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Entwicklung der Verfahren und Strategien
zur Bewertung von Felde�ekttransistor-Sensoren

Abstrakt

Zur Beurteilung der neuartigen Sensoren auf der Basis der Felde�ekttransistor-
Technologie wurden kostene�ziente Mess- und Prüfverfahren entwickelt. Aufgrund
der Anfälligkeit einiger der Sensortypen für Drift und Rauschen wurde ein Messsys-
tem nach dem sog. switched-biasing-Ansatz realisiert, welches bei geeigneter Kon-
�guration nachweislich die Drift reduziert.

Innerhalb dieser Arbeit wurde auf einem FPGA die Vor�lterung sowie die Dez-
imation der gemessenen und mit einem schnellen Analog-Digital-Wandler abge-
tasteten Daten implementiert, wobei die Abtastrate des hierfür verwendeten CIC-
Dezimations�lters �exibel einstellbar ist. Hierdurch wird das Signal-Rausch-
Verhältnis erhöht und die erforderliche Datenübertragungsrate reduziert. Die Erfas-
sung der Messdaten und das Messsystem werden intern von einem Mikrocontroller
gesteuert. Er überträgt die Messergebnisse über die USB-Schnittstelle auf den PC zu
einem übergeordneten System, z.B. ein MATLAB-Programm. Es können mehrere
Messsysteme von einem übergeordneten System kontrolliert und deren Daten par-
allel erfasst werden. Systematische Fehler im Zusammenhang mit Einschränkungen
der Mess-Hardware, wie O�set, Temperatur und Drift werden durch eine Kalib-
rierung weitgehend kompensiert.

Das Ergebnis dieser Arbeit ist ein software- und hardware-seitig umgesetztes Sys-
tem, welches sowohl die Ansteuerung eines Transistors mit switched-biasing als auch
eine ziemlich präzise Messung seiner Performance ermöglicht. Hiermit konnte die
Reduktion der Drift unter verschiedenen switch-biasing-Kon�guration untersucht
und die E�ektivität des Ansatzes anhand ausgewählter Messungen validiert werden.
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Development of procedures and evaluation strategies
for novel �eld-e�ect transistor sensors

Abstract

In order to evaluate new types of sensors based on the �eld-e�ect transistor technol-
ogy, a cost-e�ective measurement and control system is developed. Because some
new types of transistor-based sensors are particularly prone to drift and noise, a mea-
surement system is built around evaluating the e�ect of a biasing technique known as
switched biasing, which has been shown to reduce drift under certain con�gurations.

The result is an implementation of software and hardware that is both able to control
a transistor with switched biasing, explore drift-reducing switched biasing con�gu-
rations, and accurately measure its performance with relatively high precision. Pre-
Filtering of the measured data coupled with a fast actuation of an analog-to-digital
converter is realized and implemented on a FPGA in the form of a rate-adjustable
CIC decimation �lter, which increases the signal-to-noise ratio and reduces the re-
quired data-transfer rate. The measurement system is controlled internally by a
microcontroller and is interfaced through a USB interfaces to a higher-level system,
such as a computer running MATLAB, and allows for multiple measurement systems
to be operated in parallel. Systematic errors related to limitations of measurement
hardware such as o�set, temperature and drift are evaluated and compensated for
through calibration.

Keywords:

Field-e�ect-transistor-sensor, Switched-Biasing, CIC-Filter,

Transistor Characterization, Analog-Digital-Conversion,

Digital-Analog-Conversion, Microcontroller, FPGA
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Chapter 1

Introduction

1.1 Motivation

In the development of new types of sensors, the �eld-e�ect transistor (FET) is a de-
vice that being developed for a variety of sensing applications. In order to evaluate
the performance of transistors, e.g. using di�erent types of materials under varying
temperatures and conditions, high-performance measurement equipment is needed
that can measure the characteristics of the transistor. During the development of
these sensors, it was found that certain sensors are prone to errors such as tempera-
ture drift and biasing drift. A biasing technique known as switched biasing has also
been shown to reduce these e�ects. Therefore research into the con�guration of the
switched biasing under varying conditions is being conducted in order to determine
the best con�guration of the switched biasing technique under varying conditions.

While the concept of switched-biasing has shown to improve performance, it
is still necessary to test the performance of new types of transistors, variants of
existing transistors, obtain statistically sound samples size, and perform long-term
testing. The capability to perform this kind of research already exists in the form
of expensive test equipment, however because the equipment is usually developed
for generic applications and is capable of more than is needed for this one speci�c
research application, the cost of a test station using commercially available equip-
ment becomes prohibitively expensive, both in terms of price of equipment, cost of
operation as well as physical space required in the test environment. A proposed
solution to this problem was the development measurement system built especially
for the purpose of controlling and measuring the performance of transistor-sensors
under a variety of conditions, while still providing a level of accuracy and precision
comparable to or exceeding that which commercially available equipment provides,
but in a cost-e�ective form.

1.2 Previous Work

In the work by [Winkelman 2009], it was �rst shown that it was possible to re-
duce drift and improve transient response under certain temperature conditions for
new types of transistor sensors by biasing them with the switched biasing tech-
nique. The measurement station used to perform this testing was composed of a
Eurotherm PID regulator for heating control, an Agilent frequency generator, and
Keithly Sourcemeter for control via a PC running Labview [Winkelman 2009].
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Further research into improving the response of transistor sensors with switched
biasing led to the development of a measurement system that could also reduce the
cost of measurement by reducing the number of interconnection between multiple
sensors through multiplexing of certain signals. This involved a system incorpo-
rated a microcontroller with built in analog-to-digital conversion for control and
measurement, multiplexing circuitry and a PC system running Labview to which
measurement results are sent and displayed graphically [Ganz 2010]. It was found
through this work that the multiplexing system was not an e�ective for measure-
ments and that determination of the drift behavior is required.

In response to the work by [Ganz 2010], further development of a measurement
system was conducted, as documented by [Winkelman 2009]. The proposed system
includes high-performance components to measure and control the tested transistor
sensor. This work included characteristics of a measurement system components
important required, these characteristic included:

• Square wave output for switched biasing signal
• frequency of the switched biasing signal: (1kHz to 100 kHz)
• Con�gurable high and low switched bias voltages (-4V to 2V)
• Amplitude of the switched biasing signal
• Switched biasing duty cycle (<= 20%)
• Variable Temperature
• Transistor drain-source voltage (±15V)

As a result of the work by [Winkelman 2009], a printed circuit board (pc board)
incorporating components capable of meeting and exceeding these design require-
ments was developed. The improved hardware was designed to test two transistors
simultaneously, and incorporates high-resolution (16-bit) components, a high perfor-
mance MCU, and an FPGA to provide fast data processing and �ltering of incoming
ADC data.

1.3 Problem De�nition

The goal of this thesis is to program the components of the newly designed hardware
board, verify component interoperability, suggest changes or improvements to the
hardware, and program all components so the hardware is ultimately capable of
providing precise and accurate measurements of two transistors simultaneously.

During the course of the thesis, the speci�c goals are to:

• Incorporate the existing hardware and program the user and hardware inter-
faces.
• Create a strategy to calibrate the measurement system
• Implement pre-�ltering of ADC measurement data in the FPGA using VHDL
• Creation of a program for the MCU, written in C to control the measurement
process, set voltage levels, con�gure the analog-to-digital conversion timing,
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and transfer data to a higher-level system (e.g. a PC running MATLAB or
LabView)
• Creation a program for data acquisition on a the higher-level system and
visualize the results.
• Evaluation of drift compensation using switched biasing

In the introductory phase of the work (Chapter 2), the selection of components,
their capabilities, and their interoperability is reviewed. Existing measurement sys-
tem concepts are reviewed and the role of software for the MCU and FPGA in
introduced.

This is followed by the implementation phase of the work (Chapter 3, in which
how each software and FPGA component was implemented as part of the thesis.
Programming in this phase includes writing and testing software for the MCU,
FPGA and higher-level system.

The implementation is broken down into two parts, MCU and FPGA. For the
MCU, this is the software written in C for: component initialization, component
interfacing with the MCU, control of switching logic used for calibration, the cali-
bration logic itself, current �ow switching control and the user interface (UI), with
which which the higher-level system interacts to set system parameters and received
measurement data.

The second phase of implementation is an explanation of VHDL coding on the
FPGA, whose role is to control logic for the ADC, and provide received �ltered
data for retrieval by the MCU. FPGA implementation is broken down into com-

ponents. These components work on the black-box principle, each of which has its
own internal input and output and plays a role in the overall functionality of the
FPGA design. These components are: MCU IO, the communication and storage
component; ADC READ the analog-to-digital control logic; CIC, the pre-�ltering
and decimation logic; ADC CH the �ler selection logic; CALC CH, triggering con-
trol for each of the two transistor measurement ports; and RESET SYNC, FPGA
reset logic.

In chapter 5, the capabilities and limitation of both the hardware and the im-
plementation are discussed. This includes a discussion of the possible error that can
be introduced from noise, or limitations of the hardware; capabilities of the overall
system, including system limits. This is followed by actual testing of transistors
with and without switched biasing, drift behavior of a transistors and of internal
calibration resistance that help determine the o�set, precision, accuracy and linearly
of the overall hardware and software design.

The thesis is concluded with a short discussion of known issues, and further
work. Issues found in the course of the thesis include a possible silicon bug on the
MSP430, pc board power supply issues with the DAC during start-up, and error
checking and handling weaknesses in the implementation. Further work includes im-
plementation in software on the MCU of a dynamic calibration logic to compensate
for component losses and gain error, a PID control loop for control of a heating ele-
ment, improvement of the higher-level system software, further analysis for the need
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of calibration of individual digital-to-analog output channels to improve accuracy.



Chapter 2

Fundamentals

2.1 Measurement system overview

In this chapter, the newly designed hardware for the simultaneous measurement
of two transistors utilizes several high-performance hardware devices in order to
precisely and accurately measure the performance of transistors. In this chapter, the
measurement system, its components are discussed. Including, criteria for selection
of hardware components, their capabilities and their role in the overall measurement
system.

VCP

MATLAB
MCU

ADC

DAC

AnalogDigital

FET 1FPGA

USB

PC System Board

FET 2
USB-Serial

USB-Serial

Fig. 2.1: Component overview with connections

The measurement system consists of the hardware in form of a printed circuit
board and a higher-level system, typically a computer workstation running MAT-
LAB or Labview. In actual operation, a heating element will also be used to heat
the transistor under test, with its temperature regulated by PID controller imple-
mentation on the MCU, and the temperature is measured and sampled by the ADC.

The printed circuit board contains all of the ports to transistor terminals, inter-
faces to external devices, and hardware components with which the measurements
will be made. This including all of the support for the devices, such as power
supplies which supply voltage to the various components. A simpli�ed overview
of the measurement system, including important components for measurement, the
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higher-level system, and �eld-e�ect transistors (FET) under test is shown in �gure
2.1).

The circuit board connects via USB to the higher-level system, shown here as a
personal computer (PC) running MATLAB, interfaced to the measurement board
via USB and a Virtual COM port (VCP)1. The USB interface can also be used to
with other software, such as LabView, or terminal-emulation software running on a
PC via the VCP and USB.

2.1.1 Field E�ect Transistor

A basic �eld-e�ect transistor is a semiconducting device consisting of three terminals,
Gate (G), Drain (D) and Source (S), through which the amount of current that
�ows between the source and drain electrodes is controlled by an electric �eld at the
gate electrode. Conventional current entering the channel at S is designated by IS .
Conventional current entering the channel at D is designated ID. Drain to Source
voltage is VDS and by applying voltage to G, one can control ID. Applying voltage
to the gate electrode of the transistor such that the current may �ow between drain
and source is referred to as �biasing�[Winkelman 2009].

2.2 Measurement concepts

The transistor characteristic of most interest in our measurement system is the
relationship between voltage at the terminals and current �ow between source and
drain, and current �ow between gate and drain. Using these current characteristics,
we can characterize a transistor, i.e. describe the voltage-current relationships of a
transistor. In the measurement circuit, voltage is applied at the drain, and measured
at the source.

2.2.1 Current measurement circuit

The current measurement circuit in our system uses the DAC to apply voltages to
the transistor and the ADC to measure the resulting current �ow. Because the ADC
measures voltage and not current, additional circuitry is required in order to create
a voltage proportional to the current �ow through the transistor.

An operational-ampli�er is used in a current-to-voltage con�guration, using one
of two high-precision reference resistances to create feedback, creating a virtual

ground at the source terminal of the transistor[Jacob Millman 1985]. The op-amp
compensates for voltage di�erential at its input by creating voltage at output which,
in this con�guration is fed back into its input through one of two reference resis-
tances. These known resistances are then used later to calculate the resulting cur-
rent �ow by taking the measured value of the voltage at the output of the op-amp
(connected to, and measured by the ADC) and applying Eq. 2.1.

1VCP is a software driver interfacing the legacy COM port interface typically found on a PC

with the USB interface
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An overview of the biasing and current measurement circuit is shown in �gure
2.2

D

G

S

ADC

Switched

Biasing

Drain/Gate

Voltage

DAC

Drain/Gate swap

Heater

Tempeature

Virtual Ground

Range

Select

Range Select

Fig. 2.2: Biasing and current measurement overview

Current is measured simply by observing Ohm's law[Fetzer 1965],

I =
E

R
(2.1)

where E is the voltage in volts (V), I is the current in Ampere(A) and R is the
resistance in Ohm(Ω).

2.2.1.1 Measurement ranges

In our measurement circuit, one of two reference resistance is used, switched by a re-
lay control by the MCU. The reference resistance, 2.5KΩ±0.02% and 25KΩ±0.02%

and the maximum measurable input range of the ADC (5V) gives two measurement
ranges with which the circuit can operate:
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I25K =
5V

25KΩ
(2.2)

= 200µA (2.3)

I2.5K =
5V

2.5KΩ
(2.4)

= 2mA = 2000µA (2.5)

Because the ADC is dual supply, measurement ±5V is possible, therefore the actual
measurement range is:

Ilow =
±5V

25KΩ
(2.6)

= ±200µA (2.7)

Ihigh =
±5V

2.5KΩ
(2.8)

= ±2mA = ±2000µA (2.9)

An important consideration when interpreting the resulting ADC values is that the
value will be inverted. This is because current �ows toward virtual ground in the
current-measurement circuit.

2.2.1.2 Drain-Source, Gate currents

When measuring IDS , a typical FET will not be ideal and the measured current
will include leakage current from the gate, although normally negligible, a char-
acterization of the FET should take this into consideration. measured current is
IDS + IG. The drain current can be found by removing the voltage applied at
the drain terminal while applying the bias voltage to the gate and measuring the
resulting current. This current is then subtracted from the previously measured
drain-source current[Jacob Millman 1985]:

ID = IG + IDS (2.10)

In order to determine these values, there are relays in parallel across the drain and
source of the FET (named the IG relay) and in series between the drain terminal
and DAC (named the VDS Relay). In order to measure IG, the VDS relay is opened,
leaving only the voltage on the gate, then current is measured. The IG relay can be
closed in order to create a low-resistance path from drain to source, bypassing the
FET.

In normal measurement state, the IG relay is open and the VDS relay is closed.

2.2.1.3 Drain-Gate swap

In the standard measurement con�guration, the SWB signal is always applied at the
gate terminal. In case it is desired to apply biasing at the FET drain terminal, cables
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would have to be physically swapped from one terminal to the other. Therefore a
�swap� relay was built into the other, the purpose of which is to make swapping
biasing more convenient and less prone to physical damage to the board, test cables,
or device under test.

When �swapped� the two gate switch-biasing reference voltages: VDAC0/VDAC1
(port 1) and VDAC4/VDAC5 (port 2) are swapped with the drain reference voltages
of each port, VDAC2 (port 1) and VDAC6 (port 2).

This is controlled by the SWAP relay, for more details section 3.2.9, drain-gate
swap implementation.

2.2.2 Switched biasing

Switched biasing, refers to �switching� the bias to the FET between two voltages
levels, at a particular frequency and duty cycle in order to improve certain charac-
teristics of transistor performance , such as transient response and especially drift
caused by "1/f" noise [Winkelman 2009]. Since this is such an important concept to
the performance of the transistor, much of the measurement system is built around
measuring the e�ects of this technique.

The switched biasing voltage levels for each transistor to be measured can be set
independently from each other. For measurement port 1, this between which the
biasing switches are set independently for each transistor.

2.2.3 Sampling windows

Measurement IDS is divided into two measurements, depending on the current re-
sulting from one of the two switched biasing levels applied during measurement.
These two levels are referred to hereon as A or B. Furthermore, is desirable to mea-
sure the current �rst only after transient e�ects of switching have settled, therefore
it is possible to de�ne periods within the switched biasing period, in which the cur-
rent measurement voltage is sampled, these are de�ned as �sampling windows� and
displayed in �gure 2.3.

De�nition of the sampling window depends on the desired measurement con�g-
uration, which consists of the following:

Period is the time at which the both levels of the signal are applied, to the
transistor, the value of period is measured in number of FPGA system clock cycles:
(1CLK = 50ns)

Width is the time at which the the switched biasing is set at the A voltage level;
the di�erence between period and width is the time in which the SWB is at is �B�
level.

Measurements of transistor current occur withing sampling windows, bounded
by the values �phase a� and �phase b� for the A sampling window and the values
�phase c� and �phase d� for the B sampling window, as shown in �gure 2.3.

Current measurement is not instantaneous, the ADC begins its internal analog-
to-digital conversion process after receiving a conversion start (CONVST) signal, as
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controlled by the FPGA process ADC READ (see section 3.3.3). The conversion
process typically 3.1 µs, plus an additional 0.9µs to send out the data, giving a total
conversion cycle time of approximately 4µs. Therefore it is important to con�gure
the sampling windows based on these, and other limitations (for more information,
see System Limitations, sec. 4.2.

Depending on the speed of the switched biasing signal, 1 or as many as 25000
samples can occur within a sampling window. Conversion cycles occur one after
another as it is within a sampling window. A sampling delay can be con�gured
between conversion cycles, �gure 2.4. This is can be used to adjust the rate at
which the ADC samples without adjusting the sampling window con�guration or
switched biasing con�guration.

Sampling 

:LQGRZ�µ$¶
Sampling 

:LQGRZ�µ%¶

PERIOD

WIDTH

PHASE A

PHASE B

PHASE C

PHASE D

Fig. 2.3: Sampling window, period, width

Conversion cycle 
(conversion time) 

Sampling delay

Conversion start

Conversion 
value return

Fig. 2.4: Sampling delay, conversion time
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2.2.3.1 Filtering and decimation

The con�guration of the sampling window may result in a sample every 4µs, de-
pending on the con�guration of the sampling window, this can result in an sample
rate as high as 250000 per second, however by reducing data rate by sending the
samples through a type of moving-average �lter known as a CIC �lter, we achieve
two things: our data output rate to the higher-level system is reduced, and the
signal-to-noise ratio of the signal is improved [Kester 2008].

Samples taken at the A switched biasing level are sent through the A �lter on
the FPGA, while samples taken at the B switched biasing level are sent through
the B �lter on the FPGA. Each measurement port has its on set of A and B �lters,
additionally, temperature measurements of each transistor are sampled by the ADC
and sent through their own �lter (T �lter).

Through digital averaging �ltering of the samples, the noise-free resolution of
the the ADC is e�ectively increased .

2.2.4 Calibration

Calibration is performed in order to adjust for o�sets and losses as a result of switch
resistance or gain error in the operational ampli�er.

2.2.4.1 Zero-o�set calibration

Zero-o�set errors can occur in both the ADC and DAC. O�set error for the ADC
is the non-zero representing value returned when its input voltage is zero; for the
DAC, it is the non-zero output value of an output, when that output is con�gured
for 0V [Instruments 1995].

In order to compensate for zero-o�set for the zero o�set error, all output values
that would result in current �ow are set to 0V. Since the output values are the DAC
are set to 0V, any di�erence in the actual output value of the DAC measured at
the ADC, which may o�set of it own is then compensated for storing the returned,
�ltered value in this con�guration. Then during measurement with voltages applied,
this value is removed from the measured value.

2.2.4.2 Dynamic calibration

To compensate for switch ON-resistance and for operational ampli�er gain error
during measurement, a dynamic calibration circuit is included to determine the
error factor, as shown in �gure 2.5.

The dynamic calibration circuit consists of two relays and two high-precision
reference resistances, Rc1 (10KΩ± 0.01%) and Rc2(100KΩ± 0.01%). During mea-
surement of a transistor, the relay in series with the transistor is disabled, preventing
current �ow through the transistor under test. Then either Rc1 or Rc2 is connected
to the previously connected DAC voltage and to the current measurement circuit.
Current is measured and the second calibration resistance is measured.
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Rc2 (100K)

Rc1 (10K)

F
u Rs

Fig. 2.5: Dynamic calibration

Since the value of the two resistances is known (within the con�dence interval),
and the value of the DAC voltage output is known (within the tolerance of the
DAC), a system of equations with two equations and two unknowns can be used to
determine the value of Rs, the ON-resistance and the the full-scale error factor as
shown in �gure 2.5 and the following equations:.

I1 =
u

F ∗ (Rc1 +Rs)
(2.11)

I2 =
u

F ∗ (Rc2 +Rs)
(2.12)

u = I1 ∗ (Rs+Rc1) (2.13)

= I2 ∗ (Rs+Rc2) (2.14)

(I1 − I2) ∗Rs = I2 ∗Rc2− I1 ∗Rc1 (2.15)

Rs =
I2 ∗Rc2− I1 ∗Rc1

I1 − I2
(2.16)

F =
u

I1 ∗ (Rs+Rc1)
(2.17)

=
u

I2 ∗ (Rs+Rc2)
(2.18)

=
u(I2 − I1)

I1 ∗ I2(Rc1−Rc2)
(2.19)

2.2.5 Heater and temperature

Since the temperature of a transistor plays an important role in the characterization
of a transistor, facilities to both measure temperature and to heat the transistor
are considered for the measurement system. Although analysis of the e�ects of
temperature and heat were beyond the scope of this thesis, it was important to
built in the capability for future development of these factors.

As shown in �gure 2.2, temperature will be measured and voltage level corre-
sponding to that temperature will be sampled by the ADC. For heating control, a
pulse-width modulated signal, whose signal is a result of a regulation routines in the
MCU is planned for future implementation.

When considering the design of the measurement system software, these tech-
niques by which temperature and heat were considered in the design. A �lter for
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this temperature has also been implemented in the FPGA for this purpose, and
�ltered sampled values can be retrieved from the FPGA. For the heating control, a
program structure on the MCU compatible with PID control was implemented.

