallel lines are plotted from each pair of
wells similar to I and II in Figure 4.3a. Consequently, we obtain the bounded region A
and unbounded regions Bi and Ci for i = 1 . . . 3. A given strain state εA (more precisely
the point defined by 11 and 22 components of εA) located in A leads to the second-order
laminates during energy minimization. εA splits first into ε− and ε+, and ε− decomposes
further into ε−− and ε−+, i.e.

εA = ξε+ + (1 − ξ)ε− with ε− = λ ε−+ + (1 − λ)ε−− (4.28)

see Figure 4.3b. Considering only ε11 and ε22 components of the strain tensor, the volume
fractions ξ and λ are computed by

ξ =
| εA − ε−|
| ε+ − ε−| and λ =

| ε−− − ε−|
| ε−− − ε−+| . (4.29)

The regions B1, B2 and B3 correspond to double-well problems with wells ε1–ε2, ε2–ε3 and
ε1–ε3, respectively. The relaxation in these cases is performed analogous to Section 4.1.4.
In the regions Ci the relaxed potential is equal to the original one and the homogeneous
strain does not decompose into phases.

In Figure 4.6a the contour plots of the original and the relaxed potentials are plotted
for η1 = η2 = η3 = 0 and C = I. Inside the triangle formed by ε1, ε2 and ε3 the energy is
relaxed to zero and the phases ε+, ε−− and ε−+ coincide with the transformation strains
ε1, ε2 and ε3. The results for η1 = η2 = η3 = 0 and C = κ1 ⊗ 1 + 2µP are shown
in Figure 4.6b. There is no difference to the previous case with respect to the second-
order lamination inside the triangular zone. However, double-well relaxation zones B1

and B3 are not the same as the former ones, i.e. the lines bounding them have different
slopes which can be computed numerically. The last case shown in Figure 4.6c is η1 = 0,
η2 = η3 > 0 and C = κ1 ⊗ 1 + 2µP. The increase in minimum values η2 and η3 causes a
rigid movement of the triangle both in the +ε11 and +ε22 directions. The amount of the
movement is proportional to the differences η2 − η1 and η3 − η1 similar to the double-well
problem. Although there are second-order laminates in the region A the relaxed energy
is no more zero, see Figure 4.6c.

4.2. Numerical Examples of Relaxation in Phase Transformations

4.2.1. Simple Tension Test. We consider the double-well problem (4.17) for the
case C = I and η1 = η2 = 0. Therein, the potential energy is simplified as follows

ψ(ε) =
1

2
‖(ε − εi)‖2 for i = 1, 2 (4.30)

where the wells are selected such as

ε1 =





0.3 0 0
0 0.1 0
0 0 0



 and ε2 =





0 0 0
0 0.4 0
0 0 0



 . (4.31)
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Figure 4.7: Simple tension test. Geometry, loading and boundary conditions.

A square specimen of length 1mm is chosen for the simulations. The specimen is subjected
to a displacement controlled tensile loading with constant increments ∆u = 0.025mm in
y direction, see Figure 4.7 for the geometry and loading conditions. At the first time step,
the structure stretches suddenly to the right such that ε11 = 0.3 while the left-lower node
is fixed in x direction. This holds for both the relaxed and unrelaxed formulations. The
unrelaxed model, after an initial horizontal stretching, continues to elongate in y direction
while the strain ε11 remains constant. It lasts until the prescribed displacement reaches
u = 0.4mm. After this displacement level, the second well starts to govern the response.
Consequently, the strain component ε11 in the specimen tries to vanish immediately. This
leads to distortions depending on the mesh size as seen in Figure 4.8a. Employment
of finer meshes causes more frequent fine scale distortions. However, when the relaxed
energy is utilized the strain component ε11 decreases smoothly at every time increment.

a.

b. x

y

Figure 4.8: Simple tension test. Three deformed meshes, 12x12, 18x18 and 24x24, during
transformation obtained by a.) the unrelaxed and b.) the relaxed formulation. All the
meshes correspond to the prescribed displacement u = 0.5mm.
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Figure 4.9: The load displacement curves computed by the unrelaxed and relaxed formu-
lations. Three different meshes 12×12, 18×18 and 24×24 are used for computations. Note
that relaxed curves are identical for all the meshes.

Thus, the phase transformation occurs in a smooth manner without distortions in finite
elements, see Figure 4.8b. In Figure 4.9, the load deflection curves of unrelaxed and
relaxed material response are visualized for various mesh densities. The sudden change
in the strain causes also a sudden decrease in the load from the point A to B in the load
displacement curves. Note that the curves exhibit different oscillations for three meshes
between the points B and C in Figure 4.9. On the other hand, the load deflection curves
are identical for the relaxed formulation.

4.2.2. Microstructure Development in a Homogeneous Test. In this example
the main aim is to visualize the development of microstructures for a strain driven loading
parameterized as

ε(t) =





α(t) γ(t) 0
γ(t) β(t) 0
0 0 0



 . (4.32)

Three different load paths are considered, (i) α(t) = β(t) = γ(t) = t, (ii) α(t) = 2β(t) =
γ(t) = t and (iii) 2α(t) = β(t) = γ(t) = t. Note that the component ε12 = γ(t) has no
influence on the relaxation algorithm. We assume that the energy storage is governed by
the three-well energy function (4.25) with following transformation strains

ε0 =





0 0 0
0 0 0
0 0 0



 , ε1 =





0 0 0
0 0.05 0
0 0 0



 and ε2 =





0.05 0 0
0 0 0
0 0 0



 (4.33)

where ε0 denotes the undeformed austenite phase and ε1 and ε2 are the stress free marten-
site variants. The material parameters are η0 = 0 and η1 = η2 = 7MPa. The linear
isotropic elastic modulus is used with κ = 17800MPa and µ = 10680MPa. In the current
problem, ε0 is compatible ε1 and ε2 whereas ε1 and ε2 are not compatible with each
other. However, a mixture of ε0 and ε1 is rank-one connected with ε2.

The microstructure evolution is shown in Figure 4.10 where the initial state consists of
only the phase ε0. In these illustrations the interfaces between different phases which are
governed by the laminate normal vectors n1 and n2 are plotted. Each phase is denoted
by a color (white, blue and yellow) and the volume fractions are characterized by the
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a. b. c.

Figure 4.10: Microstructure evolution for different loading paths. White yellow and
blue colors denote the phases ε0, ε1 and ε2, respectively. Loading levels are t =
0.001, 0.006, 0.02, 0.04, 0.075, 0.11 for loading paths a.) ε11 = ε22 b.) ε11 = 2ε22 and
c.) 2ε11 = ε22.

associated thicknesses. Having computed the phases, the laminate vectors are determined
from (4.27) which normally yields a pair of solution. We randomly choose one of these
solutions for the visualization purposes.

Following the first loading path, the material transforms from the homogeneous state of
ε0 into the second-order laminate mixture of ε0, ε1 and ε2, contrary to the microstructures
of the other two loading paths begin which first exhibit first-order laminates. This is due
to fact that the loading case ε11 = ε22 enters directly the three-well triangle not through
a two-well relaxation zone, see Figure 4.3b. On the other hand, other loading paths pass
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Figure 4.11: Biaxial tension of a perforated plate. a.) Geometry, loading and boundary
conditions. b.) The meshed used and the selected elements for microstructure visualization.
Although the complete specimen is shown, due to symmetry of the problem only one quarter
is discretized only.

first from one of the double-well regions B1 or B3. Later on, all three loading cases show
second-order laminates. The final states of ε11 = 2ε22 and 2ε11 = ε22 are governed by the
homogeneous ε1 and ε2 phases, respectively. The loading ε11 = ε22 remains always in the
double-well region B2 and shows a mixture of ε1 and ε2 with 50% volume fraction each.

4.2.3. Biaxial Tension Test of a Perforated Plate. In this example we consider
the biaxial tension test of a square plate with a circular hole. The geometry, loading
and boundary conditions are shown in Figure 4.11a. Owing to the symmetry, only one
quarter of the specimen is discretized. All the computations are performed with constant
increments ∆u = 0.005mm up to the maximum load umax = 0.75mm. We assume that the
energy storage is governed by the three-well energy function (4.25) and the transformation
strains are given by (4.33). The elastic moduli tensor is chosen as C = κ1 ⊗ 1 + 2µP

with the same material parameters for κ, µ and ηi as in Section 4.2.2.

In Figure 4.12, the phase fractions of ε0, ε1 and ε2 are shown. Four different deformed
states are considered in order to visualize the evolution of the phase fractions. Initially,
the whole structure is in the phase ε0. Then, the variants ε1 and ε2 start to develop
around the hole. For u = 0.075mm, the phase ε1 starts to form from the left part and the
other variant ε2 forms from the lower part of the quarter plate. Following a monotonous
increase in the loading, ε0 disappears smoothly. At the load level u = 0.75mm, the phase
ε0 is disappeared and each half of the specimen is occupied by ε1 and ε2.

In Figure 4.13, the microstructure evolution is visualized for three different loading
levels. The finite elements which are defined with letters I-V I in Figure 4.11b are used
here to show the microstructure development. ε0, ε1 and ε2 are denoted by the colors
white, yellow and blue, respectively. Figure 4.13a corresponds to the load level u =
0.2mm. The microstructures in the elements I and II are completely in the phases ε1

and ε2, respectively. In the elements III, IV and V microstructures with second-order
laminates exist. The element V I is still in the initial phase ε0. The microstructures for
the loading level u = 0.25mm are given in Figure 4.13b. Following further deformation,
see Figure 4.13c for u = 0.3mm, the second-order laminates start to disappear and either
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a. b. c.

Figure 4.12: Evolution of the phase fractions obtained by the relaxation algorithm pro-
posed. The volume fractions are a.) (1 − ξ)λ for the phase ε0, b.) ξ for the first variant ε1

and c.) (1 − ξ)(1 − λ) for the second variant ε2. Blue and red colors denote 100% and 0%
of volume fractions, respectively. Each row corresponds to a different load level (u = 0.075,
0.2, 0.31 and 0.75 mm).

homogeneous microstructures of ε1 or ε2, or first-order laminate mixtures of ε1 and ε2

remain.
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a.

b.

c.

Figure 4.13: Microstructure evolution in six different finite elements obtained by the
relaxation algorithm proposed. b.) White, yellow and blue colors denote the phases ε0, ε1

and ε2, respectively. Loading levels are a.) u = 0.2 mm, b.) u = 0.25 mm and c.) u = 0.3
mm.
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5. Application of Relaxation Theory to Single-Slip Plasticity

We illustrate in this section algorithmic implementations of the variational formulation
outlined in Section 3.1 for the case of single-slip multiplicative plasticity and propose a par-
ticular numerical relaxation algorithm. Finally, some numerical examples are presented
to demonstrate the performance of the relaxation algorithm proposed. The single-slip
plasticity provides a canonically simple model problem for the subsequently outlined con-
vexification analyses, exhibiting characteristic features also observed in more complex
models. This model problem has attracted in recent years many researchers’ attention,
see for example Hackl & Hoppe [91], Carstensen, Hackl & Mielke [40], Bartels

et al. [19], Mielke [152], Miehe, Lambrecht & Gürses [148], Conti & Ortiz [48]
and Conti & Theil [49], due to its simplicity with regard to the application of the re-
laxation theory. Physically, single-slip models might be considered as multiple slip crystal
plasticity models exhibiting infinite latent hardening.

5.1. The Canonical Model-Problem: Multiplicative Single-Slip Plasticity

5.1.1. Energy Storage Function and Stress Response. In multiplicative plas-
ticity as proposed by Lee [126], the current deformation F of the material is decomposed
into a plastic and elastic part. In crystal plasticity, the plastic part is assumed to be an
isochoric map

F p ∈ SL(3) := {A ∈ R3×3| det A = 1} (5.1)

solely determined by the plastic slip on the crystallographic planes which leaves the crystal
structure unchanged, see for example Rice [190], Havner [94] or Asaro [9]. Then the
elastic part

F e := FF p−1 (5.2)

contains lattice distortions and rigid body motions. F p is considered as the key internal
variable of multiplicative plasticity. Hence, we identify internal variable vector I for the
model problem as

I = {F p ∈ SL(3)} . (5.3)

Note that it is possible to construct transformed internal forces F and fluxes İ from the
original definitions F and İ in (3.7). The dependence of the dissipation function φ on
the current state I can be included by a linear state-dependent operator T (I) such that
it defines transformed forces and fluxes via

D = F · İ ≥ 0 with F := T−T
F and İ := T İ . (5.4)

A convenient definition of the linear transformation T often allows a representation of the
dissipation functions φ(İ) and φ∗(F) exclusively in terms of the transformed forces and
fluxes, respectively. Then the Legendre-Fenchel transformation (3.6) reads

φ∗(F) = sup
İ

{ F · İ − φ(İ) } (5.5)

and the Biot-type constitutive expressions (3.7) are replaced by

F ∈ ∂
İ
φ(İ) and İ ∈ ∂Fφ

∗(F) . (5.6)
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Note that the linear transformation (5.4) preserves the assumed convexity and homogene-
ity properties of the dissipation functions. From these results transformed flux vector İ

introduced in (5.4) takes the following form for the multiplicative plasticity model under
consideration

İ = {Lp := Ḟ pF p−1 ∈ SL(3)} . (5.7)

The plastic evolution parameter Lp is obtained from the flux Ḟ p through the contraction
with the state-dependent tensor F p−1. A central constitutive assumption of the multi-
plicative plasticity of crystals is to assume the invariance of the energy storage function
with respect to previous plastic deformations

ψ(FF
p
0,F

pF
p
0) = ψ(F ,F p) for all F

p
0 ∈ SL(3) . (5.8)

This is a priori satisfied by making the energy storage dependent on the elastic map F e

defined in (5.2), i.e. ψ(F ,F p) = ψ(F e). In what follows, we focus on an elastically
isotropic material with the property

ψ(F eQ) = ψ(F e) for all Q ∈ SO(3) . (5.9)

As a concrete form, we employ a compressible Neo-Hookean material

ψ(F e) =
µ

2
[ ‖F e‖2 − 3 ] +

κ

4
[ J2 − 2(1 + 2

µ

κ
) ln J − 1 ] (5.10)

with F e defined in (5.2) and J := detF e = detF . κ > 0 and µ > 0 denote the bulk and
shear moduli, respectively. It can be shown that (5.10) is a polyconvex function of the
argument F e in the sense of Ball [12]. Note that the linear transformation (5.2) preserves
this convexity property also for the argument F . With the stored energy function at hand,
one obtains the nominal stresses P from (3.2) and the internal forces dual to (5.7) in the
form

F = {P p := −∂Fpψ} and F := {Σ := P pF pT} . (5.11)

The modified forces Σ consistent with definition (5.4), which is obtained from P p through
the state-dependent contraction with F pT , are in finite plasticity theory often denoted as
the Mandel stress.

5.1.2. Dissipation Function and Evolution of Internal Variables. We base our
subsequent treatment on the modified internal forces Σ and the flux Lp defined in (5.11)
and (5.7), respectively. Consequently, the elastic domain can alternatively be formulated
in terms of the transformed driving force F defined in (5.4)

E := { F | f(F) ≤ c(I) } , (5.12)

where f is convex and positively homogeneous of the degree one. The associated dissipa-
tion function is then defined by the maximum principle

φ(İ) = sup
F∈E

{F · İ} (5.13)

in terms of the transformed flux I defined in (5.4). The solution by a Lagrange method
yields the alternative evolution system together with the loading-unloading condition

İ = γ̇∂Ff(F) ∧ γ̇ ≥ 0 ∧ f ≤ c ∧ γ̇(f − c) = 0 . (5.14)
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We consider the level set function

f(Σ) = |τ | with τ := Σ : (S ⊗ T ) , (5.15)

where τ is the so-called Schmid stress associated with the slip system of single-slip plastic-
ity, governed by the slip direction S and the slip normal T with S ·T = 0. Furthermore,
we assume the state-dependent threshold function

c(γ) = τ0 + hγ with γ :=

∫ t

0

γ̇dt (5.16)

depending on the equivalent plastic strain γ defined by its rate γ̇ introduced below. The
material parameters τ0 > 0 and h ≥ 0 define the critical resolved shear stress and a linear
hardening modulus, respectively. Then the flow rule for the tranformed flux defined in
(5.13) along with the loading-unloading conditions take the form

Lp = γ̇
τ

|τ |S ⊗ T ∧ γ̇ ≥ 0 ∧ f ≤ c ∧ γ̇(f − c) = 0 . (5.17)

With this result in hand, from (3.22) we obtain the image of the dissipation function

φ = (τ0 + hγ)γ̇ . (5.18)

Now observe that an expression for the plastic parameter γ̇ in terms of the plastic flux
Lp can be obtained from (5.17)1, yielding the identifications

γ̇ = |ṡ| and γ =

∫ t

0

|ṡ|dt with ṡ := Lp : (S ⊗ T ) , (5.19)

where ṡ is the slip in the two possible directions of the single-slip system. Insertion of
these results into (5.18) finally identifies the dissipation function

φ(Lp) = [τ0 + hγ] |Lp : (S ⊗ T )| (5.20)

for the linear hardening model of single-slip plasticity in terms of the evolution operator
Lp. Clearly, φ is a positively homogeneous function of the degree one. The exploitation
of the Biot-type equation (5.6)1 yields the equation for the internal forces

Σ ∈







(τ0 + hγ)
ṡ

|ṡ|S ⊗ T for Lp 6= 0

intE otherwise
(5.21)

alternative to the inverse evolution form (5.17).

5.1.3. Algorithmic Approximation of the Incremental Work Function. The
key point of the incremental variational formulation at finite steps is the definition of the
incremental work function

W(F n+1,F
p
n+1) = ψ(F n+1,F

p
n+1) − ψn +

∫ tn+1

tn

φ(Ḟ p,F p)dt (5.22)
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that is minimized in (3.10) with respect to the internal variable F
p
n+1 in order to get

the incremental potential W (F n+1) for the current stresses P n+1. Here and all in that
follows, the subscript n+ 1 is dropped and all variables without subscript are assumed to
be evaluated at the current time tn+1. Observe that the integral in the above expression is
the dissipated work in the interval [tn, tn+1] under consideration. The value of this integral
can exactly be computed by using the representation (5.18) of the dissipation function,
yielding

∫ tn+1

tn

φdt =

∫ γn+1

γn

(τ0 + hγ)dγ = τ0(γ − γn) + 1
2
h(γ2 − γ2

n) . (5.23)

This expression determines the internal plastic work in terms of the increment γ − γn of
the equivalent plastic strain. In order to relate this dissipated work to the current plastic
deformation F p, we consider a conventional update algorithm for the internal variable
that integrates the flow rule (5.17)1 in the time increment under consideration. To this
end, we express the current plastic deformation

F p = fpF p
n (5.24)

in terms of the incremental plastic deformation f p ∈ SL(3). An algorithmic counterpart
to the flow rule (5.17)1 that preserves the unimodular structure of fp reads

f p = exp
[
(γ − γn)

τ ∗

|τ ∗|S ⊗ T
]
, (5.25)

see for example Weber & Anand [210] and Miehe [141]. Here, τ ∗ is the Schmid stress
associated with the trial elastic deformation map

F e∗ := FF p−1
n . (5.26)

Hence, in the algorithmic setting, the incremental plastic deformation is considered to
depend only on the increment γ − γn of equivalent plastic strain. Similar to (5.19), we
then may resolve (5.25) for the increment

γ − γn = |s− sn| with s− sn := lnfp : (S ⊗ T ) . (5.27)

The insertion into (5.23) then gives a one-step algorithmic expression of the incremental
plastic work

∫ tn+1

tn

φdt = τ0 |lnf p : (S ⊗ T )| + 1
2
h |lnf p : (S ⊗ T )|2 (5.28)

in terms of the incremental plastic deformation f p which can be rewritten from (5.25) as
the series representation of the exponential map

f p = 1 +
∞∑

k=1

1

k!

{

(γ − γn)
τ ∗

|τ ∗|S ⊗ T
}k

. (5.29)

For the simple single-slip model with the orthogonal vectors S · T = 0 all higher terms
with k > 1 vanish and we get a closed form of (5.29)

fp = 1 + (γ − γn)
τ ∗

|τ ∗|S ⊗ T . (5.30)
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As a consequence, the incremental plastic work (5.28) appears in the simple form

∫ tn+1

tn

φdt = τ0|(fp − 1 ) : (S ⊗ T )| + h

2
|(fp − 1 ) : (S ⊗ T )|2 . (5.31)

5.1.4. Algorithmic Setting of the Constitutive Minimization Problem. With
the above two formulations (5.23) and (5.31) for the incremental plastic work at hand, we
may define two alternative algorithmic settings of the constitutive minimization problem
(3.10) for the definition of the incremental stress potential W (F ). The first representation
minimizes the incremental work function

Ŵ
h(F ,fp) = ψ(F ,fpF p

n)−ψn + τ0|(fp −1 ) : (S ⊗T )|+ h

2
|(fp −1 ) : (S ⊗T )|2 (5.32)

obtained from (5.22) and (5.31) with respect to incremental plastic deformation fp, yield-
ing

W (F ) = inf
fp∈SL(3)

{
Ŵ

h(F ,fp)
}
. (5.33)

The necessary condition of this minimization yields the algorithmic counterpart of the
Biot-type equation (5.21)

Σh ∈







(τ0 + hγ)
s− sn

|s− sn|
S ⊗ T for f p 6= 1

intE otherwise
(5.34)

for the driving force
Σh := −∂fpψ(F ,fpF p

n) = Σf p−T (5.35)

consistent with the incremental update algorithm (5.30). Observe the simple relationship
(s− sn)/|s− sn| = τ ∗/|τ ∗| of the slip direction to the sign of the trial Schmid stress.

The second representation exploits the simple structure (5.30) of the update algorithm
that depends only on the increment γ − γn of the equivalent plastic strain. Inserting this
algorithm into the free energy function, we minimize the incremental work function

W̃
h(F , γ−γn) = ψ(F , [1 +(γ−γn)

τ ∗

|τ ∗|S⊗T ]F p
n)−ψn + τ0(γ−γn)+

h

2
(γ−γn)2 (5.36)

obtained from (5.22), (5.30) and (5.23) with respect to incremental plastic strain

W (F ) = inf
γ−γn≥0

{
W̃

h(F , γ − γn)
}
. (5.37)

The necessary equations of this constrained minimization problem may be obtained by a
Lagrange method, yielding the algorithmic counterpart

f p = 1 +(γ−γn)
τ ∗

|τ ∗|S⊗T ∧ γ ≥ γn ∧ fh ≤ c ∧ (γ−γn)(fh−c) = 0 (5.38)

to equations (5.17) in terms of the level set function

fh := ∂(γ−γn)ψ(F , [1 + (γ − γn)
τ ∗

|τ ∗|S ⊗ T ]F p
n) = Σf p−T : (

τ ∗

|τ ∗|S ⊗ T ) (5.39)
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consistent with the incremental update algorithm (5.30). For the model problem of single-
slip plasticity, both minimization problems (5.33) and (5.37) yield identical results. Ob-
serve carefully that both variational formulations are consistent with algorithmically mod-
ified yield functions, governed by the stress Σh and the level set function fh defined in
(5.35) and (5.39), respectively. However, in single-slip plasticity the relationship fh = f
holds due to f p−T : (S ⊗T ) = S ⊗T . Thus, in single-slip plasticity the algorithmic form
of the flow criterion coincides with the continuous definition.

5.1.5. Stress Update and Elastic-Plastic Moduli for Plastic Loading. We
base our following considerations on the form (5.37) of the constitutive minimization prob-
lem which is consistent with treatments suggested in Miehe [142] and Miehe, Schotte

& Lambrecht [149]. For plastic loading γ > γn, the updates are governed by the first
and second derivatives of the incremental work function (5.36)

W̃h
,γ = −µF e∗S∗ · F e∗T + τ0 + hγn + (µF e∗S∗ · F e∗S∗ + h)(γ − γn)

W̃h
,F = µ FF p−1F p−T + 1

2
(κJ2 − κ− 2µ)F−T

W̃h
,FF = µ [F p−1F p−T ]BDδac + κJ2F−1

BaF
−1
Dc − 1

2
(κJ2 − κ− 2µ)F−1

Ac F
−1
Da

W̃h
,Fγ = µ F ( 2(γ − γn)S∗ ⊗ S∗ − F p

n
−1T ⊗ S∗ − S∗ ⊗ F p

n
−1T )

W̃
h
,γγ = µ F e∗S∗ · F e∗S∗ + h







, (5.40)

where we introduced the abbreviation S∗ := τ∗

|τ∗|S. From the necessary condition W̃h
,γ = 0

of the constitutive minimization problem (5.37) we obtain the closed form result

γ − γn =
µF e∗S∗ · F e∗T − τ0 − hγn

µF e∗S∗ · F e∗S∗ + h
> 0 (5.41)

for the equivalent plastic strain. With this solution of the constitutive minimization
problem (5.37) at hand, we compute the stresses based on a straightforward exploitation
of the definitions (3.9). Taking the derivative of the function (5.36) with respect to the
deformation gradient F at the solution point (5.41), we get

∂FW = W̃
h
,F + [ W̃h

,γ ][ γ,F ] . (5.42)

Here, the last term drops out due to the necessary condition of (5.37). Thus we identify
the stresses as

P = W̃
h
,F (5.43)

via (5.40)2, i.e. simply as the derivative of the storage function ψ with respect to the
current deformation F . The sensitivity of the stresses with respect to F is governed by
the algorithmic tangent moduli

C := ∂2
FFW (F ) (5.44)

of the material at time tn+1. Taking the second derivative of the function (5.36) with
respect to the strains F at the solution point (5.41), we get

∂2
FFW = W̃

h
,FF + [ W̃h

,Fγ ][ γ,F ] . (5.45)

The sensitivity of the incremental plastic parameter with respect to the strains is ob-
tained by taking the linearization of the necessary condition W̃h

,γ = 0, yielding γ,F =
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−[ W̃h
,γγ ]−1[ W̃h

,γF ]. Insertion into (5.45) finally specifies the definition (5.44) of the mod-
uli as

C = W̃
h
,FF − [ W̃h

,Fγ ][ W̃h
,γγ ]−1[ W̃h

,γF ] (5.46)

in terms of the matrices introduced in (5.40)3,4,5. The moduli consist of an elastic con-
tribution and a softening part. The latter is the consequence of the internal degrees of
the material represented by a change of plastic deformation within the time step under
consideration.

5.1.6. Relaxation of Non-Convex Multiplicative Single-Slip Plasticity. We
now point out details of the first-order rank-one convexification analysis for the model
problem of single slip plasticity introduced in the beginning of Section 5.1. Here, a key con-
tribution is the derivation of a semi-analytical solution that reduces for two-dimensional
problems the independent micro-variables from four in q, see (3.30), to just one variable.
Recall the necessary conditions (3.35) of the minimization problem of relaxation

W̄ h
,ξ = W+ −W− − d [ξP + + (1 − ξ)P−] : (FM ⊗ N) = 0

W̄ h
,d = ξ(1 − ξ) [P + − P−] : (FM ⊗ N) = 0

W̄ h
,ϕ = ξ(1 − ξ) d [P + − P−] : (FM ,ϕ ⊗ N) = 0

W̄ h
,χ = ξ(1 − ξ) d [P + − P−] : (FM ⊗ N ,χ) = 0







(5.47)

in terms of the four micro-variables q := [ξ, d, ϕ, χ]T . In what follows we will evaluate
these conditions and derive a semi-analytical solution for the minimizing laminate F±.
The plastic deformation F p± and the hardening variable in the phases (±) are denoted

F p± = F p⋆(1 ± ∆γ±S ⊗ T ) and γ± = γ⋆ + ∆γ± , (5.48)

where ∆γ± = (γ−γn)
± are the incremental plastic arc lengths. F p⋆ and γ⋆ are the plastic

deformation and the hardening variable of the last stable homogeneous state, respectively.
Equation (5.48) points out the cause of the phase decay for the model problem of single-
slip plasticity that results from the bifurcation of the plastic deformation starting from
F p⋆ with ∆γ±. The equilibrium of the Schmidt stresses τ+ = τ− yields the identity

∆γ+ = ∆γ− = ∆γ (5.49)

of the incremental slips. If one postulates the preservation of the volumetric deforma-
tion det[F +] = det[F−] = det[F ] it turns out that the Lagrangian laminate vectors are
orthogonal

N · M = 0 . (5.50)

This result allows for the parameterization of these vectors in terms of the vectors of the
slip system N = cos θ S − sin θ T and M = sin θ S + cos θ T where θ is an in-plane
orientation angle. The necessary conditions (5.47)2,3 can be interpreted as the postulation
of equilibrium of the traction vectors

t+ = t− with t± = P±N (5.51)

of the laminate phases. Exploitation of the equilibrium condition (5.51) together with the
results (5.49), (5.50) and the definition (5.48) leads to the identification of the inclination
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angle and a formula for the micro-intensity

tan θ = −F p⋆ : S ⊗ T and d =
2∆γ

cos2 θ (1 + ∆γ2)
. (5.52)

Insertion of the above obtained results in the necessary conditions (5.47)1,4 yields an
expression for the volume fraction

ξ =
1

2
+ d−1

[
cNM

cMM

+ tan θ

]

, (5.53)

where we have introduced the abbreviation cXY = X · C · Y . The incremental plastic
multiplier ∆γ can be determined by an analogous application of (5.41) for the phase (+).
Algebraic manipulations yield the formula

∆γ =
2d+ E

cos2 θ d2 + F
(5.54)

in terms of the coefficients

E = −4(hγ⋆ + c)/(µcMM) and F = [4h/µ+ 4 cos2 θ (cNN − c2
NM
/cMM)]/cMM . (5.55)

Note that the incremental slip is only a function of the micro-intensity d. As a con-
sequence, insertion of (5.54) into (5.52)2 leads to a polynomial of degree five that only
depends on the micro-intensity

p(d) = a5d
5 + a3d

3 + a2d
2 + a1d+ a0 = 0 (5.56)

with the coefficients a5 = cos6 θ, a3 = 2F cos4 θ, a2 = 2E cos2 θ, a1 = (E2+F 2) cos2 θ−4F ,
a0 = −2EF . The equations (5.52)2 and (5.53) bound the admissible range of the micro-
intensity in the sense d ∈ [ 2 |cNM/cMM +tan θ|, cos−2 θ ]. The solutions of the polynomial
p(d) describe in relation with the equations (5.52) and (5.53) possible phases F± for which
the necessary conditions (5.47) are satisfied. The relevant micro-intensity d∗ minimizes
the volume average of the stress-potentials in the two micro-phases

d∗ = arg
{

inf
d∈D

[W̄ h]
}

with D := {d | p(d) = 0} . (5.57)

N

M

m

n−

n+

Figure 5.1: Microstructure development in the first-order relaxation analysis for a simple-
shear test. After loss of rank-one convexity two bifurcated deformation phases arise which
continiuously change their orientation and volume fractions. Finally, only one phase remains
indicating a recovery of the stable homogeneous state.
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Table 5.1: Material Parameters of Single–Slip Plasticity.

bulk modulus κ 15000 MPa
shear modulus µ 10000 MPa
linear hardening h 1000/2000 MPa
yield stress τ0 10 MPa

The relaxed stresses P̄ and tangent moduli C̄ can be determined by the formulas (3.56)
and (3.58). Note that in cases where no or small plastic deformations have occurred before
the loss of material stability, i.e. F p⋆ = 1 , the orientation vectors of the laminate denote

M = T and N = S . (5.58)

The formulas (5.52)2, (5.53), (5.54) then simplify considerably because of the geometric
relations cos θ = 1 and tan θ = 0, i.e.

d =
2∆γ

1 + ∆γ2
, ξ =

1

2
+ d−1 cNM

cMM

and ∆γ =
2d+ E

d2 + F
(5.59)

in terms of the coefficients E as given in (5.55) and F = [ 4h/µ+4 (cNN−c2NM
/cMM) ]/cMM .

In the following numerical examples we assume the condition (5.58) holds.

5.2. Numerical Examples of Relaxations in Single-Slip Plasticity

In what follows we demonstrate the performance of the above outlined relaxation tech-
nique by means of some representative numerical examples. The main goals of the numeri-
cal investigations are the analysis of the developing microstructures and the demonstration
of the mesh-invariance of the relaxation technique proposed. In the first two examples we
investigate a strain-driven tension and a simple shear test for three different orientations
of the slip system.

Here, the development of the first-order laminates and the course of the stress-loading
curves are documented. The next two numerical examples are concerned with the defor-
mation of an elastoplastic strip that is loaded in shear and tension. We report on the
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Figure 5.2: Plane strain tension test. Details of the rank-one convexification for the
orientation angle α = 90o of the slip-system at Λn+1 = 0.075. β parametrizes the intensity
of the laminate F± = F n+1 +β±m⊗N . a.) At F n+1 the potential is not rank-one convex
(dashed line). F n+1 decomposes into micro-phases F± (solid line). b.) The relaxed stress-
strain relation characterizes a snap-through Maxwell-line behavior between the micro-phases
F±.
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SS S

T T
T

αα α

a. b. c.

Figure 5.3: Plane strain tension test. Comparison of the evolution of the microstructures
for the plane strain tension test with three different slip systems a.) α = 90◦, b.) α = 75◦,
c.) α = 65◦. After loss of material stability microstructures develop which are modeled as
first-order rank-one laminates.

arising microstructures which are resolved by the proposed rank-one convexification of
the non-convex incremental stress potential. The comparison of the relaxed and the non-
relaxed load-displacement curves in typical finite element discretizations indicate a well-
posedness of the first-level rank-one relaxed problem. The material parameters governing
the energy storage and dissipation functions (5.10) and (5.20) are identical to those used in
Carstensen, Hackl & Mielke [40] and Hackl & Hoppe [91]. They are summarized
in Table 5.1. Only for the last example in Section 5.2.4 the hardening modulus is changed
to h = 2000MPa. The vectors of the slip system are parameterized by S = [cosα, sinα]T

and T = [− sinα, cosα]T , respectively. α is the counterclockwise angle between the basis
vector e1 and the slip vector S. In the case of the two strain-driven examples the rank-one
convex envelope has been determined by solving the minimization problem (3.54) with re-
spect to (i) four variables q = [ξ, d, ϕ, χ]T , (ii) two variables q = [ξ, d]T for given laminate
orientations given in (5.52) and (iii) by applying the semi-analytical solution outlined
in Section 5.1.6. All solution procedures lead to the same relaxed stress response and
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Figure 5.4: Plane strain tension test. Comparison of relaxed and unrelaxed Kirchhoff
stress components for plane strain tension test and two different slip systems. a.) α = 65◦,
b.) α = 75◦. The shape of the governing stress coordinates τ11 and τ22 represents a non-
linear snap-through behavior within the non-convex range. After the recovery of the stable
homogeneous state the relaxed and the unrelaxed stress responses coincide again.

therefore prove the semi-analytical results derived in Section 5.1.6. As a consequence, the
boundary value problems are solved by using the semi-analytical method that is much less
time consuming and more efficient. We use the four-node enhanced incompatible-mode
finite element developed by Simó & Armero [201]. The visualization of the emerging
microstructures uses the mapping m = F±M and n± = F±N of the laminate orien-
tations M and N . These mappings hold because of the orthogonality condition (5.50).
Figure 5.1 shows schematically the development of a first-order laminate after loss of ma-
terial stability. The interface between the micro-phases is modeled by m, whereas the
intensity of the micro-bifurcation is represented by n±. The volumes of the micro-phases
(±) are filled yellow and white, respectively. Their thicknesses represent the associated
volume fractions, respectively.
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Figure 5.5: Simple shear test. Details of the rank-one convexification for the orientation
angle α = 135◦ of the slip system at Λn+1 = 0.15. a.) At F n+1 the potential is not rank-one
convex (dashed line). F n+1 decomposes into micro-phases F± (solid line). b.) The relaxed
stress-strain relation characterizes a snap-through Maxwell-line behavior.

5.2.1. Microstructure Development in a Homogeneous Tension Test. The
first example is concerned with a volume preserving plane strain tension test described
by the macroscopic deformation gradient

F =





exp[Λ] 0 0
0 exp[−Λ] 0
0 0 1



 . (5.60)

The loading parameter Λ is increased in increments ∆Λ = 0.025 up to the final value
Λmax = 1.8. We consider three different slip systems parameterized by the inclination
angles α = 65◦/75◦/90◦. Note that the orientations of the slip systems are not aligned to
the loading mode. Consequence is a bifurcation of the plastic deformation into negative
and positive slip directions, indicated by the loss of rank-one convexity of the incremental
stress potential.

Figure 5.2a shows the shape of a non-convex incremental stress potential for an ori-
entation of the slip-system α = 90o and loading Λ = 0.075. The variable β parame-
terizes the intensity of the rank-one perturbation F± = F n+1 + β±m ⊗ N . Obviously,
the incremental stress potential W (F n+1) is greater than the interpolation of the poten-
tials W (F +) and W (F−) corresponding to the micro-phases (+) and (−). As a conse-
quence, the homogeneous deformation state is not stable and decomposes into the micro-
deformations F± which minimize the function W̄ h with respect to the variables q. The
relaxed stress-deformation relation plotted in Figure 5.2b characterizes a snap-through
behavior (Maxwell line) between the two micro-phases F± due to the constant slope of
the rank-one convex envelope. The arising microstructures are resolved by the rank-one
convexification of the non-convex potential outlined in Section 5.1.6. In Figure 5.3 the
evolution of the microstructures is documented for the three slip systems considered at
Λ = 0/0.25/0.5/0.75/1.0/1.25. In the cases of α = 65◦/75◦ a recovery of a stable homoge-
neous state is observed. This is due to the rotating slip system that finally aligns to the
principal tension mode. As a consequence, the homogeneous deformation becomes stable
and the incremental stress potential convex. For α = 90◦ the homogeneous deformation
bifurcates with the constant volume fraction ξ = 0.5 as the orientation of the slip system
does not change.

The in-plane Kirchhoff stress components of the relaxed and the unrelaxed response



5.2 Numerical Examples of Relaxations in Single-Slip Plasticity 69

SS
S

T T T

ααα

a. b. c.

Figure 5.6: Simple shear test. Comparison of evolution of microstructures for simple shear
test with three different slip systems a.) α = 145◦, b.) α = 135◦, c.) α = 125◦. After loss
of material stability first-order rank-one laminate-type microstructures develop.

for α = 65o/75o are given in Figure 5.4 in dependence of the loading parameter Λ. The
convexified stress-loading curves for τ11 and τ22 show a non-linear snap-through behavior
within the non-convex range. After the recovery of the stable homogeneous state the
relaxed and the unrelaxed stress responses coincide again.

