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1. Introduction

1.1. Motivation

In the day life, humans perceive various information from the environment, more than 80%
of which are obtained through the visual system. All advanced animals have well-developed
visual system to find the food source or identify the target in the environment. For us humans
this is an innate ability. With the development of the computer technology, people try to
use the camera to obtain the visual information from environment and convert it into the
digital signals. The whole process of acquiring, processing, analyzing, and understanding of
visual information by computer system is then developed as a new research field - Computer
Vision. More and more mobile applications are equipped with camera for vision perception,
environment analysis, decision making and localization. The motion of the camera system
can be estimated by comparing the current frame with the previous frame. The process of
finding the same objects on both images is called Image Matching. The image pair is called
query image and reference image. Besides the set of matched points, a matrix describing the
transformation between the two images is determined and used in the matching process. A
simple case is that of a pure translation in the image. In other cases a more complex model
is required to appropriately constrain the motion of features between the two views. This
can include rotation, scaling, affine and perspective transformations of the image.

In general the image matching algorithms can be divided into the two categories: Area Based
Matching (ABM), and Feature Based Matching(FBM) [GBG10]. The prominent difference is,
ABM uses windows composed of intensity as the matching primitives in the matching step,
FBN uses features extracted from image instead.

Direct use of the original intensity values makes full usage of the image information to
distinguish different objects precisely. Processing of a large amount of information increases
the computational complexity. Another Shortcoming of ABM is the sensitivity to the subtle
differences between the two images, small intensity changes (for instance under different
illumination conditions) have influence on the matching results. Because of the poor noise-
resistibility, such ABM algorithms are usually only used for the precise matching problem
between the two images without huge differences. In FBM the matching primitive is feature,
such like points, lines, regions or global feature called structures, which usually composed
of points, lines and regions. Among these feature types, points are the most used features.
The main idea of FBM is detecting distinctive and robust features from images, based on the
similarity of features to find the best match between the query image and reference image.
Compared to the ABM, the required number of pixels for feature computation is significantly
reduced. The FBM algorithms are less sensitive to the noise, the matching results rely on the
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1. Introduction

detected image features. This thesis mainly discusses such feature-based image matching
methods. The figure 1.1 shows an example of image matching result.

Figure 1.1.: Example of image matching based on features.

Because of the high efficiency, robustness and noise-resistibility, image matching based on
the local point features has become a widely accepted and utilized method in the recent
past, a wide range of feature detectors and feature descriptors have been proposed, the
performance comparison between the most used descriptors is the purpose of this thesis.

1.2. Related work

The SIFT feature [Low99, Low04] is one of the most popular point features with outstanding
performance. It has been proved that the SIFT algorithms can accurately find the matched
feature points even under some extreme conditions [MS05]. But SIFT has an obvious
drawback in the large amount of computation, which leads to long processing time. In a
mobile application system, the performance limitation of embedded microprocessor must
be considered. Later several variants of SIFT have been developed to optimize the steps
of SIFT, such as PCA-SIFT [KS04] and Harris-SIFT [AAD09]. The SURF [BETG08] detector
builds upon the SIFT but uses box filters to approximate the Gaussian in SIFT, has a faster
computation speed compared to SIFT, it is still not fast enough for the requirements of the real-
time application. More recently some faster algorithms have been introduced. Unlike SIFT
and SURF, they use binary description instead of scalar valued vector description. Matching
of binary strings is obviously more efficient than matching of vectors. Some of the new
approaches sacrifice part of the performance to reach the advantages of short computing time.
For instance, BRIEF[CLSF10] and AGAST [MHB+

10] are unable to find the correct matches
when the scale is changed. Based on them, ORB [RRKB11] and BRISK[LCS11] are developed,
they simultaneously maintain high performance and short computation time. In most of
the above mentioned papers, the authors compared performance of the proposed approach
with SIFT/SURF as standard. In order to evaluate the performance among different feature
descriptors under varying situations, a comparison becomes necessary. In the previous
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1.3. Disposition

time, there are already several comparison studies. For instance, Mikolajczyk and Schmid
[MS05] evaluated a variety of local descriptors including steerable filters [FA91], complex
filters [SZ02], differential invariants [KD87], moment invariants [GMU96] and SIFT, and
identified the SIFT algorithms as being the most resistant to common image deformations;
Juan and Gwun [LJ09] compared SIFT, PCA-SIFT and SURF for scale changes, rotation,
blur, illumination changes and affine transformation; Schmidt Kraft and Kasinski [SKK10]
presented an evaluation of image feature detectors and descriptors for robot navigation. The
new algorithms published in past two years like ORB and BRISK have not been mentioned
and compared in the published papers. This thesis compares the new feature descriptors
with the old classic approaches.

1.3. Disposition

The thesis is divided into seven chapters, each chapter is organized as follows. The next two
chapters are intended to provide the reader with a solid background; they introduce first
the basic knowledge of visual odometry and then review feature detection and matching
methods where the most relevant algorithms are discussed in details. In Chapters 4 and 5

follow the evaluation and comparison of 5 new feature descriptors, which are published
after year 2010, with two strong, widely used classic descriptors. Chapter 6 then presents the
experimental evaluation on real-time video sequence. Chapter 7 concludes with a discussion
of the impact of this work, comments on its limitations, and highlights future research
directions.

11





2. Visual odometry

Visual odometry(VO) is the process of estimating the egomotion of an agent (e.g., vehicle,
human, and robot) by analyzing the associated image from attached single or multiple
cameras. Nister, Naroditsky and Bergen coined the term VO in their paper [NNB04] in
2004. Similar to wheel odometry, VO estimates the pose of the agent incrementally through
examination of the changes that motion induces on the images of its onboard cameras.
Under the condition of sufficient illumination in the environment and static scene with
enough texture, VO works effectively. Another obviously advantage of VO is that the visual
system is not effected by uneven terrain. It has been demonstrated that compared to wheel
odometry, VO provides more accurate trajectory estimates, the relative position error is
ranging from 0.1 to 2% [SF11]. VO has been used in a wide variety of robotic applications,
such as on the Mars Exploration Rovers [MCM07, CG08]. Actually most of the early research
in VO [Mor80, MS90, Mat89, SLC99, OMSM00] was done for planetary rovers and was
motivated by the NASA Mars exploration program. The researchers were trying to develop
all-terrain rovers with the capability to measure their 6-degree-of-freedom (DoF) motion
in planetary environments, like uneven and rough terrains or other adverse conditions for
traditional wheel odometry. This all-terrain capability makes VO an useful replacement or
supplement to wheel odometry and other navigation systems such as global positioning system
(GPS) [LWZ11], inertial measurement units (IMUs) [Kle08], and laser odometry (similar to VO,
egomotion estimation by consecutive laser-scan-matching) [ABH+

10, Ols09].

2.1. Pipeline

Most existing approaches to visual odometry are based on the following stages: (summarized
in Figure 2.1)

1. Acquire input images: use either single cameras [SCS08, NNB04], stereo cameras
[NNB04, CMR10], or omnidirectional cameras [SS08, Cor04] to capture the image
sequence.

2. Image correction: apply image processing techniques for lens distortion removal, image
enhancement, etc.

3. Feature detection: define interest operators, detect feature keypoints from the previous
frame.

13



2. Visual odometry

4. Feature matching or tracking: either matching features independently in both frames
based on some similarity metrics or tracking the features extracted form previous
frame in the current frame using a local search technique, such as correlation.

5. Motion estimation: compute the relative motion between the previous frame and the
current frame. Depending on the dimensions of correspondences, there are three
different approaches:

a) 2D-to-2D: VO from image feature correspondences. The essential matrix for 2D
image pairs is computed first, this requires at least five 2D-to-2D feature corre-
spondences [Kru13, Nis03]. Then this essential matrix can be easily decomposed
into rotation and translation[LH87]. After computation of relative scale, rescale
the translation to obtain the complete transformation.

b) 3D-to-3D: VO from 3D structure correspondences. Stereo images are required
here. 3D features can be constructed by triangulation of matched features for each
stereo pairs. The transformation is computed from 3D features.

c) 3D-to-2D: VO from 3D structure and image feature correspondences. In the
monocular case, 3D structure needs to be triangulated from two adjacent frame
and then matched to 2D image feature in third frame. For the motion estimation,
at least three frames are necessary in this case.

It has been demonstrated by Nister et al. [NNB04] that 3D-to-2D motion estimation
methods are more accurate than 3D-to-3D methods, because 3D-to-2D correspondences
minimizes the image reprojection error instead of the 3D-to-3D feature position error.

6. Local optimization: After obtaining the motion information, the camera pose is com-
puted by concatenation of relative motion with the previous pose. Finally, an iterative
refinement (bundle adjustment) can be done over the last m frames to obtain a more
accurate estimate of the local trajectory.

2.2. Feature tracking

As mentioned in the last section, there are two main approaches for finding feature points
and their correspondences. An alternative to feature matching approach is feature tracking.
Basically, feature tracking consistent of two steps: detecting a set of feature keypoints in
the first frame only and then searching inside a suitable sized window in the subsequent
frames for their corresponding matches, the position of the searching window correlates
with the texture around the feature in the first image. The disadvantage of this approach is
that features tend to drift. The feature tracking approach is more suitable when the images
are captured by on-board cameras consequently at nearby location and the appearance
deformation between image pairs is small. However, over long image sequences, the
appearance of the features may change a lot, the texture in the subsequent frame may
be rotated, scaled or skewed with respect to the texture in the first frame, the tracking
becomes much more difficult. In this situation, feature matching performs better since its
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2.2. Feature tracking

Figure 2.1.: A block diagram showing the pipeline of a visual odometry system.

features are extracted independently from images and matched based on similarity of their
descriptors. Early research in VO concentrated on feature tracking approach because most
experiments were conducted in the small-scale environments, where images were taken
from nearby location. This situation has changed in the last decade, the focus has shifted
to large-scale environments, and so the images are taken far from each other, the feature
matching approach became more suitable. In the next chapter the most popular feature
matching methods are discussed in details.
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3. Feature description and matching

An image matching process can be divided into three stages: detection, description and
matching. During the feature detection stage, some interest operator is applied on the images
to find distinctive keypoints, which are likely to match well in other images. For point feature
detector, such keypoints are corners or blobs. Corner is defined as a intersection of two or
more edges. A blob is an image pattern with an intensity, color, and texture different from
its surrounding region. Comparing to blob detector, Corner detectors are less distinctive but
run faster. During the feature description stage, the detected features are described based on
the neighbor pixels around it. Basically there are two type of descriptors: vector descriptor or
binary descriptor. Vector descriptor is a feature vector with n dimensions, for instance n=128

for SIFT features. It stores more information, but it is difficult to find the nearest match in
high dimensional space. Binary vector is a n-bit binary String consisting of 0 and 1. It can be
processed quite fast with efficient algorithms. During the matching stage, each query feature
is matched to the most similar feature in the reference image based on their descriptors.

3.1. Feature detector and descriptor

Some of the best known feature detectors and descriptors are introduced in this section.

3.1.1. SIFT

SIFT (Scale Invariant Feature Transform ) feature was propose by David Lowe in 1999 [Low99]
and improved in 2004 [Low04]. SIFT consists of four major stages : scale-space extrema
detection, keypoints localization, orientation assignment and keypoint descriptor.

A scale pyramid is constructed first, the upper and lower scales of the image I(x, y) are
convolved with a difference-of-Gaussian (DoG) operator, which defined as:

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y)

where ∗ is the convolution operation in x and y, σ presents the current scale, k is the constant
multiplicative factor in scale space, and Gaussian

G(x, y, σ) =
1

2πσ2 e
−(x2+y2)

2σ2
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3. Feature description and matching

The local minima or maxima in scale space are taken as the potential feature points. Next
step is rejecting unstable extrema with low contrast and the points which are poorly localized
along an edge. All keypoints left are defined as SIFT features. Before describing the features,
the image is smoothed by Gaussian. For each Gaussian smoothed image sample L(x, y) at
one scale, the gradient magnitude m(x, y) and orientation θ(x, y) is precomputed using pixel
differences:

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2

θ(x, y) = tan−1(
L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

)

Based on θ(x, y) 36-bin orientation histogram is formed by taking values from the sample
points around the keypoint. 36 bins cover the 360 orientation degree. Each sample added to
the histogram is weighted by precomputed m(x, y) and by a Gaussian around the keypoint.
This Gaussian circular window avoids sudden changes in the descriptor with small changes
in the position of the window. The main orientation of the keypoint is computed based
on dominant directions of local gradients. The distribution of local gradients around the
keypoint are summarized from 16x16 sample array into a 4x4 descriptor. The process is
illustrated in Figure 3.1. This vector is then normalized to make SIFT descriptor more
robust to illumination changes. Because the histogram is computed at the same scale as
keypoint and the gradients are all rotated according to the main orientation of keypoint,
SIFT descriptor are scale- and rotation invariant. Because of the outstanding invariance, SIFT
descriptor is widely used in image matching process, although the 128 dimension of the
descriptor vector reduce its real - time performance. This algorithm has its own patent, the
patent holder is the University of British Columbia.

3.1.2. PCA-SIFT

PCA (Principle component analysis ) is a standard technique for dimension reduction. Ke and
Sukthankar combined the SIFT descriptor with PCA algorithm to reduce the dimension
of SIFT descriptor vector [KS04].The PCA-SIFT has the same input as the standard SIFT
descriptor: the sub-pixel location, scale, and dominant orientations of the keypoints. An
eigenspace is computed to express the gradient images of local patches. The gradient image
vector is then project into a compact feature vector. It is empirically determined that n = 20

is a good value for the dimensionality of the feature space[KS04], which results to significant
space benifits. Comparing to SIFT, PCA-SIFT requires less storage, fewer components results
a faster process time.

3.1.3. Harris-SIFT

Harris-SIFT is another variant of SIFT proposed by Azad, Asfour and Dillmann [AAD09].
They combined Harris interest points and the SIFT descriptor. The fast Harris corner detector
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3.1. Feature detector and descriptor

Figure 3.1.: Example of computing a SIFT descriptor. Local gradients around the keypoint
are weighted by a Gaussian circle window (left) and summarized in 4 histograms
with 8 orientation bins each (right). The standard SIFT descriptor uses a 16x16

sample array and 4x4 histograms, resulting in a 128-dimensional vector. Illustra-
tion taken from[Low04].

is used as the feature detector to replace the complex computation for feature detection in
SIFT. Unlike SIFT there is no scale pyramid constructed. In order to retain the invariance
to scale, three lower scales of the image are used for producing the SIFT descriptors. Since
the most time-consuming part of standard SIFT is replaced, Harris-SIFT shows significant
advantage of process time but less invariance comparing to SIFT.

