
A Service-oriented Integration Platform

for Flexible Information Provisioning in

the Real-time Factory

Von der Graduiertenschule GSaME Graduate School of Excellence advanced

Manufacturing Engineering der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Jorge Mínguez
aus Madrid (Spanien)

Hauptberichter: Prof. Dr. Bernhard Mitschang

Mitberichter: Prof. Dr. Engelbert Westkämper

Tag der mündlichen Prüfung: 15. März 2012

Institut für Parallele und Verteilte Systeme (IPVS),

Abteilung Anwendersoftware

2012

3

Acknowledgement

First of all, I would like to express my most sincere thankful thoughts to

my doctoral supervisor and mentor Prof. Mitschang at the Institute for

Parallel and Distributed Systems for giving me the opportunity to do my

research in his group. I am specially thankful for his continuous sup-

port and extraordinary dedication during the last four years of my career.

Thanks to his valuable advice and experience, I have been able to success-

fully conduct my scientific research and to grow as a researcher and as a

person.

I also want to thank Prof. Westkämper for creating an outstanding aca-

demic environment for doctoral researchers in engineering, computer sci-

ence, management and economics. Through his vision and dedication,

the Graduate School of Excellence advanced Manufacturing Engineering

(GSaME) was born in 2007, where I, as well as over 60 other engineers

and scientists, have had a unique opportunity to do a doctor’s degree up

to now. I would also like to thank him for acting as an active member in

the Thesis Committee that supervised my work. I do not want to forget

all the staff of the Institute for Industrial Manufacturing and Management

at the University of Stuttgart that have made GSaME possible how it is

4 Acknowledgement

today. Thank you Vera Hummel, Lars Aldinger, Andreas Dietrich, Heiko

Herrmann, Petra Langbein and Eva-Marie Ill. Specially, I would like to

sincerely thank Prof. Rohr for her uninterrupted dedication to the suc-

cess of GSaME.

I would like to thank some of my current and former collegues for many

interesting discussions and for their valuable comments and suggestions.

I would specially like to thank Mihály Jakob and Thorsten Scheibler

for their effort in the supervision of this Thesis, Peter Reimann for his

tremendous dedication in the correction of my written English, Fabian

Kaiser, Tobias Kraft, Nazario Cipriani and Oliver Schiller for all the fun

in the coffee breaks, Sylvia Radeschútz, Marko Vhrovnik and Manfred

Rasch for the wonderful tabletop soccer games. I would also like to thank

Stefan Silcher for his cooperation and his effort to always improve the

quality of our research. I also want to express my gratitude to Frank

Ruthardt and Alexander Braunstein for their dedication and contribution

to the results of this Thesis.

During my time at GSaME, I have also met extremely smart colleagues

and I have made great and wonderful friendships. I would like to thank

David Baureis, Markus Hartkopf, Donald Neumann, David Schindhelm

for all the fun in our nights out, I will always remember the fun at the

Stuttgart Beer Festivals. Thanks to Sema Zor, Michelangelo Masini and

Michael Wörner for their support and for all the good moments we lived

together at conferences and in the University. Also thanks to Miriam

Floristán for the support and good times that we shared in Spanish in the

multiple lunch times and coffee breaks.

Finally, I would like to thank the closest persons that made it all worth it.

First, an honest, sincere and deep Thank you goes to my parents Olga and

Serafín, who have unconditionally supported me along the path during

school, university, abroad and during my doctoral thesis. Last, but not

least, I would like to thank Lena for her support and love. I would like to

5

thank her sincerely for her encouragement and patience in the long hours

of work in the weekends and at night. Thank you Lena, without you, I

would not be where I stand today.

6 Acknowledgement

7

Contents

1 Introduction 31

1.1 Problem Domain and Motivation 33

1.1.1 The Real-Time Factory 34

1.1.2 Life Cycle Management of ICT Factory Resources 35

1.2 Vision, Objectives and Research Issues 36

1.2.1 Vision . 37

1.2.2 Objectives . 38

1.2.3 Research Issues 40

1.3 Structure of the Thesis 44

2 Foundations and Related Work 47

2.1 Enterprise Application Integration 47

2.1.1 Types of Integration 48

2.1.2 EAI Middleware 48

2.1.2.1 Synchronous versus Asynchronous . . . 49

2.1.2.2 Publish-Subscribe 49

2.1.2.3 Message Brokers 49

2.1.2.4 Repository Services 50

2.2 Service Oriented Architecture 50

8 Contents

2.2.1 The SOA Principles 50

2.2.1.1 Reusability 51

2.2.1.2 Loose Coupling 51

2.2.1.3 Discoverability 52

2.2.2 Find, Bind, Invoke 52

2.2.3 Web Services 53

2.2.4 WS-BPEL . 54

2.2.5 SOA Governance 55

2.2.6 Service Lifecycle Management 56

2.3 Enterprise Service Bus 58

2.3.1 Evolution from MOM to ESB 59

2.3.2 Mediation Services 59

2.3.3 Real-time Throughput of Data 60

2.3.4 Content-based Router 60

2.4 Semantic Web Technologies 60

2.4.1 Resource Description Framework 61

2.4.2 The Web Ontology Language 61

2.4.3 Semantic Web Services 62

2.5 Current State of Integration 63

2.5.1 Overview of Production Environments 63

2.5.2 Context-aware Applications and Integration . . . 65

2.5.3 Event-driven SOA 66

2.5.4 Adaptive Business Management 67

2.5.5 A Model-driven Approach 68

2.5.6 Service Provenance 68

2.5.7 Limitations of Current Research 69

2.6 Summary . 69

3 Principles of Integration for the Real-time Factory 71

3.1 Lessons Learned . 72

3.2 Integration Scenario: the Real-time Factory 73

Contents 9

3.3 Principles of Integration for Middleware Infrastructures . 77

3.3.1 Ease of Reconfiguration 78

3.3.2 Loose Coupling 78

3.3.3 Asynchronous Thinking 79

3.3.4 Standards-based Integration 80

3.4 Principles of Integration for Real-time Factory Applications 81

3.4.1 Well-defined Interfaces 81

3.4.2 Separation of Implementation and Interface 82

3.4.3 Standards-based Interfaces 82

3.5 Service Orientation as an Integration Approach 83

3.6 Summary . 84

4 SOA in Manufacturing 86

4.1 Penetration and Current State of SOA in Manufacturing . 86

4.2 Leverage of a Data Integration System in SOA 88

4.2.1 Champagne as a Service 89

4.2.2 Connection of Champagne to an ESB 91

4.3 SOA Integration Principles for PLM 92

4.4 SOA Principles applied to Reconfigurable Machines 94

4.5 Event-driven BPM in ETO Enterprises 95

4.6 Product-Service Systems 100

4.7 Summary . 103

5 The Manufacturing Service Bus 104

5.1 Concept . 105

5.1.1 Data Source Layer 108

5.1.2 Data Service Layer 109

5.1.3 Integration Layer 109

5.1.4 Integration Service Layer 110

5.1.5 Business Process Layer 111

5.2 Architecture of the Manufacturing Service Bus 111

5.2.1 Event Canonical Model 112

10 Contents

5.2.2 Event and Event-Flow Registries 115

5.2.3 Content-based Router 116

5.2.4 Mediation Services 119

5.2.5 Workflow Engine 120

5.2.6 Core Implementation of the MSB 121

5.3 Service Management . 122

5.3.1 Life Cycle Management of Services and EAI Pro-

cesses . 123

5.3.2 EAI Process Model for the Real-time Factory . . . 125

5.3.3 EAI Process Editor 130

5.3.4 Provenance-aware Service Repository 134

5.3.4.1 Semantic Service Provenance 134

5.3.4.2 Service Provenance Query Language . . 136

5.3.4.3 Architecture Overview 140

5.3.4.4 Implementation 146

5.3.5 Real-time Factory Integration Architecture 149

5.4 Agile Adaptation of EAI Processes 151

5.4.1 Requirements for an Agile Adaptation in the Real-

time Factory . 152

5.4.1.1 Flexible Integration 153

5.4.1.2 Capability of Reconfiguration 154

5.4.1.3 Knowledge-driven Adaptation 155

5.4.1.4 Autonomic Computing Mechanisms . . 155

5.4.1.5 The MSB as Enabling Platform for Agile

Adaptation 159

5.4.2 Autonomic Computing in the Real-time Factory . 160

5.4.2.1 Definitions 161

5.4.2.2 MAPE Cycle for EAI Processes 164

5.4.2.3 The Real-time Factory Adaptation Model 166

5.4.2.4 SOA Lifecycle Gap in Manufacturing . . 168

5.4.3 Monitoring and Analysis of Factory Data Streams 169

Contents 11

5.4.3.1 NexusDS 169

5.4.3.2 Integration of NexusDS into the MSB . . 171

5.4.3.3 Mining Graph for Factory Data Streams 174

5.4.3.4 Domain Knowledge Analysis 178

5.4.4 Architecture for EAI Process Adaptation 180

5.5 Summary . 183

6 Applicability and Evaluation 185

6.1 The Learning Factory: a Field for Evaluation 186

6.2 Case Studies . 189

6.2.1 Customer Order 189

6.2.2 Failure Management 191

6.2.3 Service Revision 192

6.2.4 Adaptation of the Failure Management Process . . 198

6.3 Integration of the MSB into PLM 205

6.3.1 Extending the MSB Concept to other phases in PLM 205

6.3.2 Approach to Connect the Planning and the Pro-

duction Phases 206

6.4 Validation of the Approach 207

6.4.1 Objectives Coverage 208

6.4.2 Evaluation and Comparison with other Approaches 209

6.4.2.1 Evaluation Criteria 210

6.4.2.2 Evaluation and Comparison 215

6.5 Summary . 217

7 Conclusions and Outlook 219

7.1 Conclusions . 219

7.2 Outlook . 225

Appendices 227

A MSB Event Canonical Model 227

B MSB Process Description Language (MSB-PDL) 236

C SPQL Sample Request 239

List of Figures 242

List of Tables 245

List of algorithms 246

Bibliography 247

13

Acronyms

B2MML Business to Manufacturing Markup Language.

BPM Business Process Management.

BPMN Business Process Management Notation.

CAD Computer-Aided Design.

CBR Content-Based Router.

CEP Complex Event Processing.

CIM Computer-integrated Manufacturing.

CRM Customer Relationship Management.

CSV Comma-Separated Values.

DPWS Devices Profile for Web Services.

DSDL Data Service Description Language.

EAI Enterprise Application Integration.

14 Acronyms

ECA Event-Condition-Action.

EDA Event-Driven Architecture.

EPC Event-driven Process Chain.

ERP Enterprise Resource Planning.

ESB Enterprise Service Bus.

ETO Engineering-To-Order.

FTP File Transport Protocol.

HTTP Hypertext Transport Protocol.

ICT Information and Communication Technologies.

IIS Internet Information Services.

IPS2 Industrial Product Service Systems.

JBI Java Business Integration.

JMS Java Message Service.

KPI Key Performance Indicators.

MAPE Monitor, Analyze, Plan and Execute.

MDA Model-Driven Architecture.

MES Manufacturing Execution System.

MM Mechatronic Modules.

MOM Message Oriented Middleware.

Acronyms 15

MQ Message Queuing.

MSB Manufacturing Service Bus.

MSB-PDL MSB Process Description Language.

MSMQ Microsoft Message Queuing.

NEGM Nexus Execution Graph Model.

NMR Normalized Message Router.

NPGM Nexus Plan Graph Model.

OEM Original Equipment Manufacturer.

OPC-DA Object Linking and Embedding for Process Control - Data Ac-

cess.

OPC-UA OPC Unified Architecture.

OWL Web Ontology Language.

PDA Personal Digital Assistant.

PKB Process Knowledge Base.

PLC Programmable Logic Controllers.

PLM Product Lifecycle Management.

PSS Product-Service Systems.

QoS Quality of Service.

RDF Resource Description Framework.

RDFS RDF Schema.

16 Acronyms

RMI Remote Method Invocation.

SAWSDL Semantic Annotations for WSDL and XML Schema.

SBPM Semantic Business Process Management.

SCA Service-Component Architectures.

SCADA Supervisory Control and Data Acquisition.

SCM Supply Chain Management.

SDLC Service Development Life Cycle.

SKB Service Knowledge Base.

SMTP Simple Mail Transport Protocol.

SOA Service Oriented Architecture.

SOAP Simple Object Access Protocol.

SOC Service-Oriented Computing.

SPPaaS Stream Processing Platform as a Service.

SPQL Service Provenance Query Language.

STEP Standard for the Exchange of Product Model Data.

UDDI Universal Description Discovery and Integration.

UI User Interface.

URI Universal Resource Identifier.

WCF Windows Communication Foundation.

WfMS Workflow Management System.

Acronyms 17

WS-BPEL Web Service Business Process Execution Language.

WS-CDL Web Services Choreography Description Language.

WSDL Web Service Description Language.

XRL eXchangeable Routing Language.

XSL Extensible Stylesheet Language.

XSLT Extensible Stylesheet Language Transformations.

18

Zusammenfassung

In heutigen turbulenten Szenarien müssen produzierende Unternehmen

sowohl die Gestaltung von ihren technischen Prozessen und Ressour-

cen als auch die herzustellenden Produkte an die sich ständig verändern-

den Geschäftsbedingungen anpassen. In diesem Umfeld gewinnt der Ein-

satz digitaler Werkzeuge zunehmend an Bedeutung. Um diese Anpassung

schnell und effektiv realisieren zu können, ist eine Wissensmanagement-

Strategie notwendig, deren Umsetzung fähig ist, eine Ist-Analyse der lau-

fenden Produktion durchzuführen. Die Auswertung von Produktionsda-

ten ermöglicht dann Wissen aus der realen Fabrik zu extrahieren, um

später, durch einen kontinuierlichen Simulationsprozess, einen optimalen

Ablauf der Produktion zu erreichen. Hierfür spielt die intelligente Spei-

cherung von Produktionsereignissen eine entscheidende Rolle, da der Zu-

sammenhang zwischen verschiedenen Ereignissen den Kontext in einem

Produktionsumfeld zu einem bestimmten Zeitpunkt abbildet. Um rele-

vante Ereignisse für die Produktion zu erkennen, ist eine Informations-

beschaffung in Echtzeit durch die Steuerung relevanter Ereignisse erfor-

derlich.

19

Die Datenverwaltung in der Fabrik setzt auf Informationsflüsse, die auf

verschiedene Systeme zugreifen. Diese Informationsflüsse werden durch

Datenbearbeitungsprozesse gesteuert, die die unterschiedlichen Informa-

tionssysteme verknüpfen. Das Problem in vielen Unternehmen liegt dar-

in, dass die meisten digitalen Werkzeuge sehr heterogene Insellösungen

sind. Dies stellt für die Verknüpfung von Systemen eine gewaltige Heraus-

forderung dar, da mangelnde Schnittstellenkompatibilität den Datenaus-

tausch zwischen Einzelanwendungen erschwert und den Aufwand der In-

tegration neuer Systeme mit bereits vorhandenen erhöht. Häufig werden

Einzellösungen durch individuelle Anpassungen für die Kopplung digita-

ler Werkzeuge eingesetzt. Solche Ansätze basieren auf einer starren Inte-

gration, die kurzfristige Lösungen schafft. Allerdings, lassen sie sich meist

nur aufwendig erweitern und ändern. Dies führt zu hohen Entwicklungs-

und Wartungskosten bedingt durch die Komplexität und die Unzuverläs-

sigkeit einer starren Vernetzung. Aus diesen Gründen ist bei der Integrati-

on von unterschiedlichen Informationssystemen ein bestimmter Grad an

Flexibilität notwendig. Nur mit der Unterstützung von der richtigen In-

frastruktur können die Informationsflüsse so gesteuert werden, dass die-

se Flexibilität gewährleistet ist. Damit ist eine effektive Anpassung der

systemübergreifenden informationstechnischen Prozesse möglich.

Im Rahmen dieser Arbeit wird ein Integrationsansatz vorgestellt, der,

auf dem Konzept der Serviceorientierten Architektur (SOA) basierend,

die Problematik der Umsetzung einer flexiblen Integration adressiert.

Die Verbindung zwischen IT-Systemen und der Integrationsplattform

wird über servicebasierte standardisierte Schnittstellen hergestellt. Diese

Plattform wird als Manufacturing Service Bus (MSB) bezeichnet. Die

funktionalen Eigenschaften und Vorteile dieser Plattform werden im

Rahmen der Integration von Produktionssystemen in der Lernfabrik

für advanced Industrial Engineering (aIE) am Institut für Industrielle

Fertigung und Fabrikbetrieb (IFF) der Universität Stuttgart aufgezeigt.

20 Zusammenfassung

Die bereits erzielten Ergebnisse in den Forschungsbereichen zur agilen

und skalierbaren Turbulenzbehandlung zeigen, dass Kommunikations-

und Integrationstechnologien dazu beitragen, die Wandlungsfähigkeit

der produzierenden Unternehmen zu unterstützen. Jedoch muss ein

flexibler Integrationsansatz die schnelle Anpassung von Integrations-

prozessen ermöglichen, um die gewünschte Wandlungsfähigkeit der

Produktion gewährleisten zu können. Dabei stellt sich die Frage, durch

welche Methoden die in der Fabrik laufenden, systemübergreifenden

Informationsflüsse effektiv und effizient angepasst werden können.

Diese Arbeit befasst sich mit der Kernfrage der Umsetzung von Wand-

lungsfähigkeit auf informationstechnischen Ressourcen der realen Fabrik.

Diese und weitere Fragen zum optimalen Ablauf von Datenverarbeitungs-

und Anpassungsprozessen werden in der Dissertation erörtert. Nach-

folgend werden die Prinzipien der Anwendungsintegration und der

Serviceorientierung vorgestellt, die als Leitfaden einer erfolgreichen Um-

setzung wandlungsfähiger informationstechnischen Strukturen dienen.

Anschlie�end wird der Manufacturing Service Bus als Lösungsansatz

vorgestellt, der die angesprochenen Herausforderungen in einem hete-

rogenen und sich ständig verändernden Produktionsumfeld adressiert.

Diese Zusammenfassung schlie�t mit einem kurzen Fazit und einem

Ausblick auf mögliche Folgearbeiten.

Anwendungsintegration und Serviceorientierung

Serviceorientierte Architektur (engl. Service-oriented Architecture, SOA)

ist ein Systemarchitekturkonzept für die Strukturierung und Bereitstel-

lung von Diensten. Dienste sind gekapselte Software-Komponenten mit

einer wohldefinierten Schnittstelle, die plattformunabhängig sind, die in

einem Verzeichnis registriert sind und bei Bedarf benutzt werden können.

Diese Eigenschaften zeichnen SOA mit zwei wichtigen Prinzipien aus: lo-

se Kopplung und Wiederverwendbarkeit. Auch wegen diesen Prinzipien

21

wird das SOA-Paradigma immer häufiger auf Geschäftsebene diskutiert

und eingesetzt.

Dienste können interagieren ohne Anforderung an spezifische Vorkennt-

nisse über die jeweilige Implementierung. Somit hat eine Änderung nur

eine lokale Auswirkung. Bei einer engen Kopplung, erfordert die Än-

derung einer Komponente zusätzlich die Anpassung gekoppelter Kom-

ponenten. Die Komplexität eines solchen Ansatzes im Produktionsum-

feld endet letztendlich in langen Entwicklungszeiten und gewaltigen In-

tegrationsaufwänden. Bei SOA handelt es sich um eine Struktur, welche

die Komplexität der einzelnen Anwendungen hinter den standardisierten

Schnittstellen verbirgt. Das Potenzial liegt in der Ermöglichung der Um-

setzung einer flexiblen Unternehmensanwendungsintegration.

Implementierte Dienste mit einer bestimmten Funktionalität werden in

einer sogenannten Serviceregistry von Serviceanbietern registriert. Dort

können Dienste von Servicekonsumenten gefunden werden, die anschlie-

�end den Dienst benutzen und ausführen. Dieser Mechanismus ist als

SOA-Dreieck bekannt und trägt dazu bei, bestehende Dienste einfach wie-

derverwenden zu können. Das Potenzial für produzierende Unternehmen

ist hierbei die langfristige Kostensenkung in der Entwicklung von Punkt-

zu-Punkt Verbindungen sowie das Erreichen einer höheren Flexibilität der

Geschäftsprozesse durch Wiederverwendung bestehender Services, was

für Unternehmen im heutigen Geschäftsumfeld von gro�er Bedeutung

ist.

Webservices werden bei der Implementierung von SOA am häufigsten

eingesetzt, da sie einen sehr hohen Standardisierungsgrad aufwei-

sen. Webservices basieren auf XML-Standards, die die Identifizierung

und Registrierung von Diensten ermöglichen. Darüber hinaus, wird

die Interaktion mit anderen Diensten unter der Verwendung von

XML-Nachrichten über Internet-Protokolle als Kommunikationskanal

unterstützt.

22 Zusammenfassung

Die Problematik der Schnittstellenkompatibilität von den verschiedenen

IT-Systemen in einem Produktionsumfeld stellt sich als grö�te Heraus-

forderung für die Umsetzung eines ganzheitlichen Lösungsansatzes dar.

Die SOA-Prinzipien Lose-Kopplung und Wiederverwendbarkeit können

nur in einer Architektur umgesetzt werden, wenn alle notwendigen Sys-

temfunktionen in gekapselten Diensten zu Verfügung stehen [MJH+09].

Das Ziel der Integration gekapselter Services in einer SOA ist, eine hö-

here Flexibilität der Geschäftsprozesse durch die Wiederverwendung be-

stehender Services zu schaffen. Um diese Flexibilität umzusetzen ist eine

Integrationsplattform notwendig, die die Kommunikation zwischen den

eingebundenen Diensten ermöglicht.

Manufacturing Service Bus

Um die Problematik der Schnittstellenkompatibilität zu lösen, wird

hier eine Integrationsplattform vorgestellt, die basierend auf den

SOA-Prinzipien, eine flexible Verknüpfung von verschiedenen Produk-

tionsanwendungen ermöglicht. Die Verbindungen werden über den

sogenannten ’Manufacturing Service Bus (MSB)’ realisiert [MLJ+10]. Der

MSB erweitert das Konzept des ’Enterprise Service Bus (ESB)’ für Pro-

duktionsumgebungen. Der ESB bildet eine Kommunikationsinfrastruktur,

über die Nachrichten zwischen Dienstanbieter und Dienstkonsumenten

ausgetauscht werden können. Verschiedene Kommunikationsprotokolle

werden von solch einem Kommunikationsbus unterstützt, der auch die

notwendigen Routing- und Transformationskomponenten enthält. Die

internen Komponenten eines ESB werden Integrationsdienste genannt.

Diese können ähnlich wie in der Anwendungslandschaft verteilt sein.

Die wichtigsten Integrationsdienste eines ESB sind (i) die Transfor-

mationsdienste, welche die Unterschiede in den Datenformaten und

Datenmodellen überbrücken; (ii) der Routingdienst, der eine Nachricht

entgegen nimmt und sie nach vordefinierten Routingregeln an die ent-

sprechenden Empfänger weiterleitet; und (iii) der Orchestrierungsdienst,

23

der nach vordefinierten Prozessmodellen, den Fluss von Nachrichten

zwischen Dienstkonsumenten und Dienstanbietern steuert. Ein Orche-

strierungsdienst ist in der Regel ein ’Workflow Management System

(WfMS)’, der Prozesse ausführen kann. Ein Produktionsumfeld kann

man in fünf Abstraktionsebenen aufteilen. Der MSB befindet sich in

der mittleren Ebene und stellt einen Routingdienst und verschiedene

Integrationsdienste zu Verfügung, um Ereignisse von der Produktion zu

den entsprechenden digitalen Werkzeugen weiterzuleiten. Zusätzlich

bietet der MSB einen Orchestrierungsdienst an, um vordefinierte Abläufe

auszuführen. Diese Abläufe können zum Beispiel Reaktionsprozesse

sein, die auf spezifische Ereignisse in der Produktion reagieren. Ziel

dieser Architektur ist die Anpassung der Integrationsprozesse in einer

Produktionsumgebung. Die zu verbindenden Systeme benötigen dafür

eine Dienstschnittstelle, um an den MSB angeschlossen werden zu

können.

Bei der Implementierung einer Erweiterung einer ESB-Infrastruktur für

Produktionsumfelder müssen die Eigenschaften der Kommunikation in

einer Produktionsumgebung berücksichtigt werden. Produktionsprozesse

werden in der Regel nach Eintreten eines konkreten Ereignisses, Alarms

oder nach einer Benachrichtigung gestartet. Eine Störung löst z.B. einen

Reparaturprozess aus oder ein Kundenauftrag startet den Prozess der

Auftragsbearbeitung. In Produktionsumgebungen ist die Kommunikation

also üblicherweise asynchron. Die Verwaltung und Automatisierung

von ereignisgesteuerten Prozessen spielt eine entscheidende Rolle bei

der Wandlungsfähigkeit eines produzierenden Unternehmens. Die

Verbindung zwischen den verschiedenen Informationssystemen im

Produktionsumfeld darf nicht nur auf eine reine Datenintegration be-

grenzt werden, sondern muss auch die Integration auf der Anwendungs-

und Prozessebene ermöglichen [MRZ11]. Dies ist die Basis für die

Wiederverwendbarkeit der Prozesse.

24 Zusammenfassung

Um die, in Punkt-zu-Punkt Verbindungen entstandene Komplexität zu

reduzieren, kann man einen sogenannten ’Broker’ einsetzen, der die

direkte Kommunikation zwischen Dienstkonsument und Dienstanbieter

übernimmt. Die Vorteile eines solchen Ansatzes sind die Abschaffung von

Abhängigkeiten zwischen Datenkonsumenten und Datenquellen sowie

die Reduzierung der Anzahl von Verbindungen und damit auch der Re-

duzierung von Wartungskosten. Der MSB bietet durch den Routingdienst

und die Unterstützung von mehreren Kommunikationsprotokollen eine

Brokerrolle an. Hierfür ist ein ganzheitliches Datenformat notwendig.

Ziel des MSB ist, durch die Bearbeitung und das Management von

Ereignissen die Reaktionsfähigkeit zu steigern. Deshalb basiert das

MSB-Datenformat auf einem ganzheitlichen Ereignisdatenmodel, der

die Darstellung und Bearbeitung von Ereignissen ermöglicht. Dieses

Ereignisdatenmodell ist XML-basiert und ermöglicht (i) die Model-

lierung von Ereignis-Metadaten, wie zum Beispiel, Ereignis-Typ oder

Ereignis-Herstellungszeitpunkt; (ii) die Spezifizierung von Routing-

daten, nämlich Ereignis-Zielpunkt und Ereignis-Quelle; und (iii) die

Modellierung von anwendungsspezifischen Ereignisdaten, wie zum

Beispiel Störungsmeldungen oder Kundenaufträge [MRM+10]. Dieses

Datenmodell soll maschinen-interpretierbare Ereignisse darstellen, da sie

an den Routingdienst und durch die Ereignis-Metadaten automatisch in-

terpretiert und weitergeleitet werden. Aus diesem Grund, wurde XML als

Modellierungssprache gewählt. Die Interpretation und Bearbeitung von

Ereignissen wird im Routingdienst über Ausdrücke einer standardisierten

XML-Abfragesprache durchgeführt.

Der Routingdienst bildet den Eingangspunkt im MSB, der alle Ereignisse

entgegennimmt und weiterleitet [MRR+10]. Zuerst werden die Ereignis-

Metadaten durch Ausdrücke der XML-Abfragesprache XPath analysiert.

Im zweiten Schritt speichert der Router-Prozess das Ereignis in einer Da-

tenbank ab, sofern die Registrierung vom Ereignis noch nicht stattgefun-

den hat. Im dritten Schritt, werden die Abhängigkeiten ausgewertet, um

25

zu erkennen, an welche Systeme die Nachricht weitergeleitet werden soll.

Diese Abhängigkeiten sind nichts anderes als Abonnements von Syste-

men, die für sie wichtige Nachrichten empfangen möchten. Dieses Kon-

zept ist in der Literatur auch als ’Publish-Subscribe’ oder Datenpropaga-

tion bekannt. Im vierten Schritt, werden die Zielsysteme bestimmt und

abschlie�end wird eine Nachricht an den entsprechenden Dienst weiter-

geleitet.

Der erste Prototyp des MSB wurde in der Testumgebung der Lernfabrik

advanced Industrial Engineering realisiert und getestet [MRM+10]. Die

Testumgebung bietet mit einer digitalen Planungsumgebung und einem

realen, wandlungsfähigen Montagesystem alle Fähigkeiten, um auf inter-

ne und externe Turbulenzen zu reagieren. In verschiedenen Studien wur-

den interne Turbulenzen wie ein Ressourcenausfall oder externe Turbu-

lenzen wie Änderungen bei den Kundenaufträgen als relevante Turbulen-

zen für Unternehmen identifiziert.

Umsetzung wandlungsfähiger informationstechnischer Pro-
zesse

Informationstechnische Systeme und Prozesse sind auch Fabrikressour-

cen, die als sich verändernde Strukturen betrachtet werden können.

Ein produzierendes Unternehmen muss im IT-Bereich sowohl Services

als auch Integrationsprozesse unter kontinuierlicher Überwachung und

Anpassung ausführen [MSM+11]. Die Überwachung und Steuerung von

Services und ganzheitlichen Prozessen bildet ein Lebenszykluskonzept,

welches unter dem Dach der IT-Governance im Unternehmen betrachtet

wird. Im turbulenten Umfeld ist für produzierende Unternehmen extrem

wichtig, alle ihre IT-Ressourcen unter kontinuierliche Überwachung

zu stellen und entsprechende Anpassungen schnellstmöglich durch-

zuführen. Dies stellt die zentrale Herausforderung bei der Umsetzung

wandlungsfähiger informationstechnischer Prozesse dar. Die Bereit-

stellung aller notwendigen Kontextinformationen, über die in der

26 Zusammenfassung

Fabrik installierten Services, erfolgt über ein Service-Repository, das

die Analyse- und Anpassungsmethoden für Integrationsprozesse zur

Verfügung stellt. Dieses Repository umfasst eine semantische Datenbank

für Service-Metadaten (engl. Provenance-aware Service Repository), die

als Service-Verzeichnis mit Suche- und Versionierungsfunktionalitäten

eingesetzt wird [MNM11]. Die Besonderheit beim Service-Repository ist

die Speicherung von Kontextdaten, die das Wissen über Abhängigkeiten

zwischen Fabrikkontext und Services darstellt. Die Verbindung zwischen

realer Fabrik und Service-Repository wurde über eine webbasierte

Schnittstelle realisiert. Die Integration von Produktionsdaten im Service-

Repository besteht aus einer Sequenz von Operatoren, die auf einem

datenstrombasierten System ausgeführt werden. Durch diese Operatoren

werden mithilfe eines Wissensentdeckungs-Algorithmus Datenströme

analysiert und in Domainwissen konvertiert. Somit können interpretier-

bare Daten aus der Fabrik in das Repository importiert werden und in

Echtzeit analysiert werden. Die Verarbeitung solcher Daten stellt einen

vorher nicht vorhanden, bedeutungsvollen Kontext bereit, der durch

logische Schlussfolgerungstechniken einen besseren Ausblick auf die

reale Produktion anbietet. Die Nutzung neuer Kontextinformationen für

die Optimierung der IT-Prozesse in der laufenden Produktion stellt ein

gro�es Potenzial dar.

Fazit und Ausblick

Zum Validierungszweck wurden verschiedene Anwendungsfälle heran-

gezogen. Mit der Erprobung von vier Szenarien in einem echten Produk-

tionsumfeld wurde die Verbesserung der Integrationsfähigkeit, Flexibilität

und Anpassbarkeit von Integrationsprozessen gezeigt. Dies steht im Ge-

gensatz zur bisherigen starren Integration von einzelnen Systemen. Da-

bei konnten die Potenziale des serviceorientierten Ansatzes in der Ver-

knüpfung von heterogenen Systemen gezeigt werden, indem sowohl die

Integration neuer Systeme als auch die Anpassung vorhandener Prozes-

27

se deutlich vereinfacht wurden. Des Weiteren hat der vorgestellte ser-

vicebasierte Integrationsansatz zur Verwaltung der IT-Prozesse mit dem

MSB als zentrale Integrationsebene in einer ereignisgesteuerten Produkti-

onsumgebung den Nachweis der Funktionalität, anhand der Bewältigung

von mehreren Turbulenzen, erbracht. Mit der Reduktion der aufwendigen

und kostenintensiven Verknüpfung von Systemen, die ein wesentliches

Hindernis für den Einsatz der Digitalen Fabrik darstellt, können die Po-

tenziale der Verbindung zur realen Fabrik leichter erschlossen werden.

Gerade die Aktualität und Konsistenz der Daten in den verschiedenen

Systemen sowie die Mehrfachverwendung sind dabei zu nennen. Eine er-

folgreiche Umsetzung des vorgestellten Ansatzes über den ganzen syste-

mübergreifenden Produktlebenszyklus hinweg bietet vereinfachte Mög-

lichkeiten für die Integration von Systemen, die in den Unternehmen bis-

her als Insellösungen vorhanden sind [MSM11, SMM11]. Deshalb sind

weitere Überlegungen notwendig, diesen Integrationsansatz im gesamten

Produktlebenszyklus zu nutzen, um auf die aktuellen Daten der Produk-

tion zuzugreifen [SMS+10]. Es wurde ein Prototyp entwickelt, der auf-

zeigt, wie es in der realen Fabrik gelingt, eine stetige Adaption umzu-

setzen [MRM+10, MRR+10]. Der Prototyp stellt eine "technische Intelli-

genz"dar, die aktuelle Daten in Echtzeit an die Produktionsplanung wei-

terleiten kann.

28

Abstract

Constantly changing business environments force manufacturing compa-

nies to continuously adapt their products, processes and services in order

to remain competitive. This adaptation requires also changes in Enter-

prise Application Integration (EAI) processes, which seamlessly integrate

applications across the factory. Therefore, EAI middleware solutions for

the manufacturing industry need to not only integrate a large number of

heterogeneous applications and legacy systems but also establish a life-

cycle management strategy that supports the planning, execution, mon-

itoring and analysis of EAI processes. Nowadays, the support of digital

planning tools for the required adaptation has become indispensable. In

manufacturing, the leverage of digital tools for visualization, simulation

and virtual reality applications is known as the Digital Factory. In order

for the Digital Factory to be effective, a dynamic picture of the factory

absolutely indispensable. The reflection of the current state of the factory

into the future can only be useful to engineers if a permanent feedback

loop from the real factory, which enables the monitoring and analysis of

the past experience from earlier states of the factory, is provisioned. This

concept is known as Real-time Factory. However, the realization of the

Real-time Factory presents a number of research issues regarding the in-

29

tegration of applications and information systems across the factory, such

as the heterogeneity of systems, the lack of integration at the application

level, the lack of automation tools for the monitoring and analysis of the

operational environment and missing mechanisms for the agile adapta-

tion of EAI processes.

In this thesis, a service-oriented integration architecture for manufactur-

ing environments is introduced. This architecture is based on a service

bus that allows a loose coupling of distributed services in event-driven

manufacturing environments. This platform provides flexible communi-

cation between Digital Factory and shop floor components by introduc-

ing an application-independent canonical data model for manufacturing

events, a content-based routing service, data transformation services as

well as event processing workflows. Furthermore, an EAI Process Model

is proposed. This model is used by an EAI Process Editor to plan and

design the integration processes that enable the exchange of data in the

Real-time Factory. In addition to the EAI Process Model, an Adaptation

Model for the Real-time Factory is proposed. This model constitutes an

adaptability framework for the Real-time Factory that implements the

monitor, analyze, plan and execute (MAPE) functions of a self-managing

environment and serves as a guideline for the feedback loop established

between the execution and the planning environment. The architecture

presents self-managing and adaptive mechanisms thanks to the automa-

tion of the monitoring and analysis tasks. The monitoring phase is imple-

mented by a mining process that provides real-time domain data evalu-

ation and transforms it into high-level context descriptions that can be

processed in the analysis phase. For the analysis of domain context,

which comprises the analysis phase of the MAPE-based feedback loop,

a Provenance-aware Service Repository is proposed. The Service Repos-

itory processes domain recommendations and enables the communica-

tion with the EAI Process Editor and other lifecycle applications in order

to react responsively to turbulent scenarios in the domain. The Service

30 Abstract

Repository manages information about services, processes and their de-

pendencies in a service knowledge base and in a process knowledge base.

A semantic data engine in the Repository provides an inference mech-

anism, based on an algorithm that generates the appropriate corrective

actions to attend the recommendations made by the mining process. Both

the mining graph and the Service Repository close the MAPE cycle and

automate the domain knowledge extraction process, which eases an agile

adaptation of EAI processes based on a real-time domain data evaluation.

This architecture is capable of managing the life cycle of services and EAI

processes in order to achieve the desired agility in an interconnected en-

vironment.

A prototype implementation for the integration architecture, the EAI Pro-

cess Editor, the mining process and the Service Repository are introduced

and described in this thesis and serve as a proof of concept. The applica-

bility and validation of the approach are supported by different use cases.

The evaluation of the approach has been realized by the examination of

different criteria that have been classified in six categories: interoperabil-

ity, flexibility, mediation, adaptability, agility and integration. These cate-

gories are used to evaluate the approach and to compare it with past and

current approaches in the EAI domain. Two recent research approaches

to integration and context management in the manufacturing domain are

also evaluated and compared to the presented approach.

31

Chapter 1
Introduction

Current manufacturing companies face constantly changing market

conditions and turbulent scenarios that require a continuous adaptation of

factories in order to customize products according to the customer needs

and thus meet market demands. The need for support of Information

and Communication Technologies (ICT) for this adaptation has become a

fundamental requirement. Digital planning tools, web-based applications

and information systems are used on a daily basis to support engineers

and are an essential element in factories to run manufacturing processes.

However, over the last few years, the growing complexity, the hetero-

geneity of the involved systems and the pressure of constant change and

adaptation have increased the costs of system integration in the manufac-

turing industry [RM09] as well as in other industries. These problems can

be found in almost all domains of manufacturing companies, where ICT

is involved, such as in the Digital Factory, Factory Data Management or

Product Lifecycle Management (PLM).

32 Chapter 1 Introduction

The Digital Factory is an example of the need for adaptation in constantly

changing environment, such as the factory itself. This adaptation requires

the evaluation of the current, past and future state of the factory. Whereas

the picture offered by the Digital Factory is a static picture, the real fac-

tory changes in a constant manner. In order for the Digital Factory to be

effective, a dynamic picture of the factory needs to be provided with help

of simulation tools, visualization tools, virtual reality and specific appli-

cations. This reflection of the current state of the factory into the future

can only be useful to engineers if a permanent feedback loop from the real

factory, which enables the monitoring and analysis of the past experience

from earlier states of the factory, is provisioned. This concept is known as

Real-time Factory and the integration of systems and applications in this

domain is the focus of this thesis.

Different heterogeneous applications, legacy information systems and the

management of information flows that require the interconnection of sev-

eral information systems usually define complex integration scenarios.

From past experiences [Gun97, Sny91] , this complexity leads to rigid in-

tegration, high maintenance costs and a lack of flexibility. In order to deal

with this problem, an integration infrastructure acting as middleware be-

tween applications is adopted to increase the connectivity and interoper-

ability. At an enterprise level, the set of software architectural principles

that govern such an integration infrastructure is known as Enterprise Ap-

plication Integration (EAI). The purpose of EAI is to provide the appro-

priate framework for applications and data sources in an enterprise to

seamlessly share their data and processes. The problem domain of this

thesis is defined by the Real-time Factory operational characteristics and

the motivation of this thesis is to find the best suitable EAI-middleware

for the Real-time Factory. The problem domain and the motivation are

described ahead. Section 1.2 describes the vision and objectives of the

proposed architecture as well as the challenges that current manufactur-

ing presents. Finally, Section 1.3 details the structure of this thesis.

1.1 Problem Domain and Motivation 33

1.1 Problem Domain and Motivation

A constantly changing environment pressures manufacturing companies

to achieve a high degree of agility in factories. A constantly changing en-

vironment and the required adaptability have a tremendous impact on the

ICT resources of the factory. The heterogeneity of information systems,

growing complexity of integration are two great agility barriers that cur-

rent manufacturing companies have to deal with. These agility barriers

show the need for comprehensive and flexible integration ICT infrastruc-

tures.

Nowadays, the support of digital planning tools for the needed adaptation

has become indispensable. The so-called Digital Factory offers a complete

digital representation of the factory, in order to reduce the "costs of ex-

perience" [Wes06] The goals of the Digital Factory are mainly to mini-

mize production costs, efficiently organize the use of resources and thus

to increase the productivity of production plants [VDI06]. However, in

a constantly changing environment, there is a fundamental requirement

for the Digital Factory in order to achieve its goals: the evaluation of the

current, past and future state of the factory. The picture offered by the

Digital Factory is a static picture, whereas the real factory changes in a

constant manner. A dynamic picture of the factory can be achieved with

help of simulation tools, visualization tools, virtual reality and specific ap-

plications. This reflection of the current state of the factory in the future

is known as Virtual Factory. However, the Virtual Factory can only be ef-

fective if the past experience from earlier states of the factory is analyzed

and a permanent feedback loop from the real factory is provisioned. This

concept is known as Real-time Factory, which offers an intelligent, real-

time operational management of factory processes and resources. The

goal of the Real-time Factory is to integrate the real factory with the vir-

tual factory by continuously communicating, connecting and evaluating

the factory’s operational data [JWW09].

34 Chapter 1 Introduction

The motivation of this thesis is to find ways to support the flexible infor-

mation provisioning and thus increase the agility of a factory regarding

the management of its ICT resources in the Real-time Factory. There-

fore the motivation is divided into two parts: flexibility and agility. The

Real-time Factory is one of the research areas in manufacturing where

both flexibility and agility are more needed. This is due to the diversity of

information systems to be integrated, namely production planning tools

and monitoring and control manufacturing systems that operate under

real-time requirements and typically follow an event-driven communi-

cation paradigm. Therefore, the heterogeneity of systems and complexity

of integration may become extremely unmanageable in the Real-time Fac-

tory without a comprehensive integration infrastructure that provides the

needed flexibility. The required flexibility for such complex integration

scenario represents the first part of the motivation and is described in Sec-

tion 1.1.1. The second part of the motivation of this thesis is determined

by the required agility in the Real-time Factory. Mergers, acquisitions,

new planning tools, new products, new software versions, new process

flows are all factors of a constantly changing ICT landscape that require

manufacturing companies to manage the life cycle of such ICT resources

in order to achieve the desired agility in an interconnected environment.

The aspect of agility and ICT resource life cycle management is described

in Section 1.1.2.

1.1.1 The Real-Time Factory

In order to achieve a seamless integration between applications in the

Real-time Factory a number of problems regarding the interconnection of

information systems need to be dealt with. These are the communica-

tion between heterogeneous applications and the growing complexity of

integration. The first problem is the extremely heterogeneous landscape

of applications that is encountered for in factories. Different databases,

1.1 Problem Domain and Motivation 35

legacy systems, application servers are distributed across different do-

mains. Information flows in a factory typically require the intercon-

nection of the existing information systems with different applications.

Heterogeneity has been temporarily solved in many occasions by mak-

ing direct system connections as needed, thus leading to a so-called acci-

dental architecture. The accidental architecture is a de facto integration

approach that develops over time, as a result of not having a coherent cor-

porate wide strategy for integration. This represents an ongoing legacy of

point-to-point integration solutions, each with its own flavor of connec-

tivity and integration [Cha04]. This evolution usually leads to unmanage-

able interdependencies between applications. As a result, applications are

extremely tightly coupled. It is precisely the intended solution to hetero-

geneity what has created the second problem over time: the complexity

of integration. As the era of digital manufacturing started, the number of

manufacturing systems and applications and the cost of integration have

grown to unprecedented limits [Mes08]. Therefore, a comprehensive ap-

proach that allows managing the integration of information systems is

needed. In the Real-time Factory, the immediate precondition to adapt to

a constant changing environment is a flexible ICT integration infrastruc-

ture. Such an infrastructure has to be able to seamlessly manage infor-

mation flows across multiple heterogeneous manufacturing systems and

provide the necessary means to support the execution of manufacturing

processes.

