
Institute of Computer Engineering and Computer Architecture
Prof. Dr. rer. nat. habil. Hans-Joachim Wunderlich

Pfaffenwaldring 47, 70569 Stuttgart

Master Project Nr. 3221

Implementing Density

Functional Theory (DFT)

Methods on Many-core
GPGPU Accelerators

by

Bishwajit Mohan Gosswami

M S C T H E S I S
in partial fulfillment of the requirements

for the degree of Master of Science

Supervisors : Dipl.-Inform. Claus Braun
Examiner : Prof. Dr. rer. nat. habil. Hans-Joachim Wunderlich
Start Date : May 01, 2011
Submission Date : November 14, 2011
CR Classification : D.1.3, D.3.2, D.4.8, G.1.0, I.6.8

Abstract

Density Functional Theory (DFT) is one of the most widely used quantum mechan-

ical methods for calculations of the electronic structure of molecules and surfaces,

which achieves an excellent balance of accuracy and computational cost. How-

ever, for large molecular systems with few hundred atoms, the computational costs

are become very high. Therefore, there is a fast growing demand for much more

efficient implementations to utilize DFT for macro molecules. General Purpose

Graphics Processors (GPUs) are highly parallel, multi-threaded, many-core proces-

sors with tremendous computational capability, which out-paces CPUs in terms of

floating-point performance. They are particularly focused for computation inten-

sive and highly data-parallel computations. This thesis will introduce the scope

of fine grained parallelism with highly data-parallel GPU implementations of sev-

eral algorithmic parts of DFT. Furthermore, experimental results and benchmarks

will be presented in comparison with a current state of art DFT implementation

(Molpro).

Keywords: Parallel Architecture, Parallel Algorithms, Many-core architec-

ture, GPGPU, GPU, CUDA, Density Functional Theory (DFT), Molpro, Quantum

Chemistry

iii

Acknowledgments

This Master thesis and my degree would not have been possible without the support

from many people. I would like to take this opportunity to express my gratitude to

my mother Bakul Banik, my father Bijoy Gosswami, and my sister Tapashi

Gosswami for their enormous support, patience, blessings throughout the whole

period of my study in Stuttgart, and for always being with me. I am grateful to

Prof. Dr. Hans-Joachim Wunderlich for giving me the opportunity to work

on this project in his department. I am heartily thankful to Dipl.-Inform. Claus

Braun for persevering with me as my supervisor and for his motivation and help

through out the time of this research. I offer my regards to Prof. Dr. Hans-

Joachim Werner for his valuable advice and guidance. He has made available

his support in a number of ways. I am deeply indebted to Dr. Toru Shiozaki

and Kamruzzaman Tupa for their valuable suggestions. I am particularly grate-

ful to Sipu Talukder for her support, encouragements, dedication and patience

throughout the thesis, as well as my whole study periods.

v

Contents

Abstract iii

Acknowledgments v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

2 Density Functional Theory 5

2.1 Introduction . 5

2.2 Basics of Quantum Mechanics . 5

2.2.1 Terms and Notations . 6

2.3 Electronic Structure . 9

2.3.1 The Born-Oppenheimer Approximation 10

2.3.2 Hartree-Fock Self-Consistent Field Method 11

2.3.3 Hartree-Fock Equations . 13

2.3.4 The Basis Set Approximation 14

2.3.5 The Density Functional Theory 16

3 State of the Art 21

3.1 Introduction . 21

3.2 Related Work . 21

3.3 Beyond the State of the Art . 24

4 GPU Architecture 27

4.1 Introduction . 27

4.2 GPU Architecture . 27

4.2.1 The Graphics Pipeline . 28

4.2.2 Evolution of Modern GPU Architecture 29

4.2.3 Application Programming Interface 30

4.3 Programming Model . 30

4.3.1 Device Memory Hierarchy . 32

4.3.2 Thread Hierarchy . 34

4.3.3 Kernel and Device Functions 37

vii

viii Contents

5 Molpro - a package of ab initio programs 39

5.1 Introduction . 39

5.2 Molpro - A Package of ab-initio Programs 39

5.3 DFT Architecture in Molpro . 40

5.4 Profiling of the DFT Module in Molpro 42

6 GPU Implementation 47

6.1 Introduction . 47

6.2 Evaluation of Density Matrices . 47

6.2.1 MakeBxRho . 49

6.2.2 MakePhi . 53

6.2.3 Form Density Matrix and its Gradient 53

6.3 Evaluation of The Exchange Correlation Matrix 55

6.3.1 LDA (Local Density approximation) Case 55

6.3.2 GGA (Generalized Gradient Approximation) Case 58

6.3.3 Form the Symmetric Exchange Matrix 59

6.4 Intermediate Routines . 60

6.4.1 Form Sigma σ . 60

6.4.2 Transformation of Spin Density 60

6.5 Hybrid (CPU-GPU) Implementation 62

7 A Multi-GPU Wrapper for Accelerated Density Fitting Mφller -

Plesset Perturbation Theory 63

7.1 Introduction . 63

7.2 Wrapper Routines . 64

7.2.1 CUDA API Utility Wrapper 65

7.2.2 CUBLAS Wrapper . 66

7.3 Case Study: Application of the Wrappers in Molpro 67

7.3.1 DF-MP2 Theory . 67

7.3.2 Implementation . 69

7.3.3 GPU MP2EN Wrapper . 70

8 Results and Performance Evaluation 73

8.1 Introduction . 73

8.2 Performance of the Hybrid CPU-GPU DFT Code 73

8.2.1 Selection of Optimum Grid Block Size 76

8.2.2 Relative Timings for DFT Code 77

8.2.3 Effects on Basis Function Evaluation Timings 78

8.2.4 Performance of the DFT Code 80

8.2.5 Performance Comparison with Large Basis Sets 82

8.2.6 Summary . 84

8.3 Performance of DF-MP2 Code . 86

Contents

9 Conclusion 87

9.1 Summary . 87

9.2 Future Work . 88

9.2.1 Basis Function Evaluation . 88

9.2.2 Evaluation of the Functional Energies 88

9.2.3 CPU-GPU Load Balancing 88

9.2.4 Other Improvements . 88

Bibliography 89

Declaration 93

List of Figures

2.1 The HF model, starting point of different computational methods . . 12

2.2 The SCF procedure . 16

4.1 Graphics pipeline . 28

4.2 CUDA architecture . 30

4.3 CUDA SDK structure . 31

4.4 CUDA memory model . 32

4.5 CUDA memory hierarchy . 34

4.6 CUDA programming model . 35

4.7 Automatic scalability . 36

4.8 CUDA threads structure . 37

5.1 Single SCF iteration of DFT . 41

5.2 Single SCF iteration of DFT with timers 43

5.3 Percentage of elapsed time for each major algorithmic DFT parts . . 44

6.1 Evaluation of the density matrix . 49

6.2 Evaluation of the exchange correlation matrix 56

6.3 Hybrid CPU-GPU architecture . 61

7.1 Parallel reduction with sequential addressing 69

8.1 3D structure of Vinyl-fluoride . 74

8.2 3D structure of Polyvinyl-fluoride (long chain of Vinyl-fluoride) . . . 74

8.3 Elapsed time for evaluation of density matrix for different block size 76

8.4 Elapsed time for evaluation of exchange correlation matrix for differ-

ent block size . 76

8.5 Relative timings for CPU and GPU code 77

8.6 Percentage of relative timings for CPU and GPU code 78

8.7 Effects on CPU basis function evaluation module for increasing grid

block size . 79

8.8 Performance of GPU routines in terms of relative speedup factor . . 79

8.9 Performance of density matrix evaluation in multi-GPU environment 80

8.10 Performance of exchange correlation matrix evaluation in multi-GPU

environment . 80

8.11 Computational speed for density matrix evaluation in terms of

GFLOPs in multi-GPU environment 81

8.12 Computational speed of exchange correlation matrix evaluation in

terms of GFLOPs in multi-GPU environment 81

8.13 Performance of density matrix evaluation with different basis functions 83

xi

xii List of Figures

8.14 Performance of exchange correlation matrix evaluation with different

basis functions . 83

8.15 Performance of density functional theory calculation with different

basis functions . 84

8.16 Performance of DF-MP2 calculation with energy evaluation in GPU 85

8.17 Performance of DF-MP2 calculation with different basis functions . . 85

List of Tables

5.1 DFT profiling - elapsed times for a single SCF iteration 44

8.1 System used in benchmarking . 75

8.2 GPU device used in benchmarking 75

8.3 Compilers used with versions . 75

8.4 Basis sets with the number of contractions 82

xiii

List of Abbreviations

AO Atomic Orbital

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

BLYP Becke-Lee-Yang-Parr

CATS ClearSpeed Accelerated Tera-scale System

CGTO Contracted Gaussian Type Orbitals

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DF-KS Density Fitting Kohn Sham

DFMP2 Density Fitting Mφller - Plesset Perturbations

DFT Density Functional Theory

ERI Electron Repulsion Integrals

FLOP Floating Point Operations

GGA Generalized Gradient Approximations

GPGPU General Purpose Computation on Graphics Processing Unit

GPU Graphics Processing Unit

GTO Gaussian Type Orbitals

HF Hartree Fock

HPC High Performance Computing

LCAO Linear Combination of Atomic Orbital

LDA Local Density Approximation

MO Molecular Orbital

MPI Message Passing Interface

NVCC NVIDIA C Compiler

RDM Reduced Density Matrix

xv

xvi List of Abbreviations

SCF Self Consistent Field

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

TFD Thomas-Fermi-Dirac

Chapter 1

Introduction

Density Functional Theory (DFT) is an approach to describe the quantum behavior

of atoms and molecules in settings of practical value. It is a well established

quantum mechanical method for electronic structure calculations for molecules.

Principally, in electronic structure calculations, a molecular system is described

by a set of functions that depends on the coordinates of all the particles in the

system. This set of functions is known as the wave function in quantum mechanics.

The wave function defines the coordinates of the nuclei and the orbiting electrons.

The energy is calculated from the wave functions through quantum mechanical

operations and from the solution of these wave equations. The complex nature of

the wave functions makes the evaluation of the full system very complex and highly

computational expensive even for very small molecules. The Kohn-Sham formalism

of DFT approximates this ab-initio approach and proposes electron density instead

of the electronic coordinates wave function. The approximation simplifies the

model of the electronic system and allows DFT to provide an excellent balance

between computational accuracy and cost. Over the last years, this approach has

rapidly grown as the cutting edge of quantum mechanical theory that is used

regularly by large numbers of researchers in chemistry, physics, materials science

and other disciplines. However, despite the approximate nature of the DFT, the

computational demand becomes still very high for systems with few hundred

atoms. For such a macromolecular system with a large number of atoms, the com-

putational overhead now becomes a serious limitation for the considered system size.

In recent years, GPGPU (General Purpose Graphics Processing Unit) accel-

erators have raised the interest for massively parallel computing in the field

of scientific calculations. This technology has rapidly evolved from graphics

processing to programmable parallel streaming processing. These accelerators are

specialized for computationally intensive and for highly data parallel computations.

As a result, GPU accelerators are potentially several times faster than the CPUs

(Central Processing Units) in data-parallel applications. However the architectures

of GPUs are more centric to data processing rather than to instruction flow control

and data caching. The excellent price to performance ratio and the low energy

consumption per FLOP makes the GPGPU an attractive way to accelerate highly

data parallel scientific computations. However, these GPU accelerators have some

special characteristics. Often they are optimized in such a way that the performance

has the higher priority rather than numerical accuracy. Most of the GPUs are only

support single precision floating point numbers with very high performance. But

1

2 Chapter 1. Introduction

only single precision accuracy is not sufficient in the quantum chemical simulations.

Recently, the NVIDIA Fermi architecture supports double precision arithmetics,

but with the expense of computational performance. Moreover, the amount of

memory resources (registers, on-chip memory) per core is very small compared to

CPU. In order to achieve high performance from GPU accelerators, the application

needs to be very fine grained with highly data parallel algorithms, where each

light weight thread can do the calculations using the ample resources allocated for it.

Applications with high arithmetic intensity are particularly well suited for

GPU accelerators. Recently a lot of scientific application have been ported to the

GPU. Thus there is an opportunity for high-throughput GPUs to play an active

role on DFT calculations. In the domain of electronic structure calculation, only

few works have been done in the context of GPGPU accelerators. For instance,

the calculation of the exchange correlation term in a Gaussian-based DFT code

has been implemented [1]. The 4-index electron repulsion integrals (ERI), which

is one of the computational bottlenecks in the electronic structure method,

was ported to GPUs [2]. A many-core hybrid CPU-GPU architecture of DFT

was implemented [3], where the wavelet based transformation and convolution

were used. Most of these implementations were performed with single precision

arithmetic and with single GPU accelerator in single core system.

In this thesis, the scope of fine grained parallelism is analyzed for the inte-

grated DFT module in the Molpro quantum chemistry package. The state of

the art multi-threaded DFT architecture in Molpro forms the basis of the GPU

mappings. A multi-GPU DFT architecture is proposed and implemented which

can run on hybrid CPU-GPU clusters. Two main computationally expensive

bottlenecks are identified and ported to the state of art NVIDIA Fermi GPU

architecture, which supports double precision arithmetics. Additionally, a set of

multi-GPU Fortran wrappers is implemented in this thesis to accelerate the density

fitted Mφller-Plesset Perturbation (DF-MP2) calculation to GPU.

The outline of this thesis is the following:

We will start in chapter 2 by providing the basic theoretical and mathemat-

ical background of the quantum chemistry which will help to understand the

concepts of the DFT theory in more detail. In chapter 3, the state of the art

is presented which gives an overview of the previous work done in this area.

Chapter 4 presents the GPU architecture with the corresponding programming

model for this device. Chapter 5 presents the architecture of the integrated DFT

module within the Molpro quantum chemistry package. This DFT module forms

the basis of the GPU mappings developed in this thesis. Chapter 6 explains the

implementation of the two computationally most expensive DFT algorithmic parts

in a multi-GPU environment. Chapter 7 provides the details of the multi-GPU

Fortran wrapper implemented to accelerate the density fitted Mφller-Plesset

3

Perturbation (DF-MP2) calculation on the GPU. Chapter 8 presents the results

and performance evaluation of the ported GPU code and a brief discussion about

the outcomes. Chapter 9 summarizes the thesis and provides the outlook for

further improvements.

Chapter 2

Density Functional Theory

Contents

2.1 Introduction . 5

2.2 Basics of Quantum Mechanics 5

2.2.1 Terms and Notations . 6

2.3 Electronic Structure . 9

2.3.1 The Born-Oppenheimer Approximation 10

2.3.2 Hartree-Fock Self-Consistent Field Method 11

2.3.3 Hartree-Fock Equations . 13

2.3.4 The Basis Set Approximation 14

2.3.5 The Density Functional Theory 16

2.1 Introduction

Density functional theory (DFT) is now one of the most dominant computational

procedures for molecular electronic structure calculations. The basic idea behind

this method is that the energy can be calculated for any electronic system in terms

of electron probability density [4]. Since electrons are very light particles they

need to be described by a quantum mechanical approach. Thus basic knowledge of

quantum mechanics is required to understand the procedure. In this chapter, we

will go through some relevant definition of basic quantum mechanics, the quantum

operators and their mathematical interpretations first. The remaining section about

the electronic structures calculation is built on these quantum notations.

2.2 Basics of Quantum Mechanics

Atoms and molecules consist of positively charged nuclei and negatively charged

electrons. Different atoms have different nuclear charges. Electrons carry a charge

−e (elementary charge) and the nuclear charges are multiples of e, i.e., Zke, where

Zk is the atomic number. So, in neutral molecules the number of electrons equals

the sum of the atomic numbers of all nuclei in the molecule. For example, a diatomic

molecule like, O2 has 16 electrons [5]. Electrons are very light weight particles and

they can not be described correctly by classical mechanics. So they have to be

5

6 Chapter 2. Density Functional Theory

treated by quantum mechanics. Quantum Mechanics explains the behavior of mat-

ter and its interactions with energy on atomic scales. It provides the mathematical

description of the wave-particle duality of matter and energy. The introduction

of quantum mechanics led to a revolution in science and is regarded as the most

profound scientific breakthrough of all time. In this section some very basic facts

and concepts of quantum mechanics are summarized.

2.2.1 Terms and Notations

Operator An observable defines a variable that can be measured. An operator is

a symbol for an instruction to carry out an operation on a function [4]. For example,

one typical quantum operator is a differentiation with respect to an observable x

and is represented by d
dx .

Linear Operator A linear operator, Ω̂ is of the form of

Ω̂(af) = aΩ̂f (2.1)

where a is a constant and f is a function [4]. For instance, multiplication, differ-

entiation, integrations are all linear operators. Most of the operators in quantum

mechanics are linear.

Eigenfunctions and Eigenvalues A function f is an eigenfunction of an oper-

ator Ω̂ if it satisfies an equation of the form

Ω̂f = ωf (2.2)

where ω is a constant. This kind of equations is also called an eigenvalue equa-

tion [4]. In general, the outcome of an operation is the same function multiplied by

a constant. The constant ω in an eigenvalue equation is known as the eigenvalue of

the operator Ω̂ [4]. For example, the function eax is an eigenfunction of the operator
d
dx , as

d

dx
eax = aeax (2.3)

where a is the constant and called eigenvalue of the operator d
dx .

A general function can be constructed in terms of all the eigenfunctions of

an operator. The eigenfunctions used to construct a general function are called

basis functions. It is also expressed as the linear combinations of basis functions to

construct a general function [4]. For example,

g =
∑
n

cnfn (2.4)

where cn are coefficients and the sum is over a complete set of basis functions fn.

2.2. Basics of Quantum Mechanics 7

Commutation In general, commutation do not hold for operators. The outcome

depends on the order of successive operations. That means, ÂB̂ 6= B̂Â. ÂB̂ − B̂Â
is known as the commutator of Â and B̂ and is represented by [Â, B̂] [4].

Representations All quantum operators can be constructed from the position

operator ζ̂ and the linear momentum operator p̂ζ , where ζ̂ = {x̂, ŷ, ẑ} and p̂ζ =

{p̂x, p̂y, p̂z}. These must obey the commutation relations

[x̂, p̂x]ψ(x) = i~ψ(x) for any functions ψ(x) (2.5)

This does not define the operators uniquely. Different representations are possible.

There are two common representations, one is the position representation, where the

position operator is represented by multiplication by x̂ (with the coordinates spec-

ified) and the linear momentum, p̂x, parallel to x̂ is represented by differentiation

with respect to x̂ [4].

x̂→ x̂× (2.6)

p̂x →
~
i

∂

∂x
(2.7)

The other representation is the momentum representation, where the linear mo-

mentum parallel to x̂ is represented by the multiplication by p̂x and the position

operator is represented by differentiation with respect to p̂x.

x̂→ −~
i

∂

∂x
(2.8)

p̂x → p̂x× (2.9)

Operator Constructions Operators can be constructed from the operators of

position and momentum for any observable [4]. For example, the kinetic energy is

related with the linear momentum by T̂ = p̂2

2m , where m is the mass of the particle

and p̂2 is the operator that is applied two times in series. So in three dimensions,

the kinetic energy operator in position representation is

T̂ =
p̂2

2m
= − ~2

2m

{
∂2

∂x
+
∂2

∂y
+
∂2

∂z

}
= − ~2

2m
∇2 (2.10)

the operator ∇2 is called the Laplacian, which is the sum of all the three second

derivatives.