3.1.4. SURF

The Speeded-Up Robust Features (SURF) method, proposed by Bay et al. [BETG08] essentially
can be seen as an approximation to SIFT. SURF detector builds upon the SIFT but employ
slightly different ways of detecting features. SIFT constructs scale pyramid, convolving
the upper and lower scales of the image with a difference-of-Gaussian (DoG) operator and
searching the local extreme in scale space. SURF scales filters up instead of iteratively
reducing the image size. This avoids aliasing but limits scale invariance. A second substan-
tially different between SURF and SIFT is that SURF uses 9x9 box filter to approximate the
second-order Gaussian partial derivatives in SIFT.

During the description stage Haar wavelets is used, which allows to determine the gradient
values in x and y direction. In order to obtain the dominant orientation, the Haar wavelet
responses are computed for all points within the radius 6s of the detected feature point,
where s is the scale at which this feature point was detected. Once the wavelet responses are
calculated and weighted with a Gaussian, the dominant orientation is estimated by summing
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3. Feature description and matching

of all horizontal and vertical responses within a sliding orientation window covering an
angle of π

3 . The Orientation with the longest vector is selected as the dominant orientation
of the descriptor. A square window around the feature point with the size of 20s is divided
into 4x4 square subregions and each subregion is divided into 5x5 regularly spaced sample
points. Haar wavelet response for horizontal directions dx and vertical direction dy are
computed at each sample points, then summed up over each subregion. The descriptor
for each of the subregion consists of responses ant their absolute values of each principal
directions:

v = (∑ dx, ∑ dy, ∑ |dx|, ∑ |dy|)

Therefore, the complete descriptor vector for all 4x4 sub-region has the length of 64. For
reasonably fast processing time and robustness to typical image transformations, SURF
became the de facto standard. SURF was patented by ETH Zurich, and the rights sold to
Toyota.

3.1.5. FAST

FAST stands for Features from Accelerated Segment Test [RD06]. This corner detector consists
of two steps. At first, a segment test is applied on each corner candidate P. Sixteen pixels
around P are considered in this segment test. Let Ip denote the brightness of P and t a
configurable threshold value, if n contiguous pixels in the circle are all brighter than Ip + t,
or darker then Ip − t, the candidate P is defined as a corner. The Figure 3.2 illustrates the
Twelve-point segment test corner detection in an image patch. It is demonstrated that the
best results are obtained when n=9, the corresponding algorithm is called FAST-9 [RD06].
The ordering of questions, which neighbor pixel in the circle should be tested next, is learned
by using the ID3 algorithm. As the segments test produces many adjacent responses around
the interest point, non maximal suppression with a score function V, which is defined as:

V = max

 ∑
x⊂Sbright

|Ip→x − Ip| − t, ∑
x⊂Sdark

|Ip − Ip→x| − t


is applied to remove corners which have an adjacent corner with higher V. This allows for
precise feature localization. As the non maximal suppression is only performed to a small
subset of image points, which passed the first segment test, the processing time remains short.
While being efficient, FAST has proven to be reliable due to high repeatability [RPD08] and
becomes one of the most popular feature detector being used in some real-time Applications
such like Klein’s PTAM [KM07] and Taylor’s robust feature matching in 2.3 µs [TRD09].

3.1.6. AGAST

Similar to FAST, a approach called AGAST (Adaptive and Generic Corner Detection Based on
the Accelerated Segment Test ), which proposed by Mair et al. [MHB+

10], is also based on the
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3.1. Feature detector and descriptor

Figure 3.2.: Twelve-point segment test corner detection in FAST. If twelve contiguous pixels
in the circle are all brighter than Ip + t, or darker than Ip − t, the candidate P is
defined as a corner. Illustration taken from[RD06].

accelerated segment test . AGAST uses binary decision trees to complete the accelerated
segment test. Two trees are constructed, one for homogeneous and one for structured regions.
By combining two trees, the corner detector adapts to the environments automatically and
provides the most efficient decision tree for the image region. AGAST does not have to be
trained while preserving the same corner response and repeatability as the FAST corner
detector.

3.1.7. BRIEF

The Binary Robust Independent Elementary Features (BRIEF) is a new feature descriptor pro-
posed by Calonder [Cal10]. The essential different between BRIEF and previously mentioned
descriptor is that BRIEF describes the features with binary string instead of vector. After
feature detection stage, the feature patch is smoothed to reduce the noise-sensitivity, thus in-
creasing the stability and repeatability of the descriptors. In smoothed Patch, 128 pixel pairs
around keypoint are selected for binary tests, which compares the intensity of both pixels,
value 1 means the first value is bigger than the second, 0 otherwise. The location of such pixel
pairs is selected randomly. After several experimental evaluations, it is shown that the sam-
pling from an isotropic Gaussian distribution performs best: (X, Y)∼i.i.d.Gaussian(0, 1

25 S2),
where S is the size of the feature patch. The Figure 3.3 shows the location of pixel pairs with
this sampling approach. After the binary tests on these pixel pairs, a 128 bit binary string is
build as the BRIEF descriptor. The BRIEF descriptor is quite fast to construct and to match
because of its binary nature, but is not rotation and scale invariant.
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3. Feature description and matching

Figure 3.3.: Location of sampling pixel pairs in BRIEF. Illustration taken from[Cal10].

3.1.8. ORB

The ORB descriptor is developed by Rublee et al. [RRKB11] in 2011 based on BRIEF in order
to cover the shortcoming of rotation and scale variance of BRIEF. ORB uses FAST-9 approach
as the feature detector. After feature detection in a scale pyramid, all keypoints are sorted in
a line based on the Harris corner measure, only top N points are picked. A metric called
intensity centroid C is computed with the moments m of the patch:

mpq = ∑
x,y

xpyq I(x, y)

C = (
m10

m00
,

m01

m00
)

Constructing a vector from the center of the patch to the centroid, the orientation of the
patch then simply is:

θ = arctan 2(m01, m10)

Using the pre-computed patch orientation θ and the corresponding rotation matrix Rθ to
rotate the feature patch, then BRIEF descriptor is applied on rotated features and records the
binary string as ORB descriptor. ORB descriptor can be quite fast processed because of the
binary nature and keeps the rotation and scale invariant at the same time.
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3.1.9. BRISK

The Binary Robust Invariant Scalable Keypoints (BRIEF) is another newly published feature
descriptor proposed by Leutenegger [LCS11]. An image pyramid is constructed while the
inter-octaves between the scale layer are also considered. During the feature detection stage,
the local extrema in the scale space based on FAST score are searched for. The FAST score
is defined as the maximum threshold still considering an image point a corner in FAST
9 detector. During the feature description step, BRISK samples the neighborhood of the
keypoints in a circle patter showed in figure 3.4. All sampling-point pairs are divided in
to subset of short-distance pairings and another subset of long-distance parings, based
on the distance between the two sampling-points. The long-distance parings are used for
the local gradients computation to obtain the orientation of the BRISK descriptor and the
short-distance pairings are used for building the BRISK descriptor with binary test. The use
of scale pyramid and rotation with orientation makes BRISK descriptor scale and rotation
invariant, and meanwhile the binary descriptor obtain the advantage on processing speed.

Figure 3.4.: Sampling patter of BRISK descriptor. Illustration taken from[LCS11].

3.2. Descriptor matching

Based on the form of descriptor, the descriptor matching process can be divided into the
two categories: vector descriptor matching and binary descriptor matching. Among all in
last section mentioned feature descriptors, SIFT, PCA-SIFT, Harris-SIFT and SURF are vector
descriptors, while BRIEF, ORB and BRISK are binary descriptors. For a vector descriptor,
such as SIFT, which has a 128-dimensional feature vector, there are no known algorithms
that can identify the nearest neighbor of points in high dimensional spaces that are any
more efficient than exhaustive search [Low04]. Even the best algorithms, such as the k-d
tree [FBF77] has been proved having no speedup over exhaustive search for more than
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3. Feature description and matching

about 10 dimensional spaces. Usually an approximate algorithm called Best-Bin-First (BBF)
algorithm [BL97] is used to obtain the closest neighbor with high probability. Compared to
vector descriptor matching, binary descriptor matching is much easier. The closest match
are the descriptors with the smallest Hamming distance. The number of bits different in the
two descriptors measures their dissimilarity. Notice that the Hamming distance calculation
can be reduced to a bitwise XOR followed by a bit count, which can both be computed
quite efficiently on today’s computer architectures. Matching on binary descriptors requires
significantly less time than vector descriptors.

3.3. Optimization

3.3.1. Cross check filter

Nearest neighbor matching methods will always return a match, even if the feature is not
present in the reference image. This inevitably leads to a number of false matches. A cross
check filter is applied at feature matching process to increase the accuracy of the feature
matching result by double matching the image in both directions. The steps of the cross
check approach summarized as follows:

1. For each query feature find one or more the most matching features in reference image.

2. Switch the reference image and query image.

3. For each feature from reference image, find one or more the most matching features in
query image.

4. Only the feature pairs, which are matching features to each other, are accepted as
matches.

Although the double matching increases the processing time, cross check filter can remove
some unreliably matches before the results are returned. In the next three chapters, an
experiment evaluation for the performance of cross check filter is conducted on static image
pairs and also in a real-time application.

3.3.2. RANSAC

The set of matched points usually contains a number of false matches or outliers. Possible
causes of outlier are image noise, occlusions, blur and too complex image deformation,
which the system does not account to the corresponding complex mathematical model.
Outlier removal is important for the accuracy of the motion estamation in a VO system. The
random sample consensus (RANSAC) [FB81] is the most used approach to remove the outliers
for model estimation. The basic idea of RANSAC is to compute model hypotheses from
randomly-sampled small sets of data points and then verify these hypotheses on the other
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3.3. Optimization

data points. The hypothesis that shows the highest consensus with the other data is selected
as solution [NNB04]. The steps of RANSAC is summarized as following:

1. Randomly select a small subset S from the whole dataset D.

2. Calculate the most likely model based on the data points from S.

3. Apply this model on other points from D, compute the distance for each point.

4. Construct the inlier set based on the distance computed from step 3.

5. Store the inlier set with the largest consensus so far.

6. Repeat the step 1 to select a new test subset, until the maximum number of iterations
is reached.

7. The subset with the maximum number of inliers is chosen as the solution.

8. Estimate the model using all inliers in best subset from step 7.

The RANCAC algorithm is easy to implement and removes the outliers efficiently for model
estimation. The all experiments conducted in the next three chapters use RANSAC for outlier
removel.
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4. Descriptor comparison

As stated in section 1.2, the main goal of this thesis is to compare the performance of all
popular feature descriptors. The following six feature descriptors were chosen for this
comparison: SIFT, SURF, BRIEF, ORB, BRISK and SU-BRISK (a variant of BRISK). The feature
descriptors in this list, with the exception of SIFT and SURF, were all proposed within the
last two years, and are therefore quite new. As any VO system can be applied in both indoor
and outdoor environment, general deformations, such as illumination change, rotation and
scale change and view change are considered in this thesis. In the following section 4.1
the implementation of the whole comparison program are introduced. The next section 4.2
reviews the test image sequences which were used for the comparison. Section 4.4 defines
the performance metrics. And the final section 4.5 presents the comparison results on these
test image sequences using the above metrics.

4.1. Implementation

OpenCV is a free open-source library intended for use in image processing, computer vision
and machine learning areas. It provides a huge amount of image matching algorithms. This
library is well developed, all detector, descriptor and matcher classes have uniform interfaces.
This class structure brings advantages for the implementation of a comparison program.
The following 4 feature descriptors are available In OpenCV: SIFT, SURF, BRIEF and ORB.
Since BRIEF is a descriptor without feature detection, FAST is , FAST is added for the feature
detection. The author of AGAST and BRISK provide also a public implementation based
on OpenCV interfaces. Beside the original BRISK feature, this implementation includes
3 variants, first one called U-BRISK, which is not rotation invariant but scale invariant;
SU-BRISK, which neither rotation invariant nor scale invariant and the last one called S-
BRISK, which is rotation invariant but not scale invariant. SU-BRISK is chosen from this
list and included into the comparison program as a candidate, AGAST is used as feature
detector for SU-BRISK. The whole comparison program is developed in C++. To retain
the compatibility of different platforms, CMake is used as build system. An installation
introduction is appended as an attachment in the end of this thesis (see Appendix A).
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4. Descriptor comparison

4.2. Datasets

Eight publicly available test image sequences are used to compare the methods on real-world
data1. They are designed to test robustness to typical image disturbances that occur in
real-world scenarios. As shown in figure 4.1, they include
illumination changes: Light,
image blur: Trees, Bikes
rotation and zoom : Bark, Boat,
viewpoint changes: Graffiti, Wall,
and compression artifacts: Jpg.

Figure 4.1.: Part of test images, showing the first and the last image in each sequence used
for comparison purpose. A are the illumination changed images, B and C are
the blurred images, D and E are the rotation and scale changed images, F and G
are the affine transformed images, H are the compressed Jpg-images.

1http://www.robots.ox.ac.uk/~vgg/research/affine/
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4.3. Drawing Configuration

There are six images in each sequence, by matching the first image to the remaining five,
each sequence contains five image pairs. The corresponding five homography matrices,
which describe the projective transformation between the image pair, are also given. With
them the ground truth can be computed. Note that the given homography describes the
transformation from the first image to the other images. In the real image matching process
in comparison program, the first image is used as the reference image, the transformation
information from the query image to reference image is required, therefore, the homography
has to be inverted first. The five pairs in each sequence are sorted in order of increasing
changes so that pair 1-6 is much harder to match than pair 1-2. Another reason for choosing
this dataset is that many published papers relevant to image matching have also used these
images, such like in [LJ09, KS04, LCS11, CLSF10, Cal10]. Using the same datasets makes the
conclusion in this thesis comparable with other papers.