1.1.2 Life Cycle Management of ICT Factory Resources

The modern view on manufacturing engineering resides in incorporat-

ing the life cycle paradigm into the factory as a whole, its corresponding

products, manufacturing processes and technologies [JWW09]. This view

includes the ICT factory resources, which involve integration processes,

services , databases, digital planning tools and domain-specific systems,

36 Chapter 1 Introduction

such as Enterprise Resource Planning (ERP) systems, Manufacturing Ex-

ecution System (MES) or Customer Relationship Management (CRM). All

these resources undergo the same changing environment as the whole

factory. This means that these resources, as part of a changing factory,

have their own life cycle as well. The adaptation of these ICT resources

requires a deep analysis of up-to-date production data and history of pre-

vious states of the factory. The up-to-date information about the pro-

duction environment can be referred to as factory context. The history

of data is a concept known as provenance [BKT07], which also contains

detailed descriptions about data and process dependencies. Provenance

can be very valuable information that can be used to interpret the his-

tory of earlier states of the factory and adapt accordingly the affected ICT

resources when changes occur. The correct evaluation of the factory con-

text, provenance and resource information to efficiently adapt such ICT

resources represents the second motivational aspect that is addressed in

this thesis.

1.2 Vision, Objectives and Research Issues

Recent efforts have focused on service orientation to deal with the inte-

gration problems that arise when dealing with a very heterogeneous land-

scape of applications and information systems [Mes08, SML08, HGB05].

Service orientation, or Service Oriented Architecture (SOA), is a software

paradigm to design business applications by using — or reusing — services

which are self-contained, independent and discoverable. Such services

can then easily communicate with other services or even be instantiated

by other processes in a coordinated manner. When these processes are in

charge of executing transactions that integrate different systems or appli-

cations, these will be referred to as integration processes or EAI processes

from now onward. Usually such processes are executed with help of a co-

1.2 Vision, Objectives and Research Issues 37

ordination unit, such as a Workflow Management System (WfMS), or an

integration middleware, such as a message broker or a service bus. SOA

has been widely adopted in the industry due to its service reusability and

loose coupling principles. However, when applying these SOA principles

to integration, enterprises managing services and EAI processes need to

establish a service lifecycle management strategy that supports the mod-

eling, deployment, evaluation and redesign of such integration processes.

The management of services and EAI processes is crucial for the appli-

cation integration in the Real-time Factory. For this reason, only the life

cycles of these two ICT resources, services and integration processes, are

considered for the purpose of this thesis, which is to achieve flexible in-

formation provisioning in the Real-time Factory.

1.2.1 Vision

In this thesis, an integration architecture connecting the real factory with

the Virtual Factory is proposed. This architecture, which is shown in Fig-

ure 1.1, combines a service-based integration middleware with different

services in order to enable the execution of integration processes. The

conception of the middleware, inspired by SOA principles, and its imple-

mentation, which is based on a service bus, has been named Manufactur-

ing Service Bus (MSB). Such processes enable the bidirectional communi-

cation between information systems in the real factory (e.g., production

control system and the shop floor data collection system) and a number

of manufacturing applications that act as link to the Virtual Factory (e.g.

MES, ERP, CRM). Integration processes are modeled in a specific process

editor and can seamlessly connect Virtual Factory applications with in-

formation systems in the real factory through the internal services of the

integration middleware. The connection of applications to the integration

middleware is realized by means of service interfaces, as in a SOA. This

38 Chapter 1 Introduction

enables the management of applications and information systems as en-

capsulated functional units, namely, as services. The life cycle of services

and integration processes are managed in a so-called service provenance-

aware repository, which keeps the necessary information about EAI pro-

cesses, services and factory context. EAI process descriptions are sent to

the repository by means of the process editor. The purpose of this repos-

itory is to provide the necessary provenance information and to adapt

the services and processes that are used to connect different applications

in the Real-time Factory. The repository receives up-to-date information

from the factory through a data stream processing platform, which is con-

nected to the data collection system of the real factory.

1.2.2 Objectives

In order for this vision to be successfully realized, the following objectives

need to be accomplished within the presented architecture:

- Objective 1: Flexible information provisioning. The integration

middleware must enable the flexible provisioning of information to

the involved systems in integration processes. This can be achieved

if the following two goals are achieved. The first goal is the pre-

condition for flexible integration: loosely-coupled components. A

tightly-coupled approach facilitates the proliferation of rigid inte-

gration interfaces which are very difficult to adapt. The second

goal consists in minimizing the impact of changes in applications.

The adoption of new applications in existing integration processes

must be possible without affecting the existing interfaces.

- Objective 2: Improve interoperability. The integration middleware

must process production data from multiple applications in a neu-

tral manner that avoids excluding any information system for hav-

ing an incompatible data format. The proposed middleware must

1.2 Vision, Objectives and Research Issues 39

User Interfaces Factory Data Management

Real-time Factory

CAx PPR PPS

Virtual Factory

EAI Process Editor

Real Factory

Assembly System

Data Stream
Processing

Service
Provenance-aware

Repository

Manufacturing Applications

MES CRM ERP

Production Control
System

Shop Floor Data
Collection

Service-based Integration Middleware

Simulation Visualization

Figure 1.1: Vision for Integration in the Real-time Factory

enable interoperability between applications at the data level and

also at the application level. An integration of the application in-

terfaces is necessary while keeping applications decoupled. Such

an approach facilitates the reuse of the functionality that applica-

tions expose in their interfaces. Further details about the different

levels of integration are given in Chapter 2.

- Objective 3: Adaptability. The adaptability of a factory depends

enormously on its ICT resources [JWW09, WZ09] as well as on the

capability of adaptation of the integration processes and its IT in-

frastructure. Four goals are considered within the concept of adapt-

40 Chapter 1 Introduction

ability in this objective: (i) lifecycle management of ICT-resources,

(ii) reconfiguration, (iii) agility and (iv) knowledge-driven adapta-

tion. The first goal consists in equipping infrastructures with life-

cycle mechanisms to Monitor, Analyze, Plan and Execute (MAPE)

integration processes. Such a cycle, known as the MAPE cycle

[IBM05a] represents a building block of adaptive, self-managing

systems, and thus, it must be considered in the adaptability ob-

jective. The second goal is reconfiguration. This goal is comple-

mentary to a MAPE cycle, since the reconfiguration of processes

is needed for adaptation purposes in every cycle iteration. The

third goal is agility. Agility is a key aspect to increase the respon-

siveness of a factory. An agile adaptation of EAI processes is a

fundamental requirement in case it is required by changes in the

production environment. For this reason, the composition, config-

uration and deployment of EAI processes must be realized as fast

as possible, assisting process editors and providing high-level con-

text information that can be used to update processes. Finally, the

fourth goal is knowledge-driven adaptation. This goal also comple-

ments the MAPE-cycle concept by enhancing the monitoring and

analysis phases. The adaptation of integration processes has to be

done based on knowledge extracted from the domain, which in this

thesis represents the Real-time Factory.

1.2.3 Research Issues

In order to accomplish the objectives mentioned above, there are a num-

ber of research issues, challenges and barriers that need to be met. These

are described ahead:

- Research issue 1: How to deal with multiple vendor installations?

In many industries, software product vendors try to provoke ven-

1.2 Vision, Objectives and Research Issues 41

dor lock-in situations. In such cases, the lack of openness in the

interfaces of the software modules makes it very complex and ex-

pensive to integrate these systems with systems from different ven-

dors.

- Research issue 1: How to avoid tightly-coupled integration? Het-

erogeneity has been temporarily solved in many occasions by mak-

ing direct system connections as needed, thus leading to accidental

architectures. An accidental architecture develops over time as a

result of not having a coherent corporate wide strategy for inte-

gration. This represents an ongoing legacy of point-to-point inte-

gration solutions, which does not scale: as the number of applica-

tions grows, the number of point-to-point interfaces grows expo-

nentially.

- Research issue 3: How to deal with heterogeneity? The archi-

tecture must deal with the vast heterogeneity of systems that are

present in the Real-time Factory, including legacy systems, appli-

cations, event-driven systems, services, integration processes. In

addition to this, the presented architecture must ease the efforts of

integrating new applications that may be added in the future to the

ICT landscape of the factory.

- Research issue 4: How to enable the functional connectivity of ap-

plications? The aspect of heterogeneity also reflects in the inte-

gration at the application level. An important research issue that

needs to be met for the functional integration is the heterogeneity

of the application interfaces.

- Research issue 5: How to provide adaptation mechanisms? In order

to provide the integration infrastructure with the required adapt-

ability, self-managing components need to be adopted. One of the

42 Chapter 1 Introduction

most important challenges in the adaptability objective is to intro-

duce automation mechanisms in the adaptation lifecycles of EAI

processes.

- Research issue 6: How to ease reconfiguration? The ease of recon-

figuration tasks aim to hide the technical aspects of reconfigura-

tion from the user. The idea is that the user does not have to deal

with interface names or binding information. The abstraction of

complexity for the modelers of EAI processes defines this research

issue.

- Research issue 7: How to increase agility? An agile adaptation

of EAI processes can be provided if the knowledge extraction and

analysis tasks are automated or semi-automated in a way that re-

duces user intervention. The challenge in the agility objective is to

reduce the monitoring and analysis tasks that are realized manu-

ally.

- Research issue 8: How to manage provenance and context infor-

mation? In order to provide a knowledge-driven adaptation of EAI

processes, the factory context, service provenance information and

service dependencies need to be analyzed, processed, filtered and

delivered to process modelers. One of the challenges for the real-

ization of these tasks is to manage knowledge information in a way

that is both human and machine interpretable. Moreover, knowl-

edge about the reuse of services in a changing production envi-

ronment has to be managed as well in order to adapt, if needed,

the appropriate EAI processes that integrate services with updated

interfaces.

In order to achieve the aforementioned vision and objectives in the prob-

lem domain that has been described, a number of research issues has to

be overcome (see Table 1.1).

1.2 Vision, Objectives and Research Issues 43

Objectives Research Issues

O1-1.Flexibility of EAI Processes RI-1. Deal with multiple ven-

dor installations while prevent-

ing rigid integration approaches

O1-2. Minimize the impact of

changes in EAI Processes and

application services

RI-2. Avoid tightly-coupled sys-

tems

O2-1. Interoperability at the

data level

RI-3. Heterogeneity of applica-

tions and information systems

in the Real-time Factory

O2-2. Interoperability at the ap-

plicaiton level

RI-4. Enable the functional con-

nectivity of applications

O3-1. Adaptability of ICT inte-

gration infrastructure

RI-5. Enable self-management

features in the integration mid-

dleware. Automation of adapta-

tion cycles

O3-2. Ease of Reconfiguration RI-6. Simplify configuration

tasks and abstract human tasks

from the specific requirements

of IT systems

O3-3. Agile Adaptation RI-7. Automation of knowledge

extraction and analysis tasks

O3-4. Knowledge-based Adapta-

tion

RI-8. Manage dependencies be-

tween data, services and EAI

processes. Manage reusable ser-

vices

Table 1.1: Research Objectives and Research Issues

44 Chapter 1 Introduction

How these research issues are met by the presented approach is detailed

in Chapter 5.

1.3 Structure of the Thesis

The rest of this thesis is structured as follows. In Chapter 2, the foun-

dations and related work to the domain of the presented approach are

given. The foundations of this thesis include a detailed description of the

paradigms and enabling technologies on which the presented architecture

is based, i.e. Enterprise Application Integration [Lin99], Service-oriented

Architecture [PH07, Erl05], semantic interoperability [CS06], service life-

cycle management [Pap08], Web Services [WCL+05] and Enterprise Ser-

vice Bus [SHL+05, Cha04]. Related work is given at the end of Chapter 2

and it describes the limitations of current integration approaches.

In Chapter 3, the principles of integration that guide the proposed so-

lution for the Real-time Factory are given. First, a discussion about the

deficits and lessons learned in past and current integration efforts is given.

These lessons are valuable knowledge that serves as guideline to achieve

the objectives of this thesis. These lessons are applied to the scenario

of the Real-time Factory and the integration requirements of the Real-

time Factory are described. Based on these requirements, the principles

of integration for a middleware infrastructure and for the integration of

Real-time Factory applications are described.

In Chapter 4, the feasibility of SOA-based integration approaches is inves-

tigated based on different research studies in five domains of manufactur-

ing. The investigated domains are: digital factory, ETO enterprises, PLM,

PSS and reconfigurable production systems. The most influential stud-

ies for this thesis are the integration in the digital factory and the study

on the responsiveness of manufacturing companies that was realized on

1.3 Structure of the Thesis 45

the case of an exemplary ETO enterprise. The first study illustrates the

benefits of the integration of the data propagation system Champagne in

an SOA-based architecture. In the second study, different event-handling

mechanisms in service-oriented processes are described.

In Chapter 5, the architecture of the Manufacturing Service Bus [MLJ+10]

is described. The presented approach applies the integration principles

of loose coupling and flexibility. The MSB comprises an integration layer

that enables a seamless integration of information systems and applica-

tions across the factory in a flexible manner and that is capable of increas-

ing the agility of the factory with regard to ICT resources. The proposed

architecture is enhanced with two service management components: a

service repository and an EAI Process Editor, which are used to manage

the services and the integration processes that control the information

flows across information systems in the factory. In Chapter 5, an EAI Pro-

cess Model is proposed. This model is used by the EAI Process Editor to

plan and design the integration processes that enable the exchange of data

in the Real-time Factory and that are executed in the MSB. Furthermore,

monitoring and analysis tasks are automated by a mining process and the

inference process of the service repository, respectively. This closes the

SOA lifecycle gap with the EAI Process Editor, which permits to increase

the capabilities for agile adaptation of the approach. The SOA lifecycle

is implemented following a MAPE-based architecture that implements

a feedback loop from the manufacturing domain (MSB) to the analysis

phase (Service Repository) and from the planning phase (EAI Process Ed-

itor) back to the execution environment in the manufacturing domain. In

Chapter 5, a Real-time Factory Adaptation Model is proposed, which is

followed by the MAPE-based architecture. This architecture implements

a feedback loop and enables the execution of self-managing mechanisms,

thus improving the agile adaptation of integration processes.

46 Chapter 1 Introduction

In Chapter 6, four applicability use cases and the validation and eval-

uation of the approach are given. The first two use cases demonstrate

the usability of the MSB in a real production environment. Both use

cases show the flexibility, interoperability of the approach thanks to the

routing service and other mediation services of the integration architec-

ture, which enables components to remain loosely-coupled. The last two

use cases demonstrate the adaptability and agility features of the imple-

mented MAPE-based feedback loop. The validation of the approach aims

to demonstrate the technical feasibility and applicability and to evaluate

the practical value for the groups of interest. The demonstration of the

technical feasibility is described in Chapter 5. The applicability of the ap-

proach is illustrated in the use cases. Research results are validated in the

assessment of the presented contributions, which is given by an extensive

coverage of the objectives that are described in Chapter 1. The evaluation

of the approach has been realized by the examination of thirty criteria

that have been classified in six categories: interoperability, flexibility, me-

diation, adaptability, agility and integration. These categories are used to

evaluate the MSB approach and to compare it with past and current ap-

proaches in the EAI and SOA domain. Two recent research approaches

to integration and context management in the manufacturing domain are

also evaluated and compared to the presented approach.

In Chapter 7, the conclusions of the thesis and an outlook are given. The

conclusions underline the research results in general and remark the ben-

efits of the approach. The outlook is based on the limitations of the ap-

proach in comparison to other approaches and illustrates future research

challenges.

47

Chapter 2
Foundations and Related Work

This Chapter is organized in two parts: foundations and related work.

The foundations of this thesis, including a detailed description of the en-

abling technologies on which the presented architecture is based, are de-

scribed in Sections 2.1 to 2.4. Related work is detailed in Section 2.5. The

limitations of current research approaches in the EAI domain for manu-

facturing environments are described in Section 2.6. A summary is given

in Section 2.7.

2.1 Enterprise Application Integration

Enterprises dealing with a large landscape of applications need to face

certain integration challenges. The purpose of Enterprise Application In-

tegration (EAI) is to provide the appropriate framework for applications

48 Chapter 2 Foundations and Related Work

and data sources in an enterprise to seamlessly integrate and share their

data and processes [Lin99]. A description of different types of integration

as well as different concepts in EAI middleware are given ahead.

2.1.1 Types of Integration

There are four different types of integration [Lin99]. The first type of

integration takes place at the data level and connects data stores directly

with each other. Its major advantage is that it doesn’t require chang-

ing, testing or redeploying applications. The second type of integration

is done at the application interface level and is based on leveraging ap-

plication interfaces to connect the business logic of different applications.

Within this type of integration, interfaces are used not only to access data,

but also to process information. The third type is called method-level EAI

and intends to share information within different business processes of an

enterprise. The fourth type of integration takes place at the User Interface

(UI) level, also known as screen scraping. It pursues to capture informa-

tion that appears directly on the UI of an application. The advantages of

each type of integration depend on the concrete problem domain.

2.1.2 EAI Middleware

Middleware is the term used to refer to any type of software that allows

one entity, usually an application, to communicate with another entity.

Examples for EAI middleware are application servers or message brokers.

An EAI middleware can manage different models of communication. The

relevant concepts for this thesis are explained ahead.

2.1 Enterprise Application Integration 49

2.1.2.1 Synchronous versus Asynchronous

A middleware system may support two types of communication: asyn-

chronous or synchronous. An asynchronous middleware is capable of

decoupling applications and is non-blocking. As a consequence, applica-

tions can process information independently of what the middleware is

doing. Such a model is typical of systems that deal with the consumption

and reaction to events. A synchronous middleware makes applications

dependent on the middleware because it keeps applications waiting while

processing data.

2.1.2.2 Publish-Subscribe

Publish-Subscribe is a model of communication that has been widely used

in many areas due to its loose coupling properties. In this model, a broker

is in charge of administrating a number of published topics, to which ap-

plications can subscribe. Applications send their messages to the broker,

under a specific category or topic. The broker then forwards the messages

to all interested applications, i.e. to all applications that have previously

subscribed to the same category or topic. The advantage of this model is

that the sender does not need to know anything about the target applica-

tions.

2.1.2.3 Message Brokers

A message broker accounts for all discrepancies in the syntax and se-

mantics of messages that applications share. Message brokers represent

a step forward in decoupling applications. Message brokers can perform

message transformations, routing tasks and even alter the content of mes-

sages. Message brokers are usually integrated in a Message Oriented Mid-

dleware (MOM).

50 Chapter 2 Foundations and Related Work

2.1.2.4 Repository Services

Many message brokers embrace the concept of a repository to archive

all the information that is needed to keep applications decoupled. Such

information includes history of data elements, message schema informa-

tion, metadata, interrelations between applications, process information,

rules and logic for message processing.

2.2 Service Oriented Architecture

Service Oriented Architecture (SOA) [Erl05] is a software paradigm to de-

sign business applications by using -or reusing- services which are self-

contained, independent and discoverable. SOA can empower a business

with a flexible infrastructure and processing environment by provision-

ing independent and reusable automated business processes as services

[PTD+07]. The challenge of integration, the cost of managing IT and the

inflexibility to respond to changing requirements are the decisive reasons

why most organizations adopt SOA. As a matter of fact, for companies

that have focused on internal SOA deployments, the leading investment

has been application, process and data integration [AC05].

2.2.1 The SOA Principles

SOA presents a number of design principles based on the reuse of exist-

ing building-blocks, called services, without requiring any details about

the implementation of these services. Services contain a well-defined in-

terface that describes the functions offered by the service and how to in-

voke these functions. This enables the interoperability of services that are

2.2 Service Oriented Architecture 51

implemented in different programming languages and platforms. Nowa-

days, SOA, as an architectural style, has still an enormous potential for

integration and governance that can be exploited if a number of design

principles is followed. The SOA principles most relevant for this thesis

are described ahead.

2.2.1.1 Reusability

One of the most distinguishing principles of SOA is the reusability of

services. A sustainable and financially prudent approach for IT man-

agers that have to deal with very short application lifecycles demands

reusing existing databases and application services, rather than recreating

the same business processes and data repositories over and over [Lin99].

Reusability is not a new concept proposed in SOA, since it has already

been identified and addressed by previous software paradigms. An exam-

ple is Component-based development, where a component works as an

encapsulated set of functions that other components use. However, the

reuse of services in SOA is much more effective since self-defined inter-

faces guarantee the independence between clients and service providers.

This opens the possibility to aggregate services in higher-level compo-

sitions. This way, new applications can assemble existing services. Ap-

plications that are composed of more than one service are referred to as

composite services. Service aggregation makes it possible for an enter-

prise to orchestrate the execution of more complex composite services

that make use of the functionality offered by more fine-grained services,

independently of programming language or operating system.

2.2.1.2 Loose Coupling

Unlike in an object-oriented approach, services do not need to be instanti-

ated before they are used. This creates a level of abstraction for the client

52 Chapter 2 Foundations and Related Work

when using, or reusing, a service from a service provider, allowing client

and service providers to remain loosely coupled. Loose coupling is one

of the most important preconditions for an enterprise that needs to cope

with the pressure of a changing business environment. In an architec-

ture inspired by this SOA principle, services remain loosely coupled from

one another and the substitution of a specific service in a composite ser-

vice can be easily achieved without making any changes to the rest of the

services within the composition.

2.2.1.3 Discoverability

Services are discoverable building-blocks allowing their descriptions to be

discovered and understood by service requestors that may have interest

in using, or reusing, their processing logic. At a SOA level, the princi-

ple of discoverability refers to the ability of the architecture to provide a

discovery mechanism, such as a service registry or directory [Erl05].

2.2.2 Find, Bind, Invoke

A key communication model that brings the desired level of independence

between service providers and service requestors is the find/bind/invoke

paradigm [W3C04a, Ora05, Cha04]. This paradigm is also known as ser-

vice brokering in the literature [PH07]. Here, a service provider publishes

a service description in a service registry (1). The process continues when

a service requestor asks the registry to find a service that matches certain

criteria (find). Once the registry has found a service matching the criteria

of the requestor (2), it answers with a contract and the endpoint address of

the service. Finally, the service requestor accepts the contract (bind) and

invokes the service (invoke) via the endpoint address (3). This process

can be seen in Figure 2.1. This paradigm exploits the benefit of discovery,

2.2 Service Oriented Architecture 53

but entails a drawback as well. It requires writing the routing and flow

logic into the application, or service requestor that needs to reach the ser-

vice provided by the service provider. This obstacle can be dealt with if a

routing mechanism is included. A method to adopt such a mechanism is

explained in Section 2.3.4.

Service
Registry

Service
Provider

Service
Requestor

(2) find (1) publish

 (3) bind & invoke

Figure 2.1: The Find, Bind, Invoke Paradigm

2.2.3 Web Services

After the establishment of the XML technology set during the e-Business

movement in the late 90s, web services were born as an idea to create a

pure, web-based, distributed technology - one that could leverage the con-

cept of standardized communication frameworks to bridge the enormous

disparity that existed between and within organizations [Erl05]. There-

fore, the success of web services is for the most part due to the stan-

dardization efforts that led to the specification of a number of languages,

inspired on XML, to support the definition of interfaces, messaging, and

the publication of services. These efforts are resumed in the WS-I Basic

Profile [WSI04], which comprises three standards. First: the Web Ser-

vice Description Language (WSDL) [CCM+01], used to describe the pub-

lic interface of a service. Second: Simple Object Access Protocol (SOAP)

54 Chapter 2 Foundations and Related Work

[W3C07a], thought to support the exchange of messages between web

services. Third: Universal Description Discovery and Integration (UDDI)

[Org04], which would be embraced later to support the publishing of ser-

vices and discovery. This way, web services were at their early stage a

complete technology framework, also known as the WS-I basic profile,

robust enough to implement the find/bind/invoke paradigm and collabo-

ration in the definition of SOA as a new architectural style. The definition

of a web service provided by the World Wide Web Consortium makes

an explicit reference to the standards WSDL and SOAP to support the

exchange of messages conveyed over internet protocols [W3C04a]. At

the same time, SOA has evolved inspired by the foundational principles

of reusability, autonomy, composability and discoverability, amongst oth-

ers. This has led to a second generation of specifications, known as WS-*.

For this thesis, not the whole WS-* stack is relevant, but some standards

have been used for the implementation of certain components, such as

the Web Service Business Process Execution Language (WS-BPEL). Other

standards have been investigated and compared with further alternatives

for implementation purposes, e.g., WS-Notification.

2.2.4 WS-BPEL

WS-BPEL [Org07] is the de-facto standard to model composite services

and business processes in service-oriented computing. WS-BPEL is an

XML-based language that emerged in the area of Business Process Man-

agement (BPM) and enables an enterprise to model and execute its busi-

ness processes and to aggregate existing services in a flexible way. More-

over, WS-BPEL allows for a recursive aggregation of services since a WS-

BPEL process can be used, reused, and aggregated as a web service as

well. Worth mentioning for an integration architecture that deals with

events are the various resources of WS-BPEL to handle events. Supported

event types are (1) events that occur when a certain message arrives at a

2.2 Service Oriented Architecture 55

WS-BPEL process instance, and (2) events that occur when a timer is ex-

pired. The first type of events is known as message-based events and the

second type as alarms. The WS-BPEL standard offers different activities

and control mechanisms to process events, once they arrive at a process

instance.

2.2.5 SOA Governance

Many successful enterprises have created value by selecting the right

investments and successfully managing them from conceptualization

through implementation to realizing the expected value. Such decisions

are generally made on the basis of IT governance. The main purpose

of IT governance is to achieve an IT alignment with the goals of an

organization. The decision-making about IT investments, policies and

practices as well as processes to monitor and control IT decisions are

prioritized and are all part of the IT governance of a company. SOA

governance is an extension of IT governance that focuses on the lifecycle

of services and composite applications in an organization’s SOA [HPG06]

and that is still considered as a research gap [PH07]. The main purpose

of SOA governance is to assure that all deployed services in a company

truly contribute to enhance value. A well-implemented SOA governance

strategy enables companies to increase process flexibility, improve

responsiveness, and reduce IT maintenance costs. The adoption of SOA

not only involves the operational aspects of a service life cycle manage-

ment, but also the management of service design policies, reusability

guidelines and service change policies. An enterprise deploying an

EAI middleware based on SOA also needs to establish a governance

framework. Such a framework helps the organization to maximize the

business benefits of SOA and mitigates the business risks of adopting

SOA by guiding the definition of appropriate services and by measuring

effectiveness [HPG06]. To ensure adequate governance, it is necessary

56 Chapter 2 Foundations and Related Work

to manage services as first-class assets throughout the lifecycle [KKR09].

In coherence with the objectives stated in Chapter 1, the focus is on the

reusability of services and on life cycle aspects of service management

within the presupposed SOA governance strategy of a company.

2.2.6 Service Lifecycle Management

In the literature there is no uniform view of the SOA lifecycle. Several

models have been proposed in BPM [ML08], semantic BPM [WMF+07],

software services [KKR09] and Web services [Pap08]. In BPM, lifecycle

models are usually oriented to support process modelers in the develop-

ment of business processes. This support includes discovery and reusabil-

ity techniques. An example of such a lifecycle model is given in [ML08],

which is based on the reuse of process fragments in business processes.

Analysis
and Design

Execution
and

Monitoring

Deployment Provisioning

Construction
and Testing

Planning

Figure 2.2: Service Development Lifecycle from [Pap08]

2.2 Service Oriented Architecture 57

This lifecycle model guides the business user in understanding and adopt-

ing the concepts of using process fragments in business process model-

ing and guides the development of a business process modeling tool and

a business process repository that support reusing process fragments in

business process modeling. Research in Semantic Business Process Man-

agement (SBPM) defines the life cycle of processes in four steps: mod-

eling, implementation, execution and analysis [WMF+07]. This model

leverages semantic annotations in order to exploit automatic semantic-

based discovery in the modeling phase. In the semantic business pro-

cess analysis two features have to be remarked: the first one is process

monitoring which aims at providing relevant information about running

process instances in the process execution phase, the second one is pro-

cess mining that analyzes already executed process instances, in order to

detect points of improvement for the process model [WMF+07]. Regard-

ing SOA, IBM defines the SOA life cycle in four phases: model, assemble,

deploy and manage [IBM05b]. A more generic business and software ser-

vice lifecycle is given by Kohlborn et al [KKR09]. Here, the following

phases are distinguished: service analysis, service design, service imple-

mentation, service publishing, service operation, service retirement. This

model aligns with the common management layers in organizations. The

Service Development Life Cycle (SDLC) is defined for web services as a

highly iterative and continuous approach to developing, implementing,

deploying, and maintaining web services in which feedback is continu-

ously cycled to and from phases in iterative steps of refinement [Pap08].

This cycle is shown in Figure 2.2 and described as follows:

The planning phase is a pre-design phase, which is used to observe and

evaluate the business environment and decide what services need to be

planned. In the planning phase, an analysis of the requirements takes

place. In the analysis and design phase, the business requirements are

mapped to the requirements of a SOA-based implementation. Addition-

ally, reusable services are identified. The appropriate service granularity

58 Chapter 2 Foundations and Related Work

is determined, which is a decisive factor for the reusability of the ser-

vice. In this phase, performance and Quality of Service (QoS) aspects are

determined as well. A service repository with possible reusable, process

fragments as well as process editing tools may be used to support the

design process. After the design phase, the service goes through the con-

struction and test phase. Here, the service is implemented, the service

interface is defined. After these steps, the service is tested. The service

provisioning phase involves decisions on service governance, service au-

diting, service metering and service billing. In this phase, mechanisms for

the management of QoS need to be put in place in order to enforce the

fulfillment of quality agreements and to eventually be able to prove it to

the service consumers. In the deployment phase, the service is published

in a repository for discoverability purposes and deployed in the running

environment. Finally, the service begins to be actually used in the exe-

cution phase, where the necessary monitoring mechanisms are also put

in place. Monitoring is necessary in order to analyze the business envi-

ronment and check the effectiveness of the service functions and thus to

initialize a new iteration of the loop if needed, based on this feedback.

2.3 Enterprise Service Bus

An Enterprise Service Bus (ESB) is a standards-based integration platform

that combines messaging, web services, data transformations and intel-

ligent message routing to connect distributed applications across enter-

prises while assuring reliability and transactional integrity [Cha04]. The

find/bind/invoke operations are inherent to the bus and independent of

the business logic, thus enabling loosely coupled integration components

to be accessed as shared services and thus providing a highly distributed

SOA. An ESB typically supports different messaging, like SOAP [Org07]

or JavaMessage Service (JMS) [MHC00], as well as multiple transport pro-

2.3 Enterprise Service Bus 59

tocols, such as Hypertext Transport Protocol (HTTP) and File Transport

Protocol (FTP), allowing diverse applications to be connected to the bus,

and thus enable the execution of process flows that require the interoper-

ability between heterogeneous applications.

2.3.1 Evolution from MOM to ESB

The major difference between MOM and an ESB is the total separation

between the routing logic of the middleware and the application logic.

Services are configured instead of coded [Cha04]. Moreover, the ESB sup-

port for multiple transport protocols makes it a preferable option when

spanning physical network boundaries. Another characteristic of an ESB,

which is not found in regular MOM, is an integrated support for orches-

tration. An ESB provides a range of process flow capabilities in order to

define business processes for one or across multiple business units. Or-

chestration within an ESB is usually provided by a WS-BPEL engine.

2.3.2 Mediation Services

A very remarkable and distinguishing advantage of an ESB is that me-

diation services, which are the means by which the ESB can ensure that

a service requestor can connect successfully to a service provider (e.g.,

transformation and routing services), can be provided by third parties

[SHL+05]. This feature allows for adding and manipulating mediation

services, without affecting service providers or consumers, which con-

tributes to achieve a higher level of flexibility.

60 Chapter 2 Foundations and Related Work

2.3.3 Real-time Throughput of Data

The characteristics of an ESB enable applications and services to act

as service endpoints that can readily respond to asynchronous events

[Cha04]. This concept of integration eliminates the latency problems that

originate in the commonly used nightly batch processing. The real-time

throughput of operational data up to the business-level applications

provides a great opportunity for enterprises to increase their agility

in constantly changing environments that are under great adaptation

pressure, such as the Real-time Factory.

2.3.4 Content-based Router

Content-based routing is an integration pattern in the category of

message routers [HW03] which can be found in messaging systems. A

Content-Based Router (CBR) routes a message to the correct recipients

based on the message content. This pattern is typical of an ESB. A

CBR represents the best match alternative for the implementation of

loosely coupled environments. With a CBR put in place, the message

sender does not need any knowledge of the interactions or destinations

for the messages it produces, since the CBR looks into the content of

each message and forwards it to the correct destinations based on this

information. A CBR is a type of message routing pattern that is widely

adopted in SOA [CN08].

2.4 Semantic Web Technologies

The semantic web initiative [SHB06, BL98] intends to facilitate the un-

derstanding of meaning of information [She99]. Semantic interoperabil-

ity issues often arise when solving EAI scenarios via the SOA paradigm,

2.4 Semantic Web Technologies 61

such as slow discovery processes or required human intervention during

the definition of mappings. A number of semantic web standards have

been proposed by the W3C to deal with problems regarding semantic in-

teroperability. The standards that are relevant to this thesis are described

ahead.

2.4.1 Resource Description Framework

Resource Description Framework (RDF) [W3C04b] is a standard model for

data interchange on theWeb. RDF offers features that facilitate data merg-

ing even if the underlying schemas differ, and it specifically supports the

evolution of schemas over time without requiring all the data consumers

to be changed [W3C04d]. RDF is used to model the relationships between

two entities. This is done in form of subject-predicate-object statements,

also known as triples or RDF-triples. All three parts of a triple are identi-

fied by a Universal Resource Identifier (URI) [IET05].

2.4.2 The Web Ontology Language

The term ontology originally refers to the metaphysical study of the na-

ture of being and existence. In the field of knowledge engineering, an

ontology is a data model that represents a conceptualization of the world

within a domain. The term is tightly related with semantics. An on-

tology usually contains: classes, individuals, attributes, relations, restric-

tions, rules and axioms. Ontologies are used to model knowledge and

thus to share the same definitions of terms. A very important usage of

ontologies is the establishment of knowledge bases to be able to perform

reasoning processes and thus to derive higher-level context information.

A few ontology languages have been developed so far, but one of them

has prevailed: The Web Ontology Language (OWL) [W3C04c] proposed

62 Chapter 2 Foundations and Related Work

by the W3C. OWL possesses certain features inherited from description

logics, such as the ability to realize inference operations. It is inspired on

the W3C standard RDF Schema (RDFS) [W3C04d], which was designed to

share RDF vocabularies. OWL offers a higher expressiveness than RDFS.

The OWL language provides two specific subsets: OWLDL and OWL Lite.

The complete OWL language is known as OWL Full to distinguish it from

the subsets. OWL Lite is preferred if a friendly syntax or decidable infer-

ence are on the top priority. OWL Lite has an even simpler syntax but it

is less expressive. It is a syntactic subset of OWL DL and it has a more

tractable inference. OWL DL puts constraints on the mixing with RDF

and requires classes, properties, individuals and data values to be disjoint.

Finally OWL Full is the most expressive version and OWL Full allows the

free combination of OWL with RDF Schema. Moreover, OWL Full does

not enforce a strict separation of classes, properties, individuals and data

values. For further information on OWL and other ontology languages, it

is recommended to consult the literature [W3C04c, W3C04d, HPH03].

2.4.3 Semantic Web Services

The purpose of semantic web services is to increase quality of discovery of

appropriate services by appropriately describing what services do [CS06].

WSDL does not contain semantic descriptions, it only specifies the struc-

ture of message components using XML Schema constructs. In order to

solve problems regarding semantic interoperability, which arise in the ex-

change of data, some standardization efforts have been made to support

the interoperability between web services. A standard of interest for the

annotation of web service descriptions is the Semantic Annotations for

WSDL and XML Schema (SAWSDL) [W3C07b]. SAWSDL is an evolu-

tion of WSDL-S and defines how semantic annotations can be included

into WSDL documents with references to conceptual models. SAWSDL

offers direct support for functional and data semantics. Service providers

2.5 Current State of Integration 63

can additionally incorporate non-functional and execution semantics with

the WS-Policy framework [W3C06, Spe10]. This is an important feature

to improve and to accelerate service discovery [SSV+04]. The most im-

portant benefit of SAWSDL is that it allows a free choice of language for

the definition of terms in the conceptual model that is referenced from an

SAWSDL document. This feature offers great flexibility.

2.5 Current State of Integration

In this section, the current state of integration is described by presenting

related work in different research areas that are relevant to the area of ap-

plication of this thesis. First, an overview of the planning and production

environments in manufacturing is given. Then, context-aware applica-

tions and currently applied methods of integration are described. In Sec-

tion 2.5.3, a number of approaches that realize an event-driven SOA are

presented followed by a very active area of research, namely adaptability

in BPM. An approach following the Model-Driven Architecture (MDA)

paradigm to solve EAI scenarios is also described. Finally, the limitations

of current research approaches in the EAI domain for manufacturing en-

vironments are described.

2.5.1 Overview of Production Environments

In this Section, an overview of production environments is given. Three

levels are distinguished: the production planning level, the production

control level and the production process control level. The planning level

is usually governed by an ERP system and other tools used in the produc-

tion plannning, such as layout planning tools or Computer-Aided Design

(CAD) tools. The production control level is ruled by the MES. The MES

64 Chapter 2 Foundations and Related Work

SHOP-FLOOR

• SCADA
• PLC
• Devices

• Ressource Allocation/Status
• Operations Scheduling
• Production Dispatching
• Data Collection/Acquisition
• Quality Management
• Process Management
• Maintenance

• Finance
• Human Resources
• Inventory Management
• Purchasing Management
• Quality Management
• Sales Management

MES

OPC OPC UA

ERP

Figure 2.3: Production Planning, Procuction Control and Process Control

performs tasks related to the scheduling of operations and to the acqui-

sition of data from the shop-floor, including resource status data, qual-

ity management data and maintenance data. The process control level

comprises several production systems, including devices, Programmable

Logic Controllers (PLC) and Supervisory Control and Data Acquisition

(SCADA) systems. At each level, there are different protocols and star-

dardized data models that manage production data at each level and trans-

fer it to the next level. These standards include data models, such as the

norm ISA-95 [Int00] for production control systems, and communication

protocols, such as Object Linking and Embedding for Process Control -

Data Access (OPC-DA) [OPC02], which specifies the real-time commu-

nication standard to access data in devices from different vendors at the

shop-floor level. Recently, these specifications and standards in the man-

ufacturing industry have been updated in order to comply with the recent

trends in integration, namely XML and SOA. Thus, ISA-95 data can also

be represented by means of the Business to Manufacturing Markup Lan-

2.5 Current State of Integration 65

guage (B2MML) [WBF08b], which is a XML-based implementation of the

ISA-95 model. In the same manner, BatchML [WBF08a] is becoming a

well-accepted alternative to the ISA-88 in order to exchange master data

or equipment data, and OPC Unified Architecture (OPC-UA) [OPC09],

which is the most recent specification from the OPC Foundation, updates

the former OPC specification in order to enable the cross-platform com-

munication between devices in service-oriented architectures. The whole

picture of these standards in production environments is shown in Figure

2.3.

2.5.2 Context-aware Applications and Integration

Context-awareness is a fundamental requirement for applications that op-

erate in constantly changing environments, such as a factory. For mod-

eling the context of a factory, the Smart Factory approach represents a

context-aware manufacturing environment to handle turbulences in real-

time production using a decentralized information and communication

platform [LCW08]. This platform, known as Nexus [SFB01], supports a

large variety of context-aware applications. A global context model is

provided by a federation layer that integrates different local models to an

integrated view [NGS+01]. This model of integration has proven to be a

valid approach for providing information to location-based and spatially

aware applications. On the research of adaptability of information sys-

tems in manufacturing environments, the data change propagation sys-

tem Champagne [CHL+05] has to be remarked. This solution supports

the enterprise by a generic approach capable of managing data dependen-

cies between information systems and of transforming data from a source

information system to dependent information systems [CHM02]. The

prototype comprises a propagation engine that interprets routing scripts

based on the eXchangeable Routing Language (XRL) [VVK01], a data de-

pendency manager to edit the routing scripts as well as their embedded

66 Chapter 2 Foundations and Related Work

transformation scripts, which are written in XSLT files, and a repository

to support both [RCH+02]. XSLT [W3C99b] is a language for transform-

ing XML documents into other XML documents. Champagne has been

proven to provide a flexible integration solution in a manufacturing en-

vironment by integrating a Digital Factory solution, a factory planning

table and an assembly configuration tool [CHL+05]. Moreover, Cham-

pagne is able to access data of data services by using a self-defined Data

Service Description Language (DSDL) to create the appropriate transfor-

mation scripts and to request access to the data [HCM05]. Champagne

has also been in focus of research to integrate and provide the system as

a service in service-oriented integration platforms [MJH+09].

2.5.3 Event-driven SOA

The challenges of integrating explicit and implicit service interactions

that can be found in SOA and Event-Driven Architecture (EDA), respec-

tively, have called the attention of several research groups [M06, QYS+08,

LC08, WMK+08]. A combination of both architecture styles — SOA and

EDA — is introduced in [WMK+09]. The result is a model based on

Event-driven Process Chain (EPC) flowcharts representing a standard-

ized, event-centric business process notation for defining an initial pro-

cess model. This initial model is then transformed into WS-BPEL as a

service-centric execution model for actual process enactment. Regard-

ing the mapping of EPC to WS-BPEL, several transformation techniques

are combined to preserve the structures of the EPC graph in the WS-

BPEL process model and to map these to the correct WS-BPEL activi-

ties. A mapping of the EPC graph to simple events and the specification

of Event-Condition-Action (ECA) rules in a Complex Event Processing

(CEP) system makes the deduction of complex events possible. These

complex events trigger the corresponding WS-BPEL process instances.

2.5 Current State of Integration 67

The main advantage of this approach is the separation of tasks for do-

main experts, which design the EPC graphs, and for IT experts, which

manually add WS-BPEL details at the end of the mapping process. In

order to enable the integration of web services into EDA, the specifica-

tions WS-BaseNotification [Org06a], WSBrokeredNotification [Org06b]

and WS-Topics [Org06c] were defined as a publish/subscribe notification

standard. However, these specifications cannot differentiate between sim-

ple and complex events. They do not define any mechanism for event

correlation and are not as expressive as other CEP solutions. That is one

reason why several approaches work on extending the expressiveness of

these specifications, as in [DS08].

2.5.4 Adaptive Business Management

An approach to achieve quick adaption of processes is Adept2 [RRK+05],

which provides adaptive process management and visualization of the ef-

fects of ad-hoc instance modifications. Another option to support domain

experts is to mine action patterns from existing process model collections

and suggest additional activities to the modeler during the modeling act,

as in [SWM+09]. Furthermore, this kind of support for process modelers

can be extended to the optimization of processes. To achieve this, a busi-

ness optimization platform is needed to manage formalized process opti-

mization patterns for detecting and implementing process improvements

[NRM11]. SBPM represents another option to optimize the management

of business processes. SBPM aims to achieve a higher degree of automa-

tion in BPM by using semantic technologies. The functional requirements

for each phase of the BPM lifecycle and the benefits of adopting seman-

tic technologies are explored in [WMF+07]. The major benefits are the

possibilities for automated service discovery and for dynamic binding of

services to process tasks during process execution. A reference architec-

ture [KVL+08] and implementation of a SBPM system has been carried

68 Chapter 2 Foundations and Related Work

out within the SUPER project [SUP09]. The integration layer is based on

a semantic service bus. This contribution is a conceptual architecture that

focuses on service orchestrations.

