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Abstract

The present work serves two major purposes. On the one hand, theoretical approaches to
configurational mechanics are elaborated. For inelastic problems, the spatial and material
equilibrium conditions are derived by means of a global dissipation analysis. In the dy-
namical framework, a variational formulation based on Hamilton’s principle is established
inducing the balances of physical momentum, material pseudomomentum and kinetic en-
ergy. On the other hand, configurational-force-based computational algorithms are devel-
oped. At first, configurational forces are exploited in the context of topology optimization.
The theoretical basis is provided by a dual variational formulation of finite elastostatics.
This scenario is applied to the r-adaptive optimization of finite element meshes and the
optimization of truss structures. In the second step, a configurational-force-based strategy
for h-adaptivity is presented. The discrete version of the material balance equation is ex-
ploited to formulate global and local refinement criteria controlling the overall decision on
mesh refinement and the local refinement procedure. The method is specified for problems
of finite elasticity and plasticity including thermal and dynamical effects as well. Finally,
a configurational-force-driven procedure for the simulation of crack propagation in brittle
materials is introduced. The algorithm bases on the separation of the geometry model
and the finite element mesh. The process of crack propagation is carried out by a struc-
tural update of the underlying geometry model. The generation of the new triangulation
incorporates a configurational-force-based adaptive refinement criterion. The capabilities
of the derived algorithms are demonstrated by means of a variety of numerical examples
including the comparison with benchmark analyses and experimental observations.

Zusammenfassung

Die vorliegende Arbeit verfolgt zwei Hauptziele. Einerseits werden theoretische Ansätze
der Konfigurationsmechanik erarbeitet. Für inelastische Probleme werden die räumlichen
und materiellen Gleichgewichtsbedingungen aus einer globalen Dissipationsanalyse herge-
leitet. Im dynamischen Fall wird eine Variationsformulierung basierend auf dem Hamilton-
schen Prinzip betrachtet. Dieses Vorgehen induziert die lokalen Bilanzen des räumlichen
Impulses, des materiellen Pseudoimpulses und der kinetischen Energie. Andererseits wer-
den konfigurationskraft-basierte numerische Algorithmen entwickelt. Zunächst werden
materielle Kräfte im Rahmen der Topologieoptimierung genutzt. Die Basis bildet eine
duale Variationsformulierung der finiten Elastostatik, die hinsichtlich der r-adaptiven
Optimierung von Finite-Elemente-Netzen und der Strukturoptimierung von Fachwerken
spezifiziert wird. Im zweiten Schritt wird eine konfigurationskraft-basierte h-adaptive
Strategie vorgestellt. Ausgehend von der diskreten Form der materiellen Bilanzgleichung
werden globale und lokale Kriterien entwickelt, die die Verfeinerungsprozedur steuern.
Das Konzept wird auf Probleme der finiten Elastizität und Plastizität angewandt, wobei
thermische und dynamische Effekte ebenfalls berücksichtigt werden. Schließlich wird ein
konfigurationskraft-getriebenes Verfahren zur Simulation von Rißfortschritt in spröden
Materialien eingeführt. Der Algorithmus basiert auf der Trennung von Geometriemod-
ell und Triangulierung. Das Rißwachstum wird durch Aufdatierung des zugrundeliegen-
den Geometriemodells abgebildet. Die Neuvernetzung schließt ein konfigurationskraft-
basiertes Verfeinerungskriterium ein. Die Leistungsfähigkeit der entwickelten Algorithmen
wird mittels einer Vielzahl numerischer Beispiele, die auch die Vergleiche mit Benchmark-
Untersuchungen und experimentellen Beobachtungen beinhalten, bewiesen.
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Introduction 1

1. Introduction

The objective of the present work is the investigation of some specific aspects of configu-
rational mechanics. On the one hand, attention is focused on the presentation of two
conceptual approaches towards the theoretical description of the configurational setting
of finite thermo-inelasticity and structural dynamics. On the other hand, the work is
devoted to the development of numerical algorithms and their application to particular
problems of computational mechanics.

1.1. Motivation and State of the Art

In recent years, configurational mechanics, often also denoted mechanics in material space,
has become a generic term with regard to the study of inhomogeneities. This concept is
naturally linked to the notion of material or configurational forces. The fundamental ideas
date back to the pioneering works of Eshelby [42, 43, 44], who in fact never used this
expression. To set the stage, the basic features of Eshelby’s concept of a force acting on
a singularity or an inhomogeneity are briefly recapitulated in Appendix A.

Configurational mechanics or, in other words, the theory of configurational forces has
proven to be appropriate to handle all kinds of inhomogeneities or defect situations with
the most prominent application being in fracture mechanics. In general, an inhomogeneity
is defined as a defect in the translational invariance of material properties with respect
to the material manifold. Consider for instance an elastic body with defects in the form
of e.g. dislocations, voids, inclusions or cracks. The inhomogeneity is characterized by an
explicit dependence of either the mass density ρ0 or the energy density ψ on the material
position X of the material particle. Vice versa, ∂Xρ0 = 0 and ∂Xψ

expl = 0 state the con-
ditions for the homogeneity of the material. Besides these true material inhomogeneities
so-called quasi-inhomogeneities exist, cf. Maugin [104], such as field singularities in the
sense of singular lines in fracture mechanics or singular surfaces associated with phase
transitions, and also thermal effects, evolving inelastic deformation or the evolution of
micro-structures. Most remarkably, even the discretization, e.g. the triangulation via a
finite element mesh, of an in other respects homogeneous body induces an artificial in-
homogeneity. This is reflected by the occurrence of discrete configurational nodal forces
indicating the inaccuracy of the respective finite element mesh.

A change in the material position of the defect, i.e. a structural change within the material
setting of a body, can be described by means of the material configurational map. It rep-
resents a time-dependent parameterization of the reference configuration B irrespective
of the question whether the material body as a whole moves with respect to its spatial
setting. This movement of the defect with respect to the ambient material comes along
with a change in the energetic state of the system. Configurational forces are the energet-
ically dual objects to these configurational changes in the sense that in common thinking
the change of energy with respect to the change of position defines a force. In particular,
configurational forces define an energy release associated with the translation of the defect
in the material space. Since material forces are related to a variation of the point in the
material space at fixed position in the physical space, they are the dual objects to the
usual physical forces generated by changes in the actual physical placement keeping the
material framework fixed. It is a remarkable circumstance that in contrast to the spatial
viewpoint, where a physical force causes a spatial displacement, in the material setting
the reasoning is just opposite, namely a material displacement corresponding to a change
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in energy implies a change in the configurational force acting on the defect.

Inspired by the seminal works of Eshelby, the investigation of the configurational setting
of continuum mechanics gave rise to lively research activities. Thereby, the dependence on
the material coordinate necessitates the formulation of balance equations in the material
space. The fundamental material balance law is the equation of material motion with its
ingredients being the material pseudomomentum, the configurational volume force and the
energy-momentum tensor. This purely material second order tensor is nowadays, to the
honor of Eshelby, often denoted the Eshelby (stress) tensor. It was originally introduced
by Eshelby himself, who used at first, Eshelby [42], the notation Maxwell tensor of
elasticity and later on, Eshelby [43, 44], the term energy-momentum tensor, see also
Chadwick [30] and Hill [69] for additional aspects and applications.

Several approaches towards the theoretical description of configurational mechanics have
been developed in the literature. The references quoted below display just a few selected
publications among lots of interesting and expedient contributions available on this broad
topic. Therefore it is worth mentioning that further literature will be referred to in the
respective paragraphs of this work.
The notion of an inverse motion has been exploited by Maugin, e.g. [99, 103]. It relies
on the parameterization of the reference coordinates in terms of their spatial counterparts
and the time. The material balance appears as a projection of the usual equation of spatial
motion onto the material manifold by means of premultiplication with the transpose of
the deformation gradient.
Moreover, Steinmann, e.g. [171, 172, 174], emphasized the duality between the direct
and the inverse motion problem, cf. Shield [159], Ogden [140] and Ericksen [41], and
developed a sound formalism for the transition between the spatial and material settings.
A variational approach is presented e.g. in Kienzler & Herrmann [76], whose consid-
erations base on the application of Noether’s theorem, Noether [139], cf. Gupta [58]
and Li & Gupta [93] for further informations. The material field equations represent
the Euler-Lagrange equations of a variational principle upon variation with respect to the
reference coordinates. To be specific, Noether’s reasoning implies the existence of conserva-
tion laws in terms of certain invariants conditions, see also the contributions of Knowles

& Sternberg [78], Fletcher [46], Golebiewska Herrmann [52], Olver [143, 144],
Li [94] and Buggisch, Gross & Krüger [25]. In fact, the treatments of the latter work
base on the translational invariance of the energy equation and can be seen as the global
counterpart of Eshelby’s local procedure.
The probably most controversially discussed approach is due to Gurtin, e.g. [60, 61],
who introduced the material balance equations as independent balance laws. This is in
contrast to the afore-mentioned strategies which rely on a rearrangement of known spa-
tial expressions. The crucial difference arises from the fact that the material balance is
obtained based on invariance properties without invocation of a constitutive relation.
Irrespective of the conceptual approach, the configurational description does not pose a
new physical problem at least in the continuous framework but induces an additional
set of equations dual to those of the spatial setting and hence allows for a much deeper
understanding of continuum mechanics.

The idea of forces in the material space resulting in the notion of configurational forces in
the sense of driving forces acting on inhomogeneities and defects within the material set-
ting has been elaborated e.g. by Rogula [153], Batra [12], Maugin & Trimarco [110],
Maugin [99], Dascalu & Maugin [33], Gurtin [60] and Steinmann [171].
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A typical example is the Peach-Koehler force, i.e. the force on the singularity of an elastic
distortion in crystals. The study of the movement of dislocations in crystals is related
to the idea of local structural rearrangements, cf. Epstein & Maugin [37, 38, 40, 39],
Epstein [36] and Steinmann [173]. The thermodynamical dual of the structural changes
is the Eshelby stress tensor while the translation of the dislocation associated with change
in the energetic state of the system causes a material force acting on the singularity.
The concept of material forces is naturally linked to the investigation of path integrals and
energy release rates in the context of fracture mechanics as discussed by Günter [57],
Rice [152], Budiansky & Rice [24], Gurtin [59], Golebiewska Herrmann [53] and
later on by Maugin & Trimarco [110] and Gurtin & Podio-Guidugli [62, 63].
The description of thermo-elastic effects is provided by Epstein & Maugin [38], Das-

calu & Maugin [34] and, using Gurtin´s viewpoint, Kalpakides & Dascalu [74].
An extension to thermo-inelasticity is due to Maugin & Berezovski [108] including
the fully dynamical framework and Cleja-Tigoiu & Maugin [32]. In view of prob-
lems of (elasto-)plasticity Maugin [105, 106, 101] discussed the influence of the energy-
momentum tensor and reported on the application to ductile fracture mechanics. A view
on the configurational description of multiplicative elasto-plasticity is given in the recent
contribution of Menzel & Steinmann [116] as well.
Further developments with regard to dynamical problems can be found in the works
of Maugin [99, 100] or Steinmann [172, 174] while Maugin [102] and Gurtin &

Shvartsman [64] study the application of configurational forces in dynamical fracture
mechanics. In addition, Kuhl & Steinmann [85] worked out a variational arbitrary
Lagrangian Eulerian (V-ALE) formulation of hyperelastodynamics.

Turning next to the impact of configurational forces in computational mechanics, the
main areas of application are numerical fracture mechanics, structural optimization and
adaptivity including both mesh optimization and refinement techniques.
The numerical treatment dates back to the seminal work of Braun [21] showing material
forces induced by a finite element discretization. Later on, Steinmann, Ackermann

& Barth [175], Müller, Kolling & Gross [133] and Müller & Maugin [134]
developed various aspects of the algorithmic setting and the numerical implementation
by means of the finite element method. Numerical examples are concerned with fracture
mechanics, namely the numerical evaluation of the J-integral, mesh improvement in the
sense of r-adaptivity and inclusion-matrix problems, see also Gross, Kolling, Müller

& Schmidt [56] and Steinmann & Maugin [176] for a spectrum of applications.
Basically, the numerical approaches can be classified in two groups. The first one are vari-
ational ALE formulations. They base on the simultaneous variation of both the spatial
and material coordinates and result in a simultaneous equilibration of Newtonian and
Eshelbian forces. These method is mainly applied in the context of r-adaptive mesh im-
provement, e.g. Kuhl, Askes & Steinmann [83], Askes, Kuhl & Steinmann [8],
Thoutireddy & Ortiz [182] and Mosler & Ortiz [130, 131], with the latter one
taking into account inelastic effects as well. The extension to structural optimization
of truss structures is due to Askes, Bargmann, Kuhl & Steinmann [7] whereas
Zielonka [191] suggests a variational ALE approach incorporating the application of
variational time integrators in view of the simulation of dynamical problems.
The second concept exploits the discrete version of the material balance equation as a
postprocessing procedure subsequent to a standard spatial computation. This attempt
has actually been used within the afore-mentioned quotations. Based on this method-
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ology, the thermo-elastic framework has been investigated by Kuhl, Denzer, Barth

& Steinmann [84] while the inelastic setting is studied e.g. by Liebe, Denzer &

Steinmann [88], Menzel, Denzer & Steinmann [115] and Nguyen, Govindjee,

Klein & Gao [138]. Material-force-based h-adaptive finite element strategies have been
proposed by Müller, Gross & Maugin [132] in finite elasticity and Miehe & Zim-

mermann [127] in view of problems of finite deformation elasticity and inelasticity.
Material-force-driven algorithms for the simulation of crack propagation can be found e.g.
in the contributions of Larsson & Fagerstroem [87], Fagerstroem & Larsson [45]
and Heintz [67] as well as in Miehe & Gürses [123], Miehe, Gürses & Birkle [124]
and Miehe & Zimmermann [128] in combination with r- or h-adaptive strategies.

1.2. Overview and Outline

The first part of the thesis is mainly concerned with the theoretical formulation of con-
figurational mechanics. One goal is the analysis of the configurational setting of solids
that include dissipative effects, primarily the framework of thermo-inelasticity but also,
as it will be shown later on in this work, crack propagation in elastic bodies. The second
objective is the investigation of configurational solid dynamics. To be specific, two funda-
mental approaches are presented. While the second one turns out to be a true variational
formulation, the first one proves to be close to a variational setting.

The investigations of Chapter 3 are devoted to the configurational setting of non-
isothermal inelasticity. The analyses focus on a general inelastic response of the solid and
are based on energetic arguments. The key aspect is the formulation of the global dissipa-
tion postulate. Using this dissipation postulate, the spatial and material field equations
are derived in the sense of a Coleman-type exploitation method. The remaining reduced
dissipation inequality serves as the point of departure for the derivation of an evolution
equation for the internal variable governing the inelastic response of the material. For the
thermo-mechanically coupled problem under consideration, an evolution equation for the
temperature field is developed starting from the balance of internal energy. Subsequent to
the continuous framework, the discrete setting is elaborated. A staggered solution strategy
is proposed with the material balance equation being used as a postprocessing tool. In
view of the algorithmic treatment, particular emphasis is laid on the evaluation of discrete
configurational nodal forces. Finally, the fundamental equations are specified with regard
to the model problem of thermo-crystal-plasticity and a representative boundary value
problem is solved in order to discuss the essential properties of the current formulation.

In Chapter 4 the configurational framework of structural solid dynamics is outlined. The
theoretical basis is provided by well-known Hamilton’s principle. The necessary condition
of this principle demands a vanishing first variation of the action functional. The variation
is carried out with respect to the three primary variables, namely the spatial and material
coordinates as well as the time. The Euler-Lagrange equations of the variational formu-
lation represent the local formats of the balances of spatial linear momentum, material
pseudomomentum and kinetic energy. The conceptual procedure used for the derivation
of the local balance equations is shown to be close to the application of Noether’s theo-
rem, Noether [139]. The discrete setting once more incorporates the material balance
law as a postprocessing procedure. The important effects are highlighted by means of the
analysis of a descriptive boundary value problem.

Both procedures are characterized by the fact that they are governed by just one scalar
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equation and thus, subjected to the condition that they are used in the sense of a principle,
allow for a compact description of a broad class of mechanical problems.
In the second part of this work, three particular fields of the application of configurational
mechanics or rather configurational forces are investigated in detail.

Chapter 5 covers the use of configurational forces in the context of topology optimiza-
tion. Attention is restricted to the framework of isothermal elasticity. The fundamental
equations are obtained by a dual spatial-material variational formulation based on the
principle of minimum potential energy. Both the continuous as well as the discrete setting
are elaborated by means of the two theoretical approaches introduced in the previous
chapters. Rather than using the material branch of the variational setting as a postpro-
cessing tool, the dual problem is solved simultaneously for the unknown variables, namely
the spatial and material coordinates. For the solution of this coupled problem, different
solution strategies are presented. At first, the procedure is specified with regard to the
optimization of finite element meshes corresponding to a r-adaptive refinement strategy.
Secondly, the optimization of truss structures in analyzed. In this scenario, the optimiza-
tion process appears as a methodology of structural optimization. Numerical examples
are presented to demonstrate the capability of the optimization procedure.

Chapter 6 sets up a configurational-force-based h-adaptive strategy. While in the con-
tinuous setting the dual spatial and material balance equations are entirely equivalent,
i.e. in case the spatial balance is satisfied, the material balance is automatically fulfilled
as well, in the discrete setting this equivalence is broken. This characteristic motivates the
use of these out of balance equations, or rather out of balance nodal forces, as an indicator
for the accuracy of the underlying discretization, in the present context the triangulation
by means of a finite element mesh. A global criterion and a local refinement indicator
are introduced with the first one governing the global decision on mesh refinement and
the latter one controlling the local refinement process. The adaptive strategy is recast
into a staggered solution scheme. In the first step the spatial problem is solved. Then,
in a material postprocessing, the accuracy of the triangulation is estimated and, if nec-
essary, the refinement process including the process of mesh generation and the mapping
of the solution data is executed. The whole procedure is adjusted to the particular cases
of finite elasticity and thermo-inelasticity and applied to representative boundary value
problems in both two and three dimensions. Finally, the procedure is specified with regard
to dynamical problems.

Chapter 7 discusses a configurational-force-based procedure for the simulation of crack
propagation in brittle materials. The theoretical framework bases on the global dissipation
analysis adjusted to the framework of elastic fracture mechanics. Upon application of the
Coleman-type exploitation method, the dissipation principle degenerates to the reduced
dissipation inequality. Using the principle of maximum dissipation locally at the crack tip,
the procedure results in a crack propagation law. Once again a staggered solution strategy
is proposed. The material postprocessing bases on the separation of the geometry model
and the finite element mesh. The configurational-force-driven crack propagation process
is preformed on the geometry model in the sense of a structural update. This scenario is
accompanied by h-adaptive remeshing of the geometry ensuring an appropriate resolution
of the crack tip zone. The capability of the method to capture arbitrary crack paths and
even multiple cracks is demonstrated by means of a variety of numerical examples.
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2. Fundamentals of Continuum Mechanics

Before starting with the main developments of this contribution, in this chapter a short
survey of fundamental aspects of continuum mechanics is given. Furthermore the notation
used throughout the thesis is introduced. Without claim of completeness, the author
refers to the monographs of Malvern [95], Truesdell & Noll [185] and Marsden

& Hughes [98] for a detailed discussion of the topic. More recent publications on this
issue are e.g. Holzapfel [71], Haupt [66] and Başar & Weichert [11], among others.
Subsequent to the description of the kinematics of a material body at finite deformations,
the concept of stresses and heat flux is presented. Finally, some essential balance laws are
considered being of major interest within the forthcoming sections.