4.3. Drawing Configuration

It is possible to draw the matching results as shown in figure 1.1. In the source code main.cpp
there are six configuration variables. The first DRAW_IMAGE_MODE enables this drawing
function. The rest of them control what kind of information are displayed on screen:

• DRAW_MATCHES shows the matching pairs after description matching.

• DRAW_STANDARD_MATCHES shows the ground truth obtained by given homog-
raphy.

• DRAW_RANSAC_MATCHES shows the matching result after RANSAC.

• DRAW_RICH_KEYPOINTS_MODE shows a circle around keypoint with keypoint
size and orientation.

• DRAW_OUTLIERS_MODE shows all outliers.

The default configuration is shown in Figure 4.2.

Figure 4.2.: Default drawing configuration in Descriptor Comparison program.
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4.4. Performance Metrics

There are 7 different metrics used to evaluate the performance of feature descriptors from all
aspects.

4.4.1. Keypoints

The number of feature points (also called keypoints) detected and matched between the image
pair is one of the most important and intuitive measure for comparison the performance of
all the descriptors. The whole process contains the following steps:

1. Apply feature detector on the reference image (the first image in each sequence), the
number of detected features is recored as Nre f .

2. Apply feature detector on the query image (one of the remaining five images), the
number of detected features is recored as Nqry. Because all the images in the sequence
are sorted in order of increasing changes, the first image has always the best quality,
so that more feature points can be detected in the reference image then in the query
image, in other words Nre f > Nqry.

3. With help of the given homograhy, each keypoint in the query image is checked, if there
is a matched keypoints in the reference image, such matches called correspondence.
The number of the correspondence Ncsp represents the theoretical maximal number of
matches, which can be found after image matching.

4. Apply feature descriptor on both images, now all the features are described as a vector
or a binary string.

5. Apply descriptor matcher to find the matching keypoints based on description.

6. Apply RANSAC to refine the matching results. With help of the given homograhy,
the correct, false and missing matches can now be classified. Figure 4.3 illustrates the
relation between matches.

4.4.2. Repeatability

Repeatability represents the ability to detect the same point in the scene under viewpoint and
lighting changes and subject to noise[Cal10]. The value of Repeatability is calculated as:

Repeatability =
|correspondences|
|query keypoints|

Repeatability is only relevant to the feature detector, nothing about feature descriptor or
descriptor matcher. The higher value of Repeatability , the better performance of feature
detector.
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Figure 4.3.: Relation between correct, false and missing matches.

4.4.3. Recall

Recall represents the ability to find the correct matches based on the description of detected
features, The value of Recall is calculated as:

Recall =
|correct matches|
|correspondences|

Because the detected features are already determined, recall only shows the performance
of the feature descriptor and descriptor matcher. The higher value of Recall , the better
performance of descriptor and matcher.

4.4.4. Efficiency

The metric Efficiency combines the Repeatability and Recall . It is defined as:

E f f iciency = Repeatability ∗ Recall =
|correct matches|
|query keypoints|

Efficiency measures the ability of the whole image matching process, it is relevant to all three
steps: detection, description and matching. The higher value of Efficiency , the more accurate
the image matching.

The three metrics Repeatability, Recall and Efficiency are also called a quality measure.
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4.4.5. Duration

Duration of the entire image process is another important measure. Note that the time
beginning at the feature detection and ending after matching are recorded, the RANSAC
step is not included.

4.4.6. Speed

The number of detected keypoints is quite different depending on different feature detection
approach. For instance, for the first image pair in illumination change sequence, SIFT detects
1770 keypoints, FAST (detector for BRIEF) 7634, ORB only 702 (adjustable limitation). Using
single metric duration to compare the descriptors in time domain is not fair, therefor a new
metric Speed is added as:

Speed =
Duration

|query keypoints|+ |re f erence keypoints|

It defines the average processing time for one feature.

4.4.7. Average Distance

With help of the given homography matrices, the position error of the matches can be
computed. In the following experiments the distance is measured in pixels. Only the correct
matches are considered here. Average Distance is defined as:

Average Distance =
total position error among correct matches

|correct matches|

The smaller Average Distance , the more accurate the matching results.

During the execution of the comparison program, all the output information and results
displayed on the screen are also written into a file called ’log.txt’ and saved into the file
system. At the same time, 7 files for the above mentioned performance metrics are generated
with corresponding name. These 7 files contain only the numbers. Then these data are input
into a Microsoft Excel work sheet manually for analysis and visualization. The visualized
results are shown as the final comparison results in the next section.

4.5. Results

4.5.1. Illumination change

Illumination change is one of the most common changes in the real life. Figure 4.4 shows the
test image sequence. The images are sorted in the order of increasing illumination change,
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the last image being much darker than the first image. Figure 1.1 shown in the first chapter
as example is the matching result after applying RANSAC between the 1st and the 5th image
using SIFT feature.

Figure 4.4.: Test image sequence for illumination changes - Light sequence.

Keypoints The following table 4.1 summarizes the number of detected feature keypoints in
the query image, the number of correspondences and correct matches found after RANSAC.
With decreasing illumination condition in the image, the number of detected feature points
shows also a decreasing trend (except ORB, because the parameter in ORB is set to return
the top 702 feature keypoints based on Harris corner measure). BRIEF (FAST as detector)
detects the most feature points and matches, on the image pair 1-2 more than 7500 keypoints
are detected and more then 6000 of them find the correct matches eventually. Even when
matching to the darkest image pair 1|6, around 3000 feature are correctly matched. SURF
and SU-BRISK detect second most feature keypoints, about 1/3 - 1/4 of BRISK. On the
darkest 3 images, BRISK ORB detect the least feature points, only 300,however, more then
100 correct matches are found successfully.

Repeatability The following table 4.2 summarizes the value of Repeatabilityon this sequence.
Except FAST (detector of BRIEF), the Repeatability of all other descriptors are decreased with
the reduction of illumination. The Repeatability of FAST is slightly increased and remained
at 0.9. AGAST (detector for SU-BRISK) and FAST perform best, even when matching to the
darkest image pair 1|6, the Repeatability keeps around 0.9. Performance of SIFT and ORB is
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Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

ILU-1-2 1770 1154 967 2403 2046 1714 7634 6855 6301

ILU-1-3 1571 992 785 1973 1629 1277 6439 5845 5351

ILU-1-4 1339 809 639 1576 1269 957 5356 4820 4432

ILU-1-5 1198 729 524 1216 940 612 4467 4070 3710

ILU-1-6 1022 567 375 1001 734 453 3601 3285 2984

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

ILU-1-2 702 527 407 1001 804 577 2167 1996 1938

ILU-1-3 702 448 332 798 609 429 1825 1668 1613

ILU-1-4 702 418 283 639 462 268 1409 1286 1255

ILU-1-5 702 387 236 523 360 201 1111 1022 970

ILU-1-6 702 362 184 330 215 110 822 742 698

Table 4.1.: Results of detected keypoints on Light sequence. (Nqry: number of detected query
features, Ncsp: number of correspondences, Ncrt: number of correct matches found
after RANSAC)

relatively poor, under the insufficient illumination condition, the value of Repeatability falls
down under 0.6 rapidly.

Repeatability SIFT SURF FAST ORB BRISK SU-BRS
ILU-1-2 0.652 0.851 0.898 0.751 0.803 0.921

ILU-1-3 0.631 0.826 0.908 0.638 0.763 0.914

ILU-1-4 0.604 0.805 0.900 0.595 0.723 0.913

ILU-1-5 0.609 0.773 0.911 0.551 0.688 0.920

ILU-1-6 0.555 0.733 0.912 0.516 0.652 0.903

Table 4.2.: Results of Repeatability on Light sequence.

Recall The following table 4.3 summarizes the value of Recall . Basically the value of Recall
decreases with increasing illumination change. BRIEF and SU-BRISK perform best, especially
applying SU-BRISK on the first three image pairs obtain the high value 0.96. The result of
other descriptors perform similar, the value of recall keeps between 0.5 and 0.75.

Efficiency The following table 4.4 summarizes the value of Efficiency . Efficiency combines
the results of Repeatability and Recall. BRIEF and SU-BRISK show outstanding performance
on Efficiency same as on both Repeatability and Recall metrics.SIFT, ORB and BRISK perform
poorly in comparison, on the last three image pairs, the value of Efficiency is less then 0.5,
the worst value is the 0.26 when applying ORB on the last image pair.
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Recall SIFT SURF BRIEF ORB BRISK SU-BRS
ILU-1-2 0.838 0.838 0.919 0.772 0.718 0.971

ILU-1-3 0.791 0.784 0.915 0.741 0.704 0.967

ILU-1-4 0.790 0.754 0.920 0.677 0.580 0.976

ILU-1-5 0.719 0.651 0.912 0.610 0.558 0.949

ILU-1-6 0.661 0.617 0.908 0.508 0.512 0.941

Table 4.3.: Results of Recall on Light sequence.

Efficiency SIFT SURF BRIEF ORB BRISK SU-BRS
ILU-1-2 0.546 0.713 0.825 0.580 0.576 0.894

ILU-1-3 0.500 0.647 0.831 0.473 0.538 0.884

ILU-1-4 0.477 0.607 0.827 0.403 0.419 0.891

ILU-1-5 0.437 0.503 0.831 0.336 0.384 0.873

ILU-1-6 0.367 0.453 0.829 0.262 0.333 0.849

Table 4.4.: Results of Efficiency on Light sequence.

Duration The following table 4.5 summarizes the Duration results. Because of the com-
putation complexity, SIFT needs significantly more time than any other descriptors. The
advantage of binary description is fully demonstrated on this metric. ORB, BRISK and
SU-BRISK run almost 50 times faster than SIFT. BRIEF processes a huge amount of fea-
ture keypoints, it does not show the superiority on the duration of whole image matching
process.

Duration SIFT SURF BRIEF ORB BRISK SU-BRS
ILU-1-2 6.006 2.274 2.035 0.126 0.151 0.690

ILU-1-3 5.619 2.097 1.732 0.122 0.136 0.595

ILU-1-4 5.387 1.919 1.45 0.127 0.121 0.468

ILU-1-5 5.173 1.709 1.24 0.121 0.113 0.371

ILU-1-6 4.932 1.611 1.01 0.118 0.097 0.286

Table 4.5.: Results of Duration on Light sequence. (unit: s)

Speed The following table 4.6 summarizes the result of Speed. After average duration
through the number of keypoints, BRIEF shows its superiority as a binary descriptor. BRISK
and SU-BRISK perform best, even better then BRIEF and ORB. The disadvantage of using
SIFT and SURF is made apparent.

Average Distance The following table 4.7 summarizes the value of Average Distance . The
accuracy of SIFT is obvious higher than any other descriptors, it contains the least position
error. BRIEF and ORB perform relatively poor, but still in a acceptable range.
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4. Descriptor comparison

Speed SIFT SURF BRIEF ORB BRISK SU-BRS
ILU-1-2 1.521 0.419 0.117 0.090 0.065 0.138

ILU-1-3 1.498 0.419 0.107 0.087 0.064 0.127

ILU-1-4 1.531 0.417 0.096 0.090 0.061 0.110

ILU-1-5 1.531 0.403 0.087 0.086 0.061 0.094

ILU-1-6 1.540 0.400 0.076 0.084 0.058 0.078

Table 4.6.: Results of Speed on Light sequence. (unit: ms)

avg. Distance SIFT SURF BRIEF ORB BRISK SU-BRS
ILU-1-2 0.388 0.664 0.918 0.953 0.768 0.840

ILU-1-3 0.418 0.712 0.978 0.985 0.839 0.832

ILU-1-4 0.531 0.830 1.001 1.083 0.989 0.796

ILU-1-5 0.633 0.867 1.002 1.080 0.895 0.850

ILU-1-6 0.623 0.929 0.994 1.024 1.031 0.921

Table 4.7.: Results of Average Distance on Light sequence.

Summary Figure 4.5 shows the visualized comparison results. In conclusion, under the
single illumination changes, BRIEF overall performances most prominent, obtains the highest
value on Repeatability, Recall, and Efficiency metrics. Because there is no rotation and
scale change in the image data, methods assuming zero rotation and scale change have an
unfair advantage over invariant methods. It is therefore to be expected that ORB and BRISK
perform less good then BRIEF and SU-BRISK. In time domain, the advantage of using binary
description compare to vector description is quite obvious. Because of a large amount of
detected keypoints, BRIEF lost the superiority on duration of whole image matching process.
Despite of high accuracy, large time consumption for complex computation makes SIFT less
competitive.

4.5.2. Blur

The two most likely causes of image blur are loss of focus and motion blur. Figure 4.6 shows
the test image sequences. Comparing the two sequences, most objects in Bikes sequence have
clear contour, while the Trees sequence is more unstructured.

Keypoints The following table 4.8 summarizes the number of detected feature keypoints in
the query image, the number of correspondences and correct matches found after RANSAC.
In Bikes sequence, BRIEF detects the most keypoints, while ORB, BRISK and SU-BRISK detect
only small number of features. Particularly on the last image pair, BRISK and SU-BRISK
find no correct matches at all. Compared to Bikes sequence, unstructured images from Trees
sequence lead to a large amount of feature points. Except ORB with keypoints limitation, all
other detectors detect more than 7000 features on the first two image pairs. FAST detects
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(a) Repeatability (b) Recall (c) Efficiency

(d) Duration (e) Speed (f) Average Distance

Figure 4.5.: Comparison results on Light sequence.

even more than 35000 feature points and BRIEF matches more than 23000 successfully. On
the last two difficult image pairs, BRIEF and SU-BRISK obtain sufficient number of correct
matching, while other descriptors can hardly find any correct matches.

Repeatability The following table 4.9 summarizes the value of Repeatability. In the Bikes
sequence, SURF performs best and is the most stable method, unlike FAST, which gets high
Repeatability value on the first two image pairs and falls down rapidly when the blur effect
is increased. On the last three image pairs, BRISK fails to produce any correct matches. In
the Trees sequence, FAST performs best, even on the last image pair, retains the Recall value
of 0.9. SIFT and ORB performance is relatively poor, particularly ORB gets a Recall value of
0.13 on the last image pair. Comparing the two sequences, SIFT performs similarly on both
sequences, all other detector perform better on Bikes sequence than on the Trees sequence
while for FAST and BRISK the difference in performance is opposite.

