

Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Master’s Thesis Nr. 3341

Merging of
TOSCA Cloud Topology Templates

Andreas Weiß

Course of studies: Wirtschaftsinformatik

First Examiner: Prof. Dr. Frank Leymann
Second Examiner: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Supervisor: Dipl.-Inf. Tobias Binz

Commenced: April 17, 2012
Completed: October 17, 2012

CR-Classification: C.2.4, D.2.11, H.3.4, G.2.2

Abstract

Abstract

The paradigm of Cloud Computing requires standardization to avoid vendor lock-in for its

users. The Topology and Orchestration Specification for Cloud Applications (TOSCA) pro-

vides a standardization approach enabling portability of cloud services between different

Cloud Computing providers. The main goal of the TOSCA specification is to enable a cloud

provider and environment independent description of these services concerning structure

and management aspects during their life cycle. TOSCA specifies so-called Service Tem-

plates whose structure is described by a Topology Template.

The TOSCA specification provides means to model enterprise applications in a standardized

way. In view of mergers and acquisitions, data center consolidation, for breaking up silo

structures in IT departments and for support of modeling experts it is necessary to find con-

cepts for analyzing already modeled TOSCA Topology Templates for similar elements and

for unifying these elements and, thus, two Topology Templates.

This master’s thesis develops a matching concept for finding similar elements inside and

between two Topology Templates by systematically exploring all different constellations

TOSCA elements can take. Similar elements are indicated by the notion of a Correspond-

ence. The matching concept is automated by developing algorithms that determine Corre-

spondences and incorporate domain-specific knowledge via type-specific plugins. The

plugins handle the matching of properties that cannot be conducted generically. Further-

more, a merging concept and appropriate algorithms are developed that utilize the identified

Correspondences for unifying similar elements. All algorithms are designed with the goal of

practical computational complexity.

A further part of this work is the design and prototypical implementation of the extendable

TOSCAMerge framework that allows for a convenient integration of type-specific plugins.

The framework facilitates the assessment and manipulation of the determined Correspond-

ences by domain experts prior to merging. A set of example TOSCA Service Templates for

testing the different matching and merging cases complements the implementation.

An extensive evaluation of the concepts and algorithms reveals the algorithms’ greedy

properties including local optimality but quadratic computational complexity in most cases.

Contents

i

Contents

1 Introduction.. 1

1.1 Problem Statement ... 1

1.2 Motivating Scenario .. 2

1.3 Research Design ... 3

1.4 Outline .. 3

2 Fundamentals ... 5

2.1 Graph Theory .. 5

2.2 Cloud Computing ... 6

2.3 Topology and Orchestration Specification for Cloud Applications 8

2.3.1 TOSCA Syntax .. 8

2.3.2 Use Cases of TOSCA ... 15

2.4 Frameworks ... 16

2.4.1 Definitions ... 16

2.4.2 Template Method ... 17

2.4.3 Factory Method .. 18

3 Related Work ... 22

4 Assumptions and Requirements for Matching and Merging 26

4.1 Assumptions .. 26

4.2 Requirements .. 30

5 Concept for Matching of Topology Templates .. 32

5.1 Matching of Node Templates .. 32

5.1.1 Analysis of the Basic Case and its Derivations ... 33

5.1.2 Matching of Node Template Properties .. 42

5.2 Matching of Relationship Templates ... 49

5.2.1 Analysis of the Different Relationship Template Matching cases 50

5.2.2 Matching of Relationship Template Properties .. 57

5.3 Matching in the Context of Group Templates .. 59

5.3.1 Extension of the Basic Matching Algorithm for Node Templates........................ 61

5.3.2 Different Cases of Recursive Access to Group Templates 64

5.3.3 Matching of Node Templates on Different Nesting Levels 76

5.3.4 Matching of Group Template Policies .. 82

5.3.5 Relationship Templates in the Context of Group Templates 85

6 Concept for Merging of Topology Templates .. 88

6.1 Merging of Node Templates .. 88

6.1.1 Analysis of the Basic Case and its Derivations ... 88

6.1.2 Merging of Properties on the Node Template Level ... 99

Contents

ii

6.2 Merging of Relationship Templates ... 103

6.2.1 Basic Merging Algorithm for Relationship Templates ... 104

6.2.2 Merging of Relationship Template Properties .. 106

6.3 Merging in the Context of Group Templates .. 107

6.3.1 Merging of Node Templates .. 107

6.3.2 Merging of Relationship Templates .. 111

6.3.3 Merging of Group Templates .. 112

7 Architecture & Design of an Extendable Framework .. 116

7.1 High-level Architecture .. 116

7.2 Refined Design .. 119

7.3 Extensibility of the TOSCAMerge Framework ... 126

8 Implementation of the Framework .. 131

8.1 General Remarks .. 131

8.2 Implementation of the TOSCA Data Structures ... 131

8.3 Implementation of the Extensibility Concept ... 135

8.3.1 Extensibility Concept .. 135

8.3.2 Adding New Plugins to the TOSCAMerge Framework .. 138

9 Evaluation of the Algorithms and the Implemented Concepts 139

9.1 Evaluation of the Findings Regarding the General Requirements 139

9.2 Discussion of the Proposed Algorithms.. 140

9.2.1 General Properties of the Proposed Algorithms... 140

9.2.2 Complexity Considerations of the Matching Algorithm 141

9.2.3 Complexity Considerations of the Merging Algorithm .. 143

9.2.4 Overall Complexity ... 145

9.3 Creation of Sample TOSCA Service Templates .. 146

9.4 Discussion of Merging of More Than two Topology Templates 147

10 Conclusion and Future Work .. 148

Bibliography ... 150

List of Figures

iii

List of Figures

Fig. 1.1: Example of two Enterprise Topologies to be merged ... 2

Fig. 2.1: Graphical instance example of a TOSCA Service Template .. 14

Fig. 2.2: Template Method design pattern ... 17

Fig. 2.3: Factory Method design pattern .. 19

Fig. 2.4: Combined design patterns ... 21

Fig. 4.1: Valid example of 1:1 correspondences between Node Templates 27

Fig. 4.2: Invalid example of a n:1 correspondence between Node Templates 27

Fig. 4.3: Relevant Node Type tree ... 28

Fig. 4.4: Relevant Relationship Type tree .. 29

Fig. 5.1: Example of a general matching case ... 33

Fig. 5.2: Motivation for matching inside a Topology Template ... 34

Fig. 5.3: Example of an Application Node Template... 35

Fig. 5.4: Correspondences to more than one Node Template ... 36

Fig. 5.5: Node Type parent relationships ... 37

Fig. 5.6: Node Type sibling relationship .. 38

Fig. 5.7: Possible, but invalid correspondence leads to undesired semantics 51

Fig. 5.8: Four matching cases of Relationship Templates with Communication semantics 52

Fig. 5.9: Four matching cases of Relationship Templates with Dependency semantics 53

Fig. 5.10: Example of invalid merged Topology Template .. 54

Fig. 5.11: Matching in the context of Group Templates ... 60

Fig. 5.12: Example of matching inside a Group Template ... 64

Fig. 5.13: Example of Group Template Correspondence on Nesting Level 0 65

Fig. 5.14: Example of correspondences on a deeper Nesting Level ... 66

Fig. 5.15: Example of Group Template access case 3a .. 67

Fig. 5.16: Example of Group Template Access case 3b ... 68

Fig. 5.17: Example of Group Template access case 4 .. 69

Fig. 5.18: Example of Group Template access case 5 .. 70

Fig. 5.19: Different Nesting Level case 1 .. 77

Fig. 5.20: Different Nesting Level case 2 .. 78

Fig. 5.21: Different Nesting Level case 3 .. 79

Fig. 5.22: Different Nesting Level case 4 .. 80

Fig. 6.1: Basic merging case .. 88

Fig. 6.2: Full mapping between all Node Templates ... 94

Fig. 6.3: Partial mapping between Node Templates .. 94

Fig. 6.4: Full mapping but inverted directions .. 95

Fig. 6.5: Example of “pulling” a Node Template into a Group Template 110

Fig. 6.6: Function relocateEdges .. 112

Fig. 7.1: Overall architecture with matching part ... 117

Fig. 7.2: Overall architecture with merging part ... 118

Fig. 7.3: Class diagram of the TOSCAMerge framework service access 119

Fig. 7.4: Detailed design of the matching part .. 121

Fig. 7.5: Detailed design of the merging part ... 122

Fig. 7.6: Class diagram of the Correspondences .. 124

Fig. 7.7: Class diagram of the Group Template Hierarchy concept .. 125

Fig. 7.8: Class diagrams of the combined design patterns ... 127

Fig. 8.1: Section of the Java class of a Node Template ... 134

Fig. 8.2: Class BaseClass .. 135

Fig. 8.3: Method createNodeTemplateMatcher of class TOSCAMatchingFactory 136

List of Figures

iv

Fig. 8.4: Plugin-class for matching Node Templates with identical Node Types 137

Fig. 9.1: The two merged Topology Template of the motivating scenario................................ 146

List of Listings

v

List of Listings

Listing 2.1: High level syntax of TOSCA Service Template.. 9

Listing 2.2: Syntax of XML complexType TExtensibleElements ... 10

Listing 2.3: Code example of a framework class using the Template Method pattern 18

Listing 2.4: Code example of a specific class using the Template Method pattern 18

Listing 2.5: Code example of abstract factory class of the Factory Method design pattern 19

Listing 2.6: Concrete factory class of the Factory Method design pattern. 20

Listing 2.7: Initialization of a factory ... 20

Listing 2.8: Usage of the factory .. 20

Listing 5.1: Function findMapping part 1 .. 40

Listing 5.2: Function findMapping part 2 .. 41

Listing 5.3: Function isDerivedFrom .. 42

Listing 5.4: PropertyDefaults example of a generic application server .. 43

Listing 5.5: PropertyConstraints example of a generic application server 43

Listing 5.6: Function match for Node Templates .. 46

Listing 5.7: Function matchPolicies .. 47

Listing 5.8: Function determineDerivedPolicies .. 49

Listing 5.9: Function handleRelationshipTemplates for HostedOn semantics 56

Listing 5.10: Function match for Relationship Templates ... 58

Listing 5.11: Function matchRelationshipConstraints ... 59

Listing 5.12: Data structure GroupTemplateHierarchy as double-linked list 61

Listing 5.13: Extended function findMapping part 1 .. 62

Listing 5.14: Extended function findMapping part 2 .. 63

Listing 5.15: Function isGroupTemplateAccessPossible part 1 .. 71

Listing 5.16: Function isGroupTemplateAccessPossible part 2 .. 72

Listing 5.17: Function checkGroupTemplateCorrespondence ... 73

Listing 5.18: Function getHierarchyElement .. 75

Listing 5.19: Function checkCorrespondencesOfLevel .. 76

Listing 5.20: Function isMatchingPossible .. 81

Listing 5.21: Function matchPolicies for Group and Node Templates ... 83

Listing 5.22: Function determineHierarchyPolicies for Group Templates 84

Listing 5.23: Function getAllPolicies .. 85

Listing 5.24: Function buildRelationshipTemplateSet .. 86

Listing 6.1: Function performNodeTemplateMerge .. 90

Listing 6.2: Function reconnectEdges... 92

Listing 6.3: Function reconnectCorrespondences for Node Templates .. 93

Listing 6.4: Function hasCorrectNumberOfCorrespondences part 1 .. 97

Listing 6.5: Function hasCorrectNumberOfCorrespondences part 2 .. 99

Listing 6.6: Function merge for Node Templates .. 100

Listing 6.7: Function decideNodeType ... 101

Listing 6.8: Example for type-specific PropertyDefaults merging .. 102

Listing 6.9: Function mergePropertyConstraints .. 103

Listing 6.10: Function handleRelationshipTemplates ... 105

Listing 6.11: Function reconnectCorrespondences for Relationship Templates 106

Listing 6.12: Function merge for Relationship Templates ... 107

Listing 6.13: Extension of the function performNodeTemplateMerge 109

Listing 6.14: Function performGroupTemplateMerge part 1 ... 113

Listing 6.15: Function performGroupTemplateMerge part 2 ... 114

Listing 6.16: Function merge for Group Templates .. 115

Listing 7.1: Schema of Node-Type-specific configuration part 1... 128

List of Listings

vi

Listing 7.2: Schema of Node-Type-specific configuration part 2... 129

Listing 7.3: Example of a Node-Type-specific configuration file ... 130

Listing 8.1: Example of an anonymous type in the TOSCA XML-schema 132

Listing 8.2: Section of the used JAXB Customization Bindings ... 133

List of Tables

vii

List of Tables

Table 8.1: Necessary elements to create a new plugin ... 138

List of Abbreviations

viii

List of Abbreviations

AGG Attributed Graph Grammar System

API Application Programming Interface

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

CAPEX Capital expenditure

CRM Customer Relationship Management

DOM Document Object Model

EAR Enterprise Archive

EJB Enterprise Java Bean

EPC Event-driven Process Chain

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a service

I/O input/output

IT Information Technology

Java EE Java Platform, Enterprise Edition

Java SE Java Platform, Standard Edition

JAXB Java Architecture for XML Binding

JVM Java Virtual Machine

NIST National Institute of Standards and Technology

OPEX Operational expenditure

OS Operating System

PaaS Platform as a service

REST Representational state transfer

ROI Return on Investment

List of Abbreviations

ix

SaaS Software as a service

SAX Simple API for XML

SESE Single-Entry-Single-Exit

SME Small and medium enterprise

TOSCA Topology and Orchestration Specification for Cloud Applications

URI Universal Resource Identifier

WAS Websphere Application Server

WSDL Web Services Description Language

XML Extensible Markup Language

XSD XML Schema Document

1 Introduction

1

1 Introduction

Cloud Computing is a new paradigm discussed in research, the IT industry and beyond [5],

[20]. It brings the no longer recent goal [36] of computing resources being available as utili-

ties comparable to gas, water or electricity closer to reality. It has the potential of “creative

destruction” that destroys an old economic structure and creates a new one [44]. The poten-

tial lies in the use of computing resources as pay-per-use services that scale on demand and

enable organizations to invest more into their core competences than into building and

maintaining IT systems.

However, without the standardization of Cloud Computing there is the danger of vendor

lock-in for its users. Once a particular Cloud Computing provider relying on proprietary

approaches is chosen it may be difficult to obtain computing services from a different pro-

vider [5], [30]. The Topology and Orchestration Specification for Cloud Applications

(TOSCA) provides a standardization approach enabling portability of cloud services be-

tween different Cloud Computing providers [32]. TOSCA is an XML-based language and

metamodel whose grammar provides the possibility to describe IT services. The main goal

of the TOSCA specification is to enable a cloud provider and environment independent de-

scription of these services concerning structure and management aspects during their life

cycle. TOSCA specifies so-called Service Templates whose structure is described by a To-

pology Template. Plans located in a Service Template provide the possibility to manage the

service instances during run-time. They contribute to the (semi-) automatic creation and

management of IT services as suggested by the cloud computing paradigm [6]. Ultimately,

the definition of the topology and orchestration plans as interoperable artifacts are sup-

posed to make IT services exchangeable between different cloud providers.

1.1 Problem Statement

The TOSCA specification provides means to model enterprise applications in a standardized

way. In view of mergers and acquisitions, data center consolidation, for breaking up silo

structures in IT departments and for support of modeling experts it is necessary to find con-

cepts for analyzing already modeled TOSCA Topology Templates for similar elements and

for unifying these elements and, thus, two Topology Templates.

The goals of this master’s thesis are the following: (1) the development of a matching con-

cept for finding corresponding elements inside and between two Topology Templates by

systematically exploring all different constellations TOSCA elements can take. Additionally

appropriate algorithms implementing the concept have to be formulated. (2) the matching

concept and algorithms are the prerequisite for developing a concept and corresponding

algorithms that merge the TOSCA elements that have been identified as compatible. (3) All

the findings of goal (1) and (2) are incorporated into an extendable framework named

TOSCAMerge framework that is implemented prototypically using the programming lan-

guage Java. (4) the last goal is the creation of a set of example TOSCA Service Templates to

evaluate the prototype framework and the researched concepts.

1 Introduction

2

Not in the scope of this master’s thesis is the research how the management plans of two

TOSCA Service Templates have to be adjusted after the TOSCA elements of two Topology

Templates have been merged.

1.2 Motivating Scenario

To illustrate the motivation for the merging of two Topology Templates the example of Fig.

1.1 is given. Two enterprises of equal size are merged in order to achieve synergies in their

business operations. Their enterprise applications are modeled with simplified Topology

Templates; the quadrangles with rounded corners represent the IT components, the arrows

the relationships and connections between them. Several overlapping elements such as the

Tomcat Application Servers [4] and the MySQL Databases [35] can be seen in the example.

Furthermore, the Operating Systems in both Topology Templates are similar but not identi-

cal. Nevertheless, they are also redundant. In order to contribute to the synergetic effects

the IT organizations of both enterprises must merge their enterprise application topologies.

Fig. 1.1: Example of two Enterprise Topologies to be merged

However, the manual identification of similar elements in both Topology Templates as well

as the manual unification is a very exhausting task especially when the number of compo-

nents is much larger than in this motivating scenario. Therefore, the development of con-

1 Introduction

3

cepts of to find the overlapping elements inside and between two Topology Templates and

merge them in a subsequent step aims to provide a tool that can automate this task. The

example in Fig. 1.1 is picked up again in Chapter 9 when evaluating the results of this mas-

ter’s thesis.

1.3 Research Design

The master’s thesis at hand has the goal to develop concepts and algorithms for finding

compatible elements inside and between two Topology Templates and merging them in a

subsequent step. Therefore, the state of the art of the work in related areas such as graph,

process and schema matching and merging is reviewed and analyzed. Appropriate ap-

proaches will be adapted for the matching and merging of Topology Templates. Subsequent-

ly, a set of requirements for the concepts, algorithms and the TOSCAMerge framework are

derived that have to be followed in the next research step of systematically exploring the

different matching and merging cases and developing concepts and algorithms to cope with

these cases. The researched concepts and algorithms are implemented in a framework that

allows the adding of domain-specific knowledge if certain steps cannot be conducted gener-

ically. A set of newly created TOSCA Service Templates will be used to evaluate the con-

cepts, algorithms and the framework.

1.4 Outline

This master’s thesis is structured in the following way:

Chapter 1 - Introduction gives an introduction to the topic of merging of Topology Tem-

plates by stating the research problem, delineating the scope of this work, giving a motivat-

ing scenario and stating the research design.

Chapter 2 - Fundamentals explains all the necessary fundamentals this work is based on.

This includes Graph Theory, an introduction to Cloud Computing, the TOSCA specification

and syntax as well as how to design extendable frameworks.

Chapter 3 - Related Work discusses the work in related research fields such as graph,

process and schema matching and merging and evaluates the usefulness and adaptability for

this thesis.

Chapter 4 - Assumptions and Requirements for Matching and Merging states the

assumptions made by the author regarding the matching and merging of Topology Tem-

plates and identifies requirements on the concepts and algorithms for matching and merg-

ing.

Chapter 5 - Concept for Matching of Topology Templates covers the finding of similar

elements in two Topology Templates and identifies and discusses all different matching

constellations that can be found inside and between the elements of Topology Templates.

Furthermore, algorithms implementing the concept are designed.

1 Introduction

4

Chapter 6 - Concept for Merging of Topology Templates is based on the concept of

chapter 5 and proposes and explores how to unify the elements of two Topology Templates

while adhering to the requirements identified in chapter 4. The findings are then incorpo-

rated in appropriate merging algorithms.

Chapter 7 - Architecture & Design of an Extendable Framework presents the high-

level architecture of the TOSCAMerge framework and some selected detailed components.

The chapter is completed by discussing the extendibility approach of the framework.

Chapter 8 - Implementation names the libraries used to implement the TOSCAMerge

framework and discusses the challenges the author faced during implementation. Further-

more, the extensibility concept is shown in detail using code examples. Furthermore, it is

explained how to add new plugins.

Chapter 9 - Evaluation of the Algorithms and the Implemented Concepts evaluates

the proposed matching and merging concepts as well as the introduced algorithms with

regard to the identified goals and requirements of this thesis.

Chapter 10 - Conclusion and Future Work summarizes the findings of this master’s

thesis and suggests related topics for future research.

2 Fundamentals

5

2 Fundamentals

This chapter provides the fundamentals necessary for this thesis. In Section 2.1 the defini-

tions from Graph Theory used throughout this work are provided. Section 2.2 gives a brief

introduction to Cloud Computing and Section 2.3 presents the syntax of the TOSCA specifi-

cation in detail. Finally, Section 2.4 defines the fundamentals and the approach for designing

extendable frameworks.

2.1 Graph Theory

One of the underlying theoretical principles of this thesis is graph theory. This section in-

troduces the terms and definitions used throughout the rest of the thesis.

Informally a graph or general graph is a set of nodes, also called vertices, and a set of edges.

There exist many slightly different formal definitions and notations of graphs. The formal

definitions in this master thesis are based on [47], [8] and [48].

Definition 2.1 (Undirected graph): An undirected graph G = (V, E) consists of a set V of verti-
ces and a set E of edges and every e ∈ E	of G connects two, not necessarily distinct, vertices of V. For every graph G, the following holds true: V ∩ E = 	∅. A graph G is called simple if it has
no edge ending at the same vertex (loop) or parallel edges.

Note: It is assumed that the sets and � of a graph � are finite.

Definition 2.2 (Incidence and adjacency): Given a graph G = (V, E) and an edge e ∈ E, one
can write e = {u, v} whereas u, v	 ∈ V	are vertices that are called the ends of e. If v is an end of e, we say v is incident to e. Two vertices that are the ends of an edge e, are called adjacent to
each other. The same holds true for two edges that are incident with a common vertex.

Definition 2.3 (Subgraph): Given a graph G = (V, E), a graph H = (W, F) is a subgraph of G,
if W ⊆ V and F ⊆ E. We say G contains H or H is contained in G and write G ⊇ H or H ⊆ G
respectively.

Definition 2.4 (Path and cycle): Given a graph G = (V, E) a path is a linear sequence of ver-
tices that are adjacent if they are consecutive in the sequence and nonadjacent otherwise. No

vertex is repeated in the sequence. A cycle is a closed sequence where u� = u� and 	u�, u� ∈ V,
i.e. the starting and ending vertex are identical.

Definition 2.5 (Connected graph and components): A graph G = (V, E) is connected if there
exists a path from every u ∈ V to every v ∈ V. Otherwise G	is called disconnected. A maximum
connected subgraph is called a component.

Definition 2.6 (Directed graph): A directed graph, or short digraph, � = (, �) consists of a
set of vertices and a set � of directed edges (arcs) such that to every � ∈ �	a unique ordered
pair (�, �) ∈ has been assigned. The vertex u is called tail and the vertex v is called head of
the arc � = (�, �). A loop is an arc � = (�, �) where head and tail are the same vertices. Two

2 Fundamentals

6

arcs � = (�, �) and � = (�, �) are parallel if their head and tail are the identical in each case.
A simple directed graph is a graph that has neither loops nor parallel arcs. For every simple

directed graph � = (, �) the following always holds true: � ⊆ × . The definition 2.4 of
subgraphs can also be applied to directed graphs.

Note: A graph can also have assigned types and label to its vertices and edges [25].

Definition 2.7 (Trees): A connected graph � = (, �) is called a tree if it does not contain
any circles. In a tree there exists only one path between two vertices �, � ∈ . One vertex is
called root. If the graph G is directed, there exists only one path from the root to every vertex in

the tree. Vertices with only one incident edge are called leafs.

2.2 Cloud Computing

According to Mell and Grance from the National Institute of Standards and Technology (NIST)

[27] Cloud Computing is “a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.“ The authors define five essential char-

acteristics, three service models and four deployment models. These properties also coincide

with the definitions and explanations of [43] that are also used in this section.

Characteristics of Cloud Computing

The five characteristics are on-demand-self-service, broad-network-access, resource-

pooling, rapid-elasticity and measured service. On-demand-self-service connotes that a con-

sumer in need of a cloud service, e.g. processing power or storage, does not require any hu-

man interaction by the service provider to provision it. Service capabilities are accessed over

network using client agnostic standard mechanisms (broad-network-access). Resource-pooling

refers to cloud providers pooling their resources to serve multiple customers at the same

time. This is also called multi-tenancy. Resources, physical and virtual, are assigned respec-

tively removed dynamically to that pool to satisfy the respective demand. Consumers usual-

ly do not know the exact location of the resource they obtain, but some service providers

offer the possibility to specify some high level location parameters, e.g. Amazon with its

concept of availability zones that are distributed around the world [1]. The ability to provi-

sion and release resources automatically and fast to scale according to demand is called rap-

id elasticity. This creates the illusion of unlimited resources that can be acquired at any time

for the consumer. The last of the five characteristics is the measured service. Automatic con-

trol and metering helps optimizing the resource allocation. The resources are monitored and

reported to enable a pay-per-use billing model.

Service Models of Cloud Computing

Typically there exist three types of Cloud Computing offerings at different layers: Infra-

structure, platform and applications. Infrastructure as a Service (IaaS), also called Resource

Cloud, provides enhanced virtualization capabilities. The consumer has access to computa-

tion power, networks and storage and can install and use arbitrary software raging from

2 Fundamentals

7

operating systems to business applications. The underlying cloud infrastructure, however, is

not controlled or managed by the consumer.

Platform as a Service (PaaS) resides conceptually one layer above IaaS often using the under-

lying capabilities of the latter. The PaaS cloud provider offers a platform including pro-

gramming languages, Application Programming Interfaces (API), libraries, services and

tools to the consumer to run self-created or purchased software. The consumer does not

manage the underlying infrastructure such as operating systems and servers but can use the

APIs to specify the behavior of the platform. The programmatic use of the provider’s APIs

often binds the created software to the specific cloud provider and impedes migration to

other providers.

Software as a Service (SaaS) provides consumers with complete applications accessible

through a web browser or through a client program interface. The applications are running

on a cloud infrastructure that is beyond the consumer’s control. Only some limited applica-

tion parameters may be configured.

Combinations of the three service models are also common, e.g. the Google App Engine [17]

as a PaaS offering in combination with a SaaS application such as Google Docs [18]. Fur-

thermore Salesforce.com has augmented its SaaS offering with the PaaS platform force.com

where consumers can write extensions to the existing application [41].

Deployment Models

Four Deployment Models of Cloud Computing are commonly differentiated in literature:

Private cloud, Community cloud, Public cloud and Hybrid cloud. A Private cloud is exclu-

sively available for a single organization. The location of the cloud can be on-premise in a

datacenter of the organization or off-premise hosted by a third party. The same holds true

for ownership, management and operation. Multiple consumers, e.g. several small and me-

dium enterprises (SMEs), with shared interests, such as their mission and security require-

ments use Community clouds. Hosting, operation and management is done by one of the

community organizations, a third party or a combination of both. A Public cloud is hosted

on the premises of a cloud provider and offered to the general public. A Hybrid cloud is the

combination of two or more of the aforementioned cloud deployment models. The distinct

cloud infrastructures are combined to enable particular benefits, e.g. cloud bursting to trans-

fer additional computation load that cannot be handled on-premise from a Private cloud to a

Public cloud.

Benefits and Risks

To finish the Cloud Computing section some of the benefits and risks will be illustrated.

According to Schubert [43] some of the benefits of Cloud Computing are cost reduction as

infrastructure purchase and operational costs can possibly be reduced. Moving to the cloud,

private or public, is an investment that has to be calculated beforehand and a positive Re-

turn on Investment (ROI) is not always certain. Modifications on applications or the own

data center may be necessary. However, in extreme cases capital expenditures (CAPEX) can

be completely turned into operational expenditures (OPEX) if a pay-per-use model in com-

2 Fundamentals

8

bination with a public cloud is used. Another important benefit is improved time to market

especially for SMEs without the delay for building up an on-premise infrastructure.

There also exist some risks when using cloud computing, especially in the Public cloud de-

ployment model. Armbrust et al. [5] name privacy concerns regarding sensitive data, ven-

dor-lock-in that prevents migration to other providers, poor predictability of performance,

reputation and liability issues.

2.3 Topology and Orchestration Specification for Cloud Applications

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is an XML-

based language and metamodel whose grammar provides the possibility to describe IT ser-

vices. The main goal of the TOSCA specification is to facilitate a description of these ser-

vices concerning structure and management aspects during their life cycle which is inde-

pendent from cloud providers or a certain environment. The structure of a so-called Service

Template is described by a Topology Template, whereas means to manage the service in-

stances during run-time are provided by Plans. Plans contribute to the (semi-) automatic

creation and management of IT services as suggested by the cloud computing paradigm [6].

A Topology is defined as the “the individual components of a service and their relations”

[32]. Ultimately, the definition of the topology and orchestration plans as interoperable arti-

facts are supposed to make IT services exchangeable between different cloud providers.

The following section describes the most important elements of the TOSCA specification
[32], [7] using Version 1.0 Working Draft 05.

Listing 2.1 shows the overall high-level syntax of a Service Template consisting of a Topol-

ogy Template or a TopologyTemplateReference, Node Types, Relationship Types and Plans.

The ? denotes an optional element or attribute, the | an exclusive decision (xor), the * zero or

many and the + one or many elements or attributes. Words written in italics denote XML

elements and attributes.

2.3.1 TOSCA Syntax

Service Template

The ServiceTemplate element is the root element of a TOSCA XML document. It has a set of

properties; the most important ones will be discussed next. Every Service Template has a

unique id regarding its namespace and a descriptive, human readable name. The target-

Namespace attribute declares the namespace of the Service Template, an important feature

as a Service Template might be referenced in another Service Template.

The optional Extensions element offers an extension mechanism to define additional vendor-

specific and domain-specific information. The attribute namespace specifies the namespaces

of extension attributes and elements that are used within the Service Template under defini-

tion, the attribute mustUnderstand indicates if a TOSCA compliant implementation must

adhere to the extension and reject it in case of not understanding. Additionally every XML

element specified by the TOSCA specification extends the XML complexType denoted by

2 Fundamentals

9

tExtensibleElements. The complexType is depicted in Listing 2.2. It contains a xs:any ele-

ment that permits the adding of further XML elements that are not defined by the TOSCA

schema. The attribute processContents="lax" indicates that a XML processor can validate that

element if it is able to obtain any schema information but will not generate error messages

if not [50], [49].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

High level syntax of TOSCA Service Template

<ServiceTemplate id="ID" name="string"? targetNames pace="anyURI">

<Extensions>?

<Extension namespace="anyURI" mustUnderstand="yes|n o"?/>+

</Extensions>

<Import namespace="anyURI"? location="anyURI"?

importType="anyURI"/>*

<Types>?

<xs:schema .../>*

</Types>

(

<TopologyTemplate>

...

</TopologyTemplate>

|

<TopologyTemplateReference reference="xs:QName">

)?

<NodeTypes>?

...

</NodeTypes>

<RelationshipTypes>?

...

</RelationshipTypes>

<Plans>?

...

</Plans>

</ServiceTemplate>

Listing 2.1: High level syntax of TOSCA Service Template

2 Fundamentals

10

1

2

3

4

5

6

7

8

9

Syntax of the XML complexType tExtensibleElements

<xs:complexType name="tExtensibleElements">

<xs:sequence>

<xs:element ref="documentation" minOccurs="0"

maxOccurs="unbounded"/>

<xs:any namespace="##other" processContents="lax" m inOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##other" processContent s="lax"/>

</xs:complexType>

Listing 2.2: Syntax of the XML complexType TExtensibleElements

The optional Import element provides means to use external Service Templates, XML Sche-

ma or WSDL definitions. A Service Template must name all external references that it uses

via Import elements.

With the optional Types element additional XML definitions can be specified and used

throughout the Service Template document, e.g. as attribute in other elements, without the

need to define them in separate documents and import them via Import elements. The types

are XML Schema elements by default but could also be of any type system.

A TopologyTemplate defines the topological structure of an IT service as a directed graph.

The vertices are represented by a set of NodeTemplate elements and the directed edges by a

set of RelationshipTemplate elements. The edges express the semantics of the relationships

between the vertices. The TOSCA specification either demands one TopologyTemplate or a

TopologyTemplateReference which references a TopologyTemplate imported via an Import

element. A Service Template may only have zero or one TopologyTemplate or TopologyTem-

plateReference. The explanation of the different properties of a TopologyTemplate is contin-

ued below.

The optional element NodeTypes contains one or many NodeType elements which describe

the type of NodeTemplates, i.e. their properties and behavior. In contrast, the optional ele-

ment RelationshipTypes contains the types of RelationshipTemplates and their properties.

The element Plans contains Plan elements specifying how to manage the IT Service under

definition, e.g. how to instantiate und terminate the service.

The TOSCA specification allows that a Service Template serves as a document that only

describes an IT Service and is composed into another Service Template that can be instanti-

ated into a service instance. A Service Template document that is to be instantiated must

contain either a TopologyTemplate or TopologyTemplateReference whereas a document only

intended for description purposes must contain at least one element of the elements Node-

Types, RelationshipTypes, or Plans. These syntactical specifications ensure that a Service

Template document can be designed modularly.

2 Fundamentals

11

Node Type

As already mentioned above Node Types are an important part of a Service Template. They

describe the properties of one or more Node Templates. The following paragraph discusses

the properties of a NodeType element which are important in the scope of this thesis.

NodeTypeProperties are the observable properties such as configuration and state of a Node-

Type element. They are defined in the Types element of a Service Template or in an external

XML Schema file.

TOSCA offers an inheritance/derivation mechanism via the DerivedFrom element. It con-

tains a reference to another Node Type acting as a basis for derivation. The properties and

operations of the base Node Type either form a union with the newly defined properties and

operations or are overridden by the new Node Type in case of conflict.

The optional InstanceStates element represents the states a NodeType element can occupy

once it has been instantiated. Possible states are e.g. started or stopped.

The Interface element contains the description of the functions that belong to a certain Node

Type. These functions are invoked by operations which are in turn implemented by so

called ImplementationArtifacts. The Operation element can either define a Web Service call

and its WSDL port type and operation or a REST call with its HTTP methods and headers as

well as optional parameters. The third kind of operation that can be defined is the script via

the ScriptOperation element and its input and output parameters. The optional Implementa-

tionArtifact element names the concrete artifacts that are needed to implement the abstract

operations of the Interface element. The artifacts could be Python scripts or WSDL files that

can be provided in place or referenced from an external location. The RequiredContain-

erCapability element and its attribute capability indicate if there exist particular dependen-

cies to the execution environment of the operation implementation, e.g. the need for envi-

ronment provided interfaces to manipulate images or EJBs.

The optional Policies element is a container for Policy elements describing the kind of poli-

cies a Node Type instance supports. These policies apply to management aspects such as

billing or monitoring.

The last important element of a Node Type is the optional DeploymentArtifacts element. It

specifies all the concrete deployment artifacts that are required to instantiate a particular

Node Type. These could be EAR files for a Java EE application or a virtual image for in-

stalling a Java EE Application Server.

Relationship Type

Relationship Types specify the type of one or more Relationship Templates which serve as

edges between the Node Templates in a Topology Template graph. Similar to the Node

Types the Relationship Types define properties and potential states during runtime but no

operations are specified. An important attribute of a RelationshipType element is semantics

which denotes the expected behavior of the RelationshipType under definition.

2 Fundamentals

12

Additional RelationshipTypeProperties can be referenced analogous to the NodeTypeProper-

ties of the NodeType element.

Topology Template

The following paragraph describes the TopologyTemplate element of a Service Template and

the nested NodeTemplate, RelationshipTemplate and GroupTemplate elements. From the per-

spective of graph theory a Topology Template forms a directed graph with Node Templates

as vertices and Relationship Templates as edges between these Node Templates specifying

the relationships. Group Templates form subgraphs of the Topology Template graph, con-

taining Node Templates, Relationship Templates and possibly other Group Templates.

The NodeTemplate element symbolizes any kind of component that is part of the IT service

under definition. It has a nodeType attribute referencing a beforehand defined Node Type.

The attributes minInstances and maxInstances specify the minimum respective maximum

number of instances of the Node Template that must or can be created in parallel. Because

of the notion of Node Types and Node Templates the term node rather than vertex will be

used in the rest of the thesis to avoid confusion.

The optional PropertyDefaults element provides initial values for the Node Type properties

of the Node Type. The PropertyDefaults contain an XML instance of the Node Type Proper-

ties’ schema definition regarding configuration and state. The inheritance hierarchy of a

Node Type via DerivedFrom property is also included, i.e. the XML instance document con-

siders the union or overriding of the properties. The PropertyConstraints element names

constraints regarding the Node Type Properties of the Node Type of the Node Template

under definition. The property attribute of this element contains an XPath expression point-

ing to particular XML fragment in the NodeTypeProperties element that is to be constrained.

The constraintType attribute contains an URI explaining the semantics of the constraint.

The Policies element has the identical meaning as the one nested inside the NodeType ele-

ment. It specifies management policies such as billing or monitoring but in this case regard-

ing the Node Template. Policies in the corresponding Node Type are overridden if they pos-

sess an identical name and type, the union of the Policies is formed otherwise.

The EnvironmentConstraints element contains definitions for constraining the runtime envi-

ronment of the Node Template standing for a concrete IT component. This could be net-

work security settings or the prerequisite of certain resources.

Similar to the Policies element, the DeploymentArtifacts element on the NodeTemplate level

can also override Deployment Artifacts from the NodeType level in case of identical names

or otherwise complement them. The same overriding and complementation semantics hold

true for the element ImplementationArtifact (see above).

A Relationship Template specifies the relationship between two Node Templates. The at-

tribute relationshipType indicates which of the beforehand defined RelationshipType ele-

ments provide detailed properties to the Relationship Template under definition. Forming a

directed edge, the elements SourceElement and TargetElement specify the navigation path

between two Node Templates. Both elements reference either a Node Template or a Group

2 Fundamentals

13

Template. The referenced elements must be defined inside the Service Template document

under definition. For references to outside Node Templates or Group Templates a TargetEl-

ementReference element can be specified, but there is no syntax element for referencing an

outside source of the edge. TargetElement and TargetElementReference must not be specified

both at the same time inside a RelationshipTemplate element.

The PropertyDefaults element of a Relationship Template serves the same purpose as its

equivalent in a Node Template. Initial values for the corresponding Relationship Type prop-

erties are given via a XML document instance. PropertyConstraints also refer to the proper-

ties of the used Relationship Type properties and specify constrains such as uniqueness of a

given property value. The optional RelationshipConstraints element contains Relationship-

Constraint elements specifying constraints on the use of the defined relationship.

The last element to be introduced is the GroupTemplate element. It forms a subgraph of

NodeTemplate, RelationshipTemplate and other nested GroupTemplate elements. The

GroupTemplate element has a minInstances and maxInstances attribute defining the minimal

and maximal instances when creating the Group Template. A Group Template can also have

its own Policies attached.

Plans

Orchestration Plans specify the operational management behavior of a Service Template.

The Plans specify discrete steps called tasks or activities and their order. The steps are exe-

cuted either by the operations exposed by the Node Templates interfaces or by invoking a

Service Template API. The TOSCA specification already names two types of Orchestration

Plans: Build plans for the creation of a Service Template instance and Termination plans for

the removal of an instance. Modification plans for the managing of instances during lifetime

have not yet been developed. This will be done by domain experts and the authors of specif-

ic Service Templates.

The Plans element of a Service Template contains one or more Plan elements. Each Plan has

an attribute planType indicating the type of plan, e.g. build plan or termination plan, by

means of an URI (http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan and

http://docs. oasis-open.org/tosca/ns/2011/12/PlanTypes/TerminationPlan).

To specify the modeling language describing the plan under definition the languageUsed

attribute is used. It contains an URI indicating the language, e.g. http://www.omg.org/

spec/BPMN/2.0/ for BPMN 2.0.

The Precondition element contains a condition that has to be satisfied prior to execution. The

condition is expressed by an expression language indicated by the expressionLanguage at-

tribute. The content of the condition usually relates to the instance states of the Node or

Relationship Templates.

The PlanModel element contains the actual model specified in the beforehand denoted mod-

eling language, the PlanModelReference element provides a reference to the actual model. A

Plan element instance must either specify a PlanModel or a PlanModelReference but not both

at the same time.