2.5.5 A Model-driven Approach

A different point of view to solve EAI scenarios is to generate executable

code based on data integration models. The GENIUS tool [SL09] is a rep-

resentative example of such solutions. GENIUS is a model-driven ap-

proach that uses a parameterization of integration patterns methodol-

ogy to generate executable EAI artifacts for different execution environ-

ments. Comparable approaches can be found in the literature [BSM+06,

FYL+08].

2.5.6 Service Provenance

Service provenance is usually adopted in approaches that focus on mon-

itoring quality of service in service runtime environments. In [MRL+09],

the authors propose an approach, called VRESCo, where service prove-

nance graphs are built to visualize service events and metadata. The

VRESCo runtime environment also processes provenance queries, which

can be used to establish provenance subscriptions. Moreover, it com-

prises mechanisms for advanced event and notification processing in ser-

vice runtime environments [MRL+08]. The concept of semantic prove-

nance was introduced in [SSH08] for e-science domains. This approach

advocates the creation of high-quality information using specialized ser-

vices.

2.6 Summary 69

2.5.7 Limitations of Current Research

The Champagne [RCH+02] approach and the Smart Factory [LCW08] are

two research projects designed to integrate manufacturing applications

and to manage context in factories, respectively. The missing flexibility

and agility is especially remarkable in these approaches. The lack of an

integration model in Champagne prevents the framework itself to react

to turbulent scenarios or other domain-specific situations that require a

quick adaptive reaction of the integration processes. The lack of an in-

tegration model does not contribute to reduce the complexity of integra-

tion, since users are not assisted in the adaptation of its transformation

and routing scripts. In the Smart Factory [LCW08], the management of

context information in the factory is realized in a very effective man-

ner [LCW09] by leveraging the benefits of the Nexus augmented reality

model [NGS+01]. However, the approach lacks the mediation services

and self-adaptation mechanisms that would provide the framework with

more adaptability and agility. Current research approaches, such as the

Semantic Service Bus [KWV+07] in the SUPER project [SUP09], GENIUS

[SL09] or Adept2 [RRK+05], adopt the service-orientation paradigm in

the EAI and BPM domains in order to fill the adaptability and agility gap

in IT infrastructure systems. The adoption of the SOA paradigm in the

EAI domain of manufacturing environments is investigated in this thesis.

The adoption of the SOA paradigm in the manufacturing domain entails

several integration principles, which are summarized in Chapter 3. The

proposed approach of this thesis relies on these integration principles.

2.6 Summary

In this chapter, the foundations and related work to the research issues

described in Chapter 1 are given. First, the fundamental concepts of

70 Chapter 2 Foundations and Related Work

EAI have been explained, including the distinction between the different

types of integration, the concept of middleware as well as the most in-

fluential communication and messaging patterns in current approaches.

In this Chapter, the paradigm of service orientation has been described,

as well as web services, which represent the most accepted implementa-

tion of the SOA paradigm. The principles of integration for the Real-time

Factory in Chapter 3 and the integration approach presented in Chap-

ter 5 are based on the SOA principles, which are explained in Section

2.2.1, and on the ESB, which is a standards-based integration platform

based on SOA concepts (see Section 2.3). A quick overview of seman-

tic technologies is given in Section 2.4. Finally, the current state of in-

tegration is given describing different research projects in the domains

that are relevant to the area of application of this thesis, such as adapta-

tion [SWM+09, RRK+05, NRM11, WMF+07], factory context management

[LCW08, LCW09] and integration [RCH+02, CHL+05], as well as event-

driven SOA [M06, WMK+09, Org06a]. Current research approaches in the

EAI domain for manufacturing environments have some limitations, such

as the lack of flexibility and mechanisms for the agile adaptation of in-

tegration processes. Based on these limitations, the adoption of the SOA

paradigm for EAI scenarios in the Real-time Factory stands out as the

most appropriate approach to follow, as illustrated by other SOA research

projects in the EAI and BPM domains [KWV+07, SL09, RRK+05].

71

Chapter 3
Principles of Integration for the

Real-time Factory

In this Chapter, the principles of integration that guide the proposed

solution for the Real-time Factory are given. Based on the foundations

and current software paradigms, as well as the current state of integration

offered in Chapter 2, this Chapter offers an insight into the principles of

integration for the Real-time Factory.

First, a discussion about the deficits, potential and needed optimization

in past and current integration efforts is given in Section 3.1, which de-

tails some of the lessons from past systems integration strategies. These

lessons are valuable knowledge that serves as guideline to achieve the

objectives of this thesis. In Section 3.2, it is described how these lessons

apply to the scenario of the Real-time Factory and which integration re-

quirements the Real-time Factory presents. Based on these requirements,

the principles of integration for a middleware infrastructure are given

72 Chapter 3 Principles of Integration for the Real-time Factory

in Section 3.3. In Section 3.4, the principles of integration for Real-time

Factory applications are described. How a SOA-based approach matches

these principles is explained in Section 3.5. Finally, a summary and some

conclusions are given in Section 3.6.

3.1 Lessons Learned

A number of studies [Sny91, Gun97, Eva01, Sin97] show that past and cur-

rent integration initiatives in manufacturing, e.g. Computer-integrated

Manufacturing (CIM) [Wal92], struggle to achieve the expected results.

In the case of CIM, a number of integration and adaptability issues have

been proven crucial for the successful implementation of such a cross-

departmental integration strategy. These issues can be identified as: or-

ganization, strategic, behavioral, operational and technological [Gun97].

Regarding the technological issues there are four important findings that

have been reported in the past.

- Problem 1: Multiple vendor installations. Most manufacturing

firms have many multivendor computer-based systems that

have evolved independently. The need to connect computer and

departmental system has been addressed by vendors of specialized

interface equipment to provide a means for heterogeneous system

interconnection [Sny91]. This has led in many cases to an

accidental architecture, which is extremely complex and expensive

to maintain.

- Problem 2: System incompatibility. The lack of infrastructure and

integration methods has been a great obstacle to achieve the de-

sired system compatibility [Gun97]. System incompatibility is per-

ceived to be important and has been discussed in the literature for

quite some time. Much progress has been made in addressing the

3.2 Integration Scenario: the Real-time Factory 73

incompatibility problem as it relates to linking automation on the

factory floor. It remains problematic, however, for firms trying to

achieve a higher degree of functional integration - linking diverse

systems across functional boundaries [MS94].

- Problem 3: Lack of flexibility. As pointed out by Babbar and Rai

[BR90], while CIM integrates the system components, it does not

necessarily introduce flexibility into the system. This is due to a

high number of point-to-point interfaces, which lead in many cases

to a rigid integration of tightly-coupled applications.

- Problem 4: Lack of Standards. The lack of a unique set of stan-

dards that fulfills all the requirements of a CIM system. Although

many commendable results have been obtained from various stud-

ies, more than one standard has emerged, resulting in confusion

for potential users [BDE95, NG94].

In order for an integration strategy to be successful, not only technologi-

cal aspects are decisive, but also organizational and strategic aspects, such

as the commitment of top management or the aversion to risk of invest-

ing in new technology, can be crucial. In this thesis, it is assumed that the

implementation of the proposed integration architecture would be em-

bedded in the integration strategy of a company that takes into account

such non-technological issues as well.

3.2 Integration Scenario: the Real-time Factory

Based on the findings and experience reports regarding the technological

aspects of CIM systems, some observations in terms of today’s perspec-

tive on the described problems are given in this section. Also, how these

74 Chapter 3 Principles of Integration for the Real-time Factory

Information Management

Process Management

Simulation & Visualization

Real-time Operation
Management g

Virtual Factory Tools Factory Data Management

CAx PPR PPS

Virtual Factory

Real Factory

Assembly System

Production Control
System

Shop Floor Data
Collection

Simulation Visualization

Process
Planning

Resource
Planning

Cognitive
Devices

Sensor
Networks

Figure 3.1: The MSB and its Five Layers of Integration

problems relate to the integration scenario of this thesis, the Real-time

Factory, is described in this Chapter.

The Real-time Factory tightly integrates the Real Factory with the Virtual

Factory by continuously communicating, connecting and evaluating the

factory’s operational data [JWW09]. As shown in Figure 3.1, the main

objective of this integration is to achieve a real-time operational manage-

ment of the processes and resources of the factory. This can be achieved

by supporting the process and resource planning tasks of the Digital Fac-

tory with the leverage of sensor networks and cognitive devices that ac-

3.2 Integration Scenario: the Real-time Factory 75

quire the actual state of the factory, e.g. machine states, flow of material

or product quality. By using ubiquitious computing techniques and self-

organizing sensor networks, data is collected, aggregated and processed

in an intelligent way. These data are integrated and managed in a reposi-

tory forming the basis of context-aware systems in the Real-time factory

[WJE+05]. This basis comprise factory information management as well

as process management in order to provide the simulation and visualiza-

tion tools of the Virtual Factory with the up-to-date information about

the operational state of the factory.

In order to aggregate all factory data relative to the resources and pro-

cesses, it is necessary to provide an integration platform that complies

with certain requirements. Regarding the realization of such an integra-

tion platform for the Real-time Factory, these requirements derive from

the application of the lessons learned of the integration efforts made in

the past in the manufacturing domain, e.g. CIM, to the Real-time Fac-

tory. These integration requirements are summarized in Sections 3.3 and

3.4. The requirements for the Real-time Factory are also based on some

observations in terms of today’s EAI technologies and standards. The

observations are detailed ahead:

- Multivendor installations. Solution providers rarely cover all areas

involved in the Real-time Factory, therefore the problem of multi-

ple vendors remains as part of the motivation of many integration

scenarios, including the Real-time Factory, at least for the next few

years. The actual problem is the accidental architecture evolved

in many companies. In order to solve this issue, companies have

widely adopted SOA-based solutions. As the AMR Research survey

in 2005 shows, 72% of the internal SOA deployments aimed for ap-

plication, process and data integration [AC05]. However, this sur-

vey also shows a substantial increase in companies that cannot re-

configure business processes as needed (three times higher in com-

76 Chapter 3 Principles of Integration for the Real-time Factory

panies using SOA compared to companies planning to use SOA).

This reveals the need to implement the mechanisms that can ease

the reconfiguration of processes (especially in SOA environments).

The reconfiguration of processes is a fundamental requirement of

the Real-time Factory. Therefore, the challenge of reconfiguration

is critical for the success of the presented approach.

- System compatibility. The leverage of XML and Web Services has

reduced part of the system incompatibility problem. By separat-

ing the interface definition and the application logic, current in-

tegration middleware solutions can actually provide the required

mechanisms to increase system interoperability. The problem of

functional integration that was accounted for in multiple CIM sur-

veys has been addressed by BPM technologies, such as WS-BPEL

[Org07]. Moreover, current integration solutions based on an ESB

architecture offer diverse connection choices that reduce the effort

required to connect applications to the ESB. Some of these choices

include SOAP/HTTP, JMS [MHC00], FTP or Simple Mail Transport

Protocol (SMTP).

- Flexibility. The lack of flexibility is actually a problem that has per-

sisted over time. The abundance of approaches based on a tight

integration and the increasing complexity of current scenarios is

responsible for the persistence of this problem. As described in

Chapter 1, the lack of flexibility is one of the most important issues

in the Real-time Factory. The changing conditions of the produc-

tion environment require a high degree of flexibility regarding the

reorganization of the involved ICT factory resources.

- Standardization. The lack of standards is no longer a problem re-

garding integration. As it will be shown in the next Chapter, the ac-

ceptance and adoption of XML and web services standards (WSDL,

SOAP, UDDI) has enabled that different functional domains of the

3.3 Principles of Integration for Middleware Infrastructures 77

manufacturing industry can speak the same language regarding the

exchange of data, such as the B2MML [WBF08b] or STEP-XML

[Int07a]. However, standards alone do not guarantee the success

of an integration approach. A number of issues need to be taken

into account in the Real-time Factory, such as the need for asyn-

chronous communication, the need to manage domain knowledge

regarding the life cycles of the installed services and integration

processes and the agility that is required to adapt services and pro-

cesses. An integration scenario with dozens of systems and hun-

dreds of point-to-point interfaces based on the request/reply mech-

anism can result in a very tightly-coupled and complex integra-

tion approach, independently of the fact whether communication

is made using SOAP messages over HTTP. This shows that stan-

dards are not a sufficient condition to achieve the desired flexibility

and agility, provided by more loosely-coupled approaches.

These observations under the current perspective serve as guideline to es-

tablish the integration principles that are put into practice in the proposed

integration approach for the Real-time Factory.

3.3 Principles of Integration for Middleware

Infrastructures

Based on the aforementioned observations on integration issues under

the current perspective and on the integration challenges of the Real-time

Factory, which were described in Chapter 1, there are a number of prin-

ciples of integration to follow. The principles of integration that are de-

scribed in this section are to be applied to the conceptualization and to the

design of a middleware architecture that intends to meet the challenges

of integration in the Real-time Factory.

78 Chapter 3 Principles of Integration for the Real-time Factory

3.3.1 Ease of Reconfiguration

One of the most important requirements for the Real-time Factory is

the adaptation of its information flows to the constantly changing con-

ditions. Such information flows extract, transform, route and load data

from diverse applications and systems thus enabling a seamless integra-

tion. Sometimes, changes need to be made in these information flows.

For example, a data source may update the XML schema of its output or a

data transformation service may require new input data. Sometimes, the

evaluation of the factory context may point to wrong operations, such as

false failure detection, produced by wrong configuration of an informa-

tion flow. The configuration of information flows is crucial for the correct

execution of all integration services that are needed when two or more

systems exchange data. A correct execution of such integration services

includes for instance the correctness of the order of execution, the cor-

rectness of the exchanged data and appropriate timing. The Real-time

Factory is a changing production environment that requires information

flows to be changed and adapted. This can be done by means of recon-

figuration. Keeping in mind the objective of increasing responsiveness,

which was stated in Chapter 1, reconfiguration must be done with ease.

This involves abstracting humans from complex parsing expressions or

transformation scripts in the phases of modeling and adaptation of infor-

mation flows.

3.3.2 Loose Coupling

A fundamental requirement for the desired agility in the Real-time Fac-

tory is a loosely-coupled integration. Loose coupling is best defined by

defining the opposite. Two systems are tightly-coupled when one of them

needs explicit knowledge about the other, e.g. by means of a handle that

contains a reference to an endpoint, in order to define their dependency.

3.3 Principles of Integration for Middleware Infrastructures 79

Therefore, loosely-coupled systems do not need any knowledge about

each other in order to exchange data. An integration middleware that

keeps information systems and applications loosely-coupled provides a

great degree of flexibility in terms of adaptation, enabling the reorganiza-

tion of integration processes without having to modify the business logic

of the involved systems and applications.

3.3.3 Asynchronous Thinking

Information systems and manufacturing applications in production envi-

ronments are usually interconnected following mostly a pattern of asyn-

chronous communication. Most interchanged messages at the shop floor

level are based on some kind of event, alarm or notification. Such events

are associated with an event emitter and one or more event consumers

that react to the event according to a prefixed procedure. The software

architecture paradigm for this type of event-centralized communication

and integration of systems is known as EDA. EDAs are needed in the

shop floor of factories to propagate business-relevant events to the ap-

propriate destination within the enterprise. This architectural model re-

quires asynchronous messaging mechanisms, such as Message Queuing

(MQ) [BHL95]. These mechanisms have proven to provide reliability

[HW03, Hoh04], but at the same time asynchronous communication in-

troduces a number of issues. These issues, which were defined as "Ar-

chitect’s Dream or Developer’s Nightmare" [Hoh07], are due to the ac-

customed thinking of synchronous messaging. However, asynchronous

messaging mechanisms are needed in the Real-time Factory due to the

need of propagating multiple events that originate at the shop floor and

that are relevant to other manufacturing applications.

80 Chapter 3 Principles of Integration for the Real-time Factory

3.3.4 Standards-based Integration

The leverage of standards enables companies to avoid vendor lock-in sit-

uations, as well as specialist consultants, which reduces the costs of inte-

gration. Additionally, the usage of standards enables a company to inte-

grate internal applications with business partner applications, such as the

integration of a procurement system and a customer order application of

a supplier. The emergence of standards and industry specifications, pro-

duced either by vendor alliances or by standards consortia, is the result

of the lessons learned from the past, including the interoperability issues,

the lack of flexibility and the increasing costs of integration. Therefore,

an integration middleware must support the most common standards and

protocols in their domain regarding communication, transport and mes-

saging. Among the most relevant and meaningful standards for integra-

tion in the last decade is XML, which is a de facto standard in the industry

for sharing structured data among applications. In the manufacturing in-

dustry, a number of well-accepted standards and specifications need to

be taken into account by a middleware infrastructure. These include data

models, such as the norm ISA-95 [Int00] for production control systems

or the Standard for the Exchange of Product Model Data (STEP) [Int07b]

for the exchange of product-related data, and communication protocols,

such as the OPC-DA Specification [OPC02], which specifies the real-time

communication standard to access data in devices from different vendors

at the shop floor level. Recently, these specifications and standards in the

manufacturing industry have been updated in order to comply with the

recent trends in integration, namely XML and SOA. Thus, ISA-95 data

can also be represented by means of B2MML [WBF08b], which is a XML-

based implementation of the ISA-95 model. In the same manner, STEP-

XML [Int07a] is becoming a well-accepted alternative to the STEP file

in order to represent product data, and OPC-UA [OPC09], which is the

most recent specification from the OPC Foundation, updates the former

3.4 Principles of Integration for Real-time Factory Applications 81

OPC specification in order to enable the cross-platform communication

between devices in service-oriented architectures. The evolution of stan-

dards and specifications in order to adapt to current trends and the emer-

gence of new standards need to be taken into account in the conceptual-

ization, design and implementation of a middleware architecture for the

Real-time Factory.

3.4 Principles of Integration for Real-time

Factory Applications

The following principles of integration serve as guideline for applications

that are connected to a middleware in the Real-time Factory. The im-

plementation of these principles is a fundamental requirement for appli-

cations in order to achieve the desired degree of flexibility, agility and

adaptability in the Real-time Factory.

3.4.1 Well-defined Interfaces

The information flows that seamlessly integrate applications across the

enterprise need to be composed before they can be executed. The com-

position of such information flows requires certain knowledge about the

applications’ functionality that they are putting together. Moreover, an

application needs to describe its interface in order for other applications,

or a middleware, to know how to interact with it. Such a description must

include the specific protocol bindings that the application supports, how

to invoke operations and where to send messages. This information must

be well defined in order to be human-readable and machine-readable. The

latter is a requirement for environments that need to support a certain de-

gree of automation.

82 Chapter 3 Principles of Integration for the Real-time Factory

3.4.2 Separation of Implementation and Interface

The interface of an application defines the functionality that is visible to

others and provides information about how to access this functionality,

e.g. the operations available, protocol bindings and data types. These are

publicly available descriptions that other applications can use to know

how to invoke the functionality of a specific application. The implemen-

tation of the different functionality is usually hidden from external enti-

ties. This concept is inherited from modular design principles of software

architectures and it’s important that this principle is kept in the Real-

time Factory. The implementation of business functions can be realized

by a specific software package, a suite of components, a legacy applica-

tion or a commercial application. The implementation details should be

kept isolated from the interface definition in order to cause the minimum

amount of disruption to other components when changing parts of the

implementation. In order to face the challenge of heterogeneity in the

Real-time Factory, applications that connect to a middleware need to pro-

vide platform-independent interface descriptions. Applications can easily

comply with this requirement if the interface is kept separated from the

implementation details. It is irrelevant if the implementation of an appli-

cation’s functionality is realized in Java, .NET, or other programming lan-

guage, as long as these details are independent of the interface definition.

This way, a middleware can integrate multiple applications independently

of the implementation platform.

3.4.3 Standards-based Interfaces

Provided the separation of the interface from the implementation details,

applications must focus on interface definitions that lead to a better in-

teroperability. In order for applications to be effectively integrated and

to minimize the costs of integration, the leverage of standards for the

3.5 Service Orientation as an Integration Approach 83

description of interfaces becomes a fundamental requirement. For the

interoperability of an application, it is essential that other applications

understand the capabilities and the functionality, including its syntax and

semantics that it provides. In the case of a middleware that decouples

applications, the reuse of the business functions that applications pro-

vide can be facilitated by leveraging standards that ease the definition

and interpretation of the capabilities, which are described in the interface.

This way, by easing the reuse of business functions, the composition of

complex business services can be accelerated. Furthermore, well-defined

standards-based interfaces favor a higher degree of automation regarding

the composition of information flows that integrate business functions

that are distributed across multiple applications.

3.5 Service Orientation as an Integration

Approach

The principles of integration for middleware architectures and applica-

tions in the Real-time Factory that have been described in this Chapter

can be implemented by a service-oriented approach. The match between

the principles of the SOA paradigm and the aforementioned principles

has guided the conceptualization, design and implementation of the ap-

proach presented in this thesis. Loose coupling, reusability and flexibility

are SOA promises that are needed to solve the challenges described in

Chapter 1. The maturity and adoption of relevant standards for integra-

tion have helped to foster the emergence of the ESB as a technology trend

[Cha04] for the implementation of an event-driven enterprise SOA. An

ESB provides the integration capabilities of a middleware, such as asyn-

chronous messaging and leverage of XML-based standards, to comply

with the principles described in this Chapter. Regarding the principles

84 Chapter 3 Principles of Integration for the Real-time Factory

of integration for applications, web services provide an accepted stack

of standards in the industry that ease the publication of well-defined in-

terfaces, via WSDL [CCM+01], for other services to discover, as well as

a messaging protocol, i.e. SOAP [W3C07a], which is currently the most

widely accepted standard in the message communication domain [Pap08].

Moreover, the leverage of the extended stack of WS-* standards provides

additional features in integration architectures, such as reliability, compli-

ance or security. Web services and other technologies and standards that

support the SOA principles are mature enough for its adoption in many

manufacturing domains, as it will be shown in Chapter 4. In Chapter 5,

an extensive description of the proposed approach and the application of

these principles of integration are given.

3.6 Summary

Given the lessons learned from past approaches to integration in the man-

ufacturing industry, i.e. CIM [Gun97, Sny91, Sin97], a set of principles

of integration is given in this chapter. These principles of integration are

requirements for middleware infrastructures and applications in the Real-

time Factory. Therefore these principles are also based on the objectives

stated in Chapter 1. The principles of integration for middleware are:

- Ease of reconfiguration

- Loose coupling

- Support of asynchronous communication patterns

- Standards-based integration.

The principles of integration for applications in the Real-time Factory that

are connected to a middleware infrastructure in order to exchange mes-

sages with other applications can be summarized in:

3.6 Summary 85

- Separation of implementation and interface

- Well-defined interfaces

- Standards-based definition of interfaces.

At the end of the chapter, a description of the SOA principles that match

these requirements is given. Complying with the described principles of

integration is the main criterion that explains the choice of SOA and web

services as a technological foundation for the integration of information

systems in the Real-time Factory.

86

Chapter 4
SOA in Manufacturing

In order to study the viability of an integration architecture based on

service orientation, different research studies on service-based integra-

tion in five domains of manufacturing were carried out. The investi-

gated domains are: digital factory, PLM, Product-Service Systems (PSS),

Engineering-To-Order (ETO) enterprises and reconfigurable production

systems. First, the current state of service orientation in manufacturing is

described. Then, a brief description of these five studies is given followed

by some conclusions.

4.1 Penetration and Current State of SOA in

Manufacturing

The emergence of the web and its associated technologies and standards

supported the exchange of manufacturing data over the web, which has

4.1 Penetration and Current State of SOA in Manufacturing 87

been, and is still, very successful in different ERP domains, such as lo-

gistics or distribution. ERP vendors developed software solutions, which

have defined the so-called web-based manufacturing era. Web services

dominate this kind of application integration. The use of XML-based

standards has a great responsibility for the success of web-based manu-

facturing. In a typical web service communication, services are hosted in

a server and can be accessed over a network, such as the Internet. The us-

age of web services and web-based applications quickly expanded to other

domains, e.g. customer relations and Supply Chain Management (SCM).

The capability to exchange information with external entities, such as

suppliers or customers had a positive impact in manufacturing factory

operations by accelerating transactions and creating an opportunity to

automate others. However, this combination of component-based mid-

dleware and Web technologies in order to integrate business processes

and applications proved to be insufficient for many reasons. For instance,

this type of simple integration approach does not consider issues such as

integration of different data models, workflow engines, or business rules,

to name just a few [Sta02]. EAI solutions, such as Java Remote Method

Invocation (RMI) [Ora], IBM Websphere MQ [IBM], CORBA [Obj91] or

Microsoft Message Queuing (MSMQ) [Mic00], solved most of these is-

sues, but most solutions were proprietary, complex to use and could not

interoperate with each other [Hen06, GJ05]. Soon, the idea of building

a Broker-based middleware using Internet protocols such as HTTP and

XML as a data marshaling solution was proposed [Sta02] and started to

be put into practice in the manufacturing industry [Mes08]. Not much

later, the characteristics of a layer of communication and integration logic

between applications combining SOA concepts and Web services to co-

exist with deployed applications coalesced into the concept of the ESB

[Cha04, PH07]. Parallel to these developments, as applications started to

proliferate across the enterprise, new standards were needed to model and

execute the processes that would coordinate the different activities across

88 Chapter 4 SOA in Manufacturing

multiple systems. Therefore, in the early years of the 2000-2010 decade,

several proposals were made to the standardization institutions (OMG,

OASIS, W3C) to solve this problem, e.g. BPEL4WS (2003, later renamed to

WS-BPEL in its second version) [Org07], Web Services Choreography De-

scription Language (WS-CDL) [W3C05], Business Process Management

Notation (BPMN) [Obj09]. At the end, WS-BPEL has prevailed as the

most influential execution standard in the market [RLL09]. Its modeling

and execution capabilities permit to model business processes, or frag-

ments of them, and execute them as workflows in a workflow execution

environment. Part of the explanation for the dominance of WS-BPEL in

industry, including the manufacturing industry, is the ability to invoke

external entities, which are called services in a SOA environment, and al-

low this way an orchestration of services. This feature, and the fact that

WS-BPEL was a web service-based proposal, has made it a dominant stan-

dard in environments where web services were already widely adopted,

e.g. the manufacturing industry.

4.2 Leverage of a Data Integration System in

SOA

One of the most important characteristics of SOA is the reuse of ser-

vices. On the data level, a number of middleware solutions have been used

in the manufacturing domain over the last few years [LCW08, RCH+02,

CW08, SKN+07]. In order to solve the problem of different data mod-

els, which was one of the shortcomings of the first EAI middleware so-

lutions, the dependencies between information systems can be managed.

A system that follows this approach for a manufacturing environment is

Champagne [RCH+02], which has been already introduced in Chapter 2.

Champagne is a change propagation system that manages dependencies

4.2 Leverage of a Data Integration System in SOA 89

between applications by means of transformation scripts. A propagation

engine routes the changes in relevant pieces of information from one ap-

plication to another by using routing scripts. Champagne was deployed in

a manufacturing environment and tested for several scenarios, including

the integration of a PPR-Hub, a factory planning table and an assembly

configuration tool [CHL+05]. This change propagation mechanism pro-

vides a high degree of interoperability by enabling systems to propagate

data in an event-driven message-oriented architecture. However, Cham-

pagne imposes some flexibility barriers. Firstly, it does not provide any

kind of functionality-based integration. The integration is made exclu-

sively at the data level, impeding business process modelers to integrate

the functionality of systems into larger composite services. Secondly, the

lack of integration at a functional level hinders having a comprehensive

model that provides a view on the information flows that propagate data

between applications. Thirdly, assuming the constant change in produc-

tion systems and that different requirements arise as new technologies

establish, it is possible that Champagne needs to extend its functionality

in order to provide further propagation methods. If extending the system

functionality was needed, most parts of the application logic would need

to be modified, which would be tedious and costly. In order to deal with

these issues, different alternatives were investigated to integrate Cham-

pagne into a SOA [MJH+09] and facilitate its reuse and extensibility by

applying the SOA principle of reusing services.

4.2.1 Champagne as a Service

In this first approach it was considered how a data propagation system,

like Champagne, can be integrated into a SOA environment. In this case

study, a change in a SCM system needs to be propagated to an ERP sys-

tem. The most basic scenario based on the use of services is to expose

all participating applications in a transaction as services. Likewise, each

90 Chapter 4 SOA in Manufacturing

entity has a role assigned to it: the SCM acts as the service consumer, and

the ERP as the service provider. Champagne will receive the request from

the SCM application and forward it to the ERP application via a change

request to modify some of its data. Therefore, Champagne acts as service

provider for SCM and as service consumer for the ERP system. In step 1

the registration of services is done by publishing the WSDL descriptions

on a service registry. The lookup of the needed services to propagate the

data is carried out in step 2. Finally, in step 3 the invocation of services

takes place. Here, SOAP over JMS is used in order to preserve the queuing

capabilities of the event-driven architecture of Champagne. The commu-

nication scheme is depicted in Figure 4.1. This first approach has a major

advantage: exposing Champagne as a service allows for business pro-

cess management tools to find the service and compose automatic change

propagation processes that must be executed periodically. This is a major

improvement that can be achieved through SOA-based application inte-

gration. This approach enables a flexible reuse of the change propagation

service.

ERP SCM Data
Propagation

System

Service
Registry

(1) publish (2) look-up

(3) invoke

(1) (2)

(3)

Figure 4.1: Champagne as a Service

4.2 Leverage of a Data Integration System in SOA 91

4.2.2 Connection of Champagne to an ESB

Exposing Champagne as a service has major advantages as it has been

detailed in the first approach. However, some things remain tedious. For

example, no communication with external services is possible unless a

gateway is built, which is capable of accepting SOAPmessages over HTTP

and convert them to SOAP over JMS. This gateway should then preserve

the queuing capabilities when necessary. For this purpose, a mediation

layer is needed to establish proper control of messaging as well as to apply

the needs of security, policy, reliability, and accounting. The delegation

of these interoperability requirements can be done by means of an ESB.

This approach considers the connection of the Champagne Service to an

ESB. The ESB is responsible for the proper control, flow, and translations

of all messages between services, using any number of possible messag-

ing protocols. An ESB pulls together applications and discrete integration

components to create assemblies of services to form composite business

processes, which in turn automate business functions in an enterprise

[PH07]. An ESB not only promotes loose coupling of the systems taking

part in integration, but it can also break up the integration logic into dis-

tinct easily manageable pieces. This approach exploits precisely this fea-

ture by connecting an already existing integration system to the bus. The

ESB support for web communication and transport protocols, including

SOAP/HTTP and SOAP/JMS, enables the Champagne-based integration

of enterprise applications with external applications, such as customer

order applications or supplier applications. This approach, based on the

connection of Champagne to an ESB and thus leveraging ESB connectiv-

ity and mediation capabilities, is depicted in Figure 4.2.

A third option was considered, in which Champagne is split into two ser-

vices, instead of just one Champagne service. This approach exposes the

dependency manager and the propagation manager, which are the funda-

mental components of Champagne, as two different services. This option

92 Chapter 4 SOA in Manufacturing

CRM ERP

Data
Propagation

System

Service
Registry

Enterprise Service Bus

Figure 4.2: Integration of a Data Propagation System in a SOA

was considered due to the importance of choosing the appropriate de-

gree of granularity when making web services available. Splitting a sys-

tem into multiple services has a major advantage compared to other ap-

proaches: the more services, the higher is the degree of flexibility. Finer-

grained services enable a more flexible composition of services, which is

an important aspect for the aggregation of services in a workflow. How-

ever, it also needs to be considered that breaking down a system into a

high number of services requires a bigger effort, which involves higher

costs.

4.3 SOA Integration Principles for PLM

PLM is another manufacturing domain that has been investigated. PLM

has been the focus of integration efforts for over a decade. Here, the

problem domain is similar to the scenario of the Real-time Factory. The

4.3 SOA Integration Principles for PLM 93

heterogeneity of information systems, the excessive number of point-to-

point interfaces in many companies and the lack of a functional orienta-

tion regarding the application integration within departments are factors

that avoid manufacturing enterprises from adapting to shorter product

life cycles and turbulent scenarios [Bro03]. The adaptability and agility

requirements are very present in PLM. Due to a growing number of prod-

uct variants, shorter product lifecycles and turbulent markets, the impor-

tance of an efficient management of the products within their lifecycle is

growing continuously [JWW09]. To achieve this, the following aspects of

integration need to be taken into account: (1) Information flows need to

be more efficient to speed up all processes within the product lifecycle, (2)

all phases of the product lifecycle have to be integrated to enable a faster

and automated data exchange, improved data quality and data availabil-

ity over the whole lifecycle and (3) feedback loops have to be enabled

in order to improve product quality and production processes [SMM11].

In this case study, an analysis of the requirements for this domain and

a matching process of these requirements and SOA integration princi-

ples were carried out [SMS+10]. The presented concept is based on a

service-based PLM integration infrastructure, called PLM-Bus [SMM11],

which provides a mediation platform for several domain-specific ESBs.

This integration scheme follows an approach based on incremental adop-

tion, where an ESB is dedicated to a specific project or departmental do-

main and later integrated into a larger integration network. Incrementally

staged deployments of ESB integration projects can provide immediate

value while working toward the broader corporate initiatives [Cha04].

The scheme of such an approach is shown in Figure 4.3.

94 Chapter 4 SOA in Manufacturing

Concept

PLM-Bus

Design &
Development

Production
Planning Production Distribution

& Support
Retire &
Dispose

ESB ESB ESB ESB ESB ESB

Figure 4.3: Integration Architecture for the Real-time Factory

4.4 SOA Principles applied to Reconfigurable

Machines

One of the most important positive effects of flexible production systems

is the rapid reconfiguration capabilities that they offer. In this case study

an approach to automate the start-up of reconfigurable production ma-

chines based on SOA principles was investigated. The introduction of

service-based platforms at such a low level in factories has a lot of poten-

tial regarding the ease of future integration with higher level SOA-based

middleware. The integration of two service-based environments entails

a considerable reduction of effort due to the loose coupling, reusability

and flexibility principles on which they are designed. The elimination

of point-to-point interfaces and the adoption of communication schemes

based on a message broker, also contributes to the reduction of com-

plexity. In this study, an architecture was proposed to enable features

of an automatic start-up of production machines [ASM+11]. The key con-

cept for designing reconfigurable machines is modularization. Nowadays,

modules within machines contain different functionality from different

4.5 Event-driven BPM in ETO Enterprises 95

domains, such as mechanical and electrical engineering communication

technology. They are also called Mechatronic Modules (MM). MM are

characterized by their internal functionality and the interfaces they pro-

vide on their boundaries. This concept enables the creation of new ma-

chine structures by combinations of MM. However, there is no standard

process that automates the configuration of MM. The variety and hetero-

geneity of the functionality that MM contain makes configuration very

tedious and it takes a long time to reconfigure such machines. The pro-

posed architecture in this study aims to ease the communication with MM

by integrating these into a SOA. The protocol stack of MM contains the

Devices Profile for Web Services (DPWS) [Jam05], which enables the mes-

saging, discovery and description of MM based on web service technolo-

gies. A configuration system communicates with the MM by means of an

integration middleware. Once the configuration system has retrieved all

descriptions of the machine, different configuration services evaluate this

information and compute the necessary parameter configuration. An au-

tomatically derived start-up sequence is derived. This start-up sequence

is defined in WS-BPEL and executed in an orchestration engine. During

execution the sequence configures the mechatronic functionality in dif-

ferent MM to be ready for production by means of service invocations.

4.5 Event-driven BPM in ETO Enterprises

One of the most important requirements in the Real-time Factory is the

propagation of business-relevant events to the appropriate destination

applications. In order to investigate the alternatives to integrate events

into business processes within a SOA, a study on Engineering-To-Order

(ETO) manufacturers was carried out [MRZ11]. In ETO enterprises, the

product is designed especially for one customer. In ETO supply chains,

the Original Equipment Manufacturer (OEM) is usually integrated in a

96 Chapter 4 SOA in Manufacturing

complex logistics network, where suppliers are required to comply with

strict delivery dates. ETO enterprises have a great interest in the integra-

tion of business workflows with manufacturing processes in order to gain

the needed responsiveness and flexibility when reacting to manufactur-

ing events. This can be achieved by filling the gap between EDA and SOA

paradigms, which requires the integration of complex events into busi-

ness processes. In this study, the possibilities to handle incoming events

in BPELwas reviewed and compared to other approaches. The motivation

scenario of this shows the impact of certain events on the entire supply

chain of an ETO enterprise and reflects the importance of the integration

of such events into specific B2B business processes. The scenario deals

with the propagation of certain information related to the machine fail-

ure in one of the suppliers production plants. This failure causes the stop

of production for an unknown period of time. The consequence of the

stop of this supplier part production is the delay in the delivery of this

part until the production is restarted. Punctual delivery is considered one

of the primary goals in ETO production. This is due to the high degree of

product customization that takes place across the supply chain. The OEM

needs accurate information about delivery dates for the elaboration of the

appropriate production plan. Missing supplier parts at the OEM produc-

tion line provoke unacceptable delivery delays at the customer side. Even

customized products that don’t contain the missing supplier part may suf-

fer delays as well due to the lack of timely information at the OEM to

rearrange the production plan. Therefore, the automation of event prop-

agation in the ETO supply chain is very important for the OEM and its

customers, as well as for suppliers of higher levels that depend on other

suppliers. The main goal in such a scenario is to limit the impact to the

product group that needs this affected supplier part by timely rearrang-

ing the production plan at the OEM shop-floor. This avoids unnecessary

delivery delays in products that don’t contain the supplier part. Figure 4.4

shows two interacting business processes that reflect some parts of this

4.5 Event-driven BPM in ETO Enterprises 97

ETO supply chain motivation scenario. A failure management process of

the supplier shop floor system receives a message indicating a machine

failure and afterwards invokes a service that logs this failure and stops

all manufacturing activities. A maintenance operator analyses the failure

and evaluates its impact. Based on this evaluation, the shop floor pro-

cess propagates the estimated delay of all affected supplier parts to the

process of the OEM system. Upon receipt of this delay information, the

OEM process calls a service that adapts the production plan and uses this

plan to compute an overall production delay and to notify the customer

about this delay. In parallel to this, the shop floor process calls a service to

maintain and restart the production, informs the OEM process about the

restart, as well as the shop floor system about the finished event process-

ing. After the production restart notification, the OEM process rearranges

the previously adapted production plan and, based on the new plan, again

notifies the customer about the new delivery data.

BPEL offers various possibilities to handle events, as we have shown

above. Among the main benefits of BPEL are its modular design, the

sophisticated fault and compensation handling capabilities, and its flex-

ibility regarding generic XML data types as well as late binding of ser-

vices. These and in particular its event handling capabilities make BPEL

a valuable asset for the combination of event-driven manufacturing envi-

ronments and service-based business processes:

1. Events from heterogeneous sources. In order to reduce the number

of event handling activities to be processed within a BPEL pro-

cess instance, it is possible to infer complex events from multiple

sources via an event processing service. A complex event may con-

tain data from different sources in a manufacturing environment.

BPEL supports the re-partition of such complex events within an

event handling activity. For the three options for processing events

based on messages (receive, pick and event handlers), the event

98 Chapter 4 SOA in Manufacturing

S
up

pl
ie

rS
ho

p
Fl

oo
r

Timeout
Escalation

Receive Failure
Message

Notify Shop
Floor

Production Stop

Propagate
estimated Delay

Impact Evaluation

1 hour

O
E

M

Receive Delay
Information

Adapt
Production Plan

Notify
Production Delay

Production
Restart

Notify Production
Restart

Production
Restart

Notification

Rearrange
Production Plan

Notify new
Delivery Date

C
us

to
m

er

Figure 4.4: Integration Architecture for the Real-time Factory in BPMN

Notation

data, i.e., the event message, may be stored in one BPEL variable or

in multiple ones, each one storing a certain part of the event data.

This avoids unnecessary event message traffic and processing.

2. Complex event processing with real-time requirements. There are

cases in which BPEL can be used to optimize the data sent in an

event message and therefore help systems to fulfill their real-time

requirements. For example, there may be cases in which a piece of

4.5 Event-driven BPM in ETO Enterprises 99

equipment always sends the same event message repeatedly. If the

event data is not relevant to the event consumer, BPEL offers the

possibility to react to the event based only on the event provider.

In this case and when no message parts are contained in the WSDL

definition of the event message, the event data does not need to be

stored in a BPEL variable. The incoming message is routed to the

appropriate event handling activity, depending only on the spec-

ified partner information, e.g., partner link, WSDL port type and

operation. This can contribute to improve performance and to en-

able specific manufacturing systems to achieve real-time require-

ments. Moreover, BPEL offers non-blocking event handling, that

is, the possibility to perform other activities while waiting for the

notification of a specific event is of special interest in manufac-

turing environments. In order to fulfill real-time requirements in

a high performance manufacturing environment, multiple events

need to be processed in parallel. BPEL event handlers onAlarm

and onEvent meet exactly this requirement and are the most useful

mechanisms to react to an event without blocking the execution of

other procedures.

3. Extensibility. Manufacturing companies need to react to relevant

events that require action as fast as possible. In order to identify

relevant events, the expressiveness of the model used to describe

events plays a very important role. The extensibility of a model for

event messages and its semantics are key factors of the process-

ing performance. BPEL provides several possibilities to extend the

standard. In particular, extension activities may be added to define

custom functionality that can be used within a BPEL process, e.g.,

BPEL4People. Further extensions might be new attributes or new

XML elements in existing BPEL constructs as well as extension as-

sign operations, i.e., customized operations for manipulating pro-

cess data. A customized extension activity can be specified to ad-

100 Chapter 4 SOA in Manufacturing

dress the special needs of receiving and processing events within a

manufacturing environment, in particular within a certain manu-

facturing scenario. In the case of maintenance operations, human

interaction is in particular needed when deciding on the required

actions given a certain type of failure. A machine may be repaired

manually, the maintenance service has to be contacted or maybe a

spare part has to be ordered. These decisions are usually carried

out by the shop floor maintenance staff. An extension for human

interaction and possibly other extensions for maintenance opera-

tions can simplify the BPEL processes considerably. This can con-

tribute to the efficient failure management on the ETO supplier

side, which will enable the supplier to react in an agile manner, as

required in ETO supply chains.

4. Flexibility through dynamic service binding: Binding of services at

runtime is a powerful feature. This feature is of great importance in

manufacturing, since there are processes that need to adapt on run-

time, depending on the manufacturing context. Several BPEL im-

plementations support dynamic binding via different alternatives,

e.g., WS-Policy. However, not all BPEL-based workflow engines

offer the possibility to bind services dynamically. In these cases, a

BPEL process invokes an external service that contains the routing

logic.

4.6 Product-Service Systems

A further area of study for the applicability of service-oriented architec-

tures is PSS, also known as Industrial Product Service Systems (IPS2). PSS

are a strategic approach that offers manufacturing companies the possibil-

ity of long-term differentiation against competitors by integrating goods

4.6 Product-Service Systems 101

and services. The implementation of a PSS entails challenges for the re-

sulting supply chain structure and the IT infrastructure supporting co-

ordinated service offerings, such as conflicting goals and coordination in

the integrated business processes. As investigated in this study, the SOA

paradigm provides certain design principles of integration that match the

needs of PSS networks. The most important challenges of PSS networks

include the following:

- Coordination of cross-organizational business processes. Coordi-

nation implies transparency of operations and business processes

and it is a pre-requisite to assure a unified image of the product-

service system to the customer. Splitting services into front-office

activities, where the customer is involved, and back-office activi-

ties, without customer presence, enables a PSS network to coordi-

nate its B2B processes transparent to the customer.

- Rapid reconfiguration of the network by binding and integration

appropriate replacements. The integration of new participants re-

quires a shared strategy for goal definition and matching partici-

pant discovery that allows the PSS network to automate the pro-

cess of reconfiguring itself.

- Monitoring Key Performance Indicators (KPI). A KPI at the busi-

ness level may be mapped to different nodes of the network at the

operational level. Therefore, monitoring these KPIs, analyzing the

impact of deviation of the network goals and correcting these de-

viations represent decisive challenges for efficient PSS networks.