Recall The following table 4.10 summarizes the value of Recall . In the Bikes sequence, same
as with the Repeatability measure, BRIEF performs best while BRISK performs worst. In
Trees sequence, the results on the last two image pairs are quite bad, with the exception of
BRIEF and SU-BRISK, almost no correct matches are found by other descriptors. Comparing
the two sequence, all descriptor perform better on the Bikes sequence than on the Trees
sequence.
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Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

BL1-1-2 2053 1079 788 1977 1771 1573 2908 2677 2518

BL1-1-3 1335 799 563 1726 1544 1299 1877 1752 1588

BL1-1-4 735 467 316 1328 1160 920 967 868 708

BL1-1-5 510 320 235 1069 949 684 565 440 336

BL1-1-6 345 201 137 814 660 437 290 196 94

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

BL1-1-2 702 581 483 214 207 187 462 447 443

BL1-1-3 702 552 430 82 79 72 224 215 212

BL1-1-4 562 410 241 6 6 0 35 26 16

BL1-1-5 344 185 76 1 1 0 14 5 4

BL1-1-6 164 44 2 1 0 0 1 0 0

Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

BL2-1-2 9548 4928 1876 8209 4880 2113 38235 33971 23683

BL2-1-3 14769 6827 1900 7321 4135 1637 28516 25569 14405

BL2-1-4 10918 4779 448 6160 3083 727 16582 15051 6508

BL2-1-5 5410 2572 1 5659 2833 29 11716 10800 3515

BL2-1-6 3205 1493 0 4133 1971 0 7883 7154 1702

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

BL2-1-2 702 389 246 14476 10158 4976 20095 15577 11693

BL2-1-3 702 321 186 8987 6663 2710 12890 10384 6783

BL2-1-4 702 232 98 3362 2427 653 5373 4311 2217

BL2-1-5 702 195 0 1013 682 10 2205 1738 727

BL2-1-6 702 92 0 274 142 0 718 504 106

Table 4.8.: Results of detected keypoints on Bikes and Trees sequence. (Nqry: number of
detected query Keypoints, Ncsp: number of correspondences, Ncrt: number of
correct matches found after RANSAC)
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4.5. Results

(a) Bikes sequence.

(b) Trees sequence.

Figure 4.6.: Test image sequences for Blur - Bikes and Trees sequence.

Efficiency The following table 4.11 summarizes the value of Efficiency. The characteristics
of Efficiency is basically similar to Recall, BRIEF performs best among the six descriptors.

Duration The following table 4.12 summarizes the result of Duration. In the Bikes sequence,
ORB, BRISK and SU-BRISK finish the matching process in short time, while SIFT requires
obviously more time. In THE Trees sequence, a huge amount of features are detected,
the processing time for other descriptors is therefore significantly increased with the only
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4. Descriptor comparison

Repeatability SIFT SURF FAST ORB BRISK AGAST
BL1-1-2 0.526 0.896 0.921 0.828 0.967 0.968

BL1-1-3 0.599 0.895 0.933 0.786 0.963 0.960

BL1-1-4 0.635 0.873 0.898 0.730 1.000 0.743

BL1-1-5 0.627 0.888 0.779 0.538 1.000 0.357

BL1-1-6 0.583 0.811 0.676 0.268 0 0

BL2-1-2 0.516 0.635 0.998 0.554 0.854 0.925

BL2-1-3 0.605 0.565 0.897 0.457 0.741 0.806

BL2-1-4 0.438 0.500 0.908 0.330 0.722 0.802

BL2-1-5 0.475 0.501 0.922 0.278 0.673 0.788

BL2-1-6 0.466 0.477 0.908 0.131 0.518 0.702

Table 4.9.: Results of Repeatability on Bikes and Trees sequence.

Recall SIFT SURF BRIEF ORB BRISK SU-BRS
BL1-1-2 0.730 0.888 0.941 0.831 0.903 0.991

BL1-1-3 0.705 0.841 0.906 0.779 0.911 0.986

BL1-1-4 0.677 0.793 0.816 0.588 0.000 0.615

BL1-1-5 0.734 0.721 0.764 0.411 0.000 0.800

BL1-1-6 0.682 0.662 0.480 0.045 nan nan
BL2-1-2 0.381 0.433 0.697 0.632 0.490 0.751

BL2-1-3 0.278 0.396 0.563 0.579 0.407 0.653

BL2-1-4 0.094 0.236 0.432 0.422 0.269 0.514

BL2-1-5 0.000 0.010 0.325 0.000 0.015 0.418

BL2-1-6 0.000 0.000 0.238 0.000 0.000 0.210

Table 4.10.: Results of Recall on Bikes and Trees sequence.

Efficiency SIFT SURF BRIEF ORB BRISK SU-BRS
BL1-1-2 0.384 0.796 0.866 0.688 0.874 0.959

BL1-1-3 0.422 0.753 0.846 0.613 0.878 0.946

BL1-1-4 0.430 0.693 0.732 0.429 0.000 0.457

BL1-1-5 0.461 0.640 0.595 0.221 0.000 0.286

BL1-1-6 0.397 0.537 0.324 0.012 0.000 0.000

BL2-1-2 0.196 0.275 0.696 0.350 0.418 0.694

BL2-1-3 0.168 0.224 0.505 0.265 0.302 0.526

BL2-1-4 0.041 0.118 0.392 0.140 0.194 0.413

BL2-1-5 0.000 0.005 0.300 0.000 0.010 0.330

BL2-1-6 0.000 0.000 0.216 0.000 0.000 0.148

Table 4.11.: Results of Efficiency onBikes and Trees sequence.
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exception of ORB. Particularly BRIEF takes more the 140 seconds to process the first image
pair, ORB limits the number of features and keeps outstanding processing time.

Duration SIFT SURF BRIEF ORB BRISK SU-BRS
BL1-1-2 8.020 2.633 3.331 0.195 0.100 0.162

BL1-1-3 6.753 2.394 2.240 0.165 0.065 0.101

BL1-1-4 5.753 2.000 1.225 0.197 0.047 0.055

BL1-1-5 5.674 1.847 0.741 0.135 0.047 0.046

BL1-1-6 5.359 1.706 0.478 0.118 0.041 0.045

BL2-1-2 42.257 10.979 143.501 0.294 43.432 34.617

BL2-1-3 58.394 10.229 118.542 0.282 22.687 22.677

BL2-1-4 47.801 8.915 62.971 0.265 8.554 9.596

BL2-1-5 28.245 8.321 44.511 0.247 3.006 4.279

BL2-1-6 21.297 6.838 29.701 0.229 0.976 1.501

Table 4.12.: Results of Duration on Bikes and Trees sequence. (unit: s)

Speed The following table 4.13 summarizes the results of Speed . Observing each sequence,
the results is similar as in the Light sequence 4.5.1: BRISK and SU-BRISK run fastest while
SIFT runs quite slowly. Comparing the two sequences, All descriptors take at least two times
time to process one feature point on images from Trees sequence then Bikes sequence, with
exception of ORB and SURF. This is because the large number of keypoints increases the
time to matching exponentially. In summary, ORB performs best in this case.

Speed SIFT SURF BRIEF ORB BRISK SU-BRS
BL1-1-2 1.536 0.538 0.254 0.139 0.070 0.065

BL1-1-3 1.499 0.516 0.185 0.117 0.050 0.045

BL1-1-4 1.474 0.471 0.110 0.156 0.039 0.027

BL1-1-5 1.542 0.464 0.069 0.129 0.039 0.023

BL1-1-6 1.525 0.457 0.046 0.136 0.034 0.022

BL2-1-2 2.028 0.691 1.986 0.209 1.647 0.937

BL2-1-3 2.241 0.682 1.895 0.201 1.086 0.763

BL2-1-4 2.153 0.644 1.244 0.189 0.561 0.432

BL2-1-5 1.692 0.624 0.973 0.176 0.233 0.225

BL2-1-6 1.469 0.579 0.709 0.163 0.080 0.085

Table 4.13.: Results of Speed on Bikes and Trees sequence. (unit: ms)

Average Distance The following table 4.14 summarizes the results of average Distance . In
the Bikes sequence, BRIEF and ORB are apparently less accuracy than the other descriptors.
In the Trees sequence there is no significant difference.
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avg. Distance SIFT SURF BRIEF ORB BRISK SU-BRS
BL1-1-2 0.526 0.670 1.119 0.910 0.674 0.703

BL1-1-3 0.629 0.778 1.353 1.179 1.016 1.074

BL1-1-4 0.797 1.004 1.674 1.595 nan 1.310

BL1-1-5 0.973 1.150 1.707 1.718 nan 1.874

BL1-1-6 1.074 1.283 1.670 1.291 nan nan
BL2-1-2 1.094 1.092 1.402 0.958 0.985 1.225

BL2-1-3 0.928 1.067 1.307 0.909 1.074 1.209

BL2-1-4 1.611 1.343 1.426 1.204 1.291 1.309

BL2-1-5 1.301 1.648 1.660 nan 1.232 1.711

BL2-1-6 nan nan 1.670 nan nan 1.738

Table 4.14.: Results of average Distance on Bikes and Trees sequence.

Summary Figure 4.13 shows the visualized comparison results. Under the blur effect,
unstructured images lead to a huge number of detected feature points. BRIEF obtains the
highest value on Repeatability, Recall and Efficiency measures. With regards to the time, ORB
demonstrates the speed benefits, because it limits the maximal number of detected features,
while the other descriptors consume huge time to match a large number of processing feature
points.

4.5.3. Rotation + Zoom

This experiment is designed to evaluate the performance of descriptors on rotated and
zoomed images. As introduced in chapter 3, some descriptors are actually not rotation
or scale invariant. Figures 4.8 shows the test image sequences. Both sequences involve
substantial rotation and scale changes. Comparing the two sequences, there are more
features on the Boat images than on the Bark images.

Keypoints The following table 4.1 summarizes the number of detected feature keypoints in
the query image, the number of correspondences and correct matches found after RANSAC.
In the Bark sequence, only SIFT, SURF and ORB detect sufficient correct features on the first
image pair, all descriptors show weak ability to find feature matches on these rotated and
zoomed images. Result on the Bark images is relatively better. SURF and BRISK perform
outstanding, even on the fourth image pair they match features successfully. BRIEF and
SU-BRISK are neither rotation invariant nor scale invariant, their poor performance are
expected.

Repeatability The following table 4.16 summarizes the value of Repeatability. In the Bark
sequence, all descriptor perform similarly. None of them has a value over 0.4 . In the Boat
sequence, SIFT and SURF have relatively lower Repeatability value compared to the other
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Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

RZ1-1-2 3520 1268 752 2137 849 477 8554 3403 0

RZ1-1-3 4465 463 0 2129 282 0 11354 1915 0

RZ1-1-4 4518 407 0 2826 192 0 14446 1895 0

RZ1-1-5 4055 383 24 2606 136 0 13946 1321 0

RZ1-1-6 4158 88 0 2721 60 1 15972 809 0

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

RZ1-1-2 702 157 44 100 16 0 504 108 0

RZ1-1-3 702 72 0 247 18 0 989 78 0

RZ1-1-4 702 60 0 907 36 0 2332 163 0

RZ1-1-5 702 43 0 916 23 0 2249 111 0

RZ1-1-6 702 17 0 1335 11 0 3159 49 0

Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

RZ2-1-2 7293 3656 2236 5738 3109 1755 20979 14309 2762

RZ2-1-3 5517 2422 1579 3989 1751 650 17849 9946 0

RZ2-1-4 4575 1321 333 2957 938 367 14161 5220 0

RZ2-1-5 4655 863 0 2657 554 133 11910 3017 0

RZ2-1-6 3602 431 0 2215 240 0 14411 2380 0

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

RZ2-1-2 702 527 415 5197 3485 1995 5233 3482 2410

RZ2-1-3 702 446 273 4150 2540 1303 4205 2557 0

RZ2-1-4 702 238 1 2454 1223 388 2468 1249 0

RZ2-1-5 702 135 0 1813 651 36 1833 668 0

RZ2-1-6 702 57 0 2118 434 0 2115 440 0

Table 4.15.: Results of detected keypoints on Bark and Boat sequence. (Nqry: number of
detected query Keypoints, Ncsp: number of correspondences, Ncrt: number of
correct matches found after RANSAC)
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(a) Repeatability - B (b) Recall - B (c) Efficiency - B

(d) Repeatability - T (e) Recall - T (f) Efficiency - T

(g) Duration - B (h) Speed - B (i) Average Distance - B

(j) Duration - T (k) Speed - T (l) Average Distance - T

Figure 4.7.: Comparison results on Bikes (B) and Trees (T) sequence.

descriptors. Comparing the two sequences, all descriptors perform better on the Boat images
than on the Bark images.

Recall The following table 4.17 summarizes the value of Recall. The low Recall values of
BRIEF and SU-BRISK are expected. In the Boat sequence, SURF and BRISK perform best.
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(a) Bark sequence.

(b) Boat sequence.

Figure 4.8.: Test image sequences for Rotation + Zoom - Bark and Boat sequence.

Comparing the two sequences, all descriptors perform better on the Boat images than on the
Bark images.

Efficiency The following table 4.18 summarizes the value of Efficiency. On most image
pairs, no correct match is found at all. According to the definition of Efficiency, in such case,
no matter how high the value of repeatability is, the value of Efficiency stays 0. Therefore
the result of Efficiency is similar to the result of Recall.
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Repeatability SIFT SURF FAST ORB BRISK AGAST
RZ1-1-2 0.360 0.397 0.398 0.224 0.160 0.214

RZ1-1-3 0.111 0.132 0.194 0.103 0.073 0.079

RZ1-1-4 0.098 0.085 0.192 0.085 0.125 0.164

RZ1-1-5 0.094 0.060 0.134 0.061 0.080 0.112

RZ1-1-6 0.021 0.027 0.082 0.024 0.038 0.049

RZ2-1-2 0.501 0.552 0.749 0.751 0.740 0.727

RZ2-1-3 0.439 0.439 0.557 0.635 0.612 0.608

RZ2-1-4 0.289 0.317 0.369 0.339 0.498 0.506

RZ2-1-5 0.185 0.209 0.253 0.192 0.359 0.364

RZ2-1-6 0.120 0.108 0.165 0.081 0.205 0.208

Table 4.16.: Results of Repeatability on Bark and Boat sequence.