2.3 Measurement hardware

In this section, a description of the hardware components that make up the printed
circuit board is given. Described are the important elements of the measurement
system, including criteria for their selection, their capabilities and their role in the
measurement system.

2.3.1 Printed circuit board and housing

The printed circuit board, approximately A4 in size is a multiple layer printed
circuit board, on which all components are placed and to which source, gate, and
drain cables lead to the transistor under test. USB, programming ports, debugging
pins all connect directly to ports on the board. The circuit board is to be enclosed
in a housing to both protect its components and to prevent EMI2 from a�ecting
other test equipment in the vicinity.

During the course of the thesis, a second revision of the printed circuit board
was developed based on intermediate �ndings of this work. The �rst revision, served
as a prototype on which the hardware and its implementation could be tested. As
problems with the design were found, the design of the board and changes were
made, the second revision of the board was produced.

The printed circuit board and its hardware elements were chosen so that two
transistors can be tested simultaneously, each driven by independent DAC channels
and measured by independent ADC channels, each with its own set of relays and
transistor connection ports.

2.3.2 FPGA

The Field Programmable Gate Array is an integrated circuit, whose operation is
speci�ed a hardware description language, such as VHDL and re-programmable.
The FPGA provides fast, parallel processing capability, making it ideal for simulta-
neous �ltering role it plays in this measurement system. While its primary role is to
�lter data, it also designed to control the ADC and provide an interface to the MCU
to return �ltered sample values (for the FPGA design, see FPGA implementation,
section 3.3). Additionally, the FPGA has been designed to create the switched bi-

asing control signal, a signal which causes the voltage level to switch between the
two con�gured levels at the measured transistor, as well as control the timing of the
ADC sampling.

The capacity of the FPGA is measured in logic blocks or logic elements (LEs),
the capacity determines how much memory (registers) and signals can be used in

2Electromagnetic interference
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the In order to sample the current measurement values as quickly as possible and
provide �ltered results, a FPGA with the a large enough capacity to (logic-elements
(LEs)) to accommodate the design.

The FPGA chosen is the Altera EP1C6Q240C6N, which belongs to Altera Cy-
clone family of FPGAs. The EP1C6 variant to which the this FPGA belongs,
includes 5980 LEs, 20 RAM blocks, 92160 RAM bits, 2 PLLs, and 185 I/O pins
[Altera 2007].

2.3.3 Microcontroller (MCU)

A microcontroller is comparable to a small computer on a chip, containing a pro-
cessor, memory, and input/output capability. It runs software written especially for
the MCU, is typically written in either assembly or in the C programming language.
The main role of the MCU in the measurement system is to provide a user interface
with which all measurements can be coordinated, provide an interface to the FPGA
and DAC, and control the transistor heating process. Filtered sample values are
retrieved by the MCU and returned to the user via the USB interface (for MCU
software implementation, see section 3.2.

The MCU chosen for this project is the Texas Instruments (TI) MSP430F5438A-
IPZ. It is a general purpose microcontroller in TIs MSP430 range of products.

The product number describes characteristics of the MSP430
variant [Instruments 2011a].

MSP Mixed-signal processor
430 430 MCU platform
F Includes �ash memory
5 Generation 5xx
4 Family
38 Series and device number
I Temperature (I:range -40 to 85 C)

PZ Packaging
Features of this MCU is 16-bit memory, 256KB �ash memory, 16KB RAM, 4

USCI (communication interface useful for interfacing Serial-USB conversion compo-
nent and DAC), global and pin interrupts and high clock rate capability (20 MHz).

2.3.4 Analog-to-Digital Converter

The analog-to-digital converter (ADC) is used to convert an analog voltage at its
input to a discrete voltage level. The resolution of an ADC determines the number
of discrete voltage levels over its full-range of input. The rate at which it performs
this is its sampling rate, and is measured in samples per second (SPS).

The role of the ADC in the measurement system is to convert the analog voltage
from the current-measurement circuit to a voltage level proportional to the measured
current and to convert the a voltage for temperature measurement. An ADC was
chosen that provides both high resolution, multi-channel independent input and high
sampling rate (SPS) as determined by [Kolka 2010]. The ADC chosen for this system
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is is the Analog Devices AD7656, a 6-input, 16-bit resolution ADC with a maximum
sampling rate of 250 KSPS. The measurement system design uses 4 channels (2 per
measurement port), however future design may include the remaining two for other
purposes such as calibration.

2.3.5 Digital-to-Analog Converter (DAC)

The digital-to-analog converter (DAC) translates a range of discrete input values
(codes) into an analog voltage level. The number of voltage levels, i.e. step size, is
determined by its resolution.

The role of the DAC in the measurement system is to bias the transistor with
two voltage levels for switched biasing and to apply a voltage to the drain terminal of
the transistor. Additionally the DAC will provide a voltage for control of a heating
element, which heats the transistor to a temperature measured by the ADC and
regulated by the MCU.

The Texas Instruments DAC8718 was chosen because of its 16-bit resolution
which is able to provide �ne control of the con�gured voltage levels, and 8-channel
output all of which are utilized by the system. The DAC8718 also is interfaced via
the SPI interface (see section 2.3.10.1).

The output level is determined by a number of factors including reference voltage,
the input code, calibration registers, and user con�gured gain, con�gurable to 4 or
6. A correction engine and con�gurable o�set allow the user to calibrate the DAC
output. All con�gurable aspects of the DAC are programmable by writing to the
registers, which occurs directly over the MCU-DAC interface (see DAC interface
implementation section 3.2.6).

2.3.6 DAC reference voltage

The reference voltage provides a stable reference voltage with which the DAC creates
the output voltage. The reference voltage chosen for this measurement system is
the 5V TIREF5050 from Texas Instruments. It provides low-noise (3µVPP /V ), low
temperature drift (8ppm/Â◦C (max)) and a precision 5V voltage reference.

2.3.7 Serial-USB interface

The serial-USB interface provides a internal serial connection for the MCU externally
a USB connection for the higher-level system (PC with MATLAB), a Serial-USB
chip was chosen that both can handle a high baud rate, and interface the EEPROM
chip that is used to serialize the measurement boards.

The chip chose for this purpose is the FT232BL from FTDI. The FT232BL is
the lead-free variant of the FT232BM, which provides complete support for asyn-
chronous serial transfer between the MCU and USB/higher-level system.

For the interface between the MCU and the FT232BL was chosen for its high
baud rate in serial mode( up to 1 MBaud), and its interface with EEPROM that
provides serial number support.
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When interfacing with the higher-level system, there are two possibilities: via
the the virtual COM port driver, a software drive emulating the functionality of
a legacy COM port; and the D2XX interface, a programming API3 from FTDI
provides higher data rates and access to special features of the FT232BL.

2.3.8 EEPROM

The EEPROM (Electrically Erasable Programmable Read-Only Memory) provides
storage for the FTDI serial-USB interface. An interface between both the FT232BL
and EEPROM and between the MCU and EEPROM is used to provide a single
storage point for a serial number.

The serial number is used by the VDP and D2XX drivers to uniquely identify
a device. For our measurement system, the serial number is retrieved by the MCU
into uniquely identify individual measurement systems that may be connected to
the same machine, or to identify for repeatability, a particular system board.

2.3.9 Relays and Switches

The use of relays in the measurement system is intended to control the �ow of current
at various points of the measurement system. The switches are control via control
signals set by the MCU, depending on the the con�guration of the measurement (i.e.
input voltage levels, biasing voltage levels and frequency can �rst be con�gured, then
switched on.

Switches are used to control current �ow to: dynamic calibration resistors, be-
tween DAC and the transistor under test, short-circuit FET terminals for calibra-
tion, in the drain-gate swap circuitry, and in switched biasing of the transistor.
terminals for calibration, in the drain-gate swap circuitry, and in switched biasing
of the transistor.

In the �rst revision of the printed circuit board, solid state relay switch PS710BL
was used. However it was found that it su�er from capacitance loading, resulting
unintended current �ow and causing poor transient response. In the second revision
of the board, the this component was replaced with the REED SIP DPST analog
relay switch, which has shown to provide much better performance.

2.3.10 Interfaces and buses

USB

The Universal Serial Bus (USB) is a standard found on most modern computer
workstations and it is used by the measurement system to provide data at a rela-
tively high rate of speed. The USB interface provided by the serial-USB Converter
FT232BL, supports both USB1.1 and USB2.0 standards.

3Application programming interface, provides an interface between software components
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JTAG

The JTAG programming and debugging interface, or more o�cially the IEEE 1149.1
Standard Test Access Port and Boundary-Scan Architecture [Wikipedia 2011] is the
primary method of debugging and programming the MCU. A newer alternative
to this interface is the SPI-Bi-Wire interface [Instruments 2011b]. Although this
interface has the advantage of requiring only two pins (TEST and RST), it is however
slower than the 4-wire JTAG interface. The JTAG interface was selected in later
hardware revisions for this reason.

The interface between the PC and the JTAG programming interface is dependent
on the device for which programming and/or debugging is intended, therefore there
are two JTAG programming ports are available on the board. For the MCU, this port
is interfaced with the PC via the MSP430 USB Debug-Interface MSP-FET430UIF.
For the FPGA, programming and debugging is achieved with the Altera USB Blaster
interface. Both of which allow interfacing with the programming and debugging via
a USB interface. The Altera FPGA USB Blaster interface supports the following
functions for programming, con�guration and logic analysis[Altera 2009].

2.3.10.1 SPI

The Serial Peripheral Interface (SPI) bus is a serial bus consisting of three or four-
wire con�guration, used in the measurement system between the MCU and DAC.
These four signals are: STE, SIMO (SDI), SOMI (SD), and CLK. The purpose of
STE is to share interconnections and to select the chip in multi-chip con�gurations
(chip-select). SIMO is short for Slave-in Master-out (also SDI, slave data-in), and
SOMI is Slave-out, Master-in (also SDO, slave data out).

In the SPI bus, one device is designated the master with one more slaves. Mes-
sages from the master to the slave occur exclusively on the SIMO signal, while
messages from the slave to the master occur exclusively on the SOMI line. The
CLK signal synchronizes the bits of the signal, reading on either edge of the clock
signal.

2.4 Higher-level system

The higher-level system is the named designed to the computer used to connect to
the measurement system via the USB interface. It will typically run software that
can con�gure the aspects of the measurement system, retrieve measurements, and
display or otherwise output the results of the measurement.

The higher-level system chosen for during implementation and testing is a PC
running Microsoft Windows and the MATLAB software. MATLAB was chosen
because of its built-in ability to interface with the COM port interface, analyze
measurement data, display results graphically and export data in a variety of for-
mats.
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Implementation

3.1 Tools

In this section the language in which the elements of the project are written, the
software packages used to write, program, debug, test the software and hardware
descriptions for this project are brie�y described, including their capabilities and
limitations.

3.1.1 Software

Texas Instruments Code Composer Studio IDE

For the MCU, the Texas Instruments Code Composer Studio (CCS) CCStudio com-
prises a suite of tools used to develop and debug embedded applications. It includes
a cross-compiler designed with extensions written explicitly for the MSP430 variant
used in this project. The IDE includes a source code editor, project build envi-
ronment, debugger, pro�ler, simulators, real-time operating system and many other
features.[Instruments a]

The majority of code was written in the C programming language, CCS is used
to build, compile and program the MCU via the JTAG interface. Especially useful
are the debug and watch functions, which allow program execution to be halted so
that the value of variables can be analyzed.

In addition to program code, system registers and ports of the MCU can be read,
again especially during program is the ability view the I/O ports, mode, direction.

The free version of CCS is limited to 16KB code size and some features of real-
time analysis are disabled.

Quartus II

The Altera Quartus II software is used to compile VHDL code, analysis, place and
�t, and assign ports to signals for the variant FPGA chip used in the project.

Quartus II speci�cally is used to interpret the VHDL code for errors, constraints
and possible design issues such timing issues. Upon successful compilation: syn-
thesis, further timing analysis, placement and routing, power optimizations and
programming. It achieves these through the following components:ing issues. Upon
successful compilation: synthesis, further timing analysis, placement and routing,
power optimizations and programming. It achieves these through the following com-
ponents:
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Design Entry: input VHDL code Functional Simulation: ModelSim Synthesis:
Placement and Route TimeQuest: static timing analysis PowerPlay: power analysis

Additional debugging support, is provided by SignalTap II logic analyzer and
the transceiver toolkit. These are unavailable in the free web edition versions.

ModelSim

Full compilation using Quartus II to a FPGA can not only be a a time consuming
process, but is also possible that hardware damage, e.g. through a improperly
con�gured port direction can occur. In the VHDL design process therefore it is
normal to �rst write VHDL code and simulate it. This has the advantage of being
able to look at all signals in the design very quickly in order to determine if the
design is working properly.

ModelSim is a digital ASIC and FPGA simulation and veri�cation tool from
Mentor Graphics and supports VHDL, Verilog and SystemC designs. In this project,
all hardware descriptions were written with VHDL and veri�ed in this way, using
test benches.

Test Benches

The test bench concept for VHDL is simply a model to generate waveforms with
which to test a circuit model. [Rushton 2011] They were used extensively in the
project to simulate the response of the ADC and MCU in the design of the FPGA-
ADC interface (described later in this chapter).

It was important to consider the simulated and actual delay of the devices sim-
ulated with the test bench. For example, the response time of the MCU varies
depends on whether it is currently processing an interrupt or not, or if other fac-
tors such as port con�gurations are not considered. The test bench must therefore
always used cautiously. On several occasions, delays that had been unknown or not
considered were not implemented in the test bench leading to a functional circuit,
however incorrect output.

3.2 Microcontroller software

3.2.1 Functional speci�cations

In the design of the software for the MCU, several requirements were written con-
sidering how measurements would be made. In order to characterize a transistor,
measurements and commands would have to be sent within short periods of one
another, data should "stream". These same requirements are used to determine the
e�ectiveness of the implementation during testing of the system.

The design requirements were determined as follows:
For simplicity and high interoperability between di�erent higher-level software

systems, an ASCII interface (rather than pure binary) would be designed. This is to
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allow the user to connect to the measurement system with the simplest of terminal
emulation software with the ability to send commands and receive output.

1. Commands are sent and checked for validity before being processed
2. The ability to send commands via the UI to set measurement system con�g-

uration values
3. Con�gure the DAC voltage levels of each port
4. Con�gure the switched biasing frequency of each port
5. Con�gure the duty cycle of each port
6. Con�gure the ADC sampling windows
7. Con�gure the FPGA data output rate
8. Ability to put the DAC into power-down mode and return to normal operation
9. Ability to set the group o�set, channel o�set, group gain and channel gain as

well as other con�guration registers of the DAC
10. To manual con�gure the measurement range between "high current (2mA)"

and "low current (200µA) modes.
11. The ability to set an automatic range selection mode and a corresponding

hysteresis switching mode.
12. The ability to set all each relay in the system and ensure that certain relay

switching combinations are disallowed.
13. Test functions to test the speed, output and accuracy of the DAC voltage

levels.
14. Safety features to disable current �ow across the the transistor would be im-

plemented, disabling current �ow by default and allowing con�guration of the
voltage levels before allowing current to �ow through the measurement port.

15. Measurement data should be achieved as a "streaming" output, i.e. the ability
to send a command over the USB interface while simultaneously receiving a
complete measurement data at a rate of at least 10 times per second (10 Hz).

16. The ability to stop measurement, change voltage levels, and make changes to
the sampling window while simultaneously receiving a data stream.

17. Interaction with the hardware design of the FPGA must occur in a predictable
and reliable manner.

18. The system should have the ability to calibrate the "zero-point" of each chan-
nel. That is when no current is following, the current measurement values
read become the reference zero for all future measurements until the next
calibration cycle.

19. A unique serial number can be assigned and read through the UI. This is to
distinguish between multiple measurement boards connected to the sample
higher-level system.

20. The ability to "soft-reset" both the MCU and the FPGA via the UI.
21. Software should be easily modi�able and well documented.
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3.2.2 Overview

The main loop of the program checks for the following conditions as depicted in the
�ow diagram:

Process

Input

Buffer

BUFFER

READY?

COMMAND

READY?
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CALIBRATION
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Process
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Input
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Output

Process
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INIT
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False

True

True

True

True

True

False

False

False

START

Fig. 3.1: Main operation �ow

3.2.3 Power-on initialization (INIT)

When power is applied to the system, the system components are con�gured and
the default values are set and local mode is entered.

The order of initialization is as follows:
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1. Initialize system clock
2. Initialize system ports
3. Initialize FPGA interface
4. Initialize DAC interface
5. Serial number retrieval
6. Initialize Serial-USB interface
7. Initialize system interrupts

3.2.4 Disable watchdog

One feature of the MCU is called the watchdog timer, which resets the CPU if
certain conditions are not met. This feature is not used in the implementation and
must be disabled, otherwise the MCU will automatically reset. The watchdog timer
is disabled by setting the watchdog control register during MCU initialization:

WDTCTL = WDTPW+WDTHOLD;

Initialize system clock

Our hardware includes an external 20 MHz resonator speci�cally for the MCU as
system clock input. The MCU uses a system called the Uni�ed Clock System (UCS)
to drive clocking signals. UCS allows two clock references, XT1 and XT2. XT1 can
either be driven by the internal low frequency resonator, or an external reference.
[Instruments b] XT2 allows for an optional external high frequency resonator. In
our con�guration, we are disabling the internal XT1 reference and replacing it with
the external 20 MHz reference.

The XT1 and XT2 drive three internal clock signals: Auxiliary clock (ACLK),
Master clock (MCLK), and Subsystem master clock (SMCLK). These clocks are
used to drive peripheral modules such as the SPI bus and serial interface baud rate,
and therefore must be carefully con�gured.

Setting the system clock consists of speci�ed order of operations, which includes
con�guring the port to which the external crystal is connecting, con�guring UCS
registers, waiting until the oscillator stabilizes as shown in �gure 3.2 [Instruments b].

Clear crystal

fault flags

Crystal

Fault?

Setup

external

crystal

START

Select clock

source and 

division rate

True

False

Wait for crystal 

to stabilize

Set XT1 On

XT1DRIVE Mode

Set HF mode 

Set SMCLK

Clear XT1 fault flag

Clear XT2 fault flag

Clear DCO fault flag

Clear fault flags

UCSCTL4 

UCSCTL5

Fig. 3.2: MCU clock initialization

XT1 can be con�gured for LF mode, which uses the internal 32768 Hz reference.
XT1 is driven by an external reference, connected to its peripheral port. XT1DRIVE
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Tab. 3.1: MCU port con�guration registers

Register Purpose

PxIN Input read in from port
PxOUT Output to write to port
PxDIR Direction
PxREN Pull-up/down resistor
PxDS Drive strength
PxSEL Port function select (General I/O / Peripheral)

Tab. 3.2: Additional con�guration registers for P1 and P2

Register Purpose

PxIV Interrupt vector
PxIES Interrupt edge select (rising, falling edge)
PxIE Interrupt enable

mode must be set to match the range of the external oscillator[Instruments b]. XT2
and the digitally controlled oscillator (DCO) are not used in this design and are left
uninitialized.

Once XT1 is enabled, sometime must be allowed to pass before the oscillator
is fully functional. The XT1 fault �ag is raised when the oscillator is not running.
The fault �ags are checked and cleared until they are no fault is raised.

After XT1 has been started, it is selected as the source for internal clock signals
ACLK, MCLK and SMCLK in control register UCSCTL4. Clock division is set to
1 (none) in UCSCTL5.

Initialize system ports

The MCU includes multiple I/O ports (P1 - P11), designated Px, where x stands
for the port number. They must be con�gured to match their intended use as a pe-
ripheral mode or general I/O [Instruments b]. If a port is used in general I/O mode,
port properties must be con�gured during initialization, these registers are listed in
table 3.1 and 3.2). In peripheral mode, some attributes are automatically con�gured
(e.g. direction) depending on the assigned use for that pin [Instruments b].

The port con�guration has been carefully chosen to avoid port con�icts with
other devices that could lead to excessive current �ow and possibly component
damage.

Port 1 and 2 have additional capability not available for the other ports:
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FPGA interface initialization

Because the MCU can be reset independently from the FPGA and DAC, a software
reset has been written to reinitialize FPGA registers during MCU initialization (see
section 3.3.7).

From the MCU, the reset is performed by: 1. setting the memory location
associated assigned to the FPGA_SW_RESET (FPGA RAM location 29, bit 0),
2. waiting 1 ms, 3. reinitializing FPGA con�guration (if not FPGA default). The
MCU function written for this purpose is cmd_sys_fpga_init().

Initialize DAC interface

The MCU includes support for the intra-IC serial protocol SPI, before it can be
used, the Universal Serial Communication Interface (USCI) module of the MCU
must be initialized and con�gured for the connected device.

The USCI interface consists of two modules, USCI_A and USCI_B, which sup-
port di�erence interfaces in di�erent modes. USCI_A handles the UART, IrDA,
LIN, and SPI interfaces, and USCI_B handles I2C and SPI interfaces [Instruments b].

USCI_B itself is further divided into two modules, named USCI_B0 and
USCI_B1. Because our DAC supports SPI, and we will also utilize the UART
module for the serial/USB communications, the DAC is con�gured for USCI_B,
only one of which is required, USCI_B0.

Initialization of the USCI module is as depicted in �gure 3.5 [Instruments b].

Initialize

USCI B0

Enable USCI 

SW reset
START

Initialize port 

settings

UCB0CTL1 |= 

UCSWRST

Configure SPI settings

Set clock source

Set clock source division

P3DIR

P3OUT

Disable USCI 

SW reset

UCB0CTL1 &= 

~UCSWRST;

Fig. 3.3: DAC interface initialization

Holding the USCI in SW reset prevents unexpected results on the connected
device during initialization. Initialization of the B0 registers con�gures SPI settings,
such as 3-wire/4-wire and master/slave mode.

Although port settings have already been initialized, they are initialized again
to ensure the correct settings are applied, in case they may have been inadvertently
changed. Upon disabling the USCI SW reset, the SPI interface to the DAC is ready
to be used.

Serial number retrieval

Connected to the FTDI USB-serial conversion module is an EEPROM module for
storage of USB con�guration settings, including the USB serial number. In order
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to set the system serial number, so that it may be easily queried over the serial
interface, it is desirable to read the serial number stored in the EEPROM module.

However, while the serial-USB module is active, the EEPROM is not directly
accessible to the MCU. In order to read the EEPROM, which is connected both to
the FTDI USB-serial module and the MCU, it is �rst necessary to but the FTDI
USB module in a reset state, at which time MCU port-pins directly connected to
the EEPROM module can be accessed.