2 Fundamentals

14

However, the TOSCA Plans are only introduced here for the sake of completeness since the

merging of plans is not in the scope of this work.

TOSCA Example

To exemplify the description of an IT service using TOSCA consider the following situation

as depicted in Fig. 2.1. The simple Topology Template consists of an application running on

an application server. The application is represented by the Application Node Template and

the application server by the Application Server Node Template. The “HostedOn”-

relationship between the two Node Templates is realized by the HostedOn Relationship

Template.

Application

Topology Template

Application

Server

HostedOn

Instance

Name

AccountID

Owner

P
ro

p
e

rt
ie

s
startStopInterf

Configuration

Interf

In
te

rfa
ce

s

IP Address

HeapSize

Hostname

P
ro

p
e

rt
ie

s startStopInterf

Configuration

Interf

In
te

rfa
ce

s

Install Dir

P
ro

p
e

rt
ie

s

Application Node Type

Application Server Node Type

HostedOn Relationship Type

type for

type for

type for

Build Plan

configureIP startServer

Deployment

Interf

configure

Application

deploy

Application

restartServer startApplication

Types

Node Template

Node Template

Relationship

Template

Fig. 2.1: Graphical instance example of a TOSCA Service Template
1

The two Node Templates and the Relationship Template are typed und therefore enriched

with properties by Node Types respectively a Relationship Type. The Node Types addition-

ally provide interfaces that expose operations to interact with the Node Templates. Fig. 2.1

1
 Adopted from [32]

2 Fundamentals

15

also shows a buildplan illustrating the sequence of activities that must be performed to start

und deploy both server and application and bring them up to a working state. The build

plan exploits the operations exposed by the displayed configuration and management inter-

faces.

2.3.2 Use Cases of TOSCA

The authors of the TOSCA specification have proposed several supported use cases [32].

Services as Marketable Entities

The first one is the notion of services as marketable entities. According to the authors, a

market for hosted IT services will emerge if Service Templates are standardized. Service

developers with profound knowledge about a particular service could create Topology

Templates consisting of a set of components and their mutual dependencies und thus define

the structure of IT services in an interoperable manner. Service Providers could then select

predefined Service Templates out of service catalogs and make them available for potential

customers. The service providers would adapt the selected Service Template to their con-

crete infrastructure, mapping the Topology Templates and management plans to make the

Template executable. The necessary management plans, i.e. the plans for managing the

whole life cycle of a service from creation to termination, will also be provided by service

developers. Having access to those plans there is the potential of significantly reducing ser-

vice hosting costs for a service provider as they can rely on reusable knowledge and apply

management best practices. The domain knowledge of the modeler is encapsulated in the

management plans hiding the complexity from its user, who can simply invoke it.

Portability of Service Templates

A second use case is related to the portability of Service Templates. Definitions of IT ser-

vices become portable when standardizing them with TOSCA. The authors define portabil-

ity in this context as the ability of one party to understand a Service Template’s structure

and behavior that has been created by a second party. The creator can be anyone from a

cloud provider, to an enterprise IT department or a service developer. The authors point out

that the portability they define only refers to the service definitions, i.e. the topology model

and the corresponding plans but not to the individual (physical) components. Their portabil-

ity is not in the scope of the specification.

Service Composition

The third use case the authors cite is service composition. That means that the abstractions

provided by a Service Template help to compose components and automation products from

different suppliers and hosting providers to one service. This is possible because the Service

Template does not imply any particular hosting environment. These properties facilitate

strategic decisions such as using datacenters at different geographical locations that togeth-

er form one IT Service.

2 Fundamentals

16

2.4 Frameworks

The following section covers the definitions and fundamentals regarding the development

of frameworks.

2.4.1 Definitions

Scherp and Boll [42] define a software framework as an only partially finished architectural

structure for a complex application area that can be extended for the specific requirements

of a particular application. Literature [42], [10], [37] names the following characteristics of

frameworks: (1) a framework inverts the control flow of an application from a so called

Call-down-principle, where the application logic invokes functions of class libraries, to a so

called Call-back- or Hollywood-principle (“Don’t call us, we’ll call you!”), where the frame-

work invokes the application-specific parts of an application. (2) a framework specifies a

concrete software architecture that defines the generic functionality and only allows for

flexibility at particular points. Thereby, the inversion of control leads to a “software-

skeleton” implementing generic algorithms that can be extended to satisfy the specific re-

quirements of a particular application. (3) the framework is extendable through so called

variation points or hot spots. They characterize the points of the architecture where a partic-

ular functionality is already typed but the final implementation is done through the con-

crete application using the framework.

Furthermore, Scherp and Boll [42] distinguish between component-based and object-oriented

frameworks. A component-based framework provides a set of components with predefined

behavior and interfaces. The extensibility of the behavior results from composing the com-

ponents to realize specific functionality or adding new components implementing the inter-

faces. However, the component-based framework defines no internal architecture for the

components. On the other hand, the object-oriented frameworks consist of a set of concrete

and abstract classes that provide a generic software system for a particular application area.

The variation points are the abstract framework classes that can be extended using inher-

itance and polymorphism [23], i.e. the application specific extensions are achieved by sub-

classing the abstract classes and providing appropriate implementations. These subclasses

are then invoked by the generic framework using the aforementioned Call-back-principle.

Object-oriented frameworks should also follow the important architectural open/close prin-

ciple. This states that software, and an object-oriented framework in particular, should be

open to future extensions but closed with regard to the modification of the existing generic

code. This implies that no piece of code that has already been implemented should be over-

ridden by application specific classes. However, as Scherp and Boll [42] point out, real life

examples such as the framework Java Swing for Graphical User Interfaces (GUI) often pro-

vide a default implementation that can also be overridden by users of the framework.

According to Buschmann et. al. [10] an object-oriented framework is not limited to object-

oriented techniques such as inheritance and polymorphism but could also apply software

design patterns. A software design pattern is a generic and well-proven solution to a soft-

ware design problem. Two patterns are notably suitable for building frameworks and are

used to design the architecture of the TOSCAMerge framework: the Template Method and

2 Fundamentals

17

the Factory method. These two patterns will be described hereafter and are based on [15].

The figures use UML [33] as modeling language.

2.4.2 Template Method

The Template Method design pattern is the pivotal pattern for framework design and is de-

picted in Fig. 2.2. The abstract, i.e. not instantiable, FrameworkClass provides the structure

for the framework and delegates the implementation of specific processing steps to its sub-

classes. The so-called template method defines the overall algorithm, using the abstract hook

methods to call the application specific implementation at the desired time in the control

flow.

Fig. 2.2: Template Method design pattern
2

This is illustrated by the corresponding code example in Listing 2.3. The method tem-

plateMethod invokes the abstract method hookMethod after executing some generic steps

and continues after the return of the method. The templateMethod is marked as final to

comply with the open/close-principle and prohibit the modification of the overall algorithm

by overriding the templateMethod. The SpecificClass in Fig. 2.2 extends the FrameworkClass

and overrides the abstract method hookMethod providing its own specific solution to a prob-

lem.

2
 Adopted from [15]

 class Template Method

«abstract»
FrameworkClass

+ templateMethod() : void
+ hookMethod() : void

SpecificClass

+ hookMethod() : void

2 Fundamentals

18

1

2

3

4

5

6

7

8

Framework class using the Template Method pattern

public abstract class FrameworkClass{

 public abstract void hookMethod();

 public final void templateMethod(){

 // generic algorithm steps

 hookMethod();

 // generic algorithm steps

 }

}

Listing 2.3: Code example of a framework class using the Template Method pattern
3

This is clarified further by the code example in Listing 2.4. The non-abstract SpecificClass

extends the FrameworkClass by inheritance and overrides the hookMethod to provide specif-

ic steps for the overall solution of a particular application area specific problem.

1

2

3

4

5

Specific class using the Template Method pattern

public class SpecificClass extends FrameworkClass{

 public void hookMethod(){

 // specific algorithm steps

 }

}

Listing 2.4: Code example of a specific class using the Template Method pattern
 4

2.4.3 Factory Method

The second design pattern used in the context of frameworks is the Factory Method.
5
 The

goal of the Factory Method design pattern is to decouple the generic programming logic

from the concrete implementation classes. This is especially useful if not all the concrete

classes are known during build time. Therefore, the generic (framework) code is implement-

ed against interfaces or abstract classes and is independent of concrete subclasses. The clas-

sical Factory Method design pattern is depicted in Fig. 2.3. The Factory class provides an

abstract factoryMethod that declares an interface for creating objects of type Product, i.e.

extending the abstract Product or also possible implementing an Interface of that name. For

every ConcreteProduct that implements or overrides the Product, a corresponding Con-

creteFactory that knows how to specifically create a ConcreteProduct has to be provided.

3
 Adopted from [15]

4
 Adopted from ibid

5
 and also its variation the Abstract Factory

2 Fundamentals

19

Fig. 2.3: Factory Method design pattern
6

In the following Listing 2.5, Listing 2.6, Listing 2.7 and Listing 2.8 provide a simple continu-

ous example of the usage of the Factory Method.

1

2

3

Abstract Factory using the Factory Method

public abstract class Factory {

 public abstract Product createProduct();

}

Listing 2.5: Code example of abstract factory class of the Factory Method design pattern

The abstract class Factory in Listing 2.5 shows the aforementioned abstract factory that de-

fines an abstract factoryMethod to create a new instance of a class implementing a particu-

lar interface, in this case the abstract class Product not depicted here but being the same as

in Fig. 2.3. A concrete implementation of the abstract factory class is shown in Listing 2.6.

The class overrides the createProduct factory method and returns an instance of the Con-

creteProduct class from Fig. 2.3. The choice of the specific factory must take place only once,

e.g. in an initialization method of the framework as depicted in Listing 2.7. In the rest of the

code the factory creates instances by utilizing polymorphism without knowing the exact

type of Product.

6
 Adopted from [15]

 class Factory Method

«abstract»
Product

+ operation() : void

ConcreteProduct

+ operation() : void

«abstract»
Factory

+ factoryMethod() : Product

ConcreteFactory

+ factoryMethod() : Product

return
new ConcreteProduct()

2 Fundamentals

20

1

2

3

4

5

Code example for a concrete implementation of the F actory Method

public class ConcreteFactory extends Factory{

 public Product createProduct(){

 return new ConcreteProduct();

 }

}

Listing 2.6: Concrete factory class of the Factory Method design pattern.

1

2

3

4

5

Code example for an application initialization

public void init(){

 Factory myConcreteFactory = new ConcreteFactory()

 ...

 }

}

Listing 2.7: Initialization of a factory

1

2

3

4

Code example for a concrete implementation of the F actory Method

public doSomething(){

 Product newProduct = myConcreteFactory.createProd uct()

 }

}

Listing 2.8: Usage of the factory

Fig. 2.4 shows the combined patterns Template Method and Factory Method to design a

framework. The abstract FrameworkClass defines a templateMethod to specify the overall

control flow of the application using the framework and a hookMethod that can be overrid-

den by instances of SpecificClass to provide application area specific implementations to the

overall algorithm. The Factory Method part defines an abstract Factory class that specifies a

factory method for creating Instances of SpecificClass. For each different type of Specific-

Class, a separate SpecificClassFactory that has the knowledge of creating an instance of a

particular type of SpecificClass must be provided.

2 Fundamentals

21

Fig. 2.4: Combined design patterns

 class Combined Patterns

«abstract»
FrameworkClass

+ templateMethod() : void
+ hookMethod() : void

«abstract»
Factory

+ createSpecificClass() : SpecificClass

return
new SpecificClass()

SpecificClass

+ hookMethod() : void

SpecificClassFactory

+ createSpecificClass() : SpecificClass

3 Related Work

22

3 Related Work

The following chapter discusses related work in the area of merging of graphs, business

processes and (database) schemata and other graph like structures. Thereby, it is the aim to

evaluate their usefulness and to derive concepts for merging of TOSCA Topology Tem-

plates.

Process and Graph Matching and Merging

In the light of mergers, take-overs, and acquisitions of companies, Gottschalk et al. [19] in-

troduce an algorithm for the merging of Event-Driven Process Chains (EPC). The algorithm

integrates two process models described by EPCs into one process model. The behavior of

the original process models is preserved in the resulting one. The authors divide the process

merge in three phases. First the problem of EPC merging is reduced to a graph merging

problem by formally describing the process models by means of so-called Function Graphs.

A Function Graph depicts the active behavior of an EPC, i.e. its sequence of functions.

Therefore functions represent the vertices in a Function Graph while directed edges are an-

notated with types that depict the ∧, XOR, or ∨ behavior, i.e. the split and join behavior dur-

ing process execution. The second phase of the algorithm is the actual merge. The two

Function Graphs are united by merging their sets of functions and directed edges and calcu-

lating the split and join types of the edges by analyzing the functions in both graphs preced-

ing and succeeding the corresponding arc. The third phase of the algorithm transforms the

resulting Function Graph back into an EPC. The proposed approach of Gottschalk et al. is

not used for the merging of Topology Templates as it is connected with EPCs too closely.

However, the aim of preserving all the behavior of the original process models will be trans-

lated into the context of this work.

La Rosa et al. [25] also use business processes modeled by the EPC notation as input for

their business process model merging algorithm. The problem is reduced to a graph merging

problem introducing the concept of an Annotated Business Process Graph formally represent-

ing an EPC process model. In contrast to [19] not only functions but also events and con-

nectors are depicted by typed graph nodes. To establish the best possible mapping between

the nodes of two input graphs a process matching is carried out. The authors calculate a

matching score using edit distance and graph edit distance to find the best mapping be-

tween the nodes. Mappings of nodes of different types are given a matching score of zero.

The labels of functions and events are scored using edit distance [40], the similarity of con-

nector nodes is calculated by analyzing the so-called presets and postsets of the connector

nodes. Presets and postsets are sequences of nodes before and respectively after a particular

node. The scoring function furthermore counts and weights the number of node and edge

substitutions, insertions and deletions to transform one graph into the other (analogous to

graph edit distance [22]). The mapping is used as an input to the actual merge algorithm.

The algorithm returns a merged graph which has to be post-processed by a set of reduction

rules, e.g. redundant edges have to be removed. The evaluation of the algorithm showed

that it is idempotent, commutative and associative. A process model can be merged with

itself producing an unchanged model (idempotency). The other two properties state that

more than two models can be merged without importance of the merging order. The work

3 Related Work

23

in [25] provides valuable insight into the high level approach of merging of graphs: (1) a

mapping between the nodes of two graphs has to be found, this is called graph matching. (2)

mapped nodes in the graphs are merged. (3) optional post-processing steps have to be con-

ducted. This work will also follow this high level pattern.

Schema Matching

Literature from the research area of information integration also suggests this approach

[26]. Information integration deals with the integration and merging of database or XML

schemata. Leser and Naumann point out that a mapping is an important concept in this con-

text. A mapping is a set of correspondences between the elements of a schema that share the

same semantics. The mapping is then e.g. used to generate queries that integrate data from

two databases. The correspondences can have a 1:1, 1:n, n:1 and n:m characteristics. Having

other matching characteristics than 1:1 correspondences leads to computational complexity

issues. Instead of 	×	! comparisons to find the complete mapping 2 	×	2! comparisons

have to be performed as every possible subset from the one schema has to be compared with

every possible subset from the second schema leading to exponential complexity.

Constructing a mapping for a large schema by manual identification of correspondences

proves to be too cumbersome. It requires automated approaches, however, Leser and Nau-

mann argue that schema management and notably the finding of mappings involves many

only implicitly given semantics that require domain experts to confirm the findings of au-

tomated algorithms. One of these algorithms that is also graph based is Similarity Flooding

by Melnik et al. [28]. Two database schemata are transformed into directed graphs contain-

ing attributes, data types, and other constructs (e.g. table names) as nodes. Using edit dis-

tance an initial mapping is established. Subsequently Similarity Flooding is used on all

mapped pairs between the graphs. If two nodes are similar they also contribute to the simi-

larity of their neighbor nodes. The similarities are propagated until a fix point is reached. A

threshold value indicates the best generated mappings. The authors see Similarity Flooding

as a semi-automated process where domain experts review the generated mappings: The

number of adjustments a human expert has to perform on the correspondences is seen as a

quality metric for the algorithm. The schema integration approach and its partition in the

steps matching and integrating once again gives insight how to structure the approach of

this thesis. Furthermore, it shows that the expertise of domain experts is necessary to evalu-

ate the algorithm’s result afterwards or that the domain experts’ knowledge must be codi-

fied in an extension of the algorithm beforehand. The proposed quality metric also implies

that the algorithm should be able to do as much as possible in an automatic fashion and the

less human correction is required the better. This understanding is also used for the merg-

ing of Topology Templates.

Notion of a Correspondence Between Similar Elements

The matching part in the aforementioned high-level approach is further studied in [13].

Dijkman et al. contribute four algorithms that match two process graphs and return a map-

ping with the highest similarity. As the naïve approach to the mapping problem, i.e. the

construction of all possible mappings has factorial time complexity, the four algorithms try

to reduce complexity by using heuristic measures. The authors propose a greedy algorithm

constructing a mapping that maximizes the similarity of the graphs in each step, an exhaus-

3 Related Work

24

tive algorithm with pruning if its recursion tree reaches a specified size, a process heuristic

algorithm that is a deviation of the exhaustive algorithm with consideration of the relative

position of nodes and finally a variation of the A-Star heuristic search algorithm. Although

the proposed algorithms in [13] cannot be directly used in this thesis, it can be noted that

generating a mapping between nodes of two graphs is a problem of high time complexity

and either heuristic measures or restricting assumptions have to be applied to decrease

problem space.

Pottinger and Bernstein [38] examine the generic merging of two models such as UML, on-

tology models or database schemata. They also use the notion of correspondences between

two models. The correspondences are assumed to be given and their generation is not fur-

ther discussed in their work. The contributed merge operator returns a “duplicate-free un-

ion” of the two mapped input models. Arising conflicts consisting of so-called representation,

metamodel and fundamental conflicts are identified and resolution strategies are provided.

The introduced approach provides Generic Merge Requirements such as element preserva-

tion, equality preservation and relationship preservation that are adopted in this work.

Küster et al. [24] contribute an approach to merging of business process models in absence

of a change log. A copied and altered version of the original process model is to be merged

with the original one. Differences between the models have to be detected as there is no

change log that describes the carried out changes. The differences are resolved requiring

some manual aid by a domain expert. Their work makes also use of the concept of corre-

spondences and enriches them with the technique of Single-Entry-Single-Exit fragments

(SESE fragments). As Topology Templates do not contain block-structured SESE fragments

as a business process this approach is not suitable for this work, however, the notion of cor-

respondences is picked up.

Merging of Petri Nets

Sun et al. [46] describe an approach for merging process models described by Petri nets.

They introduce the concept of Merge points, i.e. place nodes in in both Petri nets that are

mapped on each other. However, a method to find matching places in a Petri net and thus

construct a mapping is not provided. Subsequently so-called merge patterns are applied to

merge both process models. Therefore a domain expert must provide input how the places

and transitions between two merge points, i.e. a starting and an ending Merge point have

two be merged. Possible patterns the expert can choose from are Sequential, Parallel, Condi-

tional and Iterative merge. The discussed approach is not suitable for our work as it only

works for block-structured workflows and not for general graphs. Moreover too much addi-

tional manual input is required.

Graph Transformations

Segura et al. [45] introduce a completely different approach to the merging problem than

those discussed before. The application domain is the merging of Feature Models in the con-

text of Software Product Lines. Feature Models represent the features of the software prod-

ucts in a Software Product Line as a tree-like structure. The authors use Graph Transfor-

mations to merge two Feature Models. They present a catalogue of 30 merge rules consisting

of two input patterns (subgraphs) and a corresponding output pattern. The input patterns

3 Related Work

25

are called left-hand side and the output patterns right-hand side. The rules are implemented

in the Attributed Graph Grammar System (AGG), a free Java tool for Graph Transfor-

mations.

Graph Transformations are also used by Gala et al. [16] to merge the navigation histories of

web site users to utilize them for Web Mining. Web sites and the interactions and naviga-

tions with the websites are modeled as so-called semistructured temporal graphs and merged

to a summarizing graph structure using Graph Transformations. A web site’s objects are

represented by the nodes of the graph, the navigational links by edges. The navigation of a

user during a session is also a semistructured temporal graph that forms a sequence of

nodes through the web site graph. Each node in a web site and the navigation graph is an-

notated with a temporal element (hence the label temporal) indicating either the temporal

validity of a web site object in case of the web site graph or the visiting and retention time

of the navigation graph. The authors define one Graph Transformation rule merging each

node with the same object id unifying their temporal elements. The corresponding edges are

collapsed to the merged node.

Both Graph Transformation approaches are not directly comparable to our approach, but

they are either limited to special graph structures such as trees in case of [45] or narrowly

specialized for a particular application domain like [16]. However, the notion of left-hand

side and right-hand side can also be used in context of this work to refer to the elements

being involved in the matching and merging.

4 Assumptions and Requirements for Matching and Merging

26

4 Assumptions and Requirements for Matching and Merging

As already pointed out in chapter 2.4, this master’s thesis will follow the high-level ap-

proach of graph and schema merging. The fundamental steps are graph matching to find a

set of correspondences, called a mapping, and then utilize these correspondences to unify

the source and the target elements. Section 4.1 states all the assumptions that are made with

regard to merging and matching. Section 4.2 discusses the requirements for the concepts of

matching and merging and the algorithms implementing them.

4.1 Assumptions

The following section discusses the assumptions made for this thesis. The assumptions de-

lineate the scope of the thesis and exclude elements that would go beyond it.

Assumption 1: Matching and merging of two Topology Templates

This master’s thesis only considers the matching and merging of two Topology Templates.

The consideration of more than two Topology Templates at once is beyond the scope.

Assumption 2: Equality of TOSCA elements is indicated by their qualified name

Node Types are considered equal if their id attributes have identical values and their

namespaces are identical.

Assumption 3: Only exact matching of Node Templates and Relationship Templates.

This work only considers exact matches between Node Templates. Therefore, similarity

scoring techniques such as edit distance on the Node Type or Node Template ids or names

to rate the similarity in an interval between 0 and 1 are not used. The similarity used in this

thesis only has the discrete values 1 and 0 indicating full correspondence or none at all. The

same holds true for Relationship and Group Templates.

Assumption 4: Only 1:1 correspondences between the Node Templates of a Topology

Template

One underlying assumption is that there exist only 1:1 correspondences between the Node

Templates of two Topology Templates. Fig. 4.1 shows a valid example of a mapping be-

tween a database Node Templates and Linux operating system (OS) using only 1:1 corre-

spondences.

4 Assumptions and Requirements for Matching and Merging

27

Database

Topology Template

Linux OS

HostedOn

Topology Template

Database

Linux OS

Valid example : 1:1 correspondences

HostedOn

Fig. 4.1: Valid example of 1:1 correspondences between Node Templates

Fig. 4.2 in contrast shows an example of a n:1 correspondence. The TOSCA specification

does not imply any kind of modeling style and granularity of Node Templates. In an ex-

treme case one could consider a Topology Template consisting only of one Node Template

representing the whole service structure as valid in the sense of the specification. However,

the aggregation of Node Templates that can be viewed as separate entities camouflages the

structure of a service and impedes the comparison of Node Templates with the same seman-

tics.

Database

Topology Template

Linux OS

hosted on

Database

and Linux

OS

Topology Template

Invalid example : n:1 correspondence

Fig. 4.2: Invalid example of a n:1 correspondence between Node Templates

4 Assumptions and Requirements for Matching and Merging

28

Assumption 2 and 3 also imply that 1:1 correspondences are considered exclusively. This

arises from the fact that (1) the correspondences in Fig. 4.2 cannot be calculated if the Node

Types of the Node Templates have different ids and (2) without approaches to syntactic or

semantic similarity, which are explicitly excluded from this work, no correspondences be-

tween the separate entities of database and OS on the left-hand side and the aggregated en-

tity on the right-hand side of Fig. 4.2 can be established.

Assumption 5: TOSCA elements have the same modeling granularity

In assumption 4 it was stated that only 1:1 correspondences are considered when matching.

Additionally this thesis assumes that all Node, Relationship and Group Templates have the

same modeling granularity and aggregated elements such as in Fig. 4.2 do not occur in the

Topology Templates respectively are not considered.

Assumption 6: A limited set of Node and Relationship Types is sufficient for this thesis

It is assumed that a limited set of Node and Relationship Types is sufficient to develop the

matching and merging concepts and that it is easily possible to transfer the findings to addi-

tional types. Furthermore, only for the specified set below a prototypical implementation

provided for. The types are organized as a tree. Fig. 4.3 shows the Node Types that are rele-

vant for this work, as indicated by the green color.

Node

Types

App-

lication

Java App-

lication

Database

SQL

MySQL

App-

lication

Server

JEE

Tomcat

Operating

System

Linux

Debian

Linux

Fig. 4.3: Relevant Node Type tree

Fig. 4.4 illustrates the three Relationship Types that are discussed in this work. The

HostedOn Relationship Type of a Relationship Template has the semantics of the source

Node Template being installed or deployed on the target Node Template.

4 Assumptions and Requirements for Matching and Merging

29

Fig. 4.4: Relevant Relationship Type tree

The assumption is that each Node Template can only be source for one HostedOn Relation-

ship Template whereas each Node Template can be the target of many HostedOn relation-

ships. The Communication Relationship Type indicates that a corresponding Relationship

Template forms a communication link between two Node Templates. Every Node Template

can be source and target of an arbitrary number of Communication-typed Relationship

Templates. It is even possible that several communication links exist between two particular

Node Templates. The Dependency Relationship Type provides a Relationship Template with

the semantics of a dependency relation. The source Node Template of such a Relationship

Template depends on another Node Template depicted by the target of the Relationship

Template.

Assumption 7: Only XML schema types are considered

Although the TOSCA specification allows for any type system in the Type section of a Ser-

vice Template to declare the properties of the Node and Relationship Types, this thesis only

considers XML schema types.

Assumption 8: Relationship Templates target Node Templates inside a Group Template

but not the Group Template itself.

Assumption 9: Topology Templates have valid semantics

All Topology Templates that have to be matched and merged have valid semantics, e.g. no

IT component instance is hosted on two or more other IT component instances. Valid in this

context means that Topology Templates are modeled in a way that reflects reality. Although

it is possible to define a Node Template as the source of a Relationship Template with

HostedOn semantics to more than one other Node Template, in a real IT environment this

makes no sense.

4 Assumptions and Requirements for Matching and Merging

30

Assumption 10: No discussion of TOSCA import mechanism

The TOSCA import mechanism is not within the scope of this thesis. Without restricting

generality it is assumed that the functionality of importing other Service Template docu-

ments, WSDL files or XML schema documents and generating a resulting Service Template

is done by a generic importer that can be used in a step before the matching of the Topology

Templates.

4.2 Requirements

The following section postulates requirements that the matching and merging concepts and

the corresponding algorithms must adhere to.

General Requirements

As already mentioned in Chapter 3, Pottinger and Bernstein define a set of so-called Generic

Merge Requirements [38]. Some of these requirements are picked up and adapted for the

concepts and algorithms of this work.

Element preservation: Each element, in this case Node and Group Templates, of the two

input Topology Templates that is not source or target of a correspondence must be element

of the resulting merged Topology Template. That means no element must be discarded. The

elements that correspond to each other must be part of the merged Topology Template as

unified elements replacing their originators.

Relationship preservation: The same requirement is true for Relationship Templates.

Each input relationship between the Node Templates that is not source or target of a corre-

spondence, i.e. is not merged, must be element of the resulting Topology Template. The re-

lationships that correspond to each other must be replaced by a merged relationship.

Extraneous item prohibition: No additional elements should be generated that were not

part of the input Topology Templates.

Property preservation: The properties of each element must be preserved in the merged

result. A merged element must not have unified properties that contradict its original

semantics.

Value preference: When merging the properties of two elements and it does not matter

which value is used for in the unified model, e.g. the name attribute of a Node Template, the

value of the source of the correspondence, i.e. left-hand side element is used. Pottinger and

Bernstein call the left-hand side of the comparison the preferred model.

Semantically correct results: The concepts and the implementing algorithms should not

only produce syntactically correct results that adhere to the TOSCA specification but also

generate semantically correct results. That means that the merged Topology Templates

must not contain elements that are implausible in the context of an IT environment.

4 Assumptions and Requirements for Matching and Merging

31

Inclusion of domain-specific knowledge: After the study of related work in Chapter 3, it

can be presumed that not all decisions of the matching and merging of Node, Relationship,

and Group Templates can be made generically. Thus, either the concepts and the

implementing algorithms exclude domain-specific knowledge and require manual action to

solve corresponding problems or the knowledge can be integrated into the generic concepts

and used to solve the arising problems. This master’s thesis will follow the latter approach

and incorporate the generic concepts into the TOSCAMerge framework which invokes

plugins implementing domain-specific knowledge when needed. To alleviate the use of the

framework, it must allow for simple adding of plugins. This thesis follows a closed world

assumption approach that states that everything that is not modeled is assumed to be false

[39]. That means for the plugins if no appropriate ones can be found, the framework

assumes that matching respectively merging is not possible.

Requirements for the Algorithms and Their Implementation

After having stated the general requirements for the concepts and algorithms this section

specifies some additional requirements that apply to the matching and merging algorithms

only. The first two are often applied to all kinds of algorithms in general [40]: Termination

of the algorithm and a deterministic result.

Termination of the algorithms: The algorithms to find a mapping between the TOSCA

elements and merging them subsequently should always terminate after a number of finite

steps and present a result.

Deterministic result: If the algorithms are executed again the same result should be gen-

erated, provided the input was the same.

Practicable computational complexity: The proposed algorithms for matching and

merging should have a combined computational complexity that allows for the solving of

the tasks in a reasonable time. According to Saake and Sattler [40], this is achieved by hav-

ing less or equal to quadratic computational complexity. Therefore, the algorithms in this

work should be designed with the aim of terminating within an amount of time that allows

practical use even with more than a few hundred elements.

Assessability of the intermediary results: Pottinger and Bernstein proposed the number

of necessary human corrections as a quality metric for their algorithm. As mentioned above

the algorithms of this work should integrate domain-specific knowledge into the generic

concepts in the form of plugins to a generic framework. Thus, it is the aim of this work to

minimize the required interaction. However, it may not be possible to codify every bit of

domain specific knowledge into the plugins. Therefore, the framework must provide the

possibility to review the intermediary results, i.e. the mapping, and possibly correct it by

adding or deleting correspondences. Subsequently, it must be possibly to proceed with the

merging.

5 Concept for Matching of Topology Templates

32

5 Concept for Matching of Topology Templates

The overall approach of this master’s thesis consists of two high-level steps namely match-

ing and merging. This chapter deals with the matching of TOSCA elements to find corre-

spondences between them. Section 5.1 discusses the different cases and situations that can

be found when matching the Node Templates of two Topology Templates. For each case an

algorithm respectively a subroutine of an overall algorithm is presented and explained. Sec-

tion 5.2 introduces the matching of Relationship Templates while Section 5.3 extends the

concepts of matching Node and Relationship Templates by considering their position in

Group Templates. Moreover, the finding of correspondences between Group Templates is

also part of this section. Altogether Chapter 5 forms the conceptual basis for the matching

functionality of the TOSCAMerge framework.

5.1 Matching of Node Templates

The matching of two Topology Templates is needed to identify correspondences between

the Node Templates. According to assumption 4 we assume that only 1:1 correspondences

are expected in the matching process. This is necessary as it is not in the scope of this work

to conduct inexact matchings that only state the possibility of a correspondence. The exclu-

sion of 1:n, n:1 and m:n mapping characteristics also avoids the necessity to compare every

possible subset of Node Templates of one Topology Template with every possible subset of

Node Templates of another Topology Template. Instead of 2# × 2$ comparisons and %(2# × 2$) time complexity, at most & × ' comparisons are needed yielding a time com-

plexity of %(& × ') ≅ %('))	with & the number of Node Templates in the first Topology

Template and ' the number of Node Templates in the second Topology Template. That im-

plies that in principle the Topology Templates are matched by comparing every Node Tem-

plate in the first one (left one or left-hand side) with every Node Template in the second one

(right one or right-hand side). This basic pattern will be extended during the following dis-

cussion of the different cases.

To clarify the concept of correspondences used in this thesis the following definition is pro-

vided:

Definition 5.1 (Correspondence): In general a correspondence is an overlay edge indicating

that one node corresponds to another node und therefore the two nodes can be merged. Overlay

means that a correspondence is added on top of the existing graph structure.

Although a correspondence can be seen as a directed edge between two nodes, as the be-

forehand comparison starts from one node to all the others and the Correspondence is the

result of a successful matching, in the following illustrations the Correspondences are not

depicted as arcs. The reason is that for the matching cases it does not matter from which

node the matching started, therefore, the arrowheads are omitted for simplification.

5 Concept for Matching of Topology Templates

33

5.1.1 Analysis of the Basic Case and its Derivations

Basic Case for Node Templates

The basic case is illustrated in Fig. 5.1. A Correspondence between two Node Templates is

established if and only if their Node Types are identical. For the sake of simplicity in the

basic case, it is assumed that all Relationship Templates have HostedOn semantics and no

PropertyDefaults that could contradict each other. Later this assumption will be dismissed

and different Relationship Template semantics will be included in the matching concept. In

the example at hand both Topology Templates have identical MySQL Database and Debian-

Linux operating system Node Templates. The Relationship Templates have a HostedOn se-

mantics indicating that each database is hosted, i.e. installed on an operating system. Since

the Node Types are identical in each case, a so called Node Template Correspondence can be

established.

Definition 5.2 (Node Template Correspondence): A Node Template Correspondence is a Cor-

respondence as generically defined in Definition 4.1 with the constraint that it is only estab-

lished between two matching Node Templates.

Fig. 5.1: Example of a general matching case

5 Concept for Matching of Topology Templates

34

No Corresponding Node Templates in the Second Topology Template

Fig. 5.2 illustrates the case when there exists a possible Correspondence between two Node

Templates in one Topology Template but there is no equivalent Node Template with a cor-

responding Node Type in the second Topology Template. The comparison of all nodes of

Topology Template 1 with all nodes of Topology Template 2 does not reveal the corre-

spondence between the Application Sever Node Templates as there is no counterpart in To-

pology Template 2. Only a comparison inside Topology Template 1 would reveal the Corre-

spondence. A comparison of every element with every other element inside a Topology

Template means a time complexity of %(') − ') where ' is the number of Node Templates.

With regard to both Topology Templates the time complexity is %((') − ') +	(&) −&)).
Adding the complexity for the actual comparison between the two Topology Templates one

yields a complexity of %((') − ') +	(&) −&)	+ (& × ')) ≅ %(3')) ≅ %(')). That

means it is still about quadratic time complexity.

Fig. 5.2: Motivation for matching inside a Topology Template

This work follows the Divide-and-conquer principle that divides a problem into smaller

problems and applies an algorithm to the sub-problem in order to solve them more easily

[40]. The author proposes to perform the whole matching and merging on each Topology

Template separately and merge and match the results in a next overall step. Thus in the

following it will be explicitly stated if the matching inside a Topology Template or between

5 Concept for Matching of Topology Templates

35

two Topology Templates is meant if there is a difference. If nothing is explicitly said, it ap-

plies to both cases.

Node Types of Node Templates that cannot be Matched

There exists a number of Node Types that cannot be matched or merged. This applies e.g. to

all kinds of business applications. Even if the Node Types have the same the intention, the

implemented business logic is different and cannot be combined to a single Node Template.

Fig. 5.3 shows this matching situation. A Node Template Correspondence between the two

Application Servers can be established without difficulty, even if they can be seen as applica-

tions as well, i.e. installed on operating system nodes. However, their internal logic is gener-

ic and can be unified. In this example the two Application Node Types do not match regard-

less of their identical Node Types.

To determine which Node Types represent non-matchable Node Types, the TOSCAMerge

framework must contain an extendable list with the ids and targetNamespaces of the rele-

vant Node Types so that any Node Type for which matching and merging is not desired can

be added to this list.

Fig. 5.3: Example of an Application Node Template

5 Concept for Matching of Topology Templates

36

Correspondences to More Than one Node Template

Another matching situation to be discussed occurs when a Node Template matches more

than one Node Template inside one Topology Template. This must not be confused with 1:

n or n:1 mapping characteristics. Those characteristics imply that an entity is mapped to

more than one other entity in order to represent the same semantics. Fig. 4.2 in Section 4.1

exemplifies such a situation. In contrast the concept discussed here is the occurrence of sev-

eral Node Templates the have identical Node Types. Fig. 5.4 shows that the OS Node Tem-

plate the database is hosted on matches both OS Node Templates of the two Application

Servers. Therefore, two Correspondences have been established. Each Node Template at

which the comparison started, must store the found Node Template Correspondence addi-

tionally to the mapping. We will see in Section 6.1.1 that this is a necessary requirement for

the merging algorithm in order to generate a correct result under certain, yet to be dis-

cussed, circumstances. If each Node Template has a Correspondence to every other Node

Template, which comes into consideration because of the appropriate Node Type, the au-

thor calls this a full mapping between the respective Node Templates. Otherwise it is called

a partial mapping in this thesis.

Fig. 5.4: Correspondences to more than one Node Template

Fig. 5.4 also shows Topology Templates containing disconnected graphs, i.e. the graphs with

more than one component can be handled by the matching concept.

5 Concept for Matching of Topology Templates

37

Consideration of Derived Node Types

The different cases discussed above assume that the Node Types must possess an identical

id and targetNamespace attribute in order to even take into consideration the matching of

two Node Templates. However, the concept of matching can be expanded to Node Types

that are not identical but have some kind of relation with each other in a Node Type inher-

itance tree. Fig. 5.5 shows the relationship between different application server Node Types.

In this example a Websphere Application Server (WAS) 6.1 with Web Service Feature Pack is

derived from Websphere Application Server 6.1 which itself is derived from a generic Appli-

cation Server Node Type. The DerivedFrom attribute indicates the respective Node Type that

is extended. The relationships between the Node Types in Fig. 5.5 form an “inverted” tree

with the arcs pointing in the direction of the root Node Type (Generic) Application Server.

Fig. 5.5: Node Type parent relationships

A similar case is depicted by Fig. 5.6. Two application server Node Types from different

software vendors share the same root Node Type and thus are siblings in the inheritance

tree.

To match Node Templates using node Types that are not identical but are related with each

other as indicated by the inheritance tree, the author of this work proposes an extension of

the TOSCAMerge framework discussed above with its generic part and the type-specific

plugins. The generic part must recursively resolve the actual properties of the Node Type

under evaluation. That means if a Node Type used by a Node Template has a filled De-

5 Concept for Matching of Topology Templates

38

rivedFrom attribute, the framework will retrieve the corresponding Node Type and traverse

the inheritance tree recursively up to the root Node Type and calculate the effective overall

NodeType properties. According to the TOSCA specification the properties and operations

of the basis Node Type either form a union or are overridden by the derived Node Type in

case they share the same name. Exceptions are the InstanceState elements which are com-

bined to one single Instance State if their Instance state names are identical.

Fig. 5.6: Node Type sibling relationship

Type-specific plugins that are invoked subject to the Node Types qualified name are provid-

ed with yet another qualified name. Therefore, each type-specific plugin is understood as a

matcher between two Node Templates, using Node Types identified by their qualified name

(Node Type id and targetNamespace). If the Node Types are identical, the framework calls

the corresponding matcher for the identical qualified names. If the Node Types are not iden-

tical, the framework looks up its type-specific configuration and calls the Node Template

matcher that has specified both qualified names. If no suitable matcher is found, the frame-

work assumes that the Node Templates under evaluation and their corresponding Node

Types are not compatible and do not match. This follows the closed world assumption ap-

proach mentioned in Section 4.2. Missing matchers for two qualified Note Type names can

easily be added to the TOSCAMerge framework (see Section 8.3.2). To subsume the previous

section, the framework must be able to handle Node Templates with two identical Node

Types, regardless if they are derived or not, Node Templates with Node Types being at dif-

ferent levels in an inheritance hierarchy and Node Templates with Node Types that are sib-

lings in the inheritance hierarchy.