5.2.2. Microstructure Development in a Homogeneous Shear Test. In the
second example we investigate the stress response for a strain-driven simple shear test
parameterized by the macroscopic deformation gradient

F =





1 Λ 0
0 1 0
0 0 1



 . (5.61)

All computations were performed with constant increments Λ = 0.05 up to the max-
imum loading Λmax = 3.5. Because of the non-aligned orientation of the slip systems
α = 125◦, 135◦, 145◦ the material stability of the homogeneous deformation is lost and
microstructures arise.
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Figure 5.7: Simple shear test. Comparison of relaxed and unrelaxed Kirchhoff stress
components for plane strain tension test and two different slip systems. a.) α = 135◦,
b.) α = 125◦. The shape of the governing stress coordinate τ12 represents a snap-through
behavior within the non-convex range. After recovery of the stable homogeneous state the
relaxed and the unrelaxed stress responses coincide again.

In Figure 5.5a the shape of a non-convex incremental stress potential for an orientation
of the slip system α = 135o and loading Λ = 0.15 is plotted. Because of the loss of rank-
one convexity the homogeneous deformation state is not stable and decomposes into the
micro-deformations F± which minimize the function W̄ h with respect to the variables
q. The characteristic Maxwell line between the two micro-phases F± is visible in Figure
5.5b. The development of the first-order rank-one laminate is plotted in Figure 5.6 for
Λ = 0/0.5/1.0/1.5/2.0/2.5. As already pointed out above the plastic slip systems start
to rotate and align to the principal loading mode. The stronger the blocking of the
principal deformation the longer the non-convex range. The in-plane Kirchhoff stress
coordinates for the relaxed and the non-relaxed solutions are plotted in Figure 5.7 for
α = 125◦/135◦. The τ12-Λ-curve mirrors the well-known straight Maxwell-line within the
non-convex range.
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Figure 5.8: Rectangular specimen in a.) tension and b.) shear. Geometry, loading and
boundary conditions.

5.2.3. Relaxation of an Inhomogeneous Elastoplastic Strip in Tension. The
next example analyzes the deformation of a rectangular strip in tension under plane strain
conditions. The dimensions of the strip are b = 16mm (width) and l = 32mm (length),
respectively. Geometry, loading and boundary conditions are plotted in Figure 5.8a. The
boundary conditions are such that the strip is able to perform unconstrained displacements
perpendicular to the cross section. The strip is discretized with 6 × 12, 8 × 16, 12 × 24,
16 × 32 and 20 × 40 finite elements. We treat the problem in a deformation-driven
analysis with increments ∆u = 0.05mm. For the finest mesh the increments are reduced
to ∆u = 0.025mm. In order to provoke a loss of material stability and a phase-decay
of the homogeneous deformation into first-order laminates F±, we choose an orientation
α = 10◦ of the slip system.

In Figure 5.9a the deformed meshes of the non-relaxed analysis are plotted for the five
mesh discretizations considered. The blocking of the slip system leads to a stiffer response
of the non-convex formulation, documented by partially strong distortions of the finite
element meshes. In particular, the flexibility of the deformation depends on the mesh
discretization applied. Figure 5.9b reports on the deformed meshes and the orientation
of the directions of the laminate interfaces which result from the relaxation analysis. The
development of the first-order laminates smoothes out the stress response and leads to
more flexible and less distorted finite element meshes. In analogy to the strain-driven
tension test discussed in Section 5.2.1 the interface orientation is parallel to the main
loading direction. The unstable regions where the first-order laminates develop are given
in Figures 5.9c. Note that for all mesh discretizations considered the figures coincide very
well. This indicates the well-posedness of the first-order rank-one convexified problem.
The mesh-dependent response of the unrelaxed formulation is evident by considering the
load-displacement curves plotted in Figure 5.10.

In contrast to the unrelaxed formulation, application of the proposed relaxation tech-
nique yields a mesh-invariant response. The load-deflection curves do not depend on the
mesh size, but are identical for all different mesh densities, see Figure 5.10b. It turns
out that the resolution of the microstructure as a first-order laminate is sufficient with
regard to an objective stress response. Note that the objectivity of the material behavior
is obtained without the introduction of an internal length scale parameter. In Figure
5.11 the microstructures at the central integration points of the red-marked elements are
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Figure 5.9: Rectangular specimen in tension. Comparison of different finite element meshes
for relaxed and unrelaxed analyses at u = 30 mm. a.) deformed meshes for unrelaxed
analysis, b.) deformed meshes with interface-directions m, c.) distribution of unstable
regions where microstructures arise.
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Figure 5.10: Rectangular specimen in tension. Load-displacement curves for five different
finite element meshes in terms of a.) the unrelaxed (non-objective) formulation (the finer
the mesh the softer the response) b.) the proposed relaxation technique.
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Figure 5.11: Rectangular specimen in tension. Visualization of microstructures at selected
integration points a.) for 6x12, b.) for 12x24 and c.) for 20x40 mesh discretizations at u = 16
mm. Note that for all three mesh densities the arising microstructures are very similar.
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Figure 5.12: Rectangular specimen in shear. Load-displacement curves for five different
finite element meshes in terms of a.) unrelaxed (non-objective) formulation (the finer the
mesh the softer the response) b.) proposed relaxation technique.

magnified for the 6 × 12, 12 × 24 and 20 × 40 finite element meshes at u = 16mm. For
all three mesh densities the arising microstructures are very similar. This confirms the
accuracy of the first-order rank-one convexification of the non-convex stress potential.

5.2.4. Relaxation of an Inhomogeneous Elastoplastic Strip in Shear. The last
example discusses the unrelaxed and the relaxed stress responses of a rectangular strip
in shear under plane strain conditions, see Figure 5.8b. Geometry and discretizations
coincide with those used in Section 5.2.3. The upper and lower bounds of the strip are
fixed in both horizontal and vertical directions. The upper edge is then moved horizontally
in constant increments ∆u = 0.05mm to its final displacement u = 30mm. The plastic slip
system is oriented with α = 135◦. In order to point out the mesh-objectivity of the relaxed
formulation we compare the associated load-deflection curves plotted in Figure 5.12 for
the five different mesh sizes considered. The zig-zagging of the unrelaxed solution results
in Figure 5.12a from the abrupt activation of the slip systems that strongly depends on the
coarseness of the mesh discretizations. As a consequence, the incremental boundary value
problem is ill-posed and the non-convexified stress response not objective. In contrast
to the non-convexified solution, the first-order rank-one convexification that incorporates
the determination of the first-order laminate F± yields an objective and smoother load-
displacement behavior documented in Figure 5.12b, indicating the well-posedness of the
relaxed formulation.

In Figure 5.13 the evolution of the microstructures is documented for the 8×16-element
mesh and three different displacements u = 20mm, u = 25mm and u = 30mm. The
magnified microstructures correspond to the center Gauss point of the red marked finite
elements. With increasing deformation the bifurcation of the homogeneous deformation
intensifies and the volume fraction 1 − ξ of the micro-phase (−) augments. Figure 5.14
reports on the evolution of the non-convex zones for the discretizations with 6 × 12,
8 × 16, 12 × 24 finite elements. After loss of rank-one convexity the microstructures are
resolved as first-order laminates. The zones where microstructures arise change during
the deformation process. In analogy to the strain-driven shear test investigated in Section
5.2.2, we observe a recovery of a stable homogeneous state. Note that the distribution of
the non-convex regions coincides for the three discretizations considered.
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a.

b.

c.

Figure 5.13: Rectangular specimen in shear. Visualization of microstructure developments
at selected Gauss points for the discretization with 8× 16 elements at load levels a.) u = 20
mm b.) u = 25 mm and c.) u = 30 mm.
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a. b. c.

Figure 5.14: Rectangular specimen in shear. Development of the unstable regions for three
different mesh discretizations 6 × 12, 8 × 16 and 12 × 24
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6. Application of Relaxation Theory to Damage Mechanics

This section is concerned with an application of the variational formulation presented
in Section 3.1 to a simple 1 − d damage model in small strains and the development of
an associated numerical relaxation algorithm. We start with the consideration of a one-
dimensional scalar damage model to discuss the important results of the convexification
analysis which will be used later in the multi-dimensional framework. Afterwards a relax-
ation method based on an assumption of a priori isotropic microstructures is developed
and applied to a two-dimensional isochoric damage model. It is shown that in two di-
mensions the relaxation based on isotropic microstructures coincides with the first-order
rank-one convexification. The algorithm is then extended to general three-dimensional
framework. Contrary to single slip models, there is hardly any study on the applica-
tion of relaxation methods to damage mechanics. To our knowledge Francfort &

Marigo [71], Schmidt-Baldassari & Hackl [196] and Gürses & Miehe [86] are
the only investigations. Finally, the performance of the relaxation algorithm is demon-
strated by means of some numerical examples.

6.1. The Model Problem: Isotropic Damage Mechanics

6.1.1. One-Dimensional Damage Model. For the damage model-problem under
consideration the scalar internal variable and the dual thermodynamical force are identi-
fied as

I := α and F := β (6.1)

with α, β ∈ R+. The model problem is completed by the definition of the fundamental
constitutive functions ψ and f for the energy storage and the level set of the elastic
domain, respectively. The elastic response is governed by the energy storage

ψ(ε, α) =
[
1 − d(α)

]
ψ0(ε) with ψ0(ε) =

1

2
Eε2 (6.2)

as a function of the linearized scalar strain ε ∈ R and the internal variable α ∈ R+. In
equation (6.2) ψ0 represents the effective elastic storage mechanism, d(α) is the damage
function and E ∈ R+ denotes the elasticity modulus. The damage function is parameter-
ized in terms of the scalar internal variable α ∈ R+ and allowed to take values between 0
and 1, i.e. d : R+ → [0, 1]. The damage law as illustrated in Figure 6.1a is a monotonously
increasing function of α and assumed to have the particular form

d(α) = d∞
[
1 − exp(−α

η
)
]

(6.3)

with η ∈ R+, d∞ ∈ [ 0, 1 ] specifying the saturation intensity and the maximum damage,
respectively. Similar to usual damage models, d = 0 stands for no damage whereas
d = 1 means a complete deterioration of the solid. The material parameters used in
computations are E = 1MPa, d∞ = 0.99 [−] and η = 2.5 [−]. Here we require proper
modifications of (3.2) and (3.3)2 for the small strain context under consideration, i.e.

σ = ∂εψ(ε,I) and F = −∂Iψ(ε,I) . (6.4)
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Figure 6.1: a.) Saturation type damage evolution law b.) Visualization of the non-convex
and convexified constitutive stress response.

For further details of the incremental variational formulation of inelasticity in the geo-
metrically linear theory see Miehe [142]. Then exploitation of (6.4) yields the stress and
the internal force

σ = (1 − d) σ0 with σ0 =
∂ψ0(ε)

∂ε
and β = ψ0

∂d(α)

∂α
(6.5)

With regard to the level set and the threshold we consider the functions

f(β) = β and c(α) = α
∂d(α)

∂α
. (6.6)

Note that as a result of the above defined functions one identifies the internal variable
with the effective strain energy, i.e. α = ψ0. Furthermore, the inelastic multiplier γ̇
in (3.19) coincides with the evolution of the internal variable γ̇ = α̇. Insertion of these
results and (6.6) into the definition of the dissipation function yields

φ = α̇α
∂d(α)

∂α
. (6.7)

Integration of the dissipation function within the time increment [tn, tn+1] gives

Φn,n+1 =

∫ tn+1

tn

φdt = d(αn+1)[αn+1 − η] − d(αn)[αn − η] + d∞(αn+1 − αn) . (6.8)

In what follows we evaluate the discrete variational formulation of inelasticity, which is
outlined in the large strain framework in Section 3.1, for the geometrically linear setting.
For the model problem the integration of (3.19)1 with a backward Euler algorithm yields
the update αn+1 = αn + γ of the internal variable with γ = γ̇(tn+1 − tn). The incremental
stress potential W defined in (3.10) has the following simplified representation

W (εn+1) = min
γ

{1

2
[1 − dn+1(γ)]Eε

2
n+1 −

1

2
[1 − dn]Eε2

n + Φn,n+1(γ)
}

(6.9)

where dn+1(γ) = d(αn+1) = d(αn + γ) and dn = d(αn). For the case of inelastic loading
the incremental multiplier γ is obtained by the simple formula

γ = 1
2
Eε2

n+1 − αn (6.10)



6.1 The Model Problem: Isotropic Damage Mechanics 79

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

V
o
lu

m
e

F
ra

ct
io

n
ξ

Strain ε

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5

10

15

20

25

0 5 10 15 20 25 30 35

In
te

n
si

ty
d

Strain ε

0 5 10 15 20 25 30 35

0

5

10

15

20

25

a. b.

Figure 6.2: Development of the volume fraction and the intensity of micro-bifurcation. a.)
The volume fraction increases linearly from ξ = 0 to the final value ξ = 1. b.) The constant
intensity of micro-bifurcation d = 22.1354 determines the distance between the two phases
(+) and (−).

identifying the current internal variable αn+1 with the effective strain energy ψ0, i.e.
αn+1 = 1

2
Eε2

n+1. On the other hand, an elastic unloading leads to αn+1 = αn. Ex-
ploitation of (3.9) and (3.14) together with above results yields the stress and tangent
modulus

σn+1 = (1 − dn+1) Eεn+1 and Cn+1 = (1 − dn+1)E − ∂d(αn+1)

∂α
E2ε2

n+1 . (6.11)

Note that these formulas only hold as long as the incremental stress potential W (εn+1)
is convex. In order to detect whether W is convex for a given strain εn+1 we consider the
actual strain εn+1 to be described by an interpolation between two strains ε+ and ε−, i.e.
εn+1 := ξε+ +(1− ξ)ε−. For the one-dimensional problem under consideration we employ
the ansatz proposed in Lambrecht, Miehe & Dettmar [122]

ε− := εn+1 − ξd and ε+ := εn+1 + (1 − ξ) d (6.12)
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Figure 6.3: Development of the total strains and the internal damage variables in the
micro-phases. a.) The strains in the phases ε+, ε− do not change during the convexification
analysis. b.) The internal damage variables α+, α− in the phases remain constant as well
in the non-convex span.
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Box 6.1: One-Dimensional Two-Phase Relaxation Algorithm.

1. Determine a priori constant phases ε+, ε− and mico bifurcation d =
ε+ − ε− numerically

2. Given εn+1 and ξn determine ξn+1 by a case distinction scheme

A. Initial stable homogeneous state ξn = 0

a.) εn+1 ≤ ε−: ξn+1 = 0,

b.) ε+ > εn+1 > ε−: ξn+1 = (εn+1 − ε−) / (ε+ − ε−),

B. Phase decay of homogeneous state 0 < ξn < 1

a.) εn+1 ≤ ξnε
+ + (1 − ξn) ε−: ξn+1 = ξn

b.) ξnε
++(1−ξn) ε− < εn+1 < ε+: ξn+1 = (εn+1−ε−) / (ε+−ε−),

c.) εn+1 ≥ ε+: ξn+1 = 1,

C. Recovery of stable homogeneous state ξn = 1: ξn+1 = 1

3. Compute the relaxed stress and tangent modulus

σ̄n+1 = ∂εWC(εn+1) and C̄n+1 = ∂2
εεWC(εn+1)

that parameterizes ε+ and ε− in terms of the variables ξ and d. The variable d = ε+ − ε−

is denoted as the intensity of the micro-bifurcation and ξ as the volume fraction. Then
convexity of W is guaranteed if

W (ξε+ + (1 − ξ)ε−) ≤ inf
ξ,d

{ ξW (ε+) + (1 − ξ)W (ε−) } (6.13)

holds for all ξ ∈ [0, 1] and d ∈ R+. If the condition (6.13) is not fulfilled then a convexi-
fication procedure needs to be performed. The convexification requires at each time step
for each Gauss point the solution of a non-convex optimization problem to determine the
micro-variables ξ, d and the convexified incremental potential WC , i.e.

WC(εn+1) = inf
ξ,d

{
ξW (ε+) + (1 − ξ)W (ε−)

}
. (6.14)

Recall that this minimization problem in a more general setting of rank-one convexity
of two-dimensional problems has already been discussed in Section 3.2.1. The relaxed
stress response that is obtained from the non-convex optimization problem is plotted
together with the original (unrelaxed) response in the Figure 6.1b. As a result of the
numerical convexification, it is found that the micro-variable d remains constant for the
whole non-convex range of the incremental potential. The evolutions of ξ and d are plotted
in Figure 6.2 which are computed by a numerical convexification algorithm with respect
to both variables. From Figure 6.2b it is clear that micro-variable d remains constant.
Consequently, it is not necessary to solve the minimization problem for two variables
[ ξ, d ] at each time step. In fact one needs to determine micro-variable d once numerically
and then it is possible to compute ξ directly. The two-phase relaxation analysis can be
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B2B1
ũDx

σ̃

κ1 − κ

Figure 6.4: Localization of a bar in tension. The test specimen under consideration consists
of two parts: B2 with length κ and B1 with length 1 − κ. In B1 the maximum damage d∞
is decreased by 0.0001 % in order to trigger the localization.

summarized in two steps: We (i) a priori determine the constant micro-phases ε± and the
micro-intensity d numerically and (ii) set up a case distinction scheme depending on the
volume fraction ξn of the previous time step and the current strain εn+1. The algorithm
is summarized in Box 6.1. Such an algorithm obviously does not need any numerical
solution of non-convex minimization problem at each time step and consequently is very
robust and computationally efficient.

We close the one-dimensional section by consideration of an example from localization
in strain softening materials. Main goal is the demonstration of the mesh invariance of
the proposed relaxation technique. We consider the bar depicted in Figure 6.4 of length
and cross section area 1, subject to a tensile stress σ̃. The bar is fixed at its left boundary.
This example in the context of strain softening elastoplasticity was previously investigated
in Lambrecht, Miehe & Dettmar [122]. In order to point out the mesh dependence
of the unrelaxed formulation we discretize the bar with two elements B1 and B2 for five
different lengths κ = 0.2/0.4/0.6/0.8/1.0. A localization of the homogeneous boundary
value problem is triggered by decreasing the maximum damage d∞ in the element B1 by
0.0001 %. Figure 6.5a depicts the load-displacement curves for the different discretizations
mentioned above. We start at the origin of the diagram and proceed on the loading
branch. At the peak of the curves in Figure 6.5a we observe a loss of global structural
stability documented by a change of sign of the tangent. After the peak the element
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Figure 6.5: Global load-displacement curves of imperfect test specimen. a.) Visualization
of the length dependent response for different choices κ within the standard formulation.
b.) Invariant (relaxed) solution due to the convexification analysis.
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B1 switches to a post-critical path while the element B2 switches back to the elastic
unloading path. The non-convex analysis yields the spectrum of equilibrium paths in
Figure 6.5a. They document the well-known strong mesh dependence of the non-objective
post-critical analysis. These post-critical results are physically meaningless. The crucial
mesh dependence was pointed out for example by de Borst [54] and Belytschko, Fish

& Engelmann [21]. The ill-posed boundary value problem can be transformed into a
well-posed one by means of the relaxation method proposed. The relaxed analysis yields
an identical result for all mesh densities. The mesh invariant post-critical equilibrium
path is documented in Figure 6.5b.

6.1.2. Two-Dimensional Isochoric Damage Model. In this section we consider
a two-dimensional isochoric damage model which is described by the fundamental consti-
tutive functions ψ and f for the energy storage and the level set of the elastic domain,
respectively. The elastic response is governed by the strain energy

ψ(ε, α) =
1

2
κ tr 2[ ε ] + [1 − d(α)]ψiso

0 (ε) with ψiso
0 (ε) = µ || dev[ε]||2 . (6.15)

Here, κ ∈ R+ denotes the bulk modulus and µ ∈ R+ is the shear modulus. Note that in
two-dimensional setting, i.e. ε ∈ R2×2, the isochoric-volumetric split is given as

ε = dev[ε] +
1

2
tr[ε]1 . (6.16)

Analogous to the one-dimensional case, the internal variable and the dual internal force
are identified as I := α and F := β. Note that the damage function d(α) affects only
the isochoric contribution of ψ and assumed to have the particular form

d(α) = d∞[1 − (1 + ϑ α)−ν ] (6.17)

in terms of the material parameters d∞ ∈ [0, 1], ϑ ∈ R+ and ν ∈ R+\{1}. In principle,
the damage law (6.17) has a saturation type behavior similar to the one shown in Figure
6.1. Evaluation of (6.4) leads to the expressions for the stresses σ and thermodynamical
forces β

σ = κ tr[ε]1 + [ 1 − d(α) ] 2µ dev[ε] and β = ψiso
0

∂d(α)

∂α
. (6.18)

With regard to the level set and the threshold we consider the same form as (6.6), i.e.

f(β) = β and c(α) = α
∂d(α)

∂α
. (6.19)

Notice that in the case of an inelastic loading, (6.19) identifies the internal variable with
the effective strain energy α = ψiso

0 since during the evolution of damage f(β) = c(α)
holds. As a consequence of definition (6.19), the normal direction has the simple represen-
tation ∂βf = 1. The inelastic multiplier then coincides with the evolution of the internal
variable γ̇ = α̇. Following the same steps as in Section 6.1.1 we get the dissipation func-
tion φ = α̇α∂d(α)

∂α
in the same form of (6.7). Integration of the dissipation function φ

within the time increment ∆t = [tn, tn+1] yields

Φn,n+1 = d(αn+1)αn+1 − d(αn)αn

− d∞
[
αn+1 − αn − ϑ−1(1 − ν)[(1 + ϑαn+1)

1−ν − (1 + ϑαn)1−ν ]
] (6.20)
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where the current internal variable is computed from the update αn+1 = αn + γ with
γ := γ̇∆t. The incremental potential W in (3.10) can be written as a sum of a volumetric
and an isochoric contributions W = W vol +W iso

W vol(en+1) =
1

2
κ(e2n+1 − e2n)

W iso(qn+1) = inf
γ

{
2 µ [1 − dn+1(γ)] q

2
n+1 − 2 µ [1 − dn] q2

n + Φn,n+1(γ)
}






(6.21)

with the definitions e := tr[ε], q := || dev[ε]||, dn+1(γ) = d(αn+1) = d(αn + γ) and
dn = d(αn). Then the update of the internal variable reads

αn+1 =

{

ψiso
0 = µq2

n+1 if 2µq2
n+1 > αn

αn else .
(6.22)

Exploitation of (6.4)1 yields the stresses and moduli for the case of damage evolution
d(αn+1) > d(αn)

σn+1 = κ tr[εn+1]1 + [ 1 − d(αn+1) ] 2µ dev[εn+1]

Cn+1 = κ1 ⊗ 1 + [ 1 − d(αn+1) ] 2µP − ∂d(αn+1)

∂α
4µ2 dev[εn+1] ⊗ dev[εn+1]

(6.23)

where P = I− 1 ⊗ 1/3 is the fourth-order deviatoric projection tensor. In the case of an
elastic unloading, i.e. d(αn+1) = d(αn), the stresses are given by the same formula (6.23)1

and the moduli expression becomes

Cn+1 = κ1 ⊗ 1 + [ 1 − d(αn+1) ] 2µP . (6.24)

Note that the formula (6.23) holds, provided that the incremental stress potentialW (εn+1)
satisfies the rank-one convexity condition (3.34). Otherwise the convexification procedure
needs to be performed. For geometrically linear theory under consideration we introduce
the appropriate ansatz in a similar way to (3.28)

ε+ := εn+1 + (1 − ξ) d(m ⊗ n + n ⊗ m)
ε− := εn+1 − ξd(m ⊗ n + n ⊗ m)

(6.25)

which fulfills the symmetry condition on ε+ and ε−. Notice carefully that ε+ and ε−

are not rank-one connected. However, rank-one connectivity condition applies on the
displacement gradients in small strain setting, i.e. rank[∇u+ − ∇u−] ≤ 1. In what
follows we modify (6.25) and consider as a specific choice the parameterization given
below

ε− := εn+1 − ξd εn+1/||εn+1||
ε+ := εn+1 + (1 − ξ) d εn+1/||εn+1|| .

(6.26)

The motivation and the reason for this choice of parameterization will be more clear later.
Since the damage affects only the isochoric part of the energy storage, see (6.15), the
volumetric part W vol(en+1) of the incremental potential remains convex. Consequently,
application of the relaxation procedure is required for the isochoric part W iso(qn+1) of the
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potential only. The relaxed potential then can be written as a sum of a volumetric part
and a convexified isochoric part,

WC(εn+1) = W vol(en+1) +W iso
C (qn+1) . (6.27)

where en+1 := tr[εn+1] and q := || dev[εn+1]||. The convexified incremental isochoric
potential W iso

C is defined by the minimization problem similar to (6.14)

W iso
C (qn+1) = inf

ξ,d

{
W̄ h(qn+1, ξ, d)

}
with W̄ h = ξW iso(q+) + (1 − ξ)W iso(q−) (6.28)

in terms of the isochoric shear intensities of the phases

q+ = qn+1 + (1 − ξ) d and q− = qn+1 − ξd (6.29)

which can be obtained with some algebraic manipulations of the specific parameterization
of the phases (6.26) written solely for deviatoric strains, i.e.

dev[ε−] := dev[εn+1] − ξd dev[εn+1] / || dev[εn+1]||
dev[ε+] := dev[εn+1] + (1 − ξ) d dev[εn+1] / || dev[εn+1]|| .

(6.30)

Equation (6.29) can be written equivalently as follows

|| dev[ε+]|| = || dev[ε]|| + (1 − ξ) d
|| dev[ε−]|| = || dev[ε]|| − ξd .

(6.31)

The parameterization (6.31) can be interpreted as a decomposition of the norm of homoge-
neous isochoric strains into two phases. Due to the structure in (6.29) the two-dimensional
problem becomes similar to the one-dimensional damage model discussed in Section 6.1.1.
In other words, the micro-variable d and the isochoric micro-intensities q+ and q−, which
denote the start and end points of the rank-one convex hull, remain constant for any
deformation process. These facts allow the derivation of a semi-analytical solution of the
two-phase relaxation analysis in two steps: We (i) a priori determine the micro-intensities
q± numerically and (ii) set up a case distinction scheme depending on the volume frac-
tion ξn of the previous time step and the current micro-intensity qn+1. The algorithm
is summarized in Box 6.2. Notice carefully that such an algorithm obviously does not
need any numerical solution of non-convex minimization problem at each time step and
consequently is very robust and computationally efficient.

Remark: Computation of the first-order rank-one convex hull normally requires deter-
mination of the laminate orientation vectors in addition to ξ and d. In the two-dimensional
setting the first order necessary conditions (3.35) of rank-one convexification for the lam-
inate vectors m = [cosϕ sinϕ] and n = [cosχ sinχ]

W̄ h
,ϕ = 0 and W̄ h

,χ = 0 (6.32)

lead to a priori identification of the laminate orientations with the principal shear direc-
tions. Consequently, one obtains the following relation between the deviatoric strains and
the dyadic product of the laminate vectors

(m ⊗ n + n ⊗ m) = ζ dev[ε] (6.33)
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Box 6.2: Two-Dimensional Two–Phase Relaxation Algorithm.

1. Determine a priori constant phases q−, q+ and micro–bifurcation d =
q+ − q− numerically,

2. Given εn+1 = dev[εn+1] + 1
2
tr[εn+1]1 and ξn. Compute qn+1 =

|| dev[εn+1]|| and determine ξn+1 by a case distinction scheme:

A. Initial stable homogeneous state ξn = 0

a.) qn+1 ≤ q−: ξn+1 = 0,

b.) q+ > qn+1 > q−: ξn+1 = (qn+1 − q−) / (q+ − q−),

B. Phase decay of homogeneous state 0 < ξn < 1

a.) qn+1 ≤ ξnq
+ + (1 − ξn)q

−: ξn+1 = ξn,

b.) ξnq
++(1−ξn)q− < qn+1 < q+: ξn+1 = (qn+1−q−) / (q+−q−),

c.) qn+1 ≥ q+: ξn+1 = 1,

C. Recovery of stable homogeneous state ξn = 1: ξn+1 = 1 .

3. Compute the relaxed stresses and tangent moduli

σ̄n+1 = ∂εWC(εn+1) and C̄n+1 = ∂2
εεWC(εn+1)

with an arbitrary constant ζ ∈ R. Then the assumed form of the deviatoric strains in the
phases (6.25) coincides with (6.26). In other words, the following two decompositions of
the deviatoric strains are identical

dev[ε+] = dev[ε] + (1 − ξ) dA

dev[ε−] = dev[ε] − ξdA
⇐⇒ dev[ε+] = dev[ε] + (1 − ξ) d (m ⊗ n)sym

dev[ε−] = dev[ε] − ξd (m⊗ n)sym

(6.34)
with A = dev[ε] / || dev[ε]|| and (m ⊗ n)sym = (m ⊗ n + n ⊗ m). Therefore, for two-
dimensional isochoric damage model, a relaxation based on first order rank-one laminates
(6.25) is equivalent to a relaxation based on isotropic phase decomposition (6.30).

6.1.3. Extension of Relaxation Algorithm to Three-Dimensional Analysis.

In this section we employ the ansatz of the phases given in (6.30) for the application of
our relaxation algorithm to the three-dimensional framework. The main difference to the
two-dimensional case is that in the three-dimensional consideration two parameterizations
given in (6.34) do not coincide anymore. However, we consider a relaxation based on the
parameterization (6.30) as a reasonable approximation of the rank-one convexification.
The elastic response of the three-dimensional model is governed by the free energy given
in (6.15) and the damage law is the particular saturation type given in (6.3). Similar
to the two-dimensional case it is possible to apply an analytical solution of the two-
phase relaxation analysis in two steps: We (i) a priori determine the micro-intensities q±

numerically and (ii) set up a case distinction scheme depending on the volume fraction
ξn of the previous time step and the current micro-intensity qn+1. The algorithm has a
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Table 6.1: Set of material parameters for 2-D examples.

bulk modulus – κ = 150.000 Nmm−2

shear modulus – µ = 60.000 Nmm−2

maximum damage – d∞ = 0.999 / 0.975 –
saturation intensity – ϑ = 0.100 / 0.390 –
exponent – ν = 2.000 / 0.950 –

small difference to one specified in Box 6.2 which is the definition of the deviatoric strain
tensor. For the three-dimensional algorithm the multiplier in front of tr[εn+1] has to be
changed from 1

2
to 1

3
. The required derivatives for the computation of relaxed stresses and

moduli are given in Appendix B.

6.1.4. Visualization and Interpretation of Isotropic Microstructures. We
simply assume that the microstructures develop such that the norm of the strain decom-
poses into phases. A visualization of an evolving deformation microstructure is given in
Figure 6.6. The outer circle in Figure 6.6 represents the intensity of the strain while the
inner circle denotes the highly damaged (+) phase with volume fraction ξ. During load-
ing both circles expand but the inner one faster, which corresponds to an increase in the
damage of the material. On the other hand, during unloading both circle starts to shrink.
However, relative to the outer circle the inner one either grows or stays constant for all
loading conditions. This microstructure evolution is consistent with the irreversibility of
the damage process which induces a natural restriction on the volume fraction

ξ̇ ≥ 0 ⇔ ξn+1 ≥ ξn . (6.35)

In other words, the damage is never recovered and having fulfilled (6.35) then the ther-
modynamical consistency is guaranteed. Note that for any process damage levels d+ and
d− of the phases stay constant but the volume fraction ξ of the highly damaged phase
(+) is an increasing function satisfying the physical requirement, namely the increase in
the damage variable in a volume averaged sense.

6.2. Numerical Examples of Relaxations in Damage Mechanics

We demonstrate the performance of the above outlined relaxation technique by means
of representative numerical examples. The main goals of the numerical investigations are

ξ||ε′||
||ε′||

Figure 6.6: Visualization of an isotropic deformation microstructure during a loading
process. Size of the outer circle is controlled by the norm of the deviatoric strain ||ε′||. The
ratio of diameters of inner and outer circles determines the volume fraction ξ.
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Figure 6.7: a.) Cyclic loading test. Isochoric loading path in the ε11-ε12 plane. b.)
Perforated plate in tension. Geometry, loading and boundary conditions.

the analysis of the developing microstructures and the demonstration of the objectivity of
the relaxation technique proposed. In the first example we investigate a strain-driven cyclic
local loading test and document the development of microstructures. The second numeri-
cal example is concerned with the tension test of a perforated plate in the two-dimensional
and three-dimensional plane strain frameworks. We report on the arising microstructures
which are resolved by a convexification of the non-convex incremental stress potential.
Comparison of the relaxed and the unrelaxed load-displacement curves underlines the
objectivity of the relaxed stress response. The material parameters governing the energy
storage function and the level set function for two-dimensional and three-dimensional
damage models are summarized in Table 6.1 and Table 6.2, respectively.

6.2.1. Volume Preserving Cyclic Loading Test. The first example is concerned
with a volume preserving cyclic loading test described by the macroscopic strain tensor

ε = ai

[

1 −
√

2 cos[Λ] 1 +
√

2 sin[Λ]

1 +
√

2 sin[Λ] −1 +
√

2 cos[Λ]

]

(6.36)

with a1 = 0.062 for 0 ≤ Λ ≤ 2π and a2 = 0.102 for 2π < Λ ≤ 4π. The loading parameter
Λ is increased with increments ∆Λ = 0.01 up to the final value Λmax = 4π. Figure 6.7a
visualizes the isochoric loading path of the test in the ε11-ε12-plane. In Figure 6.8 the
development of the microstructures is documented at the points marked in Figure 6.7a.
The first eight microstructures correspond to the first cycle (a1 = 0.062) and the following
seven to the second cycle (a2 = 0.102). After the loss of material stability two micro-
phases ε± emerge. The fraction ξ increases if the intensity q = (ε2

11 + ε2
12)

1/2 increases as
well. Note that in the case of a decrease in intensity q the fraction ξ remains constant

Table 6.2: Set of material parameters for 3–D examples.

bulk modulus – κ = 150.000 N mm−2

shear modulus – µ = 60.000 N mm−2

maximum damage – d∞ = 0.78 –
saturation intensity – η = 500 –
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Figure 6.8: Cyclic loading test. Development of the microstructures After the loss of ma-
terial stability microstructures emerge which are resolved as first-order rank-one laminates.
The first eight microstructures correspond to the inner cycle, the following seven to the
outer one in Figure 6.7a.
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Figure 6.9: Comparison of stress components for cyclic loading test obtained by a.) the
unrelaxed formulation and b.) the proposed relaxation technique.
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Figure 6.10: Perforated plate in tension (Two-dimensional framework). Load-displacement
curves for four different structured finite element meshes based on a.) the unrelaxed (non-
objective) formulation (the finer the mesh the softer the response) and on b.) the proposed
relaxation technique. The global response of the relaxed formulation shows no mesh depen-
dency.
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Figure 6.11: Perforated plate in tension (Two-dimensional framework). Load-displacement
curves for four different unstructured finite element meshes based on a.) the unrelaxed
(non-objective) formulation (the finer the mesh the softer the response) and on b.) the
proposed relaxation technique. The global response of the relaxed formulation shows no
mesh dependency.

as pointed out before. During the second cycle a recovery of a single-phase deformation
occurs which is highly damaged. The stress components of the unrelaxed and relaxed
computations are plotted in Figure 6.9. Note that after the recovery of single-phase state
the stress components of both formulations coincide.

6.2.2. Tension Test of a Perforated Plate in Two-Dimensional Framework.

The second example analyzes the deformation of a perforated plate in tension. The ge-
ometry, loading and boundary conditions are described in Figure 6.7b. Owing to the
symmetry, one fourth of the specimen is discretized with 16, 36, 64 and 100 structured fi-
nite elements. We also investigate four unstructured meshes with 24, 83, 109 and 204 finite
elements. For the simulations the four node enhanced incompatible mode Q1E4 finite ele-
ment formulation developed by Simó & Armero [201] are used. The problem is treated
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Figure 6.12: Perforated plate in tension (Three-dimensional plane strain framework).
Zoomed in load-displacement curves for three different finite element meshes based on a.)
the unrelaxed (non-objective) formulation (the finer the mesh the softer the response) and
on b.) the proposed relaxation technique. The global response of the relaxed formulation
shows no mesh dependency.

in a deformation-driven analysis with increments ∆u = 0.001mm up to a maximum dis-
placement of u = 0.1mm. The mesh-dependent response of the unrelaxed formulation is
evident by considering the load-displacement curves plotted in Figures 6.10a and 6.11a
for structured and unstructured meshes, respectively. In contrast to the unrelaxed formu-
lation, application of the proposed relaxation technique yields a mesh-invariant response.
The load-deflection curves do not depend on the mesh size and are identical for different
mesh densities, see Figures 6.10b and 6.11b. Note that the objectivity of the material
behavior is obtained without the introduction of an internal length scale parameter.

6.2.3. Tension Test of a Perforated Plate in Three-Dimensional Framework.

In the last example the previous boundary value problem with the geometry specified in
Figure 6.7b is investigated in three-dimensional plane strain framework. Owing to the
symmetry, one fourth of the specimen is discretized with 109, 204 and 352 unstructured
finite elements. The single-phase unrelaxed computations are performed with an arc
length method whereas the relaxed simulations are done with a displacement-controlled
loading. They are both conducted up to a maximum displacement of u = 0.7mm. The
mesh-dependent response of the unrelaxed formulation is evident by considering the over-
all load-displacement curves plotted in Figures 6.12a for three different mesh densities
(109, 204 and 352 elements). In contrast to the unrelaxed formulation, the application of
the proposed relaxation technique yields a mesh-invariant response, see 6.12b for overall
load-displacement diagrams. The localization zones and corresponding unstable regions
are given in Figure 6.13 for three different meshes. In Figure 6.14 the evolution of unstable
regions are visualized together with the microstructures at the selected elements of the
mesh having 204 finite elements for load levels u = 0.4, 0.5 and 0.6mm.
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a. b. c.

Figure 6.13: Perforated plate in tension (Three-dimensional plane strain framework).
Comparison of relaxed simulations for three different mesh densities. Distributions of un-
stable regions at u = 0.7 mm for a) 109, b) 204 and c) 352 finite elements.

a.

b.

c.

Figure 6.14: Perforated plate in tension (Three-dimensional plane strain framework).
Evolution of the unstable regions and microstructures at the selected elements of the mesh
having 204 finite elements for load levels a.) u = 0.4 mm b.) u = 0.5 mm and c.) u = 0.6
mm.
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7. Theories of Brittle Fracture

The goal of this section is to give a compact introduction to the fracture mechanics,
in particular to the brittle fracture. It starts with the stress concentrations that occur in-
evitably in solids due to the presence of macroscopic cracks, flaws, defects or microcracks.
A quantitative analysis of the stress concentrations in linear elastic bodies with simple
geometries are presented as well. Further details of technical nature are provided in Ap-
pendices D and E. In addition, different approaches to brittle fracture are briefly pointed
out. We refer to the books by Knott [114], Kanninen & Popelar [111], Meguid [138],
Gdoutos [77], Lawn [125] and Anderson [6] for comprehensive treatments of the topic
and the recent works of Erdogan [64] and Cotterell [50] for historical overviews.