Recall SIFT SURF BRIEF ORB BRISK SU-BRS
RZ1-1-2 0.59 0.562 0 0.280 0 0

RZ1-1-3 0.00 0 0 0 0 0

RZ1-1-4 0.00 0 0 0 0 0

RZ1-1-5 0.06 0 0 0 0 0

RZ1-1-6 0.00 0.017 0 0 0 0

RZ2-1-2 0.612 0.564 0.193 0.787 0.572 0.692

RZ2-1-3 0.652 0.371 0 0.612 0.513 0

RZ2-1-4 0.252 0.391 0 0.004 0.317 0

RZ2-1-5 0 0.240 0 0 0.055 0

RZ2-1-6 0 0 0 0 0 0

Table 4.17.: Results of Recall on Bark and Boat sequence.

Efficiency SIFT SURF BRIEF ORB BRISK SU-BRS
RZ1-1-2 0.214 0.223 0 0.063 0 0

RZ1-1-3 0 0 0 0 0 0

RZ1-1-4 0 0 0 0 0 0

RZ1-1-5 0.006 0 0 0 0 0

RZ1-1-6 0 0.0004 0 0 0 0

RZ2-1-2 0.307 0.312 0.145 0.591 0.424 0.503

RZ2-1-3 0.286 0.163 0 0.389 0.314 0

RZ2-1-4 0.073 0.124 0 0.001 0.158 0

RZ2-1-5 0 0.050 0 0 0.020 0

RZ2-1-6 0 0 0 0 0 0

Table 4.18.: Results of Efficiency on Bark and Boat sequence.
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Duration and Speed The following tables 4.19 and 4.20 summarize the result of Duration
and Speed on the Bark and Boat sequences. The both measure the time consumption. Similar
to the results on the Light 4.5.1and Bikes 4.5.2images, ORB, BRISK and SU-BRISK finish the
matching process in the shortest time and SIFT runs most slowly. Compared to the Bark
sequence, all descriptors require more time on the Boat images, but the time incremental of
BRIEF and ORB is much smaller than other descriptors.

Duration SIFT SURF BRIEF ORB BRISK SU-BRS
RZ1-1-2 11.12 1.81 9.48 0.13 0.03 0.08

RZ1-1-3 11.84 1.83 12.89 0.14 0.04 0.13

RZ1-1-4 12.22 2.07 16.24 0.16 0.09 0.28

RZ1-1-5 11.61 1.99 15.49 0.14 0.09 0.27

RZ1-1-6 11.49 2.02 17.72 0.14 0.13 0.43

RZ2-1-2 25.38 6.18 10.48 0.19 1.18 1.08

RZ2-1-3 20.71 4.75 8.92 0.19 0.98 0.88

RZ2-1-4 18.67 4.05 7.17 0.18 0.67 0.58

RZ2-1-5 18.81 3.85 6.12 0.17 0.52 0.46

RZ2-1-6 16.87 3.42 7.37 0.17 0.59 0.50

Table 4.19.: Results of Duration on Bark and Boat sequence.

Speed SIFT SURF BRIEF ORB BRISK SU-BRS
RZ1-1-2 1.448 0.412 0.514 0.095 0.077 0.051

RZ1-1-3 1.372 0.418 0.607 0.098 0.079 0.065

RZ1-1-4 1.408 0.407 0.668 0.113 0.077 0.084

RZ1-1-5 1.413 0.410 0.650 0.101 0.078 0.083

RZ1-1-6 1.381 0.407 0.685 0.102 0.081 0.104

RZ2-1-2 1.677 0.543 0.262 0.138 0.119 0.108

RZ2-1-3 1.551 0.494 0.242 0.132 0.110 0.098

RZ2-1-4 1.505 0.472 0.216 0.130 0.093 0.080

RZ2-1-5 1.506 0.464 0.197 0.123 0.080 0.069

RZ2-1-6 1.475 0.436 0.220 0.123 0.086 0.073

Table 4.20.: Results of Speed on Bark and Boat sequence.

Average Distance The following table 4.21 summarizes the results of average Distance.
Although there are only several successful matching result in the table, according to these
matches, the result of SIFT features is still more accurate than other descriptors.

Summary Figure 4.9 shows the visualized comparison results. In conclusion, under the
rotation and scale changes, image matching process becomes more difficult. The property of
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4. Descriptor comparison

avg. Distance SIFT SURF BRIEF ORB BRISK SU-BRS
RZ1-1-2 0.794 1.271 nan 1.343 nan nan
RZ1-1-3 nan nan nan nan nan nan
RZ1-1-4 nan nan nan nan nan nan
RZ1-1-5 1.487 nan nan nan nan nan
RZ1-1-6 nan 0.077 nan nan nan nan
RZ2-1-2 0.815 1.499 1.698 1.035 1.133 1.303

RZ2-1-3 0.688 1.712 nan 1.094 1.145 nan
RZ2-1-4 1.792 1.598 nan 0.028 1.632 nan
RZ2-1-5 nan 1.746 nan nan 1.587 nan
RZ2-1-6 nan nan nan nan nan nan

Table 4.21.: Results of average Distance on Bark and Boat sequence.

rotation and scale variant by BRIEF and SU-BRISK descriptors appearances immediately in
this case. Among the 4 rotation and scale invariant descriptors, SURF and BRISK perform
better than SIFT and ORB in this experiment. With regards to the time consumption, using
the binary descriptor ORB and BRISK brings significantly more advantages than vector
descriptors SIFT and SURF.

4.5.4. Viewpoint change

In a mobile VO system, camera may often capture images from different viewpoints or
camera angles. This section evaluates the performance of the matching process under the
condition of viewpoint change. Figures 4.10 shows the two test image sequences. Both
sequences involve substantial view angle changes. And since both scenes are plane, the
homograhy can still be used to compute the ground truth in this case.

Keypoints The following table 4.1 summarizes the number of detected feature keypoints in
the query image, the number of correspondences and correct matches found after RANSAC.
On the Graffiti images, all descriptors perform poorly on the last three image pairs, only ORB
finds 24 correct matches on the image pair 1|4, other descriptors fail to match the features
successfully on these images. On the Wall images, the number of features is increased
significantly compared to the Graffiti images. Particularly FAST (detector for BRIEF) detects
more than 25000 feature points on the first five images, and BRIEF finds more than 20000

correct matches on the first image pair. Even on the last image pair, which is much more
difficult to match because of the substantial view angle change, more than 200 features
are matched successfully by BRIEF, which is sufficient for the motion estimation. With the
exception of ORB, all descriptors extract much more feature points on the Wall images than
on the Graffiti images, and meanwhile more correct matches are found. The reason may be
the similarity of the features. Unlike distinct and unique pattern in the Graffiti images, the
texture of the Wall images is less structured and more repetitive, many features have similar
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4.5. Results

(a) Repeatability - K (b) Recall - K (c) Efficiency - K

(d) Repeatability - T (e) Recall - T (f) Efficiency - T

(g) Duration - K (h) Speed - K (i) Average Distance - K

(j) Duration - T (k) Speed - T (l) Average Distance - T

Figure 4.9.: Comparison results on Bark (K) and Boat (T) sequence.

Harris corner measure, after sorting only 702 keypoints remain. Some good features, which
may be more suitable for the matching process, are filtered out.

Repeatability The following table 4.23 summarizes the value of Repeatability . There is no
obvious difference at Repeatability metric between seven feature detectors. Comparing the
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Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

VP1-1-2 3172 1197 925 3536 1512 963 6801 3493 147

VP1-1-3 3488 941 531 3831 979 303 7204 3036 0

VP1-1-4 3616 697 0 3498 619 0 8818 2831 0

VP1-1-5 3825 379 0 4163 343 0 9039 1806 0

VP1-1-6 4433 279 0 3610 250 0 12301 1688 0

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

VP1-1-2 702 502 374 1261 638 492 1685 858 392

VP1-1-3 702 369 155 1415 581 95 1976 789 32

VP1-1-4 702 306 24 1405 413 0 2065 606 0

VP1-1-5 702 133 0 1498 252 0 2128 381 0

VP1-1-6 702 99 0 1811 181 0 2921 295 0

Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

VP2-1-2 9690 5447 4225 5956 4335 3063 27704 24774 21407

VP2-1-3 9619 4947 3591 5754 3806 2379 26384 22776 18454

VP2-1-4 9255 3628 2152 5816 2664 1115 27751 19573 9588

VP2-1-5 9687 2980 479 5709 1858 13 27321 17383 3783

VP2-1-6 9601 2035 0 5393 1119 1 27181 13771 214

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

VP2-1-2 702 463 311 1753 1400 933 1749 1379 1329

VP2-1-3 702 435 263 1627 1231 695 1634 1213 1169

VP2-1-4 702 277 123 1862 975 425 1887 954 808

VP2-1-5 702 164 1 1900 735 53 1920 726 436

VP2-1-6 702 82 0 2121 472 0 2130 469 7

Table 4.22.: Results of detected keypoints on Graffiti and Wall sequence. (Nqry: number of
detected query Keypoints, Ncsp: number of correspondences, Ncrt: number of
correct matches found after RANSAC)
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4.5. Results

(a) Graffiti sequence.

(b) Wall sequence.

Figure 4.10.: Test image sequences for viewpoint change - Graffiti and Wall sequence.

two sequences, Repeatability value for each detector on the Wall images is better than this
on the Graffiti images with the only exception of ORB, which performs slightly worse on the
Wall images than on the Graffiti images.

Recall The following table 4.24 summarizes the value of Recall . On the Graffiti images,
ORB obtains the highest Recall value on the first three image pairs. Almost all Recall values
on the last two image pairs are 0, because no correct matches are found on these images. On
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4. Descriptor comparison

Repeatability SIFT SURF FAST ORB BRISK AGAST
VP1-1-2 0.435 0.472 0.575 0.715 0.690 0.685

VP1-1-3 0.342 0.306 0.500 0.526 0.628 0.630

VP1-1-4 0.254 0.193 0.466 0.436 0.446 0.484

VP1-1-5 0.138 0.107 0.297 0.189 0.272 0.304

VP1-1-6 0.101 0.078 0.278 0.141 0.196 0.235

VP2-1-2 0.651 0.728 0.894 0.660 0.799 0.788

VP2-1-3 0.591 0.661 0.863 0.620 0.757 0.742

VP2-1-4 0.433 0.458 0.705 0.395 0.524 0.506

VP2-1-5 0.356 0.325 0.636 0.234 0.387 0.378

VP2-1-6 0.243 0.207 0.507 0.117 0.223 0.220

Table 4.23.: Results of repeatability on the Graffiti and Wall sequences.

the Wall sequence, all descriptors obtain a high Recall value on the first three image pairs,
BRIEF and SU-BRISK descriptor perform best, even on the last image pair, they have a Recall
value over 0.015. Comparing the two sequences, Recall values on the Wall images are better
than this on the Graffiti images.

Recall SIFT SURF BRIEF ORB BRISK SU-BRS
VP1-1-2 0.773 0.637 0.042 0.745 0.771 0.457

VP1-1-3 0.564 0.310 0 0.420 0.164 0.041

VP1-1-4 0 0 0 0.078 0 0

VP1-1-5 0 0 0 0 0 0

VP1-1-6 0 0 0 0 0 0

VP2-1-2 0.776 0.707 0.864 0.672 0.666 0.964

VP2-1-3 0.726 0.625 0.810 0.605 0.565 0.964

VP2-1-4 0.593 0.419 0.490 0.444 0.436 0.847

VP2-1-5 0.161 0.007 0.218 0.006 0.072 0.601

VP2-1-6 0 0.001 0.016 0 0 0.015

Table 4.24.: Results of Recall on Graffiti and Wall sequence.

Efficiency The following table 4.25 summarizes the value of Efficiency . This result is similar
to the Recall metric, BRIEF and SU-BRISK have the best performance.

Duration and Speed The following tables 4.26 and 4.27 summarize the result of time
measure - Duration and Speed . The time advantage of using binary description is already
discussed in section 4.5.3.
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Efficiency SIFT SURF BRIEF ORB BRISK SU-BRS
VP1-1-2 0.336 0.301 0.024 0.533 0.532 0.313

VP1-1-3 0.193 0.095 0 0.221 0.103 0.026

VP1-1-4 0 0 0 0.034 0 0

VP1-1-5 0 0 0 0 0 0.000

VP1-1-6 0 0 0 0 0 0

VP2-1-2 0.505 0.514 0.773 0.443 0.532 0.760

VP2-1-3 0.429 0.413 0.699 0.375 0.427 0.715

VP2-1-4 0.257 0.192 0.346 0.175 0.228 0.428

VP2-1-5 0.057 0.002 0.138 0.001 0.028 0.227

VP2-1-6 0 0.0002 0.008 0 0 0.003

Table 4.25.: Results of Efficiency on Graffiti and Wall sequence.