Basic Algorithm for Finding a Mapping Between Node Templates

After having discussed the basic matching case and different extensions thereof, a basic high

level algorithm to find a mapping is proposed in the following section. Listing 5.1 and List-

ing 5.2 show the function findMapping used to find a mapping between two Topology Tem-

plates. The function has the following three input parameters: Two Topology Templates,

5 Concept for Matching of Topology Templates

39

denoted by --� and --), as well as an empty set . The function’s output is the possibly

empty set , holding the determined Correspondences. The algorithm iterates over all Node

Templates in --� and conducts a first evaluation if the current Node Template’s Node Type

is of a prohibited type such as an application. If so, the processing of the current Node Tem-

plate can be skipped (line 7-9). In the next step, a nested loop visits all Node Templates in

Topology Template --). Here as well, the Node Type of the current Node Template ') is
evaluated against a list of prohibited types and possibly not processed any further (line 12-

14). Subsequently, the Node Types '.�and '.) of the current Node Templates '� respective-

ly ') are retrieved for a more convenient use thereafter (line 16 and 17).

To proceed to the actual comparison of the current two Node Templates, the algorithm

evaluates if the retrieved Node Types are either identical, i.e. their namespaces and ids are

equal, or if '.� is derived from '.) or vice versa, or if both have a common ancestor Node

Type. The derived-from-check is done via subroutine-call of the function isDerivedFrom

which is shown in Listing 5.3 and explained in detail further below, whereas the evaluation

if both Node Types have a common ancestor is conducted in the function hasCommonAnces-

tor which is not shown here due to space limitations. Only if one of the four conjunctions

evaluates to true, the processing of the two current Node Templates may proceed (line 19).

In order to match '� and '), in line 24 a Node Template Matcher is created, subject to their

Node Types '.� and '.). The actual match of the Node Templates properties is executed by

the call of match function located in the previously created matcher (line 26). It provides

Node-Type-specific functionality that is discussed in detail in the next section. If the match

function evaluates to true, the Relationship Templates incident to '� and ') are matched

using a construct denoted by RelationshipTemplateMatchingHandler. In doing so, for each

relevant Relationship Type a different handler is created and executed by invoking a func-

tion called handleRelationshipTemplates. The function returns a possibly empty set of so-

called Relationship Template Correspondences in each case. The relevant pseudo code can

be seen in the lines 28-32 and is listed here to complete the basic matching algorithm. How-

ever, it is reviewed again in Section 5.2 when a detailed analysis of all matching cases be-

tween Relationship Templates follows.

The rest of the findMapping function in line 34-39 comprises the following: a Node Tem-

plate Correspondence, denoted by / is created from '� to ') and the overall set of Relation-

ship Template Correspondences between incident Relationship Templates of the current

Node Templates is added to /. / itself is unified with the set of already existing Node Tem-

plate Correspondences, i.e. the mapping . Finally / is also added to '� since the compari-

son started at this Node Template and, as already mentioned, the information is needed for

the merging algorithm proposed in Section 6.1.1.

5 Concept for Matching of Topology Templates

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Basic algorithm for finding a mapping between Node Templates 1

Input: Topology Template TT 1

Input: Topology Template TT 2

Input: Mapping M = ∅

Output: Mapping M

findMapping(TT 1,TT 2,M)

 for each Node Template n 1 ∈ TT 1 do

 if Node Type of n 1 ∈ NotAllowedTypes then

 continue

 end if

 for each Node Template n 2 ∈ TT 2 do

 if Node Type of n 2 ∈ NotAllowedTypes then

 continue

 end if

 Node Type nt 1 = Node Type of n 1

 Node Type nt 2 = Node Type of n 2

 if nt 1 == nt 2

∨ isDerivedFrom(nt 1,nt 2)

∨ isDerivedFrom(nt 2,nt 1)

∨ hasCommonAncestor(nt 1,nt 2)

then

 Matcher matcher = createNodeTemplateMatcher(nt 1,nt 2)

 ...

Listing 5.1: Function findMapping part 1

5 Concept for Matching of Topology Templates

41

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Basic algorithm for finding a mapping between Node Templates 2

 ...

 if matcher.match(n 1,n 2) then

Set H = createRelationshipTemplateMatchingHandlers()

Set of Rel Template Correspondences RC = new Set()

 for each Handler h ∈ H do

 RC.add(h.handleRelationshipTemplates(TT 1,TT 2,n 1,n 2,M))

 end for each

 Node Template Correspondence c = new Node Template

 Correspondence(n 1,n 2)

c.addRelationshipCorrespondences(RC)

 M.add(c)

 n 1.addToCorrespondences(c)

 end if

 end if

 end for each

 end for each

end

Listing 5.2: Function findMapping part 2

Listing 5.3 shows the aforementioned algorithm to determine if two Node Types are related

to each other. The function isDerivedFrom has two input parameters, namely two Node

Types denoted by '.� and '.). A Boolean value is returned to indicate the relation of the

two Node Types, i.e. more specifically whether '.� is a descendant of '.) and, therefore,

derived from the latter. The algorithm first evaluates in line 5 if Node Type '.� is derived

from any other Node Type. If not, the algorithm returns false and terminates, as '.�cannot

be derived from '.). If '.� has a parent Node Type, it is retrieved as '.0123410 (line 6) and

compared with '.). If both are identical, i.e. have identical qualified names, the algorithm

returns true and terminates. Otherwise it is invoked recursively with '.0123410 and '.).as

input parameter determining if '.0123410 is a descendant of '.).

5 Concept for Matching of Topology Templates

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Algorithm to check if two Node Types are related to each other

Input: Node Type nt 1

Input: Node Type nt 2

Output: Boolean

isDerivedFrom(nt 1,nt 2)

 if nt 1.getDerivedFrom() ≠ null then

 Node Type nt derived = nt 1.getDerivedFrom()

if nt derived == nt 2 then

 return true

 else

 return isDerivedFrom(nt derived ,nt 2)

 end if

 end if

 return false

end

Listing 5.3: Function isDerivedFrom

5.1.2 Matching of Node Template Properties

Analysis of the Different Node Template Properties

Further above it was stated that Node Templates match if their Node Types are identical.

This concept must be expanded by the inclusion of the different properties that are defined

by the TOSCA specification. It introduces a set of properties that are placed on the Node

Template level and complement or override the properties of the corresponding Node

Types. The properties that override or complement are MinInstances, MaxInstances, Proper-

tyDefaults, PropertyConstraints, Policies, EnvironmentConstraints, DeploymentArtifacts and

ImplementationArtifacts. Subsequently, we will discuss the different properties and illustrate

how they relate to the matching of Node Templates. In doing so, the property preservation

requirement of Section 4.2 is followed. Furthermore, it will be investigated whether the

aforementioned properties can be matched generically or not. If not, type-specific matching

procedures must be added as plugins to the generic framework. Only if all matching proce-

dures being part of the generic framework or being a plugin signal a matching of their

properties, a Correspondence between the two Node Templates under investigation can be

established.

MinInstances and maxInstances: The MinInstances property specifies the minimum

number of instances that have to be started when a particular Node Template is instantiat-

ed. The maxInstances property specifies the maximum number thereof. The two properties

must be unified when two Node Templates are merged, but for matching they are ignored

since they have no influence on the matching decision.

PropertyDefaults: The PropertyDefaults of a Node Template contain the initial values of

the Node Type properties of a specific Node Template. When matching two Node Templates

it must be ensured that (1) the same XML instance documents defined by schema elements

5 Concept for Matching of Topology Templates

43

in the Types section of the Service Template are used and (2) the initial values of the two

Node Templates do not conflict with each other. (1) can be ensured by validating the con-

tent of both PropertyDefaults elements against the schema in the Types section. Although

the TOSCA specification does not demand all initial values to be present in a non-

instantiated service they should be present in order match them appropriately. (2) cannot be

decided generically as it is impossible to understand the exact semantics of each XML ele-

ment in a generic way without using inexact matching techniques (see assumption 3). To

overcome this problem the use of type-specific concepts that verify if the initial values of

particular Node Type Properties in a Node Template do not contradict each other is pro-

posed. The type-specific matching concepts will be plugged in the generic framework and

executed whenever Node Templates using a corresponding Node Type are to be matched.

Listing 5.4 illustrates a PropertyDefaults example of a generic application server.

1

2

3

4

5

6

7

8

PropertyDefaults example

<tosca:PropertyDefaults>

 <AppServerProperties>

 <HostName>cs052276.myhost.com</HostName>

 <IPAddress>10.171.50.26</IPAddress>

 <HeapSize>256</HeapSize>

 <SoapPort>8080</SoapPort>

 </AppServerProperties>

</tosca:PropertyDefaults>

Listing 5.4: PropertyDefaults example of a generic application server

The type-specific validation of the initial values is strongly related with the PropertyCon-

straints that will be discussed below. Conflicting initial values will mostly be discovered by

means of conflicting constraints set on them.

PropertyConstraints: The PropertyConstraints define constraints on the initial values of

the PropertyDefaults element.

1

2

3

4

5

6

7

PropertyContraints example

<tosca:PropertyConstraints>

 <tosca:PropertyConstraint

 constraintType="http://www.example.com/PropertyCon straints/Unique"

 property="/AppServerProperties/HostName">

 <scope>service</scope>

 </tosca:PropertyConstraint>

</tosca :PropertyConstraints>

Listing 5.5: PropertyConstraints example of a generic application server

The constraints are defined by URIs and XPath expressions pointing to a particular element

that is constrained. Listing 5.5 shows an example of a PropertyConstraint set on the Proper-

5 Concept for Matching of Topology Templates

44

tyDefaults of Listing 5.4. The attribute constraintType indicates the semantics and the format

of the constraint. The attribute property points to the element that is constrained, i.e. the

HostName element in the AppServerProperties element. The constraint in this example de-

mands the uniqueness of the HostName, the scope element is a self-defined, constraint-

specific element that specifies that the scope of the uniqueness has to be service-wide.

Similar to the PropertyDefaults the semantics of the PropertyConstraints cannot be deter-

mined generically without violating the assumptions made in this work. Therefore, type-

specific evaluations of the XPath expressions in the property attribute and the semantics of

the constraintType URI have to be conducted to make sure that two Node Templates to be

matched do not contain any conflicting constraints. Additionally, constraint specific ele-

ments nested in every PropertyConstraint element, such as the scope element in Listing 5.5

are also subject to type-specific evaluations and cannot be matched generically. Note that

two Node Templates match if one or both of them do not possess any PropertyConstraints.

This will be evaluated generically by the framework.

Policies: Another element of the Node Template that has to be considered is the Policies

element. Nested inside the element Policies, Policy elements carry the information about

management practices concerning a particular Node Template. When matching two Node

Templates it must be evaluated if their Policies do not contradict each other. Policies can be

found on the Node Template level and on the Node Type level. The TOSCA specification

defines that Polices on the Node Type level are unified with those on the Node Template

level. In case of identical name and type attribute values, the Policy on the Node Template

overrides the one defined inside the Node Type. The proposed framework in this thesis will

be able to calculate the “effective” policies similar to the WS-Policy framework [51]. Effec-

tive in this context means that, given two Node Templates, for each one a list of Policies

consisting of Node Type Polices and Node Template Polices is calculated by examining all

Policies and evaluating which ones are not overridden. The lists are then passed to a type-

specific implementation that handles the semantic evaluation of the Policies and their po-

tential mutual exclusion. Particularly the Policy-specific content that is not part of the

TOSCA specification will be evaluated. Note that two Node Templates match if one or both

contain no effective Policies. This will be evaluated by the TOSCAMerge framework.

EnvironmentConstraints: The matching of EnvironmentConstraint elements consisting of

the constraintType attribute and an EnvironmentConstraint-specific content is also an in-

stance for type-specific matching. By using only exact matching techniques in the proposed

framework, the semantics of the constraintType attribute and the nested specific non-

TOSCA-defined content cannot be evaluated. A plugin to the framework must decide

whether the constraints that one Node Template defines for its runtime environment, such

as particular security settings, are matched by the other Node Template or not. Note that

the absence of EnvironmentConstraints in one or both Node Templates indicates that both

Node Templates match with regard to their EnvironmentConstraints. This will be evaluated

by the TOSCAMerge framework.

DeploymentArtifacts: Deployment Artifacts describe concrete artifacts that are needed to

implement a physical component of an IT Service, e.g. a virtual image. The type attribute of

5 Concept for Matching of Topology Templates

45

a DeploymentArtifact element could contain the URI http://docs.oasis-open.org/tosca/

ns/2011/12/deploymentArtifacts/ovfRef indicating that the DeploymentArtifact describes an

OVF [14] package, while the nested type-specific body contains XML fragments referencing

that package and mapping Service Template data and elements to the OVF format. Similar

to the Policies of a Node Template the effective set of DeploymentArtifacts must be calcu-

lated as Deployment Artifacts on the Node Template level override those in the used Node

Type provided that the attributes name and type are identical. The calculation of the effec-

tive set of Deployment Artifacts will be done by the framework, the actual matching and the

evaluation of the type-specific content is done by a plugin to the framework. The absence of

DeploymentArtifacts at one or both Node Templates implies a positive matching of the

Node Templates.

ImplementationArtifacts: The last properties of a Node Template that need to be dis-

cussed are the ImplementationArtifacts. They depict the implementations of the operations

defined in the corresponding Node Type. For example a REST operation could be imple-

mented by a Java Servlet. Again, there exist ImplementationArtifacts on Node Type and

Node Template level and the calculation of the effective set of artifacts is done by the

framework based on the values of the operationName and type attribute. A type-specific

matcher to the framework must be executed to evaluate the semantics of the artifacts and

how their embedded RequiredContainerCapabilities elements and artifact-specific content fit

together. Note that analogous to the aforementioned properties the absence of Implementa-

tionArtifacts in one or both Node Templates under evaluation means that the matching for

this property category evaluates to true.

Node Type InstanceStates: The optional InstanceStates element is not located on the Node

Template level but inside a Node Type. Nevertheless, this property must be analyzed if the

Node Types of two particular Node Templates are not identical but related. It contains In-

stanceState elements, indicating runtime states via a state attribute holding an URI. The

framework must determine all InstanceState elements of the derived Node Types and can

terminate the comparison if one of the Node Types has no InstanceState elements at all.

Otherwise it must call a plugin, specific to the two non-identical Node Types, which com-

pares the InstanceStates.

Node Type Interfaces: The element Interfaces is also part of a Node Type and not of a

Node Template. In case of a matching of two non-identical but related Node Types the nest-

ed Interface elements and their nested Operation elements must be compared. The determi-

nation of the effective set of Interfaces with regard to Node Types that are derived from

others can be done generically by the framework. However, the actual matching of the In-

terface elements must be conducted by a type-specific plugin.

Algorithm for Matching Node Template Properties

In the following section a algorithm is proposed for matching the properties of two Node

Templates. Furthermore, one of the subroutines will be reviewed exemplarily and the previ-

ously introduced concept of calling type-specific plugins will be exemplified.

5 Concept for Matching of Topology Templates

46

Listing 5.6 depicts the function match that unites several subroutines for the individual

Node Template properties explained above. The function requires two Node Templates as

input parameters, denoted by '� and '). A Boolean value is returned indicating the result of

the matching of '� and '). The high-level function returns true if and only if all subroutines

evaluate to true.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Algorithm for matching the properties of two Node T emplates

Input: Node Template n 1

Input: Node Template n 2

Output: Boolean

match(n 1,n 2)

 if matchPropertyDefaults(n 1,n 2)

 ∧ matchPropertyConstraints(n 1,n 2)

 ∧ matchPolicies(n 1,n 2)

 ∧ matchEnvironmentConstraints(n 1,n 2)

 ∧ matchDeploymentArtifacts(n 1,n 2)

 ∧ matchImplementationArtifacts(n 1,n 2)

∧ matchNodeTypeInstanceStates(Node Types of n 1,n 2)

∧ matchNodeTypeInterfaces(Node Types of n 1,n 2) then

 return true

 else

 return false

 end if

end

Listing 5.6: Function match for Node Templates

The review of all the introduced subroutines would go beyond the scope of this document;

therefore, one substantial subroutine, namely the matchPolicies function is discussed next. It

implements the aforementioned concept of calculating the effective set of Policies and,

therefore, has the task to generically collect all Policy elements attached to the two Node

Templates under consideration and pass them to the Node-Type-specific plugin that has the

domain-specific knowledge to handle the policies appropriately. In addition the policies at-

tached directly to the Node Templates, all policies of the Node Types and possibly their an-

cestors in the inheritance hierarchy must be collected respecting the override behavior de-

scribed by the TOSCA specification. Listing 5.7 shows the mentioned matchPolicies function.

It requires two Node Templates, denoted by '� and '), as input and returns a Boolean val-

ue.

5 Concept for Matching of Topology Templates

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Algorithm to match the Policies of two Node Templat es

Input: Node Template n 1

Input: Node Template n 2

Output: Boolean

matchPolicies(n 1,n 2)

 Node Type nt 1 = n 1.getNodeType()

 Node Type nt 2 = n 2.getNodeType()

 Set NodeTypePolicies 1 = determineDerivedPolicies(nt 1)

 Set NodeTypePolicies 2 = determineDerivedPolicies(nt 2)

Set NTPolicies 1, NTPolicies 2 = new Sets of Policies()

 if n 1.getPolicies() ≠ null then

 NTPolicies 1 = n 1.getPolicies()

 end if

 if n 2.getPolicies() ≠ null then

 NTPolicies 2 = n 2.getPolicies()

 end if

 if NodeTypePolicies 1 == ∅ ∧ NTPolicies 1 == ∅ then

 return true

 end if

 if NodeTypePolicies 2 == ∅ ∧ NTPolicies 2 == ∅ then

 return true

 end if

 if NodeTypePolicies 1 ≠ ∅ then

 for each Policy p 1 ∈ NodeTypePolicies 1 do

 if p 1 ∉ NTPolicies 1 then

 NTPolicies 1.add(p 1)

 end if

 end for each

 end if

if NodeTypePolicies 2 ≠ ∅ then

 for each Policy p 2 ∈ NodeTypePolicies 2 do

 if p 2 ∉ NTPolicies 2 then

 NTPolicies 2.add(p 2)

 end if

 end for each

 end if

 return matchPoliciesTypeSpecificContent(NTPolicies 1, NTPolicies 2)

end

Listing 5.7: Function matchPolicies

5 Concept for Matching of Topology Templates

48

In the first step in line 5 and 6 the Node Types of '� and ') are retrieved for convenience

and stored in variables denoted by '.� and '.) respectively. Afterwards, for both of the

Node Types the Policies and the Policies the particular Node Type is derived from are de-

termined by invoking the subroutine determineDerivedPolicies twice (line 7 and 8). The re-

sult is stored in two sets: !67�-89�:6;</<�=� and !67�-89�:6;</<�=). The explanation of

the algorithm of this subroutine will follow shortly. After the determination of the Node

Type Policies the Node Template Policies are retrieved dependent on their existence and

stored in the previously declared sets !-:6;</<�=� and !-:6;</<�=) (line 10-16). If both of

the two sets belonging to '� respectively ') are empty, the algorithm returns true and ter-

minates. In this case one of the two Node Templates does not have any Policies that could

contradict the other ones Policies (line 18-23). Subsequently, the actual unification of Poli-

cies follows in the lines 24-30. First it is evaluated if the Node Type policies of '� are not

empty. If so, each Policy element of !67�-89�:6;</<�=� is checked against the Node Tem-

plate Policy set !-:6;</<�=� and added to it if it is not yet element of it. As we have seen

earlier, this is necessary since Node Template Policies override Node Type Policies with

identical name and type attributes. The same approach is used in line 31-37 for the calcula-

tion of the effective policy of Node Template '). After having calculated two sets with the

effective policies, they are passed as input parameters to the type-specific plugin with the

subroutine call matchPoliciesTypeSpecificContent. There, a type-specific implementation or

an external Policy engine can compare the passed policies.

As addressed earlier, the determineDerivedPolicies function can be found in Listing 5.8. It has

only one input parameter: the Node Type, denoted by '. of a particular Node Template. The

output is a set of Policies. First, a new set :6;</<�= is created that can hold the Policies (line

4). If '. is derived from another Node Type, this Node Type is retrieved and stored in a var-

iable denoted by '.0123410 . Subsequently, the function is invoked recursively with '.0123410
as input parameter and, thereby, follows the inheritance hierarchy. The returned Policies

are added to :6;</<�= (line 6-9). If the current Node Type '. has attached policies, they are

retrieved and each Policy element is compared against the overall :6;</<�= set. If a Policy

element 9 is already element of :6;</<�=, i.e. it has the same name and type attributes and

has been added on a hierarchy level closer to the root, the element is removed from :6;</<�= and the current 9 is added to the list. If 9 is not yet element of :6;</<�=, it is added

immediately (line 11-21).

5 Concept for Matching of Topology Templates

49

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Algorithm to determine all Policies along a Node Ty pe hierarchy

Input: Node Type nt

Output: Set of Policies

determineDerivedPolicies(nt)

 Set Policies = new Set of Policies()

if nt.getDerivedFrom() ≠ null then

 Node Type nt derived = nt. getDerivedFrom()

 Policies = Policies.addAll(determineDerivedPolici es(nt derived))

 end if

 if nt.getPolicies() ≠ null then

 List NTPolicies = nt.getPolicies()

 for each Policy p ∈ NTPolicies do

 if p ∈ Policies then

 Policies.remove(p)

 Policies.add(p)

 else

 Policies.add(p)

 end if

 end for each

 end if

 return Policies

end

Listing 5.8: Function determineDerivedPolicies

5.2 Matching of Relationship Templates

When discussing the basic Node Template matching case, it was assumed that the Relation-

ship Templates between the Node Templates only represented HostedOn semantics. Now,

Relationship Templates with additional properties located in the PropertyDefaults element,

additional constraints on these properties (PropertyConstraint elements) and constraints on

the use of a Relationship Template itself, denoted by RelationshipConstraint elements, are

studied. Furthermore, the relationship semantics of HostedOn and others (see Fig. 4.4 for the

Relationship Type tree) have to be considered. For each of the mentioned properties it will

be investigated whether they can be matched generically or not. If not, type-specific match-

ing procedures must be added as plugins to the generic TOSCAMerge framework. Only if all

generic Relationship Template matching procedures of TOSCAMerge or the responsible

plugins signal a matching of the properties, a Correspondence between the two Relationship

Templates under investigation can be established. The type-specific plugins are identified by

their qualified name. The TOSCAMerge framework prototype will provide the implementa-

tion for three typical Relationship Types: HostedOn, Communication and Dependency. Addi-

5 Concept for Matching of Topology Templates

50

tional Relationship Types can easily be added to as plugins to the framework (see Section

8.3.2).

Definition 5.3 (Relationship Template Correspondence): A Relationship Template Corre-

spondence is defined as an indicator that two particular Relationship Templates have non-

contradictory PropertyDefaults, PropertyConstraints and RelationshipConstraints and can be

unified in a subsequent merging step. The Relationship Template Correspondence is attached to

a Node Template Correspondence. The Relationship Template that marks the source of the Cor-

respondence also stores all found Correspondences to other Relationship Templates.

The Relationship Template Correspondences can be seen as overlay edges between Rela-

tionship Templates that in this case do not represent edges but nodes in an overlay graph

over the TOSCA graph.

The matching cases analyzed below not only serve to decide which incident Relationship

Templates to two particular Node Templates can be unified but also to indicate in which

cases the matching of Node Templates must be skipped to avoid invalid semantics.

5.2.1 Analysis of the Different Relationship Template Matching Cases

HostedOn Semantics

After all the generic matchers and matcher plugins of the TOSCAMerge framework have

decided that two Node Templates match, their relationships to other Node Templates have

to be evaluated. As already mentioned, each Node Template must only be source of one

HostedOn Relationship Template. So if we look at Fig. 5.7, a correspondence between the

two Application Server Node Templates could be established assuming all the matchers re-

turn true. But matching both of the (blue) HostedOn-Relationship Templates reveals that the

Relationship Templates Properties are incompatible with each other. Merging both Applica-

tion Server Node Templates would lead to the crossed out Topology Template with the un-

desired semantics of an instance of an application server installed on two different operat-

ing systems at the same time. Therefore, the underlying matching algorithm must make

sure that no Node Template Correspondence is established between two Node Templates if

both are the source, or speaking in terms of graph theory the tail, of HostedOn-Relationship

Templates, which Properties are marked incompatible by the Relationship Template generic

matchers and plugins of the TOSCAMerge framework. This is stipulated by the semantically

correct result requirement of Section 4.2.

If the two HostedOn Relationship Templates have non-contradictory properties and con-

straints, a Relationship Template Correspondence can be created and attached to the Node

Template Correspondence.

5 Concept for Matching of Topology Templates

51

Fig. 5.7: Possible, but invalid correspondence leads to undesired semantics

5 Concept for Matching of Topology Templates

52

Communication Semantics

Another Relationship Type that has to be discussed in this work is the Communication Rela-

tionship Type. It describes the communication between two Node Templates and the associ-

ated properties and constraints. In contrast to Relationship Templates with HostedOn se-

mantics, it is valid that several Relationship Templates with Communication semantics be-

tween two Node Templates exist. However, it is preferable that Communication-

Relationship Templates that have non-contradictory properties and constraints are unified.

Fig. 5.8: Four matching cases of Relationship Templates with Communication semantics

Fig. 5.8 shows the four main matching cases of Relationship Templates that possess a Com-

munication Relationship Type. Case 1 is a single Node Template as source for two Commu-

nication Relationship Templates that target two other Node Templates that are currently

evaluated for matching. If the TOSCAMerge framework and the type-specific Communica-

tion Relationship Type plugin decide that the Relationship Templates match, a Relationship

Template Correspondence is established. Case 2 shows the similar constellation where the

two Node Templates under examination are the sources of the Communication Relationship

Templates instead of the targets such as in case 1. The cases 3 and 4 depicted in Fig. 5.8 can

5 Concept for Matching of Topology Templates

53

be encountered if there is already an Node Template Correspondence either between both of

the source Node Templates (case 3) or both of the target Node Templates (case 4). The al-

ready existing Node Template Correspondence has been found in an earlier iteration of the

matching algorithm. Note that the algorithm should also be able to find Relationship Tem-

plate Correspondences between Communication Relationship Templates that have the same

source and target. Furthermore, Correspondences from one Relationship Template to more

than one other Relationship Template of the same Relationship Type may occur.

Dependency Semantics

The last prototypical implemented Relationship Type is the Dependency Relationship Type.

This Relationship Type has the semantics of a dependency of the source Note Template to

the target Node Template, e.g. the Application Server needs the Database up and running

before being able to start.

Fig. 5.9: Four matching cases of Relationship Templates with Dependency semantics

The four cases depicted in Fig. 5.9 exhibit the same Node Template and Node Template Cor-

respondence constellations as discussed previously in the context of the Communication

5 Concept for Matching of Topology Templates

54

Relationship Templates. However, there is a one substantial difference between the two

Relationship Types. If two particular Relationship Templates do not match this does not

only imply that there cannot be a Relationship Template Correspondence but also that a

Node Template Correspondence must not be created in order to prevent a merged Topology

Template with invalid semantics and to adhere to the semantically correct result require-

ment.

Topology Template 2Topology Template 1

Application

Server

Application

Server

DatabaseDatabase

Correpondence

Dependency

{PropertiesX}

Dependency

{PropertiesY}

Invalid merged Topology Template

Application

Server

Database

Dependency

{PropertiesX}

Dependency

{PropertiesY}

Correpondence

?

{PropertiesX} ≠

{PropertiesY}

Fig. 5.10: Example of invalid merged Topology Template

Fig. 5.10 shows such a case where there already exists a Node Template Correspondence

between two Application Server Node Templates and a Correspondence between the two

Database Nodes is under evaluation. The algorithm must not allow the Node Template Cor-

respondence as the properties of the Relationship Templates are contradictory in their con-

tent and a merge would lead to the depicted invalid structure where the merged Application

Server Node Template is dependent of the merged Database Node Template in a contradict-

ing way. Note that Correspondences from one Relationship Template to more than one oth-

er Relationship Template of the same Relationship Type may occur.

5 Concept for Matching of Topology Templates

55

Algorithm for Matching HostedOn Relationship Templates

The following section discusses one algorithm representative for the Relationship Template

matching cases analyzed above. The algorithm conducts the matching of two Relationship

Templates with HostedOn semantics. Presenting the algorithms for Communication and

Dependency semantics as well would go beyond the scope of this document, however, they

are implemented in the TOSCAMerge framework. The proposed algorithm in Listing 5.9 is

embedded in the function handleRelationshipTemplates. Revisiting the basic function find-

Mapping for finding Node Template Correspondences in Listing 5.1, a concept named Rela-

tionshipTemplateMatchingHandler was introduced briefly. A RelationshipTemplateMatch-

ingHandler offers a function named handleRelationshipTemplates that is capable of handling

Relationship Templates of a certain Relationship Type. It can be seen as another plugin to

the TOSCAMerge framework that implements Relationship-Type-specific high-level match-

ing algorithms. In the findMapping function in line 31 the handleRelationshipTemplates sub-

routine of all available handlers are invoked. Listing 5.9 depicts the function for the

HostedOn RelationshipTemplateMatchingHandler responsible for the HostedOn Relation-

ship Type. The function has five input parameters: two Topology Templates, denoted by --� and --), holding all the Relationship Templates, two already positively matched Node

Templates, denoted by '� and '), and a set that holds the so far created Node Template

Correspondences. is not needed for the matching HostedOn Relationship Templates,

however, as the signature of the handleRelationshipTemplates function is defined uniformly

for all RelationshipTemplateHandlers specified here. For the matching of Communication

and Dependency Relationship Templates is necessary as seen in the cases 3 and 4 in Fig.

5.8 and Fig. 5.9. The output of the function is a set of Relationship Template Correspondenc-

es, although only one Correspondence can be found as only one pair of HostedOn Relation-

ship Templates may exist. But again this is because of the uniform definition of the func-

tion’s signature.

The first step in line 8-9 is to create two variables denoted by ℎ6=.�7%'� and ℎ6=.�7%').
These variables will hold the HostedOn Relationship Templates assuming that the Topology

Templates are valid and only one with a particular Node Template as source exists (see As-

sumption 9). A set ? that will hold the found Relationship Templates Correspondence is

then created in line 10. Subsequently, each Relationship Template in --� is checked whether

it has '� as source and has a HostedOn Relationship Type at the same time. If so, the cur-

rent Relationship Template @� is assigned to ℎ6=.�7%'� and the loop is immediately left

(line 12-17).

5 Concept for Matching of Topology Templates

56

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

High-level matching algorithm for HostedOn Relation ship Templates

Input: Topology Template TT 1

Input: Topology Template TT 2

Input: Node Template n 1

Input: Node Template n 2

Input: Mapping M

Output: Set Relationship Template Correspondences

handleRelationshipTemplates(TT 1,TT 2,n 1,n 2,M)

 Relationship Template hostedOn 1

 Relationship Template hostedOn 2

 Set C = new Set of Relationship Template Correspond ences()

for each Relationship Template r 1 ∈ TT 1 do

if r 1.getSource == n 1 ∧ r 1.getRelationshipType() == “HostedOn” then

 hostedOn 1 = r 1

 break

end if

 end for each

for each Relationship Template r 2 ∈ TT 1 do

if r 1.getSource == n 2 ∧ r 2.getRelationshipType() == “HostedOn” then

 hostedOn 2 = r 2

 break

end if

 end for each

Matcher matcher = createRelTemplateMatcher(Relation shipType of

hostedOn 1)

 if matcher.match(hostedOn 1,hostedOn 2) then

Relationship Template Correspondence c = new Relati onship Template

Correspondence()

 C.add(c)

 else

 throw new NotCompatibleException()

 end if

 return C

end

Listing 5.9: Function handleRelationshipTemplates for HostedOn semantics

The iteration over all Relationship Templates is necessary, as Node Templates do not know

their incident Relationship Template. The same steps are conducted over all Relationship

Templates in --) (line 19-24). Not shown in Listing 5.9, due to shortage of space, are opti-

mizations that terminate the algorithm if the '� or ') is not source of a HostedOn Relation-

ship Template.

5 Concept for Matching of Topology Templates

57

In line 26 a Relationship Template matcher is created that matches the properties of a Rela-

tionship Template. The creation is conducted subject to the HostedOn Relationship Type of ℎ6=.�7%'� and ℎ6=.�7%'). If the invocation of the match subroutine in line 28 evaluates to

true, a new Relationship Template Correspondence is created and added to ? and C is re-

turned. If ℎ6=.�7%'� and ℎ6=.�7%') do not match, an exception is thrown in line 33 that

indicates that no Node Template Correspondence between '� and ') must be established.

Otherwise it would lead to the invalid semantics discussed above and depicted in Fig. 5.7.

The match subroutine is explained in the next section when analyzing the matching of Rela-

tionship Template Properties.

5.2.2 Matching of Relationship Template Properties

Analysis of the Different Node Template Properties

The following section analyzes the three Relationship Template Properties PropertyDefaults,

PropertyConstraints and RelationshipConstraints.

PropertyDefaults: The PropertyDefaults element of a Relationship Template has the same

purpose as in a Node Template: initial values for the RelationshipTypeProperties attribute of

the corresponding Relationship Type are provided to specify individual properties of a Rela-

tionship Template, i.e. of a relationship between two Node Templates. The schemata for the

RelationshipTypeProperties are located in the Types section of the Service Template. Match-

ing the PropertyDefaults of two Relationship Templates is not possible in a generic way

without violating Assumption 3: no inexact matching techniques are considered in this

work. Therefore, similar to the PropertyDefaults of Node Templates a type-specific plugin

to the TOSCAMerge framework is proposed to match the PropertyDefaults of two Relation-

ship Templates. The plugin compares the initial values provided by an XML fragment and

determines if the values are compatible with each other. The framework itself provides

functionality to check if the PropertyDefaults of both Relationship Templates under evalua-

tion adhere to the corresponding schema. Note that if one Relationship Template does not

possess any PropertyDefaults, the framework will decide that both Templates match.

PropertyConstraints: The PropertyConstraints element contains nested PropertyConstraint

elements that define constraints on the initial property values specified by the PropertyDe-

faults of the corresponding Relationship Type. Whether the contents of two PropertyCon-

straints elements match has to be determined by a type-specific plugin to the framework

that has the knowledge of the semantics of every constraintType attribute and the optional

nested constraint specific XML fragments. The framework itself will provide capabilities to

retrieve the concerned XML elements, respectively values, from the PropertyDefaults ele-

ment and hand them over to the type-specific plugin. Note that if one or both Relationship

Templates do not possess any PropertyConstraints, the framework will decide that the

PropertyConstraints match.

RelationshipConstraints: The RelationshipConstraints element contains nested Relation-

shipConstraint elements that define constraints on the use of a Relationship Template. A

type-specific plugin to the TOSCAMerge Framework will handle the evaluation whether the

semantics of the constraintType URI and the nested constraint specific content do contradict

5 Concept for Matching of Topology Templates

58

each other. Note that if one or both Relationship Templates do not possess any Relation-

shipConstraints, the framework will decide that the RelationshipConstraints match.

Algorithm for Matching Relationship Template properties

After having analyzed the properties of Relationship Templates and which idiosyncrasies

must be considered when matching them, an algorithm is proposed that handles the match-

ing. Similar to the matching of Node Templates, the algorithm invokes a subroutine for each

relevant property and evaluates to true if all subroutines on their own evaluate to true. Ad-

ditionally to the function match, one exemplary subroutine will be shown to show the inter-

action of generic framework algorithms with user specific plugins.

Listing 5.10 depicts the matching algorithm for Relationship Template Properties. It is em-

bedded in the match function and requires two Relationship Templates, denoted by @� and @)
as input parameters. The Boolean return value indicates the outcome of the matching.

1

2

3

4

5

6

7

8

9

10

11

12

13

Algorithm to match properties of Relationship Templ ates

Input: Relationship Template r 1

Input: Relationship Template r 2

Output: Boolean

match(r 1,r 2)

 if matchPropertyDefaults(r 1,r 2)

 ∧ matchPropertyConstraints(r 1,r 2)

 ∧ matchRelationshipConstraints(r 1,r 2)

then

 return true

 else

 return false

 end if

end

Listing 5.10: Function match for Relationship Templates

The match function invokes three subroutines: matchPropertyDefaults, matchPropertyCon-

straints and matchRelationshipConstraints. Only if all three return true, match itself returns

true. Otherwise the two Relationship Templates do not match and false is returned.

Listing 5.11 exemplarily shows the function matchRelationshipConstraints to clarify the pro-

posed concept of framework embedded functions invoking type-specific plugins with a sim-

ple example. The function requires two Relationship Templates, denoted by @� and @), and

returns a Boolean value. First the RelationshipConstraints of both Relationship Templates

are retrieved and stored in variables (line 5 and 6). If one of both variables is null, true is

returned, since the two RelationshipConstraint elements cannot contradict each other (line 8-

10). If both Relationship Templates have RelationshipConstraints, the function matchRela-

tionshipConstraintsTypeSpecificContent is invoked in line 12 calling the plugin that is appro-

5 Concept for Matching of Topology Templates

59

priate for the Relationship Type of @� and @).The resulting Boolean value is then returned to

the calling match function (see Listing 5.10).

1

2

3

4

5

6

7

8

9

10

11

12

13

Algorithm to match RelationshipConstraints

Input: Relationship Template r 1

Input: Relationship Template r 2

Output: Boolean

matchRelationshipConstraints(r 1,r 2)

 RelationshipConstraints rc 1 = n 1.getRelationshipConstraints()

 RelationshipConstraints rc 2 = n 2.getRelationshipConstraints()

 if rc 1 == null ∨ rc 2 == null then

 return true

 end if

 return matchRelationshipConstraintsTypeSpecificContent(rc 1,rc 2)

end

Listing 5.11: Function matchRelationshipConstraints

5.3 Matching in the Context of Group Templates

Group Templates are subgraphs consisting of Node Templates, connected by Relationship

Templates, and possibly more Group Templates. Assumption 8 states that Relationship

Templates only target Node Templates in the Group Template and vice versa but not the

Group Template directly. When matching inside a Topology Template or between two To-

pology Templates and the algorithm detects a Group Template, the matching algorithm has

to be invoked recursively. In doing so, the contents of the Group Template are input for the

algorithm together with the contents of either the second Topology Template or the whole

Topology Template itself in case of inside matching. Fig. 5.11 shows two Topology Tem-

plates and a calculated Correspondence from the database’s Windows OS inside the left-

hand side Group Template to the applications server’s Windows OS in the right-hand side

Node Template. When matching Topology Templates that possess Group Templates, several

different cases occur that must be discussed. On the one hand, these cases center on the

question when the matching algorithm is allowed to recursively enter a particular Group

Template to match its content inside the Group Template or with other Node Templates

outside. On the other hand, an important question is how to deal with the matching of Node

and Relationship Templates across different levels of nested Group Templates.

Furthermore, a concept that has to be introduced in this context is the notion of a Corre-

spondence between Group Templates in order to unify corresponding Group Templates.

Definition 5.4 (Group Template Correspondence): A Group Template Correspondence is

defined as an indicator that two particular Group Templates have non-contradictory Policies

and can be unified in a subsequent merging step.

5 Concept for Matching of Topology Templates

60

The Group Template that marks the source of the Correspondence also stores all found cor-

respondences to other Group Templates.

Topology Template 2Topology Template 1

Application

Application

Server

HostedOn

Application

Application

Server

HostedOn

Windows

OS

HostedOn

Linux OS
Windows

OS

Database

Correpondence

Correpondence

HostedOnHostedOn

Communication

Group Template

Fig. 5.11: Matching in the context of Group Templates

The Group Template Correspondence can be used to unify Policy-corresponding Group

Templates in the merging step. Note that in order to establish a Correspondence between

two Group Templates their “Nesting Level” has to be considered.

Definition 5.5 (Nesting Level and Group Template Hierarchy): The Nesting Level is the

number of Group Templates that must be traversed to reach a particular Node, Relationship or

Group Template. The direct content of a Topology Template is defined to be on ;���;	0, whereas ;���;	' indicates that an element is nested inside ' Group Templates. The Group Templates
from ;���;	0 to ;���;	' − 1 are called parents of the elements on	;���;	' and form a Group
Template Hierarchy. A Group Template on ;���;	0 does not have any parents. A Group Tem-
plate on ;���;	' is called the child of a Group Template on	;���;	' − 1.
In order to be able to navigate through the Group Template Hierarchy and perform algo-

rithms on it, the data structure GroupTemplateHierarchy, depicted in Listing 5.12, is intro-

duced.