7.1. Stress Concentrations in Solids

In the sequel, the local stress concentrations in solid bodies with sharp geometrical
changes are discussed. Before providing a rigorous prove of the stress concentrations
within the theory of linear elasticity, a plausible description is given in terms of stress
trajectories or lines of force.

7.1.1. Stress Trajectories. We consider two plates, one homogeneous and the other
containing a central elliptical hole, subjected to a uniform tensile stress as depicted in
Figure 7.1. An applied stress is transmitted from one end of the plate to the other through
the use of lines of forces. In the first plate which is homogenous, the stress trajectories
are all over evenly spaced. On the other hand, in the second plate, the lines of forces are
spaced uniformly only away from the elliptical hole. As a consequence of the hole, the
lines do not remain equally spaced especially in the close neighborhood of the hole. They
concentrate near the ends of the hole yielding a decrease in the local spacing between the
trajectories. Therefore, more lines of force are flowing through the same area indicating
a local increase in the stress field.

7.1.2. Infinite Plate with Circular Hole under Tension. After having discussed
conceptually the local increase in the stress field due to a sudden change in the geometry,
next stress concentrations will be analyzed quantitatively. An infinite plate containing a
small circular hole of radius a is subjected to the remote tensile stress σ0 as indicated in
Figure 7.2. The solution of the problem can be obtained from the Airy stress function
which provides a general framework for two-dimensional elasticity problems. First recall

σ0 σ0

σ0 σ0

a. b.

Figure 7.1: Stress concentrations in solids due to sharp geometrical changes. a.) Uniformly
spaced stress trajectories in a homogeneous plate. b.) Perturbation of stress trajectories
due to presence of an elliptical hole.
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the strain displacement relations,

εij =
1

2
(ui,j + uj,i) . (7.1)

Differentiations of ε11 twice by x2, ε22 twice by x1 and ε12 by x1 and x2 give directly the
compatibility equation

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2
(7.2)

which guarantees the continuity of a two-dimensional body. The compatibility equation
(7.2) can also be expressed in terms of stresses. In order to do so, the following represen-
tation of linear isotropic elasticity

εij =
1

E
[ (1 + ν)σij − νσkkδij ] (7.3)

given in terms of the Young’s modulus E and the Poisson’s ratio ν will be utilized.
Insertion of (7.3) into (7.2) and setting all out-of-plane stress components to zero, i.e.
σ3i = 0, yield

∂2

∂x2
2

(σ11 − νσ22) +
∂2

∂x2
1

(σ22 − νσ11) + 2(1 + ν)
∂2σ12

∂x1∂x2
= 0 . (7.4)

It is nothing but the compatibility equation (7.2) represented in terms of stresses for a
two-dimensional isotropic linear elastic body. The stresses must satisfy additionally the
static equilibrium equations, which in two dimensions and in the absence of body forces
are written as

∂σ11

∂x1

+
∂σ12

∂x2

= 0 and
∂σ12

∂x1

+
∂σ22

∂x2

= 0 . (7.5)

The equations of equilibrium are identically satisfied by the stress function Φ(x1, x2)
introduced by G.B. Airy (1801-1892). It is related to the stresses as follows

σ11 =
∂2Φ

∂x2
2

, σ22 =
∂2Φ

∂x2
1

and σ12 = − ∂2Φ

∂x1∂x2
. (7.6)

Direct substitution of above results into the compatibility condition (7.4) yields

∇4Φ =
∂4Φ

∂x4
1

+ 2
∂4Φ

∂x2
1∂x

2
2

+
∂4Φ

∂x4
2

= 0 . (7.7)

Therefore, any function Φ(x1, x2) that is the solution of a biharmonic equation given
in (7.7) satisfies the governing relations for equilibrium and geometric compatibility. At
this stage it is important to note that the solution of (7.7) is not unique, indeed many
functions could be written that satisfy the compatibility equation; for instance, setting
Φ = 0 would always work. However, to find the correct solution for a particular problem
the boundary conditions on the stress and displacement must be fulfilled as well. This
is usually much more difficult to assure, and no general solution that works for all cases
exists. It can be shown, however, that a solution satisfying both the compatibility equation
and the boundary conditions is unique, i.e. that it is the only correct solution. Since it is
more convenient for the infinite plate problem with circular hole under consideration to
work in polar coordinates, in what follows a brief overview of the equilibrium equations,
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Figure 7.2: Infinite plate of unit thickness with a circular hole of diameter 2a under remote
tensile stress σ0.

kinematic relations and compatibility conditions in polar coordinates will be given. First,
the two-dimensional static equilibrium equations are given by

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+
σrr − σθθ

r
= 0

1

r

∂σθθ

∂θ
+
∂σrθ

∂r
+ 2

σrθ

r
= 0

(7.8)

assuming that there are no body forces. The indices r and θ represent the radial and
circumferential components of the stress, respectively. The strain field which is defined
by the following kinematic relations

εrr =
∂ur

∂r

εθθ =
1

r

∂uθ

∂θ
+
∂ur

∂r

εrθ =
1

2

(∂uθ

∂r
+

1

r

∂ur

∂θ
− uθ

r

)

(7.9)

has to satisfy the compatibility equation

∂2εθθ

r2
+

1

r2

∂2εrr

∂θ2
+

2

r

∂εθθ

∂r
− 1

r

∂εrr

∂r
=

2

r

∂2εrθ

∂r∂θ
+

2

r2

∂εrθ

∂θ
. (7.10)

The equilibrium equations in (7.8) are satisfied by a stress function Φ(r, θ) for which the
polar stress components are computed as

σrr =
1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2

σθθ =
∂2Φ

∂r2

σrθ =
1

r2

∂Φ

∂θ
− 1

r

∂2Φ

∂r∂θ
.

(7.11)

The biharmonic equation (7.7) provided in Cartesian coordinates then becomes

∇4Φ = (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
)(
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
) = 0 (7.12)
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Figure 7.3: The stress field in a linear elastic infinite plate with a circular hole of radius a
under remote tensile stress σ0.

in polar coordinates. The problem can be solved now by finding a stress function which
satisfies the compatibility condition (7.12) and the boundary conditions at the circumfer-
ence of the hole

σrr = σrθ = 0 at r = a (7.13)

and also at the outer boundary

σrr =
1

2
σ0(1 + cos 2θ) , σθθ =

1

2
σ0(1 − cos 2θ) , σrθ = −1

2
σ0 sin 2θ for r → ∞ . (7.14)

For this case, the following stress function is assumed

Φ(r, θ) = f1(r) + f2(r) cos 2θ (7.15)

where f1(r) and f2(r) are yet to be determined. Substitution of (7.15) into the biharmonic
equation (7.12) gives the following forms of the functions f1 and f2

f1(r) = c1r
2 ln r + c2r

2 + c3 ln r + c4 and f2(r) = c5r
2 + c6r

4 + c7r
2 + c8 (7.16)

with the integration constants ci to be found from the boundary conditions. Imposition
of the boundary conditions (7.13) and (7.14) yields

c1 = 0, c2 =
σ0

4
, c3 = −a

2σ0

2
, c5 =

σ0

4
, c6 = 0, c7 = −a

4σ0

4
and c8 =

a2σ0

2
(7.17)

where c4 is undetermined but for the stress field it has no importance. After having
determined the constants of integration, the stress field in an infinite plate containing a
circular hole is accomplished by substituting the final form of (7.15) into (7.11), i.e.

σrr =
1

2
σ0

[

(1 − a2

r2
) + (1 +

3a4

r4
− 4a2

r2
) cos 2θ

]

σθθ =
1

2
σ0

[

(1 +
a2

r2
) − (1 +

3a4

r4
) cos 2θ

]

σrθ = −1

2
σ0 (1 − 3a4

r4
+

2a2

r2
) sin 2θ .

(7.18)
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The maximum value of the circumferential stress σθθ is obtained for θ = π/2 or 3π/2 and
r = a. The distribution of σθθ and σrr for θ = π/2 and θ = 3π/2 are given by

σθθ = σ0

(
1 +

a2

2r2
+

3a4

2r4

)
and σrr =

3σ0

2

(a2

r2
− a4

r4

)
. (7.19)

From the above results one concludes that if r → ∞ then the hoop stress becomes the
uniform applied tensile stress, i.e. σθθ → σ0, and if r = a and θ = π/2 then

σθθ(r = a, θ = π/2) = σ22(x1 = a, x2 = 0) = 3σ0. (7.20)

In other words, the presence of the circular hole causes an increase in the tangential stress
component which is three times of the applied stress σ0. Note that also the radial stress
σrr is non-zero due to the circular cavity, yielding a two-dimensional stress state despite
of the uniaxial loading mode. The radial stress has the maximum value of (3/8)σ0 when
r =

√
2a and vanishes, according to the necessary boundary conditions, at the free surface

of the hole, r = a, and at the outer surface, r → ∞. The distributions of σθθ and σrr for
θ = π/2 and θ = 3π/2 are plotted in Figure 7.3.

7.1.3. Infinite Plate with Elliptical Hole under Tension. In the following an
infinite plate with an elliptical hole under the remote tensile stress σ0 is considered. The
hole is assumed to have the major axis 2a and the minor axis 2b. Furthermore, the major
axis is normal to the uniform tensile stress, as shown in Figure 7.4. This problem was
first treated by Inglis [102] where a specific curvilinear coordinate system and complex
potentials were utilized, see also Knott [114] pp.46-53. Here the solution procedure is
outlined. First, a complex variable p = α + iβ is defined where α and β are coordinates
in a particular curvilinear coordinate system, see Appendix A for the basics of complex
numbers and functions. The variable p is related to z = x1 + ix2 defined in the Cartesian
coordinate system by

z := c cosh p (7.21)

where c is a constant. By separation of real and imaginary parts of z and p one obtains

x1 = c coshα cosβ and x2 = c sinhα sin β . (7.22)

Elimination of β in (7.22) yields

σ0

σ0

A

x1

x2

2b

2a

Figure 7.4: Infinite plate of unit thickness with an elliptical hole of major axis 2a and
minor axis 2b under remote tensile stress σ0.
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curves of constant β curves of constant α

x1, β = 0, 2π

x2, β = π/2

Figure 7.5: Visualization of an elliptical coordinate system. Elliptical coordinates α and β
are related to Cartesian coordinates x1 and x2 by x1 = c coshα cosβ and x2 = c sinhα sinβ.

x2
1

cosh2 α
+

x2
2

sinh2 α
= c2 (7.23)

which represents for a constant value of α an ellipse in the Cartesian coordinate system.
The curves of constant β generate in an analogous way a series of confocal hyberbolae
intersecting the ellipses at right angles, see Figure 7.5 for the illustration of the coordinate
system. The axes of the ellipse can be expressed now as follows

2a = 2c coshα0 and 2b = 2c sinhα0 (7.24)

and therefore one obtains by using (7.23)

x2
1

a2
+
x2

2

b2
= 1 (7.25)

which is nothing but the equation of an ellipse. Note that in the limit case α0 → ∞
the ellipse becomes a sharp crack of length 2a whereas a = b results in a circle. In this
coordinate system each value of α describes an ellipse and a point on a given ellipse
is parameterized by β which varies from 0 to 2π as depicted in Figure 7.5. The main
advantage of this coordinate system is that, suitable choices of the constant c in (7.21)
yield very narrow slit like ellipses which can represent internal cracks. Similarly, a pair
of hyperbolae may be adjusted in the form of external notches. A stress component σαβ

is defined as acting on a face which is tangent to a curve of constant α, in the direction
of the normal to a curve of constant β. Relations of stress components in Cartesian and
curvilinear coordinates are given by

σαα = σ11 cos2 θ + σ22 sin2 θ + 2σ12 sin θ cos θ
σββ = σ11 sin2 θ + σ22 cos2 θ − 2σ12 sin θ cos θ
σαβ = (σ22 − σ11) sin θ cos θ + σ12(cos2 θ − sin2 θ) .

(7.26)

Equation (7.26) is in fact the two-dimensional transformation of a stress tensor when
referred to a new pair of orthogonal axes which are rotated with an angle θ from x1 axis.
From the above results it is possible to write

σαα + σββ = σ11 + σ22

σββ − σαα + 2iσαβ = (σ22 − σ11 + 2iσ12)e
2iθ .

(7.27)

Similar to complex potentials utilized in (D.34) and (D.39) we can now write from (7.27)
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σαα + σββ = 2[ Ω′(z) + Ω̄′(z̄) ]
σββ − σαα + 2iσαβ = 2e2iθ[ z̄Ω′′(z) + ω′′(z) ] .

(7.28)

Next step is the determination of complex potentials Ω(z) and ω(z) which satisfy the
boundary conditions at infinity

σ22 = σ0 and σ11 = σ12 = 0 for x1 → ∞ or x2 → ∞ (7.29)

and which are periodic in β with a period of 2π. Inglis [102] proposed the following
potentials

Ω(z) =
σ0c

4
[ (1 + e2α0) sinh p− e2α0 cosh p ]

ω(z) = −σ0c
2

4
[ (cosh 2α0 − cosh π) p+

1

2
e2α0 − cosh 2(p− α0 − i

π

2
) ] .

(7.30)

Substitution of (7.30)1 into (7.28)1 delivers

σαα + σββ =
σ0

2

[

(1 + e2α0)(
cosh p

sinh p
+

cosh p̄

sinh p̄
) − 2e2α0

]

(7.31)

where p̄ = α − iβ is the complex conjugate of p. After some manipulations, the stress
component σββ at the surface of ellipse, where σαα = 0, is determined as

σββ(α = α0) = σ0
sinh 2α0 − 1 + e2α0 cos 2β

cosh 2α0 − cos 2β
. (7.32)

The maximum value of (7.32) is attained at β = 0 and β = π where σββ is equal to σ22

σββ(α = α0, β = 0) = σ22(x1 = a, x2 = 0) = σ0
sinh 2α0 − 1 + e2α0

cosh 2α0 − 1
. (7.33)

Having recalled the relations, c2 = a2 − b2, sinh 2α0 = 2ab/c2, e2α0 = cosh 2α0 + sinh 2α0

and cosh 2α0 = (a2 + b2)/c2, the stress at the tip of elliptical hole is found as

σ22(x1 = a, x2 = 0) = σ0( 1 + 2
a

b
) (7.34)

Note that the formula given in (7.34) recovers the stress concentration solution of circular
hole where a = b, i.e. σ22 = 3σ0. The most important consequence of (7.34) is the fact
that if the ellipse becomes longer in the direction normal to the loading and shorter in
the direction parallel to the applied traction, i.e. a/b → ∞, then the stress at the tip
point A of ellipse turns out to be unbounded, σ → ∞. An alternative representation of
(7.34) can also be given in terms of the radius of curvature ρ at the tip of ellipse, the
point A in Figure 7.4. The curvature ρ of a parametrically defined curve, i.e. x1 = x1(t)
and x2 = x2(t), is given by

ρ = (x′1
2 + x′2

2)3/2/ |x′1x′′2 − x′2x
′′
1| . (7.35)

Making use of the parametric definition of the ellipse, i.e. x1(t) = a cos t and x2(t) = b sin t,
and evaluation of ρ at the point A where t = 0 yields

σ22(x1 = a, x2 = 0) = σ0(1 + 2
√

a/ρ) . (7.36)

Above formulae (7.34) and (7.36) can be approximated for very slender ellipses a/b≫ 1,
which can be regarded indeed as sharp cracks, by

σ22 ≈ 2σ0a/b ≈ 2σ0

√

a/ρ . (7.37)

It is important to note that according to these results the stress concentrations in an
infinite body depend on the shape (aspect ratio or tip curvature) of the elliptical cavity
rather than the size of it.
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Figure 7.6: Crack tip coordinates and the stress field a.) for two-dimensional problems
with rectangular x1 − x2 and polar r − θ stress components and b.) three-dimensional
problems with rectangular x1 − x2 − x3 stress components.

7.2. Stress Intensity Factors Approach to Fracture

After the work of Inglis [102] on stress concentrations in infinite bodies with elliptical
holes, stress fields in isotropic linear elastic solids with particular crack configurations
have been investigated by Westergaard [213], Sneddon [203] and Williams [214].
However, Irwin [104, 105] was the first who recognized the general applicability of the
singular stress field in the presence of cracks. Consequently, he introduced the concept
of stress intensity factor as a measure of the strength of singularity. Based on the works
of Irwin, it has been shown that the stress field in a linear elastic cracked solid can be
expressed as

σij = (
k√
r
)fij(θ) +

∞∑

n=0

Anr
n/2gn

ij(θ) (7.38)

in the polar coordinate system r − θ shown in Figure 7.6. In (7.38) k is a constant
and fij is a dimensionless function of θ. The second term on the right hand side of (7.38)
represents the higher order contributions to the solution which depend on the geometry of
the problem. Note that the solution given above contains for any particular configuration
a leading term depending on 1/

√
r which approaches to infinity as r → 0, while the other

term vanishes.

x1

x2 x3

a. b. c.

Figure 7.7: Visualization of the three basic modes of fracture. a.) Mode I (opening), b.)
Mode II (sliding / in-plane shear) and c.) Mode III (tearing / out-of-plane shear).
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Three basic modes of crack propagation were first pointed out by Irwin [105]. They
are based on the movements of two crack surfaces with respect to each other. A flat crack
in x2 − x3 plane extending through the thickness (x3 direction) of a plate is considered,
see Figure 7.7. The three modes are summarized below.

(i) Mode I (opening): The load is applied normal to the crack plane and crack surfaces
separate such that [[u1]] 6= 0, [[u2]] = 0 and [[u3]] = 0.

(ii) Mode II (sliding / in-plane shear): The load is applied parallel to the crack plane
corresponding to an in-plane shear loading and the crack surfaces separate such that
[[u1]] = 0, [[u2]] 6= 0 and [[u3]] = 0.

(iii) Mode III (tearing / out-of-plane shear): The load is applied parallel to the crack
plane corresponding to an out-of-plane shear loading and the crack surfaces separate
such that [[u1]] = 0, [[u2]] = 0 and [[u3]] 6= 0.

The jump bracket [[ui]] has been employed above to denote the difference of the displace-
ment component ui evaluated at both faces of the crack. That is, [[ui]] = u+

i −u−i with the
displacement values at the upper and lower crack faces u+

i and u−i , respectively. Above
mentioned three basic modes of the crack extension are visualized in Figure 7.7. In gen-
eral a cracked body may experience a combination of the three modes. All loading modes
yield 1/

√
r singularity given in (7.38) at the crack tip, but the constants k and fij are

dependent on the crack extension mode. It is a common practice in the literature to
denote the stress intensity factors with a subscript denoting the mode of loading, i.e. KI ,
KII and KIII . Thus, the stress field around the neighborhood of the crack tip can be
expressed for different modes as follows

σI
ij =

KI√
2πr

f I
ij(θ) , σII

ij =
KII√
2πr

f II
ij (θ) and σIII

ij =
KIII√
2πr

f III
ij (θ) (7.39)

with the polar coordinate system r − θ depicted in Figure 7.6a. The key property of the
compact representation (7.39) is that the cardinal elements of the stress field appear as
separable factors. The intensity factors Ki with i = I, I, III depend on the outer bound-
ary conditions, namely the applied load and the specimen geometry. As a consequence,
they determine the intensity of the local field. On the other hand, the remaining factors
depend only on the spatial coordinates, and determine the distribution of the field. In
a general case of a loading, where all three modes are activated, the stress field can be
computed as a summation of the three contributions,

σij = σI
ij + σII

ij + σIII
ij (7.40)

which is due to the linear superposition principle of linear elasticity. The details of the
computation of stress fields for different loading modes are discussed in Appendix D
and the closed form solutions of stress intensity factors for some simple geometries are
addressed in Appendix E. For example, the stress intensity factor KI of an infinite plate
with a sharp crack of length 2a subjected to remote tensile stress σ0 is given as

KI = σ0

√
πa . (7.41)
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Detailed tables and approximate expressions for the stress intensity factors can be found
for example in Rooke & Cartwright [194].

The concept of stress intensity factors permits a single parameter characterization of
the singularity around the crack tip. Provided that the material is linear elastic, the
stresses near the crack tip vary with 1/

√
r and the stress intensity factor determines the

amplitude of the singularity. If the stress intensity factor is known, then the displacement,
strain and stress fields can be computed in the singularity dominated zone. Assuming
that the local material failure is due to excessive stresses (or strains), there must be a
critical value of KI at which an extension of the crack occurs. This value is often denoted
as KIc and is a measure of the fracture toughness. Therefore, the condition for a crack to
propagate can be written as

KI = KIc . (7.42)

The fracture toughness is normally considered as a material parameter that is to some
extent independent of the size and geometry of the body for a given mode. In fact,
experiments point out that KIc varies with the thickness of the specimen, especially
if the variation results in a change from a plane stress to a plane strain condition. See
Knott [114] pp.114-130 and Kanninen & Popelar [111] pp.176-182 for further details.
In the case of different loading modes, the critical stress intensity factors are in general
different, i.e. KIc 6= KIIc 6= KIIIc. Since the majority of materials fail by normal tensile
stresses rather than shear, KIc is generally the parameter that controls the failure. In
other words, KIIc and KIIIc are usually greater than KIc.

7.3. Energetic Approach to Fracture

In the previous sections the main focus was put on the stress concentrations and the
determination of singular stress fields in linear elastic solids in the presence of sharp
geometrical changes. In the sequel, a conceptually different energy based approach is
described. The energetic approach is traced back to the seminal works of Griffith

[84, 85] which led to the development of fracture mechanics as an engineering discipline.
It requires an extension of the first law of thermodynamics in order to incorporate the
energetic contribution due to a fracture process.

In fact, Griffith’s motivation was apparently different, that is simple estimates for the
strength of a crystalline solid based on its lattice parameters. However, this results in

σ0

σ0

A

x1

x2

2a

Figure 7.8: Infinite plate of unit thickness with a sharp crack of length 2a under remote
tensile stress σ0.
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theoretical strength values which are not attained by real materials. Main focus of his
work was primarily on resolving this discrepancy. He figured out that, this difference is a
result of the inevitable occurrence of flaws in a solid body. It is a point of interest to note
that, a similar discrepancy exists between the theoretical shear strength of a crystalline
solid and the observed values due to the existence of dislocations.

7.3.1. Griffith Theory. Griffith [84] was the first who realized the importance of
the variation of energy during a crack growth in brittle solids. Griffith proposed that solids
have a surface energy which must be compensated for a given crack to propagate. Then the
critical load level for a given crack is found by the principle of minimum potential energy
of elasticity with an extension that takes into account the surface energy of the solid. In
other words, the configuration that minimizes the total energy has to be sought in order to
find an equilibrium state of the crack. The total energy Π has the following contributions,
the strain energy E stored in the elastic medium and the potential energy U of the outer
loading system under quasistatic conditions case without consideration of cracks. In
order to include possible crack extensions, Griffith introduced an additional term Γ which
corresponds to the energy expended in creating new crack surfaces. Consequently, the
total energy Π reads

Π = E + U + Γ . (7.43)

The sum of the strain energy E and the potential energy of the outer loading U is referred
to as the total potential energy Ω of the system, i.e. Ω = E + U . If we concentrate on a
system with a single crack, then the equilibrium is attained by a vanishing total energy
over a virtual crack extension. Energetic terms in (7.43) can be parameterized in terms
of the crack length a. Therefore, the Griffith energy balance is formally stated for a plate
of unit thickness as

dΠ(a)

da
=
dE(a)

da
+
dU(a)

da
+
dΓ(a)

da
= 0 . (7.44)

After addressing the main idea of the Griffith energy balance concept, we consider as a
particular crack configuration an infinite plate of unit thickness having a sharp crack of
length 2a as shown in Figure 7.8. The outer loading is the remote tension σ0 and no
body forces are considered. Based on the work of Inglis [102] on stress concentrations
around elliptical holes, Griffith [84] computed the change in the strain energy in a
linear elastic medium due to an elliptical cavity. He also evaluated the energy change for
a sharp crack by considering an infinitely narrow elliptical cavity (2b→ 0 in Figure 7.4).
However, at the end of the same work he added a footnote to mention that the energy
expression he computed was erroneous. In a later work, Griffith [85], he provided a
new corrected energy expression without showing any details about its derivation. Later
Spencer [204] and Sih & Liebowitz [199] gave detailed solutions of the same problem,
see also Kanninen & Popelar [111] p.35 for a simple solution based on the results of
Westergaard [213]. Under remote tensile loading conditions, the change in the strain
energy of an infinite linear elastic medium due to a sharp crack of length 2a is found to
be

∆E(a) =
πa2σ2

0

E ′ (7.45)

with E ′ = E for plane stress and E ′ = E/(1 − ν2) for plane strain conditions. E and ν
denote the Young’s modulus and the Poisson’s ratio, respectively. The total elastic strain
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Figure 7.9: The setup of the experiment performed by Obreimoff [168] on mica. A
wedge of thickness h is inserted to peel off cleavage flake of thickness d. The equilibrium
configuration of the crack is stable if the position of the wedge is controlled.

energy of the system is
E(a) = E0 + ∆E(a) (7.46)

where E0 is the initial strain energy of the uncracked specimen. Hence, E0 does not depend
on the crack length a and has no influence in the application of the Griffith energy balance
principle (7.44). Owing to the Clapeyron’s theorem (Kanninen & Popelar [111] p.112),
it is possible for linear elastic materials to express the work done by the outer loading
(negative of the potential energy U of outer loading) as twice of the strain energy, i.e.

U(a) = −2E(a) . (7.47)

The last contribution Γ in (7.43) is the surface energy of the cracked body and is a linear
function of the total crack length 2a,

Γ(a) = 4γa . (7.48)

γ is the surface energy per unit area and assumed to be a constant material parameter.
The additional factor 2 in (7.48) comes from the fact that an extension of a crack creates
two surfaces. Hence, the total energy of the system reads

Π(a) = −E0 −
πa2σ2

0

E ′ + 4γa . (7.49)

Substitution of (7.49) into (7.44) gives the critical value of the remote tensile stress

σ0f =

√

2E ′γ

πa
(7.50)

that is required to extend the initial crack of length 2a in an infinite elastic body. In
Figure 7.10a the variations of energy contributions are plotted with respect to the crack
length. This result has a cardinal importance. It solves the paradox that the stresses at
the tip of a sharp crack in an elastic body are infinite no matter how small is the applied
stress. This fact led to a new argument that rupture does not occur when the stress at
a point exceeds some critical value, but only when the energy supplied to the body by
external agencies exceeds a critical value. Note that from (7.49) it is also possible to
determine the critical half flaw size ac (the critical crack has a total length of 2ac) for a
given remote stress σ0 as

ac =
2E ′γ

πσ2
0

. (7.51)
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Figure 7.10: Energetics of unstable and stable crack growths. a.) The unstable crack
growth in a load controlled uniform tension test from Griffith [84]. b.) The stable crack
growth in a displacement controlled bending test from Obreimoff [168].

Equation (7.51) states that for a given stress σ0 the crack in elastic medium remains
stationary if a < ac and otherwise it starts to extend. As we see from Figure 7.10a,
d2Π(a)/da2 is negative at the equilibrium. Therefore, the total energy attains a maximum
at the equilibrium and the configuration is unstable. That means, for σ0 < σ0f the crack
stays stationary at its initial size, and for σ0 > σ0f it propagates continuously without
reaching a new equilibrium state.

The energy balance concept of Griffith (7.44) is not only restricted to the crack configu-
ration in Figure 7.8. In order to emphasize its generality another application is considered
where the crack extension is stable. The configuration is shown in Figure 7.10 and inves-
tigated experimentally by Obreimoff [168] for cleavage in mica. A wedge of thickness
h is inserted beneath a thin layer of mica. Provided that the position of the wedge is
controlled a stable configuration of the crack is always obtained. The energy of the sys-
tem is determined by treating the cleavage flake as a cantilever beam of thickness d. The
cantilever beam has a length of a and the prescribed displacement at its free end is h.
Since the position of the wedge is controlled, the outer loading system performs no work,
i.e U = 0. The elastic strain energy E(a) and the surface energy Γ(a) are expressed as

E(a) =
Ed3h2

8a3
and Γ(a) = 2γa , (7.52)

where E reads from the simple beam theory. Substitution of (7.52) into (7.44) leads to
the equilibrium crack length ac for a particular wedging condition

ac =
(3Ed3h2

16γ

)1/4
. (7.53)

The energy contributions E and Γ in (7.52) are plotted in Figure 7.10b with respect to
the crack length a. It is clear that the total energy attains a minimum at the equilibrium.
Therefore, the crack configuration specified by (7.53) is stable, see also Gdoutos [77]
p.142 and Lawn [125] p.10. The stability condition for a brittle crack can be expressed
as

d2Π(a)

da2







< 0 : unstable crack
> 0 : stable crack
= 0 : neutral crack

(7.54)
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in terms of the total energy Π of the system. A crack configuration similar to the one
investigated by Obreimoff [168] has been addressed in Freund [73]. It has been shown
that, the control of the displacement or load at the tip of cantilever arm yields the stable or
unstable crack growth, respectively. The displacement controlled crack extension leads to
energy contributions similar to Figure 7.10b whereas the force control is similar to Figure
7.10a, see Freund [73] pp.5-8. On the other hand, the values of the critical stress σ0f and
the critical crack length ac do not depend on whether the external load is applied under
fixed grip (displacement controlled) or dead load (force controlled) conditions. Under
fixed grip conditions, external agencies perform no work (U = 0) and therefore a crack
extension results in a reduction in the stored elastic strain energy E , see Meguid [138]
pp.159-162 and Knott [114], pp.98-103 for further discussions. In general, a stable
crack growth is obtained more easily for displacement controlled experiments than load
controlled ones.

7.3.2. Energy Release Rate. Irwin reformulated the energetic approach of Griffith
into a form that is more suitable for engineering applications. We start with rewriting
(7.44) such that it is considered as a crack extension criterion, i.e.

−1

2

(dE
da

+
dU
da

)

︸ ︷︷ ︸

=:G

=
1

2

dΓ

da
︸︷︷︸

=:Gc

(7.55)

for a plate of unit thickness having a crack of length 2a. The left hand side of (7.55)
is the elastic energy per unit crack surface which is available for crack extension and
called as the energy release rate G. Irwin [104] introduced the concept of energy release
rate and denoted it by G in honor of Griffith, see Cotterell [50]. Since the energy
release rate is derived from a potential function in a similar manner that of a conservative
force, it is often referred to as the crack driving force, see for example Maugin [133] and
Freund [73]. The term on the right Gc is the energy required for an incremental crack
extension and it is a material constant that measures the crack resistance. The factor
1/2 in the above equation is due to the particular crack configuration shown in Figure
7.8 where the crack extension takes place symmetrically at both ends of the crack. The
condition (7.55) represents a crack growth criterion

G = Gc (7.56)

which is similar to the condition (7.42) given in terms of the stress intensity factor. The
energy release rate G reads from (7.45) and (7.47) as

G =
πσ2

0a

E ′ (7.57)

for a cracked linear elastic body illustrated in Figure 7.8. Similar to the determination of
the critical crack length ac and the critical stress σ0f , the value of G is also independent
of the external loading conditions (fixed grip or dead load) for linear elastic solids. The
graphical representation of this statement is rather well-known and can be found in any
fracture mechanics book, e.g. Anderson [6] and Knott [114]. Contrarily, in the case
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of nonlinear elasticity it is different and for fixed grip conditions, G is often called as the
elastic strain energy release rate, see Gdoutos [77], p.117.

The energetic approach discussed so far is valid for elastic brittle fracture mechanics.
It is mainly applicable for brittle materials like glass or ceramics. Later the Griffith
theory has been extended independently by Irwin [103] and Orowan [173] to account
for limited plastic behavior encountered around the crack tip. They proposed that the
resistance to crack extension in ductile materials is the sum of the elastic surface energy
γ and the plastic dissipation γp per unit area of surface created. Therefore, this extension
involves in principal no new mathematical developments and the failure stress (7.50) is
modified as

σ0f =

√

2E ′(γ + γp)

πa
. (7.58)

For typical ductile materials such as metals, γp is much larger than γ and the resistance
to a crack extension is mainly governed by the plastic dissipation, e.g. Orowan estimated
that γp is three orders of magnitude greater than γ in metals. Contrary to ideally brittle
materials, where a crack is formed due to the breaking of atomic bonds, in metals when
a crack propagates dislocation motions occur in the vicinity of the crack tip yielding an
additional energy dissipation. Hence, the term γp in (7.58) has a sound micromechanical
motivation for ductile crystalline solids.

The crack growth resistance curves (R-curves) is an alternative method which can be
closely related to the extended version the Griffith theory. The concept was proposed by
Irwin & Kies [106] to study slow stable crack growth possibly accompanied by some
inelastic deformations. In principal, the crack growth condition looks the same as (7.56).
The only difference is Gc is replaced with R which denotes the rate of energy dissipation
during a stable crack growth, i.e.

G = R . (7.59)

R consists of two parts. Namely, the energy consumed during the generation of new crack
surfaces and the energy dissipated as a consequence of inelastic deformations.

7.3.3. Equivalence of Energy Release Rate and Stress Intensity Factor. Two
fundamental parameters, the stress intensity factor K and the energy release rate G,
which can be employed to describe the behavior of cracks, have been discussed in previous
sections. The factor K describes the intensity of stress, strain and displacement fields near
the crack tip. On the other hand, the parameter G specifies the net change in the potential
energy associated with an increment of crack extension. Therefore, it is possible to say
that, the stress intensity factor is a local parameter while the energy release rate describes
the global behavior. In the following, the relation between the strain energy release rate
and the stress intensity factor is derived for a linear elastic solid. Thus, we show that the
energetic and stress intensity approaches to fracture mechanics are essentially equivalent
provided that the material under consideration is linear elastic.

The parameters G and KI for a crack of length 2a in an infinite plate subjected to
a remote tensile stress are provided in (7.57) and (7.41), respectively. Combination of
(7.57) and (7.41) yields the following representation

G =
K2

I

E ′ , (7.60)
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Figure 7.11: Crack closure procedure. a) The original crack. b) Closure of the original
crack with an amount of ∆a by the application of the stress σ.

where E ′ = E for plane stress and E ′ = E/(1 − ν2) for plane strain problems. Although
the relation (7.60) is obtained for a particular crack geometry, it is a general relationship
that applies also to other configurations. It can be proven based on an crack closure
analysis following the work of Irwin [104]. In Mode I loading a crack of initial length
a + ∆a is considered, as shown in Figure 7.11a. In the given configuration tractions are
applied to crack surfaces from x1 = 0 to x1 = ∆a such that the crack is closed in that
region, see Figure 7.11b. Then the work of crack closure is computed as

∆W =

∫ ∆a

0

σ22u2dx1 , (7.61)

where the displacement u2 in x1 axis is obtained from (D.57) by setting θ = π,

u2 =
(κ+ 1)KI(a+ ∆a)

µ

√

∆a− x1

2π
(7.62)

with KI(a+∆a) representing the stress intensity factor of the original crack tip with crack
length a+ ∆a. The stress necessary to close the crack is determined from the solution of
the problem with the crack length a, i.e.

σ22 =
KI(a)√

2πx1

. (7.63)

Furthermore, the work of closure ∆W given in (7.61) is related to the energy release rate

G = lim
∆a→0

(
∆W

∆a
) (7.64)

under frozen loading conditions. Using the above results, (7.61)-(7.64), the following
relationship is obtained

G = lim
∆a→0

(κ+ 1)KI(a+ ∆a)KI(a)

4πµ∆a

∫ ∆a

0

√

∆a− x1

x1

dx1 . (7.65)

Evaluation of the limit in (7.65) yields the final expression

G =
(κ+ 1)K2

I

8µ
=
K2

I

E ′ . (7.66)

If all the three modes of crack extension are present, then the relation between the energy
release rate and the intensity factors is given by

G =
K2

I

E ′ +
K2

II

E ′ +
K2

III

2µ
. (7.67)
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As a result of above discussions, it is possible to conclude that, the stress intensity factor
and the energy release rate based approaches are equivalent for linear elastic bodies.
Notice carefully that the mixed mode energy release rate given in equation (7.67) is valid
only for self similar crack growth. However, in reality Mode II cracks do not propagate
their own plane and they follow a path which is not known a priori. Hence, an analytical
computation of G for Mode II is not possible as explained here for Mode I, see e.g.
Gdoutos [77] p.128 and Anderson [6] p.72.

7.3.4. J-Integral. The concepts of the energy release rate and the stress intensity
factors discussed in previous sections are restricted to the linear elastic material behavior.
A generalization to the nonlinear elastic behavior and the deformation theory of plasticity
can be achieved by the path-independent J-integral. Although the concept of J-integral
has been developed first by Eshelby [66, 67], its application to two-dimensional notch
problems has been performed by Rice [188, 189]. Eshelby concerned with the character-
ization of generalized forces on dislocations and defects in elastic solids using the energy
momentum tensor. Two earlier works by Cherepanov [42] and Sanders [195] are also
closely related to the J-integral of Rice and worth to mention. The concept of J-integral
and path-independent integrals are indeed directly connected to the configurational me-
chanics which is also referred to as the mechanics in material space or the Eshelbian
mechanics, see for example comprehensive treatments by Maugin [133], Gurtin [88]
and Kienzler & Hermann [113]. A discussion of invariant integrals in a broader set-
ting, especially in connection with the configurational mechanics, will be discussed in
Section 8.3.

t
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Γ1
Γ2

x1

x2

nn B

B∗

Γ∗

A

B C

D

a. b.

Figure 7.12: a.) A body with flat parallel crack surfaces. b.) Magnified view of the crack
surfaces. Paths Γ1 and Γ2 around the crack tip running counterclockwise and clockwise,
respectively. n is the outward unit normal vector.

In the sequel, the J-integral is introduced in the form proposed by Rice [188, 189].
We consider a two-dimensional homogeneous linear or nonlinear elastic solid free of body
forces. The body contains a flat crack where the crack surfaces are parallel to each other
as shown in Figure 7.12a. There is no traction applied to the cracks surfaces. The tip of
the notch is an arc where a sharp crack is treated as the limiting case. The strain energy
density of the elastic medium is

W (ε) :=

∫ ε

0

σ : dε . (7.68)
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The vectorial J-integral is defined by

J :=

∫

Γ

[ Wn − t · ∇u ] ds , (7.69)

where Γ is an arbitrary curve that surrounds the crack tip running counterclockwise from
the lower flat notch surface to the upper one, see Figure 7.12a. The vectors n and t = σ ·n
denote the unit outward normal to the curve Γ and the traction vector on Γ, respectively.
Note that the original definition of J-integral by Rice [188, 189] is a scalar quantity,

J1 =

∫

Γ

[ Wn1 − t · ∂u
∂x1

] ds (7.70)

obtained by a scalar multiplication of (7.69) with the unit vector in x1 direction. Equation
(7.69) can also be written as

J =

∫

Γ

[ W1 −∇T u · σ ] · n ds . (7.71)

The line integral (7.71) can be recast into a volume integral by the application of diver-
gence theorem

J =

∫

B∗

div[ W1 −∇T u · σ ] dV (7.72)

if it is computed for a closed curve Γ∗ that surrounds the domain B∗, see Figure 7.12a.
The integrand of (7.72) reads in indicial notation

[ Wδij − uk,iσkj ],j = W,i − uk,ijσkj − uk,iσkj,j

= σmnεmn,i − uk,ijσkj

= σmnum,ni − σmnum,ni

= 0 .