- Goal definition. The heterogeneity of product and services origi-

nate conflicting goals. In order to reach an agreement in the ser-

vice provisioning phase, all participants in a service offering need

to define their goals previously. Goal definition must permit all

102 Chapter 4 SOA in Manufacturing

participants to understand and process the goals of others in order

to negotiate in a case of conflicting goals.

- Conflict resolution. Opposite interests or conflicting goals may

arise when combining the supply chains of a product manufacturer

and service providers. For instance, if a service process structure

is defined as a service factory with high standardized service op-

erations, which corresponds to a cost minimization strategy, high

flexibility becomes a conflicting goal [BNM10]. In order to meet the

rapid configuration requirements in a PSS network, participants

must be able to reach an agreement as fast as possible, in order to

remain agile in case of conflicting goals. Therefore, a high level

of automation in conflict resolutions is a fundamental requirement

for PSS networks.

The desired agility in PSS networks compares to the agility that is needed

in factories. The Real-time Factory is a manufacturing environment that

also requires a coordinated and flexible communication between appli-

cations. Even a cross-organizational coordination of business processes

may be needed if applications on the supplier or customer side are taken

into account. This cross-organizational and agile communication is pos-

sible thanks to web service technologies. The proposed reference archi-

tecture in this study contains three different areas: network configura-

tion, network performance monitoring and conflict resolution [MBN11].

All these three domains aim to provide a reference for companies seek-

ing for an appropriate IT infrastructure that supports communication

within a PSS network. The shift from a manufacturing company to a so-

lution provider through PSS offerings was detailed in a strategic roadmap

[BNM10], which was previous to this study.

4.7 Summary 103

4.7 Summary

In this chapter, the feasibility of SOA-based integration approaches is in-

vestigated based on different research studies in five domains of manu-

facturing. The investigated domains are: digital factory, PLM, PSS, ETO

enterprises and reconfigurable production systems. The integration ap-

proach in the digital factory (Champagne) presents some limitations, such

as the lack of a flexible integration model. The integration of Champagne

into a service-oriented environment to meet the requirements of flexibil-

ity is thus investigated. The flexibility requirements for the integration of

information systems in PLM have also motivated an integration approach

based on SOA principles. Further details about this approach can be seen

in the literature [MSM11, SMS+10, SMM11]. With regard to the adaptabil-

ity objectives of this thesis, the use case investigated for ETO enterprises

shows the possibilities of the BPEL standard for event-handling. This is

an interesting aspect regarding the integration of events into SOA-based

environments. Another investigated domain was the reconfiguration of

production machines. For this domain, a service-oriented architecture

is proposed to enable the communication with the mechatronic modules

in production machines. The introduction of service-based platforms at

such a low level in factories has a lot of potential regarding the ease of

future integration with higher level SOA-based middleware. Finally, the

adoption of a SOA-based approach for the integration of different orga-

nizations into production networks has also been investigated [MBN11],

which has shown a great potential for manufacturing enterprises becom-

ing a PSS provider.

104

Chapter 5
The Manufacturing Service Bus

In order to solve the integration problems in the Real-time Factory, an

integration approach that applies the integration principles of Chapter 3

needs to be adopted. Loose coupling and flexibility are two important re-

quirements that need to be met in order to achieve adaptability objectives

described in Chapter 1. The architecture described in this chapter aims

to address this need. The presented approach is divided into three parts.

The first part comprises mediation services and a mediation infrastruc-

ture that together enable a seamless integration of information systems

and applications across the factory in a flexible manner and thus increase

the agility of the factory with regard to ICT resources. These mediation

services are integrated into a service-based integration platform, called

the Manufacturing Service Bus [MRR+10, MLJ+10]. The MSB concept and

the architecture are detailed in Sections 5.1 and 5.2, respectively. The sec-

ond part of the presented approach consists of a service repository and

an EAI process editor. These, which are detailed in Section 5.3, are used

to manage the services that are connected to the MSB as well as the in-

tegration processes that control the information flows across information

5.1 Concept 105

systems in the factory. Additionally, an EAI Process Model is proposed.

This model is used by the EAI Process Editor to plan and design the inte-

gration processes that enable the exchange of data in the Real-time Fac-

tory and that are executed in the MSB. The third part of the presented

approach deals with the need of agile adaptation in the Real-time Factory.

In Section 5.4, the adoption of the MSB to achieve an agile adaptation of

integration processes and the implementation of an autonomic comput-

ing feedback loop are described. Here, a Real-time Factory Adaptation

Model is proposed. This model constitutes an adaptability framework for

the Real-time Factory that implements the monitor, analyze, plan and ex-

ecute (MAPE) functions of a self-managing environment and serves as

a guideline for the feedback loop established between the execution and

the planning environment. A MAPE-based architecture is presented in

Section 5.4, which closes the SOA lifecycle and implements a feedback

loop from the manufacturing domain (MSB) to the analysis phase (Ser-

vice Repository) and from the planning phase (EAI Process Editor) back

to the execution environment in the manufacturing domain. Finally, a

summary is given in Section 5.5.

5.1 Concept

As mentioned in the principles of integration in Chapter 3, production

environments are usually interconnected following a pattern of asyn-

chronous communication. Asynchrony is needed to propagate events

to the appropriate destination applications whenever these events occur.

This requirement has caused the development of event-centric integra-

tion architectures at the shop floor level, based an the EDA paradigm.

However, due to other developments of the last decade, manufacturing

companies have adapted their business processes and business applica-

tions to new technologies, e.g. Web Services, in order to gain flexibility

106 Chapter 5 The Manufacturing Service Bus

and interoperability. The principles of reusability and loose coupling of

services have made Service Oriented Architecture (SOA) the most used

paradigm for software design at the business level. This has led to an

integration gap between the shop floor systems and manufacturing ap-

plications at the business level, e.g. ERP systems. The Enterprise Service

Bus (ESB) is an integration approach that enables an event-driven SOA

by monitoring, processing, enriching, and propagating low-level system

events to high-level business systems [Cha04]. Current implementations

of ESBs are usually adapted to the specific needs of concrete integration

scenarios. This adaptation requires usually a great effort for the recon-

figuration of the bus mediation services. The MSB and the adaptive ar-

chitecture that is proposed in Section 5.4 aim to minimize the adaptation

effort that has to be invested in the reconfiguration of ESBs. The MSB

is based on the ESB concept and enhanced with manufacturing-specific

mediation services in order to fill the gap between EDA-based manufac-

turing environments and SOA-based business processes. In order to fill

this gap, the MSB needs to follow the principles of integration for mid-

dleware infrastructures in manufacturing as described in Chapter 3. How

the MSB applies these principles is described ahead:

- Ease of Reconfiguration. The ESB integration pattern retains cen-

tralized control over configuration while allowing bus infrastruc-

ture services, such as message routing, mediation or addressing, to

be physically distributed [KAB+04]. This pattern is especially rel-

evant when extending ESB capabilities by deploying new services

without affecting the existing infrastructure. The MSB is defined

for a manufacturing environment based on this service-oriented

integration pattern [MLJ+10].

- Loose Coupling. In order to achieve a consistent and flexible in-

tegration between digital factory applications and manufacturing

systems, the MSB uses a number of mediation services, which com-

5.1 Concept 107

prise transformation, routing and orchestrated service composi-

tions. These services decouple applications and enable the MSB

to act as message broker. Transformation services enable the trans-

formation of data between different manufacturing standards, such

as ISA-95 [Int00], B2MML [WBF08b], or STEP [Int07b]. The imple-

mentation, configuration and deployment of these services are in-

dependent of the current state of the MSB. This is possible thanks

to loose coupling characteristics of the highly-distributed SOA en-

vironment provided by an ESB [Cha04]. The configuration of medi-

ation services is, in this manner, independent of the business logic

of the applications that are connected to the bus. This feature en-

ables applications to remain loosely-coupled.

- Asynchronous communication. One of the most important chal-

lenges of the MSB is to automate the execution of integration func-

tions in the Real-time Factory. The Real-time Factory is an event-

driven environment, which means that data is shared following an

asynchronous communication pattern. The MSB acts as a message

broker between applications, which receives event-messages, and

routes them to their appropriate destinations. This decouples ap-

plications from one another and facilitates the asynchronous com-

munication that dominates manufacturing environments.

- Standards-based Integration. The MSB provides multiprotocol sup-

port in order for applications to be able to connect and commu-

nicate with the MSB using their respective protocols. This way,

vendor lock-in situations in factories can be circumvented.

An integration governed by the MSB in the Real-time Factory is depicted

in Figure 5.1. Five different levels of abstraction are differentiated: data

source (layer 0), data service layer (layer 1), integration layer (layer 2),

integration process layer (layer 3) and the business process layer (layer

4). Each layer is described ahead.

108 Chapter 5 The Manufacturing Service Bus

ESB

MSB

Layer 4

Layer 3

Layer 2

ERP MES
Production
Control Unit

Layer 1

Mediation
Services

Business Processes

 Manufacturing Applications Integration Services

Layer 0

Workflow
Management

Content-based
Router

Production
Control Service ERP Service MES Service

Figure 5.1: The MSB and its Five Layers of Integration

5.1.1 Data Source Layer

All manufacturing systems and digital factory information systems are lo-

cated in this layer which forms the source of all information flows. These

information flows usually perform integration tasks across the Real-time

Factory, such as data acquisition, transformations and loading operations.

Furthermore, they can notify manufacturing applications of the events

that are relevant for the processes at the business level. Such events have

their origin also in this layer. This layer comprises a number of heteroge-

neous data sources, such as unsynchronized databases, diverse data mod-

els and different systems that use various communication protocols. Pos-

5.1 Concept 109

sible systems in this layer are an MES, an ERP system and a Production

Control Unit.

5.1.2 Data Service Layer

Due to the heterogeneity of data sources, data provisioning services that

resolve these heterogeneities need to be arranged in an upper layer. The

data service layer comprises service adapters that enable manufacturing

systems and applications to provide data as services which can later be

connected to the bus. Enabling a service interface for data providers is

the main requirement of service-oriented data integration. In order for

applications and information systems to connect to the MSB, they have to

follow the principles of integration that are described in Chapter 3, which

include:

1. A clear definition of the offered functionality and the correspond-

ing interface.

2. A separation of implementation and interface.

3. The use of standards for the definition of the interface.

Different services can be mapped to a system, depending on the diversity

of its functionalities and on the level of granularity that is needed. For

example a Manufacturing Execution System may have different services

for the different operation areas, e.g. production scheduling, material flow

management or quality management.

5.1.3 Integration Layer

The MSB includes a number of mediation services that enhance an ESB as

a domain-specific service bus by adapting its infrastructure to manufac-

110 Chapter 5 The Manufacturing Service Bus

turing environments. An example of a mediation service is for instance

a transformation service that converts an XML file exported from a MES,

which contains scheduling data in the ISA-95 format, into the appropri-

ate file format required by the Production Control Unit, e.g. a file based

on Comma-Separated Values (CSV). The MSB facilitates the integration of

data provisioning services of layer 1 as well as composite applications and

services. Message transformation and mediation services enable the MSB

to handle various messaging protocols. A Content-Based Router (CBR)

receives, transforms and routes event messages that data services send to

the MSB. The CBR communicates with a workflow management system

that executes integration services that are needed to process events. Such

integration services are BPEL processes that are considered as part of the

set of the mediation services that are executed in the MSB.

5.1.4 Integration Service Layer

The information flows that are executed in the Real-time Factory com-

prise (1) data provisioning services from the data service layer, (2) me-

diation services from the integration layer, and (3) data destinations that

receive the processed data. These three components form a set of atomic

services that can be aggregated in composite services with the purpose

of integrating different applications. Such composite services are referred

to as integration services or integration processes (also EAI processes or

mediation workflows). The goal of these processes is to keep manufac-

turing applications up-to-date regarding the current state of the factory.

This layer consists of integration services and manufacturing applications

which are usually connected as end-destination of the event notifications

that are processed by mediation services. Manufacturing applications are

based on human interaction and include digital tools, such as a main-

tenance console or a customer order portal, to monitor and control the

current state of the factory.

5.2 Architecture of the Manufacturing Service Bus 111

5.1.5 Business Process Layer

This layer contains all business processes in a manufacturing environ-

ment that are relevant for the execution of production processes, such

as a customer order management process or a failure management pro-

cess. Business processes in this layer comprise different manufacturing

domains, such as product quality control or supply chain management.

Each business process can be divided into multiple integration services in

layer 3. Additionally, these business processes make use of the informa-

tion that is processed by the manufacturing applications in layer 3. The

modeling of these business processes and organization into different inte-

gration services is out of the scope of this thesis. Nevertheless, modeling

such business processes can be realized by current service-oriented BPM

tools. Standards with service orientation features, such as WS-BPEL, fa-

cilitate the integration of such tools into this architecture.

5.2 Architecture of the Manufacturing Service

Bus

The MSB enhances the functionalities of an ESB by integrating event

management services needed in a manufacturing environment. This ar-

chitectural model integrates the different manufacturing systems that can

be found in a production environment. The architecture of the MSB com-

prises several components that provide a flexible integration of systems.

Manufacturing systems and digital factory information systems, such as

MES or ERP, are considered as the source of manufacturing information

flows. These systems use a service interface that enables manufacturing

systems and applications to provide data as services which can be con-

nected to the integration infrastructure and orchestrated in workflows

that the MSB can execute. The MSB facilitates the integration of data

112 Chapter 5 The Manufacturing Service Bus

provisioning services into complex business services. In the MSB, event

processing and routing components are used to propagate events to the

appropriate event consumers. The MSB uses an XML-based canonical

format for event-messages, which facilitates event-processing and rout-

ing tasks. Events are stored in the Event Registry. Event-Flows, which

determine the relations between separate events, are stored in the Event-

Flow Registry. Event attributes contain information about the nature of

the event, the current state of the event as well as routing parameters,

such as origin and destination. Extended Schemas are used to extend the

event model for different manufacturing sub-domains like maintenance,

customer relationship or supply chain. The MSB counts on a Content-

based Router (CBR), which receives incoming messages and routes them

to the correct destinations depending on their content. A Service Registry

(SR) and a registry that manages Context Dependencies (CD) support the

implementation of this functionality. This approach enables the adoption

of CEP techniques in a Service-Oriented Computing (SOC) environment,

which is one of the most important requirements in order to fill the gap

between the SOA-based business processes and the event-driven manu-

facturing environments. A Workflow Management System enables the

orchestration of different business services. Such business services are

executable parts of mediation workflows. Mediation workflows integrate

one or more data sources, mediation services, BPEL processes, and end-

applications. The architecture of the MSB is depicted in Figure 5.2. The

main components of the presented architecture (Event Canonical Model,

Event and Event-Flow Registries, Content-based Router, Mediation Ser-

vices, Workflow Engine) are described ahead.

5.2.1 Event Canonical Model

In shop floors most interchanged messages are based on some kind of

event, alarm or notification, which need to be processed under real-time

5.2 Architecture of the Manufacturing Service Bus 113

E-Procurement Customer Portal

MES

ERP

MSB

Event
Registry

Event-Flow
Registry

<xml
...

Event-
messages

<xml
...

<xml
...

<xml
...

ESB
Workflow

Management

Production
Monitoring

<xml
...

Mediation Services

Maintenance
Console

<xml
...

B2MML
- ISA95 XSLT

SB

Event Processing
Engine

SR CD

CBR

Figure 5.2: The MSB as an Integration Layer

constraints. An event-driven architectural pattern is usually applied to

the implementation of systems and applications, that generate, propagate

and process events. In a typical EDA, event consumers receive event mes-

sages, which are generated by event producers. The concept of the event

bus emerges as a solution for brokering event messages between an event

producer and multiple event consumers. An event bus acts as a mediation

layer, which routes event messages to consumers. This routing process

can be implemented by using different methods, such as correlation algo-

rithms, detection of complex patterns and topic subscriptions. A common

analysis technique used in event-driven architectures is CEP. The goal of

CEP systems is to identify complex events that are inferred from simple

events by rule-based event interpreters. However, CEP systems can be

114 Chapter 5 The Manufacturing Service Bus

a dead-end if no reaction procedures are automatically triggered. Usu-

ally, the structure of active rules in an EDA follows the ECA pattern:

an event triggers the invocation of the rule, which, if evaluated to true,

causes the execution of the action. An expressive representation of events

is required in order for a processing engine to evaluate the given condi-

tions and recognize complex situations. In the presented approach, the

implementation of the required ECA structure consists of an event model,

which is used to describe events, and a routing service, which evaluates

certain conditions on incoming events and invokes an external service.

From an integration perspective, a manufacturing environment can be

seen as a compilation of distributed events generated across multiple het-

erogeneous applications. These events need to be registered, processed

and propagated to the appropriate destinations. This propagation is made

possible by introducing an event canonical model (see Figure 5.3), which

can reduce complexity over time, as the number of applications increases

and as changes are introduced [PH07]. This model is based on XML and

has a common schema for events, which defines some basic character-

istics, such as registration and routing properties. This common part of

MSB
Event
Model

Layout
Service

Production
Control Service

Manufacturing Execution
Scheduling Service

Product Data
Service

Production Data
Acquisition Service

... ...

... ...

...

Figure 5.3: The MSB Event Canonical Format

5.2 Architecture of the Manufacturing Service Bus 115

the model also includes an event type attribute, and tags for the event

description and timestamp. Depending on the event type, event messages

include an additional part for custom data. Custom data vary depending

on the event. For instance, the custom part of an event indicating a ma-

chine failure contains information about the kind of failure, the location,

and the state of the failure as maintenance operations evolve. The XML

Schema of this model can be found in Appendix A. More information on

this model, including an example of an event message can be found in

[MRR+10].

5.2.2 Event and Event-Flow Registries

Event messages are generated by the source applications and come di-

rectly into the MSB. Before messages are routed to their correct destina-

tions, these need to be registered. In order to process complex events, it is

also important to register the successive actions after a certain event, that

is, all events that depend on the first event, which triggers a set of actions.

These interdependent events are defined as an event flow. The MSB has

two registries for this purpose: Event Registry and Event-Flow Registry.

All events are identified by a generated id, which contains the origin sys-

tem and a timestamp. An event flow is identified by the id of the first

event in a flow. The Event-ID is assigned by the Event Registry Service.

All Event-IDs, Eventflow-IDs, and their relations are saved in a database.

The identification of event flows is a key aspect for the stability and per-

formance of event-driven architectures. The Event-Flow Registry enables

the MSB to keep track of event interdependencies, keeping the system

stable. Incoming events that result from triggered actions are just stored

in the Event Registry and assigned to the corresponding event flow.

116 Chapter 5 The Manufacturing Service Bus

5.2.3 Content-based Router

The problem of interconnecting multiple systems by point-to-point inter-

faces is the required explicit knowledge about each interaction in every

data exchange process. This can be avoided by introducing a content-

based routing mechanism [HW03]. Incorporating content-based routing

into SOAs assists requesters in finding their required services and allows

overcoming most limitations in the usual request/reply interaction mech-

anism by introducing new communication paradigms, such as publish/-

subscribe [CN08]. A CBR can be plugged into a service bus architecture

and process incoming messages in order to determine the correct destina-

tion based on the content of each message. However, a CBR solution can

only scale if exchanged messages share the same canonical format. That’s

the main purpose of the presented MSB event canonical model. Through

this event model, the MSB can keep track of events, route messages to

the appropriate destinations and perform mediation tasks on messages.

The existence of multiple parsing technologies represents an important

advantage for the performance of XML-based CBR services. The MSB

CBR service is based on a fixed set of XPath [W3C10] expressions, which

evaluate certain nodes in incoming event messages as it can be seen in

Figure 5.4. Upon the arrival of an event, the CBR routes first all incoming

messages to the registration services, namely the Event Registry and the

Event-Flow Registry respectively. As messages with assigned eventIds re-

turn to the CBR, the routing service looks at its context dependencies and

determines where to route the message by evaluating the event data. Con-

text dependencies are represented as XPath expressions and service-event

relationships, which are both stored in routing tables. Each event type is

mapped to one or more expressions. Once an expression, which matches

the event type of the incoming event, is found, the event processing en-

gine looks for the registered services that are subscribed to this specific

event type. Services that are subscribed to a specific event are expected to

5.2 Architecture of the Manufacturing Service Bus 117

Event Processing
Engine

Service
Registry

<xml

...

Context
Dependencies

Event
Message

Event
Registry

Event-Flow
Registry

(1)

(2)

(3)

(6)

(4) (5)

/*[@eventIdRegistered="true"

and @eventFlowIdRegistered="true"

and not(@eventId="")

and not(@eventFlowId="")

and @eventType="1"]

/*...

CBR

Figure 5.4: The MSB Content-based Router

be able to process it. This subscription mechanism lightens the processing

requirements of the integration platform and delegates the event process-

ing tasks to the end-destinations. Finally, the Event Processing Engine

looks into the Service Library to find out the service endpoints that corre-

spond to the destinations that are subscribed to receive this type of events.

As the CBR knows where to route an event message, it adds the appro-

priate destination endpoints to the routing part of the message and sends

the event message to these destinations. The routing logic is exposed as

a Web service that is called from the routing process, which is imple-

mented in a BPEL process. The BPEL process takes the event message

and sends it to the routing web service, which registers incoming events

in the Event Registry and Event-Flow Registry. This routing service looks

up the appropriate destination endpoints in a service database and returns

the appropriate routing parameters to the routing BPEL process, which

118 Chapter 5 The Manufacturing Service Bus

then forwards the event to the corresponding destination services. The

BPEL process uses for this a parameterized web service call. An example

Maintenance
Console

Production
Monitoring

ID Order Xpath
1 10 ...

22 90

/*[@eventIdRegistered="true"
and @eventFlowIdRegistered="true"
and not(@eventId="")
and not(@eventFlowId="")
and @eventType=“87"]

23 91 …

ID Destination Service
1 s_MES …
… … ...

68 s_MC_Fail
http://localhost:8090/

msb/ProcessFailure

(3)

Event
Type 87

ID Events Destination
1 Type 3 s_MES
… … ...
43 Type 87 s_MC_Fail

Event Processing
Engine

(1) (5)

CBR

Event
Type 87

(4)

(2)

Service
Registry

Context
Dependencies

Figure 5.5: Failure Event Routing in the MSB

of the routing part of an event message is shown in Figure 5.5. In this

example, the source of the message is the Production Monitoring System,

which has detected a machine failure. The destination is a maintenance

console that will process the event. As the event, marked as event type

87, comes into the Event Processing Engine, XPath expressions are evalu-

ated in the order established in the database. Once an expression is found

that matches the attributes of the event, the Engine knows which kind of

event type it is, but still doesn’t know to which destinations it should be

forwarded. In order to find this out, the Event Processing Engine looks

into the Manufacturing Context database and discovers that the corre-

sponding destination for this type of event is a system called s-MC-Fail.

5.2 Architecture of the Manufacturing Service Bus 119

In order for the MSB to find out which service endpoint corresponds to

this alias, the Event Processing Engine will send a query to the Service

Library which returns the corresponding endpoint of the maintenance

console (http://localhost:8090/msb/ProcessFailure). Once the service end-

point is retrieved, it is added to the routing destination part of the XML

event message and sent to the maintenance console.

5.2.4 Mediation Services

The MSB comprises a number of so-called mediation services. These

services are usually transformation services that convert data from one

data model to a different one. The heterogeneity of a manufacturing en-

vironment and the historical evolution of manufacturing data manage-

ment have led to many different data models, which include data mod-

els from legacy systems as well as currently adopted standardized data

models, such as ISA-95 or STEP. Mediation services are needed in or-

der to transform the data that two or more applications exchange. This

transformation is needed when the applications use different data mod-

els. It can also happen that two applications use the same manufac-

turing standard, but different data models. This is the case of XML-

based data models that were designed to provide the already existing

standards with XML support, such as B2MML [WBF08b] for ISA-95 or

STEP-XML [Int07a] for STEP. Mediation services may be required to con-

vert data in both directions if needed. Due to the wide adoption of XML

for data exchange between applications, transformation services to con-

vert XML data are often needed. Such transformation services are based

on the Extensible Stylesheet Language Transformations (XSLT) language

[W3C99b]. This W3C standard allows the creation of new documents,

based on the content of an original document. XSLT converts data be-

tween different XML Schemas [W3C01], but it can also be used to create

HTML files or PDF documents. This feature is especially interesting for

120 Chapter 5 The Manufacturing Service Bus

reporting applications that need information from various systems dis-

tributed across the Real-time Factory. The MSB mediation services are

not restricted to transformation only. These also include filtering, rout-

ing, processing and query services. Additionally, the ESB native support

for multiple bindings, such as HTTP or JMS, file transfer and e-mail, al-

lows the connection and usage of mediation services in multiple forms,

depending on the requirements of the applications.

5.2.5 Workflow Engine

The MSB workflow engine is part of the ESB infrastructure and allows

the execution of BPEL processes. The strengths of BPEL are especially

remarkable in three cases: (1) to execute processes with complex logic,

to (2) include human tasks, and (3) when state is required [Fas08]. In

the first case, BPEL allows to model processes with complex logic and in

this case and in terms of integration BPEL is preferred to an ESB due to

BPEL’s control structures and container activities, such as while loops and

scopes, which an ESB does not contain [Fas08]. The second case is when

human tasks need to be taken into account. The ESB approach is rather

data-centric and it is not possible to bring people into interaction with a

mediation flow. In BPEL, thanks to the extension BPEL4People [KKL+05],

a number of activities can be used to include tasks performed by humans.

This is especially relevant in manufacturing mediation flows, where hu-

man interaction is often needed for process control purposes. The third

case refers to the execution of stateful processes. Due to the stateless

transactional nature of an ESB, a higher performance can be achieved but

no state is recorded during the execution of mediation flows. In scenarios

with one or more of the aforementioned requirements, BPEL is preferred

to an ESB. However, there are cases, in which the strengths from both

BPEL and ESB are required. This is the case of a manufacturing environ-

ment such as the Real-time Factory. The heterogeneity of applications

5.2 Architecture of the Manufacturing Service Bus 121

calls for an ESB adoption due to its support for multiple communication

and messaging protocols. Additionally, a number of applications in the

Real-time Factory have real-time requirements, which calls for a high-

performance ESB that can process messages in the shortest time possible

(message in, message out). However, in manufacturing mediation flows,

the integration of human tasks is indispensable, such as in change order

management or maintenance operations. Moreover, stateful mediation

flows may be required as well, e.g. for data analysis purposes. For these

reasons, in such an environment as the Real-time Factory, no approach is

preferred to the other, but instead, the ESB adopts BPEL processes as well

as other mediation services and allows the execution of such processes in

a workflow engine. The management of BPEL processes as services can

be done thanks to its recursive aggregation of services, which allows for a

BPEL process to be used, re-used or aggregated as a service as well. This

way, a BPEL process can be seen as a self-contained web service that per-

forms certain tasks. These tasks can be used, as well as other mediation

services, in the mediation flows that are managed by the MSB.

5.2.6 Core Implementation of the MSB

The MSB implemented prototype is based on OpenESB, which is a open

source ESB based on the Glassfish Server [Ora08]. The implementation of

Open ESB uses the Java Business Integration (JBI) standard [Jav05]. JBI is

a Java-based standard addressing EAI issues based on the SOA paradigms

and principles. JBI defines a plug-in based architecture with three build-

ing blocks: the service engines, binding components and the Normalized

Message Router (NMR). A service engine provides an environment for the

execution of application logic. Examples of service engines are a BPEL en-

gine or an Extensible Stylesheet Language (XSL) transformation. Binding

components are connectors to external applications. The most important

characteristic of binding components is the support of multiple protocols,

122 Chapter 5 The Manufacturing Service Bus

such as SOAP, JMS, E-mail, File or FTP. Finally, the NMR finds the ap-

propriate service that is provided by an external component and supports

the necessary context for the execution of message exchange sequences.

The MSB adapts the functionality of the Open ESB to manufacturing en-

vironments by connecting the aforementioned content-based routing and

mediation services. The MSB uses SOAP/HTTP bindings for the exchange

of event messages with external applications. File bindings are also used

in order to import manufacturing data from proprietary applications. The

Content-Based Router is implemented as a BPEL routing process, which

is executed in the BPEL engine of the Open ESB. The Context Depen-

dencies and the Service Registry tables are managed in a Microsoft SQL

Server. The Event Processing Service runs on a Windows Application

Server, also known as Internet Information Services (IIS). The Event Pro-

cessing Service is implemented in the .NET Framework with help of the

Windows Communication Foundation (WCF) API. Other WCF Services

are the Event Registry and the Event-Flow Registry.

5.3 Service Management

The main objective of transformable factories is to always run on the

best economic operating point by the permanent and continuous adapta-

tion of internal and external processes [JWW09]. In order to achieve the

adaptability goal in the Real-time Factory, all manufacturing processes,

services and resources need to be continuously monitored and analyzed.

The integration processes managed by the MSB as well as the data ser-

vices and applications that are connected to the MSB, are an integral part

of the factory-internal processes that need to be permanently adapted.

Therefore, the management of these processes and services is a funda-

mental requirement for the needed adaptation. Process adaptation entails

a number of challenges that need to be faced. These challenges include

5.3 Service Management 123

a strategy for the reuse of services, i.e. proper decisions on the granu-

larity of services for each application, and versioning methodologies. In

order to address these challenges of adaptation and to ensure the success

of the SOA-based approach presented in this thesis, services are managed

according to specific service lifecycle guidelines and integration methods,

which are described ahead.

5.3.1 Life Cycle Management of Services and EAI

Processes

Service adaptability is one of the most important challenges in SOA gov-

ernance and service lifecycle management [PTD+07]. Services expose dif-

ferent application functionalities that can be reused, thus enabling differ-

ent composition of services depending on the current business conditions.

As these business conditions change, services must be adapted as well.

However, when service definitions change, certain precautions need to be

taken into account since services may be integrated into and thus affect

multiple EAI processes. In order for process modelers to make the right

decisions on accepting changes in service interfaces, it needs to acquire

sufficient information about the service dependencies of processes and

about all processes affected by a service revision. The Service Develop-

ment Life Cycle (SDLC) is defined for web services as a highly iterative

and continuous approach to developing, implementing, deploying, and

maintaining web services [Pap08]. In these services, feedback is contin-

uously cycled to and from phases in iterative steps of refinement. The

life cycle that is assumed for all services that are connected to the MSB is

based on the SDLC, without the restriction to web services. This cycle is

depicted in Figure 5.6.

The planning phase is a pre-design phase, which is used to observe and

evaluate the business environment and to decide what services need to

124 Chapter 5 The Manufacturing Service Bus

be planned. In this phase, an analysis of the requirements takes place,

followed by the identification of possible reusable services. In the sub-

sequent analysis and design phase, the appropriate service granularity

is determined, which is a decisive factor for the reusability of services.

Here, performance and QoS aspects may be analyzed as well. A process

fragment library managing possibly reusable process fragments [SKL+10]

as well as process editing tools may be used to support the design pro-

cess. After the design phase, services go through the construction and

test phase. Here, the service is implemented, its interface is defined and

the service is tested. In the deployment phase, it is then published in a

repository for discoverability purposes and deployed in the runtime en-

vironment. Finally, the service begins to be actually used in the execu-

tion phase, where the necessary monitoring mechanisms are also put into

Analysis and
Design

Construction
and Test

Execution and
Monitoring

Deployment

Analysis and
Design

Construction
and Test

Deployment

Execution and
Monitoring

Planning

Figure 5.6: Real-time Factory Services Lifecycle, adapted from [Pap08]

5.3 Service Management 125

place. Monitoring is necessary to analyze the business environment and

to check the effectiveness of the service functions and thus to initialize a

new iteration of the loop if needed.

In terms of adaptability, two objectives are defined for the Real-time Fac-

tory in Chapter 1: responsiveness and knowledge-based adaptation. The

components of the proposed approach that address these objectives and

the challenges they embrace are presented in this section. These compo-

nents are the EAI process editor and the Provenance-aware Service Repos-

itory.

5.3.2 EAI Process Model for the Real-time Factory

An EAI process editor is used for modeling the EAI processes that are

executed in the MSB. These EAI processes are a representation of the me-

diation flows which integrate two or more manufacturing applications

across the Real-time Factory. Such mediation flows are control-oriented

flows that process the events that applications produce and consume in

the manufacturing environment. These mediation flows leverage the ben-

efits of a service bus, such as the variety of bindings and central config-

uration, in order to manage a highly distributed environment. A very

important benefit of the ESB is performance. An ESB is designed to be

able to handle large volumes of messages. Therefore, in a data-centric

integration approach, the ESB is currently the best option. However, an

ESB does not keep the state of transactions. This may be necessary for

the execution of control-oriented processes. Here, there are other stan-

dards in the SOA community, such as BPEL [Org07] or WS-RF [Org06d],

which present a better alternative. In the case of the Real-time Factory,

mediation flows need to leverage the best of both alternatives in order to

satisfy the requirements of a large number of applications. The hetero-

geneity of applications calls for an ESB adoption due to its support for

126 Chapter 5 The Manufacturing Service Bus

multiple communication and messaging protocols. Some applications in

the Real-time Factory have real-time requirements and thus call as well

for a high-performance ESB that can process messages in a shorter time

than BPEL processes. On the other hand, other applications require to

be integrated in control-oriented flows in order to keep the current state

of transactions. In such cases, the adoption of BPEL processes is more

appropriate.

EAI Processes

 Executable Business Services Mediation Services

XSLT

Routing

 Data Layer Services

ERP Service

MES Service BPEL Services

… …

Figure 5.7: Classification of EAI Processes

Therefore, and since there is currently no standard in the manufactur-

ing industry to model mediation flows that can adapt to such different

requirements, a process model is needed to integrate both ESB media-

tion services and control-oriented processes (i.e. BPEL processes). For

this purpose, the EAI processes that are executed in the MSB allow the

integration of multiple services of different characteristics. From the per-

spective of an EAI process Such services are referred to as atomic services.

5.3 Service Management 127

These atomic services are classified in three main groups, which are de-

picted in Figure 5.7. These services are described ahead:

- Executable Business Services. These are services that implement

one or more activities within a business process. These services

must be executable in order to be included in an EAI process, i.e.

BPEL processes.

- Mediation Services. These services are connected to the MSB and

are responsible for all mediation tasks that are executed within an

EAI process, such as routing and transformation services.

- Data Layer Services. This group of services include all services

from the Data Service Layer of the MSB. Such services act as data

consumers or data providers within an EAI process.

In order to design the integration processes that enable the exchange of

data in the Real-time Factory and that are executed in the Manufactur-

ing Service Bus, an EAI Process Model is used. This EAI Process Model

is based on the service classification described above allowing the inte-

gration of control-oriented services, mediation services, data consumer

services and data provider services in one process model. This way, the

mediations flows of the Real-time Factory can be modeled and make use

of diverse services depending on the needs of integration scenarios. This

model is defined as the Real-time Factory EAI Process Model and is de-

picted in Figure 5.8.

An EAI process contains some metadata attributes, which are used for

versioning and classification purposes. Furthermore, an EAI process is

composed of edges and nodes. A node is the representation of a service,

which executes a specific task. Before a node can execute its task, it usu-

ally receives one or more events. After having processed the incoming

events, it produces one or more output events, each of a specific event

type, and sends them to the MSB in order for the event to be routed to

128 Chapter 5 The Manufacturing Service Bus

EAI Process

EAI Process Part

isPartOf

1..*

1..*

Edge Node

Input Event Type Output Event Type

Event Type

connects

1..* 1..*

receives

1

0..* 0..*

produces

Service

represents

1 1

eventType: int
SchemaURI: uri

Function

1..*
hasFunction

1..*

Domain: string
Predicate: string
Object: string
Manner: string
Location: string
Condition: string
About: string
Time: time
Frequency: string
SupportPredicates: array

hasFunction

1..* 1..*

Variant: string
Group: string
Predecessor: string
ReleaseDate: date

id: string

EdgeNumber: string
StartNode: string
EndNode: string processEvent()

sendEvent()

wsdlURI: uri
lifecycleURI: uri
provenanceURI: uri

Receivers: array Producers: array

1

Figure 5.8: Real-time Factory EAI Process Model

the nodes that are subscribed to the specific event type. This mediation

operation from a node to the MSB and from the MSB to another node

is represented as an edge. An edge has a unique id, as well as nodes,

and an EdgeNumber attribute, which differentiates edges that connect the

same nodes. Both EAI Processes and EAI Process Parts (edges and nodes)

are annotated with one or more Functions. Functions are used to denote

which functionality each part of a process and an EAI process in gen-

eral performs. They comprise a number of attributes, such as domain,

predicate and object, which aim to describe a function. These functions

are fundamental building blocks of the adaptation of EAI processes, as it

is explained in Section 5.4. An example of such Functions is shown in

5.3 Service Management 129

EAI Process:
Adapt-FM-EAI-P
 Domain: FailureManagement
 Function: RepairFailures

Function:
RepairFailures
 Predicate: Repair
 Object: Failures
 Location: ML2
 Condition: Process F
 Manner: Low Line Impact

Figure 5.9: Function Description of an EAI Process

Figure 5.9. The Function RepairFailures, which is assigned to an EAI pro-

cess, is annotated as a function that repairs (predicate) failures (object)

at a specific location in the factory. Addtionally, functions contain more

attributes, such as condition, manner, time and frequency, which support

better adaptation possibilities, as it is described in Section 5.4.

An example of an EAI process is shown in Figure 5.10. The integration

process deals with failures in the production system. The communica-

tion between the services in the process shown in Figure 5.10 is done by

means of the content-based router in the MSB. The MSB is left outside of

the process diagram for clarification purposes. More details on the bus

communication are given in [WISE10]. The integration process receives

a failure message from the shop floor by the SCADA service. The MSB

routes the failure message (1) to the Maintenance Console (MC). Here,

workers can decide which activity has to be done. Then, a BPEL work-

flow (BPEL-Repair in Figure 5.10) is triggered with the first evaluation

that is made in the Maintenance Console (2). After this failure evalua-

tion, customers are informed about the failure (3) and the estimated delay

for their order in a Customer Portal (CP). The BPEL workflow, contains

an timeout that allows for an escalation mechanism to be triggered. The

escalation consists in notifying the production manager of the long dura-

tion of the repair. The workflow calls an e-mail service (POJO Mail) (4),

which sends the e-mail to the production manager (5). After the machine

130 Chapter 5 The Manufacturing Service Bus

BPEL
Repair MC SCADA POJO

Mail

CP

(1) (2)

(3)

(4)

(5)

(7)

(6)

Figure 5.10: EAI Process for Failure Management

has been repaired, the worker responsible for restarting production has

to confirm the repair operation at the maintenance console (6). At that

point, production can be restarted and the corresponding event is routed

to the customer portal to update the delivery dates of the orders (7). In

Section 6.2.2, this process is described in detail, including all messages

that are routed by the MSB. The exchange of the event messages with the

MSB can be seen in the process described in Figure 6.2.

These EAI processes also have a representation in a written form. The

Model shown in Figure 8 serves as a basis to describe EAI processes in the

so called MSB Process Description Language (MSB-PDL). This language

is based in XML and its purpose is to describe EAI processes in an ex-

changable format that allows the EAI Process Editor to send and receive

descriptions of EAI processes. An example of an MSB-PDL description

can be found in Appendix B, where the process shown in Figure 5.10 is

described.

5.3.3 EAI Process Editor

To achieve the desired responsiveness, it is crucial to follow the principle

of integration that eases reconfiguration of an integration middleware.

5.3 Service Management 131

Therefore, a mechanism is needed that enables process modelers to easily

modify the configuration of the MSB in order to quickly make adapted

EAI processes executable. This mechanism is an editor tool for modeling

and deploying EAI processes. The EAI Process Editor, which is shown

in Figure 5.11, has an UI, which enables process modelers to plan, cre-

ate, deploy and adapt EAI processes. During the creation of an EAI pro-

cess, the Find palette on the left side supports the search of services that

Figure 5.11: EAI Process Editor

132 Chapter 5 The Manufacturing Service Bus

match specific criteria. The fields of the form in this panel correspond to

the metadata attributes of the services that are published in the service

repository. The communication with the Service Repository is realized

by means of an interface that creates concrete queries and sends them to

the Service Repository. The corresponding query language is described

in Section 5.3.4.2. The query operations supported by the repository are

CRUD-operations (Create, Request, Update, Delete) for services as well

as for processes. The request operations can refer to a specific resource

of a service, such as a WSDL file, a lifecycle description URI or the func-

tion assigned to the service. The corresponding resource can be declared

by specifying its attributes in the Find palette. After a request operation,

the search results are shown on a Service palette. The list of found ser-

vices, as well as their respective resources, is shown in this palette so that

process modelers can drag-and-drop the services onto the main process

visualization space on the right side where the editor shows the graph of

a process.

As described in Section 5.3.2, a process graph is composed of a collection

of nodes and a collection of edges that interconnect these nodes. The EAI

Process Editor enables modelers to visualize these graphs and to create

MSB-PDL process descriptions. Such descriptions are sent to the MSB in

order to be deployed and executed in the platform. The nodes in these

graphs are the representations of services that must be connected appro-

priately in the EAI process. This means that a service acting as node

can be connected to another node via an edge if and only if the source

node sends the same type of events the destination node is able to pro-

cess. The editor offers a node compatibility check functionality, which

determines the validity of all edge connections in an EAI process. The

process visualization space permits to show additional information about

the services that are integrated into the EAI process by clicking on them.

This information includes metadata information such as version, owner

or domain.

5.3 Service Management 133

Additionally, the EAI Process Editor can receive notifications from the

Service Repository. Such notifications include three types of content:

(i) process change recommendations, (ii) service in adaptation process,

(iii) service finished adaptation. These notifications are important for the

adaptation of processes, as it is shown at the end of this Chapter. A pro-

cess change recommendation is used to recommend corrective actions in

EAI processes. The notification "service in adaptation process" notifies

the editor of upcoming changes in the interface of a service that is inte-

grated into at least one EAI process. Finally, the third type of notification

"service finished adaptation" serves to inform process modelers of new

service variants. After a service has been updated, a process modeler has

to adapt the EAI processes, which integrate the new service variant.

The EAI Process Editor is implemented via the Java Swing Visualization

library (JGraphX) [JGr01]. The Editor UI has been customized to the spe-

cific requirements of the EAI Process Editor. This customization includes

the Find and Service palettes, a dialog box to enable the annotations of

edges and nodes, as well as a Notification palette, which opens when the

editor receives notifications from the Service Repository. The EAI Pro-

cess Editor communicates with the Service Repository by means a spe-

cific language: the Service Provenance Query Language (SPQL), which

is described in the next Section. The business logic of the EAI Process

Editor includes an SPQL Serializer, an SPQL Deserializer to process noti-

fications and an EAI process model serializer, which creates XML-based

representations of all EAI processes that are ready to be deployed. The

process modeler can start the deployment of an EAI process by pushing

the Deployment button in the editor. This button triggers the process

model generator, which creates the XML-based representation of the pro-

cess model and sends it to the MSB.

134 Chapter 5 The Manufacturing Service Bus

5.3.4 Provenance-aware Service Repository

A knowledge-based adaptation is one of the objectives of this thesis. The

service registry used by the CBR, which is described in Section 5.2.3, does

not satisfy the requirements of a knowledge-driven service management

system. The purpose of the Provenance-aware Service Repository is to

manage the EAI processes that are executed in the MSB. The functions

of the repository include the management of service-process dependen-

cies by means of a publish/subscribe mechanism, a notification service, a

query processing service and a number of components to manage high-

level context information about the EAI processes and the manufacturing

domain as well. The management of this context information is based on

a semantic service provenance concept, which is described ahead. The

components of the repository are described in the subsequent sections.

5.3.4.1 Semantic Service Provenance

The concept of data provenance deals with describing the history and

lineage of data, namely the process of tracing and recording the origins

of data and its movement and manipulation between databases [BKT07].