5 Concept for Matching of Topology Templates

61

1

2

3

4

5

6

Data structure GroupTemplateHierarchy

data structure GroupTemplateHierarchy {

 GroupTemplateHierarchy child

 GroupTemplateHierarchy parent

 Group Template groupTemplate

 int nestingLevel

}

Listing 5.12: Data structure GroupTemplateHierarchy as double-linked list

The data structure is similar to a double-linked list [40]. Each GroupTemplateHierarchy

element on Nesting Level ' has a child field, which has a pointer to a GroupTemplateHier-

archy element on a Nesting Level ' + 1 and a parent field pointing to Nesting Level ' − 1.
The Group Template field points to a Group Template assigned to this particular

GroupTemplateHierarchy element. Furthermore, to every element in a Topology Template,

i.e. Node, Relationship and Group Templates, a GroupTemplateHierarchy element is as-

signed that represents its parent in the Group Template Hierarchy. Thus, for every element

one can infer its Nesting Level ' + 1 by examining the Nesting Level ' of the parent ele-

ment. If there exists no parent GroupTemplateHierarchy, the particular element is on Nest-

ing Level 0. The assignment must be conducted in a step prior to the actual invocation of

the findMapping function.

5.3.1 Extension of the Basic Matching Algorithm for Node Templates

After having introduced the concept of Group Template Correspondences and Hierarchies,

the next step is to discuss the necessary conceptual extensions to the basic algorithm from

Listing 5.1 and Listing 5.2 to incorporate the processing of Group Templates and their con-

tent. The extended version is displayed in Listing 5.13 and Listing 5.14. Note that some de-

tails, such as the creating of Node Template Correspondences and the handling of Relation-

ship Templates, are left out due to shortage of space. The input parameters of the function

findMapping have changed: Instead of requiring two Topology Templates now two sets,

denoted by �� and �) are required. The sets contain tExtensibleElements which can be in-

stances of Node, Relationship or Group Templates, i.e. the content of Topology Templates as

well as Group Templates. This modification is necessary as the findMapping function is to

be invoked for mapping the content of two Topology Templates as well as mapping the con-

tent of Group Templates recursively. The second modification comprises of the adding of

two Group Templates, denoted by CDE21$F� and CDE21$F). These Group Templates are the

parent Group Templates of the respective recursion depth of the algorithm, i.e. the parent of

the Nesting Level the algorithm currently operates on. The basic principle of the algorithm

remains the same. There are two nested loops where each Node Template of Topology

Template 1 is compared with each Node of Topology Template 2. However, it is important

to remember that in the first and in the second invocation of findMapping both Topology

Templates are identical to conduct an inside matching and not until the third invocation the

different, and already merged, Topology Templates are input for the function.

5 Concept for Matching of Topology Templates

62

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Extended algorithm for finding a mapping between No de Templates 1

Input: Set of Elements E 1

Input: Set of Elements E 2

Input: Group Template g parent1

Input: Group Template g parent2

Input: Mapping M = ∅

Output: Mapping M

findMapping(E 1,E 2,g parent1 ,g parent2 ,M)

 for each Element e 1 ∈ E 1 do

 if e1 ∈ Node Templates then

 Node Template n 1 = (Node Template)e 1

 else if e1 ∈ Group Templates then

 Group Template g 1 = (Group Template)e 1

findMapping(g 1.getElements(),E 2,g 1,g parent2 ,M)

 end if

 for each Element e 2 ∈ E 2 do

 if e2 ∈ Node Templates then

 Node Template n 2 = (Node Template)e 2

 else if e2 ∈ Group Templates then

 Group Template g 2 = (Group Template)e 2

 if isGroupTemplateAccessPossible(g 1,g 2,n 1,g parent1 ,g parent1)

then

 Set E new = new Set()

 E new.add(n 1)

findMapping(E new,g 2.getElements(),g parent1 ,g 2,M)

 else

continue

 end if

 end if

 ...

Listing 5.13: Extended function findMapping part 1

The algorithm starts in line 8 with the first loop that iterates over all elements of ��. If the

current element �� is an instance of a Node Template, it is converted into one and the algo-

rithm proceeds to the second loop iterating over �). If, however, �� is an instance of a

Group Template, it is converted into one (line 12) and the function is invoked recursively

with the elements of that Group Template, denoted by C� forming the new set �� and C� as

the new parent Group Template CDE21$F�. This illustrates that the algorithm will recursively

enter the left-hand side Topology Template respectively Group Templates until the first

Node Template is found. Only then the iteration through the second set may commence.

5 Concept for Matching of Topology Templates

63

If the second loop beginning at line 16 finds a Node Template, two Node Templates are

found altogether and the algorithm proceeds to the actual matching. If, however, the current

element �� is instance of a Group Template, denoted by C) the subroutine isGroupTem-

plateAccessPossible is invoked. This function encapsulates the evaluation if the recursive

invocation of findMapping with the content of Group Template 2 should be allowed. It

checks which of several cases is at hand regarding the Nesting Level of Node Template '�
and the entering of the Group Template C). The cases are discussed in the next section. If

the subroutine returns true in line 20, the current Node Template '� is added to a new set

denoted by �$1G as single element
7
 and findMapping is invoked recursively with �$1G as

new left-hand side set, the content elements of C) as new right-hand side set, the current CDE21$F� and C) as the new CDE21$F) Group Template. If the subroutine returns false, the

processing of the current C) is skipped. The details of isGroupTemplateAccessPossible are

shown below.

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Extended algorithm for finding a mapping between No de Templates 2

 ...

if nt 1 == nt 2

∨ isDerivedFrom(nt 1,nt 2)

∨ isDerivedFrom(nt 2,nt 1)

∨ hasCommonAncestor(nt 1,nt 2)

then

 Matcher matcher = createNodeTemplateMatcher(nt 1,nt 2)

 if ¬isMatchingPossible(n 1,n 2,g parent1 ,g parent1) then

 continue

 end if

 if matcher.match(n 1,n 2) then

 ...

 end if

 end if

 end for each

 end for each

end

Listing 5.14: Extended function findMapping part 2

The last modification to be introduced is the invocation of the additional subroutine is-

MatchingPossible in line 37. Inside this function it is evaluated if the current Node Templates '� and ') having different Nesting Levels may be matched. If not, the algorithm must skip

the processing of the two Node Templates. The different cases and the details of the subrou-

tine are discussed below in Section 5.3.3.

7
This is a necessary action to ensure that the first loop only finds one Node Template and does not start to

invoke findMapping recursively by itself.

5 Concept for Matching of Topology Templates

64

5.3.2 Different Cases of Recursive Access to Group Templates

The following section analyzes the different cases occurring when a left-hand side Node

Template, as before denoted by Node Template 1 or '�, is found during the iteration over

set 1, denoted by ��, and a Group Template C) during the iteration over set 2, denoted by �). These cases center on the question, which Nesting Level '� has in relation to C) and if

the latter one may be entered recursively. The pseudo code implementation of the different

cases is found below as function isGroupTemplateAccessPossible. Basically, it is an optimiza-

tion of the findMapping algorithm to prevent the entering of Group Templates in the cases

where it is clear that '� and the content of C) are incompatible from the beginning because

of their Policies. The second goal of the function is to find possible Group Template Corre-

spondences. The Node Template '� and the Group Template C) currently under considera-

tion are indicated by means of green borders and the recursive entering of C) is depicted by

a dotted arrow in the following examples.

Case1: Matching Inside one Group Template

The first case to be discussed is depicted in Fig. 5.12. If a Topology Template has at least one

Group Template, the matching algorithm must be able to recursively step into the Group

Template in order to match its contents.

Fig. 5.12: Example of matching inside a Group Template

5 Concept for Matching of Topology Templates

65

The example in Fig. 5.12 shows a green Node Template on the left-hand side, i.e. the current

value of the variable '� of the findMapping function, that has to recursively enter its own

parent Group Template 1 to gain access to other Node Templates and compare their proper-

ties with its own.

Case 2: Correspondences Between Group Templates on the Same Nesting Level

As presented in Section 2.3.1 a Group Template can also have Policies that specify the man-

agement practices concerning a particular Group Template. If the content, i.e. predominant-

ly the Node Templates of two Group Templates, are matched, regardless if the Group Tem-

plates are residing inside one Topology Template or in two different ones, their Policies

have to be evaluated. Only if the individual Policy elements do not contradict each other, the

matching of the Group Templates content can be allowed by the TOSCAMerge framework,

i.e. the algorithm invokes itself recursively with the content of the Group Templates. To

indicate the equivalence of the Policies a Group Template Correspondence between the two

Group Templates under investigation is established (Fig. 5.13).

Fig. 5.13: Example of Group Template Correspondence on Nesting Level 0

A Group Template Correspondence can only be established if and only if they are on the

same Nesting Level and also all their parent Group Templates have a Correspondence to

their counterpart on the same level. The depicted example also illustrates the Application

Server Node Template in Group Template 1 can only be matched to other Node Templates in

5 Concept for Matching of Topology Templates

66

Group Template 2 if the mentioned Group Template Correspondence exists. Otherwise the

findMapping algorithm would not enter Group Template 2 recursively.

Fig. 5.13 shows two Group Templates that are on Nesting Level 0, whereas Fig. 5.14 exem-

plifies that in order to analyze if Group Template 3 and 4 on Nesting Level 1 correspond to

each other, a Group Template Correspondence on Nesting Level 0 has to be present. Group

Template 6 on Nesting Level 2 cannot be matched with another Group Template in this ex-

ample as there is no counterpart Group Template on the same Nesting Level in Topology

Template 1. From the viewpoint of left-hand side Node Template, marked with the green

border, Group Template 4 can be entered since it has a Correspondence with Group Tem-

plate 3, the parent of the Node Template, on the same Nesting Level. However, this requires

that the algorithms current recursion depth is already inside Group Template 2. Otherwise

it is about case 3, which covers the entering of Group Template when the left-hand side

Node Template’s parent Group Template is on a different Nesting Level than the Group

Template to be entered.

Fig. 5.14: Example of correspondences on a deeper Nesting Level

Case 3: Accessing Group Template Located on Different Nesting Levels

The next case checks the access to the right-hand side Group Templates when the already

found Node Template on the left-hand side is nested in a Group Template that is (1) not on

Nesting Level 0 and (2) not on the same Nesting Level as the right-hand side Node Template

5 Concept for Matching of Topology Templates

67

to be accessed. Fig. 5.15 shows such a case: To compare the found Node Template, high-

lighted with green borders, to Node Templates inside Group Template 2, the latter has to be

accessed recursively. However, access should only be granted if Group Template 1 and 2

have non-contradictory Group Template Policies and can be merged in a subsequent step.

Thus, it must be evaluated if a Group Template Correspondence between Group Template 1

and Group Template 2 can be established or already exists. If so, access must be granted by

the algorithm. The example presented in Fig. 5.15 is called case 3a and the Group Template

to be accessed is on Nesting Level 0.

Fig. 5.15: Example of Group Template access case 3a

There also exists a derivation of this case, shown in Fig. 5.16. In this case 3b, the right-hand

side Group Template 6 to be accessed still fulfills condition (1) and (2), but this time it is not

on Nesting Level 0 but residing deeper on Nesting Level 2. The comparison of its content

with the left-hand side Node Template can only take place if the algorithm permitted the

access to the parent Group Templates of Group Template 6 and the current focus is now on

entering the latter one. Access is decided by evaluation of the accumulated Policies
8
 of the

left-hand side Node Template and the right-hand side Group Template. If they match, the

Group Template is entered. Otherwise the policies contradict and entering would only cost

8
 Accumulated Policies are the combined Policies of all parent Group Templates of one element including its

own. A detailed definition follows below.

5 Concept for Matching of Topology Templates

68

computing resources, although it is already clear that no matching Node Template will be

found, either directly in the Group Template or even nested deeper.

Additionally, on its way down through the Group Template Hierarchy the algorithm im-

plementing the cases must check if a Correspondence between the Group Template and its

counterpart on the same Nesting Level in the right-hand side Node Template’s Hierarchy is

existing or can be established. This ensures that in the end all possible Group Template Cor-

respondences have been found. Relying on the same level comparison mentioned in case 2 is

not sufficient: if on a particular Nesting Level on the left-hand side no Node Templates but

only Group Templates exist, the extended findMapping algorithm would immediately enter

those Group Template and no same Nesting Level comparison to the right-hand side could

be conducted. Therefore, the comparison on the way down is immanent for finding all

Group Template Correspondences.

Fig. 5.16: Example of Group Template Access case 3b

5 Concept for Matching of Topology Templates

69

Case 4: Left-hand Side Node Template is on Nesting Level 1

The fourth case assumes the left-hand side Node Template on Nesting Level 1, i.e. its parent

Group Template is on Nesting level 0, and the right-hand side Group Template on a Nesting

Level greater than 1.
9
 The case is very similar to case 3, but has the slight difference that it is

obvious from the outset that no Group Template Correspondence can exist between the

Node Template’s parent, i.e. Group Template 1 and the Group Template to be entered, i.e.

Group Template 6 in the present example. Therefore, before entering again the accumulated

Policies of the Node Template have to be matched with those of the Group Template.

Fig. 5.17: Example of Group Template access case 4

Case 5: Left-hand Side Node Template is on Nesting Level 0

The last relevant case is depicted in Fig. 5.18. The left-hand side Node Template is on Nest-

ing Level 0 and Group Template 1 or any deeper nested Group Template is to be entered

recursively. The framework must once again compare the accumulated Policies of both ele-

ments to decide on entering.

9
 Otherwise case 2 would be at hand.

5 Concept for Matching of Topology Templates

70

Fig. 5.18: Example of Group Template access case 5

Algorithm for Evaluating the Recursive Access to Group Templates

After having analyzed the different cases when accessing a Group Template on the right-

hand side, the following section discusses the algorithms necessary to implement the cases.

Listing 5.15 and Listing 5.16 show the function isGroupTemplateAccessPossible separated in

two parts due to the size of the algorithm. The function requires five input parameters: One

Node Template, denoted by '�, and three Group Templates, denoted by C), CDE21$F� and CDE21$F). The Node Template represents the left-hand side Node Template referred to in the

discussion of the different cases, C) represents the Group Template over which the access

decision has to be made. CDE21$F� and CDE21$F) represent the parent Group Templates of '�
respectively C). The last input parameter is a set of Group Template Correspondences de-

noted by �-?. The output is a Boolean value.

The first step of the algorithm in line 8 is to create a new Group Template matcher that is

able to match the Policies of either two Group Templates located on the same Nesting Level

or a Node Template and a Group Template possibly located on different Nesting Levels.

5 Concept for Matching of Topology Templates

71

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Algorithm to decide if Group Template access is pos sible part 1

Input: Node Template n 1

Input: Group Template g 2

Input: Group Template g parent1

Input: Group Template g parent2

Input: Set of Group Template Correspondences GTC

Output: Boolean

isGroupTemplateAccessPossible(n 1,g 2,g parent1 ,g parent2 ,GTC)

 Matcher matcher = createGroupTemplateMatcher()

if gparent1 ≠ null then

 if gparent1 == g 2 then

 return true

 else if isOnSameLevel(g parent1 ,g 2) then

if matcher.match(g parent1 ,g 2) then

 Group Template Correspondence c = new Group Tem plate

Correspondence(g parent1 ,g 2)

GTC.add(c)

gparent1 .addCorrespondences(c)

return true

else

 return false

 end if

else if gparent1 .getParent() ≠ null ∧

gparent1 .getParent().checkGroupTemplateCorrespondence(n 1,g 2,GTC)

then

 return true

 ...

Listing 5.15: Function isGroupTemplateAccessPossible part 1

The first condition to be evaluated spans from line 10 over the whole part 1 of the algorithm

up to line 33 in part 2 (see Listing 5.16). It checks if CDE21$F�, i.e. the parent Group Template

of Node Template '�, is available and therefore '� is at least on Nesting Level 1. If so, in line

11 of Listing 5.15 case 1 is implemented. If CDE21$F� is equal to C) it is about the inside map-

ping of a Group Template and therefore, the algorithms returns true in line 12. Case 2 is

represented by the lines 13-23. A subroutine, called isOnSameLevel, evaluates if CDE21$F� and C) are on the same Nesting Level. The subroutine is not described in detail here due to

space limitations, but in a nutshell, it checks if both GroupTemplateHierarchy elements CDE21$F� and C) are on the same Nesting Level. If so, the Group Template matcher checks

the accumulated Policies of both Group Templates. If they are not contradictory, a Group

5 Concept for Matching of Topology Templates

72

Template Correspondence can be created and added to set �-?. Otherwise C) should not be

entered and false is returned. Case 3 is represented by the lines 25-28. If CDE21$F� has a par-

ent GroupTemplateHierarchy element, i.e. Node Template '� resides at least on Nesting

Level 2, and the subroutine checkGroupTemplateCorrespondence returns true, then access to C) can be granted. Also the distinction between case 3a and 3b happens inside the subrou-

tine. A detailed discussion of the subroutine follows below in the context of Listing 5.17.

29

30

31

32

33

34

35

36

37

38

39

40

Algorithm to decide if Group Template access is pos sible part 2

...

else if gparent1 .getParent() == null ∧ g parent2 ≠ null then

return matcher.match(g 2,n 1)

 end if

 else if gparent1 == null then

 return matcher.match(g 2,n 1)

 end if

return true

end

Listing 5.16: Function isGroupTemplateAccessPossible part 2

Line 30-33 implements case 4. If CDE21$F� does not have any parent GroupTemplateHierar-

chy element, i.e. Node Template '� is on Nesting Level 1, and at the same time CDE21$F) is
not null, i.e. Group Template C) is on a Nesting Level greater than 1, the matcher evaluates

the accumulated Policies of '� and C) and the appropriate Boolean value is returned.

The last case is represented by the lines 35-38: if CDE21$F� is not available and therefore

Node Template '� is residing on Nesting Level 0, the matcher also evaluates the accumulat-

ed Policies. If up to now, none of the cases applied, it is optimistically returned true. This

should prevent that some Node Templates are accidentally not matched, because some un-

expected case arose. This behavior is acceptable as the accumulated Policies of two Node

Templates are checked before matching in any case (see Section 5.3.3).

Listing 5.17 displays the function checkGroupTemplateCorrespondence that is invoked in List-

ing 5.15 line 26 as a subroutine. It is an algorithm operating on the GroupTemplateHierar-

chy data structure representing the implementation of the cases 3a and 3b of the Group

Template access optimization. The function requires three input parameters: The left-hand

side Node Template denoted by '�, the right-hand side Group Template denoted by C) and

a set of Group Template Correspondences denoted by �-?. The return value is of type

Boolean. Case 3a is implemented by the lines 6-14: if C) does not have a parent GroupTem-

plateHierarchy element, i.e. it is on Nesting Level 0, the root GroupTemplateHierarchy ele-

5 Concept for Matching of Topology Templates

73

ment is retrieved first by using the function traverseToRoot which follows the parent ele-

ments of each GroupTemplateHierarchy element.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Algorithm on GroupTemplateHierarchy to check GT Cor respondence

Input: Node Template n 1

Input: Group Template g 2

Input: Set of Group Template Correspondences GTC

Output: Boolean

checkGroupTemplateCorrespondence(n 1,g 2,GTC)

 if g 2.getParent() == null then

 GroupTemplateHierarchy root = traverseToRoot()

 if root.checkCorrespondencesOfLevel(g 2,GTC)

∧ checkAccess(g 2,n 1) then

 return true

 else

 return false

 end if

 end if

GroupTemplateHierarchy h =

getHierarchyElement(g 2.getParent().getNestingLevel() + 1)

 if h ≠ null then

 if h.checkCorrespondencesOfLevel(g 2,GTC)

∧ checkAccess(g 2,n 1) then

 return true

 else

 return false

 end if

 else

 return checkAccess(g 2,n 1)

 end if

end

Listing 5.17: Function checkGroupTemplateCorrespondence

Note that it is the root of Node Template '�’s Hierarchy that is considered here. This is due

to the fact that the function checkGroupTemplateCorrespondence was invoked on '�’s parent

in Listing 5.15 line 26. On this root element it is tested if a Group Template Correspondence

to C) can be established using the function checkCorrespondencesOfLevel
10

 and at the same

time '�’s accumulated Policies must be compatible to those of Group Template C). Depend-

ent on the outcome of the evaluation an appropriate Boolean value is returned.

10

 The function will be discussed below.

5 Concept for Matching of Topology Templates

74

In line 16 the implicit else branch begins implementing case 3b. The GroupTemplateHierar-

chy element ℎ, which is the GroupTemplateHierarchy element in the Hierarchy of '� that is

on the same Nesting Level as C) is retrieved. It can be found by the subroutine getHierar-

chyElement invoked in '�’s Group Template Hierarchy. The reason for adding 1 to the Nest-

ing Level of C)’s parent is the following: The Nesting Level information is located in the

GroupTemplateHierarchy data structure (see Listing 5.12) and not directly in a Group or

Node Template. Group Template C) retrieves the Group Template of its parent GroupTem-

plateHierarchy element
11

 and infers its own Nesting Level by adding 1.

If an element ℎ is found, similar to the previous case the existence or creation of a Node

Template Correspondence is evaluated by the invocation of the function checkCorrespond-

encesOfLevel combined with the check of the accumulated Policies of '� and C) to evaluate

the access to C). If ℎ cannot be found, it means that C) has a greater Nesting Level than the

Group Template '� is nested in and no Group Template Correspondence can be established

on that level. Therefore only the access has to be checked (line 27).

It is also possible that Group Template Correspondences are created on Nesting Levels

deeper than those of '�, but this is acceptable as the accumulated policies are considered

when creating a Correspondence.

Listing 5.18 shows function getHierarchyElement that is invoked in Listing 5.17 line 17. It has

only one input parameter of type integer, denoted by ;, indicating the Nesting Level where

the element can be found. The output is the demanded GroupTemplateHierarchy element.

As the function works on the GroupTemplateHierarchy data structure, each field is depicted

in blue. The implemented algorithm first evaluates if the element it is currently working on

the same Nesting Level as ;. If so, the current GroupTemplateHierarchy element returns

itself (line 4-6). Otherwise it is evaluated if the Nesting Level of the current element is great-

er than ;. That means that the search must follow the parent pointer in the direction of the

root element. This is done by invoking the getHierarchyElement on the parent field recur-

sively if it is not null (line 6-10). If the Nesting Level is smaller than ;, the same invocation is

done on the child pointer provided it is possible (line 12-16). If no element can be found, null

is returned in line 19.

11

 The groupTemplate field of this element does not hold C) but the GroupTemplate C) is located in. This is
also the reason that the cases 3a and 3b be are differentiated as in case 3a there is no parent that can be asked
for the Nesting Level.

5 Concept for Matching of Topology Templates

75

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Algorithm on GroupTemplateHierarchy to get a partic ular element

Input: int l

Output: GroupTemplateHierarchy

getHierarchyElement(l)

 if nestingLevel == l then

 return self

 else if nestingLevel > l then

if parent ≠ null then

 return parent .getHierarchyElement(l)

end if

else if nestingLevel < l then

if child ≠ null then

 return child .getHierarchyElement(l)

end if

 end if

 return null

end

Listing 5.18: Function getHierarchyElement

Listing 5.19 shows the last function proposed for optimization of the recursive access of

Group Templates respectively the creation of Group Template Correspondences. The func-

tion checkCorrespondencesOfLevel requires two input parameters: a Group Template, denot-

ed here by C), and a set of Group Template Correspondences denoted by �-?3$. The output

is of type Boolean.
12

 The first step of the function in line 5 is to retrieve all Group Template

Correspondences from C) and store them in the temporary set ?.

Subsequently, in the lines 7-12 each Group Template Correspondence /	H	? is evaluated if it

either spans from C) to the current groupTemplate pointer of the GroupTemplateHierarchy

element or vice versa. Remember, the function was invoked on the Hierarchy element ℎ,
which holds the Group Template that is on the same Nesting Level as C) and in the Group

Template Hierarchy of the left-hand side Node Template. If such a Group Template Corre-

spondence exists, the function returns true. Otherwise, a Group Template matcher is created

in line 14. The matcher then checks with its implemented match function if the value of the

groupTemplate field and C) have matching accumulated Group Template policies. If so, a

new Group Template Correspondence is created and added to the set �-?3$. Furthermore, it

is returned true in line 20. If the Policies do not match, it is returned false.

12

 Technically speaking the set �-?3$ must also be returned. However as there can only be one return value
without using some data structure, only the Boolean value is shown for the sake of simplicity and a call-by-
reference semantics for the set is assumed, i.e. the changes to the set are directly visible to other references of
the set. This is similar to the semantics in Java [23].

5 Concept for Matching of Topology Templates

76

The function checkCorrespondencesOfLevel is necessary, as discussed above in the context of

case 3, to capture all possible Group Template Correspondences when matching.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Algorithm on GroupTemplateHierarchy to check Corres pondences

Input: Group Template g 2

Input: Set of Group Template Correspondences GTC in

Output: Boolean

checkCorrespondencesOfLevel(g 2, GTC in)

 Set C = g 2.getCorrespondences()

for each Group Template Correspondence c ∈ C do

if c.getFrom() == g 2 ∧ c.getTo() == groupTemplate

∨ c.getFrom() == groupTemplate ∧ c.getTo() == g 2 then

 return true

 end if

 end for each

 Matcher matcher = createGroupTemplateMatcher()

 if matcher.match(groupTemplate ,g 2) then

 Group Template Correspondence c = new Group Templ ate

Correspondence(groupTemplate ,g 2)

GTCin .add(c)

g2.addCorrespondences(c)

return true

 end if

return false

end

Listing 5.19: Function checkCorrespondencesOfLevel

5.3.3 Matching of Node Templates on Different Nesting Levels

Until now it has been discussed how and when the matching algorithm must be able to en-

ter Group Templates recursively in order to minimize the overall number of Node Tem-

plates that have to be compared. The next step is to look at the different cases when actually

matching two Node Templates that are not inside the same Group Template. The matching

of Node Templates that reside on different Nesting Levels has four subcases, regardless if

two different Topology Templates are involved or if the matching takes place inside one

Topology Template. The following depicted cases, however, only show inside Topology

Template matching to maintain the continuity and simplicity of the examples. Note that

when matching Node Templates that are on the same Nesting Level no extra cases have to

be considered as there must exist a Group Template Correspondence between the two par-

ent Group Templates. Otherwise the algorithm would not have entered the parent Group

Template of the second Node Template. However, the algorithm still must allow the match-

ing to happen.

5 Concept for Matching of Topology Templates

77

Case 1: Left-hand Side on Nesting Level 0, Right-hand Side on Nesting Level 1

Fig. 5.19 shows the case where the left-hand side Node Template of the comparison is locat-

ed on Nesting Level 0, whereas the right-hand side Node Template is located inside a Group

Template on Nesting Level 1.

Fig. 5.19: Different Nesting Level case 1

The three dots above the Node Templates show that there might exist further Node and/or

Relationship Templates, however, they do not matter for the depicted case. Before compar-

ing the two OS Node Templates in Fig. 5.19, the Policies of the left-hand side Node Template

must be compared with the Policies of the right-hand side Group Template. Only if they are

compatible, as indicated by the equivalency symbol, the algorithm is allowed to proceed

with comparing the two Node Templates.

Case 2: Right-hand Side on Nesting Level 0, Left-hand Side on Nesting Level 1

Very similar is the next case where the left hand side has a Nesting Level greater than 0 and

the right hand side is on level 0. Looking at the example in Fig. 5.20, one observes that each

time a Node Template of Group Template 1 is compared with a Node Template on the top

Nesting Level 0, the Policies of Group Template 1 have to be compared to the Node Tem-

plate outside and only if they are compatible, the comparison of the Node Templates under

consideration may proceed.

5 Concept for Matching of Topology Templates

78

Fig. 5.20: Different Nesting Level case 2

Case 3: Left-hand Side on Deeper Nesting Level Than Right-hand Side

Fig. 5.21 shows case 3 when matching Node Template on different Nesting levels. This time,

both Node Templates are on a Nesting Level greater than 0 but still not on the same level.

However, it is not important for the discussion of this case, if the difference between Nest-

ing Levels is one or more. Before matching the two OS Node Templates, the framework

must calculate the accumulated Policies of the Group Template, in which the deeper nested

left-hand side Node Template resides, and the accumulated Policies of the Node Template

on the right-hand side that is on a lower nesting Level.

Definition 5.6 (Accumulated Policies): In this work, the accumulated Policies of a policy at-

tached entity, i.e. a Node or a Group Template, are the Policy elements of this entity on !�=.<'C	I���;	'	and all Policy elements of the Group Templates located in a direct hierarchy
from the !�=.<'C	I���;		' − 1 to 0.
In the example of Fig. 5.21, Group Template 3’s accumulated Policies are its own and those

of Group Template 1, whereas the right-hand side Node Template has its own Policies and

also those of Group Template 1. Both dependencies are indicated by the dotted lines. With

the calculated accumulated Policies it can be decided if the matching between the two OS

Node Templates may proceed. If the accumulated Policies contain contradictory Policy ele-

ments, the framework must skip further processing. Note that the Group Template Policies

along one hierarchy may have identical Policies, i.e. Policies that have identical values for

5 Concept for Matching of Topology Templates

79

their name and type attributes. When calculating the set of accumulated Policies the Policy

elements must be inserted in a multiset and not overridden as in the case of derived Node

Types. Subsequently, the type-specific plugin has the task to evaluate all the policies in the

multiset.

Fig. 5.21: Different Nesting Level case 3

Case 4: Right-hand Side on Deeper Nesting Level Than Left-hand Side

The last case is a derivation of case 3. The left-hand side Node Template that starts the com-

parison is now on a lesser Nesting Level than the right-hand side Node Template. Again the

accumulated Policies have to be calculated by the framework before a matching can take

place. If the accumulated Policies of the Node Template and the Group Template do not

match, the overall matching algorithm skips the processing of two Node Templates and con-

tinues with the next iteration of the second loop.

5 Concept for Matching of Topology Templates

80

Topology Template 1

Group Template 1

Policies

Policies

Nesting Level 0

Nesting Level 1Group Template 3

HostedOn

OS

Policies

Database

OS

≡

Correpondence
Policies

Fig. 5.22: Different Nesting Level case 4

Algorithm for Evaluating if Node Templates on different levels can be matched

In order to realize the delineated functionality the basic algorithm for finding a mapping

introduced in Listing 5.1 has to be augmented in the way visible in Listing 5.13. Before the

actual Node Template matcher is executed the function isMatchingPossible must be invoked

in line 37. If it returns true the main algorithm may proceed, otherwise it skips one iteration.

The function is depicted in Listing 5.20. It has four input parameters: two Node Templates,

denoted by '� and ') and two Group Templates, denoted by C� and C). The Group Tem-

plates are the parent Group Templates mentioned above related to the extended findMap-

ping function in Listing 5.13 and Listing 5.14. The return value is of type Boolean. In line 7-9

it is evaluated if both Node Templates have no parents at the same time, i.e. if they are not

nested inside a Group Template. If so, the algorithm immediately returns true. Otherwise

additional evaluations have to be conducted. In line 11, a Group Template matcher is created

as it implements the framework’s functionality for calculating the accumulated policies and

providing a starting point for external domain-specific policy matching facilities.

5 Concept for Matching of Topology Templates

81

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Algorithm for deciding if the matching is possible

Input: Node Template n 1

Input: Node Template n 2

Input: Group Template g 1

Input: Group Template g 2

Output: Boolean

isMatchingPossible(n 1,n 2,g 1,g 2)

 if n1.getParent() == null ∧ n 2.getParent() == null then

 return true

 else

 Matcher matcher = createGroupTemplateMatcher()

 if n1.getParent() == null ∧ n 2.getParent() ≠ null then

 if matcher.match(g 2,n 1) then

 return true

 end if

 else if n1.getParent() == null ∧ n 2.getParent() ≠ null then

 if matcher.match(g 1,n 2) then

 return true

 end if

 end if

 else if n1.getParent() ≠ null ∧ n 2.getParent() ≠ null then

 if n1.getParent().getLevel() > n 2.getParent().getLevel() then

 if matcher.match(g 1,n 2) then

 return true

 end if

 else if n1.getParent().getLevel()<n 2.getParent().getLevel() then

 if matcher.match(g 2,n 1) then

 return true

 end if

else

 return true

end if

 end if

end if

 return false

end

Listing 5.20: Function isMatchingPossible

5 Concept for Matching of Topology Templates

82

The next step in line 13 relates to case 1 outlined above. It is evaluated if Node Template '�
is outside any Group Template and ') is nested inside. If so, '� is matched with Group

Template C) using the match function of the Group Template matcher. The function will be

reviewed below before long. If the accumulated policies of C) and '�match, the isMatching-

Possible function returns true in line 15. The lines 18-22 evaluate case 2 of matching over

different nesting levels. If this case is at hand, the accumulated policies of C� and ') are

matched and the result is returned. At line 24 the evaluation starts if the cases 3 or 4 are at

hand. First, it is checked if both Node Templates have parents indicating that both Node

Templates are nested somewhere inside an arbitrary Group Template. If this is the case, case

3 is expressed by line 25-28 when the Nesting Level of '�’s parent is greater than the Nest-

ing Level of ')’s parent. The matching of policies then takes place between C�and '). The

last case is case 4, expressed by the lines 29-32. Here the Nesting Level of '�’s parents and,

therefore, its own Nesting Level is lesser than the Nesting Level of ')’s parent. The policy

matching is conducted between C)and '�. The last else branch in line 33 indicates that both

Node Templates are on the same Nesting Level. Thus, as already mentioned, the algorithm

simply returns true.

If up to now neither of the four cases returned true, false is returned in line 38 indicating the

main algorithm must not proceed with the processing of the Node Templates '� and ').
5.3.4 Matching of Group Template Policies

As mentioned before, the policy matching takes place in a Group Template matcher. A

Group Template matcher is not typed as there is no such concept as a “Group Type” in the

TOSCA specification. However, the TOSCAMerge framework must provide a way to plug in

a domain-specific policy matcher. The generic part of the framework is responsible for cal-

culating the accumulated policies of the corresponding Group and Node Template. These

policies are then handed over to a domain-specific policy matching implementation. The

generic part of the policy matching can be found in the function matchPolicies depicted in

Listing 5.21. The function requires two input parameters: a Group Template, denoted by C

and a Node Template, denoted by '.

First the Node Type of the Node Template is retrieved and stored in a variable denoted by '. (line 5). The Node Type is then used to determine the derived Policies as described in

Section 5.1.2 in Listing 5.7. The derived Policies are stored in a set denoted by !67�-89�:6;</<�= (line 6). Two additional sets, denoted by !-:6;</<�=J and �-:6;</<�=J,
are filled with the Policies of the Group Template Hierarchy. Both sets only include the Pol-

icies of their Group Template Hierarchy beginning with their parent. The detailed algorithm

for the Group Template will be shown exemplarily below in Listing 5.22 and Listing 5.23.

5 Concept for Matching of Topology Templates

83

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Algorithm to match the policies of Node and Group T emplates

Input: Group Template g

Input: Node Template n

Output: Boolean

matchPolicies(g,n)

 Node Type nt = n.getNodeType()

 Set NodeTypePolicies = determineDerivedPolicies(nt)

Set NTPolicies h = determineHierarchyPolicies(n)

Set GTPolicies h = determineHierarchyPolicies(g)

Set NTPolicies, GTPolicies = new Sets of Policies()

 if n.getPolicies() ≠ null then

 NTPolicies = n.getPolicies()

 end if

 if g.getPolicies() ≠ null then

 GTPolicies = g.getPolicies()

 end if

 if NodeTypePolicies == ∅ ∧ NTPolicies == ∅ ∧ NTPolicies h == ∅ then

 return true

 end if

 if GTPolicies == ∅ ∧ GTPolicies h == ∅ then

 return true

 end if

 if NodeTypePolicies ≠ ∅ then

 for each Policy p ∈ NodeTypePolicies do

 if p 1 ∉ NTPolicies then

 NTPolicies = NTPolicies ∪ p

 end if

 end for each

 end if

 NTPolicies.addAll(NTPolicies h)

 GTPolicies.addAll(GTPolicies h)

 return matchPoliciesTypeSpecificContent(NTPolicies,GTPolic ies)

end

Listing 5.21: Function matchPolicies for Group and Node Templates

In the lines 11-16 of the function matchPolicies, the Policies of the ' and C are retrieved and

stored in the sets !-:6;</<�= respectively �-:6;</<�=. Subsequently, it is evaluated if ' or C do not have any Policies. For Node Template ' this is true if all three sets

5 Concept for Matching of Topology Templates

84

!67�-89�:6;</<�=, !-:6;</<�= and !-:6;</<�=J are empty. In this case there are no Poli-

cies that are contradictory to the accumulated Policies of Group Template C, thus, the algo-

rithm immediately returns true (line 18-20). The same evaluation is conducted for the sets �-:6;</<�= and �-:6;</<�=J. If they are both empty, the algorithm returns true. Otherwise

the algorithm continues by comparing the Node Type Policies against the Node Template’s

Policies in the same way as discussed earlier with respect to Listing 5.7. In line 33 and 34 the

effective set of Policies of the Node Template and the Policies of the Group Template are

added to the overall accumulated Policies. These sets are then handed over to the matchPol-

iciesTypeSpecificContent function, which marks the starting point for any domain-specific

matching implementation. The result is then returned to the caller of the generic function

matchPolicies.

In Listing 5.22 the function of determineHierarchyPolicies for Group Templates, introduced

1

2

3

4

5

6

7

8

9

Algorithm to determine Group Template Policies of t he Hierarchy

Input: Group Template g

Output: Set of Policies

determineHierarchyPolicies(g)

 Set P = new Set of Policies

 if g.getParent() ≠ null then

 P.addAll(g.getParent().getAllPolicies())

 end if

 return P

end

Listing 5.22: Function determineHierarchyPolicies for Group Templates

above, is depicted in detail. It is a very short function that basically only evaluates if the

input Group Template C has a parent GroupTemplateHierarchy element and if so, invokes

an algorithm on the data structure in Listing 5.12 that counts all Policies of overall the

Group Template Hierarchy. The algorithm is located in the function getAllPolicies depicted

in Listing 5.23. The fields of the data structure are displayed in blue color for easier visuali-

zation.

The function requires an empty set : as input and returns the same possibly non-empty set.

The algorithm first evaluates in line 4 if the current GroupTemplateHierarchy element has a 9K@�'. GroupTemplateHierarchy element. If not, the Polices of the C@6�9-�&9;K.� are

retrieved, if existing, and added to :. Then the algorithm returns : (line 5-8). If, however, a 9K@�'. GroupTemplateHierarchy element is found, the Policy elements of the correspond-

ing Group Template are also retrieved, if existing, but the function getAllPolicies is invoked

additionally on the 9K@�'. GroupTemplateHierarchy element. The nested invocation con-

tinues until it reaches one GroupTemplateHierarchy element that has no 9K@�'. element.

In this case, : is returned with all found Policy elements.

5 Concept for Matching of Topology Templates

85

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Algorithm on GroupTemplateHierarchy to get all poli cies

Input: Set of Policies P = ∅

Output: Set of Policies

getAllPolicies(P)

 if parent == null then

 if groupTemplate . getPolicies() ≠ null then

 P.addAll(groupTemplate .getPolicies())

 end if

return P

 else

 if groupTemplate . getPolicies() ≠ null then

 P.addAll(groupTemplate .getPolicies())

 end if

 return parent .getAllPolicies(P)

 end if

end

Listing 5.23: Function getAllPolicies

5.3.5 Relationship Templates in the Context of Group Templates

In this section the matching of Relationship Templates in the context of Group Templates is

discussed briefly. Relationship Templates can point beyond the borders of Group Templates,

i.e. from one Node Template on Nesting Level ' to another Node Template on Nesting ' + 1. However, the TOSCA specification does not state where the Relationship Templates

have to be physically located: In this example they could either be located on Nesting Level ' or on ' + 1. To simplify the search for the incident Relationship Template to two corre-

sponding Node Templates, it is proposed that all the Relationship Templates are stored in an

extra set in a prior preparatory step. The step can be conducted in conjunction with the as-

signment to the GroupTemplateHierarchy where the two Topology Templates have to be

traversed in a depth-first search [40] anyway.