(7.73)

In (7.73) we make use of the identity σmn = ∂W/∂εmn, the divergence free stress (σkj,j = 0)
in the absence of body forces and also the symmetry of the stress tensor (σmnεmn,i =
σmnum,ni). Since the integrand (7.73) vanishes identically, the vectorial J-integral defined
in (7.69) is equal to zero for a path enclosing elastic medium free of any defects or singu-
larities. It is self evident that the original definition of the J-integral (7.70) vanishes for
such a closed path as well.

As a next step the path independency of the J-integral is proved. We consider the
closed contour Γ1CBΓ2AD as shown in Figure 7.12b. Since the area enclosed by this path
is free of singularities, the corresponding J-integral has to vanish

J1 =

∫

Γ1

[ Wn1 − tiui,1 ]

︸ ︷︷ ︸

=:JΓ1

ds+

∫

Γ2

[. . .] ds

︸ ︷︷ ︸

=:−JΓ2

+

∫

CB

[. . .] ds

︸ ︷︷ ︸

=:JCB

+

∫

AD

[. . .] ds

︸ ︷︷ ︸

=:JAD

= 0 , (7.74)

where [. . .] denotes the same integrand in the first term of (7.74). The second integral over
Γ2 given above is defined with a minus sign in front, because the contour Γ2 is clockwise.
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The integrals JAD and JCB are zero while the normal vectors has no component in x1

direction along AB and CD (n1 = 0) and the crack surfaces are traction free (ti = 0). As
a consequence, (7.74) boils down to

JΓ1
= JΓ2

. (7.75)

Equation (7.75) demonstrates the path independence of the J-integral defined in (7.70).
Note that the independency is valid for elastic materials, possibly also nonlinear and
anisotropic, under quasistatic loading conditions and in the absence of body forces. The
notch in the elastic solid must have flat and parallel traction free crack surfaces.

7.3.5. Relationship Between J-Integral and Energy Release Rate. In the se-
quel, the physical interpretation of the J-integral is discussed and its relation to the energy
release rate G is presented for self similar crack growth conditions. A two-dimensional
elastic body shown in Figure 7.13 is considered. The potential energy of the body with
an initial crack of length a is

Ω(a) = E(a) + U(a) =

∫

B
WdV −

∫

∂Bt

t · uds (7.76)

under quasistatic loading and in the absence of body forces. ∂Bt denotes the part of
the boundary on which the tractions are prescribed. It is assumed that the external
tractions t are independent of the crack length a and the crack surfaces are traction free.
Differentiation of (7.76) with respect to the crack length a yields

dΩ

da
=

∫

B

dW

da
dV −

∫

∂B
t · du

da
ds , (7.77)

where the integration domain ∂Bt of the second integral is replaced with ∂B while the
displacements are independent of the crack length for the rest of the boundary, i.e.
du/da = 0 on ∂Bu where ∂B = ∂Bt ∪ ∂Bu. It is possible to choose the contour of
the J-integral as the outer boundary of the body in the counterclockwise direction from
the lower crack face to the upper one. Because the tractions t are zero on the crack
surfaces ∂B \ Γ, the integration domain ∂B of the second term in (7.77) can be changed
to the contour Γ of the J-integral. A new coordinate system x̃1− x̃2 attached to the crack
tip is introduced, i.e. x̃i = xi − aδi1. As a consequence, one obtains

d

da
=

∂

∂a
+

∂

∂x1

∂x1

∂a
=

∂

∂a
− ∂

∂x1
=

∂

∂a
− ∂

∂x̃1
(7.78)

since ∂x1/∂a = −1 and ∂/∂x1 = ∂/∂x̃1. Substitution of (7.78) into (7.77) gives

dΩ

da
=

∫

B

[

σ : ∇
(∂u

∂a

)
+
∂W

∂x1

]

dV −
∫

Γ

t ·
[ ∂u

∂a
− ∂u

∂x1

]

ds (7.79)

where the symmetry of the stress tensor and the constitutive relation σ = ∂W/∂ε have
been utilized during the derivation. Considering ∂u/∂a as a kinematically admissible
displacement field, it is possible to write the principle of virtual work in the following
form ∫

B

[

σ : ∇
(∂u

∂a

) ]

dV =

∫

Γ

t · ∂u
∂a

ds . (7.80)
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Figure 7.13: A body with a flat crack of length a. The coordinate system x̃1−x̃2 is attached
to the crack tip and related to the fixed coordinate system x1 − x2 by x̃i = xi − aδi1. The
contour Γ traces the outer boundary of the body.

Equation (7.79) along with (7.80) yields

−dΩ
da

=

∫

B

∂W

∂x1

dV −
∫

Γ

t · ∂u
∂x1

ds . (7.81)

Finally, the application of divergence theorem to (7.81) renders

−dΩ
da

=

∫

Γ

[

Wn1 − t · ∂u
∂x1

]

ds . (7.82)

The right hand side of the above equation is nothing but the J-integral, see (7.70). The
quantity on the left is the rate of decrease of the potential energy. Thus, J1 is indeed
equivalent to the rate of decrease of the potential energy with respect to the crack length a
both for the linear and nonlinear elastic response. In fact, if the material is linear elastic,
then J1 reduces to the energy release rate G defined in (7.55), which is in turn related to
the stress intensity factor KI as discussed in Section 7.3.3, i.e.

J1 = G =
K2

I

E ′ . (7.83)

The J-integral has been employed later also for elastoplastic materials in the context
of the deformation theory of plasticity. The deformation theory of plasticity (also known
as the Hencky’s type plasticity) relates total strains to stresses. Hence, it can be consid-
ered as non-linear elastic response provided that the body is subjected to monotonically
increasing loads only. Hutchinson [101] and Rice & Rosengren [192] showed that
the J-integral characterizes the crack tip stresses and strains in hardening materials. If
the strain hardening is characterized by a power law, then the singularity in the solution
is often referred to as HRR singularity due to the investigations of Hutchinson, Rice and
Rosengren.

Analogous to the fracture criteria governed by the intensity factors (7.42) and the
energy release rate (7.56), it is possible to introduce an alternative condition based on the
J-integral. This criterion of crack propagation reads

J = Jc , (7.84)

where Jc is a material parameter that denotes the critical value of the J-integral.
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7.4. Atomistic Approach to Fracture

In the preceding sections, the crack propagation is discussed in a continuum framework.
On the other hand, when sufficient stress is applied fracture occurs on an atomic level
by a breakage of bonds holding atoms together. Consequently, the tensile strength of
an ideal crystalline body is found as the stress that is required to break these bonds.
On the atomic level, solids may be represented as assembly of point masses connected
by non-linear springs. The point masses and springs stand for atoms and atomic bonds,
respectively. Although the mass-spring representation is over-simplistic, it can lead to
a deeper understanding of brittle fracture. A cubic lattice of spacing r0 is subjected to
a tensile stress σ0, see Figure 7.14. The lattice spacing corresponds to the equilibrium
position of atoms where the potential energy is at a minimum. A pair of atoms, A1-A2,
from the cubic lattice is considered. In Figures 7.15a and 7.15b schematic plots of the
potential energy and force versus the separation distance are depicted for the pair A1-A2.
Although the details of such curves differ depending on the type of bonding associated
with a specific material, in general their forms for metals are similar. In order to increase
the separation distance from the equilibrium position, a tensile force is required which has
to exceed a particular cohesive force to separate the bond completely. The total amount
of energy UB that must be supplied to sever the two atoms completely is called as the
bond energy and given by the following integral

UB =

∫ ∞

r0

Fdr , (7.85)

where F is the applied force. Note that the bond energy is equal to twice the surface
tension γ. Thus, the bond energy UB can be estimated by an extrapolation of experiments
conducted to measure surface tensions of liquid droplets.

The force F is zero at the equilibrium spacing r0 and reaches its maximum value at
the point of inflection of the potential curve. The slope of the force-spacing curve is the
stiffness of the spring connecting the atoms and related to the Young’s modulus of the
material. In order to estimate the strength of the material at the atomic level, the force-
atomic spacing curve given in Figure 7.15b is approximated by a half sine curve in the
attractive region. Hence, the force-atomic spacing relation is obtained as

F = Fc sin(
πx

λ
) with x := r − r0 for x ≥ 0 . (7.86)

For small displacements, the relationship given in (7.86) can be further approximated as

A1

A2

σ0

σ0

F

F

r0

Figure 7.14: Atomistic approach to fracture.
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Figure 7.15: Atomistic approach to fracture. a.) Interatomic potential. b.) Interatomic
force-separation relation.

linear, i.e. sin x ≈ x,

F = Fc
πx

λ
(7.87)

and consequently, the stiffness of the bond is given by

k = Fc
π

λ
. (7.88)

The cohesive stress σc is then estimated from (7.88) in terms of the Young’s modulus E,
the equilibrium spacing r0 and the half of the period of the sine function λ,

σc =
Eλ

πr0
. (7.89)

The estimate (7.89) is obtained by a multiplication of both sides of (7.88) by the number of
bonds per unit area N and the equilibrium spacing r0 resulting in following identifications,
σc = FN and E = kNr0. Equation (7.89) is further simplified, if λ is assumed roughly
to be equal to r0,

σc ≈
E

π
. (7.90)

The area under the sine curve represents the work supplied when the bond is broken.
Hence, the surface energy γ ≈ UbN/2 is estimated from (7.86) by a multiplication with
N and an integration as follows

γ =
1

2

∫ λ

0

σc sin(
πx

λ
)dx = σc

λ

π
. (7.91)

Notice that the surface energy γ is equal to one half the fracture energy while two surfaces
are created when a fracture occurs. Insertion of (7.91) into (7.89) gives the following
estimate for the ideal fracture strength

σc =

√

Eγ

r0
. (7.92)

All the previous expressions derived in this section are considering the interaction energies
only between pairs of atoms across the fracture surface. It is possible to improve these
approximations by considering not only the pairs but also further neighboring atoms.
Substitution of ρ = r0 in (7.37) sets the radius of the crack tip on the order of atomic
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spacing and it gives an appraise of the local stress concentration at the tip of an atomic
crack

σ22(A) = 2σ0

√
a

r0
, (7.93)

where σ22(A) refers to the stress computed at the point A in Figure 7.4. By equating
(7.93) to cohesive stress in (7.92), the remote stress at failure is computed as

σ0f =

√

Eγ

4a
. (7.94)

A point worthy of note is that, (7.94) is a rough calculation of the stress at failure while the
result in (7.37) is based on continuum assumptions and it is not valid at the atomic level.
Nevertheless, the prediction of failure stress σ0f in (7.94) obtained from the atomistic
considerations together with a stress analysis shows a clear similarity in the form to that
given in (7.50) and they differ by less than 40%. Thus, both approaches are consistent
with each other for sharp cracks in ideally elastic brittle media.

7.5. Crack Tip Plasticity and Cohesive Fracture Theories

In Section 7.2 the stress field in the vicinity of a sharp crack is evaluated by the use
of stress intensity factors for linear elastic materials. The solutions showed that there
exist stress singularities at the crack tip, i.e if r → 0 then σ → ∞. It is clear that, an
occurrence of infinite stress is not to be expected in real materials. In fact, some inelastic
processes like plasticity (yielding) or damage (void nucleation) put a bound on the level
of stress and prevents it from being infinite. In the following, it is assumed that the size of
the inelastic zone ρin in the neighborhood of the crack tip is small compared to the sizes
of both the crack a and the K-dominant region ρK in which the stress intensity factor
solution is valid. The fracture under above mentioned conditions is referred to as small
scale yielding situation (Rice [188]), see Figure 7.16. In the sequel, we will discuss small
scale yielding problems and give possible estimates of the size of the inelastic zone ρin.
Note that the crack propagation under small scale yielding conditions can still be treated
as brittle fracture while the material is assumed to be elastic except at a very small region
around the crack tip.

s0

ρin

ρK

boundary of
inelastic zone

outer boundary of
K-dominant zone

Figure 7.16: Basis of the small scale yielding hypothesis. The size of the inelastic region ρin

is small compared to the size of K-dominant region ρK and any other geometrical dimension
of the body.

A first estimate of the size of a plastic region is obtained as follows. We consider a
mode-I loading where the stress field along the horizontal axis (y = 0 or θ = 0) can be
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Figure 7.17: Estimates of the size of plastic zone at the crack tip. a.) The first-order and
b.) the second-order estimates by Irwin [105].

computed from (D.55) or (D.58) as

σ22 = σθθ =
σ0

√
πa√

2πr
=

KI√
2πr

. (7.95)

The variation of the stress field in the vicinity of the crack is plotted in Figure 7.17. If an
ideal elastoplastic material with the yield limit σy is considered, then an estimate of the
plastic zone size ρ1 is determined as

ρ1 =
1

2π

(KI

σy

)2

(7.96)

by simply equating σy to (7.95) and then solving it for r. The result ρ1 is a rough
prediction which underestimates the plastic zone size, see for example Anderson [6] and
Meguid [138]. The corresponding tensile stress distribution is plotted in Figure 7.17a.
Indeed, this simple analysis is not strictly correct, while it is based on the elastic crack
tip solution. On the other hand, as a result of yielding, a stress redistribution must take
place to satisfy the equilibrium. Irwin [105] proposed a modified approach for the same
crack problem based on the following equilibrium condition

∫ ρ1

0

KI√
2πr

dr = 2ρ2σy . (7.97)

The integral in (7.97) computes the hatched area in Figure 7.17a that is responsible for
further yielding. This contribution was not considered in the first estimate. Integration
of (7.97) and then the solution of the resultant equation for ρ2 yields

ρ2 =
1

π

(KI

σy

)2

(7.98)

which is the twice of the one obtained by the first estimate. The corresponding stress dis-
tribution is visualized in Figure 7.17b. Contrary to the first estimate, in Irwin’s approach
the equilibrium is maintained inside the body.

Another model, which is known as the strip yield model, for the description of the
plastic zone around the crack tip has been proposed by Dugdale [61]. We consider a
crack of length 2a in an infinite plate subjected to the uniform tensile stress σ0. The model
is based on two hypotheses. First, all plastic deformations are assumed to concentrate in a
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line in front of the crack. Second, a concept of effective crack is introduced which is longer
than the physical crack by the length of the inelastic zone considered, i.e. aeff = a + ρ3.
The size of the plastic zone ρ3 is determined such that the stress at the tip of the effective
crack should be bounded and equal to the yield stress σy. In fact, the model approximates
the elastoplastic behavior by considering a superposition of two elastic solutions. Namely,
a crack under a remote tension and the same crack with the yield stress applied to the
plastic zone at the crack tip. The solution of this problem can be obtained by employing
the stress function of Westergaard [213]. It can be found in Gdoutos [77] pp.96-98
which reads for small values of σ0/σy as

ρ3 =
π

8

(KI

σy

)2

. (7.99)

A comparison of (7.98) and (7.99) indicates that, there is about 20% difference between
Irwin’s and Dugdale’s predictions with respect to the size of the plastic zone.

Alternative to the strip yield model of Dugdale [61], an apparently similar model has
been proposed by Barenblatt [16]. The theoretical account developed by Barenblatt
is often referred to as the cohesive theory of fracture. He postulated that, the cohesive
forces act over a small interval at the ends of a given crack, see Figure 7.19. In this model,
underlying atomic nature of the fracture process is recognized by specifying the resistance
at the crack tip in terms of a non-linear cohesive force function. The presence of the
cohesion zone results in the removal of the singularity at the crack tip in an analogous
manner to the strip yield model of Dugdale [61]. In spite of the apparent similarities
between the two models, it is important to realize the fundamental difference in their
physical motivations. The former one represents the macroscopic plasticity in the vicinity
of a crack tip while the other constitutes the interatomic forces in the cohesive zone.

The cohesive crack problem of Barenblatt [16] can be treated as a superposition of
two linear elastic problems similar to the solution of the strip yield model. The remote
loading and the cohesive forces are applied separately to a linear elastic infinite medium
containing a crack of length 2a+2ρcz, see Figure 7.19. The stress intensity factors of both
problems can be superposed yielding a net stress intensity factor. Then the removal of the
stress singularity requires that the net stress intensity factor has to vanish. Clearly, the
solution of this problem depends on the choice of the cohesive stress function t(x) and a

2a ρ3ρ3 2a+ 2ρ3

inelastic zone σy σy

σ0

σ0σ0

σ0

A B

C

a. b.

Figure 7.18: The strip yield model by Dugdale [61]. a.) The concept of the effective
crack aeff = a + ρ3 which is longer than the physical crack a by the length of the plastic
zone ρ3 ahead the crack tip. b.) Plastic zone is realized by the application of a stress equal
to the yield stress σy of the material.
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Figure 7.19: The cohesive zone model by Barenblatt [16]. a.) The concept of the
cohesive zone ρcz ahead the crack tip. b.) Magnified view of the crack tip. The variation of
cohesive forces in the cohesive zone ahead the crack tip.

general analytical solution is not available. However, for some special cases approximate
solutions can be obtained, see Lawn [125]. A point of interest is the comparison of the
crack profile of the cohesive crack with the linear elastic crack surface. Under mode-I
loading conditions, according to the solution (D.57), traction free crack surfaces take the

shape of a parabola, i.e. u2 ∝ x
1/2
1 , see Figure 7.20a. On the other hand, the cohesive

forces acting at the crack tip closes the contour into the form of a cusp, i.e. u2 ∝ x
3/2
1 , as

depicted in Figure 7.20b. Thus, the displacement gradient for a cohesive crack approaches
smoothly to zero in the crack tip region, ∂u2/∂x1 → 0 as x1 → 0 whereas in the case of
parabola it diverges.

The application of J-integral (7.70) to the strip yield model leads to important results.
We consider the contour ABC which is shrunk to the boundary of the yield zone as shown
in Figure 7.18a. Along the path ABC, n1 = t1 = 0, t2 = σy and consequently J1 becomes

J1 = −
∫ ρ3

0

σy

[ ∂u+
2

∂x1

− ∂u−2
∂x1

]

dx1 (7.100)

where u+
2 and u−2 are x2 displacements of the upper and lower crack surfaces, respectively.

Introducing the separation (displacement jump) δ = u+
2 − u−2 , (7.100) can be written as

J1 = −
∫ ρ3

0

σy
∂δ

∂x1

dx1 =

∫ δ(A)

0

σydδ = σyδ(A) (7.101)

in terms of the yield stress σy and the displacement jump δ(A) at the tip of the physical
crack A. The separation δ(A) is referred to as the crack tip opening displacement (CTOD)
and is an important fracture parameter. The concept of CTOD has been introduced by

x1x1

x2x2

2u22u2

a. b.

Figure 7.20: Crack profiles in the vicinity of the crack tip. a.) Linear elastic solution with

traction free crack surfaces yields a parabolic profile u2 ∝ x
1/2

1 . b.) Cohesive crack solution

leads to a profile characterized by u2 ∝ x
3/2

1 .
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Wells [211] and employed especially in elastoplastic fracture mechanics. Note that the
J-integral, the energy release rate, the stress intensity factor, and the crack tip opening
displacement are equivalent fracture parameters for linear elastic materials under the
assumption of small scale yielding,

J1 = G =
K2

I

E ′ = σyδ(A) . (7.102)

Therefore, the same fracture criterion can be expressed in terms of any of the four pa-
rameters.

In a similar way J-integral can be applied to cohesive cracks, that is

J1 = −
∫ ρcz

0

t(x1)
[ ∂u+

2

∂x1
− ∂u−2
∂x1

]

dx1 =

∫ δ(A)

0

t(δ) dδ . (7.103)

The last integral in (7.103) is the work done by the cohesive forces on the separation, i.e.
the intrinsic work of cohesion, see Lawn [125] pp.70-72. In his cohesive fracture theory
Barenblatt [16] introduced the modulus of cohesion Kcoh

Kcoh =

∫ ρcz

0

t(x)

x1

dx1 (7.104)

as a new material constant. This quantity characterizes the resistance of a material
against a crack extension caused by the action of cohesive forces and is related to the
surface energy γ by

Kcoh =
√

πE ′γ . (7.105)

We refer to Willis [215] for a detailed investigation of the relation between the modulus
of cohesion and the surface energy.
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8. Configurational Forces in Brittle Fracture Mechanics

This section outlines briefly the concept of configurational forces and addresses dif-
ferent viewpoints to them. Starting with the Eshelby’s thought experiment alternative
derivations of the energy momentum tensor are outlined. These cover approaches based on
a Lagrangian density, a projection of balance laws onto material manifold, the Noether’s
theorem and particular invariance requirements. The topic presented here is far from
being complete and we refer to books by Maugin [133], Gurtin [88] and Kienzler &

Hermann [113] for comprehensive treatments. Furthermore, a thermodynamically con-
sistent variational formulation of brittle crack propagation based on configurational forces
is proposed. It is shown that both the elastic equilibrium response as well as the local
crack evolution follow in a natural format by exploitation of a global Clausius-Planck in-
equality in the sense of Coleman’s method. Consequently, the crack propagation direction
is identified by the material configurational force which maximizes the local dissipation
at the crack front.

8.1. Concept of Configurational Forces

The concept of physical forces, which engineers often deal with, is traced back to
Newton and Galilei. The physical forces are generated by a change of the actual placement
of a material particle in a physical space. On the other hand, the configurational forces
(they are also known as the material or non-Newtonian forces) are related to changes of
the positions of material points in the reference configuration. Eshelby [66] was the first
who introduced them as forces acting on imperfections in crystals, i.e. dislocations, foreign
atoms, vacancies or grain boundaries. Eshelby considered the total energy of a system as
a function of a set of parameters required to specify the configurations of imperfections.
Then, for a constant external loading state, he defined the configurational force as the
negative gradient of the total energy with respect to the position of an imperfection. In
fact, the term configurational force was not used by Eshelby [66, 67], he rather called
it as the force on a singularity, defect or an imperfection. This force is computed in
two dimensions by an integral over a contour that encloses the defect or singularity. The
integrand is the contraction of the energy momentum tensor with the outward unit normal
of the contour. In the three-dimensional case, the contour integral is replaced by a surface
integral.

8.2. Alternative Derivations of Energy Momentum Tensor

The subsequent discussions are devoted to alternative derivations of the energy mo-
mentum tensor, which is interchangeably referred to as the Eshelby stress tensor. It
outlines first briefly the works of Eshelby [66, 68]. Furthermore, different viewpoints
by Maugin [133], Gurtin [87, 88] and Kienzler & Hermann [113] are presented, see
also Podio-Guidugli [185].

8.2.1. Eshelby’s Thought Experiment. Following the works of Eshelby [66, 67],
the energy momentum tensor can be derived in a geometrically linear setting from the
computation of the force on a defect in an elastic medium. Here, only a short description
of the idea is presented, for further details see Eshelby [66, 67, 68, 69] or Maugin [133].
An externally loaded linear elastic body containing a defect enclosed by the surface S is
considered. Then S is moved by an infinitesimal displacement −δξ in the undeformed
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state and the surface S ′ is obtained. Eshelby investigated the energy change associated
with this displacement by considering some imaginary operations. Finally, he computed
the energy change as

δE = −δξ ·
∫

S

[
ψ1 − (∇T u)σ

]
· ndA (8.1)

where n is the outward unit normal to S and ψ is the energy storage function of the solid.
If we consider the energy change δE a priori as a scalar product of a conjugate force F

with the infinitesimal displacement −δξ, then (8.1) can be rewritten as

δE = −δξ · F . (8.2)

A comparison of the last two equations leads to the following identification of the force
F as an integral taken over the closed surface S

F :=

∫

S
Σ · NdA . (8.3)

Σ in (8.3) denotes the energy momentum tensor

Σ := ψ1 − (∇T u)σ (8.4)

which is introduced by Eshelby [66] in the framework of small strain elasticity. Indeed,
he called Σ as the Maxwell tensor of elasticity for the case of elastostatics and later in
Eshelby [69], he used the expression energy momentum tensor. As Eshelby [69] pointed
out, the energy momentum tensor can be related to the Maxwell tensor in electrostatics.
In an analogous manner to the force on a singularity in (8.3), the integral of the Maxwell
tensor contracted with the outer normal taken over a closed surface S gives the total force
on all the electric charges inside the surface S.

Note that if the integration path S in (8.3) encloses the tip of a two-dimensional crack,
the component of the force F parallel to the crack turns out to be the well-known path
independent J-integral of fracture mechanics originally proposed by Rice [188, 189]. The
J-integral is often interpreted as the crack driving force analogously to the force F acting
on a defect.

8.2.2. Formal Derivation from a Lagrangian Density. Next, the energy mo-
mentum tensor is presented in a geometrically non-linear framework as a natural outcome
of a Lagrangian density L in a similar way proposed by Eshelby [68, 69]. We consider
a Lagrangian density

L = L (x,∇Xx,X) (8.5)

as a function of the current position x, the deformation gradient ∇Xx =: F and the
reference coordinates X. Indeed, the original derivation of Eshelby [68, 69] defines the
Lagrangian as a function of the displacement field u and the displacement gradient ∇Xu

instead of x and ∇Xx, i.e.
L = L (u,∇Xu,X) . (8.6)

The requirement of the Lagrangian density L in (8.5) to be extremum when it is integrated
over a solid body results in the local condition

∂L
∂x

− ∂

∂X

∂L
∂F

= 0 (8.7)
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which is referred to as the Euler-Lagrange equations of the extremum problem. The
gradient of the Lagrangian density L reads

∂L
∂X

=
∂L
∂x

∂x

∂X
+
∂L
∂F

∂F

∂X
+

( ∂L
∂X

)

exp
(8.8)

with the following notation of explicit partial derivative from Eshelby [68, 69]

( ∂L
∂X

)

exp
=

∂L
∂X







x,∇x const.

. (8.9)

Employing the indicial notation, (8.8) can be reformulated as

∂L
∂Xi

=
( ∂L
∂xj

− ∂

∂Xk

∂L
∂Fjk

)

Fji +
∂

∂Xk

( ∂L
∂Fjk

Fji

)

+
( ∂L
∂Xi

)

exp
. (8.10)

The first term on the right hand side of (8.10) is the Euler-Lagrange equation (8.7) and
vanishes. Hence, one can write from (8.10) the following equation

DivΣ = −
( ∂L
∂X

)

exp
(8.11)

in terms of the energy momentum or the Eshelby stress

Σ = −L1 + F T ∂L
∂F

. (8.12)

If the Lagrangian density L is chosen as the negative of the energy storage function ψ,
then (8.12) renders the Eshelby stress of elastostatics

Σ = ψ1 − F T P , (8.13)

where P denotes the first Piola-Kirchhoff stress tensor and is computed from the energy
storage by the well-known formula P = ∂Fψ. Note that if we start with the Lagrangian
(8.6) defined as a function of u instead of x, then the energy momentum tensor takes the
form as stated originally in Eshelby [69]

Σ̄ = ψ1 − (∇T u)P . (8.14)

It is worth to make some comments on Σ and Σ̄. The energy momentum tensor Σ given
in (8.13) is symmetric if the material is isotropic. Insertion of the relation P = FS into
(8.13) gives

Σ = ψ1 − CS , (8.15)

where S and C denote the second Piola-Kirchhoff stress and the right Cauchy-Green ten-
sors, respectively. Isotropy induces the coaxiality of the conjugate stress-strain variables
S and C, i.e. SC = CS and this proves the symmetry of Σ in (8.15). On the other
hand, the isotropy condition does not lead to the symmetry of Σ̄. Similarly, the energy
momentum tensor defined in (8.4) for the case of small strain elastostatics is also asym-
metric even for the isotropic material response. Further discussions on the symmetry and
alternative definitions of energy momentum tensors can be found in Chadwick [41] and
Eshelby [68, 69].
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The extension to elastodynamics is possible if the Lagrangian density L is defined in
terms of the energy storage ψ and the kinetic energy K as

L := K − ψ with K := 1
2
ρ0|v|2 (8.16)

where ρ0 and v are the density and velocity fields, respectively. Consequently, the energy
momentum tensor reads

Σ = (ψ −K)1 − F T P . (8.17)

Note that from (8.11) one can conclude that, if the Lagrangian L does not depend ex-
plicitly on the reference coordinates X, then the energy momentum tensor is divergence
free

DivΣ = 0 . (8.18)

This, in the case of elastodynamics, corresponds to a homogeneous continuum where the
free energy and the density are not function of X explicitly. Furthermore, it provides an
additional balance equation similar to DivP = 0 which is the linear momentum balance
under quasistatic conditions in the absence of body forces.

8.2.3. Projection of Balance Laws onto Material Manifold. As an alternative
derivation of the energy momentum tensor we consider next the approach proposed by
Maugin [133, 134]. The main idea is the projection of the local momentum balance
equation onto the material manifold. Recall the balance of linear momentum

ρv̇ = div σ + ρb (8.19)

which is formulated with respect to the current configuration. σ and b denote the Cauchy
stress and the body forces per unit mass, respectively. The divergence operator refers to
the current coordinates x if it starts with a lowercase latter. Otherwise, it refers to the
reference coordinates X. The balance of linear momentum can also be written in terms
of the first Piola-Kirchhoff stress P and the reference density ρ0

ρ0v̇ = DivP + ρ0b . (8.20)

Equation (8.20) is obtained from (8.19) by making use of the relations P = JσF−T ,
div σ = (Gradσ) : F−T , div(J−1F T ) = 0 and ρ0 = Jρ with J := det F . In the case of
quasistatics, i.e. v̇ = 0 , without any body forces, i.e. b = 0 , (8.20) reduces to

DivP = 0 . (8.21)

Multiplication of (8.21) with F T yields in indicial notation

0 = FaBPaA,A

= (FaBPaA),A − FaB,APaA

= (FaBPaA),A − FaA,BPaA ,
(8.22)

where we made use of the property ∂2xa/∂XB∂XA = ∂2xa/∂XA∂XB. Next, the following
identity is employed

∂(ψδBC)

∂XC
=

∂ψ

∂FaA

∂FaA

∂XC
δBC +

( ∂ψ

∂XC

)

exp
δBC

= PaAFaA,B +
( ∂ψ

∂XB

)

exp
.

(8.23)
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Substitution of this result into the second term of (8.22) results in

Div[ψ1 − F T P ] =
( ∂ψ

∂X

)

exp
. (8.24)

The identification of the Eshelby stress given in (8.13) leads to

DivΣ =
( ∂ψ

∂X

)

exp
. (8.25)

In the case of homogeneous materials where the free energy does not depend explicitly on
X , above equation simplifies to (8.18). On the other hand, for dynamic problems with
the presence of body forces and inhomogeneities (8.25) reads

∂P
∂t

= DivΣ + ρ0binh . (8.26)

Note that in the previous equation the energy momentum tensor is defined by (8.17)
where the contribution of the kinetic energy is also included. P in (8.26) is referred to as
the pseudomomentum and defined by

P := −ρ0F
T v . (8.27)

The material inhomogeneity force binh per unit mass is identified as

ρ0binh :=
1

2
|v|2 Grad ρ0 −

( ∂ψ

∂X

)

exp
− ρ0F

T b . (8.28)

The gradient operator above refers to the reference coordinates X since it starts with
an uppercase letter. Observe that the configurational volume forces ρ0binh appear if the
density ρ0 or the energy storage function ψ is not homogeneous, or there exist physical
body forces b. For further details see Maugin [133, 134].

8.2.4. Derivation from the Noether’s Theorem. The conservation laws for elas-
tic materials can be derived following the Noether’s theorem that is applicable for systems
having a Lagrangian density L. The usual variations of the integral of L over the body
lead to the Euler-Lagrange equations, i.e. the equations of motion. On the other hand,
by simultaneous variations of both the dependent and independent variables of the La-
grangian one obtains the material conservation laws. The material conservation laws for
homogeneous materials in the case of linear elastostatics read

Ji =

∫

∂B
ΣjinidA = 0

Li =

∫

∂B
eijk

(
xjΣlk + ujσlk

)
nldA = 0

M =

∫

∂B

(
xjΣij −

1

2
ujσij

)
nidA = 0 ,

(8.29)

where eijk is the permutation symbol. The first equation is the well-known J-integral
and corresponds to the divergence free Eshelby stress. The other two equations are
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known as L− and M-integrals. The second balance law (8.29)2 (L-integral) is restricted
to isotropic materials. The J−, L− and M-integrals govern the balance equations in
the material (configurational) space related with a translation, rotation and scaling of a
defect, respectively. The extension of these conservation laws to finite kinematics can be
found in Knowles & Sternberg [115]. For further details we refer to the works by
Budiansky & Rice [35], Eischen & Herrmann [62], Steinmann [205], a recent book
by Kienzler & Hermann [113] and references therein.

8.2.5. Derivation from Invariance Requirements. A conceptually different ap-
proach to derive the energy momentum tensor is based on the invariance arguments of the
energy as proposed by Gurtin [87, 88]. It is well-known that the linear and the angular
momentum balances can be obtained from the energy equation by using the invariance
condition under superposed rigid body motions, see e.g. Green & Rivlin [83]. Alter-
natively, following Gurtin [87, 88], the same balance equations can be deduced by the
invariance requirement of the work done on a referential control volume under changes
in a spatial observer. Furthermore, it is possible in a similar manner to obtain the con-
figurational force balance from the invariance condition under changes in the material
observer.

Derivation of Standard Balance Equations. We consider the global energy bal-
ance equation under purely isothermal conditions

d

dt

∫

B0

ρ0(e+
1

2
v · v)dV =

∫

B0

ρ0b · v dV +

∫

∂B0

PN · vdA , (8.30)

where v is the velocity, e is the internal energy and b is the body force. Note that e and
b are defined per unit mass. Following Green & Rivlin [83], we require the energy
balance equation (8.30) to hold also for ṽ := v + w where w is a translational rigid body
velocity. Rewriting (8.30) for ṽ, one gets

∫

B0

ρ0v̇dV · w =
(∫

B0

ρ0bdV +

∫

∂B0

PNdA
)

· w . (8.31)

Equation (8.31) must hold for any arbitrary translational rigid body velocity w which
yields the global form of the linear momentum balance

∫

B0

ρ0v̇dV =

∫

B0

ρ0bdV +

∫

∂B0

PNdA . (8.32)

The global balance (8.32) induces the standard local form

ρ0v̇ = ρ0b + DivP . (8.33)

Furthermore, it is possible to obtain the angular momentum balance, i.e. the symmetry
condition on the stress. By employing (8.33), equation (8.30) can be rewritten as

∫

B0

ρ0ėdV =

∫

B0

(PF T ) : grad[v]dV . (8.34)

Next, the invariance condition with respect to a rotational rigid body velocity is imposed.
Equation (8.34) can be reformulated by replacing grad[v] with grad[ṽ] := grad[v] + Ω as

∫

B0

(PF T ) : ΩdV = 0 , (8.35)
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where Ω is a skew symmetric tensor denoting a constant rigid body angular velocity. In
order (8.35) to hold for arbitrary Ω the integrand (PF T ) : Ω has to vanish. Since Ω is
an arbitrary skew symmetric tensor, PF T needs to be symmetric, i.e.

PF T = FP T (8.36)

which is indeed the same result of the balance of angular momentum.

Instead of starting from the balance of energy, the same results can be recovered fol-
lowing Gurtin [88] from the invariance of the work under changes in the spatial observer.
The work done on a steady control volume P in a pure mechanical quasistatic theory is
defined by

W (P) =

∫

∂P
PN · vdA+

∫

P
ρ0b · vdV . (8.37)

As a physical constraint, the work defined in (8.37) must be invariant under changes in
the spatial observer. Consider the following change in the spatial observer

ṽ = v + w + ω × x (8.38)

for which the work W (P) has to remain the same. This invariance condition results in
two conditions

∫

∂P
PNdA+

∫

P
ρ0bdV = 0

∫

∂P
x × PNdA+

∫

P
x × ρ0bdV = 0 .

(8.39)

The first equation is the global form of the balance of linear momentum written for the
control volume P under quasistatic conditions. It induces the local form

DivP + ρ0b = 0 (8.40)

by using the divergence theorem. In order to satisfy (8.39)2 the following tensor

∫

∂P
x ⊗ PNdA+

∫

P
x ⊗ ρ0bdV (8.41)

has to be symmetric. By making use of the divergence theorem and (8.40) it can be shown
the following equality

∫

∂P
x ⊗ PNdA+

∫

P
x ⊗ ρ0bdV =

∫

P
FP TdV (8.42)

has to hold for any control volume. Owing to the symmetry of (8.41), the right hand side
of (8.42) is required to be symmetric. Therefore, it results in the symmetry condition
(8.36) of the stress, see Gurtin [88] for further details. In order to incorporate the
work performed by the configurational forces, an extension of steady control volumes to
unsteady ones, i.e. migrating through the reference configuration B0, is required. The
subsequent treatment is devoted to the concept of migrating control volumes.
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Figure 8.1: Migrating control volumes. Both the reference and the spatial configura-
tions are independently parameterized by the material and the spatial maps Ξt and ξt,
respectively. The change of Ξt in time describes the movement of the control volume. The
deformation map is the composition ϕt = ξt ◦ Ξ−1

t .

Migrating Control Volume and Change in Reference Configuration. A mi-
grating control volume P0, which is originally introduced by Gurtin [88], is a subregion
of the reference body B0 that moves through B. Configurational forces perform work on
these volumes by the transfer of material. In the treatment of migrating control volumes
together with standard deformations, consideration of three different velocity fields is re-
quired. Consider a one-to-one piecewise differentiable transformation Ξt : B0 → B of
the reference configuration onto itself. It reflects a time-dependent change of the initial
Lagrangian coordinates θ ∈ B0 to the current Lagrangian coordinates X ∈ B in the sense
of a movement of the control volume P0. The material coordinate map Ξt reads

Ξt :

{
B0 → B
(θ, t) 7→ X = Ξ(θ, t)

(8.43)

at time t ∈ R+. With this viewpoint at hand, we introduce also the spatial coordinate
map ξt : B0 → S as a time-dependent change of the initial Lagrangian coordinates θ ∈ B0

to Eulerian ones x ∈ S

ξt :

{
B0 → S
(θ, t) 7→ x = ξ(θ, t)

(8.44)

at time t ∈ R+. The material and spatial coordinate maps (8.43) and (8.44) yield the
deformation map by the composition

ϕt(X) = ξt(θ) ◦ Ξ−1
t (X) (8.45)

as visualized in Figure 8.1. Note that the subscript t next to a mapping is used to show
that the mapping is time dependent, e.g. ϕt(X) = ϕ(X, t). Based on the three point
maps defined above the following velocity fields are introduced

V :=
∂Ξ(θ, t)

∂t
, v :=

∂ξ(x, t)

∂t
and ϕ̇ :=

∂ϕ(X, t)

∂t
. (8.46)
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The material vector field V is assigned to the boundary ∂P0 of P0 and characterizes the
velocity at which material is transferred through ∂P0. The velocity fields defined in (8.46)
are related to each other by

v = ϕ̇ + FV . (8.47)

The above relation is obtained by considering the time derivative of the decomposition
ξt(θ) = ϕt(X) ◦ Ξt(θ), i.e.