MCU

EEPROM

USB/Serial

UCA3TXD

UCA3RXD

EEDATA

EESK

EECS

RES_FTDI

Fig. 3.4: Serial/USB interface initialization

Setting up the MCU I/O ports involves setting P11 pins which are shared both
connected to the FTDI module and the EEPROM module. The FTDI module pins
connected to the EEPROM module are tri-stated, meaning that when not in a reset
condition they are con�gured to communicate with the EEPROM module. When
in a reset condition, they are in a high impedance state, allowing the MCU I/O pins
connected to the EEPROM to directly read and write to EEPROM module pins.

When MCU I/O pins connect to the EEPROM module are left in the INPUT
direction, which does not result in excessive current �ow.

Getting the serial number involves invoking get_eeprom_serial() which performs
the following:

1. Set and hold FTDI-USB module in reset
2. Wait for reset condition
3. Con�gure MCU I/O ports for EEPROM
4. Read EEPROM length and o�set of serial number
5. Read EEPROM serial number
6. Recon�gure MCU I/O ports
7. Release FTDI-USB module from reset
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Initialize serial-USB interface

Initialization of the serial/USB interface is similar to the DAC interface. In this
case, the UART module of USCI_A is used, USCI_A3.

Initialize

USCI A3

Enable USCI 

SW reset
START

Initialize port 

settings

UCA3CTL1 |= 

UCSWRST;
Setup UART: 

460800 8N1 P10SEL

Disable USCI 

SW reset

UCB0CTL1 &= 

~UCSWRST;

Enable RX

interrupt

UCA3IE |= UCRXIE;

Fig. 3.5: Serial/USB interface initialization

The maximum baud rate supported by the MCU with a system clock of 20 MHz
is 460800, this baud rate is detected automatically by the the FTDI USB-serial
conversion module[Ltd 2011]. This baud rate is �xed and automatically detected
by the FTDI module, set by con�guring the MCU registers UCBRx, UCBRSx,
UCBRFx [Instruments b].

Using the baud rate (rbaud), the number of characters per second (rcps) this
speed supports can be calculated. 1 ASCII character is 8 bits, plus 1 start bit, and
1 stop bit, 10 bits per character [Luecke 2005].

rcps =
br
10

=
460800

10
= 46080 characters per second (3.1)

To meet the minimum output rate of 10 measurements/second, we can �nd the
maximum number of characters per measurement output line (cpm):

rcps
rmeas

=
46080

10
= 4608 characters per measurement (max) (3.2)

Initialize system interrupts

The �nal stage of initialization is to set the Global Interrupt Enable (GIE) bit, which
enables maskable interrupts, which allow for among others, Serial-USB interface
interrupts (i.e. command input via serial).

3.2.5 FPGA Interface

All measured data is acquired by the ADC which is connected to the FPGA, where
they are stored in memory and signaled ready for retrieval (for more detail see
section FPGA implementation). In order to reliably retrieve the measurement data
a memory bus was designed with which the MCU can communication with the
FPGA.

The MCU and FPGA are physically connected at MCU ports 1, 4, 2, and 8
from which an address bus, control bus, and data bus have been conceived. In the
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new designed bus, the MCU is designated the "master" and always retrieves data
from the "slave", the FPGA. To distinguish the direction of input/output I/O, the
names MISO (Master-in, Slave-out) and MOSI (Master-out, Slave-in) were given to
the read and write procedures developed for the interface, similar to the naming
convention used for the SPI interface.

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

(8)

MCU_REQ_MISO_ACK

MCU_REQ_MISO

MCU_REQ_MOSI_ACK

MCU_REQ_MOSI

MCU_STREAM_BUSY

MCU_STREAM_DVO

MCU_OE

MCU_STREAM_WARN

(16)

Control bus

P4Address bus

Data bus

(upper)

P2

P8

Data bus

(lower)

MCU FPGA

Fig. 3.6: MCU-FPGA interface

Control bus

The control bus activates processes on the FPGA and interrupts program �ow on
the MCU. Port 1 or port 2 of the MCU has must be used since only these two
ports have pin-speci�c interrupt capability that allows the signals from the FPGA
to interrupt MCU program �ow.

The following control signals have been de�ned:

STREAM_WARN Set by the FPGA when streaming data is incoming from the
ADC/Filter combination faster than it is being retrieved by the MCU. The
state of this pin is checked each time data is retrieved in streaming mode and
an warning character (e.g. ASCII "!") during streaming measurements.

MCU_STREAM_DVO Stream Data Valid Output - this is pin is raised by the
FPGA to signal (i.e. trigger) the MCU that con�gured trigger data is ready
for retrieval. P1.1 is con�gured as an interrupt on the rising edge of this signal.
The P1.1 interrupt is enabled when in STREAM or CALIBRATION mode.
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MCU_OE used to control the direction of the data bus. The bi-directional data
bus direction is set to either an output or input on the FPGA side based on
that state of this pin.

MCU_STREAM_BUSY is set by the MCU to signal to the FPGA that data
from memory is being retrieved. This signal can be con�gured to "lock" the
memory from being changed until the signal is cleared. This is due to some
values being stored in multiple memory locations, to help ensure that retrieved
data is consistent.

MCU_REQ_MOSI set by the MCU when the master is ready to send data. Con-
�rms that the address bus is ready to be read.

MCU_REQ_MOSI_ACK set by the FPGA in response to MCU_REQ_MISO.
Con�rms that the values on the data bus has been stored at the address on
the address bus.

MCU_REQ_MISO set by the MCU to signal that address set on the address bus
being requested.

MCU_REQ_MISO_ACK set by the FPGA in response to MCU_REQ_MISO.
Con�rms that the values on the data bus is the contents of address set on the
address bus.

Address bus

The address bus is an 8-bit bus, on which the address to read, or the address to
which to write is set by the MCU. The address refers to a memory location on
the FPGA, which contains e.g. ADC measurement values, con�guration data, and
triggering information.

For a complete table of assigned address values on the FPGA, refer to appendix
app:fpga.

Data bus

Two options considered for the data bus were, either two 8-bit data buses, one
for MISO data, the second for MOSI data. However, these would result in a more
complicated implementation since data and a larger address space than what the the
8 bit address bus could provide would be required. Therefore, the tri-state bu�ering
feature of the FPGA and the ability to switch the direction of the address pins
during runtime on the MCU were used to create one 16-bit bidirectional bus. Since
ports of the MCU are 8 bit, the data bus has been divided into the 8bit upper-byte
(port 8) and an 8-bit lower-byte (port 2) of the 16-bit data word.

The direction of the data bus on the FPGA was set by a new control signal
MCU_OE (output enable).
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3.2.5.1 Read operation (MISO) handshaking

A four-signal handshaking scheme was created to transfer data between the MCU
and FPGA in order to synchronize the two clock domains of the MCU and FPGA,
and because the bus is parallel, the lengths of traces are not all equal, a handshaking
system is utilized to ensure that all bits on all pins are set and ready to be read or
written.

A read operation is controlled by the master (MCU). The operation occurs in
three stages: setup, request and clear. The setup phase is entered �rst when the
MISO ACK (from FPGA) is cleared. This is to ensure that a previous read operation
has fully completed. In the setup phase, the address to be read from the FPGA is
setup on the address bus and the OE bit is cleared to ensure that the data bus is
in the MISO state (MCU data ports set to input, FPGA data pins set to output).
After setup, in the request phase, the MISO request bit is set con�rming a valid
address on the address bus and proper con�guration of the data port. This triggers
the FPGA to set the requested memory location on the bus, followed by a MISO
acknowledgment (ACK) from the FPGA, signaling that bits on the data bus are
valid and ready to be read. After the data has been processed by the MCU, MISO
REQ is cleared signaling a complete read. The MISO REQ ACK is in turn set low
and the MISO process has been completed. A message sequence diagram depicting
a MISO read operation is displayed in �gure 3.7.

Master (MCU) Slave (FPGA)

wait
MCU_MISO_REQ_ACK = µ0¶�?

P1OUT = <addr>

MCU_OE = '0'

MCU_MISO_REQ = '1'

MCU_MISO_REQ_ACK = '1'

MCU_MISO_REQ_ACK = '0'

MCU_MISO_REQ = '0'

MISO Request acknowledgement

DATA at <addr>
Data from <addr >setup on data 

bus

Data bus direction configured

Finish MISO request 

(data stored)

Fig. 3.7: MISO operation
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3.2.5.2 Write operation (MOSI) handshaking

In a MOSI operation, the MCU writes data to memory on the FPGA at a speci�ed
memory location. As in a MISO operation, this occurs in three phases: setup,
request, clear. In setup, �rst OE is set, the FPGA reacts by con�guring the tri-state
bu�ers of the data port as an input. For a short time, the MCU and FPGA data
ports are both con�gured as inputs, that is until the MCU data port is recon�gured
as an output. Also in the setup phase, the address to which data is to be written
is setup, and the most and least signi�cant bytes of the word are setup on the data
bus. The MOSI operation is displayed in �gure 3.9.

Master (MCU) Slave (FPGA)

wait
MCU_MOSI_REQ_ACK = µ0¶�?

MCU_OE = '1'

P4OUT = <addr>

P2OUT = <data LSB>

MCU_MOSI_REQ_ACK = '1'

MCU_MOSI_REQ = '1'
Data from data bus stored at

<addr>

Finish MOSI request 

P8OUT = <data MSB>

Confirm data stored

MCU_MOSI_REQ = '0'

MCU_MOSI_REQ_ACK = '0'

Setup data bus direction

Setup address to write 

Setup data to write

MOSI request

Fig. 3.8: MOSI operation

Streaming operations

In streaming and calibration modes, data is retrieved based on an incoming data
valid output signal (DVO) from the FPGA. This DVO bit is con�gurable and
matched to the con�gured triggered ADC �lter output. This bit is always set when
the trigger is con�gured on the FPGA. When the system mode is set to STREAM
or CALIBRATION, the port-pin interrupt for DVO is enabled. On the rising edge
of DVO, an interrupt sets MCU_STREAM_BUSY, disables the port-pin interrupt
temporarily, and sets the system variable �ag STREAM_READY 	1.

When the main loop of the MCU checks this �ag, streaming or calibration func-
tions are performed as needed. At the conclusion of the stream, stream_busy is
cleared, the interrupt is cleared, and the port-pin interrupt for DVO is re-enabled.
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Master (MCU) Slave (FPGA)

Enable MCU_STREAM_DVO
port-pin interrupt

MCU_STREAM_DVO

MCU_STREAM_BUSY = '1'

Disable MCU_STREAM_DVO
port-pin interrupt

Streaming operations
activation

MCU_STREAM_BUSY = '0'

Streaming operations
complete

(MCU_STREAM_WARN) Stream warning
(if necessary)

Stream data readyStream interrupt

Fig. 3.9: Streaming MISO operation

3.2.6 DAC Interface

The MCU physically interfaces with the DAC and is completely controlled by the
MCU, as opposed to the ADC which is physically connected to the FPGA and can
only indirectly interface with the ADC.

The built-in SPI protocol is utilized by con�guring the SPI speci�c pins (P3.0,
3.1, 3.2, 3.3) as in peripheral mode. This uses the pins in the pre-con�gured mode
assigned to these pins. This timing of the SPI interface clock, SIMO, and SOMI pins
are automatically by reading and writing to the special function register RXBUF
and TXBUF.

Pins P3.4, P3.5, P3.6 and P3.7 are left as general I/O and their logic is controlled
by functions accessible via the user interface. CLR clears previously con�gured DAC
registers, RST resets the DAC, LDAC loads the DAC output registers andWAKEUP
is a type of sleep function.

In order to program the DAC, functions were written speci�cally for DAC read-
/write operations. Through the user interface, these are:
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Tab. 3.3: MCU-DAC Interface

Pin MCU Port Signal Purpose

33 P3.0 SPI DAC STE SPI protocol slave select
34 P3.1 SPI DAC SIMO (SDI) SPI protocol slave-in, master-out
35 P3.2 SPI DAC SOMI (SDO) SPI protocol slave-out, master-in
36 P3.3 SPI DAC CLK SPI protocol communications clock
39 P3.4 CLR DAC Clear DAC
40 P3.5 RST DAC Reset DAC
41 P3.6 LDAC DAC Load DAC
42 P3.7 DAC WAKEUP DAC wake-up (low-power)

mem:dacget:<addr> Get DAC register at DAC register address <addr>

mem:dacset:<addr>:<val> Write the value <val> at DAC register address
<addr>

Internally, the a request to read DAC memory calls the functions depicted in
�gure 3.10.

User mem_dacget() getWordDAC()

mem:dacget:<addr>

<addr>

<val>

putWordUSB

<val> Output to USB

ok

Fig. 3.10: mem:dacget function calls

Memory retrieval is somewhat involved due to the packet delay in retrieving
register data. Packets to the DAC are composed of 24 bits, as described in the data
sheet. In standalone mode, the �rst 24-bit packet speci�ed in the �rst 8 bits, the
address to be read, followed by dummy data. In the second 24-bit packet, a NOP
command is written, while simultaneously data from the address of the last packet
is read in [Instruments 2009].

In order to retrieve this data, the process of reading and writing simultaneously
is split into two phases: phase 1 is the input word specifying the register to be read,
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phase 2 writes NOP data and reads data from the selected register.

Note: during development of this function, a possible MCU (MSP430F5438 rev.
A) silicon bug was discovered and a workaround was needed. The details can be
found in section 6.3.
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Fig. 3.11: Reading a DAC register, getWordDAC() phase 1

Writing to the DAC, e.g. when programming the INPUT_CODE to set the
output level, is less complicated because only one 24-bit packet needs to be set. The
UI function calls are depicted in �gure 3.13

Internally, putword_DAC() writes the bytes to the MCU SPI bu�er
UCB0TXBUF, sets DAC Chip Select, and �nally loads the value with LDAC as
speci�ed in the DAC8718 data sheet. The process is displayed in 3.14.

3.2.7 Serial-USB Interface

As with the DAC SPI interface, the MCU has built-in serial functions which are
assigned to speci�c ports, which allow simpli�ed serial access.

The MCU physically connect to the FTDI serial-USB conversion chip. The ports
connected to this chip are:
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Fig. 3.12: Reading a DAC register, getWordDAC() phase 2

User set_dacreg() putWordDAC()

mem:dacset:<addr>:<val>

<addr>,<val>

putWordUSB

"DAC register set"

ok

Fig. 3.13: UI command "mem:dacset" function calls

MCU port Description Purpose

P10.4 UCA3TXD MCU data to FTDI Serial-USB
P10.5 UCA3RXD FTDI serial-USB data to MCU

3.2.8 User interface (External view)

The user interface operates by interpreting ASCII input sent over the Serial-USB
interface. User commands are divided into six main divisions, each of which is
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Fig. 3.14: Writing to a DAC register, putWordDAC()

further divided into commands that control all elements of the system, as shown in
�gure 3.15.

Each of these branches break down further to either direct system commands as
in the CMD branch (�gure 3.16) or commands that take input arguments, as is the
case with the MEAS branch (�gure 3.17).

Each command has an associated number of valid command parts, i.e meas:fet
(two input parts) is not a valid command, nor is meas:fet:a (3 parts), however
meas:fet:a:5 is a valid command (4 parts). This was done by setting a counter
which stores the current number input commands parts and comparing in before
calling the associated function.

Numerical input arguments are converted from ASCII string to an unsigned long
using the library function strtoul(). This was done because of the functions built in
ability to handle decimal, octal and hexadecimal input. Hexadecimal input begins
is pre�xed by 0x; octal input is pre�xed by 0, and the rest is decimal. If no valid
conversion could be performed, a zero value is returned [Peter Prinz 2006].

A complete command may exist of 1 to 4 parts and is entered in the following
format:

<part1> <part2> <part3> <part4> <LF>
Where LF is the line feed sent by the higher-level system For a complete listing

of UI input commands and a their usage, refer to appendix, section B.

3.2.8.1 System modes

To distinguish between manual UI command input, higher-level system automated
input, streaming output and calibration modes, the microcontroller was programmed
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S

cal

clear Clear calibration

disp Display calibration

set Calibration

mem
dac read/write to DAC registers

reg read/write functions to FPGA registers

test
usb USB test functions

dac DAC test functions

set Setup measurement properties and controls

meas
stop Stop infinite measurement

fet Measure FET ports

cmd
mode System modes

sys System controls

Fig. 3.15: User command branches

cmd

mode

cal Calibration mode (internal only)

stream Streaming output mode

remote Remote system mode

local Local system mode

sys

fpgainit Reinitialize FPGA only

fpgasafe Safe FPGA port configuration

reset Reset system

name Return system name

id Get serial number

Fig. 3.16: CMD branch

meas

stop

fet

ab [n] - Measure FET port 1 & 2 [n] times

b [n] - Measure FET port 2 [n] times

a [n] - Measure FET port 1 [n] times

Fig. 3.17: MEAS branch

to operate in four modes of normal operation, these are called: local, remote, stream,
and calibration.
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Local mode (LOCAL)

After power-up initialization, the user interacts in "local" mode by default. In
this mode all ASCII text command written to the terminal are echoed back to the
terminal.

Remote mode (REMOTE)

Remote mode is similar to the local mode, however is intended for interfacing with
higher-level system program in which the commands sent are known and only the
responses are of interest. In this mode text that is sent to the MCU is not echoed
back to the user in order to reduce the about of tra�c over the interface.

Measurement modes STREAM and CAL

Two measurement modes: streaming output and calibration Interrupts and Triggers
Stream warning memory lock bit on fpga

3.2.8.2 Input bu�er

Incoming text are stored in a ring bu�er, a �ag INPUT_READY is set and com-
mand interpretation and execution occurs. In order to achieves this, an incoming
character triggers an interrupt on the UCSIA3 interrupt vector, which is handled
by the interrupt handler USCI_A3_VECTOR. Interrupt vector 0x02 is raised by
an incoming character, RXIFG.

The interrupt handling is kept as simple as possible to allow to avoid long pro-
cessing time in the interrupt, on receiving (RX) a character, the interrupt is handled
as depicted in �gure 3.18.

In order to send commands text quickly, any ASCII text sent to the MCU triggers
an interrupt on the MCU; the received character is stored in a circular bu�er and
processed by the MCU after the interrupt exits. This allows incoming text (and
complete commands) to be sent via the UI faster than they can be processed.

When the the read pointer falls behind the write pointer, bu�ering handling
begins. Because commands are loosely based on the input style of SCPI (IEEE-
488.1,488.2 / IEC/60488-1, -2) [Consortium 1999], consisting of ASCII textual strings,
format and are divided into "parts". Each command part de�nes the command more
speci�cally. Commands are terminated by an ASCII 'CR' (Hex: 0x0D) or by semi-
colon ";" (Hex 0x3B).

Commands are processed by comparing the READ and WRITE pointers in
the main process. When READ WRITE then command processing begins. The
bu�er scans each character in the ring bu�er until a command part terminator is
found. Characters that are non alphanumeric (A-Z, a-z, 0-9) are not stored in the
command array. Upper-case letters are converted to lower case before being stored
to ease command interpretation. This is repeated for each command part until the
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UCA3IV

UCA3IV = 2
buffer[input_ptr_wr] = UCA3RXBUF;

input_ptr_wr++;

Buffer = 

MAX?
input_ptr_wr = 0;

False

TrueFalse

True

RET

RX interrupt vector

Fig. 3.18: Character input interrupt handling

command terminator is found, at which time a command-ready �ag, to signal an
available command.

The process is depicted in �gure 3.19.

3.2.8.3 Command bu�er

Once a command terminator has been found, a �ag is raised to signal command
interpretation. Similar commands are grouped in a tree-like format, see �gure 3.15.
In this design, there is a trade-o� between source code e�ciency and readability.
The tree-like design has the advantage of being easily modi�able, while requiring
more code space on the MCU.

3.2.8.4 Measurement mode

Measurement mode is an extension of REMOTE mode, and is entered as the result
of system mode be setting to STREAM or CAL and an incoming STREAM_DVO
interrupt setting the STREAM_READY �ag, as depicted in the �gure.

3.2.8.5 STREAM mode

The streaming output occurs once per iteration of the main loop, in this way, new
incoming commands are always processed between measurement values, therefore
allowing parameter adjustments during endless measurements.
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Read ponter = 

Write pointer?
Entry

- Set line output suppress ON

Input = ³<CR>´

(command terminator) ?

Input = ³:´

(argument separator)?

- Convert to lower case

- Store in command array

Local mode?

- Write input to output (echo)

True
False

- Increment argument counter

- Terminate string

- Reset counters

- set INPUT_DONE = µ1¶

True

- Terminate string part

- Increment argument pointer

- Reset character pointer

False

True

- increment read pointer

False

CI

Input alphanumeric?

Input = ³�* ´

(Line suppress) ?
FalseTrue

True

Fig. 3.19: Command array

When the output �ag is set (by con�guration of the trigger and an incoming
ready �ag from the FPGA), it is handled as follows.

Delay counter

A delay counter is �rst checked before any output values are retrieved or displayed.
The output delay counter discards incoming values that would otherwise be not
useful for measurement values. Such a situation arises when the sampling window is
changed and the �lter values have not yet stabilized (�lter group delay)[Mitra 1993].

This value is not con�gurable, but is easily changed in the source code de�ne
DEFAULT_FILTER_DELAY , and is set by default to 3 (the sampling delay of
the 1st order CIC �lter, see section CIC �lter implementation, section 3.3.5).

Two modes of streaming measurement output are available, in�nite and �nite.
For the �nite output mode, an internal variable is set and remains set to the number
of output values desired. Internally a second variable counts through the iterations
of the measurement cycle. In in�nite output, an internal variable is set and remains
set to zero. On each iteration of the main loop, this cycle variable is checked. As
long is it remains zero, FET measurement values are retrieved and output. To stop
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stream_ready =0; 

putByteUSB(³%´);

STREAM

OUTPUT?

False

OUT

CALDelay=0?

Stream

output?
False

True

Output

cycles == 0?

Get FET measurement values

- Check and adjust ranges

- Check stream warning bit

- Reset stream

True

Output

cycles > 0?
False

Endless output loop

Get FET measurement values

- Check and adjust ranges

- Check stream warning bit

- Reset stream

- Decrement output cycle count

Finite output loop

-Decrement delay counter

False

Input

Fig. 3.20: Measurement mode output

measurement in in�nite output mode, the cycle counter is set to 1, which results
in one additional measurement before the measurement cycle ends, as depicted in
�gure 3.21.
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P1IV

Set STREAM_BUSY bit

RET

System Mode = STREAM 

or

System Mode = CAL?