Hamiltonian Operator The Hamiltonian operator describes the total energy of

a system and is denoted by Ĥ [4].

Ĥ = T̂ + V̂ (2.11)

where T̂ is the kinetic energy, explained above (2.10), and V̂ denotes the potential

energy operator. The potential energy per electron is defined by

V̂ = − Ze2

4πε0r
(2.12)

8 Chapter 2. Density Functional Theory

with atomic number Z, the electron charge −e and the distance between the nucleus

and electron, r.

Integral over Operators The integral over an operator Ω̂ has the form

I =

∫
f∗mΩ̂fndτ (2.13)

where f∗m is the complex conjugate of fm and dτ is the volume element [4]. The

integration is over the whole space (−∞ to ∞).

Overlap Integrals The above integral (2.13) is called overlap integral if the

operator Ω̂ is defined as the multiplication by 1 [4].

S =

∫
f∗mfndτ (2.14)

Normalization Integral It is a special case of overlap integral (2.14) [4], where

m = n. A function fm is said to be normalized if∫
f∗mfmdτ = 1 (2.15)

Dirac Brackets For simplicity, the integrals are written in the Dirac bracket

notation, as follows.

〈m|Ω̂|n〉 =

∫
f∗mΩfndτ (2.16)

the symbol 〈m| is called the bra and represents the complex conjugates of the

function f∗m. On the other hand, the symbol |n〉 is called ket and denotes the

function fn [4]. The normalization integral can be represented by the Dirac bracket

notation as follows

〈m|n〉 =

∫
f∗mfndτ = δmn (2.17)

Matrix Notation A matrix is an array of numbers. Each number is called a

matrix elements and is specified by the row(r) number and column(c) number.

Dirac brackets are the elements of a matrix of the operator Ω̂ [4].

〈m|Ω̂|n〉 = Ωmn (2.18)

A diagonal matrix is also defined as of the form 〈n|Ω̂|n〉 where bra and ket referring

to the same state.

2.3. Electronic Structure 9

Hermitian Operator A Hermitian operator satisfies the following relation∫
f∗mΩ̂fndτ =

{∫
f∗nΩ̂fmdτ

}∗
(2.19)

for any functions of fm and fn [4]. The definition of Hermiticity in terms of the

Dirac notation is as follows

〈m|Ω̂|n〉 = 〈n|Ω̂|m〉∗ (2.20)

Hermitian operators are very important for the quantum mechanics and have two

important properties [4]:

1. The eigenvalues of hermitian operators are real.

2. Eigenfunctions of an Hermitian operator are orthogonal.

Functional A function is a prescription for producing a number from a set of

variables. Similarly a functional is a prescription for producing a number from a

function, which in turns depends on variables. For example, a wave function is

a function, while the energy depending on a wave function is called a functional.

Usually, a function is denoted by a set of depending variables with parentheses, f(x).

And a functional is denoted by the depending functions with brackets, F [f] [6].

2.3 Electronic Structure

In quantum mechanics, the state of a system can be entirely described by a wave

function Ψ, which depends on the co-ordinates of all particles of the system.

Ψn(x1, x2,xN , R1, R1,RM) (2.21)

Here xi = (ri, si) are the space-spin co-ordinates of the N electrons, where ri =

(xi, yi, zi) denotes the Cartesian co-ordinates of the electrons, si denotes the spin

co-ordinates. RK = (XK , YK , ZK) are the Cartesian co-ordinates of the M nuclei.

The quantum number, n denotes the different molecular states [5]. There are some

certain conditions and properties that the wave function should obey, for instance,

anti-symmetricity property:

Ψn((x1, x2,xN) = −Ψn((x2, x1,xN) (2.22)

The wave functions are the solutions of the molecular Schrödinger equation.

ĤΨn = EnΨn (2.23)

The Hamiltonian Ĥ is the quantum mechanical operator for the energy, its eigen-

values En are the energies of the stationary states and the eigenfunctions Ψn are

the corresponding molecular wave functions. The Schrödinger equation is an eigen-

value equation, which in general has solutions only for discrete values, En. If the

10 Chapter 2. Density Functional Theory

solutions of (2.23) are generated without reference to the experimental data, the

method is normally called an ab-initio method. Where as semi-empirical methods

referred to the experimental data in some extents [6]. If the wave function Ψn is

known, any time-independent observable for state n can be computed by calculating

the expectation value ∫
Ψ∗
n(τ)Ω̂Ψn(τ)dτ (2.24)

where the integration is over the all spatial co-ordinates and over the full space τ . Ω̂

is the Hermitian (2.19) operator associated with the observable property. The wave

function is assumed to be normalized (2.15) [5]. Usually the ground state energy,

i.e., the state with lowest energy is of the main interest.

2.3.1 The Born-Oppenheimer Approximation

Due to the complexity of the wave function structure, the Schrödinger equation

can not be solved analytically [4] [5] [6]. As the electrons are lighter than the

nuclei (the mass of the lightest nucleus, the proton H+, is 1837 times larger than

that of an electron) [5], they can respond almost instantaneously to displacements

of the nuclei and it is assumed that the charge distribution adjusts instantaneously

to the slow motion of the nuclei. Therefore it is convenient to fix the nuclear

positions and solve the Schrödinger equation for the electrons of a fixed molecular

structure. This is known as the Born-Oppenheimer approximation [4]. If the

nuclear co-ordinates are varied, the electronic energy can be obtained as a function

of the nuclear co-ordinates, which is known as potential energy surface (PES) [5].

In the Born-Oppenheimer approximation the molecular wave function is ap-

proximated as a product function

Ψn,v,J,...(x,R) = ψ(n)(x,R)χ
(n)
n,v,J,...(R) (2.25)

where the electronic wave functions ψ(n)(x,R) describe the electronic structure for

a fixed nuclear geometry R ≡ {R1, R2,, RM} and the nuclear wave functions

χ
(n)
n,v,J,...(R) describe the nuclear motions [5]. So the electronic Schrödinger equation

is solved first for fixed nuclear coordinates

Ĥeψ
(n)(x,R) = E(n)

e (R)ψ(n)(x,R) (2.26)

resulting in the electronic wave functions ψ(x,R) and energies E
(n)
e (the PES). The

n is called the electronic quantum number and denotes the individual electronic

eigenstates [4]. Here Ĥe is the electronic Hamiltonian operator which is a sum

of electron kinetic energy, Te, nuclear-electron attraction, Vne, electron -electron

2.3. Electronic Structure 11

repulsion, Vee and nuclear-nuclear repulsion, Vnn, as defined below [6].

Ĥe = T̂e + Vne + Vee + Vnn (2.27)

T̂e = −
N∑
i

1

2
∇2
i (2.28)

Vne = −
N∑
i

∑
a

Za
|Ra − ri|

(2.29)

Vee =
N∑
i

N∑
j>i

1

|ri − rj |
(2.30)

Vnn =
∑
a

∑
b>a

ZaZb
|Ra −Rb|

(2.31)

This is represented in atomic units: ~ = 1, e = 1, me = 1 and 4πε0 = 1. And the

numclear Schrödinger equation is then written as:

[T̂n + Ene (R)]χ
(n)
v,J,...(R) = E

(n)
v,J,...(R)χ

(n)
v,J,...(R) (2.32)

2.3.2 Hartree-Fock Self-Consistent Field Method

The electronic Schrödinger equation can only be solved exactly for the H+
2 molecule

and for similar one electron systems [6]. But for the general case, like in many

electron systems, it is not possible to solve the equation exactly. Additional ap-

proximations have to be used (numerical methods). By neglecting the relativistic

effects, electron spin is introduced as an ad hoc quantum effect. Each electron has

a spin quantum number of 1
2 with two possible states, corresponding to alignment

along or opposite to the external magnetic field. The spin functions are represented

by α and β, with following orthonormality conditions.

〈α|α〉 = 〈β|β〉 = 1 (2.33)

〈α|β〉 = 〈β|α〉 = 0 (2.34)

The variational principle helps here to generate approximate solutions of the elec-

tronic Schrödinger equation. The variational principle states that for any trial wave

function ψ, the energy expectation value E is always an upper bound to the exact

ground state energy E1 [5]. The energy of an approximate (or trial) wave function

can be calculated as the expectation value of the Hamiltonian operator (except for

Coupled Cluster (CC) method), divided by the norm of the wave function and is

represented below with Dirac bracket notation [6]:

Ee =
〈ψ|He|ψ〉
〈ψ|ψ〉

≥ E1 (2.35)

For a normalized wave function the denominator of eq. (2.35) is equal to 1 (see

eq. (2.15)). Considering the Pauli principle, which states that two electrons can

12 Chapter 2. Density Functional Theory

not have all quantum numbers equal, the wave function must be antisymmetric.

The antisymmetry holds if the wave functions change their sign for any interchange

of any two electron co-ordinates. The antisymmetry of the wave function can be

achieved by constructing the wave functions from Slater Determinants (SDs). The

columns in a Slater determinant are single electron wave functions, spin orbitals,

while the electron coordinates are along the rows. The one electron functions are

known as Molecular spin orbitals (MOs) which are defined as a product of a spatial

orbitals and a spin function (α or β) [6]. The Slater determinant of N electrons is

given below:

ΦSD =
1√
N !


ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

ψ1(xN) ψ2(xN) · · · ψN (xN)

 (2.36)

Here ψi(x) = φi(r)%(s), where spin function %(s) = {α, β} and φi(r) is the spatial

function. Now, considering a trial wave function that consists of a single Slater

determinant the variational principle can be used to derive the Hartree-Fock (HF)

equations [5]. The HF equations is a kind of branching point, as explained in the

figure 2.1, for either leading to semi-empirical methods with additional approxima-

tions, or Self-consistent Field method by adding additional determinants where the

solutions converge towards the exact solution of the electronic Schrödinger equa-

tion [6].

Figure 2.1: The HF model, starting point of different computational methods

[7]

2.3. Electronic Structure 13

2.3.3 Hartree-Fock Equations

To derive the Hartree-Fock equations, a further approximation is made. Considering

a single Slater determinant as a trial wave function which is a sum of permutations

over the diagonal of the determinant and is represented by Φ,

Φ = A[φ1(1)φ2(2) · · ·φN (N)] (2.37)

A =
1√
N !

N−1∑
p=0

(−1)pP (2.38)

where 1 operator is the identity and P generates all the possible permutations of

electron coordinates [6]. In this case the operators mentioned in (2.27) can be

formed according to the number of electron indices.

hi = −1

2
∇2
i −

∑
a

Za
|Ra − ri|

(2.39)

gij =
1

|ri − rj |
(2.40)

He =
N∑
i=1

hi +
N∑
i=1

N∑
j>i

gij + Vnn (2.41)

Here hi is the one electron operator that describes the motion of electron i in the

field of all the nuclei, gij is a two electron operator that describes the electron-

electron repulsion and He defines the electronic Hamiltonian operator (For more

elaboration, see [6], page 59- 63). The energy then can be written in a more

symmetrical form as

EHF =
N∑
i=1

〈φi|h1|φi〉+
1

2

N∑
i=1

N∑
j=i

(Jij −Kij) + Vnn (2.42)

J12 = 〈φi(1)φj(2)|g12|φi(1)φj(2)〉 (2.43)

K12 = 〈φi(1)φj(2)|g12|φj(1)φi(2)〉 (2.44)

where the factor of 1
2 allows the double sum to run over all electrons and it

can be shown that the Coulomb self-interaction Jii is exactly canceled by the

corresponding exchange element Kii [6].

Based on the variational principle, the energy can be minimized or at least

be made stationary with respect to the shape of the orbitals, subject to the

conditions that the orbitals must remain orthonormal. This will give the best

possible energy for a single Slater determinant. The orthonormality can be

maintained by minimizing the Lagrange functional

L = E −
N∑
ij

εij(〈φi|φj〉 − δij) (2.45)

14 Chapter 2. Density Functional Theory

with respect to the arbitrary variation δφi of the orbitals. And the variation of

the energy can be written in terms of Fock operator F̂i, which is the sum of usual

one-electron operator, ĥi and an average potential operator, ĝi =
∑
j

(Ĵj − K̂j):

F̂ = ĥ+
N∑
j

(Ĵj − K̂j) (2.46)

The Fock operator is one-electron energy operator. It presents the kinetic energy

of an electron and the attraction to all the nuclei by ĥi and the repulsion to all the

other electrons through the Ĵ and K̂ operators. The Ĵ and K̂ operators are defined

as follows.

Ĵj(1) =

∫
φ∗j (r2)

1

r12
φj(r2)dr2 (2.47)

K̂j(1) =

∫
φ∗j (r2)

1

r12
φj(r1)dr2 (2.48)

The Fock operator depends on the molecular orbitals, φi. If the molecular orbitals

(MOs) are transformed by a unitary matrix transformation and the Lagrange mul-

tipliers are elements of a Hermitian matrix, the final Hartree-Fock equations will

take the form of

F̂ φi = εiφi (2.49)

which is a pseudo-eigenvalue equation. These transformed molecular orbitals, φi,

are called canonical MOs. A specific Fock orbital can only be determined if all

the other occupied orbitals are known. It is possible to use an iterative scheme

in which in each iteration the Fock operator is kept fixed. Then the improved

orbitals can be found by solving the eigenvalue equation. These orbitals can be

used to construct a new Fock operator and this procedure is repeated until the

convergence is achieved. This procedure is called the Hartree-Fock self consistent-

field (SCF) method. It is not always guaranteed that this method converges, in that

case, special convergence acceleration methods are required. Another important

problem is how to parametrize the orbitals so that the eigenvalue equation can be

solved efficiently [5]. The most commonly used method is to expand the molecular

orbitals in terms of some basis set approximation. This is briefly described in the

next section.

2.3.4 The Basis Set Approximation

The standard method to solve the Hartree-Fock equations is to expand the molec-

ular orbitals (MOs) in terms of basis functions known as atomic orbitals (AOs). In

principle, any type of basis functions can be used, like exponential, Gaussian, poly-

nomial, etc. This MOs expansion is also known as, Linear Combination of Atomic

2.3. Electronic Structure 15

Orbitals (LCAO).

φi =
M∑
α

Cαiχα (2.50)

The Hartree-Fock equations then has the form of

F̂
M∑
α

Cαiχα = εi

M∑
α

Cαiχα (2.51)

This is known as Fock equations in the atomic orbital basis. The coefficients Cαi
represent the orbitals in AO basis. This equation (2.51) has to be projected from

the leftby 〈χβ| to get a matrix eigenvalue equation.∑
α

〈χβ|F̂ |χα〉Cαi = εi
∑
α

Cαi〈χβ|χα〉 (2.52)

All the equations are collected in matrix notations which has the form of

FC = SCε (2.53)

Fβα = 〈χβ|F |χα〉 (2.54)

Sβα = 〈χβ|χα〉 (2.55)

The matrix S contains the overlap elements between basis functions and the matrix

F contains Fock matrix elements [6]. The density ρ(r) can be formed in terms of

the basis functions as follows,

ρ(r) =
N∑
i=1

φiφ
∗
i =

∑
αβ

χα(r)χ∗
βDαβ (2.56)

Dαβ =
N∑
i=1

CαiC
∗
βi (2.57)

The Roothaan-Hall equation is the determination of the eigenvalues of the Fock

matrix. These equations are solved iteratively, known as SCF procedure, as the

Fock matrix depends on it’s own solutions. This is illustrated in the figure 2.2. The

main steps in the SCF procedure [6] are:

1. Compute all one- and two-electron integrals

2. Prepare an acceptable guess for the MO coefficients

3. Build the initial density matrix

4. Build the Fock matrix

5. Diagonalize the Fock matrix

6. Calculate the new density matrix, check for sufficient convergence, if not con-

verged repeat from step (4)

16 Chapter 2. Density Functional Theory

Figure 2.2: The SCF procedure

[7]

2.3.5 The Density Functional Theory

The Density Functional Theory (DFT) can be seen as an extension of the Hartree-

Fock methods. DFT is one of the extensively used method in computational chem-

istry, due to its simplicity and good accuracy/cost ratio. The basis for DFT is based

on the proof by Hohenberg and Kohn [8], that the ground-state electronic energy

is determined completely by the electron density, ρ. The wave function for an N -

electron systems contains 3N coordinates, three for each electron. The electron

density only depends on three coordinates. It is calculated from the square of the

wave functions that are integrated over N − 1 electrons coordinates. The complex-

ity of the wave function approach depends on the number of electrons. It increases

with the increasing number of electrons. Whereas the complexity of electron den-

sity remains same independently of the system size. Thus the density functional

theory is much simpler and cheaper compared to the wave function approach. But

the crucial point is that the exact energy functional in terms of the density is un-

known. However, there are many different approximate functionals proposed in the

literature for different kind of molecular systems or different molecular properties.

The results are depending on the used functionals.

2.3. Electronic Structure 17

2.3.5.1 The Hohenberg-Kohn Theorem

Density Functional Theory is based on two fundamental theorems proved by Ho-

henberg and Kohn. The first theorem states that the exact ground sate energy can

be expressed as functional of electron density ρ(r).

ρ(r1) = N

∫
R3

dr2

∫
R3

dr3 · · ·
∫
R3

drNΨ∗(r1, r2, · · · , rN)Ψ(r1, r2, · · · , rN) (2.58)

where N is the number of electrons, the ground state wave function Ψ is assumed

to be normalized and the spin coordinate is omitted. Since the electrons are in-

distinguishable, the electronic index can be omitted and the density can be simply

represented by ρ(r). ρ(r)dr is the probability of finding any electron in the volume

element dr at position r, independent of the positions of the other electrons. The

density must fulfill the N-representability condition∫
R3

ρ(r) dr = N (2.59)

The energy can be expressed as a functional of the density.

E[ρ(r)] =

∫
R3

vext(r)ρ(r) dr + F [ρ(r)] (2.60)

where vext(r) is the external potential of the nuclear charges

vext(r) = − e2

4πε0

M∑
k=1

Zk
|Rk − r|

(2.61)

The energy functional F [ρ(r)] is universal and independent of the external potential.

It explains the pure electronic energy as a function of the density. The second

theorem states that, if the energy functional F [ρ(r)] is known, the exact ground-

state energy EGS can only be obtained with the exact density ρGS(r); for all other

approximate densities ρ(r) the energy is higher than the exact energy, i.e.,

E[ρ(r)] ≥ EGS (2.62)

So in principle, the exact density can be obtained my minimizing the energy func-

tional with respect to ρ. Thomas-Fermi-Dirac (TFD) approximate the electron as

a non-interacting uniform electron gas to determine the unknown energy functional

F [ρ(r)]. In this case, the energy can be written as,

ETFD(ρ) = T (ρ) + Vext(ρ) + J(ρ) +K(ρ) (2.63)

where Vext(ρ) and J(ρ) are the classical Coulomb interaction energies and are de-

fined as:

Vext(ρ) =

∫
R3

ρ(r)vext(r)dr (2.64)

J(ρ) =
1

2

∫
R3

dr1

∫
R3

dr2ρ(r1)
e2

4πε0r12
ρ(r2) (2.65)

18 Chapter 2. Density Functional Theory

This assumption of a non-interacting uniform electron gas does not hold very well

for atomic and molecular systems. The TFD approximation can not predict bonding

and molecules simply do not exists in this case [6].

2.3.5.2 Kohn-Sham Theory

The main problem in Thomas-Fermi-Dirac model is that the kinetic energy is rep-

resented very poorly. The basic idea in the Kohn and Sham (KS) formalism is

splitting the kinetic energy functional in to two parts, one of which can be calcu-

lated exactly and and a small correction term. The Kohn-Sham formalism treats the

system as an independent particle model, like the Hartree-Fock theory. The kinetic

energy, the external potential and the average Coulomb interaction are treated ex-

actly as in the Hartree Fock, based on antisymmetrized product of spin-orbitals [5].