2.1. Finite Kinematics

Kinematics deals with the purely geometrical description of the motion and the deforma-
tion of material bodies. To be specific, the kinematics of a body undergoing finite defor-
mations is analyzed. The investigations conceptually rely on the terminology of modern
differential geometry.

2.1.1. Motion of a Material Body. A material body B is a physical object consisting
of specific physical properties such as texture, stiffness, etc. defining its material behavior.
B is considered to be an open set of infinitely many material points P ∈ B which are in
a one-to-one relationship to a subset of the Euclidean space E3. The placement of the
material body within the E3 is characterized by the map

χ :

{
B× R→ E

3

(B, t) 7→ χ(B, t).
(2.1)

At frozen time t the map χt uniquely maps a material point P onto a coordinate triple
x ∈ E3 with respect to a global Cartesian frame {Ei}i=1,2,3. The images x = χt(B) of all
material points P of the material body B define the actual configuration S of B referred to
as the current, spatial or Eulerian configuration. As visualized in Figure 2.1, the motion of

E
3

St0 =: B

St1

St2

xt0

xt1

xt2

χt0

χt1

χt2

B
P

path of P

Figure 2.1: The placement of the material body B within the Euclidean space E3 is governed
by the map χ defining the current configuration S. The motion of the material body is
described by a sequence of configurations. Typically, the motion is related to the reference
configuration B obtained from χt0 at time t0.

the material body is described by a sequence of configurations, while a particular material
point P moves along a path of current placements x = χP(t) within the Euclidean space.
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It is convenient to relate the motion of the material body to a specific configuration B
referred to as the reference, material or Lagrangian configuration. Following traditional
continuum mechanics, the reference configuration is associated with the initial state at
time t0

χt0 :

{
B→ B ⊂ E

3

P 7→X = χt0(P).
(2.2)

The reference configuration assumes the material body in a natural state without strains
or stresses in the absence of physical forces. The placement of the material point P is given
by the Lagrangian coordinates X ∈ B ⊂ E3 with respect to the global Cartesian frame
{Ei}i=1,2,3. Based on the introduction of a reference configuration, a relative motion of
material points is described by the non-linear point or deformation map

ϕt :

{
B → S
X 7→ x = χt ◦ χ

−1
t0

= ϕt(X).
(2.3)

In general, ϕ is parameterized in the Lagrangian space-time, i.e. the four-dimensional
manifold of space-time events (X, t), ϕ(X, t). The short cut ϕt(X) characterizes the
representation of the general map ϕ(X, t) for a specific time t.

Remark 2.1: Observe that in the present section the restriction to a fixed reference con-
figuration B with time-independent material coordinates X = const. holds. This leads to
a purely spatial description of the motion and deformation of the material body. Starting
with the following section, this limitation is omitted and all the considerations are ex-
tended to a non-constant, time-dependent evolving reference configuration corresponding
to a dual material or configurational description of the motion and deformation of the
material body.

2.1.2. Dual Bases and Metric Tensors. In addition to the global Cartesian frame
{Ei}i=1,2,3 an arbitrary three-dimensional Eulerian basis {gi}i=1,2,3 is introduced. The
vectors gi are linearly independent and in general not necessarily of unit length. Fur-
thermore, a dual basis {gi}i=1,2,3 is defined. Both bases are linked via the property
gi · g

j = δ j
i . Representing the Eulerian position x in terms of curvilinear coordinates

θi which are oriented along material lines deforming with the body in the spatial config-
uration, x = xi(θ1, θ2, θ3)Ei, the dual bases are obtained by

gi := ∂θix = ∂θixj(θ1, θ2, θ3)Ei and gi := ∂xθ
i = ∂xjθi(x1, x2, x3)Ej . (2.4)

The same ideas yield to dual Lagrangian bases {Gi}i=1,2,3 and {Gi}i=1,2,3. A relation
between the co- and contravariant bases is given by the metric coefficients. For instance,
the covariant Eulerian metric coefficients gij decompose the covariant basis {gi} in the
direction of the contravariant basis {gi} and vice versa

gi = gijg
j and gi = gijgj. (2.5)

The inner products of the co-/contravariant basis vectors yield the identities

gi · gj = gikg
k · gj = gikδ

k
j = gij and gi · gj = gikgk · g

j = gikδ j
k = gij. (2.6)

The associated metric tensors G = GijG
i ⊗ Gj and g = gijg

i ⊗ gj of the Lagrangian
and Eulerian configuration describe the mapping between the dual frames {Gi}, {G

i}
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G gG−1 g−1

{Gi} {gi}

{Gi}
{gi}

Figure 2.2: The Lagrangian metric G governs the mapping between the covariant and the

contravariant Lagrangian bases Gi and Gi, respectively. In the spatial configuration the
map between co- and contravariant bases gi and gi is described by the Eulerian metric g.

and {gi}, {g
i}, respectively, see Figure 2.2 for a visualization. The links between the La-

grangian covariant basis {Gi} and its Eulerian counterpart {gi} and, in analogy, between
the contravariant frames are given by

gi = FGi and gi = F−T Gi (2.7)

in terms of the two-field tensor F . This transformation tensor consists of the sum of
dyadic products of corresponding basis vectors

F = gi ⊗Gi and F−T = gi ⊗Gi. (2.8)

Figure 2.3 deals with a sketch of the mapping property of the transformation tensor F .

F

F−1

F−T

F T

{Gi} {gi}

{Gi}
{gi}

Figure 2.3: The transformation tensor F , later on identified as the deformation gradient,
maps the covariant Lagrangian basis vectors Gi onto their Eulerian counterparts gi, whereas
the transposed inverse of F governs the mapping between the contravariant basis vectors.

2.1.3. The Deformation Gradient. The fundamental quantity in the kinematics of
finite deformation is the deformation gradient F . Recalling definition (2.3) of the non-
linear point map ϕt, the deformation gradient is defined by the Fréchet derivative of ϕt

with respect to the material coordinate X

F (X) := ∇Xϕt(X). (2.9)

As it has been pointed out above, ϕ is in general a function of the Lagrangian space-time
(X, t). Hence, definition (2.9) is to be understood as the partial derivative of the motion
with respect to the space X, i.e. F = ∂ϕ(X, t)/∂X . The deformation gradient F is
considered as a linear mapping of vectors, it maps tangent vectors T ∈ B to material curves
onto tangent vectors t ∈ S to deformed spatial curves. Using the dual bases introduced
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in the previous section, the covariant bases {Gi}, {gi} span the tangent spaces TXB and
Tx S of the Lagrangian and Eulerian configuration. These three-dimensional vector spaces
contain locally at one material point all tangent vectors to every material or spatial curve.
Thus F governs the following mapping procedure

F :

{
TXB → Tx S
T 7→ t = FT .

(2.10)

In this sense, definition (2.9) of the deformation gradient coincides with its definition
(2.8) based on its property as the link between the covariant bases within the Lagrangian
and Eulerian configuration. Note that in this representation the deformation gradient is
written purely in terms of the basis vectors. Hence, the information about the deformation
of the material body is exclusively carried within these basis vectors.
In the next step, a material area element is considered. It is defined by the vector product
of two infinitesimal material line elements, i.e. dA = dX × dX̄ = dA N in terms of
the Lagrangian normal or co-vector N . Its Eulerian counterpart is obtained by Nanson´s
formula da = da n = cof[F ] dA in terms of the cofactor cof[F ] := det[F ]F−T of the
deformation gradient. Neglecting the scalar quantities of the area map, F−T maps normals
to material area elements onto normals to deformed spatial area elements. Recalling again
the introduction of general bases, the contravariant bases {Gi}, {gi} span the cotangent
spaces T ∗

XB and T ∗
x S of the Lagrangian and Eulerian configuration. These cotangent

spaces are three-dimensional vector spaces containing locally at one material point all
normal vectors to every material or spatial area. In analogy to (2.10) the normal map can
be written in the following manner

F−T :

{
T ∗

XB → T ∗
x S

N 7→ n = F−T N .
(2.11)

Note that in the sense of the ideas outlined before, the tangent and cotangent spaces
within one configuration (Lagrangian or Eulerian) are related by the respective metric
tensor in the sense of a change of basis.
Finally, an infinitesimal material parallelepiped is spanned by three infinitesimal material
line elements. The scalar material volume is given by dV = (dX×dX̄) ·dX̃. The Eulerian
counterpart is obtained by multiplication with the Jacobian J , i.e. the determinant of the
deformation gradient

J := det[F ] :

{
R→ R

dV 7→ dv = J dV.
(2.12)

The Jacobian J poses restrictions to the deformation gradient. To guarantee a one-to-one
bijective relation between material and spatial position X and x, J needs to be non-equal
to zero. To preclude penetration of material, J has to be greater than zero.
The deformation gradient is the key ingredient for the kinematics of finite deformations as
it describes the deformation state locally at every material point of the material body. In
Figure 2.4 the key mappings between the covariant tangent spaces and the contravariant
cotangent spaces at a material point in its reference position X and its deformed spatial
position x are visualized.
The kinematics of finite deformation discussed so far is carried out in terms of gen-
eral curvilinear coordinates. An alternative approach, used throughout this thesis, is
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F

F−T

G g

TXB

T ∗
XB

Tx S

T ∗
x S

T t

N n

Figure 2.4: Fundamental mappings between the different vector spaces. The deformation

gradient F maps elements of the tangent spaces whereas the transposed inverse F−T acts
between the cotangent spaces. The mapping between the tangent and cotangent spaces of
one single configuration is described by the metric tensors.

to formulate the whole setting with respect to just one global Cartesian frame, i.e.
{Gi} = {gi} = {Ei}. In order to avoid confusion, the differentiation between the La-
grangian and Eulerian tangent and cotangent spaces is retained. To do so, the different
vector spaces are assumed to be spanned by the Cartesian frames {Ei}, {E

i}, {ei} and
{ei} which coincide but are differentiated for the sake of clarity. The metric tensors boil
down to the identity maps

G = δABEA ⊗EB and g = δabe
a ⊗ eb

G−1 = δABEA ⊗EB and G−1 = δabea ⊗ eb

(2.13)

and thus do no longer contain any information about the current deformation state but
are used as mappings between tangent and cotangent spaces. They can be interpreted as
index lowering or raising procedures of co- and contravariant objects. The definition (2.9)
of the deformation gradient still holds but its representation changes to

F = F a
Aea ⊗EA. (2.14)

Again, the basis does no longer contain any information about the deformation but all
these informations are stored in the mixed-variant coordinates F a

A.

2.1.4. Strain Tensors. Consider a material direction T with basepoint X and property

|T |G = (TGT )
1
2 = 1. The stretch vector λ with respect to T is defined by the directional

derivative of the non-linear point map ϕt, i.e. the change of deformation in the direction
T , yielding the relation λ = FT . Since λ is an Eulerian object, its length is measured
with respect to the current metric g. The stretch itself is obtained by

λ = |λ|g = (λgλ)
1
2 = (TF T gFT )

1
2 = (TCT )

1
2 = |T |C. (2.15)

Here, the second order tensor C denotes the right Cauchy Green tensor representing the
Lagrangian representation of the Eulerian metric g. Formally, C is written as

C = ϕ∗(g) = F T gF (2.16)

where ϕ∗(•) represents the pull-back of the Eulerian object (•). In strict duality a push-
forward operation ϕ∗[•] is defined that characterizes the Eulerian representation of a
Lagrangian object [•]. In analogy to (2.16) the left Cauchy Green tensor is established

c = ϕ∗(G) = F−T gF−1 (2.17)
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being the Eulerian representation of the Lagrangian metric G. Its inverse is referred to
as the Finger tensor b := c−1 = FG−1F T .
With the objective of measuring strains locally at a material point, the length of an
infinitesimal line element is compared in both its reference as well as its current state

δ := 1
2

[
|dx|2g − |dX|

2
G

]
= dXE · dX = dxe · dx. (2.18)

Apparently, this comparison can be carried out either in the Lagrangian or in the Eulerian
setting. On the one hand the Lagrangian Green strain tensor E = 1

2
[C −G] and on the

other hand the Eulerian Almansi strain tensor e = 1
2
[g − c] are obtained. In general,

a strain tensor compares the reference and current metric tensors within one specific
setting. This allows for the generalization of the just-mentioned strain tensors to a family
of generalized strain measures, cf. Truesdell & Toupin [186],

Em = 1
m

[
C

m
2 −G

]
and em = 1

m

[
g − c

m
2

]
for m 6= 0

E0 = ln[C] and e0 = ln[c] for m = 0.
(2.19)

The Green and Almansi strain tensors are obtained for m = 2 and the logarithmic strains
m = 0 are denoted Hencky strains. In general, strain tensors do not include any informa-
tion about the rotational part of the deformation but only about stretches and changes of
angles. This can be verified by considering the polar decomposition F = RU = vR of the
deformation gradient into a rotation tensor R and a positive definite symmetric stretch
tensor, i.e. U referred to as the Lagrangian right stretch tensor or v representing the
Eulerian left stretch tensor. Inserting this decomposition into the right and left Cauchy

Green tensors, one ends up with the relations C = U
1
2 and c = v

1
2 . By substitution of

these results into definition (2.19) it is rather obvious that strain tensors do not include
any information about rotation.

2.1.5. Time Derivatives of Material and Spatial Objects. Remember definition
(2.3) of the non-linear deformation map. It was said to be in general a function of the
Lagrangian space-time (X, t). The material velocity V (X, t) is the partial derivative of
the motion with respect to the time t at fixed material positions. V is the dual object to
the deformation gradient F representing the partial derivative of the motion with respect
to the space X, cf. (2.9). Observe that V refers to the current configuration S as it
characterizes the temporal change of the motion of a material body but is parameterized
in the Lagrangian space-time (X, t). By contraction with the inverse ϕ−1

t of the non-
linear point map, the velocity is re-parameterized by the current coordinates x yielding
the spatial velocity field v(x, t)

V (X, t) =
∂

∂t
ϕ(X, t) and v(x, t) =

∂

∂t
ϕ(X, t) ◦ϕ−1

t (x). (2.20)

In analogy to the Lagrangian space-time (X, t), the manifold of events (x, t) is referred
to as the Eulerian space-time. It is emphasized that the velocity fields V and v represent
the same vectorial quantity and thus exhibit the same physical meaning as they both
display the velocity of a material point in the current configuration. They are Eulerian
spatial objects and just differ by their parameterization. With this argument at hand, it
is supposed to be appropriate to apply solely the denotation v for this spatial quantity
irrespective of its parameterization.
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The distinction between a time-independent reference configuration, assumed for the time
being, and a non-constant time-dependent material configuration, to be adopted within
the investigations to follow, demands a concise notation with regard to the time deriva-
tives. The temporal change of an object (•) at an arbitrary but fixed material position is
given by its material or total time derivative d/dt(•). The total time derivative of a spa-
tial field f(x, t) parameterized by the Eulerian space-time consists of a local part ∂f/∂t
and, due to its dependence on the time-dependent spatial coordinate x, a convective part
∇xf · v described by Leibniz´ formula

d

dt
f =

∂

∂t
f +∇xf · v (2.21)

In contrast, assuming a time-independent reference configuration X = const., the total
time derivative of a material quantity F (X, t) parameterized by the Lagrangian space-
time equals its partial time derivative, dF/dt = ∂F/∂t. However, focusing on non-constant
material positions X 6= const., this equivalence does not hold anymore, i.e. dF/dt 6=
∂F/∂t in general. Then, the total time derivative of a material object has to be evaluated
by application of Leibniz´ formula (2.21)

X = const. :
d

dt
F =

∂

∂t
f but X 6= const. :

d

dt
F =

∂

∂t
F +∇XF ·

∂

∂t
X. (2.22)

Herein, the very last factor can be replaced by the total time derivative ∂X/∂t = dX/dt
as the material coordinates X are a function of the time t at most. It is convenient to
introduce the alternative notation ∂F/∂t = dF/dt|X fixed for the partial time derivative
indicating that the material coordinates are assumed to be time-independent.
The same reasoning applies in the context of time differentiation of integral expressions.
To this end, consider the time derivative of an integral of an Eulerian object integrated
over the time-dependent current configuration S, or a part PS of S. As the integration
limit is time-dependent, differentiation and integration do not commute but product rule
has to be employed

d

dt

∫

PS

f(x, t) dv =

∫

PS

d

dt
f dv +

∫

PS

f
d

dt
dv =

∫

PS

d

dt
f + f div v dv. (2.23)

Observe that the time derivative of dv has been evaluated according to d(dv)/dt =
dJ/dt dV = div vJdV = div v dv = (1 : ∇xv)dv. For the total time derivative of f
Leibniz´ formula (2.21) is adopted. Then, by application of integration by parts (2.23)
can be transformed to the essential relation, often denoted Reynolds´ transport theorem

d

dt

∫

PS

f(x, t) dv =

∫

PS

∂

∂t
f + div [fv] dv =

∫

PS

∂

∂t
f dv +

∫

∂PS

f v · n da. (2.24)

Assuming a time-independent reference configuration, time differentiation and integration
do commute. Since the analyses of the upcoming chapters into account changes of the
reference configuration, (2.23) has to be used for the time derivative of an integral over
the reference configuration B as well. Observe that all the relationships provided in this
subsection also apply to vector- and tensor-valued quantities F (X, t) and f (x, t).

Remark 2.2: For the sake of abbreviation the notation ˙(•) = d(•)/dt is employed for the
total time derivative of an object (•). Currently, this does not pose any inconveniences
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as no differentiation between total and partial time derivative of a time-independent La-
grangian object is necessary. With regard to the formulations to follow a strict distinction
will be crucial. To avoid confusion later on, in some essential equations of this paragraph
the exact representation of the time derivative is displayed.