Duration SIFT SURF BRIEF ORB BRISK SU-BRS
VP1-1-2 8.72 3.85 6.03 0.15 0.42 0.26

VP1-1-3 8.82 4.54 5.76 0.15 0.54 0.31

VP1-1-4 9.13 3.38 7.14 0.16 0.46 0.31

VP1-1-5 9.80 3.75 8.04 0.16 0.61 0.36

VP1-1-6 11.57 3.92 10.09 0.16 0.69 0.77

VP2-1-2 34.07 7.22 26.50 0.24 0.41 0.31

VP2-1-3 34.77 7.00 25.13 0.23 0.37 0.30

VP2-1-4 33.63 7.39 26.35 0.23 0.40 0.33

VP2-1-5 34.22 7.12 26.77 0.23 0.40 0.35

VP2-1-6 33.21 6.52 25.89 0.23 0.45 0.39

Table 4.26.: Results of Duration on Graffiti and Wall sequence. (unit: s)

Speed SIFT SURF BRIEF ORB BRISK SU-BRS
VP1-1-2 1.473 0.571 0.468 0.106 0.192 0.088

VP1-1-3 1.415 0.645 0.434 0.109 0.230 0.095

VP1-1-4 1.434 0.504 0.479 0.112 0.199 0.095

VP1-1-5 1.490 0.509 0.532 0.112 0.254 0.108

VP1-1-6 1.611 0.575 0.549 0.111 0.252 0.186

VP2-1-2 1.887 0.551 0.410 0.169 0.083 0.064

VP2-1-3 1.932 0.542 0.397 0.167 0.077 0.062

VP2-1-4 1.908 0.571 0.407 0.164 0.079 0.065

VP2-1-5 1.895 0.554 0.417 0.165 0.079 0.069

VP2-1-6 1.848 0.520 0.404 0.164 0.085 0.073

Table 4.27.: Results of Speed on Graffiti and Wall sequence. (unit: ms)
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4. Descriptor comparison

Average Distance The following table 4.28 summarizes the value of average Distance . As
in the previous experiments, SIFT has the smallest position error.

avg. Distance SIFT SURF BRIEF ORB BRISK SU-BRS
VP1-1-2 0.870 1.425 1.784 1.051 0.860 1.107

VP1-1-3 1.076 1.739 nan 1.286 1.636 1.297

VP1-1-4 nan nan nan 1.587 nan nan
VP1-1-5 nan nan nan nan nan nan
VP1-1-6 nan nan nan nan nan nan
VP2-1-2 0.388 0.760 0.873 0.802 0.618 0.650

VP2-1-3 0.587 1.043 1.016 0.917 0.725 0.794

VP2-1-4 0.775 1.335 1.163 1.016 0.892 0.915

VP2-1-5 1.379 1.411 1.445 0.378 1.635 1.055

VP2-1-6 nan 0.301 1.907 nan nan 1.246

Table 4.28.: Results of average Distance on Graffiti and Wall sequence.

Summary Figure 4.11 shows the visualized comparison results. When the viewpoint or
camera angle are substantial changed, it is hard to match features on the image pair. The
more feature points that are detected, the better the matching results. On Graffiti images,
ORB shows the best performance, the combination of FAST and BRIEF can only find few
correct matches on the first image pair. But on Wall images, BRIEF and SU-BRISK show
outstanding performance. Comparing the time consumption among this three descriptors,
ORB and SU-BRISK run faster than BRIEF.

4.5.5. JPEG compression

In some case, image compression is required in the post-processing. Although we will in the
following assume that VO applications do not involve this step, it is included in the program
for comparison purpose. Figures 4.12 shows the test image sequence.

Keypoints The following table 4.1 summarizes the number of detected feature keypoints in
the query image, the number of correspondences and correct matches found after RANSAC.
Same as the results on previous image sequences, the combination of FAST and BRIEF
detects the most number of features, correspondences and correct matches. All descriptors
find some correct matches successfully on all six image pairs.

Repeatability The following table 4.30 summarizes the value of Repeatability on this image
sequence. FAST and ORB detector perform better than other detectors, even on the worst
image pair 1|6, the Repeatability values retain above 0.75. SIFT detector performs poorly on
this sequence.
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4.5. Results

(a) Repeatability - G (b) Recall - G (c) Efficiency - G

(d) Repeatability - W (e) Recall - W (f) Efficiency - W

(g) Duration - G (h) Speed - G (i) Average Distance - G

(j) Duration - W (k) Speed - W (l) Average Distance - W

Figure 4.11.: Comparison results on Graffiti (G) and Wall (W) sequence.

Recall The following table 4.31 summarizes the value of Recall on this sequence. With the
only exception of SIFT descriptor, all descriptors show outstanding performance on this
metric. And among all six descriptors, SU-BRISK descriptor performs best, the Recall value
on the first three image pairs exceeds 0.9.
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Keyp.
SIFT SURF BRIEF

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

CMP-1-2 5732 3132 2461 3898 3579 3130 18757 17313 16193

CMP-1-3 6795 3063 2052 3888 3329 2813 17882 16158 14874

CMP-1-4 6626 2693 1509 3812 2990 2325 14321 12706 11176

CMP-1-5 4539 1873 794 3595 2371 1503 8423 7461 5927

CMP-1-6 2722 1124 145 3197 1728 957 3151 2806 2090

Keyp.
ORB BRISK SU-BRS

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

CMP-1-2 702 681 642 3760 3361 3126 6013 5286 5179

CMP-1-3 702 667 603 3640 3103 2778 5921 4919 4757

CMP-1-4 702 662 575 3539 2784 2281 5669 4335 4109

CMP-1-5 702 602 456 3209 2208 1492 4748 3359 3000

CMP-1-6 702 528 355 3143 1823 894 6870 3446 2232

Table 4.29.: Results of detected keypoints on Jpg sequence. (Nqry: number of detected query
Keypoints, Ncsp: number of correspondences, Ncrt: number of correct matches
found after RANSAC)

Repeatability SIFT SURF FAST ORB BRISK AGAST
CMP-1-2 0.694 0.918 0.923 0.970 0.894 0.879

CMP-1-3 0.679 0.856 0.904 0.950 0.852 0.831

CMP-1-4 0.597 0.784 0.887 0.943 0.787 0.765

CMP-1-5 0.415 0.660 0.886 0.858 0.688 0.707

CMP-1-6 0.413 0.541 0.891 0.752 0.580 0.541

Table 4.30.: Results of Repeatability on Jpg sequence.

Recall SIFT SURF BRIEF ORB BRISK SU-BRS
CMP-1-2 0.786 0.875 0.935 0.943 0.930 0.980

CMP-1-3 0.670 0.845 0.921 0.904 0.895 0.967

CMP-1-4 0.560 0.778 0.880 0.869 0.819 0.948

CMP-1-5 0.424 0.634 0.794 0.757 0.676 0.893

CMP-1-6 0.129 0.554 0.745 0.672 0.490 0.648

Table 4.31.: Results of Recall on Jpg sequence.
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4.5. Results

Figure 4.12.: Test image sequences for JPEG compression - Jpg sequence.

Efficiency The following table 4.32 summarizes the value of Efficiency on this sequence.
Combining the both Repeatability and Recall metrics, SIFT shows the worst performance,
its result is much lower than any other descriptors, on the last image pair the value is only
0.053. ORB and BRIEF perform best among all descriptors on this quality measure.

Efficiency SIFT SURF BRIEF ORB BRISK SU-BRS
CMP-1-2 0.545 0.803 0.863 0.915 0.831 0.861

CMP-1-3 0.455 0.724 0.832 0.859 0.763 0.803

CMP-1-4 0.334 0.610 0.780 0.819 0.645 0.725

CMP-1-5 0.176 0.418 0.704 0.650 0.465 0.632

CMP-1-6 0.053 0.299 0.663 0.506 0.284 0.351

Table 4.32.: Results of Efficiency on Jpg sequence.

Duration The following table 4.33 summarizes the results of Duration on this image se-
quence. FAST (detector used for BRIEF) detects a lot more features than any other detectors.
On the first image pair, more than 17000 feature points are found by SIFT, the processing
time of 40s for BRIEF features is far too long. Comparing the result of BRIEF on the Boat
images in section 4.5.3 (Keypoints) and section 4.5.3 (Duration), BRIEF finished the matching
process for more than 20000 features in 10.48 seconds on the Boat image. Among all six
descriptors, ORB requires the shortest time, only 0.18 second for each image pair.
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Duration SIFT SURF BRIEF ORB BRISK SU-BRS
CMP-1-2 17.71 3.87 40.16 0.18 4.84 4.46

CMP-1-3 17.37 4.31 38.33 0.18 4.49 3.93

CMP-1-4 16.12 3.78 32.18 0.18 4.47 3.82

CMP-1-5 13.33 3.73 24.05 0.18 4.07 3.20

CMP-1-6 10.68 3.40 7.32 0.17 3.46 4.64

Table 4.33.: Results of Duration on Jpg sequence.

Speed The following table 4.34 summarizes the value of Speed on this sequence. SIFT re-
quires around 1.5 second to process one single feature, much more than any other approaches.
ORB runs fastest, requires only 0.12 second for each feature.

Speed SIFT SURF BRIEF ORB BRISK SU-BRS
CMP-1-2 1.728 0.495 1.066 0.131 0.609 0.360

CMP-1-3 1.536 0.552 1.042 0.128 0.574 0.320

CMP-1-4 1.447 0.488 0.968 0.126 0.579 0.318

CMP-1-5 1.473 0.496 0.880 0.125 0.550 0.288

CMP-1-6 1.475 0.477 0.332 0.123 0.472 0.351

Table 4.34.: Results of Speed on Jpg sequence.

Average Distance The following table 4.35 summarizes the result of average Distance on
this sequence. The matching result of ORB is most accurate, even slightly better than SIFT,
which has the lowest average Distance on all previous image sequences. The position error
of BRIEF is significantly bigger than other descriptors.

avg. Distance SIFT SURF BRIEF ORB BRISK SU-BRS
CMP-1-2 0.280 0.314 0.945 0.245 0.462 0.649

CMP-1-3 0.433 0.476 1.103 0.390 0.574 0.800

CMP-1-4 0.650 0.729 1.324 0.575 0.765 1.027

CMP-1-5 0.983 0.940 1.437 0.814 0.988 1.278

CMP-1-6 1.395 1.215 1.510 1.137 1.229 1.508

Table 4.35.: Results of average Distance on Jpg sequence.

Summary Figure 4.9 shows the visualized comparison results on this sequence. All descrip-
tors perform well on this sequence. ORB shows the best performance on almost all metrics,
not only the quality measures but also on time consumption and error evaluation metrics.
BRIEF performs notably worse than any other approaches on this sequence.
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4.6. Conclusion

(a) Repeatability (b) Recall (c) Efficiency

(d) Duration (e) Speed (f) Average Distance

Figure 4.13.: Comparison results on Jpg sequence.

4.6. Conclusion

Under different conditions the relative performance of the descriptors is quite different.

Illumination Change BRIEF obtains the highest value on quality measure, but because of a
large amount of detected keypoints, loses the superiority on time consumption. Since there is
no rotation and scale change in the data set, the rotation and scale invariant ORB and BRISK
are at a disadvantage, and are expected to perform worse than BRIEF and SU-BRISK. The
time advantage of using binary description comparing to vector description is demonstrated
vividly on this image sequence.

Blur BRIEF obtains the highest value on Repeatability, Recall and Efficiency metrics. ORB
demonstrates the speed benefits through limiting the maximal number of detected features,
while the other descriptors consume huge time to match a large number of processing feature
points.

Rotation and Zoom Under rotation and scale change, the image matching process becomes
more difficult. BRIEF and SU-BRISK descriptors show their nature of rotation and scale
variant immediately. Among the 4 rotation and scale invariant descriptors, SURF and BRISK
perform better than SIFT and ORB. With regards to the time consumption, using a binary
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4. Descriptor comparison

descriptor such as ORB and BRISK provides significant advantage over the vector descriptors
SIFT and SURF.

Viewpoint Change When the viewpoint or camera angle is substantially changed, it is
hard to match features between a pair of images. ORB, BRIEF and SU-BRISK show the
outstanding performance in this case. Comparing the time consumption among these three
descriptors, ORB and SU-BRISK run faster than BRIEF.

JPEG Compression ORB shows the best performance when the test images are compressed.
In contras, BRIEF does not show the outstanding performance like in the previous experi-
ments of illumination, blur and viewpoint changes, it performs obviously worse than any
other approaches in this case.

Descriptor suggestion for VO-Application Considering all conclusions obtained in this
chapter, ORB and BRISK are the best choice for a mobile VO-System. Disregarding JPEG
compression, both perform well under all aforementioned conditions of change. If it is
expected in advance that the image sequence has no rotation and scale deformation at all,
ORB and SU-BRISK are suggested. In the case of the fixed camera position, BRIEF and
SU-BRISK are the first choice.
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5. Experimental evaluation

In the last chapter several experiments are finished to compare the performance of feature
descriptors under different conditions. Now the focus is drifted to improvement, trying to
enhance the performance of image matching process. Three experiments are designed for
this purpose: using lens with different focal length and saving image with different bit depth,
adjusting the parameters and applying cross check filter. After that, another experiment is
executed to analyze the time consumption of each step in image matching process.

5.1. Varying focal length and bit depth

This experiment is trying to improve the image quality by using lens with varying focal
length and saving in varying bit depth before image processing. In this experiment, only
4 descriptors are tested, they are SIFT, SURF, BRIEF and ORB. All test images used are
captured local in a office. There are three image sequences:

1. 4-2mm : camera uses lens with 4.2 mm focal length and images are saved with 8 bit
depth.

2. 4-2mm-12bit sequence : camera uses lens with 4.2 mm focal length and images are
saved with 12 bit depth.

3. 6mm sequence : camera uses lens with 6 mm focal length and images are saved with 8

bit depth.

Figure 5.1 shows the first and third test image sequence. Same as the dataset used in last
chapter, each sequence contains 6 images. Because of the environment of this experiment, it
is hard to capture the images with gradually reducing illumination. The lighting condition
of the first three images are better than the last three one. The first image is used as the
reference image.

Keypoints The following table 5.1 summarizes the number of detected feature keypoints
in query image, correspondences and correct matches found after RANSAC on three test
sequences. Because of the poor illumination condition on the last three image pairs in each
sequence, the number of detect features are obviously reduced compare to the first two image
pairs. Comparing the 4-2mm and 4-2-mm-12-bit sequence, after increasing the bit depth, the
number of detected and matches features by SIFT, SURF and BRIEF is also increased, but
this number of ORB stays almost the same. Comparing the 4-2mm and 6mm sequence, the
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(a) 4.2mm

(b) 6mm

Figure 5.1.: Test images of 4-2mm and 6mm sequence.

result of SIFT, SURF and BRIEF does not change a lot. At ORB descriptor, with increasing of
focal length, the number of detected and matches features are significantly increased on the
first two image pairs but decreased on the last three image pairs.