∂ξt

∂t
=
∂ϕt

∂t
+
∂ϕt

∂X

∂Ξt

∂t
. (8.48)

Insertion of the definitions in (8.46) and F := ∂ϕ/∂X into (8.48) yields the result (8.47).
Having defined the velocity fields, the work performed on the migrating control volume
P can be written as

W (P) :=

∫

∂P
ΣN · V dA+

∫

∂P
PN · vdA+

∫

P
ρ0b · ϕ̇dV (8.49)

which involves the sum of three parts. The first two terms in (8.49) represent the working
of the standard and the configurational stresses and the last one is the working of the
external body forces. Note that for the case of a static control volume, i.e. V = 0 and
v = ϕ̇, the work expression becomes identical to (8.37).

Invariance under Changes in Velocity Field and Material Observer. The
working (8.49) may be reformulated with the help of (8.47) as

W (P) =

∫

∂P
(F T PN + ΣN) · V dA+

∫

∂P
PN · ϕ̇dA+

∫

P
ρ0b · ϕ̇dV . (8.50)

Following Gurtin [88], we require the work W (P) to be independent of the tangential
component (tangent to ∂P) of the velocity V of the control volume. This condition
induces ∫

∂P
T · (F T P + Σ)NdA = 0 , (8.51)

where T is an arbitrary vector tangent to P. In order to satisfy (8.51) for any pair T

and N , the tensor Σ + F T P has to be a scalar multiple of the identity tensor. As a
consequence, the configurational stress Σ can be expressed as

Σ = Π1 − F T P , (8.52)

where Π is a scalar field not yet identified. Substitution of (8.52) into (8.50) results in

W (P) =

∫

∂P
PN · ϕ̇dA+

∫

P
ρ0b · ϕ̇dV +

∫

∂P
ΠV · NdA . (8.53)

Next, in order to identify the scalar field Π we employ the second law of the thermody-
namics for the migrating control volume P. It requires that the rate at which work is
performed on P has to be greater than the rate of energy stored in P, i.e.

d

dt

[ ∫

P
ψdV

]

≤W (P) . (8.54)
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Owing to a standard transport theorem, the first term in (8.54) may be rewritten as

d

dt

[ ∫

P
ψdV

]

=

∫

P
ψ̇dV +

∫

∂P
ψV · NdA . (8.55)

Insertion of the results (8.53) and (8.55) into (8.54) yields
∫

P
ψ̇dV ≤

∫

∂P
PN · ϕ̇dV +

∫

P
ρ0b · ϕ̇dV +

∫

∂P
(Π − ψ)V · NdA . (8.56)

This inequality has to be satisfied for any arbitrary migrating control volume. It is
possible to find another control volume P̃ which coincides with P at a given time but has
a different normal velocity Ṽ ·N 6= V ·N . As a consequence, to guarantee the inequality
(8.56), it necessitates that Π = ψ holds. It yields together with (8.52) the Eshelby stress

Σ = ψ1 − F T P . (8.57)

Having obtained the previous result, the final step is to derive the configurational force
balance from the invariance restriction under changes in material observer. Gurtin [88]
indeed starts with a priori introduction of three non-standard fields additional to the
usual ones, i.e. the configurational stress Σ, the configurational internal force g and
the configurational external body forces e. Both forces g and e are defined per unit
mass. Observe that both the external and the internal configurational forces have no
contribution to the working (8.49). On the contrary, they perform work for a material
observer who views the material in a motion with constant velocity. Invariance of the
working (8.49) under changes in such material observers leads to the balance equation

DivΣ + ρ0g + ρ0e = 0 , (8.58)

where the configurational external and internal body forces are identified as

ρ0e := −ρ0F
T b and ρ0g := − ∂ψ

∂X
+ P :

∂F

∂X
. (8.59)

For further details of the derivation see Gurtin [88], pp.34-43. Note that with the
identification binh = g + e the final results (8.58) and (8.59) have a similar structure to
the equations (8.26)-(8.28) under quasistatic conditions. The fundamental difference is
due to the second term P : GradF in the configurational internal force g.

8.3. Configurational-Force-Driven Brittle Crack Propagation

In the sequel, configurational forces are presented particularly as the driving forces
of brittle crack propagation in elastic solids. A variational formulation of crack propa-
gation is addressed which is originally proposed in Miehe & Gürses [143]. It is first
developed in the geometrically non-linear theory. Then, following Miehe, Gürses &

Birkle [145], the formulation is discussed with slight modifications in linearized kine-
matics. The presented approach is based on configurational forces and conceptually in
line with Stumpf & Le [207] and Maugin & Trimarco [135]. It exploits the princi-
ple of maximum dissipation locally at the crack front and results in a crack propagation
law governed by material forces. See also related theoretical treatments of configura-
tional forces in brittle fracture by Gurtin & Podio-Guidugli [89, 90], Adda-Bedia

et al. [2], Oleaga [169, 170] and Agiasofitou & Kalpakides [3].
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BΓ SΓ
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C

Figure 8.2: Deformation of a solid with a crack. The crack surface Γ with crack tip ∂Γ is
obtained by the limits Γ− → Γ, Γ+ → Γ and |C| → 0 of material points of the solid bulk
X ∈ BΓ := B \ {Γ∪ ∂Γ} with the surface ∂BΓ := ∂B∪Γ− ∪Γ+ ∪C. The point deformation
map ϕt : X 7→ x is defined on the solid bulk BΓ.

8.3.1. Basic Geometry of a Solid with a Crack.

Definition of a Body with a Crack. Consider a fixed reference configuration
B ⊂ R3 of a body which contains a generic crack as visualized in Figure 8.2. The crack
is defined by a family of time-dependent non-self-intersecting surfaces Γ(t) ⊂ B such that

Γ(t1) ⊂ Γ(t2) for t1 ≤ t2 (8.60)

with a smooth boundary ∂Γ(t). We denote this boundary as the crack tip or front. In
two-dimensional problems a crack surface is a curve and a crack tip is a point. As a result
of (8.60) the crack propagation is allowed only through the motion of the front ∂Γ. A
local coordinate system is attached to the points X ∈ ∂Γ at the crack front such that e2

is tangent to ∂Γ, see Figure 8.3b. The current crack surface Γ(t) is the set

Γ(t) = Γ(0) ∪ { ∂Γ(t̃) | 0 < t̃ ≤ t } (8.61)

where Γ(0) is the initial crack surface. In the current scenario, material points occupy the
region

BΓ(t) := B \ {Γ(t) ∪ ∂Γ(t) } ⊂ R3 (8.62)

of the Euclidean space R3, having the exterior boundary ∂B and the interior boundary
formed by the crack. In particular, this boundary is considered to be of the form

∂BΓ := ∂B ∪ Γ− ∪ Γ+ ∪ C ⊂ R3 , (8.63)

where Γ− and Γ+ are the two faces of the crack and C a torus-like tube surface that
surrounds the crack tip ∂Γ. Here, C is a surface that encircles the crack front ∂Γ, see
Figure 8.3a. The subsequent investigations consider the limits

Γ− → Γ , Γ+ → Γ , |C| → 0 . (8.64)

Furthermore, in a standard manner the exterior surface ∂B of the solid is decomposed via

∂B = ∂Bϕ ∪ ∂Bt (8.65)

into a part ∂Bϕ where the deformation is prescribed by Dirichlet-type boundary conditions
and a part ∂Bt where tractions are prescribed by Neumann-type conditions. Clearly, we
have ∂Bϕ ∩ ∂Bt = 0.
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Deformation of a Cracked Body. The coordinates X ∈ BΓ of the solid in its
reference configuration BΓ are referred to as the material or Lagrangian coordinates. In
a deformed configuration at the time t ∈ R+, these coordinates are mapped by the
deformation map

ϕt :

{
BΓ → SΓ

X 7→ x = ϕt(X)
(8.66)

onto the spatial or Eulerian coordinates x ∈ SΓ, where SΓ ⊂ R3 denotes the current
configuration of the solid. This deformation is assumed to be prescribed on the part
∂Bϕ ⊂ ∂B of the exterior surface by the Dirichlet condition

ϕt(X) = X + tv̄(X) at X ∈ ∂Bϕ (8.67)

in a monotonous format with given velocity function v̄. In the interior domain BΓ, the
deformation map is constrained by the condition

det F > 0 at X ∈ ∂BΓ with F := ∇ϕt(X) , (8.68)

where F denotes the deformation gradient of the solid at X ∈ ∂BΓ and time t ∈ R+.
Observe carefully that the deformation map ϕt is not defined at points X ∈ {Γ∪ ∂Γ } of
the crack. Typically, the deformation map jumps across the surfaces of the crack

[[ϕt]] := ϕt(X
+) − ϕt(X

−) 6= 0 (8.69)

with X+ ∈ Γ+ and X− ∈ Γ−.

Material and Spatial Configurational Changes. We introduce next material
and spatial coordinate maps in an analogous way to the discussion of migrating control
volumes in Section 8.2.5. Consider a one-to-one piecewise differentiable transformation
Ξt : BΓ0

→ BΓ of the reference configuration onto itself. This mapping is considered as
the time-dependent parameterization of the medium that accounts for material structural
changes in the form of a crack propagation. It reflects indeed a time-dependent change of
the initial Lagrangian coordinates θ ∈ BΓ0

to the current Lagrangian coordinates X ∈ BΓ

in a sense of a change of material structure. With this viewpoint at hand, we introduce
the material and spatial coordinate maps

Ξt :

{
BΓ0

→ BΓ

θ 7→ X = Ξt(θ)
and ξt :

{
BΓ0

→ SΓ

θ 7→ x = ξt(θ)
(8.70)

Γ
Γ

∂Γ

X ∈ ∂Γ

Γ+

Γ−

N

N

C

e1

e2

e3

a. b.

Figure 8.3: a.) The three-dimensional crack surface Γ with crack front ∂Γ in the reference
configuration is obtained by the limits Γ− → Γ, Γ+ → Γ and |C| → 0 of material points of
the solid bulk X ∈ BΓ := B \ {Γ ∪ ∂Γ} with the surface ∂BΓ := ∂B ∪ Γ− ∪ Γ+ ∪ C. b.) A
local coordinate system is attached to points X ∈ ∂Γ such that e2 is parallel to the crack
front ∂Γ.
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BΓ

BΓ0

SΓ
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ϕtΞt

θ

X
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∂Γ

∂Γ0

Figure 8.4: Structural changes and deformation. Both the reference and the spatial config-
urations are independently parameterized by the material and the spatial maps Ξt and ξt.
The change of Ξt in time describes material structural changes, particularly in the context
of fracture the rate ȧ of crack propagation at the crack tip ∂Γ. The deformation map is the
composition ϕt = ξt ◦ Ξ−1

t .

at time t ∈ R+ and express the deformation map defined in (8.66) by the composition

ϕt(X) = ξt(θ) ◦ Ξ−1
t (X) (8.71)

as visualized in Figure 8.4. Note that the parameterization of the reference and current
configurations leads to a structure very similar to one discussed in Section 8.2.5 in con-
nection with the concept of migrating control volumes. As a consequence of (8.71), the
deformation gradient defined in (8.68) appears as the composition

F = j · J−1 with j = ∇θξt and J = ∇θΞt (8.72)

of the gradients of the material and spatial coordinate maps introduced in (8.70). Further-
more, the volume elements of the Lagrangian configurations dV0 and dV are connected
by the determinant of gradient of the material coordinate map Ξ, i.e.

dV = det JdV0 . (8.73)

With these definitions at hand, we obtain the total time derivative of the above kinematic
objects by

ϕ̇ = v − F · V , Ḟ = ∇v − F · ∇V and ˙dV = (1 : ∇V )dV (8.74)

in terms of the spatial and material velocity fields

v := [
∂

∂t
ξt(θ)] ◦ Ξ−1

t (X) and V := [
∂

∂t
Ξt(θ)] ◦ Ξ−1

t (X) , (8.75)

respectively. The above objects (8.74) and (8.75) provide the kinematic basis for the sub-
sequent rate formulation of the cracked body. They are parameterized by the Lagrangian
coordinates X ∈ BΓ and the time t ∈ R+. Hence, the operators in (8.74)

˙[·] :=
∂

∂t
[·](X, t) and ∇[·] :=

∂

∂X
[·](X, t) (8.76)
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denote the material time derivative at frozen Lagrangian coordinates X ∈ BΓ and the
gradient with respect to X ∈ BΓ, respectively.

The fields (8.75) govern possible variations of both the Lagrangian as well as the
Eulerian coordinates X ∈ BΓ and x ∈ SΓ. Clearly, these fields are restricted by some
typical boundary conditions in the material and physical space, respectively. We have for
the monotonous loading process (8.67) the admissible spatial velocity field

v ∈ Wv := {v | v = v̄ on ∂Bϕ} . (8.77)

Furthermore, we do not allow material configurational changes perpendicular to the ex-
ternal surface of the solid but allow arbitrary configurational changes of the homogeneous
bulk. Thus the admissible material velocity field is

V ∈ WV := {V | V · N = 0 on ∂B ∪ Γ and V = ȧ on ∂Γ} . (8.78)

Here, ȧ is the rate of extension of the crack surface Γ at the crack tip ∂Γ and satisfies
the physical constraint ȧ · e2 = 0, see Figure 8.3b. This global rate of crack extension is
determined by the constitutive formulation outlined below.

8.3.2. Global Elastic Response of a Solid with Cracks.

Global Dissipation Inequality. We focus on an elastic response of the solid with
evolving cracks. In order to set up the global constitutive equations for the crack evolution
in the elastic solid, we consider a global dissipation analysis in the sense of Coleman’s
method. This includes a comparison of the global power applied to the solid by external
tractions on its boundary with the global energy storage of the solid. The global power
of the external stresses acting on the surface ∂B is given by the expression

P :=

∫

∂B
t · ϕ̇dA , (8.79)

where t is the traction vector on ∂B. The total stress power done to the solid is balanced
with the total bulk energy storage of the solid

Ψ :=

∫

BΓ

ψ(F )dV , (8.80)

where ψ denotes the energy storage function with respect to unit volume of the refer-
ence configuration BΓ. This function is assumed to satisfy the standard restrictions of
objectivity and polyconvexity. Thus ψ(QF ) = ψ(F ) is valid for all Q ∈ SO(3) and
ψ = ψ̃(det F ,F , cof F ), where ψ̃ is a convex function, see Section 2.5.2 for further details.
Note that we focus on a homogeneous bulk response of the solid where the energy storage
is not explicitely dependent on the position X ∈ BΓ. The global dissipation of the frac-
turing elastic solid follows from the comparison of the stress power with the evolution of
the energy storage. We have the global postulate

D := P − d

dt
Ψ ≥ 0 . (8.81)

This statement is the demand of the second axiom of thermodynamics in the pure me-
chanical context. It is the global counterpart to the classical Clausius-Duhem inequality
of continuum thermodynamics.
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Global Elastic Response. Insertion of the total bulk energy storage (8.80) into the
global postulate (8.81) yields

D = P − d

dt

∫

BΓ

ψ(F )dV . (8.82)

Observe carefully that the time derivative is applied to both the energy storage ψ(F ) and
the infinitesimal volume element dV , i.e.

D = P −
∫

BΓ

∂ψ

∂F
: Ḟ dV −

∫

BΓ

ψ(F ) ˙dV . (8.83)

Substitution of the kinematic relationships (8.74) into (8.83) results in the representation

D = P −
∫

BΓ

{P : ∇v + Σ : ∇V }dV ≥ 0 (8.84)

in terms of the constitutive expressions

P := ∂Fψ(F ) and Σ := ψ(F )1 − F T∂Fψ(F ) (8.85)

for the first Piola-Kirchhoff stress tensor P and the Eshelby stress tensor Σ, respectively.
A reformulation with application of the Gauss theorem which is generalized appropriately,
see e.g. Maugin & Trimarco [135],
∫

BΓ

Div(•)dV =

∫

∂B
(•) · NdA−

∫

Γ

[[(•)]] · NdA−
∫

∂Γ

{
lim
|C|→0

∫

C

(•) · NdS
}
dS (8.86)

for the cracked solid visualized in Figure 8.2 results with (8.79) in the global expression
for the dissipation

D =

∫

BΓ

{
DivP · v + DivΣ · V

}
dV +

∫

∂B

{
[t − P · N ] · v − [F T · t + Σ · N ] · V

}
dA

+

∫

Γ

{
[[v · P ]] · N + [[V · Σ]] · N

}
dA+

∫

∂Γ

{
p · v + g · V

}
dS ≥ 0 .

(8.87)
Here, we introduced the limits

p := lim
|C|→0

∫

C

P · NdS and g := lim
|C|→0

∫

C

Σ · NdS (8.88)

at the crack tip ∂Γ where N is the inward normal to the curve C which surrounds the
crack tip, see Figure 8.2. This dissipation inequality has to be satisfied for all admissible
spatial and material velocity fields v and V defined in (8.77) and (8.78), respectively.
Admissible arbritrary spatial velocity fields (8.77) induce the the local equations

DivP = 0 in BΓ , P · N = t on ∂B , P · N = 0 on Γ , p = 0 on ∂Γ . (8.89)

The first two equations cover the equilibrium condition for the elastic bulk material BΓ

and the traction boundary condition on the external surface ∂B. The third equation
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characterizes traction free crack lips Γ− and Γ+and the last statement enforces the integral
(8.88)1 to be zero at the crack tip ∂Γ. Admissible arbritrary material velocity fields (8.78)
induce the local equation

DivΣ = 0 in BΓ (8.90)

for the Eshelby stress field in the bulk BΓ of the homogeneous elastic solid. Note that we
obtained here the condition (8.90), which has already been discussed in Section 8.2, from
a global dissipation analysis.

8.3.3. Crack Evolution Obtained by Maximum Dissipation. Taking into ac-
count the conditions (8.89), we obtain form (8.87) the reduced global dissipation inequality

D =

∫

∂Γ

δdS ≥ 0 with δ := g · ȧ ≥ 0 . (8.91)

Here, δ is the dissipation per unit length of the crack tip ∂Γ. It is an inner product of the
driving force g defined in (8.88)2 and the crack propagation rate ȧ at X ∈ ∂Γ, see Figure
8.4. The crack propagation ȧ rate needs to be specified by a constitutive assumption. To
this end, consider the classical isotropic Griffith-type crack criterion function

φ(g) = |g| − gc ≤ 0 , (8.92)

where gc is a material parameter specifying the critical energy release per unit length
of the crack. With this notion at hand, an associated evolution equation for the crack
propagation may be constructed by a local principle of maximum dissipation. Introducing
an elastic domain for the material forces at the crack tip

E := { g ∈ R3|φ(g) ≤ 0 } (8.93)

in terms of the above crack criterion function, the principle of maximum dissipation at
the point X ∈ ∂Γ of the crack tip reads

g · ȧ ≥ g∗ · ȧ for all g∗ ∈ E . (8.94)

Then the real driving force maximizes the dissipation for all admissible forces. Introducing
the Lagrangian function

L(g, γ̇) := −g · ȧ + γ̇φ(g) → Stationary! , (8.95)

we derive the evolution equation for the local crack propagation in an isotropic solid

ȧ = γ̇∂gφ(g) = γ̇
g

|g| (8.96)

along with the crack loading-unloading conditions in Karush-Kuhn-Tucker form

γ̇ ≥ 0 , φ(g) ≤ 0 and γ̇φ(g) = 0 . (8.97)
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BΓ

Ξt

θ

x

ȧ

ut

∂Γ

Figure 8.5: The displacement field ut = U t ◦ Ξ−1
t is defined on the solid bulk BΓ by

composition of a displacement field U t with the structural parameter map Ξt. The latter
describes material structural changes in time, particularly in the context of fracture the rate
ȧ of crack propagation at the crack tip ∂Γ.

Thus ȧ decomposes into the rate γ̇ of the amount of crack propagation and its direction
∂gφ, which is collinear to the driving configurational force (8.88)2. Observe that the above
constitutive equations determine the direction of the local crack propagation at X ∈ ∂Γ
and its discontinuous evolution but do not specify the value of γ̇. The insertion of the
evolution equation (8.96) into (8.91) gives the thermodynamic constraint

D =

∫

∂Γ

gcγ̇dS ≥ 0 (8.98)

that is satisfied for gc > 0 due to (8.97)1. Owing to the relation dΓ = dγ dS, the above
expression for the dissipation contains the change of the crack surface. Thus we may write

D =
d

dt
Es ≥ 0 with Es :=

∫

Γ

gcdΓ , (8.99)

where Es is often denoted as the surface energy associated with the crack surface Γ.

8.4. Restriction to Geometrically Linear Theory

In the following, the variational framework of brittle fracture, which is already dis-
cussed in Section 8.3 in the geometrically nonlinear setting, is presented in the small
strain framework. The positions x ∈ BΓ of material points are referred to as the current
material coordinates. The small strain deformation at time t ∈ R+ is described by the
displacement field on BΓ

ut :

{
BΓ → R3

x 7→ ut(x)
(8.100)

as indicated in Figure 8.5. The deformation is assumed to be prescribed on the part
∂Bu ⊂ ∂B of the exterior surface by the Dirichlet condition ut(x) = tv̄(x) at x ∈ ∂Bu

in a monotonous format with given velocity function v̄. In the interior domain BΓ, the
strains are assumed to be small. Thus, the norm of the displacement gradient

||h|| < ǫ with h := ∇ut(x) (8.101)

is bounded by a small number ǫ. Observe carefully that the displacement field ut is not
defined at points x ∈ {Γ ∪ ∂Γ } of the crack. Furthermore, the displacement field jumps
across the crack similar to the deformation map in (8.69), i.e. [[ut]] := ut(x

+)−ut(x
−) 6= 0

with x+ ∈ Γ+ and x− ∈ Γ−.
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Now consider a one-to-one piecewise differentiable transformation Ξt : BΓ0
→ BΓ of the

body onto itself. This mapping is the time-dependent parameterization of the medium
that accounts for the crack propagation. It indicates a time-dependent change of the
coordinates θ ∈ BΓ0

to x ∈ BΓ in a sense of a change of material structure. Therefore we
can express the displacement field defined in (8.100) by the composition

ut(x) = U t(θ) ◦ Ξ−1
t (x) (8.102)

in a similar structure to (8.71). As a consequence, the displacement gradient defined in
(8.101) appears as the composition

h = j · J−1 with j = ∇θU t and J = ∇θΞt (8.103)

in terms of the gradient of the material coordinate map Ξt. Furthermore, the current
volume element of the solid is now defined in terms of the material coordinate map
dV = det JdV0. With these definitions at hand, we obtain the total time derivative of the
above kinematic objects by

u̇ = v − h · V , ḣ = ∇v − h · ∇V and ˙dV = (1 : ∇V )dV (8.104)

in terms of the spatial and material velocity fields v and V , respectively. The spatial
and material velocity fields v and V govern possible variations of both the physical
displacement u as as well as the material structural coordinates x ∈ BΓ. Clearly, these
fields are restricted by some typical boundary conditions in the material and physical
space, respectively. The admissible spatial and material velocity fields have the same
structure as (8.77) and (8.78).

Analogous to Section 8.3.2 we consider a global dissipation analysis in the sense of
Coleman’s method for elastic solids with evolving cracks. The global power P of the
external traction t acting on the surface ∂B and the total bulk energy storage Ψ of the
solid are given by

P :=

∫

∂B
t · u̇dA and Ψ :=

∫

BΓ

ψ(ε)dV with ε := 1
2
[ h + hT ] . (8.105)

Note that we focus on a homogeneous bulk response of the solid where the elastic stored
energy only depends on the small strain tensor field ε. We have the global postulate (8.81)
which is the demand of the second axiom of thermodynamics in the pure mechanical
context. The insertion of the bulk energy in (8.105)2 along with (8.104) results in the
representation

D = P −
∫

BΓ

{σ : ∇v + Σ : ∇V }dV ≥ 0 (8.106)

in terms of the constitutive expressions

σ := ∂εψ(ε) and Σ := ψ(ε)1 − hT∂εψ(ε) (8.107)

for the symmetric linearized stress tensor σ and the non-symmetric Eshelby stress tensor
Σ, respectively. A reformulation analogous to steps in (8.86) and (8.87) leads to

Divσ = 0 in BΓ , σ · n = t on ∂B , σ · n = 0 on Γ , DivΣ = 0 in BΓ (8.108)
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for arbitrary spatial (8.77) and material (8.78) velocity fields. Note that, (8.108) corre-
sponds to the results (8.89) and (8.90) in the geometrically linear setting under considera-
tion. Taking into account the conditions (8.108), we obtain the reduced global dissipation

D =

∫

∂Γ

δdS ≥ 0 with δ := g · ȧ ≥ 0 and g := lim
|C|→0

∫

C

Σ · ndS . (8.109)

Here, δ is the dissipation per unit length of the crack tip ∂Γ. It is an inner product of
the driving force g and the crack propagation rate ȧ at x ∈ ∂Γ. The crack propagation
rate ȧ needs to be specified by a constitutive assumption. To this end, we consider
the classical isotropic Griffith-type crack criterion function (8.92). Having introduced
the crack criterion function, an associated evolution equation for the crack evolution is
constructed by a local principle of maximum dissipation, see Section 8.3.3. Then the
real driving force maximizes the dissipation for all admissible forces and yields the crack
propagation law in an isotropic solid

ȧ = γ̇
g

|g| (8.110)

along with the crack loading-unloading conditions in Karush-Kuhn-Tucker form (8.99).
Note that except some differences in the definition of point maps, the variational formu-
lations presented are very similar for geometrically non-linear and linear cases.
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9. Staggered Algorithm for Brittle Crack Propagation

The subsequent discussions are devoted to a finite element implementation of the
brittle fracture theory outlined in the previous section. It starts with a two-dimensional
formulation which is based on Miehe & Gürses [143]. A treatment of geometrically
linear theory and an extension to three-dimensional fracture problems are also presented,
see also Miehe, Gürses & Birkle [145] and Miehe & Gürses [144]. This includes
a straightforward implementation in terms of a displacement type finite element method.
The crack evolution is realized by a staggered scheme of stress computation at frozen mesh
accompanied by a successive crack release based on node doubling. Thus, the continuous
formulation outlined before is transferred in a consistent manner to discrete nodal points.
The fracture occurs in the discretized setting pointwise at the nodes and generates a node
breaking accompanied by a discrete crack propagation. This crack propagation takes
place in discrete steps of the order of the current finite element discretization.

9.1. Spatial Discretization of the Solid with a Crack

The spatial discretization of the configurational maps Ξt and ξt in (8.70) is performed
by isoparametric finite elements in the element domain Be

Γ0
as shown in Figure 9.1. We

have
ξh

t (θ) = Ñ(θ)dt and Ξh
t (θ) = Ñ(θ)Dt , (9.1)

in terms of the matrix of shape functions Ñ that depends on the position θ ∈ Be
Γ0

of the
element domain Be

Γ0
. Here, dt ∈ RNt·ndim and Dt ∈ RNt·ndim are the vectors of spatial

and material nodal positions, where Nt denotes the current number of nodes at time t
and ndim is the dimension of the problem. For given positions, the discrete gradients of
(9.1)

jh := B̃(θ)dt and Jh := B̃(θ)Dt (9.2)

allow the computation of the current deformation gradient (8.72) in the form

F h = jh · Jh−1 =: B(Xh)dt in Be
Γt
. (9.3)

in terms of the interpolation matrix B(Xh) which represents derivatives with respect to
the Lagrangian coordinates Xh ∈ Be

Γt
. Owing to this basic kinematic variable, the first

Piola-Kirchhoff stress P h and the Eshelby stress Σh are computed from (8.85), i.e.

P h = ∂Fψ(F h) and Σh = ψ(F h)1 − F hT
∂Fψ(F h) (9.4)

in a standard manner at typical integration points of the finite element mesh.

9.2. Global Response of the Spatially Discretized Solid

With the above discretization at hand, the material gradients of the spatial and ma-
terial velocities in (8.75) take the discrete form

∇vh = Bḋt and ∇V h = BḊt (9.5)

in terms of the time derivatives

ḋt :=
d

dt
dt ∈ RNt·ndim and Ḋt :=

d

dt
Dt ∈ RNt·ndim (9.6)
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Figure 9.1: Two-dimensional finite element discretization of a cracked solid based on nodal

doubling. The crack lips Γh−
t and Γh+

t at time t appear as external surfaces of a standard
finite element mesh with double nodes at X ∈ Γh

t . The crack tips ∂Γh
t are represented by

single nodes.

of the discrete nodal position vectors introduced in (9.1). As a result of (9.6), the rate
formulation of the global dissipation (8.84) appears as a sum

Dh := Ph − d

dt
Ψh =

Nt∑

I=1

{

[ pI + f I ] · ḋI + gI · ḊI

}

≥ 0 (9.7)

over the discrete number Nt of current nodes of the mesh. Here,

pI :=
E

A
e=1

∫

∂Be
Γt

NT
I thdA (9.8)

is the discrete external force caused by tractions th acting on the nodes I ∈ ∂Be
Γt

of the
external element surface Be

Γt
.

f I := −
E

A
e=1

∫

Be
Γt

BT
I P h dV and gI := −

E

A
e=1

∫

Be
Γt

BT
I Σh dV (9.9)

are the spatial and material discrete nodal forces acting on the discrete node I ∈ Be
Γt

of the

element domain Be
Γt

. In the above equations, A
E
e=1 denotes the standard finite element

assembling operator for a mesh with E elements. N I and BI are the shape function
and the strain interpolation matrices, referred to the node I ∈ Be

Γt
, respectively. The

computation of configurational forces in the finite element context is proposed originally
by Braun [33], see also Steinmann, Ackermann & Barth [206] and Denzer, Barth

& Steinmann [56].

The above formulation (9.7) is the starting point for the exploitation of the global
dissipation postulate in the spatially discretized setting. The exploitation in the sense of
a global Coleman method is based on the admissible discrete spatial velocities

vI ∈ Wh
v :=

{
vI | vI = v̄I on ∂Bh

ϕ

}
(9.10)

and the admissible material velocities

V I ∈ Wh
V :=

{
V I | V I · N = 0 on ∂Bh

Γt
∪ Γh

t and V I = ȧI on ∂Γh
t

}
(9.11)
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as the discrete counterparts to (8.77) and (8.78). The above discrete dissipation postulate
has to be satisfied for all admissible spatial and material velocity fields. As a consequence
of the physical admissible fields, we get the conditions of the physical equilibrium

f I = 0 in Bh
Γt
, f I + pI = 0 on ∂Bh

Γt
and f I = 0 on Γh

t . (9.12)

Thus, the equilibrium is characterized in the discretized setting by vanishing discrete
internal nodal forces f I in the domain Bh

Γt
and on the crack lips Γh

t . On the external
boundary ∂Bh

Γt
, the internal nodal forces f I are in equilibrium with the external nodal

forces pI . Furthermore, the discrete dissipation postulate has to be satisfied for all mate-
rial velocities in the domain of the solid. As a consequence, we have the discrete condition

gI = 0 in Bh
Γt

(9.13)

for the material nodal forces. This condition may be employed for the development of
mesh optimization algorithms in terms of r- or h-adaptive methods. It is considered
to be satisfied for an optimal mesh that resolves the homogeneous structure, see e.g.
Mueller, Gross & Maugin [160], Askes, Kuhl & Steinmann [10], Heintz et

al. [96], Thoutireddy & Ortiz [208] and Mosler & Ortiz [159]. Notice that an
arbitrary inhomogeneous mesh causes an artificial heterogeneity that would violate the
condition (9.13).

9.3. Time Discretization of the Crack Evolution Problem

Taking the above conditions (9.12) and (9.13) into account, we end up with a reduced
dissipation inequality

Dh =
∑

I∈∂Γh
t

gI · ȧI ≥ 0 (9.14)

in the discretized setting. It represents an inner product of the material forces gI acting
on nodes at the crack tip I ∈ ∂Γh

t and the associated material velocity ȧI of the node in
the material structural configuration.

Bh
Γn+1

Bh
Γn+1

h

gJgJ

∆a

Figure 9.2: Discretization of the crack evolution. Two successive crack releases ∆a =
hgJ/|gJ | for |gJ | > gc in a typical load increment [tn, tn+1] of critical nodes J :=
arg

{
maxI=1...Nn+1

(|gI |)
}

accompanied by a node doubling and the alignment of critical
segments in the direction of the configurational force gJ .
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Next step is to set up a constitutive characterization of the velocity ȧI . Following
Miehe & Gürses [143] we adopt the pointwise setting of the continuous formulation
outlined in (8.96). Thus, we consider the evolution equation

ȧI = γ̇t
gI

|gI |
locally at nodes I ∈ ∂Γh

t . (9.15)

It describes the movement of the nodes I at the crack tip along with the loading-unloading
conditions

γ̇I ≥ 0, [ |gI | − gc ] ≤ 0, γ̇I [ |gI | − gc ] = 0 , (9.16)

in the Karush-Kuhn-Tucker form. Note that in the above equation a new quantity gI is
introduced to preserve the dimensional consistency with gc. In two-dimensional problems
gI = gI while they are not the same in three dimensions. They are related by an effective
length which will be discussed in Section 9.4. This formulation summarizes the discrete
setting in the spatially discretized formulation. Observe the analogy between plasticity
formulations and above outlined framework. However, recall that the parameters γ̇I at
the nodes I ∈ ∂Γh

t of the crack tip are global. They represent the amount of the rate of
extension of the crack surface.

Notice carefully that the formulation and the algorithmic treatment presented so far
are independent of the dimension of the problem, i.e. it has formally the same structure
for both the two- and three-dimensional crack propagation. On the other hand, after the
time integration of the above evolution equation some technical differences arise depending
on the dimension of the problem. To this end, we consider a time discretization of the
dissipation in a typical time interval [tn, tn+1]

∆Dh
n+1 :=

∫ tn+1

tn

Dh dt ≈
∑

I∈∂Γh
n+1

gI · ∆aI ≥ 0 ,

where ∆aI is a line segment and coincides with the increment of the crack in two-
dimensional problems, see Figure 9.2. However, an increment in a crack ∆Γh is a two-
dimensional surface for three dimensional fracture. It is apparent that ∆aI which is a
line segment cannot coincide with ∆Γh which is an area element. Therefore, we interpret
in three-dimensional problems ∆aI as a line segment parallel to gI that lies in the new
increment ∆Γh of the crack surface. Furthermore, in two-dimensional problems the crack
increment ∆aI is uniquely determined solely through gI . On the contrary, the crack
increment ∆Γh in three-dimensional problems cannot be uniquely determined exclusively
through gI and it requires additional information. This issue will be addressed in Section
9.7.2.

The amount of this increment ∆aI is assumed to be related to step-wise crack segment
releases related to the space discretization. As a consequence, the associated discretization
reads

∆aI = ∆γI
gI

|gI |
locally at nodes I ∈ ∂Γh

n+1 (9.19)

with constant increments of the amount of crack extension

∆γI =

{
h for |gI | > gc

0 otherwise .
(9.20)
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Here, h is the relevant size of the mesh, e.g. triangle or tetrahedron depending on the
dimension of the problem. More precisely, h is the length of a segment that emanates
from the critical node in the direction of gI and lies inside the crack front triangle or
tetrahedron. Observe carefully that the discrete crack extension can occur within one
loading step several times in a successive manner. It is a consequence of the staggered
algorithm outlined in Section 9.4, see also Figure 9.2.

9.4. Staggered Algorithm for Incremental Energy Minimization

In order to obtain a stable setting for this incremental scenario, we apply a staggered
scheme of energy minimization at frozen crack pattern and a successive crack release by
single nodal doubling. In a typical time interval [tn, tn+1], this procedure works as follows.
After increasing the incremental load, we perform an elastic energy minimization at frozen
crack Γh

n+1, i.e.

Ψh
n+1 =

∫

Bh
Γn+1

ψ(F n+1) dV → Minimum! (9.21)

which is equivalent to the discrete equilibrium conditions (9.12) for the physical internal
nodal forces f I . In a second step, we identify the maximum loaded node Nc which is
the potential candidate for a possible point of crack propagation. For this purpose we
introduce a quasi-distributed configurational force

gI = gI/LI , (9.22)

where LI is the length of the part of crack front ∂Γh
n+1 that is driven by the material

force gI , i.e. for three-dimensional problems the half of the sum of length of two crack
front segments that emanate from the node I. Note that LI = 1 for two-dimensional
fracture but it still possesses a unit of length. Therefore, gI and g become dimensionally
consistent and we identify the critical node Nc

Nc := arg

{

max
I∈∂Γh

n+1

(|gI |)
}

(9.23)

by controlling the norm of the discrete quasi-distributed nodal configurational force vec-
tors. For the maximum loaded node Nc, the discrete crack condition of the form is checked

φNc := |gNc
| − gc . (9.24)

For φNc < 0 in (9.24), the current time interval at the given loading has a stationary
crack state. In this frozen crack state, we proceed with the next load increment. For the
case φNc ≥ 0, the most loaded node Nc is critical and has to be released. We then perform
in two-dimensional cases the segment alignment procedure illustrated in Figures 9.2 and
9.5 by releasing the crack via doubling of the critical node Nc, see Section 9.6.2. This is
in the line with an incremental crack release

∆aNc = h
gNc

|gNc
| (9.25)
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associated with a fixed segment length h given by the spatial discretization. In three-
dimensional problems the release of critical node is followed by the facet reorientation
procedure which will be discussed in Section 9.7.2, see also Figure 9.9. The crack increment
∆Γh is then obtained by the union of a set of critical facets that are already reoriented,
see (9.34). Having performed the nodal release and the reorientation, we then proceed
with a new energy minimization step (9.21) for the new relaxed system that is not yet
in equilibrium. The typical sequences of the staggered energy relaxation algorithm are
provided in Box 9.1 and Box 9.2 for two- and three-dimensional cases, respectively.