2.1.6. Velocity Gradients and Lie-Derivative. Consider the spatial stretch vector
λ = FT introduced above. Its material time derivative reads λ̇ = Ḟ T governed by the
material velocity gradient

L := Ḟ =
d

dt

∣
∣
∣
X fixed

∇Xϕ(X, t), (2.25)

reflecting the total time derivative of the deformation gradient for a time-independent
reference configuration X = const. On the other hand, the temporal change of λ in terms
of the current direction λ itself reads λ̇ = (Ḟ F−1)λ =: lλ. The spatial velocity gradient

l := Ḟ F−1 = ∇xv(x, t) (2.26)

characterizes a relative time derivative in the sense that l describes the relative change of
a spatial object with respect to its current state in the Eulerian configuration.
The Lie-derivative is the relative time derivative of a spatial object. It describes the
temporal change of the spatial object keeping the basis vectors fixed. In other words, the
Lie-derivative is associated with that part of the total time derivative observed by an
observer sitting in the moving frame of the current configuration. Considering a spatial
object (•), the Lie-derivative is defined by

Lv(•) := ϕ∗

[
d

dt

∣
∣
∣
X fixed

{ϕ∗(•)}

]

(2.27)

and thus evaluated in three steps. First, the Eulerian object is pulled back to the time-
independent reference configuration. The material time derivative of the Lagrangian object
is computed whereupon the resulting quantity is pushed forward to the spatial configura-
tion. In particular, the Lie-derivative Lvg of the current metric g coincides with the spatial
rate of deformation tensor d, i.e. the symmetric part of the spatial velocity gradient,

Lvg = lT g + gl = 2 sym[gl] = 2d. (2.28)

Recalling the duality between the current metric g and its material representation C,
i.e. the right Cauchy Green tensor, the material rate of deformation tensor D := 1

2
Ċ

corresponds to the Lie-derivative of g in the sense of dual Lagrangian-Eulerian objects
linked via pull-back and push-forward transformations.

2.2. Concept of Stresses and Heat Flux

Consider a material body in its deformed configuration S. With the objective of intro-
ducing the notion of stresses and heat flux an arbitrary part PS is cut out of the material
body, see Figure 2.5. Following the methodology of Euler´s cut principle, the effects of
the cut-off part onto PS are replaced by phenomenological quantities, namely the surface
traction t and the heat flux q̄n governing mechanical and thermal effects, respectively.
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q̄n

n

t

xx

Figure 2.5: Application of Euler´s cut principle. An arbitrary part PS is cut out of the
deformed material body. The effects of the cut-off part are replaced by the surface tractions
t and the heat flux q̄n.

2.2.1. Traction Vector. Stress Tensors. The surface traction t is obtained by taking
the limit of the ratio of the resultant force df acting on an infinitesimal area element
da of the cut-surface and the area element itself. According to Cauchy´s theorem, the
surface traction t at a point x of the cut-surface is a linear function of the normal n

characterizing the orientation of the cut-surface at that point

t(x, t,n) = σ(x, t)n. (2.29)

The Cauchy stress tensor σ relates the actual force acting on the cut-surface to the
deformed area element. For this reason the Cauchy stresses are also denoted true stresses.
Following the viewpoint of differential geometry, the surface traction t is an element of
the tangent space Tx S of the current configuration whereas the normal n is an element
of the respective cotangent space T ∗

x S. Hence, the Cauchy stress tensor is a covariant
Eulerian object and describes a mapping between the two vector spaces via

σ :

{
T ∗

x S → Tx S
n 7→ t = σn.

(2.30)

Multiplication of the Cauchy stresses σ with the determinant J of the deformation gra-
dient defines the weighted Cauchy or Kirchhoff stress tensor τ = Jσ.
Relating now the resultant force df acting on the cut-surface to an area element of the
undeformed Lagrangian surface, the limit results in the so-called nominal surface traction
vector t̃ being still an element of the Eulerian tangent space Tx S. In analogy to (2.29) a
linear relation between the nominal traction and the Lagrangian normal N is assumed
via the Cauchy-type relation

t̃ = PN . (2.31)

The nominal or first Piola-Kirchhoff stress tensor P is a mixedvariant two-field tensor and
is interpreted as a mapping between the cotangent space T ∗

XB of the reference configuration
and the tangent space Tx S of the current configuration

P :

{
T ∗

XB → Tx S

N 7→ t̃ = PN .
(2.32)

The resultant force acting on the cut-surface can be written in terms of the unde-
formed or the deformed area element yielding the identity df = tda = t̃dA. Recalling
Nanson´s formula introduced in the context of the deformation of area elements, i.e.
da n = cof[F ]dA N , the link between the true and nominal stresses is given by

P = JσF−T = τF−T . (2.33)
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Finally, the second Piola-Kirchhoff stresses S are introduced. S is the purely Lagrangian
covariant counterpart of the Eulerian Kirchhoff stresses τ . It can be seen as a mapping
between the cotangent space T ∗

XB and the tangent space TXB of the reference configuration
and is defined by the pull-back operation

S := F−1τF−T . (2.34)

Figure 2.6 summarizes the mapping properties of the alternative stress measures. Note

F

F−T

S σ, τP

TXB

T ∗
XB

Tx S

T ∗
x S

t̃t

N n

Figure 2.6: The alternative stress measures are interpreted as mappings between the re-
spective vector spaces. The second Piola-Kirchhoff stresses S and the Kirchhoff stresses τ are
purely contravariant Lagrangian and Eulerian objects, respectively. The first Piola-Kirchhoff
stress tensor P is a mixedvariant two-field tensor.

that the Lagrangian stress tensor is a purely geometric object and not equipped with
any physical meaning. In particular, no Cauchy type theorem in the sense of (2.29) and
(2.31) exists in the Lagrangian setting because the reference configuration is assumed to
be stress-free and no Lagrangian surface traction does exist a priori whereas the surface
tractions t and t̃ are Eulerian objects.

2.2.2. Heat Flux. Heat Flux Vector. The thermal effects of the cut-off part onto the
remaining part PS are described by the scalar heat flux q̄n. This field characterizes the
heat flux through the cut-surface in the direction of the outer normal n, see Figure 2.5.
It is a function of the normal vector n, the current position x and time t. In analogy
to Cauchy´s theorem (2.29) for the stresses, a linear dependence of the heat flux on the
normal is assumed via Stoke´s heat flux theorem

q̄n(x, t,n) = q(x, t) · n (2.35)

where q denotes the true or Cauchy heat flux vector defined per unit deformed area. Based
on the demand q · n da = Q ·NdA, i.e. relating the heat flux vector to the undeformed
area, the Lagrangian counterpart of q is introduced. Application of Nanson´s formula for
the relation between undeformed and deformed area elements results in the identity

Q = JF−1q. (2.36)

The material object Q is referred to as the Lagrangian or nominal heat flux vector.

2.2.3. Stress Power and Material Work of Deformation. Based on the kinematic
objects and the stress measures defined in the previous sections, the stress power P̂ with
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respect to unit volume of the undeformed configuration can be expressed in three different
alternative representations

P̂ := P̃ : Ḟ = S : 1
2
Ċ = τ : 1

2
Lvg, (2.37)

i.e. the two-field, the Lagrangian, and the Eulerian formulation in terms of the dual
kinematic/kinetic objects (F , P̃ ), (C,S), and (g, τ ). Based on this definition, the total
work W needed for the deformation of an (in)elastic continuum can be computed for
applied essential boundary conditions via

W =

∫

B

w dV with w =

∫ t

0

P dτ (2.38)

where w is denoted the specific work at every point X ∈ B of the reference configuration.

Remark 2.3: According to (2.32), the first Piola-Kirchhoff stress tensor P = P aA is
a contravariant two-field tensor mapping normals N , i.e. Lagrangian covariant objects
NA, onto tractions t̃, i.e. Eulerian contravariant vectors t̃a. For the the stress power an
alternative mixedvariant representation P̃ = P̃ A

a of the nominal stresses is used dual to
the deformation gradient F = F a

A. Both versions are linked via the current metric, P̃ =
gP or P̃ A

a = gabP
bA. Within this thesis, the description is related to one single Cartesian

frame and the metric tensors coincide with the identity maps, cf. (2.13). Consequently, it
appears to be appropriate to renounce the distinction between both representations.

2.3. Physical Balance Principles

In this section the classical balance principles of continuum mechanics are discussed.
These balance laws describe the change of a particular physical quantity, such as mass,
momentum and energy, with respect to thermo-mechanical loading of the material body.
The principles are valid in all branches of continuum mechanics. They are applicable to
any material and must be satisfied for all times. At first, the integral representations valid
for any arbitrary part PS cut out of the material body are formulated. Upon application
of Gauss integration theorem and the localization theorem, these global statements are
transformed into local counterparts valid at every single point x ∈ PS of the cut-out part.

2.3.1. Balance of Mass. The subsequent considerations are restricted to closed systems
without mass transport through the boundary and without mass production inside the
material body. Assuming this, the mass of a cut-out part is defined in terms of the material
density ρ0 = dm/dV and the spatial density ρ = dm/dv. The balance of mass states that
the mass mPS

of an arbitrarily cut-out part of the body remains constant

d

dt
mPS

= 0 ⇒ mPS
=

∫

PS

ρ dv =

∫

PB

ρ0 dV = MPB
. (2.39)

Starting from this global format, its local counterparts can be derived by application of
the localization theorem and substitution of the rate expression dJ/dt = J div v

ρ0 − Jρ = 0 and
d

dt
ρ+ ρ div v = 0. (2.40)

The first statement is the Lagrangian version, valid for all material positions X ∈ PB,
and the second one refers to the Eulerian configuration and thus holds for all spatial
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positions x ∈ PB. Obviously, the current density depends on the Eulerian space-time,
ρ(x, t), whereas the reference density ρ0(X) is a function of the material coordinates X

at most. That is why the partial derivatives of the material density with respect to the
Lagrangian space-time event (X, t) read

∂

∂t
ρ0 =

d

dt

∣
∣
∣
X fixed

ρ0 = 0 but
∂

∂X
ρ0 = ∇Xρ0 6= 0 . (2.41)

The second equation accounts for possible inhomogeneities inside the material body. For
homogeneous material bodies it becomes ∇Xρ0 = 0 . Note that in case the partial time
derivative of the reference density does not vanish but ρ0 evolves in time by addition or
subtraction of matter, the theory captures the phenomena of growth or resorption.
With relationship (2.40)2 for the Eulerian density at hand, an enhanced version of a
vectorial representation of Reynolds´ transport theorem (2.24) can be written as

d

dt

∫

PS

ρ(x, t)f(x, t) dv =

∫

PS

ρ
d

dt
f dv. (2.42)

2.3.2. Balance of Linear Momentum. The linear momentum of a part PS of the
material body is defined by

IPS
=

∫

PS

v dm =

∫

PS

ρv dv =

∫

PS

i dv (2.43)

based on the physical linear momentum i(x, t) = ρv per unit volume of the current config-
uration. Obviously, the linear momentum can alternatively be formulated in the reference
setting simply by insertion of the volume map (2.12) and the local Lagrangian version of
the balance of mass (2.40)1. This induces the definition of the material representation of
the physical linear momentum I = ρ0v per unit volume of the reference configuration.
The balance of linear momentum states that the temporal change of the linear momentum
of a cut-out part PS of the body equals the resultant forces acting on this part

d

dt
IPS

= F PS
=

∫

PS

γ̄ dv +

∫

∂PSt

t̄ da. (2.44)

The resultant physical forces consist of a surface part in terms of the surface traction t̄

and a volume contribution governed by the spatial volume force γ̄ defined by the product
of the Eulerian density and a spatial acceleration field, γ̄ = ρb. On account of (2.42)
and by application of Cauchy´s theorem (2.29) as well as Gauss integration theorem this
global form can be transferred into the local expressions

DivP + γ̄0 = ρ0
∂

∂t
v and div σ + γ̄ = ρ

d

dt
v. (2.45)

These local balance equations have to be satisfied at every single point of the cut-out
part of the body and again are alternatively formulated with respect to the Lagrangian
and Eulerian configuration. For the Lagrangian statement, the physical volume force with
respect to unit volume of the reference configuration, γ̄0 = ρ0b, has been introduced.

Remark 2.4: Recalling the arguments provided in Section 2.1.5, the two-point formu-
lation (2.45)1 appears in the alternative format DivP + γ̄0 = ρ0dv/dt|X fixed indicating
that the time derivative of v has to be evaluated at fixed material positions. The use of
V instead of v would signify its parameterization by the Lagrangian space-time.
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2.3.3. Balance of Angular Momentum. The angular momentum of a part PS of the
material body with respect to the origin o of the basis is defined by

Do
PS

=

∫

PS

x× v dm =

∫

PS

x× ρv dv =

∫

PS

x× i dv. (2.46)

The balance of angular momentum states that the temporal change of the angular mo-
mentum of a cut-out part of the body equals the resultant moment acting on this part

d

dt
Do

PS
= MPS

=

∫

PS

x× γ̄ dv +

∫

∂PSt

x× t̄ da. (2.47)

The resultant physical momentum MPS
adopted in this equation does not introduce any

new physical quantities as an intrinsic spin or externally applied torques but just uses
the same entities compared to the linear momentum, i.e. the physical forces consisting of
volume and surface contributions γ̄ and t̄. Based on the global statement (2.47) mate-
rial and spatial local formats can be developed demanding the symmetry of the purely
Lagrangian and Eulerian stress tensors

S = ST and σ = σT . (2.48)

The latter identity also applies to the Kirchhoff stresses τ = τ T whereas the first Piola-
Kirchhoff stress tensor P is a non-symmetric tensor.

2.3.4. Balance of Energy. First Axiom of Thermodynamics. The energy E of a
part PS of the material body is defined in terms of the specific energy e per unit mass
and can be split up into a kinetic part K and an internal contribution U according to

E =

∫

PS

ρe dv =

∫

PS

1
2
ρv · v dv +

∫

PS

ρu dv = K + U (2.49)

with the specific internal energy u per unit mass. Focusing on thermo-mechanical investi-
gations, the balance of energy states that the temporal change of the energy of a cut-out
part PS of the body equals the sum of external mechanical and thermal power P and Q

d

dt
(K + U) = P +Q =

∫

PS

v · γ̄ dv +

∫

∂PSt

v · t̄ da +

∫

PS

ρr dv +

∫

∂PSh

−q̄n da. (2.50)

This balance equation is known as the first axiom of thermodynamics. The external me-
chanical power is governed by physical volume and surface forces whereas the thermal
power consists of a volume part in terms of the heat supply r and a surface term based
on the heat flux q̄n = q · n with the spatial heat flux vector q. The local counterparts of
this global balance read in their Lagrangian and Eulerian representations

ρ0
∂

∂t
e = Div [v ·P −Q] + v · γ̄0 + ρ0r and ρ

d

dt
e = div [v · σ − q] + v · γ̄ + ρr (2.51)

defined per unit mass of the reference or current configuration and the relation ∂e/∂t =
de/dt|X fixed being obvious.
The balance of kinetic energy is equivalent to the balance of linear momentum. In a purely
mechanical context it is not an additional requirement to be satisfied but it is a conse-
quence of the linear momentum balance. To exploit this fact in the thermo-mechanical
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framework, the local spatial form of linear momentum (2.45)2 is multiplied by the velocity
v and integrated over the cut-out volume. Some straightforward manipulations result in

∫

PS

ρv ·
d

dt
v dv =

∫

PS

v · γ̄ dv +

∫

∂PSt

v · t̄ dv −

∫

PS

σ : g∇xv dv. (2.52)

The left hand side displays the time derivative dK/dt of the kinetic energy. The right hand
side is governed by the mechanical power P and a part in terms of the covariant spatial
velocity gradient g∇xv = gl. Due to symmetry of the Cauchy stresses, its symmetric
part arises, namely the rate of deformation tensor, d = 1

2

[
gl + lT g

]
, cf. (2.28). Recalling

definition (2.37), the last term of (2.52) represents the global stress power recognizing that
the integration over the current volume is achieved by means of the identities σ = τ/J
and dv = JdV . Finally, the global form of the balance of kinetic energy reads

d

dt
K = P − S with S :=

∫

PS

σ : d dv. (2.53)

Substitution into the balance of total energy (2.50) renders the balance of internal energy

d

dt
U = Q+ S. (2.54)

again including the production term S. The localization procedure leads to

ρ0
∂

∂t
u = ρ0r − DivQ + P̃ : Ḟ and ρ

d

dt
u = ρr − div q + σ : d (2.55)

representing the local Lagrangian and Eulerian formats of the internal energy balance.

2.3.5. Balance of Entropy. Second Axiom of Thermodynamics. Entropy is one of
the fundamental state variables of thermodynamics. It is regarded as a measure of disorder
and randomness and governs the direction of a thermodynamical process. The entropy
H is defined in terms of the specific entropy η per unit mass. The rate of entropy input
Q bases on the entropy sources r̃ and the Cauchy entropy flux q̃ defined per unit time
and per unit mass and area of the current configuration. Typically, the entropy sources
r̃ = r/θ and the entropy flux q̃ = q/θ are related to the heat source r and the heat flux
vector q via the absolute temperature θ

H =

∫

PS

ρη dv , Q =

∫

PS

ρ
r

θ
dv −

∫

∂PSh

1

θ
q · n da. (2.56)

The difference between the temporal change of entropy and the rate of entropy input
determines the total entropy production Γ per unit time. This quantity is governed by the
specific entropy production γ per unit time and mass. The second law of thermodynamics
states that the entropy of an isolated system not in equilibrium will tend to increase over
the time. Thus, the entropy production is always greater than – or equal to – zero

Γ =

∫

PS

ργ dv =
d

dt
H −Q ≥ 0. (2.57)

Solving the local counterparts of this axiom for the entropy production γ yield the so-
called Clausius-Duhem inequality in its material and spatial representations

ρ0γ = ρ0η̇ − ρ0
r

θ
+

1

θ
DivQ−

1

θ2
Q · ∇Xθ ≥ 0

ργ = ρη̇ − ρ
r

θ
+

1

θ
div q −

1

θ2
q · ∇xθ ≥ 0.

(2.58)
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Introduction of the free Helmholtz energy Ψ per unit mass via the Legendre transformation
Ψ = u−θη induces the rate expression u̇ = Ψ̇+η̇θ+ηθ̇. The rate u̇ is governed by the local
format (2.55) of balance of internal energy. Substitution into (2.58) gives the alternative
version of the Clausius-Duhem inequality

ρ0θγ = P̃ : Ḟ − ρ0Ψ̇− ρ0θ̇η −
1

θ
Q · ∇Xθ ≥ 0

ρθγ = σ : d− ρΨ̇− ρθ̇η −
1

θ
q · ∇xθ ≥ 0.