Since the exact density matrix is unknown, the (approximate) density is defined in

terms of a set of auxiliary one-electron functions (orbitals) as

ρ(r) =
N∑
i=1

|φi(r)|2 (2.66)

The kinetic energy for independent particles is computed exactly as

Ts [ρ] = − ~2

me

N∑
i=1

〈φi|∇2|φi〉 (2.67)

It is a functional of density, ρ, because the one electron orbitals depend on ρ [5].

The external potential, Vext(ρ), and the Coulomb-repulsion energy, J(ρ) are defined

as like in equation (2.64) using the density calculated as in equation (2.66). The

difference between the exact kinetic energy functional, T (ρ), and the approximate

kinetic energy for non-interacting electrons, Ts(ρ), and the remaining exchange

and correlations contributions are collected in an unknown exchange correlation

functional called FXC [ρ]. So the energy as a functional of density is rewritten as

E [ρ] = Ts [ρ] + Vext(ρ) + J(ρ) + FXC [ρ] (2.68)

Minimization of this functional with respect to ρ yields the Kohn-Sham equation

ĥKSφi = εiφi (2.69)

Here ĥKS is the Kohn-Sham Hamiltonian and the one-electron Kohn-Sham Hamil-

tonian is defined as:

ĥKS(1) = − ~2

2me
∇2

1 + vext(r1) + j(r1) + vxc(r1) ≡ ĥ(1) + j(r1) + vxc(r1) (2.70)

where j(r) and vxc(r) are the Coulomb potential and the exchange correlation

potential respectively [5]:

j(r1) =
e2

4πε0

∫
R3

ρ(r2)

r12
dr2 (2.71)

vxc(r1) =
δFXC [ρ(r1)]

δρ(r)
(2.72)

2.3. Electronic Structure 19

There are various approximations for the exchange correlation potential, like local

density approximation (LDA) , generalized gradient approximations (GGA), etc.

Local Density Approximation (LDA) In the local density approximation it

is assumed that the density can be treated locally as a uniform electron gas. That

means that the density is a slowly varying function [6]. The exchange correlation

potential is local in the sense that it only depends on ρ(r) at the same position [5].

The exchange energy is then written by

ELDAx [ρ] = −Cx
∫
ρ

4
3 (r)dr (2.73)

εLDAx [ρ] = −Cxρ
1
3 (2.74)

This approximation is reasonably simple, however not very accurate in practice [6].

Generalized Gradient Approximation (GGA) In this approximation, the

exchange and correlation energies depend not only on the electron density, but also

on derivatives of the density, i.e., vxc(r) ≡ vxc [ρ(r),∇ρ(r)]. GGA methods are

also sometimes referred as non-local methods. There are various gradient corrected

functional forms for the correlation energy. For instance, one popular functional

form is Becke, Lee, Yang and Parr (LYP) [9] [10].

2.3.5.3 Solution to the Kohn-Sham Equation

Similar to the Hartree-Fock equations Kohn-Sham equations need to be solved

iteratively until self consistency. In practice, the Kohn-Sham equations are solved

in the LCAO approximation 2.3.4, just like the HF equations. So the Kohn-Sham

matrix in the AO basis needs to be formed

hKSαβ = 〈α|ĥ|β〉+ 〈α|ĵ|β〉+ 〈α|vxc|β〉 = hαβ + jαβ + vxcαβ (2.75)

the integrals vxcµϑ are approximated numerically on grid as

vxcαβ =
∑
λ

wλvxc(rλ)χα(rλ)χβ(rλ) (2.76)

Here, λ labels grid points rλ with weights wλ. χα(rλ) is the value of the basis

function χα at the grid point rλ. The density on the grid is computed by

ρ(rλ) =
∑
α,β

Dαβχα(rλ)χβ(rλ) (2.77)

where the Dαβ is the density matrix in AO basis. The grid [10] for a molecule is

the union of atomic grids that are spherically symmetric around the nuclei [5].

In this chapter, the theoretical background of the DFT theory was briefly explained.

Chapter 3 will shortly explain the related work done on the parallel DFT implemen-

tation. This will lead us to mapping of DFT calculation to the GPU architectures.

Chapter 3

State of the Art

Contents

3.1 Introduction . 21

3.2 Related Work . 21

3.3 Beyond the State of the Art 24

3.1 Introduction

Chapter 2 explains a brief theoretical overview and the related mathematical back-

ground of the density functional theory (DFT) calculation in a quantum mechanical

approach. DFT is one of the most widely used quantum mechanical methods for

electronic structure calculations. Though it provides a balance between compu-

tational accuracy and the computational cost, but for larger molecular systems

DFT still has very high computational cost. Therefore, there is a growing de-

mand for much more efficient implementations of DFT. Several works have already

been done to make an efficient parallel implementation. This chapter provides an

overview about related works that has been done in DFT parallelization, which in-

cludes from multicore architecture to some extents of numerical accelerators. These

related works has an influence on the implementation proposed in this thesis.

3.2 Related Work

DFT parallelization with ClearSpeed

A massively multi core parallelization of Kohn-Sham theory was introduced by

Brown et. al. in their paper published in 2008 [11]. They presented a heteroge-

neous approach to accelerate DFT, where They combined ClearSpeed’s low-power

64-bit accelerator technology in parallel with the host CPU. The ClearSpeed accel-

erated tera-scale system (CATS) was used in their implementations. ClearSpeed is a

kind of dedicated numerical accelerator that can perform hundreds of floating point

operations in parallel. ClearSpeed consists of SIMD (Single Instruction Multiple

Data) array processors, each containing 96 processing elements (PEs). Typically, it

has 96 GFLOPS of single/double precision peak performance. In the CATS system,

where the DFT was accelerated, there were 2304 processing elements (PE) available.

21

22 Chapter 3. State of the Art

A very fine grain parallelization is required in the ClearSpeed architecture. The al-

gorithms need to be redesigned to fit into this paradigm. Initially, the two main

bottlenecks of the DFT calculation for a macro molecular system (∼50 Atoms) were

identified: which involves the evaluation of the Coulomb matrix and to evaluate the

exchange correlation contribution to the Fock matrix. The numerical quadrature

to the exchange correlation contribution was parallelized in a straightforward way

by distributing batches of integration points between processing elements of the

ClearSpeeds. Screening over the basis function evaluation showed to have a large

effect on the exchange correlation contribution to the Fock matrix, it reduces the

complexity of the exchange correlation contribution matrix significantly. However,

the Coulomb term was very problematic since it requires four-index ERIs (Electron

Repulsion Integrals) which are hard to keep in the small local memories of Clear-

Speed PEs. The authors proposed a solution idea to avoid this ERI calculation

completely and used a combination of density fitting and Poisson equation. The

exchange correlation quadrature and the density fitting Poisson method was imple-

mented in a hybrid CPU - ClearSpeed fashion based on the Molpro [12] serial code.

This hybrid implementation achieved a speedup of an order of magnitude, with good

scaling over thousands of PEs. With large basis sets, speedup of 4× is observed

compared to the standard DF-KS (Density Fitting Kohn-Sham) calculation. How-

ever, the screening was not implemented, so the accelerators were performing more

work than the equivalent host. The gradients were also not implemented on that

architecture. Later this algorithm was introduced for implementation on standard

shared memory parallel architectures, like multi core machines [13].

Multicore Kohn-Sham DFT

A multi-core implementation of the Kohn-Sham density functional theory (DFT)

was introduced by Woods et. al. [13], which is optimized for modern commodity

processors. Typically many scientific applications were developed and designed

to use only a single CPU thread. They could only run on a single core of the

system and can not automatically scale to the additional cores that are available

on the system. A significant redesign of the application is also required to port

the application to the multi-core architecture. However, this multi-core platform

has an advantage over the numerical accelerators as they can be programmed using

portable and well established languages like OpenMP and MPI. Woods et al, first

identify the computational bottlenecks of the calculation and adapt those to run

over multiple cores. The three bottlenecks in Kohn-Sham DFT theory for their

target system are:

1. The evaluation of the Kohn-Sham density

2. The quadrature based evaluation of exchange correlation matrix, and

3. The evaluation of the Coulomb contribution.

3.2. Related Work 23

These calculations involve computations of values of all the numbers of independent

quadrature grid points. Hence, the program was designed in such a way that the

outer loop was running over the grid points and the parallelization was achieved by

dividing batches of grid points between processor cores. So that the parallelization

was gained from the batch of grid points in per processor cores [13]. Distributing

batches of grid points among processors cores was done by OpenMP. These com-

putationally expensive modules from Molpro were rewritten to C++ to exploit the

features parallelization using OpenMP. The orbital screening was also implemented

which in turns reduced the scaling of computational work. The use of the numerical

quadrature has resulted in linear scaling for each three computationally expensive

parts up to 16 threads [13]. For the quad-quad Xeon platforms has resulted linear

scaling up to 8 threads for the exchange correlation and the Coulomb parts, and

for the density evaluation linear scaling maintained up to 16 threads. This paper

also observed that the four thread OpenMP implementation was faster than using

a ClearSpeed accelerator card [13].

Electron Repulsion Integrals on GPU

Several groups have investigated the scope of graphics processing units (GPUs) to

use for quantum chemistry calculations. Ufimtsev and Martinez et. al., studied

the scope of GPUs to calculate two-electron repulsion integrals (ERIs) [2]. ERIs

calculation is one of the computational bottleneck in many electronic structure

methods. Three different algorithms to evaluate 4-index ERI by GPU over the

contracted basis functions are proposed in [14]. Based on the organization of the

contracted ERIs, Ufimtsev and Martinez et. al. proposed three different mappings

of the computational work to CUDA thread blocks [2].

1. A thread for each contracted ERI

2. A thread block for each contracted ERI

3. A thread for each primitive ERI

The grain of parallelism and the degree of load balancing differed in all three cases.

All three schemes were implemented on the 32-bit precision NVIDIA G80 series,

which does not support double-precision floating point arithmetic. The single pre-

cision operations are not always sufficient for quantum chemistry applications. The

chemical accuracy is typically considered to be 10−3 atomic units [2]. So a significant

effort is required to minimize the errors for this lack of double precision support.

The performance comparison of this GPU implementation of ERI with GAMESS

(a general purpose quantum chemistry programs) shows a significant speedups of

∼30× to ∼50× with single precision accuracy [2].

24 Chapter 3. State of the Art

Exchange Correlation Terms on the GPU

Apart from this promising results from Ufimtsev and Martinez in [2], Yasuda pro-

posed an algorithm for GPUs to evaluate the exchange correlation terms [1]. The

evaluation of the exchange correlation term is reported as the most time consuming

steps in the density functional calculation. Yasuda profiled the density functional

calculation in Gaussian03 program (a program for electronic structure modeling).

The profiling identified that the 90− 95% of the total DFT computation time was

used for self-consistent field (SCF) equations. Inside of each SCF, 10% of time was

required to evaluate the coulomb potential, 85% time to evaluate the exchange-

correlation potential and 5% time was required to diagonalize the fock matrix [1].

Yasuda proposed an algorithm to evaluate the exchange correlation term on GPU.

This algorithm was implemented on a NVIDIA GeForce 8800 GTX, which supports

only single precision operations. Yasuda evaluated the exchange correlation term

by using three dimensional quadrature points and their weights. Four distinct steps

were identified:

1. The quadrature points and weights are generated.

2. The electron density and the gradient on these points are calculated.

3. The energy functionals are generated.

4. The exchange-correlation potential is then evaluated.

It was noticed that most of the computational effort was spent on the evaluation

of electron density and the matrix elements of the potential. The computational

cost are proportional to the number of grid points and to the square of the number

of atomic orbitals (AOs) [1]. These time consuming steps are implemented by

Yasuda [1] on a GPU and then linked with a modified version of the Gaussian03

program. Due to the lack of double precision support in that GPU, a significant

efforts were made to minimize the errors in the calculation. The computational

time to calculate the exchange correlation terms were compared with the execution

time of Gaussian03 program and the GPU calculation is noticed to be five to ten

times faster than the commodity CPU calculation [1].

3.3 Beyond the State of the Art

In the previous sections we have seen some related work on the parallelization

of density functional theory. It has been seen that, many scientific applications

are typically designed as a sequential program architecture due to the simplicity

of coding. So they often can only executed on a single threaded core and

cannot automatically scale to the available commodity cores or to any numerical

accelerator. There are two methods to resolve this issue. One method is to

completely design from the scratch to make the program parallel over multiple

cores or over numerical accelerators. This may result in highly parallel designs with

3.3. Beyond the State of the Art 25

a good performance over the existing sequential implementation. However, this

may come out with expensive design in case of very large, complex applications.

And it is sometimes very complicated in case of quantum chemical calculations.

Another approach is to analyze the existing code and identify the computationally

expensive bottlenecks and adapt only those bottlenecks to multi-core architecture

or numerical accelerators. The parallelization of the bottlenecks can be an effective

strategy for any complex and large systems [15]. This second approach is taken

in this thesis to map the density functional theory to GPU accelerators. The

recent development of the GPU architectures, that now support double precision

arithmetic with a good amount of on-chip memory, gives a big motivation to map

this density functional theory calculation to such accelerators. The state of the art

multi-core DFT implementation in the Molpro [12] quantum chemistry package has

been analyzed in detail for fine grain parallelization scope. As explained before,

Yasuda mapped exchange correlation terms of DFT to the GPU architecture, but

it was implemented and compared with the Gaussian03 program. In this thesis, a

multi-GPU architecture mapped with multi-core DFT module is proposed. The

two main bottlenecks of this DFT modules in Molpro [12] have been ported to the

state of the art NVIDIA Fermi architecture.

Chapter 4 will briefly explain the state of the art of GPU architectures and

the corresponding programming model for these devices. The DFT architecture in

Molpro [12] and the proposed implementation will be discussed in the subsequent

chapters.

Chapter 4

GPU Architecture

Contents

4.1 Introduction . 27

4.2 GPU Architecture . 27

4.2.1 The Graphics Pipeline . 28

4.2.2 Evolution of Modern GPU Architecture 29

4.2.3 Application Programming Interface 30

4.3 Programming Model . 30

4.3.1 Device Memory Hierarchy . 32

4.3.2 Thread Hierarchy . 34

4.3.3 Kernel and Device Functions 37

4.1 Introduction

GPGPU stands for General-Purpose computation on Graphics Processing Units.

The definition implies using Graphics Processing Units (GPU) to do general pur-

pose scientific computing. It is also known as GPU computing. The GPU computing

model uses a Central Processing Unit (CPU) and GPU together in a heterogeneous

co-processing computing model. In this model, the sequential part of any applica-

tions runs typically on the CPU and computationally-intensive part is accelerated

by the GPU [7]. The overall applications performance is gained from the high per-

formance of the GPU. The developments of super computers observed in recent

years shows that the future designs of large high performance computing systems

will be heterogeneous in nature [16].

4.2 GPU Architecture

GPUs are massively parallel many-core processors with ample computational re-

sources. Over the last few years, GPUs evolved from fixed-function special-purpose

processors into full-fledged parallel programmable processors with additional fixed-

function special purpose functionality. GPUs are built for different application

demands than the CPU: large, parallel computation requirements with an empha-

sis on throughput rather than latency. As a consequence, the architecture of the

GPUs is progressed in a different direction than CPU [17]. In the following the

27

28 Chapter 4. GPU Architecture

evolution of the GPU architecture will be briefly explained with a basic overview

of the typical graphics pipeline.

Figure 4.1: Graphics pipeline

[18]

4.2.1 The Graphics Pipeline

Typical input for a graphics data processing is a list of 3-D coordinates, known

as geometric primitives. Through different steps. these primitives are shaded and

mapped on the screen to create the final image. The different pipeline stages are

shown in the figure 4.1.

Vertex Operations Input primitives are created from the individual vertices.

Each vertex is transformed into screen space (vertex generation, see Fig: 4.1) and

4.2. GPU Architecture 29

shaded by computing their interaction (vertex processing, see Fig: 4.1) with the

lights in the scene. A typical scene has tens to hundreds of thousands of vertices,

and each vertex can be computed independently. This stage is well suited for parallel

hardware.

Primitive Assembly The vertices are assembled together to form triangles. Re-

cent GPU architectures support these fundamental primitives. It includes the steps

Primitive Generation, (Fig: 4.1), to generate primitives from vertex and Primitive

Processing, (Fig: 4.1), to produce more output primitives.

Rasterization Rasterization is a process to determine the screen-space pixel lo-

cations that are covered by each triangle. Each triangle generates a fragment at

each screen-space pixel location that it covers. Because many triangles may overlap

at any pixel location, each pixels color value is computed from several fragments.

It is also known as fragment generation, (Fig: 4.1).

Fragment Processing Each fragment is shaded and determines its final color

using color information from the vertices. If required, it can fetch additional data

from global memory. Each fragment can be computed in parallel. This stage is one

of the computationally most intensive stage in graphics pipeline.

Pixel Operations A final image is assembled later with one color per pixel.

Traditionally, the operations at the vertex and fragment stages were config-

urable but not programmable. As they are not programmable, it is also known

as fixed-function pipeline. So the next step was replacing this fixed-function

operations with user-specified programs, which allows more sophisticated opera-

tions for complex effects. Over the years, these vertex programs and fragments

programs have become more capable with larger limits on their size and resource

consumption. Initially they had separate instruction sets for vertex and fragment

operations. Later GPU’s started supporting the Unified Shader Model 4.0 [17].

4.2.2 Evolution of Modern GPU Architecture

In Modern GPUs the ideas of parallel computation are emphasized. Hence, the GPU

architecture progress in a different direction than CPUs. The pipeline is divided

into time scale in the modern CPUs, that means in turn each pipeline stage will use

all processor resources. Whereas, GPU pipeline is divided into space, the processor

resources are divided among the pipeline stages. Hence, the programmable stage

and components replace the fixed function stage and components, respectively [17].

In GPU, the latency of any given operation is very long. For instance, for any

given operation to enter and leave the CPU pipeline may take 20 cycles, where as,

a GPU operations may take thousands of cycles. However, a very high throughput

is achieved form the data parallelism across pipeline stages [17]. Figure 4.2 shows

30 Chapter 4. GPU Architecture

Figure 4.2: CUDA architecture

[19]

the state of the art NVIDIA CUDA Fermi architecture. Fermi present 512 CUDA

cores, that are organized in 16 Streaming Multiprocessors (SMs) of 32 cores each.

It features six 64-bit memory partitions supporting a total of 6GB DRAM memory.

The GigaThread engine distributes thread block. The Fermi architecture is known

as the third generation streaming multiprocessors [19].

4.2.3 Application Programming Interface

There are two major commercial standards for GPGPU development. One is ATI’s

StreamSDK and the other is the ”Compute Unified Device Architecture” (CUDA)

represented by NVIDIA. The High Performance Computing (HPC) market adopts

CUDA developing platform more extensively than StreamSDK.

4.3 Programming Model

The GPU computing model is known as the heterogeneous CPU - GPU program-

ming model. In this model, the sequential parts of an application are running on

CPU. The data parallel, computationally expensive, parts are running on the GPU.

Together the CPU-GPU model accelerates the overall performance. In the early

days of GPGPU programming, applications had to be programmed by graphics

APIs, like openGL. The general applications have to be structured and mapped in

4.3. Programming Model 31

Figure 4.3: CUDA SDK structure

[20]

terms of graphics pipeline, although the task may not related with the graphics.