9.5. Discretization in Geometrically Linear Theory

In this section we briefly command on a finite element implementation for the above
outlined scenario of crack propagation in the geometrically linear setting. This includes
a straightforward implementation in terms of a displacement type finite element method
in an analogous manner to the geometrically non-linear case. The algorithm consists
of a staggered scheme of stress computation at frozen mesh accompanied by a crack
propagation realized by successive nodal releases. We have the spatial discretizations of
the displacement field and the structural configurational map

Uh
t (θ) = Ñ (θ)dt and Ξh

t (θ) = Ñ(θ)Dt , (9.26)

in terms of the matrix of shape functions Ñ , nodal displacements dt ∈ RNt·ndim and nodal
positions Dt ∈ RNt·ndim where Nt denotes the current number of nodes at time t and ndim

is the dimension of the problem. For given positions, the discrete gradients of (9.26), i.e.
jh := B̃(θ)dt and Jh := B̃(θ)Dt, allow the computation of the current displacement
gradient (8.103) in the form

hh = jh · Jh−1 =: B(xh)dt in Be
Γt

(9.27)

in terms of the interpolation matrix B(xh) which represents derivatives with respect to
the coordinates xh ∈ Be

Γt
. With this formulation at hand, the discrete rate formulation

of the global dissipation (8.106) appears in the form identical to (9.7), i.e.

Dh := Ph − d

dt
Ψh =

Nt∑

I=1

{

[ pI + f I ] · ḋI + gI · ḊI

}

≥ 0 (9.28)

as a sum over the discrete number Nt of current nodes of the mesh. In (9.28), pI is the
discrete external nodal forces caused by tractions, see (9.8). f I and gI are the spatial
and material discrete nodal forces acting on the node I of the element Be

Γt

f I := −
E

A
e=1

∫

Be
Γ

BT
I σh dV and gI := −

E

A
e=1

∫

Be
Γ

BT
I Σh dV (9.29)

in terms of the symmetric linearized stress field

σh = ∂εψ(sym[Bdn+1]) (9.30)

and in terms of the energy momentum tensor

Σh = ψ(sym[Bdn+1])1 − [ Bdn+1 ]T∂εψ(sym[Bdn+1]) . (9.31)

Exploitation of (9.28) for admissible discrete spatial and material velocities of the form
(9.10) and (9.11) yields the discrete counterpart of equations given in (8.108).
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Box 9.1: Two-Dimensional Staggered Scheme for Crack Propagation.

1. Initialization. Update external load at tn+1 and set the initial crack front ∂Γh
n+1.

2. Elastic Energy Minimization. At frozen crack geometry associated with the dis-
crete mesh Be

Γ, solve the nonlinear elastic energy minimization problem

f I := −
E

A
e=1

∫

Be
Γ

BT
I P h dV = 0 for I = 1 . . . Nn+1

in terms of the first Piola-Kirchhoff stress field

P h = ∂Fψ(Bdn+1)

for the current spatial nodal positions dn+1 by a global Newton iteration.
3. Configurational Forces. For the obtained equilibrium state at frozen crack compute

the configurational nodal forces

gI := −
E

A
e=1

∫

Be
Γ

BT
I Σh dV for I = 1 . . . Nn+1

in terms of the Eshelby energy momentum tensor

Σh = ψ(Bdn+1)1 − [ Bdn+1 ]T∂Fψ(Bdn+1)

4. Check of Fracture Criterion. At frozen deformation, find the maximum loaded
node and check the Griffith criterion

Nc := arg
{

max
I∈∂Γh

n+1

(|gI |)
}

: If |gNc
| < gc Exit.

5. Critical Crack Segment. Define unit vectors mS in the direction of the element
edges S = 1...nseg emanating from Nc. Get the critical crack segment

Sc = arg
{

max
S=1...nseg

(gNc
· mS)

}

6. Crack Segment Alignment. Reorient the critical segment Sc by moving the other
node of Sc (other than Nc) such that for the segment direction the following holds

gNc
× mSc = 0

7. Discrete Crack Release. Release the segment Sc by doubling the critical node Nc

and perform necessary updates of the data structure described in Boxes 9.4 and
9.5. Go to step 2.

9.6. Algorithmic Treatment of Two-Dimensional Crack Propagation

9.6.1. Data Structures for Crack Release with Node Doubling. The data
structures required for incremental crack segment releases with node doubling follows
conceptually the three-dimensional formulation outlined by Pandolfi & Ortiz [178].
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Box 9.2: Three-Dimensional Staggered Scheme for Crack Propagation.

1. Initialization. Update external load at tn+1 and set the initial crack front ∂Γh
n+1.

2. Elastic Energy Minimization. At frozen crack geometry associated with the dis-
crete mesh Be

Γ, solve the nonlinear elastic energy minimization problem

f I := −
E

A
e=1

∫

Be
Γ

BT
I P h dV = 0 for I = 1 . . . Nn+1

in terms of the first Piola-Kirchhoff stress field

P h = ∂Fψ(Bdn+1)

for the current spatial nodal positions dn+1 by a global Newton iteration.
3. Configurational Forces. For the obtained equilibrium state at frozen crack compute

the configurational nodal forces

gI := −
E

A
e=1

∫

Be
Γ

BT
I Σh dV for I = 1 . . . Nn+1

in terms of the Eshelby energy momentum tensor

Σh = ψ(Bdn+1)1 − [ Bdn+1 ]T∂Fψ(Bdn+1)

4. Check of Fracture Criterion. At frozen deformation, find the maximum loaded
node and check the Griffith criterion

Nc := arg
{

max
I∈∂Γh

n+1

(|gI |)
}

: If |gNc
| < gc Exit.

5. Critical Crack Facets. Determine the critical facets Fci
and approximate the crack

increment ∆Γ
∆Γ ≈ ∆Γh = Fc1 ∪ Fc1 ∪ . . .Fcn

6. Reorientation of Critical Facets. Reorient Fci
in the desired crack propagation

direction based on the configurational force and the crack front constraints
7. Discrete Crack Release. Release the facets Fci

by doubling of the critical node Nc

and perform updates of the data structure in Box 9.7 and Box 9.8. Update the
crack front ∂Γh

∂Γh ⇐ ∂Γh ∪ N1 ∪ . . . ∪ Nn−1 −Nc and go to step 2.

Here, we first focus on two-dimensional data structures where triangular finite elements
are considered as a composition of three set of objects: (i) triangles T , (ii) segments S
and (iii) nodes N as visualized in Figure 9.3 and described in Box 9.3. A triangle T is
composed of three nodes {N1,N2,N3} and three segments {S1,S2,S3}. Additional to the
node and the segment information, the neighboring triangles {T1, T2, T3} of the triangle T
need to be stored. If a triangle T has only one or two neighbors then the corresponding set
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Box 9.3: Additional Topology Information for Crack Propagation.

1. Data structure of the triangle T
1.1 nodes belonging to the triangle T {N1, N2, N3}
1.2 segments belonging to the triangle T {S1, S2, S3}
1.3 neighboring triangles to the triangle T {T1, T2, T3}

2. Data structure of the segment S
2.1 neighboring triangles to the segment S {T1, T2}
2.2 connectivity of the segment S {N1, N2}

3. Data structure of the node N
3.1 number of segments having the node N numseg(N )
3.2 number of triangles having the node N numtri(N )
3.3 segments having the node N {Si | i = 1 . . . numseg(N )}
3.4 triangles having the node N {Ti | i = 1 . . . numtri(N )}
3.5 inner/outer flag of the node N 1 → inner and 0 → outer

will be {T1, 0, 0} or {T1, T2, 0}, respectively. A segment S1 consists of two nodes {N1,N2}
and has at most two neighboring triangles {T1, T2}. Note that for boundary segments
there is only one neighboring triangle T1. The third class of objects is a typical node N1

of the mesh. Here, first the number of segments numseg(N1) and triangles numtri(N1)
having the node N1 are stored. Also lists of all segments {Si | i = 1 . . . numseg(N1)}
and triangles {Ti | i = 1 . . . numtri(N1)} having the node N1 is required. Finally a flag
to specify N1 as an outer or inner node is needed. The flag is set to 1 for inner nodes
and to 0 for outer ones. The data structures summarized in Box 9.3 are generated at
the beginning of a loading process from a given standard displacement type finite element
topology. It remains unchanged unless a crack progress occurs. An advance in the crack
requires two steps. First, a change in the standard connectivity information of the finite
elements is necessary. Second, a new data structure generation from the modified topology
needs to be performed. In the subsequent section we discuss these necessary updates in
the data structure.

9.6.2. Data Update due to Segment Release and Node Doubling. The algo-
rithm for the data update as a consequence of a crack progress can be divided into three

S1

S1

S2
S2S3

S3

T

N1

N1N1

N1

N2N2

N2

N2

N3N3

N3

N3

a. b. c.

Figure 9.3: Necessary objects for the description of three-noded triangular finite element.
a.) The triangle T is defined by three nodes {N1, N2, N3} and three segments {S1, S2, S3}.
b.) Segments S1, S2 and S3 of the triangle T are defined by nodes {N1, N2}, {N2, N3} and
{N1, N3}, respetively. c.) Nodes N1, N2, N3.
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Box 9.4: Necessary Topology Update due to a Segment Doubling.

1. segments to be doubled and generated Sc, Sn

2. set the connectivity of Sn Nc, N1

3. set the neighboring triangles of Sn T2, 0
4. change the neighboring triangles of Sc T1, 0
5. change the segments of T2 Sn, S3, S4

6. change the neighboring triangles of T1 T4, T5

7. change the neighboring triangles of T2 T7, T8

8. change the neighboring segments of Nc Sc, S1, S4, S5, S8, S9, S10, Sn

9. change the neighboring segments of N1 Sc, S2, S3, S6, S7, Sn

10. change the number of segments for Nc numseg(Nc) = numseg(Nc) + 1
11. change the number of segments for N1 numseg(N1) = numseg(N1) + 1

parts: (i) Find the critical node Nc and the critical segment Sc, (ii) double the critical
segment including the update of the data structure and finally (iii) double the critical
node including the update of the data structure.

Determination of Critical Tip Node and Critical Segment. The algorithmic
check of the crack criterion at the nodal points follows the treatment of Section 9.4 and is
summarized in Box 9.1. The critical step is the computation of the configurational force
vectors gN at all nodal points of the finite element mesh. Next, the critical node Nc is
determined by constructing a loop over all crack front nodes of the finite element mesh, i.e.
N ∈ ∂Γh

n+1, to find the one having the maximum configurational force vector gNc
. Then

Nc describes the crack tip where a possible advance of a crack may take place. After having
found Nc, the critical segment Sc has to be determined. This is accomplished by another
loop over all segments having the critical node Nc, i.e. {Si | i = 1 . . . numseg(Nc)}. Then,
Sc is the segment which emanates from Nc and makes an angle with the configurational

Box 9.5: Necessary Topology Update due to Node Doubling.

1. Generation of the new node Nn and the new segment Sn

1.1 Find the critical segment Sc (Box 9.1) and duplicate it : Sn

1.2 Find the critical node Nc (Box 9.1) and duplicate it : Nn

1.3 Perform the data structure update described in Box 9.4

2. Assignment of the new node Nn to associated finite elements
2.1 find the triangle T1 having both the critical segment Sc and node Nc

2.2 find the next triangle T4 neighbor to T1 and having the node Nc

2.3 find the set of triangles {T1, T4, T3} in a similar manner

2. Generation of the new data structure
3.1 assign the new node Nn to triangles {T2, T8, T9}
3.2 keep the old node Nc for triangles {T1, T4, T3}
3.3 increase the total number of nodal points
3.4 generate the new data structure described in Box 9.3
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Figure 9.4: Necessary topology update for segment doubling. a.) Segment Sc with con-
nectivity Nc, N1 and with neighboring triangles T1, T2 is to be doubled. b.) Segment Sn

with connectivity Nc, N1 and with single neighboring triangle T2 is generated. Neighboring
triangle of segment Sc is changed to only T1. c.) New node Nn is generated.

force vector gNc
that is closer to zero than those of other segments. The final and very

crucial step is the adaptive reorientation of the critical segment at the crack tip. As already
mentioned, the configurational force vector gNc

shows the direction that the crack should
advance. In most of the cases this direction does not coincide with one of the current
segments at the crack tip. Thus, having determined Nc and Sc, we reorient the critical
segment Sc such that it becomes parallel to the configurational force vector gNc

. This
alignment is performed such that the second node of Sc that is different from Nc is moved
along the edge that is opposite to the node Nc. This movement of a single node along
the edge provides a reorientation procedure without severe distortions of the triangular
elements at the crack tip. The algorithmic steps are summarized in Box 9.1 and visualized
for a simple mesh in Figure 9.5.

Doubling of Critical Segments. After having found the critical node Nc and the
critical segment Sc, the next step is the doubling of Sc and the accompanying update
of the data structure. These steps are outlined in Box 9.4 for the simple mesh given
in Figure 9.4. First, a new segment Sn is generated and its connectivity information is
assigned as {Nc,N1}, which is identical to the one of Sc. Then the neighboring triangles
of Sc and Sn are set to {T1, 0} and {T2, 0}, respectively. The segments of the triangle
T2 become {Sn,S3,S4}. Note that the segments of T1 remain unchanged. After the
generation of the new segment Sn, the triangles T1 and T2 are no more neighbor of each
other. Their neighboring triangle information has to be changed to {T4, T5, 0} for T1 and
to {T7, T8, 0} for T2. Finally, the set and the number of neighboring segments for the
nodes Nc and N1 has to be updated. In the example considered the sets for Nc and N1

a. b. c. d.

gNc
gNc

gNc
Nc Sc

Bh
Γ Bh

ΓBh
Γ Sh

Γ

ϕh
t

Figure 9.5: Adaptive segment alignement and node doubling procedure. a.) Identification
of maximal loaded node Nc with configurational force gNc

and its corresponding segments.
b.) Identification of the critical segment Sc. c.) Alignment of critical segment Sc in direction
of the driving force gNc

and node doubling. d.) Current deformation state with new mesh
data.
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become {Sc,S1,S4,S5,S8,S9,S10,Sn} and {Sc,S2,S3,S6,S7,Sn}, respectively.

Doubling of Critical Node. The generation of a new node Nn is the next step to be
performed. The crucial point here is to determine which triangles take the new node Nn

and which ones retain Nc. For this purpose, first the triangle T1 having both the critical
segment Sc and node Nc has to be found, see Figure 9.4. Then the triangle T4 as being
a neighbor of T1 and having the node Nc is identified. In a similar way T3 is found as
a neighbor of T4 and having the node Nc. Following this procedure, the set of triangles
{T1, T4, T3} which keep the old node Nc are uniquely determined. The topologies of all
other triangles which have Nc in their connectivity, i.e. {T2, T8, T9}, have to be changed.
In the connectivity information of {T2, T8, T9} the node Nc is replaced with Nn. As a result
of a new node generation, the total number of nodes is increased and the coordinates of
Nn is assigned to be the same as Nc. Finally, the complete data structure that is discussed
in Box 9.5 has to be created for the new topology.

9.7. Algorithmic Treatment of Three-Dimensional Crack Propagation

9.7.1. Data Structures for 3-D Crack Release with Node Doubling. In this
section we extend the two-dimensional data structures discussed previously to the three-
dimensional ones which are necessary for the description of the crack propagation. In this
context, linear tetrahedral finite elements are considered as a composition of four set of

Box 9.6: Topology Information for Three-Dimensional Crack Propagation.

1. Data structure of the tetrahedron T
1.1 nodes belonging to T {N1, . . ., N4}
1.2 segments belonging to T {S1, . . ., S6}
1.3 facets belonging to the T {F1, . . ., F4}
1.4 neighboring tetrahedra to T {T1, . . ., T4}

2. Data structure of the facet F
2.1 nodes belonging to F {N1, . . ., N3}
2.2 segments belonging to F {S1, . . ., S3}
2.3 neighboring tetrahedra to F {T1, T2}
2.4 inner/outer flag of F 1 → inner and 0 → outer

3. Data structure of the segment S
3.1 connectivity of S {N1, N2}
3.2 number of facets having S numfac(S)
3.3 number of terahedra having S numtet(S)
3.4 facets having S {Fi | i = 1 . . . numfac(S)}
3.5 tetrahedra having S {Ti | i = 1 . . . numtet(S)}

4. Data structure of the node N
4.1 number of segments having N numseg(N )
4.2 number of tetrahedra having N numtet(N )
4.3 segments having N {Si | i = 1 . . . numseg(N )}
4.4 tetrahedrons having N {Ti | i = 1 . . . numtet(N )}
4.5 inner/outer flag of N 1 → inner and 0 → outer
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Figure 9.6: Necessary objects for the description of a four-noded tetrahedral finite element
mesh. a.) The tetrahedron T is defined by four nodes {N1, N2, N3, N4}, six segments {S1,
S2, S3, S4, S5, S6} and four facets {F1, F2, F3, F4}. b.) Facets F1, F2, F3 and F4 are
defined by segments {S3, S2, S1}, {S1, S4, S5}, {S3, S5, S6}, {S2, S4, S6} and nodes {N1,
N3,N2}, {N1, N2,N4}, {N3, N1,N4}, {N3, N2,N4}, respectively. c.) Segments S1, S2, S3,
S4, S5 and S6 are defined by nodes {N1, N2}, {N2, N3}, {N1, N3}, {N2, N4}, {N1, N4}
and {N3, N4}, respetively. d.) Nodes N1, N2, N3 and N4.

objects: (i) tetrahedra T , (ii) facets F , (iii) segments S and (iv) nodes N as visualized
in Figure 9.6 and described in Box 9.6. A tetrahedron T is composed of four nodes
{N1 . . .N4}, six segments {S1 . . .S6} and four facets {F1 . . .F4}. Additional to the node,
segment and facet information, the neighboring tetrahedra {T1 . . .T4} of the tetrahedron
T need to be stored. A tetrahedron T may have maximum four neighbors and if it has
less than four then the corresponding entries are set to 0. A facet F1 consists of three
nodes {N1 . . .N3}, three segments {S1 . . .S3} and has at most two neighboring tetrahedra
{T1, T2}. Note that boundary facets have only one neighboring tetrahedron and they are
set as outer. A segment S1, similar to a line element, consists of two nodes {N1,N2}.
The number of facets numfac(S1) and tetrahedra numtet(S1) having the segment S1

are also stored. Moreover, lists of all facets {Fi | i = 1 . . . numfac(S1)} and tetrahedra
{Ti | i = 1 . . . numtet(S1)} having the segment S1 are generated. The last class of objects
is a typical node N1 of the mesh. Here, first the number of segments numseg(N1) and
tetrahedra numtet(N1) having the node N1 are stored. Also the information about all
segments {Si | i = 1 . . . numseg(N1)} and tetrahedra {Ti | i = 1 . . . numtet(N1)} having
the node N1 is required. Finally, a flag to specify N1 as an outer or inner node is needed.
The flag is set to 1 for inner nodes and to 0 for outer ones.

The data structures summarized in Box 9.6 are generated at the beginning of a loading
process from a given standard displacement type finite element topology. It remains
unchanged unless a crack propagation occurs. An advance in the crack requires two
steps: First, a change in the standard connectivity information of the finite elements and
second, a new data structure generation from the modified topology. In the subsequent
section we discuss these necessary updates in the data structure.
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Box 9.7: Necessary Topology Update due to Doubling of Facets Fc1 and Fc2.

1. facets to be doubled and generated {Fc1,Fc2} and {Fn1
,Fn2

}
2. set the connectivity of Fn1

and Fn2
{Nc, N2, N1} and {Nc, N3, N2}

3. set neigh. tetrahedra of Fn1
and Fn2

{T1, 0} and {T3, 0}
4. change neigh. tetrahedra of Fc1 and Fc2 {T4, 0} and {T6, 0}
5. change neigh. tetrahedra of T1 and T3 {T2, 0, 0, 0}
6. change neigh. tetrahedra of T4 and T6 {T5, 0, 0, 0}

9.7.2. Data Update due to Facet Release and Node Doubling. The algorithm
for the data update as a consequence of a crack propagation is divided into four parts:
(i) Find the critical node Nc, the neighboring segments S1, S2 at the crack front and
compute the normal vector to new crack surface. (ii) Find all critical facets Fc by tracing
relevant facets starting from S1 to S2 and reorient them. (iii) Double all the critical facets
including the necessary update of the data structure. (iv) Double the critical node Nc

including the update of the data structure.

Determination of Critical Node and Crack Surface Normal. The algorithmic
check of the crack criterion at the nodal points follows the treatment of Section 9.4 and
is summarized in Box 9.2. Note that when a solid body is considered in the continuous
setting before a finite element discretization, then a smooth crack front turns out to be
a three-dimensional curve. Furthermore, the configurational forces constitute vectorial
objects acting per unit length of the crack front. As a consequence of the finite element
discretization the distributed material forces become discrete nodal vectors acting on
the nodes of the mesh those are located at the crack front. In Figures 9.7a and b the
distributed and discrete nodal configurational forces acting on a crack front are illustrated.

The first step is the computation of the configurational force vectors gN at all nodal
points of the finite element mesh. Next, the critical node Nc is determined by constructing
a loop over all crack front nodes Ni ∈ ∂Γh of the finite element mesh to find the one having
the maximum quasi-distributed configurational force vector gNc

, see Figure 9.7. Then, Nc

describes the crack tip where a possible advance of the crack may take place. Recall that
gNc

itself cannot be used directly in the crack criterion due to dimensional inconsistency
as already explained in Section 9.4, see equation (9.22). On the other hand, for the
determination of the crack surface normal it is not necessary to modify the definition
of gNc

. In order to identify uniquely an advance of the crack front, it is necessary to
determine the normal vector N of the incremental crack surface ∆Γh

n+1. Observe that by
using only the configurational force vector gNc

at the critical node one cannot identify the
normal N uniquely, i.e. a rotational indeterminacy of the surface ∆Γh

n+1 remains around
the axis given by the configurational force gNc

as visualized in Figure 9.7c. A remedy of
this problem could be to take into account additional information from the neighborhood
of the critical node Nc at the current crack front ∂Γh

n+1. One possibility is to employ the
configurational forces acting on nodes N1 and N2 next to the critical one Nc, see Figure
9.8c. Another solution is to consider the crack front segments S1 and S2 that emanate
from Nc as shown in Figure 9.8c and 9.9a. The segments S1 and S2 put indeed a constraint
on the formation of a new surface and this constraint provides a smooth propagation of
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Box 9.8: Necessary Topology Update due to Node Doubling in 3-D.

1. Generation of the new node Nn and the new facets Fni

1.1 Find the critical facets Fci
(Box 9.1) and duplicate it : Fni

1.2 Find the critical node Nc (Box 9.1) and duplicate it : Nn

1.3 Perform the data structure update described in Box 9.7

2. Assignment of the new node Nn to associated finite elements
2.1 find the tetrahedron T1 having both the critical facet Fc1 and node Nc

2.2 find the next tetrahedron T2 neighbor to T1 and having the node Nc

2.3 find the set of tetrahedra {T1, T2, T3} in a similar manner

2. Generation of new data structure
3.1 assign the new node Nn to tetrahedra {T4, T5, T6}
3.2 keep the old node Nc for tetrahedra {T1, T2, T3}
3.3 increase the total number of nodal points
3.4 generate the new data structure described in Box 9.6

the crack. Here, we follow the second approach and define an average crack front vector
that describes the crack front in the neighborhood of the critical node Nc. The average
crack front vector s̃ is defined by

s̃ =
s1 + s2

|s1 + s2|
, (9.32)

where s1 and s2, as shown in Figure 9.9a, are the unit vectors along the segments S1

and S2, respectively. Then the unit normal vector N to the new crack surface increment
∆Γh

n+1 is determined by

N =
gNc

× s̃

|gNc
× s̃| . (9.33)

If the critical node Nc is either the first or the last node of the crack front ∂Γh
n+1 then

there exists only one neighboring segment of Nc. In this case, the average front vector s̃

is equal to the relevant crack front vector si of the segment Si. Note that the illustrations
of the crack front in Figure 9.9 represent a special case where the three vectors s1, s2 and
gNc

are coplanar. Normally, for a general case it is not possible to define a surface with
constant unit normal such that s1, s2 and gNc

lie in a plane.

Determination of Critical Facets and Reorientation. After having found Nc

and S1, the critical facets Fci
have to be determined. This is accomplished by a loop over

all facets having the segment S1, i.e. {Fi | i = 1 . . . numfac(S1)}. Then, Fc1 is the facet
having the following three properties: (i) One of the segments of Fc1 should be S1. (ii) Fc1

should be an inner facet, i.e. the inner/outer flag has to be 1. (iii) The absolute value of
the scalar product between the unit normal n1 of Fc1 and N has to be maximum. Having
determined the first critical facet Fc1, we project the node N1 perpendicularly onto the
desired increment of the crack surface ∆Γh

n+1. As a consequence of the projection, the
normal vector n1 of the critical facet Fc1 is aligned to the required normal N , see Figure
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Figure 9.7: a.) Distributed configurational forces acting on the front ∂Γ of the crack
surface Γ which lies entirely in the x − y plane. b.) Discrete configurational forces acting
on crack front nodes N ∈ ∂Γh

n+1 as a consequence of the finite element discretization. c.)
The configurational force gNc

(which also lies in the x − y plane) acting on the critical
node Nc and two possible crack surface increments that are parallel to gNc

. Two possible

crack surface increments ∆Γ̃h
n+1 and ∆Γ̄h

n+1 are in the x− z and x− y planes, respectively.
Consequently, new increment of the crack surface ∆Γh

n+1 cannot be determined uniquely by
gNc

alone.

9.9. Note that in some cases a complete reorientation of the facet Fc1 by moving the node
N1 cannot be performed due to undesired mesh distortions. It is even possible to obtain
some tetrahedra with negative Jacobians. In order to overcome this problem we compute
the Jacobians of all tetrahedra having the node N1, i.e. {Ti | i = 1 . . . numtet(N1)}, both
before and after the reorientation. We prevent undesired distortions of the finite element
mesh by controlling the ratio of the final Jacobian value to the initial one. If this ratio
exceeds some given limit then instead of a complete alignment a partial reorientation
is performed and the possibility of severe distortions are precluded. After the alignment
procedure, next segment of the facet Fc1 that emanates from Nc is considered. In a similar
manner discussed above the next critical facet Fc2 is determined and also reoriented. This
procedure is kept going until it reaches to the second neighboring crack front segment S2.
Note that in this procedure the number of critical facets is not known a priori. After the
determination and reorientation of the critical facets, the crack surface increment ∆Γ is
approximated as the union of Fci

. The new crack surface increment reads as

∆Γ ≈ ∆Γh
n+1 = Fc1 ∪ Fc2 ∪ . . . ∪ Fcn (9.34)

u
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gNc
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∂Γh
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a. b. c.

Figure 9.8: a.) A three-dimensional body B with crack surface Γh
n+1 and crack front ∂Γh

n+1.

b.) Configurational forces gI at the crack front ∂Γh
n+1. c.) Critical node Nc, corresponding

configurational force gNc
and the neighboring segments S1 and S2 at the crack front, which

define the quasi-distributed critical force gNc
/LNc

with LNc
:= (|S1| + |S2|)/2.
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Figure 9.9: Adaptive facet alignment algorithm. a.) Critical node Nc and two neighboring
crack front segments S1, S2 are identified. An average unit vector s̃ is defined based on
crack front vectors s1 and s2. The vector product of s̃ and the configurational force gNc

gives the normal vector N to the new developed incremental crack surface. b.) Critical
facets Fci

with unit normal ni are found such that the scalar product N · ni is maximum.
c.) - d.) The facets are aligned such that the nodes N1, N2, N3, N4 are projected onto the
plane with normal N , i.e. the new facet normals ni satisfy N × ni = 0 .

in the undeformed reference configuration.

Doubling of Critical Facets. Having accomplished the alignment procedure, new
copies (Fni

) of the facets Fci
with the same nodal connectivity of the original ones are

created. Next, the critical Fci
and the new generated facets Fni

are set as outer. In
addition, the neighboring information of the tetrahedra that are originally in contact
with each other through the facets Fci

needs to be changed. In Figure 9.10a this doubling
procedure is visualized where the number of critical facets is two. After the generation
of new facets, the tetrahedra T1 and T3 are no more neighbors of T4 and T6, respectively.

Nc Nc

Nn

T1

T2

T3

T4

T5

T6

N1

N2

N3Fc1

Fc2

Fn1 Fn2

a. b.

Figure 9.10: Doubling of the critical facets Fci
and the critical node Nc. a.) New facets Fn1

and Fn2
are generated from the critical facets Fc1

and Fc2
. New facets have the same nodal

connectivity as original ones. Fc1
, Fc2

, Fn1
and Fn2

are set as outer. The neighborhood
information of tetrahedra T1, T3, T4 and T6 is changed. Tetrahedra T1 and T3 are no more
neighbors of T4 and T6, respectively. b.) Finally, the new node Nn is generated from the
critical node Nc.
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This information is crucial in the determination of the new connectivity of the tetrahedra
after the doubling of the critical node Nc.

Doubling of Critical Node. The subsequent step that is necessary for the descrip-
tion of the crack propagation is the doubling of the critical node Nc. The decisive point
after the generation of a copy of Nc is the distribution of the new node Nn and the old
one Nc among the tetrahedra. We start with considering the tetrahedron T1 as the only
neighbor of the facet Fn1

(it is the copy of the first critical facet Fc1), see Figure 9.10a.
Then we check all neighbors of T1 and find the tetrahedra those have Nc in their nodal
connectivity. For the case visualized in Figure 9.10a it corresponds to T2. Note that there
can be also two tetrahedra which are neighbor to T1 and contain Nc in their connectivity.
In a similar manner one continues with T2 and reaches to T3. From T3 it is not possible
to find any tetrahedron (except T2 which is already traced) neighbor to T3 and contains
Nc. Consequently, the algorithm determines T1, T2 and T3 get the new node Nn while T4,
T5 and T6 retain the old one Nc. The final step is the update of the crack front nodes. As
an example it reads for the crack topology shown in Figure 9.9d

∂Γh
n+1 ⇐ ∂Γh

n+1 ∪ {N1,N2,N3,N4} − Nc . (9.35)

Observe that upon a crack propagation the critical node Nc has to be removed from
the crack front for all possible topologies. On the other hand, the number of nodes
that will be added to the new front is not always constant and depends on the crack
geometry. Although the generation of the new node Nn intrinsically induces doubling
of some segments, it is not discussed explicitly while there is no direct influence of the
segments on the algorithm.
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10. Representative Numerical Examples

10.1. Two-Dimensional Crack Propagation Examples

In this section several crack propagation problems are considered and the predictive
capabilities of the proposed formulation are shown by comparing the computational re-
sults with the experimental observations. The bulk material response is governed by the
quadratic energy storage function

ψ(ε) =
κ

2
tr2[ε] + µ || dev[ε]||2 (10.1)

in terms of the bulk modulus κ and the shear modulus µ. First, the accuracy of the
configurational nodal force computation is checked and its application both as a crack
propagation criterion and a crack direction predictor is evaluated for a tensile test of
a single edge notched (SEN) specimen. Here, we compare the numerical results with
analytical values of the J-integral available in the literature. Furthermore, the numerically
obtained direction of crack propagation is validated by comparison with the expected crack
direction. For these investigations, results obtained by the configurational force vector
at the singularity are compared with those obtained by a resultant configurational force
vector of a finite domain around the singularity. Then, another SEN specimen in tension
is considered in order to show the importance of the reorientation of the critical segment
at the crack tip to capture right crack trajectories. A symmetric three point bending test
with a pure mode-I crack propagation and an asymmetric three point bending specimen
with holes are considered next. Furthermore, the fracture of a cylindrical specimen under
compression, the so-called Brazilian test, and a double notched tensile specimen with two
holes are investigated. Finally a mode-II problem is studied, i.e. a square notched specimen
under simple shear. For this example, we compare also the results with alternative crack
propagation criteria available in the literature.

10.1.1. Single Edge Notched Tensile Test I. In order to estimate the accuracy
of the configurational nodal force computation, a notched plane strain benchmark is
considered which is studied in Larsson & Fagerström [124], see Figure 10.1a. The

a. b. c. d. e.

h

h

σ

σ

a

b

Figure 10.1: Tensile test of a single edge notched specimen. a.) Geometry, loading and
different discretizations with b.) 925, c.) 4239, d.) 7258 and e.) 17230 constant strain
triangles.
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dimensions are a = 0.1m, b = 0.5m, h = 1m and the applied tensile stress is σ = 10MPa.
Referring to the results of the linear theory of elasticity, the stress intensity factor KI for
this geometry can be estimated by the polynomial approximation

KI/K0 = 1.12 − 0.23 a/b+ 10.6 (a/b)2 − 21.7 (a/b)3 + 30.4 (a/b)4 (10.2)

outlined by Rooke & Cartwright [194] as a function of the ratio a/b. K0 in (10.2) is
the well-known stress intensity factor

K0 = σ
√
πa (10.3)

for a crack of length 2a in an infinite sheet subjected to a remote tensile stress σ. The
J-integral and the energy release rate G for plane strain conditions can be expressed in
terms of KI , the shear modulus µ and the Poisson’s ratio ν

G = J =
K2

I (1 − ν)

2µ
, (10.4)

see equation (7.83). The material parameters are given as µ = 80GPa and ν = 0.3. The
computation of the configurational force vector is performed by nine different discretiza-
tions with 925, 1997, 4239, 7258, 8502, 11096, 13078, 15814 and 17230 constant strain
triangles, where four of the meshes are shown in Figure 10.1b-10.1e. First, we consider a
frozen crack without any propagation. Figure 10.2a shows the norm of the configurational
force vector at the tip for the different discretizations and the analytical result obtained
from (10.2) and (10.4). The values determined from the discrete force at the crack tip
show no uniform convergence behavior and are oscillating for different discretizations. The
relative error is between 2 and 15%. Figure 10.2b compares the computed angle between
the configurational force vector and the e1-direction with the theoretically expected value
of 0◦. Again, the results obtained from the crack tip evaluation are oscillating for different
discretizations, varying from 0.1◦ to 2.5◦.

An improvement can be obtained by considering a resultant configurational force vec-
tor of an influence domain that surrounds the crack tip, as suggested by Denzer, Barth

& Steinmann [56]. To this end, we define a domain with radius r = 0.05m around the
crack tip. The results are depicted in Figures 10.2a and 10.2b for the nine different dis-
cretizations. The values obtained from this domain evaluation yield a better convergence
behavior than those obtained by the above crack tip evaluation. The relative error for the
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Figure 10.2: Tensile test of single edge notched specimen. a.) Norm of the configurational
force vector and b.) the crack propagation angle evaluated by three methods for different
meshes.
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Figure 10.3: Tensile test of single edge notched specimen. Dependence on radius r for
the domain evaluation. a.) Norm of the configurational force vector and b.) the crack
propagation angle for a mesh with 7258 elements.

energy release rate is between 2 and 8%, and the observed crack propagation angles fall
between 0.0004◦ and 0.2◦. The discrepancy between the analytical and the computational
results must be traced back to the poor discretization with constant strain triangles. It is
well-known that these elements do not capture the r−1/2 singularity of the stresses at the
crack tip. In order to capture this singularity, specific crack tip elements could be used
as discussed for example in Barsoum [17, 18], Henshell & Shaw [97], Li, Shih &

Needleman [127] and Steinmann, Ackermann & Barth [206]. We consider different
radii of the domain for the mesh with 7258 elements to show the effect of the domain size
on the evaluation of the resultant configurational force vector. The results for the norm of
the configurational force vector and the crack propagation angle are depicted in Figures
10.3a and 10.3b, respectively. After a critical value of the domain radius, the domain size
does not have an influence and yields similar results.

We now admit crack propagation. To this end, we consider the same meshes as depicted
in Figure 10.1a but move in a displacement controlled tensile test the upper boundary.
Figure 10.4a depicts the discrete crack propagation angles obtained during the defor-
mation process for the mesh with 7258 elements up to the complete separation of the
specimen into two pieces. Each crack propagation step in Figure 10.4a is associated with
a critical segment release at the crack tip. Again, we compare the expected results with
computed values from the crack tip evaluation and the domain evaluation with the ra-
dius r = 0.05m. The results determined at the crack tip oscillate around the expected
value of 0◦ in a range between −4.0◦ and +8.0◦. For the domain method, we observe
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Figure 10.4: Tensile test of single edge notched specimen. a.) Discrete crack propagation
angles versus complete fracturing process for a mesh with 7258 elements and b.) averaged
crack propagation angle of complete fracturing process versus number of elements, evaluated
by three methods.
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a. b. c.

d. e. f.

Figure 10.5: Single edge notched specimen. Effect of the adaptive movements of FE-nodes
on the crack trajectory. a.) The initial mesh with 864 elements and the configurational
force vector at the crack tip. The crack trajectories b.) with the fixed nodal positions and
c.) with the adaptive movement of the nodes based on the configurational force vector at
the crack tip. d.) The initial mesh with 2400 elements and the configurational force vector
at the crack tip. The crack trajectories e.) with the fixed nodal positions and f.) with the
possible movement of the nodes based on the configurational force vector at the crack tip.

strongly reduced oscillations between −0.4◦ and +0.2◦, see Figure 10.4a. However, with
regard to an average of the angles for the full crack length, the results become close to
the expected value of 0◦ even for the investigations based on the crack tip evaluation.
This is demonstrated in Figure 10.4b. As a result, the crack trajectories obtained by the
crack tip evaluation can be considered to be acceptable. This is further underlined by the
subsequent examples which demonstrate the predictive capabilites of the formulation to
capture experimentally observed complex crack trajectories.

10.1.2. Single Edge Notched Tensile Test II. Another single edge notched spec-
imen in tension is analyzed in order to show how the adaptive reorientation of the critical

u

4.04.0

2.00.4

0.2

Figure 10.6: Geometry, loading and boundary conditions of the symmetric three point
bending specimen.
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a.

b.

Figure 10.7: Three point bending test of a notched beam. Different discretizations with
1424, 2582, 4874 and 10360 elements. Crack trajectories a.) with the fixed nodal positions
and b.) with the possible movement of the nodes based on the configurational force vector
at the crack tip.

segments effects the crack propagation. The critical segment reorientation algorithm is
discussed in Box 9.1. Two different meshes with 864 and 2400 elements are considered
as shown in Figures 10.5a and 10.5d together with the configurational force vectors at
the notches. Both meshes are generated intentionally such that there are no internal seg-
ments parallel to the configurational force direction. The construction of a mesh with all
segments far away from being parallel to the configurational force vector at the crack tip
results in a completely unphysical crack trajectory in the case of fixed nodal positions,
see Figures 10.5b and 10.5e. In the figures it is shown that a finer mesh with the same
topological structure does not improve the quality of the predicted crack pattern. On
the other hand, the adaptive reorientation of the segments at the crack tip yields the
theoretical crack trajectories for both mesh densities, see Figures 10.5c and 10.5f. This
emphasizes the importance of the r-adaptive reorientation procedure to capture theoreti-

a. b.

c. d.

Figure 10.8: Three point bending test of a notched beam. Normal stress σ11 during the
crack evolution a.) - d.) for the mesh with 4874 elements. Blue and red colors correspond
to the maximum tensile and compressive stresses, respectively.
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a. b.

c. d.