(2.59)

Finally, the mechanical dissipation D := θγ per unit volume is introduced. Then, a
stronger representation of (2.59) is obtained for separate consideration of the local dissi-
pation Dloc and the conductive dissipation Dcon

ρ0Dloc = P̃ : Ḟ − ρ0Ψ̇− ρ0θ̇η ≥ 0 ρDloc = σ : d− ρΨ̇− ρθ̇η ≥ 0
and

ρ0Dcon = −
1

θ
Q · ∇Xθ ≥ 0 ρDcon = −

1

θ
q · ∇xθ ≥ 0

(2.60)

denoted the Clausius-Planck and the Fourier inequalities, respectively. At last, based on
representation (2.58) of the Clausius-Duhem inequality, the Clausius-Planck inequality
for the local dissipation can alternatively be written as

ρ0Dloc = ρ0(
∂

∂t
η)θ − ρ0r + DivQ ≥ 0

ρDloc = ρ(
d

dt
η)θ − ρr + div q ≥ 0,

(2.61)

in which the precise notation for the time derivative of (•) is used instead of ˙(•). The
Lagrangian representation (2.61)1 of the local dissipation is expressed in terms of the
total time derivative of the entropy ∂η/∂t = dη/dt|X fixed at fixed material positions.
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3. Configurational Setting of Thermo-Inelasticity

It is the objective of this chapter to derive a versatile, thermodynamically consistent ap-
proach towards configurational mechanics with regard to the solution of thermo-mechani-
cally coupled problems at finite inelastic deformations. The procedure to follow incorpo-
rates global energetic arguments to set up a global dissipation postulate. This postulate is
used in the sense of a global Coleman-type exploitation method. The governing equations
of configurational mechanics, i.e. the dual material and spatial balances of linear mo-
mentum or, for the time being, equilibrium conditions, are obtained in a natural fashion.
Subsequent to some preliminary remarks, the investigations commence with the continu-
ous setting. At first the geometric framework is presented whereupon the afore-mentioned
dissipation postulate is introduced and exploited with regard to the formulation of the
respective balance equations. For the thermo-mechanically coupled problem under con-
sideration an evolution equation for the temperature field is developed starting from the
balance of internal energy. The second part of this chapter is devoted to the algorith-
mic treatment and the numerical solution procedure in the sense of a staggered solution
strategy. In this context particular attention is focused on the evaluation of discrete con-
figurational nodal forces. Finally, the basic equations are specified in view of a model
problem and a typical boundary value problem is discussed. It is of interest to point out
that the configurational setting of (thermo-)inelasticity will be employed once more within
the analyses of Section 6 including alternative constitutive formulations.

3.1. Introductory Remarks

Even in the absence of true material inhomogeneities characterized for instance by a
change in the material properties of the considered solid, the occurrence of thermal and/or
inelastic effects act as a possible source of inhomogeneity. Hence the investigation of ther-
mal and inelastic processes is naturally related to the study of configurational mechanics as
this setting intrinsically originates from the analyses of forces acting on inhomogeneities.
The influence of inelastic and thermal phenomena on the configurational representation of
continuum mechanics and, more recently, concerning the application of the configurational
setting in computational mechanics has been elaborated by numerous authors. Thereby
the investigation of thermal effects is mainly concerned with the framework of thermo-
elasticity. With regard to the theoretical description Epstein & Maugin [38] worked
out the material setting of thermo-elastic heat conductors. A different type of thermo-
elastic material forces has been proposed by Dascalu & Maugin [34] who constructed
a material momentum equation for thermo-elasticity based on the notion of so-called
thermal displacements and in addition dealt with the application to fracture mechanics.
In both articles the material balance law is derived by means of manipulations of the
well-known spatial counterparts. This is in contrast to the previous work of Francfort

& Golebiewska Herrmann [48] in which the material balance is said to be inevitably
of variational origin. However, as it was also emphasized within the above-mentioned
quotations, the balance of material momentum even holds in the presence of dissipative
processes and thus is not physically derivable from this type of a variational principle. An
alternative approach which utilizes Gurtin´s viewpoint of the derivation of configurational
forces, but in fact not Gurtin´s understanding of thermo-elasticity in this context, cf. e.g.
Gurtin [61], is due to Kalpakides & Dascalu [74]. They combine Gurtin´s ideas with
the concept of thermal displacements and thus end up with a representation similar to
that of Dascalu & Maugin [34]. The thermo-elastic case and above all its extension to
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thermo-inelasticity and the fully dynamical framework has been developed by Maugin

& Berezovski [108]. Also Steinmann [174] investigated the combination of thermal
and dynamical effects in elastic materials. The application of the thermo-mechanical for-
mulations to the study of the movement of inhomogeneities or rather different types of
singularities can be found e.g. in Maugin [104].
An thermo-mechanical approach to configurational inelasticity is presented in Cleja-

Tigoiu & Maugin [32] who considered the configurational framework of multiplicative
elasto-plasticity. This description is conceptually in line with the notion of local rear-
rangement in terms of the introduction of a reference crystal as evoked e.g. by Epstein

& Maugin [37, 40, 39], however, the first one being devoted to the elastic case, see also
Steinmann [173]. The role of Eshelby’s energy-momentum tensor in (elasto-)plasticity
is investigated in a series of papers of the second author, namely Maugin [100, 101]
including also inertial, i.e. dynamical effects, and the application to ductile fracture me-
chanics, as well as Maugin [105, 106] governing the influence of thermal effects as well.
The work of Menzel & Steinmann [116] also relies on multiplicative elasto-plasticity
and provides a variety of reformulations of the material balance equation. The material
inhomogeneity forces incorporate gradients of distortions and dislocation density tensors.
This characteristic is directly related to the above-mentioned concept of local structural
rearrangement and enables to capture the representation of the well-established Peach-
Koehler force.
The dual material-spatial setting of thermo-elasticity has been highlighted by Kuhl,

Denzer, Barth & Steinmann [84] who above all deal with the numerical treatment.
A monolithic solution strategy is conceived with the spatial displacements and the temper-
ature field being the primary unknowns. The evaluation of the ingredients of the material
balance equations is performed in a postprocessing step. With respect to the solution
of inelastic problems at first Liebe, Denzer & Steinmann [88] considered the model
problem of finite continuum damage and introduced the scalar damage variable as an
additional nodal degree. The same strategy has been adopted by Menzel, Denzer &

Steinmann [115] in the context of small strain single-crystal-plasticity. Moreover, in this
contribution an alternative solution procedure is discussed that avoids the introduction of
additional global degrees. The latter approach has been extended by Nguyen, Govind-

jee, Klein & Gao [138] to the modeling of small-strain inelastic fracture processes. The
application to ductile fracture is also investigated by Näser, Kaliske & Müller [136],
however in the finite strain context. To the author´s knowledge the computational real-
ization of the configurational setting in thermo-inelasticity is rare in existing literature.
Recent attempts elaborated within the author´s research group, cf. Zimmermann &

Miehe [196] and additionally the report of Yalçinkaya [189], deal with the numerical
implementation of material forces in finite thermo-plasticity. A unified treatment of these
investigations is derived in the subsequent sections and later on applied in the context of
h-adaptive mesh refinement.

3.2. Formulation and Exploitation of a Global Dissipation Postulate

In this subsection the continuous framework is outlined starting with the geometric setting
followed by the formulation and exploitation of a global dissipation postulate.

3.2.1. Basic Geometry of a Solid with Structural Changes. To set the state,
some fundamental aspects of the deformation of a material body at finite strains are re-
capitulated shortly incorporating in addition thermal effects. Let B ⊂ E3 be the reference
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configuration of the body subjected to thermo-mechanical loading. With respect to the
mechanical problem, the exterior boundary ∂B of the body is decomposed into a part
∂Bϕ with prescribed deformation by Dirichlet-type boundary conditions and a part ∂Bt̄

with given tractions by von Neumann-type boundary conditions. The decomposition of
the boundary is unique due to ∂B = ∂Bϕ ∪ ∂Bt̄ with ∂Bϕ ∩ ∂Bt̄ = ∅. For the thermal
problem, in an analogous fashion the material boundary is decomposed into a part ∂Bθ

with given temperature field θ and a part ∂BQ̄n
with prescribed heat flux Q̄n and the

unique decomposition ∂B = ∂Bθ ∪ ∂BQ̄n
with ∂Bθ ∩ ∂BQ̄n

= ∅ being obvious.
The material coordinates X ∈ B of the solid in the reference configuration B are mapped
onto the current coordinates x ∈ S by the deformation map at time t ∈ R+

ϕt :

{
B → S
X 7→ x = ϕt(X)

(3.1)

where S ⊂ E
3 is the deformed configuration. Following the above discussion, this spatial

deformation is prescribed on the part ∂Bϕ ⊂ ∂B of the boundary by the Dirichlet condition

ϕt(X) = X + tv̄(X) on ∂Bϕ (3.2)

in a monotonous format with given velocity function v̄ and the particular case v̄ = 0 for
a stationary part ∂Bϕ of the boundary.
The kinematic setting outlined in Chapter 2 was restricted to time-independent material
coordinates X = const., i.e. a time-independent reference configuration B, recall Remark
2.1. In the subsequent investigations this restriction is omitted. In contrast, the procedure
allows for temporal changes of the Lagrangian setting referred to as material configura-
tional changes. To this end, in addition to the reference configuration B and the current
configuration S, both being from now on time-dependent, a time-independent domain
Ω ⊂ E

3 with coordinates θ ∈ Ω is introduced denoted the parameter space of the con-
tinuum. Consider then a one-to-one piecewise differentiable transformation Ξt : Ω → Bt

of the parameter space onto the reference configuration. This mapping is to be under-
stood as the time-dependent parameterization of the solid describing material structural
changes. It reflects a time-dependent change of the Lagrangian coordinates θ ∈ Ω to
X ∈ Bt in the sense of a change of the material structure. With this viewpoint at hand,
it is straightforward to introduce the dual material and spatial coordinate maps

Ξt :

{
Ω→ Bt

θ 7→X = Ξt(θ)
and ξt :

{
Ω→ St

θ 7→ x = ξt(θ)
(3.3)

at time t and to express the deformation map (3.1) by the composition

ϕt(X) = ξt(θ) ◦Ξ−1
t (X) (3.4)

as visualized in Figure 3.1. Thus, a body B including material inhomogeneities such as
defects or inclusions undergoes two simultaneous and independent processes: The motion
of material particles with respect to the ambient space described by the non-linear defor-
mation map ϕt and the motion of inhomogeneities within the material governed by the
material configurational map Ξt. In this sense, the material configuration B acts as a refer-
ence for the motion of particles in space whereas the parameter space Ω acts as a reference
for the motion of inhomogeneities with respect to the material manifold. The spatial and
material configurational maps are constrained by Dirichlet boundary conditions

ξt(θ) = x = x̄ = X + tv̄ on ∂Bϕ and ξt(θ) = X = const. on ∂B. (3.5)
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Ω

B S

θ

X
x

ϕt

Ξt ξt

Figure 3.1: Kinematics of a body with structural changes. The material coordinate map Ξt

maps the coordinates θ ∈ Ω of the parameter space onto the Lagrangian coordinates X ∈ Bt.
The spatial coordinate map ξt maps the coordinates θ ∈ Ω onto the Eulerian coordinates
x ∈ St. The reference coordinates X ∈ Bt are mapped onto the current coordinates x ∈ St

via the non-linear point or deformation map ϕt(X) = ξt(θ) ◦Ξ−1
t (X).

Due to x = ϕt, the first one, i.e. the spatial condition, exactly represents (3.2). The
second one, i.e. the material condition, states that no change of the material boundary
∂B occurs as all material positions on ∂B are kept constant. Later on, this restriction can
be reduced by allowing for a movement of the material coordinates along the boundary.
Nevertheless, the shape of the material body in its reference configuration must still remain
unaffected. Based on representation (3.4) of the non-linear point map the deformation
gradient F = ∇Xϕt appears as the composition

F = j J−1 with j = ∇θξt and J = ∇θΞt (3.6)

in terms of the gradients of the material and spatial coordinate maps and the abbrevia-
tion ∇θ(•) indicating the partial derivative ∂(•)/∂θ of (•) with respect to the parameter
coordinates θ. The volume element of the Lagrangian configuration is related to that of
the parameter space via the determinant of the gradient of the material coordinate map

dV = det J dΩ. (3.7)

For the subsequent rate formulation of the inelastic solid it is essential to evaluate the
following time derivatives of the above kinematic objects

v =
∂

∂t
ϕ = ξ̇ − F Ξ̇ ,

d

dt
F = ∇X ξ̇ − F∇XΞ̇ ,

d

dt
dV = (1 : ∇XΞ̇) dV. (3.8)

They rely on the time derivatives of the spatial and material configurational maps

ξ̇ =
∂

∂t
ξ ◦Ξ−1

t (X) and Ξ̇ =
∂

∂t
Ξ ◦Ξ−1

t (X). (3.9)

For a detailed derivation of these expressions the reader is referred to Appendix B. All the
kinematic quantities are parameterized by the Lagrangian space-time (X, t). The compo-
sition with the inverse of the material configurational map induces this parameterization
but will be omitted for the sake of abbreviation. The short cut ˙(•) for the total time
derivative is still suitable as the material and spatial configurational maps themselves are
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parameterized by the time-independent coordinates θ of the parameter space.
The material velocity Ξ̇ depicts a change of the position of a particle with respect to the
material manifold whereas the spatial counterpart ξ̇ describes the movement of a particle
with respect to the current configuration. Both fields can be interpreted as variations
of the spatial and material positions of the particle. In this sense, the spatial and ma-
terial velocity fields (3.9) act as point variations and govern possible variations of the
Lagrangian and the Eulerian coordinates X ∈ Bt and x ∈ St. This characteristic brings
the subsequent rate formulation close to a variational setting. The velocity fields are re-
stricted by some typical boundary conditions. For the monotonous loading process (3.5)1

the admissible spatial velocity is

ξ̇ ∈ {ξ̇ | ξ̇ = v̄ on ∂Bϕ} (3.10)

with given velocity function v̄ and in particular v̄ = 0 for a stationary boundary ∂Bϕ.
The homogeneous form of the essential material boundary condition (3.5)2 defines the
admissible material velocity field

Ξ̇ ∈ {Ξ̇ | Ξ̇ = 0 on ∂B}. (3.11)

As mentioned above, the restriction to constant material positions X on the material
boundary ∂B can be reduced by allowing for a movement of the material coordinates
along ∂B. As the shape of the material body must not change, only such movements of
the material positions are permitted which do not include structural changes normal to
the external surface of the solid. This scenario is expressed by the alternative condition
Ξ̇ ∈ {Ξ̇ | Ξ̇ ·N = 0 on ∂B} in which N characterizes the outward normal of ∂B.

3.2.2. Global Constitutive Response of an Inelastic Solid. The analyses focus on
a general inelastic response of the solid. A global dissipation postulate is established by
means of a comparison between external and internal power produced during the thermo-
mechanical deformation of the solid subjected to the restrictions of the second law of
thermodynamics. The external power is given by the power of the physical loading. On
the other hand, the internal power incorporates the evolution of the total energy storage
and the global dissipation. The following subsection provides a straightforward approach
towards the formulation of this global postulate using the statements of both the first as
well as the second axiom of thermodynamics.

3.2.2.1. Formulation of a global dissipation postulate. For the quasi-static case
the change dK/dt of kinetic energy vanishes and the balance of energy (2.50) reduces to

d

dt
U = P +Q. (3.12)

The total internal energy U is governed by the specific internal energy ū0 = ρ0u. By
means of the Legendre transformation ψ = ū0 − θη0 the free energy function ψ = ρ0Ψ
is introduced where η0 = ρ0η denotes the specific entropy. The free energy ψ is assumed
to depend on the deformation gradient F , the temperature θ and a generalized vector
I ∈ G of internal variables describing locally the dissipative bulk response. G indicates a
vector space Rn of n scalar functions of internal variables which may be constrained to a
manifold, e.g. the Lie group SL(3) of unimodular tensors in isochoric finite plasticity. The
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temperature and the internal variables are fields on the reference configuration B and are
parameterized by the Lagrangian space-time (X, t)

θ = θ(X , t) and I = I(X, t). (3.13)

Both fields explicitly depend on the time t but also on the time-dependent position X =
Ξt(θ) ∈ B of the reference configuration. According to (2.22)2, the total time derivatives

d

dt
θ =

∂

∂t
θ(X, t) +∇Xθ(X, t) · Ξ̇ and

d

dt
I =

∂

∂t
I(X, t) +∇XI(X, t) · Ξ̇ (3.14)

split up into a local and a convective part with Ξ̇ = ∂Ξ/∂t representing the time derivative
of the material coordinates. As the focus is on a general inhomogeneous bulk response of
the solid, the free energy function explicitly depends on the reference position X = Ξt(θ).
The energy storage function is assumed to satisfy the standard restriction of objectivity,
i.e. ψ(QF , θ,I,X) = ψ(F , θ,I,X) for all proper orthogonal tensors Q ∈ SO(3). Using
the definition of the power P of external physical forces and the thermal power Q, cf.
(2.50), the energy balance reads

d

dt

∫

B

ψ + η0θ dV =

∫

B

v · γ̄0 dV +

∫

∂Bt̄

v · t̄ dA +

∫

B

ρ0r dV −

∫

∂BQ̄n

Q̄n dA (3.15)

with the heat flux Q̄n = Q ·N and the Lagrangian heat flux vector Q. By means of Gauss
integration theorem the last surface integral can be transformed into a volume integral
in terms of DivQ. By substitution of the time derivative (3.8)3 of the material volume
element the left hand side of (3.15) is evaluated

d

dt

∫

B

ψ + η0θ dV =
d

dt

∫

B

ψ dV +

∫

B

d

dt
(η0θ) dV +

∫

B

η0θ (1 : ∇XΞ̇) dV. (3.16)

Since the entropy η0 depends on the Lagrangian space-time, its total time derivative is
performed in formally the same way as specified in (3.14). By application of integration
by parts the last two terms of (3.16) can be expressed by

∫

B

d

dt
(η0θ) + η0θ (1 : ∇XΞ̇) dV =

∫

B

(
∂

∂t
η0)θ + η0(

∂

∂t
θ) + Div

[

η0θΞ̇
]

dV. (3.17)

The last addend of the right hand side is transformed into a surface integral which in turn
vanishes due to the boundary constraint (3.11) for the material velocity field. With these
results at hand, the energy balance (3.15) boils down to

∫

B

∂

∂t
η0 θ − ρ0r + DivQ dV = P −

d

dt
Πint −

∫

B

η0
∂

∂t
θ dV (3.18)

with the definition of the total bulk energy storage Πint of the solid

Πint :=

∫

B

ψ dV. (3.19)

As the reference density ρ0 does not depend on time, the temporal change of entropy is
∂η0/∂t = ρ0∂η/∂t. Hence, the integrand on the left hand side of (3.18) represents the local



Configurational Setting of Thermo-Inelasticity 29

dissipation ρ0Dloc per unit reference volume specified in (2.61) as a local Lagrangian form
of the balance of entropy, i.e. the second law of thermodynamics. The volume integral

D :=

∫

B

ρ0Dloc dV =

∫

B

(

ρ0(
∂

∂t
η) θ − ρ0r + DivQ

)

dV ≥ 0 (3.20)

represents the global dissipation and (3.18) sets up the global dissipation postulate

D = P −
d

dt
Πint −

∫

B

η0
∂

∂t
θ dV ≥ 0. (3.21)

The global dissipation of a solid undergoing thermo-mechanically coupled inelastic defor-
mation is evaluated as the difference between the power of external physical forces and
the evolution of the total bulk energy storage and a temperature-dependent contribution.
The postulate states that the global dissipation has to be always greater than or equal
to zero. It is the demand of the second axiom of thermodynamics and reflects the global
counterpart of the classical Clausius-Planck inequality of continuum thermo-mechanics,
cf. Section 2.3.5. For the restriction to isothermal processes, i.e. the purely mechanical
framework, the last integral vanishes. For elastic continua the dissipation of the system is
equal to zero and it remains the reduced form of the global dissipation postulate

D = P −
d

dt
Πint ≡ 0 (3.22)

requiring the change of energy storage to be equal to the power of the external loading.