Repeatability The following table 5.2 summarizes the value of Repeatability in this experi-
ment and the figure 5.2 visualizes this result. Because of the poor illumination condition in
last three image pairs in each sequence, the detectors shows worse performance on last three
image pairs than the first two image pairs. Comparing the 4-2mm and 4-2-mm-12-bit sequence,
changing of bit depth has almost no influence on the Repeatability value. Comparing the
the 4-2mm and 6mm sequence, with increasing of focal length, the Repeatability value is
obviously increased on the the last three image pairs with poor illumination.
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5.1. Varying focal length and bit depth

Keypoints
SIFT SURF BRIEF ORB

Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

4-2mm-1-2 173 155 149 281 269 266 440 374 365 289 282 267

4-2mm-1-3 169 138 130 260 236 222 410 354 334 274 262 236

4-2mm-1-4 14 6 5 31 20 16 57 38 25 39 25 14

4-2mm-1-5 19 7 4 30 22 18 55 39 27 38 23 13

4-2mm-1-6 15 6 5 28 20 16 55 39 25 38 24 15

4-2mm-12bit-1-2 165 138 125 264 250 234 418 356 334 277 264 237

4-2mm-12bit-1-3 162 147 138 282 269 257 423 377 365 299 291 280

4-2mm-12bit-1-4 15 7 5 25 18 13 53 41 30 34 24 13

4-2mm-12bit-1-5 13 6 4 29 19 15 52 40 28 39 23 7

4-2mm-12bit-1-6 13 6 3 27 17 14 57 42 34 38 25 16

6mm-1-2 187 161 154 295 271 248 485 402 347 360 339 284

6mm-1-3 244 221 214 365 341 327 512 441 424 415 405 374

6mm-1-4 16 12 12 28 24 23 54 44 38 16 14 12

6mm-1-5 17 13 13 28 24 21 52 43 37 19 16 12

6mm-1-6 19 12 12 28 24 22 51 40 34 18 16 13

Table 5.1.: Results of detected keypoints using varying focal length and bit depth. (Nqry:
number of detected query Keypoints, Ncsp: number of correspondences, Ncrt:
number of correct matches found after RANSAC)

Repeatability SIFT SURF BRIEF ORB
4-2mm-1-2 0.896 0.957 0.856 0.976

4-2mm-1-3 0.817 0.908 0.863 0.956

4-2mm-1-4 0.429 0.645 0.667 0.641

4-2mm-1-5 0.368 0.733 0.709 0.605

4-2mm-1-6 0.400 0.714 0.709 0.632

4-2mm-12bit-1-2 0.836 0.947 0.852 0.953

4-2mm-12bit-1-3 0.907 0.954 0.891 0.973

4-2mm-12bit-1-4 0.467 0.720 0.774 0.706

4-2mm-12bit-1-5 0.462 0.655 0.769 0.590

4-2mm-12bit-1-6 0.462 0.630 0.737 0.658

6mm-1-2 0.861 0.919 0.829 0.942

6mm-1-3 0.906 0.939 0.861 0.976

6mm-1-4 0.750 0.857 0.815 0.875

6mm-1-5 0.765 0.857 0.827 0.842

6mm-1-6 0.632 0.857 0.784 0.889

Table 5.2.: Results of Repeatability using varying focal length and bit depth
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5. Experimental evaluation

(a) 8 bit vs 12 bit

(b) 4.2 mm vs 6 mm

Figure 5.2.: Comparison results of Repeatability using varying focal length and bit depth.

Recall The following table 5.3 summarizes the value of Recall in this experiment and
Figure 5.3 visualizes this result. In each sequence, the Recall value on the first two image
pairs is higher then this on the last three image pairs. The only exception is SIFT on 6mm
sequence, where SIFT finds all correspondences successfully on the last three image pairs.
Comparing the 4-2mm and 4-2-mm-12-bit sequence, there is no big difference on Recall value.
Comparing the the 4-2mm and 6mm sequence, with increasing of focal length, the Recall
value is obviously increased on the last three image pairs with poor illumination. But there
is no significantly change on the first two image pairs.

Duration The following table 5.4 summarizes the result of Duration in this experiment and
the figure 5.4 visualizes this result. Comparing the 4-2mm and 4-2-mm-12-bit sequence, there
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5.2. Varying T in ORB

Recall SIFT SURF BRIEF ORB
4-2mm-1-2 0.961 0.989 0.976 0.947

4-2mm-1-3 0.942 0.941 0.944 0.901

4-2mm-1-4 0.833 0.800 0.658 0.560

4-2mm-1-5 0.571 0.818 0.692 0.565

4-2mm-1-6 0.833 0.800 0.641 0.625

4-2mm-12bit-1-2 0.906 0.936 0.938 0.898

4-2mm-12bit-1-3 0.939 0.955 0.968 0.962

4-2mm-12bit-1-4 0.714 0.722 0.732 0.542

4-2mm-12bit-1-5 0.667 0.789 0.700 0.304

4-2mm-12bit-1-6 0.500 0.824 0.810 0.640

6mm-1-2 0.957 0.915 0.863 0.838

6mm-1-3 0.968 0.959 0.961 0.923

6mm-1-4 1 0.958 0.864 0.857

6mm-1-5 1 0.875 0.860 0.750

6mm-1-6 1 0.917 0.850 0.813

Table 5.3.: Results of Recall using varying focal length and bit depth

is no significant difference. Comparing the the 4-2mm and 6mm sequence, with increasing of
focal length, all descriptor require more time to finish the image matching process on the the
last three image pairs.

Conclusion Saving the image in more bit depth (from 8 bit to 12 bit), the number of
detected feature is reduced, but it does not help to improve the performance for the whole
image matching process. Using lens with larger focal length (from 4.2mm to 6 mm),
the performance under strong illumination has no change, the performance under weak
illumination is significantly enhanced.

5.2. Varying T in ORB

ORB has showed a outstanding performance in the last chapter, particularly when rotation,
scale and viewpoint change is involved. This experiment is trying to improve the ORB
matching process by adjusting the parameter T (the threshold used in FAST detection stage,
see section 3.1.5). The image sequence used in this experiment is 4-2mm sequence, which
comes from the previous focal length and bit depth experiment. The default value of T is 20,
the test interval of T is from 5 to 40, and takes one experimental point every 5 value.

Keypoints The following table 5.5 summarizes the number of detected feature keypoints
in query image, correspondences and correct matches found after RANSAC with different
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5. Experimental evaluation

(a) 8 bit vs 12 bit

(b) 4.2 mm vs 6 mm

Figure 5.3.: Visualized Recall results using varying focal length and bit depth

value of T. Note that, With increasing T, the number of detected ORB features is reduced. On
the image pair 1|2, when t=5 and t=10 the number of detected feature point on query image
is 702, which is the keypoints limitation of ORB. It means that there could be more than 702

features on the image, after sorting based on Harris corner measure only 702 features are
retained. On the last three image pairs, when T > 30, almost no correct matches are found.

Repeatability The following table 5.6 summarizes the value of Repeatability in this experi-
ment and the figure 5.5 visualizes this result. The Repeatability value change on the first two
image pairs is less evident than this on the last three image pairs. On the last three image
pairs, the general tend of Repeatability is to increase until t = 10, then decrease until t = 20,
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5.2. Varying T in ORB

Duration SIFT SURF BRIEF ORB
4-2mm-1-2 1.710 0.544 0.046 0.078

4-2mm-1-3 1.694 0.544 0.047 0.062

4-2mm-1-4 1.570 0.513 0.016 0.062

4-2mm-1-5 1.616 0.497 0.015 0.047

4-2mm-1-6 1.647 0.482 0.015 0.063

4-2mm-12bit-1-2 1.741 0.560 0.046 0.062

4-2mm-12bit-1-3 1.741 0.544 0.047 0.078

4-2mm-12bit-1-4 1.570 0.498 0.016 0.062

4-2mm-12bit-1-5 1.601 0.482 0.031 0.062

4-2mm-12bit-1-6 1.601 0.482 0.031 0.062

6mm-1-2 1.835 0.577 0.063 0.093

6mm-1-3 1.881 0.639 0.062 0.094

6mm-1-4 1.725 0.577 0.031 0.062

6mm-1-5 1.819 0.608 0.032 0.078

6mm-1-6 1.808 0.577 0.031 0.063

Table 5.4.: Results of Duration using varying focal length and bit depth

IDA-1-2 IDA-1-3 IDA-1-4 IDA-1-5 IDA-1-6
Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt Nqry Ncsp Ncrt

t=5 702 681 634 702 667 592 400 233 110 414 235 109 396 232 114

t=10 702 677 631 702 663 590 133 105 62 132 100 58 128 100 58

t=15 564 550 514 534 514 452 73 51 29 70 51 34 68 48 30

t=20 289 282 267 274 262 236 39 25 14 38 23 13 38 24 15

t=25 176 173 165 162 158 143 22 18 6 16 14 7 21 18 11

t=30 113 108 102 101 98 89 12 11 1 12 11 1 14 13 4

t=35 57 56 54 46 42 40 8 7 1 8 7 0 8 7 1

t=40 28 27 27 19 19 19 6 6 0 6 6 0 6 6 0

Table 5.5.: Results of detected keypoints with varying T in ORB.

then increase again until the end. The local minimal point appears at t = 20, exactly the
default value of T used in ORB.

Recall The following table 5.7 summarizes the value of Recall in this experiment and Figure
5.6 visualizes this result. The Recall value changes only slightly on the first two image pairs.
On the last three image pairs, with increasing value of T, the general tend of Recall is to
increase first at small value of T and than to decrease at large value of T. The inflection point
appears between t=15 and t=25. And the maximal value of Recall appears between t=10 and
t=20.
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5. Experimental evaluation

(a) 8 bit vs 12 bit

(b) 4.2 mm vs 6 mm

Figure 5.4.: Visualized Duration results using varying focal length and bit depth

Duration The following table 5.8 summarizes the result of Duration in this experiment
and Figure 5.7 visualizes this result. With increasing of T, the processing time is gradually
reduced. After t=30, the change becomes slightly.

Conclusion Under the condition of strong illumination, increasing the value of T makes
the detected features more cornerness and robustness, therefore the possibility to find the
correct matches is increased. Under the condition of inadequate illumination, increasing the
value of T causes less points being detected as features, in worst case there are no enough
feature for matching process. Actually T=10 and T=15 are more suitable for this 4-2mm
sequence than T=20. But considering all measures, T=20 is a appropriate default value for
all kind of images.
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5.2. Varying T in ORB

Repeatability IDA-1-2 IDA-1-3 IDA-1-4 IDA-1-5 IDA-1-6
t=5 0.970 0.950 0.583 0.568 0.586

t=10 0.964 0.944 0.789 0.758 0.781

t=15 0.975 0.963 0.699 0.729 0.706

t=20 0.976 0.956 0.641 0.605 0.632

t=25 0.983 0.975 0.818 0.875 0.857

t=30 0.956 0.970 0.917 0.917 0.929

t=35 0.982 0.913 0.875 0.875 0.875

t=40 0.964 1 1 1 1

Table 5.6.: Results of Repeatability with varying T in ORB.

Recall IDA-1-2 IDA-1-3 IDA-1-4 IDA-1-5 IDA-1-6
t=5 0.931 0.888 0.472 0.464 0.491

t=10 0.932 0.890 0.590 0.580 0.580

t=15 0.935 0.879 0.569 0.667 0.625

t=20 0.947 0.901 0.560 0.565 0.625

t=25 0.954 0.905 0.333 0.500 0.611

t=30 0.944 0.908 0.091 0.091 0.308

t=35 0.964 0.952 0.143 0.000 0.143

t=40 1 1 0 0 0

Table 5.7.: Results of Recall with varying T in ORB.

Duration IDA-1-2 IDA-1-3 IDA-1-4 IDA-1-5 IDA-1-6
t=5 0.127 0.134 0.119 0.108 0.110

t=10 0.113 0.125 0.089 0.079 0.093

t=15 0.101 0.097 0.091 0.080 0.079

t=20 0.093 0.098 0.081 0.094 0.095

t=25 0.076 0.090 0.074 0.092 0.086

t=30 0.083 0.089 0.082 0.077 0.078

t=35 0.080 0.088 0.064 0.078 0.079

t=40 0.074 0.085 0.085 0.086 0.083

Table 5.8.: Results of Duration with varying T in ORB.
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5. Experimental evaluation

Figure 5.5.: Results of Repeatability with varying T in ORB.

Figure 5.6.: Results of Recall with varying T in ORB.

5.3. Cross Check filter

Cross Check filter is introduced in section 3.3.1, this experiment is designed to test, if applying
of cross check filter can improve the accuracy of matching result. In this experiment, the
Light image sequence (see figure 4.4) is used. On each image pairs, number of features and
processing are recorded in three situation:
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5.4. Time Consumption

Figure 5.7.: Results of Duration with varying T in ORB.

1. Simple matching without filer.

2. Applying cross check filer, for each query feature return only one best matches

3. Applying cross check filter, for each query feature return 3 nearest matches.

The following table 5.9 summarizes the result of this experiment. Comparing the first
two columns, after applying the cross check filter, the number of correct matches and the
corresponding Recall value are reduced, and the processing time becomes longer. Now
comparing the second and third columns, except the slightly difference on Duration metric,
all results stay the same.

The cross-check algorithm filters some one-way-matches out, the number of accepted
matches is reduced, this affects the RANSAC process. Increasing the number of the returned
nearest matches does not change the result. The double matching process increases the
duration. The test result demonstrates that, in case of matching two static images, cross check
filter does not improve the performance of the whole matching process with RANSAC.

5.4. Time Consumption

Image matching process can be divided into 3 parts: detection, description and matching. In
this experiment, the processing time for each part is individually recorded and compared.
Four feature descriptors are tested: SIFT, SURF, BRIEF (uses FAST as feature detector) and
ORB. This experiment uses the Boat sequence (see figure 4.8) from last chapter.
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5. Experimental evaluation

None Filter Cross Check (knn=1) Cross Check (knn=3)
Nqry Ncsp Ncrt R T Nqry Ncsp Ncrt R T Nqry Ncsp Ncrt R T

SIFT 1770 1154 967 0.838 5.98 1770 1154 930 0.806 6.79 1770 1154 930 0.806 6.78

SURF 2403 2046 1714 0.838 2.30 2403 2046 1448 0.708 2.98 2403 2046 1448 0.708 2.96

BRIEF 7634 6855 6301 0.919 2.04 7634 6855 5413 0.790 4.08 7634 6855 5413 0.790 3.90

ORB 702 527 407 0.772 0.13 702 527 314 0.596 0.14 702 527 314 0.596 0.14

AGAST 2368 2156 1936 0.898 0.39 2368 2156 1734 0.804 0.65 2368 2156 1734 0.804 0.64

BRISK 1001 804 577 0.718 0.15 1001 804 493 0.613 0.20 1001 804 493 0.613 0.20

SU-BRS 1027 808 779 0.964 0.12 1027 808 578 0.715 0.17 1027 808 578 0.715 0.17

Table 5.9.: Results of cross-check-filter experiment. (Nqry: number of detected query Key-
points, Ncsp: number of correspondences, Ncrt: number of correct matches found
after RANSAC), R: Recall value, T: Duration)

The following table 5.10 summarizes the time of each processing step and the fig-
ure 5.8 visualizes this result. The result is discussed according to different approaches in
details:

• SIFT: the most time-consuming step in SIFT is description, second most time-consuming
step is detection. Because of the high computing complexity SIFT takes the most time
to extract and describe the features. Matching process is finished in quite short time,
the matching algorithms for vector description are efficient.