Figure 10.9: The three point bending test of a notched beam. The nodal configurational
forces a.) before the propagation of the crack and b.) - d.) during the crack propagation
for the mesh with 1424 elements.

cal crack trajectories.

10.1.3. Symmetric Three Point Bending Test. A three point bending test of a
simply supported notched beam, which is one of the most investigated examples in the
literature, is considered next. The geometry and the loading of the problem are given in
Figure 10.6. The material parameters are specified in terms of the shear modulus µ =
8.0GPa, the Poisson’s ratio ν = 0.3 and the critical energy release rate gc = 5×10−4N/m.
Figure 10.7a shows four different meshes with 1424, 2582, 4874 and 10360 elements which
are used in simulations. The influence of the segment alignment procedure is investigated
first. The crack trajectories are displayed in Figures 10.7a and 10.7b for fixed nodes and a
possible reorientation of the critical crack tip segment, respectively. A crack starting from
the notch and propagating straight to the load is expected theoretically. In the case of
simulations with fixed nodes, the obtained crack profiles represent the theoretical patterns
poorly and moreover for different mesh densities they differ from each other. On the other
hand, the computations with an alignment of the critical segment capture the theoretical
crack patterns very well for all mesh densities. The normal stress σ11 during the crack
evolution is visualized in Figure 10.8. Blue and red colors correspond to the maximum
tensile and compressive stresses, respectively. In Figure 10.9, the nodal configurational
force vectors in the undeformed configuration are plotted for the mesh with 1424 elements
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Figure 10.10: Three point bending test of a notched beam. Comparison of load–deflection
curves for discretizations with 1424, 2582, 4874 and 10360 elements.
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Figure 10.11: Three point bending test of a notched beam. Comparison of a.) upper
envelopes and b.) lower envelopes of the load–deflection curves for discretizations with
1424, 2582, 4874 and 10360 elements.

at four different levels of the loading. The nodal configurational force vector at the crack
tip is nearly vertical for all four cases showing the theoretical crack propagation direction.
Note that there are also some configurational forces at the places close to the load and
supports due to the associated singularities.

The mesh-independency of the load-deflection curves is shown next. The load-deflection
curves are plotted in Figure 10.10 for all four meshes together. The staggered scheme out-
lined in Box 9.1 yields the zigzag-shaped load deflection curves due to the fact that at
each time increment an elastic computation is done with a possible crack progress after-
wards. In the curves a vertical drop is due to an advance in the crack while the parts
of the curve with a positive slope correspond to elastic steps with a frozen crack. It can
be observed that with finer meshes the frequency of zigzags increases and load-deflection
curves become smoother. From the load-displacement curves in Figure 10.10 one can con-
struct upper and lower envelopes for each discretization separately. The upper and lower
envelopes are plotted in Figure 10.11a and 10.11b, respectively. In all three figures the
load-deflection curves are in a good agreement for four different mesh densities showing
that there is no mesh-dependency of the proposed algorithm.

Finally, the effect of time discretization on the global response is analyzed. The upper
envelopes of the load-displacement curves are plotted for the mesh with 1424 elements in
Figure 10.12 for three different algorithmic time steps, ∆t = 1× 10−3, 5× 10−4, 1× 10−4.
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Figure 10.12: Three point bending test of a notched beam. Upper envelopes of the load
deflection curves computed with different time steps for the mesh with 1424 elements.
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Figure 10.13: Geometry, loading and boundary conditions of the two type of notched
beams with three holes. All holes have a diameter of 1.0 unit. Notches are parameterized
in terms of the distance of notches to the middle of the beam a and the notch size b. Notch
geometry I: a = 5.0 and b = 1.5. Notch geometry II: a = 6.0 and b = 1.0.

They are on top of each other exhibiting no dependency on the time step chosen.

10.1.4. Asymmetric Three Point Bending Test. Next, we apply our methodol-
ogy to a problem in which more complex curvilinear crack trajectories are observed experi-
mentally. The crack propagation of this problem was investigated first experimentally and
numerically in Bittencourt et al. [25] by using numerically computed stress intensity
factors and adaptive remeshing techniques around crack tip. They also compared differ-
ent methods for the computation of stress intensity factors in the finite element context.
The same example was simulated later by Phongthanapanich & Dechaumphai [183]
using stress intensity factors as a fracture criterion combined with an object-oriented

a.

b.

Figure 10.14: Notched beams with three holes a.) Crack patterns of notch I for different
discretizations with 2021, 3205, 4042, 4912 elements and the experimentally observed trajec-
tory. b.) Crack patterns of notch II for different discretizations with 1664, 2652, 3080, 4642
elements and the experimentally observed trajectory. The experimental crack trajectories
are taken from Bittencourt at al. [25]
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a. b.

c. d.

Figure 10.15: The notched beam with three holes. The normal stress σ11 during the
crack evolution a.) - d.) for the notch geometry I with 3205 elements. Blue and red colors
correspond to the maximum tensile and compressive stresses, respectively.

adaptive remeshing algorithm. Heintz [95] also investigated this example by employ-
ing configurational forces in the context of discontinuous Galerkin method introduced by
Hansbo & Hansbo [93].

The geometry of the problem is described in Figure 10.13. The material parameters
are specified as the shear modulus µ = 8.0GPa, the Poisson’s ratio ν = 0.3 and the
critical energy release rate gc = 1 × 10−3N/m. As a consequence of the holes and the
initial notch the stress and the strain fields are perturbed yielding curved crack patterns
which are highly sensitive to the position and the depth of the initial notch. Two different
geometries are chosen as described in Bittencourt et al. [25], where the differences
are only in the position and the depth of the initial notch.

The experimental and the computed crack trajectories of the first notch geometry are
compared in Figure 10.14a for four different discretizations. The computational results
for all discretizations ranging from 2021 to 4912 elements show a very good agreement
with the experimental crack trajectory. The same comparison is done also for the second
notch geometry as depicted in Figure 10.14b showing that the algorithm presented can
capture complex curved crack patterns very well. In Figures 10.15 and 10.16 the normal
stresses σ11 during the crack evolution are depicted for the notch geometry I with 3205

a. b.

c. d.

Figure 10.16: The notched beams with three holes. The normal stress σ11 during the
crack evolution a.) - d.) for the notch geometry II with 2652 elements. Blue and red colors
correspond to the maximum tensile and compressive stresses, respectively.
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Figure 10.17: Geometry and loading of the Brazilian splitting test with an internal notch.

elements and II with 2652 elements, respectively. Blue and red colors in both figures
correspond to the maximum tensile and compressive stresses, respectively.

10.1.5. Brazilian Splitting Test. The Brazilian splitting test, investigated for ex-
ample by Bouchard et al. [27], is often used to predict the tensile strength of brittle
or quasi-brittle materials like concrete. The setup of the problem is given in Figure 10.17.
The material parameters are the shear modulus µ = 8.0GPa, the Poisson’s ratio ν = 0.3
and the critical energy release rate gc = 1 × 10−3N/m. The displacements at the upper
and lower parts are specified, no contact algorithm is considered. An initial crack parallel
to the loading axis is placed at the center of the specimen. Two unstructured meshes
with 2920 and 4294 elements are considered. The crack patterns corresponding to both
meshes, given in Figures 10.18a and 10.18b, show very similar behavior. Observe their
straight form obtained by the r-adaptive procedure summarized in Box 9.1. These results
are in a good qualitative agreement with experimental observations. Figure 10.19 depicts
the normal stresses σ11 during the crack evolution. Blue and red colors correspond to the
maximum tensile and compressive stresses, respectively.

10.1.6. Tensile Test with Two Notches and Holes. This problem was analyzed
in Bouchard, Bay & Chastel [26]. It is a tension test of a double edge notched
specimen with two holes. The authors made a comparison of different crack propagation
criteria combined with an adaptive remeshing of finite elements. Here, the maximum
circumferential stress, the minimum strain energy density and the maximum strain energy
release rate criteria were compared. They found that the maximum circumferential stress
and maximum strain energy release rate criteria give quite equivalent results. The
geometry and the loading are described in Figure 10.20. We choose the shear modulus µ =

a. b.

Figure 10.18: Brazilian cylinder splitting test. Final crack trajectories for meshes with a.)
2920 elements and b.) 4294 elements.
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a. b. c.

Figure 10.19: Brazilian cylinder splitting test. Normal stress σ11 during the crack evolution
a.) - c.) for the mesh with 2920 elements. Blue and red correspond to the maximum tensile
and compressive stresses, respectively.

8.0GPa, the Poisson’s ratio ν = 0.3 and the critical energy release rate gc = 1×10−3N/m.
Different from the previous examples, the propagation of two separate cracks has to be
considered. The cracks are forced to advance one after the other such that successive
progress of the same crack is prevented. The resulting crack profiles are shown for two
different meshes with 2394 and 4170 elements in Figures 10.21a and 10.21b, respectively.
Both cracks first show a tendency to propagate towards the holes and once the holes
are passed they reorient themselves horizontally. The crack trajectories predicted by the
proposed algorithm are in a good agreement with results reported in Bouchard, Bay

& Chastel [26] and Bouchard et al. [27]. Figure 10.22 shows the normal stresses
σ22 during the crack evolution for the mesh with 2394 elements. Blue and red colors
correspond to the maximum and minimum tensile stresses, respectively.

10.1.7. Square Notched Specimen under Simple Shear. Next, we apply the
proposed methodology to a square plate with a horizontal notch that is placed at the
middle height and running from the left outer surface to the center of the specimen.
The geometric setup of the problem is given in Figure 10.23. We choose the shear
modulus µ = 8.0GPa, the Poisson’s ratio ν = 0.3 and the critical energy release rate
gc = 1 × 10−3N/m. For simple shear, we prescribe in a deformation-driven context the
horizontal displacements of the vertical boundaries varying linearly from 0 to u. In ad-
dition, the upper boundary is driven horizontally by an amount of u. According to the
experimental data of Erdogan & Sih [65], the subsequent crack pattern measures an
angle of approximately 70◦ to the initial notch. Figures 10.24a and 10.24b show two differ-
ent meshes having 2048 elements. The first mesh depicted in Figure 10.24a is completely
regular and homogeneous, whereas the second mesh in Figure 10.24b has a geometric
imperfection by slightly disturbed elements around the initial crack tip. In these pictures,
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u

Figure 10.20: Geometry, loading and boundary conditions of a tensile test of notched
specimen with two holes.
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a.

b.

Figure 10.21: Tensile test of a notched specimen with two holes. Crack trajectories with
a.) 2394 elements and b.) 4170 elements.

a. b. c.

d. e. f.

Figure 10.22: Tensile test of a notched specimen with two holes. Normal stress σ22 during
the crack evolution a.) - f.) for the mesh with 2394 elements. Blue and red colors correspond
to the maximum and the minimum tensile stresses, respectively.

the configurational force at the crack tip is depicted for the beginning and a subsequent
state of the crack propagation. For the first mesh without imperfection, the configura-
tional force vector points in a horizontal direction during the whole deformation process,
yielding a horizontal crack pattern. This is not in agreement with experimental results.
The response for the perturbed mesh is shown in Figure 10.24b. Here, as a consequence of
the imperfection, the configurational force vector at the onset of crack propagation slightly
differs from the horizontal direction. In the subsequent stages, it smoothly changes up to

uu

1.0

1.0

0.5

Figure 10.23: Geometry, loading and boundary conditions of simple shearing of a squared
notched plate. Horizontal displacements are prescribed on the upper boundary and on the
vertical boundaries as well.



10.1 Two-Dimensional Crack Propagation Examples 171

a.

b.

Figure 10.24: Simple shearing of a notched plate. Different discretizations with 2048
elements. The configurational force at the crack tip for the beginning and at a later state
of the deformation process for a.) a homogeneous mesh and b.) a mesh with a geometric
imperfection around the crack tip.

an angle between 70◦ and 75◦, as observed experimentally and theoretically in Erdogan

& Sih [65]. This observation shows the inability of simulation of non-smooth crack kink-
ing by the proposed configurational force method. Furthermore, it reveals an instability
phenomena, where only the introduction of a slight imperfection in the form of a mesh
distortion yields the experimentally observed trajectory. Next, the same problem is
computed by two different unstructured discretizations with 2000 elements as shown in
Figure 10.25. Here, crack trajectories are displayed for a.) a homogeneous discretization
and b.) a mesh with a refined discretization around the crack tip. The results show that
crack propagation starts with an angle smaller then 70◦ but changes smoothly to approx-
imately 70◦ in subsequent propagation steps. Again, the crack path is smooth. However,
for the mesh in Figure 10.25b with refined discretization at the notch tip, the curvature
of the crack localizes at the beginning of the propagation. Hence, in combination with
a high mesh density around the notch tip, the method is able to resolve a crack kinking
as experimentally expected. The shear stresses σ12 during crack evolution for the refined

a. b.

Figure 10.25: Simple shearing of a notched plate. Different unstructured discretizations
with 2000 elements. The crack trajectories for a.) an irregular homogeneous mesh and b.)
a refined mesh around the crack tip.
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a. b.

c. d.

Figure 10.26: Simple shearing of a notched plate. Shear stresses σ12 during the crack
evolution at four different loading levels a.) - d.) for a discretization of 2000 elements
with refined mesh around the crack tip. Blue and yellow corresponds to the maximum and
minimum shear stresses, respectively.

discretization are visualized at four different levels of loading in Figure 10.26. Blue and
yellow colors correspond to the maximum and minimum levels, respectively. At the be-
ginning of the loading process, a high concentration of σ12 stresses is observed at the crack
tip. Therefore, the crack propagation represent a pure mode II fracture mode. Later, the
crack reorientates towards 70◦ accompanied by decreasing shear stresses at the tip. Then,
a mode I dominated fracture propagation is observed.

10.1.8. Comparison of Different Crack Criteria. We now compare results ob-
tained form the configurational-force-driven propagation algorithm summarized in Box
9.1 with alternative criteria available in the literature, such as pointed out in the recent
article by Bouchard, Bay & Chastel [26]. To this end, we investigate four crack prop-
agation criteria: (i) the proposed configurational force criterion (CFC) of Box 9.1, (ii) a
maximum circumferential stress (hoop stress) criterion (MCSC) introduced in Erdogan

crack propagation direction

crack surfaces

integration points

ϕ0

Figure 10.27: Maximum principal stress criterion. The direction of crack propagation at
the crack tip is obtained from the stress state at the integration points.
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a. b. c. d.

Figure 10.28: Single edge notched specimen under tension discretized by 864 elements.
Effect of different criteria on the crack propagation direction. a.) The maximum circum-
ferential stress criterion, b.) the averaged maximum circumferential stress criterion, c.) the
maximum principal stress criterion and d.) the maximum configurational force criterion.

& Sih [65], (iii) an averaged maximum circumferential stress criterion (AMCSC) and (iv)
a maximum principal stress criterion (MPSC). The latter was first proposed in Maiti &

Smith [129] and modified by Bouchard, Bay & Chastel [26]. The MCSC assumes
a crack propagation in the plane which is perpendicular to the highest circumferential
stress (hoop stress), provided that the value of this stress becomes critical. In the dis-
cretized setting, the crack extends in the direction towards the integration point close to
the crack tip which maximizes the circumferential stress. A slight modification has been
introduced for the AMCSC. Here, the direction of the crack is determined by a weighted
average of each direction with respect to the value of the circumferential stresses. For the
MPSC, the crack propagates in the direction corresponding to the plane perpendicular to
the maximum principal stress. In the numerical setting, an eigenvalue analysis at each
integration point around the crack tip is performed, which yields the local direction of the
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c. d.

Figure 10.29: Simple shearing of a notched plate discretized with 2048 elements. Effect
of different criteria on the crack propagation direction. a.) the maximum circumferential
stress criterion, b.) the averaged maximum circumferential stress criterion, c.) the maximum
principal stress criterion and d.) the maximum configurational force criterion.
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Table 10.1: Comparison of crack propagation angles for different criteria.

Criterion MCSC AMCSC MPSC CFC
Initial angle 84.42◦ 86.25◦ 47.91◦ 5.07◦

Angle after five steps 66.88◦ 46.01◦ 53.29◦ 11.90◦

Angle after ten steps 56.49◦ 22.45◦ 48.30◦ 72.20◦

principal stresses. Finally, the direction of crack propagation is determined by a weighted
average of each principal direction with respect to the distance between the integration
point and the crack tip, see Figure 10.27.

In order to show the effects of these different criteria, the single edge notched specimen
in tension is analyzed as depicted in Figure 10.1a. A coarse mesh with 864 elements is
considered. Figures 10.28a-10.28d demonstrate the deformation state where the specimen
is completely fractured for a.) MCSC, b.) AMCSC, c.) MPSC and d.) the proposed con-
figurational force crack criterion CFC. For the MCSC, the crack propagation is oscillating
depending on the current positions of the integration points around the crack tip, see
Figure 10.28a. Thus, the direction of crack propagation depends critically on the mesh
around the crack tip. For the AMCSC and MPSC, the crack pattern is much smoother
as shown in Figures 10.28b and 10.28c, respectively. Figure 10.28d presents the crack
pattern for the proposed configurational force criterion CFC. Clearly, it yields the best
agreement with the expected crack trajectory.

Next, we apply the above described criteria to the square plate with a horizontal notch
as depicted in Figure 10.23. According to the experiments reported in Erdogan & Sih

[65], the crack pattern proceeds by an angle of approximately 70◦ to the initial notch.
Figures 10.29a-10.29d demonstrate the crack patterns corresponding to the different crack
propagation criteria. For all four criteria, we observe rather similar patterns. For the
MCSC and the AMCSC depicted in Figures 10.29a and 10.29b, we observe for the first step
steep angles of about 85◦. The subsequent propagation angles vary in a wide range. As in
the previous investigation, we observe smoother cracks for the MPSC and in particular
the CFC as shown in Figures 10.29c and 10.29d, respectively. The crack propagation
is approximately 50◦ for the MPSC, whereas for the proposed criterion the crack angle
starts with 5◦ and increases within the first steps up to an angle of approximately 70◦.
Table 10.1 reports the angles for the crack propagation for the first, the fifth and the tenth
crack propagation steps for the different crack propagation criteria. It again emphasizes
the inability of simulation of non-smooth crack kinking by the proposed configurational
force method if only the first crack propagation step is considered.

10.2. Three-Dimensional Crack Propagation Examples

In this section the performance of the proposed three-dimensional configurational
forced driven brittle fracture algorithm is investigated. A variety of examples is pro-
vided. These include the simple tension, different type of the bending and also torsion
tests.

10.2.1. Simple Tension Test. The first example is concerned with a simple tension
test of a thin notched prismatic specimen. The geometry and the loading is given in
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Figure 10.30: Tensile test of a notched specimen. a.) Geometry, loading and boundary
conditions. All dimensions are given in mm. b.) The final crack surface in the undeformed
configuration and c.) the final deformed mesh (ten times magnified). The specimen is
discretized with 3738 elements.

Figure 10.30a. The problem is solved with the displacement controlled loading and a
mesh that consists of 3738 linear tetrahedra. In Figure 10.30b the crack is visualized in
the undeformed configuration as a single surface. Note that the final crack shows some
roughness but still is close to be a planar surface. Close to the free end of the specimen
the roughness of the surface increases. The final deformed shape together with the mesh
is plotted in Figure 10.30c where the displacements are scaled by a factor of two.

The plane view of the crack propagation and the configurational forces at the crack
front are provided in Figure 10.31a-10.31d. During the propagation the inner nodes of the
crack front run faster than the outer ones as observed in experiments, see also Mueller

& Maugin [162] for the distribution of material forces in a CT-specimen before the
movement of the crack front. Note that contrary to Figure 10.31a, the distribution of
the material forces for inner nodes at the crack front in Mueller & Maugin [162] is
uniform. The variation of the configurational forces among the inner nodes in Figure
10.31a is due to the unstructured mesh considered.

a. b. c. d.

Figure 10.31: Tensile test of a notched specimen. The plane view of the crack surface. a.)
Configurational forces at the crack front just before the propagation. b.) - d.) Evolution of
the crack front and the configurational forces.
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Figure 10.32: Geometry, loading and boundary conditions of the notched specimen sub-
jected to asymmetric bending. Two limiting cases with spring constant k = 0 and k = ∞
are investigated. All dimensions are given in mm.

10.2.2. Asymmetric Bending of Notched Specimens. In this example asym-
metric bending tests of notched beams are investigated. The experimental setup has been
proposed by Gálvez et al. [74] to study the mixed mode (Mode I/II) crack propagation
in concrete. In the experimental work mentioned, results on three different specimen sizes
and different boundary conditions were reported. We consider here only the intermediate
size beams and the two extreme cases of the boundary conditions. The description of the
test is provided in Figure 10.32. The first boundary condition corresponds to the case
where the spring constant k = 0 and the other is k = ∞. Gálvez et al. [74] also
provided a comparison of the crack paths with two-dimensional numerical predictions
obtained by the maximum tangential stress criterion of Erdogan & Sih [65]. Three-
dimensional analysis of the same problem for the first boundary condition (k = 0) has
been done in a recent work by Areias & Belytschko [8] using the cohesive fracture
theory and the extended finite element method (XFEM).

In Figure 10.33 the final deformed shapes for the both boundary conditions are vi-
sualized. The crack propagates in the first case (k = 0) approximately with an angle of

a. b.

c. d.

Figure 10.33: The final crack trajectories for different discretizations and different bound-
ary conditions. a.) Discretization with 3448 elements and k = 0. b.) Discretization with
3448 elements and k = ∞. c.) Discretization with 5811 elements and k = 0. d.) Discretiza-
tion with 5811 elements and k = ∞.
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a.

b.

Figure 10.34: Visualization of the crack propagation and the configurational forces for
different boundary conditions with a discretization having 5811 elements. a.) k = 0. b.)
k = ∞. Note that configurational forces are scaled for each picture independently and the
crack surfaces are plotted in the undeformed reference configuration.

30◦ to the initial notch and reaches to the upper free surface. On the other hand, in the
second case (k = ∞) the crack is more inclined and propagates over a longer distance

k = 0

k = ∞

notch

notch

0

0

40

40

80

80

120

120

0

0

50

50

100

100

150

150

a. b. c.

d. e. f.

Figure 10.35: Visualization of the final crack surfaces for different boundary conditions
and discretizations. Both the front and rear views of the specimen are shown. a.) k = 0
and 3448 elements. b.) k = 0 and 5811 elements. c.) Experimental trajectory for k = 0.
d.) k = ∞ and 3448 elements. e.) k = ∞ and 5811 elements. f.) Experimental trajectory
for k = ∞. Note that configurational forces are scaled for each picture independently and
the crack surfaces are plotted in the undeformed reference configuration.
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Figure 10.36: Geometry, loading and boundary conditions of the notched prismatic beam
subjected to torsion. All dimensions are given in mm.

than the first one. In order to see the effect of the discretization, two different meshes
are considered, one with 3448 and the other with 5811 elements. The final crack sur-
faces for both discretizations are in a very good agreement. The propagation of the crack
and the evolution of configurational forces are plotted in Figure 10.34 in the undeformed
configuration for both boundary conditions.

A comparison with experimental crack trajectories from Gálvez et al. [74] is pro-
vided in Figure 10.35. Front and rear surface views are plotted for two different mesh
densities. The specimen is visualized partially transparent in order to see the roughness
of the crack surface in the inner part of the body. Although concrete is a quasi-brittle
material and the fracture behavior is non-linear, the crack path still can be captured with
a reasonable accuracy by the proposed configurational-force-driven brittle fracture theory.
Note that the discretizations considered are relatively coarse (3448 and 5811 elements)
compared to the ones in Areias & Belytschko [8] (11506 and 46380 elements).

10.2.3. Torsion Test of Notched Prismatic Beam. This example is taken from an
experimental study Brokenshire [34] which is concerned with different torsion tests on
concrete specimens. The detailed description of the experimental procedure together with

x
y

za.

b.

Figure 10.37: Visualization of the crack propagation for discretizations with a.) 4510
elements and b.) 4943 elements. Note that the crack surfaces are plotted in the undeformed
reference configuration.
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Figure 10.38: Top view of the final crack surface for discretizations with a.) 4510 elements
and b.) 4943 elements. Note that the crack surfaces are plotted in the undeformed reference
configuration.

the numerical modeling can be found in Jefferson et al. [108]. We refer to Gasser

& Holzapfel [76] for another simulation of this problem based on the partition of unity
finite element method and the cohesive crack approach. In Figure 10.36 the geometry and
boundary conditions are specified. Different from all previous examples, this test cannot
be simplified to a two-dimensional model and requires a fully three-dimensional analysis.

Two different meshes with 4510 and 4943 elements are considered in the analysis.
Although the number of elements in both discretizations are close to each other, the
second one has a finer resolution of the crack front. The evolution of the discontinuity
surfaces in the reference configuration are illustrated in Figure 10.37. The planar views
of two discretizations are given in Figure 10.38. The final crack trajectories of both
meshes are in good agreement. Note that the surfaces have also a curvature through the
beam thickness (y-direction) which requires a complete three-dimensional solution of the
problem. In Figure 10.39a and 10.39b two different views of the deformed body are plotted
where the displacements are scaled by a factor of ten. The final crack surfaces obtained
by the proposed algorithm capture the experimental results provided in Jefferson et

al. [108]. Note that our predictions have been obtained by relatively coarse meshes
(4510 and 4943 elements) compared to the ones in Gasser & Holzapfel [76] (40610
elements).

The configurational forces at the crack front just before the propagation are drawn
in Figure 10.40. The first picture is the top and other two are the side views. The
planar view in Figure 10.40a clearly shows the tendency of the crack to propagate with a
curvature in the y-direction.

x

xy y

zz
a. b.

Figure 10.39: Visualization of the deformed mesh from two different viewpoints a.) and b.)
for a discretizations with 4510 elements. Note that the deformation is 40 times magnified.
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Figure 10.40: Three different plane views a.) - c.) of the configurational forces at the
crack front just before the crack propagation.

10.2.4. Bending of Notched Beams with Holes. The final example is concerned
with bending tests on notched prismatic beams with holes. The setup of the experiments
were proposed by Bittencourt et al. [25] and the problem was already analyzed in
the two-dimensional setting in Section 10.1.4. The tests were performed on polymethyl-
methacrylate (PMMA) beams. This problem in two-dimensional setting analyzed pre-
viously by Phongthanapanich & Dechaumphai [183], Heintz [95] and Miehe &

Gürses [143]. Phongthanapanich & Dechaumphai [183] solved this problem with
finite elements based on an adaptive Delaunay triangulation. The stress intensity factors
were employed as the crack criterion. Heintz [95] used discontinuous finite elements
originally proposed by Hansbo & Hansbo [93] and utilized the configurational forces as
the crack propagation criterion.

The geometry and boundary conditions are specified in Figure 10.41 where two differ-
ent notch geometries are considered. The crack trajectories are found to be very sensitive
to the position and the length of the initial notch, see Bittencourt et al. [25]. In
our numerical investigations, we show the influence of the notch geometry on the crack
propagation. In our simulations, two different discretizations are considered. The first
beam with a longer notch is analyzed with a mesh consist of 5842 elements while the sec-
ond one is discretized with 5871 elements. In Figures 10.42a and 10.42b the final cracked
state of the deformed bodies are shown for the notch geometries I and II, respectively.
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8 b

a
9 + a

2

2.75

Figure 10.41: Geometry, loading and boundary conditions of the notched beam with three
holes subjected to bending. Two different notch geometries are considered. Notch geometry
I: a = 5.0 and b = 1.5. Notch geometry II: a = 6 and b = 1.0. All dimensions are given in
mm and holes have a diameter of 1.0.
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a. b.

c. d.

Figure 10.42: Visualization of the final crack surfaces. a.) Deformed specimen for the
notch geometry I discretized with 5842 elements. b.) Deformed specimen for the notch ge-
ometry II discretized with 5871 elements. Note that the deformation is five times magnified.
c.) Crack surface in the undeformed reference configuration for notch I. d.) Crack surface
in the undeformed reference configuration for notch II.

Figures 10.42c and 10.42d visualize two different views of the final crack surfaces in the
undeformed reference configuration. The final trajectories of the simulations capture the
experimental results presented in Bittencourt et al. [25].
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11. Summary and Outlook

The main objective of this work was to employ energy minimization principles for
the description of particular problems in theoretical and computational solid mechanics.
We concentrated especially on two aspects: (i) Description of inelastic deformation mi-
crostructures and their evolution in non-convex unstable solids and (ii) development of a
variational framework for configurational-force-driven brittle fracture.

11.1. Description of Microstructures based on Energy Relaxation

In the first part of the thesis the main focus was the theoretical description and the
computational treatment of microstructures and their evolution in elastic and inelastic
solids. In this work microstructures were considered to have complex patterns with length-
scales much smaller then macroscopic dimensions and arise in an attempt to achieve the
minimum energy. More precisely, the reason for the formation of microstructures is that
no exact minimum exists and infimizing sequences develop finer and finer oscillations. We
showed that it is possible to describe these microstructures mathematically by non-convex
variational problems or equivalently by the minimization of energy functionals

I(ϕ) =

∫

B
ψ(∇ϕ)dV + Π(ϕ) −→ Minimum (11.1)

that lack of sequential weak lower semicontinuity. The problems governed by functionals
that are not sequentially weakly lower semicontinuous often do not have minimizers in
the classical sense and instead lead to fine scale oscillatory infimizing sequences which we
interpret as microstructures. To this end, the weak limit of the infimizing sequences are
regarded as the macroscopic or homogeneous deformation. In the case of vector valued
calculus of variations the weak lower semicontinuity of the energy functional I is (under
suitable growth assumptions on ψ) equivalent to the quasiconvexity the function ψ to be
integrated. The relaxation theory is a possible approach to overcome the problem with
lack of minimizers. It is based on the determination of the largest lower semicontinuous
functional IQ below the given one I. This is achieved by the replacement of ψ in the energy
functional I by the quasiconvex envelope ψQ, i.e. the largest quasiconvex function less
than or equal to ψ. It is important to note that the minimum of the relaxed functional is
exactly equal to the infimum of original problem, i.e. min IQ = inf I. The relaxed density
ψQ describes the macroscopic or effective energy of the system which is the smallest
energy per unit volume that is needed to deform an infinitesimal volume with given
affine boundary conditions. Here, through the relaxation the material is allowed to form
microstructures that minimize the energy.

We considered three different type of constitutive material response where non-convex
(non-quasiconvex in vectorial problems) potentials arise. These are the martensitic phase
transformations in elastic crystals, the single-slip multiplicative plasticity of single crystals
and the isotropic damage mechanics. The non-convexity in the considered problems have
distinct origins. Martensitic phase transformations are symmetry breaking transforma-
tions with multiple stress free configurations. Therefore, the materials that exhibit such
transformations are governed by multi-well energy storage functions which are naturally
non-convex. On the other hand, in the single-slip plasticity, which can be considered
as the limiting case of infinite latent hardening in multi-slip single crystal plasticity, the
source of non-convexity is of geometrical nature. The necessity of the crystal to deform
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in single-slip at all material points introduces a strong constraint and renders non-convex
variational problems for certain combinations of the loading and the slip system. The
damage models, however, furnish non-convexity due to extensive accumulation of damage
if it starts to stimulate softening in the constitutive material response.

Since the constitutive behavior of single-slip plasticity and damage models are inelastic
we extended the results of nonlinear elasticity and presented the incremental variational
formulation of inelasticity. It was shown that a sequence of quasi-hyperelastic energy
densities may be constructed by incremental minimization of energetic expressions with
respect to internal variables. Hence, the incremental quasi-hyperelastic potential plays
a crucial role in the analysis analogous to the energy storage function of elasticity. The
incremental character of the variational principle reflects the inelastic and irreversible
nature of the single-slip and and damage models. In this work, particular relaxation
methods are designed based on approximations of quasiconvex envelopes by the rank-one
convexification. In addition, specific assumptions are utilized on the type of developing
microstructures and semi-analytical methods are developed. Moreover, several numerical
studies on homogeneous macro-deformation modes as well as inhomogeneous macroscopic
boundary-value problems have been performed. These studies confirm the well-posed
behavior of the proposed computational relaxation methods by the independence of typical
finite element solutions on the mesh-size.

Note that in all our investigations there is no interface energy or length scale in-
volved and consequently the microstructures are infinitely fine. However, in reality the
microstructures are of finite size that is determined by the atomic structure, i.e. there
is a finite interatomic distance which prohibits finer microstructures. This constraint is
often incorporated by the introduction of surface energies in the energy functionals.

11.2. Configurational Force Driven Brittle Fracture

In the second part of the thesis the main focus was put on the development of a ther-
modynamically consistent variational formulation of brittle crack propagation in elastic
solids which is based on energy minimization principles. First of all, an overview about
brittle fracture theories was provided with some of the well-known approaches from the
literature. These cover the stress intensity factors of Irwin, the energetic approach and
the energy release rate of Griffith and the J-integral of Rice. As a natural outcome of
the energy based local variational formulation of brittle fracture the configurational forces
arise as dual objects to the crack propagation. Indeed, they are generalization of the well
known J-integral to the vectorial case and have a broader area of application than the
J-integral.

An essential part was the discussion of the configurational forces with a particular
focus on their application to fracture mechanics. Starting with the Eshelby’s thought
experiment the alternative derivations of the energy momentum tensor were outlined.
These include approaches based on a Lagrangian density, a projection of balance laws
onto material manifold, the Noether’s theorem and particular invariance requirements.
Furthermore, we developed a thermodynamically consistent variational framework for
quasi-static crack propagation in elastic solids and showed that both the elastic equi-
librium response as well as the local crack evolution follow in a natural format by the
exploitation of a global Clausius-Planck inequality in the sense of Coleman’s method.
Consequently, we demonstrated that the crack propagation direction is identified by the
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material configurational force which maximizes the local dissipation at the crack front.

The computational treatment of the variational formulation outlined is one of the novel
contributions of the thesis. The variational formulation of fracture was realized numeri-
cally by a spatial discretization with standard three-noded constant strain triangles and
four-noded linear tetrahedral finite elements in two and three dimensions, respectively.
Therefore, the constitutive setting of crack propagation in the space-discretized finite el-
ement context was naturally related to discrete nodes of a typical finite element mesh.
Consistent with this node-based setting, the discretization of the evolving crack discon-
tinuity was performed by doubling of critical nodes and interface segments of the mesh.
The crucial step for the success of this procedure was its embedding into an r-adaptive
crack-segments and facets reorientation procedure based on configurational-force-based
indicators in conjunction with crack front constraints. Here, successive crack releases
appeared in discrete steps associated with the given space discretization. These were per-
formed by a staggered loading-release algorithm of energy minimization at frozen crack
state followed by the successive crack releases at frozen deformation. This constitutes
a sequence of positive definite discrete subproblems with successively decreasing overall
stiffness, providing a very robust algorithmic setting in the postcritical range.

Finally, we demonstrated the predictive capabilites of the proposed formulation of brit-
tle crack propagation by means of representative numerical simulations and comparisons
with experiments from the literature. These include a broad spectrum of examples both
in two and three dimensions such as simple tension, symmetric and asymmetric bending,
Brazilian splitting, shear and torsion tests. Moreover studies with respect to the accuracy
of the numerical computation of configurational forces were performed and comparisons
with other crack propagation criteria were presented.

Finally, we make some remarks about the limitations of the formulation developed.
The framework presented here is restricted in its current state to quasi-static brittle frac-
ture for elastic materials. However, it allows for geometrical and material nonlinearities.
The cohesive fracture is not covered but certainly of interest for further research. The
simulation of crack branching which is intrinsically related to dynamic fracture is also not
possible with the formulation presented.
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A. Derivatives for Convexification of Single-Slip Plasticity

In order to obtain a compact representation of the higher-order derivatives we intro-
duce the following abbreviations

W± := W (F±) , P± := ∂FW (F±) , C± := ∂2
FFW (F±),

M ′ := ∂ϕM , N ′ := ∂χN m′ := FM ′ ,

}

(A.1)

where the vectors are parameterized by M(ϕ) = [cosϕ sinϕ]T and N(χ) = [cosχ sinχ]T .
The first derivatives of the function W̄ h with respect to the micro-variables [ξ, d, ϕ, χ] have
the following representations

W̄ h
,ξ = W+ −W− − d

[
ξP + + (1 − ξ)P−]

: (m ⊗ N) ,

W̄ h
,d = ξ(1 − ξ)

[
P + − P−]

: (m ⊗ N) ,

W̄ h
,ϕ = ξ(1 − ξ) d

[
P + − P−]

: (m′ ⊗ N) ,

W̄ h
,χ = ξ(1 − ξ) d

[
P + − P−]

: (m ⊗ N ′) .







(A.2)

The second derivatives then read

W̄ h
,ξξ = 2d

[
P− − P +

]
: (m ⊗ N)

+ d2(m ⊗ N) :
[
ξC+ + (1 − ξ)C−]

: (m ⊗ N) ,

W̄ h
,ξd = (1 − 2ξ)

[
P + − P−]

: (m ⊗ N)

− dξ(1 − ξ) (m ⊗ N) :
[
C+ − C−]

: (m ⊗ N) ,

W̄ h
,ξϕ = (1 − 2ξ) d

[
P + − P−]

: (m′ ⊗ N)

− d2ξ(1 − ξ) (m ⊗ N) :
[
C+ − C−]

: (m′ ⊗ N ) ,

W̄ h
,ξχ = (1 − 2ξ) d

[
P + − P−]

: (m ⊗ N ′)

− d2ξ(1 − ξ) (m ⊗ N) :
[
C+ − C−]

: (m ⊗ N ′) ,

W̄ h
,dd = ξ(1 − ξ) (m ⊗ N) :

[
(1 − ξ)C+ + ξC−]

: (m ⊗ N) ,

W̄ h
,dϕ = ξ(1 − ξ)

[
P + − P−]

: (m′ ⊗ N)

+ dξ(1 − ξ) (m ⊗ N) :
[
(1 − ξ)C+ + ξC−]

: (m′ ⊗ N) ,

W̄ h
,dχ = ξ(1 − ξ) [P + − P−] : (m ⊗ N ′)

+ dξ(1 − ξ) (m ⊗ N) :
[
(1 − ξ)C+ + ξC−]

: (m ⊗ N ′) ,

W̄ h
,ϕϕ = ξ(1 − ξ) d

[
P− − P +

]
: (m ⊗ N)

+ ξ(1 − ξ) d2 (m′ ⊗ N) :
[
(1 − ξ)C+ + ξC−]

: (m′ ⊗ N) ,

W̄ h
,ϕχ = ξ(1 − ξ) d

[
P + − P−]

: (m′ ⊗ N ′)

+ ξ(1 − ξ) d2 (m′ ⊗ N) :
[
(1 − ξ)C+ + ξC−]

: (m ⊗ N ′) ,

W̄ h
,χχ = ξ(1 − ξ) d

[
P− − P +

]
: (m ⊗ N)

+ ξ(1 − ξ) d2 (m ⊗ N ′) :
[
(1 − ξ)C+ + ξC−]

: (m ⊗ N ′) .