Data provenance is especially relevant in scientific applications where

data follow a long trail across multiple databases [SSH08]. In the service

repository, the concept of provenance is applied to services to describe

their versions and variants. The description of service provenance in the

repository has to be rich enough to provide high-level context informa-

tion about services and their effects on the domain they run. For this

reason, the repository offers semantic descriptions of the provenance of

services in order to provide the necessary knowledge about the deployed

services to EAI process modeling tools, as it will be described later in this

Chapter. In addition to this, domain data analysis has to be an integral

5.3 Service Management 135

Semantic Domain Provenance

Domain Ontology

Optimization

Domain Data Dashboard

Statistics
Service Provenance

Semantic Service Provenance

Figure 5.12: Semantic Service Provenance

part of the service lifecycle since services are often redesigned on the ba-

sis of optimization parameters derived from analyzing domain data. The

concept of semantic provenance is introduced in [SSH08] for e-science do-

mains. This approach advocates the creation of high-quality information

using specialized services. This way, provenance information can be au-

tomatically interpreted and processed. The main concept is based on two

degrees of separation, distinguishing between system provenance and se-

mantic provenance. The combination of domain ontologies with records

of data provenance can be used to compute domain-specific comprehen-

sive provenance, which can later be processed to derive higher-level con-

text information. The approach presented in this thesis to describe ser-

vice provenance is based on this concept of semantic data provenance.

Domain-specific ontologies are not only combined with data provenance

information. Additional service provenance information is also provided

and combined in a further step. This extension of the concept presented

136 Chapter 5 The Manufacturing Service Bus

by Sheth [SSH08] supports an expressive representation of service inter-

faces and service provenance, establishing relations to the domain data

that services manage. In the presented approach, the combination of ser-

vice provenance with domain-specific semantic data is defined as seman-

tic service provenance. The resulting provenance information can be used

to derive high-level context information about service versions and vari-

ants as well as their relations to different domain data. As shown in Figure

5.12, the three basic pillars for building a semantic service provenance

framework are (i) the domain data dashboard, (ii) the domain ontology,

and (iii) the service provenance data. The domain data dashboard pro-

vides standardized metrics to support the analysis of the domain environ-

ment. This information is relevant for governance purposes, namely to

characterize the effectiveness of running processes and to suggest actions

for process optimization, based on domain data analysis. The domain on-

tology is used to build semantic domain provenance, which can be used

to establish relations to service provenance data. Finally, service lifecycle

management applications provide service provenance data for the pub-

lished service variants and versions, such as revision IDs, predecessors,

successors, due dates and owners of revisions. A service ontology sup-

ports a rich description of service interfaces. This approach to describe

service provenance is integrated into a service repository, as it is described

in Section 5.3.4.3.

5.3.4.2 Service Provenance Query Language

The Service Provenance Query Language (SPQL) is designed to support

the communication of service lifecycle applications with the Provenance-

aware Service Repository. SPQL is a markup language and supports eight

query types. These query types include four CRUD-operations (Create,

Request, Update, Delete) and four types of notifications. Notifications

5.3 Service Management 137

are used to keep track of the lifecycle information of services and pro-

cesses that are managed in the Service Repository. All SPQL operations

are shown in Table 5.1.

A summary of all SPQL operations is given ahead:

- CRUD: These queries are used to Create, Request, Update or Delete

services and EAI processes from the Repository. The objects —

service or EAI process — in these queries can be referred to by

means of different resources, such as metadata, input, output or

WSDL references. An example of an SPQL query to create a process

is given in Appendix C.

- Notify Object Found: This message is sent back to an application

that has previously sent a Request query. The object data that is

embedded in the message may contain information about any of

the requested resources associated with services and processes.

- Notify Change in Progress: This message is used by applications

that enter the re-design phase of a service by planning changes

in the service interface. Once changes are planned, they can al-

ready be communicated to the Service Repository via this kind of

notification. Changes in the interface of a web service affect the

following resources: input message, output message and WSDL.

The metadata of the service can also be changed.

- Notify Change Finished: Once an application deploys a new ver-

sion of a service or process, it can send this message to the Service

Repository in order to communicate the changes that have been

committed. This message may contain any of the resources associ-

ated with services and processes.

- Notify Change Recommendation: This message is sent to process

management tools, such as the EAI Process Editor. Its purpose is to

138 Chapter 5 The Manufacturing Service Bus

Query Type Object Resource

Create Service, Metadata,

Request Process Graph,

Update Input,

Delete Output,

WSDL,

Lifecycle,

Provenance

Notify Service, Metadata,

Object Found Process Graph,

Input,

Output,

WSDL,

Lifecycle,

Provenance

Notify Service, Metadata,

Change in Progress Process Input,

Output,

WSDL

Notify Service, Metadata,

Change Finished Process Graph,

Input,

Output,

WSDL,

Lifecycle,

Provenance

Notify Process Graph

Change Recommenda-

tion

Table 5.1: Service Provenance Query Language

5.3 Service Management 139

indicate the changes that need to be carried out in a process graph.

This notification is especially interesting from the perspective of

adaptive systems. An example of its usage is described later in this

Chapter.

The object of a query can either be a service or a process. An object

includes different types of resources, which can be referred to in a query.

These resource types are described ahead :

- Metadata: This resource refers to the attributes that are used to

describe the service itself. These metadata attributes include ver-

sioning, classification information such as owner or group, as well

as lifecycle timestamps such as release date and deployment date.

Furthermore, they include a function attribute, which describes the

functionality of the service.

- Graph: A process graph is a collection of nodes and edges, which

connect pairs of nodes. An example of a process graph is shown in

Section 5.3.2.

- Input: This resource describes the input event messages that a ser-

vice can process. This description contains a collection of event

types that can be empty if a service does not include any operation

to process events.

- Output: This resource describes the event types of the output event

messages that a service produces. This description can analogously

be empty if a service does not include any operation that produces

output events.

- WSDL: This resource refers to the WSDL file of a web service.

- Lifecycle: This resource describes the lifecycle information of a ser-

vice or process. This description includes information about previ-

ous versions and other active variants of the service.

140 Chapter 5 The Manufacturing Service Bus

- Provenance: This resource describes the provenance information

of a service. Provenance information includes the relations of a

service or process to its previous versions, to other variants, as

well as the service dependency with respect to domain context in-

formation.

5.3.4.3 Architecture Overview

The architecture of the Provenance-aware Service Repository is shown in

Figure 5.13. The communication between the Service Repository and the

EAI Process Editor is based on an interface that can process and generate

SPQL queries. This interface can also be used by other applications that

update any of the services managed by the repository. These applications

send a description of a service revision by means of SPQL notifications:

a change-in-progress notification when the changes are planned but

not deployed yet and a change-finished notification when the service

is redeployed. In addition to the SPQL-interface, the repository can be

populated with domain-specific context - domain knowledge - as shown

in Figure 5.12. This context information is combined with service prove-

nance information in order to complete the semantic service provenance

schema, shown in Section 5.3.4.1. The resulting information is processed

by the semantic data engine and stored in a Process Knowledge Base

(PKB). The PKB contains the description of service dependencies as well

as metadata of EAI processes. The description of atomic services is stored

in the Service Knowledge Base (SKB). By atomic services, it is meant all

types of services that can be mapped to a node in EAI process graphs, as

explained in Section 5.3.2. The PKB and the SKB are based on a process

ontology and a service ontology, respectively. The Service Repository ar-

chitecture consists of the following components: the SPQL-Processor, the

Service Discovery component, the Subscription Manager, the Semantic

Service Provenance component, the Semantic Data Engine, the PKB and

5.3 Service Management 141

Subscription
Manager

 Service Repository

Process Ontology
Process

Knowledge
Base

Semantic Data Engine

SPQL-Processor

Service
Discovery

Service
Knowledge

Base

Service
Provenance
Query

Service
Registry

Service Ontology

WSDL

Service
Provenance
Update

Service
Revision
Description

Semantic Service
Provenance

Domain
Knowledge

Figure 5.13: Provenance-aware Service Repository Architecture

the SKB. The functionality of these components is explained ahead.

SPQL Processor

The SPQL Processor receives service discovery and process-related

CRUD-queries from the EAI Process Editor. Service revision descriptions

are sent from external service life cycle applications. When these

applications change a service implementation or interface, they send the

corresponding update information in provenance update queries to the

repository through the SPQL Processor interface. Once a query for create,

update and delete operations has been parsed, the SPQL Processor sends

the parsed query to the Semantic Service Provenance module, which

executes the query operation. When these query operations refer to a

142 Chapter 5 The Manufacturing Service Bus

process graph, they usually entail a collection of dependencies between

the nodes of the graph that needs to be managed. The Subscription

Manager is responsible for the management of such dependencies. The

information contained in a change-recommendation notification is deter-

mined by the Subscription Manager, which informs the SPQL Processor

of which processes need to be notified of the recommendation. A change

recommendation is made by the Semantic Data Engine. Request queries

are sent to the Service Discovery module, which searches for the specific

resources of the process or service in the respective knowledge bases.

If the relevant resource of the process or service is found, the resource

information is sent back to the Service Discovery module. Then, the

SPQL Processor receives the resource information and creates an SPQL

service-found notification message to send it to the EAI Process Editor.

The other types of notification messages are also sent from the SPQL

Processor.

Service Discovery

One of the functions that EAI process modeling tools need is service

discovery. Integration processes make use of reusable process fragments,

which encapsulate repeatable tasks. These can be data transformation

services, domain-specific extraction services and application-level ser-

vices with specific functionality. These reusable services are represented

by nodes in a process graph of the EAI Process Editor. All services

intended to be reused, need to be discoverable by the EAI Process Editor.

In order to allow the discovery of available services, search queries are

transformed into ontology model queries that are sent to the service and

process knowledge bases. If one or more services are found that match

the search criteria, the required resources are sent back to the Service

Discovery module. Certain resources are neither stored in the PKB nor

in the SKB. Such resources comprise WSDL files and XML Schema files,

which describe the interfaces of the managed services. These resources

5.3 Service Management 143

are stored in a Service Registry, which the Service Discovery module can

access and look up for the appropriate resource given a specific service ID.

Subscription Manager

One of the most important features of a Provenance-aware Service

Repository is to be able to subscribe to service changes. This allows

process modeling tools to receive notifications when a service changes

if the corresponding subscription exists. The implementation of the

subscription manager is done similar to publish/subscribe systems. The

subscription manager receives messages from the Semantic Service

Provenance component. These messages describe service provenance

events, which can affect EAI processes, such as service revisions. Once a

service is used in a process, the EAI Process Editor sends a create query to

the repository in order to create a process. The SPQL-Processor receives

the query and creates a subscription request that is sent to the Subscrip-

tion Manager. For each edge in a process graph, a subscription entry is

created in the subscription store. Every subscription has a Subscriber

that issues the subscription. A subscriber can subscribe to different types

of messages within the same Subscription object. For instance, a process

can subscribe to several provenance events within the same subscription,

such as specific service revisions or a change in service operations. This

concept associates the subscription object with a process instance, easing

the management of subscriptions for the versioning of processes. As new

IT systems come into scene, existing integration processes have to be

adapted, as well as existing services. When existing services are adapted,

there are certain reusability concerns to consider. For instance, services

adapted to function properly within new integration processes might

also be reused by other processes, which do not require an update. In

this case, it is important that the corresponding subscriptions are created

when modeling an EAI process. The presented Service Repository allows

for this subscription registration functionality to be used by modeling

144 Chapter 5 The Manufacturing Service Bus

S139

S174
S42

Operation:

 getSupplier

 OutputType:

 SupplierProfile

Operation:

 pushFailureData

OutputType:

 FailureSCADAType

Figure 5.14: Example of Service Dependencies in an EAI Process

tools. For instance, assuming that the EAI process modeler establishes a

service integration as shown in Figure 5.14, the corresponding service

dependencies have to be translated accordingly into the appropriate

subscription. The process subscribes to changes in any of the service

operations that deliver input data for other services, like the operations

pushFailureData and getSupplier in the example. A process instance

may also subscribe to new operations that deliver new data in new

service revisions. Finally, all interconnections in the process modeling

tool are semantically annotated according to the terms of service and

domain ontologies. This gives process modeling tools the possibility to

subscribe to any updates or revisions that semantically match the service

interactions in the EAI process graph.

Semantic Service Provenance

This module accepts service revision information. Change-in-progress

and change-finished queries are sent to the repository from external

applications and the SPQL Processor forwards the resulting notifications

to the Semantic Service Provenance module. In this module, a semantic

5.3 Service Management 145

description of the revision is combined with domain context information,

as given in the scheme of Section 5.3.4.1. Then, the resulting semantic

service provenance information is analyzed in the Semantic Data Engine

in order to derive new knowledge. Depending on the type of service revi-

sion and on the impact of the changes, the derived new knowledge could

be the need of adaptation of an EAI process that integrates the updated

service. This would imply having to notify the EAI Process Editor of

the necessary changes by sending a change-recommendation notification.

Semantic Data Engine

The Semantic Data Engine triggers an internal reasoning process to

derive possible new knowledge. The sources to start a reasoning process

are notifications from external applications or CRUD-operations on the

SKB and PKB. In some cases, service revisions require to notify the EAI

Process Editor of a change recommendation so that it may adapt a specific

process according to the changes introduced in one of the integrated

services. However, in other cases, service revisions do not affect the

existing edges of a process graph. An example for such a service revision

is the increase of the number of available service operations. This change

does not affect the existing service operations which are used to connect

a pair of nodes in a specific process graph. In this case, the Semantic

Data Engine would reason about the new knowledge and conclude that it

is not necessary to adapt the affected processes. The main benefit of this

approach is the use of semantics to extract high-level context information

about service dependencies and about the impact of service revisions on

EAI processes.

Process and Service Knowledge Bases

Both the PKB and the SKB represent storage places of semantic de-

scriptions that are used to manage process and service information.

Furthermore, they store the new knowledge generated by the reasoning

146 Chapter 5 The Manufacturing Service Bus

process of the Semantic Data Engine. In the same manner, if the

reasoning process requires updating or deleting specific service or

process information, the Semantic Data Engine updates or deletes the

corresponding semantic descriptions.

5.3.4.4 Implementation

An overview of the implementation of all components in the service

repository is given ahead.

Ontology Models and Knowledge Bases

All components of the repository are implemented in Java. The process

and service ontologies are designed with Protégé [Sta], which is an

ontology management tool that supports the visualization of all ontology

elements. The ontology models can be imported into the repository by

means of an OWL file, which contains all information relevant to the

process and service ontologies. The management of ontology models,

which is realized by the Semantic Data Engine, is implemented using the

Jena Framework [HP06]. The PKB and SKB are two ontology models

of the Jena Framework that are managed in memory. The knowledge

models of the PKB and of the SKB are represented in RDF triples.

Interfaces

As mentioned above, the repository has two interfaces for external

applications. The first interface is the SPQL-Processor interface, which

is used to communicate with the EAI Process Editor. It is realized as

Web Service interface. A WSDL file defines one operation to process

queries. This operation answers with a confirmation reply message after

having processed the query. Messaging is based on SOAP messages

over HTTP. The body part of the SOAP message contains the XML part

that comprises the SPQL query. The SPQL Processor has a web service

5.3 Service Management 147

interface in case its integration with other service-oriented platforms

is needed. The second interface is the Semantic Service Provenance

interface, which is used to receive Service Revision Descriptions from a

specific execution domain. In this case, the domain is the Manufacturing

Service Bus. This interface is also a web service interface, which contains

an operation to process RDF data. Messaging is again based on SOAP

messages over HTTP. The body of the SOAP message contains RDF

triples encoded in RDF/XML in a CDATA part. This type of message is

generated by domain applications that send specific domain data to the

repository. The Semantic Service Provenance that processes the RDF

triples expects to receive semantic information about a concrete instance

of the process ontology, namely a DomainRecommendation instance.

The purpose of this information is to adapt EAI processes accordingly.

The adaptation process is described later in this Chapter, in Section 5.4.

Reasoning Process

The reasoning process of the Semantic Data Engine is composed of

two reasoners. The first one is an OWL reasoner, which is provided

by the Jena Framework. It uses rules to propagate the if-and-only-if-

implications of the OWL constructs on instance data. Reasoning about

classes is done indirectly, i.e., for each declared class a prototypical

instance is created and elaborated [HP06]. If the prototype for a class A

can be deduced as being a member of class B, the Jena reasoner concludes

that A is a subClassOf B. Some of these OWL-implicit rules can be seen

in Table 5.2. The purpose of this reasoner is to check the fulfillment of

description-logical constructs and the consistency of the ontology model,

such as inverse properties, class subsumption and consistency.

The second reasoner is a generic rule reasoner that realizes a rule-based

inference over RDF graphs. The set of rules that is managed by the Se-

mantic Data Engine is loaded from a file. Once the reasoner has been

instantiated and the rules have been loaded, it can be used as any other

148 Chapter 5 The Manufacturing Service Bus

reasoner to answer queries against the resulting inference model. A rule

for the rule-based reasoner is defined via a Java Rule object with a list of

body terms (premises) and a list of head terms (conclusions). Each term is

either an RDF triple pattern or a call to a built-in primitive. Some of the

most common built-in primitives are shown in Table 5.3.

Property Condition Conclusion

rdfs:subClassOf
(?a subClassOf?b) (?a subClassOf ? c)

(?b subClassOf ?c)

owl:inverseOf (?a property1 ?b) (?b property2 ?a)

owl:SymmetricProperty (?a property3 ?b) (?b property ?a)

Table 5.2: Ontology implicit rules

Builtin Primitive Description

lessThan(?a,?b) Test if a < b

greaterThan(?a,?b) Test if a > b

equal(?x,?y) Test if x=y. The equality test is seman-

tic equality so that, for example, the

xsd:int 1 and the xsd:decimal 1 would

test equal.

regex(?t,?p) Matches the lexical form of a literal

(?t) against a regular expression pat-

tern given by another literal (?p).

Table 5.3: Jena built-in functions

Built-in primitives are commonly found in the premises of rules con-

structs. An example of a rule is given ahead in order to illustrate these

the usage of such constructs:

5.3 Service Management 149

rule1: (?process pkb:hasFunction ?function)
(?function pkb:hasLocation ?location)
(?domainRecommendation pkb:hasFunction ?domainFunction)
(?domainFunction pkb:hasLocation ?domainLocation)
equal(?domainLocation, ?location)
-> (?domainRecommendation pkb:actionOnProcess ?process)

The premises of this rule check the condition of the location attribute of

two instances: a the function of a domainRecommendation instance and

the function of a process instance. If their location attributes are equal,

then the attribute actionOnProcess of the domainRecommendation instance

is pointed to the process.

5.3.5 Real-time Factory Integration Architecture

The integration architecture for EAI process, applications and IT services

in the Real-time Factory is defined by the components presented in this

Chapter: the MSB, the EAI Process Editor and the Provenance-aware Ser-

vice Repository. Figure 5.15 shows the connection of these components.

As described in Section 5.3, the purpose of the EAI Process Editor and

the Service Repository is to manage the lifecycle of services and EAI pro-

cesses that are executed. The information relative to the lifecycle of these

components is managed by the Service Repository. In case an adapta-

tion of EAI processes is needed, the update information provided by the

Repository is used in EAI Process Editor in order to adapt EAI processes

and redeploy them in the MSB. The communication between the EAI Pro-

cess Editor and the Service Repository is realized by means of an SPQL

interface (see Section 5.3.4.2). The SPQL queries supported by the repos-

itory allow the execution of CRUD-operations (Create, Request, Update,

Delete) on services and EAI processes as well as sending Notifications rel-

ative to the changes in services and EAI processes. The deployment of EAI

150 Chapter 5 The Manufacturing Service Bus

EAI Process Editor

Provenance-aware Service Repository

Manufacturing Service Bus

Service Lifecycle
Management Application

Si‘

Sj
 Si

 ...

Figure 5.15: Real-time Factory Integration Architecture

processes is possible thanks to an MSB interface that is able to process de-

scriptions of EAI processes. Such process descriptions are known written

in the XML-based MSB Process Description Language (MSB-PDL). This

language is used by the EAI Process Editor to describe the graph of pro-

cesses. An example of such graphs is depicted in Figure 5.10. The MSB-

PDL description of this graph is given in Appendix B. The Real-time Fac-

tory Integration Architecture shown in Figure 5.15 also shows a Service

Lifecycle Management Application that sends update notifications from

the Service Repository, as described in Section 5.3.4.3. The architecture

shown in Figure 5.15 provides the desired flexibility and interoperability

in the Real-time Factory. However, it lacks a monitoring phase, as shown

in the Real-time Factory Service Lifecycle (see Figure 5.6), which would

close the service life cycle. The lack of a monitoring system prevents the

Real-time Factory to gain the needed agile adaptation for EAI processes.

In the next Section, it is described how this loop can be closed.

5.4 Agile Adaptation of EAI Processes 151

5.4 Agile Adaptation of EAI Processes

Enterprise agility is defined as the ability of an organization to sense en-

vironmental changes and to respond efficiently and effectively to these

changes [MP06]. Agile manufacturing has long been recognized as a

new expression for an enterprise that states its ability to produce goods

and services in the presence of continuous change [ZTZ07]. Both "in-

formation architecture adaptability" and "service-based communication"

[DGM97] are key aspects to support manufacturing agility. In this the-

sis, the main line of argument is that a service-based integration platform

meets the needs of a manufacturing company that seeks to react flexibly

in a changing environment, such as the Real-time Factory. The Real-time

Factory is a constantly changing production environment that obliges

engineers to continuously adapt applications and services based on the

needs of new products and production processes. Similar to the service

lifecycle, which is described in Section 5.3.1, EAI processes go through a

lifecycle that permits their adaptation to the changing conditions and to

new scenarios in the production environment. This adaptation is usually

preceded by a monitoring and an analysis phase, in which the execution

of EAI processes are evaluated. Production systems register events and

data related to the current state of production, whereas the evaluation of

these data is carried out manually so far. This means that the evalua-

tion process that monitors and analyzes the current state of the factory

usually comprises human tasks, which are executed by factory workers.

Such tasks have to manage large amounts of data and therefore take a long

time. Moreover, these tasks deal with a high level of complexity and thus

require a high level of expertise. This type of monitoring and analysis

processes is an obstacle for a quick adaptation of processes. The lack of

automated monitoring and analysis mechanisms prevents the Real-time

Factory to gain the desired responsiveness in turbulent scenarios. It thus

creates a gap in the lifecycle of processes that needs to be bridged. Bridg-

152 Chapter 5 The Manufacturing Service Bus

ing this gap requires to engineer a self-adaptive system based on a feed-

back loop. Self-adaptive systems are capable of dealing with a continu-

ously changing environment and newly emerging requirements that may

be unknown at design time [BSG+09]. Self-adaptation can furthermore

deal with the complexity and uncertainty that govern systems composed

of heterogeneous interconnected parts. In such environments, a feedback

loop can be established by monitoring and analyzing domain data in order

to provide engineers working on the design of software components with

the appropriate domain knowledge. The requirement of an agile response

when facing turbulent scenarios in manufacturing requires forming this

feedback loop by introducing the necessary mechanisms that implement a

self-healing, self-configuring and self-optimizing system. In this Section,

the mechanisms for an agile adaptation of EAI processes in the Real-time

Factory are described. Firstly, the requirements for an agile adaptation of

EAI processes in the Real-time Factory are detailed. Secondly, the lifecy-

cle that guides the adaptation of EAI processes in the Real-time Factory is

given. Thirdly and finally, the mechanisms that allow the MSB to execute

self-adaptive EAI processes are described.

5.4.1 Requirements for an Agile Adaptation in the

Real-time Factory

The EAI processes that are deployed and executed in the MSB aim to solve

specific integration scenarios in the Real-time Factory. Such EAI pro-

cesses control the information flows that integrate multiple applications,

systems and services across the factory. This integration is needed to

achieve an optimal use of resources and to guarantee the communication

between systems at all levels of production, including the business level

(ERP), plant level (MES) and control level (SCADA) . Production events

constantly change the current state of the factory. Turbulent scenarios,

5.4 Agile Adaptation of EAI Processes 153

such as the introduction of a new product variant or an anomalously high

number of machine failures, may move the factory away from its optimal

operational point. Under such circumstances, a revision of EAI processes

is necessary. EAI processes contain the itinerary information of messages

that are exchanged among applications. The identification of specific con-

text situations in these itineraries is crucial in order to be able to act pre-

emptively and to avoid suboptimal production states. An agile adaptation

of EAI processes is possible only if the current state of the factory is per-

manently evaluated, establishing a continuous feedback loop between the

execution environment, namely the MSB, and the design tools, namely

the EAI process editor. The implementation of a continuous feedback loop

enables engineers to react in a responsive manner when facing turbulent

scenarios that move the factory away from its optimal operational point.

In order for an agile adaptation of EAI processes to take place in the Real-

time Factory, some requirements need to be fulfilled. These requirements

are described ahead.

5.4.1.1 Flexible Integration

One of the preconditions for agile manufacturing systems is a flexible in-

tegration infrastructure. Rigid and tightly coupled integration has been a

problem for the realization of agile manufacturing systems since the first

implementations of CIM systems . The lack of flexibility brings in difficul-

ties to update when it is required due to evolving enterprise requirements

[FSW99]. The lack of interoperability also complicates the incorporation

of new systems or technologies. For the context of EAI processes that

enable the exchange of data among applications, a flexible integration can

be achieved if the following conditions are fulfilled:

- The interaction between two applications is easily reconfigurable.

154 Chapter 5 The Manufacturing Service Bus

- Changes in the interface of an application do not affect any other

application.

- The incorporation of new applications is possible and does not af-

fect the existing interactions between other applications, and it nei-

ther requires changes in the interfaces of these other applications.

These properties, when fulfilled, define a flexible integration. The imple-

mentation of these properties leads to an environment of loosely coupled

applications that follows the principles of integration described in Chap-

ter 3. Such a flexible integration environment can be achieved if integra-

tion is based on open standards, if applications make use of standards-

based, well-defined interfaces and if the separation between implementa-

tions and interfaces is complete.

5.4.1.2 Capability of Reconfiguration

Reconfiguration is a very important requirement for agile adaptation. A

continuously changing environment, such as the Real-time Factory, im-

poses turbulent scenarios, provoked either by new internal requirements

or by external demands, which require the integration processes to be

adapted. In order for a manufacturing company to react with agility to

turbulent scenarios, this adaptation has to be done in a responsive man-

ner. Such an agile adaptation of integration processes may require the

runtime of the integration architecture to be dynamically reconfigured for

this purpose. In service-oriented computing, the dynamic reconfiguration

of runtime architectures is one of the most important challenges. Dy-

namic reconfiguration is enabled by automatically leveraging distributed

service components and resources to create an optimal architectural con-

figuration according to both user requirements and application character-

istics [PTD+07]. In case the reconfiguration of EAI processes and of the

integration infrastructure involves human tasks, process modelers should

5.4 Agile Adaptation of EAI Processes 155

be abstracted from the complexity of parameterizing the integration in-

frastructure. This way, reconfiguration can be eased for modelers, which

accelerates adaptation.

5.4.1.3 Knowledge-driven Adaptation

Knowledge is a fundamental requirement for agility in manufacturing

. The concept of knowledge-driven enterprises derives from increasing

recognition of knowledge and information as the main differentiators

of a successful business [YSG99]. In an enterprise, knowledge can be

distributed across multiple resources, including people, reports, but also

databases and other repositories [Kid94]. Regarding the agility that is

required for the adaptation of EAI processes in the Real-time Factory, do-

main knowledge needs to be extracted, processed and evaluated. The

analysis of the factory context is the most important knowledge source

for the adaptation of integration processes. Based on this data analysis,

complex events in the factory are identified. The impact of such events

on the current state of production must be analyzed as well, in order to

react in a timely manner when facing turbulent scenarios that may move

the factory away from its optimal operational point.

5.4.1.4 Autonomic Computing Mechanisms

The last, but not less important requirement for an agile adaptation deals

with the problem of complexity. In changing environments with a vast

ICT-landscape of interconnected applications, the effort to install or in-

terconnect new systems and to maintain integration can be a very te-

dious task due to the complexity that arises as the number of systems

grows. As systems become more interconnected and diverse, architects

are less able to anticipate and design interactions among components,

156 Chapter 5 The Manufacturing Service Bus

leaving such issues to be dealt with at runtime [KC03]. Therefore, a pos-

sible solution to this problem is based on self-managing systems, which is

also known as autonomic computing. The essence of autonomic comput-

ing systems is self-management. The intent of self-mangement is to free

system administrators from the details of system operation and mainte-

nance and to provide users with a machine that runs at peak performance

24/7 [KC03]. However, a new construct is still needed nowadays for next-

generation communication networks, a pervasive system within the net-

work that builds and maintains high-level models of what the network is

supposed to do to provide services and advice to other network elements

[DSN+10]. Such a construct involves moving from a data-driven network

to a knowledge-driven, self-governing and automatically reconfigurable

network.

Execute

Managed Element

Monitor

Analyze Plan

Knowledge

Autonomic Manager

Figure 5.16: MAPE Cycle from [KC03]

In the Real-time Factory, the purpose is to achieve such a level of auton-

omy to guarantee that self-managing and self-adaptive integration pro-

cesses can cope with turbulent scenarios by using agile adaptation tech-

5.4 Agile Adaptation of EAI Processes 157

niques. The paradigm of Autonomic Computing provides an adaptation

mechanism that consists in the realization of the MAPE loop. The MAPE

loop (also MAPE cycle) comprises four phases: Monitor, Analyze, Plan

and Execute (MAPE) [IBM05a]. An autonomic computing system typi-

cally manages such a control loop, which governs the adaptation of man-

aged resources. The autonomic element — introduced by Kephart and

Chess [KC03] and popularized with IBM’s architectural blueprint for au-

tonomic computing [IBM05a] — is the first architecture for self-adaptive

systems that explicitly exposes a feedback control loop [BSG+09]. This

feedback control loop is depicted in Figure 5.16. The four phases (Moni-

tor, Analyze, Plan and Execute) represent the control loop that governs the

adaptation of the managed resource. The Monitor phase comprises mon-

itoring functions, which collect information about the managed resource.

This information includes, amongst others, disruptions in the domain and

the status of involved resources. This data is aggregated into complex

events and the goal of the monitor phase is to correlate these complex

events to symptoms, which can be identified as anomalous situations. The

Analyze phase provides the mechanisms to analyze the anomalous situa-

tions that have been identified beforehand. The purpose of this phase is

to determine if the managed resource has to be changed. For example, the

requirement to enact a change may occur when an analyze function de-

termines that some policy is not met. The analyze function is responsible

for determining if the autonomic manager can abide by the established

policy, now and in the future. If changes are needed, a change request is

sent to the plan phase, which creates a procedure to realize the changes.

The Plan phase generates an appropriate change plan, which represents

a necessary set of changes for the managed resource, and logically passes

this change plan to the Execute phase. The latter provides the mechanism

to schedule and perform the necessary changes.

As described in Section 3.2, the main objective of the Real-time Factory

is to integrate the Real Factory with the Virtual Factory by continuously

158 Chapter 5 The Manufacturing Service Bus

Monitoring
System

Adaptation

Re-
deployment

Learning
Process

Information Management

Process Management

Simulation & Visualization

Real-time Operation
Management anage

Figure 5.17: Real-time Factory Feedback Loop

communicating, connecting and evaluating the factoryŠs operational data

(see Figure 3.1). In order to achieve an agile adaptation in the Real-time

Factory, the ultimate goal goes a step further, which is to leverage this

continuous evaluation of the current state of the factory for adaptation

purposes. Therefore, the integration platform that connects the Real Fac-

tory with the Virtual Factory needs to adopt the appropriate learning pro-

cesses that permit the adaptation of the EAI processes and resources of the

factory. Such a learning loop for the Real-time Factory is depicted in Fig-

ure 5.17. This loop is based on the MAPE functions and its purpose is to

implement a self-managing and self-adaptive system that governs the EAI

processes and IT resources — services and applications — of the Real-time

Factory. This learning loop comprises a learning process that evaluates

the production data that is collected and aggregated by a monitoring sys-

tem. The results of the evaluation of the learning processes are given to an

adaptation system, that is in charge of performing the necessary changes

in the managed elements (EAI processes, services and applications) and

redeploy them in the production environment. The implementation of

5.4 Agile Adaptation of EAI Processes 159

such a control loop is a fundamental requirement for the achievement of

an agile adaptation approach in the Real-time Factory.

The technique for agile adaptation in the Real-time Factory presented in

this Thesis is based precisely on this control loop. The modelling of this

loop, based on the MAPE functions, is given by the Real-time Factory

Adaptation Model in Section 5.4.2. The implementation of this model is

described in Section 5.4.3 and 5.4.4.

5.4.1.5 The MSB as Enabling Platform for Agile Adaptation

The architecture presented in Figure 5.15 fulfills three of the aforemen-

tioned requirements for an agile adaptation of EAI processes. Firstly, the

architecture provides a flexible integration thanks to the application of

SOA principles, which permits to reduce the effort to connect new appli-

cations or to change existing interfaces and interactions. Thus, flexibil-

ity is achieved by replacing point-to-point interfaces with an integration

middleware, which keeps applications loosely coupled and reduces com-

plexity. Secondly, the dynamic reconfiguration of the integration platform

is eased for integration experts by a visualization tool, namely the EAI

process editor, which abstracts from the complexity of configuring the

MSB mediation services. Thirdly, the Provenance-aware Service Repos-

itory provides the process editor with the knowledge of the factory and

production context that is required to adapt EAI processes.

In terms of adaptation, the goal is to keep a versioning strategy for EAI

processes and services that is capable of meeting the aforementioned re-

quirements of adaptation. The management of EAI processes as composi-

tions of different interconnected process fragments which can be adapted

to different context situations leads to the existence of multiple process

variants. Each variant then represents an adjustment of a particular pro-

cess that meets specific requirements of a concrete domain context sit-

160 Chapter 5 The Manufacturing Service Bus

uation. In the presented approach, process variants, as well as service

variants, are treated as first-class citizens. Variants of a particular process

differ in their process graph description. A service variant differs from

another in the interface description. Changes in the implementation of a

service variant are not considered, as they do not affect the integration of

a service in an EAI process.

The MSB is supported by other components to adapt EAI processes. How-

ever, the platform is not self-adaptive as there is no feedback loop so far

that permits the automation of adaptation within the process and service

lifecycles. The Real-time Factory aims at a high level of autonomy to

guarantee self-managing and self-adaptive integration processes that can

face turbulent scenarios by using agile adaptation techniques. The MSB is

conceived as an integration platform that can provide flexible information

provisioning by loosely coupling applications. However, an agile adapta-

tion also requires the introduction of a feedback mechanism that enables

the platform to adapt itself. In the case of the MSB, the goal is to provide

a feedback loop that allows EAI processes to become self-managing ele-

ments. In the next Section, it is described how such a feedback loop can be

implemented in the MSB in order to provide the Service Repository with

the necessary domain knowledge about the service, process and factory

context in an automated manner.

5.4.2 Autonomic Computing in the Real-time Factory

The complexity of current software systems and the uncertainty in their

environments have led the software engineering community to look for

new ways for the design and management of systems with the capability

to adjust their behavior in response to the environment in a self-adaptive

way [BSG+09]. This form of self-management has become one of the

5.4 Agile Adaptation of EAI Processes 161

most promising research directions [KC03, C+08]. An option to imple-

ment self-adaptation is Autonomic Computing, which comprises com-

puting systems that can manage themselves given high-level objectives

from administrators [KC03]. An autonomic computing environment has

the ability to manage itself and to dynamically adapt to changes in ac-

cordance with business policies and objectives. Self-managing environ-

ments can perform such activities based on situations they observe in the

IT environment, rather than requiring IT professionals to initiate neces-

sary tasks [IBM05a]. These environments guarantee self-configuration,

resiliency and self-optimization.

The Real-time Factory is a production environment that has to adapt

its integration processes in a responsive manner. Responsiveness can

be implemented by means of mechanisms for automation and self-

configuration and is a fundamental requirement for an agile adaptation.

Therefore, the concept of Autonomic Computing is applied to the

agile adaptation strategy in the Real-time Factory. Unfortunately, no

adaptability models exist that are based on autonomic computing and

that can be applied for ICT systems in manufacturing. The known

adaptability models for manufacturing systems do not support the

adaptation of information flows [LCW08, PM07, WYM11], whereas

approaches based on adaptive SOA have not been applied yet to real

manufacturing environments in order to support self-managing ICT

infrastructures. Therefore, an adaptability model is needed to realize

an autonomic computing system for the Real-time Factory that permits

self-adaptation, self-configuration and self-management.

5.4.2.1 Definitions

In this Section, some definitions of basic terms are given. These defini-

tions are based on the architectural blueprint for autonomic computing

162 Chapter 5 The Manufacturing Service Bus

that has been published by IBM in 2005 [IBM05a]. They briefly introduce

the terms that are used in the adaptation model for the Real-time Factory,

which is described in the rest of this Section.

Autonomic Computing System is a computing system that senses its

operating environment, models its behavior in that environment and

takes actions to change its environment or its behavior. An autonomic

computing system has the properties of self-configuration, self-healing,

self-optimization and self-protection. The Real-time Factory behaves

as a constantly changing environment and its state is based on sensor

data, machine states, material flow, product quality information and

other operational data. These data need to be collected, aggregated and

processed in an intelligent way [JWW09]. Their integration is managed

by factory-context-aware systems that provide the necessary information

on the current state of the factory. The factory context information is

used as the main knowledge source to execute appropriate adaptation

mechanisms that constitute the basis for the Real-time Factory to behave

as a self-configuring, self-healing and self-optimizing system.

Self-configuration is a property of autonomic computing systems.

Self-configuring components can dynamically adapt to changes in the

environment, using pre-defined policies. In the context of the Real-time

Factory, such changes include factory-internal planned changes as well

as external turbulent scenarios. Self-configuring systems comprise a

number of automation mechanisms that reduce the number of manual

tasks needed for reconfiguration.

Self-optimization is a property of autonomic computing systems which

allows for tuning resources and balancing workloads to maximize the

use of information technology resources. In the context of the Real-time

Factory, self-optimization focuses on EAI processes in order to adapt

them in ways that are aware of factory context situations. The goal of a

self-optimizing integration system for the Real-time Factory is to manage

such situations and to adapt EAI processes in order to reduce the event

5.4 Agile Adaptation of EAI Processes 163

management traffic in the MSB.

Self-healing is a property of an autonomic computing system which

permits to discover, diagnose and react to disruptions. Self-healing

components can detect system malfunctions and initiate policy-based

corrective actions without disrupting the environment. In the Real-time

Factory, corrective actions are based on adaptation steps to reconfigure

one or more integration processes. The system as a whole becomes

more resilient thanks to continuous monitoring and evaluation of the

production operational data, which define the policies used to execute

corrective actions.

Policy is a set of considerations that are designed to guide the decisions

that affect the behavior of a managed resource task. Policies define the

goals and objectives to govern the behavior of intelligent control loops.

They determine which actions should be taken for the resources being

managed.

Managed Resource is a hardware or software component that can be

managed. A managed resource could be, for example, a server, storage

unit, database, application server, service, application or other entity.

Intelligent control loops may be embedded in the runtime environment

of a managed resource. These embedded control loops are one way to

offer self-managing autonomic capabilities. In the Real-time Factory, EAI

processes are entities that are treated as managed resources, as well as

all other factory integration resources that govern the plan, execution,

monitoring and analysis of these processes, as it is described later in this

Section.

Autonomic Manager is a component that manages other software or

hardware components using a control loop. The control loop of the

autonomic manager includes monitor, analyze, plan and execute (MAPE)

functions.

Knowledge Source is an implementation of a registry, dictionary,

database or other repository that provides access to knowledge according

164 Chapter 5 The Manufacturing Service Bus

to the interfaces prescribed by the architecture. In an autonomic system,

knowledge consists of particular types of data with architected syntax

and semantics, such as symptoms, policies, change requests and change

plans. This knowledge can be stored in a knowledge source so that it can

be shared among autonomic managers.

5.4.2.2 MAPE Cycle for EAI Processes

As mentioned in Section 5.4.1.4, the adoption of a control loop based on

the MAPE functions is a fundamental requirement for an agile adaptation

of the EAI processes in the Real-time Factory. As it can be seen in the

architecture shown in Figure 5.16, the enhancement needed by the MSB

consists in providing a feedback loop that allows EAI processes to become

self-managing elements. The conceptualization of a MAPE cycle for this

purpose is shown in Figure 5.18. The implementation of this cycle is a

control loop that provides the mechanisms to monitor and analyze events

of the execution environment and, based on the analysis results, to adapt

EAI processes accordingly. This forms one of the major remaining chal-

lenges in service-oriented computing [PTD+07, KC03]. The adaptation

of EAI processes requires a deep analysis of up-to-date production data,

which represents the factory context, and of the history of data, which is

known as provenance. Service provenance information as well as produc-

tion data provenance is analyzed in the presented loop in order to adapt

EAI processes. The purpose of each phase is described ahead:

The Planning Phase In the planning phase, the process modeler evalu-

ates the environment to decide what services need to be planned. This

comprises an analysis of the requirements, followed by the identification

of possibly reusable services. The Service Repository provides the EAI

process editor with provenance information about services. This way,

5.4 Agile Adaptation of EAI Processes 165

modelers can be notified of all changes in the interfaces of registered ser-

vices. This is possible thanks to the subscription management service

in the repository that sends notifications to the editor when services are

changed. These notifications describe the process-service dependency as

well as the affected processes.

The Execution Phase Once process modelers have created a new pro-

cess or adapted an existing one, a MSB-PDL description of the process

is sent to the MSB. Then, the MSB configuration engine extracts the de-

scription of the new process and adapts the internal bus services, e.g., for

message routing or transformation, to enable the new control flow of the

process.

The Analysis Phase In this phase, context and provenance information is

analyzed. Provenance information comprises data about the capabilities

of the previous versions of a process and also about the domain. The latter

is based on domain knowledge, which must be extracted from production

context information.

The Monitoring Phase The monitoring phase comprises monitor func-

tions that collect information from the managed resources and correlate

them into symptoms that can be analyzed. The collected data includes

information about configuration, status and performance of managed re-

sources. Some of the data is static or changes slowly, whereas other data

is dynamic changing continuously through time. A monitor function ag-

gregates, correlates and filters these details until it identifies a symptom

that needs to be analyzed [IBM05a]. Once a symptom has been found,

it is passed to the analyze function. Production systems register events

and data related to the current state of production. Factory monitoring

systems usually collect operational data of the factory in order to present

it in a visualization tool, such as a factory cockpit [KAW07]. The most

part of the evaluation of this data has to be carried out by factory work-

ers in human tasks. Such tasks have to manage large amounts of data

166 Chapter 5 The Manufacturing Service Bus

and therefore take a long time. Moreover, they deal with a high level of

complexity and thus require a high level of expertise. This type of mon-

itoring processes is an obstacle for a quick adaptation of processes and

therefore creates a gap in the MAPE cycle, which prevents EAI processes

to be adapted in a responsive manner.

Execute Monitor

Analyze Plan

Knowledge

Symptom

Change
Request

Change
Plan

Managed Element: EAI Processes

Autonomic Manager

Figure 5.18: Model of a Feedback Loop as a MAPE Cycle

5.4.2.3 The Real-time Factory Adaptation Model

The adaptability of the integration approach for the Real-time Factory is

based on an adaptation model, which is inspired by the self-managing

concept of autonomic computing systems [KC03]. The adaptation model

for the Real-time Factory, which is depicted in Figure 5.19, comprises the

components that are needed to implement the MAPE functions that are

described in Figure 5.18. These components are related to each other in

5.4 Agile Adaptation of EAI Processes 167

a way that establishes a learning feedback loop, as described in Section

5.4.1.4 (see Figure 5.17). It serves as basis for the implementation of the

adaptive mechanisms for the Manufacturing Service Bus, which are de-

scribed later in this Chapter. As described above, the existing adaptability

models for manufacturing ICT systems are not expressive enough to im-

plement an autonomic computing system for the Real-time Factory.