• SURF: SURF finishes the detection and description in almost equal time. Compared to
SIFT, the processing time is significantly reduced. The matching part is also finished in
quite short time like SIFT.

• BRIEF: BRIEF consumes quite short time in detection and description, but significantly
much more time on matching process. FAST is one of the most efficient feature
detectors, but too many detected feature points leads to the huge time consumption
on matching process, though BRIEF is a binary descriptor, and matching of binary
description is easier and faster than vector description.

• ORB: all three steps in ORB require almost the same time and are finished in quite
short time. Compared to other descriptors tested in this experiment, ORB performs
much better than other three. The speed advantage of using binary description is
clearly demonstrated in this case.
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5.4. Time Consumption

Duration
SIFT SURF BRIEF ORB

det dsp mat det dsp mat det dsp mat det dsp mat
RZ2-1-2 1.81 3.308 0.076 0.748 0.796 0.062 0.046 0.141 7.987 0.062 0.047 0.047

RZ2-1-3 1.669 3.151 0.062 0.718 0.733 0.062 0.031 0.125 6.677 0.063 0.031 0.062

RZ2-1-4 1.638 3.03 0.046 0.702 0.686 0.047 0.031 0.109 5.553 0.062 0.032 0.062

RZ2-1-5 1.607 2.956 0.062 0.686 0.655 0.032 0.031 0.109 4.633 0.078 0.032 0.046

RZ2-1-6 1.528 2.793 0.062 0.671 0.655 0.047 0.031 0.110 3.728 0.062 0.031 0.047

Table 5.10.: Results of time consumption experiment. (det: detection, dsp: description, mat:
matching, unit: s)

Figure 5.8.: Results of time consumption experiment.
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6. Real-time experimentation

After several experiments on static image pairs for comparing the performance of different
feature descriptors, this chapter shows the experimental results on a real-time application.

6.1. Implementation

The Integrating Vision Toolkit (IVT) 1 is a platform-independent open source C++ computer
vision library with an object-oriented architecture. It offers a clean camera interface and a
general camera model, as well as many fast implementations of image processing routines
and mathematic data structures and functions, such like SIFT and Harris-SIFT are avaiable
in IVT. The IVT is compatible with OpenCV, In fact it integrates part of OpenCV functions
by optional wrappers, a class called "IplImageAdaptor" realizes the image format conversion
between the IVT and OpenCV. Since ORB and BRISK show outstanding performances in the
previous experiments in the chapter 4, it is reasonable to test them with real-time application.
The ORB implementation from OpenCV and BRISK implementation from its developer
based on OpenCV 2 are used in this experiment.

6.2. GUI

The IVT offers also its own multi-platform GUI toolkit, which is used for the implementation
of this real-time experiment. The figure 6.1 shows the main window. It consists of two panels
- control panel and display panel. In the right part of the control panel there is a combo
box to choose the type of feature descriptor, 4 feature descriptors are available here: SIFT,
Harris-SIFT, ORB and BRISK. Three parameters can be set in the left part of the control panel.
The type of parameters changes according to the type of feature descriptor. For instance,
by SIFT the value of "quality threshold", "matching threshold" and "kd-tree leaves" can be
adjusted (see figure 6.1) and when ORB is chosen, the parameters become "t", "number of
feature" and "knn in cross check" (see figure 6.2). The user can also decide, whether RANSAC
applies at the end of the image matching process or not. The matching results is displayed
on the under panel in real-time. The left part of the display panel shows the live streaming
captured by camera or video sequences, the right part show the reference frame, which is

1http://ivt.sourceforge.net/
2http://www.asl.ethz.ch/people/lestefan/personal/BRISK
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6. Real-time experimentation

chosen manually by pressing the button "space". The duration and the number of found
matches are also displayed in GUI.

Figure 6.1.: GUI of the experimental real-time application

6.3. Experimental methodology

At the earlier experiment phase, the application uses the live streaming captured by a camera
as the input. The whole experiment requires one or two people to manipulate, one holds the
camera in hand and moves around, while the other one sets the descriptor and reference
image manually and observes the matching results. In order to enhance the repeatability of
experimental results, the application has been improved to read a pre-recorded video as input
optionally. But the setting of descriptor type, corresponding parameters and the reference
frame remains manually. The videos are taken in both indoor and outdoor environments.
The motion of camera is intended to contain rotation, scale and viewpoints changes.

6.4. Results

6.4.1. Descriptor comparison

The application processes the video sequences frame to frame, only when the whole image
matching process is finished on current frame, the next frame is then read and processed.
This mechanism causes a delayed display, when the entire matching requires longer time
than the frame rate of the video sequence. Display lag is particularly evident on SIFT.
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6.4. Results

Although the Harris-SIFT has optimized some steps of SIFT already, the lag is reduced, it is
still unable to achieve the requirements of real-time application. The processing speed of
ORB and BRISK is quite fast, there is no display lag observed by the naked eyes, the video
sequence plays smoothly.

In matching results aspect, SIFT and Harris-SIFT shows outstanding performance, a con-
siderable number of feature keypoints are detected, and the matching result is accurate
and robust. Particularly after applying RANSAC, the displayed matching pairs are always
correct. Although the ORB and BRISK detect less feature keypoints comparing to SIFT, they
also get the sufficient number of correct matches.

In conclusion, despite the high accuracy and robustness, SIFT and Harris-SIFT are not
suitable for a real-time application because of the long processing time. ORB and BRISK
achieve the real-time requirements and shows a good performance meanwhile.

6.4.2. Cross check filter

During the experiment, an interesting phenomenon is observed: when the number of
detected feature matches falls down to a threshold, many query feature points may match to
one single point in the reference frame (see figure 6.2). They are obviously wrong matches.
In order to prevent such mismatching, a cross check filter is added. The algorithm of cross
check filter is introduced in section 3.3.1. In the GUI, the size of K is allowed to select by
user.

"K = 0" means none filter applied, sample matching. The one-to-many miss matching occurs
sometimes;

"K = 1" represents the using of a cross check filter, and for each query feature only the best
match is returned. After swapping the image pair and matching the features from reference
image to the query image, do the cross check, only when the both features are the best match
to each other, this matches is accepted. With help of cross check filter, the one-to-many
mismatching disappears.

"K = 2, 3, ..." indicates that for one query feature point two or more nearest matches are
returned for cross check. Based to observation, with increasing K the number of successful
matches is slightly reduced, and the processing time is slightly increased. When K > 5, the
matching results and processing time are no longer changed.

6.4.3. Logarithmic camera

The advantage of the logarithmic camera is the less sensitivity to illumination changes.
This advantage is not evident for the slowly sunshine change in outdoor environments,
but in indoor environments with fluorescent lamp, the difference between two adjacent
frames captured by ordinary camera and logarithmic camera are quite obvious. Since the
previous experiment in section 4.5.1 has demonstrated that SIFT, ORB and BRISK features
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6. Real-time experimentation

Figure 6.2.: One-To-Many mismatching in real-time application

show outstanding performance under substantial illumination changes, in this case, it is not
necessary to use logarithmic camera in a real-time application.
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7. Conclusions and Future Work

This thesis represents an introduction and comparison of the most popular feature matching
methods. Three experimental evaluations are done for the comparison purpose.

A performance comparison of different feature descriptors is implemented first. The test
image sequence contain the most common image deformation: illumination changes, blur,
rotation and zoom, viewpoint change and image compression. The results are analyzed in
seven performance metrics: number of Keypoints, Repeatability, Recall, Efficiency, Duration,
Speed and average Distance. Considering all comparison result form chapter 4, ORB and
BRISK are the best choice for a mobile VO-System. They both perform well under all
previously mentioned condition of changes. If it is expected in advance that the image
sequence has no rotation and scale deformation at all, ORB and SU-BRISK are suggested. In
case of a fixed camera position, BRIEF and SU-BRISK are the first choice.

Then the focus is shifted to improvements of the image matching process. Three experiments
are designed for this purpose: using lens with different focal length and saving image with
different bit depth, adjusting the parameters and applying a cross check filter. The test
result has demonstrated: saving the image in more bit depth does not help to improve the
performance for the whole image matching process; using lens with larger focal length,
the performance under strong illumination has no change, the performance under weak
illumination is significantly enhanced; in ORB matching process, T=10 and T=15 are more
suitable for the 4-2mm sequence than the default parameter value T=20. But considering all
measures, T=20 is a appropriate default value for all kind of images; in case of matching two
static images, cross check filter does not improve the performance of the whole matching
process with RANSAC. After that, another experiment is executed to analyze the time
consumption of each step in image matching process.

The last experimental evaluation is intended for the real-time application. Despite the high
accuracy and robustness, SIFT and Harris-SIFT are not suitable for a real-time application
because of the long processing time. ORB and BRISK achieve the real-time requirements
and show a good performance meanwhile. When the number of detected feature matches
falls down to a threshold, many query feature points may match to one single point in the
reference frame. Applying an cross check filter can prevent this one-to-many mismatching.
Logarithmic camera shows no advantage in a real-time application.

Future Work Because of the limitations of the time, there are some unimplemented ideas
and spaces for improvement.
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In the comparison program, all feature descriptors use the default parameter setting, no
adjustment according to the different images and scenes. Section 5.2 has confirmed that
adjusting the parameter T can improve the performance of the ORB features. When all
feature descriptors are adjusted to their optimal performance, the comparison result is more
reasonable and convincing. One directions for the future research could be automatically
adjusting the parameters based on image analysis to achieve the optimal matching result.

In recent years the research field of image matching has rapidly developed, there may
be some new published feature descriptors which have better performance but are not
mentioned In this thesis.

All matching methods discussed in this thesis are applied on whole image. In order to
maintain a more uniform distribution of feature points, the image can be cut into small
segments first, then feature detector is applied on each segment. This idea has been
mentioned in [SF11]. It can ensure that each region of the image contains a sufficient number
of feature points. This applies especially to feature detector producing a limited limited
number of keypoints, such like ORB, which sorts all features based on Harris corner measure
and then return only the top 700 features. In particular scenario it may occur that all 700

points are concentrated in one small area of the image, the advantage of segmentation is
obvious in this case.

For the real-time application, although the experimental repeatability has been enhanced by
reading the pre-recorded video sequences instead of live streaming captured by a camera
as the input, all settings like type of descriptor, value of parameters even the capturing of
reference image are still done manually, it is still impossible to repeat two exactly identical
experiments. If all the manual setting can be automated, the experiment will be stricter.

The matching result of real-time experiment is presented in form of images and real-time
numeric display. All conclusions in section 6.4 were obtained based on observation through
human eyes. It is better to record all data into a file or database first then post-analyze
by computer later. And right now only the number of matches and processing time are
displayed on GUI, more performance matrices and analysis results can be added.

The reference frame should captured automatically. In a real VO-application, the reference
frame may be changed according to the time or under particular conditions. For instance,
update the reference frame in every 5 seconds, or replace the old reference frame once
the number of feature matches falls below a threshold. Instead of matching the features
extracted from reference frame, matching the best features from all previous frames are more
reasonable. A database to store the best feature so far and their descriptions is necessary.
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A. Installation

A.1. CMake

As the build system, CMake has to be installed for the first place. It can be downloaded
from the CMake-homepage 1 .

A.2. OpenCV

1. Download OpenCV-Library from OpenCV-homepage 2.

2. Install it correctly. (see Install Guide here: 3)

3. The ORB implementation is included in OpenCV since version 2.3.0, make sure the
installed version is newer then 2.3.0. The Comparison Program uses OpenCV 2.3.1.,
if the other version of OpenCV is installed, open the CMake-Configure-File ”Find-
OpenCV.cmake” (under the folder "/config") and replace all number ”231” with
corresponding version number.

4. Make sure the path to OpenCV-lib-folder, OpenCV-bin-folder and OpenCV-include-
folder are recorded in system environment.

A.3. CMake Configuration

1. Start CMake-GUI.

2. At the entry ”Source Code”, choose the root-path (not ”/src” !) of the Descriptor
Comparison project.

3. At the entry ”Binaries”, type the path ”{Root-Path}/build”.

4. Click the button ”Configure”, choose the specific IDE and compiler, then click the
button ”Finish”.

1http://www.cmake.org/cmake/resources/software.html
2http://opencv.willowgarage.com/wiki/
3http://opencv.willowgarage.com/wiki/InstallGuide
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A. Installation

5. Now check the echo message, if all OpenCV libraries are found correctly (ignore the
warning about ”pthread”). If one or more libraries can not be found, either type the
path of the libraries manually, or check the system path. (After changing the system
path, CMake-GUI has to be restarted to load the new system path).

6. If the path of all OpenCV libraries are shown correctly, click the button ’Configure’
again, then the button ”Generate”.

7. After the Project-file is generated, close the CMake-GUI.

A.4. Compiling

1. Open the Comparison Program with project-file ”{Root-Path}/build/Descriptor_Comparison.∗
” (The ending ∗ is verify depending on the different IDE which is selected in the last
CMake configuration step.)

2. Compile the project.

3. Start the binary program under the path ”{Root-Path}/build/src”. Note that the
OpenCV libraries are dynamic, if the path to ”OpenCV-Bin-Folder” is not added into
the system path, all corresponding ∗.dll files are required to be copied into the same
folder as the execution program.
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