Listing 5.24 shows that algorithm implementing that functionality. It requires three input

parameters: a set of tExtensibleElements, denoted by �, which can hold Node, Relationship

and Group Templates, an empty set of Relationship Templates denoted by L and a

GroupTemplateHierarchy element, denoted by 9K@�'., which is null at the first invocation.

5 Concept for Matching of Topology Templates

86

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Algorithm building an overall set of Relationship T emplates

Input: Set of Elements E

Input: Set of Relationship Templates R = ∅

Input: GroupTemplateHierarchy parent

Output: Set of Relationship Templates R

buildRelationshipTemplateSet(E,R,parent)

 if parent ≠ null then

 parent.setNestingLevel(parent.getNestingLevel() + 1)

 end if

for each Element e ∈ E do

 e.setNumberOfMerges(0)

 e.getCorrespondences().clear()

 e.getCollectedCorrespondences().clear()

if e ∈ Node Templates then

 e.setParent(parent)

 else if e ∈ Relationship Templates then

 e.setParent(parent)

 R.add((Relationship Template)e)

else if e ∈ Group Templates then

 Group Template g = (Group Template)e

g.setParent(parent)

GroupTemplateHierarchy h = new GroupTemplateHierarc hy()

h.setParent(parent)

h.setGroupTemplate(g)

if parent ≠ null then

parent.setChild(h)

h.setNestingLevel(parent.getNestingLevel())

 end if

 return buildRelationshipTemplateSet(g.getElements(),R,h)

 end if

 end for each

end

Listing 5.24: Function buildRelationshipTemplateSet

The first step of the function is to evaluate if 9K@�'. is not null. This is only the case if it is

a recursive invocation of the function. If 9K@�'. is not null, its Nesting Level is incremented

by 1 (line 6-8). Subsequently, for each element �	H	�, the number of merges, the sets of Cor-

respondences and collected Correspondences are cleared. These fields or, respectively sets

are important for merging in the next chapter but should be newly initialized after inside

merging of a Topology Template.

5 Concept for Matching of Topology Templates

87

Furthermore, it is tested if the current element � is either an instance of Node Template,

Relationship Template or Group Template. If it is a Node Template, only the parent has to

be added (line 15-16). If it is a Relationship Template, it is casted and added to L additionally

(line 17-19). And finally, if it is a Group Template, some more steps have to be executed (line

20-32). First � is casted to a Group Template denoted by C. Then 9K@�'. is set as parent

GroupTemplateHierarchy element to C. Additionally, a new GroupTemplateHierarchy, de-

noted by ℎ, is created, adds 9K@�'. as parent element and C as the Group Template it man-

ages. If 9K@�'. is not null, ℎ can be added as child and the latter one can assume 9K@�'.’s
Nesting Level. In line 31 the function is invoked recursively with the content of C, the set L

and ℎ as new 9K@�'. element.

6 Concept for Merging of Topology Templates

88

6 Concept for Merging of Topology Templates

After having discussed the different matching cases in the previous chapter, this chapter

covers the application of the found Correspondences (the mapping), i.e. the merging of

Node Templates, Relationship Templates and Group Templates and successively develops a

merging concept and corresponding algorithms. Similar to the matching discussion a basic

merging case with restricting assumptions will be proposed first and extended subsequently.

Section 6.1 analyzes the merging of Node Templates, Section 6.2 does the same for Relation-

ship Templates and Section 6.3 extends the merging concept and algorithms into the context

of Group Templates.

6.1 Merging of Node Templates

6.1.1 Analysis of the Basic Case and its Derivations

Fig. 6.1 picks up the constellation from Fig. 5.1.

M
e

rg
e

Fig. 6.1: Basic merging case

6 Concept for Merging of Topology Templates

89

Two Node Template Correspondences have been found when matching the Node Tem-

plates. After conducting one merging step, i.e. merging the two OS Node Templates the re-

sult can be seen on the bottom of Fig. 6.1. The OS Node Templates are deleted in both To-

pology Templates and have been added to Topology Template 1. The target of the right-

hand side HostedOn Relationship Template has been reassigned to the merged Node Tem-

plate. Note that the physical location of the reassigned Relationship Template is still Topol-

ogy Template 2 after the first merging step. It will be merged with the left-hand side Rela-

tionship Template in the next step and added to Topology Template 1.

Basic Merging Algorithm

In Listing 6.1 we can see the basic algorithm for the merging of Node Templates. Later the

basic algorithm will be extended to include Group Template Hierarchy information. The

depicted function is called performNodeTemplateMerge (line 5); another function called per-

formGroupTemplateMerge will be shown later. The algorithm requires three input parame-

ters: a mapping calculated before and two Topology Templates denoted by --� and --).
The merged Topology Template --#12M10 forms the output parameter. The loop beginning

in line 6 iterates over all Node Template Correspondences of the mapping	 . In doing so,

the first step is to retrieve the two Node Templates involved, denoted by '� and ') and

stored in the respective Correspondence as variables �@6& and	.6. If the condition of line 7

evaluates to true, the correspondence has an identical source and target. This issue can arise

in a later iteration of the main loop when some Node Templates have already been merged

and Node Template Correspondences have been reconnected. In this case the algorithm will

skip one iteration. It is revisited further down when discussing the reconnectCorrespondences

function. Subsequently, another subroutine is called that determines whether one or both

Node Templates have already been merged with other Node Templates and whether these

Node Templates also had Correspondences that allow for the merging of '� and '). The

details of the hasCorrectNumberOfCorrespondences subroutine are discussed further below. If

the returned Boolean value equals false, the respective Correspondence is not processed.

Line 17 depicts the creation of a Node Template merger subject to the Node Types of Node

Template '�	and	'). The merger contains the functionality to merge the two Node Tem-

plates of the same Node Type or Node Types related to each other via an inheritance tree.

Line 18 shows the actual invocation of the merge function of the respective Node Template

merger and the creation of a newly merged Node Template '#12M10.The details of the

merge function will be discussed below in Section 6.1.2. The lines 19-23 are necessary to

handle the merging of Node Templates that have already been merged with another Node

Template due to other already processed Node Template Correspondences. The four lines of

code will be picked up again below. The basic merging algorithm also contains a subroutine

to handle all the determined Relationship Template Correspondences. A special, so-called

RelationTemplateshipMergingHandler is created that contains all the necessary functions to

merge Relationship Templates incident to '�	and	') (line 25-26). In Section 6.2 the subject of

merging Relationship Templates is discussed in detail.

6 Concept for Merging of Topology Templates

90

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Basic merging algorithm for Node Templates

Input: Mapping M

Input: Topology Template TT 1

Input: Topology Template TT 2

Output: Topology Template TT merged

performNodeTemplateMerge(M,TT 1,TT 2)

 for each Correspondence c ∈ M do

if c.getFrom() == c.getTo() then

 continue

end if

Node Template n 1 = c.getFrom()

 Node Template n 2 = c.getTo()

if ¬hasCorrectNumberOfCorrespondences(c,n 1,n 2) then

 continue

 end if

 Merger merger = createNodeTemplateMerger(Node Types of n 1,n 2)

 Node Template nmerged = merger.merge(n 1, n2)

 n merged .setNumberOfMerges(n 1.getNumberOfMerges + 1)

 n merged .addToCollectedCorrespondences(

n1.getCollectedCorrespondences)

 n merged .addToCollectedCorrespondences(n 1.getCorrespondences)

 n merged .addToCollectedCorrespondences(n 2.getCorrespondences)

 Handler handler = createRelationshipTemplateMergi ngHandler()

 handler.handleRelationshipTemplates(TT 1,TT 2,c,M)

Set removeSet = reconnectEdges(TT 1,TT 2,n 1,n 2,n merged)

removeSet.clear

 TT 1.remove(n 1)

 TT 2.remove(n 2)

 TT 1.add(n merged)

 M = reconnectCorrespondences(M,n 1,n 2,n merged)

 end for each

 TT1.addAll(TT 2)

 return TT1

end

Listing 6.1: Function performNodeTemplateMerge

6 Concept for Merging of Topology Templates

91

In line 28 the invocation of the subroutine reconnectEdges is shown. It reallocates edges of

the TOSCA graph, i.e. the Relationship Templates that begin or end at the Node Templates '� and ') to the new Node Template '#12M10. The detailed algorithm will be discussed in

the next paragraph. ReconnectEdges also returns a set of Relationship Templates that start

and end at the same Node Template, i.e. form a loop, due to the merging process, and can be

removed (line 26). The lines 31-33 illustrate that '� and ') are removed from their respec-

tive Topology Templates and Node Template '#12M10 is added to Node Template 1. The last

subroutine is invoked in line 35 to reconnect Node Template Correspondences that begin or

end at '� and ') with '#12M10. The specific algorithm is also shown below.

After all Node Template Correspondences have been processed that remaining content of --), which was not touched by the merging, is unified with --� (line 37). This is stipulated

by the element respective relationship preservation requirement. However, this step may not

be executed in case of inside merging as --� and --) are identical and the unification would

double the containing Elements.
13

 This is postulated by the extraneous item prohibition re-

quirement of Section 4.2.

Line 38 returns the merged Topology Template, i.e. Topology Template --� after all Node

Template Correspondences have been processed.

Subroutine reconnectEdges

The following section discusses the details of the reconnectEdges function depicted in Listing

6.2. The function is necessary to reconnect the edges of the TOSCA graph after two nodes

have been merged. In TOSCA terminology that means that the source and target elements

of Relationship Templates need to be reconnected with the merged Node Template '#12M10
if they previously pointed to one of the Node Templates '� or '). The reallocation of the

Relationship Templates is necessary, as the main algorithm deletes the unmerged Node

Templates '� or ') and adds '#12M10 to Topology Template --� (see Listing 6.1, line 31-33).

The function reconnectEdges requires five input parameters and produces one output. The

input parameters are: The two Topology Templates denoted by --� and --), the two Node

Templates under consideration denoted by '� and '), and the merged Node Template de-

noted by '#12M10. The output parameter is a set containing obsolete Relationship Templates

denoted by @�&6��N�.. The function’s core is a loop that iterates over all Relationship

Templates located in the Topology Templates --� and --) (line 8). The iteration over the

union of both sets is inevitable as Node Templates in TOSCA do not know their incident

edges, i.e. Relationship Templates directly. Rather, Relationship Templates are “independ-

ent” elements that contain references to Node Templates as source and target elements. This

is a concession to the XML-nature of TOSCA to avoid the extreme nesting of nodes and

edges. Therefore, every Relationship Template of both Topology Templates has to be con-

sidered if their source and target elements are affected by the current merging step. In doing

so, the source and target Node Templates of the current Relationship Template are retrieved

13

 This evaluation is not shown here due to space limitations.

6 Concept for Merging of Topology Templates

92

(line 9 and 10). If the retrieved source Node Template equals either '� or '), the new source

of the current Relationship Template is set to '#12M10 (line 13-15).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Algorithm to reconnect the edges after merging node s

Input: Topology Template TT 1

Input: Topology Template TT 2

Input: Node Template n 1

Input: Node Template n 2

Input: Node Template n merged

Output: Set removeSet

reconnectEdges(TT 1,TT 2,n 1,n 2,n merged)

 for each Relationship Template rt ∈ TT 1 ∪ TT 2 do

 Node Template source = rt.getSource()

Node Template target = rt.getTarget()

 Set removeSet = new Set()

 if source == n 1 ∨ source == n 2 then

 rt.setSource(N merged)

 end if

 if target == n 1 ∨ target == n 2 then

 rt.setTarget(N merged)

 end if

 if rt.getSource() == rt.getTarget() then

 removeSet.add(rt)

 end if

 end for each

 return removeSet

end

Listing 6.2: Function reconnectEdges

The same pattern is followed for the target Node Template of the current Relationship Tem-

plate (lines 17-19). If these reallocations lead to a Relationship Template with identical

source and target nodes, the current Relationship Template can be removed, respectively,

added to the previously created @�&6��N�.. This issue can occur when two Node Tem-

plates are merged having a Relationship Type with Communication semantics between

them. The possibly empty @�&6��N�. is returned in line 25.

Function reconnectCorrespondences

Listing 6.3 contains the algorithm of the function reconnectCorrespondences. It is necessary

to handle Node Templates that have more than one incoming or outgoing Node Template

Correspondence. Similar to the reconnection of the edges after the merging of two Node

6 Concept for Merging of Topology Templates

93

Templates to the newly merged Node Template, Node Template Correspondences must also

be reconnected from the deleted Node Templates to the merged results.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Algorithm to reconnect Node Template Correspondence s

Input: Mapping M

Input: Node Template n 1

Input: Node Template n 2

Input: Node Template n merged

Output: Mapping M

reconnectCorrespondences(M,n 1,n 2,n merged)

 for each Correspondence c ∈ M do

 if c.getFrom() == n 1 ∨ c.getFrom() == n 2 then

 c.setFrom(n merged)

 end if

 if c.getTo() == n 1 ∨ c.getTo() == n 2 then

 c.setTo(n merged)

 end if

 end for each

 return M

end

Listing 6.3: Function reconnectCorrespondences for Node Templates

The function has three input and one output parameters. The input parameters are a map-

ping , the two Node Templates '� and '), and the merged Node Template '#12M10. The

output is the corrected mapping	 . For each Node Template Correspondence /	H	 two

cases have to be evaluated: If the �@6& variable equals '� or '), it is set to '#12M10 (line 9-

11) The same holds true for the .6 variable, i.e. the target of the correspondence / (line 13-

15). The corrected mapping is returned after the last iteration (line 17).

The reconnection of Node Template Correspondences is necessary since the original nodes '� and ') get deleted from their Topology Templates in the main function. Those corre-

spondences of 	which are not yet processed would then use Node Templates that no long-

er exist and cause failures. It is possible that the function reconnectCorrespondences causes

pending correspondences to point to the same source and target due to prior merging itera-

tions. In this case the main algorithm discards the respective correspondence (line 7-9).

However, possible attached Relationship Template Correspondences must still be consid-

ered.

6 Concept for Merging of Topology Templates

94

Correspondences to More Than one Node Template

Usually the mapping includes more than one Node Template Correspondence outgoing

from a particular Node Template. Fig. 6.2 shows four generic Node Templates where every

single one matches every other Node Template. This is called a full mapping in this thesis.

Fig. 6.2: Full mapping between all Node Templates

Note that the Node Template Correspondences are now depicted as directed edges in con-

trast to the previously shown matching case figures. The reason is that for the processing of

the found Node Template correspondences the direction of the arcs must be considered in

order to develop a merging algorithm covering all situations.

Fig. 6.3: Partial mapping between Node Templates

6 Concept for Merging of Topology Templates

95

Furthermore, the merging algorithm must cope with missing Node Template Correspond-

ences. In Fig. 6.3 we can see what is called a partial mapping between the Node Templates in

this work. Node Template 2 is incompatible with Node Template 3 and 4 and vice versa.

Therefore, if e.g. the algorithm starts merging Node Template 1 with Node Template 2 it

may not merge with 3 and 4 in order to preserve a valid result. It is also forbidden to merge

the unified Node Templates 1, 3 and 4 with Node Template 2. This makes clear that merged

Node Templates must preserve their assigned Node Template Correspondences helping the

algorithm to decide if an already merged Node Template also can be merged with further

Node Templates.

As we can see in Fig. 6.4 the Node Template Correspondences can also point against the

general comparison and matching direction. This is a phenomenon that surfaces when

matching Topology Templates including Group Templates. When the matching algorithm

steps recursively into a Group Template it may happen that a correspondence is established

in the way as pointing from Node Template 4 to 3 and 2 against the direction of the other

correspondences. A robust merging algorithm must cope with different directions as well as

arbitrary Node Template Correspondences as a starting point of the merging process. It

should be irrelevant if the algorithm starts with the correspondence from 1 to 2 or with 4 to

2 in order to produce a correct result.
14

Fig. 6.4: Full mapping but inverted directions

Listing 6.4 contains the first part of the algorithm that contributes to the solution of the

merging cases discussed above. The function hasCorrectNumberOfCorrespondences is neces-

sary to deal with the presented partial mappings in Fig. 6.3. In Section 5.1.1 we have seen

that every Node Template that matches another Node Template, i.e. that is the source of a

Node Template Correspondence, stores that particular Correspondence in addition to the

14

 However, for finding a global optimum the order of correspondence processing is important. See Section
9.2.1 for a discussion of this.

6 Concept for Merging of Topology Templates

96

insertion of the Correspondence in the mapping set. The author of this work calls these

Correspondences innate. The target Node Template does not store that particular Corre-

spondence.

The approach for handling partial mappings is based on the observation that when preserv-

ing the stored Node Template Correspondences of both Node Templates during a merging,

these Correspondences can be used in a succeeding merging step to determine whether two

particular Node Templates are allowed to be merged or not. Let us therefore revisit the lines

19-23 of the basic merging algorithm for Node Templates displayed in Listing 6.1. In order

to track how often a particular Node Template has already been merged with a second Node

Template, each Node Template has a counter variable named numberOfMerges. The variable

of NodeTemplate '#12M10	takes the following value (line 19):

'#12M10('�&O�@%� �@C�=)= 	 P'�('�&O�@%� �@C�=) + 1, <�	'�('�&O�@%� �@C�=) > 01, <�	'�('�&O�@%� �@C�=) = 0

That means the variable is incremented by 1 after every merging step based on Node Tem-

plate '�’s variable value.

Furthermore, the merged NodeTemplate '#12M10 stores the innate Node Template Corre-

spondences having Node Template '� respectively ') as source in a set called collectedCor-

respondences (lines 22 and 23). Additionally, the already collected Node Template Corre-

spondences from Node Template '� are added to the collectedCorrespondences list (line 20).

To illustrate the behavior of the four discussed pseudo code lines consider once again Fig.

6.3. If e.g. the Node Templates 1 (resembling	'�) and 3 (resembling ')) are merged first, the

resulting Node Template would store the Node Template Correspondences /�, /) and /R as

outgoing Node Template Correspondences from '� and /S as outgoing Node Template Cor-

respondence from '). As Node Template 1 has not yet been merged with another Node

Template, its collectedCorrespondences will be empty. Furthermore, when merging the result-

ing Node Template '#12M10 in the second step with Node Template 4, the newly merged

Node Template would collect all previously collected Node Template Correspondences from '#12M10 but not collecting any Correspondences from Node Template 4.

The innate and collected Node Template Correspondences of two Node Templates are evalu-

ated for every processed Node Template Correspondence of the mapping. Listing 6.4 depicts

the corresponding algorithm. It requires three input parameters: two Node Templates and

the Node Template Correspondence, called initial Correspondence, which is currently pro-

cessed by the main loop of the basic Node Template merging algorithm of Listing 6.1. The

return value of the depicted function is of type Boolean and indicates if the merging of the

particular Node Templates may continue. Line 6 contains a first condition: If both Node

Templates '� and ') have not yet been subject to a merging step, i.e. both numberOfMerges

variables are 0, then the algorithm returns true.

The rest of the algorithm has the following pattern: the innate and the collected Node Tem-

plate Correspondences that point to the same target Node Template as the initial Node

6 Concept for Merging of Topology Templates

97

Template Correspondence /6@@3$3F and are not identical with /6@@3$3F are counted. In other

words, the first part of the hasCorrectNumberOfCorrespondences function counts all addi-

tional Node Template Correspondences that exist between the two Templates '� and ').
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Algorithm to check if number of Correspondences is correct part 1

Input: Initial correspondence corr init

Input: Node Template n 1

Input: Node Template n 2

Output: boolean

hasCorrectNumberOfCorrespondences(corr init ,n 1,n 2)

 if n 1.getNumberOfMerges() == 0 ∧ n 2.getNumberOfMerges() == 0 then

 return true

 end if

 int counter = 0

 for each innate Correspondence c 1 outgoing from n 1 do

 if c 1.getTo() == corr init .getTo() ∧ c 1 != corr init then

 counter = counter + 1

 end if

 end for each

for each collected Correspondence cc 1 outgoing from n 1 do

 if cc 1.getTo() == corr init .getTo() ∧ cc 1 != corr init then

 counter = counter + 1

 end if

 end for each

for each innate Correspondence c 2 outgoing from n 2 do

 if c 2.getTo() == corr init .getTo() ∧ c 2 != corr init then

 counter = counter + 1

 end if

 end for each

for each collected Correspondence cc 2 outgoing from n 2 do

 if cc 2.getTo() == corr init .getTo() ∧ cc 2 != corr init then

 counter = counter + 1

 end if

 end for each

...

Listing 6.4: Function hasCorrectNumberOfCorrespondences part 1

6 Concept for Merging of Topology Templates

98

In Listing 6.5 the second part of the function hasCorrectNumberOfCorrespondences is depict-

ed. It utilizes the fact that in case of a full mapping between all Node Templates with identi-

cal or compatible Node Types, the number Node Templates Correspondences between any

two of them can be determined unambiguously. At the same time, the direction of the Node

Template Correspondence is not important.

Definition 6.1 (Number of additional necessary Node Template Correspondences): Let '$1T_E00_TV22	be the number of necessary Node Template Correspondences between two Node
Templates '� and ') in case of a full mapping. Furthermore, let ?$WVXF be the set of outgoing
Node Template Correspondences from Node Template '�, both innate and collected, and ?$YVXF
be the set of outgoing Node Template Correspondences from Node Template '), both innate and
collected. For '$1T_E00_TV22	the following holds true under the assumption that one or both Node
Templates have already been merged

15
:

'$1T_E00_TV22
= Z[?$WVXF	[+ 	 [?$YVXF[+ 	1, <�	'�('�&O�@%� �@C�=) > 0	K'7	')('�&O�@%� �@C�=) > 0[?$WVXF	[, <�	'�('�&O�@%� �@C�=) > 0	K'7	')('�&O�@%� �@C�=) = 0[?$YVXF[, <�	if	'�('�&O�@%� �@C�=) = 0	K'7	')('�&O�@%� �@C�=) > 0

Part 2 of the hasCorrectNumberOfCorrespondences function in Listing 6.5 uses the calculated

value of the variable counter as indicator for the accumulated cardinality of the sets ?$WVXF
and ?$YVXF and covers the three cases discussed above. If the actual value deviates from '$1T_E00_TV22, it can be deduced that no full mapping has been found and at least one of the

Node Templates that was merged earlier and is now a part of '� or ') did not have a Node

Template Correspondence to the currently processed Node Templates '� or '). Otherwise a

suitable Node Template Correspondence would have been element of ?$WVXF 	 or ?$YVXF. Thus, '� or ') must not be merged and the function returns false.

15

 Otherwise the algorithm would have returned true beforehand. (see Listing 6.4 line 6, 7)

6 Concept for Merging of Topology Templates

99

35

36

37

38

39

40

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Algorithm to check if number of Correspondences is correct part 2

 ...

if n 1.getNumberOfMerges() > 0 ∧ n 2.getNumberOfMerges() > 0 then

 if counter == n1.getNumberOfMerges() + n 2.getNumberOfMerges() +1

then

 return true

 else

 return false

 end if

 end if

if n 1.getNumberOfMerges() > 0 ∧ n 2.getNumberOfMerges() == 0 then

 if counter == n1.getNumberOfMerges then

 return true

 else

 return false

 end if

 end if

 if n 1.getNumberOfMerges() == 0 ∧ n 2.getNumberOfMerges() > 0 then

 if counter == n2.getNumberOfMerges then

 return true

 else

 return false

 end if

 end if

end

Listing 6.5: Function hasCorrectNumberOfCorrespondences part 2

6.1.2 Merging of Properties on the Node Template Level

In this section a discussion of the actual merging of two Node Templates follows. In particu-

lar, this includes the assessment of the functionality the TOSCAMerge framework has to

provide inside the merge subroutine of the main algorithm previously shown in Listing 6.1.

In Section 5.1.2 we have seen that in addition to the Node Types of two Node Templates,

several properties have to be evaluated. These properties are MinInstances, MaxInstances

PropertyDefaults, PropertyConstraints, Policies, EnvironmentConstraints, DeploymentArtifacts

and ImplementationArtifacts. The consideration of all properties is a requirement stipulated

in Section 4.2 (property preservation requirement).

First, the author of this work will briefly review the merge function depicted in Listing 6.6,

which is essentially a sequence of subroutine-calls that handle the merging of the different

properties. Subsequently, the merging idiosyncrasies of the different Node Template Proper-

ties will be analyzed and the individual subroutines handling the merging will be covered.

6 Concept for Merging of Topology Templates

100

Similar to the matching cases in Chapter 5, the TOSCAMerge framework will provide any

merging operations that can be handled generically. However, when some properties cannot

be merged automatically the framework provides the possibility to trigger Node Type spe-

cific plugins. These plugins are invoked and configured corresponding to the qualified name

of the involved Node Types. The generic merging parts of the framework adhere to the pro-

posed requirement of value preference and take the values from the left-hand side Node

Template preferably. However, each generic function can be overridden in the type-specific

plugin if the default behavior is not appropriate.

The merge function in Listing 6.6 has two input parameters: two Node Templates denoted

by '� and '). The function’s output is a merged Node Template resulting from '� and ')
and denoted by '#12M10.The function creates the new Node Template '#12M10 and sets '�’s
name and id. (line 5-7). Thereupon, subroutine-calls provide the merged properties that are

set to '#12M10. They are reviewed below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Algorithm to merge the Properties of two Node Templ ates

Input: Node Template n 1

Input: Node Template n 2

Output: Node Template n merged

merge(n 1,n 2)

 Node Template n merged = new Node Template()

nmerged .setName(n 1.getName())

nmerged .setId(n 1.getId())

nmerged .setNodeType(decideNodeType(Node Types of n 1,n 2)

nmerged .setMinInstances(mergeMinInstances(n 1,n 2))

nmerged .setMaxInstances(mergeMaxInstances(n 1,n 2))

 n merged .setPropertyDefaults(mergePropertyDefaults(n 1,n 2))

 n merged .setPropertyConstraints(mergePropertyConstraints(n 1,n 2))

nmerged .setPolicies(mergePolicies(n 1,n 2))

nmerged .setEnvironmentConstraints(

mergeEnvironmentConstraints(n 1,n 2))

nmerged .setDeploymentArtifacts(mergeDeploymentArtifacts(n 1,n 2))

nmerged .setImplementationArtifacts(

mergeImplementationArtifacts(n 1,n 2))

return n merged

end

Listing 6.6: Function merge for Node Templates

Node Types

If the Node Templates to be merged have and identical Node Type, the decision which Node

Type to assign to the merged Node Template can be made by the TOSCAMerge framework.

However, if a Node Template Correspondence between Node Types, somehow related by an

6 Concept for Merging of Topology Templates

101

inheritance tree, has been found, the decision which Node Template to preserve cannot be

made generically. Rather, a type-specific plugin must be called to decide which Node Type

to assign to the merged Node Template.

Listing 6.7 shows the algorithm of decideNodeType. If both NodeTypes are not identical the

plugin is called by the subroutine decideNodeTypeTypeSpecificContent.

1

2

3

4

5

6

7

8

9

10

Algorithm to determine which Node Type to use

Input: Node Type nt 1

Input: Node Type nt 2

Output: Node Type nt merged

decideNodeType(nt 1,nt 2)

if nt 1 == nt 2 then

 return nt 1

else

 return decideNodeTypeTypeSpecificContent(nt 1,nt 2)

end if

end

Listing 6.7: Function decideNodeType

MinInstances and MaxInstances

The merging of the MinInstances and MaxInstances properties can be handled generically

by the TOSCAMerge framework. However, users of the framework will be able to override

the generic functionality and provide their own implementation. The merge is executed by

the function mergeMinInstances respectively mergeMaxInstances. The algorithm of the func-

tions is not shown here, it essentially sums up the values in each case.

PropertyDefaults

Merging the PropertyDefaults of two Node Templates meets the same problems as the

matching. The TOSCAMerge framework is unable to understand the exact semantics of

each XML element generically. Therefore, a type-specific plugin must handle the merging of

the values. The framework itself provides facilities to easily manipulate, i.e. read and write,

the XML fragments representing the PropertyDefaults. The mergePropertyDefaults function

must only retrieve the PropertyDefaults from each Node Template and invoke a type-

specific plugin that handles the actual merge. Listing 6.8 shows a simple example how the

type-specific algorithm could look like. It extracts a heap size value, e.g. from an application

server, out of both PropertyDefaults using a framework functionality and the tag name of

the XML element (indicated by inverted comma). The simple merging strategy in this case

adds the two heap sizes. Subsequently, the added value is written back.

6 Concept for Merging of Topology Templates

102

1

2

3

4

5

6

7

8

9

10

11

12

Type specific algorithm to merge simple PropertyDef aults

Input: PropertyDefaults PD 1

Input: PropertyDefaults PD 2

Output: Property Defaults PD merged

mergePropertyDefaultsTypeSpecificContent(PD 1,PD 2)

int heapSize1 = getNodeValueByTagName (PD1,“ HeapSize”)

 int heapSize2 = getNodeValueByTagName (PD2,“ HeapSize”)

 heapSize1 = heapSize1 + heapSize2

 setNodeValueByTagName(PD 1,“HeapSize”,heapSize1)

 return PD1

end

Listing 6.8: Example for type-specific PropertyDefaults merging

PropertyConstraints

In contrast to the matching of two set of PropertyConstraints, the merging can be achieved

in a generic way. The TOSCAMerge framework provides an appropriate default algorithm;

however, it can be overridden if a user has a more suitable merging strategy. Listing 6.9

shows the function mergePropertyConstraints. The function has two input parameters, the

Node Templates to be merged, denoted by '� and '). The output parameter is a set of Prop-

erty Constraints, denoted by :?#12M10.
First, it is evaluated if one of the PropertyConstraints sets is empty. If so, the corresponding

other is returned (line 5-11). Otherwise the two PropertyConstraints sets :?�	and :?)	are

retrieved (line 13-14) and every PropertyConstraint of :?).is checked against the elements

of :?�. If it is not yet element of :?�, it is added to latter. The comparison and adding of the

PropertyConstraint elements is possible, as the TOSCA Specification states that Property-

Constraints with the same Property and ConstraintType attributes are identical.

6 Concept for Merging of Topology Templates

103

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Algorithm to merge the Property Constraints

Input: Node Template n 1

Input: Node Template n 2

Output: Property Constraints PC merged

mergePropertyConstraints(n 1,n 2)

if n 1.getPropertyConstraints() == null then

 return n 2.getPropertyConstraints()

end if

if n2.getPropertyConstraints() == null then

 return n 1.getPropertyConstraints()

end if

Property Constraints PC 1 = n 1.getPropertyConstraints()

Property Constraints PC 2 = n 2.getPropertyConstraints()

for each Property Constraint pc ∈ PC 2 do

 if pc ∉ PC1 then

 PC1.add(pc)

 end if

end for each

return PC1

end

Listing 6.9: Function mergePropertyConstraints

Policies, EnvironmentConstraints, DeploymentArtifacts and ImplementationArti-

facts

The remaining Property elements of a Node Template show the same pattern as seen in

connection with the PropertyConstraints. A generic implementation can be provided, but it

can easily be overridden if a different merging approach is more suitable. The algorithms

follow the same idea as Listing 6.9, i.e. checking against a set if a particular element is al-

ready element of it. Under certain circumstances this simple approach might not suffice, e.g.

if it has to be decided which DeploymentArtifacts and ImplementationArtifacts for non-

identical but related Node Types are to be used furthermore.

6.2 Merging of Relationship Templates

In Section 5.2 the specifics of finding Correspondences between Relationship Templates,

denoted by Relationship Template Correspondences, have been studied. In this section the

attention is turned to the usage of the found Correspondences, i.e. the merging of Relation-

ship Templates. As cases do not differ significantly from the Node Template merging they

are not analyzed again. Instead an algorithm is proposed in 6.2.1. The consideration of their

6 Concept for Merging of Topology Templates

104

relative position in Group Templates is not analyzed here but is part of Section 6.3. Section

6.1.2 deals with the unification Relationship Template properties.

6.2.1 Basic Merging Algorithm for Relationship Templates

Listing 6.10 shows the basic merging algorithm for Relationship Templates. Later an ex-

tended variation will be discussed that also includes a consideration of the position in a

Group Template Hierarchy. The function handleRelationshipTemplates picks up the subrou-

tine invocation of line 26 of the basic merging algorithm for Node Templates (Listing 6.1). It

is implemented in a so-called RelationshipTemplateMergingHandler, a concept similar to the

RelationshipTemplateMatchingHandler of Section 5.2.1 with the difference that the Relation-

shipTemplateMergingHandler is generic for all Relationship Types.

The merging algorithm for Relationship Templates is very similar to the one for merging

Node Templates. Therefore, subroutines that are basically identical will not be reviewed

again. The algorithm requires four input parameters: two Topology Templates denoted by --� and --), a set of Node Template Correspondences, i.e. a mapping , and a Node Tem-

plate Correspondence denoted by /. The result of the algorithm is an updated Topology

Template denoted by --XD0EF10. The first step of the algorithm is to retrieve the attached

Relationship Template Correspondences (line 7). Subsequently, the algorithm’s main loop

iterates over all Relationship Template Correspondences. Even though the Relationship

Templates concerned may have different Relationship Types, and therefore, different se-

mantics, they are treated uniformly (with the exception of the actual merge of their proper-

ties). In line 10-12 it is checked if the Relationship Template Correspondence has the same

head and tail, i.e. forms a loop. If so, the processing of the particular Correspondence is

skipped. The reason for this issue is the reallocation of the Relationship Template Corre-

spondences to already merged Relationship Templates, just as in the case of Node Template

Correspondences. Subsequently, the two Relationship Templates to be merged, denoted by @� and @), are retrieved from the current Relationship Template (line 14-15). The hasCorrect-

NumberOfCorrespondences subroutine line 17 works exactly the same way as described

above in the context of Node Template Correspondences; therefore, it is not shown once

again. It has the task of checking if Relationship Templates already merged into new Rela-

tionship Templates also had the necessary correspondences to the current two Relationship

Templates.

Subject to the Relationship Type of @� a merger is created that contains the functionality for

merging the properties of two Relationship Templates (line 21). The next step is the actual

invocation of the merge function for unifying two Relationship Templates properties. See

the next section for a detailed review.

6 Concept for Merging of Topology Templates

105

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Basic merging algorithm for Relationship Templates

Input: Topology Template TT 1

Input: Topology Template TT 2

Input: Mapping M

Input: Node Template Correspondence c

Output: Topology Template TT updated

handleRelationshipTemplates(TT 1,TT 2,c,M)

 Set RC = c.getRelationshipTemplateCorrespondences()

for each Relationship Template Correspondence rc ∈ RC do

if rc.getFrom() == rc.getTo() then

 continue

end if

Relationship Template r 1 = rc.getFrom()

 Relationship Template r 2 = rc.getTo()

if ¬hasCorrectNumberOfCorrespondences(rc,R 1,R 2) then

 continue

 end if

 Merger merger = createRelTemplateMerger(Relationship Type of r 1)

 Relationship Template r merged = merger.merge(r 1, r 2)

 r merged .setNumberOfMerges(r 1.getNumberOfMerges + 1)

 r merged .addToCollectedCorrespondences(

r 1.getCollectedCorrespondences)

 r merged .addToCollectedCorrespondences(r 1.getCorrespondences)

 r merged .addToCollectedCorrespondences(r 2.getCorrespondences)

 TT 1.remove(r 1)

 TT 2.remove(r 2)

 TT 1.add(r merged)

 M = reconnectCorrespondences(M,r 1,r 2,r merged)

 end for each

 return TT1

end

Listing 6.10: Function handleRelationshipTemplates

The lines 23-27 are also very similar to the Node Template merging counterpart. Relation-

ship Correspondences are collected to handle possible partial mappings between the Rela-

tionship Templates incident to two corresponding Node Templates. After these steps @� and

6 Concept for Merging of Topology Templates

106

@) are removed from their respective Topology Template and the merged Relationship Tem-

plate @#12M10 is added to Topology Template 1 (lines 29-31).

The reconnectCorrespondences function for Relationship Templates, invoked in line 33, dif-

fers from the Node Template counterpart. Listing 6.11 shows this function. The main differ-

ence to Listing 6.3 is the nested loops. In order to correct every Template Relationship Cor-

respondence, an iteration over all existing Node Template Correspondences and their nested

Relationship Correspondences has to take place.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Algorithm to reconnect Relationship Template Corres pondences

Input: Mapping M

Input: Relationship Template r 1

Input: Relationship Template r 2

Input: Relationship Template r merged

Output: Mapping M

reconnectCorrespondences(M,r 1,r 2,r merged)

 for each Node Template Correspondence c ∈ M do

 Set RC = c.getRelationshipTemplateCorrespondences ()

 for each Relationship Template Correspondence rc ∈ RC do

 if rc.getFrom() == r 1 ∨ rc.getFrom() == r 2 then

 rc.setFrom(r merged)

 end if

 if rc.getTo() == r 1 ∨ rc.getTo() == r 2 then

 rc.setTo(r merged)

 end if

 end for each

 end for each

 return M

end

Listing 6.11: Function reconnectCorrespondences for Relationship Templates

6.2.2 Merging of Relationship Template Properties

Listing 6.12 shows the merging function for Relationship Templates and their Properties

which is invoked in the basic merging algorithm for Relationship Templates in Listing 6.10,

line 22. The function requires two Relationship Templates denoted by @� and @) as input

parameters and returns a unified Relationship Template denoted by @#12M10. The first step

of the algorithm is to create a new Relationship Template that holds the unified properties

(line 5). Name, Id, the Relationship Type and the source and target elements are adopted from @�. The properties that have to be unified are the PropertyDefaults, the PropertyConstraints

and the RelationshipConstraints. The subroutines mergePropertyDefaults, mergePropertyCon-

straints are very similar to their Node Template counterparts in Listing 6.8 and Listing 6.9.

6 Concept for Merging of Topology Templates

107

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Algorithm to merge the Properties of two Relationsh ip Templates

Input: Relationship Template r 1

Input: Relationship Template r 2

Output: Relationship Template r merged

merge(r 1,r 2)

 Relationship Template r merged = new Relationship Template()

r merged .setId(r 1.getId())

r merged .setName(r 1.getName())

r merged .setRelationshipType(r 1.getRelationshipType())

r merged .setSourceElement(r 1.getSourceElement())

r merged .setTargetElement(r 1.getTargetElement())

 r merged .setPropertyDefaults(mergePropertyDefaults(r 1,r 2))

 r merged .setPropertyConstraints(mergePropertyConstraints(r 1,r 2))

r merged .setRelationshipConstraints(

mergeRelationshipConstraints(r 1,r 2))

return r merged

end

Listing 6.12: Function merge for Relationship Templates

MergePropertyDefaults extracts the relevant XML-fragments from the Relationship Tem-

plates and invokes a subroutine called mergePropertyDefaultsTypeSpecificContent. This in-

vokes a type-specific plugin, in the same way as in the case of Node Templates. For the

merging of PropertyConstraints a build-in algorithm is provided, but it can easily be over-

ridden if desired. At first sight, the only new merging subroutine is mergeRelationshipCon-

straints. However, it also follows the algorithm of Listing 6.9, i.e. two RelationshipCon-

straints are considered equal if their ConstraintType attribute is equal and only those Rela-

tionship Constraints from the second set which do not yet exist are transferred to the first

set.

6.3 Merging in the Context of Group Templates

The previous concept for merging does not consider Group Templates holding Node, Rela-

tionship or other Group Templates. The following section will expand the merging concept

by including the merging of Node and Relationship Templates inside and across the bound-

aries of Group Templates.