Some of the concepts in the adaptation model are already defined above,

e.g., EAI processes or services. The Production Environment is moni-

tored by a Monitoring System, which identifies Disruptions during the

execution of manufacturing processes. Disruptions are aggregated into

complex events, which are correlated to symptoms. These symptoms

are identified as anomalous situations. Once the monitoring system has

evaluated the Symptoms, it elaborates a Diagnosis, which is stored in a

knowledge base. Knowledge bases are used as Knowledge Sources by

Autonomic Managers. In an autonomic system, knowledge consists of

particular types of data with specific syntax and semantics, such as symp-

toms, policies, change requests and change plans. Policies are among the

knowledge data types of a Knowledge Source that can be loaded by an Au-

tonomic Manager in order to consult whether changes need to be made

or not. The aim of Policies is to establish the expected behavior of the

environment. When changes need to be made, a Corrective Action is ap-

plied to specific Managed Resources. In the Real-time Factory, Managed

Resources are EAI Processes and Services. Changes of an EAI processes

are made by means of the Process Editor, which acts as Planning GUI.

Once changes have been planned in the Editor, the Integration Platform

(MSB) is reconfigured in order to adapt to the changes made in the corre-

sponding EAI Processes and Services. This adaptation model constitutes

an adaptability framework for the Real-time Factory that implements the

Monitor, Analysis, Plan and Execute functions of a self-managing envi-

ronment. These functions form a feedback loop, as in autonomic comput-

ing systems, which is explained ahead.

168 Chapter 5 The Manufacturing Service Bus

Corrective Action

Disruption

Diagnosis

EAI Process

Production Environment

Service

Autonomic Manager

Knowledge Source

Policy

Managed Resource

Monitoring System

Integration Platform

Planning GUI

recommends

isAppliedTo

refines

isDeployed

produces

elaborates

monitors

isStoredIn

reads
isAccessedBy

Symptom

identifies

isPartOf

0..*

1

1..*

1
1..*

1

1..*

0..*

0..*

1

0..* 1..*

1..*

1..*
1..*

0..*

1..* 0..*

1..*

1..*

0..*

1

1 0..*

Figure 5.19: The Real-time Factory Adaptation Model

5.4.2.4 SOA Lifecycle Gap in Manufacturing

The gap, which is created by the lack of automatic monitoring mecha-

nisms, needs to be bridged in order to fulfill the autonomic computing

requirement, which is a fundamental component for an agile adaptation

of EAI processes in the Real-time Factory. Bridging this gap aims at pro-

viding the repository with the knowledge that is needed for adaptation.

To extract the necessary knowledge from the production environment,

production data streams have to be analyzed. However, the MSB cannot

process these data streams in real-time as they would have to be aggre-

gated beforehand to integrate them into the control flow of the bus. A

possible solution to fill this gap is to add an automatic monitoring phase

to the current EAI process execution environment that integrates a real-

time monitoring mechanism to timely process production data streams.

This way, the analysis phase can be implemented by the inference func-

tions of the Service Repository. Altogether, this establishes a complete

5.4 Agile Adaptation of EAI Processes 169

MAPE cycle that enables a manufacturing company to actually improve

their agility by means of an adaptive IT infrastructure.

5.4.3 Monitoring and Analysis of Factory Data Streams

The adoption of continuous and automatic monitoring mechanisms has

the purpose of extracting knowledge from the production environment.

The proposed solution combines the control flow characteristics of the

MSB and the data-flow-oriented processing features of a data stream pro-

cessing platform to integrate high-level context information into the anal-

ysis phase, i.e., into the service repository. The latter then uses this in-

put to calculate recommendations for EAI process adaptation and to send

these recommendations back to the planning phase. Data stream process-

ing is typically done in two steps: Data elements are collected from data

sources and are then processed according to some processing definition

consisting of a clearly defined set and ordering of operators. The purpose

of the integration of a stream processing platform into the manufacturing

environment is to fill the gap between the execution environment of EAI

processes, namely the MSB, and the domain knowledge base that provides

the high-level context information to the EAI process editor. Closing this

feedback loop enables the completion of the MAPE cycle by providing the

missing autonomous monitoring functionality.

5.4.3.1 NexusDS

The platform chosen for the pre-processing of the manufacturing data

streams during the monitoring phase is NexusDS [CEB+09]. This choice is

based on a number of arguments such as its extensible operator base, sup-

port for structured and unstructured data, a flexible query graph model

170 Chapter 5 The Manufacturing Service Bus

and the abstraction of the underlying runtime constraints. These proper-

ties are detailed ahead. Depending on the situations or disruptions that

need to be diagnosed in the Real-time Factory, specialized operators may

be required. NexusDS offers an extensible operator base which allows the

seamless integration of custom processing functionality. This NexusDS

property enables the creation of custom operators that can be adapted

to the needs of specific data streams. It provides a great flexibility in

monitoring and adaptatation for changing conditions in the manufactur-

ing environment. Applications in the Real-time Factory manage different

types of data, such as data streams from the assembly line, customer or-

ders or sensor data streams, amongst others. This heterogeneity of data

enforces NexusDS operators to support many different data types in man-

ufacturing environments. NexusDS operators allow - besides others - to

define the accepted input and delivered output data types via embedded

operator-specific metadata. This property makes them well-suited for this

kind of problem since it improves the flexibility in defining new operators

to process different types of factory data streams. A data streaming pro-

cess is defined by arranging and interconnecting different operators in a

processing pipeline. NexusDS distinguishes between three kinds of oper-

ators: Source operators, processing operators and sink operators. Source

operators represent a connection wrapper for data sources which pushes

data into the processing pipeline. Each processing operator constitutes a

single step that processes its input data items according to its functional

definition and that delivers the resulting output data items to subsequent

processing operators or sink operators. Finally, sink operators represent

an end of a process definition and provide external applications or pro-

cesses with the result data. In NexusDS, processing pipelines can be de-

fined in two different ways: Defining a Nexus Plan Graph Model (NPGM)

query or defining a Nexus Execution Graph Model (NEGM) query. A

NEGM-query is a deployable representation of the respective NPGM-

query. This means that a NEGM-query provides complete deployment

5.4 Agile Adaptation of EAI Processes 171

specifications, such as the concrete physical operator to perform a cer-

tain task or the execution node to execute a specific operator. In contrast,

NPGM-queries do not provide full deployment specifications. So, these

deployment specifications have to be completed by the query processor of

NexusDS in order to get a NEGM-query. Some operators may impose cer-

tain constraints on their execution environment. For example, some may

only be deployed on specific hardware or may require a certain amount of

memory at runtime. As another important example of constraints, some

operators are only allowed to be executed on a well-defined set of com-

puting nodes to guarantee that sensible factory data does not cross certain

administrative domains. In such cases, NexusDS supports the definition

of corresponding operator constraints. This can be very useful in man-

ufacturing domains since it permits the definition of processing graphs

that are annotated by domain-specific constraints. As a consequence, it

provides a natural support for such heterogeneous environments in terms

of hardware and software configurations.

5.4.3.2 Integration of NexusDS into the MSB

The integration of NexusDS into the MSB execution environment can be

seen in Figure 5.20. The data stream processing platform is connected

with the rest of the environment via four interfaces. The main function-

ality of NexusDS focuses on monitoring production data. The first inter-

face (1) therefore enables the propagation of such production data from

the SCADA system to NexusDS processing pipelines. The SCADA system

starts this propagation via SQL triggers and forwards the relevant data

over a JMS interface in order to ensure asynchronous and reliable com-

munication. The connection to NexusDS is realized as a source operator

that copes with this SCADA-proprietary interface. After having moni-

tored and transformed the SCADA data via intermediate processing op-

erators, the processing pipeline send the results to the Service Repository

172 Chapter 5 The Manufacturing Service Bus

Manufacturing Service Bus

SCADA

Data
Stream

Monitoring
Status
Events Query

Graph Ref.

Domain
Knowledge

Monitoring Configuration Clients

(1) (4)

(2)

(3)

NexusDS

Production Ontology

Figure 5.20: Integration of NexusDS with the MSB

via the second interface (2). This interface is implemented as sink oper-

ator that encapsulates Web Service operations as needed by the reposi-

tory. The repository can then use the results of the processing pipeline

for analysis purposes. The processing pipeline makes use of a Production

Ontology (see Figure 20) in order to convert the results of the analysis

into semantic data that can be processed by an inference process in the

Service Repository. These semantic data is referred to as Domain Knowl-

edge. The third interface (3) considers the Stream Processing Platform as

a Service (SPPaaS) and allows for integrating its functionality into com-

posite applications or processes. These applications or processes issue ref-

erences to NPGM or NEGM queries that are then installed on NexusDS.

5.4 Agile Adaptation of EAI Processes 173

As soon as all needed input data are available to the underlying process-

ing pipelines, the specified data transformations are carried out by the

corresponding operators. Applications that access NexusDS in this way

particularly encompass different clients for configuring monitoring pro-

cesses. For example, such a client may be the maintenance console of

a worker that is responsible to control the repair of machines in a fail-

ure management process. Other workers might use a Personal Digital

Assistant (PDA) when they have to continuously change their operating

positions. These different monitoring configuration clients may impose

heterogeneous interfaces. To cope with this heterogeneity, the message

routing and message transformation capabilities of the MSB are lever-

aged by connecting NexusDS with the bus via a Web Service interface.

The fourth interface (4) enables the communication from NexusDS to the

MSB. NexusDS may use it to report on the status of its monitoring pro-

cesses. For example, this status may be indicated to the monitoring con-

figuration clients or other monitoring dashboards. Furthermore, NexusDS

processing pipelines may identify certain noticeable and complex constel-

lations in production processes the SCADA system is not able to identify

on its own. Such constellations are then reported to other applications,

such as the maintenance console. For this interface, the same integration

principle as for the third interface is used, namely a Web Service interface

for a connection to the MSB. This again enables an easy connection with

the heterogeneous interfaces of the applications that receive processing

information from NexusDS. The last two interfaces permit the integra-

tion of NexusDS into the control flow environment, represented by the

MSB, and its adoption as processing platform for monitoring processes.

For this integration, the different spheres of control between the MSB and

NexusDS may cause a problem, i.e., the control flow in the MSB wants to

control the data flow in NexusDS and vice versa. In order to solve this

problem, the event-driven capabilities of the bus and its CBR are used to

decouple both spheres of control, as for all other data services connected

174 Chapter 5 The Manufacturing Service Bus

to the MSB. Altogether, the integration of NexusDS completes the MAPE

cycle in a manufacturing environment by adding the missing automatic

monitoring functionalities. It thus enables the adoption of adaptability

measures in real manufacturing scenarios.

5.4.3.3 Mining Graph for Factory Data Streams

Factory + Stream
TupleSet

Source Filter Mining
Parameterization

Transformation Classification Sink

Configuration
Mode

DomainRecommendation:
 - Predicate
 - Object
 - Location
 - Condition

DB
SCADA

ID Assembly Time Module Process
1237 1 2011-11-03 08:05:06.7 ML1 C
1249 1 2011-11-03 08:12:31.9 ML1 F
1317 0 2001-11-03 08:27:59.2 RS1 F
1332 0 2011-11-03 08:33:21.4 RS1 F

Classification Policy

ST[1]

ST[N]

FT[1]

FT[M]

Stream TupleSet

Factory
TupleSets

ST[i] FT[j]

ST[n] FT[m]

...
TH-1

TH-K

Production Ontology

Figure 5.21: NexusDS Mining Graph

As mentioned above, the purpose of the integration of NexusDS into the

MSB environment is to gather domain context information and to use

this information for EAI processes adaptation if needed. In order to carry

out a pre-processing of factory data streams before the subsequent data

analysis, a processing graph has to be established in NexusDS. The imple-

mented processing graph for this purpose is shown in Figure 5.21. The

5.4 Agile Adaptation of EAI Processes 175

graph follows the Nexus Execution Graph Model and comprises six oper-

ators, which are described ahead:

- Source Operator: As described above, the SCADA system rep-

resents the source of factory data streams for the integration of

NexusDS with the MSB. The database of this system has a trigger

that sends every update in the log table to a JMS application client,

which sends this data to the source operator. The source operator

is implemented as a JMS listener application, which receives the

production data asynchronously.

- Filter Operator: This operator filters the incoming production data,

depending on the data that the processing graph has to monitor.

The whole processing graph can be configured to monitor cer-

tain production context situations. Every context situation requires

specific data to be monitored. The rest can be left out of the anal-

ysis. For example, if an analysis on failure distribution is to be

carried out, only production data related to failures has to be mon-

itored, whereas the rest can be filtered out. The configuration of

the filter operator is based on a configuration mode parameter.

- Mining Parameterization Operator: In order to find correlations

between different data tuples, the classification of tuple sets is con-

figured according to specific analysis requirements. These analy-

sis requirements are defined in the configuration parameters and

define which dimensions have to be combined in the mining algo-

rithm. These parameters determine which tuples from the stream-

based tuples [ST(1) ... ST(N)] have to be merged with tuples from

additional databases in the factory. The additional tuples are de-

fined as Factory Tuples [FT(1) ... FT(M)] and are located in factory

databases that manage data, which do not change often, such as

worker, assembly and maintenance historical data. For instance,

for monitoring failures at the shop floor, the analysis of failure

176 Chapter 5 The Manufacturing Service Bus

management procedures requires merging incoming failure data

with data related to workers or maintenance history. The config-

uration provided by this operator defines which dimensions have

to be combined in the mining algorithm. This is done by merging

the incoming tuples with other existing tuples that usually contain

static data, such as historical data or process data. This operator

defines the tuples that will be used in the classification operator.

The mining algorithm is detailed later in this Section.

- Classification Operator: this operator has two functions: it classi-

fies the tuples provided by the former configuration operator and

then it evaluates the distribution of the tuple values. The result

of the evaluation of the values distribution is passed to the next

operator. The evaluation of the distribution is configured by the

thresholds [TH-1 ... TH-K] that are given in the classification pol-

icy.

- Transformation Operator: This operator transforms the informa-

tion provided by the classification operator into semantic informa-

tion. An ontologymodel of the manufacturing domain provides the

necessary knowledge to transform the received information into

semantic information. The ontology is based on an OWL model.

Incoming data is transformed into RDF triples, which are added

to the instance ontology model. A reasoning process in this op-

erator enables the extraction of domain-specific knowledge. This

knowledge is modeled as DomainRecommendation instance in the

ontology and comprises the resulting RDF triples of the reasoning

process, which are passed to the sink operator.

- Sink Operator: The DomainRecommendation RDF triples passed

from the former operator are embedded in a SOAP message and

sent to service endpoint, which is given in the configuration of this

operator.

5.4 Agile Adaptation of EAI Processes 177

The processing graph of Figure 5.21 represents a data mining algorithm to

monitor a production environment. This algorithm analyzes data streams

and is shown in Algorithm 1. It is expressed as a procedure that takes two

arguments as input and returns a DomainRecommendation (DR) instance.

The two arguments are the parameter list used by the Mining Parameter-

ization Operator and the analysis mode used by the filter operator. The

first task is to initialize all parameters. Then, a classification model is

created with the parameter list and the analysis mode as input param-

eters. The classification model defines which tuples must be merged in

order for the classification operator to classify the incoming data. In the

next step, a factoryTupleSet is composed by feeding the defined tuples

with the most recent historical factory data. This data is loaded from

different factory databases that manage data about workers, objects loca-

tion, assembly line configuration and past maintenance operations. The

factoryTupleSet and the classification model are used to create a classifi-

cation policy, which defines the thresholds that determine the results of

the evaluation of the data distribution. This is the last configuration task,

before the mining actually begins. The mining operations are four: fil-

ter, merge, classify and transform. These four operations of the algorithm

match one-to-one the operators of the NexusDS mining graph, exclud-

ing the source and sink operators. The transformation operator uses an

ontology model (OModel) to convert the incoming results of the evalu-

ation into RDF statements. These RDF statements are combined in the

ontology and analyzed by a rule-based inference process. The ontology

model OModel is contained in the Production Ontology that is shown in

Figure 5.21. The algorithm finishes by returning a DomainRecommenda-

tion (DR) instance, which contains all generated RDF statements. If an

178 Chapter 5 The Manufacturing Service Bus

analysis does not provide any domain recommendation, it means that all

monitored values are within the permitted value domain.

Algorithm 1: Stream Analysis
Data: a list of parameters paramList, a configuration mode CMode

Result: a domain recommendationDR

begin

foreach p ∈ paramList do

initialize(p)

end

CModel← createClassificationModel(paramList, CMode)

OModel ← getOntologyModel(paramList)

factoryTupleSet← getFactoryTupleSet(paramList)

thresholdList← createCPolicy(cModel, factoryTupleSet)

foreach logRecord ∈ logList do

fLR← filter(logRecord, CMode)

tupleSet← mergeTuples(fLR, factoryTupleSet)

distribution←
classifyTupleSet(tupleSet, thresholdList)

RDFStatementSet← createRDF (OModel, distribution)

DR← update(DR,RDFStatementSet)

end

end

5.4.3.4 Domain Knowledge Analysis

The purpose of the presented NexusDS processing graph is to monitor

the production environment and provide domain knowledge that can be

analyzed. The analysis of the domain knowledge is a task that is imple-

mented by the Service Repository (see Figure 5.13). As mentioned before,

the interface of the Service Repository receives domain knowledge by a

web service interface that consumes RDF triples. This interface is con-

nected to the sink operator of the NexusDS Mining graph in order to pro-

5.4 Agile Adaptation of EAI Processes 179

cess the DomainRecommendation instances that result of the monitoring

process.

The DomainRecommendation OWL class has a collection of properties

that describe the recommendation. Some of these properties are the do-

main, indicating a field of operation, a predicate and object pair, describ-

ing what the goal of the recommendation is, or a location, which de-

scribes the physical location that the recommendation refers to. Func-

tions are used to define which tasks EAI processes and services perform.

For instance, a failure management process may have a function with the

following properties: domain="failure management", predicate="manage,

repair" and object="failures". In order to deduce the corrective actions

that are needed to adapt an EAI Process or a service upon the arrival of

a domain recommendation, the rule-based reasoner starts an inference

process that checks three conditions. Once a condition is true, the rest is

no longer checked. The algorithm of this sequence is shown in the Al-

gorithm 2. A description of this algorithm and these three conditions is

given ahead.

The procedure takes the DomainRecommendation (DR) instance, a list

of all services (sList) and a list of all processes (pList) that are stored in

the SKB and PKB, respectively. A CorrectiveAction (CA) instance is re-

turned.

The first condition checks if there is a process with a function that has

the same domain, predicate and object as the domain recommendation. If

this is the case, it is checked if there is a node in the graph of the process

found that has a function with the same location of the DomainRecom-

mendation. If this condition is true, the adaptation object of the corrective

action points to the process found and all properties of the corrective ac-

tion are set to the values of the domain recommendation. This is possible

because CorrectiveAction and DomainRecommendation share the same

properties. The rest of the conditions is not checked.

180 Chapter 5 The Manufacturing Service Bus

The second condition checks if there is a service with a function that has

the same domain, predicate, object and location as the domain recom-

mendation. If a service is found that fulfills this condition, the adaptation

object reference is updated to point to this service and all property values

of the domain recommendation are copied as values of all properties of

the corrective action.

The last condition checks if there is a service that has a function with a

supported predicate that contains the predicate of the domain recommen-

dation. The supported predicate is a property of a function that describes

a list of predicates that can be implemented by using the predicate of the

function. An information terminal which gives instructions to workers

is a service that has a function with the predicate "inform". Supported

predicates of this function could be "repair" or "assemble" because these

are actions that can be supported by an information terminal if the ap-

propriate instructions are given. If there are more than one service that

support the predicate of the domain recommendation, a similarity index

is calculated for the service functions. The similarity index is based on

the number of matching values for the rest of the function properties.

The service with the highest similarity index is selected as the adaptation

object of the corrective action.

5.4.4 Architecture for EAI Process Adaptation

The adaptation process is realized in four steps following the MAPE-cycle

scheme. Firstly, the data streams of the manufacturing domain are pre-

processed by the corresponding processing graphs in NexusDS. Secondly,

the domain knowledge extracted by the processing graph is sent to the

Provenance-aware Service Repository. The repository starts a reasoning

process and analyzes the impact of the extracted knowledge on the run-

ning EAI processes and services in the factory. If necessary, a change

5.4 Agile Adaptation of EAI Processes 181

Algorithm 2: Creation of a Corrective Action
Data: a domain recommendationDR, a process list pList, a service list sList

Result: a corrective action CA

begin

if ∃ p ∈ pList : getFunctionDomain(p) = getDomain(DR) and

getFunctionPredicate(p) = getPredicate(DR) and

getFunctionObject(p) = getObject(DR) then

setObject(CA, p)

if ∃ n ∈ getNodes(p) : getLocation(n) = getLocation(DR)

then

setMetadata(CA,DR)

end

else if ∃ s ∈ sList : getFunctionDomain(s) = getDomain(s)

and getFunctionPredicate(s) = getPredicate(DR) and

getFunctionObject(s) = getObject(DR) and

getLocation(s) = getLocation(DR) then

setObject(CA, s)

setMetadata(CA,DR)

else

i = 0

foreach s ∈ sList do
if getPredicate(DR)⊂
getSuppPredicateSet(getFunction(s)) then

j = calcSimilarity(getFunction(s), DR)

if j > i then

i = j

setObject(CA, s)

setMetadata(CA,DR)

end

end

end

end

return CA

end

182 Chapter 5 The Manufacturing Service Bus

recommendation notification is sent to the EAI Process Editor. Thirdly,

the EAI Process Editor adapts the affected processes. Finally, the last step

corresponds to the deployment of the adapted processes in the MSB ex-

ecution environment. The cycle starts over again with the monitoring

phase in NexusDS, where execution of the adapted processes is observed.

In Figure 5.22, the integration of this adaptation loop into the overall sys-

tem architecture is depicted. Here, the four phases of the MAPE cycle

(Monitor, Analyze, Plan, and Execute) are distinguished. This adaptation

scheme follows the adaptation model of the Real-time Factory described

in Section 5.4.2.2. In the adaptation model, an autonomic manager ac-

cesses a knowledge source in order to read the diagnosis elaborated by a

monitoring system. Based on this diagnosis information, the autonomic

manager creates corrective actions, if needed, in order to adapt managed

resources. In the implemented MAPE cycle for the Real-time Factory, the

EAI Process Editor MSB-PDL

NexusDS

SCADA

Data
Stream

Monitoring
Status
Events

Query
Graph
Ref.

Execution

Monitoring Analysis

Plan

Provenance-aware Service
Repository

Domain
Knowledge

Manufacturing Service Bus

Figure 5.22: MAPE Cycle in the MSB

5.5 Summary 183

autonomic manager is the Semantic Data Engine of the Service Reposi-

tory, which creates the necessary corrective actions based on the informa-

tion extracted from the DomainRecommendation instances that NexusDS

produces as monitoring system.

5.5 Summary

In this Chapter, the Manufacturing Service Bus and the MAPE-based ar-

chitecture are presented. The MSB concept, which is described in Section

5.1, introduces SOA principles into manufacturing environments, which

provides more flexibility and agility in the adaptation of integration pro-

cesses. The MSB support of different communication and messaging stan-

dards enable the interoperability of the platform. Interoperability is pro-

vided at the data level and at the application level thanks to the MSB Event

Model, which provides a common data model for applications to exchange

messages and to connect service interfaces by means of event processing

and producing methods. The content-based router and other mediation

services decouple service providers and requestors which provides a high

level of flexibility, as described in Section 5.2. An EAI Process Model has

been proposed in Section 5.3.2 (see Figure 5.8). This model is used by an

EAI Process Editor to plan and design the integration processes that en-

able the exchange of data in the Real-time Factory and that are executed

in the Manufacturing Service Bus. Furthermore, monitoring and analysis

tasks are automated by the NexusDS mining graph (see Section 5.4.3.3)

and the inference process of the Provenance-aware Service Repository

(see Section 5.4.3.4), respectively. This closes the SOA lifecycle gap with

the EAI Process Editor, which permits to increase the capabilities for agile

adaptation of the approach. The SOA lifecycle is implemented following a

MAPE-based architecture that implements a feedback loop from the man-

ufacturing domain (MSB) to the analysis phase (Provenance-aware Ser-

184 Chapter 5 The Manufacturing Service Bus

vice Repository) and from the planning phase (EAI Process Editor) back

to the execution environment in the manufacturing domain. This archi-

tecture is based on the Real-time Factory Adaptation Model (see Section

5.4.2.3), which has also been proposed in this Chapter and can be seen

in Figure 5.19. The MAPE-enabled architecture based on the presented

Adaptation Model for the Real-time Factory follows the scheme of a feed-

back loop and enables the execution of self-managing mechanisms. This

architecture is depicted in Figure 5.22.

185

Chapter 6
Applicability and Evaluation

In this chapter, the applicability of the presented approach is demon-

strated for different scenarios in a real manufacturing environment. The

MSB is adopted to provide a flexible integration of production systems and

has been tested under different production situations. The prototype of

the MSB has been deployed in the Learning Factory for advanced indus-

trial engineering [RKK+07] at the Institute of Industrial Manufacturing

and Management in Stuttgart, Germany. The description of this environ-

ment is given in Section 6.1. In Section 6.2, four use cases illustrate the

applicability of the presented approach. The first two use cases demon-

strate the usability of the MSB in a real production environment. Both

use cases show the flexibility, interoperability of the approach thanks to

the routing service and other mediation services of the integration archi-

tecture, which enables the components to remain loosely-coupled. The

last two use cases demonstrate the adaptability and agility features of the

implemented MAPE-based feedback loop. In Section 6.3, the impact of

the approach in the product life cycle management is given and a model

186 Chapter 6 Applicability and Evaluation

of integration regarding the production planning phase is detailed. The

validation and evaluation of the approach are given in Section 6.4. These

aim to demonstrate the technical feasibility and applicability and to eval-

uate the practical value for the groups of interest. The demonstration of

the technical feasibility is described in Chapter 5, whereas the applica-

bility of the approach is illustrated in the use cases of Section 6.2. The

research results are validated in the assessment of the presented contri-

butions, which is given by an extensive coverage of the objectives that

are described in Chapter 1. The evaluation of the approach has been re-

alized by the examination of thirty criteria that have been classified in

six categories: interoperability, flexibility, mediation, adaptability, agility

and integration. These categories are used to evaluate the MSB approach

and to compare it with past and current approaches in the EAI and SOA

domain. Two recent research approaches to integration and context man-

agement in the manufacturing domain are also evaluated. In Section 6.5,

some conclusions are given.

6.1 The Learning Factory: a Field for

Evaluation

The Learning Factory comprises a digital planning environment and a

real transformable assembly system, also known as iTRAME [RKK+07].

The assembly system is composed of a transport belt conveyor, as well

as of different manual stations, where assemblers perform one or more

assembly tasks, and of robot stations. This test environment has all ca-

pabilities to be able to react to external events like a customer order

or internal turbulences like the breakdown of resources. Such events

have been identified as relevant turbulences by several studies in industry

[WZ09, RKK+07]. The usage of digital tools and the iTRAME enable the

6.1 The Learning Factory: a Field for Evaluation 187

execution of production processes from the production planning down to

the assembly line of the factory. A test environment description and the

specific workflows that react to these turbulences are shown ahead. The

Learning Factory for advanced Industrial Engineering has been developed

to qualify people in methods and tools in the field of process planning and

production optimization. In order to reach the target of a short reaction

time in turbulent scenarios, a high planning quality and the validation

of planning results before their realization, industrial engineers are sup-

ported by a digital planning environment. In each planning phase, digital

tools can be used to support the execution of information flows between

shop floor and digital factory. Other important aspects to react to tur-

bulences are the transformability of the production system to realize the

planning results in short time and the close contact between the digital

planning and the real production system. This close contact is impor-

tant because the planning needs actual information from the production

to make decisions on a wide base of heterogeneous information. The

transformable assembly system of the learning factory collects and deliv-

ers this information for the production planning environment through the

Production Control Unit in the shop floor. In order to evaluate the applica-

bility of the presented MSB as central integration layer in an event-driven

digital planning environment, four scenarios have been chosen: (1) man-

agement of a customer order, (2) the internal turbulence of the breakdown

of resource, (3) service revision and (4) the adaptation of the failure man-

agement process due to the introduction of a new product variant. These

scenarios, which are detailed in the next Section, are used to demonstrate

the functionality of the MSB. The following information systems in the

Learning Factory are participants of the information flows shown in the

scenarios of the next Section:

- Supervisory Control and Data Acquisition (SCADA): this system

is located in the shop floor and is responsible for the production

monitoring and control. The assembly structure of the iTRAME is

188 Chapter 6 Applicability and Evaluation

managed from the SCADA terminal. This system receives infor-

mation related to production orders from the Manufacturing Exe-

cution System.

- Manufacturing Execution System (MES): The MES has a link func-

tion between the SCADA system and the ERP system. The MES

receives information from production in real-time. At the same

time, the MES receives customer order information through the

ERP system.

- Enterprise Resource Planning (ERP) System: the ERP system sends

information related to the production resources, such as assembly

stations, tools, product variants and processes, to the MES.

- Maintenance Console: This application shows the failures detected

in the shop floor that have pending review or repair operations by

maintenance workers.

- Customer Portal: This application informs customers of the cur-

rent state of their orders. The state of customer orders is updated

when the order enters production, when the order is finished or

when production must be stopped due to an internal failure in the

assembly line.

In all scenarios, some of the triggered actions are coordinated through

a BPEL workflow. In the scenario of the breakdown of a machine, the

workflow integrates the production monitoring and controlling system, a

customer portal and a maintenance portal. In the scenario dealing with

changes in the production planning phase, the integration of a produc-

tion planning application, a simulation tool, an ERP system and the MSB

is realized through an ESB approach, corresponding to the production

planning phase of the product lifecycle management.

6.2 Case Studies 189

6.2 Case Studies

In this Section, the description of the four case studies that illustrate the

functionality of the implemented approach is given. The first use cases

describe the scenario of a customer order workflow and a failure manage-

ment workflow. Both scenarios comprise the data exchange operations

between applications across the MSB. The failure management workflow

of the second scenario represents the execution flow of the failure man-

agement process that is depicted in Chapter 5 as an exemplary EAI pro-

cess. The third and fourth scenario illustrate the service revision and

adaptation of the failure management process, respectively. Such adap-

tation is possible by integrating the inference results of the data stream

analysis procedure and the Provenance-aware Service Repository into the

EAI Process Editor, as detailed in Figure 5.22.

6.2.1 Customer Order

The customer order process starts by saving the order in the ERP Sys-

tem. The whole process is shown in Figure 6.1. An incoming customer

order generates an event with all relevant information to manufacture the

product. This information includes customer data, order specific data like

order date and information about the ordered products. The event is sent

to the MSB for further processing (1). At the MSB each message has to

run through the registration and routing (2). The event processing service

receives the event message and checks the condition for customer order

messages: all order messages from the ERP-System have to be routed to

the MES. The customer order event is sent to a BPEL-service (3), which

sends an e-mail with well formatted information to the production man-

ager (4) which creates the production order by using the MES terminal

(5). Once the production order has been created, the MES creates a text

190 Chapter 6 Applicability and Evaluation

MES

MSB

ESB

Production
Monitoring and

Control (SCADA)

MES File
Converter

(1)

Event
Processing

Service

(2)

(5)

Workflow
Management

ERP

(3)

C. Order
Workflow

Plan Production
Orders

(6)

Production
Order

Customer
Order

(9)

Production
Start

(8)

(10)

Customer
Portal

Notify
C. Order

(4)
Production
Order

Customer
Order in
Production

(7)

File
Transformation

Customer
Order

Figure 6.1: Customer Order Workflow

file, which contains all necessary information to start the production in

the shop floor area. The text file, which does not contain information

about the customer, is sent to the MSB (6). The text file is converted to

a specific format (7) and then sent back to the event processing service.

The message runs through the same process of registration and routing.

At this point, the message is routed to the shop floor (8). At the shop

floor, the production control unit creates a new production order with all

machine instruction and the execution of the order is started. During the

production process the factory is continuously saving state entries in a

special logging database table. These logging entries are observed by a

trigger in the database which sends notifications to the MSB about the

production process (9). The customer portal changes the state of the or-

6.2 Case Studies 191

Maintenance
Console

MSB

ESB

Production
Monitoring and

Control (SCADA)

(1) (2)

(4)

(3)

Machine
Failure

Workflow
Management

Customer
Portal

(5)

Notify
Failure

Finish
Maintenance

(8)

(9)

Decision Maintenance
finished

Machine
Failure

Notify
Delay

Machine
Failure

(10)

Restart
Production

(6)
(7) Update

Delivery
Date

(11)

Repair
Workflow

))

Event
Processing

Service

Figure 6.2: Failure Management Workflow

der to "in process" when the production order starts to be processed in the

shop floor (10). All relevant updates in the production process are routed

to the customer portal. In this scenario, the customer portal is the main

event consumer, following a customer service policy that keeps customers

permanently informed during production.

6.2.2 Failure Management

This scenario describes the processing of a machine failure event (see Fig-

ure 6.2). This failure event is generated from the shop floor using the same

database functionality like normal production update messages, which are

sent to the MSB in order to be forwarded to the appropriate destinations

(1). A new failure message is routed to the maintenance portal (2). At

192 Chapter 6 Applicability and Evaluation

the maintenance portal workers can decide which activity has to be done.

There are two possible activities to react to machine failures: repair or

replace. The decision about the activity is automatically sent back to the

MSB as an event message that contains the decision about the failure (3).

In this case, we consider the decision is a repair procedure and that no

part of the machine needs to be replaced. The dependency with the ini-

tial event is set through the Eventflow-ID attribute. After performing the

registration, the Event Processing Engine sends the event to the Work-

flow Management System (4), which triggers the Repair Workflow (5),

which is executed in the runtime environment of a Workflow Manage-

ment System. With the information related to maintenance decision, the

delay in the scheduled orders can be calculated and the customers may be

informed about the delivery delays their orders will suffer due to the ma-

chine failure. This is done by the BPEL process, which sends a notification

of delay to a customer portal application (6). After some time, according

to an escalation timeout, the workflow sends an Email notification to the

production manager (7). The production manager supervises all mainte-

nance operations related to the machine failure that originated the stop of

production and once all maintenance operations are concluded and pro-

duction is ready to be restarted he logs into the maintenance console the

appropriate data that represents the end of all maintenance operations

in the machine that failed (8). The maintenance console sends then the

"Maintenance finished" event to the MSB (9). From the production con-

trol unit, production is restarted (10) and customers receive the updated

information about the delay of their orders (11).

6.2.3 Service Revision

The following scenario describes the adaptation capabilities of the inte-

gration platform and the challenge of optimization when the production

of a new product variant starts. In this scenario, the production system

6.2 Case Studies 193

manufactures more than fifty variants of the same product, which is a sim-

ple table-set. The different variants are assembled on the transformable

assembly system: iTRAME. The initial situation for this scenario is given

by the introduction of a new product variant (variant F). The configura-

tion of the assembly line for this product variant comprises several man-

ual stations and a robot station. The assembly of the new variant requires

that an assembler mounts the set light on the table plate base at one of the

manual stations (ML1). In this station, assemblers are assisted with as-

sembly instructions by means of an advanced Information Terminal (aiT).

Once a worker has mounted the product part, it confirms the assembly op-

eration. The confirmation action is logged as a successful assembly task

in the database of the SCADA system. In the next station (RS1), a robot

arm is configured to mount a pen holder. In the SCADA database, the

log table contains the result of assembly operations. Successful assembly

operations are logged with 1, whereas unsuccessful assembly operations,

due to some kind of failure for instance, are logged with 0. The module

field defines the assembly station and the process field defines the prod-

uct variant. This initial situation is depicted in Figure 6.3. The log table

shows a correct assembly operation on variant C at the RS1 station and

three incorrect assembly operations on variant F also at the RS1 station.

The problem is given by an elevated number of failures in the robot sta-

tion, which are logged after the start of production of the new variant.

When the robot arm cannot mount the pen holder correctly, it triggers an

alarm, which stops the material flow in the assembly line and prevents the

production to be resumed until the failure has been repaired or until the

robot arm is restarted manually in the case of a breakdown. Such repair

operations on the assembly line are very expensive due to the production

stop that the robot arm breakdown provokes. Therefore the production

supervisory team decides to configure and run a monitoring process in

NexusDS in order to analyze the failures that are produced in the assem-

bly line. The monitoring process is configured based on the suspicion of

194 Chapter 6 Applicability and Evaluation

RS1 ML1

aiT

Assembly
Task List

Assembly OK

DB
SCADA

... ...

Breakdown

ID Assembly Time Module Process

1237 1 2011-11-03 08:05:06.7 RS1 C

1249 0 2011-11-03 08:12:31.9 RS1 F

1317 0 2001-11-03 08:27:59.2 RS1 F

1332 0 2011-11-03 09:05:06.5 RS1 F

Figure 6.3: Misleading Failure Detection Scenario

a correlation between the increased number of failures in the assembly

line and the new variant. The configuration of the monitoring graph is

depicted in Figure 6.5. The entries at the log table of the SCADA database

are used as input data stream in the source operator. The Filter operator is

configured to use the Failure Analysis mode, which lets all entries that are

not related to failure logs out of the analysis. The Mining Parameteriza-

tion operator is configured to merge three additional tuples from external

databases. These tuples are:

- (Worker,Module): this tuple is imported from an assembly workers

database. A worker is registered on a specific module during a

period of time.

- (FailureType,AssemblyID): this tuple is imported from a mainte-

nance database, which keeps records about the registered failures

6.2 Case Studies 195

on the assembly line and maintenance operations. All failures from

the assembly line have a failure type assigned to it. The Failure-

Type value is a 5-digit code that contains five properties of a fail-

ure. This code is shown in Figure 6.4. The Material property in-

dicates if the failure lies on the material or on the product part

that is assembled. The Repair property defines the difficulty to re-

pair a failure. The highest value in the scale (5) is used to define a

high difficulty in the repair operations, which require experienced

maintenance personal. The lowest value in the scale (1) defines a

very low difficulty to repair the failure, which can be repaired by

assembly workers or other non-maintenance personnel. The Pri-

ority property describes the priority, with which the failure has to

be repaired. The highest priority is 5 and the lowest is 1. The pri-

ority is directly proportional with the impact of the failure on the

assembly line. The Tool property defines if the failure is on an as-

sembly tool. The Machine property defines if the failure is caused

by a machine. The possible values of the Failure Type parameter

can be seen in Figure 6.4.

Material Repair Priority Tool Machine

1/0 1-5 1-5 1/0 1/0

Figure 6.4: Failure Type Value Scope

- (TaskListQuality-Module): this tuple is imported from the database

of a quality assurance system. Every assembly station (module) has

an assigned value for the quality of its task list description. Values

are assigned by assembly workers.

These tuples are merged with the tuples of the input data stream from

the SCADA database. This is done in the Classification operator in order

196 Chapter 6 Applicability and Evaluation

to classify production data according to different criteria. These criteria

are given in a policy document. The purpose of merging different tuple

combinations is to find correlations. In this example, three classifications

are made, which are described ahead:

- The first classification is done by the tuple (Assembly, Module, Pro-

cess). This classification looks for the correlation between failures,

variants and assembly stations. In this case, no external tuple is

merged. The results of the first classification reveal a correlation

between the product variant F and the RS1 station for registered

failures.

- The second classification merges the (Worker, Module) tuple with

the (Assembly, Module) tuple. The goal of the mergence is to find

correlations between assembly workers and failures. The result of

this analysis does not show any relevant finding.

- The third classification merges the (TaskListQuality, Module) tuple

with the (Module, Process) tuple of the SCADA Log table. A classi-

fication of values is made in the resulting (TaskListQuality, Module,

Process) tuple in order to find correlations between the quality of

the task list descriptions and the product variants for each module.

This analysis reveals that more than 65% of the workers that have

worked at ML1 station value the task list description for variant F

as ’bad’ or ’very bad’.

The results of the classification analysis describe a possible explanation

for the elevated number of failures of variant F at the robot arm station.

The conclusion of the monitoring process is that the failures that are reg-

istered at the robot arm station are actually originated at the previous

manual station due to an incorrect assembly operation. The monitoring

results show that the failures detected at the robot arm station are due to

an overlapping previously-assembled part when an order of F-variants is

6.2 Case Studies 197

Source Filter Mining
Parameterization

Transformation Classification Sink

Mode:
Failure Analysis

DomainRecommendation:
Review Assembly
 Predicate: Review
 Object: Task List
 Location: ML1
 Condition: Process F

Classification Policy

Assembly Module Process

Assembly Worker

 Task List Quality Module Process

DB
SCADA

ID Assembly Time Module Process
1237 1 2011-11-03 08:05:06.7 ML1 C
1249 1 2011-11-03 08:12:31.9 ML1 F
1317 0 2001-11-03 08:27:59.2 RS1 F
1332 0 2011-11-03 08:33:21.4 RS1 F

ID
Assembly
Module
Process

Worker Module
Failure
Type

Assembly
ID

Task List
Quality Module

Production Ontology

Figure 6.5: The NexusDS Monitoring Graph for Failure Analysis at RS1

in production. This indicates that the previous assembly task has probably

not been carried out correctly, although it is registered as correct by the

assembly workers. This situation defines a misleading failure detection

scenario, which can be detected by the established mining graph. The fi-

nal steps of the mining graph include a Transformation operator and the

Sink operator. The Transformation operator converts the results of the

classification analysis into RDF statements based on the given Production

Ontology. Once all RDF statements are created, a reasoning process is

started in order to infer the corrective actions that are necessary to cor-

rect the failure situation. This reasoning process is a rule-based inference

process that creates a DomainRecommendation OWL instance. This in-

198 Chapter 6 Applicability and Evaluation

stance is sent over SOAP/HTTP to the repository, as described in Section

5.4.3.4. The domain recommendation requests a review the assembly task

list, which is given by the output of the aiT service, since it seems that

these instructions are the cause of the wrong assembly of the product

variant. The review of the description of the assembly tasks at ML1 gives

evidence of missing instructions for the assembly. This discovery and

the consequent improvement of the assembly task description, brings the

failure rate of the variant F down to average values.

6.2.4 Adaptation of the Failure Management Process

This scenario is based on the same premises as the last scenario. The same

product variant is in production. However, the failures are this time regis-

tered at a different assembly station. The scenario is depicted in Figure 6.6.

This time workers are having difficulties to assemble the product part at

the ML2 assembly station, which follows after the RS1 station. This pro-

vokes an elevated number of failures at the ML2 station when the product

variant F is being assembled. The procedure to analyze the situation and

to detect the origin of the problem is the same as in the last scenario. The

NexusDS mining graph is configured to investigate possible correlations

in the production data. The configuration of the mining graph is depicted

in Figure 6.7. As in the scenario described in Section 6.2.3., the entries at

the log table of the SCADA database are used as input data stream in the

source operator. The Filter operator is configured to use the Failure Anal-

ysis mode. The Mining Parameterization operator is configured to merge

three additional tuples from external databases. These tuples are:

- Worker-Module: (see scenario in Section 6.2.3).

- FailureType-AssemblyID-RepairTime: this tuple is imported from

the maintenance database. This tuple shows the repair time that

is invested in fixing each failure of the registered failures. This

6.2 Case Studies 199

tuple contains the specific description of failures in the failure type

column. Failure types are described in Section 6.2.3.

- LineImpact-FailureType: this tuple, which is also imported from

the maintenance database, shows the assigned impact on the as-

sembly line of each failure type. The impact on the assembly line

is a measure to define the importance of a failure. The impact of a

failure is a value that goes from 1 to 10, being 10 the highest im-

pact. For example, a failure that provokes a stop of production has

a high impact (8), whereas a failure that is repaired as soon as it is

detected and does not require stopping production has a relatively

low impact (2).