Disable P1 port-pin 

interrupt

Set STREAM_READY 

flag

True

False

Fig. 3.21: Measurement STREAM_DVO interrupt handling

Get FET measurement values and auto-trigger

Getting FET measurement values involves querying the memory locations on the
FPGA for the correct values. This is done internal via the function meas_fet().

The get FET measurement process is complicated due to automatic triggering,
i.e. retrieving only the port and port-�lter that has new data, and automatic range
adjustment. The process is depicted in the �gure 3.23.

mem_get_�lter()

The mem_get_�lter() function called in meas_fet() gets the most and least-signi�cant
bytes of the called port/�lter from de�ned memory locations, shifts them appropri-
ately and returns a value.

RAW output mode

Display formatted is an abstraction of the �lter value retrieval process. When in
RAW mode, the hexadecimal value returned by mem_get_�lter() are displayed in
CSV format (values separated by semicolon, lines terminated by carriage return).

Formatted mode current calculation

In formatted output, the actual values are calculated and displayed in CSV format.
The calculation of the current depends on the range (i.e. the reference resistance).
Because the output is in twos-complement format, numbers of values around zero
are not exactly symmetric. The 16-bit ADC requires one bit for the sign bit, giving
a range of ADC values from -32768 to +32767.

16-bit values are returned signed, e�ectively 215 positive value including zero
and 215 negative values. For the high-current range, a 2500Ω resistance is used.
Range is -32768 to 32767.
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FET == 0?

(return)
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and 2

T

T
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RAW?
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mem_get_filter (2A)

mem_get_filter (2B)

mem_get_filter (2T)

Output mode 

RAW?
False True

Check ranges and set 

NEXT range value 

variable range_val_next

Automatic

ranging ON ?

ERROR output

F

Disp_formatted(2A)

Disp_formatted(2B)

Write RAW (2T)

Port 2 RAW

values to USB

Port 1 RAW
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mem_get_filter (1A)

mem_get_filter (1B)

mem_get_filter (1T)

Disp_formatted(1A)

Disp_formatted(1B)

Write RAW (1T)

Fig. 3.22: mcu meas_fet()

Therefore the calculation of the current is as follows:

Low current

imeas = valueADC ∗ 1LSBADC ∗ 32768 (3.3)

= valueADC ∗ 6.103516nA (3.4)

with imeas the measured current value, valueADC the value returned by the ADC,
and LSBADC the step size of the ADC (see 4.1.1).
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Range

LOW?

Range

HIGH?

imeas = 6.103516 

nA * value

Low current range:

25000�reference

200�A (max)

False

imeas = 61.035156 

nA * value

True

imeas � 0

ERROR

output

False

imeas = imeas + 0.5TrueFalseimeas = imeas - 0.5

return

imeas

High current range:

2500�reference

2000�A (max)

(call)

return

0

False

Rounding

Fig. 3.23: Display calculated, formatted values

disp_formatted_I()

In high current mode, the step size is 61.035156 nA (see 4.1.1).

imeas = valueADC ∗
2000µA

32768
(3.5)

= valueADC ∗ 61.035156nA (3.6)

In the low-current range, a 25000Ω resistance is used, maximum input voltage is
±5V, therefore current can range from -200 to +200 µA, a total range of 400µA.
ADC values are typical expressed in LSBs, which is the step resolution based on the
resolution of the ADC and the full scale value [Kester 2008]. In the low-range, the
value of 1LSBADC−LOW can be calculated:

1LSBADC−LOW =
400µA

216
(3.7)

= 6.103516nA (3.8)
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In the high-current range, 2500Ω resistance is used, maximum input voltage is 5V,
therefore current can range from -2000 to +2000 µA, a total range of 4000µA.

1LSBADC−HIGH =
4000µA

216
(3.9)

= 61.03516nA (3.10)

Enough signi�cant digits are used to ensure the resolution of the range is maintained,
including rounding factors. With these, the lower and upper limits of measure for
low-current and high-current modes are therefore:

RANGElow−lower = 6.103516nA ∗ −32768 = −200000.0nA (3.11)

RANGElow−upper = 6.103516nA ∗ 32767. = 199993.9nA (3.12)

RANGEhigh−lower = 61.03516nA ∗ −32768. = −2000000.nA (3.13)

RANGEhigh−upper = 61.03516nA ∗ 32767. = 1999939.nA (3.14)

(3.15)

Range adjustment and overload checking

The motivation behind range adjustment is two-fold, 1. give the most highest reso-
lution possible for a given measurement, 2. as a precaution against damage to the
op-amps or ADC due to high current/voltage.

The two elements providing capability are are the measurement relays, which
completely disable current �ow and the range selection which selects the reference
resistance for a given measurement.

After measurement relays have been switched on and a measurement is per-
formed, the last stage of the measurement is to check the measured values against
the limits and then to con�gure the range relays in case of

Automatic range adjustment and overload checking occurs each time a measure-
ment is made, in two stages:

1. check the measured values against range limits and
2. adjust range / shut-o� current

Range limits

In order to con�gure the automatic range hysteresis, the following parameters are
de�ned:

LOW-SWUP low-to-high current ADC transition value
LOW-MAX maximum current value when in low-current mode
HIGH-SWDOWN high-to-low ADC transition value
HIGH-MAX maximum current value when in high current mode

Both LOW-MAX and HIGH-MAX determine the overload values, when the returned
measured value meets are exceeds these values, the measurement relays are switched
o�.
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2000�A
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Fig. 3.24: Range limits

STREAM_WARN

Stream loss warning checks the STREAM_WARN bit and outputs the
STREAM_WARN_CHAR (default: ASCII "!") to USB. This serves as a warning
of miscon�guration that can be checked for in the �rst �eld of the CSV values by
the higher-order system.

stream_reset()

This function simply clears the MCU_STREAM_BUSY bit, re-enables the port-pin
interrupt, allowing MCU_STREAM_DVO to start streaming input again.

3.2.8.6 Calibration mode (CAL)

In order to compensate for o�set at 0V DAC output within in the system, a technique
to calibrate the zero-point o�set has been developed. After calling the command to
start calibration, the variable cal_cycles is set greater than 0, this allows the entire
calibration process to run n number of times, in case longer average of calibration
values is desired.

The calibration must also be able to handle future development of a dynamic
calibration, which calibrates switches from measurement of the FET to a precision
reference resistance.

3.2.8.7 Set zero point

Starting the calibration is depicted in �gure 3.25.
Setting calibration mode sets the system mode to CAL, which then enables

streaming input from the FPGA. This means, just as in streaming output mode,
the streaming data from FPGA is used internally to calibrate the zero-o�set. The
calibration decision process is depicted in �gure 3.26.
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User Main Loop cal_zero() cal_setup()

cal_delay=3

Output "Calibrating"

cal:set:zero

Set CAL mode

Setup FPGA

Stream calibrationCalibration done

Fig. 3.25: Calibration setup function calls

cal_cycles counts the number of complete calibration cycles.
cal_delay is similar to output delay, discards readings to ensure the output has

settled to a reliable value.

3.2.9 Relay control

Three sets of relays are important to the control of the current �ow during measure-
ment and calibration.
Modes of relay operation are:
OFF No current �ow
ON Current �ow in the normal direction
SWAP-ON Current �ow, swapped terminals
The controlled relays are:
GATE Used to measure the gate current
VDS Used to disable drain-source current
The calibration relays support ON and OFF modes:
CAL1 enable/disable the 10KΩ reference
CAL2 enable/disable the 100Ω reference
It is important that both relays are not "on" at the same time, and that one switches
o� and the next switches on with a delay to prevent damage. Sending an ON
commands when already on, results in a brief (40 ms) o� pulse because each relays
are disabled before turned on for safety.

3.3 FPGA hardware architecture

3.3.1 System Overview

For the design of the FPGA, the following goals were to be met:
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CAL

- cal_reset()

- cal_cycles = 5

- cal_delay = 3

- previous mode

Cal_delay--

Cal_cycles > 0

USB output

Calibration done.

Cal_cycles = 3?

- Set range FET1

- Set range FET2
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True
False

( = 0 )

Cal_delay = 0?

False

False

Cal_filter_output()

Cal_cycle--

Cal_delay = 3

True

Stream_reset()

Input

Fig. 3.26: Calibration decision

1. Create an period and duty-cycle adjustable switched biasing signal in the form
of a square wave for each FET port.

2. Sample the voltage level of the current-measurement circuit for both FET
ports according to the con�guration of the sampling windows and state of the
switch bias signal.

3. E�ciently �lter and decimate ADC samples such that measurements can be
sent over USB in real-time and such that noise e�ciently reduced

4. Provide �ltered/decimated measurement values independently for both switch
biasing states and temperature samples for each port.

5. Con�guration of the current measurement range relays.
6. Ability to reset and con�gure the ADC and FPGA con�guration values.
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Fig. 3.27: FPGA implementation overview

In order to meet these requirements, the overall role of the FPGA was subdivided
into components, each of which is part of the over design, instantiated one or multiple
times as entities, each of which provides its own part of the overall functionality of
the system. These components summarized in table 3.4.

Tab. 3.4: FPGA component summary

Component name Description

MCU_IO Memory, MCU Interface
CIC CIC decimation �lter
ADC_READ ADC con�guration and sampling
RESET_SYNC Synchronization of incoming asynchronous reset

signal
ORgate_2 Two-input OR gate
ADC_CH Route incoming ADC data to the appropriate

�lter, create switch-biasing signal
CALC_CH Calculations, adjustments to outgoing �lter

data, triggering controls
LED Debugging LED control

Components are organized in a shallow hierarchy, each belonging to the root
component FET_ROOT, which is the name assigned to the root of the component
which routes and contains all components of the system. Several of the components
are initialized multiple times, each playing a di�erent role with di�erent routes in
FET_ROOT. These entities are summarized in table 3.5.
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Tab. 3.5: FPGA component-entity summary

Entity Component Description

ADC_CH1 ADC_CH FET Port 1 ADC_CH functionality
ADC_CH2 ADC_CH FET Port 2 ADC_CH functionality
Filter 1A CIC CIC �lter for FET port 1, sample window A val-

ues
Filter 1B CIC CIC �lter for FET port 1, sample window B val-

ues
Filter 1T CIC CIC �lter for FET port 1, temperature values
Filter 2A CIC CIC �lter for FET port 2, sample window A val-

ues
Filter 2B CIC CIC �lter for FET port 2, sample window B val-

ues
Filter 2T CIC CIC �lter for FET port 2, temperature values
Calc Port 1 CALC_CH FET Port 1 CALC_CH functionality
Calc Port 2 CALC_CH FET Port 2 CALC_CH functionality

The root component FET_ROOT also routes all external input/output signals
which connect to the external components on the system board. External com-
ponents are the ADC, switched biasing control logic, range control relays, MCU
and debugging LEDs and pins. These list of these external I/O signals are shown
in table A.5.

When internal process logic is used to create output signals to other system
components, they are �rst registered. Internal versions of these signals that are
registered are assigned with the _i appendix to its name.

In the following sections, the implementation of the FET_ROOT components
will be described in detail. All components are written using the standard IEEE
libraries, with the header

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

For brevity, all signal vector functions relying on these libraries, such as those deal-
ing with addition and integer-signal vector conversion (e.g. std_logic_vector(),
signed(), unsigned()) are omitted from the component descriptions. For example,
this signal assignment from the CIC component appears in the VHDL source code
as:

count_out_i <= (others => '0');

c1 <= std_logic_vector(signed(c0) - signed(i2d1));

would be displayed in block diagrams and descriptions of the component as:
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count_out_i <= 0

c1 <= c0 - i2d1

Each component is designed to be synchronous with the rising-edge of the FPGA
system clock (separate clock as MCU). This is recommended design, as there is a
period of instability due to propagation delays through the FPGA [Altera 2007]. In
the routing speci�cation in the Quartus II TimeQuest Timing Analyzer software, a
timing requirement to match the FPGA system clock (20 MHz) was added to ensure
that propagation delay between modules and of signals does not exceed the period
of the system clock, i.e. the setup and hold time. The clock itself is assigned to a
the global clock of the Altera FPGA, which also helps ensure timing requirements
are met[Altera 2007].

Output signals that are intended for external pin assignment are registered in
the module in which they are used to help ensure that the setup and hold times are
not violated. Those incoming signals, such as reset and MCU handshaking signals
are made synchronous to the FPGA system clock through the use of synchronizers.

3.3.2 Component MCU_IO

The MCU_IO module is primarily responsible for communication between the MCU
and the other modules in FET_ROOT by setting up internal signals, providing
handshaking between the MCU and FPGA, and memory allocation and assignment
for various con�guration and measurement values.

The module includes many internal I/O signals (table), as it heavily intercon-
nected, however is functionality can be broken down into just three processes, sum-
marized in table 3.6.

Tab. 3.6: Module MCU_IO process summary

Process Purpose

COMM_PROC MCU handshaking, Memory assignments
STREAM_PROC set mcu_stream_dvo (interrupts MCU, output

to MCU) based on con�gured channel trigger (in
CALC_CH) and CH1/CH2 two-bit selector

STREAM_WARN_SET Set a warning bit to be check by the MCU if
data is internally triggered while the MCU is
still processing the previous triggered request.
Maintains a count "lost" measurements

There are many internal signals, which serve to interconnect the processes and to
create registers (storage), these signals are summarized in table A.6

The signal RAM16 serves as a generic RAM storage for measurement values,
sampling window con�guration values, data output rate, trigger information, etc.
is implemented. The con�guration values are set by the COMM_PROC process to
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�xed locations and assigned to entities through entity-external signal assignments.
The 64 16-bit memory locations are addressed and accessed internal in by their array
location, RAM16(0) to RAM16(63). For a list of memory location assignments, refer
to the appendix.

3.3.2.1 MCU_IO process COMM_PROC

The communications process (�gure 3.28) is responsible for resetting memory, as-
signing default values, controlling accesses to the data bus, and MCU handshaking
logic.

3.3.2.2 MCU_IO process STREAM_PROC

This process (�gure 3.29) sets mcu_stream_dvo (interrupts MCU when in a stream-
ing mode) based on con�gured channel trigger (set by CALC_CH) and the CH1/CH2
two-bit channel selector (set by the user, stored at RAM16(27)).

The DVO (data-valid output) signal to the MCU is held for at least two clock
cycles, in order to ensure that signals are stable while they are being retrieved by the
MCU, this is done by chaining the signal assignment at each rising clock edge and
ORing the signal assignment with the registered output, as shown in the following
code snippet:

elsif rising_edge(clk) then

mcu_stream_dvo_d1 <= ch1_en or ch2_en;

mcu_stream_dvo_d2 <= mcu_stream_dvo_d1;

mcu_stream_dvo_i <= mcu_stream_dvo_d2 or mcu_stream_dvo_d1 or ch1_en or ch2_en;

where the signals mcu stream dvo d1, mcu stream dvo d2 are delay for delay, and
mcu stream dvo i is the internal signal for a DVO that is set for the the MCU.

3.3.2.3 MCU_IO process STREAM_WARN

This process checks for a rising edge of DVO from the �lter trigger con�guring during
stream_processing (MCU busy). If this is the case, the MCU is still busy retrieving
measurement values over the FPGA-MCU interface, and therefore a measurement
has been lost. In order to warn the user, a �ag is raised that is checked by the
MCU at the conclusion of each measurement retrieval cycle, additionally a counter
of lost measurements is maintained and stored in memory (RAM16(51)), which can
be retrieved by the MCU.

3.3.3 Component ADC_READ

This component starts sampling in response to an enable signal, the ADC, sending
the appropriate signals with the correct timing to the ADC and outputting the
result on internal signals for the ADC_CH component. The module is divided into
two processes:
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Fig. 3.28: COMM_PROC
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Fig. 3.29: STREAM_PROC

Tab. 3.7: ADC_READ processes

Process Purpose

ADC_COUNT_PROC The count process creates the logic of when to
sample, based on the input signal EN and an
internal counter.

DATA_COUNT counter for control of the �lters
ADC_LOOP_PROC sets the signals according to the timing dia-

gram of the ADC and the state of the enable
(en) signal.

3.3.3.1 Process ADC_COUNT_PROC

The EN signal is not used completely traditionally, in a way an enable signal would
also disable the component when cleared. Instead, it behaves more like a start
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F

END

T

F

speed_count_i <= (others => '0');

mcu_stream_warn_i <= '0';

speed_count_i <= speed_count_i + 1

mcu_stream_warn_i <= '1';

last_state_stream_dvo := 

mcu_stream_dvo_i;

last_state_stream_busy := 

mcu_stream_busy;

F

Store last signal states 

 Rising edge of MCU_BUSY

 Rising edge of STREAM_DVO

MCU_BUSY (still processing)

Fig. 3.30: STREAM_WARN

RESET?

RISING

EDGE?

F

CLK

en_i <= µ0¶

count <= µ0¶

count_delay <= ¶0¶

T

EN=0?

T

count=0

T

T

FRXQW���(size_g + offset)?

F

en_i <= µ1¶

count � 

(samp_delay)?

T

T count_delay++

en_i <= µ0¶

F count_delay++

en_i <= µ0¶

F

en_i <= µ1¶

count ��

samp_delay?

count <= µ0¶

count_delay <= µ0¶

count_delay++
T

F

F

END

F

Fig. 3.31: ADC_READ:ADC_COUNT_PROC

conversion. Once the signal EN goes high, the internal signal en_i is used to lock-in
the enable signal until the conversion cycle (count to size_g) is complete is used to



66 Chapter 3. Implementation

lock-in the enable signal.
signal count_delay is used for sampling delay, while signal count is used by

the ADC_LOOP_PROC for the timing of signals to the ADC.

3.3.3.2 Process ADC_LOOP_PROC

Several implementations were tested for the design of this process, including a state
machine. The simplest solution was found to employ a counter to time count clock
cycles and set output at prede�ned counts. The timing of ADC control signals is
achieved by counting FPGA system clock cycles. By observing the timing require-
ments of the ADC, the ADC control signals can be set accordingly and samples
stored, as summarized in table A.9. With a 20 MHz clock, the sampling cycle time
(tsc) can be calculated:

tsc = (20MHz)−1 ∗ 81CLK = 4.05µsfsc = tsc−1 = 246913.6 (3.16)

This is slightly less than the maximum rate ADC sampling rate of 250 KSPS, how-
ever exceeds our minimum speci�cation requirements.

By using a counter instead of state machine, the timing of the process remains
deterministic. The entire process is depicted in �gure 3.32.

Similarly, after the sampling cycle, a sampling delay counter (counting CLK
cycles) adds delay before the next sampling cycle can begin.

RESET?
RISING

EDGE?

F
CLK

adc_convst_i <= "000";

adc_reset_i <= '0';

adc_rd_i <= '1';

adc_reset_i <= '0';

adc_cs_i <= '1';

dvo <= '0';

(en = 0) or (en_i = 1)

T

v1_i <= (others => '0');

v2_i <= (others => '0');

v3_i <= (others => '0');

v4_i <= (others => '0');

v5_i <= (others => '0');

v6_i <= (others => '0');

adc_reset_i <= '1';

adc_cs_i <= '0';

adc_convst_i <= (others => '1');

dvo <= '0';

T

adc_convst_i <= "111";

END

F

T

<<COUNT>>

Fig. 3.32: ADC_READ:ADC_LOOP_PROC

This process takes advantage of the fact that the last signal assignment in the process
is the signal assignment that is output (�rst) at the end of the process. The signal
assignments in the block "COUNT LOGIC ASSIGNMENT" are shown in table A.9.

In the timing design, several points has to be observed concerning how to handle
the inter-process and inter-component signal delay:

1. Start-up: How to con�gure the ADC during power-up.



3.3. FPGA hardware architecture 67

2. Switched-biasing status How to determine the status of the switched bias-
ing signal during conversion start

3. Sampling-delay How to incorporate the sampling delay without a�ecting the
timing

4. CONVST state State and timing of the conversion start signal at the end
of the count, before the next sampling cycle

Start-up. Several ADC pins during during power-on are important to con�gure
the ADC. The following code sets this pins statically in the design, and can not be
changed:

adc_range <= '1';

adc_wb <= '0';

adc_ser_par_sel <= '0';

adc_hs <= '0';

adc_wr_refen_dis <= '1';

where adc_range sets the range, wb sets a word/byte mode, ser par sel sets serial
or parallel mode, hs sets hardware or software mode and wr ref en dis enables/dis-
abled the reference. It would found by attempting to con�gure these pins such that
the user can change the values, the start-up mode during system power-up played
an important role, and resulted in unpredictable performance of the ADC-FPGA
interface.
Switched-biasing status In order to determine the true conversion start of the
ADC (between the enable start signal from ADC CH and the true CONVST signal
to the ADC, the output signal adc_conv_intern was added with the logic:

adc_conv_intern <= adc_convst_i(0) or adc_convst_i(1) or adc_convst_i(2);

where adc conv intern the signal setting the conversion start process on the ADC,
for each of the three ADC groups A, B and C. A starts conversion for channels 1
and 2, B starts conversion for 3 and 4, and C starts conversion for 5 and 6. Setting
all bits simultaneously starts a parallel conversion, but setting requires a complete
conversion cycle to pass before the next group can be set [Devices ].

CONVST state While other signals are assigned default values before the
COUNT LOGIC block, the CONVST has two default states before the COUNT
LOGIC block depending on the status of the en and en_i signal. This allows
conversion to start as soon as an enable signal is started and keeps it high during
the sampling cycle. When the sampling cycle is complete, the CONVST returns to
0.

3.3.4 Component ADC_CH

This module has two main functions: sending the switched biasing signal for each
port, according to the con�gured period and duty cycle; and directing the returned
ADC sampling information from all 6 channels to the correct �ltered, based on the
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state of the switched biasing signal. In order to achieve these tasks, the module is
divided into 6 processes:

Tab. 3.8: ADC_CH Processes

Process Purpose

SW_COUNT counter for the switched biasing signal
DATA_COUNT counter for control of �lter decimation rate (USB

data output rate)
SW_PROC Create the switched biasing signal
DEC_PROC Control signals to the �lters
ADC_CONTROL control signals for ADC READ module
LAST_STATE Retain state of switch biasing signal for return

ADC value �lter routing
FILTER_CONTROL Control signals for the A,B and T �lters based

on the sampling states

Tab. 3.9: ADC_CH external signals

Signal Direction Purpose

clk in FPGA system clock (20 MHz)
reset in Synchronous reset
va in Input ADC value (voltage value representing

current)
val_t in Input ADC value (voltage value representing

temperature)
adc_busy in ADC_BUSY signal from ADC (high during con-

version)

3.3.4.1 Internal signals

The size of counter sw_cnt dictates the period of the switched biasing signal:

Tab. 3.10: Switched biasing counter output frequencies

nCLK Period Frequency

1 50ns 20 MHz
80 4000 ns 250 kHz

20000 1ms 1 kHz
20 ∗ 106 1s 1 Hz

232 214.75s 4.6 ∗ 10−3
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The number of bits required for any desired output switched bias control frequency
fdesired can be calculated:

nbits =

⌈
log2

(
fCLK

fdesired

)⌉
(3.17)

The same is true for data_cnt, however the �lter COUNT value limits how many
actual samples can be integrated. (See section 3.3.5)

The 32-bit width was chosen due to memory size on the MCU, and because it
easily accommodates the minimum requirements of the system.