3.2.2.2. Derivation of dual material and spatial balance equations. The global
dissipation postulate is employed to derive the dual material-spatial field equations by
means a Coleman-type exploitation method. At first, the power of external physical forces
is recast using the kinematic relationship (3.8)1 for the velocity v

P =

∫

B

v · γ̄0 dV +

∫

∂Bt̄

v · t̄ dA =

∫

B

ξ̇ · γ̄0 − F T γ̄0 · Ξ̇ dV +

∫

∂Bt̄

ξ̇ · t̄ dA. (3.23)

Observe that the material configurational map, or rather its rate, does not enter the
surface integral due to the boundary condition (3.11). In analogy to (3.16) for the rate of
the energy storage the following relation holds

d

dt
Πint =

d

dt

∫

B

ψ dV =

∫

B

d

dt
ψ dV +

∫

B

ψ (1 : ∇XΞ̇) dV. (3.24)

Using the functional dependencies of the free energy function ψ, its evolution is given by

d

dt
ψ =

d

dt
ψ(F , θ,I,X) = ∂Fψ :

d

dt
F + ∂θψ ·

d

dt
θ + ∂Iψ ·

d

dt
I + ∂Xψ

expl · Ξ̇. (3.25)

Upon substitution of this derivative into (3.24) and by means of the kinematic relation-
ships (3.8) and (3.14) the temporal change of the energy storage Πint can be computed

d

dt
Πint =

∫

B

P : ∇X ξ̇ + (ψ1 − F T P ) : ∇XΞ̇ dV

+

∫

B

(∂θψ∇Xθ + ∂Iψ · ∇XI + ∂Xψ
expl) · Ξ̇ − F ·

∂

∂t
I − η0

∂

∂t
θ dV.

(3.26)
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This relation relies on the constitutive expressions for the first Piola-Kirchhoff stress
tensor P = ∂Fψ, the entropy η0 = ρ0η = −∂θψ and the internal thermodynamical forces
F = −∂Iψ and induces the definition of the Eshelby stress or energy-momentum tensor

Σ = ψ1 − F T∂Fψ = ψ1 − F T P (3.27)

being a purely material mixedvariant second order tensor. By substitution of the relation
P = FS the alternative representation Σ = ψ1 −CS is obtained. Then, Σ is symmetric
in case the material is isotropic, i.e. the second Piola-Kirchhoff stresses S and the right
Cauchy Green tensor C are coaxial, CS = SC, cf. Chadwick [30].
It is a remarkable fact that the change dΠint/dt of energy storage of the deforming solid
including structural changes contains a deformation induced spatial stress power based
on the first Piola-Kirchhoff stress tensor and a structural change induced material stress
power based on the Eshelby stress tensor.
By combination of (3.26) and (3.23) the global dissipation postulate (3.21) results in

D =

∫

B

γ̄0 · ξ̇ dV +

∫

∂Bt̄

t̄ · ξ̇ dA−

∫

B

P : ∇X ξ̇ dV

+

∫

B

(−F T γ̄0 − ∂θψ∇Xθ − ∂Iψ · ∇XI − ∂Xψ
expl) · Ξ̇ dV

−

∫

B

Σ : ∇XΞ̇ dV +

∫

B

F ·
∂

∂t
I dV ≥ 0.

(3.28)

It is appropriate to define the configurational or material force vector per unit volume of
the reference configuration

Γ̄0 := − γ̄0 − ∂θψ∇Xθ − ∂Iψ · ∇XI − ∂Xψ
expl. (3.29)

As a matter of notation, the material volume force can be split into three different parts

Γ̄γ := F T γ̄0 , Γ̄I := ∂θψ∇Xθ + ∂Iψ · ∇XI and Γ̄X := ∂Xψ
expl. (3.30)

By means of this split, the basic characteristic of the configurational volume force comes
to light: The purely material object Γ̄0 displays the explicit, Γ̄X, and, via the temperature
and the internal variable fields, Γ̄I, implicit dependence of the free energy function on
the time-dependent material position X ∈ B besides the contribution Γ̄γ arising from the
pull-back of the physical volume forces γ̄0. It represents the dual material vector to these
physical forces. In the sense of their original interpretation, cf. Appendix A, configurational
forces are the driving forces on an inhomogeneity, like a crack or an inclusion, within the
Lagrangian setting of a material body. For the time being, this property is represented by
the true material inhomogeneity force Γ̄X := ∂Xψ

expl. Referring to (3.30), configurational
forces Γ̄0 occur for the following cases:

(i) For material bodies subjected to spatial volume forces γ̄0.

(ii) For an evolving temperature field or for an evolution of inelastic deformation de-
scribed by a gradient in the temperature or the internal variable field. Thus, the
distribution of both the temperature field as well as the inelastic state variables act
as a quasi-inhomogeneity within the material setting of the solid.
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(iii) For truly inhomogeneous bodies indicated by an explicit dependence of the free
energy function on the material coordinate X. Anticipating one crucial result of
Section 4, it has to be mentioned that the complete true inhomogeneity of a material
body is exhibited by the explicit dependence of the free energy function ψ and the
reference density ρ0 on the material position X . However, the latter one is naturally
linked to the dynamical framework as it only occurs in the inertia contribution.

Incorporating these definitions, equation (3.28) can be rewritten in the compact format

D =

∫

B

{γ̄0 · ξ̇ − P : ∇X ξ̇ + Γ̄0 · Ξ̇−Σ : ∇XΞ̇} dV

+

∫

B

F ·
∂

∂t
I dV +

∫

∂Bt̄

t̄ · ξ̇ dA ≥ 0.

(3.31)

By means of integration by parts and application of Gauss integration theorem the global
dissipation is finally converted into the form

D =

∫

B

(DivP + γ̄0) · ξ̇ dV +

∫

∂Bt̄

(t̄− PN) · ξ̇ dA

+

∫

B

(DivΣ + Γ̄0) · Ξ̇ dV +

∫

B

F ·
∂

∂t
I dV ≥ 0.

(3.32)

This dissipation inequality is now exploited in the sense of a global Coleman-type proce-
dure. It has to be satisfied for arbitrary admissible spatial and material velocity fields ξ̇

and Ξ̇ subjected to the homogeneous forms of the Dirichlet boundary conditions. Admis-
sible arbitrary spatial velocity fields induce the local spatial equations

DivP + γ̄0 = 0 in B and PN = t̄ on ∂Bt̄. (3.33)

The first one represents the spatial equilibrium condition, i.e. the local form of balance of
linear momentum, and the latter one is the traction boundary condition on the external
traction boundary ∂Bt̄ with outward normal N . This equation is valid in combination
with the essential boundary condition (3.5) on the deformation boundary ∂Bϕ. Vice versa,
admissible arbitrary material velocity fields induce the local material equation

DivΣ + Γ̄0 = 0 in B. (3.34)

This equation is usually denoted the material equilibrium condition and constitutes the
dual material counterpart of the spatial equilibrium condition (3.33)1. It is a completely
material balance equation with all ingredients being purely material objects. Observe that
no additional traction boundary condition occurs for this balance law as the boundary is
entirely governed by the essential boundary condition X = const. on ∂B.

Remark 3.1: The material balance law (3.34) can be obtained from the spatial coun-
terpart (3.33)1 by premultiplication with F T , cf. Maugin [99, 103]. Geometrically, this
transformation represents a pull-back of the Eulerian quantity DivP + γ̄ onto the La-
grangian manifold, i.e. a mapping between the cotangent spaces T ∗

XB and T ∗
x S of the

material and spatial configuration as visualized in Figure 3.2. At first, the total derivative
of the free energy ψ = ψ(F , θ,I,X) with respect to the material coordinates is computed

∇Xψ = Div [ψ1 ] = P : ∇XF − η∇θ − F · ∇I + ∂Xψ
expl. (3.35)
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DivΣ + Γ̄0 DivP + γ̄0

Sx

T ∗
xS

B X

T ∗
XB

ϕt

F−T ,P

Figure 3.2: Dual balances in material and physical space. Pull-back of spatial equilibrium
condition onto the material configuration.

Due to compatibility of the deformation gradient, the first term on the right hand side of
(3.35) is rewritten as P : ∇XF = Div

[
F T P

]
− F T DivP . Substitution into the pull-back

of the spatial balance equation (3.33) yields the dual material balance (3.34)

F T (DivP + γ̄0) = DivΣ + Γ̄0 (3.36)

in terms of the Eshelby tensor Σ and the material force Γ̄0 defined in (3.27) and (3.29).

In a global scenario the local balance equation (3.34) corresponds to an equilibrium con-
dition of global material or configurational forces being the dual statement to the equi-
librium condition of global physical forces. These conditions represent the quasi-static
versions of global momentum balances incorporating inertia terms due to dynamical ef-
fects. For a detailed discussion on global balances the reader is referred to Section 4.3.

3.2.2.3. Thermo-mechanical coupling: Evolution of the temperature field. The
coupling of mechanical and thermal effects is displayed by two main characteristics. On
the one hand, large deformations generate structural heating of the system denoted the
Gough-Joule effect. On the other hand, the deformation of a structure depends on the
temperature due to thermally induced stresses. Moreover, the presence of inelastic de-
formation or, more general, of arbitrary dissipative phenomena causes a degradation of
energy into its thermal form and naturally involves changes in the temperature field.
To complete the set of governing equations of the thermo-mechanically coupled problem,
an evolution equation for the temperature field θ has to be formulated. The essential
equation for this task is the local form (2.55)1 of balance of internal energy

ρ0
∂

∂t
u = ρ0r − DivQ + P̃ :

∂

∂t
F (3.37)

with the time derivative ∂(•)/∂t = d(•)/dt|X fixed at fixed material positions. By means of
the Legendre transformation the free energy is introduced, ψ = ρ0u−θρ0η. Employing the
Clausius-Planck inequality (2.60)1 for the local dissipation one ends up with its alternative
form (2.61)1, cf. (3.20). This inequality serves as an evolution equation for the entropy

ρ0(
∂

∂t
η) θ = ρ0Dloc + ρ0r −DivQ with ρ0Dloc ≥ 0. (3.38)

The entropy has been defined as the negative derivative of the free energy function with
respect to the temperature field. Hence, its temporal change can alternatively be written

ρ0(
∂

∂t
η) θ = ρ0(

∂

∂t
(−∂θψ)) θ = ρ0c

∂

∂t
θ + ρ0H. (3.39)
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Here, the heat capacity c and the thermo-elastic heating H have been introduced

c := −θ ∂2
θθψ and H := −θ (∂2

θFψ :
∂

∂t
F + ∂2

θI
ψ :

∂

∂t
I). (3.40)

By combination of (3.38) and (3.39) an evolution equation for the temperature field θ is
conceived which is referred to as the temperature evolution equation of thermo-inelasticity

ρ0c
∂

∂t
θ = −DivQ + ρ0r − ρ0H + ρ0Dloc. (3.41)

Physically, H and Dloc characterize the thermo-elastic coupling and dissipative effects.
Following a standard argumentation of metal-plasticity, cf. Miehe [120], the first contri-
bution is small compared to the latter one, |H| ≪ Dloc, and can be neglected, H ≈ 0.
What remains unspecified up to now is a constitutive equation for the heat flux vector
Q. This quantity is assumed to be governed by an isotropic Fourier law

Q = −k∇Xθ (3.42)

where the material parameter k > 0 represents the thermal conductivity.

3.2.2.4. Inelastic response: Evolution of the internal variables. The inelastic
response of the solid is described by the internal variable field I. For the subsequent
investigations the focus is on fully rate-independent models of inelasticity. With the local
balance equations (3.33) and (3.34) at hand the dissipation postulate (3.32) boils down
to the reduced dissipation inequality

D =

∫

B

δ dV ≥ 0 with δ := F ·
∂

∂t
I (3.43)

with the dissipation δ per unit volume of the inelastic solid. It is the inner product of
the driving forces F = −∂Iψ and the local rate ∂I/∂t of the internal variable field at
material position X ∈ B. The evolution ∂I/∂t has to be set up based on a constitutive
assumption. To this end, consider a yield criterion function

φ(F) = f(F)− y0 ≤ 0 (3.44)

in terms of the yield stress y0 and the level set function f(F). The yield criterion function
governs the elastic domain

E = {F | φ(F) ≤ 0} (3.45)

which bounds the internal stress state. For φ < 0 the response is elastic, otherwise,
for φ = 0, the material behaves inelastically. In that case, the evolution of the internal
variables has to be specified such that the second law of thermodynamics represented by
the reduced dissipation inequality (3.43) is satisfied. For associated models of inelasticity
the evolution equations can be derived from the principle of maximum dissipation

δ := max
F∈E

{F ·
∂

∂t
I} (3.46)

stating that the current internal stress state maximizes the dissipation compared to all
admissible internal stress states, i.e.

F ·
∂

∂t
I ≥ F

∗ ·
∂

∂t
I for all F

∗ ∈ E. (3.47)
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The optimization principle (3.46) with the inequality constraint (3.45), i.e. the elastic
domain, can be formulated by the Lagrange functional

L(F , λ) = −F ·
∂

∂t
I + λφ(F) → stat (3.48)

where λ is the Lagrange multiplier. The necessary condition for the solution of this func-
tional, i.e. ∂FL = 0, induces the evolution equations for the internal variables

∂

∂t
I = λ∂Fφ(F) (3.49)

typically denoted the flow rules along with the Karush-Kuhn-Tucker conditions of the
optimization principle

φ ≤ 0 , λ ≥ 0 and φλ = 0 (3.50)

referred to as the loading-unloading conditions. According to these conditions the pair
φ < 0 and λ = 0 characterizes elastic material behavior whereas the pair φ = 0 and
λ > 0 indicates the occurrence of associated inelastic flow characterized by the evolution
equation (3.49) with amount λ into the direction ∂Fφ.

Remark 3.2: Observe that the evolution equations for the temperature and the internal
variable field refer just to the local part of the time derivatives (3.14) of these objects
corresponding to the time derivative at fixed material position. This procedure anticipates
an essential feature of the solution strategy to be discussed in detail within Section 3.4.

3.3. Discrete Finite Element Formulation

The discrete counterparts of the governing equations of configurational thermo-inelasti-
city are developed by application of the standard finite element approach for the three
unknown fields, namely the material and spatial coordinates as well as the temperature.

3.3.1. Spatial Discretization of the Inelastic Solid. The approximation starts with
the subdivision of the material body B into a set of nele finite elements

B ≈ Bh =
nele

A
e=1

Be, (3.51)

see also Figure 3.3 for a sketch of the procedure. The symbol A
nele

e=1 denotes the standard

Bh Sh
t

ϕh
t

Figure 3.3: Spatial discretization of the inelastic solid. The material body B is discretized

with nele finite elements Be yielding an approximation of the body B ≈ Bh.

finite element assembly operator. The material and spatial configurational maps Ξt and
ξt (3.3) are approximated for each finite element via

x ≈ ξh
t (θ) = N(θ)dt and X ≈ Ξh

t (θ) = N(θ)Dt. (3.52)
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Here, dt ∈ RNt and Dt ∈ RNt characterize the discrete spatial and material coordinates
at time t of allNt nodal points of the current finite element mesh. N represents the matrix
of shape functions parameterized by the local coordinates θ ∈ Ωe of the finite element
parameter space Ωe. Without loss of generality the same interpolation functions are used
for the spatial and material coordinates. Based on this fundamental approximation the
discrete counterparts of the material and spatial gradients (3.6)2,3 can be computed

jh
t = B̃(θ)dt and Jh

t = B̃(θ)Dt (3.53)

in terms of the interpolation matrix B̃ which contains the derivative of the shape functions
N with respect to the coordinates θ of the parameter space. With the gradients (3.53)
at hand, the discrete counterpart of the deformation gradient (3.6)1 reads

F h
t = jh

t J
h−1
t =: B(Xh)dt (3.54)

where B(Xh) states the matrix of the derivatives of the shape functions N with respect
to the Lagrangian coordinates Xh. Figure 3.4 provides a schematic visualization of the
discretization process referring to one single element.

X x

Be ∈ Bh Se ∈ Sh

ϕh
t

F h
t

Jh
t jh

t

Ξh
t (θ) ξh

t (θ)

θ
Ωe

Figure 3.4: Mappings between the unit element parameter space Ωe and the associated
Lagrangian and Eulerian finite elements Be ⊂ B and Se ⊂ S.

3.3.2. Global Response of the Spatially Discretized Inelastic Solid. The subse-
quent treatments follow the same processing used in the continuous setting. Attention is
focused on the derivation of the discrete versions of the coupled field equations.

3.3.2.1. Discrete version of the global dissipation postulate. At first, a discrete
counterpart of the global dissipation postulate is elaborated. Based on the finite element
approximation (3.52) the material and spatial velocity fields can be computed by

ξ̇
h

t = Nḋt and Ξ̇
h

t = NḊt with ḋt =
∂

∂t
dt and Ḋt =

∂

∂t
Dt (3.55)

The global vectors Ḋt and ḋt represent the discrete material and spatial nodal velocities.
The discrete material gradients of these fields are evaluated by

∇X ξ̇
h

= Bḋt and ∇XΞ̇
h

= BḊt (3.56)
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incorporating the interpolation matrix B introduced in (3.54). Substitution of the finite
element approximations of the kinematic objects into representation (3.31) of the global
dissipation results in the discrete version of the global dissipation inequality

Dh =

Nt∑

I=1

{ [ pI + f I ] · ḋI + [P I + F I ] · ḊI } + Dh
bulk ≥ 0. (3.57)

In the discrete setting the global dissipation appears in a natural fashion as a sum of dis-
crete nodal contributions evaluated at every node I = 1,Nt of the mesh. In this equation
the following definitions of nodal quantities have been introduced. For the spatial problem

pI :=
nele

A
e=1

{

∫

Be

NT
I γ̄0 dV +

∫

∂Be

NT
I t̄ dA } (3.58)

displays the nodal vector of external physical forces in terms of the volume forces γ̄0 and
the surface tractions t̄. The vector of internal spatial forces

f I := −
nele

A
e=1

∫

Be

BT
I P dV (3.59)

related to the discrete node I is governed by the first Piola-Kirchhoff stresses P . With
respect to the dual material problem

P I :=
nele

A
e=1

∫

Be

NT
I Γ̄0 dV (3.60)

denotes the discrete configurational or material nodal force at node I. Recalling definition
(3.29) of the continuous configurational force Γ̄0, the configurational nodal force is a func-
tion of the material gradients of the temperature field θ and the internal variable vector
I, i.e. ∇Xθ and ∇XI. The latter dependence demands a particular treatment concerning
the numerical implementation and is discussed in detail in Section 3.5 below. The internal
material nodal force

F I := −
nele

A
e=1

∫

Be

BT
I Σ dV (3.61)

relies on Eshelby’s energy-momentum tensor Σ introduced in (3.27) as the purely material
stress tensor dual to the nominal stresses P . The finite element matrices N I , BI refer to
a particular node I of the mesh and represent the entries of the global matrices N , B.