. (A.3)

Note that the second order derivatives are symmetric, e.g. W̄ h
,ξd = W̄ h

,dξ and so forth.
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The following derivatives are required for the computation of the relaxed stresses P̄

and the relaxed moduli C̄

W̄ h
,F = ξP +L+T + (1 − ξ)P−L−T ,

W̄ h
,FF = ξL+

C+L+T + (1 − ξ)L−
C−L−T ,

W̄ h
,Fξ = P +L+T − P−L−T

− d
[
ξL+

C+ + (1 − ξ)L−
C− ]

: (FM ⊗ N)

− d
[
ξP + + (1 − ξ)P− ]

(M ⊗ N)T ,

W̄ h
,Fd = ξ(1 − ξ)

[
L+

C+ − L−
C− ]

: (FM ⊗ N)

+ ξ(1 − ξ)
[
P + − P− ]

(M ⊗ N)T ,

W̄ h
,Fϕ = ξ(1 − ξ)d

[
(C+ : m′ ⊗ N)(1 + (1 − ξ)dN ⊗ M) + P +N ⊗ M ′ ]

− ξ(1 − ξ)d
[
(C− : m′ ⊗ N)(1 − ξdN ⊗ M ) + P−N ⊗ M ′ ] ,

W̄ h
,Fχ = ξ(1 − ξ)d

[
(C+ : m ⊗ N ′)(1 + (1 − ξ)dN ⊗ M) + P +N ′ ⊗ M

]

− ξ(1 − ξ)d
[
(C− : m ⊗ N ′)(1 − ξdN ⊗ M ) + P−N ′ ⊗ M

]
,







(A.4)

where L+ and L− are defined as

L+ = 1 +(1 − ξ)dM ⊗ N

L− = 1 − ξdM ⊗ N

}

. (A.5)

B. Derivatives for Convexification in Damage Mechanics

In order to obtain a compact representation of the higher-order derivatives we intro-
duce the following abbreviations. In what follows it is assumed that the linearized strain
ε is purely isochoric

W± := W (ε±) , σ± := ∂εW (ε±) , C± := ∂2
εεW (ε±) ,

E± := ∂2
εεε

± , A :=
ε

||ε|| .






(B.1)

The first and second derivatives of the function W̄ h with respect to the micro-variables ξ
and d, which are required for the convexification algorithm, have the following represen-
tations

W̄ h
,ξ = W+ −W− − d

[
ξσ+ + (1 − ξ)σ−]

: A ,

W̄ h
,d = ξ(1 − ξ)

[
σ+ − σ−]

: A ,






(B.2)

W̄ h
,ξξ = 2d

[
σ− − σ+

]
: A + d2A :

[
ξC+ + (1 − ξ)C− ]

: A ,

W̄ h
,ξd = (1 − 2ξ)

[
σ+ − σ−]

: A − d ξ(1 − ξ) A :
[
C

+ − C
−]

: A ,

W̄ h
,dd = ξ(1 − ξ) A :

[
(1 − ξ)C+ + ξC− ]

: A







(B.3)

Note that the second order derivative is symmetric, i.e. W̄ h
,ξd = W̄ h

,dξ.
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The following derivatives are required for the computation of the relaxed stresses σ̄

and the moduli C̄

W̄ h
,ε = ξσ+ + (1 − ξ)σ− +

ξ(1 − ξ)d

||ε||
[
σ+ − σ−]

: (I − A ⊗ A) ,

W̄ h
,εξ = σ+ − σ− − d

[
ξC+ + (1 − ξ)C−]

: A

+
(1 − 2ξ)d

||ε||
[
σ+ − σ−]

:
[
I − A ⊗ A

]

− ξ(1 − ξ)d2

||ε||
{

(C+ − C
−) : A +

[
A : (C+ − C

−) : A
]
A

}

,

W̄ h
,εd = ξ(1 − ξ)

[
C

+ − C
−]

: A +
ξ(1 − ξ)

||ε|| [σ+ − σ−] : (I − A ⊗ A)

+
ξ(1 − ξ)d

||ε||
{[

(1 − ξ)C+ + ξC−]
: A − (A :

[
(1 − ξ)C+ + ξC−]

: A)A
}

,

W̄ h
,εε = ξC+ : E+ + (1 − ξ)C− : E− +

ξ(1 − ξ)d

||ε||
[
C

+ : E
+ − C

− : E
−]

− ξ(1 − ξ)d

||ε||2
[
σ+ − σ−]

⊗ A − ξ(1 − ξ)d

||ε|| A ⊗ A :
[
C

+ : E
+ − C

− : E
−]

− ξ(1 − ξ)d

||ε||2 A ⊗
[
σ+ − σ−]

− ξ(1 − ξ)d

||ε||2
[
(σ+ − σ−) : A

]
I

− ξ(1 − ξ)d

||ε||2
[
3(σ+ − σ−) : A

]
A ⊗ A .







(B.4)

C. Basics of Complex Functions

The aim of this chapter is to summarize some of the fundamental definitions and prop-
erties of complex numbers and functions of complex variables. They are frequently used in
analytical solutions of two-dimensional elasticity problems. We refer to the monograph by
England [63] for a detailed treatment of the complex functions in the elasticity theory.
A complex number z can be expressed in the Cartesian coordinates x1 and x2 as

z := x1 + ix2 (C.1)

or alternatively, in the polar coordinates r and θ as

z := r(cos θ + i sin θ) = reiθ (C.2)

with i =
√
−1 and real numbers x1, x2, r, θ ∈ R. Note that the Cartesian and the

polar coordinates are related by r =
√

x2
1 + x2

2 and tan θ = x2/x1. A power of a complex
number is given by

zn = rn(cosnθ + i sinnθ) (C.3)
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which is obtained by using the representation (C.2) and is valid for integral values of
n, both positive and negative. Having defined the integral powers, the general rational
power of a complex number is determined by

zp/q = rp/q
[

cos
p

q
(θ + 2kπ) + sin

p

q
(θ + 2kπ)

]
with k = 0, 1, . . . (C.4)

Next, we introduce the complex conjugate z̄ of a complex number z as

z̄ := x1 − ix2 (C.5)

in the Cartesian coordinates or alternatively

z̄ = r(cos θ − i sin θ) = re−iθ (C.6)

in the polar coordinates. From the definitions (C.1) and (C.5), the following relations are
obtained

x1 = ℜ(z) =
1

2
(z + z̄) and x2 = ℑ(z) =

1

2
(z − z̄) (C.7)

where ℜ(z) and ℑ(z) stand for the real and imaginary parts of z, respectively. After a
brief introduction to complex numbers, now fundamental properties of the functions of a
complex variable will be discussed. Let S be an arbitrary set of points in the complex
plane. If to each point z = x1 + ix2 of the set S there corresponds a complex number
u1(x1, x2) + iu2(x1, x2), then a complex function f(z) is defined on S. The value of the
function at the point z is

f(z) = u1(x1, x2) + iu2(x1, x2) , (C.8)

where u1 and u2 are real functions of the variables x1 and x2. The derivative of a function
f of a complex variable z is

∂f

∂z
= f ′(z) = lim

δz→0

f(z + δz) − f(z)

δz
(C.9)

which is formally identical with the derivative of a function of a real variable. From (C.1),
partial derivatives of f with respect to x1 and x2 are computed as

∂f

∂x1

=
∂f

∂z

∂z

∂x1

= f ′(z)

∂f

∂x2
=

∂f

∂z

∂z

∂x2
= if ′(z)

(C.10)

by a simple application of the chain rule. Note that δz → 0 can be achieved in infinitely
many ways in the complex plane, since δz = δx1 + iδx2. Consequently, the existence of
the derivative f ′(z) requires that the limit given in (C.9) has to be the same no matter
how δz → 0. Choosing two limiting case for δz, a pure real one δz = δx1 and a pure
imaginary one δz = iδx2, and equating both of them yield the so-called the Cauchy-
Riemann equations

∂u1

∂x1

=
∂u2

∂x2

and
∂u1

∂x2

= −∂u2

∂x1

. (C.11)
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If u1, u2, ∂u1/∂x, ∂u2/∂y, ∂u1/∂y and ∂u2/∂x are continuous at z, then the Cauchy-
Riemann equations are the necessary and sufficient conditions for the existence of the
derivative f ′(z) at z. At this stage, two operators ∂/∂z̄ and ∂/∂z can be defined

∂

∂z̄
=

1

2
(
∂

∂x1
+ i

∂

∂x2
) and

∂

∂z
=

1

2
(
∂

∂x1
− i

∂

∂x2
) (C.12)

which is obtained by using the chain rule and the definitions in (C.7). Following the latter
result it is possible to write

4
∂2

∂z∂z̄
=

∂2

∂x2
1

+
∂2

∂x2
2

= ∇2 . (C.13)

A complex function f(z) is said to be analytical or holomorphic in a region S provided
that it is single valued in S and its complex derivative f ′(z) exists at each point of S. The
sum of the derivatives of (C.11)1 with respect to x1 and (C.11)2 with respect to x2 yields

∇2u1 =
∂2u1

∂x2
1

+
∂2u1

∂x2
2

= 0 . (C.14)

Following the same procedure, but taking the derivatives in the opposite order renders

∇2u2 =
∂2u2

∂x2
1

+
∂2u2

∂x2
2

= 0 . (C.15)

The last two equations have important consequences. They indicate that the real and
imaginary parts of any analytic function are solutions to the Laplace equation. This
property motivates the application of complex variable methods to the theory of elasticity.

D. The Linear Elastic Crack Tip Fields

The purpose of the subsequent discussions is to show the r−1/2 type stress singularities
which arise in the linear elastic fracture mechanics. In the sequel, stress singularities in
the Mode III (the anti-plane shear) and the Mode I crack problems will be studied, see
Kanninen & Popelar [111] for further details.

D.1. The Anti-Plane Shear Problem - Mode III Cracking

The anti-plane deformation state is defined by prescribing the displacement field u =
(u1, u2, u3) as follows

u1 = u2 = 0 and u3 = û3(x1, x2) . (D.1)

Insertion of (D.1) into the usual definition of the linear strain tensor εij = (ui,j + uj,i)/2
yields the anti-plane shears

ε3α = εα3 =
1

2
u3,α for α = 1, 2 (D.2)

as the only non-vanishing components of ε. Recall the linear elastic stress-strain relation

σij = λ εkkδij + 2µ εij (D.3)
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which leads to the following non-zero stress components

σ3α = 2µ ε3α for α = 1, 2 . (D.4)

Recall the equation of equilibrium (σij,j = 0 for i, j = 1, 2, 3) for static problems in the
absence of body forces which has the following simplified form

σ3α,α = 0 for α = 1, 2 (D.5)

for the anti-plane shear problem under consideration. Insertion of (D.2) and (D.4) into
(D.5) yields the so-called the Laplace equation

u3α,α = ∇2u = 0 for α = 1, 2 (D.6)

which can be solved by complex variable methods. The real and the imaginary parts of
any analytic function are solutions to Laplace equation, see Appendix C. Therefore, the
solution of (D.6) can be written as

u3 =
1

µ

[
f(z) + f̄(z̄)

]
, (D.7)

where f(z) = u(x1, x2) + iv(x1, x2) is an analytical function, f̄(z̄) = u(x1, x2)− iv(x1, x2)
is its complex conjugate, u(x1, x2) and v(x1, x2) are two real functions and i =

√
−1 is

the complex number. Insertion of (D.7) into (D.2) yields

ε31 =
1

2µ

[
f ′(z) + f̄ ′(z̄)

]
and ε32 =

i

2µ

[
f ′(z) − f̄ ′(z̄)

]
, (D.8)

From (D.8) the stress components read

σ31 =
[
f ′(z) + f̄ ′(z̄)

]
and ε32 = i

[
f ′(z) − f̄ ′(z̄)

]
, (D.9)

and a straightforward manipulation of (D.9) gives

σ31 − iσ32 = 2f ′(z) . (D.10)

We investigate the anti-plane shear problem depicted in Figure 7.7 with a coordinate
system located at the crack tip. We consider the following analytical function

f(z) = Czλ+1 with C = A+ iB , (D.11)

where A, B and λ are undetermined real constants. Note that f(z) in (D.11) can also
be written as f(z) = u(x1, x2) + iv(x1, x2). In order to obtain finite displacements at the
crack tip (|z| = r = 0), λ has to be greater than −1. Insertion of (D.11) into (D.10) yields

σ31 − iσ32 = 2 (λ+ 1)Czλ . (D.12)

Some manipulations of (D.12) based on (C.3) leads to an alternative representation

σ31 − iσ32 = 2 (λ+ 1) rλ(A+ iB) (cosλθ + i sinλθ) . (D.13)
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By equating separately the real and imaginary parts of (D.13), one gets

σ31 = 2 (λ+ 1) rλ (A cosλθ − B sinλθ)
σ32 = −2 (λ+ 1) rλ (A sinλθ +B cosλθ)

. (D.14)

We consider a sharp crack with traction free crack lips which requires the following con-
ditions on the cracks surfaces

σ32 = 0 for θ = ∓π . (D.15)

Insertion of the condition (D.15) into (D.14)2 gives two equations in terms of the unknown
constants A and B [

sinλπ cosλπ
sinλπ − cosλπ

]

︸ ︷︷ ︸

=:K

[
A
B

]

=

[
0
0

]

. (D.16)

In order to avoid the trivial solution A = B = 0, the determinant of K has to vanish
which is satisfied if

sin 2πλ = 0 . (D.17)

Considering the restriction on λ to have a bounded displacement field at the crack tip
(λ > −1), the roots of (D.17) are found to be

λ = −1

2
,
n

2
for n = 0, 1, 2, . . . (D.18)

From the set of solutions for λ given in (D.18), the first one λ = −1
2

provides, around a
small neighborhood of the crack tip, the most significant contribution. If λ = −1

2
is set,

then the equations in (D.16) are satisfied for A = 0, but B still remains as an unknown.
Now, from (D.14) it is possible to write

[
σ31

σ32

]

=
KIII

(2πr)1/2

[
− sin(θ/2)

cos(θ/2)

]

, (D.19)

where B is chosen such that

KIII = lim
r→0

[

(2πr)1/2σ32

∣
∣
θ=0

]

. (D.20)

Then, the displacement field is determined by insertion of (D.11) into (D.7) with λ = −1
2
,

A = 0 and the use of (C.4), i.e.

u3 =
2KIII

µ

( r

2π

)1/2
sin

θ

2
. (D.21)

The quantity KIII is referred to as the Mode III stress intensity factor, which is established
by the far field boundary conditions and is solely a function of the applied loading and
the geometry of the cracked body. The stresses for λ 6= −1

2
but satisfying (D.18) are

finite at the crack tip. Away from the crack tip other terms with λ 6= −1
2

start to play
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an important role, and they cannot be neglected. Alternatively, the stress field can also
be written in the polar coordinates

[
σrz

σθz

]

=
KIII

(2πr)1/2

[
sin(θ/2)
cos(θ/2)

]

. (D.22)

Both the Cartesian (D.19) and the polar representations (D.22) show that there is the
well-known r−1/2 singularity of the stress field at the crack tip in the case of an anti-plane
shear problem of linear elasticity.

D.2. Mode I Cracking

The displacement field has the following parameterization

u1 = û1(x1, x2) , u2 = û2(x1, x2) and u3 = 0 (D.23)

for a Mode I crack problem under consideration. As a consequence of (D.23), ε31 = ε32 =
ε33 = 0, and the other components of the strain are

εαβ =
1 + ν

E
[ σαβ − νδαβσγγ ] for α, β, γ = 1, 2 , (D.24)

where δαβ is the Kronecker delta. As a consequence of (D.23) and (D.24), stresses fulfill
the conditions given by

σ33 = νσγγ and σ3α = 0 for α = 1, 2 . (D.25)

In the absence of body forces the static equilibrium is σαβ,β = 0 where α, β = 1, 2 for
the two-dimensional problem studied. In the case of plane problems six independent
compatibility conditions boil down to

εαβ,αβ − εαα,ββ = 0 or 2ε12,12 − ε12,12 − ε22,11 = 0 . (D.26)

The static equilibrium condition σαβ,β = 0 will be identically satisfied if stresses are
expressed in the following form

σαβ = −Ψ,αβ + Ψ,γγδαβ , (D.27)

where Ψ is the Airy stress function. Insertion of (D.27) into (D.24) gives the non-zero
strain components in terms of the Airy stress function

ε11 =
1 + ν

E
[−Ψ,11 + (1 − ν)(Ψ,11 + Ψ,22) ] ,

ε22 =
1 + ν

E
[−Ψ,22 + (1 − ν)(Ψ,11 + Ψ,22) ] ,

ε12 =
1 + ν

E
[−Ψ,12 ] .

(D.28)

Then the compatibility condition (D.26) can be reformulated by using the representation
of strains in (D.28) as follows

∇2(∇2Ψ) = Ψ,ααββ = 0 (D.29)
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which states that ∇2Ψ satisfies the Laplace equation. Consequently, one can write ∇2Ψ
as the sum of an analytical function and its complex conjugate

∇2Ψ = 4
∂2Ψ

∂z∂z̄
= f(z) + f̄(z̄) , (D.30)

where f(z) is an analytical function, see Appendix C for the definition of analytical
functions. Integration of (D.30) results in a real function

Ψ =
1

2
[ z̄Ω(z) + zΩ̄(z̄) + ω(z) + ω̄(z̄) ] . (D.31)

Insertion of (D.31) into (D.30) yields f(z) = 2∂Ω(z)/∂z and f̄(z̄) = 2∂Ω̄(z̄)/∂z̄ where
Ω(z) and ω(z) are analytic functions. Note that from (D.27) and (D.30) it is possible to
write

σ11 + σ22 = Ψ,11 + Ψ,22 = ∇2Ψ = 4
∂2Ψ

∂z∂z̄
. (D.32)

Combination of (D.31) and (D.30) gives

4
∂2Ψ

∂z∂z̄
= 2[ Ω′(z) + Ω̄′(z̄) ] , (D.33)

where Ω′(z) and Ω̄′(z̄) represent the derivatives of Ω and Ω̄ with respect to z and z̄,
respectively. By comparison of (D.32) with (D.33) one obtains

σ11 + σ22 = 2[ Ω′(z) + Ω̄′(z̄) ] . (D.34)

The second derivative of Ψ with respect to z̄ is computed form (D.31)

4
∂2Ψ

∂z̄∂z̄
= 2[ zΩ̄′′(z̄) + ω̄′′(z̄) ] . (D.35)

The following sum of three components of the stress is constructed

σ22 − σ11 − 2iσ12 = Ψ,11 − Ψ,22 + 2iΨ,12 (D.36)

by using the expression in (D.27). Twice application of the operator ∂/∂z̄ defined in
(C.12) to the function Ψ induces

4
∂2Ψ

∂z̄∂z̄
=
∂2Ψ

∂x2
1

− ∂2Ψ

∂x2
2

+ 2i
∂2Ψ

∂x1∂x2

(D.37)

and a comparison of (D.35), (D.36) and (D.37) yields the representation

σ22 − σ11 − 2iσ12 = 2[ zΩ̄′′(z̄) + w̄′′(z̄) ] . (D.38)

Alternative to (D.38) the following relation is often accounted in the literature

σ22 − σ11 + 2iσ12 = 2[ z̄Ω′′(z) + w′′(z) ] . (D.39)
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Using the representation of the stress in (D.27), one can write

σ22 − iσ12 = Ψ,11 + iΨ,12 (D.40)

and insertion of the Airy function (D.31) into (D.40) yields

σ22 − iσ12 = Ω′(z) + Ω̄′(z̄) + zΩ̄′′(z̄) + w̄′′(z̄) . (D.41)

In the sequel, the two-dimensional complex displacement fieldD and its complex conjugate
D̄ in the following form

D = u1 + iu2 and D̄ = u1 − iu2 (D.42)

are considered. Application of the operators ∂/∂z̄ and ∂/∂z defined in (C.12) to the
displacement D and its complex conjugate D̄ renders

2
∂D

∂z
= ε11 + ε22 + i(u2,1 − u1,2) and 2

∂D̄

∂z̄
= ε11 + ε22 + i(u1,2 − u2,1) (D.43)

and with the help of letter result one can write

∂D

∂z
+
∂D̄

∂z̄
= ε11 + ε22 . (D.44)

Insertion of (D.24) into (D.43)2 and then the obtained expression into (D.36) delivers

2µ
∂D

∂z̄
= −[ zΩ̄′′(z̄) + w̄′′(z̄) ] with µ = E/2(1 + ν) . (D.45)

Right hand side of (D.44) can be represented in terms of the stress components by using
(D.24) and employing further (D.34), i.e.

2µ

1 − 2ν
[
∂D

∂z̄
+
∂D̄

∂z̄
] = 2[ Ω′(z) + Ω̄′(z̄) ] (D.46)

Integration of (D.45) and (D.46) gives the final representation of the displacement field
in terms of the complex functions

2µD = κΩ(z) − zΩ̄′(z̄) − ω̄′(z̄)

2µD̄ = κΩ̄(z̄) − z̄Ω′(z) − ω′(z)
, (D.47)

where κ = 3−4ν for plane strain and κ = (3−ν)/(1+ν) for plane stress problems. Next,
a coordinate system positioned at the crack tip is considered. Taking into account the
symmetry of the problem with respect to the crack plane, a solution of the form

Ω(z) = Azλ+1 and ω′(z) = Bzλ+1 (D.48)

is assumed where A, B and λ are real constants. The boundedness of the displacement
field at the crack tip requires λ > −1. Substitution of (D.48) into (D.41) after some
manipulations yields

σ22 − iσ12 = (λ+ 1) rλ
[

A [ 2 cosλα+ λ cos(λ− 2)α ] +B cosλθ
]

− i
[

Aλ sin(λ− 2)θ +B sinλθ
]

.
(D.49)
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The condition of traction free crack lips requires for θ = ±π the stress components
σ22 = σ12 = 0. By putting θ = π in (D.49) and setting the real and imaginary parts
separately to zero one gets

[
(λ+ 2) cosλπ cosλπ

λ sinλπ sinλπ

]

︸ ︷︷ ︸

=:K

[
A
B

]

=

[
0
0

]

, (D.50)

where the properties cos(λ − 2)π = cosλπ and sin(λ − 2)π = sinλπ of trigonometric
functions are employed. A non-trivial solution of (D.50) demands that the determinant
of K has to vanish. The equation detK = 0 is fulfilled for

sin 2λπ = 0 (D.51)

which gives, excluding λ < −1 due to unphysical displacement singularity, the following
set of solutions

λ = −1

2
,
n

2
for n = 0, 1, 2, . . . (D.52)

It is clear that the most dominant contribution to the crack tip stress and displacement
fields comes from λ = −1/2 and from (D.47) for λ = −1/2 one obtains A = 2B. Insertion
of these results into (D.49) gives for the real and imaginary parts separately

σ22 =
A

r1/2
cos

θ

2
(1 + sin

θ

2
sin

3θ

2
)

σ12 =
A

r1/2
cos

θ

2
sin

θ

2
cos

3θ

2
.

(D.53)

The last component of the stress σ11 can be recovered by substitution of (D.34)1 into
(D.34) which reads

σ11 =
A

r1/2
cos

θ

2
(1 − sin

θ

2
sin

3θ

2
) . (D.54)

Finally, by choosing A such that A = KI/
√

2π in terms of the Mode I stress intensity
factor KI , the stress field is obtained as





σ11

σ22

σ12



 =
KI

(2πr)1/2





cos(θ/2) [ 1 − sin(θ/2) sin(3θ/2) ]
cos(θ/2) [ 1 + sin(θ/2) sin(3θ/2) ]

cos(θ/2) sin(θ/2) cos(3θ/2)



 . (D.55)

The Mode I stress intensity factor is defined as the following limit

KI = lim
r→0

[

(2πr)1/2σ22

∣
∣
θ=0

]

. (D.56)

The associated displacement field is computed by substitution of above results into (D.47)
and considering the real and imaginary parts separately

[
u1

u2

]

=
KI

2µ
(
r

2π
)1/2

[
cos(θ/2) [κ− 1 + 2 sin2(θ/2) ]
sin(θ/2) [κ+ 1 − 2 cos2(θ/2) ]

]

. (D.57)
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Alternative to Cartesian coordinate system representation, the polar stress components
can also be computed





σrr

σθθ

σrθ



 =
KI

(2πr)1/2





cos(θ/2) [ 1 + sin2(θ/2) ]
cos3(θ/2)

sin(θ/2) cos2(θ/2)



 , (D.58)

and the associated displacements are

[
ur

uθ

]

=
KI

2µ
(
r

2π
)1/2

[
cos(θ/2) [κ− 1 + 2 sin2(θ/2) ]

sin(θ/2) [−κ+ 1 + 2 cos2(θ/2) ]

]

. (D.59)

D.3. Mode II Cracking

Here, we provide without any derivation only the stress and displacement fields in
the vicinity of a crack tip loaded under Mode II conditions. They read in the Cartesian
coordinates





σ11

σ22

σ12



 =
KII

(2πr)1/2





− sin(θ/2) [ 2 + cos(θ/2) cos(3θ/2) ]
cos(θ/2) [ 1 − sin(θ/2) sin(3θ/2) ]

sin(θ/2) cos(θ/2) cos(3θ/2)



 , (D.60)

[
u1

u2

]

=
KII

2µ
(
r

2π
)1/2

[
sin(θ/2) [κ+ 1 + 2 cos2(θ/2) ]

cos(θ/2) [−κ+ 1 + 2 sin2(θ/2) ]

]

, (D.61)

and in the polar coordinates





σrr

σθθ

σrθ



 =
KII

(2πr)1/2





sin(θ/2) [ 1 − 3 sin2(θ/2) ]
−3 sin(θ/2) cos2(θ/2)

cos(θ/2) [ 1− 3 sin2(θ/2)



 , (D.62)

[
ur

uθ

]

=
KII

2µ
(
r

2π
)1/2

[
sin(θ/2) [−κ+ 1 + 6 cos2(θ/2) ]
cos(θ/2) [−κ+ 1 − 6 sin2(θ/2) ]

]

. (D.63)

E. Closed Form Solutions of Stress Intensity Factors

In the sequel, closed form solutions of the stress intensity factors are addressed. Re-
calling the relation (D.34) and the stress fields around a sharp crack in the Mode I and
Mode II given by equations (D.55) and (D.60), one can write

σ11 + σ22 =
2

(2πr)1/2

[

KI cos
θ

2
−KII sin

θ

2

]

= 2Ω′(z) + 2Ω̄′(z̄) . (E.1)
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The above equation can be reformulated as

σ11 + σ22 =
KI − iKII

(2πr)1/2

[

cos
θ

2
− i sin

θ

2

]

+
KI + iKII

(2πr)1/2

[

cos
θ

2
+ i sin

θ

2

]

. (E.2)

Note that the second term of the right hand side of (E.2) is the complex conjugate of the
first term. As a consequence, it is possible to identify that

2Ω′(z) =
KI − iKII

(2πr)1/2

[

cos
θ

2
− i sin

θ

2

]

. (E.3)

Equation (E.3) further can be recast with the help of (C.3) into

2Ω′(z) =
KI − iKII

(2π)1/2
r−1/2

[

cos(−θ
2
) + i sin(−θ

2
)
]

=
KI − iKII

(2π)1/2
z−1/2 . (E.4)

The above representation allows us to write the following relation

KI − iKII = lim
z→0

[
2(2πz)1/2Ω′(z)

]
(E.5)

which reduces the task of determining the stress intensity factors to the establishment of
Ω′(z) and the computation of the limit in (E.5).

Next, we consider an infinite body with a prescribed far field loading and a crack
lying along a segment L of the x1 axis, i.e. −a ≤ x1 ≤ a and x2 = 0. The original
problem can be defined as a superposition of two subproblems, see Figure E.1. The
subproblem 1 is the original problem without the crack. The subproblem 2 is the infinite
body with the prescribed crack and with zero loading at infinity, but the resultant stress
of the subproblem 1 is applied to the crack surfaces with a negative sign. Now only the
subproblem 2 will be considered which has the same singularity of the original problem
at the crack tip. Suppose that for the given loading of the subproblem 1 the stress field
along the segment L = [−a, a] is

σ2i = pi(x1) for x1 ∈ L . (E.6)

Then the subproblem 2 has a traction free remote boundary and the prescribed stress
components on the crack surfaces are

σ2i = −pi(x1) for x1 ∈ L . (E.7)

σ0
22

σ0
22

σ0
22

σ0
22

σ0
21

σ0
21

σ0
21

σ0
21

−pi(x1)

x1 x1x1

x2 x2x2

a a−a−a

Figure E.1: Decomposition of the original problem as a superposition of two subproblems.
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Along the x1 axis but outside of the crack surfaces, i.e. x1 /∈ L and x2 = 0, the stress
components and the displacements are continuous. The continuity of displacements re-
quires

lim
x2→0+

[
κΩ(z) − zΩ̄′(z̄) − ω̄′(z̄)

]
= lim

x2→0−

[
κΩ(z) − zΩ̄′(z̄) − ω̄′(z̄)

]
(E.8)

when the representation (D.47)1 of the displacement field in terms of complex functions
are used. A rearrangement of the terms in (E.8) yields

lim
x2→0+

[
κΩ(z)

]
+ lim

x2→0−

[
zΩ̄′(z̄)+ ω̄′(z̄)

]
= lim

x2→0−

[
κΩ(z)

]
+ lim

x2→0+

[
zΩ̄′(z̄)+ ω̄′(z̄)

]
. (E.9)

Here we recall the definitions

Ω(z) = u1(x1, x2) + iu2(x1, x2)
Ω̄(z̄) = u1(x1, x2) − iu2(x1, x2)
Ω(z̄) = u1(x1,−x2) + iu2(x1,−x2)

Ω(z̄) = u1(x1,−x2) − iu2(x1,−x2)

(E.10)

which result in the following limit conditions

lim
x2→0+

Ω(z) = lim
x2→0−

Ω(z̄) , lim
x2→0+

Ω̄(z̄) = lim
x2→0−

Ω(z̄)

lim
x2→0−

Ω(z) = lim
x2→0+

Ω(z̄) , lim
x2→0−

Ω̄(z̄) = lim
x2→0+

Ω(z̄) .
(E.11)

Insertion of (E.11) into (E.9) yields

lim
x2→0+

[
κΩ(z) + zΩ′(z̄) + ω′(z̄)

]
= lim

x2→0−

[
κΩ(z) + zΩ′(z̄) + ω′(z̄)

]
. (E.12)

Consequently, the function

Φ(z) = κΩ(z) + zΩ′(z̄) + ω′(z̄) (E.13)

is continuous outside the cracks on x2 = 0 and analytic (holomorphic) in the whole plane.
Recalling (D.41), the requirement of stress continuity can be written as

lim
x2→0+

[
Ω′(z) + Ω̄′(z̄) + zΩ̄′′(z̄) + ω̄′′(z̄)

]
= lim

x2→0−

[
Ω′(z) + Ω̄′(z̄) + zΩ̄′′(z̄) + ω̄′′(z̄)

]
(E.14)

or alternatively

lim
x2→0+

[Ω′(z)]− lim
x2→0−

[Ω̄′(z̄)+zΩ̄′′(z̄)+ ω̄′′(z̄)] = lim
x2→0−

[Ω′(z)]− lim
x2→0+

[Ω̄′(z̄)+zΩ̄′′(z̄)+ ω̄′′(z̄)]

(E.15)
which is recast by the use of (E.11) into

lim
x2→0+

[
Ω′(z)−Ω′(z̄)− zΩ′′(z̄)−ω′′(z̄)

]
= lim

x2→0−

[
Ω′(z)−Ω′(z̄)− zΩ′′(z̄)−ω′′(z̄)

]
. (E.16)

Therefore, the function Ψ′(z) = Ω′(z)−Ω′(z̄)−zΩ′′(z̄)−ω′′(z̄) has to be continuous. The
integration of Ψ′(z) is

Ψ(z) = Ω(z) − zΩ′(z̄) − ω′(z̄) (E.17)

which must be also continuous outside of the cracks on x2 = 0 and analytic in the whole
plane cut along L. The summation of Φ(z) in (E.13) and Ψ(z) in (E.17) reads

Ψ(z) + Φ(z) = (1 + κ) Ω(z) (E.18)
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inducing that the function Ω(z) has to be analytic. From (E.17) one can write ω′(z̄) =
Ω(z) − zΩ′(z̄) − Ψ(z) or alternatively by replacing z → z̄ and z̄ → z

ω̄′(z̄) = Ω(z̄) − z̄Ω̄′(z̄) − Ψ(z̄) . (E.19)

The derivative of (E.19) is

ω̄′′(z̄) = Ω′(z̄) − Ω̄′(z̄) − z̄Ω̄′′(z̄) − Ψ′(z̄) . (E.20)

Substitution of (E.19) and (E.20) into (D.47)1 and (D.41) gives

2µD = κΩ(z) − Ω(z̄) + (z̄ − z) Ω̄′(z̄) + Ψ(z̄)
σ22 − iσ12 = Ω′(z) + (z − z̄)Ω̄′′(z̄) + Ω′(z̄) − Ψ′(z̄) .

(E.21)

Next, the boundary conditions on the both crack surfaces are expressed by the use of
(E.21)2 and (E.6)

−p2(x1) + ip1(x1) = Ω′+(x1) + Ω′−(x1) − Ψ′−(x1) for x2 → 0+

−p2(x1) + ip1(x1) = Ω′−(x1) + Ω′+(x1) − Ψ′+(x1) for x2 → 0−
, (E.22)

where

Ω′+(x1) = lim
x2→0+

Ω′(z) = lim
x2→0−

Ω′(z) , Ψ′−(x1) = lim
x2→0+

Ψ′(z̄)

Ω′−(x1) = lim
x2→0−

Ω′(z) = lim
x2→0+

Ω′(z) , Ψ′+(x1) = lim
x2→0−

Ψ′(z̄)
(E.23)

and z − z̄ = 0 for x2 = 0. Addition and subtraction of (E.22)1 and (E.22)2 yield

2Ω′+(x1) − Ψ′+(x1) + 2Ω′−(x1) − Ψ′−(x1) = −2p2(x1) + 2ip1(x1)
Ψ′+(x1) − Ψ′−(x1) = 0

(E.24)

for x1 ∈ [−a, a] and x2 = 0. The two equations (E.24)1 and (E.24)2 are two Hilbert
problems for the determination of Ψ′(z) and 2Ω′(z)−Ψ′(z). Here, without discussing the
details, the general solution of the Hilbert problem will be given.

Ψ′(z) =
1

2πi

∫

L

0

t− z
dt+Q(z)

2Ω′(z) − Ψ′(z) =
X(z)

2πi

∫

L

p2(t) − ip1(t)

X+(t)(t− z)
dt+ P (z)X(z) .

(E.25)

Further details of the Hilbert problems can be found in England [63] and Kanninen

& Popelar [111]. Since the stress components are zero at infinity, one concludes that
Ω′(z) and ω′(z) are of O(z−1) and hence Ψ′(z) = O(z−1) as |z| → ∞. In (E.25)1 the zero
is put purposely inside the integral due to the fact that the right hand side of (E.24)2 is
zero. Q(z) in (E.25)1 is a polynomial in general and since Ψ′(z) = O(z−1) as |z| → ∞
it vanishes in our case, i.e. Q(z) = 0 and as a consequence Ψ′(z) = 0. The preceding
solution includes the so-called Plemelj function X(z) which is defined as

X(z) = (z2 − a2)−1/2 (E.26)
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for a single crack segment of L = [−a, a]. General form of the Plemelj function for an
array of cracks can be found in Kanninen & Popelar [111] pp.149. Note that due
to the definition of X(z) in (E.26), it can be shown that zX(z) → 1 as |z| → ∞. The
undetermined function P (z) in (E.25)2 is analytic in the whole plane. Because of vanishing
stresses at infinity, P (z) is a polynomial of order n− 1 if X(z) is of −n for large z. Since
n = 1 and the resultant force over the crack has to be zero in the current case, P (z) is a
constant and in fact, the value of the constant is zero, i.e. P (z) = 0. As a result of above
observations, (E.25)2 is expressed as

Ω′(z) = −(z2 − a2)−1/2

2π

a∫

−a

(a2 − t2)1/2[ p2(t) − ip1(t) ]

t− z
dt (E.27)

for a crack segment of L = [−a, a]. A change of variable, z = ξ + a, in (E.5) yields

KI − iKII = lim
ξ→0

[
2(2πξ)1/2Ω′(ξ)

]
(E.28)

and insertion of (E.28) into (E.27) gives after some algebraic manipulations

KI − iKII =
1

(πa)1/2

a∫

−a

(a+ t

a− t

)1/2

[ p2(t) − ip1(t) ]dt . (E.29)

A similar analysis for the anti-plane shear problem yields

KIII =
1

(πa)1/2

a∫

−a

(a+ t

a− t

)1/2

p3(t)dt . (E.30)

If we consider an infinite body subjected to uniform remote tractions σ0
ij , then pi(t) = σ0

2i

in (E.29) and (E.30) and the intensity factors are determined as

KI = σ0
22

√
πa , KII = σ0

21

√
πa and KIII = σ0

23

√
πa . (E.31)
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[86] Gürses, E.; Miehe, C. [2007]: On Evolving Deformation Microstructures in Non-
Convex Isotropic Damage Mechanics. Submitted to International Journal of Solids
and Structures.

[87] Gurtin, M. E. [1995]: The Nature of Configurational Forces. Archive for Rational
Mechanics and Analysis, 131: 67–100.

[88] Gurtin, M. E. [2000]: Configurational Forces as Basic Concepts of Continuum
Physics. Springer-Verlag, New York.

[89] Gurtin, M. E.; Podio-Guidugli, P. [1996]: Configurational Forces and the
Basic Laws for Crack Propagation. Journal of the Mechanics and Physics of Solids,
44: 905–927.

[90] Gurtin, M. E.; Podio-Guidugli, P. [1998]: Configurational Forces and a Con-
stitutive Theory for Crack Propagation that Allows for Kinking and Curving. Journal
of the Mechanics and Physics of Solids, 46: 1343–1378.

[91] Hackl, K.; Hoppe, U. [2003]: On the Calculation of Microstructures for Inelastic
Materials Using Relaxed Energies. In Miehe, C. (Editor): Computational Mechan-
ics of Solid Materials at Large Strains, pp. 77–86. Kluwer Academic Publishers.

[92] Halphen, B.; Nguyen, Q. S. [1975]: Sur les Matéraux Standards Généralisés.
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[200] Šilhavý, M. [1997]: The Mechanics and Thermodynamics of Continuous Media.
Springer-Verlag, Berlin Heidelberg New York.
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