Today, in recent programming models, these kind of obstacles are gone as there

are more natural, direct and non-graphic interfaces to the programmable units of

the device are introduced. Now, GPU computing applications are structured in the

following way.

1. The computation domain is defined by the programmer as a structured grid

of threads

2. A SIMD (Single Instruction Multiple Data) program computes the result from

each thread.

3. The result from each thread is computed by a combination of operations and

both read from and write to the device memory.

4. The resulting data in the device memory can be used as an input in future

computation [17].

This programming model is a powerful for it’s simplicity and generality. The ap-

plication can optimally exploit the massive parallelism of the hardware. However,

There are some restrictions too, like restrictions on branching, restrictions on data

communications between elements and between kernels. This is maintained to en-

sure good performance. Consequently, this also allows writing more general algo-

rithms. To maintain this programming structure it is important to know about the

32 Chapter 4. GPU Architecture

device memory hierarchy, thread structures, kernel and the overall compilation flow

inside the graphics device.

Figure 4.4: CUDA memory model

[7]

4.3.1 Device Memory Hierarchy

In the CUDA programming model, any system is composed of a host and a device,

each with their own separate memory. A CUDA kernel only operates on device

memory. To allocate, deallocate and copy to device memory, CUDA runtime

provides several functions. It also provides functions to transfer data between

host memory and device memory. Device memory is allocated as linear memory.

Linear memory exists on the device in a 32-bit address space for device of compute

capability 1.x and 40-bit address space for device of compute capability 2.x. These

memory entities can reference one another via pointers. There are multiple memory

spaces resides in the CUDA device. The figure 4.4 explains the memory hierarchy

structure.

Each CUDA threads can access data from these memory spaces as required.

Each thread has its own local private memory. Additionally, each thread block

has shared memory that is only visible to all the threads of that block. There is a

4.3. Programming Model 33

global memory space that can be accessed by all the running CUDA threads of any

application. There are two additional read-only memory spaces - constant memory

and texture memory - that are accessible by all the threads. The global, constant

and texture memory spaces are persistent during the lifetime of the application

unless explicitly cleared [7].

4.3.1.1 Global Memory

Global memory is the physical memory that resides on the device. This is the

amount of memory alloted in the graphics device. This memory can be accessed by

all the CUDA threads via 32-, 64- or 128 byte memory transactions. An associated

host (CPU) thread has read and write access to the global memory. Global memory

is generally allocated using cudaMalloc() and freed using cudaFree(). The data

transfer between host memory and device memory are done using cudaMemcopy

(please refer to the CUDA C Programming Guide [7] for the other API functions).

All the CUDA threads can synchronize with each other through global memory [7].

4.3.1.2 Shared Memory

Shared memory is equivalent to a user managed cache. A GPU consists of multipro-

cessors and each multi processor has a small amount of shared memory, typically

in the order of about 16KB. This memory is only accessible by the threads in a

single thread block, as shown in figure 4.5. Shared memory is generally used as a

very quick working space for threads within a block. Shared memory is allocated

using a variable type qualifier shared and it has a life time of the thread block. As

it is on-chip, the shared memory space is faster than the global and local memory

space. Accessing shared memory is fast for all thread of a warp as long as there is

no bank conflicts between the threads [7].

4.3.1.3 Texture and Surface Memory

The texture and surface memory resides in the device memory, figure 4.4. This

memory space is used by the GPU for graphics. CUDA supports a subset of tex-

turing hardware to use for general purpose calculation. Using texture or surface

memory is sometimes advantageous as it costs only one memory read from device

memory in case of any cache miss [7].

4.3.1.4 Constant Memory

The constant memory space resides on device memory, as shown in figure 4.4 and

is cached in the constant cache. This memory is writable from the associated host

(CPU) thread and only readable from the CUDA threads [7].

34 Chapter 4. GPU Architecture

Figure 4.5: CUDA memory hierarchy

[7]

4.3.2 Thread Hierarchy

A heterogeneous CUDA program consists of one or more phases that are executed

on either the host (CPU) or in GPU device. The NVIDIA C Compiler (NVCC)

separates these phases into two, the host code and device code. The host code is

straight C code. The code is compiled with the host’s standard C compilers. The

device code is written using C extended with keywords. The keyword is used for

labeling data-parallel functions, called kernels, and the corresponding data struc-

tures. The kernels functions, or simply kernels, typically generate a large number

of threads to exploit data parallelism [7]. In order to do efficient programming in

CUDA, it is very important to know the threads hierarchy.

The execution starts on the host. The execution is moved to a GPU device when the

application invokes a kernel function. To take the advantage of data parallelism,

a large number of threads are generated. All the threads are collectively known

as a grid. Figure 4.6 shows the execution of two Girds of threads. The grid is

terminated, when all the threads of that kernel completed their execution. The

4.3. Programming Model 35

Figure 4.6: CUDA programming model

[7]

application continues its execution on the host until another kernel is invoked.

However, on the new Fermi devices, multiple kernels can be executed in parallel on

the same GPU [7].

CUDA Threads CUDA threads are very light weight and takes few cycles to

generate. Each thread is identified by a variable known as threadIdx. The threadIdx

is a 3-component vector and is represented by one-dimensional, two-dimensional or

three-dimensional thread index.

− threadIdx.x

− threadIdx.y

− threadIdx.z

Half-Warp A half-warp is a group of 16 consecutive threads. Half-warp threads

are generally executed together and they are aligned. For example, Threads 0 to

15 will be in the same half-warp, 16 to 31, and so on.

36 Chapter 4. GPU Architecture

Warp A warp of threads is a group of 32 consecutive threads. Typically, threads

0 to 31 will be in the same warp, 32 to 63 and so on.

Figure 4.7: Automatic scalability

[7]

Block A block is a collection of threads. Threads are organized into a block of

one-dimensional, two-dimensional or three-dimensional. This provides a natural

way to map computation across the elements of a vector, matrix or volume. As

all the threads in a thread block reside on the same processor core and share the

limited memory resources of that core, there is a limit in the number of threads

in each thread block. Typically, a block can contain up to 512 threads, however

in the recent GPU’s a thread block is allowed to have 1024 threads [7]. A thread

block size of 16 × 16 is a common choice, however it depends on the required

number of variables to compute, number of registers, amount of shared memory

space in that block. The dimension of a thread block is accessible within the

kernel through the built-in blockDim variable. Threads within the same block can

synchronize and quickly communicate with each other through shared memory.

Thread blocks are executed independently and it is also possible to execute

them in any order, in parallel or in series. This independency allows thread blocks

to be scheduled in any order among all the cores as explained in the figure 4.7. As

4.3. Programming Model 37

a result the CUDA code can be scaled to any number of cores [7].

Figure 4.8: CUDA threads structure

[7]

Grid A grid is a collection of thread blocks. The blocks are organized into a one-

dimensional or two-dimensional structure. The number of thread blocks in the grid

is usually determined by the size of the data being processed. Each thread block

within the grid is identified by a one-dimensional or one dimensional index accessible

through the built-in blockIdx variable. Blocks can not synchronize with each other,

and therefore synchronization is not possible among the threads of different blocks.

The figure 4.8 explains this structure more clearly.

4.3.3 Kernel and Device Functions

In CUDA, a kernel function specifies the code to be executed by all threads of

a parallel phase. The global qualifier is used to declare a function as kernel.

The kernel function is only callable from associated host thread and executed

on the device. When a kernel is called it generates a grid of threads as per the

specification(from the grid dimension and block dimension) of the kernel. A call

to kernel function is asynchronous, that means it returns before the device has

completed its execution.

The device qualifier declares the device function. The device function is

executed on the device and only callable from the device thread. Host thread is

not allowed to call device routine. By default, this function is in-lined [7].

Chapter 5

Molpro - a package of ab initio

programs

Contents

5.1 Introduction . 39

5.2 Molpro - A Package of ab-initio Programs 39

5.3 DFT Architecture in Molpro 40

5.4 Profiling of the DFT Module in Molpro 42

5.1 Introduction

In chapter 2, the density functional theory (DFT) was introduced. DFT is an es-

sential component of Molpro [12], one of the most sophisticated general purpose

quantum chemical packages available. In this chapter, an overview of Molpro is

given and the architecture of the integrated DFT module is briefly described. This

architecture formed the basis for the GPU mappings developed in this thesis. A

detailed profiling of the Molpro DFT has been performed to identify the computa-

tionally most intensive algorithmic part.

5.2 Molpro - A Package of ab-initio Programs

Molpro is a general-purpose quantum chemical program for molecular electronic

structure calculations [12]. The package is designed and maintained by H.-J.

Werner and P. J. Knowles, and contains contributions from a number of other

authors. Apart from other commonly used quantum chemistry packages, the

original focus of Molpro was on high-accuracy wave function calculations for small

molecules, with extensive treatment of the electron correlation problem through

the multi-configuration reference CI, coupled cluster and associated methods. By

using local electron correlation methods, Molpro significantly reduce the increase

of the computational cost with molecular size [12]. Ab initio calculations can be

performed more accurately for much larger molecules [21]. Molpro includes a state

of the art implementation of density functional theory.

39

40 Chapter 5. Molpro - a package of ab initio programs

Density functional theory (DFT) is implemented in Molpro for spin-restricted Kohn-

Sham (KS) and spin-unrestricted Kohn -Sham (UKS) cases. DFT calculations can

be performed either using precomputed integrals, direct integrals or density fitting.

Many different functionals with or without exact exchange are available [21]. The

functionals are represented in their mathematical form written by the syntax of the

Maple15 symbolic algebra system [22], which is used to generate both executable

Fortran code and documentation. There are few recent improvements of the DF-KS

code as well, which includes faster integral evaluation, integral caching, and faster

evaluation of the exchange-correlation potential [21]. In this thesis, the DFT formed

the basis for the exploration of fine grain parallelism for GPGPU accelerators.

5.3 DFT Architecture in Molpro

The Kohn-Sham density functional theory is designed with an iterative procedure

until the energy converged within a certain threshold. The df − ks Molpro input

command initiate the DFT procedure. The energy is computed accurately by

using three dimensional quadrature (grid) points and with their weights. One can

define the parameters to generate the grid points, however the default parameter

is usually sensibly sufficient. The three dimensional grids can be obtained by a

subroutine called by DFT. The whole grid space is divided into chunks of grid

points. This number of spatial integration points together is treated as a grid block

in the DFT integration routines (default is 128 grid points per grid block). The

size of each grid block is easily configurable from the Molpro input commands.

Increasing the grid block size sometimes enhance the efficiency, specially for vector

architecture machines, but leads to increased memory usage. Each grid block is

assigned to a job and this job evaluates all the necessary DFT computations. A

block of grid points, together with other parameters, like the basis sets, etc., is

treated as the input to the DFT job. The results of all the jobs are later accu-

mulated to form the final energies of each Self Consistent Field (SCF) iteration [12].

The steps for each SCF iteration is summarized below:

− The grid space is divided in to a number of job chunks.

− Each chunk has the size of the grid block size. By default, the grid block size

is 128, but it can be freely configured.

− Each job chunk runs all the required DFT operations.

− Each job chunk is fully independent from the others and no communication

is required among them.

− The results from all the job chunks are accumulated at the end.

5.3. DFT Architecture in Molpro 41

There are four major algorithmic steps identified for a single job:

1. Evaluation of the basis set functions.

2. Calculation of the density matrix

3. Computation of density functionals

4. Accumulation of the exchange correlation matrix

The figure 5.1 illustrates the schematic architecture of a single SCF iteration of

the density functional code. In the following, the four major algorithmic parts are

explained briefly.

Figure 5.1: Single SCF iteration of DFT

42 Chapter 5. Molpro - a package of ab initio programs

Evaluation of basis functions This part computes the basis function values

χµ(rλ), the atomic orbitals (AOs) depending on the basis set used at grid points

rλ. Molpro input parameters defines the type of basis functions to be used. The

derivatives of the AOs on the grid points are also calculated. Typically, the con-

tracted Cartesian Gaussian basis function centered at A is given by [23]

χµ(xλ, yλ, zλ) = (xλ −Ax)ax(yλ −Ay)ay(zλ −Az)az
∑
α

cαµexp(−aαR2
Aλ

) (5.1)

R2
Aλ

= (xλ −Ax)2(yλ −Ay)2(zλ −Az)2 (5.2)

where cαµ is the contraction coefficient, aα is the primitive Gaussian exponent, and

Ax, Ay and Az are non-negative integers. The sufficiently small terms are skipped

based on a threshold. This extensive screening efficiently optimizes the code in

terms of speed.

Computation of electron density and its gradients The electron density

ρ(rλ) and the gradient of the density ∇ρ(rλ) are computed for a given first-order

reduced density matrix (1-RDM):

ρ(rλ) =
∑
α,β

Dαβχα(rλ)χβ(rλ) (5.3)

where Dµϑ is the density matrix in the AO basis set. The summation runs over the

significant AOs.

Evaluation of DFT Functionals on grid The electron density, the gradient

and the laplacian of the density are then formed in to exchange correlation function-

als and their derivatives. The total exchange correlation functionals are calculated.

The accumulated energy contribution is split according to the functionals used. The

functionals to be used here is determined by the specification of the Molpro input

parameters. A list of functional that are supported by Molpro can be found [12].

Accumulation of exchange correlation contribution Finally the exchange

correlation contribution to the Fock matrix is calculated. the integrals vxcµϑ are

calculated numerically on grid as

vxcαβ =
∑
λ

wλvxc(rλ)χα(rλ)χβ(rλ) (5.4)

Here, λ labels grid points rλ with grid weights wλ. χµ(rλ) is the value of the basis

function χµ at the grid point rλ. The sum is over the batch of grid points λ.

5.4 Profiling of the DFT Module in Molpro

From the algorithmic point of view, four different major parts of the DFT code are

identified. Those have already been briefly explained. We need to know the timing

5.4. Profiling of the DFT Module in Molpro 43

Figure 5.2: Single SCF iteration of DFT with timers

of each of these algorithmic parts to identify the most computationally expensive

part of the code. A system timer is set wrapping all those four parts. This is

explained in the figure 5.2.

The Molpro standard system timing function is used here, which produce

timing results with sufficient resolution. The profiling is done for Polyvinyl fluo-

rides (pv-20) C40F22H62 which consists of 122 atoms. The cc-pVTZ orbital basis

44 Chapter 5. Molpro - a package of ab initio programs

set (OBS) (2668 CGTOs) and TZVPP/JFIT (4228 GTOs, for BLYP functionals)

basis set is used in this case. The profile benchmarking is run on a 12-core Intel(R)

Xeon(R) X5680 processor with single core running with 3.33GHz. The total

time required to finish the whole operations is 3477.44sec. This time includes the

density fitting coulomb part, diagonalization, etc. apart from the DFT. The whole

df-ks operation requires 13 SCF iterations to converge the result. The table 5.1

Table 5.1: DFT profiling - elapsed times for a single SCF iteration

Algorithmic Parts Elapsed Time % of Total Elapsed Time

Basis Set Evaluation 8.95 16.56

Density Matrices & Gradients 20.55 38.02

DFT Functionals 0.35 0.65

Accumulated XC Matrices 24.12 44.63

Time for DFT (total) 54.05 100.00

presents the elapsed time and the percentage of time consumed by the four major

DFT parts in each single SCF iteration. The timing for only one single iteration is

considered here. These timing results are almost same for all other SCF iterations.

Basis Set Evaluation Density Matrices DFT Functionals ACC XC Matrix
0

5

10

15

20

25

30

35

40

45

Elapsed Time (%) vs Major DFT Parts

Major DFT Parts

E
la

p
s
e

d
 T

im
e

 i
n

 %

elapsed_percent_time

Figure 5.3: Percentage of elapsed time for each major algorithmic DFT parts

The figure 5.3 explains the timing behavior of each DFT part. The results

show that the accumulated exchange correlation matrices (XC Matrices) and

the evaluation of density matrices are the most time consuming steps. Here the

5.4. Profiling of the DFT Module in Molpro 45

exchange correlation matrices and the evaluation of density matrices take nearly

45% and 40% of total DFT time, respectively. The third expensive part is the

evaluation of basis sets, which takes nearly 17% of total DFT time. The timing of

the DFT Functionals is not trivial here as it takes less than 1% of computational

time. This is almost the same case if a different functional, like pbe is used. The

block size of 128 is used in this profiling. Several other profiling with bigger grid

block sizes were performed, which suggested that the 128 block size is the optimum

for running DFT calculations in one single CPU.

We take this results as a basis and continue the analysis of these most com-

putationally expensive parts. Our intention now is to look the existing algorithm

and the implementation in Molpro and prepare a suitable implementation in GPU.

Next chapter will explain the details of the GPU implementation.

Chapter 6

GPU Implementation

Contents

6.1 Introduction . 47

6.2 Evaluation of Density Matrices 47

6.2.1 MakeBxRho . 49

6.2.2 MakePhi . 53

6.2.3 Form Density Matrix and its Gradient 53

6.3 Evaluation of The Exchange Correlation Matrix 55

6.3.1 LDA (Local Density approximation) Case 55

6.3.2 GGA (Generalized Gradient Approximation) Case 58

6.3.3 Form the Symmetric Exchange Matrix 59

6.4 Intermediate Routines . 60

6.4.1 Form Sigma σ . 60

6.4.2 Transformation of Spin Density 60

6.5 Hybrid (CPU-GPU) Implementation 62

6.1 Introduction

In this chapter, the algorithm of the two most computationally expensive DFT

parts (density matrices and accumulated exchange correlation) will be analyzed

and a fine grained parallel algorithm is proposed. Fine grained threads are the

important characteristics of parallel execution in GPUs. These two DFT parts are

then implemented with CUDA (Compute Unified Device Architecture) as a hybrid

CPU-GPU structure.

6.2 Evaluation of Density Matrices

The electron density ρ(rλ), the gradient of the density ∇ρ(rλ), the kinetic energy

term τλ and the Laplacian of the electron density υλ are computed for a given

first-order reduced density matrix (1-RDM) as explained in the previous chapter.

Density matrices are formed for both closed and open shell systems in this code.

An open shell configuration represents a partially filled valence shell with electrons,

whereas closed shell configuration is completely filled valence shell [24]. This closed

47

48 Chapter 6. GPU Implementation

or open shell calculation depends on the molecular structure to be analyzed and is

set in the Molrpo input parameter list. The existing density evaluation subroutine

is redesigned and adapted to comply with the CUDA architecture. The main DFT

routine calls this density subroutine as follows,

1. Initialize the data structure and prepare the memory for closed shell density

calculation

2. Evaluate the closed shell density

3. Check if open shell calculation is required or not

− Prepare memory and initialize the open shell data

− Evaluate open shell density (just like the closed shell, with different ar-

guments)

− Check if there are any spin density (α/β) present

– Transform spin (α/β) densities to closed/open shell densities

4. Keep the densities and their gradients in memory for future calculation and

release other unnecessary memories.

The state of art code for evaluation of density matrices in Molpro is complex

and the data used is distributed over several data structures (classes). This is

inconvenient for the management of the memory addresses on the GPU. Therefore,

a simple data structure is implemented. All the nested C++ classes are removed

and only the required matrix data are kept and managed in a single C++ class,

named dftiCuda::FDftiJob. This C++ class holds all the persistent information

and functions for evaluating dfti on a single block of grid points. dftiCuda is the

namespace used here to define a new code path along the standard code in Molpro.