3.3.4.2 Process SW_COUNT

The SW COUNT is a count down timer. The value from which it counts down
is set only if period is greater than zero. In this con�guration, the switch biasing
signal remains unset until it is con�gured from the user. The duty cycle is handled
when the signal is actually created in the SW_PROC process. The counting logic
is depicted in �gure 3.33.

In order to con�gure switch biasing, the con�guration value of sw_width =
sw_period are set equal, the di�erence between then is 0 and the value of cnt (due
to inter-process delay) remains above zero, always enabling the switch biasing signal.

RESET?
RISING

EDGE?

F
CLK

sw_cnt ��1sw_count <= 0;

T

END

sw_cnt <= sw_cnt ± 1;

period > 0 sw_cnt <= 0;

sw_cnt <= sw_period

Fig. 3.33: ADC_CH:SW_COUNT process

3.3.4.3 Process DATA_COUNT

This process is logically identical to the SW COUNT process, creating a separate
periodic signal used for control of the �lters by DEC_PROC. A separate counter is
used because the data output rate normally di�ers from the switched biasing control
signal frequency.

It is con�gured by the value of the data_period input signal, which is set by
the user (stored in MCU_IO memory) to control the rate at which decimation, i.e.
measurement output rate.
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RESET?
RISING

EDGE?

F
CLK

data_cnt ��1data_cnt <= (others => '0');

T

END

data_cnt <= data_cnt ± 1;

data_period > 0 data_cnt <= 0;

data_cnt <= data_period

T

T

F

F

Fig. 3.34: ADC_CH:DATA_COUNT process

3.3.4.4 Process SW_PROC

The switch biasing signal's period is dictated by the value of the period and width
signals, which are set by the user.

The duty cycle is set by the value of width, which is use as shown in the �gure.

RESET?
RISING

EDGE?

F
CLK

sw_cnt > (sw_period 

± sw_width)
swb_i <= '0';

T

END

swb_delay_i <= '1';

swb_i <= swb_delay_i;

swb_delay_i <= '0';

swb_i <= swb_delay_i;

F

T

Fig. 3.35: ADC_CH:SW_PROC process
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SW_CNT

0

sw_period

sw_width

Switched biasing 

control signal

Fig. 3.36: ADC_CH:SW_PROC variable duty cycle

3.3.4.5 Process DEC_PROC

The CIC �lter decimation rate, and hence the data output rate to USB is determined
by this process, which sends a signal to the CIC �lters when a decimation should
occur. This in combination with a separate counter (number of incoming signals,
see CIC �lter process) allows for a variable decimation rate.

The CIC �lter control signal dec is set when the counter reaches 1 and not at 0
so that it is only set when the counter is running, and not after a reset or before it
has been con�gured.

RESET?
RISING

EDGE?

F
CLK

data_count = 1dec <= '0';

T

END

dec <= '1';

dec <= '0';

F

T

Fig. 3.37: ADC_CH:DEC_PROC decimation control process

3.3.4.6 Process ADC_CONTROL

In this process, the ADC is controlled as determined by the PHASE A, PHASE B,
PHASE C, PHASE D (delay 1, delay 2, delay 3, delay 4) con�guration signals, i.e.
the timing relationship between the period, width and phase con�guration.



72 Chapter 3. Implementation

Pseudo code The internal signal adc_en_i is set as follows:

if sw_cnt > (sw_period - delay1), then adc_en_i <= '0'

elsif sw_cnt > (sw_period - delay1), then adc_en_i <= '0'

elsif sw_cnt > (sw_period - delay1), then adc_en_i <= '0'

elsif sw_cnt > (sw_period - delay1), then adc_en_i <= '0'

else adc_en_i <= '0'

end if;

RESET?
RISING

EDGE?

F
CLK

sw_cnt > (sw_period 

± delay1)
adc_en_i <= '0';

T

END

adc_en_i <= '0';

dec <= '0';

T

T

sw_cnt > (sw_period 

± delay2)

sw_cnt > (sw_period 

± delay3)

sw_cnt > (sw_period 

± delay4)

adc_en_i <= '1';

adc_en_i <= '0';

adc_en_i <= '1';

T

T

T

F

F

F

F

³$´

FILTER

³%´

FILTER

F

Fig. 3.38: ADC_CH:ADC_CONTROL ADC control process

3.3.4.7 Process LAST_STATE

The last state process is used to create a signal that retains the state of the switching
biasing signal when the ADC conversion start signal CONVST was sent to the ADC.
Since it is desirable to sample as close as possible to the edge of the switched biasing
signal (due to settling time of the voltage-current measurement circuitry) an ADC
sample may occur when the switched biasing control signal is high, however return
the sampled value when it is low. Therefore when the DVO signal is received, the
state of the switching biasing signal is needed in order to route it to the correct
�lter.

An important consideration is that this process does not take into account the
actual delay between the setting of the switched biasing control signal and the actual
current-represented voltage that results from sampling. This is due to settling time
of the current-measurement circuitry in reaction to the switched biasing control
signal.

An alternative to this process would be to implement a new user-con�gurable
signal by which the user could set the number clock cycles to shift the last_state
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signal. Otherwise, this delay must be observed and accounted for when setting the
sampling windows.

The LAST STATE itself process (�gure 3.39) employs the use of a variable
edge_state to store the last state of the ADC BUSY signal from the ADC. The
ADC BUSY signal is used here instead of the CONVST signal since the ADC can
not make an instantaneous conversion. There is a slight delay for the sample-and-
hold circuitry, the ADC BUSY signal is set during conversion therefore we ensure
the sample-and-hold circuitry is holding the sampled value.

RESET?
RISING

EDGE?

F
CLK

edge_state = '0' and 

adc_busy = '1'

edge_state := '0';

last_state_i <= '0';

T

END

adc_en_i <= '0';
F

swb_i = '1' last_state_i <= '1';
T

T

F

last_state_i <= '0';

ADC_BUSY rising edge

edge_state := adc_busy

Fig. 3.39: ADC_CH:LAST_STATE process

3.3.4.8 Process FILTER_CONTROL

After an ADC conversion has completed, a data-valid input signal is generated
(adc_dvi). In order to determine which �lters to enable (A, B or T), an external
signal connected to the CIC �lter module is used to enable the �lter. Additional
registers are used to hold that value until the next incoming value for that �lter.
val_h_i (A-�lter) and val_l_i (B-�lter) hold the values.

val_h_en enables the A-�lter, val_l_en enables the B-�lter, and for each con-
dition the val_t_en is enabled, since the value of the temperature is always wanted.
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R the rate change
M the di�erential delay
N the number of comb sections / integrator stages

RESET?
RISING

EDGE?

F
CLK

adc_dvi = '1' and 

last_state_i = '1'
val_h_i <= (others => '0');

val_l_i <= (others => '0');

val_h_en <= '0';

val_l_en <= '0';

T

END

val_h_i <= va;

val_h_en <= '1';

val_l_en <= '0';

val_t_en <= '1';

T

T

adc_dvi = '1' and 

last_state_i = '0'

val_l_i <= va;

val_h_en <= '0';

val_l_en <= '1';

val_t_en <= '1';

T

F

F

val_h_en <= '0';

val_l_en <= '0';

val_t_en <= '0';

A-Filter

B-Filter

Fig. 3.40: ADC_CH:FILTER_CONTROL process

3.3.5 Component CIC

Z-1x[n] +sxtx
x

i0

-

i2d1 i2d2

c0

dec

c1
y[n]

counter

dvo

y_out

x_in

x_in_en

(18)

count_out

(16)

Fig. 3.41: CIC �lter module overview

The �lter chosen for this design is a cascade integrator comb, CIC �lter, type of
moving average �lter. [Jahromi 2007]

The purpose of the CIC component is to create a �lter that can be enabled
and disabled, according to the current sampling window con�guration, but also
adjust to sampling rate changes. This is necessary because the sampling window of
the switched biasing signal is user con�gurable, and since the input into the �lter
alternates between the A and B �lters at a variable rate, the downsampling rate
itself is also variable.
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Together, these give us the transfer function of the �lter:

H(z) = HI(z) ∗HC(z) (3.18)

=

(
1− z−RD

1− z−1

)N

(3.19)

Additionally factors that determine the shape of the CIC �lter, the number of in-
coming bits (16-bits in our case, from the ADC).

The range of decimation possible must be �xed in order to determine the bit
width of the internal signals, it is necessary to determine by how much the summing
in the integrator stage before decimation can grow.

This is determined by considering the maximum sampling rate of the ADC
possible and measurement value output rate over USB, which has been speci�ed
as 10 measurements per second. Considering a con�guration in which there is no
switch-biasing (constant bias) the maximum number of ADC samples per second is
250000. With an measurement rate of 10, the maximum decimation rate Rmax is:

Rmax =
ADC SPS (max)

USB output rate (max)
=

250000

10
= 25000 (3.20)

The gain of the stages is

G = (RM)N (3.21)

From this value, we can determine the maximum signal size that results in the
integration stage, we can calculate the maximum bit growth, Bgrowth:

Bgrowth = dN ∗ log2(RM)e (3.22)

The maximum bit size is then:

BMAX = Bin +Bgrowth (3.23)

Choosing a delay M = 1, and because we are mostly concerned with the values
around DC and are interested in removing higher frequency components, a one-
stage CIC �lter was chosen, which gives us a BMAX value:

BMAX = Bin + dN ∗ log2(RM)e (3.24)

= 16 + d1 ∗ log2(25000 ∗ 1)e (3.25)

= 16 + d1 ∗ 14.6096e (3.26)

= 16 + 15 = 31 (3.27)
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The maximum rate change is the next highest power of two, 32768. Because our
memory is 16-bit, we easily increase the bit width to 32, meaning our maximum
rate change is 65536.

The second parameter of interest size of the output. That is, the minimum

bit size, to shift (divide) by in order to obtain a bit width at the output that
accommodates the smallest rate change. This value, s, is determined by:

s =
2 dNlog2RMe

(RM)N
(3.28)

However, calculating and shifting by this value is is complicated when the decimation
rate R is not a power of two, resulting in variable gain that must be adjusted for
at the MCU before the measurement is output. Because the decimation rate can
vary slightly depending on the con�guration of the sampling windows, the timing of
both FET ports, exactly how many samples s are made are di�cult to determine.
Instead, the full bit width (32 bits) of the integration, along with the number the
number summed values, count is transferred along with the integrated value to the
MCU. There, the actual measurement value is calculated.

Because multiple �lters are in use, each �lter has a enable, which allows ADC_CH
to select the appropriate �lter. The dec signal is set by the ADC_CH module, which
determines the output rate �lter (i.e. USB measurement output rate). The dec sig-
nal results in a DVO signal, which signals that the y_out value and the count value
are valid.

3.3.5.1 Implementation

The implementation of this design uses a simple state machine consisting of two
states, SAMPLE and HOLD. When in HOLD, the integrator section is active, sum-
ming ADC values. In SAMPLE, the comb section overtakes the last value of the
integrator. This is accomplished using the following processes:

Process Purpose

dec_proc counts the number of values integrated, switches the
�lter to sample when decimate signal is received

cic_count_proc Counts the number of samples, sets the state (SAM-
PLE and HOLD)

cic_sxt_proc Takes input signal, adjust to con�gured BMAX word
length, retains upper bits (sign bit)

cic_int_proc Integration section
cic_comb_proc Comb section
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3.3.5.2 Process dec_proc

RISING

EDGE?

dec = '1'

dec_i <= '0';

count_out_i <= (others => '0');

T

T

x_in_en = '1' and 

dec_i = '1'

T

F

F

T

dec_i <= '1';

dec_i <= '0';

count_out_i <= count;

F

Set internal signal

RESET?
F

Fig. 3.42: CIC process DEC_PROC

The �lter control signals from ADC_CH select which of the 6 �lters is activated at
any given ADC output. In case the decimate and enable signal do not occur at the
same time, the dec (decimate) signal updates an internal signal (dec_i) which is
used by the cic_count_proc to change �lter state to SAMPLE and reset the count
the next time an enable signal is received.

3.3.5.3 Process cic_count_proc

The process works by counting each incoming dec signal while it is

RISING

EDGE?

x_in_en = '1'

state <= hold;

count <= (others => '0');

T

dec_i = '1'

T

T

T

count <= (others => '0');

state <= sample;

F
RESET?

F

count <= count + 1

state <= hold

x_in_en = '1'
F

T

F

F

CLK

RESET

Fig. 3.43: CIC process DEC_PROC
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3.3.5.4 Process cic_sxt_proc

This process sets assigns the incoming value x_in to the internal signal sxtx. Since
sxtx is the set to the internal word size (32 bits), all upper bits are assigned the sign
bit to maintain the two's complement signing of the value. In case of a negative
value, the additional 1s are adjusted for in post-processing on the MCU with the
value of the signal count.

Sign bit
x_in

sxtx

Fig. 3.44: CIC process CIC_SXT_PROC

This is done as shown in the code below, using the VHDL attribute 'high to read
the sign bit, and assignment in a for loop.

sxtx((input_size-1) downto 0) <= std_logic_vector(x);

for k in (word_size-1) downto (input_size) loop

sxtx(k) <= x(x'high);

end loop;

where sxtx is the internal version of the incoming signal.
The signal sxtx is a large bit width so that it can be assigned and summed with

delayed versions of itself in process CIC_INT_PROC more easily.

3.3.5.5 Process cic_int_proc

This is the integrator section of the CIC �lter, which operates at the fs the sam-
pling speed of the incoming values, but is only active when the �lter is enabled (as
con�gured by the sampling window).

In our one-stage version, we assign the values input x in to x :

x <= x_in;

i0 <= std_logic_vector(signed(i0) + signed(sxtx));

In a two- or three-stage version, we could simply add additional signals here, as
follows:

x <= x_in;

i0 <= std_logic_vector(signed(i0) + signed(sxtx));

i1 <= std_logic_vector(signed(i1) + signed(i0));

i2 <= std_logic_vector(signed(i2) + signed(i1));

where i0, i1, and i2 connect each of the three internal stages.
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On each process activation, the value of the signal propagates through. The signed()
function is used to maintain the sign during addition.

In our one-stage version, the signal i0 is assigned to the comb section signal c0
when sampling (see �gure 3.41).

3.3.5.6 Process cic_comb_proc

This �lter operates at fraction of the speed of the integrator section, as con�gured
by the decimation rate. When in the SAMPLE state, the value of i0 is assigned to
c0.

The delay elements i2d1 and i2d2 adjust the value ofM the delay parameter. In
our con�guration, we have M = 1 by using assigning internal registers c0 to i2d1,
as in the following code:

if state = sample then

c0 <= i0;

i2d1 <= c0;

--i2d2 <= i2d1; -- extra delay M = 2

c1 <= std_logic_vector(signed(c0) - signed(i2d1));

dvo <= '1';

end if;

A version of this code which sets M = 2 would be:

if state = sample then

c0 <= i0;

i2d1 <= c0;

i2d2 <= i2d1; -- extra delay M = 2

c1 <= std_logic_vector(signed(c0) - signed(i2d2));

dvo <= '1';

end if;

It is also in this process that the DVO process is set, which is used by the process
CALC_CH auto-trigger process, which determine which �lters are being activated
sets a signal so that output to USB is automatically con�gured.

3.3.5.7 Output assignments

The output signals

y_out <= c1;

count_out <= std_logic_vector( unsigned(count_out_i) + 1 );
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3.3.6 Component CALC_CH

The CALC_CH component provides automatic triggering based on the incoming
DVO signals from the �lters. This triggering information is sent to MCU_IO where
it is stored, MCU_IO then sets a stream DVO which is sent to the MCU. Deciding
when to trigger that a particular port is "ready" depends on the the con�guration of
the sampling windows. A port may be ready each time an A and T trigger occurs,
or in other con�guration A, B and T. Furthermore, after a sampling window con�g-
uration change, the trigger may also change. Therefore the logic of the auto-trigger
processes decides if �lter triggering since last decimated out is same as previous out,
then trigger, otherwise wait for all data valid signals. This is handled in just one
process:AUTO_TRIGGER.

Internal signals are listed in table A.11

3.3.6.1 Process AUTO_TRIGGER

RISING

EDGE?

filter_dec = '1'Reset A,B,T cur/prev registers

Set CH_DVO to 0

Set LAST_TRIG A/B/T to 0

Set A/B/T values to 0

T

if a/b/t prev = cur AND

a/b/t prev != 0

T

T

ch_dvo_i <= '0';

dvo_i <= µ1¶

RESET?
F

T

F

Set last_trig a/b/t to a/b/t prev

Set a/b/t cur to 0

Filter A DVO
a_dvo_cur <= '1'; 

val_a_i <= val_high; 

Filter B DVO
b_dvo_cur <= '1'; 

val_b_i <= val_low;

Filter T DVO
t_dvo_cur <= '1';

val_t_i <= val_temp;

T

T

T

F

F

F

F

Fig. 3.45: Component CALC CH process AUTO TRIGGER

3.3.7 Component RESET_SYNC

This module concerns with the handing of resets in the system. Each component
is designed using asynchronous resets, i.e. the CLK and the internal reset signal
is sensitivity list of each process). One problem with asynchronous resets, is the
release of the reset state which might occur near a clock edge, which could result in
a metastable (i.e. unstable/unknown). To avoid this problem, the reset signal itself
is synchronized, using a two �ip-�op reset synchronizer circuit [Rushton 2011].
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Fig. 3.46: Component RESET_SYNC process RE-

SET_SYNC

The internal signals needed for this two-�ip �op synchronizer are:

Tab. 3.11: Component CIC internal signals

Signal Purpose

meta_reg Input register
sync_reg Output register
meta_next Input to to meta_reg
sync_next Output of meta_reg

3.3.7.1 Process SYNC

The incoming asynchronous resets is OR'd so that either will cause a reset. The
RESET_SW is normally closed, the fore the signal is inverted at input. At the out-
put of the OR gate, the asynchronous reset is stored at the clock edge of meta_reg.
To further reduce the chance of metastability, a second �ip-�op is used, sync_reg.
The output of sync_reg is assigned to out_sync and drives the asynchronous reset
circuity within the rest of the system.

3.3.8 Component OR GATE 2

This is a simple two-input gate used by directly in FET_ROOT, used to OR the
enable signals that enable ADC_READ. This is contained within FET_ROOT for
simplicity of the ADC_READ component, but could also be directly implemented
in ADC_READ.

When only one of the ports is con�gured, this circuit allows the either to trigger
ADC_READ conversion cycles. When the sampling windows of port 1 and port 2
do not match, the enable signal will be set, but will not result in in a ADC_READ
conversion cycle if a one is already active, therefore it is important to con�gure the
sampling windows of both ports with this in mind.

This component's usage in FET_ROOT is displayed in �gure 3.47.
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Tab. 3.12: MATLAB Instrument Control Toolbox

objects[Mathworks 2011]

Object type Object name Description

Interface serial Create a serial port object
Interface fclose Disconnect the interface object from the instru-

ment
Interface fopen Connect interface object to instrument
Data input fscanf Read data from instrument, and format as text
Data output fprintf Write text to instrument
Information instrhwinfo Information about available hardware
Information instr�nd Read instrument objects from memory to MAT-

LAB workspace

ADC_CH

Port 1

�1

ADC_CH1

Port 2

adc_fetA_en_io

adc_fetB_en_io

ADC_READ
adc_en_io

Fig. 3.47: Component OR_GATE_2 usage

3.4 Higher-level system software

The higher-level system refers generally to a computer or workstation running an
operating system such as Windows or Linux and software such as MATLAB or Lab-
View to automate the measurement process. A simple interface was developed using
the MATLAB programming environment with the Instrument Control Toolbox.

MATLAB Instrument Control Toolbox

This software-addon for MATLAB, which automates serial port communication, is
used to communicate with the virtual COM port serial driver that interfaces with
the USB interface connected to the measurement system. Serial communication is
con�gured by con�guring and a creating a serial object, to which and from which
data can be read[Mathworks 2011] via the MATLAB environment.

Instrument control toolbox functions and objects needed to interface the mea-
surement system via the virtual COM port driver are summarized in table 3.12.
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MATLAB programming environment

Using the C-like MATLAB programming language, a program was written utilizing
the instrument control toolbox objects listed in table 3.12 to create a connection via
the serial/USB interface that con�gures the measurement system, stores measure-
ment data, and displays the results graphically.





Chapter 4

Measurement certainty

References to precision refer to the repeatability of multiple measurements to show
the same results, while accuracy refers to the closeness of a measurement to its
true value [Drosg 2009]. This chapter discuss limitations of hardware that could
a�ect precision and accuracy of measurements, limitations of the system design,
and error propagates through the system a�ection over all measurement accuracy
and precision.

4.1 Sources of Error

The components that make up the measurement system are limited in their capa-
bility and prone to external error. This section discusses major limitations.

4.1.1 ADC Quantization

The ADC's resolution is limited to 16-bit, i.e. the number of distinguishable voltage
levels is discrete and limited to 216 = 65536 levels. The di�erence between the actual
value and the returned code is refereed to as quantization error [Instruments 1995].
The smallest step is de�ned as

1 LSBADC =
FSR

2n − 1
(4.1)

where FSR is the full-scale range of the ADC and n is the number of bits. Four our
ADC, 1 LSB is:

1 LSBADC =
10V

216 − 1
= 152.6µV (4.2)

with FSR determined by the internal ADC reference voltage (5V) and the ADC
RANGE con�guration pin (2X), FSRADC = 2 ∗ 5V = 10V .