RS1 ML2

aiT

Assembly
Task List

Assembly OK

DB
SCADA

...

Assembly
Not OK

...

ID Assembly Time Module Process

1317 1 2001-11-07 11:11:24.4 RS1 F

1332 1 2011-11-07 13:47.40.9 RS1 F

1359 0 2011-11-10 11:37:58.1 ML2 F

1388 0 2011-11-10 15:58:41.4 ML2 F

Figure 6.6: Misleading Failure Detection Scenario

These tuples are merged with the tuples of the input data stream from

the SCADA database in the Classification operator in order to classify

200 Chapter 6 Applicability and Evaluation

production data according to different criteria. The criteria to realize the

classification of data are given in a policy document. In this example, five

classifications are made, which are described ahead:

- The first classification is done based on the tuple (Assembly, Mod-

ule, Process) (see Section 6.2.3). As suspected by the production

management team, the results of the first classification reveals a

correlation between the variant F and the ML2 station for regis-

tered failures.

- The second classification merges the tuple (Assembly, Module)

from the SCADA log table and the tuple (Worker, Module) from

the maintenance database. The resulting tuple (Assembly, Worker)

is analyzed. No correlation is found.

- The third classification merges the tuple (FailureType, AssemblyID,

RepairTime) from the maintenance console and the tuple (ID, Pro-

cess). The resulting tuple is (FailureType, Process). The results of

the classification realized for this tuple show that over 90% of the

failures registered at ML2 have the failure type ’11400’ (the codifi-

cation follows the scheme described in Section 6.2.3). This means

that most failures at ML2 are a failure related to the material or the

product part, that is easily repairable and that has a high priority

(4). The high priority means that the impact of this type of failures

is high, meaning a probable stop of production.

- The fourth classification merges the tuple (FailureType, Assem-

blyID, RepairTime) from the maintenance database with the tuple

(ID, Process) from the SCADA Log table. The resulting (Failure-

Type, RepairTime, Process) tuple is analyzed in order to find out

the repair times of the failures provoked by variant F. The results

show low repair times, whereas the most failure types are coded as

6.2 Case Studies 201

’11400’. This means that the risk of stop of production is elevated

although the repair times are low.

- The fifth classification merges two tuples of the maintenance con-

sole, which are the (LineImpact, FailureType) tuple and the (Fail-

ureType, AssemblyID, RepairTime), with the tuple (ID, Process,

Module) of the SCADA log table. The resulting tuple (FailureType,

Module, LineImpact, Process) is analyzed in order to look for the

impact index of easily repairable failures (code pattern ’X1XX0’)

provoked by variant F at the ML2 station. The results of the classi-

fication show that a high number of failures related to variant F at

the ML2 station are easily repairable but with a high impact on the

assembly line.

The results of the classification and analysis of the distribution of failures

indicate that failures at ML2 are correlated again with the new product

variant F and that these failures are independent of the assembly work-

ers. The results also show that most failures are: (i) related to the material

flow or the assembly product parts, (ii) easily repairable and (iii) have a

high impact on the line. The reason for this distribution of failures is that

the assembly at RS1 is not working correctly and is assembling a product

part at an incorrect position, which should be free at ML2. This leads to a

false positive assembly at RS1 and a false negative assembly at ML2. The

robot arm must be inspected by an external maintenance service and pos-

sibly replaced. Since the maintenance operations of the RS1 take several

weeks, an alternative solution is proposed. Failures of product variant F

registered at ML2 related of a type pattern ’11X00’ are directly repaired

by the assembly workers following maintenance instructions given by the

aiT service. This type of failures is easily repairable and related to the

material flow or product part, which means it is probably due to a wrong

assembly of the robot arm at RS1. This solution is proposed at the Trans-

formation operator after an inference process. The policy that leads to

202 Chapter 6 Applicability and Evaluation

Source Filter Mining
Parameterization

Transformation Classification

DomainRecommendation:
Adapt FM-EAI-P
 Predicate: Repair
 Object: Failures
 Location: ML2
 Condition: Process F
 Manner: Low Line Impact

Mode:
Failure Analysis

Sink

Classification Policy

Assembly Module Process

Failure Type Process

Repair Time Failure Type Process

ID
Assembly
Module
Process

Worker Module
Failure
Type

Assembly
ID

Repair
Time

Line Impact Failure Type

Failure
Type Module Line

Impact Process

ID Assembly Time Module Process

1281 1 2011-11-05 07:19:33.7 ML1 F

1317 1 2001-11-06 10:43:28.1 RS1 F

1332 1 2011-11-07 28:38.21.9 ML2 A

1359 0 2011-11-10 12:51:26.2 ML2 F

1388 0 2011-11-10 16:40:11.3 ML2 F

DB
SCADA

Assembly Worker

Production Ontology

Figure 6.7: The NexusDS Mining Graph Configuration Failure Analysis at

ML2

the conclusion mentioned above is coded in rules that are used to execute

the inference process and generate a DomainRecommendation instance.

These rules also contain the necessary information to require an adapta-

tion of the EAI process for failure management. The adaptation process

that follows after the DomainRecommendation instance is received by

the service repository is depicted in Figure 6.8. The phases that follow the

monitor phase (analyze, plan, execute) to complete the MAPE cycle in the

given scenario are described ahead.

6.2 Case Studies 203

Integration Process Editor

 NexusDS
Domain
Knowledge

MSB

SCADA

Failures Data
Stream

aiT Lifecycle App

aiT

Provenance-aware
Service Repository

Process
Change
Request

aiT

New
Service
aiT

New
Service
aiT

Configuration
Engine

MSB-PDL

Routing
DB

Transformation
Scripts DB

...

Query
Graph Ref.

Report
Monitoring
Status

x

Execution

Monitoring Analysis

Plan

Figure 6.8: Domain Recommendation in the MAPE Cycle

Analysis. Once the domain knowledge is stored in the repository, it

starts an inference process that derives high-level context information in

order to send the corresponding corrective actions to the Process Editor.

The information managed in the repository comprises service provenance

data, process-service dependencies and domain knowledge. The service

repository can combine these data and use its internal inference functions

to make suggestions on process optimizations to modelers. This way, pro-

cess modelers are able to adapt EAI processes in the planning phase when

needed. In this scenario, the mining graph from the monitoring phase

requires to repair failures of variant F at the assembly station ML2 with

a low impact on the assembly line. In terms of failure management op-

erations, a low impact is equivalent to a repair ad-hoc without having

to stop production. In the service repository, the algorithm that looks

204 Chapter 6 Applicability and Evaluation

for corrective actions is executed. This algorithm finds the description of

the failure management process, which is given in Section 5.3.2, since the

process matches the predicate, object and domain of the domain recom-

mendation instance. A match for the location attribute is not found in any

node of the process and therefore, services are looked up with the same

location attribute (ML2). The aiT service is found. The algorithm creates

a CorrectiveAction instance, which is translated into a change process re-

quest, which is sent to the Process Editor, and a change service request,

which is sent to the lifecycle application of the aiT service. The adap-

tation of the aiT service requires the service to also show information

the repair of failures of Variant F, if necessary. The lifecycle application

of this service realizes the required changes that enable the visualization

of repair instructions and registers the update in the service repository.

The notification to the EAI Process Editor contains a request to integrate

the updated version of the aiT service into the process into an edge that

causes a low impact on the assembly line. The evaluation of these con-

ditions is made by means of the internal rules of the service repository

and transformed into specific requests that are sent to the EAI Process

Editor as recommendation for the adaptation of the failure management

process. The purpose of the integration of the aiT service into the process

is to assist assemblers for ad-hoc repair operations for the product variant

F.

Plan and Execute. The process change request can be interpreted by the

editor-internal logic and used to make adaptation suggestions to process

modelers. Once, process modelers have a new version of the process to

be deployed, a description of this new process version is sent to the MSB

in a new MSB-PDL description. The MSB configuration engine extracts

this description and adapts the internal bus services, such as routing or

transformation services, to enable the execution of the new control flow

of the process.

6.3 Integration of the MSB into PLM 205

6.3 Integration of the MSB into PLM

As described in Chapter 4, the integration of systems in the PLM domain

comprises similar problems to the ones that are dealt with in the Real-

time Factory, such as the heterogeneity of systems, the excessive number

of point-to-point interfaces and the lack of a functional orientation with

regard to the integration of applications. These problems cause a lack of

flexibility and agility in PLM, which are indispensable nowadays due to

the growing number of product variants, shorter product lifecycles and

turbulent markets that require an efficient management of the products

within their lifecycle. Furthermore, PLM needs a flexible and efficient

support for the execution of the business processes within the product

life cycle. The similarity of the ICT requirements for PLM to the require-

ments of the Real-time Factory in terms of integration ensures the reuse of

the service orientation concept to increase interoperability and flexibility

in the PLM domain. The extension of the MSB concept to the PLM do-

main and how the interconnection of PLM phases can be done is detailed

ahead.

6.3.1 Extending the MSB Concept to other phases in

PLM

First, the leverage of a unique service bus, as the MSB, to connect all

applications of the product lifecycle was considered. But there are sev-

eral problems, which have to be considered, when integrating hundreds

of applications with a single ESB. The first problems are the different

requirements within each phase of the product lifecycle like scalability,

throughput and real-time demands. Further problems are of an organi-

zational nature like the organizational responsibility for the development

and maintenance. The resulting fear of loss of predominance between the

206 Chapter 6 Applicability and Evaluation

different responsible persons in the individual departments and business

units can be a great obstacle, before implementing the integration solu-

tion [MSM11]. Another problem is the geographical distribution of the

departments, which leads to an increased coordination effort when using

a holistic ESB implementation. To reduce the effect of these problems, an

approach with phase-specific ESB’s for each phase of the product lifecy-

cle can be used. Each ESB is adapted to the requirements of its phase like

the MSB to the manufacturing phase. Subsequently, the specific ESB’s

have to be connected with an additional ESB, the PLM-Bus [SMM11], to

get a continuous integration of the whole product life cycle. The PLM-

Bus supports the execution of cross-departmental business processes and

provides the necessary mediation services to act as gateway between the

different phase-specific buses. An example of the integration approach to

connect two phases of the product life cycle is given ahead.

6.3.2 Approach to Connect the Planning and the

Production Phases

The integration approach that is followed to integrate the MSB with other

phases of the product life cycle is depicted in Figure 6.9. From the per-

spective of the MSB, as well as from the perspective of any phase-specific

service bus, the PLM-Bus acts as gateway for event-messages that must

be routed to applications that are not directly connected. This is done by

connecting the routing service of the PLM-Bus to the MSB. In order to re-

ceive messages from other phase-specific buses, the routing service of the

MSB is connected to the PLM-Bus. The PLM-Bus manages the business

processes, mediation flows and mediation services that are needed to exe-

cute transactions across different phase-specific buses. Mediation services

comprise a number of transformation services capable of converting data

between data models specific to the applications of each phase. These

6.4 Validation of the Approach 207

are called inter-phase mediation services. Additionally, the inter-phase

mediation flows control the message flows that go between phases. The

approach is shown in Figure 6.9, where the MSB is connected to the ser-

vice bus specific to the production planning phase, also called Production

Planning Service Bus (PPSB).

MSB

PLM-Bus

PPSB
Routing
Service

Routing
Service

Routing
Service

Inter-phase
Mediation Services

Inter-phase
Mediation Flows

Figure 6.9: Integration of the MSB into a PLM Service-based Architecture

6.4 Validation of the Approach

The validation of the approach aims to demonstrate the technical feasi-

bility and applicability and to evaluate the practical value for the groups

of interest. The demonstration of the technical feasibility is described in

Chapter 5. The applicability of the approach is illustrated in the use cases

of this Chapter. The validation of research results is the assessment of the

presented contributions, which is given by an extensive coverage of the

objectives that are described in Chapter 1. This assessment is described

in Section 6.5.1. The evaluation of the approach is given at the end of

this Chapter as well as a comparison with other current approaches in

the manufacturing, EAI and SOA domains.

208 Chapter 6 Applicability and Evaluation

6.4.1 Objectives Coverage

Objective Research Issue MSB Contribution Assessment
O1-1. Flexibility of
EAI Processes

Deal with multiple
vendor installations
while preventing
rigid integration
approaches.

C1-1.MSB Layer Architecture.
MSB Service Layer provides
connectivity to the MSB to
heterogeneous information
systems in production.

• Concept
• Implementation
• Test
• Use Cases 1,2

O1-2. Minimize the
impact of changes in
EAI Processes and
application services

Avoid tightly-coupled
systems.

C1-2.MSB-CBR and other
mediation services. The
Routing Service decouples
service providers and
requestors.

• Concept
• Implementation
• Test
• Use Cases 1,2

O2-1. Interoperability
at the data level

Heterogeneity of
applications and
information systems
in the Real-time
Factory.

C1-3.MSB Event Canonical
Model.

• Concept
• Implementation
• Test
• Use Cases 1,2

O2-2. Interoperability
at the application
level

Enable the functional
connectivity of
applications.

C2.EAI Process Model
connects services as event-
processing functional
modules. EAI Process Editor
enables the connectivity of
services.

• Concept
• Implementation
• Test
• Use Cases 1,2

O3-1. Adaptability of
ICT integfration
infrastructure

Enable self-
management
features in the
integration
middleware.
Automation of
adaptation cycles.

C3.SOA Lifecycle for the Real-
time Factory. MAPE-based
Adaptation Model. MSB as
autonomic computing
system.

• Concept
• Implementation
• Test
• Use Cases 3,4

O3-2. Ease of
Reconfiguration

Simplify
configuration tasks
and abstract human
tasks from the
specific requirements
of IT systems.

C4.EAI Process Editor. MSB
Mediation Services and EAI
Processes can be easily
reconfigured by means of the
EAI Process Editor.

• Concept
• Implementation
• Test
• Use Cases 3,4

O3-3. Agile
Adaptation

Automation of
knowledge extraction
and analysis tasks.

C5.Domain reconfigurable
Mining Graph. It enables the
adaptation of EAI processes
and services.

• Concept
• Implementation
• Test
• Use Cases 3,4

O3-4. Knowledge-
based Adaptation

Manage
dependencies
between data,
services and EAI
processes. Manage
reusable services.

C6.Provenance-aware Service
Repository as service
knowledge management
system. Source of knowledge
for the adaptation of EAI
processes and services.

• Concept
• Implementation
• Test
• Use Cases 3,4

Figure 6.10: Objectives Coverage

6.4 Validation of the Approach 209

The assessment of the presented contributions is structured by the objec-

tives that are described in Chapter 1. The major objectives of the Thesis

given in Chapter 1 are three: flexibility, interoperability and adaptation of

EAI processes. These three objectives can be divided into sub-objectives

that have guided the realization of the approach presented in this thesis.

The objectives are described in Chapter 1 and are also listed in Table 1.1

as well as in Figure 6.10. The realization of the work packages entails

challenges that have been met by the presented contributions. The as-

sessment of the contributions is based on the conception and design of

the solution, the implementation and the necessary tests that have been

carried out to prove the technical feasibility of the approach. Additionally,

the use cases described in this Chapter are also a piece of the validation

to prove the applicability of the approach. The coverage of the objec-

tives is shown in Figure 6.10 by the contributions of the approach and the

respective assessments.

6.4.2 Evaluation and Comparison with other

Approaches

The use cases in this Chapter have been tested in the Learning Factory.

Thus, the use cases are applicability tests in a manufacturing environ-

ment that is representative of a Small or Medium Enterprise (SME) of the

manufacturing industry. Therefore, the evaluation of the MSB and the

presented MAPE cycle are valid for the Learning Factory as well as for

manufacturing SMEs. The evaluation of the approach is made by the com-

pliance assessment of thirty criteria that have been selected as the most

important factors for EAI middleware in the manufacturing industry. The

selection of these criteria is based on the objectives of this Thesis, which

are described in Chapter 1, and on the principles of integration that are

applied in current EAI solutions. The thirty criteria points are divided into

210 Chapter 6 Applicability and Evaluation

six categories: interoperability, flexibility, mediation, adaptability, agility

and integration. Each of these categories contains five criteria. The cri-

teria in each category are arranged in a scale from 0 to 4. The fulfillment

of a criterion presumes the fulfillment of the lower criteria, except for

the lowest criterion. The evaluation criteria for each category are defined

ahead.

6.4.2.1 Evaluation Criteria

The first category of the evaluation criteria is interoperability. This cat-

egory corresponds to the first objective stated in Chapter 1. The lowest

criterion is communication of components with no integration. The sec-

ond criterion is the usage of standards. The third and fourth criteria are

the interoperability at the data level, application level. The fifth criterion

is the support of multiple bindings, i.e. SOAP/HTTP, FTP or file transfer.

These criteria can be seen in Figure 6.11. The second category is flexibil-

No integration/Only Communication

Usage of Standards

Interoperability at the data level

Interoperability at the application level

Support of multiple bindings

Interoperability Criteria

Figure 6.11: Interoperability Criteria

ity, which corresponds to the second objective of the Thesis. The lowest

6.4 Validation of the Approach 211

criterion is tightly-coupled components, which is equivalent to no flex-

ibility. The first precondition for flexibility is to enable the integration

of loosely-coupled components. Thus, this is the second criterion. The

third criterion is service reuse, which presumes an integration approach

based on loosely-coupled components. Finally, the highest criteria are de-

fined by the reduction of complexity and the possibility to realize dynamic

bindings (also called late bindings). The reduction of complexity can be

achieved in different ways, but it usually aims to simplify the design, con-

figuration and deployment of services and EAI processes. Flexibility cri-

teria are shown in Figure 6.12. The third category is mediation. Mediation

Flexibility Criteria

Tightly-coupled components

Loose coupling

Service Reuse

Reduction of Complexity

Dynamic Bindings

Figure 6.12: Flexibility Criteria

comprises several components or services in an integration architecture

that support to decouple clients and servers, or service providers and re-

questors in a SOA. The lowest criterion represents the absence of me-

diation services. The most simple and common mediation services are

transformation services, which define the second lowest criterion. The

third criterion is represented by routing services, such as the CBR in the

MSB. Orchestration or workflow management represents the fourth cri-

212 Chapter 6 Applicability and Evaluation

terion. Finally, the fifth criterion of mediation is the support of stateful

services. Mediation criteria are shown in Figure 6.13. The adaptability

Mediation Criteria

No mediation services

Transformation services

Routing services

Orchestration

Stateful services support

Figure 6.13: Mediation Criteria

category coincides with the third major objective of the Thesis. This cat-

egory gathers the criteria to evaluate the capability of adaptation of an

integration approach. The first criterion is given by manual or complex

reconfiguration procedures. This criterion is equivalent to the absence of

adaptability. The second criterion is versioning support. This feature is

an important building block for adaptive integration infrastructures that

manage different versions and variants of services. The management of

data provenance and dependencies between the different entities in an

integration scenario defines the third criterion. The fourth criterion is

given by the features of self-managing components. Self-managing and

self-governance mechanisms are usually present in autonomic comput-

ing systems that are capable of collecting domain data, analyzing it and

adapting to new situations if needed. The monitoring of quality of ser-

vice data defines the fifth criterion. The adaptability category and the

corresponding criteria can be seen in Figure 6.14. The fifth category is

6.4 Validation of the Approach 213

Adaptability Criteria

Manual or complex reconfiguration

Versioning Support

Provenance data and dependencies
management

Self-managing mechanisms

QoS Monitoring

Figure 6.14: Adaptability Criteria

defined by one of the most important aspects in the adaptability of IT

infrastructures in changing environments: agility. The ability to react

responsively is a fundamental requirement in adaptation. An agile adap-

tation presumes the automation of certain tasks, such as monitoring and

analysis. The first criterion is given by the absence of automated tasks in

the domain analysis. Triggering corrective actions asynchronously repre-

sents the first criterion. The second criterion is given by the automation

of monitoring and domain analysis tasks. The possibility to adapt config-

uration or services at runtime is the fourth criterion. The fifth criterion

is represented by the implementation of a MAPE feedback loop (see Sec-

tion 5.4). The agility criteria can be seen in Figure 6.15. The integration

category defines the influence of an integration model that governs the

integration processes. The absence of an integration model defines the

first criterion, whereas the existence of an integration model complies

with the first criterion. The expressiveness of the model is represented by

the third criterion. The management of business or integration rules to

analyze data or to adapt processes is given by the fourth criterion. The

214 Chapter 6 Applicability and Evaluation

Agility Criteria

Non-automated analysis tasks

Asynchronously-triggered Corrective Actions

Automation of monitoring and analysis tasks

Adaptation at runtime

MAPE feedback loop

Figure 6.15: Agility Criteria

last criterion defines if the model is executable or if it can be converted to

executable code. The criteria of this category can be seen in Figure 6.16.

Integration Criteria

No integration model

Integration model

Expressiveness

Rules management

Executable model

Figure 6.16: Integration Criteria

6.4 Validation of the Approach 215

6.4.2.2 Evaluation and Comparison

The presented categories are used to evaluate the MSB approach and to

compare it with other approaches. The result of the evaluation can be

seen in Figure 6.17. The categories are placed on the left-side column

and the MSB, along with other integration approaches are placed on the

top. The evaluation of the MSB shows compliance with the categories

that are derived from the objectives of the Thesis, such as interoperabil-

ity, flexibility and agile adaptation. The MSB gets the highest score at

interoperability thanks to the support of multiple bindings in the JBI im-

plementation of the service bus and also thanks to the integration at the

data level and at the application level, which are enabled by the MSB

Event Model. This model provides a common data model for applications

to exchange messages and to connect service interfaces by means of event

processing and producing methods. The implemented CBR and mediation

services decouple service providers and requestors, which in addition to

the EAI Process Editor facilitate the highest score in flexibility. The im-

plemented MAPE feedback loop (see Figure 5.22), which is described in

Section 5.4.2 and Section 5.4.3 gives the MSB the highest score in agility.

The executable EAI process model (MSB-PDL), which is described in Sec-

tion 5.3.2 (see also Appendix B), provides the MSB with the highest score

in integration. Only the lack of support for QoS monitoring and missing

support of communication for stateful services prevent the MSB to score

the maximum possible points in all categories. However, the compari-

son with other approaches reveals that none of the approaches is capable

of supporting stateful services. Moreover, the monitoring of QoS run-

time data is only supported by the VRESCo environment [VRESCo]. The

adoption of QoS monitoring techniques is increasing in current research

projects due to the growing importance of compliance and governance in

service-oriented computing. However, more approaches have not been

included since not all have the focus on integration. The Champagne

216 Chapter 6 Applicability and Evaluation

[RCH+02] approach and the Smart Factory [LCW08] are two research

projects designed to integrate manufacturing applications and to manage

context in factories respectively. The missing flexibility and agility is es-

pecially remarkable in these approaches. The lack of an integration model

in Champagne also prevents it to point in the integration category. On the

contrary, there are four approaches - Adept2 [RRK+05], GENIUS [SL09],

Padres [FJM05], SSB [KWV+07] - that show comparable scores with the

MSB. One of these approaches is the research project Adept2 [RRK+05],

which is a system to assist process modelers to adapt business processes.

Adept2 obtains lacks a MAPE feedback loop to achieve the agility score of

the MSB. A MAPE loop is also missing in the Semantic Service Bus (SSB)

[KWV+07] and in the Padres architecture [FJM05]. The SSB shows, except

for the agility category, identical scores to the MSB. The reason for this

match is the similar implementation characteristics of both approaches,

which are based on an ESB with extended functionality.

MSB Champagne Smart
Factory Adept2 VRESCo GENIUS Padres SSB

Interoperability

Flexibility

Mediation

Adaptability

Agility

Integration

Figure 6.17: Evaluation and Comparison with other Approaches

6.5 Summary 217

6.5 Summary

In this chapter, four applicability use cases and the validation and eval-

uation of the approach are given. The first two use cases demonstrate

the usability of the MSB in a real production environment. Both use

cases show the flexibility and interoperability of the approach thanks to

the routing service and other mediation services of the integration ar-

chitecture, which enables components to remain loosely-coupled. The

last two use cases demonstrate the adaptability and agility features of

the implemented MAPE-based feedback loop. The architecture presents

self-managing and adaptive mechanisms thanks to the automation of the

monitoring and analysis tasks. The validation of the approach is given by

a complete coverage of the objectives with the contributions of this thesis.

The coverage of the objectives in Chapter 1 can be seen in Figure 6.10. The

evaluation of the approach has been realized by the examination of thirty

criteria that have been classified in six categories: interoperability, flexi-

bility, mediation, adaptability, agility and integration. The MSB support

for standards, the integration at the data level and at the application level,

along with the support of multiple bindings provide the highest score at

interoperability. The flexibility provided by the MSB and the implemented

CBR and mediation services by decoupling applications has been demon-

strated and evaluated with the highest score in flexibility category. The

executable EAI process model (MSB-PDL), which is described in Section

5.3.2, and the implemented MAPE feedback loop (see Figure 5.22) provide

the MSB with the highest score in agility and integration as well. The lack

of QoS monitoring and the lack of support for stateful service prevent the

MSB to score the highest score at the adaptability and mediation cate-

gories. The support of stateful services is still a research issue in many

other SOA research projects based on web services. The evaluation of

the MSB in comparison with other approaches is very positive due to the

lack of agility and adaptation capabilities in some of the projects. Other

218 Chapter 6 Applicability and Evaluation

projects, like the Semantic Service Bus [KWV+07], Adept2 [RRK+05] or

Padres [FJM05] obtain similar results and would also be a valid approach

if applied to the Real-time Factory. The results of the complete evaluation

can be seen in Figure 6.17.

219

Chapter 7
Conclusions and Outlook

In this Chapter the conclusions and an outlook are given.

7.1 Conclusions

In this thesis, an integration solution to meet the challenges of flexible

information provisioning and agile adaptation in the Real-time Factory

has been proposed. The approach comprises the concept, implementation

and applicability tests of an integration middleware that connects digi-

tal production systems in a manufacturing environment. The challenges

of integration in the Real-time Factory include dealing with the hetero-

geneity of IT systems, the avoidance of tightly-coupled components that

hinder agile adaptation of processes and the automation of monitoring,

analysis and reconfiguration tasks. The proposed solution in this thesis

addresses these challenges and presents six contributions:

220 Chapter 7 Conclusions and Outlook

1. The first contribution is given by the Manufacturing Service Bus

and its Layer Architecture (see Section 5.1), which classifies the

manufacturing environment of the Real-time Factory into five lay-

ers. The layered view of the environment enables software ar-

chitects to connect applications to the service bus using differ-

ent levels of integration: communication and connectivity (layer

0 and 1), data level integration (layer 2), application level integra-

tion (layer 3) and process level integration (layer 4). The MSB

concept introduces SOA principles into manufacturing environ-

ments [MLJ+10], which provides more flexibility and agility in the

adaptation of integration processes, as it is described in Chapter

6. The integration layer of the MSB, which is described in Section

5.2, comprises a routing service, several transformation services

and a BPEL workflow engine that enables the execution of BPEL-

processes. These mediation services (routing, transformation and

orchestration) provide the means to decouple service providers and

requestors in a service-oriented environment. Loose coupling is

one of the fundamental integration principles and preconditions

for more flexibility and for an agile adaptation of processes, as de-

scribed in Chapter 3. An important part of this contribution is

the MSB Event Canonical Model, which provides a common mes-

saging model for all applications that are connected to the MSB.

The event canonical model reduces complexity over time, as the

number of applications increases and as changes are introduced

[Cha04]. This model is based on XML and has a common schema

for events, which defines some basic characteristics, such as regis-

tration and routing properties. This XML Schema, which is shown

in Appendix A, can be extended with custom parts, which can be

included in event messages. This is useful to include additional in-

formation on the event type and ensures the extensibility of the

model [MRR+10, MRM+10].

7.1 Conclusions 221

2. The second contribution is the EAI Process Model, which is de-

scribed in Section 5.3.2. The model integrates services, which are

represented by nodes. Nodes send events of a specific event type

to the MSB. The MSB processes the event and sends it forward to

the Nodes that are subscribed to this specific event type. This me-

diation operation from a Node to the MSB and from the MSB to

another Node is represented as an Edge. This model is used to plan

and design the integration processes that enable the exchange of

data in the Real-time Factory and that are executed in the Manufac-

turing Service Bus. Thus, this model is the basis for the mediation

flows that enable the integration of heterogeneous applications in

the Real-time Factory. The model of a sample EAI process is shown

in Appendix B.

3. The third contribution is an EAI Process Editor to plan, design,

adapt and deploy EAI processes, as described in Section 5.3.3. The

EAI Process Editor uses the EAI Process Model in order to provide

process modelers with a graphical representation of EAI processes.

The representation of EAI process models is possible thanks to a

graphical UI that comprises process modeling features to connect

nodes with edges and to annotate processes, nodes and edges with

metadata information. Additionally, the EAI Process Editor is able

to receive update notifications about the services and EAI processes

that it manages. The notification mechanism assists process mod-

elers with recommendations based on the domain knowledge and

service provenance information.

4. The fourth contribution is the MAPE-based Adaptation Model

(see Figure 5.19), which is described in Section 5.4.2.3. This model

serves as guideline for the feedback loop established between

the MSB and the planning environment. The adaptation of EAI

processes follows a MAPE-based feedback loop approach, in which

222 Chapter 7 Conclusions and Outlook

the domain is monitored and analyzed in order to re-design and

re-deploy EAI processes if needed. The given MAPE feedback

loop provides a SOA lifecycle of the EAI processes that seamlessly

integrate the information systems of the Real-time Factory. The

MAPE-based Adaptation Model provides the basis for the imple-

mentation of an autonomic computing system with self-managing

and self-adaptation capabilities.

5. The fifth contribution is a reconfigurable domain Mining Graph.

This Graph is described in Section 5.4.3.3 and is implemented as a

sequence of operators in the NexusDS platform [CEB+09]. The

graph comprises four processing operators, a source and a sink

operator. The source operator receives factory data streams from

the shop floor. The following processing operators filter the data

stream, classify and correlate the configured sets of data, and trans-

form the results of the correlation analysis into RDF statements. An

ontology of the production environment and a set of rules serve as

basis for these RDF statements and for the inference process that

derives higher-level context information. This information is mod-

eled as an OWL instance that contains a recommendation based on

the analyzed data. This recommendation is referred to as domain

knowledge and is sent to a Service Repository, which represents

the sixth contribution.

6. The sixth contribution is a Provenance-aware Service Repository

(see Section 5.3.4), which processes domain recommendations and

enables the communication with the EAI Process Editor and other

lifecycle applications in order to react responsively to turbulent

scenarios in the domain. The Service Repository manages infor-

mation about services, processes and their dependencies in a ser-

vice knowledge base and in a process knowledge base. The se-

mantic data engine provides an inference mechanism, based on an

7.1 Conclusions 223

algorithm that generates the appropriate corrective actions to at-

tend the recommendations made by the Mining Graph. The Ser-

vice Repository has an interface to communicate with the EAI Pro-

cess Editor which is based on a specific XML language. The Ser-

vice Provenance Query Language (SPQL) is used for this interface

in order to query data and service provenance information. This

language also provides constructs to send change process notifica-

tions and service change requests. An example of an SPQL-query

is given in Appendix C. The Service Repository comprises the anal-

ysis phase of the MAPE cycle that has been proposed for the Real-

time Factory in Chapter 5.

One of the most important benefits of the MSB in comparison to other ap-

proaches based on point-to-point interfaces is the extensibility and scal-

ability provided by the MSB event model, which requires data transla-

tion to and from an application-independent canonical format. This is

a best-practice and recommended strategy in most integration scenar-

ios [Cha04]. This bypasses approaches based on point-to-point inter-

faces, whose number of transformation instances increases exponentially

with the number of applications. When extending the number of applica-

tions to be integrated, such implementations are very error-prone, hard to

maintain, thus implying high costs. In the MSB, as applications change,

extensions to the model are possible by adding extra XML attributes or

by using the custom data part of an event-message. Thus, the impact is

limited to message transformation to and from the canonical format. This

presents a great advantage in the extensibility and scalability of the inte-

gration strategy. In addition to this, the MSB components follow a SOA-

based approach. The routing service, the event registries as well as the

interface to the shop floor and applications are implemented as services.

This provides a level of abstraction, typical in Service-Component Ar-

chitectures (SCA), which makes the computing environment technologi-

cally agnostic. Thus, the cost to replace components reduces drastically.

224 Chapter 7 Conclusions and Outlook

Consequently, if the implementation of the CBR be replaced or enhanced,

the impact on the rest of the applications involved in message exchange

workflows would be minimal. The routing service and other mediation

services provide an integration backbone that facilitates the realization of

a loosely-coupled integration.

Moreover, an agile adaptation of EAI processes has been demonstrated

by automating the domain knowledge extraction process. This automa-

tion is possible thanks to the integration of a data stream processing plat-

form (NexusDS) with the Manufacturing Service Bus, which governs the

execution of EAI processes. This integration enables data streams from

the production environment to be processed in real-time and transformed

into domain context information, which can be further evaluated by the

internal inference mechanisms of the Provenance-aware Service Reposi-

tory. The adoption of NexusDS entails closing the MAPE cycle and thus

being able to perform an agile adaptation of EAI processes in manufactur-

ing environments. The automation of the domain knowledge extraction

process eases an agile adaptation of EAI processes based on a real-time

domain data evaluation. Additionally, the flexibility of NexusDS and its

connection to the service bus enables different client applications to pa-

rameterize diverse monitoring processes.

The validation of the MSB approach shows a complete coverage of the

objectives that are described in Chapter 1. The assessment of the con-

tributions comprises the concept, implementation of the architecture and

the applicability tests that have been described in the use cases in Chapter

6. The MSB and the MAPE feedback loop have demonstrated to increase

the flexibility and interoperability in a real manufacturing environment

by providing a service-oriented integration middleware that supports the

exchange of event-messages between applications in a loosely-coupled

manner. The evaluation of the approach shows the practical value for

companies in manufacturing industries that face similar challenges as the

7.2 Outlook 225

presented use cases for the Real-time Factory. In addition to this, a re-

markable advantage in comparison with other approaches can be seen in

the adaptability and agility features of the approach.

7.2 Outlook

As described in this Thesis, the service-oriented approach taken by the

MSB provides a flexible integration framework and an agile adaptation

of EAI processes in the Real-time Factory. However, some limitations

exist and these leave room for future research efforts. One of the limi-

tations of the MSB is the lack of support for stateful services. This is in

general one of the most discussed aspects of web services. Web services

do not keep any state between requests of a client, which means that a

web service does not know if a subsequent request will be received or if

previous requests from the same client have been sent. This type of com-

munication follows the one-way message exchange pattern [Jos07], also

known as fire-and-forget, and it is a common pattern in ESB implementa-

tions. However, in manufacturing there are long-running processes and

transactional flows that are required to be stateful. This is the case of

simulation processes in the production planning phase. The integration

of such simulation processes in an integration infrastructure based on an

ESB or web services needs to be further investigated. Another impor-

tant challenge for further research is monitoring QoS parameters. This

issue is gaining importance in service-oriented computing environments

due to the impact of QoS in governance and inter-organizational trans-

actions. The integration at the process level of multiple organizations

requires establishing contracts (service level agreements) and monitoring

the quality of service that is offered by service providers. Although some

research projects are working on this issue [MRL+09], the automation of

QoS monitoring processes remains a challenge [PTD+07] and has a great

226 Chapter 7 Conclusions and Outlook

potential in the integration of different organizations into production net-

works [MBN11].

227

Appendix A
MSB Event Canonical Model

Listing A.1: MSB Event Model XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"

targetNamespace="http://tempuri.org/MSB
"

xmlns:xs="http://www.w3.org/2001/
XMLSchema"

xmlns:tns="http://tempuri.org/MSB">
<xs:element name="Event" type="tns:EventType"/>
<xs:complexType name="EventType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name="

Description"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name="
Routing"

type="tns:RoutingType"/>
<xs:element minOccurs="0" maxOccurs="1" name="

TimeStamps"
type="tns:TimeStampsType"/>

228 Appendix A MSB Event Canonical Model

<xs:element minOccurs="0" maxOccurs="1" name="
Procedure"

type="tns:ProcedureType"/>
<xs:element minOccurs="0" maxOccurs="1" name="

Responsible"
type="tns:ResponsibleType"/>

<xs:element minOccurs="0" maxOccurs="1" name="
CustomData"

type="tns:CustomDataType"/>
</xs:sequence>
<xs:attribute name="scheduled" type="xs:boolean"

use="required"/>
<xs:attribute name="inCourse" type="xs:boolean"

use="required"/>
<xs:attribute name="eventType" type="xs:int" use

="required"/>
<xs:attribute name="routed" type="xs:boolean"

use="required"/>
<xs:attribute name="eventIdRegistered" type="xs:

boolean"
use="required"/>

<xs:attribute name="eventId" type="xs:string"/>
<xs:attribute name="eventFlowIdRegistered" type

="xs:boolean"
use="required"/>

<xs:attribute name="eventFlowId" type="xs:string
"/>

</xs:complexType>
<xs:complexType name="RoutingType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1"

name="OriginSystem" type="xs:string
"/>

<xs:element minOccurs="0" maxOccurs="unbounded"
name="DestinationSystem"
type="tns:RoutingTypeDestination"/>

</xs:sequence>
</xs:complexType>

229

<xs:complexType name="RoutingTypeDestination">
<xs:attribute name="SystemId" type="xs:string"/>
<xs:attribute name="SystemUrl" type="xs:string

"/>
</xs:complexType>
<xs:complexType name="TimeStampsType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name="

started"
type="xs:dateTime"/>

<xs:element minOccurs="0" maxOccurs="1" name="
ended"

type="xs:dateTime"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="ProcedureType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name="

workflow">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name

="description"
type="xs:string"/>

</xs:sequence>
<xs:attribute name="id" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="required" type="xs:boolean"

use="required"/>
</xs:complexType>
<xs:complexType name="ResponsibleType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name="

Intern">
<xs:complexType>
<xs:sequence>

230 Appendix A MSB Event Canonical Model

<xs:element minOccurs="0" maxOccurs="1" name
="FirstName"

type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1" name

="LastName"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name
="Mail"

type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1" name

="Phone"
type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element minOccurs="0" maxOccurs="1" name="

Extern">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name

="FirstName"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name
="LastName"

type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1" name

="Mail"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name
="Phone"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="CustomDataType" abstract="

true"/>

231

<xs:complexType name="OrderType">
<xs:complexContent mixed="false">
<xs:extension base="tns:CustomDataType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name

="CustNo"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name
="Company"

type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="

unbounded" name="User">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1"

name="Login"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1"
name="Password"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element minOccurs="0" maxOccurs="

unbounded" name="Task">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1"

name="TaskNo"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1"
name="Process"

type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1"

name="ProductName"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1"

232 Appendix A MSB Event Canonical Model

name="ProductDescription" type="xs:
string"/>

<xs:element minOccurs="1" maxOccurs="1"
name="Quantity"

type="xs:int"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="FailureType">
<xs:complexContent mixed="false">
<xs:extension base="tns:CustomDataType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name

="Action">
<xs:complexType>
<xs:attribute name="Preventive" type="xs:

boolean"
use="required"/>

<xs:attribute name="Required" type="xs:
boolean"

use="required"/>
</xs:complexType>
</xs:element>
<xs:element minOccurs="0" maxOccurs="1" name

="CurrentTask"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name
="Decision"

type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1" name

="ErrorCode"
type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1"

233

name="ErrorDescription" type="xs:
string"/>

<xs:element minOccurs="1" maxOccurs="1"
name="EstimatedSolvingDate"

nillable="true"
type="xs:dateTime"/>

<xs:element minOccurs="0" maxOccurs="1" name
="Kind"

type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1" name

="MachineId"
type="xs:string"/>

<xs:element minOccurs="1" maxOccurs="1" name
="ReportingDate"

nillable="true" type="xs:dateTime
"/>

<xs:element minOccurs="0" maxOccurs="1" name
="State"

type="xs:string"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="StatusType">
<xs:complexContent mixed="false">
<xs:extension base="tns:CustomDataType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name

="TaskNo"
type="xs:string"/>

<xs:element minOccurs="1" maxOccurs="1" name
="Started"

nillable="true" type="xs:dateTime
"/>

<xs:element minOccurs="1" maxOccurs="1" name
="Ended"

nillable="true" type="xs:dateTime
"/>

234 Appendix A MSB Event Canonical Model

<xs:element minOccurs="1" maxOccurs="1" name
="Bulk"

type="xs:unsignedByte"/>
<xs:element minOccurs="1" maxOccurs="1"

name="CurrentInProduction"
type="xs:unsignedByte"/>

<xs:element minOccurs="1" maxOccurs="1" name
="OrderQuantity"

type="xs:unsignedByte"/>
<xs:element minOccurs="0" maxOccurs="1" name

="ProcessName"
type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="StartProductionType">
<xs:complexContent mixed="false">
<xs:extension base="tns:CustomDataType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="

unbounded" name="Task">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="

unbounded"
name="ProcessStep">

<xs:complexType>
<xs:attribute name="OperationCode"

type="xs:unsignedByte" use
="required"/>

<xs:attribute name="OperationName" type
="xs:string"/>

<xs:attribute name="Modul" type="xs:
string"/>

<xs:attribute name="Par1" type="xs:
string"/>

235

<xs:attribute name="Par2" type="xs:
string"/>

<xs:attribute name="Par3" type="xs:
string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="Exclusive" type="xs:

boolean"
use="required"/>

<xs:attribute name="IsMesCommand" type="xs:
boolean"

use="required"/>
<xs:attribute name="ProcessName" type="xs:

string"/>
<xs:attribute name="TaskNo" type="xs:string

"/>
<xs:attribute name="OrderQuantity" type="xs

:unsignedByte"
use="required"/>

<xs:attribute name="StartScheduled" type="
xs:dateTime"

use="required"/>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:schema>

236

Appendix B
MSB Process Description

Language (MSB-PDL)

Listing B.1: MSB-PDL for Failure Management Process

<pdl:pdl targetNamespace="http://www.msb-eai.uni-
stuttgart.de/pdl/example"

xsi:schemaLocation="http://www.msb-eai.uni-
stuttgart.de/ns/pdl pdl.xsd"

xmlns:pdl="http://www.msb-eai.uni-stuttgart.de/
ns/pdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
xmlns="http://www.msb-eai.uni-stuttgart.de/pdl/

example">
<pdl:nodelist>
<pdl:service id="SCADA">
<pdl:edge id="SCADA-MC-1" edgeNumber="1.0" start

="SCADA"

237

destination="MC" type="push" event="
true"

eventType="" routing="true" trigger="
true"

endOfProcess="false" />
<!-- Failure detected -->

<pdl:edge id="SCADA-CP-1" edgeNumber="7.0" start
="SCADA"

destination="CP" type="push" event="
true"

eventType="" routing="true" trigger="
false"

endOfProcess="true" />
<!-- Production restarted - Notify Customers -->

</pdl:service>
<pdl:service id="MC">
<!-- Maintenance Operation decided -->
<pdl:edge id="MC-BPELRepair-1" edgeNumber="2.0"

start="MC"
destination="BPELRepair" type="push"

event="true"
eventType="" routing="true" trigger="

false"
endOfProcess="false" />

<!-- Maintenance finished -->
</pdl:service>
<pdl:service id="BPELRepair">
<pdl:edge id="BPELRepair-CP-1" edgeNumber="3.0"

start="BPELRepair"
destination="CP" type="push" event="

true"
eventType="" routing="true" trigger="

false"
endOfProcess="false" />

<!-- Notify Customers -->
<pdl:edge id="BPELRepair-Mail-1" edgeNumber

="4.0"

238 Appendix B MSB Process Description Language (MSB-PDL)

start="BPELRepair" destination="Mail"
type="push"

event="false" eventType="" routing="
false"

trigger="false" endOfProcess="false"
/>

<!-- Maintenance Instructions -->
</pdl:service>
<pdl:service id="Mail">
<pdl:edge id="Mail-Person-1" edgeNumber="5.0"

start="Mail"
destination="Person" type="push" event

="false"
eventType="" routing="false" trigger="

false"
endOfProcess="false"/>

<!-- Maintenance Escalation -->
</pdl:service>
<pdl:service id="Person">
<pdl:edge id="Person-MC-1" edgeNumber="6.0"

start="Person"
destination="MC" type="push" event="

false"
eventType="" routing="false" trigger="

false"
endOfProcess="false"/>

<!-- Maintenance finished -->
</pdl:service>
<pdl:service id="CP">
</pdl:service>

</pdl:nodelist>

239

Appendix C
SPQL Sample Request

Listing C.1: SPQL Query to Create Process

<?xml version="1.0" encoding="UTF-8"?>

<spql:spql targetNamespace="http://www.msb-eai.uni
-stuttgart.de/spql/DiscoveryExample/"

xsi:schemaLocation="http://www.msb-eai.uni-
stuttgart.de/ns/spql spql.xsd"

xmlns:spql="http://www.msb-eai.uni-stuttgart.de/
ns/spql"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
xmlns="http://www.msb-eai.uni-stuttgart.de/spql/

CreateProcess/">

<spql:query type="create">
<spql:object value="process" id="aIT-142" >
<spql:metadata domain="assembly"

version="1.42"

240 Appendix C SPQL Sample Request

predecessor="1.41"
owner="John Smith - Production Manager"
name="assembly Information Terminal"
group="assembly"
deployment_date="2011-10-21 00:00:00"
release_date="2011-10-22 00:00:00"
adaptation_pending="false"
function="(process, failures, type:assembly)">

<spql:triggers>
<spql:simpleEvent trigger="true" review_edge="

yes"
domain="failure" pattern="

Trigger-1"
action_request="yes"/>

<spql:complexEvent trigger="true" type="chain"
review_edge=""

domain="failures" pattern="
Trigger-2"

action_request="
service_adoption">

<spql:simpleEvent review_edge="LR-MC-1"
domain="failure"

pattern="NewProduct_VS1
[0-9]"

action_request=""/>
<spql:simpleEvent review_edge="" domain="

failure"
pattern="Failure_ML2[0-9]"
action_request=""/>

<spql:complexEvent type="repetition"
review_edge=""

domain="assembly" pattern
="RE_min-3-1-72"

action_request="
service_adoption" >

<spql:complexEvent type="repetition"
review_edge=""

241

domain="assembly" pattern
="MAX-1970"

action_request="
service_adoption" >

<spql:complexEvent type="repetition"
review_edge=""

domain="assembly"
pattern="min-1991"

action_request="
service_adoption" >

<spql:simpleEvent review_edge="" domain="
failure"

pattern="Stop[VS1|ML2
][0-120][ID]"

action_request=""/>
</spql:complexEvent>

</spql:complexEvent>
</spql:complexEvent>

</spql:complexEvent>
</spql:triggers>

</spql:metadata>
<spql:resource type="SAWSDL" uri=""/>

</spql:object>
</spql:query>
</spql:spql>

242

List of Figures

1.1 Vision for Integration in the Real-time Factory 39

2.1 The Find, Bind, Invoke Paradigm 53

2.2 Service Development Lifecycle from [Pap08] 56

2.3 Production Planning, Procuction Control and Process

Control . 64

3.1 The MSB and its Five Layers of Integration 74

4.1 Champagne as a Service 90

4.2 Integration of a Data Propagation System in a SOA 92

4.3 Integration Architecture for the Real-time Factory 94

4.4 Integration Architecture for the Real-time Factory in

BPMN Notation . 98

5.1 The MSB and its Five Layers of Integration 108

5.2 The MSB as an Integration Layer 113

5.3 The MSB Event Canonical Format 114

5.4 The MSB Content-based Router 117

5.5 Failure Event Routing in the MSB 118

List of Figures 243

5.6 Real-time Factory Services Lifecycle, adapted from [Pap08] 124

5.7 Classification of EAI Processes 126

5.8 Real-time Factory EAI Process Model 128

5.9 Function Description of an EAI Process 129

5.10 EAI Process for Failure Management 130

5.11 EAI Process Editor . 131

5.12 Semantic Service Provenance 135

5.13 Provenance-aware Service Repository Architecture 141

5.14 Example of Service Dependencies in an EAI Process . . . 144

5.15 Real-time Factory Integration Architecture 150

5.16 MAPE Cycle from [KC03] 156

5.17 Real-time Factory Feedback Loop 158

5.18 Model of a Feedback Loop as a MAPE Cycle 166

5.19 The Real-time Factory Adaptation Model 168

5.20 Integration of NexusDS with the MSB 172

5.21 NexusDS Mining Graph 174

5.22 MAPE Cycle in the MSB 182

6.1 Customer Order Workflow 190

6.2 Failure Management Workflow 191

6.3 Misleading Failure Detection Scenario 194

6.4 Failure Type Value Scope 195

6.5 The NexusDS Monitoring Graph for Failure Analysis at RS1 197

6.6 Misleading Failure Detection Scenario 199

6.7 The NexusDS Mining Graph Configuration Failure Anal-

ysis at ML2 . 202

6.8 Domain Recommendation in the MAPE Cycle 203

6.9 Integration of the MSB into a PLM Service-based Archi-

tecture . 207

6.10 Objectives Coverage . 208

6.11 Interoperability Criteria 210

6.12 Flexibility Criteria . 211

244 List of Figures

6.13 Mediation Criteria . 212

6.14 Adaptability Criteria . 213

6.15 Agility Criteria . 214

6.16 Integration Criteria . 214

6.17 Evaluation and Comparison with other Approaches . . . 216

245

List of Tables

1.1 Research Objectives and Research Issues 43

5.1 Service Provenance Query Language 138

5.2 Ontology implicit rules 148

5.3 Jena built-in functions 148

246

List of Algorithms

1 Stream Analysis . 178

2 Creation of a Corrective Action 181

247

Bibliography

[AC05] Austvold, E., Carter, K., Service-Oriented Architectures: Survey

Findings on Deployment and Plans for the Future, AMR Research,

2005.