Keeping all the data and functions in a single C++ class, helps to keep track of the

memory addresses both on the host and on the GPU. This reduces the complexity

and improve the readability of the code as well.

The block diagram in figure 6.1 presents the structure of the routine to evaluate

the density matrix. Depending on the required derivative order, whether to use

orbitals or whether to make the kinetic energy term (Tau), τ , five different code

paths with four different computationally expensive parts are identified. They are:

− MakeBxRho: Transforms the basis function values to contraction density ma-

trix

− MakePhi : Transforms the basis function values and their gradients to occupied

orbitals

− AccN operation: It is a BLAS daxpy operation to form density, gradient, etc.,

if no orbitals are used

6.2. Evaluation of Density Matrices 49

− DotN operation: The N number of dot products to form density, gradient,

etc., in case the orbitals are used

In this next section, we will analyze these parts in detail and find the scope for fine

grain parallelism.

6.2.1 MakeBxRho

A contracted matrix is formed. If occupied orbitals are presented in during the total

process, the contraction of matrix is formed from the occupied orbitals(pOccOrb),

otherwise it is created from the reduced density matrix (pRdm). The steps for

computing the contraction matrix are as follows:

1. If orbitals are not used in the computation process

(a) Unpack the reduced density matrix and compress it.

Figure 6.1: Evaluation of the density matrix

50 Chapter 6. GPU Implementation

(b) Contraction matrix is computed from this compressed reduced matrix.

2. If orbitals are present

(a) Compress the occupied orbitals.

(b) Form the contraction matrix from the occupied orbitals.

The complete implementation procedure is explained below.

6.2.1.1 If orbitals are not used:

If occupied orbital matrix is not present, the first order reduced density matrix

(pRdm) is used for contraction.

Unpack and Compress Reduced Density Matrix Typically, this first order

reduced density matrix (pRdm) is triangular and of dimension (nBf ×nBf). Here,

nBf, is the number of basis functions used. This input triangular matrix pRdm

needs to be transformed from triangular to square matrix, known as unpacking

of pRdm. As the extensive screening is used during the process of evaluation of

the basis function, this square matrix is compressed to a matrix of dimension of

(nMap × nMap). Here nMap, represents the number of basis functions kept after

the screening. For a typical test case with cc-pVDZ basis set, number of basis

function, nBf , is equal to 580 and if screening is applied on the molecules then

nMap typically is less than the nBf .

This transformation and compression can be efficiently done in CUDA. The

required input matrix size is (nBf × nBf) which needs to be transfered to the

GPU memory from the host. And a size of (nMap × nMap) output matrix

pRdm1 gpu, is required to allocate in the GPU. This output matrix is kept

on the GPU, as it is required in the next step. This eliminates the latency of

further memory transfers. A subroutine, called makeBxRho, is written which acts

like a wrapper from Molpro to call the CUDA kernel for these operations. An

unpackDensityMatrix CUDA kernel is created, which is called from the makeBxRho

subroutine. A number of (nMap×nMap) CUDA threads are required to map with

the each element of compressed matrix. The number of CUDA threads are needed

to be power of 2, as explained in the section Programming Model in chapter 4.

The value of nMap is determined in runtime and it is not assured that the value

of nMap is a power of 2. So an in-lined efficient small subroutine is written to

find the next nearest value which is a power of 2. This is done by the right shift

operator (�), listing 6.1. That means, the matrix dimension is padded to a value,

which is a power of 2. The CUDA threads, that have numbers smaller than nMap

will work on the corresponding matrix elements. The rest of the threads are kept

idle.

6.2. Evaluation of Density Matrices 51

Listing 6.1: Pseudocode for calculating next power of 2 of x

i n l i n e int nextPow2 (int x) {
−−x ;
x |= x >> 1 ;

x |= x >> 2 ;

x |= x >> 4 ;

x |= x >> 8 ;

x |= x >> 16 ;

return ++x ;

} ;

Computing the contraction matrix (pBxRho) from compressed reduced

matrix After getting the compressed matrix, a matrix multiplication is required

to calculate contraction matrix (pBxRho). The state of the art Molpro uses a differ-

ent BLAS library which is very efficient on single core and multi-core architecture.

We have decided to use the CUBLAS library for any linear algebra calculation [25].

For the sake of numerical accuracy of molecular simulation, all the matrix elements

are of double precision. The level-3 CUBLAS routine cublasDgemm is used to do

the matrix-matrix multiplication. The output matrix is kept in the GPU memory

for further calculation. The temporary memory spaces and the initial input reduced

matrix is released from the GPU memory. The number of floating point operations

(FLOPs) are then 2×nPts×nMap×nMap. Here nPts is equal to the number of

grid points times the number of derivative components of each element (nComp).

Listing 6.2: Pseudocode for creating contraction matrix without occupied orbitals

{
. . .

int nMap x = nextPow2 (nMap) ;

blocksPerGridX = (nMap x + threadsPerBlockX − 1) / threadsPerBlockX ;

blocksPerGridY = (nMap x + threadsPerBlockY − 1) / threadsPerBlockY ;

dim3 dimBlock (threadsPerBlockX , threadsPerBlockY) ;

dim3 dimGrid (blocksPerGridX , blocksPerGridY) ;

unpackDensityMatrix<<<dimGrid 1 , dimBlock 1>>>(pRdm1 gpu , pRdm gpu ,

pMap gpu , nMap) ;

cublasDgemm (’n ’ , ’ n ’ , nPts , nMap, nMap, 1 . 0 , pOrbVal gpu ,

Str ide , pRdm1 gpu , nMap, 0 , pBxRho gpu , nPts) ;

. . .

}

6.2.1.2 If orbitals are used:

If occupied orbital matrix is present, the contraction will be done on this.

Compress the occupied orbitals The occupied orbitals (pOccOrb) matrix has

the dimension of (nOcc × nBf). nOcc represents the number of occupied orbitals

52 Chapter 6. GPU Implementation

and nBf is the number of basis functions, as explained before. Due to the screening

phase in evaluation of basis functions, not all the nBf is used. nMap represents

the number of basis functions that are kept after the screening. Screening removes

the certain basis functions that will not have any effect on the total energy. The

screening threshold is set in the Molpro input parameters when running the DFT

calculation. So this orbital matrix pOccOrb has to be compressed to (nOcc×nMap)

matrix. This also can be done very efficiently in CUDA. The input occupied orbitals

(pOccOrb) matrix is transfered to GPU memory from host memory. A CUDA

kernel, compressInpOrbital is created to do this compression on the GPU. The

number of occupied orbitals, nOcc, and the number of kept basis functions, nMap,

are only determined during the runtime. So the next nearest value, that is a power

of 2, is calculated (6.1), i.e., nOccx and nMapx for nOcc and nMap respectively.

The (nOccx×nMapx) CUDA threads are created to do the compression efficiently

and can avoid race conditions among the threads. No floating point computations

are done here but a lot of memory transformations are done inside.

Computing the contraction matrix (pBxRho) from the occupied orbitals

Matrix multiplication is used to compute the contraction matrix (pBxRho). Sim-

ilarly, the level-3 CUBLAS routine cublasDgemm is used to calculate the matrix-

matrix multiplication. The required transposition of the matrix is done through the

cublasDgemm routine. Two cublasDgemm operations are required. The contrac-

tion matrix is kept on the GPU and all other temporary memory spaces and the

occupied orbital matrices are released from the GPU explicitly. The total number

of floating point operations (FLOPs) are then 4× nPts× nMap× nOcc.

Listing 6.3: Pseudocode for creating contraction matrix with occupied orbitals

{
. . .

int nMap x = nextPow2 (nMap) ;

int nOcc x = nextPow2 (nOcc) ;

blocksPerGridX = (nMap x + threadsPerBlockX − 1) / threadsPerBlockX ;

blocksPerGridY = (nOcc x + threadsPerBlockY − 1) / threadsPerBlockY ;

dim3 dimBlock (threadsPerBlockX , threadsPerBlockY) ;

dim3 dimGrid (blocksPerGridX , blocksPerGridY) ;

compressInpOrbita l<<<dimGrid , dimBlock>>>(pOrb1 gpu , pOccOrb gpu ,

pMap gpu , (int)nMap, (int)nOcc) ;

. . .

cublasDgemm (’n ’ , ’ t ’ , nPts , nOcc , nMap, 1 . 0 , pOrbVal gpu , Str ide ,

pOrb1 gpu , nOcc , 0 , devPtr pDummy , nPts) ;

cublasDgemm (’n ’ , ’ n ’ , nPts , nMap, nOcc , 1 . 0 , devPtr pDummy , nPts ,

pOrb1 gpu , nOcc , 0 , pBxRho gpu , nPts) ;

. . .

}

6.2. Evaluation of Density Matrices 53

6.2.2 MakePhi

This subroutine transforms the matrix that contains basis functions values to occu-

pied orbital matrix. Typically, after the extensive screening phase in basis function

evaluation, the dimension of the orbital matrix is then (nPts×nMap). Here, nPts

represents the total number of grid points (nGridPt) times the number of deriva-

tive components of each element (nComp). This routine transforms orbital matrix

to a dimension of (nOcc× nPts). The whole procedure includes following steps

Compress the input occupied orbital matrix As explained before, the occu-

pied orbitals (pOccOrb) matrix has the dimension of (nOcc × nBf). This matrix

has to be compressed to (nOcc× nMap) matrix. This transformation is done very

efficiently with the CUDA kernel compressInpOrbital as explained in page 52. An

efficient mapping of the threads and the matrix elements are implemented to avoid

race conditions among the threads.

Computing the orbital matrix (φi(r)) Similarly matrix multiplication is re-

quired to calculate the phi(φ). The level-3 CUBLAS routine cublasDgemm is used

to calculate the matrix-matrix multiplication. The required transposition of the

matrix is done through the cublasDgemm routine. As further computation will

be done on this matrix, this is kept in the GPU memory and all other temporary

memory spaces are released explicitly from the GPU. The number of floating point

operations (FLOPs) are then 2× nOcc× nMap× nPts.

6.2.3 Form Density Matrix and its Gradient

The density matrix is then formed from the orbital matrix. The gradient, the

laplacian of the density matrix is calculated, if it is required:

ρ(r) =
∑
i

φi(r)φi(r) (6.1)

∇ρ(r) = 2
∑
i

φi(r)(∇φi(r)) (6.2)

τ(r) =
∑
i

[∇φi(r)]2 (6.3)

Two subroutines are written to do the calculations. The choice of subroutines

depends on how the orbital matrix is formed.

6.2.3.1 AccN

This subroutine consists of a series of BLAS daxpy operations running over the

basis functions and grid points. A new kernel Add2-gpu is created. This calculates

the element-wise multiplication of two vectors and then the result is added with

the elements of an output matrix that is calculated previously. This addition is run

54 Chapter 6. GPU Implementation

over all the grid points in a grid block size. As the grid block size is set as a power

of 2, the mapping of the CUDA threads to the corresponding vector elements make

efficient. Later this resultant matrix element is accumulated over the number of

kept basis functions (nMap). The accumulation process can be included in Add2-

gpu kernel. But this results race conditions among the CUDA threads. One option

is to use the AtomicAdd operations to solve the race condition. But this mechanism

keeps the CUDA threads waiting until other CUDA threads finish updating their

values in GPU memory location. Another option is that, we keep this accumulation

outside the kernel and call this kernel nMap times, which in turns aggregate the

values together. This procedure increases the speed by a factor of 2, compared to

the using AtomicAdd operation.

6.2.3.2 DotN

This subroutine consists of a series of dot products running over the basis functions

and grid points. The dot products are done by CUBLAS Ddot subroutine, it com-

putes the dot product of two double precision vectors. Later this result of the dot

product is multiplied by a scalar factor and stored. This is running over all the

kept basis functions (nMap). The dot products are running asynchronously in the

GPU.

GPU memory requirements

In the following the total memory requirements for one SCF calculation of the

density matrices and its gradients are summarized.

Derivative order = 0 Total memory requirement is

Mem = [nGridPt(2× nMap+ nOcc+ 1) + (6.4)

nBf(nBf + nOcc) + nMap(nMap+ nOcc)]×
sizeof(Double) + nMap× sizeof(Integer)

Derivative order > 0 Total memory requirement is

Mem = [nGridPt(2× nMap× nComp+ nOcc+ 4) + (6.5)

nBf(nBf + nOcc) + nMap(nMap+ nOcc)]×
sizeof(Double) + nMap× sizeof(Integer)

Derivative order > 0 and with Tau , Upsilon Total memory requirement is

Mem = [nGridPt(2× nMap× nComp+ nOcc+ 6) + (6.6)

nBf(nBf + nOcc) + nMap(nMap+ nOcc)]×
sizeof(Double) + nMap× sizeof(Integer)

6.3. Evaluation of The Exchange Correlation Matrix 55

Here

− nGridPt: Number of grid point in a grid block, grid block size. Typically for

calculation in GPU it is set to 4096, 8192, etc.

− nBf: Number of basis functions. For cc-pVDZ basis set, it is typically 580.

− nMap: Number of basis functions kept after screening. Only determined

during runtime, however less than nBf

− nComp: Number of components for different derivative order. For derivative

order 0, 1 and 2, nComp is 1, 4 and 10 respectively.

− nOcc: Number of occupied orbitals

6.3 Evaluation of The Exchange Correlation Matrix

As explained in chapter 5, this routine calculates the exchange correlation contri-

butions to the Fock matrix. The typical equation is:

vxcαβ =
∑
λ

wλvxc(rλ)χα(rλ)χβ(rλ) (6.7)

and this is calculated numerically on the grid, in practice. This calculation depends

on the previous functionals used. Three different cases are handled here in this

code:

1. LDA (Local Density approximation) case (with derivative order = 0)

− For pure non-negative integrals, (i.e., from functionals).

− For any negative integrals present.

2. GGA (Generalized Gradient Approximation) case with-out the kinetic term

(τ).

The architecture is briefly explained in the figure 6.2. The whole implementation

of the procedures is explained in the following section.

6.3.1 LDA (Local Density approximation) Case

In this LDA (Local Density approximation), case there are two different but yet

similar calculations required. The procedure depends on the fact that whether

there is any negative values present in the DFT Functionals output. This functional

output is known in the code as pV dRho, which is, in fact the first derivative of the

functionals with respect to the density ρ(r). Initially every element of this pV dRho

is checked for any negative values. The number of elements in this pV dRho is equal

to the size of the grid block, which is represented by the value nGridPt. This

inspection is done on the CPU side in the host code, as it is not worthy to do in

the GPU.

56 Chapter 6. GPU Implementation

With pure non-negative integrals With pure non-negative integrals, i.e., all

the elements in pV dRho are positive scalar, the calculation of the exchange cor-

relation contribution is very simple. The procedure includes four simple steps,

explained below, and all of them are efficiently done on the GPU side:

1. Find the negative weighted density functional values for each grid point and

then take the square root of each element of the weighted density functional

values

This can be parallelized very efficiently on the GPU. A kernel, called

makeSqrtWeightedDFTFUNC is written, for this purpose. The number of

elements in each vectors is equal to the nGridPt. nGridPt number of CUDA

threads are created and each thread calculates the negative weight by multi-

plying the corresponding vector elements and then do the standard square root

operations. The typical number of floating point operation is 24× nGridPt.

Figure 6.2: Evaluation of the exchange correlation matrix

6.3. Evaluation of The Exchange Correlation Matrix 57

The specification for calling the GPU kernel depends on the number of grid

point values, nGridPt. Typically, nGridPt is a value, which can be expressed

as a power of 2, additional padding to the vectors is not necessary. The result

is stored in a temporary matrix, named as pFac.

2. Absorb these square rooted elements to the orbital values (the values of the

basis functions)

This is also can be parallelized efficiently. A temporary matrix,

(pRhoZkWt), is created to store the results. A GPU kernel, (makeAbsorbKer-

nel) is written to execute it on the GPU. This is an element wise multiplication

between the previously calculated weighted functional energies (pFac) and the

basis function values, that are in the matrix (pOrbVal). The for loops of the

CPU code are unrolled and mapped to GPU threads. The number of CUDA

threads depends on the grid block size (nGridPt) and the number of kept basis

functions (nMap) during the screening process of basis function evaluation.

nMap is only known during the runtime and the value is not always equal to

the power of 2. So nMapx, the next closest power of 2 of nMap is computed.

The total number of CUDA threads is nMapx × nGridPt and distributed

to a 2D thread structure. The total number of floating point operations is

nMap× nGridPt.

3. Calculating exchange matrix (pXC), by symmetric matrix multiplication

In Molpro, this is done by a BLAS subroutine for symmetric rank k

update, called DSYRK. Here, the corresponding cublasDsyrk subroutine is

used. The cublasDsyrk does the following symmetric matrix multiplication.

C = α ∗A ∗AT + β ∗ C (6.8)

Here, AT represents the transpose of matrix A and α, β represents the double

precision scalar multiplier. The previously calculated (pRhoZkWt) matrix is

represented by the matrix A, in equation 6.8. In our case, the β is set to zero,

so the number of FLOPs will be 2× nMap× nGridPt× nMap.

4. Expand exchange matrix, by copying the lower triangle elements to the upper

triangle in the output matrix.

A GPU kernel, makeExpand() is written to parallely copy the lower tri-

angle of a matrix to upper triangle. No floating point operation is necessary

except memory copy (transformation) on the GPU device. The specification

for this GPU kernel calling depends on the number of kept basis functions,

nMap, and is only determined during runtime. As usual the next power of

2, nMapx is calculated and (nMapx × nMapx) number of threads are cre-

ated and the corresponding elements are copied from lower triangle to upper

triangle of the exchange correlation matrix.

58 Chapter 6. GPU Implementation

If negative integrals are present If there are any negative integrals presents,

i.e., at least one element in pV dRho is a negative scalar, the calculation of the

exchange correlation contribution is done by three steps that are explained below,

and which are efficiently done on the GPU.

1. Calculate the weighted density functional values pVdRhoWt for each grid

point

This is an element wise multiplication of two vectors running over all the

grid points. A GPU kernel makeWeightedDFTFUNC is written to do this

multiplication in parallel on the GPU. nGridPt number of CUDA threads are

created to do the multiplication. The total number of floating point operations

is nGridPt.

2. Form pVdRhoOrb by multiplying the previously calculated weighted pV-

dRhoWt with the evaluated basis function values (pOrbVal).

This is also an element wise multiplication that runs over all the grid

points for each iMap. iMap contains the values from 0 to (nMap−1). Another

GPU kernel, called makepVdRhoOrb() is written to run this multiplication

parallely on the GPU. nMap is padded to next power of 2 values, nMapx. A

total number of (nGridpt× nMapx) threads is created. Each thread will do

one single multiplication, which yields total (nGridpt×nMap) floating point

operations (FLOPs).

3. Exchange correlation matrix is formed

This is formed by matrix matrix multiplication between pVdRhoOrb and

pOrbVal. The pVdRhoOrb matrix needs to be transposed before the multi-

plication. cublasDgemm is used here. The number of floating point operation

(FLOPs) is then 2× nMap× nGridPt× nMap.