Since the ADC samples voltage levels of the current-measurement circuit, and
the current is measured in two ranges: low (±200µA) and high (±2000µA), the
smallest distinguishable step in measured current is then for both ranges:

steplow =
400µA

216 − 1
= 6.10nA (4.3)

stephigh =
4000µA

216 − 1
= 61.0nA (4.4)
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4.1.2 DAC

Like the ADC, the DAC is limited to 216 discrete output values. The smallest voltage
step possible is de�ned as 1 LSB in the same way as the ADC [Instruments 1995]:

1LSBDAC =
FSR

2n − 1
(4.5)

1LSBDAC =
30V

216 − 1
= 457.8µV (4.6)

FSR is 30V as con�gured by the DAC reference voltage (5V) and the con�guration
of the DAC gain register (6X) (FSRDAC = 6 ∗ 5V = 30V ).

Since the sets the bias and drain voltages in the FET measurements, the step
does not directly introduce error in the current-measurement circuit, however dif-
ferences in expected DAC output and actual output would cause error in the repre-
sentation of the current �ow at a certain biased/sourced voltage.

4.1.3 O�set error

O�set error can occur in both the ADC and DAC. O�set error for the ADC is the
mid-step value returned when the input voltage is zero; for the DAC, it is the step
value (output value) when digital input code is zero [Instruments 1995]. The ADC
o�set can be determined through by grounding the input and applying the input-
histogram technique described in section 4.1.6.1. The DAC o�set can be calibrated
by setting the corresponding input code for 0V (0x8000) and measuring the output,
setting an o�set.

In our measurement system, the o�set of both these is adjusted through zero-
point o�set calibration and dynamic calibration, limited by the precision of the
calibration reference resistances. (See section 4.2.4)

4.1.4 Gain error

Gain error is de�ned as the di�erence between the nominal and actual gain points
on the transfer function after the o�set error has been corrected [Instruments 1995].
The DAC also provides the capability to adjust for this error in hardware through
its user calibration techniques[Instruments 2009].

4.1.5 Other error

Other factors which may a�ect the ADC and DAC include [Instruments 1995][Devices ]:

Di�erential Non-Linearity (DNL) The di�erence between the measured and
ideal 1 LSB change between any two adjacent codes.

Integral Non-Linearity (INL) The maximum deviation of the ADC/DAC trans-
fer function from a straight line.

Aperture error The time which the sample/hold circuity needs to go from sample
to hold.
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4.1.6 Noise

4.1.6.1 ADC input noise

Considering the ADC, which measures the voltage level of the current-measurement
circuit, there are three primary sources of error: quantization, ac signals, and wide-
band noise [Ruscak 1995].

Of these, wide-band noise is measurable by the input histogram technique

[Ruscak 1995]. Code transition noise, or input-referred noise, can be measured by
a technique referred to as grounded-input histogram. In this test, the ADC is
connected to ground and ADC is plotted on a histogram. The resulting histogram
should be approximately Gaussian, otherwise there may problems with pc board
layout, grounding or the power supply[Kester 2008]. Tests of the revision 1 board,
as shown in �gure 4.1, show an o�set as well as a skew from Gaussian distribution
in the histogram, with an expected value of 65536 for 0 in this particular test.
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Fig. 4.1: ADC grounded input test

The input RMS noise is given as the standard deviation of the grounded input
histogram, using this, peak-to-peak input noise can be calculated by [Kester 2008]:

P-P Input Noise ≈ (6.6) ∗ (RMS Noise) (4.7)

E�ective resolution is the ratio of the full-scale range to the rms input noise (LSBs)
[Kester 2008]:

E�ective resolution =

(
2N

rms input noise

)
(4.8)

where N is the number of bits in the ADC, with N = 16

The e�ects of input noise are reduced through the use of the CIC �lter [Hogenauer 1981].
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Conversion noise

The ADC conversion process after CONVST creates noise due to resistor noise
[Kester 2008], shown in �gure 4.2 (Imeas (top/blue), ADC_BUSY (bottom/green)).
While this is less of an issue after a CONVST signal has switched the sampled-and-
hold circuitry of the ADC to hold, it may result in increased EMI that may interfere
with other measurement boards.

(a) (b)

Fig. 4.2: ADC conversion noise after CONVST

4.1.6.2 Environmental noise

The test environment itself (i.e. lab) may lead to noise, the intended application
of the measurement system involves multiple measurement boards performing mea-
surements in close proximity. The factor that such an application plays is not yet
tested.

If such a noise is an issue, a possible solution might be adjustment of the DRIVE
STRENGTH port con�guration on the MCU, to help reduce EMI [Instruments b].

4.1.7 Temperature

The temperature of the component can cause a loss of precision. The voltage refer-
ence REF5050 changes by 3ppm/C.

4.1.8 Component Losses

Some components may change over time, e.g. the voltage output of the reference
used by the DAC may drift over time. The reference voltage is however relatively
low-drift, changing by 0.001% over 1000 hours of usage [Instruments c].



4.2. FET Measurement system limitations 89

4.2 FET Measurement system limitations

4.2.1 Sampling Window

Sampling window speed

The sampling window con�guration determines when the ADC starts sampling, how
often it samples and when it will stop sampling. Con�guration of the sampling win-
dow depends on limits of the ADC, esp. maximum sampling speed. ADC_READ is
designed to start sampling and set DVO when all six ADC channels have returned
values. This process takes 81 clock cycles (at 20 MHz FPGA clock) to complete.

Therefore, the sampling window con�guration must be con�gured with this
limitation in mind. Because the sampling window is con�gured in number of
clock cycles, the minimum switched biasing PERIOD determined by this process,
Tsamp−ADCREAD, is then 81 clock cycles. The actual maximum ADC sampling rate
Tsamp−ADC , is:

Tsamp−ADCREAD = 81 ∗ 50ns = 4.05µs (4.9)

Tsamp−ADC = (250KHz)−1 = 4µs (4.10)

For the sake of safety and possible future optimizations, calculations use the worst
case sampling rate, Tsamp−ADC or Tsamp−ADCREAD depending on the calculation.

If con�gured less than to a value less than 81, a CONVST will be set on the
ADC but an ADC_READ DVO will never be output.

Filter selection

At the minimum period, only the A �lter would be active, since the entire period
of the switched biasing signal would cycle, returning to the A �lter. The minimum
speed for to sample both switched biasing levels, is then:

Tsamp−full = 2 ∗ 81 ∗ 50ns (4.11)

= 162 ∗ 50ns = 8.1µs = 123456.79Hz (4.12)

(4.13)

MIN PERIOD (1 �lter) 81 (clock cycles, 4.05 µs)
MIN PERIOD (2 �lter) 162 (clock cycles, 8.1 µs)
MAX PERIOD 232 (clock cycles, 214 s)

Current measurment delay

The sampling window logic was designed based on the switched biasing control sig-
nal. This signal controls the switched biasing signal, which in turns results in a
change in the current-measurement circuit. This change however requires a certain
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amount of time (experiments show approximately 3 clock cycles, or 150 ns) to com-
pensate for the new voltage. Therefore the ADC sampled voltage level directly after
the switched biasing controlled voltage switch is unstable (see �gure 4.3). Therefore
it is preferable not to con�gure the sampling window START too close to this edge,
instead at least 3 clock cycles after to give the current-measurement circuit time to
adjust.

Conversions that occur close to the end of the switched biasing window are less
of an issue, however the settling time of Imeas may play another factor.

Fig. 4.3: Switched biasing control signal delay

Figure 4.4 shows an actual measurement of this delay, with the switched biasing
control signal bottom/yellow and the current measurement signal Imeas top/green.
In this case the delay was 40.8 ns.

Settling time

Depending on the speed of the switched biasing signal, the current measurement
delay may play a more signi�cant factor in measurements, especially with high-
frequency switched biasing con�gurations, meaning that samples close to the end of
the sampling period are more precise.

4.2.2 Decimation rate & measurement speed (data output rate)

The measurement speed con�guration register (data output rate) on the FPGA
determines the speed at which MCU_IO DVO signals to the MCU are set. This
value is stored at two 16-bit memory locations per measurement port, for a total of
32-bits each.

This value dictates the decimation rate of the CIC �lters, setting this value too
large would lead to integration larger than what the CIC registers can store. This
is determined by considering the CIC gain (G):
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Fig. 4.4: Switched biasing transient delay, switched biasing

control (bottom) and current measurement signal

(top)

G = (R ∗M)N (4.14)

where N is the number of CIC stages (N=1), R is the decimation rate, and M is the
comb delay (M=1).
The measurement speed and CIC register store was designed to work together at a
measurement output rate of at least 10 Hz (100 ms), therefore measurement speed
rate should be be set no higher than 100 ms (2000000 clock cycles)

The maximum decimation rate R, can be determined by the speci�ed minimum
data output frequency 10 Hz (100 ms), fmeas−min = Tmeas−max and the minimum
sampling period of the ADC (4 µs).

Rmax =

⌈
Tmeas−max

Tsamp−min

⌉
=

⌈
100ms

4µs

⌉
= 25000 (4.15)

The minimum decimation rate is met when the ADC sampling rate is the same
as the data output rate, R = 1.
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The number of bits required for CIC integrator storage is:

Bout = dN ∗ log2R ∗M +Bine (4.16)

where Bout = number of output bits, and Bin = input bits from ADC = 16.
Because the data output rate register is 32 bits, and the CIC output register is

also 32 bits, the maximum output rate would be

Bout = dN ∗ log2R ∗M +Bine (4.17)

32 = d1 ∗ log2R ∗ 1 + 16e (4.18)

R = 65536 (4.19)

This would give a gain in the CIC integration stage of:

G = (R ∗M)N = (65536 ∗ 1)1 = 65536 (4.20)

The number of bits of storage required for this gain is based on the minimum and
maximum values of ADC input values, because the ADC is 16-bit, two's complement,
the range of input is -32768 to 32767, giving a maximum and minimum storage
requirement of:

216 ∗ 65536 = 4294967296 (4.21)

bstorage = dlog2(4294967296)e = 32 (4.22)

which is within the limits of the storage registers, therefore the true lower data rate
is:

65536 =
R(max)

4.05µs
= 265.4208ms(3.78Hz) (4.23)

The maximum data output rate depends on the speed of the MCU request,
which varies depending on the number of memory locations must be retrieved by a
streaming data request, which itself is dependent on the sampling window con�gura-
tion. Exceeding the rate that the MCU stream process can handle will result in lost
measurements. In this case, the STREAM_WARN bit will be set. Measurements
of the STREAM BUSY signal set by the MCU during data output are an indicator
of absolute maximum output frequency. For one port, one �lter (minimum for out-
put), STREAM BUSY is set for 1.804 ms. For both measurement ports, both �lters
on both ports, STREAM BUSY is set for 4.637 ms. Therefore we can conclude
absolute maximum output frequency of:

1

1.804ms
= 554.3Hz (4.24)

However, this rate will be actually lower due to overhead time between STREAM
BUSY output periods.
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4.2.3 Current range

The current measurement circuit is designed to handle currents up to 200µA in the
low-current mode, and 2000µA (2mA) in the high current range. This is limited
by the input range to the ADC. Although the ADC can be con�gured to handle a
range of 4 ∗ VREF = 4 ∗ 5V = 20V = ±10V , the ADC's RANGE pin is con�gured
to the 2X setting, i.e. 2 ∗ VREF = 2 ∗ 5V = 10V = ±5V in order to give a smaller
LSBADC of 0.152mV rather than that resulting from the 4X setting (4 ∗ VREF =

4 ∗ 5V = 20V = ±10V ), and resulting in a LSBADC of 0.305mV.
Exceeding the current limits may be possible if the measured FET breaks down

quickly, causing a short circuit and the measurement rate is slow (thereby current
protection logic is not quickly activated). Tests exceeding the current limits were
not performed and its exact behavior is unknown.

4.2.4 Calibration

To compensate a variety of losses within the system, e.g. contact resistance in relays,
calibration is used to correct for these errors. Two calibration techniques are used,
zero-point and dynamic. In the �rst revision of the system board, the calibration
techniques had not yet been integrated onto the pc board. During the course of
the thesis, a second revision of the pc board was produced which integrates these
circuits into the design.

Zero-point (o�set) calibration

In pc board revision 1, it was shown through grounded input measurements, that
the 0V was shifted -4 LSBADC . This o�set depends on a number of factors, includ-
ing relay resistance, ampli�er error, component temperature and with variations
in component contact resistance with the pc board, i.e. soldered joints on the pc
board.

To compensate this error, zero-point calibration technique was implemented in
order to improve the accuracy of measurement. During measurement however, the
resistance value through the relay RON changes depending on contact voltage and
component temperature. Therefore, measurement of a FET across a range of volt-
ages leads to a changing RON value, changing accuracy. For this reason, a dynamic
calibration circuit was integrated as well into the second revision of the pc board to
adjust for changing voltages.

Dynamic calibration

The dynamic calibration uses two high-precision reference resistances 10KΩ and
100KΩ to determine the o�set factor by which the measurement is shifted due to
RON and due to the ampli�cation error of the operational ampli�ers (for more detail,
refer to section 2.2.4.2). This circuit is itself limited by the precision of the reference
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resistance which can change slightly with temperature and inherent manufacturing
di�erences.

Dynamic calibration resistance have a precision of ±0.01%. Due to time con-
straints, implementation and measurement on rev. 2 pc boards was not possible.

4.3 Error Propagation

In additon to the accuracy of the reference resistances, the op-amp and ADC also
play an important role in the overall accuracy of the system. Gain and o�set error
of the op-amp and o�set error of the ADC lead to error that propagates throughout
the measurement process.

For the ADC used in the system, accuracy is speci�ed as ±0.023% FSR max,
and ±0.004% FSR typical error (bipolar zero-scale error)[Devices ]. With a FSR
of 10V (±5V), and a LSB of 0.152mV, maximum error resulting from the ADC is
[Devices ]

0.152mV ± 0.023% = 0.152mV ± 34.96nV (4.25)

and typical error of

0.152mV ± 0.004% = 0.152mV ± 6.08nV (4.26)

This is combined with the maximum speci�ed o�set error of the OPA4277UA oper-
ational ampli�er used in the current measurement circuit(±50µV ), causing a maxi-
mum error of the voltage representing current of [Instruments 2005]:

±50µV ± 34.96nV = ±50.03µV (4.27)

which is less than 1 LSBADC , but may cause rounding and a resulting error±1LSBADC .
For the low measurement range, this 6.1nA, and for the high range, 61nA.



Chapter 5

Measurements and results

In this chapter, measurements demonstrating the capabilities and limitations of the
measurement system are performed in order to demonstrate measurement system
functionality, accuracy and performance. The measured components are the two
internal calibration resistances and a �eld-e�ect transistor connected to the mea-
surement port of the system.

5.1 Calibration resistances

In order to determine measurement system accuracy, normal measurement relays
(GATE and VDS) are switched o� and the calibration switches (CAL1 and/or
CAL2) are enabled. The two high-precision (±0.01%) reference resistances (10KΩ

and 100KΩ) can be independently enabled and disabled through the user inter-
face. By setting the drain voltage the current through the calibration relays can
be measured by the system without any external connections. Accuracy can then
be determined by performing multiple measurements over a range of voltages and
comparing measured with the expected results.

Accuracy can be determined by calculating the standard deviation (σ) of k
measured current values I at a given drain voltage[Drosg 2009]:

σ =

√√√√1

k

k∑
n=1

(Ii − µ)2 (5.1)

where

µ =
1

k

k∑
i=1

xi (5.2)

To evaluate performance over a range of voltages, the standard deviation can be used
to determine the overall accuracy over a range of N measurements [Drosg 2009]:

σ =

√√√√ 1

N

N∑
N=1

σ2 (5.3)

In order to determine precision, a linear �t of the measured current and applied
voltage is performed, giving current as a function of voltage, the deviation of which
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from the expected behavior of the calibration resistance determines the amount of
bias and gain error[Fetzer 1965].

The absolute error, e, for any given current measurement, is determined by
�nding the di�erence between the measured value of the current Imeas, and the
expected current, Icalc , at a particular drain voltage Edrain:

e = Imeas − Icalc (5.4)

Where

Icalc =
Edrain

Rref
(5.5)

where Rref is the resistance of reference resistance.

5.1.1 100KΩ characterization

First, the 100KΩ resistance is measured N times using a measurement system con-
�guration as summarized in table 5.1. With this resistance, the maximum current
that can �ow as result of applying the maximum output voltage at the DAC ±15V
can be found by:

Imax =
±15V

100KΩ
(5.6)

Imax = ±150µA (5.7)

Tab. 5.1: 100K, low decimation rate test con�guration

Parameter Value

Zero-point calibration Enabled
Dynamic calibration none
Drain voltage step size 501 (DAC input code, prime)
Sampling period 10KHz
Data output rate 10 Hz
Duty cycle 100% (constant bias)
Phase A (A-�lter start) 0.5µs
Phase B (A-�lter end) 25µs
Phase C 0 (disabled)
Phase D 0 (disabled)
Range Auto
Auto low-to-high range 183µA
Auto high-to-low range 150µA

This puts the range of measurement in low-range for the system, as con�gured by
auto-ranging and the con�gured high-to-low and low-to-high range switching points.
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5 measurements, 0 to 15V

The voltage, Edrain is measured in the range from 0 to 15V, �ve times (N=5). The
results of all �ve measurements across the full range of measurement are plotted
with voltage on the x-axis and current on the y-axis, as shown in �gure 5.1. The
graph shows no large deviations and is apparently linear. In �gure 5.2 an enlarged
view in the range from 0 to 1.6V is given, shows deviations between individual
measurements.
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Fig. 5.1: 100KΩ characterization

Absolute error

In order to determine the error of a measurements across the full range of output
given by the DAC (±15V ), the test is repeated and the error is calculated for each
value of the drain voltage Edrain as given by Eq. 5.4. The absolute error is then
plotted with applied drain voltage on the x-axis and the error on the y-axis, as
shown in �gure 5.3. It can be seen that the absolute error is in the range of ±1.5µA.

Accuracy and Precision

To determine the precision of the measurement, the test is repeated 100 times to
give a more larger sample size. Voltage is measured in the range from 0 to 2V. The
mean of the measurements at each voltage is calculated and plotted in �gure 5.4,
with drain voltage on the x-axis and current on the y-axis. The standard deviation
was calculated, multiplied by three and plotted as error bars at each measurement
point to show the likely range in which a measurement will fall.
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Fig. 5.2: 100KΩ, variations in measurements
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Fig. 5.3: 100 KΩ full-scale absolute error

The resulting measurement mean values to a linear model, by using the MAT-
LAB poly�t() function, with n=1 for a linear model, returned is a function for
the measured current at any given drain voltage v derived from the mean of the
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Fig. 5.4: 100KΩ, average of 100 measurements, enlarged 0 to

2V

measurements:

Imeas = 9.85 ∗ 10−6 ∗ v + 344 ∗ 10−9 (5.8)

Although the measurement system is calculated for zero-o�set, it can seen in eq.
5.8 that there there still remains an o�set of approximately 344nA. Additionally, by
analyzing the �rst coe�cient of eq. 5.8, the measurement includes additional gain
o�set which can be compensated for with calibration.

Increased decimation rate

In �gure 5.3 it can be seen that the absolute error is not constant. This is due to
input noise, causing variations in measurement. By increasing the sampling window
size, the decimation rate is also increased. In �gure 5.5, the result of repeating
the measurement such that the sampling window size is increased by a factor of
10 is shown. In doing so, the signal-to-noise ratio of the measurement is increased.
Additionally, the sampling window is changed to a later period within the sampling
period.

5.1.2 10KΩ characterization

In order to determine the behavior in the system in high current range (±2000µA),
the calibration resistance 100KΩ resistance is disabled and the 10KΩ calibration
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Fig. 5.5: 100KΩ, low decimation rate vs. high decimation rate

reference resistance is enabled. Measurements in the range from of ±15V are per-
formed with applied voltage Edrain on the x-axis and measured current on the y-axis
as shown in �gure 5.6. The resulting absolute error as calculated by eq.5.4 is plotted
as shown in �gure 5.7. There it can be seen that the absolute error of the measured
current varies between -0.5 µ and +3µ.

Measurements with the 10KΩ resistance along the full-scale range of possible
voltage ±15V puts the resulting current into both the high and low current ranges,
with the maximum current given by:

Imax =
±15V

10KΩ
(5.9)

Imax = ±1500µA (5.10)

The point at which the measurement system switched from low current mode to
high current mode is dictated by the con�guration of low-to-high and high-to-low
auto range switching points. At current levels higher than the low-to-high level
(±183µV ) the value of the measured current is limited to the resolution in the
high current range (61nA). Although worse than that provided by the low current
range(6.1nA), the di�erence is negligible due to the amount of current resulting
from the 10K and 100K resistances. In the following section, these small changes of
current are more apparent.
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Fig. 5.6: 10 KΩ measured current
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Fig. 5.7: 10KΩ, full-scale absolute error

5.2 Field E�ect Transistor characterization

In this section, a �eld e�ect transistor is connected to the measurement port and
characterized, i.e. a range of voltages is applied to its drain terminal and at each
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drain voltage, a range of biasing voltages is applied. The resulting current at each
range produced a family of curves. The characterization of the transistor is the
set of individual curves which describe the behavior of the transistor under various
conditions.

5.2.1 Constant biasing of a transistor

In this measurement, a transistor is biased with constant voltage (no switched bias-
ing). The measurement con�guration is similar to that of the 100K resistor charac-
terization, with the system con�guration summarized in table 5.2.

Tab. 5.2: Transistor biasing con�guration

Parameter Value

Zero-point calibration Enabled
Dynamic calibration none
Drain voltage step size 501 (DAC input code, prime)
Gate voltage stop size 1V
Sampling period 10KHz
Duty cycle 100% (constant bias)
Phase A (A-�lter start) 0.5 µs
Phase B (A-�lter end) 25µs
Phase C 0 (disabled)
Phase D 0 (disabled)
Range Auto
Auto low-to-high range 183µA
Auto high-to-low range 150µA

Two-curve characterization

Here, the transistor drain terminal is applied with a voltage in the range from 0
to 15V for each gate voltage 0V and 1V. The measured source current is plotted
against the applied drain current for each gate voltage, producing the family of
curves describing the tested transistor shown in �gure 5.13. The plot shows the
importance of the automatic ranging, providing higher resolution of the resulting
characterization during the exponential rise in current �ow at low applied drain
voltages.