3.3.2.2. Dual material and spatial nodal equilibrium conditions. In analogy to
the continuous framework, the discrete global dissipation postulate is exploited in the
sense of a global Coleman method. To this end, consider the admissible material and
spatial velocity fields originally introduced in (3.10) and (3.11). In the discrete setting,
these conditions are represented by admissible spatial and material nodal velocities

ḋI := {ḋI | ḋI = ˙̄dI on ∂Bh
ϕ} and ḊI := {ḊI | ḊI = 0 on ∂Bh}. (3.62)

The discrete version (3.57) of the dissipation postulate has to be satisfied for all admissible
spatial and material velocity fields. Exploitation of the dissipation inequality for arbitrary
admissible spatial fields results in the spatial equilibrium condition

f I + pI = 0 in Bh and on ∂Bh
t̄ . (3.63)
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This condition demands an equilibrium of internal and external physical forces in the
discrete domain Bh and on the material boundary ∂Bh. It displays the discrete counterpart
of (3.33). For arbitrary admissible material fields the dual material equilibrium condition

F I + P I = 0 in Bh (3.64)

is obtained being the discrete version of the material balance (3.34). This condition en-
forces the equilibration of internal material forces and discrete configurational forces at all
interior nodes of the discrete domain Bh. As it will be used several times in the upcoming
paragraphs, this material condition is well applicable in the context of r- or h-adaptive
refinement strategies and can be denoted a condition for an optimal mesh.

3.3.2.3. Discretization of the temperature evolution equation. To set up the
discrete counterpart of the temperature evolution equation (3.41) in a first step a weak
form expression is derived. The temperature equation is tested by any arbitrary test
function δθ which satisfies the homogeneous form of the essential boundary conditions,
i.e. δθ = 0 on ∂Bθ. The whole equation is integrated over the material body B. Application
of Gauss integration theorem and substitution of the von Neumann boundary condition
for the heat flux, Q̄n = Q ·N on ∂BQ̄n

, gives the weak form equation

Gϑ :=

∫

B

δθ ρ0(c
∂

∂t
θ −Dloc − r)−∇Xδθ ·Q dV +

∫

∂BQ̄n

δθ Q̄n dA = 0. (3.65)

The thermo-elastic heating H has a priori been neglected due to the reasoning discussed
in the context of equation (3.41).
The spatial discretization bases on the subdivision (3.51) of the body into nele finite
elements Be. The scalar temperature field θ is approximated in the element domain

θ ≈ θh = N θ(θ)ϑt. (3.66)

where N θ denotes the matrix of interpolation functions for the temperature problem. The
superscript θ indicates that in general different shape functions compared to the coordinate
approximation (3.52) can be employed. The vector ϑt contains the temperatures at all Nt

nodal points of the current mesh at time t. The same approximation applies for the test
function δθ and its material gradient by using the virtual nodal value δϑ instead

δθ = N θ δϑ and ∇Xδθ = N,θX δϑ. (3.67)

The matrix N,θX contains the derivatives of the shape functions N θ with respect to the
material coordinates X.
Turning next to the time discretization, the whole scalar time domain is subdivided into
a finite number of discrete time steps ∆t. The time derivative ∂θ/∂t of the temperature
is approximated by the difference of the temperature at time tn+1 and tn divided by the
time increment, i.e. ∂θ/∂t = (θ− θn)/∆t with the abbreviation θn+1 =: θ. At the end, the
space-time discrete temperature evolution equation can be written as

Gh
ϑ =

Nt∑

I=1

{ rI δϑI } = 0. (3.68)



38 Configurational Setting of Thermo-Inelasticity

In analogy to the material and spatial equilibrium conditions the temperature evolution
problem is governed by a sum of discrete nodal values or rather residuals rI at node I

rI :=
nele

A
e=1

{

∫

Be

N θ
I

T
ρ0 (c

ϑI − ϑnI

∆t
−Dloc − r) −N,θ I

X

T
Q dV +

∫

∂Be
Q̄n

N θ
I

T
Q̄n dA }. (3.69)

For arbitrary admissible virtual temperatures δϑI one extracts the scalar-valued residual
expression for the change of temperature at node I

rI = 0 in Bh (3.70)

to be solved for the current nodal temperature ϑI .

3.3.2.4. Inelastic response: Evolution of the internal variables. Upon application
of the Coleman-type exploitation method the global dissipation postulate boils down to
the reduced dissipation inequality which reads in its discrete representation

Dh =

∫

Bh

δh dV =

∫

Bh

F
h ·

∂

∂t
I

h dV ≥ 0. (3.71)

The approximation δh of the dissipation per unit reference volume is governed by the
evolution ∂Ih/∂t of the internal variable field. Using the constitutive approach introduced
in Subsection 3.2.2.4 this evolution is described by the associated flow rule (3.49)

∂

∂t
I = λ∂Fφ(F). (3.72)

The algorithmic treatment starts with the integration of the evolution equation which,
in an implicit scenario, is usually performed by means of a backward Euler integration
scheme within the discrete time interval [tn, tn+1]

In+1 = In + γ (∂Fφ)n+1. (3.73)

Here, γ = λ(tn+1−tn) denotes the incremental plastic multiplier. For the rate-independent
case the decision on inelastic loading or elastic unloading is made via the Karush-Kuhn-
Tucker conditions (3.50). The way to enforce these conditions will be crucial in view of the
evaluation of discrete configurational nodal forces to be discussed in Section 3.5 below.

3.4. Summary of Governing Equations and Numerical Solution Procedure

The thermo-mechanically coupled problem is described by the local balance laws (3.33)1

and (3.41) for the current spatial coordinates x and the temperature field θ. The evolution
of the spatial deformation and the temperature is accompanied by the local realignment
of inhomogeneities. This rearrangement of matter is described by a dual material mo-
tion which in a thermodynamical context is associated with the variation of material
placements of material points with respect to the ambient material. Its unknowns are the
material coordinates X and again the temperature field. While the latter one is already
described by the temperature evolution equation, the change of material coordinates is
governed by the dual material balance law (3.34). Thus, the governing set of equations
for the inelastic solid subjected to thermo-mechanical loading that in addition accounts
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for structural changes of the material reference configuration reads

spatial equilibrium condition DivP + γ̄0 = 0 in B

material equilibrium condition DivΣ + Γ̄0 = 0 in B

temperature evolution equation −DivQ + ρ0r + ρ0Dloc = ρ0c
∂

∂t
θ in B.

(3.74)

These equations are valid for the respective boundary conditions for the spatial and ma-
terial coordinates and the temperature field.
In strict analogy to the continuous setting, the discrete spatial and material nodal equi-
librium conditions (3.63) and (3.64) in combination with the temperature equation (3.70)
constitute the governing set of discrete nodal balances

equilibrium of spatial nodal forces f I + pI = 0 in Bh

equilibrium of configurational nodal forces F I + P I = 0 in Bh

residual of temperature evolution rI = 0 in Bh

(3.75)

at every node I = 1,Nt of the finite element mesh. These balances are subjected to the
discrete versions of the respective essential boundary conditions.
A possible solution procedure of the thermo-mechanically coupled problem is given by the
simultaneous solution of the three balance equations. This attempt may be referred to as
a thermo-mechanically coupled arbitrary Lagrangian Eulerian formulation. This method-
ology will be discussed in Chapter 5 for the particular case of isothermal elasticity.
In the following, an alternative approach is elaborated. The flowchart in Figure 3.5 shows
a descriptive sketch of the procedure. To be specific, the complete set of equations (3.75)
is solved by means of a staggered solution strategy. The basic idea is to use the mate-
rial equilibrium condition or, respectively, the discrete configurational nodal forces in the
sense of a postprocessing tool. This algorithmic treatment exploits the most attractive
feature of the material balance equation as it provides additional information about the
present system without requiring the explicit solution of a new set of equations.
In a first step, the physical balance equation and for non-isothermal processes the temper-
ature evolution equation are solved for the primary unknowns, namely the current spatial
coordinates x and the temperature θ. For the solution of this coupled set of equations
once more a staggered solution scheme is employed as it was proposed e.g. by Simo &

Miehe [164], Armero & Simo [6] or Miehe [118, 120]. This means that the solution
of (3.75)1,3 is carried out by means of an operator split. In an isothermal predictor step
the spatial deformation problem is solved at frozen temperature. Within a heat conduc-
tion thermal corrector step the temperature field is updated while the deformation is
kept constant. This procedure allows for a decoupled solution of the governing system
of equations and significantly reduces the numerical effort of the simulation. During the
solution of this primary problem, the material positions are kept constant. Subjected to
this condition, the convective parts in the total time derivatives (3.14) of the temperature
field and internal state variables vanish and the update of these fields is performed by
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Solution of spatial deformation and
temperature evolution problem at time t

1.) isothermal predictor
solve for x at θ = const.

2.) heat conduction corrector
solve for θ at x = const.

Evaluation of configurational nodal forces

Postprocessing at x and θ = const.

Exploitation of material balance law

Utilization of configurational forces

increase time step
t⇐ t + ∆t

Figure 3.5: Flowchart of staggered solution procedure for the coupled non-isothermal de-
formation problem including a postprocessing step based on the material balance equation.

means of the algorithms introduced above exclusively based on the local time derivative
∂(•)/∂t = d(•)/dt|X fixed, cf. Remark 3.2.
In the second step, with all the ingredients of the material nodal balance (3.75)2 being
available from the solution of the primary problem, the material postprocessing can be
used at frozen spatial deformation and temperature e.g. for optimization strategies, for
r-/ h-adaptive refinement procedures and for the simulation of crack propagation defining
the scope of the developments of the subsequent chapters.

3.5. Evaluation of Discrete Configurational Nodal Forces

In the sense of the above discussion, the evaluation of discrete configurational nodal
forces does not pose a new boundary value problem but constitutes a postprocessing
procedure of the non-isothermal spatial problem. For inelastic problems one crucial point
needs to be investigated in detail. Recall definition (3.29) of the configurational force, i.e.
Γ̄0 = −F T γ̄0 − ∂θψ∇Xθ − ∂Iψ · ∇XI − ∂Xψ

expl. The evaluation of the second and third
addends necessitates the material gradients of the temperature and the internal variable
vector. Following finite element scheme these gradients are approximated via

∇Xθ = N,θX ϑ and ∇XI = N,IX Ĩ. (3.76)

The matrices N,θX and N,IX represent the derivatives of the shape functions with respect
to the material coordinates X. The order of the interpolation functions of the internal
variables can be chosen independently from those of the spatial and material deformation
and of the temperature problem. The global vectors ϑ and Ĩ contain the discrete nodal
values ϑI and ĨI of the temperature and the internal variable field at every node I =
1,Nt of the mesh. Hence, the evaluation of the gradients ∇Xθ and ∇XI requires a global
representation of the temperature and the internal variable field at the node point level of



Configurational Setting of Thermo-Inelasticity 41

the mesh. As the temperature is one of the primary variables of the coupled problem, the
nodal values ϑI are already known from the non-isothermal spatial solution. The global
representation of the internal variable vector can be achieved in two different ways. On the
one hand, the internal variables can be introduced as additional nodal degrees referred
to as a global formulation. Alternatively, the internal variable field is computed at the
integration point level within a standard local formulation and then, in a postprocessing
procedure, is projected onto the nodal points by means of smoothing algorithms. With
the nodal values at hand the material gradients (3.76) are readily computed whereupon
the discrete configurational nodal force P I can be evaluated.

3.5.1. Global Formulation: Introduction of Additional Nodal Degrees. In a
global scenario the internal variable vector I is introduced as a primary variable in ad-
dition to the spatial coordinates and the temperature field. The approximation is carried
out via the finite element approach

I ≈ I
h = NI

Ĩ (3.77)

An illustrative sketch of this three field formulation is provided in Figure 3.6. A mixed

I

dI , ϑI , ĨI x ≈ xh = N d

θ ≈ θh = N θ ϑ

I ≈ I
h = NI

Ĩ

Figure 3.6: Global formulation. The internal variables are introduced as additional nodal
degrees. This three-field approach is governed by the spatial equilibrium condition, the
temperature evolution equation and an accompanying subproblem.

finite element formulation with an internal strain-like variable being discretized in ad-
dition to the displacement field has been set up by Pinsky [148], however, in a local
context and at small strains. Simo, Kennedy & Taylor [163] developed an alternative
treatment based on a complementary mixed finite element formulation. Within this con-
cept the loading condition is enforced in a weak format on the element level. A similar
procedure, namely a two-field finite element formulation for elasticity coupled to damage,
can be found in Florez-Lopez et al. [47]. An algorithmic formulation similar to the
approach to be developed in the following has been elaborated by Liebe, Steinmann

& Benallal [91] within the context of geometrically linear phenomenological gradient
damage as well as Liebe & Steinmann [90] and Liebe, Menzel & Steinmann [89] in
view of gradient plasticity including additional boundary conditions. A global formulation
for finite strain gradient crystal-plasticity is discussed by Becker [13].
The change of the internal variables is governed by an evolution equation frequently de-
noted the flow rule. Adopting the basic feature of the global formulation, i.e. the finite
element approximation (3.77), this evolution equation is discretized in space and time.
This set of space-time-discrete equations constitutes in combination with the discrete
weak form equations (3.75)1,3 the overall system of equations to be solved for the current
nodal values of the spatial coordinates, the temperature and each component of the inter-
nal variable vector. Regarding its numerical efficiency, the fundamental drawback of this
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approach is rather obvious. Consider for instance the model problem of non-isothermal
finite strain plasticity in the three-dimensional setting. The deformation gradient is mul-
tiplicatively decomposed into an elastic and a plastic part, F = F eF p. Thereby, F p is
a non-symmetric second order tensor containing nine independent components. Conse-
quently, the global formulation introduces in total thirteen scalar nodal degrees, namely
three spatial displacements, the temperature and the nine values of the internal variable
vector. Hence, the full discretization of the internal variable field dramatically increases
the numerical effort of the computation and turns out to be an unfavorable approach.
A numerically cheaper even though still extensive and costly attempt is applicable in
case the direction of the inelastic evolution remains constant during inelastic flow. In that
case solely the amount of inelastic flow, i.e. one scalar field, has to be introduced as an
additional nodal degree. This reasoning also holds if the internal variable vector a priori
consists of one scalar field, e.g. the damage parameter d of damage mechanics.

Remark 3.3: In order to make things more clear consider the evolution equation (3.49)

∂

∂t
I = λ∂Fφ(F). (3.78)

The Lagrange multiplier λ characterizes the amount of inelastic flow in the direction ∂Fφ.
For one scalar internal variable the direction ∂Fφ boils down to just a scaling of the
amount λ and does not contribute in the sense of a coordinate-dependent quantity. On
the contrary, if the direction depends on the Lagrangian coordinates, the evaluation of the
material gradient of I demands the consideration of the gradients of both the amount λ
and the direction ∂Fφ. If the direction is constant, e.g. in crystal-plasticity where plastic
slip occurs in the direction of given slip systems, the material gradient of the internal
variable field is exclusively governed by the gradient of the amount of inelastic flow.

In the sense of a reduced global formulation the subsequent investigations concentrate on
the particular case that the evolution of the internal variable vector is solely determined
by the amount λ of inelastic flow apart from some scaling or a constant direction ∂Fφ =
const. This approach requires an accompanying subproblem which enters the strong form
equations (3.74). In the following, the loading-unloading conditions (3.50), i.e.

φ ≤ 0 , γ̇ ≥ 0 and φγ̇ = 0, (3.79)

set up this constitutive subproblem. This treatment is conceptually in line with the
ideas proposed within the framework of configurational mechanics by Liebe, Denzer

& Steinmann [88] for isothermal finite strain continuum damage and Menzel, Den-

zer & Steinmann [115] in view of isothermal single-crystal-plasticity at small strains.
Compared to (3.78) the Lagrange multiplier λ has been substituted by the evolution γ̇
of a scalar quantity γ characterizing e.g. the damage variable of damage mechanics or
the incremental plastic multiplier associated with one slip system in crystal-plasticity.
With these supplementary equations at hand the strong form of the thermo-mechanically
coupled boundary value problem can be summarized as follows

spatial equilibrium condition DivP + γ̄0 = 0 in B

temperature evolution equation −DivQ + ρ0r + ρ0Dloc = ρ0c
∂

∂t
θ in B

loading-unloading φ ≤ 0 , γ̇ ≥ 0 in B

(3.80)
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valid for the essential and natural boundary conditions

spatial deformation ϕ = ϕ̄ on ∂Bϕ , PN = t̄ on ∂Bt̄

temperature evolution θ = θ̄ on ∂Bθ , Q ·N = Q̄n on ∂BQ̄n
.

(3.81)

Based on the loading-unloading conditions (3.79) the whole domain is split up into a
non-active part Bel and an active part Binel completing the strong form equations

non-active part Bel = {X ∈ B | φ ≤ 0 ∧ γ̇ = 0 }

active part Binel = {X ∈ B | φ = 0 ∧ γ̇ > 0 }.
(3.82)

The algorithmic treatment of this three field approach is presented in Appendix C featur-
ing an enhanced strain formulation. The numerical implementation of the global formula-
tion demands a non-standard finite element data environment. Beyond this, the numerical
effort of the computation is increased significantly by the introduction of additional nodal
degrees which is only necessary for the postprocessing concerned with the evaluation of
the discrete material nodal forces.

Remark 3.4: The global formulation is not to be confused with a truly non-local formu-
lation in the context of higher order or generalized continua. Thereby, the inelastic mech-
anism can be conceptually described by order parameters governed by additional field
equations along with respective boundary conditions. Without claim of completeness the
reader is referred to the fundamental contribution of Capriz [26] and the review article
of Mariano [97], see also the references cited therein, as well as the above-mentioned
literature concerning strain gradient plasticity or non-local inelasticity. The link between
these non-local theories and the concept of configurational mechanics can be found e.g. by
Mariano [96] and Svendsen [179] as well as the recent report of Frankenreiter [49].
Nevertheless, the global approach presented above provides a conceptual means with re-
gard to the numerical treatment of some cases of such truly non-local methods.

3.5.2. Local Formulation. Application of Smoothing Algorithms. The local for-
mulation bases on a standard solution of the thermo-mechanically coupled problem. In
this scenario the strong form equations are

spatial equilibrium condition DivP + γ̄0 = 0 in B

temperature evolution equation −DivQ + ρ0r + ρ0Dloc = ρ0c
∂

∂t
θ in B

(3.83)

constrained by the respective Dirichlet and von Neumann boundary conditions (3.81).
While the global procedure enforces the loading-unloading conditions (3.79) on the node
point level of the finite element mesh, in the local setting the decision on inelastic loading
is made on the integration point level during the constitutive stress update algorithm.
Starting from (3.83), the corresponding weak form is deduced whereupon spatial and
temporal discretization is applied as already described in Section 3.3. The resulting set of
non-linear discrete equations can be formulated by the residual expressions

ru =

Nt∑

I=1

{pI + f I} = 0 and rϑ =

Nt∑

I=1

rI = 0 . (3.84)
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They display the global counterparts of the nodal balances (3.75)1,3 in terms of the ex-
ternal and internal spatial nodal forces pI and f I , cf. (3.58), (3.59), and the temperature
residual rI defined in (3.69). For the solution of this coupled set of equations a Newton-
Raphson-type iteration is employed requiring the consistent linearization with respect to
the primary variables, namely the spatial displacements and the temperature. To this end,
the approximation of the increments of these variables is introduced

∆u ≈N ∆d and ∆θ ≈ N θ ∆ϑ (3.85)

with the global vector fields ∆d, ∆ϑ containing the nodal increments of the respec-
tive variable at all Nt nodal points. Taking into account the staggered solution strategy
discussed in Section 3.4 the linearization ends up with the decoupled system of linear
equations

[

kuu 0

0 kϑϑ

] [

∆d

∆ϑ

]

=

[

ru

rϑ

]

(3.86)

This system is solved for the increments ∆d of the spatial nodal displacements and ∆ϑ of
the nodal temperature and the current nodal values are evaluated by the Newton-update

d⇐ d + ∆d and ϑ⇐ ϑ + ∆ϑ. (3.87)

The components of the global stiffness matrix are given by

kuu =

∫

Bh

BT ∂FP B dV

kϑϑ =

∫

Bh

N θT
ρ0(

c

∆t
− ∂ϑDloc)N

θ + N,θX
T
k N,θX dV.