6.3.2 GGA (Generalized Gradient Approximation) Case

For this GGA case without the kinetic term (τ), the exchange correlation matrix

becomes like as follows,

kµν(r) = µ(r)zk(r)ν(r) + 2Ξ(r)(∇ρ(r))(∇µ(r)ν(r))

= µ(r)zk(r)ν(r) + 2Ξ(r)(∇ρ(r))([∇µ(r)]ν(r) + µ(r)[∇ν(r)]) (6.9)

where Ξ = dzk
dσ . The last two terms, [∇µ(r)]ν(r) + µ(r)[∇ν(r)], are symmetrizing

combinations of each other. So it is evaluated only for one of them and then later

multiplied by two. The non-symmetric exchange matrix resulting from this is then

explicitly symmetrized afterwards to account for the effect of the other term. The

equation becomes

k∗µν(r) = µ(r)zk(r)ν(r) + 4Ξ(r)(∇ρ(r))([∇µ(r)]ν(r))

k∗µν(r) = [µ(r)zk(r) + 4Ξ(r)(∇ρ(r))[∇µ(r)]]ν(r) (6.10)

6.3. Evaluation of The Exchange Correlation Matrix 59

Here k∗µν(r), means that it needs explicit symmetrization later. In the open-shell

case the above formulas have an additional term

for the closed-shell exchange: + 2Ξco(∇ρo(r))
for the open-shell exchange: + 2Ξco(∇ρc(r)) (6.11)

The whole process is done in two steps.

1. Form an intermediate matrix

− For closed shell case

An intermediate matrix, called pLmu, is formed which represents k∗µν in

equation 6.10. A GPU kernel (makepLmuKernel) is written to compute

this intermediate matrix for the closed shell molecular system. nGridPt

number of CUDA threads are created during this kernel call. Each thread

will do 3 additions and 7 multiplications, in total 10 floating point op-

erations. So the total number of FLOPs is 10× nGridPt. The mapping

between the threads and the matrices elements in the global memory is

done carefully. A stride of nGridPt is used, which is a multiple of 16

(half warp size), to avoid bank conflicts.

− For open shell case

The intermediate matrix, pLmu, will have two additional terms, with the

close shell matrix, as explained in equation 6.11. Similarly another GPU

kernel (makepLmuOpenShellKernel) is written to include this additional

term. nGridPt number of CUDA threads are created, and a stride of

nGridPt is used here too, to avoid the bank conflicts. The resultant

matrix is stored in the global memory for further operations. Each thread

will execute 2 additions and 6 multiplications. So the total number of

FLOPs is 8× nGridPt.

2. Form the exchange correlation matrix

The level 3 CUBLAS double precision matrix multiplication subroutine,

cublasDgemm, is used here to formulate the exchange correlation terms. The

pLmu matrix needs to be transposed before the multiplication. This matrix

transposition is done explicitly during the multiplication process with out any

computational overhead. The number of floating point operations (FLOPs)

calculated is 2× nMap× nGridPt× nMap.

6.3.3 Form the Symmetric Exchange Matrix

The calculated exchange matrix needs to be symmetric. Then it is compressed to

triangular matrix and is accumulated to the the previously calculated Fock matrix.

A GPU kernel compressXCMatrix is written to serve this purpose. The number

of elements in the exchange matrix is nMap × nMap. As nMap is not a power of

2, the matrix dimensions are padded to the next power of 2 nMapx, from nMap.

60 Chapter 6. GPU Implementation

This allows the mapping of each matrix element to a single thread. The previously

calculated Fock matrices are kept in the GPU memory, so expensive memory trans-

fers from host to GPU memory, and vice versa, are avoided. Each thread will do

2 additions and 1 multiplications, in total 3 floating point operations. The total

number of FLOPs is 3× nMap× nMap.

GPU memory requirements

Total memory requirements for the complete calculation of the exchange matrix in

one SCF iteration is

Mem = [nMap× nMap+ nGridPt× (nMap+ 4)]× (6.12)

sizeof(Double) + nMap× sizeof(Integer)

Here

− nGridPt: Number of grid point in a grid block, grid block size. Typically for

calculation in GPU it is set to 4096, 8192, etc.

− nMap: Number of basis functions kept after screening. Only determined

during runtime, however less than nBf

6.4 Intermediate Routines

Apart from these two expensive parts, two other subroutines are ported to the GPU

to accelerate the overall calculation.

6.4.1 Form Sigma σ

An intermediate sigma matrix σij is formed only for the gradient case, i.e., the

derivative order is greater than 0.

σijAB = ∇ρijA ∗ ∇ρ
ij
B (6.13)

This computation can also be mapped to the GPU. A kernel (formSigmaGPU) is

created to do this calculation. No extra GPU memory space is required neither

any host to GPU memory copy, since the density matrices are already in the GPU

memory. The total number of floating point operations is equal to 5×nGridPt, as

each thread will do 3 multiplications and 2 additions.

6.4.2 Transformation of Spin Density

If the input orbitals for density matrix contains spin α/β orbitals, then a transfor-

mation is necessary from spin densities to closed/open shell densities. In the original

CPU code, it is implemented with couple of for loops which are running through

all the density matrix (or gradient of density matrix) elements. In the GPU code,

6.4. Intermediate Routines 61

those for loops are unrolled and each elements are assigned to the CUDA threads

to do the necessary transformations. The number of CUDA threads depends on the

number of elements of the matrix. For only the density matrix (without the gradi-

ent), the number of CUDA threads required is equal to the block size (nGridPt).

For a gradient case, it is 4× nGridPt. The number of Floating point operation is

2×nGridPt (for density only) and 2×4×nGridPt for gradient case. No additional

GPU memory space is required, as the corresponding data are already in the GPU.

Figure 6.3: Hybrid CPU-GPU architecture

62 Chapter 6. GPU Implementation

6.5 Hybrid (CPU-GPU) Implementation

Figure 6.3 explains the hybrid CPU-GPU implementation of the DFT code. The

evaluation of the basis function is done on the CPU side and the calculated result

is stored in a matrix, called pOrbVal. This matrix with other necessary data is

transfered to the GPU memory. Then the density and their gradients (if necessary)

are calculated on the GPU. The results are stored in the GPU memory. The sigma

matrices (for closed/open shell) are formed from the density and gradient of the

density matrices. If any transformation from spin to closed/open shell density

is required, this is also done on the GPU. It eliminates the CPU-GPU memory

transfer overhead. The calculation of the DFT functional energies is done on the

CPU side. The resultant density matrices and the other corresponding data needs

to be copied back to the CPU. A copy of this data remains in the GPU memory

as they are required later. The energy functionals are efficiently computed on the

CPU. Subsequently the calculated energy functionals are transfered to the GPU.

This memory copy back and forth has a large overhead in the total computation

process. Next the exchange correlation energy contribution to the Fock matrix are

calculated on the GPU. This requires the density matrices, the energy functionals

etc.. Keeping the density matrices, the grid points, etc, on the GPU, we could

reduce the memory transfer overhead. Later the exchange matrix elements are

summed together with the previous calculated exchange matrix. The accumulated

exchange matrix is kept in the GPU memory and only transfered to the CPU after

one full SCF iteration.

Chapter 7

A Multi-GPU Wrapper for

Accelerated Density Fitting

Mφller - Plesset Perturbation

Theory

Contents

7.1 Introduction . 63

7.2 Wrapper Routines . 64

7.2.1 CUDA API Utility Wrapper 65

7.2.2 CUBLAS Wrapper . 66

7.3 Case Study: Application of the Wrappers in Molpro 67

7.3.1 DF-MP2 Theory . 67

7.3.2 Implementation . 69

7.3.3 GPU MP2EN Wrapper . 70

7.1 Introduction

The BLAS (Basis Linear Algebra Subprograms) is a bundle of standard subrou-

tines for basic vector and matrix operations [26]. CUBLAS is an implementation

of the BLAS library for the NVIDIA CUDA architecture that uses the computa-

tional resources of NVIDIA GPUs. Basically, a C based CUDA toolchain is used

in CUBLAS, which provides C-style API [25]. However, CUBLAS uses 1-based

indexing and Fortran-style column major order for multidimensional arrays. This

formation simplifies the CUBLAS interfacing to Fortran applications. However,

the C-Fortran calling conventions differ from platform to platform, as they are not

standardized. CUBLAS provides Fortran interface in the form of wrapper functions

written in C [25]. There are two form of these wrapper functions:

1. Thunking wrapper and

2. Non-thunking or direct wrapper

63

64
Chapter 7. A Multi-GPU Wrapper for Accelerated Density Fitting

Mφller - Plesset Perturbation Theory

The thunking wrappers can be used in existing Fortran applications without any

changes to the applications. The GPU memory management, data copy between

host and GPU and the calling of CUBLAS library functions are explicitly managed

by the wrappers. This process produces a significant call overhead [25].

The non-thunking or the direct wrappers, are Fortran wrapper functions

around the CUBLAS library routines. The memory management needs to be done

manually in the applications. Existing applications are responsible to manage the

data structures on the GPU. Most of the Molpro routines are written in Fortran.

So existing Molpro modules need to be changed to cope with the non-thunking

CUBLAS wrapper.

In this chapter, a set of GPU utility routines is described, The routines

have been developed to enable Molpro to use the CUBLAS routines seamlessly.

For maximum achievable performance, the developed wrappers support the use

of multiple GPU devices. The routines help Molpro Fortran code to call and

execute expensive matrix operations in a single or multiple GPUs concurrently. To

show the efficiency of the developed wrappers, the DF-MP2 (second order Density

Fitting MφllerPlesset Perturbation) from Molpro has been chosen for acceleration.

Nevertheless, the wrappers can be used actually by all Molpro modules which

incorporate BLAS routines. Apart from the application of the developed wrappers,

the energy calculation in DF-MP2 part is also done on the GPU through a

CUDA kernel, specially written for it. These altogether accelerates the calculation

significantly.

7.2 Wrapper Routines

The idea is to provide GPU wrappers around CUBLAS routines and CUDA API

calls, that allow seamless invocation from Molpro Fortran routines. These wrappers

must have the abilities to:

− Support memory management on the GPU

− Support Multi-GPU usage

− Support seamless invocation from Molpro

− Support sm-20 and sm-13 CUDA architecture with different code paths

So the utility wrappers are divided into two categories, CUDA API utility wrapper

by using the standard CUDA API routines and CUBLAS library wrapper by using

CUBLAS routines. The implementations of these wrapper routines are explained

in the next section.

7.2. Wrapper Routines 65

7.2.1 CUDA API Utility Wrapper

INIT GPU This routine initializes a GPU device. It associates a host thread

to an available GPU device. If there are N number of GPU devices in a system,

typically they are numbered from 0 to N − 1. This routine takes the host thread

number as an argument and assigns the corresponding GPU to that thread. If the

thread number is higher than the number of available GPUs, it can not associate

any GPUs and sends an error message to the application. This mechanism needs to

be strictly maintain from the application. Additionally, the routine initializes and

prepares the CUBLAS library for the GPU associated with the host thread. This

wrapper is implemented around the cudaSetDevice() routine. [27].

RELEASE GPU This routine releases the assigned GPU device and dissociats

it from the host thread. It explicitly cleans all runtime related GPU resources. It is

a wrapper around cudaDeviceReset() in version 4.0 and around cudaThreadExit()

routines in older versions [27].

GPU MEM INFO This routine returns the memory statistics for a single GPU,

specifically from the associated GPU. It returns the total device memory and cur-

rently available memory at the point of calling. This wrapper is written around the

CUDA routine cudaMemGetInfo() [27].

NUM CUDA DEVICE This interface returns the number of attached GPU

capable devices in the system. This allows the application to know the number of

available GPUs beforehand. It assigns and manages the host threads thereby. This

wrapper is around CUDA routine cudaGetDeviceCount() [27].

GPU DALLOC This routine allocates a double precision floating point array

with n elements. It first checks the available memory on the associated GPU device.

If the required space fits into the available GPU memory, it allocates and return the

device pointer address to the application. This way Molpro Fortran subroutines can

easily keep track of the device memory addresses. If there are no available spaces on

the GPU, it returns an error to the application. Fortran does not support pointers,

so the device pointers or addresses are stored in Fortran integer variables and are

used as arguments for this routine. This is implemented around cudaMalloc() [27].

GPU DRELEASE This routine will release the allocated memory space from

the GPU. For the multi-GPU case it will only release memory from the associated

GPU device of the host thread. This wrapper is implemented around cudaFree()

[27].

GPU DPUT This routine will copy an array of n double precision numbers from

the host memory to the associated GPU memory space. The memory space on the

66
Chapter 7. A Multi-GPU Wrapper for Accelerated Density Fitting

Mφller - Plesset Perturbation Theory

GPU needs to be allocated first through GPU DALLOC calls. The data is copied

to the GPU through the PCIe bus. This is a wrapper around cudaMemcpy() [27].

GPU DGET This routine copies double precision arrays back to the CPU host

memory from the GPU device memory. The memory space on the host must be

allocated before through the Molpro standard memory allocation scheme. This is

a synchronous operation, that means, the CPU thread will wait until the copy is

finished. This wrapper is also around cudaMemcpy() [27].

7.2.2 CUBLAS Wrapper

Here, three interfaces to the CUBLAS double precision subroutines are written,

as they are the most frequently used in the Molpro DF-MP2 module. The stan-

dard non-thunking routines can be invoked directly as well. However, in order to

maintain the consistency of the interface names, the three following interfaces are

rewritten. All the input arguments of these wrappers are identical to the corre-

sponding CUBLAS routines.

GPU DDOT This subroutine is a wrapper to the CUBLAS DDOT (cublasDdot)

subroutine [25]. This computes the dot product of two double precision vectors [25]

and returns the dot product.

GPU DGEMM This wrapper is around the CUBLAS DGEMM (cublasDgemm)

subroutine [25]. It performs the standard double precision matrix-matrix multipli-

cation and is identical to the BLAS [26] DGEMM operation. Transposition of input

matrices are performed as it is performed in the DGEMM routines. Typically this

matrix-matrix multiplication is defined as follows.

C = α ∗ op(A) ∗ op(B) + β ∗ C (7.1)

where op(X) = X or op(X) = XT , transpose of X [25]. If β is zero, then the

multiplications with β and addition to C are skipped completely. The multiplication

operation for alpha is always done, even if α = 1, but these operations are quite

negligible compared to the bulk of A*B computation. The FLOPS are usually

approximated as (2 ∗m ∗ n ∗ k + 3 ∗m ∗ n) whenever β 6= 0, and (2 ∗m ∗ n ∗ k) for

the simple case of β = 0. Here

m represents number of rows in matrix op(A) and in matrix C

n represents number of columns in matrix op(B) and in matrix C

k represents number of columns in matrix op(A) and rows in matrix op(B) [25]

7.3. Case Study: Application of the Wrappers in Molpro 67

GPU DTRSM This is a wrapper around the CUBLAS DTRSM (cublasDtrsm)

subroutine [25]. It performs the standard DTRSM operation between two ma-

trices. The input arguments are the standard arguments as in standard BLAS

routine. This routine is used to adapt the Fortran DTRTRS Lapack code by using

GPU DTRSM wrapper in Molpro.

7.3 Case Study: Application of the Wrappers in Mol-

pro

In Molpro, DF-MP2 is implemented as a multi threaded routine written in Fortran

and it consists of large number of matrix operations. The DF-MP2 code is ported

to the GPU using the developed wrappers.

7.3.1 DF-MP2 Theory

The closed-shell MP2 energy is calculated by

EMP2 =
∑
i>j

(2− δij)
∑
ab

(ai|bj)[2(ai|bj)− (bi|aj)], (7.2)

Here (ai|bj) are the 2-electron integrals in the molecular orbital (MO) basis and

defined as

(ai|bj) =

∫
ρai(r1)

1

|r1 − r2|
ρbj(r2)dr1dr2, (7.3)

ρai(ri) = φa(ri)φi(ri). (7.4)

ρairi are the one-electron densities, that are products of the occupied orbitals φi(ri)

and virtual orbitals φa(ri), where ri denotes the coordinates of electron i. The

distance between the electrons 1 and 2 is represented by |r1 − r2| [28]. In the

density fitting approximation, the orbital products ρai(ri) are approximated by

linear exapnsions

ρai(r) ≈
∑
A

χA(r)DA.ai (7.5)

Here, χA(r) are fitting basis functions and DA,ai are the fitting coefficients. This

later yields the linear equations

KA,ai =
∑
B

JABDB,ai (7.6)

This is a matrix multiplication and can be written in matrix notation as follows

K = JD (7.7)

68
Chapter 7. A Multi-GPU Wrapper for Accelerated Density Fitting

Mφller - Plesset Perturbation Theory

J and K are known as 2-index and 3-index 2-electron integrals, respectively and

defined as [28]

[J]AB =

∫
χA(r1)

1

|r1 − r2|
χB(r2)dr1dr2 ≡ (A|B) (7.8)

[K]A,ai =

∫
χA(r1)

ρai(r2)

|r1 − r2|
χB(r2)dr1dr2 ≡ (A|ai) (7.9)

From this it follows

(ai|bj) =
∑
A

DA,aiKA,bj = [DTK]ai,bj (7.10)

=
∑
A,B

KA,aiJ
−1
ABKB,bj = [KTJ−1K]ai,bj (7.11)

A symmetric equation can be formed from equation (7.11), with

D̃ = J−1/2K (7.12)

So the new symmetric formula can be written in matrix notation as follows [28]

(ai|bj) = [D̃T D̃]ai,bj (7.13)

In this case a diagonalization of J is needed to make J−1/2. An efficient and numer-

ically stable Cholesky decomposition can be applied to decompose J into a product

of lower triangle matrix and its transpose.

J = LLT (7.14)

J−1 = [L−1]TL−1 (7.15)

(7.16)

This decomposition helps to solve the linear equations using the triangular matrix

L through DTRTRS Lapack subroutine.

K = LD̃ (7.17)

As the orbitals φr are expanded in a basis χµ with LCAO approximation, the 3-

index integrals (µν|A) are first evaluated in AO (atomic orbital) basis (µν) and then

transformed into the MO (molecular orbital) basis (a, i). The number of occupied

orbitals i, is much smaller than the number of virtual orbitals a. So that the

transformation to the occupied orbitals is done first and then the transformation

to the virtual orbitals are done [28] [12].

(µi|A) =
∑
ν

Cνi(µν|A) first half transformation (7.18)

(ai|A) =
∑
µ

Cµa(µi|A) second half transformation (7.19)

7.3. Case Study: Application of the Wrappers in Molpro 69

7.3.2 Implementation

The 2-electron integrals (7.13) need to be evaluated first to calculate the energy.

So the quantities D(A, a, i) needs to be loaded in to the GPU memory first. This

is done by the GPU wrappers written to map with the Fortran code. Then it has

to be assembled by one cublasDgemm operation for each pair of i and j.

(ai|bj) = Kab,ij =
∑
A

DA,ai ∗DA,bj fori ≥ j (7.20)

Here A is the number of fitting basis functions, a the number of virtual orbitals,

and i the number of correlated orbitals. The DA,ai is loaded into the GPU memory

in batches for as many i as possible and for one batch one j at a time (with

j < i). So that each load of j, upto i number of matrix multiplication can be

done in GPU with out any data transfer between CPU and GPU. All the matrix

multiplications on the GPU are done through the wrapper GPU DGEMM. The

DF-MP2 code is written and ported to the GPU by Prof. Hans-Joachim Werner1.

Later the energy (7.2) is calculated also on the GPU. A GPU kernel wrapper

(GPU MP2EN) is written to compute the energy as part of the thesis.