5.2.2 Eight-curve characterization

In �gure 5.9, the characterization of the transistor by applying voltage to the drain of
the transistor in the range of 0 to 15V for each of eight gate voltages is demonstrated,
the gate terminal is biased from 0V to 8V with 1V increments.
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Fig. 5.9: Eight-curve characterization of a transistor

5.2.3 Transistor drift

One of the problems described by [Winkelman 2009] is transistor source current
drift during constant biasing. In order demonstrate this e�ect, a constant gate and
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drain voltage is applied to the transistor, then a series of 1000 measurements (over a
period of 5 minutes) is performed. In �gure 5.10, the source current is plotted in the
y-axis for each measurement, in the x-axis, showing the e�ect of constant biasing
over time.
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Fig. 5.10: Transistor constant biasing drift (5 minutes)

Voltage is applied to the transistor such that the resulting current is in the
high-current measurement range, meaning that the smallest distinguishable change
in current is 61nA. The e�ect is demonstrated in an enlarged view shown in �gure
5.11. The individual current-measurement steps are clearly distinguishable. Overlap
between steps is the result of noise, causing the rounded value to alternate between
each step. Increasing the decimation rate would therefore increase the signal-to-noise
ratio and reduce overlap between the steps.

In �gure 5.12, the resulting current after biasing the transistor such that resulting
current �ow is in the low-current range. Again 1000 measurements are performed
over �ve minutes, and the resulting current is plotted in the y-axis. Here the low-
current 6.1nA step size and overlap is clearly distinguishable.

5.2.4 Switched biasing

To demonstrate the e�ectiveness of switched biasing as a technique to reduce tran-
sistor drift, two measurements are performed. First transistor is applied with a con-
stant voltage of 2V at its drain and biased with a switched biasing signal, switching
between 1V and 1.6V at a frequency of 10KHz and a duty cycle of 50%. The re-
sulting source current from 300 measurements (over 1.5 minutes time), are shown
in �gure 5.13(top). Second, the measurement is repeated, again applying 2V to the
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Fig. 5.11: High-measurement range 61nA resolution steps

with overlap due to noise
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Fig. 5.12: Low-measurement range 6.1nA resolution steps

with overlap due to noise

drain but with a constant bias voltage of 1V to the gate, the resulting source current
is shown in �gure 5.13(bottom).
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In the case of constant biasing, the transistor continues to drift, from 280µA
(2.80 ∗ 10−4A) to approximately 283µA (2.83 ∗ 10−4A) over the entire measurement
period of 1.5 minutes. In the case of switched biasing, the amount of current �ow
starts to settle at around 275µA (2.75 ∗ 10−4A). in comparison to the constant
biasing. The di�erence in current �ow between the two transistors is beyond the
scope of this thesis.
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Fig. 5.13: Transistor constant biasing (top) and switched bi-

asing (bottom) (1.5 minutes)



Chapter 6

Conclusions and recommendations

6.1 Conclusion

The primary goal of this work was to show that a FPGA-based hardware solution
combined with a microcontroller- and pc-based software solution written for custom-
built hardware using high-performance components, is able to accurately measure
the characteristics of a transistor important for research. This is achieved while
simultaneously coordinating the timing of these measurements with the switched-
biasing technique, important for the reduction of undesirable e�ects common to
transistor based sensors.

The implementation in chapter 3, explains the method by which this is achieved
through software which is able to coordinate the sampling of a multi-channel analog-
to-digital converter with the input of multiple CIC �lters designed especially for this
purpose. The timing of the �lters is coordinated such that only valid measurement
data is sent to the higher-level system, coordinated by the con�guration of a mea-
surement rate, that ensures constant and consistent measurement data is not lost
due to speed limitations of the interface between the �lter and the higher-level sys-
tem.

The measurement data, ultimately sent from the �lters to the higher-level sys-
tem, is coordinated by software written for a microprocessor. While it would be
possible to simply transfer raw measurement data from the �lters to the PC, the
microcontroller is itself able to further process the data such that the output data
arrives at the PC in a formatted, useful form directly suitable for analysis. Mea-
surements are able to continue inde�nitely in this way, allowing for large amounts of
detailed measurement data, with little or no post-processing required on the higher-
level system, expediting the analysis of measurement data and reducing the chance
for user or programming errors on the higher-level system.

Aside from handling measurement data, the microcontroller is also used to con-
trol other aspects of the system, such as the relays that control current �ow, and
the multi-channel digital-to-analog converter used to set bias and transistor volt-
ages. Temperature control of the measured transistor through heating control is a
planned for future development, and the capabilities for this were built into the sys-
tem. Other parts of the microcontroller implementation, such as automated controls
that react by automatically adjusting the current measurement range, maintain the
highest resolution possible, while also protecting the system from overload damage.

A secondary goal of this work was to show that measurement data itself is in fact
valid and useful for measurements. A discussion of system limitations and probable
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error is discussed in chapter 4. Through knowledge of this error, the precision of the
system can be increased through calibration techniques developed as part of this
work, discussed in chapter 2 and implemented, as described in chapter 3. The o�set
and gain error that is present can be compensated for in order to increase system
precision and accuracy. The outlook for this measurement system is good as the
measurement system for the purpose of transistor-based research appears to be a
valid.

6.2 Recommendations

Here, suggestions for future development are given, including new features and im-
provements upon existing features in the system.

Matlab / Labview / Other Interfaces

The full potential of software for the higher-level system has yet to be fully de-
veloped. As a next step, a user interface that is capable of error and plausibility
checking of input con�guration values would be desirable. Automated testing of a
range of con�gurations is especially interesting.

Temperature measurements

While the FPGA and ADC are con�gured to make and �lter ADC inputs values
intended for temperature measurement, there are no functions written on the MCU
to handle temperature data or to output it over the interface. Implementation in-
volves reading the measured temperature data during streaming output, calculating
the temperature based on the temperature sending hardware being utilized and out-
putting the temperature data along side current measurements (as an addition CSV
�eld).

Heating control PID regulator

A PID regulation routine has not yet been implemented on the MCU and should
be implemented in order to control the heating elements that are to be connected
to the system. As a suggestion for implementation, the heating control would be
con�gured as a timer interrupt with highest priority. This higher priority would
ensure that temperature regulation always occurs (except in the case of a software
fault) for safety purposes.

Switched biasing window delay compensation

A technique to compensate for the transient delay between the switched biasing
control signal and the actual current measurement voltage appearing at the ADC
input would allow the current measurement system to sample closer to the falling
edge of the A �ltering window. This is especially useful in the case of high switched
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biasing speeds, where the transient delay (rising/falling) of the current measurement
signal plays a more signi�cant role.

Implementation involves addition of a con�gurable delay in the FPGA ADC CH
process, which introduces a delay between the last_state_i register which stores the
last state of the switching signal during a ADC conversion start and the switching
biasing control signal, swb.

An alternative solution to this problem is an automatic determination of a stable
current measurement signal. Implementation of such a function might be to begin
sampling at successive points along the sampling window, in order to determine
when the current measurement signal is stable for any particular sampling window
con�guration.

Unused ADC channels

Currently, the FPGA ADC READ process samples all 6 channels when a conversa-
tion start signal is received. In the �rst revision of the printed circuit board, these
4 ADC channels were divided between the three ADC sampling groups A,B, and C;
making impossible to read just four channels of the ADC. Since the second revision
of the hardware, these 4 ADC channels have been move to ADC sampling groups
A and B, making it possible to read just four of the six channels. By taking this
into account, it is possible to reduce the number of cycles required to complete a
ADC conversion cycle from 4.1µs, to the minimum conversion cycle time (4 µs =
250 KSPS).

Alternatively, other uses for the two unused ADC sampling channels could be
found, one possibility is in the automatic recognition of the DAC output level, as a
possible veri�cation for the error described in section 6.3.

Command interface standardization

The current user interface, while based on the SCSI standard, is not compliant with
the standard. Implementation involves renaming and slight recon�guration of user
interface logic block in the MCU software. User interface commands standardization
would aid in the writing of custom module software, for higher-level system packages
such as Labview.

MCU �ash memory storage usage

The MCU contains its own �ash memory which is currently unused. When power
is removed from the measurement system, all con�guration information is lost. An
implementation utilizing this �ash memory was not realized due to reported MCU
silicon errors on rev. A and rev. B of the the MSP430F5438A that was used in
revision 1 measurement system hardware. Revision 2 of the measurement system
hardware uses rev. E of the MSP430F5438A, making possible for �ash memory to
be utilized.
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Utilization of secondary USB interface

A secondary, unused USB interface on the printed circuit board interfaces USB
directly with the FPGA. Possible uses for this secondary USB interface a might
be high-speed data acquisition, possible directly from the �lters on FPGA. Imple-
mentation involves VHDL coding of a FIFO interface to the MAX3232E RS-232
transceiver.

Lower power modes to reduce system noise

It may be possible to improve the signal-to-noise ratio of measurements with low
decimation rates by investigating the e�ects of reduced drive strength from the
MCU, or low/lower power modes in system components [Instruments b]. Ideally,
just before and during an ADC conversion cycles, system noise should be minimal.
Possible implementations might involve timing power down key devices to match
the conversion cycle of the ADC or the data acquisition from FPGA to MCU to
USB.

Optimization of CIC �lter

The CIC �lter used in the implementation is a 1-stage, 1 comb-section delay, CIC
�lter. A 2- or 3-stage �lter with 1 or 2 comb-section delay elements, would result in
better low-pass �lter response, but at the cost of a higher number of required logic
elements in the FPGA. Tests during implementation show that a 2-stage of 3-stage
�lter would exceed the number of logic elements available in the FPGA. However,
bit-trimming techniques, as suggested by [Hogenauer 1981] would reduce the bit-
width between the stages of the �lter, reducing overall logic element requirements,
allowing for a higher stage �lter in the FPGA implementation.

6.3 Known Issues

In this section, known problems in hardware and software are summarized. In the
event of further development of either th hardware or software components of the
system, these points should be observed.

5438A silicon bug and workaround

In testing of the DAC SPI interface, a possible silicon bug in revision A of the
MSP430F5438A was found. The problem is related to the shift register of the
SPI interface when interfacing the DAC8718. This problems results in the least-
signi�cant bit in the most-signi�cant bit position, with all other bits by one position.
A workaround was implemented by simply shifting the bits back into their proper
position.
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Board power supply and digital-to-analog converter power-up mode

The digital-to-analog converter DAC8718 support two input modes which program
its analog output, two's complement and straight binary. The mode is selected based
on the power-up states of con�guration pins, however the delayed nature of some
of the power supply components on the system board, result in unexpected input
mode con�gurations after power-up that result in an incorrect analog output signal.

The workaround for this problem is implemented in software. The solution is
to add code on the microcontroller during its initialization of the DAC8718. The
software performs the following steps to ensure the correct mode is con�gured:

1. wait 100 ms (delay)

2. Set power-down mode (write 0x1800 to DAC CONFIG register)

3. Wait 3 seconds to ensure all power supplies are stable

4. Set a software of the DAC8717 by writing 0xA000 to DAC CONFIG register
(0x30)





Appendix A

FPGA Information

Here tables relavant to the programming as descirbed in chapter 3 are given. Tables
A.1,A.2,A.3, andA.4; list memory addresses and any associated signals used by the
FPGA internall or by the MCU (e.g. for mearsument data retireval) are given.
Tables A.6, A.7, A.10, and A.11 list internal signals used by the named component.
Table A.7 is a listing of the timing used by the component ADC READ for timing
control and read-out of the ADC.

Tab. A.5: FET_ROOT I/O signals

Name Direction Bits Purpose

areset in 1 13.65
clk in 1 Clock signal, 20 MHz
areset in 1 Asynchronous reset from a switch
clk in 1 Clock signal
adc_rd out 1 ADC read
adc_convst out 3 ADC conversion start
adc_cs out 1 ADC chip select
adc_reset out 1 ADC reset signal
adc_stby out 1 ADC standy-by (low-power state)

control
adc_wb out 1 ADC word/byte select
adc_ser_par_sel out 1 ADC selection of serial or parallel

mode
adc_hs out 1 ADC hardware/software control

mode
adc_wr_refen_dis out 1 ADC internal/external reference se-

lect
adc_busy in 1 ADC conversion busy signal
adc_data in 16 16-bit ADC data bus
sw_a out 1 Switch biasing control signal for

FET Port 1
sw_b out 1 Switch biasing control signal for

FET Port 2
range_ch1 out 1 Range control for FET Port 1

Continued on next page
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Tab. A.5 � continued from previous page

Name Direction Bits Purpose

range_ch2 out 1 Range control for FET Port 2
mcu_addr in 8 MCU Address bus
mcu_data inout 16 MCU Data bus
mcu_oe in 1 MCU OE output enable (control of

data bus direction)
mcu_stream_dvo out 1 singal MCU when triggered �lter

data is ready
mcu_stream_busy in 1 Signal from MCU when data re-

trieval is in progress
mcu_stream_warn out 1 stream warning signal, set when

incoming trigger data while MCU
stream_busy is set

mcu_req_mosi in 1 MCU MOSI operation handshaking
signal

mcu_req_mosi_ack out 1 MCU MOSI operation handshaking
signal

mcu_req_miso in 1 MCU MISO operation handshaking
signal

mcu_req_miso_ack out 1 MCU MISO operation handshaking
signal



115

Tab. A.1: FPGA assigned memory locations

DEC HEX Bits Signal Name

0 0 16 tperiod_a
1 1 16 tperiod_a
2 2 16 twidth_a
3 3 16 twidth_a
4 4 16 tperiod_b
5 5 16 tperiod_b
6 6 16 twidth_b
7 7 16 twidth_b
8 8 16 phaseA_a
9 9 16 phaseA_a
10 A 16 phaseB_a
11 B 16 phaseB_a
12 C 16 phaseC_a
13 D 16 phaseC_a
14 E 16 phaseD_a
15 F 16 phaseD_a
16 10 16 phaseA_b
17 11 16 phaseA_b
18 12 16 phaseB_b
19 13 16 phaseB_b
20 14 16 phaseC_b
21 15 16 phaseC_b
22 16 16 phaseD_b
23 17 16 phaseD_b
24 18 16 adc_samp_delay
25 19 16 adc_samp_delay
26 1A 16
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Tab. A.2: FPGA assigned memory locations (continued)

DEC HEX Bits Signal Name

27 1B 16 ch_trig
bit0 1 CH1_a
bit1 1 CH1_b
bit2 1 CH1_c
bit3 1 CH1_t
bit4 1 CH2_a
bit5 1 CH2_b
bit6 1 CH2_c
bit7 1 CH2_t
bit8 1
bit9 1
bit10 1
bit11 1
bit12 1
bit13 1
bit14 1 CH1 / CH2 select
bit15 1 CH1 / CH2 select

28 1C 16 ADC_SETUP / CONFIG
bit0 1 adc_cs
bit1 1 adc_stby
bit2 1 adc_range
bit3 1 adc_wb
bit4 1 adc_ser_par_sel
bit5 1 adc_hs
bit6 1 adc_wr_refen_dis
bit7 1 Stream Values RAM Always Update
bit8 1
bit9 1
bit10 1
bit11 1
bit12 1
bit13 1
bit14 1
bit15 1
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Tab. A.3: FPGA assigned memory locations (continued)

DEC HEX Bits Signal Name

29 1D 16 SW Reset, Range and Heating Control
bit0 SW_Reset
bit1 MB_UMSA
bit2 MB_UMSB
bit3 HEIZA PWM
bit4 HEIZA PWM
bit5 HEIZB PWM
bit6 HEIZB PWM
bit7
bit8
bit9
bit10
bit11
bit12
bit13
bit14
bit15

30 1E 16
31 1F 16
32 20 16 ch1_a
33 21 16 ch1_a
34 22 16 ch1_b
35 23 16 ch1_b
36 24 16 ch1_c
37 25 16 ch1_c
38 26 16 ch1_t
39 27 16 ch1_t
40 28 16 ch2_a
41 29 16 ch2_a
42 2A 16 ch2_b
43 2B 16 ch2_b
44 2C 16 ch2_c
45 2D 16 ch2_c
46 2E 16 ch2_t
47 2F 16 ch2_t
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Tab. A.4: FPGA assigned memory locations (continued)

DEC HEX Bits Signal Name

48 30 16 fet1_a_count
49 31 16 fet1_b_count
50 32 16 fet1_c_count
51 33 16 fet1_t_count
52 34 16 fet2_a_count
53 35 16 fet2_b_count
54 36 16 fet2_c_count
55 37 16 fet2_t_count
56 38 16 ch1_data_period
57 39 16 ch1_data_period
58 3A 16 ch2_data_period
59 3B 16 ch2_data_period
60 3C 16
61 3D 16
62 3E 16
63 3F 16

Tab. A.6: Module MCU_IO internal signals

Signal Bits Purpose

mcu_req_mosi_ack_i 1 Registering of external signal
mcu_req_mosi_ack

mcu_req_miso_ack_i 1 Registering of external signal
mcu_req_miso_ack

mcu_data_i 16 Registering of external signal mcu_data
mcu_stream_dvo_i 16 Registering of external signal

mcu_stream_dvo
mcu_stream_warn_i 16 Registering of external signal

mcu_stream_warn
speed_count_i 16 Count of "lost" measurements
mcu_stream_dvo_d1 1 1. chained delay signal for DVO signal
mcu_stream_dvo_d2 1 2. chained delay signal for DVO signal
RAM16 64x16 Array of 16-bit memory locations
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Tab. A.7: Component ADC_READ internal signals

Signal Bits Purpose

count 32 Counter of CLK rising edges for tim-
ing

count_delay 32 Count of CLK rising edges for tim-
ing of sample delay

en_i 1 Internal enable, activated by en in-
put, stays active until of sampling
cycle

v1_i 16 Holds ADC V1 value for complete
sampling cycle

v2_i 16 Holds ADC V2 value for complete
sampling cycle

v3_i 16 Holds ADC V3 value for complete
sampling cycle

v4_i 16 Holds ADC V4 value for complete
sampling cycle

v5_i 16 Holds ADC V5 value for complete
sampling cycle

v6_i 16 Holds ADC V6 value for complete
sampling cycle

adc_cs_i 1 Internal signal for external output
signal adc_cs

adc_reset_i 1 Internal signal for external output
signal adc_reset

adc_rd_i 1 Internal signal for external output
signal adc_rd

adc_convst_i 3 Internal signal for external output
signal adc_convst

adc_stby_i 1 Internal signal for external output
signal adc_stby

adc_range_i 1 Internal signal for external output
signal adc_range

adc_wb_i 1 Internal signal for external output
signal adc_wb

adc_ser_par_i 1 Internal signal for external output
signal adc_ser_par

adc_hs_i 1 Internal signal for external output
signal adc_hs

adc_wr_refen_dis_i 1 Internal signal for external output
signal adc_wr_refen_dis



120 Appendix A. FPGA Information

Tab. A.9: Comonent ADC READ timing

Time [ns] Count ad
c_

re
ad

ad
c_

co
nv
st

ad
c_

re
se
t

ad
c_

cs

ad
c_

st
by

dv
o

ou
tp
ut

0 0 1
50 1
100 2
150 3
3000 60
3050 61
3100 62 0 1 0
3150 63 0 1 0 v1
3200 64 1 0
3250 65 0 1 0
3300 66 0 1 0 v2
3350 67 1 0
3400 68 0 1 0
3450 69 0 1 0 v3
3500 70 1 0
3550 71 0 1 0
3600 72 0 1 0 v4
3650 73 1 0
3700 74 0 1 0
3750 75 0 1 0 v5
3800 76 1 0
3850 77 0 1 0
3900 78 0 1 0 v6
3950 79 1 1 1
4000 80 0 1
4050 81 0
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Tab. A.10: Component ADC_CH internal signals

Signal Bits Purpose

sw_cnt 32 Rising edge of CLK counter
data_cnt 32 Rising edge of CLK counter
val_h_i 16 "high" switched biasing value, to A-Filter
val_l_i 16 "low" switched biasing value, to B-Filter
adc_en_i 1 ADC enable signal
swb_i 1 Switched biasing control signal
last_state_i 1 Last state of switched biasing signal (during sampling)
swb_delay_i 1 Used to add delay to swb_i

Tab. A.11: Component CALC_CH internal signals

Signal Bits Purpose

val_a_i 32 Incoming A-�lter measurements
val_b_i 32 Incoming B-�lter measurements
val_t_i 32 Incoming T-�lter measumrents
ch_dvo_i 1 hold dvo signal for MCU_IO
a_dvo_cur 1 A �lter dvo received since last dec signal
b_dvo_cur 1 B �lter dvo received since last dec signal
t_dvo_cur 1 T �lter dvo received since last dec signal
a_dvo_prev 1 A �lter dvo previously received since last dec signal
b_dvo_prev 1 B �lter dvo previously received since last dec signal
t_dvo_prev 1 T �lter dvo previously received since last dec signal

Tab. A.12: Component CIC I/O signals

Signal Dir. Purpose

clk in FPGA system clock
in_async in Asynchronous reset signal
sw_reset in Software reset signal from MCU_IO
out_sync out FPGA clock synchronous reset





Appendix B

Microcontroller

Here, user interface are listed and described in tables B.1, B.3,B.4,A.1,B.6, and B.7.
In tables B.8 and B.9 the interface pin assignment is given.
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Tab. B.1: CMD functions

Command Use

cmd:sys:id Returns the same serial number assigned to the USB port
cmd:sys:name Returns the name of the system. Intended for use by higher-

level systems in combination with the serial number to verify
that the connected system is the intended system (e.g. board
revision).

cmd:sys:reset Reset the ADC, DAC, and FPGA, reinitialize all values to
default.

cmd:sys:fpgasafe During programming and recon�guration of FPGA ports, set
MCU ports to a safe state that will no result in excessive
current �ow.

cmd:sys:fpgainit Reset the FPGA, reset to default values. Also resets the
ADC.

cmd:mode:local Set the system mode to LOCAL. Intended for manual re-
con�guration, all typed characters are echoed back to the
Serial-USB interface.

cmd:mode:remote Same as system mode LOCAL, except typed characters are
not echoed back to the terminal. Intended for use by higher-
level system (e.g. MATLAB scripts). Reduces Serial-USB
tra�c.

cmd:mode:stream Included for debugging only, sets system to STREAM mode.
This is normal set and unset automatically.

cmd:mode:cal Included for debugging only, sets system to CAL mode. This
is normally set and unset automatically.