(3.88)

For the tangent operator kϑϑ associated with the temperature problem the Fourier law
(3.42) for the heat flux vector, Q = −k∇Xθ, has been employed. The quantification of
the local dissipation Dloc is a difficult task. According to Miehe [120] and the references
quoted therein the dissipation of a plastic deformation process is given by a certain fraction
χ ∈ [0; 1] of the total plastic power. This quantity can be written as the product of the
current yield stress ŷ(F , θ) and the evolution γ̇ of the amount of plastic flow. Based on
this assumption the algorithmic expression for the local dissipation is

Dloc :≈ χ (ŷ(F , θn)) γ̇ = χ (ŷ(F , θn)) (γn+1 − γn)/∆t. (3.89)

In this approximative scenario the dissipation is evaluated in terms of the temperature θn

at time tn. Thus, the sensitivity of the dissipation with respect to the current temperature
vanishes, ∂ϑDloc = 0, and the stiffness matrix of the temperature problem appears as a
function just of the finite element matrices N θ and N,θX, the material parameters c and
k denoting the heat capacity and the conductivity, and the discrete time step ∆t.

With the spatial and thermal solution at hand, the discrete configurational nodal forces
are computed in a postprocessing step. The computation of the material gradient (3.76)2

demands a global representation of the internal variable field which at the moment is only
available at the integration points and has to be projected onto the node point level by
means of smoothing algorithms, cf. Menzel, Denzer & Steinmann [115], Nguyen,
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Gauss point nodal
variable variable

smoothing

algorithm

Figure 3.7: Local formulation. After a standard spatial computation the internal variable
field is projected from the integration points onto the nodal points by means of smoothing
algorithms fitting the idea of the material nodal force computation as a postprocessing step.

Govindjee, Klein & Gao [138], and see Figure 3.7 for a sketch of the idea. In extension
to these references two different smoothing algorithms are investigated.
The L2-projection, cf. e.g. Zienkiewicz & Taylor [192], minimizes the difference be-
tween smoothed and original values of the Gauss point variables by the least square
expression

L :=

∫

B

(I∗ − IGP)T (I∗ − IGP) dV → Min. (3.90)

The smoothed Gauss point values I
∗ are computed from projected nodal values Ĩ via

the finite element equation I
∗=NI

Ĩ in terms of the shape functions NI . These nodal
values of the internal variables are obtained by solving a global system of equations

∫

B

NIT
NI dV Ĩ =

∫

B

NIT
IGP dV. (3.91)

To reduce the numerical effort of the solution of this global system of equations, the co-
efficient matrix is diagonalized, e.g. by lumping schemes. Note that this diagonalization
is reported to be sometimes critical in combination with higher order elements.
Alternatively, so-called patch recovery techniques can be used, developed by Zhu &

Zienkiewicz [190] and Zienkiewicz & Zhu [194] in the context of a posteriori er-
ror estimation for adaptive strategies. The nodal values of the internal variables Ĩ belong
to a polynomial expansion Ip of order p valid over an element patch surrounding the
nodal point of interest. The i–th component of the polynomial is computed by

Ii
p(X) = P (X)a with P (X) = [1 X Y ... Xp Y p] (3.92)

with the polynomial terms P up to the order of p listed here for the two-dimensional
setting. The unknown parameters a are determined by the least square expression

L :=
n∑

i=1

( Ii
GP − I

i
p )2 =

n∑

i=1

( Ii
GP − P (X)a )2 → Min. (3.93)

minimizing the difference between the i–th component of the internal variable vector at the
integration point and the i–th component of the polynomial. The necessary condition of
(3.93) states that the derivative of L with respect to the parameters a vanishes, ∂L/∂a=0 .
Enforcing this condition, the patch recovery technique results in a system of equations to
be solved for the coefficient vector a locally at the element patch

a =

[
n∑

i=1

P T P

]−1 [
n∑

i=1

P TIi
p

]

. (3.94)



46 Configurational Setting of Thermo-Inelasticity

With known coefficient vector at hand the polynomial expansion Ip is computed directly
and the nodal values Ĩ follow just by function evaluation. The polynomial terms P re-
main unchanged for the computation of the coefficients a for each component Ii

p and
consequently have to be evaluated only once for each element patch. In case higher or-
der non-linear finite element shape functions are applied the following turned out to be
appropriate. At first, for an internal node under consideration the average obtained from
the recovery process of all patches containing this node should be used. Furthermore, the
order p of the polynomial terms should be chosen in accordance with the order of the
finite element interpolation functions as in that case the ideal convergence properties at
the integration points are also achieved for the smoothed solution.
The local formulation avoids the introduction of additional degrees and therefore is nu-
merically much more effective. Its characteristic perfectly fits the idea of the application
of discrete configurational nodal forces in a postprocessing procedure.

3.6. Specification and Numerical Example

The above concepts are applied to thermo-crystal-plasticity. The constitutive framework
is outlined shortly and Cook’s membrane is analyzed as a boundary value problem.

3.6.1. Model Problem: Thermo-Crystal-Plasticity. The subsequent treatments fol-
low the work of Miehe [120], see also Miehe [119] and Miehe & Schröder [126], but,
for simplicity, are restricted to one single slip system. The continuum slip theory bases on
the multiplicative split of the deformation gradient into an elastic and a plastic part

F = F eF p (3.95)

in the local neighborhood of every material point X ∈ B. In crystal-plasticity the plastic
part F p describes shear on a given slip system (S,N) including both a stretch and a
rotation whereas the elastic part F e governs elastic lattice distortions and rigid body
motions. The slip system is characterized by the orthonormal vector pair (S,N) with S

denoting the slip direction and N being the slip normal. The energy storage mechanism
of the material is assumed to depend on the lattice distortion F e, the temperature θ and
a scalar internal variable A describing isotropic hardening

ψ = ψ(F e, θ, A) = ψ(F ,F p, θ, A). (3.96)

From the latter representation the internal variable vector is identified as I = [F p, A]T .
The numerical example to be analyzed below presumes the particular free energy function

ψ = 1
2
κ ln2 J − κα ln J(θ − θ0) + c(θ − θ0 − θ ln

θ

θ0
) + 1

2
µ(tr b̄

e
− 3)

+

[

(y∞ − y0)(A+
1

ω
(exp(−ωA)− 1)) + 1

2
hA2

]

(1− w(θ − θ0)).
(3.97)

It consists of a microscopic part in terms of the hardening variable A and the temper-
ature θ and a macroscopic part subdivided into a volumetric contribution depending on
the determinant of the deformation gradient and the temperature, a heat capacity term
depending only on the temperature, and an isochoric part in terms of the unimodular
part b̄

e
of the elastic Finger tensor

be = F eḠ
−1

F eT and b̄
e

= F̄
e
Ḡ

−1
F̄

eT

with F̄
e

= J−
1
3 F e. (3.98)
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Note that the plastic incompressibility condition Jp = det F p = 1 allows for the iden-
tifications F̄

p
= F p and J = JeJp = Je. The material parameters introduced in (3.97)

are specified in Table 3.1 below. Coleman´s exploitation of the Clausius-Planck-inequality
(2.60) for the local dissipation gives the constitutive relations

P = ∂Fψ = ∂F eψF p−T and ρ0η = η0 = −∂θψ (3.99)

for the first Piola-Kirchhoff stress tensor P and the entropy η0 per unit volume of the
reference configuration. What remains is the reduced dissipation inequality

ρ0Dloc = P p : Ḟ p + BȦ ≥ 0 with P p := −∂F pψ , B = −∂Aψ (3.100)

in terms of the conjugate forces F = [P p, B]T . Instead of the plastic stresses P p a
modified thermodynamical force Σp is used referred to as the Mandel stress tensor. This
mixed-variant second order tensor represents – except for its sign – the Eshelby stress
tensor associated with the intermediate configuration, see Remark 3.5 below for a detailed
explanation. The dual object work conjugate to the Mandel stresses is the plastic evolution
tensor Lp, frequently denoted the velocity gradient of the intermediate configuration

Σp := P pF pT = F eT∂Feψ and Lp := Ḟ pF p−1. (3.101)

In a concise geometric setting these tensors can be considered as mappings within the
tangent and cotangent spaces T̄XB and T̄ ∗

XB of the intermediate configuration as depicted
in Figure 3.8. Following Section 3.2.2.4, the yield criterion function φ is introduced as the

F p F e

F p−T F e−T

G Ḡ g be

Lp

Σp

TXB

T ∗
XB

Tx S

T ∗
x S

T̄XB

T̄ ∗
XB

Figure 3.8: Mappings in terms of the plastic part F p and elastic part F e of the deformation
gradient, the Mandel stress tensor Σp and the work conjugate plastic evolution tensor Lp.

difference between the level set function f(F , θ) = f(Σp, B, θ) and a material parameter
τc(θ) denoted the slip resistance. To set up the level set function f , the Mandel stress
tensor is projected onto the slip system defining Schmid´s resolved shear stress

τSch = Σp : (S ⊗N) = dev Σp : (S ⊗N). (3.102)

Due to orthogonality of S and N the resolved shear stress incorporates only the deviatoric
part of the Mandel stresses. The particular form of yield criterion function is given by

φ = τSch +B − τc = τSch − (τc −B). (3.103)

Th critical shear stress is described by the initial flow stress function τc = y0(1−w0(θ−θ0))
with w0 being the flow stress softening coefficient. In view to the derivation of the evolution
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equations for the internal variables Lp and A, attention is focused on an associated flow
response. In that case the evolution equations are obtained from the principle of maximum
dissipation. The necessary condition of the optimization problem yields

Lp = λ∂Σ
pφ = λS ⊗N and Ȧ = λ∂Bφ = λ (3.104)

in combination with the Karush-Kuhn-Tucker loading-unloading conditions (3.50), i.e.
φ ≤ 0, λ ≥ 0 and φλ = 0. The primary identification of the internal variable vector
I = [F p, A]T uses the plastic part F p of the deformation gradient. Its evolution equation
is directly obtained from (3.104)1, namely Ḟ p = λ∂Σ

pφF p. Based on this relation it can
easily be shown that the following closed form representation holds

F p = 1 + γS ⊗N . (3.105)

Physically, it is interpreted as a simple shearing of the crystallographic lattice with the
amount of slip γ = λ(tn+1 − tn) in the direction of S.
Turning next to the evaluation of the discrete configurational forces, the material gradient
of the internal variable vector has to be computed

∇XI =

[
∇XF p

∇XA

]

=

[
(S ⊗N)⊗∇Xγ

∇XA

]

. (3.106)

Integration of (3.104)2 by means of an implicit backward Euler integration scheme in the
discrete time interval [tn; tn+1] yields the scalar hardening variable at time tn+1

An+1 = An + λ(tn+1 − tn) = An + γ. (3.107)

Hence, for the evaluation of ∇XI only the scalar variable A needs to be provided on the
node point level of the finite element mesh. The amount of slip is described by the closed
form update γn+1 = γn + (An+1−An) to be performed on the node point level as well for
known nodal values An+1, An of the hardening variable.

Remark 3.5: It is an intrinsic feature of multiplicative crystal-plasticity that the negative
Mandel stress tensor coincides with the purely intermediate representation of the Eshelby
tensor. This can be proven by means of the notion of local rearrangement as discussed for
instance by Epstein & Maugin [37, 40]. Consider the representations of the free energy
function ψ̂ and ψ̃ with respect to the reference and intermediate configuration. Both are
linked via the determinant Jp of the plastic part of the deformation gradient

ψ̂(F ,X) = Jpψ̃(F e,X) = ψ(F ,F p−1,X) (3.108)

with Jp = det F p = (det[F p−1])−1. The first Piola-Kirchhoff stress tensor is the derivative
of the free energy function with respect to the deformation gradient. The Eshelby tensor
Σ̂ with respect to the intermediate configuration is defined by the negative derivative of
the free energy with respect to the inverse of the plastic part of the deformation gradient

P = ∂F ψ̂ and Σ̂ = −∂(F p−1)ψ̂. (3.109)

Both objects are two-point tensors respectively related to the spatial and material as well
as the material and intermediate configurations. Substituting the free energy function
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(3.108)2 into the definition of the Eshelby tensor Σ̂ and taking into account the product
rule as well as the rule for the derivative of the determinant it follows

Σ̂ = (ψ̂1 − F T P )F pT = ΣF pT (3.110)

with the well-established purely material Eshelby tensor Σ. For plastic incompressible
materials, Jp = 1, (3.110) boils down to

Σ̂ = −F T PF pT = −F T (∂F eψ̂F p−T )F pT = −F T∂F eψ̂ (3.111)

since the chain rule does not have to be applied within the above derivative. In the last
parts an alternative representation of the first Piola-Kirchhoff stresses, cf. (3.99), has been
used. The two-point tensor Σ̂ is transformed onto the intermediate configuration by a pull-
back operation in terms of the transpose inverse of the plastic part of the deformation
gradient. By this manipulation a modified Eshelby tensor Σ̄ arises

Σ̄ = F p−T Σ̂ = −F T (∂Feψ̂F p−T )F pT = −F eT∂F eψ̂ = −Σp (3.112)

exclusively related to the intermediate configuration. By comparison with (3.101) this
purely intermediate Eshelby tensor appears as the negative Mandel stress tensor Σp.

3.6.2. Numerical Example: Cook’s Membrane Problem. The example deals with
the comparison of the global and local procedures discussed in Section 3.5. Cook’s mem-
brane is investigated as a model problem. The use of Cook’s membrane within the con-
text of the evaluation of discrete configurational nodal forces is provided e.g. by Näser

& Kaliske [135]. The system with boundary conditions is visualized in Figure 3.9, the

p

44

16

48

Figure 3.9: System and boundary conditions of Cook’s membrane problem. The dimen-
sions are given in [mm]. The specimen is discretized with 25x15 bilinear quadrilaterals. An
enhanced strain formulation is adopted for the spatial deformation problem.

material parameters are summarized in Table 3.1. The orientation ǫS of the slip direction
S is specified with respect to the horizontal axis. The particular choice of the material pa-
rameters α, c and w is such that the influence of the temperature is overstated. This does
not pose any restriction to the applicability of the proposed procedures but is adopted
just for the sake of a better accentuation of the effects to be shown. A distributed vertical
load of a total of p = 0.084 kN/mm is applied within 42 load increments. Spatial volume
forces γ̄0 and the heat source r have been neglected. The specimen is discretized with
25x15 four-noded quadrilaterals. Bilinear shape functions are used for the temperature
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Table 3.1: Material parameters for thermo-crystal-plasticity

bulk modulus κ 49.98 kN/mm2

shear modulus µ 21.1 kN/mm2

initial yield stress y0 0.06 kN/mm2

infinite yield stress y∞ 0.115 kN/mm2

hardening modulus h 0.015 kN/mm2

saturation parameter ω 10.764 –
thermal expansion coefficient α 1 · 10−4 1/K
conductivity k 0.045 1/K
reference temperature θ0 293.0 K
heat capacity c 3.558 · 10−5 kN/(s·K)
hardening softening w 0.002 1/K
flow stress softening w0 0.002 1/K
orientation of slip direction ǫS 60.0 o

evolution problem and, in case of the global formulation, the supplementary constitu-
tive subproblem. For the spatial deformation problem an enhanced strain formulation is
employed using bilinear interpolation functions as well but in addition containing four
internal degrees. The denotations Q1E4Q1Q1 and Q1E4Q1 seem to be appropriate. A
detailed treatment of this finite element formulation is outlined in Appendix C.
Figure 3.10 shows a comparison of the distribution of the change ∆θ in the temperature
field θ plotted over the deformed structure. The results obtained from a) the global and

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

a) b)

Figure 3.10: Distribution of change ∆θ of temperature field θ for a) global solution and b)
local solution.

b) the local formulation are almost identical. The temperature increases by a maximum
value of ∆θ = 198.37 K in the global and ∆θ = 198.35 K in the local simulation. A
comparison of the overall structural response reveals the same characteristic. For the final
load step the maximum nodal displacements for the global solution are ux

max = 2.99 mm
and uy

max = –3.41 mm. The local scheme ends up with ux
max = 3.01 mm and uy

max =
–3.43 mm.
The very good agreement of the results obtained from the different solution strategies is
confirmed when considering the distribution of the scalar hardening variable A visualized
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in Figure 3.11. Three scenarios have to be compared. Within the global formulation the

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

a) b) c)

Figure 3.11: Distribution of hardening variable A for a) global solution, b) local solution
combined with patch recovery, and c) local solution utilizing L2-projection.

hardening variable is introduced as an additional nodal degree. In this sense, Figure 3.11a)
provides the contour plot of this additional node point variable. Within a local simulation
the internal variable field is available on the integration point level and is projected onto
the nodal points in a postprocessing step. The contour plot in Figure 3.11b) is obtained
by the patch recovery whereas that one received form the L2-projection is depicted in Fig-
ure 3.11c). The differences between the alternative approaches are again negligible. The
maximum values deviate from Amax = 0.1192 for the patch recovery to Amax = 0.1175 for
the L2-projection. The global solution lies in between at Amax = 0.1188. By comparison
of the distributions of the hardening variable A and the increase ∆θ in temperature it is
well detectable that the evolution of plastic deformation, which directly governs the local
dissipation Dloc, is the driving quantity for the evolution of the temperature.
Finally, the computation of the discrete configurational nodal forces is investigated. The
results gained from the alternative solution strategies are very close to each other. For this
reason only the results of the global analysis are displayed in Figure 3.12. Three different

a) b) c)

Figure 3.12: Discrete material nodal forces obtained by the global simulation. a) Internal
part based on the Eshelby tensor Σ pointing in the negative direction. Contributions to
discrete configurational forces in terms of the gradients b) ∇XI of the internal variables and
c) ∇Xθ of the temperature. Forces along the discrete boundary are omitted.

contributions are plotted. In Figure 3.12a) the internal material forces F I in terms of
the Eshelby tensor Σ are presented, cf. (3.61). On the other hand, the configurational, or
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rather quasi-inhomogeneity forces P I are a function of the material gradients of the inter-
nal variables and the temperature field, see (3.60) and (3.29). These two contributions of
P I are depicted in Figure 3.12b), c). Note that the internal forces are plotted pointing in
their negative direction for the sake of comparison. In contrast to the interior nodes large
discrete surface forces appear at the boundary nodes of the finite element mesh. These
forces are essential to maintain the shape of the material boundary of the structure, i.e. to
prevent the material configuration of the body from shrinking. As they are not needed for
the current investigations, these nodal forces on the discrete boundary ∂Bh are set to zero
and only the nodal forces F I , P I at the interior nodes I ∈ Bh are plotted in the figures.
The configurational forces are computed in terms of the material gradients of the harden-
ing variable A and the temperature field θ and thus are perpendicular to the isolines of A
and θ. The distribution of these fields acts as an inhomogeneity within the material body.
Since configurational forces point in the direction of an energy increase upon movement
of the material node point position, they try to inhibit any further evolution of these
quantities which would cause an energy decrease of the system. The negative internal
material forces display the same characteristic as they constitute the direct counterpart
of the configurational forces within the discrete nodal balance (3.75)2.
This discrete equilibrium condition reflects the discrete version of the material balance
law (3.74)2 and demands vanishing resultant forces (F I + P I) = 0 at all interior nodes
of the mesh. This means that from the theoretical point of view all the contributions
to the nodal forces sum up to zero inside the discrete domain Bh. The resultant forces
are visualized in Figure 3.13. As expected, these forces almost vanish inside the material

a) b) c)

Figure 3.13: Resultant nodal forces obtained by the sum of internal contribution and the
discrete configurational nodal forces in terms of the gradients of the internal variables and
the temperature field for a) global formulation, b) patch recovery and c) L2-projection. All
the forces along the discrete boundary have been omitted.

body irrespective of the applied solution procedure. However, some numerically caused,
often denoted spurious forces remain at the interior nodes. Thereby, only minor deviations
between the three approaches are detectable. These forces occur due to an insufficient tri-
angulation and can be used as an indicator for mesh refinement. This argument will be
exploited in the forthcoming sections.