Figure 7.1: Parallel reduction with sequential addressing

[29]

1Institut für Theoretische Chemie, Universität Stuttgart

70
Chapter 7. A Multi-GPU Wrapper for Accelerated Density Fitting

Mφller - Plesset Perturbation Theory

7.3.3 GPU MP2EN Wrapper

The summation of MP2 energy components (7.2) from the orbital energies is done

by this wrapper. The orbital energies are calculated before(7.3.2) and stored in

the GPU global memory. The summation of the energies on the GPU will reduce

the memory transfer latency. Three energy components are calculated from the

orbital energy matrix. The parallelization is done over all the matrix elements. A

CUDA kernel (dfmp2 en kernel) is written to calculate the energy and to do the

block level reduction of the energy. This kernel is written with CUDA C-style tool

chain and GPU MP2EN is the Fortran wrapper around this kernel. The number

of elements in the orbital matrix is known. To do the parallelization over all the

matrix elements, the same number of CUDA threads is created. Each element of the

matrix is mapped to one CUDA thread and the CUDA thread computes the energy

components for single matrix elements and store them in the shared memory.

Listing 7.1: Pseudocode of parallel reduction

g l o b a l void dfmp2 en kerne l (.)

{
int s i = threadIdx . x ;

int s j = threadIdx . y ;

int s = s g e t i ndex (s i , s j) ;

// acc i s the number o f th reads per b l o c k

s h a r e d double s d e r s [acc] ;

s h a r e d double s d e s r [acc] ;

s h a r e d double s gn [acc] ;

. . .

// computation o f energy components

// s t o r e the r e s u l t s in shared memory

. . .

s ync th r ead s () ;

// reduc t i on i s done in shared mem

// with s t r i d e s index s x

for (unsigned int s x= acc /2 ; s x >0; s x>>=1)

{
i f (s < s x)

{
s d e r s [s] += s d e r s [s g e t i ndex (s i + s x , s j)] ;

s d e s r [s] += s d e s r [s g e t i ndex (s i + s x , s j)] ;

s gn [s] += s gn [s g e t i ndex (s i + s x , s j)] ;

}
sync th r ead s () ;

}
i f ((s i == 0) && (s j == 0))

{
// wr i t e r e s u l t f o r t h i s b l o c k to g l o b a l mem

. . .

. . .

}
}

7.3. Case Study: Application of the Wrappers in Molpro 71

These results are accumulated later using a tree based approach within each thread

block. Each thread block reduces (makes the summation) of a portion of the energy

values. This scheme is also known as parallel reduction technique. The listing 7.1

shows the pseudocode of the tree based reduction in each thread block. The CUDA

threads access the elements from the shared memory in a sequential addressing

technique. The accumulation is done for each block and the results are stored in

a vector in the global memory. The size of the vector is small and is equal to

the number of thread blocks configured for this CUDA kernel call. Three vectors

are created to store the intermediate reduction results of the three MP2 energy

components. Later these vectors are transferred to the host thread to do the rest of

the accumulation with a simple for loop. The required memory transfers from the

GPU to the host are considerably reduced, since a large initial reduction is done on

the GPU. The following figure 7.1 explains the parallel reduction technique using

sequential shared memory addressing. The sequential shared memory addressing

technique has the advantage that bank conflicts in shared memory can be avoid.

However, it has an disadvantage too, for each iteration in each block, half of the

threads are being idle. Fortunately, this does not have any effect.

Chapter 8

Results and Performance

Evaluation

Contents

8.1 Introduction . 73

8.2 Performance of the Hybrid CPU-GPU DFT Code 73

8.2.1 Selection of Optimum Grid Block Size 76

8.2.2 Relative Timings for DFT Code 77

8.2.3 Effects on Basis Function Evaluation Timings 78

8.2.4 Performance of the DFT Code 80

8.2.5 Performance Comparison with Large Basis Sets 82

8.2.6 Summary . 84

8.3 Performance of DF-MP2 Code 86

8.1 Introduction

In chapter 6 the implementation of two computationally expensive DFT algorith-

mic parts with a hybrid CPU-GPU architecture were presented. A set of GPU

wrappers were also introduced in chapter 7. In this chapter, the evaluation of the

performance and the efficiency of the developed DFT mapping is presented. The

Fortran GPU wrappers are extensively used in the Density Fitting Mφller-Plesset

Perturbation (DF-MP2) calculation. The performance of this GPU DF-MP2 code

is also evaluated for a large test case.

8.2 Performance of the Hybrid CPU-GPU DFT Code

The performance of the hybrid CPU-GPU DFT code is analyzed by running a

large number of DFT calculations. The DFT calculations are running within the

Molpro [12]. The df-ks input command initiates the density fitted Kohn-Sham

calculations. Polyvinyl-fluoride −(CH2CHF)n− is used for the performance

benchmarking, here n represents the number of monomers. Polyvinyl-fluoride is

a long chain with repeating vinyl fluoride units. The structure of vinyl fluoride

is shown in the figure 8.1. Figure 8.2 represents the long chain of Vinyl-fluoride.

73

74 Chapter 8. Results and Performance Evaluation

Figure 8.1: 3D structure of Vinyl-fluoride

[30]

Figure 8.2: 3D structure of Polyvinyl-fluoride (long chain of Vinyl-fluoride)

[30]

This molecule is typically used in flammability-lowering coating of airplane interiors.

The Molpro code is configured using cuda and mpp flags to compile with

the CUDA tool chain and MPP, respectively to support CUDA and many-core.

Listing 8.1: Configuring Molpro

. / c on f i gu r e −mpp −auto−ga−mpich2 −cuda

The benchmarking is performed on a 12-core 3.33 GHz Intel(R) Xeon(R) X5680

machine with four NVIDIA Fermi GPUs. Table 8.1 summarizes the system used in

our benchmarking. The GPU device properties are listed in the table 8.2. Molpro

is a multi compiler applications. Table 8.3 lists compiler names with their version

to compile the Molpro code.. The following performance benchmarks are done on

Polyvinyl fluoride −(CH2CHF)10−, with n = 10, called here as pv-10 molecule.

8.2. Performance of the Hybrid CPU-GPU DFT Code 75

Table 8.1: System used in benchmarking
System Properties

Vendor Model Speed/GHz Cores Memory/GB

Intel Xeon(R) X5680 3.33 12 48

Table 8.2: GPU device used in benchmarking
GPU Device Properties

Vendor Model Cores Memory/GB Number of Device

NVIDIA Tesla C2070 448 6 4

Table 8.3: Compilers used with versions
Compiler Version

C GCC 4.3.4

Fortran Intel Fortran 12.0.4

CUDA 3.20

Make GNU Make 3.81

This molecule chain consists of 62 atoms, which contains 32 Hydrogen, 20 Carbon

and 10 Fluorine atoms. The aug-cc-pVDZ orbital basis set (OBS) (with 978

CGTOs1) and TZVPP/JFIT (with 4228 GTOs, for B-LYP functionals) basis set

is used in this case.

Not all the routines of the Molpro DFT code are ported to the GPU. As

explained in chapter 6, the two main computational bottlenecks, the evaluation of

the density matrix and the exchange correlation contribution to the Fock matrix

are implemented on the GPU. The remaining parts of the DFT are executed by

the CPU cores. So the main focus is on the DFT GPU parts and how well they

scaled from the original CPU version. The speedup of the total DFT calculation

executed in the hybrid approach is presented. The notation used on the charts are

defined as:

− 0 GPU: With out any GPU accelerators but with single core

− 1 GPU: With single GPU accelerator and single core

− 2 GPU: With two GPU accelerators and two cores

− 4 GPU: With four GPU accelerators and four cores

1Contracted Gaussian Type Orbitals

76 Chapter 8. Results and Performance Evaluation

128 256 512 1024 2048 4096 8192
0

2

4

6

8

10

12

14

16

18

20

Evaluation of Density Matrix
Elapsed Time vs Block Size

Block Size

E
la

p
se

d
 T

im
e

 (
s)

0 GPU

1 GPU

2 GPU

4 GPU

Figure 8.3: Elapsed time for evaluation of density matrix for different block size

128 256 512 1024 2048 4096 8192
0

5

10

15

20

25

30

35

Evaluation of Exchange Matrix
Elapsed Time vs Block Size

Block Size

E
la

p
s
e

d
 T

im
e

 (
s
)

0 GPU

1 GPU

2 GPU

4 GPU

Figure 8.4: Elapsed time for evaluation of exchange correlation matrix for different

block size

8.2.1 Selection of Optimum Grid Block Size

The original production CPU code and the GPU version of the DFT modules are

executed for different grid block sizes to analyze the behavior of the execution time.

In figure 8.3, the timing of the density matrix evaluation with respect to increasing

8.2. Performance of the Hybrid CPU-GPU DFT Code 77

grid block sizes for one SCF iteration has been shown. It is noticed that the grid

block size of 128 is optimal for the CPU version of the density matrix routine.

However, using a grid block size of 128 for the GPU is very expensive, and leads to

a 3 times slower execution time compared to the CPU version. This is evident as

the GPU requires a very large number of threads to minimize the memory access

latency and GPU pipelining overhead. Increasing the grid block size reduces the

elapsed time significantly for the GPU code. It has been seen that with block sizes

of 4096 or 8192, the GPU version executed very efficiently. The same trend has

been evident in the exchange matrix contribution to the Fock matrix calculation

in figure 8.4.

The block size of 128 is optimal for the CPU code for the exchange correla-

tion matrix. With this block size the GPU code works considerably better than the

CPU version. However, the optimal block size for the GPU version is 4096, where

it performs best in terms of elapsed time in single GPU as well as multi-GPU

setups. Based on this outcome, the block size of 4096 is taken as an optimum

for the GPU ported DFT code to do both the density and the exchange matrix

calculations. Consequently, for all other benchmarking runs, the block size of 4096

is used for the GPU version and 128 for original CPU code. The performance

of the GPU code will be compared with the performance of the optimized CPU

versions.

8.2.2 Relative Timings for DFT Code

	���
	
�� �	
�� �	
��

�

�

�

�

��

��

��

�������	����	���	���	���	���	 ��������

!���	���	���	�����

���������"�����

��	#����$	���$

�%&�����	#����%

�'�&������	�(��'�����

������$	#����%

)����	�'�&����	�(��'�����

*'�+��	��	�������,	
���

�
�
��

�	
�

��
�
�
�
�
	�

 �
�
	-

�
.

Figure 8.5: Relative timings for CPU and GPU code

In the figure 8.5, the relative elapsed time of the total DFT calculation for a single

78 Chapter 8. Results and Performance Evaluation

SCF iteration is shown for single core to multi-GPU cases. As in the GPU case, the

use of a large grid block size has an effect on the basis function evaluation. As the

basis function evaluation is not ported to GPU and still executed on the CPU side,

it now takes longer for large block sizes. The execution time of density matrices and

the exchange correlations matrix show a promising speed up compared to the multi

threaded CPU version. Although there is a notable overhead for CPU-GPU memory

	���
	
�� �	
�� �	
��

��

���

���

���

���

���

����	���	��������	�� 	���	!"�	��"	#�� �����	

"� 	�$$!"�	%� ��

!������$�&�����

��	'��� (��%(

)*������	'�� �*

"��������$)+�$������

!�����('�� �*

,����	"�������)+�$������

-��.� 	��	�� ����	/	
���

�
�
�	
�
�
��

$	
��
�

�

Figure 8.6: Percentage of relative timings for CPU and GPU code

data transfer in the GPU cases, the applications scaled very well in the multi-GPU

system. From this it is clear that the preference of the density calculation and

the exchange correlation matrix for larger block size out-competes the preference

of the other bottlenecks for smaller block sizes. The best performance is obtained

using a grid block size of 4096 or 8192. The percentage of relative timing for the

DFT algorithmic parts are shown in this figure 8.6. In the GPU versions, the basis

function evaluation is now becoming the computational bottleneck for large grid

block size. The CPU-GPU memory data transfer is also taking significant portion

of the total timings. The DFT functionals take a negligible amount of time to

evaluate on the CPU. However, they cost a large overhead of CPU-GPU memory

transfers (10% to 15% of total execution time). So, if the functional calculation

will be additionally ported to GPU, it will reduce the CPU-GPU memory transfers

significantly.

8.2.3 Effects on Basis Function Evaluation Timings

In the figure 8.7, the effects of the large grid block sizes in the execution of basis

function evaluation are shown. This module is running on the CPU very efficiently

with a grid block size of 128. As the size increases, the elapsed time for this module

8.2. Performance of the Hybrid CPU-GPU DFT Code 79

128 256 512 1024 2048 4096 8192
0

2

4

6

8

10

12

Effects on Basis Function Evaluation
Elapsed Time Vs Block Size

Grid Block Size

E
la

p
s
e

d
 T

im
e

 (
s
)

Basis evaluation time in 1 GPU

Figure 8.7: Effects on CPU basis function evaluation module for increasing grid

block size

increases linearly. The GPU modules have to be executed with larger block sizes,

hence the evaluation of the basis functions is growing as the new computational

bottleneck for the total DFT applications.

1 CPU Core 2 CPU Cores 4 CPU Cores
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
GPU Code performance

Comparison Type

S
p

e
e

d
u

p
 F

a
c
to

r

1 CPU Core 2 CPU Cores 4 CPU Cores
0

1

2

3

4

5

6

7

8

9
GPU Code Performance

Comparison Type

S
p

e
e

d
u

p
 F

a
c
to

r

Density Matrix with 1 GPU Exchange Matrix with 1 GPU

Figure 8.8: Performance of GPU routines in terms of relative speedup factor

80 Chapter 8. Results and Performance Evaluation

1 Core 2 Core 4 Core
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
DF−KS, Evaluation of Density Matrix

Elapsed Time vs Number of Cores/GPUs

Number of Cores

E
la

ps
ed

 T
im

e
(s

)

CPU (BS 128)

GPU (BS 4096)

Figure 8.9: Performance of density matrix evaluation in multi-GPU environment

1 Core 2 Core 4 Core
0

1.5

3

4.5

6

7.5

9

10.5

12

13.5

15 DF−KS, Evaluation of Exchange Matrix
Elapsed Time vs Number of Cores/GPUs

Number of Cores/GPUs

E
la

ps
ed

 T
im

e
(s

)

GPU (BS 4096)

CPU (BS 128)

Figure 8.10: Performance of exchange correlation matrix evaluation in multi-GPU

environment

8.2.4 Performance of the DFT Code

Figure 8.8 shows the performance of the modules that are ported to the GPU. This

test is running on a single GPU with the same molecule and input parameters.

The execution efficiency, in terms of the speedup factor, is analyzed, and compared

8.2. Performance of the Hybrid CPU-GPU DFT Code 81

1 Core/GPU 2 Cores/GPUs 4 Cores/GPUs
0

50

100

150

200

250

300

Computainal Speed in FLOPs
Evaluation of Density Matrix

Number of CPU Cores/ GPUs

C
o

m
p

u
ta

ti
o

n
a

l
S

p
e

e
d

 (
G

F
L

O
P

s
)

GPU (BS 4096)

CPU (BS 128)

Figure 8.11: Computational speed for density matrix evaluation in terms of

GFLOPs in multi-GPU environment

1 Core/GPU 2 Cores/GPUs 4 Cores/GPUs
0

50

100

150

200

250

300

350

400
Computational Speed in FLOPs
Evaluation of Exchange Matrix

Number of CPU Cores/GPUs

C
o

m
p

u
ta

ti
o

n
a

l
S

p
e

e
d

 (
G

F
L

O
P

s
)

GPU (BS 4096)

CPU (BS 128)

Figure 8.12: Computational speed of exchange correlation matrix evaluation in

terms of GFLOPs in multi-GPU environment

with the single thread to multi thread execution. The density matrix code in

GPU presents a speedup with a factor of nearly 4.5 and the exchange correlation

contribution has a speedup with a factor of more than 8 compared to the single

82 Chapter 8. Results and Performance Evaluation

core machine. The graph 8.8 also shows a relatively very good scaling compared to

the multiple CPUs.

Figure 8.9 shows the performance of the density matrix evaluation in a multi GPU

environment. The CPU code is executed with the optimal block size of 128 over

multiple cores. The GPU code is executed with the optimal block size of 4096 over

multiple GPUs. In the GPU case, each thread is associated with one GPU. The

figure 8.9 shows the comparison of the elapsed time for different multi threaded

execution.

Figure 8.10 shows the performance of the exchange correlation matrix over

the multi threaded multi-GPU environments. The elapsed time is reduced linearly

for multi GPU case.

Figure 8.11 and the figure 8.12 show the computational speed in FLOPS for

the density matrix evaluation and the exchange matrix evaluation, respectively.

The results exhibit very good performance over the multi-core CPU imple-

mentations. However, the GPU FLOPs performance is still far from the theoretical

peak performance of the GPU device. The Tesla C2070 has a peak performance

with double precession of 515 GFLOPs. One of the reason for this difference is for

the large number of memory transformations (like, compression, unpacking, etc of

matrices), as explained in chapter 6.

8.2.5 Performance Comparison with Large Basis Sets

In the previous test cases, the aug-cc-pVDZ basis sets has been used. The following

test uses few large basis sets for the evaluation of the GPU code. The name of the

different basis sets with the number of contracted Gaussian Type orbitals (CGTOs)

are listed in the table 8.4. Figure 8.13 shows the performance of the CPU and GPU

Table 8.4: Basis sets with the number of contractions
Basis Set Number of CGTOs

cc-pVDZ 580

aug-cc-pVDZ 978

cc-pVTZ 1348

aug-cc-pVTZ 2116

cc-pVQZ 2610

code together with respect to the different basis sets. As the number of basis

functions increases, each GPU thread needs to do more calculations, hence the

elapsed time increases. The density matrix code scales well over the number of basis

functions. Figure 8.14 shows the performance of the exchange correlation matrix

for different basis functions. The GPU version of the exchange correlation matrix

8.2. Performance of the Hybrid CPU-GPU DFT Code 83

500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

20

Evaluation of Density Matrix
Elapsed Time vs # of Basis Functions

Number of Basis Functions

E
la

p
s
e
d
 T

im
e
 (

s
)

1 CPU

1 GPU

2 GPU

4 GPU

VDZ

VQZ

AVTZ

VTZ

AVDZ

Figure 8.13: Performance of density matrix evaluation with different basis functions

outperforms the execution of the CPU version significantly. Figure 8.15 shows the

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

Exchange Correlation Matrix
Elapsed Time vs # of Basis Functions

Number of Basis Functions

E
la

p
s
e

d
 T

im
e

 (
s
)

1 CPU

1 GPU

2 GPU

4 GPU

VQZ

VTZ
AVDZ

VDZ

AVTZ

Figure 8.14: Performance of exchange correlation matrix evaluation with different

basis functions

elapsed time for one SCF iteration of overall DFT calculation over the number of

basis functions. The overall executional efficiency is similar to the earlier cases

explained before except with the cc-pVQZ. Together with the very large number

84 Chapter 8. Results and Performance Evaluation

of contractions (2610 CGTOs) in this basis set along with the larger block size

selected for the GPU code, the evaluation of the basis functions now becomes the

main bottleneck of the calculation.

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Density Functional Time
Elapsed Time Vs # of Basis Functions

Number of Basis Functions (CGTOs)

E
la

p
s
e

d
 T

im
e

 (
s
)

1 CPU

1 GPU

2 GPU

4 GPU

VDZ

AVDZ
VTZ

AVTZ

VQZ

Figure 8.15: Performance of density functional theory calculation with different

basis functions

8.2.6 Summary

From the benchmarks, it is evident that the smaller block size performs very good

in the multi-core CPU implementation, whereas it is no longer valid for the many-

core architectures, like the GPU accelerators. The GPU implementation requires

a very large number of grid points to map with the GPU threads to increase the

arithmetic intensity which will hide the memory access latency and will maximize

the performance for parallel execution. Hence the maximum GPU utilization can

be achieved. The evaluation of the basis functions becomes the new bottleneck.