Tab. B.2: MEAS functions

Command Use

meas:fet:a:n Make n measurements on port 1. n=0 : non-stop measurements
meas:fet:b:n Make n measurements on port 2. n=0 : non-stop measurements
meas:fet:ab:n Make n measurements on Ports 1 & 2. n=0 : non-stop measure-

ments
meas:stop: Stop Measurement (alternate command)
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Tab. B.3: SET functions

set : sys : format : n Set output format (raw
ADC values / current val-
ues)

set : adc : sdelay : n Set ADC delay between
sampling

set : swA : period : n FET_A: Clock cycles of one
period

set : swA : width : n FET_A: Clock cycles of
high switchd biasing signal

set : swB : period : n FET_B: Clock cycles of one
period

set : swB : width : n FET_B: Clock cycles of
high switchd biasing signal

set : DAC : 0 : n Set VDAC0 voltage
set : DAC : 1 : n Set VDAC1 voltage
set : DAC : 2 : n Set VDAC2 voltage
set : DAC : 3 : n Set VDAC3 voltage
set : DAC : 4 : n Set VDAC4 voltage
set : DAC : 5 : n Set VDAC5 voltage
set : DAC : 6 : n Set VDAC6 voltage
set : DAC : 7 : n Set VDAC7 voltage
set : DAC : pd ? Set DAC Power-down
set : DAC : pu ? Set DAC Power-up
set : DAC : reset : en Enable RESET (pin) of

DAC
set : DAC : reset : dis Disable RESET (pin) of

DAC
set : DAC : reset : pulse Quick RESET pulse of DAC
set : DAC : clear : en Enable CLEAR (pin) of

DAC
set : DAC : clear : dis Disable CLEAR (pin) of

DAC
set : DAC : clear : pulse Quick CLEAR pulse of DAC
set : rangeA : mode : n Select between 200 µA and 2

mA range measurments
set : rangeB : mode : n Select between 200 µA and 2

mA range measurments
set : rangeA : lowswup : n Set port 1 low switch up cur-

rent value
set : rangeA : lowmax : n Set port 1 max low value

(ADC value)
set : rangeA : highswdown : n Set port 1 high switch down
set : rangeA : highmax : n Set port 1 high maximum

value
set : rangeA : auto Set port 1 automatic ranging
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Tab. B.4: SET functions (continued)

set : rangeB : lowswup : n Set port 2 low switch up current
value

set : rangeB : lowmax : n Set port 2 high maximum value
set : rangeB : highswdown : n Set port 2 high switched-down

value
set : rangeB : highmax : n Set port 2 high maximum value
set : fetA : phaseA : n Set port 1 phase A value
set : fetA : phaseB : n Set port 1 phase B value
set : fetA : phaseC : n Set port 1 phase C value
set : fetA : phaseD : n Set port 1 phase D value
set : fetB : phaseA : n Set port 2 phase A value
set : fetB : phaseB : n Set port 2 phase B value
set : fetB : phaseC : n Set port 2 phase C value
set : fetB : phaseD : n Set port 2 phase D value

Tab. B.5: MEM functions

mem : regset : 0-63 : n Set memory location(8bit) to
value(16bit)

mem : regget : <addr> Get 16-bit memory value from 8bit
address

mem : dacget : <addr> Get speci�ed DAC register address
mem : dacset : <addr> : n Set speci�ed DAC register address

to speci�ed value

Tab. B.6: CAL functions

cal : set : zero ? Calibrate �lter output (sets mode CAL, re-
turns after)

cal : disp : zero ? Display zero calibration values
cal : clear : zero Clear zero point calibration values

Tab. B.7: TEST functions

test : dacloop : n x Set DACn output to 0V, then 0x0000 to
0x��, then 0V

test : usbloop : n Output memory locations 63�58 as fast as
possible
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Tab. B.8: MCU-FPGA Inteface

MCU FPGA
"Master" "Slave"

Pin Port Direction Pin Direction Signal

43 P4.0 out 88 in mcu_addr[0]
44 P4.1 out 87 in mcu_addr[1]
45 P4.2 out 86 in mcu_addr[2]
46 P4.3 out 85 in mcu_addr[3]
47 P4.4 out 84 in mcu_addr[4]
48 P4.5 out 83 in mcu_addr[5]
49 P4.6 out 82 in mcu_addr[6]
50 P4.7 out 81 in mcu_addr[7]
17 P1.0 in 120 out mcu_stream_warn
18 P1.1 in 119 out mcu_stream_dvo
19 P1.2 out 118 in mcu_oe
20 P1.3 out 117 in mcu_stream_busy
21 P1.4 out 116 in mcu_req_mosi
22 P1.5 in 115 out mcu_req_mosi_ack
23 P1.6 out 114 in mcu_req_miso
24 P1.7 in 113 out mcu_req_miso-ack
25 P2.0 IN*/out 106 inout mcu_data[0]
26 P2.1 IN*/out 105 inout mcu_data[1]
27 P2.2 IN*/out 104 inout mcu_data[2]
28 P2.3 IN*/out 101 inout mcu_data[3]
29 P2.4 IN*/out 100 inout mcu_data[4]
30 P2.5 IN*/out 99 inout mcu_data[5]
31 P2.6 IN*/out 98 inout mcu_data[6]
32 P2.7 IN*/out 95 inout mcu_data[7]
57 P8.0 IN*/out 68 inout mcu_data[8]
58 P8.1 IN*/out 67 inout mcu_data[9]
59 P8.2 IN*/out 66 inout mcu_data[10]
60 P8.3 IN*/out 65 inout mcu_data[11]
61 P8.4 IN*/out 64 inout mcu_data[12]
65 P8.5 IN*/out 63 inout mcu_data[13]
66 P8.6 IN*/out 62 inout mcu_data[14]
67 P8.7 IN*/out 61 inout mcu_data[15]

* denotes default value
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Tab. B.9: EEPROM interface

MCU port Description Purpose

P11.0 EEDATA EEPROM data pin
P11.1 EESK EEPROM data clock
P11.2 EECS EEPROM chip select



Appendix C

EEPROM Programming

In table C.1, the memory locations useful for reading the USB serial number directly
from the EEPROM is given.
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Tab. C.1: EEPROM memory locations (for USB) (continued)

Address
word byte byte Bit Description

0 00 0 00 High Current
00 1 01

1 01 2 02 Vendor ID
00 3 03

2 02 4 04 Product ID
00 5 05

3 03 6 06 (0x07 0x06) Chip Type
00 7 07

4 04 8 08 Con�g descriptor
00 7 Always 1
00 6 1 if self powered, 0 if bus powered
00 5 1 if this device uses remote wakeup
00 4 1 if this device is battery powered
00 3
00 2
00 1
00 0
00 9 09 Max power consumption: max power = value *

2 mA
5 05 10 0A

00 7 Bit 7: 0 - reserved
00 6 Bit 6: 0 - reserved
00 5 Bit 5: 0 - reserved
00 4 Bit 4: 1 - Change USB version
00 3 Bit 3: 1 - Use the serial number string
00 2 Bit 2: 1 - Enable suspend pull downs for lower

power
00 1 Bit 1: 1 - Out EndPoint is Isochronous
00 0 Bit 0: 1 - In EndPoint is Isochronous
00 11 0B Invert data lines

6 06 12 0C USB version low byte when 0x0A bit 4 is set
00 13 0D USB version high byte when 0x0A bit 4 is set

7 07 14 0E O�set of the manufacturer string + 0x80
00 15 0F Length of manufacturer string

8 08 16 10 O�set of the product string + 0x80
00 17 11 Length of product string

9 09 18 12 O�set of the serial string + 0x80
00 19 13 Length of serial string

10 0A 20 14 CBUS function: CBUS0, CBUS1
00 21 15 CBUS function: CBUS2, CBUS3

11 0B 22 16 CBUS function: CBUS5
00 23 17 Strings
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Tab. C.2: EEPROM memory locations (for USB) (continued)

Address
word byte byte Bit Description

12 0C 24 18
00 25 19

13 0D 26 1A
00 27 1B

14 0E 28 1C
29 1D
30 1E
31 1F
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A





List of Figures

2.1 Component overview with connections . . . . . . . . . . . . . . . . . 15
2.2 Biasing and current measurement overview . . . . . . . . . . . . . . . 17
2.3 Sampling window, period, width . . . . . . . . . . . . . . . . . . . . 20
2.4 Sampling delay, conversion time . . . . . . . . . . . . . . . . . . . . . 20
2.5 Dynamic calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Main operation �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 MCU clock initialization . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 DAC interface initialization . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Serial/USB interface initialization . . . . . . . . . . . . . . . . . . . . 36
3.5 Serial/USB interface initialization . . . . . . . . . . . . . . . . . . . . 37
3.6 MCU-FPGA interface . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 MISO operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 MOSI operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Streaming MISO operation . . . . . . . . . . . . . . . . . . . . . . . 42
3.10 mem:dacget function calls . . . . . . . . . . . . . . . . . . . . . . . . 43
3.11 Reading a DAC register, getWordDAC() phase 1 . . . . . . . . . . . 44
3.12 Reading a DAC register, getWordDAC() phase 2 . . . . . . . . . . . 45
3.13 UI command "mem:dacset" function calls . . . . . . . . . . . . . . . 45
3.14 Writing to a DAC register, putWordDAC() . . . . . . . . . . . . . . 46
3.15 User command branches . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.16 CMD branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.17 MEAS branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.18 Character input interrupt handling . . . . . . . . . . . . . . . . . . . 49
3.19 Command array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.20 Measurement mode output . . . . . . . . . . . . . . . . . . . . . . . . 51
3.21 Measurement STREAM_DVO interrupt handling . . . . . . . . . . . 52
3.22 mcu meas_fet() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.23 Display calculated, formatted values disp_formatted_I() . . . . . . . 54
3.24 Range limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.25 Calibration setup function calls . . . . . . . . . . . . . . . . . . . . . 57
3.26 Calibration decision . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.27 FPGA implementation overview . . . . . . . . . . . . . . . . . . . . . 59
3.28 COMM_PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.29 STREAM_PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.30 STREAM_WARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.31 ADC_READ:ADC_COUNT_PROC . . . . . . . . . . . . . . . . . 65
3.32 ADC_READ:ADC_LOOP_PROC . . . . . . . . . . . . . . . . . . 66
3.33 ADC_CH:SW_COUNT process . . . . . . . . . . . . . . . . . . . . 69
3.34 ADC_CH:DATA_COUNT process . . . . . . . . . . . . . . . . . . . 70



134 List of Figures

3.35 ADC_CH:SW_PROC process . . . . . . . . . . . . . . . . . . . . . 70
3.36 ADC_CH:SW_PROC variable duty cycle . . . . . . . . . . . . . . . 71
3.37 ADC_CH:DEC_PROC decimation control process . . . . . . . . . . 71
3.38 ADC_CH:ADC_CONTROL ADC control process . . . . . . . . . . 72
3.39 ADC_CH:LAST_STATE process . . . . . . . . . . . . . . . . . . . . 73
3.40 ADC_CH:FILTER_CONTROL process . . . . . . . . . . . . . . . . 74
3.41 CIC �lter module overview . . . . . . . . . . . . . . . . . . . . . . . 74
3.42 CIC process DEC_PROC . . . . . . . . . . . . . . . . . . . . . . . . 77
3.43 CIC process DEC_PROC . . . . . . . . . . . . . . . . . . . . . . . . 77
3.44 CIC process CIC_SXT_PROC . . . . . . . . . . . . . . . . . . . . . 78
3.45 Component CALC CH process AUTO TRIGGER . . . . . . . . . . . 80
3.46 Component RESET_SYNC process RESET_SYNC . . . . . . . . . 81
3.47 Component OR_GATE_2 usage . . . . . . . . . . . . . . . . . . . . 82

4.1 ADC grounded input test . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 ADC conversion noise after CONVST . . . . . . . . . . . . . . . . . 88
4.3 Switched biasing control signal delay . . . . . . . . . . . . . . . . . . 90
4.4 Switched biasing transient delay, switched biasing control (bottom)

and current measurement signal (top) . . . . . . . . . . . . . . . . . 91

5.1 100KΩ characterization . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 100KΩ, variations in measurements . . . . . . . . . . . . . . . . . . . 98
5.3 100 KΩ full-scale absolute error . . . . . . . . . . . . . . . . . . . . . 98
5.4 100KΩ, average of 100 measurements, enlarged 0 to 2V . . . . . . . 99
5.5 100KΩ, low decimation rate vs. high decimation rate . . . . . . . . . 100
5.6 10 KΩ measured current . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7 10KΩ, full-scale absolute error . . . . . . . . . . . . . . . . . . . . . 101
5.8 Output characteristic curves, o�set calibration . . . . . . . . . . . . . 103
5.9 Eight-curve characterization of a transistor . . . . . . . . . . . . . . . 103
5.10 Transistor constant biasing drift (5 minutes) . . . . . . . . . . . . . . 104
5.11 High-measurement range 61nA resolution steps with overlap due to

noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.12 Low-measurement range 6.1nA resolution steps with overlap due to

noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.13 Transistor constant biasing (top) and switched biasing (bottom) (1.5

minutes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



List of Tables

3.1 MCU port con�guration registers . . . . . . . . . . . . . . . . . . . . 34
3.2 Additional con�guration registers for P1 and P2 . . . . . . . . . . . . 34
3.3 MCU-DAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 FPGA component summary . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 FPGA component-entity summary . . . . . . . . . . . . . . . . . . . 60
3.6 Module MCU_IO process summary . . . . . . . . . . . . . . . . . . 61
3.7 ADC_READ processes . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 ADC_CH Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.9 ADC_CH external signals . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10 Switched biasing counter output frequencies . . . . . . . . . . . . . . 68
3.11 Component CIC internal signals . . . . . . . . . . . . . . . . . . . . . 81
3.12 MATLAB Instrument Control Toolbox objects[Mathworks 2011] . . . 82

5.1 100K, low decimation rate test con�guration . . . . . . . . . . . . . . 96
5.2 Transistor biasing con�guration . . . . . . . . . . . . . . . . . . . . . 102

A.5 FET_ROOT I/O signals . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.1 FPGA assigned memory locations . . . . . . . . . . . . . . . . . . . . 115
A.2 FPGA assigned memory locations (continued) . . . . . . . . . . . . . 116
A.3 FPGA assigned memory locations (continued) . . . . . . . . . . . . . 117
A.4 FPGA assigned memory locations (continued) . . . . . . . . . . . . . 118
A.6 Module MCU_IO internal signals . . . . . . . . . . . . . . . . . . . . 118
A.7 Component ADC_READ internal signals . . . . . . . . . . . . . . . 119
A.9 Comonent ADC READ timing . . . . . . . . . . . . . . . . . . . . . 120
A.10 Component ADC_CH internal signals . . . . . . . . . . . . . . . . . 121
A.11 Component CALC_CH internal signals . . . . . . . . . . . . . . . . 121
A.12 Component CIC I/O signals . . . . . . . . . . . . . . . . . . . . . . . 121

B.1 CMD functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.2 MEAS functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.3 SET functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.4 SET functions (continued) . . . . . . . . . . . . . . . . . . . . . . . . 126
B.5 MEM functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.6 CAL functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.7 TEST functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.8 MCU-FPGA Inteface . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.9 EEPROM interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.1 EEPROM memory locations (for USB) (continued) . . . . . . . . . . 130
C.2 EEPROM memory locations (for USB) (continued) . . . . . . . . . . 131





Bibliography

[Altera 2007] Altera. Cyclone FPGA Family Data Sheet, 2007. [Online; accessed
9-December-2011]. (Cited on pages 24 and 61.)

[Altera 2009] Altera. USB-Blaster Download Cable User Guide, 2009. [Online;
accessed 9-December-2011]. (Cited on page 27.)

[Consortium 1999] SCPI Consortium. Standard Commands for Programmable In-

struments (SCPI), 1999. (Cited on page 48.)

[Devices ] Analog Devices. AD7656/AD7657/AD7658 Data Sheet. Rev. C. (Cited
on pages 67, 86 and 94.)

[Drosg 2009] Manfred Drosg. Dealing with uncertainties: A guide to error analysis.
Springer, 2009. (Cited on pages 85 and 95.)

[Fetzer 1965] Dr. Viktor Fetzer. Mathematik für elektrotechniker. Dr. Alfred Hüthig
Verlag, 1965. (Cited on pages 17 and 96.)

[Ganz 2010] Dennis Ganz. Umsetzung und evaluierung dynamischer betriebsstrate-
gien für felde�ekttransistorarrays. Diplom thesis, Hochschule Kempten, 04
2010. (Cited on page 12.)

[Hogenauer 1981] E. Hogenauer. An economical class of digital �lters for decimation
and interpolation. Acoustics, Speech and Signal Processing, IEEE Transac-
tions on, vol. 29, no. 2, pages 155 � 162, apr 1981. (Cited on pages 87
and 110.)

[Instruments a] Texas Instruments. Code Composer Studio (CCStudio) Integrated

Development Environment (IDE) v5 Overview. [Online; accessed 12-
December-2011]. (Cited on page 29.)

[Instruments b] Texas Instruments. MSP430 5xx Family User Guide. (Cited on
pages 33, 34, 35, 37, 88 and 110.)

[Instruments c] Texas Instruments. Voltage Reference REF5050 Data Sheet. (Cited
on page 88.)

[Instruments 1995] Texas Instruments. Understanding Data Conversion TI DAC,
1995. (Cited on pages 21, 85 and 86.)

[Instruments 2005] Texas Instruments. OPA277/OPA2277/OPA4277 Data Sheet,
Apr 2005. (Cited on page 94.)

[Instruments 2009] Texas Instruments. DAC8718 Digital-to-Analog Converter Data
Sheet, May 2009. (Cited on pages 43 and 86.)



138 Bibliography

[Instruments 2011a] Texas Instruments. MSP430 Part number decoder, 2011. [On-
line; accessed 10-January-2011]. (Cited on page 24.)

[Instruments 2011b] Texas Instruments. MSP430 Programming Via the JTAG In-

terface, 2011. [Online; accessed 9-December-2011]. (Cited on page 27.)

[Jacob Millman 1985] Satyabrata Jit Jacob Millman Christos C Halkias. Electronic
devices and circuits. McGraw-Hill international book company, 1985. (Cited
on pages 16 and 18.)

[Jahromi 2007] Omid Jahromi. Multirate statistical signal processing. Springer,
Dordrecht, 2007. (Cited on page 74.)

[Kester 2008] Walt Kester. The Good, the Bad, and the Ugly Aspects of ADC Input

Noise? Is No Noise Good Noise?, 2008. (Cited on pages 21, 54, 87 and 88.)

[Kolka 2010] Robert Kolka. Dokumentation über das Konzept für den Entwurf einer

elektronischen Schaltung zur Ansteuerung und Auswertung eines FETs, 2010.
(Cited on page 24.)

[Ltd 2011] Future Technology Devices International Ltd. FT232BL USB UART IC

(Lead Free Package) Data Sheet, 2011. (Cited on page 37.)

[Luecke 2005] Gerald Luecke. Analog and digital circuits for electronic control sys-
tem applications - using the msp430 microcontroller. Newnes, 2005. (Cited
on page 37.)

[Mathworks 2011] Mathworks. MATLAB product documentation Instrument Con-

trol Toolbox, 2011. (Cited on pages 82 and 135.)

[Mitra 1993] Sanjit Mitra. Handbook for digital signal processing. J. Wiley & Sons,
New York, 1993. (Cited on page 50.)

[Peter Prinz 2006] Tony Crawford Peter Prinz. C in a nutshell. O'Reilly, 2006.
(Cited on page 46.)

[Ruscak 1995] Steve Ruscak and Larry Singer. Using Histogram Techniques to Mea-

sure A/D Converter Noise, 1995. (Cited on page 87.)

[Rushton 2011] Andrew Rushton. Vhdl for logic synthesis. Wiley, 2011. (Cited on
pages 30 and 80.)

[Wikipedia 2011] Wikipedia. Joint Test Action Group � Wikipedia, The Free En-

cyclopedia, 2011. [Online; accessed 9-December-2011]. (Cited on page 27.)

[Winkelman 2009] Sven Winkelman. Entwicklung von betriebsstrategien für neuar-
tige felde�ekttransistoren zur driftreduzierung. Diplom thesis, Fach-
hochschule Jena, 10 2009. (Cited on pages 11, 12, 16, 19 and 103.)


	List of Abbreviations
	Introduction
	Motivation
	Previous Work
	Problem Definition

	Fundamentals
	Measurement system overview
	Field Effect Transistor

	Measurement concepts
	Current measurement circuit
	Measurement ranges
	Drain-Source, Gate currents
	Drain-Gate swap

	Switched biasing
	Sampling windows
	Filtering and decimation

	Calibration
	Zero-offset calibration
	Dynamic calibration

	Heater and temperature

	Measurement hardware
	Printed circuit board and housing
	FPGA
	Microcontroller (MCU) 
	Analog-to-Digital Converter
	Digital-to-Analog Converter (DAC)
	DAC reference voltage
	Serial-USB interface
	EEPROM
	Relays and Switches
	Interfaces and buses
	SPI


	Higher-level system

	Implementation
	Tools
	Software

	Microcontroller software
	Functional specifications
	Overview
	Power-on initialization (INIT)
	Disable watchdog
	FPGA Interface
	Read operation (MISO) handshaking
	Write operation (MOSI) handshaking

	DAC Interface
	Serial-USB Interface
	User interface (External view)
	System modes
	Input buffer
	Command buffer
	Measurement mode
	STREAM mode
	Calibration mode (CAL)
	Set zero point

	Relay control

	FPGA hardware architecture
	System Overview
	Component MCU_IO
	MCU_IO process COMM_PROC
	MCU_IO process STREAM_PROC
	MCU_IO process STREAM_WARN

	Component ADC_READ
	Process ADC_COUNT_PROC
	Process ADC_LOOP_PROC

	Component ADC_CH
	Internal signals
	Process SW_COUNT
	Process DATA_COUNT
	Process SW_PROC
	Process DEC_PROC
	Process ADC_CONTROL
	Process LAST_STATE
	Process FILTER_CONTROL

	Component CIC
	Implementation
	Process dec_proc
	Process cic_count_proc
	Process cic_sxt_proc
	Process cic_int_proc
	Process cic_comb_proc
	Output assignments

	Component CALC_CH
	Process AUTO_TRIGGER

	Component RESET_SYNC
	Process SYNC

	Component OR GATE 2

	Higher-level system software

	Measurement certainty
	Sources of Error
	ADC Quantization
	DAC
	Offset error
	Gain error
	Other error
	Noise
	ADC input noise
	Environmental noise

	Temperature
	Component Losses

	FET Measurement system limitations
	Sampling Window
	Decimation rate & measurement speed (data output rate)
	Current range
	Calibration

	Error Propagation

	Measurements and results
	Calibration resistances
	100K characterization
	10K characterization

	Field Effect Transistor characterization
	Constant biasing of a transistor
	Eight-curve characterization
	Transistor drift
	Switched biasing


	Conclusions and recommendations
	Conclusion
	Recommendations
	Known Issues

	FPGA Information
	Microcontroller
	EEPROM Programming
	Bibliography