[ASM+11] Abel, M.; Klemm, P.; Silcher, S.; Minguez, J.: Start-Up of Re-

configurable Production Machines with a Service-Oriented Architec-

ture. In Proceedings of the 21st International Conference on Produc-

tion Research, 2011.

[BDE95] Boubekri, N.; Dedeoglu, M.; Eldeeb, H.: Application of stan-

dards in the design of computer-integrated manufacturing systems. In

Integrated Manufacturing Systems, Vol. 6 No. 1, 1995, pp. 27-34, MCB

University, Press Limited, 0957-6061, 1995.

[BHL95] Blakeley, B.; Harris, H.; Lewis, R.: Messaging and queueing us-

ing the MQI. New York, NY, USA, McGraw-Hill, Inc. ISBN 0-07-005730,

1995.

[BKT07] P. Buneman, S. Khanna, W.C. Tan, "Data Provenance: Some Ba-

sic Issues". Foundations Of Software Technology and Theoretical Com-

puter Science, Vol. 1974/2000, 87-93, Springer, 2000.

248 Bibliography

[BL98] Berners-Lee, T.: Semantic web road map, In-

ternal note, World Wide Web Consortium, 1998. -

http://www.w3.org/DesignIssues/Semantic.html

[BNM10] Baureis, D.; Neumann, D.; Minguez, J.: From a Product to a

Product-Service System Supply Chain: A Strategic Road-map. Pro-

ceedings of 12th International MITIP Conference. Aalborg, Dänemark,

2010.

[BR90] Babbar, S.; Rai, A.: Computer-integrated Flexible Manufacturing:

an Implementation Framework. In International Journal of Operations

& Production Management, 10, 42-50, 1990.

[Bro03] Brown, J., The Many Faces of PLM, Tech-Clarity, Inc., 2003. -

http://tech-clarity.com/documents/-Many_Faces_of_PLM.pdf

[BSG+09] Brun, Y.; Serugendo, G.M.; Gacek, C.; Giese, H.; Kienle, H.;

Litoiu, M; Müller, H.; Pezzè, M.; Shaw, M.: Engineering Self-Adaptive

Systems through Feedback Loops. In Software Engineering for Self-

Adaptive Systems. In: Betty H. Cheng, Rogério Lemos, Holger Giese,

Paola Inverardi, and Jeff Magee (Eds.), Lecture Notes In Computer Sci-

ence, Vol. 5525. Springer-Verlag, Berlin, Heidelberg 48-70, 2009.

[BSM+06] Balasubramanian, K.; Schmidt, D. C.; Molnár, Z.; Lédeczi,

Á.: System Integration Using Model-Driven Engineering, 2006. -

http://www.dre.vanderbilt.edu/ kitty/pubs/bookchapter-final.pdf

[C+08] Cheng, B. T.C. et al: Software Engineering for Self-Adaptive Sys-

tems: A Research Road Map. In Dagstuhl Seminar on Software Engi-

neering for Self-Adaptive Systems in January 2008.

[CCM+01] Christensen, E. ; Curbera, F. ; Meredith, G. ; Weerawarana,

S.: Web Services Description Language (WSDL) 1.1. März 2001. -

www.w3.org/TR/wsdl

Bibliography 249

[CEB+09] Cipriani, Nazario; Eissele, Mike; Brodt, Andreas; Gro�mann,

Matthias; Mitschang, Bernhard: NexusDS: A Flexible and Extensible

Middleware for Distributed Stream Processing, ACM (Hrsg): IDEAS

’09: Proceedings of the 2008 International Symposium on Database

Engineering and Applications, 2009.

[Cha04] D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 1st edi-

tion, June 2004.

[CHL+05] Constantinescu, C., Heinkel, U., Le Blond, J., Schreiber, S.,

Mitschang, B., Westkämper, E.: Flexible Integration of Layout Plan-

ning and Adaptive Assembly Systems in Digital Enterprises. In: Pro-

ceedings of the 38th CIRP International Seiminar on Manufacturing

Systems, 2005.

[CHM02] Constantinescu, C, Heinkel, U., Meinecke, H.: A Data Change

Propagation System for Enterprise Application Integration, in Pro-

ceedings of the 2nd International Conference on Information Systems

and Engineering (ISE 2002), pp. 129-134, San Diego, USA, 2002.

[CLS05+] Curbera, F. ; Leymann, F. ; Storey, T. ; Ferguson, D. ;Weer-

awarana, S.: Web Services Platform Architecture: Soap, WSDL, WS-

Policy, WSAddressing, WS-BPEL, WS-Reliable Messaging and More.

Prentice Hall PTR, 2005.

[CN08] Cugola, G., Di Nitto, E.: On adopting Content-based Routing in

service-oriented architectures, Information and Software Technology,

Elsevier Science, ISSN: 0950-5849,

[CS06] Cardoso J., Sheth, A. P., Semantic Web Services, Processes and

Applications, Springer, 2006.

[CW08] Constantinescu, C., Westkäamper, E.: Grid engineering for net-

worked and multi-scale manufacturing. In: The 41st CIRP Conference

on Manufacturing Systems May 26-28, Tokyo, Japan, 2008.

250 Bibliography

[DGM97] DeVor, R., Graves, R., & Mills, J. J.: Agile manufacturing re-

search: Accomplishments and opportunities. IIE Transactions, 29(8),

813-823, 1997.

[DS08] De Labey, S.; Steegmans, E.: Extending WS-Notification with an

Expressive Event Notification Broker. In: Proc. of the 2008 IEEE Inter-

national Conference on Web Services, Beijing, China, 2008.

[DSN+10] Dobson, S.; Sterritt, R.; Nixon, P.; Hinchey, M.: Fulfilling the

Vision of Autonomic Computing. In IEEE Computer Society, 2010.

[Erl05] Erl, T., Service-Oriented Architecture: Concepts, Technology, and

Design. Prentice Hall International, 2005.

[Eva01] Evans, M.: The PLM Debate. Cambashi Inc. Article, 2001.

[Fas08] Fasbinder, M.: BPEL or ESB: Which should you use? IBM Devel-

oper Works, 2008.

[FJM05] Fidler, E.; Jacobsen, H.-A.; Li, G.; Mankovski, S.: The PADRES

distributed publish/subscribe system. In Proceedings of Feature Inter-

actions in Telecommunications and Software Systems VIII (ICFI’05),

2005.

[FSW99] Fan, Y.; Shi, W.; Wu, C.: Enterprise wide application integration

platform for CIMS implementation. In Journal of Intelligent Manufac-

turing (1999) 10, 587-601, 1999.

[FYL+08] Fu, S. S.; Yang, J.; Laredo, J.; Huang, Y.; Chang, H.; Kumaran, S.;

Chung, J.-Y.; Kosov, Y.: Solution Templates Tool for Enterprise Busi-

ness Applications Integration. In: Sensor Networks, Ubiquitous, and

Trustworthy Computing, International Conference on, pp. 314-319,

ISBN 978-0-7695-3158-8, 2008.

Bibliography 251

[GJ05] Gudivada, V.N.; Jagadeesh, N.:Enterprise Application Integration

Using Extensible Web Services. In Proceedings of the IEEE Interna-

tional Conference on Web Services (ICWS’05), 2005.

[Gun97] Gunasekaran, A., Implementation of computer-integrated man-

ufacturing: a survey of integration and adaptability issues. Int. J.

Compu. Integr. Manuf., 10(1-4): 266-280, 1997.

[HCM05] Heinkel, U.; Constantinescu, C.; Mitschang, B.: Integrating

Data Changes with Data from Data Service Providers. In Proceedings

of the ISCA 18th International Conference on Computer Applications

in Industry and Engineering (CAINE), 2005.

[Hen06] Henning, M.: The rise and fall of CORBA, Queue, v.4 n.5, June

2006.

[HGB05] Haller A, Gomez JM, Bussler C. Exposing Semantic Web Ser-

vice principles in SOA to solve EAI scenarios. In: Proceedings of the

WWW2005, Chiba, Japan, 10-14 May 2005.

[HLN03] Hau, J.; Lee, W.; Newhouse, S.; "Autonomic service adaptation

in ICENI using ontological annotation," Proceedings of the Fourth In-

ternational Workshop on Grid Computing, pp. 10-17, 2003.

[Hoh04] Hohpe, G.: Enterprise Integration Patterns: Asyn-

chronous Messaging Architectures in Practice, 5th In-

ternation Middleware Conference, Tutorial, 2004. -

http://www.eecg.toronto.edu/middleware2004/tp04.htm

[Hoh07] Hohpe, G.: Architect’s dream or developer’s nightmare? In:

DEBS ’07: Proceedings of the 2007 inaugural international conference

on Distributed event-based systems. New York, NY, USA. ACM Ű ISBN

978-1-59593-665-3, S. 188, 2007.

252 Bibliography

[HP06] HP Labs Jena - A semantic web framework for Java, 2006. -

http://jena.sourceforge.net

[HPG06] K. Holley, J. Palistrant, S. Graham, Effective SOA Governance,

IBM, 2006.

[HPH03] Horrocks, I., Patel-Schneider, P., Harmelen, F.: From SHIQ and

RDF to OWL: The Making of a Web Ontology Language. In: Journal of

Web Semantics, 2003.

[HW03] Hohpe, G. ; Woolf, B.: Enterprise Integration Patterns: Design-

ing, Building, and Deploying Messaging Solutions. Addison-Wesley

Professional, ISBN 0321200683, 2003.

[IBM] IBM, Websphere MQ. - http://www-

01.ibm.com/software/integration/wmq

[IBM05a] IBM, An architectural blueprint for autonomic computing,

White Paper, June 2005.

[IBM05b] IBM: IBM’s SOA Foundation - An Architectural Introduction

and Overview. IBM White paper, 2005.

[IET05] Internet Engineering Task Force (IETF): RFC 3986 -

Uniform Resource Identifier (URI): Generic Syntax. 2005. -

http://www.ietf.org/rfc/rfc3986.txt

[Int00] International Society of Automation: ISA-95 Manufacturing En-

terprise Systems Standards. 2000. - http://www.isa.org

[Int07a] International Organization for Standardization (ISO): ISO 10303-

28:2007 Product data representation and exchange - Part 28 (STEP-

XML), 2007.

[Int07b] International Organization for Standardization (ISO): ISO 10303:

Standard for the Exchange of Product Model Data (STEP), 2007.

Bibliography 253

[Jam05] Jammes F.: Service-oriented device communications using the

devices profile for web services. MPAC ’05 Proceedings of the 3rd in-

ternational workshop on Middleware for pervasive and ad-hoc com-

puting. ACM, 2005.

[Jav05] Java Community Process: JSR-208

Java Business Integration (JBI), 2005. -

http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html

[JGr01] JGraph Ltd. JGraph (Java Graph Visualization Library), 2001. -

http://www.jgraph.com

[Jos07] Josuttis, N.M.: SOA in Practice. O’Reilly, ISBN-10: 0-596-52955-4,

2007.

[JWW09] Jovane, F., Westkämper, E., Williams, D., The ManuFuture

Road, Springer Verlag, Berlin, 2009.

[KAB+04] Keen, M.; Acharya, A.; Bishop, S.; Hopkins, A.; Milinski, S.;

Nott, C. Robinson, R.; Adams, J.; Verschueren, P.: Patterns: Imple-

menting an SOA Using an Enterprise Service Bus. Redbooks, IBM Intl

Tech Support Organization, July 2004.

[KAW07] Kapp, R.; Aldinger, L.; Westkämper, E.: Real-time factory cock-

pit system. In International Conference on Computer-Aided Produc-

tion Engineering (CAPE), 2007.

[KC03] Kephart, J.O.; Chess, D.M.: The Vision of Autonomic Computing.

Computer, v.36 n.1, pp. 41-50, 2003.

[Kid94] Kidd, P.T.: Agile Manufacturing: Forging New Frontiers,

Addison-Wesley, Reading, MA, 1994.

[KKL+05] Kloppmann, M.; Koenig, D.; Leymann, F.; Pfau, G.; Rickayzen,

A.; von Riegen, C.; Schmidt, P.; Trickovic, I.: WS-BPEL Extension for

People - BPEL4People, July 2005.

254 Bibliography

[KKR09] T. Kohlborn, A. Korthaus, M. Rosemann: Business and Software

Service Lifecycle Management, 13th IEEE International EDOC Confer-

ence, 1-4 September, Auckland, New Zealand, 2009.

[KVL+08] Karastoyanova, D.; van Lessen, T.; Leymann, F.; Ma, Z.;

Nitzsche, J.; Wetzstein, B.; Bhiri, S.; Hauswirth, M.; Zaremba, M.: A

Reference Architecture for Semantic Business Process Management

Systems. In: Bichler, M. (Hrsg); Hess, T. (Hrsg); Krcmar, H. (Hrsg);

Lechner, U. (Hrsg); Matthes, F. (Hrsg); Picot, A. (Hrsg); Speitkamp, B.

(Hrsg); Wolf, P. (Hrsg): Multikonferenz Wirtschaftsinformatik 2008.

[KWV+07] Karastoyanova, D.; Wetzstein, B.; Van Lessen, T.; Wutke, D.;

Nitzsche, J.; Leymann, F.: Semantic Service Bus: Architecture and Im-

plementation of a Next Generation Middleware. In Proceedings of the

23rd International Conference on Data Engineering Workshops, ICDE

2007, 15-20 April 2007, Istanbul, Turkey, 2007.

[LC08] Laliwala, Z., Chaudhary, S., Event-driven Service-Oriented Archi-

tecture. In: International Conference on Service Systems and Service

Management, July 2008, pp.1-6, 2008.

[LCW08] Lucke D., Constantinescu C. Westkämper E.: Smart factory - a

step towards the next generation of manufacturing. In 41st CIRP Con-

ference on Manufacturing Systems, Proceedings: 115-118, 2008.

[LCW09] Lucke D., Constantinescu C. Westkämper E.: Context data

model, the backbone of a smart factory. In 42nd CIRP Conference on

Manufacturing Systems, Grenoble, June 3-5, 2009.

[Lin99] Linthicum, D. S.: Enterprise Application Integration. Addison-

Wesley Professional, 1999.

[M06] Maréchaux, J.-L.: Combining Service-Oriented Architecture and

Event-Driven Architecture using an Enterprise Service Bus, IBM De-

veloper Works, 2006.

Bibliography 255

[Mes08] MESA Intl., IBM Corporation, Capgemini, SOA in Manufactur-

ing Guidebook, MESA International white paper, 2008.

[MBN11] Minguez, J.; Baureis, D.; Neumann, D.: Providing Coordina-

tion and Goal Definition in Product-Service Systems through Service-

oriented computing, in: Conference Proceedings of the 44th CIRP Con-

ference on Manufacturing Systems, Madison/USA, June, 2011.

[MHC00] Monson-Haefel, R. ; Chappell, D.: Java Message Service.

O’Reilly, ISBN 978-0596522049, 2000.

[Mic00] Microsoft Message Queuing, 2000. -

http://msdn.microsoft.com/en-us/library/ms834460.aspx

[MJH+09] Minguez, J.; Jakob, M.; Heinkel, U.; Mitschang, B., A SOA-

based approach for the integration of a data propagation system, 2009,

IEEE International Conference on Information Reuse and Integration,

2009, vol., no., pp.47-52, 10-12 Aug. 2009.

[ML08] Ma, Z.; Leymann, F.: A Lifecycle Model for Using Process Frag-

ment in Business Process Modeling. In Proceedings of BPDMS 2008

Workshop at CAiSE’08, Montpellier, 2008.

[MLJ+10] Minguez, J., Lucke, D., Jakob, M., Constantinescu, C.;

Mitschang, B., Westkämper, E., Introducing SOA into Production En-

vironments: The Manufacturing Service Bus, Proceedings of the 43rd

CIRP International Conference on Manufacturing Systems (ICMS), pp.

1117-1124, Vienna, Austria, 2010.

[MNM11] Minguez, J.; Niedermann, F.; Mitschang, B.: A provenance-

aware service repository for EAI process modeling tools, 2011 IEEE

International Conference on Information Reuse and Integration (IRI),

pp.42-47, 2011.

256 Bibliography

[MP06] McCoy, D.; Plummer, D.: Defining, Cultivating and Measuring

Enterprise Agility. Gartner Research, 2006.

[MRL+08] Michlmayr, A.; Rosenberg, F.; Leitner, P.; Dustdar, S.: Ad-

vanced event processing and notifications in service runtime environ-

ments. In Proceedings of the second international conference on Dis-

tributed event-based systems, ISBN: 978-1-60558-090-6, pp. 115–125,

2008.

[MRL+09] Michlmayr, A.; Rosenberg, F.; Leitner, P.; Dustdar, S.: Service

Provenance in QoS-Aware Web Service Runtimes. In IEEE Interna-

tional Conference on Web Services, pp.115-122, 2009.

[MRM+10] Minguez, J.; Riffelmacher, P.; Mitschang, B.; Westkämper,

E: Servicebasierte Integration von Produktionsanwendungen. In wt-

online 3-2011, Seite 128-133, 2011.

[MRR+10] Minguez, J; Ruthardt, F; Riffelmacher, P; Scheibler, T;

Mitschang, B: Service-based Integration in Event-driven Manufactur-

ing Environments, Proceedings of the 1st Symposium on Web Intel-

ligent Systems and Services (WISS), 11th International confernce on

Web Information System Engineering (WISE), Hong Kong, 2010.

[MRZ11] Minguez, J.; Reimann, P.; Zor, S.: Event-driven business pro-

cess management in Engineer-to-Order supply chains. In Proceedings

of the 2011 15th International Conference on Computer Supported Co-

operative Work in Design, CSCWD, 2011.

[MS94] McGaughey, R.E.; Snyder, C.A.: The obstacles to successful

CIM. International Journal on Production Economics 37 (1994) 247-258,

1994.

[MSM11] Minguez, J.; Silcher, S.; Mitschang, B.: A Service Bus Architec-

ture for Application Integration in the Planning and Production Phases

Bibliography 257

of a Product Lifecycle, International Journal of Systems and Service-

Oriented Engineering (IJSSOE), Vol. 2, 2011.

[MSM+11] Minguez, J.; Silcher, S.; Mitschang, B.; Westkämper, E: To-

wards Intelligent Manufacturing: Equipping SOA-based Architectures

with advanced SLM Services, Proceedings of the 44th CIRP Interna-

tional Conference on Manufacturing Systems (ICMS), Madison, Wis-

consin (USA), 2011.

[NG94] Ngwenyama, O.K.; Grant, D.A.: Enterprise Modeling for CIM

Information Systems Architectures: an Object-oriented Approach. In:

Computers md Engng Vol 26, No 2, pp 279-293, 1994.

[NGS+01] Nicklas, D.; Gro�mann, M.; Schwarz, T.; Volz, S.; Mitschang,

B.: A Model-Based Open Architecture for Mobile, Spatially-Aware Ap-

plications. In: Jensen, C. et al. (Eds.), Advances in Spatial and Temporal

Databases. Lecture Notes in Computer Science, 2121. Springer, Berlin,

pp. 117-135, 2001.

[NRM11] Niedermann, F.; Radeschütz, S.; Mitschang, B.: Business Pro-

cess Optimization Using Formalized Optimization Patterns. In Pro-

ceedings of the 14th International Conference, BIS 2011, Poznan,

Poland, June 15-17, 2011.

[Obj09] Object Management Group (OMG): Business Process Model and

Notation (BPMN), 2009. - http://www.omg.org/spec/BPMN/1.2/

[Obj91] Object Management Group (OMG): Common Ob-

ject Request Broker Architecture (CORBA) 1.0, 1991. -

http://www.omg.org/spec/CORBA/1.0/

[OPC02] OPC Foundation: OPC Data Access Specification (OPC DA)

v2.05a, 2002. - http://www.opcfoundation.org

258 Bibliography

[OPC09] OPC Foundation: OPC Unified Architecture (OPC UA) v2.05a,

2009. - http://www.opcfoundation.org

[Ora] Oracle: Java Remote Method Invocation - Dis-

tributed Computing for Java. White Paper. -

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-

138781.html

[Ora05] Oracle: Service-Oriented Architecture (SOA) and Web Ser-

vices: The Road to Enterprise Application Integration (EAI), 2005.

http://www.oracle.com/technetwork/articles/javase/soa-142870.html

[Ora08] Oracle: Glassfish Open Source Server, 2008. -

http://glassfish.java.net/

[Org04] Organization for the Advancement of Structured In-

formation Standards (OASIS): UDDI Version 3.0.2, 2004. -

http://www.uddi.org/pubs/uddi_v3.htm

[Org06a] Organization for the Advancement of Structured Informa-

tion Standards (OASIS): Web Services Base Notification 1.3, 2006.

- http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-

os.pdf

[Org06b] Organization for the Advancement of Structured Informa-

tion Standards (OASIS): Web Services Brokered Notification 1.3,

2006. - http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-

1.3-spec-os.pdf

[Org06c] Organization for the Advancement of Structured Information

Standards (OASIS): Web Services Topics 1.3, 2006. - http://docs.oasis-

open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

[Org06d] Organization for the Advancement of Structured Information

Standards (OASIS): Web Services Resource Framework (WSRF) Primer

Bibliography 259

v1.2, 2006. - http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-

cd-02.pdf

[Org07] Organization for the Advancement of Structured Informa-

tion Standards (OASIS): Web Services Business Process Execu-

tion Language (WS-BPEL) Version 2.0 - OASIS Standard. 2007. -

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.htm

[Pap08] Papazoglou, M., Web Services: Principles and Technology. Pear-

son, Prentice Hall, Harlow, 2008.

[PH07] Papazoglou, M., v. d. Heuvel, W., Service oriented architectures:

approaches, technologies, and research issues. The VLDB Journal,

2007.

[PM07] Papakostas, N.; Mourtzis, D: An Approach for Adaptability Mod-

eling in Manufacturing ŰAnalysis Using Chaotic Dynamics. In CIRP

Annals - Manufacturing Technology, Volume 56, Issue 1, pp. 491-494,

2007.

[PTD+07] M. Papazoglou, P. Traverso, S. Dustdar, F. Leyman, Service-

Oriented Computing: State of the Art and Research Challenges, IEEE

Computer, pp. 38-45, 2007.

[QYS+08] Qian, J., Yin, J., Shi, D., Dong, J., Exploring a Semantic Publish

Subscribe Middleware for Event-Based SOA. In: Asia-Pacific Services

Computing Conference, APSCC ’08. IEEE, pp.1269-1275, 2008.

[RCH+02] Rantzau, R.; Constantinescu, C.; Heinkel, U.; Meinecke, H.:

Champagne: Data Change Propagation for Heterogeneous Informa-

tion Systems. In Proceedings of the 28th VLDB Conference, Hong

Kong, China, 2002.

260 Bibliography

[RKK+07] Riffelmacher, P.; Kluge, S.; Kreuzhage, R.; Hummel, V.; West-

kämper, E.: Learning factory for the manufacturing industry. In Pro-

ceedings of the 20th International Conference on Computer-Aided

Production Engineering, CAPE, 2007.

[RLL09] Ryan, K.L.K.; Lee, S.S.G.; Lee, E.W.: Business process manage-

ment (BPM) standards: a survey. In Business Process Management

Journal Vol. 15 No. 5, pp. 744-791, 2009.

[RM09] Radeschütz, Sylvia; Mitschang, Bernhard: Extended Analysis

Techniques For a Comprehensive Business Process Optimization. In:

Proc. of the International Conference on Knowledge Management and

Information Sharing, Portugal, 2009.

[RRK+05] Reichert, M.; Rinderle, S.; Kreher, U.; Dadam, P.; , "Adaptive

Process Management with ADEPT2", Proceedings. 21st International

Conference on Data Engineering, pp. 1113- 1114, 2005.

[SFB01] SFB 627: Nexus - Spatial World Models for Mobile Context-

Aware Applications, 2001. - http://www.nexus.uni-stuttgart.de

[SHB06] Shadbolt, N.; Hall, W.; Berners-Lee, T.; , "The Semantic Web

Revisited," Intelligent Systems, IEEE , vol.21, no.3, pp.96-101, 2006.

[She99] Sheth, A. P.: Changing Focus on Interoperability in Information

Systems: From System, Syntax, Structure to Semantics, Interoperating

Geographic Information Systems. C. A. Kottman, Kluwer Academic

Publisher: 5-29, 1999.

[SHL+05] Schmidt, M.-T., Hutchinson, B. ; Lambros, P. ; Phippen, R.: The

Enterprise Service Bus: Making service-oriented architecture real. In:

IBM Systems Journal, 44(4), 2005.

[Sin97] Singh, V.: The Cim Debacle: Methodologies to Facilitate Software

Interoperability. Springer August 1997, ISBN 981-3083-21-2, 1997.

Bibliography 261

[SKL+10] Schumm, D.; Karastoyanova, D.; Leymann, F.; Strauch, S.:

Fragmento: Advanced Process Fragment Library. In Proc. of the

19th International Conference on Information Systems Development

(ISD’10), 2010.

[SKN+07] Schuh, G.; Kampker, A.; Narr, C.; Potente, T.; Attig, P.: my-

OpenFactory. In: International Journal of Computer Integrated Manu-

facturing, 2nd ed. vol. 21, no. 2, p. 215, 2007.

[SL09] Scheibler, T.; Leymann, F.: From Modelling to Execution of En-

terprise Integration Scenarios: the GENIUS Tool. in Proc. KiVS, pp.

241-252, 2009.

[SML08] Scheibler, T.; Mietzner, R.; Leymann, F.: EAI as a Service - Com-

bining the Power of Executable EAI Patterns and SaaS. In 12th IEEE

International EDOC Conference, 15-19 September, Munich, Germany,

2008.

[SMM11] Silcher, S.; Minguez, J.; Mitschang, B.: Adopting the Manufac-

turing Service Bus in a Service-based Product Lifecycle Management

Architecture, in: Proceedings of the 44th International CIRP Confer-

ence on Manufacturing Systems, Madison, Wisconsin, USA, 2011.

[SMS+10] Silcher, S.; Minguez, J.; Scheibler, T., Mitschang, B.: A Service-

Based Approach for Next-Generation Product Lifecycle Management,

11th IEEE International Conference on Information Reuse and Integra-

tion, 219-224, 2010.

[SMT06] Schaffner, J., Meyer, H., Tosun, C.: A Semi-automated Orches-

tration Tool for Service-based Business Processes. In: Proceedings of

the 2nd International Workshop on Engineering Service-Oriented Ap-

plications: Design and Composition, Chicago, USA, 2006.

[Sny91] Snyder, C. A., CIM networking: promise and problems. Interna-

tional Journal of Production Economics, 23, 205-212., 1991.

262 Bibliography

[Spe10] Speiser, S., Semantic annotations for WS-Policy, In: 17th. Inter-

national Conference on Web Services, 2010.

[SSH08] Sahoo, S.; Sheth, A.; Henson, C: Semantic Provenance for

eScience, IEEE Internet Computing, pp. 46-54, 2008.

[SSV+04] Sriharee, N., Senivongse, T., Verma, K., Sheth, A.: On Using

WS-Policy, Ontology and Rule Reasoning to Discover Web Services.

Springer, 2004.

[Sta] Stanford Center for Biomedical Informatics Research: Pro-

tégé Ontology Editor and Knowledge Acquisition System. -

http://protege.stanford.edu/

[Sta02] Stal, M.: Web Services: Beyond Component-based Computng -

Seeking a Better Solution to the Application Integration Problem. In

Communications of the ACM, 2002.

[SUP09] SUPER - Semantics Utilized for Process Management within and

between Enterprises, 2006-2009. - http://www.ip-super.org

[SWM+09] Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action

Patterns in Business Process Models. In: 7th International Conference

on Service Oriented Computing ICSOC/ServiceWave, 2009.

[VDI06] VDI4499, Digitale Fabrik - Grundlagen. (Digital factory - basic

concepts), 2006.

[VVK01] Van der Aalst, W.M.P.; Verbeek, H.M.W.; Kumar, A.: Verifica-

tion of XRL: An XML-Based Workflow Language, in: Proceedings of

the Sixth International Conference on CSCWin Design,NRC Research

Press, Ottawa, Canada, pp. 427-432, 2001.

[W3C01] W3C: XML Schema, 2001. - http://www.w3.org/XML/Schema

Bibliography 263

[W3C04a] W3C: Web Services Architecture, 2004. -

http://www.w3.org/TR/ws-arch/

[W3C04b] W3C: RDF Primer, 2004. - http://www.w3.org/TR/rdf-primer/

[W3C04c] W3C: OWL Web Ontology Language Reference, 2004. -

http://www.w3.org/TR/owl-ref

[W3C04d] W3C: RDF Vocabulary Description Language 1.0: RDF

Schema (RDFS), 2004. - http://www.w3.org/TR/rdf-schema/

[W3C05] W3C: Web Services Choreography Description Language Ver-

sion 1.0, 2005. - http://www.w3.org/TR/ws-cdl-10/

[W3C06] W3C: Web Services Policy 1.2 - Framework (WS-Policy), 2006.

- http://www.w3.org/Submission/WS-Policy/

[W3C07a] W3C: SOAP Version 1.2, 2007. - http://www.w3.org/TR/soap/

[W3C07b] W3C: Semantic Annotations for WSDL and XML Schema Ů

Usage Guide, 2007. - http://www.w3.org/TR/sawsdl-guide/

[W3C10] W3C: XQuery 1.0 and XPath 2.0 Functions and Operators, 2010.

- http://www.w3c.org/TR/xpath-functions

[W3C99a] W3C Recommendation: XML Path Language (XPath) Version

1.0. 1999. - http://www.w3.org/TR/1999/REC-xpath-19991116

[W3C99b] W3C: XSL Transformations (XSLT), 1999. -

http://www.w3.org/TR/xslt

[WAL+07] M. Wei, I. Ari, J. Li, and M. Dekhil. ReCEPtor: Sensing Com-

plex Events in Data Streams for Service-Oriented Architectures. Tech-

nical report, HP, 2007.

264 Bibliography

[Wal92] Waldner, J.B.: Principles of Computer-Integrated Manufactur-

ing. John Wiley & Sons 1 edition (September, 1992), ISBN 0-471-93450-

X, 1992.

[WBF08a] Worlf Batch Forum (WBF): Batch Markup Language

(BatchML) v0401, 2008. - http://www.wbf.org

[WBF08b] Worlf Batch Forum (WBF): Business To Manufacturing

Markup Language (B2MML) v0401, 2008. - http://www.wbf.org

[WCL+05] Weerawarana, S. ; Curbera, F. ; Leymann, F. ; Storey, T. ; Fer-

guson, D. F.: Web Services Platform Architecture. Prentice Hall, 2005.

[Wes06] Westkämper, E., 2006, Digital Manufacturing in the global Era,

3rd International CIRP Conference on Digital Enterprise Technology,

Setúbal, Portugal, 2006.

[WJE+05] Westkämper, E; Jendoubi, L.; Eissele, M.; Ertl, T.: Smart Factory

- Bridging the gap between digital planning and reality. In: Weingärt-

ner, Lindolfo (Chairman); Proceedings of the CIRP 38th International

Seminar on Manufacturing Systems, Florianopolis, Brazil, 2005.

[WMF+07] Wetzstein, B.; Ma, Z.; Filipowska, A.; Kaczmarek, M.; Bhiri,

S.; Losada, S.; Lopez-Cobo, J.; Cicurel, L.: Semantic Business Process

Management: A Lifecycle Based Requirements Analysis. In: SBPM07,

Innsbruck, Austria, June 7, pp. 1-11, 2007.

[WMK+08] Wieland, M.; Martin, D; Kopp, O; Leymann, F.: Events Make

Workflows Really Useful. Technical report, University of Stuttgart,

IAAS, Germany, 2008. - http://www.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=TR-2008-09&engl=1

[WMK+09] Wieland, M., Martin, D., Kopp, O., Leymann, F.: SOEDA: A

Methodology for Specification and Implementation of Applications on

Bibliography 265

a Service-Oriented Event-Driven Architecture. In: Proceedings of the

12th International Conference on Business Information Systems, 2009.

[WRR08] Weber, B.; Reichert, M.; Rinderle-Ma, S: Change patterns and

change support features - Enhancing flexibility in process-aware infor-

mation systems. Data Knowl. Eng. 66, 3, 2008.

[WSI04] Web Services Interoperability (WS-I) Basic Profile, 2004. -

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

[WYM11] Wang, Y.; Yan, H.; Meng, X.: Matching Decision Model for

Self- adaptability of Knowledge Manufacturing System. In Interna-

tional Conference on Information Science and Technology, Nanjing,

Jiangsu, China, March 26-28, 2011.

[WZ09] Westkämper, E., Zahn, E., (Hrsg.), Wandlungsfähige Produktion-

sunternehmen, Das Stuttgarter Unternehmensmodell (The Stuttgart

Enterprise Model), Springer, Berlin, 2009.

[YSG99] Yusuf, Y.Y.; Sarhadi, M.; Gunasekaran, A.: Agile manufacturing:

The drivers, concepts and attributes. In Int. J. Production Economics 62

(1999) 33-43, 1999.

[ZTZ07] Zhao, J.L.; Tanniru, M.; Zhang L.: Services computing as the

foundation of enterprise agility: Overview of recent advances and in-

troduction . In Inf Syst Front (2007) 9:1-8, 2007. to the special issue

266

267

Curriculum Vitae

Jorge Mínguez

Date and place of birth: March 25th, 1983; Madrid, Spain

Nationality: Spanish

09/1989 – 06/1997 Primary School at Colegio Público

Joaquín Costa in Madrid, Spain

09/1997 – 06/2001 Secondary School at IES Cervantes

Madrid, Spain

09/2001 – 09/2007 Dipl.-Ing. Telecommunication Engineering

Universidad Politécnica de Madrid, Spain

10/2004 – 9/2005 Software Development Internship

Solar Decathlon 2005, Madrid, Spain

10/2005 – 10/2007 M. Sc. INFOTECH (Information Technology)

Universität Stuttgart, Germany

09/2006 – 03/2007 Software Development Internship

Hewlett-Packard GmbH, Böblingen, Germany

04/2008 – 03/2012 Doctoral Candidate at the Graduate School

of Excellence advanced Manufacturing Engineering,

Universität Stuttgart, Germany

	Introduction
	Problem Domain and Motivation
	The Real-Time Factory
	Life Cycle Management of ICT Factory Resources

	Vision, Objectives and Research Issues
	Vision
	Objectives
	Research Issues

	Structure of the Thesis

	Foundations and Related Work
	Enterprise Application Integration
	Types of Integration
	EAI Middleware
	Synchronous versus Asynchronous
	Publish-Subscribe
	Message Brokers
	Repository Services

	Service Oriented Architecture
	The SOA Principles
	Reusability
	Loose Coupling
	Discoverability

	Find, Bind, Invoke
	Web Services
	WS-BPEL
	SOA Governance
	Service Lifecycle Management

	Enterprise Service Bus
	Evolution from MOM to ESB
	Mediation Services
	Real-time Throughput of Data
	Content-based Router

	Semantic Web Technologies
	Resource Description Framework
	The Web Ontology Language
	Semantic Web Services

	Current State of Integration
	Overview of Production Environments
	Context-aware Applications and Integration
	Event-driven SOA
	Adaptive Business Management
	A Model-driven Approach
	Service Provenance
	Limitations of Current Research

	Summary

	Principles of Integration for the Real-time Factory
	Lessons Learned
	Integration Scenario: the Real-time Factory
	Principles of Integration for Middleware Infrastructures
	Ease of Reconfiguration
	Loose Coupling
	Asynchronous Thinking
	Standards-based Integration

	Principles of Integration for Real-time Factory Applications
	Well-defined Interfaces
	Separation of Implementation and Interface
	Standards-based Interfaces

	Service Orientation as an Integration Approach
	Summary

	SOA in Manufacturing
	Penetration and Current State of SOA in Manufacturing
	Leverage of a Data Integration System in SOA
	Champagne as a Service
	Connection of Champagne to an ESB

	SOA Integration Principles for PLM
	SOA Principles applied to Reconfigurable Machines
	Event-driven BPM in ETO Enterprises
	Product-Service Systems
	Summary

	The Manufacturing Service Bus
	Concept
	Data Source Layer
	Data Service Layer
	Integration Layer
	Integration Service Layer
	Business Process Layer

	Architecture of the Manufacturing Service Bus
	Event Canonical Model
	Event and Event-Flow Registries
	Content-based Router
	Mediation Services
	Workflow Engine
	Core Implementation of the MSB

	Service Management
	Life Cycle Management of Services and EAI Processes
	EAI Process Model for the Real-time Factory
	EAI Process Editor
	Provenance-aware Service Repository
	Semantic Service Provenance
	Service Provenance Query Language
	Architecture Overview
	Implementation

	Real-time Factory Integration Architecture

	Agile Adaptation of EAI Processes
	Requirements for an Agile Adaptation in the Real-time Factory
	Flexible Integration
	Capability of Reconfiguration
	Knowledge-driven Adaptation
	Autonomic Computing Mechanisms
	The MSB as Enabling Platform for Agile Adaptation

	Autonomic Computing in the Real-time Factory
	Definitions
	MAPE Cycle for EAI Processes
	The Real-time Factory Adaptation Model
	SOA Lifecycle Gap in Manufacturing

	Monitoring and Analysis of Factory Data Streams
	NexusDS
	Integration of NexusDS into the MSB
	Mining Graph for Factory Data Streams
	Domain Knowledge Analysis

	Architecture for EAI Process Adaptation

	Summary

	Applicability and Evaluation
	The Learning Factory: a Field for Evaluation
	Case Studies
	Customer Order
	Failure Management
	Service Revision
	Adaptation of the Failure Management Process

	Integration of the MSB into PLM
	Extending the MSB Concept to other phases in PLM
	Approach to Connect the Planning and the Production Phases

	Validation of the Approach
	Objectives Coverage
	Evaluation and Comparison with other Approaches
	Evaluation Criteria
	Evaluation and Comparison

	Summary

	Conclusions and Outlook
	Conclusions
	Outlook

	Appendices
	MSB Event Canonical Model
	MSB Process Description Language (MSB-PDL)
	SPQL Sample Request
	List of Figures
	List of Tables
	List of algorithms
	Bibliography