Due to the large block size selection, the basis function evaluation is now 3 to 4

times slower than the CPU code. The DFT functional takes a very small amount

of time to calculate the functional energies. But it requires CPU-GPU memory

data transfers in the middle of the DFT calculations, as explained in chapter 6,

section 6.5, the hybrid CPU-GPU implementation. So it is clear that, if the basis

function evaluation and the DFT functionals are ported to GPU, the total execution

time can be significantly reduced.

8.2. Performance of the Hybrid CPU-GPU DFT Code 85

2 4 6 8 10 12

Number of cores

0

1000

2000

3000

4000

5000

El
ap

se
d

tim
e

(s
ec

)

No GPU

1 GPU 2 GPUs

Pregnanediol, DF-MP2/AVTZ

Speedup with 12 cores + 2 GPU relative to 1 core = 46

Speedup with 1 core + 1 GPU relative to 1 core = 20

Speedup with 2 cores + 2 GPU relative to 2 cores = 20

Speedup with 12 cores + 2 GPU relative to 12 cores = 4.3

Average speed with 12 cores + 2 GPU: 600 GFLOP

elapsed times for assembly and energy evaluation

Figure 8.16: Performance of DF-MP2 calculation with energy evaluation in GPU

[31]

1000 2000 3000 4000 5000

Number of basis functions

0

1000

2000

3000

4000

5000

6000

7000

8000

El
ap

se
d

tim
e

(s
ec

)

0 GPU

1 GPU

2 GPU

VTZ
AVTZ

VQZ

AVQZ

V5Z

AV5Z'

12 cores X5690@3.47 GHZ

2 GPU NVIDIA C2070

Pregnanediol DF-MP2, total elapsed times

Figure 8.17: Performance of DF-MP2 calculation with different basis functions

[31]

86 Chapter 8. Results and Performance Evaluation

8.3 Performance of DF-MP2 Code

In this section, the performance of the DF-MP2 GPU code is presented. As

explained in the chapter 7, the assembly and the MP2 energy evaluation parts

are ported to the GPU. This two algorithmic parts heavily use the GPU Fortran

wrappers. The Pregnanediol, C21O2H36 , which contains 59 atoms is used for this

benchmarking. Figure 8.16 presents the total elapsed time for the assembly and

the energy evaluation with respect to multi-core and multi GPU architectures.

The aug-cc-pVDZ basis set is used in this test case. It shows a factor of

20x speedup with respect to a single core execution. A factor of 46x speedup is

achieved with 12 cores and 2 GPUs relative to a single core execution. Around

600 GFLOPS of computational performance is achieved from this calculation.

Figure 8.17 shows the elapsed time of three different cases with respect to the

different basis sets.

Chapter 9

Conclusion

9.1 Summary

In this thesis, the two principal computationally expensive algorithmic parts of the

integrated density functional code in Molpro has been analyzed and mapped to

the GPGPU accelerators. The proposed implementation will automatically scale

over multiple GPUs. The production code from Molpro has very good performance

and excellent efficiency in multi threaded parallel computation. The DFT code

in Molpro supports very high systematic convergence properties. The proposed

GPU implementations in this thesis maintain and respect these properties strictly.

The GPU code sections are going to be inserted into the Molpro production code.

The proposed GPU implementation codes have been implemented with double

precision arithmetic supports. The proposed implementations also maintain the

compatibility with the existing parallelization of the Molpro code. These Molpro

embedded GPU codes are then tested for different molecules with varying number

of atoms on a 12 Core Intel Xeon machines which includes four Tesla C2070 Fermi

GPUs. Each of the ported GPU routines produces a speedup of a factor of 5x

to 10x comparing with the Molpro multi-core parallel implementation. The GPU

code also shows a linear scaling over multiple GPUs. The original aim of this thesis

was to reduce the runtime of the DFT calculations that the calculation poses in a

commodity processor system. This has been achieved in some extents for different

molecular sizes with larger basis sets. The benchmarking for a molecule of size 62

atoms with aug-cc-pVTZ orbital basis sets (with 2116 CGTOs) and TZVPP/JFIT

(with 4228 GTOs, for B-LYP functionals) basis shows that the hybrid DFT code

with a single GPU took 33.6 sec where as a single core CPU required 71.3 sec for

one SCF iterations.

Additionally, a set of multi GPU wrappers were implemented to use in the

Molpro production Fortran code. These wrappers are implemented around CUDA

APIs and CUBLAS subroutines. The wrappers help the existing Fortran code to

seamlessly invoke CUDA functions and to easily port the large matrix operations to

the GPU. These wrappers make the GPU memory management easier by invoking

from the existing Molpro Fortran routines. They are developed in such a way that

they are scalable to multiple GPUs. Later, these wrappers were introduced to the

calculation of Molpro DF-MP2 calculation. These developments produce an overall

speedup on the whole DF-MP2 code of a factor of around 20x relative to single

core running. The calculation is also achieved the scalability over multiple GPUs.

87

88 Chapter 9. Conclusion

9.2 Future Work

9.2.1 Basis Function Evaluation

It has been noticed that in the proposed development, the grid block size needs to

be large enough to get the efficient performance from the GPU accelerators. It is

found that for the developed GPU codes, the grid block size of 4096 or 8192 are

the optimum choice in evaluating the density matrix and the exchange correlation

contributions to the Fock matrix. However, this in turns increases the elapsed time

for the evaluation of the basis functions. Since the CPU needs to do a lot more

work for different basis sets. For larger basis sets, the performance of the basis

sets evaluation decreases and causes a big overhead on the total DFT computation.

So in the next step, the introduction of the basis function evaluation to the GPU

accelerators should significantly improve the overall DFT performance. However,

the screening of basis function values is required to have careful consideration.

9.2.2 Evaluation of the Functional Energies

From the profiling of the DFT integrated Molpro code in chapter 5, it has been

identified that the functional energy calculation takes a very negligible amount of

time in comparison with a full DFT calculation. This algorithmic part is running

very fast in CPU for larger block sizes as well. However, this part is in between

of the density matrix calculation and the evaluation of the exchange correlation

contributions. The exchange correlation contribution matrix depends on the results

from the DFT functionals, and the inputs of the DFT functionals depend on the

density matrices. So a large number of CPU-GPU memory transactions is required,

which creates a big memory latency on the DFT computations. The functional

energies are calculated over the grid points and the functionals used, so this module

can be exploited for a fine grain parallelization. This will significantly reduce the

number of memory transactions.

9.2.3 CPU-GPU Load Balancing

The load balancing between the CPU and GPU needs to be improved further.

Now in some extents, CPU has to wait for the calculations to be finished by the

associated GPU.

9.2.4 Other Improvements

The analytical gradients in DFT integration are then a good choice for fine grain

parallelization. The generation of grid points can also be one of the next step for

analyzing the scope for fine grain parallelization.

Bibliography

[1] K. Yasuda, “Accelerating density functional calculations with graphics

processing unit,” Journal of Chemical Theory and Computation, vol. 4, no. 8,

pp. 1230–1236, 2008. [Online]. Available: http://pubs.acs.org/doi/abs/10.

1021/ct8001046 (Cited on pages 2 and 24.)

[2] I. Ufimtsev and T. Martinez, “Graphical processing units for quantum chem-

istry,” Computing in Science Engineering, vol. 10, no. 6, pp. 26 –34, nov.-dec.

2008. (Cited on pages 2, 23 and 24.)

[3] L. Genovese, M. Ospici, T. Deutsch, J.-F. Mhaut, A. Neelov, and

S. Goedecker, “Density functional theory calculation on many-cores hybrid

central processing unit-graphic processing unit architectures,” Journal

of Chemical Physics, vol. 131, no. 3, 2009, cited By (since 1996) 13.

[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.

0-67651156160&partnerID=40&md5=1c563bcaae6dc9aaad5a4a99e4aee019

(Cited on page 2.)

[4] P. Atkins and R. Friedman, Molecular quantum mechanics. Oxford

University Press, 2011. [Online]. Available: http://books.google.com/books?

id=yk7lRAAACAAJ (Cited on pages 5, 6, 7, 8, 9 and 10.)

[5] H.-J. Werner, “A short introduction to quantum chemistry,” January 2011,

unpublished. (Cited on pages 5, 9, 10, 11, 12, 14, 18 and 19.)

[6] F. Jensen, Introduction to Computational Chemistry, 2nd ed. Wiley, Dec.

2006. [Online]. Available: http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/0470011874 (Cited on pages 9, 10, 11, 12,

13, 15, 18 and 19.)

[7] N. Corporation, NVIDIA CUDA C Programming Guide, version 3.2 ed.,

NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050,

2010. [Online]. Available: http://developer.download.nvidia.com/compute/

cuda/3 2/toolkit/docs/CUDA C Programming Guide.pdf (Cited on pages 12,

16, 27, 32, 33, 34, 35, 36 and 37.)

[8] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical

Review, vol. 136, pp. B864–B871, Nov 1964. [Online]. Available: http:

//link.aps.org/doi/10.1103/PhysRev.136.B864 (Cited on page 16.)

[9] C. Lee, W. Yang, and R. G. Parr, “Development of the colle-salvetti

correlation-energy formula into a functional of the electron density,”

Physical Review B, vol. 37, pp. 785–789, Jan 1988. [Online]. Available:

http://link.aps.org/doi/10.1103/PhysRevB.37.785 (Cited on page 19.)

89

http://pubs.acs.org/doi/abs/10.1021/ct8001046
http://pubs.acs.org/doi/abs/10.1021/ct8001046
http://www.scopus.com/inward/record.url?eid=2-s2.0-67651156160&partnerID=40&md5=1c563bcaae6dc9aaad5a4a99e4aee019
http://www.scopus.com/inward/record.url?eid=2-s2.0-67651156160&partnerID=40&md5=1c563bcaae6dc9aaad5a4a99e4aee019
http://books.google.com/books?id=yk7lRAAACAAJ
http://books.google.com/books?id=yk7lRAAACAAJ
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0470011874
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0470011874
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://link.aps.org/doi/10.1103/PhysRev.136.B864
http://link.aps.org/doi/10.1103/PhysRev.136.B864
http://link.aps.org/doi/10.1103/PhysRevB.37.785

90 Bibliography

[10] A. D. Becke, “Density-functional exchange-energy approximation with correct

asymptotic behavior,” Physical Review A, vol. 38, pp. 3098–3100, Sep

1988. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevA.38.3098

(Cited on page 19.)

[11] P. Brown, C. Woods, S. McIntosh-Smith, and F. R. Manby, “Massively

multicore parallelization of kohnsham theory,” Journal of Chemical Theory

and Computation, vol. 4, no. 10, pp. 1620–1626, 2008. [Online]. Available:

http://pubs.acs.org/doi/abs/10.1021/ct800261j (Cited on page 21.)

[12] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, et al., “Mol-

pro, version 2010.1, a package of ab initio programs,” Cardiff, UK, 2010, see

http://www.molpro.net. (Cited on pages 22, 25, 39, 40, 42, 68 and 73.)

[13] C. J. Woods, P. Brown, and F. R. Manby, “Multicore parallelization of

kohnsham theory,” Journal of Chemical Theory and Computation, vol. 5,

no. 7, pp. 1776–1784, 2009. [Online]. Available: http://pubs.acs.org/doi/abs/

10.1021/ct900138j (Cited on pages 22 and 23.)

[14] I. S. Ufimtsev and T. J. Martinez, “Quantum chemistry on graphical

processing units. 1. strategies for two-electron integral evaluation,” Journal

of Chemical Theory and Computation, vol. 4, no. 2, pp. 222–231, 2008.

[Online]. Available: http://pubs.acs.org/doi/abs/10.1021/ct700268q (Cited

on page 23.)

[15] T. Mattson, B. Sanders, and B. Massingill, Patterns for parallel programming,

ser. Software patterns series. Addison-Wesley, 2005. [Online]. Available:

http://books.google.com/books?id=2ZpQAAAAMAAJ (Cited on page 25.)

[16] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General-Purpose GPU Programming. Pearson Education, 2010. [Online].

Available: http://books.google.com/books?id=49OmnOmTEtQC (Cited on

page 27.)

[17] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “Gpu

computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879 –899, may 2008.

(Cited on pages 27, 29 and 31.)

[18] K. Fatahalian and M. Houston, “A closer look at gpus,” Communications

of the ACM, vol. 51, pp. 50–57, October 2008. [Online]. Available:

http://doi.acm.org/10.1145/1400181.1400197 (Cited on page 28.)

[19] NVIDIA, “Nvidias next generation cuda compute architecture: Fermi,

Whitepaper,” 2011. (Cited on page 30.)

[20] K. B. Rita Borgo, “State of the art report on gpu,” Visualization & Virtual

Reality Research Group report, 2009. (Cited on page 31.)

http://link.aps.org/doi/10.1103/PhysRevA.38.3098
http://pubs.acs.org/doi/abs/10.1021/ct800261j
http://pubs.acs.org/doi/abs/10.1021/ct900138j
http://pubs.acs.org/doi/abs/10.1021/ct900138j
http://pubs.acs.org/doi/abs/10.1021/ct700268q
http://books.google.com/books?id=2ZpQAAAAMAAJ
http://books.google.com/books?id=49OmnOmTEtQC
http://doi.acm.org/10.1145/1400181.1400197

Bibliography 91

[21] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schtz,

“Molpro: a general-purpose quantum chemistry program package,” Wiley

Interdisciplinary Reviews: Computational Molecular Science, 2011. [Online].

Available: http://dx.doi.org/10.1002/wcms.82 (Cited on pages 39 and 40.)

[22] “Maple soft.” [Online]. Available: http://www.maplesoft.com/products/

maple/index.aspx?L=E (Cited on page 40.)

[23] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular electronic-structure

theory. Wiley, 2000. [Online]. Available: http://books.google.com/books?

id=2G8vAQAAIAAJ (Cited on page 42.)

[24] A. Burrows, A. Parsons, G. Price, J. Holman, and G. Pilling,

Chemistry3: Introducing Inorganic, Organic and Physical Chemistry. Oxford

University Press, 2009. [Online]. Available: http://books.google.com/books?

id=MVflPQAACAAJ (Cited on page 47.)

[25] N. Corporation, CUDA CUBLAS Library, NVIDIA Corporation, August

2010. [Online]. Available: http://developer.download.nvidia.com/compute/

cuda/3 2 prod/toolkit/docs/CUBLAS Library.pdf (Cited on pages 51, 63, 64,

66 and 67.)

[26] “Netlib/blas.” [Online]. Available: http://www.netlib.org/blas/ (Cited on

pages 63 and 66.)

[27] N. Corporation, CUDA API Reference Manual, ve ed., NVIDIA Corporation,

February 2011. (Cited on pages 65 and 66.)

[28] H.-J. Werner, F. R. Manby, and P. J. Knowles, “Fast linear scaling

second-order mφller-plesset perturbation theory (mp2) using local and density

fitting approximations,” The Journal of chemical physics, vol. 118, no. 18, pp.

8149–8160, 2003. [Online]. Available: http://dx.doi.org/10.1063/1.1564816

(Cited on pages 67 and 68.)

[29] M. Harris. Optimizing parallel reduction in cuda. CUDA Webinar 2. NVIDIA

Developer Technology. (Cited on page 69.)

[30] “Chemical compounds database.” [Online]. Available: http://www.chembase.

com/mol 6339.htm (Cited on page 74.)

[31] H.-J. Werner, “Df-mp2 calculations on gpu-accelerators.” (Cited on page 85.)

http://dx.doi.org/10.1002/wcms.82
http://www.maplesoft.com/products/maple/index.aspx?L=E
http://www.maplesoft.com/products/maple/index.aspx?L=E
http://books.google.com/books?id=2G8vAQAAIAAJ
http://books.google.com/books?id=2G8vAQAAIAAJ
http://books.google.com/books?id=MVflPQAACAAJ
http://books.google.com/books?id=MVflPQAACAAJ
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUBLAS_Library.pdf
http://www.netlib.org/blas/
http://dx.doi.org/10.1063/1.1564816
http://www.chembase.com/mol_6339.htm
http://www.chembase.com/mol_6339.htm

Declaration - Erklärung

Declaration

This is to certify that:

i. the thesis comprises only my original work towards the master degree

ii. due acknowledgment has been made in the text to all other material used

Bishwajit Mohan Gosswami

14. November 2011

Erklärung

Hiermit versichere ich, diese Arbeit selbständig verfasst und nur die angegebenen

Quellen benutzt zu haben.

Bishwajit Mohan Gosswami

14. November 2011

93

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	2 Density Functional Theory
	2.1 Introduction
	2.2 Basics of Quantum Mechanics
	2.2.1 Terms and Notations

	2.3 Electronic Structure
	2.3.1 The Born-Oppenheimer Approximation
	2.3.2 Hartree-Fock Self-Consistent Field Method
	2.3.3 Hartree-Fock Equations
	2.3.4 The Basis Set Approximation
	2.3.5 The Density Functional Theory

	3 State of the Art
	3.1 Introduction
	3.2 Related Work
	3.3 Beyond the State of the Art

	4 GPU Architecture
	4.1 Introduction
	4.2 GPU Architecture
	4.2.1 The Graphics Pipeline
	4.2.2 Evolution of Modern GPU Architecture
	4.2.3 Application Programming Interface

	4.3 Programming Model
	4.3.1 Device Memory Hierarchy
	4.3.2 Thread Hierarchy
	4.3.3 Kernel and Device Functions

	5 Molpro - a package of ab initio programs
	5.1 Introduction
	5.2 Molpro - A Package of ab-initio Programs
	5.3 DFT Architecture in Molpro
	5.4 Profiling of the DFT Module in Molpro

	6 GPU Implementation
	6.1 Introduction
	6.2 Evaluation of Density Matrices
	6.2.1 MakeBxRho
	6.2.2 MakePhi
	6.2.3 Form Density Matrix and its Gradient

	6.3 Evaluation of The Exchange Correlation Matrix
	6.3.1 LDA (Local Density approximation) Case
	6.3.2 GGA (Generalized Gradient Approximation) Case
	6.3.3 Form the Symmetric Exchange Matrix

	6.4 Intermediate Routines
	6.4.1 Form Sigma
	6.4.2 Transformation of Spin Density

	6.5 Hybrid (CPU-GPU) Implementation

	7 A Multi-GPU Wrapper for Accelerated Density Fitting Mller - Plesset Perturbation Theory
	7.1 Introduction
	7.2 Wrapper Routines
	7.2.1 CUDA API Utility Wrapper
	7.2.2 CUBLAS Wrapper

	7.3 Case Study: Application of the Wrappers in Molpro
	7.3.1 DF-MP2 Theory
	7.3.2 Implementation
	7.3.3 GPU_MP2EN Wrapper

	8 Results and Performance Evaluation
	8.1 Introduction
	8.2 Performance of the Hybrid CPU-GPU DFT Code
	8.2.1 Selection of Optimum Grid Block Size
	8.2.2 Relative Timings for DFT Code
	8.2.3 Effects on Basis Function Evaluation Timings
	8.2.4 Performance of the DFT Code
	8.2.5 Performance Comparison with Large Basis Sets
	8.2.6 Summary

	8.3 Performance of DF-MP2 Code

	9 Conclusion
	9.1 Summary
	9.2 Future Work
	9.2.1 Basis Function Evaluation
	9.2.2 Evaluation of the Functional Energies
	9.2.3 CPU-GPU Load Balancing
	9.2.4 Other Improvements

	Bibliography
	Declaration