6.3.1 Merging of Node Templates

In Listing 6.1 the basic algorithm for merging was proposed. In the lines 31-33 the two Node

Templates '� and ') are deleted from the Topology Templates --� respectively --). In do-

ing so, it was assumed that the Topology Templates contained no Group Templates and all

elements resided on Nesting Level 0. To overcome this limitation an extension to the previ-

ously proposed algorithm has to be made. The lines 31-33 from Listing 6.1 have to be re-

6 Concept for Merging of Topology Templates

108

placed by the algorithm fragment depicted in Listing 6.13. The fragment adds four case dis-

tinctions. The four cases are analyzed and discussed without providing new graphical fig-

ures as the constellations of Node Templates on different Nesting Levels have been dis-

cussed in Section 5.3 at length. The only difference is that the Correspondences between

them have been found now.

The first one from line 5 to line 8 represents the previous case where both Node Templates '� and ') are not nested inside a Group Template but residing on Nesting Level 0. This is

expressed by the evaluation if both Node Templates’ parent GroupTemplateHierarchy ele-

ments are non-existing, i.e. null. If this case applies, the same steps as in the original algo-

rithm are executed: '� is removed from --�, ') from --) and finally '#12M10 is added to --�.
The pseudo code fragment from line 9-15 represents the case where Node Template '� re-

sides on Nesting Level 0 and Node Template ') on a Nesting Level ≥ 1. The first step is to

set the new parent to Node Template '#12M10 using the one from Node Template ').
Thereupon, the Group Template, denoted by C, which contains Node Template ') is re-
trieved via the parent GroupTemplateHierarchy element of '). The content elements (of

type tExtensibleElements) of C are then stored in a set, created earlier in line 2. In this set,

denoted by �), Node Template '#12M10 is inserted while Node Template ') is removed.

Assuming call-by-reference semantics the Group Template C still has a pointer to the set ��
and also learns of the manipulation. The last step in this case is to remove Node Template '� from Topology Template --�. This general approach is also used throughout the other

cases: The Group Template on the higher Nesting Level “pulls” the merged Node Template

into its region. Node Templates that are merged more than once across Nesting Levels move

down to the greatest Nesting Level. A graphical example for the “pulling” can be found be-

low in Fig. 6.5.

The lines 16-22 represent the inverse case where Node Template '� is on a Nesting Level ≥ 1

and Node Template ') is on Nesting Level 0. The approach is the same as described before.

The last case is shown in the lines 23-38: now both Node Templates are nested inside a

Group Template but not necessarily on the same Nesting Level. This time both parent

Group Templates, denoted by C� and C), respectively, are retrieved from the parent

GroupTemplateHierarchy element as well as their content elements that are then stored in

the sets �� and �). Subsequently, two subcases have to be considered.

6 Concept for Merging of Topology Templates

109

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Extension to the basic merging algorithm for Node T emplates

...

Set E 1 = new Set of Elements

Set E 2 = new Set of Elements

 if n 1.getParent() == null ∧ n 2.getParent() == null then

 TT 1.remove(n 1)

 TT 2.remove(n 2)

 TT 1.add(n merged)

 else if n 1.getParent() == null ∧ n 2.getParent() ≠ null then

 nmerged .setParent(n 2.getParent())

 Group Template g = n 2.getParent().getGroupTemplate()

 E 2 = g.getElements()

 E 2.add(n merged)

 E 2.remove(n 2)

 TT 1.remove(n 1)

 else if n1.getParent() ≠ null ∧ n 2.getParent() == null then

 n merged .setParent(n 1.getParent())

 Group Template g = n 1.getParent().getGroupTemplate()

 E 1 = g.getElements()

 E 1.add(n merged)

 E 1.remove(n 1)

 TT 2.remove(n 2)

else if n1.getParent() ≠ null ∧ n 2.getParent() ≠ null then

 Group Template g 1 = n 1.getParent().getGroupTemplate()

 Group Template g 2 = n 2.getParent().getGroupTemplate()

 E 1 = g 1.getElements()

 E 2 = g 2.getElements()

 if n 1.getParent().getNestingLevel() ≥

n2.getParent().getNestingLevel() then

 n merged .setParent(n 1.getParent())

 E 1.add(n merged)

else if (n 1.getParent().getNestingLevel() <

 n2.getParent().getNestingLevel()) then

 n merged .setParent(n 2.getParent())

 E 2.add(n merged)

 end if

 E1.remove(n 1)

 E2.remove(n 2)

 end if

Listing 6.13: Extension of the function performNodeTemplateMerge

6 Concept for Merging of Topology Templates

110

If Node Template '�’s Nesting Level is equal or greater than ')’s, '�’s parent Group Tem-

plate C� will hold the merged Node Template '#12M10 hereafter. This is consistent with the

value preference requirement discussed in 4.2 that in cases where two options are valid the

left-hand side is chosen. If the Nesting Level of Node Template ')’s parent GroupTem-

plateHierarchy element is greater and, thus, that of '), the set �) respectively Group Tem-

plate C) is the new parent of Node Template '#12M10. In both cases '� and ') are removed

from the sets containing them.

Topology Template 1

Group Template 1

Correpondence

Nesting Level 0

OSOS

...

... Nesting Level 1

Topology Template 1

Group Template 1 Nesting Level 0

Merged OS

...

... Nesting Level 1

M
e

rg
e

Move

Fig. 6.5: Example of “pulling” a Node Template into a Group Template

6 Concept for Merging of Topology Templates

111

Another extension that has to be mentioned is that for the function reconnectEdges in List-

ing 6.2 the Relationship Templates from the Topology Templates are no longer used; but

just as in the case of matching Relationship Templates in Section 5.3.5, the previously build

Relationship Template set containing all, even nested, Relationship Templates is used.

6.3.2 Merging of Relationship Templates

The basic algorithm for merging of Relationship Templates in Listing 6.10 must also be ex-

panded to handle Relationship Templates located in different Group Templates. Therefore,

the lines 29-31 have to be replaced by the same concept proposed in the previous section.

The same four cases have to be considered. Let @� and @) be two Relationship Templates,

then the four cases are the following ones: (1) @� and @) are on Nesting Level 0, i.e. nothing

special has to be considered. (2) @� is on Nesting Level 0 and @) is on a Nesting Level ≥ 1. (3) @) is on Nesting Level 0 and @� is on a Nesting Level ≥ 1. (4) both Node Templates are on a

Nesting Level greater ≥ 1.

All cases are handled in the same way as the Node Templates in the previous section by

retrieving the parent Group Template from the parent GroupTemplateHierarchy element

when necessary. In case (4), however, it is not decided in which Group Template a merged

Relationship Template is transferred according to the Nesting Level. This is due to the fact

that Relationship Templates point over the borders of Group Templates and, thus, they stay

in the Group Template they were already in at the beginning. A new function called reloca-

teEdges, depicted in Fig. 6.6, relocates Relationship Templates, whose source and target Node

Templates have been relocated into the same Group Template after merging. The respective

Relationship Template is then also moved to that particular Group Template. relocateEdges

is invoked as subroutine of the function reconnectEdges in Listing 6.2. Every Relationship

Template that is evaluated if its source and target Node Templates have changed is also

evaluated if both Node Templates reside in the same Group Template now.

The function relocateEdges requires five input parameters: a Relationship Template @, two

Node Templates denoted by '� and '), as well as two Topology Templates denoted by --�
and --). The output is void. The lines 8-10 test if both Node Templates are located in a

Group Template, indicated by non-null parent GroupTemplateHierarchy elements, and if

they are identical. If so, the content elements of Node Template '�’s parent Group Template

are retrieved and stored in a set denoted by �� (line 11). If @ is not yet element of ��, it can

be added to it (line 12). The next steps, nested inside the latter evaluation, from line 15-22

check from which set of elements the Relationship Template @ must be removed. If it has a

parent GroupTemplateHierarchy element, i.e. it is nested inside a Group Template, it must

be deleted there. If	@	H	--�, i.e. it is on Nesting Level 0, it is removed from the corresponding

Topology Template, otherwise it can be inferred that @	H	--) and @ is removed accordingly.

6 Concept for Merging of Topology Templates

112

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Algorithm for relocating Relationship Templates

Input: Relationship Template r

Input: Node Template n 1

Input: Node Template n 2

Input: Topology Template TT 1

Input: Topology Template TT 2

Output: void

relocateEdges(r merged ,TT 1,TT 2)

 if n 1.getParent() ≠ null ∧ n 2.getParent() ≠ null

∧ n 1.getParent().getGroupTemplate() ==

 n 2.getParent().getGroupTemplate() then

 Set E 1 = n 1.getParent().getGroupTemplate().getElements()

 if r ∉ E 1 then

 E 1.add(r)

 if r merged .getParent() ≠ null then

 E r = r.getParent().getGroupTemplate().getElements()

 E r .remove(r)

 else if r ∈ TT 1 then

 TT 1.remove(r)

 else

 TT 2.remove(r)

 end if

 end if

 end if

end

Fig. 6.6: Function relocateEdges

6.3.3 Merging of Group Templates

This last section discusses the merging of Group Templates on their own by utilizing the

found Group Template Correspondences. The overall merging approach is very similar to

the merging of Node and Relationship Templates. It is implemented in the function per-

formGroupTemplateMerge depicted in Listing 6.14 and Listing 6.15. It will be pointed out

which parts are identical with their Node and Relationship Template counterpart as they

will not be discussed again in detail. Furthermore, the merging of the Group Template’s

properties and content will be analyzed.

Merging Algorithm for Group Templates

Listing 6.14 contains the first part of the function performGroupTemplateMerge, which is

divided into two parts due to its size. The function requires three input parameters: a set of

Group Template Correspondences, denoted by �-?, and two Topology Templates denoted

by --� and --). The output of the function is a Topology Template containing the merged

Group Templates.

6 Concept for Merging of Topology Templates

113

The difference of the first part to its Template and Relationship Template counterparts is

the fact that the correspondence is now an instance of Group Template Correspondence and

not Node Template Correspondence respectively Relationship Template Correspondence.

This is evident as the invocation of a subroutine called hasCorrectNumberOfCorrespondences

and the handling of innate and collected correspondences are identical. Also, a Group Tem-

plate merger is created in line 18 which handles the specifics of merging two Group Tem-

plates such as unifying their Element content.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Merging algorithm for Group Templates part 1

Input: Set of Group Template Correspondences GTC

Input: Topology Template TT 1

Input: Topology Template TT 2

Output: Topology Template TT merged

performGroupTemplateMerge(GTC,TT 1,TT 2)

 for each Correspondence c ∈ GTC do

if c.getFrom() == c.getTo() then

 continue

end if

Group Template g 1 = c.getFrom()

 Group Template g 2 = c.getTo()

if ¬hasCorrectNumberOfCorrespondences(c,g 1,g 2) then

 continue

 end if

 Merger merger = createGroupTemplateMerger()

 Group Template gmerged = merger.merge(g 1, g2)

 g merged .setNumberOfMerges(g 1.getNumberOfMerges + 1)

 g merged .addToCollectedCorrespondences(

g1.getCollectedCorrespondences)

 g merged .addToCollectedCorrespondences(g 1.getCorrespondences)

 g merged .addToCollectedCorrespondences(g 2.getCorrespondences)

 ...

Listing 6.14: Function performGroupTemplateMerge part 1

In Listing 6.15 the second part of the function performGroupTemplateMerge is depicted. This

part handles the insertion and deletion of the Group Templates to be merged, denoted by C�
and C), and the merged Group Template C#12M10. This part is different to its Node and Re-

lationship Template counterparts and is, therefore, analyzed in detail. When merging Group

Templates, two different cases have to be considered: Either the Group Templates C� and C)
are both on the same Nesting Level ≥ 1 or they are both on Nesting Level 0. Another case

cannot exist as Group Templates Correspondences are only established between Group

6 Concept for Merging of Topology Templates

114

Templates on the same Nesting Level. The first case is presented by the lines 26-37 in List-

ing 6.15. If both Group Templates are on the same Nesting Level ≥ 1, their parent Group

Template’s content is retrieved and stored in the sets �� and �). The merged Group Tem-

plate C#12M10 receives the parent GroupTemplateHierarchy element of C� and is added to �� while C� and C) are removed from their respective parent sets. Subsequently, the set of

Elements �M of C#12M10 is retrieved and every element �	H	�M gets C#12M10 assigned as its

new managing Group Template.	
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

45

46

47

48

49

50

51

52

53

54

55

Merging algorithm for Group Templates part 2

 ...

if g 1.getParent() ≠ null ∧ g 2.getParent() ≠ null then

 Set E 1 = g 1.getParent().getGroupTemplate().getElements()

 Set E 2 = g 2.getParent().getGroupTemplate().getElements()

gmerged .setParent(g 1.getParent())

 E 1.remove(g 1))

E1.add(g merged)

E2.remove(g 2))

Set E g = g merged .getElements()

 for each Element e ∈ E g do

 e.getParent().setGroupTemplate(g merged)

 end for each

else

 TT 1.remove(g 1)

 TT 2.remove(g 2)

 TT 1.add(g merged)

Set E g = g merged .getElements()

 for each Element e ∈ E g do

 e.getParent().setGroupTemplate(g merged)

 end for each

 end if

 GTC = reconnectCorrespondences(GTC,g 1,g 2,g merged)

 end for each

 return TT1

end

Listing 6.15: Function performGroupTemplateMerge part 2

The second case is represented by the pseudo code lines 38-51. The Group Templates are not

nested and can be added and removed from their Topology Templates straightforwardly. In

line 52 a subroutine is invoked that reconnects the Group Template Correspondences from

deleted Group Templates to the merged ones in case of more than one incoming or outgoing

6 Concept for Merging of Topology Templates

115

Correspondences. This is done analogously to the Node and Relationship Template counter-

parts described in Listing 6.3 and Listing 6.11 and will not be discussed here again.

Merging Algorithm for Group Template Properties and Content

In this paragraph an algorithm for merging the properties of Group Templates and unifying

their content will be proposed briefly. It is implemented in the function merge depicted in

Listing 6.16. The function requires two Group Templates denoted by C� and C) as input pa-

rameters. The return value is a merged Group Template.

The first step of the algorithm is to create a new Group Template denoted by C#12M10 (line

5). Subsequently, all Elements from C� and C) are added to the Elements of C#12M10 (line 6

and 7). The id and name are taken from Group Template C� (value preference). The Policies

are merged by a subroutine mergePolicies which works identical to its Node Template coun-

terpart in Section 6.1.2. The minInstances and maxInstances are unified by the framework

using a provided implementation that simply adds the number of instances in both cases.

However, the functions can be overridden by user-provided plugins.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Algorithm to merge properties and content of two Gr oup Templates

Input: Group Template g 1

Input: Group Template g 2

Output: Group Template g merged

merge(g 1,g 2)

 Group Template g merged = new Group Template()

gmerged .getElements().addAll(g 1.getElements())

gmerged .getElements().addAll(g 2.getElements())

gmerged .setId(g 1.getId())

gmerged .setName(g 1.getName())

gmerged .setPolicies(mergePolicies(g 1,g 2))

gmerged .setMaxInstances(mergeMaxInstances(g 1,g 2))

gmerged .setMinInstances(mergeMinInstances(g 1,g 2))

return g merged

end

Listing 6.16: Function merge for Group Templates

7 Architecture & Design of an Extendable Framework

116

7 Architecture & Design of an Extendable Framework

The following chapter aims to design the architecture of a framework that incorporates the

matching and merging concepts and algorithms proposed in Chapter 5 and Chapter 6 and is

extendable by type- and domain-specific plugins. This chapter is based on the fundamentals

discussed in Section 2.4 utilizing them to design an extendable framework. Section 7.1 gives

and overview over the proposed high-level architecture. Section 7.2 then refines the archi-

tecture into a more detailed design. Finally, Section 7.3 explains the extension concept via

type-specific plugins in detail. Both the high-level architecture and the more detailed design

are depicted as UML class diagrams. However, with regard to the complexity of the frame-

work not every diagram is shown in detail.

7.1 High-level Architecture

Fig. 7.1 and Fig. 7.2 both show the high-level architecture of the TOSCAMerge framework.

The presentation of the architecture is divided into two parts due to the number of classes

involved. Fig. 7.1 has its focus on the matching functionality of the framework, whereas Fig.

7.2 concentrates on the merging part. However, both illustrations depict the parts that serve

as access point for an external invocation of the framework functionality: The interface

TOSCAMergeService and one of its possible implementation class TOSCAMergeServiceState-

lessImpl.

7 Architecture & Design of an Extendable Framework

117

 cl
as

s
O

v
er

al
l

A
rc

h
ite

c
tu

re
 M

a
tc

h

«
a

b
st

ra
ct

»
TO

S
C

A

TO
S

C
A

F
ile

M
at

c
he

r
TO

S
C

A
F

ile
M

er
g

er

«
in

te
rf

a
ce

»
TO

S
C

A
M

er
g

e
S

e
rv

ic
e

TO
S

C
A

M
er

g
e

S
e

rv
ic

e
S

ta
te

le
s

sI
m

p
l

«
a

b
st

ra
ct

»
T

O
S

C
A

G
ro

up
Te

m
pl

a
te

M
at

c
he

r

«
a

b
st

ra
ct

»
T

O
S

C
A

M
a

tc
h

er

TO
S

C
A

M
at

ch
in

gF
ac

to
ry

«
a

b
st

ra
ct

»
TO

S
C

A
N

o
de

Te
m

pl
at

e
M

at
c

h
er

«
a

b
st

ra
ct

»
T

O
S

C
A

R
el

at
io

n
sh

ip
Te

m
p

la
te

M
a

tc
he

r
«

a
b

st
ra

ct
»

TO
S

C
A

R
e

la
tio

ns
hi

pT
em

p
la

te
M

at
ch

in
gH

an
dl

er

M
yG

ro
up

Te
m

pl
at

e
M

at
c

h
er

To
m

ca
tA

pp
lic

at
io

nS
er

v
e

rM
at

ch
er

M
yS

Q
LD

at
ab

as
eM

a
tc

h
e

r

D
e

bi
an

Li
n

ux
O

S
M

a
tc

h
e

r

H
o

s
te

d
O

nR
el

at
io

n
sh

ip
Te

m
p

la
te

M
a

tc
h

e
r

C
o

m
m

un
ic

a
tio

n
R

e
la

ti
o

ns
hi

p
Te

m
pl

a
te

M
at

c
he

r

D
ep

en
d

en
cy

R
e

la
tio

ns
hi

p
Te

m
pl

at
e

M
at

c
h

er

H
os

te
dO

nR
el

at
io

n
sh

ip
Te

m
pl

a
te

M
a

tc
hi

ng
H

a
nd

le
r

C
om

m
un

ic
at

io
n

R
e

la
tio

ns
hi

p
Te

m
pl

at
e

M
at

ch
in

g
H

an
dl

e
r

D
e

pe
nd

en
c

yR
el

a
tio

n
sh

ip
Te

m
p

la
te

M
a

tc
h

in
gH

an
dl

er

1

1

1

0
..

*

1

1
..

*

1

1

1
1

1
1

1
1 1

1

1
1

Fi
g
. 7

.1
: O

v
er

al
l
ar

ch
it
ec

tu
re

 w
it
h
 m

at
ch

in
g
 p

ar
t

7 Architecture & Design of an Extendable Framework

118

 clas
s O

v
e

rall A
rc

hitec
tu

re M
e

rge

«
a

b
stra

ct»
T

O
S

C
A

TO
S

C
A

F
ileM

atch
er

TO
S

C
A

FileM
erge

r

«
in

te
rfa

ce
»

TO
S

C
A

M
e

rge
S

e
rv

ic
e

TO
S

C
A

M
e

rge
S

e
rv

ic
eS

tatele
ss

Im
p

l

«
a

b
stra

ct»
T

O
S

C
A

G
rou

pT
e

m
p

la
te

M
e

rge
r

«
a

b
stra

ct»
T

O
S

C
A

M
e

rg
er

TO
S

C
A

M
erg

in
gF

ac
to

ry

«
a

b
stra

ct»
T

O
S

C
A

N
o

de
Te

m
pla

te
M

erg
er

«
a

b
stra

ct»
T

O
S

C
A

R
elation

sh
ip

Te
m

pla
te

M
e

rg
er

TO
S

C
A

R
e

la
tio

ns
hipTem

p
la

teM
e

rging
H

an
d

ler

M
yG

rou
pTe

m
pla

te
M

erg
er

Tom
ca

tA
pp

lic
ation

S
e

rv
e

rM
e

rge
r

D
eb

ia
nL

in
ux

O
S

M
erg

er

M
yS

Q
L

D
atab

as
eM

e
rge

r

H
o

sted
O

nR
ela

tio
n

sh
ipTe

m
pla

te
M

erg
er

C
o

m
m

u
nica

tio
nR

ela
tion

sh
ip

Te
m

pla
te

M
erg

er

D
ep

en
de

nc
yR

e
lation

s
hip

Tem
p

lateM
e

rge
r

1
1

1

1

1

1

11
..*

1
1

1
0

..* 1
1

Fig
. 7.2: O

v
erall arch

itectu
re w

ith
 m

ergin
g
 p

art

7 Architecture & Design of an Extendable Framework

119

7.2 Refined Design

 cl
as

s
S

e
rv

ic
e

 e
nt

ry
 d

e
ta

ile
d

«
a

b
st

ra
ct

»
TO

S
C

A

~

T
O

S
C

A
(S

e
rv

ic
e

T
e

m
p

la
te

,
S

e
rv

ic
e

T
e

m
p

la
te

)
+

g

e
tR

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
L

is
t1

()
 :

 A
rr

a
yL

is
t<

T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
>

+

se
tR

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
L

is
t1

(A
rr

a
yL

is
t<

T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
>

)
:

vo
id

+

g
e

tR
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

L
is

t2
()

 :
 A

rr
a

yL
is

t<
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

>
+

se

tR
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

L
is

t2
(A

rr
a

yL
is

t<
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

>
)

:
vo

id
#

in

it
(S

e
rv

ic
e

T
e

m
p

la
te

,
S

e
rv

ic
e

T
e

m
p

la
te

)
:

vo
id

-
b

u
il

d
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
L

is
t(

L
is

t<
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
>

,
L

is
t<

T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
>

,
G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y)
 :

 v
o

id

TO
S

C
A

F
ile

M
a

tc
he

r

+

T
O

S
C

A
F

il
e

M
a

tc
h

e
r(

S
e

rv
ic

e
T

e
m

p
la

te
,

S
e

rv
ic

e
T

e
m

p
la

te
)

+

g
e

n
e

ra
te

M
a

p
p

in
g

(T
T

o
p

o
lo

g
yT

e
m

p
la

te
,

T
T

o
p

o
lo

g
yT

e
m

p
la

te
)

:
C

o
rr

e
sp

o
n

d
e

n
ce

C
o

n
ta

in
e

r
-

fi
n

d
M

a
p

p
in

g
(L

is
t<

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

>
,

L
is

t<
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
>

,
T

G
ro

u
p

T
e

m
p

la
te

,
T

G
ro

u
p

T
e

m
p

la
te

)
:

vo
id

-
is

M
a

tc
h

in
g

P
o

ss
ib

le
(T

N
o

d
e

T
e

m
p

la
te

,
T

N
o

d
e

T
e

m
p

la
te

,
T

G
ro

u
p

T
e

m
p

la
te

,
T

G
ro

u
p

T
e

m
p

la
te

)
:

b
o

o
le

a
n

-
is

G
ro

u
p

T
e

m
p

la
te

sA
cc

e
ss

P
o

ss
ib

le
(T

N
o

d
e

T
e

m
p

la
te

,
T

G
ro

u
p

T
e

m
p

la
te

,
T

G
ro

u
p

T
e

m
p

la
te

,
T

G
ro

u
p

T
e

m
p

la
te

)
:

b
o

o
le

a
n

-
is

A
lr

e
a

d
yM

a
tc

h
e

d
(T

N
o

d
e

T
e

m
p

la
te

,
T

N
o

d
e

T
e

m
p

la
te

)
:

b
o

o
le

a
n

-
is

A
lr

e
a

d
yM

a
tc

h
e

d
(T

G
ro

u
p

T
e

m
p

la
te

,
T

G
ro

u
p

T
e

m
p

la
te

)
:

b
o

o
le

a
n

-
is

O
n

S
a

m
e

L
e

ve
l(

T
G

ro
u

p
T

e
m

p
la

te
,

T
G

ro
u

p
T

e
m

p
la

te
)

:
b

o
o

le
a

n

TO
S

C
A

F
ile

M
e

rg
er

+

T
O

S
C

A
F

il
e

M
e

rg
e

r(
S

e
rv

ic
e

T
e

m
p

la
te

,
S

e
rv

ic
e

T
e

m
p

la
te

)
+

m

e
rg

e
(C

o
rr

e
sp

o
n

d
e

n
ce

C
o

n
ta

in
e

r,
 T

T
o

p
o

lo
g

yT
e

m
p

la
te

,
T

T
o

p
o

lo
g

yT
e

m
p

la
te

,
b

o
o

le
a

n
)

:
T

T
o

p
o

lo
g

yT
e

m
p

la
te

-
p

e
rf

o
rm

N
o

d
e

T
e

m
p

la
te

M
e

rg
e

(N
T

e
m

p
la

te
C

o
rr

e
sp

o
n

d
e

n
ce

,
L

is
t<

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

>
,

L
is

t<
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
>

,
L

is
t<

N
T

e
m

p
la

te
C

o
rr

e
sp

o
n

d
e

n
ce

>
)

:
vo

id
-

p
e

rf
o

rm
G

ro
u

p
T

e
m

p
la

te
M

e
rg

e
(G

T
e

m
p

la
te

C
o

rr
e

sp
o

n
d

e
n

ce
,

L
is

t<
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
>

,
L

is
t<

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

>
,

L
is

t<
G

T
e

m
p

la
te

C
o

rr
e

sp
o

n
d

e
n

ce
>

)
:

vo
id

-
re

co
n

n
e

ct
E

d
g

e
s(

L
is

t<
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

>
,

L
is

t<
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
>

,
L

is
t<

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

>
,

T
N

o
d

e
T

e
m

p
la

te
,

T
N

o
d

e
T

e
m

p
la

te
,

T
N

o
d

e
T

e
m

p
la

te
)

:
L

is
t<

T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
>

-
re

co
n

n
e

ct
C

o
rr

e
sp

o
n

d
e

n
ce

s(
L

is
t<

?
 e

xt
e

n
d

s
C

o
rr

e
sp

o
n

d
e

n
ce

>
,

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

,
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
,

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

)
:

vo
id

-
h

a
sC

o
rr

e
ct

N
u

m
b

e
rO

fC
o

rr
e

sp
o

n
d

e
n

ce
s(

C
o

rr
e

sp
o

n
d

e
n

ce
,

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

,
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
)

:
b

o
o

le
a

n
-

re
m

o
ve

O
b

so
le

te
E

d
g

e
s(

L
is

t<
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

>
,

L
is

t<
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
>

)
:

vo
id

-
re

lo
ca

te
E

d
g

e
s(

T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
,

T
N

o
d

e
T

e
m

p
la

te
,

T
N

o
d

e
T

e
m

p
la

te
,

L
is

t<
T

E
xt

e
n

si
b

le
E

le
m

e
n

ts
>

,
L

is
t<

T
E

xt
e

n
si

b
le

E
le

m
e

n
ts

>
)

:
vo

id

«
in

te
rf

a
ce

»
TO

S
C

A
M

e
rg

e
S

er
v

ic
e

+

m
e

rg
e

T
o

p
o

lo
g

yT
e

m
p

la
te

s(
S

e
rv

ic
e

T
e

m
p

la
te

,
S

e
rv

ic
e

T
e

m
p

la
te

)
:

S
e

rv
ic

e
T

e
m

p
la

te
+

g

e
n

e
ra

te
M

a
p

p
in

g
(S

e
rv

ic
e

T
e

m
p

la
te

)
:

C
o

rr
e

sp
o

n
d

e
n

ce
C

o
n

ta
in

e
r

+

g
e

n
e

ra
te

M
a

p
p

in
g

(S
e

rv
ic

e
T

e
m

p
la

te
,

S
e

rv
ic

e
T

e
m

p
la

te
)

:
C

o
rr

e
sp

o
n

d
e

n
ce

C
o

n
ta

in
e

r
+

p

e
rf

o
rm

M
e

rg
e

(C
o

rr
e

sp
o

n
d

e
n

ce
C

o
n

ta
in

e
r,

 S
e

rv
ic

e
T

e
m

p
la

te
)

:
S

e
rv

ic
e

T
e

m
p

la
te

+

p
e

rf
o

rm
M

e
rg

e
(C

o
rr

e
sp

o
n

d
e

n
ce

C
o

n
ta

in
e

r,
 S

e
rv

ic
e

T
e

m
p

la
te

,
S

e
rv

ic
e

T
e

m
p

la
te

)
:

S
e

rv
ic

e
T

e
m

p
la

te

TO
S

C
A

M
er

ge
S

er
v

ic
e

S
ta

te
le

ss
Im

pl

+

m
e

rg
e

T
o

p
o

lo
g

yT
e

m
p

la
te

s(
S

e
rv

ic
e

T
e

m
p

la
te

,
S

e
rv

ic
e

T
e

m
p

la
te

)
:

S
e

rv
ic

e
T

e
m

p
la

te
+

g

e
n

e
ra

te
M

a
p

p
in

g
(S

e
rv

ic
e

T
e

m
p

la
te

)
:

C
o

rr
e

sp
o

n
d

e
n

ce
C

o
n

ta
in

e
r

+

g
e

n
e

ra
te

M
a

p
p

in
g

(S
e

rv
ic

e
T

e
m

p
la

te
,

S
e

rv
ic

e
T

e
m

p
la

te
)

:
C

o
rr

e
sp

o
n

d
e

n
ce

C
o

n
ta

in
e

r
+

p

e
rf

o
rm

M
e

rg
e

(C
o

rr
e

sp
o

n
d

e
n

ce
C

o
n

ta
in

e
r,

 S
e

rv
ic

e
T

e
m

p
la

te
)

:
S

e
rv

ic
e

T
e

m
p

la
te

+

p
e

rf
o

rm
M

e
rg

e
(C

o
rr

e
sp

o
n

d
e

n
ce

C
o

n
ta

in
e

r,
 S

e
rv

ic
e

T
e

m
p

la
te

,
S

e
rv

ic
e

T
e

m
p

la
te

)
:

S
e

rv
ic

e
T

e
m

p
la

te
-

co
n

fi
g

u
re

T
O

S
C

A
M

e
rg

e
S

e
rv

ic
e

(S
e

rv
ic

e
T

e
m

p
la

te
,

S
e

rv
ic

e
T

e
m

p
la

te
)

:
vo

id
-

u
p

d
a

te
C

o
rr

e
sp

o
n

d
e

n
ce

s(
C

o
rr

e
sp

o
n

d
e

n
ce

C
o

n
ta

in
e

r)
 :

 C
o

rr
e

sp
o

n
d

e
n

ce
C

o
n

ta
in

e
r

1 1

1
1

Fi
g
. 7

.3
: C

la
ss

 d
ia

g
ra

m
 o

f
th

e
T

O
SC

A
M

er
g
e

fr
am

ew
or

k
 s

er
v
ic

e
ac

ce
ss

7 Architecture & Design of an Extendable Framework

120

In the following sections the function of the selected classes and the relationships between

them will be explained.

Access to the Service

Fig. 7.3 shows the interface TOSCAMergeService that offers several methods for external

invocation that either execute the whole merging process of two Topology Templates in one

step or separate them into discrete steps that allow for human inspection of the Corre-

spondences as identified in the requirements section in 4.2 (Assessability of the intermediary

results requirement). The interface is implemented by the class TOSCAMergeServiceState-

lessImpl that provides a stateless implementation of the service interface. The implementa-

tion class has connections to the classes TOSCAFileMatcher and TOSCAFileMerger that con-

tain the proposed generic algorithms of the Chapters 5 and 6. The common abstract super

class, denoted by TOSCA, of both classes holds common functionality such as the buildRela-

tionshipTemplateList
16

 from Section 5.3.5.

Matching Functionality

Fig. 7.4 shows a detailed UML class diagram of the frameworks matching classes that hold

the matching functionality. Not shown here are the type-specific classes that extend the

framework and their creation by the TOSCAMatchingFactory. This is exemplarily discussed

in the next section for the class TOSCANodeTemplateMatcher.

Once again the class TOSCAFileMatcher that implements the generic high-level matching

algorithm is depicted. However, the generic actual matching of the properties of two partic-

ular Node, Relationship or Group Templates is done inside the abstract classes TOSCA-

NodeTemplateMatcher, TOSCARelationshipTemplateMatcher and TOSCAGroupTemplate-

Matcher. These classes share the common abstract superclass TOSCAMatcher that holds

common functionality such as determining derived Policies (see Chapter 5). The abstract

class TOSCARelationshipTemplateMatchingHandler corresponds to the introduced concept of

RelationshipTemplateMatchingHandlers that have a function handleRelationshipTemplates

capable of finding Relationship Template Correspondences (see Section 5.2.1). All matchers

declare the functions that were introduced before in Chapter 5.

16

 Actually the function was called buildRelationshipTemplateSet, but the sets are implemented as lists.

7 Architecture & Design of an Extendable Framework

121

 c
la

s
s

 m
a

tc
h

in
g

 f
u

n
c

ti
o

n
a

li
ty

«
a

b
st

ra
ct

»
T

O
S

C
A

G
ro

u
p

T
e

m
p

la
te

M
a

tc
h

e
r

+

m
a

tc
h

(T
G

ro
u

p
T

e
m

p
la

te
,

T
G

ro
u

p
T

e
m

p
la

te
)

:
b

o
o

le
a

n
+

m

a
tc

h
(T

G
ro

u
p

T
e

m
p

la
te

,
T

N
o

d
e

T
e

m
p

la
te

,
T

N
o

d
e

T
yp

e
)

:
b

o
o

le
a

n
-

m
a

tc
h

P
o

li
ci

e
s(

T
G

ro
u

p
T

e
m

p
la

te
,

T
G

ro
u

p
T

e
m

p
la

te
)

:
b

o
o

le
a

n
-

m
a

tc
h

P
o

li
ci

e
s(

T
G

ro
u

p
T

e
m

p
la

te
,

T
N

o
d

e
T

e
m

p
la

te
,

T
N

o
d

e
T

yp
e

)
:

b
o

o
le

a
n

#

m
a

tc
h

P
o

li
ci

e
sT

yp
e

S
p

e
ci

fi
cC

o
n

te
n

t(
L

is
t<

T
P

o
li

cy
>

,
L

is
t<

T
P

o
li

cy
>

)
:

b
o

o
le

a
n

-
d

e
te

rm
in

e
H

ie
ra

rc
h

yP
o

li
ci

e
s(

T
G

ro
u

p
T

e
m

p
la

te
)

:
L

is
t<

T
P

o
li

cy
>

-
d

e
te

rm
in

e
H

ie
ra

rc
h

yP
o

li
ci

e
s(

T
N

o
d

e
T

e
m

p
la

te
)

:
L

is
t<

T
P

o
li

cy
>

«
a

b
st

ra
ct

»
T

O
S

C
A

M
a

tc
h

e
r

#

d
e

te
rm

in
e

D
e

ri
ve

d
P

o
li

ci
e

s(
T

N
o

d
e

T
yp

e
,

L
is

t<
T

N
o

d
e

T
yp

e
>

)
:

L
is

t<
T

P
o

li
cy

>
#

co

n
ta

in
sP

o
li

cy
(L

is
t<

T
P

o
li

cy
>

,
T

P
o

li
cy

)
:

b
o

o
le

a
n

#

in
d

e
xO

f(
L

is
t<

T
P

o
li

cy
>

,
T

P
o

li
cy

)
:

in
t

TO
S

C
A

M
a

tc
h

in
g

F
a

c
to

ry

«
a

b
st

ra
ct

»
T

O
S

C
A

N
o

d
e

T
e

m
p

la
te

M
a

tc
h

e
r

«
a

b
st

ra
ct

»
T

O
S

C
A

R
e

la
ti

o
n

s
h

ip
T

e
m

p
la

te
M

a
tc

h
e

r

+

T
O

S
C

A
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
M

a
tc

h
e

r(
T

R
e

la
ti

o
n

sh
ip

T
yp

e
,

Q
N

a
m

e
,

T
yp

e
s)

+

m
a

tc
h

(T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
,

T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
)

:
b

o
o

le
a

n
-

m
a

tc
h

P
ro

p
e

rt
yD

e
fa

u
lt

s(
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
P

ro
p

e
rt

yD
e

fa
u

lt
s,

 R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

P
ro

p
e

rt
yD

e
fa

u
lt

s)
 :

 b
o

o
le

a
n

#

m
a

tc
h

P
ro

p
e

rt
yD

e
fa

u
lt

sT
yp

e
S

p
e

ci
fi

cC
o

n
te

n
t(

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

P
ro

p
e

rt
yD

e
fa

u
lt

s,
 R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
P

ro
p

e
rt

yD
e

fa
u

lt
s)

 :
 b

o
o

le
a

n
-

m
a

tc
h

P
ro

p
e

rt
yC

o
n

st
ra

in
ts

(T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
,

T
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
)

:
b

o
o

le
a

n
#

m

a
tc

h
P

ro
p

e
rt

yC
o

n
st

ra
in

ts
T

yp
e

S
p

e
ci

fi
cC

o
n

te
n

t(
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

,
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

)
:

b
o

o
le

a
n

-
m

a
tc

h
R

e
la

ti
o

n
sh

ip
C

o
n

st
ra

in
ts

(R
e

la
ti

o
n

sh
ip

C
o

n
st

ra
in

ts
,

R
e

la
ti

o
n

sh
ip

C
o

n
st

ra
in

ts
)

:
b

o
o

le
a

n
#

m

a
tc

h
R

e
la

ti
o

n
sh

ip
C

o
n

st
ra

in
ts

T
yp

e
S

p
e

ci
fi

cC
o

n
te

n
t(

L
is

t<
R

e
la

ti
o

n
sh

ip
C

o
n

st
ra

in
t>

,
L

is
t<

R
e

la
ti

o
n

sh
ip

C
o

n
st

ra
in

t>
)

:
b

o
o

le
a

n

«
a

b
st

ra
ct

»
T

O
S

C
A

R
e

la
ti

o
n

s
h

ip
T

e
m

p
la

te
M

a
tc

h
in

g
H

a
n

d
le

r

+

h
a

n
d

le
R

e
la

ti
o

n
sh

ip
T

e
m

p
la

te
s(

L
is

t<
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

>
,

L
is

t<
T

R
e

la
ti

o
n

sh
ip

T
e

m
p

la
te

>
,

T
N

o
d

e
T

e
m

p
la

te
,

T
N

o
d

e
T

e
m

p
la

te
,

L
is

t<
N

T
e

m
p

la
te

C
o

rr
e

sp
o

n
d

e
n

ce
>

)
:

L
is

t<
R

T
e

m
p

la
te

C
o

rr
e

sp
o

n
d

e
n

ce
>

TO
S

C
A

F
il

e
M

a
tc

h
e

r

1 0
..

*

1
1

1
1

..
*

Fi
g
. 7

.4
: D

et
ai

le
d
 d

es
ig

n
 o

f
th

e
m

at
ch

in
g
 p

ar
t

7 Architecture & Design of an Extendable Framework

122

Merging Functionality

Fig. 7.5 shows the classes that hold the merging functionality. They have a similar distribu-

tion of tasks as the matching counterpart. The starting point is the class TOSCAFileMerger

that holds all the high-level merging functions such as hasCorrectNumberOfCorrespondences

(see Listing 6.4, Listing 6.5 and Fig. 7.3). It has associations with the three abstract classes

TOSCANodeTemplateMerger, TOSCAGroupTemplateMerger, and TOSCARelationshipTem-

plateMergingHandler. The latter one contains the high-level merging algorithm for Relation-

ship Templates and uses subclasses of the abstract class TOSCARelationshipTemplateMerger

to merge the properties Relationship Templates of a particular Relationship Type. Note that

the TOSCARelationshipTemplateMergingHandler is not abstract like the matching counter-

part since the high-level merging of Relationship Templates can be done generically and

 c
la

ss
 m

e
rging

 fun
c

tio
n

ality

«
a

b
stra

ct»
T

O
S

C
A

G
rou

p
Te

m
p

la
te

M
erg

er

+

m
e

rg
e

(T
G

ro
u

p
T

e
m

p
la

te
, T

G
ro

u
p

T
e

m
p

la
te

) : T
G

ro
u

p
T

e
m

p
la

te
#

m

e
rg

e
M

a
xIn

sta
n

ce
s(T

G
ro

u
p

T
e

m
p

la
te

, T
G

ro
u

p
T

e
m

p
la

te
) : S

trin
g

#

m
e

rg
e

M
in

In
sta

n
ce

s(T
G

ro
u

p
T

e
m

p
la

te
, T

G
ro

u
p

T
e

m
p

la
te

) : in
t

#

m
e

rg
e

P
o

licie
s(T

G
ro

u
p

T
e

m
p

la
te

, T
G

ro
u

p
T

e
m

p
la

te
) : G

ro
u

p
T

e
m

p
la

te
P

o
licie

s

«
a

b
stra

ct»
T

O
S

C
A

M
erg

e
r

#

co
n

ta
in

sP
o

licy(L
ist<

T
P

o
licy>

, T
P

o
licy) : b

o
o

le
a

n
#

g

e
tN

o
d

e
V

a
lu

e
B

yT
a

g
N

a
m

e
(N

o
d

e
, S

trin
g

) : S
trin

g
#

se

tN
o

d
e

V
a

lu
e

B
yT

a
g

N
a

m
e

(N
o

d
e

, S
trin

g
, S

trin
g

) : vo
id

TO
S

C
A

M
e

rging
F

ac
to

ry

+

cre
a

te
N

o
d

e
T

e
m

p
la

te
M

e
rg

e
r(T

N
o

d
e

T
yp

e
, T

N
o

d
e

T
yp

e
, Q

N
a

m
e

s) : T
O

S
C

A
N

o
d

e
T

e
m

p
la

te
M

e
rg

e
r

+

cre
a

te
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

M
e

rg
e

r(T
R

e
la

tio
n

sh
ip

T
yp

e
, Q

N
a

m
e

) : T
O

S
C

A
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

M
e

rg
e

r
+

cre

a
te

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
M

e
rg

in
g

H
a

n
d

le
rs() : T

O
S

C
A

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
M

e
rg

in
g

H
a

n
d

le
r

+

cre
a

te
G

ro
u

p
T

e
m

p
la

te
M

e
rg

e
r() : T

O
S

C
A

G
ro

u
p

T
e

m
p

la
te

M
e

rg
e

r
-

in
it() : vo

id

«
a

b
stra

ct»
T

O
S

C
A

N
od

e
Te

m
p

la
te

M
erg

er

+

T
O

S
C

A
N

o
d

e
T

e
m

p
la

te
M

e
rg

e
r(T

N
o

d
e

T
yp

e
, T

N
o

d
e

T
yp

e
, Q

N
a

m
e

s)
+

m

e
rg

e
(T

N
o

d
e

T
e

m
p

la
te

, T
N

o
d

e
T

e
m

p
la

te
) : T

N
o

d
e

T
e

m
p

la
te

#

m
e

rg
e

M
a

xIn
sta

n
ce

s(T
N

o
d

e
T

e
m

p
la

te
, T

N
o

d
e

T
e

m
p

la
te

) : S
trin

g
#

m

e
rg

e
M

in
In

sta
n

ce
s(T

N
o

d
e

T
e

m
p

la
te

, T
N

o
d

e
T

e
m

p
la

te
) : in

t
#

m

e
rg

e
P

ro
p

e
rtyD

e
fa

u
lts(T

N
o

d
e

T
e

m
p

la
te

, T
N

o
d

e
T

e
m

p
la

te
) : N

o
d

e
T

e
m

p
la

te
P

ro
p

e
rtyD

e
fa

u
lts

#

m
e

rg
e

P
ro

p
e

rtyD
e

fa
u

ltsT
yp

e
S

p
e

cificC
o

n
te

n
t(N

o
d

e
, N

o
d

e
) : N

o
d

e
T

e
m

p
la

te
P

ro
p

e
rtyD

e
fa

u
lts

#

m
e

rg
e

P
ro

p
e

rtyC
o

n
stra

in
ts(T

N
o

d
e

T
e

m
p

la
te

, T
N

o
d

e
T

e
m

p
la

te
) : N

o
d

e
T

e
m

p
la

te
P

ro
p

e
rtyC

o
n

stra
in

ts
#

m

e
rg

e
P

o
licie

s(T
N

o
d

e
T

e
m

p
la

te
, T

N
o

d
e

T
e

m
p

la
te

) : N
o

d
e

T
e

m
p

la
te

P
o

licie
s

#

m
e

rg
e

E
n

viro
m

e
n

tC
o

n
stra

in
ts(T

N
o

d
e

T
e

m
p

la
te

, T
N

o
d

e
T

e
m

p
la

te
) : E

n
viro

n
m

e
n

tC
o

n
stra

in
ts

#

m
e

rg
e

D
e

p
lo

ym
e

n
tA

rtifa
cts(T

N
o

d
e

T
e

m
p

la
te

, T
N

o
d

e
T

e
m

p
la

te
) : D

e
p

lo
ym

e
n

tA
rtifa

cts
#

m

e
rg

e
Im

p
le

m
e

n
ta

tio
n

A
rtifa

cts(T
N

o
d

e
T

e
m

p
la

te
, T

N
o

d
e

T
e

m
p

la
te

) : N
o

d
e

T
e

m
p

la
te

Im
p

le
m

e
n

ta
tio

n
A

rtifa
cts

#

m
e

rg
e

R
e

q
u

ire
d

C
o

n
ta

in
e

rC
a

p
a

b
ilitie

s(T
Im

p
le

m
e

n
ta

tio
n

A
rtifa

ct, T
Im

p
le

m
e

n
ta

tio
n

A
rtifa

ct) : R
e

q
u

ire
d

C
o

n
ta

in
e

rC
a

p
a

b
ilitie

s
-

d
e

cid
e

N
o

d
e

T
yp

e
(T

N
o

d
e

T
yp

e
, T

N
o

d
e

T
yp

e
) : Q

N
a

m
e

#

d
e

cid
e

N
o

d
e

T
yp

e
T

yp
e

S
p

e
cificC

o
n

te
n

t(T
N

o
d

e
T

yp
e

, T
N

o
d

e
T

yp
e

) : Q
N

a
m

e

«
a

b
stra

ct»
TO

S
C

A
R

e
la

tion
s

hipT
em

p
la

te
M

e
rge

r

+

T
O

S
C

A
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

M
e

rg
e

r(T
R

e
la

tio
n

sh
ip

T
yp

e
, Q

N
a

m
e

)
+

m

e
rg

e
(T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
, T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
) : T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
#

m

e
rg

e
P

ro
p

e
rtyD

e
fa

u
lts(T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
, T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
) : R

e
la

tio
n

sh
ip

T
e

m
p

la
te

P
ro

p
e

rtyD
e

fa
u

lts
#

m

e
rg

e
P

ro
p

e
rtyD

e
fa

u
ltsT

yp
e

S
p

e
cificC

o
n

te
n

t(N
o

d
e

, N
o

d
e

) : R
e

la
tio

n
sh

ip
T

e
m

p
la

te
P

ro
p

e
rtyD

e
fa

u
lts

#

m
e

rg
e

P
ro

p
e

rtyC
o

n
stra

in
ts(T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
, T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
) : R

e
la

tio
n

sh
ip

T
e

m
p

la
te

P
ro

p
e

rtyC
o

n
stra

in
ts

#

m
e

rg
e

R
e

la
tio

n
sh

ip
C

o
n

stra
in

ts(T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

, T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

) : R
e

la
tio

n
sh

ip
C

o
n

stra
in

ts

TO
S

C
A

R
e

la
tion

s
hipTe

m
p

la
te

M
erg

in
gH

a
n

dler

+

T
O

S
C

A
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

M
e

rg
in

g
H

a
n

d
le

r()
+

h

a
n

d
le

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
s(L

ist<
T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
>

, L
ist<

T
E

xte
n

sib
le

E
le

m
e

n
ts>

, L
ist<

T
E

xte
n

sib
le

E
le

m
e

n
ts>

, N
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
, L

ist<
N

T
e

m
p

la
te

C
o

rre
sp

o
n

d
e

n
ce

>
) : vo

id
-

h
a

sC
o

rre
ctN

u
m

b
e

rO
fC

o
rre

sp
o

n
d

e
n

ce
s(R

T
e

m
p

la
te

C
o

rre
sp

o
n

d
e

n
ce

, T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

, T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

) : b
o

o
le

a
n

-
re

co
n

n
e

ctC
o

rre
sp

o
n

d
e

n
ce

s(L
ist<

N
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
>

, L
ist<

R
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
>

, T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

, T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

, T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

) : vo
id

TO
S

C
A

File
M

erg
er

11

1
1

1
1

..*

1
1

1
0

..*

Fig
. 7.5: D

etailed
 d

esig
n
 o

f th
e m

erg
in

g
 p

art

7 Architecture & Design of an Extendable Framework

123

does not need type-specific extensions to the TOSCAMerge framework. The subclasses of

TOSCARelationshipTemplateMerger for the merging of Relationship Template Properties are

not shown here due to space limitations but the concept is discussed in the next section.

TOSCANodeTemplateMerger and TOSCAGroupTemplateMerger are responsible for merging

the properties of Node Templates and Group Templates as proposed in Section 6.1.2 and

6.3.3.

Furthermore, all the abstract classes for the merging of properties share a common abstract

super class denoted by TOSCAMerger holding functionality commonly used by the sub-

classes. The last class to mention is the TOSCAMergingFactory that declares factory meth-

ods to create concrete instances of Node, Relationship and Group Template mergers. This

concept is picked up again in Section 7.3.

Design of Correspondences

Fig. 7.6 shows a class diagram of the proposed Correspondence concept of this thesis. The

abstract class Correspondence forms the superclass of all other types of Correspondences.

The superclass defines that every type of Correspondence must have getter- and setter-

methods for the elements it connects. This enables the use of the abstract class in a generic

way utilizing polymorphism [23]. For example the functions hasCorrectNumberOfCorre-

spondences introduced in Listing 6.4 and Listing 6.5 for Node Templates can be implemented

generically to fit for all types of Correspondences. The derived classes override the methods

to fit to their corresponding member variables. Furthermore, the class RTemplateCorrespond-

ences representing the concept of Relationship Template Correspondences is always at-

tached to, and cannot exist without, a Node Template Correspondence represented by the

class NTemplateCorrespondence. This is indicated by the UML composition relationship.

Design of the Group Template Hierarchy and the BaseClass

Fig. 7.7 depicts the interaction of different TOSCA elements with the proposed concept of a

Group Template Hierarchy and the concept of a superclass for all TOSCA elements. Exem-

plarily, the classes representing Node and Group Templates are shown to illustrate these

concepts. It is visible that the class TNodeTemplate representing a Node Template and its

properties is the subclass of the class TExtensibleElements that realizes the concept of exten-

sibility for all TOSCA elements as described in Section 2.3.1. The class TExtensibleElements is

subclass of the class BaseClass that is introduced to be the abstract superclass for all TOSCA

elements in the context of TOSCAMerge framework and this master’s thesis. It holds the

Correspondences outgoing from a particular element, be it a Node, Relationship or Group

Template, the collected Correspondences and the number of already conducted merges dur-

ing the merging process. Moreover, every element has a reference to its corresponding in-

stance of the GroupTemplateHierarchy via its BaseClass.

An instance of GroupTemplateHierarchy can also be the parent of more than one TOSCA

element.The GroupTemplateHierarchy class incorporates the concept of the data structure

proposed in Section 5.3 including the functions working on it.

7 Architecture & Design of an Extendable Framework

124

 c
la

s
s

 C
o

rre
p

o
n

d
e

n
c

e
s

S
e

ria
liza

b
le

«
a

b
stra

ct»
C

o
rre

s
p

o
n

d
e

n
c

e

+

g
e

tF
ro

m
() : T

E
xte

n
sib

le
E

le
m

e
n

ts
+

se

tF
ro

m
(T

E
xte

n
sib

le
E

le
m

e
n

ts) : vo
id

+

g
e

tT
o

() : T
E

xte
n

sib
le

E
le

m
e

n
ts

+

se
tT

o
(T

E
xte

n
sib

le
E

le
m

e
n

ts) : vo
id

G
Te

m
p

la
te

C
o

rre
s

p
o

n
d

e
n

c
e

-
fro

m
: T

G
ro

u
p

T
e

m
p

la
te

-
to

: T
G

ro
u

p
T

e
m

p
la

te

+

G
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
(T

G
ro

u
p

T
e

m
p

la
te

, T
G

ro
u

p
T

e
m

p
la

te
)

+

g
e

tF
ro

m
() : T

G
ro

u
p

T
e

m
p

la
te

+

se
tF

ro
m

(T
E

xte
n

sib
le

E
le

m
e

n
ts) : vo

id
+

g

e
tT

o
() : T

G
ro

u
p

T
e

m
p

la
te

+

se
tT

o
(T

E
xte

n
sib

le
E

le
m

e
n

ts) : vo
id

N
Te

m
p

la
te

C
o

rre
s

p
o

n
d

e
n

c
e

-
fro

m
: T

N
o

d
e

T
e

m
p

la
te

-
to

: T
N

o
d

e
T

e
m

p
la

te
-

re
la

tio
n

sh
ip

T
e

m
p

la
te

C
o

rre
sp

o
n

d
e

n
ce

s: L
ist<

R
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
>

+

N
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
(T

N
o

d
e

T
e

m
p

la
te

, T
N

o
d

e
T

e
m

p
la

te
)

+

g
e

tF
ro

m
() : T

N
o

d
e

T
e

m
p

la
te

+

se
tF

ro
m

(T
E

xte
n

sib
le

E
le

m
e

n
ts) : vo

id
+

g

e
tT

o
() : T

N
o

d
e

T
e

m
p

la
te

+

se
tT

o
(T

E
xte

n
sib

le
E

le
m

e
n

ts) : vo
id

+

g
e

tR
e

la
tio

n
sh

ip
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
s() : L

ist<
R

T
e

m
p

la
te

C
o

rre
sp

o
n

d
e

n
ce

>

R
Te

m
p

la
te

C
o

rre
s

p
o

n
d

e
n

c
e

-
fro

m
: T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
-

to
: T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te

+

R
T

e
m

p
la

te
C

o
rre

sp
o

n
d

e
n

ce
(T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
, T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
)

+

g
e

tF
ro

m
() : T

R
e

la
tio

n
sh

ip
T

e
m

p
la

te
+

se

tF
ro

m
(T

E
xte

n
sib

le
E

le
m

e
n

ts) : vo
id

+

g
e

tT
o

() : T
R

e
la

tio
n

sh
ip

T
e

m
p

la
te

+

se
tT

o
(T

E
xte

n
sib

le
E

le
m

e
n

ts) : vo
id

0
..*

1

Fig
. 7.6: C

lass d
iag

ram
 o

f th
e C

o
rresp

o
n
d
en

ces

7 Architecture & Design of an Extendable Framework

125

Its methods’ names are taken from the functions’ names one-to-one plus additional getter-

and setter-methods for the member variables. Each instance of GroupTemplateHierarchy has

 c
la

s
s

G
ro

up
Te

m
p

la
te

H
ie

ra
rc

hy

TN
od

e
Te

m
pl

a
te

#

p
ro

p
e

rt
yD

e
fa

u
lt

s:

N
o

d
e

T
e

m
p

la
te

P
ro

p
e

rt
yD

e
fa

u
lt

s
#

p

ro
p

e
rt

yC
o

n
st

ra
in

ts
:

 N
o

d
e

T
e

m
p

la
te

P
ro

p
e

rt
yC

o
n

st
ra

in
ts

#

p
o

li
ci

e
s:

N

o
d

e
T

e
m

p
la

te
P

o
li

ci
e

s
#

e

n
vi

ro
n

m
e

n
tC

o
n

st
ra

in
ts

:
 E

n
vi

ro
n

m
e

n
tC

o
n

st
ra

in
ts

#

d
e

p
lo

ym
e

n
tA

rt
if

a
ct

s:

D
e

p
lo

ym
e

n
tA

rt
if

a
ct

s
#

im

p
le

m
e

n
ta

ti
o

n
A

rt
if

a
ct

s:

N
o

d
e

T
e

m
p

la
te

Im
p

le
m

e
n

ta
ti

o
n

A
rt

if
a

ct
s

#

id
:

 S
tr

in
g

#

n
a

m
e

:
 S

tr
in

g
#

n

o
d

e
T

yp
e

:
 Q

N
a

m
e

#

m
in

In
st

a
n

ce
s:

In

te
g

e
r

#

m
a

xI
n

st
a

n
ce

s:

S
tr

in
g

+

T
N

o
d

e
T

e
m

p
la

te
()

+

g
e

tP
ro

p
e

rt
yD

e
fa

u
lt

s(
)

:
N

o
d

e
T

e
m

p
la

te
P

ro
p

e
rt

yD
e

fa
u

lt
s

+

se
tP

ro
p

e
rt

yD
e

fa
u

lt
s(

N
o

d
e

T
e

m
p

la
te

P
ro

p
e

rt
yD

e
fa

u
lt

s)
 :

 v
o

id
+

g

e
tP

ro
p

e
rt

yC
o

n
st

ra
in

ts
()

 :
 N

o
d

e
T

e
m

p
la

te
P

ro
p

e
rt

yC
o

n
st

ra
in

ts
+

se

tP
ro

p
e

rt
yC

o
n

st
ra

in
ts

(N
o

d
e

T
e

m
p

la
te

P
ro

p
e

rt
yC

o
n

st
ra

in
ts

)
:

vo
id

+

g
e

tP
o

li
ci

e
s(

)
:

N
o

d
e

T
e

m
p

la
te

P
o

li
ci

e
s

+

se
tP

o
li

ci
e

s(
N

o
d

e
T

e
m

p
la

te
P

o
li

ci
e

s)
 :

 v
o

id
+

g

e
tE

n
vi

ro
n

m
e

n
tC

o
n

st
ra

in
ts

()
 :

 E
n

vi
ro

n
m

e
n

tC
o

n
st

ra
in

ts
+

se

tE
n

vi
ro

n
m

e
n

tC
o

n
st

ra
in

ts
(E

n
vi

ro
n

m
e

n
tC

o
n

st
ra

in
ts

)
:

vo
id

+

g
e

tD
e

p
lo

ym
e

n
tA

rt
if

a
ct

s(
)

:
D

e
p

lo
ym

e
n

tA
rt

if
a

ct
s

+

se
tD

e
p

lo
ym

e
n

tA
rt

if
a

ct
s(

D
e

p
lo

ym
e

n
tA

rt
if

a
ct

s)
 :

 v
o

id
+

g

e
tI

m
p

le
m

e
n

ta
ti

o
n

A
rt

if
a

ct
s(

)
:

N
o

d
e

T
e

m
p

la
te

Im
p

le
m

e
n

ta
ti

o
n

A
rt

if
a

ct
s

+

se
tI

m
p

le
m

e
n

ta
ti

o
n

A
rt

if
a

ct
s(

N
o

d
e

T
e

m
p

la
te

Im
p

le
m

e
n

ta
ti

o
n

A
rt

if
a

ct
s)

 :
 v

o
id

+

g
e

tI
d

()
 :

 S
tr

in
g

+

se
tI

d
(S

tr
in

g
)

:
vo

id
+

g

e
tN

a
m

e
()

 :
 S

tr
in

g
+

se

tN
a

m
e

(S
tr

in
g

)
:

vo
id

+

g
e

tN
o

d
e

T
yp

e
()

 :
 Q

N
a

m
e

+

se
tN

o
d

e
T

yp
e

(Q
N

a
m

e
)

:
vo

id
+

g

e
tM

in
In

st
a

n
ce

s(
)

:
in

t
+

se

tM
in

In
st

a
n

ce
s(

In
te

g
e

r)
 :

 v
o

id
+

g

e
tM

a
xI

n
st

a
n

ce
s(

)
:

S
tr

in
g

+

se
tM

a
xI

n
st

a
n

ce
s(

S
tr

in
g

)
:

vo
id

TE
x

te
n

si
bl

e
E

le
m

en
ts

#

d
o

cu
m

e
n

ta
ti

o
n

:
 L

is
t<

T
D

o
cu

m
e

n
ta

ti
o

n
>

#

a
n

y:

L
is

t<
O

b
je

ct
>

-
o

th
e

rA
tt

ri
b

u
te

s:

M
a

p
<

Q
N

a
m

e
,

S
tr

in
g

>
 =

 n
e

w
 H

a
sh

M
a

p
<

Q
N

a
..

.

+

g
e

tD
o

cu
m

e
n

ta
ti

o
n

()
 :

 L
is

t<
T

D
o

cu
m

e
n

ta
ti

o
n

>
+

g

e
tA

n
y(

)
:

L
is

t<
O

b
je

ct
>

+

g
e

tO
th

e
rA

tt
ri

b
u

te
s(

)
:

M
a

p
<

Q
N

a
m

e
,

S
tr

in
g

>

S
e

ri
a

li
za

b
le

«
a

b
st

ra
ct

»
B

a
se

C
la

ss

-
n

u
m

b
e

rO
fM

e
rg

e
s:

in

t
=

 0
-

co
rr

e
sp

o
n

d
e

n
ce

s:

L
is

t<
C

o
rr

e
sp

o
n

d
e

n
ce

>
-

co
ll

e
ct

e
d

C
o

rr
e

sp
o

n
d

e
n

ce
s:

L

is
t<

C
o

rr
e

sp
o

n
d

e
n

ce
>

-
p

a
re

n
t:

G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y

+

g
e

tC
o

rr
e

sp
o

n
d

e
n

ce
s(

)
:

L
is

t<
C

o
rr

e
sp

o
n

d
e

n
ce

>
+

g

e
tC

o
ll

e
ct

e
d

C
o

rr
e

sp
o

n
d

e
n

ce
s(

)
:

L
is

t<
C

o
rr

e
sp

o
n

d
e

n
ce

>
+

g

e
tN

u
m

b
e

rO
fM

e
rg

e
s(

)
:

in
t

+

in
cr

e
a

se
N

u
m

b
e

rO
fM

e
rg

e
s(

)
:

vo
id

+

se
tN

u
m

b
e

rO
fM

e
rg

e
s(

in
t)

 :
 v

o
id

+

g
e

tP
a

re
n

t(
)

:
G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y
+

se

tP
a

re
n

t(
G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y)
 :

 v
o

id

G
ro

up
Te

m
p

la
te

H
ie

ra
rc

h
y

-
ch

il
d

:
 G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y
-

p
a

re
n

t:

G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y

-
g

ro
u

p
T

e
m

p
la

te
:

 T
G

ro
u

p
T

e
m

p
la

te
-

n
e

st
in

g
L

e
ve

l:

in
t

=
 0

+

G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y(

G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y,

 G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y,

 T
G

ro
u

p
T

e
m

p
la

te
)

+

G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y(

)
+

se

tC
h

il
d

(G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y)

 :
 v

o
id

+

se
tP

a
re

n
t(

G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y)

 :
 v

o
id

+

se
tG

ro
u

p
T

e
m

p
la

te
(T

G
ro

u
p

T
e

m
p

la
te

)
:

vo
id

+

g
e

tC
h

il
d

()
 :

 G
ro

u
p

T
e

m
p

la
te

H
ie

ra
rc

h
y

+

g
e

tP
a

re
n

t(
)

:
G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y
+

g

e
tG

ro
u

p
T

e
m

p
la

te
()

 :
 T

G
ro

u
p

T
e

m
p

la
te

+

tr
a

ve
rs

e
T

o
R

o
o

t(
)

:
G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y
+

g

e
tH

ie
ra

rc
h

yE
le

m
e

n
t(

in
t)

 :
 G

ro
u

p
T

e
m

p
la

te
H

ie
ra

rc
h

y
+

g

e
tN

e
st

in
g

L
e

ve
l(

)
:

in
t

+

se
tN

e
st

in
g

L
e

ve
l(

in
t)

 :
 v

o
id

+

ch
e

ck
G

ro
u

p
T

e
m

p
la

te
C

o
rr

e
sp

o
n

d
e

n
ce

(T
N

o
d

e
T

e
m

p
la

te
,

T
G

ro
u

p
T

e
m

p
la

te
,

L
is

t<
G

T
e

m
p

la
te

C
o

rr
e

sp
o

n
d

e
n

ce
>

)
:

b
o

o
le

a
n

-
ch

e
ck

C
o

rr
e

sp
o

n
d

e
n

ce
sO

fL
e

ve
l(

T
G

ro
u

p
T

e
m

p
la

te
,

L
is

t<
G

T
e

m
p

la
te

C
o

rr
e

sp
o

n
d

e
n

ce
>

)
:

b
o

o
le

a
n

-
ch

e
ck

A
cc

e
ss

(T
G

ro
u

p
T

e
m

p
la

te
,

T
N

o
d

e
T

e
m

p
la

te
)

:
b

o
o

le
a

n
+

g

e
tA

ll
P

o
li

ci
e

s(
L

is
t<

T
P

o
li

cy
>

)
:

L
is

t<
T

P
o

li
cy

>
-

co
n

ta
in

s(
L

is
t<

G
T

e
m

p
la

te
C

o
rr

e
sp

o
n

d
e

n
ce

>
,

G
T

e
m

p
la

te
C

o
rr

e
sp

o
n

d
e

n
ce

)
:

b
o

o
le

a
n

TG
ro

up
Te

m
p

la
te

#

p
o

li
ci

e
s:

G

ro
u

p
T

e
m

p
la

te
P

o
li

ci
e

s
#

m

in
In

st
a

n
ce

s:

In
te

g
e

r
#

m

a
xI

n
st

a
n

ce
s:

S

tr
in

g

+

g
e

tP
o

li
ci

e
s(

)
:

G
ro

u
p

T
e

m
p

la
te

P
o

li
ci

e
s

+

se
tP

o
li

ci
e

s(
G

ro
u

p
T

e
m

p
la

te
P

o
li

ci
e

s)
 :

 v
o

id
+

g

e
tM

in
In

st
a

n
ce

s(
)

:
in

t
+

se

tM
in

In
st

a
n

ce
s(

In
te

g
e

r)
 :

 v
o

id
+

g

e
tM

a
xI

n
st

a
n

ce
s(

)
:

S
tr

in
g

+

se
tM

a
xI

n
st

a
n

ce
s(

S
tr

in
g

)
:

vo
id

1

1

0
..

1

+
p

a
re

n
t

0
..

1

+
ch

il
d

0
..

1

0
..

1

1
..

*

1

1
0

..
*

1

0
..

*

Fi
g
. 7

.7
: C

la
ss

 d
ia

g
ra

m
 o

f
th

e
G

ro
u
p
 T

em
p
la

te
 H

ie
ra

rc
h
y
 c

o
n
ce

p
t

7 Architecture & Design of an Extendable Framework

126

a reference to a TGroupTemplate instance that can possibly contain instances of TNodeTem-

plate or TGroupTemplate.
17

7.3 Extensibility of the TOSCAMerge Framework

In Section 2.4 the two design patterns Template Method and Factory Method have been in-

troduced and discussed. In the following section it is now explored how these design pat-

terns can be utilized to make the TOSCAMerge framework extensible for matching and

merging new Node and Relationship Types. In Fig. 7.8 the extensibility of Node Template

matching is depicted exemplarily. The Template Method design pattern (see Fig. 2.2) is used

by the abstract class TOSCANodeTemplateMatcher and the derived class TomcatApplication-

ServerMatcher. The template method is the public match method which equates the match

function introduced in Listing 5.6 in Section 5.1.2. The match method is declared final to

comply with the open/close-principle of software architecture. It defines the control flow of

the matching between two Node Templates having identical or related Node Types as pro-

posed in the match function, i.e. the properties are compared successively by invoking the

corresponding subroutines. If e.g. the control flow reaches the matching of Policies, the pri-

vate matchPolicies method of the TOSCANodeTemplateMatcher is invoked. It executes the

generic steps to calculate the effective set of Policies of both Node Templates as discussed

before and then invokes the method matchPoliciesTypeSpecificContent passing the set of Pol-

icies. This method represents what was called a hook method before. Hence, the class

TomcatApplicationServerMatcher is an implementation class for all the defined hook meth-

ods of TOSCANodeTemplateMatcher. All the matching decisions that cannot be made generi-

cally are handled by the subclasses that correspond to particular Node Types. Thus, the

type-specific subclasses represent the variation points or hot spots of the TOSCAMerge

framework.

The second design pattern reviewed above was the Factory Method. This pattern is not used

in the TOSCAMerge framework in the classical way as depicted in Fig. 2.3. There, an ab-

stract factory class declared a factory method that was implemented by deriving concrete

factory classes for every specific class that has to be created. In the TOSCAMerge frame-

work the Factory Method design pattern is used in a modified version [21],

[29].

Instead of providing a concrete factory class for every identical Node Type and for every

valid combination of different Node Types, a non-abstract factory is used that is able to cre-

ate TOSCANodeTemplateMatcher implementation classes in a generic way. This is done by

initially loading an XML file that specifies the designated qualified names of Node Types

and the corresponding variation point implementation classes and instantiating these clas-

ses dynamically via Java Reflection API
18

 when needed. Thus, for extending the

TOSCAMerge framework, an additional entry in the configuration file in conjunction with

an appropriate class implementing all hook methods is sufficient.

17

 The class diagram is simplified here for brevity. TGroupTemplate has a subclass TTopologyElementCollection
that actually holds the references to TNodeTemplate and TGroupTemplate but the principle is the same.
18

 See next chapter for details.

7 Architecture & Design of an Extendable Framework

127

Fig. 7.8: Class diagrams of the combined design patterns

Listing 7.1 and Listing 7.2 show the XML schema file that specifies how the framework con-

figurations file for Node Templates respective their Node Types looks like.

 class TOSCA combined patterns

TOSCAMatchingFactory

+ TOSCAMatchingFactory()
+ createNodeTemplateMatcher(TNodeType, TNodeType, QNames) : TOSCANodeTemplateMatcher
+ createRelationshipTemplateMatcher(TRelationshipType, QName, Types) : TOSCARelationshipTemplateMatcher
+ isNotMatchedType(QName) : boolean
+ createRelationshipTemplateMatchingHandlers() : List<TOSCARelationshipTemplateMatchingHandler>
+ createGroupTemplateMatcher() : TOSCAGroupTemplateMatcher
- init() : void

«abstract»
TOSCANodeTemplateMatcher

+ TOSCANodeTemplateMatcher(TNodeType, TNodeType, QNames)
+ match(TNodeTemplate, TNodeTemplate) : boolean
- matchPropertyDefaults(NodeTemplatePropertyDefaults, NodeTemplatePropertyDefaults) : boolean
matchPropertyDefaultsTypeSpecificContent(NodeTemplatePropertyDefaults, NodeTemplatePropertyDefaults) : boolean
- matchPropertyConstraints(TNodeTemplate, TNodeTemplate) : boolean
matchPropertyConstraintsTypeSpecificContent(TNodeTemplate, TNodeTemplate) : boolean
- matchPolicies(TNodeTemplate, TNodeTemplate) : boolean
matchPoliciesTypeSpecificContent(List<TPolicy>, List<TPolicy>) : boolean
- matchEnvironmentConstraints(EnvironmentConstraints, EnvironmentConstraints) : boolean
matchEnvironmentConstraintsTypeSpecificContent(EnvironmentConstraints, EnvironmentConstraints) : boolean
- matchDeploymentArtifacts(TNodeTemplate, TNodeTemplate) : boolean
matchDeploymentArtifactsTypeSpecificContent(List<TDeploymentArtifact>, List<TDeploymentArtifact>) : boolean
- matchImplementationsArtifacts(TNodeTemplate, TNodeTemplate) : boolean
matchImplementationsArtifactsTypeSpecificContent(List<TImplementationArtifact>, List<TImplementationArtifact>) : boolean
- matchNodeTypeInstanceStates() : boolean
matchNodeTypeTypeSpecificInstanceStates() : boolean
getElementByXPathExpression(String, NodeTemplatePropertyDefaults) : Node
getPropertyConstraintbyConstraintType(List<TPropertyConstraint>, String) : TPropertyConstraint
containsDeploymentArtifact(List<TDeploymentArtifact>, TDeploymentArtifact) : boolean
getImplementationArtifactsFromInterfaces(List<Interface>) : List<TImplementationArtifact>
containsImplementationArtifact(List<TImplementationArtifact>, TImplementationArtifact) : boolean
determineDerivedDeploymentArtifacts(List<TNodeType>, TNodeType) : List<TDeploymentArtifact>
determineDerivedInterfaces(List<TNodeType>, TNodeType) : List<Interface>
determineDerivedInstanceStates(List<TNodeType>, TNodeType) : List<InstanceState>
containsInterface(List<Interface>, Interface) : boolean
indexOf(List<TDeploymentArtifact>, TDeploymentArtifact) : int
indexOf(List<Interface>, Interface) : int
combineInterfaces(Interface, Interface) : Interface
containsOperation(List<TOperation>, TOperation) : boolean
containsInstanceState(List<InstanceState>, InstanceState) : boolean

TomcatApplicationServ erMatcher

+ TomcatApplicationServerMatcher(TNodeType, TNodeType, QNames)
matchPropertyDefaultsTypeSpecificContent(NodeTemplatePropertyDefaults, NodeTemplatePropertyDefaults) : boolean
matchPropertyConstraintsTypeSpecificContent(TNodeTemplate, TNodeTemplate) : boolean
matchPoliciesTypeSpecificContent(List<TPolicy>, List<TPolicy>) : boolean
matchEnvironmentConstraintsTypeSpecificContent(EnvironmentConstraints, EnvironmentConstraints) : boolean
matchDeploymentArtifactsTypeSpecificContent(List<TDeploymentArtifact>, List<TDeploymentArtifact>) : boolean
matchImplementationsArtifactsTypeSpecificContent(List<TImplementationArtifact>, List<TImplementationArtifact>) : boolean
matchNodeTypeTypeSpecificInstanceStates() : boolean

7 Architecture & Design of an Extendable Framework

128

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Schema of a Node-Type-specific configuration part 1

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name=”NodeTypeSpecificImplementations"

 type="tTypeSpecificNodeTypeConfig">

 </xs:element>

<xs:complexType name="tTypeSpecificNodeTypeConfig">

 <xs:sequence>

 <xs:element name="nodeTypeMatchers"

 type="tSpecificNodeTypeMatcher" />

<xs:element name="nodeTypeMergers"

type="tSpecificNodeTypeMerger" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="tSpecificNodeTypeMatcher">

 <xs:sequence>

 <xs:element name="specificMatcher" type="tNodeTy peDetail"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 ...

Listing 7.1: Schema of Node-Type-specific configuration part 1

The configuration file is modeled the following way: the element NodeTypeSpecificImple-

mentations in line 5 of Listing 7.1 forms the root element of the configuration file. The con-

figuration element is divided into two sections nodeTypeMatchers and nodeTypeMergers (line

9-16), i.e. the configuration file holds the qualified names and implementation classes of

Node Types for both matching and merging. In each section an unlimited number of

specificMatcher respectively specificMerger elements is located (line 18-23 in Listing 7.1 and

line 25-30 in Listing 7.2). The specificMatcher and specificMerger elements contain two quali-

fied names (QName elements) consisting of a namespace URI and a local part as well as an

implementation class element of type string.

7 Architecture & Design of an Extendable Framework

129

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Schema of a Node-Type-specific configuration part 2

 ...

 <xs:complexType name="tSpecificNodeTypeMerger">

 <xs:sequence>

 <xs:element name="specificMerger" type="tNodeTyp eDetail"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="tNodeTypeQName">

 <xs:sequence>

 <xs:element name="localPart" type="xs:string" />

 <xs:element name="namespaceURI" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="tNodeTypeDetail">

 <xs:sequence>

<xs:element name="QName" type="tNodeTypeQName" minO ccurs="2"

maxOccurs= "2" />

 <xs:element name="implementationClass" type="xs: string" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Listing 7.2: Schema of Node-Type-specific configuration part 2

Listing 7.3 shows one corresponding XML configuration file where a Tomcat Application

Server Node Type is registered for both matching and merging. The fact that each of the

pairwise QName elements is identical indicates that the implementation class is used for

matching respectively merging two Node Templates with identical Node Types. Otherwise

the QNames would be different. The namespaceURI contains the targetNamespace and the

localPart the id of the respective Node Type. The implementationClass element contains the

qualified class name of the corresponding Java class that has to be created by the

TOSCAMatchingFactory respectively TOSCAMergingFactory.

7 Architecture & Design of an Extendable Framework

130

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Example of a Node-Type-specific configuration file

<?xml version="1.0" encoding="UTF-8"?>

<NodeTypeSpecificImplementations>

<nodeTypeMatchers>

<specificMatcher>

<QName>

<localPart>TomcatApplicationServer</localPart>

<namespaceURI>http://myTemplate.de/test</namespaceU RI>

</QName>

<QName>

<localPart>TomcatApplicationServer</localPart>

<namespaceURI>http://myTemplate.de/test</namespaceU RI>

</QName>

<implemenationClass>

match.typespecific.TomcatApplicationServerMatcher

</implemenationClass>

</specificMatcher>

</nodeTypeMatchers>

<nodeTypeMergers>

<specificMerger>

<QName>

<localPart>TomcatApplicationServer</localPart>

<namespaceURI>http://myTemplate.de/test</namespaceU RI>

</QName>

<QName>

<localPart>TomcatApplicationServer</localPart>

<namespaceURI>http://myTemplate.de/test</namespaceU RI>

</QName>

<implemenationClass>

merge.typespecific.TomcatApplicationServerMerger

</implemenationClass>

</specificMerger>

</nodeTypeMergers>

</NodeTypeSpecificImplementations>

Listing 7.3: Example of a Node-Type-specific configuration file

8 Implementation of the Framework

131

8 Implementation of the Framework

The following chapter discusses the prototypical implementation of the researched concepts

of Chapter 5 and Chapter 6 as well as the architectural decisions of Chapter 7. Section 8.1

gives some general remarks about the implementation and the used technologies. Section

8.2 discusses the implementation of the framework’s basic data structures using JAXB while

Section 8.3 details the implementation of the extensibility concept already described on the

architectural level in the previous chapter.

8.1 General Remarks

The programming language used for the implementation of the TOSCAMerge framework is

Java in version Java SE 6. Additional libraries used are Apache log4j 1.2.17 [3] for logging

and JAXB 2.2 [31] for building the basic data structures as well as for loading and saving of

the TOSCA Service Templates. Apache log4j is used to equip the framework with the possi-

bility to write the processing steps of matching and merging into a log file for later compre-

hension. Thereby, the granularity of the logging details can be adjusted.

The build management tool used for the framework is Apache Maven [2]. Thus, the frame-

work’s workspace is structured as demanded by Maven and its dependencies are specified in

an enclosed pom.xml file. The paths to the type-specific configuration files are located in a

Java properties file [34], denoted by TOSCAMerge.properties that must be placed in the

framework’s classpath in order to conveniently retrieve the values via classloader.

A simple client is also part of the prototype. It invokes the stateless TOSCAMergeService and

passes two loaded Service Templates loaded by an auxiliary Java class, denoted by TOSCAFi-

leHandler, using JAXB. As the prototype is a plain Java implementation and not running in a

Servlet container the service is not stateless in the sense of an HTTP connection but the

Correspondences can be transferred to another instance of the service for merging. The in-

termediary result, i.e. a list of Correspondences can be reviewed and changed as required by

the requirements of Section 4.2. Thereby, flags indicating an added or deleted Correspond-

ence can be used to indicate the TOSCAMergeService how to update the list of Correspond-

ences and the internal state such as the set of innate ones.

Furthermore, the framework contains a class, denoted by TOSCAServiceTemplateMerger that

unifies the Types of the two Service Template documents into one schema and adds the

Node and Relationship Types that are also part of the Service Templates and not of the To-

pology Templates into a merged document while avoiding duplicate Types.

8.2 Implementation of the TOSCA Data Structures

The TOSCA specification available for this thesis is Version 1 Working Draft 05. A corre-

sponding XML-schema file incorporating the specified data structures forms the basis for

the prototypical implementation of the TOSCAMerge framework. In order to facilitate a

convenient handling of the Service Templates the Java Architecture for XML Binding

8 Implementation of the Framework

132

(JAXB) is utilized. In contrast to XML-APIs such as Document Object Model (DOM) or Sim-

ple API for XML (SAX) [23] JAXB provides an abstraction from the XML elements. With the

support of a provided binding compiler Java classes can be generated that correspond to the

XML elements respectively complex types of an XML Schema document. These classes are

annotated with the information which particular XML Element corresponds to which Java

member variable. This is called a binding. With JAXB, XML Service Templates can be easily

marshalleld, i.e. serialized and stored in an XML file, and unmarshalled, i.e. deserialized and

loaded into the corresponding Java data structure.

The challenge for generating the basic data structures of the TOSCA Merge framework was

the fact that many XML elements in the TOSCA Schema document are so-called anonymous

types. Listing 8.1 depicts such an anonymous type, nested into the definition of Group Tem-

plates in this case. Butek and Kendrick [11] point out that anonymous types do not allow re-

use and may cause problems when a binding must name them.

1

2

3

4

5

6

7

8

9

10

Example of an anonymous type in the TOSCA XML-schem a

 ...

<xs:element name="Policies" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="Policy" type="tPolicy"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

 ...

Listing 8.1: Example of an anonymous type in the TOSCA XML-schema

Additionally, the JAXB compiler transforms these types into static inner Java classes, e.g. a

static inner class Policies in a class TGroupTemplate. To avoid this behavior the standard

binding must be modified using a Binding Customizations specified in an additional binding

file. A section of the binding file used in this work is shown in Listing 8.2

8 Implementation of the Framework

133

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Section of the used JAXB Customization Bindings

<jxb:bindings version="1.0"

xmlns:jxb="http://java.sun.com/xml/ns/jaxb"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc">

<jxb:globalBindings localScoping="toplevel">

<xjc:superClass

name="de.toscamerge.generated.extension.BaseClass"/ >

</jxb:globalBindings>

<jxb:bindings schemaLocation="TOSCA-v1.0-wd05.xsd"

node="/xs:schema">

<jxb:bindings node="//xs:complexType[@name='tGroupT emplate']

 /xs:complexContent/xs:extension/xs:sequence/xs:e lement

[@name='Policies']//xs:complexType">

<jxb:class name="GroupTemplatePolicies"/>

</jxb:bindings>

...

Listing 8.2: Section of the used JAXB Customization Bindings

The localScoping=”toplevel” attribute specifies that all complex types of the schema file

should be generated as independent Java class instead of nested inner classes (line 6). How-

ever, the anonymous type containing the Policies as depicted in Listing 8.1 is used not only

inside a Group Template definition but also inside Node Types and Node Templates. Thus,

the binding compiler must be explicitly instructed to use different names for each generated

Java class representing a Policy in order to make each class name unique. The lines 13-17

show the assignment of the class names by navigating to the affected elements using XPath

expressions. Also visible in this listing is the assignment of a superclass which all other gen-

erated Java classes have to extend (line 7-8). It corresponds to the abstract BaseClass, holding

information about the innate and collected Correspondences as well as the number of merg-

es, introduced in Fig. 7.7 in the previous chapter. It is shown below in Fig. 8.2.

Fig. 8.1 depicts the generated Java class TNodeTemplate representing a Node Template and

its properties with the corresponding binding annotations exemplarily. The anonymous

type Policies had to be renamed into NodeTemplatePolicies to avoid naming collisions with

other class names. Not visible in the figure are the getter- and setter-methods for the Node

Template Properties.

8 Implementation of the Framework

134

Fig. 8.1: Section of the Java class of a Node Template

The aforementioned BaseClass is depicted Fig. 8.2. The class itself and all of its variables are

marked with the @XmlTransient annotation that indicates that it must be ignored during

the marshalling from Java to XML, respectively, unmarshalling from XML to Java. This is

necessary as this class is a concept introduced in the context of the TOSCAMerge frame-

work and not in the TOSCA specification. Note that the Java implementation differs from

the proposed algorithms regarding the usage of sets. As visible in Fig. 8.2 lists hold elements

that occur multiple times instead of sets. This is also true for the generated JAXB classes.

The implementation does not need the strict semantics of sets, respectively, is able to en-

force them whenever necessary.

8 Implementation of the Framework

135

Fig. 8.2: Class BaseClass

8.3 Implementation of the Extensibility Concept

8.3.1 Extensibility Concept

In Section 7.3 the architecture elements of the TOSCAMerge framework that are responsible

for the adding of plugins were introduced. Exemplarily, this chapter will have a closer look

8 Implementation of the Framework

136

at the implementation of the TOSCAMatchingFactory that uses a modified version of the

Factory Method design pattern [21], [29].

Fig. 8.3: Method createNodeTemplateMatcher of class TOSCAMatchingFactory

Fig. 8.3 shows the method createNodeTemplateMatcher of the TOSCAMatchingFactory that

creates instances of the TOSCANodeTemplateMatcher subject to the qualified names of two

Node Types. First it is checked if the corresponding instance extending the class TOSCA-

NodeTemplateMatcher has already been created and stored in a hash map denoted by the

blue painted nodeTemplateMatchers. This step avoids creating a new TOSCANodeTemplate-

Matcher and, thus, unnecessary resource consumption.

If the instance of TOSCANodeTemplateMatcher appropriate for the two Node Types’ quali-

fied names has not yet been created, the qualified name of the class extending TOSCA-

NodeTemplateMatcher and implementing the Node-Type-specific functionality of the passed

Node Types is retrieved from yet another hash map built at creation time of the

TOSCAMatchingFactory. The qualified name, i.e. the name of the class and its package is

used to invoke the corresponding instance using the Java Reflection API [23].

8 Implementation of the Framework

137

Fig. 8.4: Plugin-class for matching Node Templates with identical Node Types

Java Reflection is an element of the Java programming language that allows loading and

instantiating classes whose code is not available during compile time. This applies in partic-

ular to frameworks offering the possibility of adding new plugins. An essential part of Java

Reflection is the class Class capable of loading arbitrary classes into the Java Virtual Ma-

chine (JVM) using the static method forName. With the object of class Class, in Fig. 8.3 de-

noted by matcherClass, the constructor for the actual class to instantiate can be obtained and

configured. The constructor object is then used to create an instance of the designated

TOSCANodeTemplateMatcher instance that is stored in the hash map using the qualified

names as key.

Fig. 8.4 shows the basic structure of a Node-Type-specific plugin that matches to identical

Node Types representing a Debian Linux operating system. The respective matching meth-

ods for the Node Template Properties are yet empty in this example but can be used to im-

plement the Node-Type-specific functionality for matching or for the invocation of third-

party-functionality such as policy matching engine.

8 Implementation of the Framework

138

8.3.2 Adding New Plugins to the TOSCAMerge Framework

The following section describes the adding of new plugins to the TOSCAMerge framework

and gives guidelines how to proceed.

(1) First a new Java class has to be created extending either TOSCANodeTemplateMatcher for

matching Node Templates Properties or TOSCARelationshipTemplateMatcher for matching

Relationship Templates Properties or TOSCARelationshipTemplateMatchingHandler for add-

ing a new algorithm to compare Relationship Templates of a particular Relationship Type. A

TOSCAGroupTemplateMatcher can also be added once. For adding type-specific merging

functionality the new class must either extend TOSCANodeTemplateMerger or TOSCARela-

tionshipTemplateMerger or TOSCAGroupTemplateMerger. Each plugin for matching and

merging of Node Templates corresponds to two particular qualified names. If they are iden-

tical, the matching respective merging is conducted between two Node Templates having

identical Node Types. Otherwise it is done between related Node Types. Relationship Tem-

plates and their handlers only correspond to one identical qualified name indicated by the

targetNamespace and the id of a Relationship Type.

(2) To announce the new plugin to the framework the implementation class has to be added

to the appropriate configuration file as depicted in Table 8.1. The first column Extended class

indicates the abstract framework class the plugin extends to form a variation point. The

second column Configuration file indicates the XML-file the plugin has to be added to and

the third column XML element names the particular element the new plugin has to create in

the configuration file.

Extended class Configuration file XML element

TOSCANodeTemplateMatcher nodeTypeSpecificImple-

mentations.xml

specificMatcher

TOSCARelationshipTemplateMatcher relationshipTypeSpecific-

Implementations.xml

specificMatcher

TOSCARelationshipTemplateMatch-

ingHandler

relationshipTypeSpecific-

Implementations.xml

specificMatcher

TOSCANodeTemplateMerger nodeTypeSpecificImple-

mentations.xml

specificMerger

TOSCARelationshipTemplateMerger relationshipTypeSpecific-

Implementations.xml

specificMerger

TOSCAGroupTemplateMatcher groupTemplateImple-

mentation.xml

specificMatcher

TOSCAGroupTemplateMerger groupTemplateImple-

mentation.xml

specificMerger

Table 8.1: Necessary elements to create a new plugin

Adding new Node Types to the list of Types that are not considered when matching and

merging is similarly easy. The Node Type has to be added to the XML configuration file

notMatchedTypes.xml by inserting a new notMatchedType element containing the namespace

and id of the Node Type.

9 Evaluation of the Algorithms and the Implemented Concepts

139

9 Evaluation of the Algorithms and the Implemented Concepts

The following chapter addresses the goals for the concepts made in Section 4.2 and evalu-

ates the proposed algorithms of Chapter 5 and 6. First, an evaluation against the general

requirements is conducted in Section 9.1. Then in Section 9.2, the algorithms’ properties and

their computational complexity are analyzed. Section 9.3 reviews the creation of a set of

example TOSCA Service Templates and picks up the motivational scenario from the intro-

ductory chapter. Finally, the merging of more than two Topology Templates is discussed

briefly in Section 9.4

9.1 Evaluation of the Findings Regarding the General Requirements

The following section evaluates the proposed concepts and algorithms for matching and

merging of Topology Templates with regard to the general requirements identified in Sec-

tion 4.2. The general requirements are element preservation, relationship preservation, extra-

neous item prohibition, property preservation, value preference, semantically correct results and

the inclusion of domain-specific knowledge.

The element preservation requirement is heeded as the merging algorithm presented in List-

ing 6.1 takes the left-hand side Topology Template and adds every merged Node Template

to it. Moreover, it makes sure that every Node Template that does not correspond to another

one is also added to the left-hand Topology Template in the end. The algorithm for Group

Templates Listing 6.16 also fulfills this requirement.

The relationship preservation requirement is very similar to element preservation. This re-

quirement is fulfilled by the RelationshipTemplateMergingHandler Listing 6.10. All the

merged Relationship Templates are added to the left-hand side Topology Template either

directly on Nesting Level 0 or inside a Group Template.

All the proposed functions adhere to the extraneous item prohibition requirement. No addi-

tional elements are created that were not part of the input Topology Templates.

The match and merge functions for the Properties of Node, Relationship, and Group Tem-

plates consider all properties defined in the TOSCA specification. If the matching or merg-

ing of a particular property cannot be conducted generically, it is delegated to a type-

specific plugin. Thus, the property preservation requirement that the properties of each ele-

ment must be preserved in the merged result and a merged element must not have unified

properties that contradict its original semantics is fulfilled.

The value preference requirement that demands the definition of a preferred model is used

throughout all the concepts and algorithms. Whenever two property values are equipollent

the left-hand side value is chosen.

To fulfill the semantically correct results requirement the matching concepts and algorithms

consider cases when two elements must not be matched in order to avoid invalid semantics.

9 Evaluation of the Algorithms and the Implemented Concepts

140

Examples of this are the handling of Relationship Templates with HostedOn and Dependen-

cy semantics.

The last general requirement was the inclusion of domain-specific knowledge. This require-

ment is fulfilled by the introduction the extendable TOSCAMerge framework that uses type-

specific plugins that implement domain-specific knowledge how to handle the Properties of

Node, Relationship and Group Templates.

9.2 Discussion of the Proposed Algorithms

This section discusses the developed algorithms and their implementation with regard to

the requirements identified in Section 4.2. The requirements were the following: termination

of the algorithms, deterministic result, practicable computational complexity and the assessa-

bility of the intermediary results. Furthermore, the properties of the algorithms are discussed.

9.2.1 General Properties of the Proposed Algorithms

The proposed algorithms always terminate after having matched all elements of two Topol-

ogy Templates and merged all identified Correspondences. Thus, the termination of the algo-

rithms requirement is fulfilled. The same is true for the requirement of having a determinis-

tic result provided the input is identical. The computational complexity is evaluated and dis-

cussed in the next sections.

Both proposed algorithms for matching and merging are no classical graph algorithms such

as the Dijkstra’s algorithm [22] for finding the shortest ways from a node to all other nodes.

The reason for this lies in the nature of the TOSCA specification that defines a XML gram-

mar to describe the graph-like structure of an IT environment. The limitation of modeling a

graph with an XML grammar is that there is no viable way of directly specifying all incident

edges and, thus, all adjacent nodes such as in an adjacency list [40]. Of course, one could

define a start node XML element that nests all incident edges and adjacent nodes inside.

However, even a small number of nodes and edges would lead to an overly complex XML

document. Instead the TOSCA specification models the edges of a TOSCA graph, i.e. the

Relationship Templates, as entities that know their source and target node (see Section

2.3.1). Therefore, the algorithms proposed in the Chapters 5 and 6 operate on separate, un-

ordered sets that contain the nodes and edges. To find the edges incident to a particular

node essentially the whole set has to be searched linearly and every source and target ele-

ment compared to the particular node. The implementation in Java does not need the re-

strictions of sets and uses lists holding the TOSCA elements.

Another general property of the proposed algorithms that has to be discussed is that they

belong to the class of the so-called greedy algorithms [48], [40]. These algorithms try to find

a globally optimal solution by iteratively extending the current solution by the next best

local solution without assessing the global context. Solutions that are found are not revised

even if better ones arise in a future step. The advantage of this class of algorithms is that

they are relatively simple to design and efficient to implement. The disadvantage is that

often only a local optimum, albeit a correct one, is found rather than the desired global op-

9 Evaluation of the Algorithms and the Implemented Concepts

141

timum. With regard to the matching of Topology Template in this thesis this becomes ap-

parent when looking at the proposed matching cases of Relationship Templates with Com-

munication and Dependency semantics depicted in Fig. 5.8 and Fig. 5.9 in Section 5.2.1.

These cases assume that some Node Template Correspondences already exist and that it is

subject to them if another Correspondence can be created or not. This always leads to a cor-

rect matching and avoids invalid semantics in the Topology Template, however, the possi-

bility that the new Correspondence would contribute to a better solution than the already

existing ones cannot be eliminated. That means the relative position of Node Templates in

the Topology Template has an influence on the quality of the solution.

A correct but not necessarily globally optimal solution is also the result of the proposed

merging algorithm. The merging algorithm proposed in Listing 6.1 processes the Node

Template Correspondences in the encountered order they are stored in the mapping. It uses

the subroutine hasCorrectNumberOfCorrespondences depicted in Listing 6.4 and Listing 6.5 to

evaluate if two Node Templates may still be merged with regard to other Node Templates

they have already been merged with. This approach may prevent two Node Templates from

being merged even if the new merging would yield a better solution than an already con-

ducted one. This is due to the fact that one or both of the current Node Templates have al-

ready been unified with a Node Template that has no Correspondence to one of the current

Node Templates under consideration. This applies to the merging of Relationship and Group

Templates as well. Thus, the relative position of the elements to be merged in the Topology

Template influences the quality of the solution again.

With regard to the greedy characteristics of the proposed algorithms the identification of the

assessability of the intermediary results requirement of Section 4.2 gets a further justification.

Although a result of the matching and merging can be done automatically a human inspec-

tion of the set of created Correspondences that possesses only local optimality can be im-

proved by adding or deleting of correspondences or rearrange their order. This could im-

prove the result to a more optimal solution. The design of the TOSCAMerge framework

allows for the review of the generated Correspondences inside and between Topology Tem-

plates and, thus, fulfills the assessability of the intermediary results requirement.

9.2.2 Complexity Considerations of the Matching Algorithm

The following section analyzes the computational complexity of the proposed matching

algorithm and its subroutines. It is assumed in each case that both the inside matching as

well as the matching between the different Topology Templates is conducted. & denotes the

number of elements in the left-hand side Topology Template and ' the number of elements

in the right-hand side Topology Template.

Preparation Steps Prior to the Actual Matching

In the function buildRelationshipTemplateSet introduced in Listing 5.24 all Relationship

Templates from both Topology Templates are stored in an additional set for more conven-

ient processing. Additionally, the parent GroupTemplateHierarchy elements are assigned.

The computational complexity including the search through all Group Templates is the fol-

lowing:

9 Evaluation of the Algorithms and the Implemented Concepts

142

O(' +& + (' +&)) = %(2' + 2&) (1)

That means two iterations over all elements of both Topology Templates.

High-level Matching Algorithm

The high level algorithm incorporating Group Templates has two main loops that compare

every Node Template of left-hand side with every Node Template in right-hand side Topol-

ogy Template. The exclusion of 1:n, n:1 and m:n mapping characteristics avoids the necessi-

ty to compare every possible subset of Node Templates of one Topology Template with eve-

ry possible subset of Node Templates of another Topology Template. Instead of 2# × 2$
comparisons and therefore %(2# × 2$) time complexity at most & × ' comparisons are

needed yielding a time complexity of %(& × ') ≅ %('))	with & being the number of Node

Templates in the first Topology Template and ' the number of Node Templates in the se-

cond Topology Template. However, the inside matching must also be accounted for. A com-

parison of every element with every other element inside a Topology Template means a

time complexity of %(') − ') where ' is the number of Node Templates. With regard to

both Topology Templates the time complexity is %((') − ') +	(&) −&)). Adding the

complexity for the actual comparison between the two Topology Templates we yield a

complexity of

%((') − ') +	(&) −&)	+ (& × ')) ≅ %(3')) ≅ %(')) (2)

That means the algorithm still has quadratic time complexity.

Auxiliary Subroutines and Matching of Group Templates

A number of subroutines for checking if Group Templates can be accessed, to find Group

Template Correspondences, or if Node Templates may be matched across different Nesting

Levels were proposed in Chapter 5. However, none of them requires iterating over the

whole set of elements, instead only the set with the already found Node Template respec-

tively Group Template Correspondences is traversed. So this multiplies only a constant fac-

tor to the overall time complexity and can be neglected. The same is true for the traversal of

the Group Template Hierarchy.

Matching of Relationship Templates

The matching of Relationship Templates can add a significant amount of complexity to the

overall processing. Let 9 be the number of Relationship Templates in the set 1 and ^ the

number of Relationship Templates in set 2. If the Relationship Templates with HostedOn

semantics are analyzed (see Listing 5.9), then each of the two sets has to be fully traversed in

the worst case. Therefore the time complexity is the following one:

%(^ + 9) (3)

As 9 and ^ must be smaller than the overall number of elements in the corresponding To-

pology Templates this means that only a constant factor, albeit a possibly large one, is mul-

tiplied with the previous complexity.

9 Evaluation of the Algorithms and the Implemented Concepts

143

However, if Relationship Templates with Communication or Dependency semantics are

matched, the computational complexity is higher. Similar to the matching of Node Tem-

plates every element of set 1 has to be matched with every element of set 2. This yields a

complexity of

%(^ × 9) (4)

for each of the two Relationship Types.

So the overall computational complexity considering (1), (2), (3) and (4) is the following one:

%((2' + 2&) + (3') × (^ + 9) × 2(^ × 9)) 	≅ 4' + (3') × 29R)

Assuming p is smaller than the cardinality of the Topology Templates the following expres-

sion holds true:

4' + (3') × 29R) ≅ ') (5)

That means the overall matching has quadratic computational complexity.

9.2.3 Complexity Considerations of the Merging Algorithm

The following section will analyze the computational complexity of the proposed merging

algorithms.

Preparation Steps prior to the Actual Merging

The merging algorithm does not need any additional preparation steps. The Relationship

Template sets built the matching step are used.

High Level Merging Algorithm

The basic complexity of the merging algorithm proposed in Listing 6.1 is bound to the num-

ber of found Node Template Correspondences that have to be processed. Therefore, the

complexity for merging will be %(`) with ` the number of found Node Template Corre-

spondences. In the worst case when matching two Topology Templates where all Node

Templates inside and between the Topology Templates match, ` = 	 Ya) +	#Ya#) + 1,
where ' is the number of Node Templates in the first Topology Template and & is the

number of Node Templates in the second Topology Template. The additional 1 Correspond-

ence is the one between the two Topology Templates already merged inside. With such a

constellation the complexity would be

%(`) = % b') − '2 +	&) −&2 + 1c ≅ %(') +&) + 1) ≅ %(2')) ≅ %(')) (6)

In a real life case ` is expected to be much smaller than ').
In the subroutine hasCorrectNumberOfCorrespondences four sequential iterations over the

innate and collected Node Template Correspondences are conducted. The two sets of innate

9 Evaluation of the Algorithms and the Implemented Concepts

144

outgoing Node Template Correspondences as well as the two sets of collected ones can only

have a combined cardinality of `. Thus, the overall complexity for the function hasCorrect-

NumberOfCorrespondences is:

%(` + `) = %(2`) (7)

The subroutine reconnectEdges proposed in Listing 6.2 iterates over the whole set of Rela-

tionship Templates with cardinality ^ build before. Thus it has the complexity of

%(^) (8)

The subroutine relocateEdges only processes two Relationship Templates and, therefore, has

a constant complexity of %(1)19
The subroutine reconnectCorrespondences iterates over all found Node Template Corre-

spondences and, thus, has a complexity of

%(`) (9)

Merging of Relationship Templates

The algorithm for merging of Relationship Templates was introduced in Listing 6.10. It iter-

ates over the set of all Relationship Templates attached to each Node Template Correspond-

ence in the function handleRelationshipTemplates. Let the cardinality of the set Relationship

Template Correspondences be ;, then the complexity is

%(;) (10)

For the subroutine hasCorrectNumberOfCorrespondences the same assumptions as in the case

of Node Template Correspondences are true, thus, the complexity is

%(; + ;) = %(2;) (11)

In the subroutine reconnectCorrespondences for Relationship Templates all Node Template

Correspondences and the attached Relationship Template Correspondences have to be pro-

cessed, thus, the complexity is:

%(` × ;) (12)

Merging of Group Templates

The algorithm for merging of Group Templates was proposed in Listing 6.14 and Listing

6.15. It iterates over a set of Group Template Correspondences with cardinality C. Thus, the

complexity for the main algorithm is

19

 However, the implementation in Java has a larger complexity as the evaluation of containment in a set must
possibly iterate over the whole content set of the Group Template.

9 Evaluation of the Algorithms and the Implemented Concepts

145

%(C) (13)

Similar to the merging of Node Templates the two subroutines hasCorrectNumberOfCorre-

spondences and reconnectCorrespondences have the complexities

%(C + C) = %(2C) (14)

and respectively

%(C) (15)

The overall complexity of one iteration of the functions performNodeTemplateMerging and

performGroupTemplateMerging, considering all equations from (6) to (15) is the following

one , regardless of merging inside one or between two Topology Templates:

				% e` × f2` + ^ + ` + ; × (2; + (k × ;))h + C × (2C + C)i
= %(` × (3` + ^ + 2;) + `;)) + 3C))
= %(3`) + ^` + 2;)` + `);) + 3C))
≅ `) +	C)

(16)

The other variables can be disregarded as they are assumed to be smaller than `). From the

overall equation can be safely concluded that the merging has quadratic complexity for

Node Template and Group Template Correspondences. In order to fully merge two Topolo-

gy Templates three merge iterations have to be conducted, however, this does not change

the overall estimated complexity. If the worst case scenario described with equation (6) oc-

curs with ` = ') the complexity could be %(') × ') = %('S) with ' the number of Node

Templates. But as already pointed out this case seems very unlikely.

9.2.4 Overall Complexity

After having estimated both worst case computational complexities in equation (5) and (16),

i.e. %(') + `) + C)), with ' the number of TOSCA elements, ` the number of found Node

Template Correspondences and C the number of found Group Template Correspondences

and disregarding all constant factors, it can be concluded the merging of two Topology

Templates can always be conducted with polynomial computation complexity and most

often even with quadratic computational complexity. According to Saake and Sattler [40]

these are complexity classes that allow the practical solving of problems if the input size '

does not exceed a certain size, i.e. 2�j. Thus, the practical computational complexity re-

quirement from Section 4.2 is also fulfilled. However, it must be noted that the Java imple-

mentation of the algorithms is slightly less efficient than the theoretical value that was de-

rived here. The main reason lays in the necessity to possibly iterate over all elements of a

list in order to evaluate if a given element is contained. For example the evaluation if a Poli-

cy element is already in a Policy list and needs to be replaced by a derived Policy element.

The pseudo code algorithms conduct these steps in one pass, the real implementation is

9 Evaluation of the Algorithms and the Implemented Concepts

146

more complex. Since these lists of properties are much smaller than the overall list of Node,

Relationship and Group Templates the impact on complexity can be disregarded. Another

reason is the implementation as a stateless service. The state is passed between the client

and the service as a list of Correspondences and the two Service Templates. Thus, when

invoking another instance of the service after matching it has to calculate the two sets of

overall Relationship Templates anew increasing the computational complexity. But again it

is only increased by a constant factor that can be disregarded.

9.3 Creation of Sample TOSCA Service Templates

Goal (4) of the problem statement in Section 1.1 was the creation of a set of example TOSCA

Service Templates to evaluate the prototypically implemented framework and the re-

searched concepts. This has been done collaterally to development of the matching and

merging concepts and the implementation of the prototype.

Fig. 9.1: The two merged Topology Template of the motivating scenario

9 Evaluation of the Algorithms and the Implemented Concepts

147

For every identified case a corresponding left-hand and right-hand side Topology Template

has been created to test the implemented algorithms.

In Section 1.2 a motivating scenario has been given to illustrate the necessity of developing

concepts and algorithms for automatically finding similar elements inside and between two

Topology Templates and for merging these elements and ultimately the two Topology

Templates as a whole. To complete this thesis the motivating scenario is picked up at this

point and the researched concepts are applied to it. The scenario assumed two equal enter-

prises to be merged in order to achieve economic synergies. The merged Topology Template

in Fig. 9.1 shows a possible result of the two separate enterprise application environments

modeled as Topology Templates after being merged automatically by using the

TOSCAMerge framework. By definition the different applications cannot be merged because

of their complex, individual business logic. Even in the case of the Accounting Application

this is true. Thus, a domain expert has to decide which of the application to keep for future

use. The Tomcat Application Servers and the MySQL Databases, however, have been merged

automatically by using the type-specific plugins to merge the properties. In case of the Op-

erating Systems that had different but related Node Types the corresponding type-specific

plugin to the TOSCAMerge framework decided to use the Linux Operating System Node

Type instead of the Windows Operating System Node Type.

9.4 Discussion of Merging of More Than two Topology Templates

The matching and merging of more than two Topology Templates was not a goal for this

master’s thesis. Nevertheless, at this point this aspect is discussed briefly. The proposed

concepts and algorithms in this thesis can also be used for more than two Topology Tem-

plates by successively matching and merging the result of one complete step with yet an-

other Topology Template. Leser and Naumann [26] describe this approach for the related

area of schema integration and call it a binary approach. The advantages are the relatively

easy implementation and the possibility to merge Topology Templates that are more im-

portant than others in an earlier step to assure a greater impact on the overall result. How-

ever, the question remains how to identify the most important ones and, thereby, the order

of the matching and merging.

A second approach would be what Leser and Naumann call an n-ary approach that matches

and merges all Topology Templates at once. The advantage is that no local decisions have to

be made that prohibit the merging with Topology Templates that are considered at a later

point in time. However, the computational complexity increases very fast with every addi-

tional Topology Template and leaves the region of practicable computational complexity.

Furthermore, the proposed algorithms in this work are greedy algorithms so the considera-

tion of more than two Topology Templates at once would only lead to a local optimum an-

yway.

10 Conclusion and Future Work

148

10 Conclusion and Future Work

This master’s thesis developed a concept for finding similar elements inside and between

two Topology Templates by systematically exploring all different constellations TOSCA

elements can take. After an extensive study of related work in Chapter 3 in the area of

graph, process and schema matching and merging, the notion of a Correspondence between

Node, Relationship and Group Templates was introduced to indicate elements that corre-

spond to each other and can be merged. Moreover, the matching concept is automated by

developing appropriate algorithms. Thereby, the incorporation of domain-specific

knowledge is allowed for by the invocation of type-specific plugins that handle the match-

ing of properties that cannot be conducted generically.

The second contribution of this thesis is the development of a concept and algorithms that

use the determined Correspondences to merge the corresponding TOSCA elements. Both

matching and merging adhere to a set of identified requirements such as preservation of all

elements and properties found in the original Topology Templates or the design of algo-

rithms with practical computational complexity. A third goal of this work was the design

and prototypical implementation of the extendable TOSCAMerge framework that allows for

a convenient integration of type-specific plugins covering the domain-specific handling of

the TOSCA elements’ properties. An important requirement at this juncture was an archi-

tecture that enables the assessability of the intermediary results, i.e. a human domain expert

can evaluate the determined Correspondences and manipulate them if desired. The imple-

mentation was accompanied by the creation of a set of example TOSCA Service Templates

testing the different matching and merging cases.

Finally, an extensive evaluation of the concepts and algorithms against the identified re-

quirements completed this thesis in Chapter 9. Notably, the evaluation of the matching and

merging algorithms revealed that they feature the properties of greedy algorithms. That

means they always produce a semantically correct result as required but rather a local opti-

mum is found than a globally optimal solution. However, the main advantage is the efficient

implementation in the TOSCAMerge framework that has quadratic computational complex-

ity in most cases.

Future work has to be conducted by the inclusion of the TOSCA management plans [32] in

the merging concepts. The plans have to be adapted to the resulting topology of an IT ser-

vice after being merged. Another topic is the integration and display of the determined Cor-

respondences into Vino4TOSCA, a visual notation for TOSCA proposed by Breitenbücher et

al. [9]. This would allow for the convenient manipulation of the intermediary results. In the

same way, the integration in the existing web-based modeling tool for TOSCA, the Visual

Editor for TOSCA (Valesca) [12] is conceivable.

Moreover, as Turau notes [48], the proposed greedy algorithms can be seen as starting point

for the development of algorithms that find the globally optimal solution for matching and

merging of Topology Templates at the expense of a higher computational complexity.

10 Conclusion and Future Work

149

Likewise, the merging of more than two Topology Templates in an n-ary approach as brief-

ly discussed in Section 9.4 is a topic for future research.

Bibliography

150

Bibliography

[1] Amazon Web Services LLC, "Amazon Elastic Compute Cloud (Amazon EC2)," [Online].
Available: http://aws.amazon.com/ec2/.

[2] Apache Software Foundation, "Apache Maven Project," [Online]. Available:
http://maven.apache.org/

[3] Apache Software Foundation, "Apache log4j™ 1.2," [Online]. Available:
http://logging.apache.org/log4j/1.2/.

[4] Apache Software Foundation, "Apache Tomcat," [Online]. Available:
http://tomcat.apache.org/.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica and M. Zaharia, "Above the Clouds: A Berkeley View of
Cloud Computing," 2009.

[6] C. Baun, M. Kunze, J. Nimis and S. Tai, Cloud Computing - Web-basierte dynamische
IT-Services, 2. Aufl. ed., Heidelberg, Dordrecht, London, New York: Springer-Verlag,
2011.

[7] T. Binz, G. Breiter, F. Leymann and T. Spatzier, "Portable Cloud Services Using TOSCA,"
IEEE Internet Computing, vol. 16, no. 3, pp. 80 - 85, May - June 2012.

[8] J. A. Bondy and U. S. R. Murty, Graph Theory, New York: Springer, 2005.

[9] U. Breitenbücher, T. Binz, O. Kopp and F. Leymann, "Vino4TOSCA: A Visual Notation
for Application Topologies based on TOSCA," in Proceedings of the 20th International
Conference on Cooperative Information Systems (CoopIS 2012), Rome, 2012.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal, Pattern-orientierte
Software-Architektur - Ein Pattern-System, Bonn, Paris: Addison-Wesley-Longman,
1998.

[11] R. Butek and S. Kendrick, "IBM developerWorks - Web services hints and tips: avoid
anonymous types," 30 August 2011. [Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-avoid-anonymous-
types/index.html.

[12] CloudCyle Project, "Valesca – Visual Editor for TOSCA," [Online]. Available:
http://www.cloudcycle.org/Valesca/

[13] R. Dijkman, M. Dumas and L. García-Bañuelos, "Graph Matching Algorithms for
Business Process Model Similarity Search," Business Process Management, LNCS, vol.
5701, pp. 48-63, 2009.

Bibliography

151

[14] Distributed Management Task Force, Inc, "Open Virtualization Format (OVF)," [Online].
Available: http://www.dmtf.org/standards/ovf.

[15] J. Dunkel and A. Holitschke, Softwarearchitektur für die Praxis, Berlin, Heidelberg:
Springer-Verlag, 2003

[16] M. M. Gala, E. Quintarelli and L. Tanca, "Graph Transformation for Merging User
Navigation Histories," in Applications of Graph Transformations with Industrial
Relevance AGTIVE 2003, LNCS, Berlin, Heidelberg, New York, 2004.

[17] Google Inc, "Google App Engine - Google Developers," 4 7 2012. [Online]. Available:
https://developers.google.com/appengine/.

[18] Google Inc., "Google Apps for Business," [Online]. Available:
http://www.google.com/intl/en/enterprise/apps/business/products.html#docs.

[19] F. Gottschalk, W. M. P. van der Aalst and M. H. Jansen-Vullers, "Merging Event-Driven
Process Chains," On the Move to Meaningful Internet Systems: OTM 2008, LNCS, vol.
5331/2008, pp. 418-426, 2008.

[20] Q. Hardy, "The New York Times - Active in Cloud, Amazon Reshapes Computing," 27
August 2012. [Online]. Available:
http://www.nytimes.com/2012/08/28/technology/active-in-cloud-amazon-reshapes-
computing.html.

[21] C. Kinzel Filho, "Code Project - Factory Method + Reflection: Achieving Better
Extensibility in Applications," 2008 August 31. [Online]. Available:
http://www.codeproject.com/Articles/28977/Factory-Method-Reflection-Achieving-
Better-Extensi.

[22] S. O. Krumke and N. Noltemaier, Graphentheoretische Konzepte und Algorithmen, 2.
aktualisierte Aufl. ed., Wiesbaden: Vieweg+Teubner, 2009.

[23] G. Krüger, Handbuch der Java-Programmierung, 4., aktualisierte Aufl. ed., München:
Addison-Wesley Verlag, 2006.

[24] J. M. Küster, C. Gerth, A. Förster and G. Engels, "Detecting and Resolving Process
Model Differences in the Absence of a Change Log," in Proceedings of the 6th
International Conference on Business Process Management (BPM '08), Berlin, Heidelberg,
2008.

[25] M. La Rosa, M. Dumas, R. Käärik and R. Dijkman, "Merging business process models,"
in Proceedings of the 2010 international conference on On the move to meaningful internet
systems - Volume Part I (OTM'10), 2010.

[26] U. Leser and F. Naumann, Informationsintegration, Heidelberg: dpunkt Verlag, 2007.

[27] P. Mell and Grance, T., "The NIST Definition of Cloud Computing," National Institute of
Standards and Technology, Gaithersburg, 2011.

Bibliography

152

[28] S. Melnik, H. Garcia-Molina and E. Rahm, "Similarity Flooding: A Versatile Graph
Matching Algorithm and Its Application to Schema Matching," in Proceedings of the 18th
International Conference on Data Engineering (ICDE '02), Washington, DC, USA, 2002.

[29] N.N., "OODesign.com - Factory Pattern," [Online]. Available:
http://www.oodesign.com/factory-pattern.html.

[30] N.N., "Open Cloud Manifesto," [Online]. Available:
http://www.opencloudmanifesto.org/Open%20Cloud%20Manifesto.pdf.

[31] N.N., "Project JAXB," [Online]. Available: http://jaxb.java.net/.

[32] OASIS, "Topology and Orchestration Specification for Cloud Applications Version 1.0,
Working Draft 05," 30 March 2012. [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca.

[33] OMG, "Unified Modeling Language: Infrastructure," [Online]. Available:
http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/.

[34] Oracle Corporation, "Java™ Platform Standard Ed. 6 - Class java.util.Properties,"
[Online]. Available: http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html.

[35] Oracle Corporation, "MySQL Enterprise Edition," [Online]. Available:
http://www.oracle.com/us/products/mysql/mysqlenterprise/index.html?ssSourceSiteId=
ocomde.

[36] D. F. Parkhill, The Challenge of the Computer Utility, New Jersey: Addison-Wesley
Educational Publishers Inc.,, 1966.

[37] T. Posch, K. Birken and M. Gerdom, Basiswissen Softwarearchitektur- Verstehen,
entwerfen, wiederverwenden, 3. aktualisierte und erweiterte Auflage ed., Heidelberg:
dpunkt.verlag, 2011.

[38] R. Pottinger and P. A. Bernstein, "Merging models based on given correspondences," in
Proceedings of the 29th international conference on Very large data bases - Volume 29
(VLDB '2003), Berlin, 2003.

[39] R. Reiter, "On closed world data bases," in Readings in nonmonotonic reasoning, San
Francisco, Morgan Kaufmann Publishers Inc., 1987, pp. 300 - 310.

[40] G. Saake and K.-U. Sattler, Algorithmen und Datenstrukturen, Eine Einführung mit
Java, Heidelberg: dpunkt Verlag, 2010.

[41] Salesforce.com Inc., "What is Force.com?," [Online]. Available:
http://www.force.com/why-force.jsp.

[42] A. Scherp and S. Boll, "Framework-Entwurf," in Handbuch der Software-Architectur, 2.
überbeitete und erweiterte Aufl. ed., R. Reussner and W. Hasselbring, Eds., Heidelberg,
dpunkt.verlag, 2009, pp. 383-405.

Bibliography

153

[43] L. Schubert, "The future of Cloud Computing, Opportunities for European Cloud
Computing beyond 2010," Commission of the European Communities, 2010.

[44] J. A. Schumpeter, Capitalism, Socialism and Democracy, New York: Harper, 1942.

[45] S. Segura, D. Benavides, A. Ruiz-Cortés and P. Trinidad, "Automated Merging of
Feature Models Using Graph Transformations," in Generative and Transformational
Techniques in Software Engineering II, LNCS, Berlin, Heidelberg, 2007.

[46] S. Sun, A. Kumar and J. Yen, "Merging workflows: a new perspective on connecting
business processes," Decision Support Systems, vol. 42, no. 2, pp. 844 - 858, November
2006.

[47] P. Tittmann, Graphentheorie, Eine anwendungsorientierte Einführung, München: Carl
Hanser Verlag, 2011.

[48] V. Turau, Algorithmische Graphentheorie, München: Oldenbourg Verlag, 2004.

[49] E. van der Vlist, XML Schema, Sebastopol: O'Reilly Media, Inc., 2002.

[50] W3C, "XML Schema Part 0: Primer Second Edition," 28 October 2008. [Online].
Available: http://www.w3.org/TR/xmlschema-0/#any.

[51] S. Weerawarana, F. Curbera, F. Leymann, T. Storey and D. F. Ferguson, Web Services
Platform Architecture - SOAP, WSDL, WS-Policy, WS-Adressing, WS-BPEL, WS-
Reliable Messaging, and More, Upper Saddle River: Person Education, Inc., 2005.

All links were last followed on October 16, 2012.

Erklärung

Hiermit erkläre ich, dass ich die Masterarbeit selbständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen der Arbeit, die wörtlich oder

sinngemäß aus Veröffentlichungen oder aus anderweitigen fremden Äußerungen entnom-

men wurden, sind als solche einzeln kenntlich gemacht.

Die Masterarbeit habe ich noch nicht in einem anderen Studiengang als Prüfungsleistung

verwendet.

Des Weiteren erkläre ich, dass mir weder an den Universitäten Hohenheim und Stuttgart

noch an einer anderen wissenschaftlichen Hochschule bereits ein Thema zur Bearbeitung

als Masterarbeit oder als vergleichbare Arbeit in einem gleichwertigen Studiengang verge-

ben worden ist.

Stuttgart-Hohenheim, den 17. Oktober 2012

(Andreas Weiß)