In summary, all approaches reveal completely the same characteristics concerning the
distribution of the hardening variable, the temperature field and the resultant material
forces. Recalling the advantages with respect to the numerical effort of the simulation, it
has to be emphasized that the local approach turns out to be more favorable and will be
applied for problems of finite inelasticity to come up in the subsequent chapters.
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4. Configurational Solid Dynamics

The aim of this section is to present a variational approach to configurational solid dynam-
ics based on Hamilton’s principle. Hereby, the variations with respect to the spatial and
material positions as well as the time are performed. The corresponding Euler-Lagrange
equations of the variational setting appear as the local forms of the spatial balance of
linear momentum, the balance of material pseudomomentum, which itself relies on the
definition of the dynamical extension of the Eshelby tensor, and the balance of kinetic
energy. The corresponding global balance laws are introduced as well. In the first step a
brief review of selected literature on the topic is provided. Subsequently, the variational
setting of configurational dynamics is discussed at full length. Attention is restricted to
the purely elastic, non-dissipative case. Next, the discrete setting is elaborated. At first,
the spatial deformation problem is investigated. Space discretization in terms of standard
finite element scheme results in a semi-discrete representation of the equation of spatial
motion. This expression is solved by means of the classical Newmark-α method. In the
sense of a staggered solution strategy, the equation of material motion is implemented
in a postprocessing step. Finally, an illustrative numerical example is discussed. Further
applications of configurational forces within the dynamical framework will be presented
in the forthcoming paragraphs.

4.1. Preliminary Aspects

A variety of literature dealing with the dynamical setting of configurational mechanics
and material forces is available. Basically, the influence of dynamical effects on the forces
acting on defects has already been studied by Eshelby [43] himself and later on also
by Rogula [153]. It is a remarkable circumstance that many publications on the field
of Eshelbian mechanics include the dynamical formulation of the fundamental field equa-
tions. Hence, the quotations given below are just a brief compendium dealing with various
aspects of the topic. In general, two different conceptual approaches can be used to derive
the fundamental material balance equation referred to as the dual balance of material mo-
mentum or pseudomomentum, namely either the pull-back of the spatial balance equation
or a true variational formulation. A detailed discussion can be found in Maugin [99, 100]
or more recently in the works of Steinmann [172, 174] where thermo-mechanical as-
pects are included as well. The theoretical basis of configurational dynamics has been
studied by e.g. Maugin & Trimarco [110], Maugin [102], and Gurtin & Shvarts-

man [64], see also Maugin, Epstein & Trimarco [109] including the application to
fracture mechanics and even the consequences with regard to electromagnetoelasticity.
The numerical treatment which in particular results in the evaluation of discrete configu-
rational nodal forces has been elaborated by e.g. Kolling & Müller [81], and Timmel,

Kaliske, Kolling & Müller [184]. The analyses performed within these contribu-
tions are concerned with high-frequency loading of the systems under consideration and
therefore incorporate an explicit time integration scheme for the solution of the spatially
discretized or semi-discrete equation of motion. With regard to the variational setting
Kuhl & Steinmann [85] address an arbitrary Lagrangian Eulerian (ALE) formulation
of hyperelastodynamics. Thereby, the total variation of the variational principle appears
as the sum of variations with respect to the spatial coordinates at fixed material positions
and, vice versa, with respect to the material coordinates at fixed spatial positions. In
the recent work of Zielonka [191] the variational ALE technique has been successfully
applied to mesh adaption. It is mentioned by now that the application of the variational
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ALE approach to mesh adaption and topology optimization is going to be considered
in detail in Paragraph 5 for the particular case of quasi-static problems. An alternative
approach to mesh adaptivity using discrete material forces as a refinement indicator will
be presented in Section 6. Within these analyses the dynamical case is going to be taken
into account as well, see also the recent report of Hofacker [70].

4.2. Variational Formulation of Configurational Solid Dynamics

This paragraph is concerned with the variational setting of configurational hyperelasto-
dynamics based on Hamilton’s principle. To recapitulate briefly the geometric scenario, cf.
Section 2, consider the reference and current configurations B and S of a material body
related by the non-linear deformation map ϕ(X, t), see Figure 4.1 below. This point
map is parameterized by the Lagrangian space-time (X, t). The partial derivatives of the
motion ϕ define the deformation gradient and the spatial velocity

F =
∂

∂X
ϕ(X, t) = ∇Xϕ(X, t) and v =

∂

∂t
ϕ(X, t). (4.1)

The partial time derivative of an arbitrary material object (•) parameterized by the
Lagrangian space-time equals the total time derivative d(•)/dt|X fixed for time-independent
reference coordinates, X = const. In contrast, the partial derivative of the deformation
map ϕ with respect to the material coordinate X corresponds to the total derivative,
dϕ/dX = ∂ϕ/∂X . With these arguments at hand, the following relations hold

d

dX
v =

∂

∂X
v =

∂

∂X
(
∂

∂t
ϕ) =

∂ 2

∂t ∂X
ϕ =

∂

∂t
∇Xϕ =

∂

∂t
F =

d

dt

∣
∣
∣
X fixed

F . (4.2)

Consider now the perturbation of both the reference and the spatial configuration of the
material body in terms of variations δX and δx of the material and spatial coordinates
as visualized in Figure 4.1. The material variation accounts for a change of the reference

B

S

X

ϕ

δx
δX

Figure 4.1: Perturbation of reference and current configurations by variations δX and δx

of the material and spatial coordinates. The variation of the material position characterizes
a movement of an inhomogeneity, indicated by the void, with respect to the material setting.

coordinates and allows for the description of structural changes within the Lagrangian
setting of the body, e.g. the movement of a void or inclusion. Hence, the material and
spatial variations δX and δx = δϕ which are central to the subsequent variational for-
mulation of solid dynamics act in the same way as the rates of the material and spatial
configurational maps Ξ and ξ introduced in Chapter 3 providing the kinematic basis
for the rate formulation of configurational thermo-inelasticity. This analogy brings both
approaches close to each other. In addition to the variations of the space-coordinates, a
variation δt of the time-coordinate t is taken into account.
The variational formulation rests upon energetic arguments. The fundamental ingredient
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is the Lagrangian functional L defined by the difference between kinetic energy K and
potential energy Π

L = K − Π =

∫

B

L dV +

∫

∂Bt̄

L̄ dA. (4.3)

In contrast to Section 2.3.4, it is preferable to formulate K with respect to unit volume
of the reference configuration

K =

∫

B

1
2
ρ0(X)v(X, t) · v(X, t) dV. (4.4)

with the Lagrangian density ρ0(X). The total potential energy of an elastic system is
given by the sum of the internal and the external potential energy, Π = Πint + Πext. On
the one hand, the internal contribution characterizes the total strain energy

Πint =

∫

B

ψ(F ,X) dV, (4.5)

in terms of the free energy function ψ(F ,X) per unit volume of the reference configura-
tion. The dependence of the reference density and the free energy function on the material
coordinates X governs possible inhomogeneities of the material body. On the other hand,
the external part describes the potential energy of the external physical loading

Πext = −

∫

B

ϕ(X, t) · γ̄0(X) dV −

∫

∂Bt̄

ϕ(X, t) · t̄ dA (4.6)

defined by the physical forces acting on the body, namely the spatial volume forces γ̄0

per unit reference volume and spatial surface tractions t̄.

Remark 4.1: For the particular case, these potentials governing the external power P
and the stress power S, both likewise defined in Section 2.3.4, via the total time derivatives

P = −
d

dt
Πext and S =

d

dt
Πint, (4.7)

the mechanical system is denoted a conservative system.

With all these definitions at hand, the Lagrangian functional L reads

L =

∫

B

1
2
ρ0v · v − ψ + ϕ · γ̄0 dV +

∫

∂Bt̄

ϕ · t̄ dA. (4.8)

As indicated in equation (4.3), the Lagrangian L can alternatively be expressed by the
Lagrangian densities L and L̄ per unit volume and unit area of the reference configuration.
By comparison of both representations, the Lagrangian densities appear as

L = L(t,X,ϕ,v,F ) = 1
2
ρ0v · v − ψ + ϕ · γ̄0 and L̄ = L̄(t,X,ϕ) = ϕ · t̄. (4.9)

For the subsequent treatments it is convenient to differentiate between independent and
dependent variables interchangeably referred to as variables and fields. Basically, the time
t and the reference coordinates X, i.e. the Lagrangian space-time, constitute the inde-
pendent variables whereas the spatial coordinates x = ϕ characterize the dependent
variables or fields. The Lagrangian densities (4.8) are parameterized by the time, the ma-
terial and spatial coordinates and, in addition, the derivatives of the field with respect to
the variables, i.e. the spatial velocity field and the deformation gradient v = ∂ϕ/∂t and
F = ∂ϕ/∂X. Apparently, to set up a framework capable of describing structural changes
within the material setting of the body, the Lagrangian coordinates X are time-dependent
but are still regarded as independent variables.
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4.2.1. Hamilton’s Principle. For elastic systems, the scalar-valued Lagrangian func-
tional L, or rather the kinetic and potential energies, contain the complete dynamics of
that system, subjected to the condition that they are used as the basis of a mechanical
principle. In general, variational principles are concerned with the stationary, in particular
cases even minimal value of a definite integral. For more details on variational principles,
the reader is referred to the fundamental monograph of Lanczos [86].
The basis of the variational formulation to follow is Hamilton’s principle. Its key quantity
is the action integral

H =

∫ t2

t1

K − Π dt =

∫ t2

t1

L dt (4.10)

being the definite time integral of the difference between kinetic and potential energies,
i.e. the Lagrangian functional L. The motion of a mechanical system between two points
in time t1 and t2 is analyzed. It is presumed, that at these points in time the state of
the system is prescribed and no variations are admitted. For discrete mechanical systems,
the action integral is parameterized by a set of n generalized coordinates q and their
temporal change q̇ with n denoting the number of degrees of freedom of the system.
The generalized coordinates and the time t span a (n + 1)-dimensional space usually
denoted the configuration space. Carefully observe that this notation must not be confused
with the expression configurational space corresponding in a rather abstract meaning
to the material or Lagrangian space. The fundamental interpretation of this geometric
idealization of dynamical problems is that the motion of the system between its prescribed
initial and final states appears as a sequence of points and therefore as a curve or path
within the configuration space, see Figure 4.2 for a sketch of this scenario. This path can

q

q(t1)

q(t2)

tt1 t2

Figure 4.2: The generalized coordinates q and the time t define the (n + 1)-dimensional
configuration space. The motion of the system between the prescribed initial and final states
appears as a path through the configuration space. Hamilton’s principle states that the
motion occurs along that path, for which the action functional becomes stationary.

be seen as the geometric visualization of the whole history of the motion as every point
of this path characterizes the state of the system at the corresponding time t.
Hamilton’s principle states that the motion of the system is such that the action integral
becomes stationary with respect to all admissible variations of the state of the system

H =

∫ t2

t1

L dt → stat. (4.11)

Since the initial and final states of the system are prescribed, the variations at these points
vanish, δq(t1) = δq(t2) = 0 , and the variation just occurs between these definite limits.
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In view of the geometric interpretation Hamilton’s principle asserts that the current path
in the configuration space corresponds to that path that renders the action functional
stationary. Hence, the dynamical system always finds the, say, optimal path from its
initial state at time t1to its final state at time t2. By this procedure, the problem of the
motion of mechanical system boils down the exploitation of a scalar integral.
In the following, Hamilton’s principle is used to derive the fundamental equations of
configurational solid dynamics. The considerations are devoted to continuous systems.
Therefore, the generalized coordinates are replaced by space-continuous state variables
resulting in an infinite number of degrees of freedom. In addition to the temporal change
of these variables, their change with respect to space given by the material gradient enters
the action functional

H =

∫ t2

t1

K − Π dt =

∫ t2

t1

{∫

B

L dV +

∫

∂Bt̄

L̄ dA

}

dt (4.12)

with the Lagrangian densities L, L̄ being defined in (4.9). This functional is valid for the
initial conditions, which demand that the initial and final configurations of the system
are given, and for prescribed spatial and material essential Dirichlet boundary conditions

ϕ = ϕ̄ on ∂Bϕ and X = const. on ∂B. (4.13)

The first condition governs that part ∂Bϕ of the boundary where the spatial position or
deformation x̄ = ϕ̄ is prescribed. The second condition for the material coordinates on
the whole boundary ∂B states that the material boundary remains completely unaltered.

Remark 4.2: Recalling the discussions in the context of equations (3.5) and (3.11) within
Section 3.2.1, a reduced form of the essential material boundary condition (4.13)2 allows
for a variation of the Lagrangian coordinates along the material boundary. This movement
of the material positions must not change the original shape of the body and thus must
not contain any contribution in the direction of the outward normal N .

Hamilton’s principle requires that the action functional H needs to be stationary with
respect to variations of the spatial and material coordinates and time. Thus the necessary
condition of (4.11) reads

δH = δϕH + δXH + δtH = 0 (4.14)

and demands that the first variation of the action functional has to vanish. The subscript
δ(•)H indicates with respect to which variable (•) the variation is performed. Adopting
the notation of e.g. Zielonka [191] and Kharevych et al. [75], variations of the
action functional with respect to the spatial positions at fixed material configuration and
time are denoted vertical variations. Vice versa, variations with respect to the reference
positions and time at fixed spatial coordinates are referred to as horizontal variations.

4.2.2. Variation with respect to Spatial Coordinate. At first, the variation of the
action functional (4.12) with respect to the current coordinates x = ϕ is investigated.
Consider an arbitrary field δϕ denoted the variation of ϕ or the virtual deformation map
satisfying the homogeneous form of the Dirichlet-type boundary conditions (4.13)1

δϕ ∈ {δϕ | δϕ = 0 on ∂Bϕ}. (4.15)
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Upon variation of the spatial coordinates, the time t and the material position X and
therefore the integration limits remain unaffected. By means of the Gateaux derivative
the variation of the action functional can be expressed by

δϕH =

∫ t2

t1

{
∫

B

d

dǫ
L(t,X,ϕ + ǫδϕ,

∂

∂t
(ϕ + ǫδϕ),

∂

∂X
(ϕ + ǫδϕ))

∣
∣
ǫ=0

dV

+

∫

∂Bt̄

d

dǫ
L̄(t,X,ϕ + ǫδϕ)

∣
∣
ǫ=0

dA

}

dt

=

∫ t2

t1

{
∫

B

∂L

∂ϕ
· δϕ +

∂L

∂v
·
∂

∂t
δϕ +

∂L

∂F
:
∂

∂X
δϕ dV

+

∫

∂Bt̄

∂L̄

∂ϕ
· δϕ dA

}

dt = 0.

(4.16)

Note that the derivatives of the variation δϕ with respect to time and material position
could be replaced by variations δv := ∂δϕ/∂t of the velocity field and δF := ∂δϕ/∂X
of the deformation gradient. For the second and third addends integration by parts with
respect to time or, respectively, material coordinates is applied

δϕH =

∫ t2

t1

{
∫

B

{
∂L

∂ϕ
· δϕ +

∂

∂t

[
∂L

∂v
· δϕ

]

−
∂

∂t

[
∂L

∂v

]

· δϕ + Div

[

δϕ
∂L

∂F

]

− Div

[
∂L

∂F

]

· δϕ

}

dV +

∫

∂Bt̄

∂L̄

∂ϕ
· δϕ dA

}

dt = 0.

(4.17)

With regard to the second addend time and space integration commute for fixed material
positions. Time integration and differentiation cancel out each other but the integrand
has to be evaluated at the integration limits. Thereupon this term vanishes as the state
variables remain unchanged at the end points of the time interval, δϕ(t1) = δϕ(t2) = 0 .
The last component in the first line is transferred into a surface integral by means of
Gauss integration theorem. According to the Dirichlet-type boundary conditions (4.15)
the variation δϕ vanishes on ∂Bϕ and the necessary condition reduces to

δϕH =

∫ t2

t1

{
∫

B

(
∂L

∂ϕ
−

∂

∂t

[
∂L

∂v

]

− Div

[
∂L

∂F

])

· δϕ dV

+

∫

∂Bt̄

(
∂L̄

∂F
N +

∂L̄

∂ϕ

)

· δϕ dA

}

dt = 0.

(4.18)

Here, N represents the outward normal of the material boundary ∂B. This equation has
to be fulfilled for all admissible variations δϕ which allows for the identification of the
spatial Euler-Lagrange equation of the variational formulation

− Div

[
∂L

∂F

]

+
∂L

∂ϕ
=

∂

∂t

[
∂L

∂v

]

in B (4.19)

and the natural boundary conditions valid on the traction boundary

−
∂L

∂F
N =

∂L̄

∂ϕ
on ∂Bt̄. (4.20)



Configurational Solid Dynamics 59

Upon substitution of the Lagrangian densities (4.9) the Euler-Lagrange equation (4.19)
appears as the Lagrangian version (2.45) of the local format of balance of physical or
spatial linear momentum

DivP + γ̄0 = ρ0
∂

∂t
v in B (4.21)

with the constitutive relation P = ∂Fψ for the first Piola-Kirchhoff stress tensor. Note
that the partial time derivative ∂v/∂t of the spatial velocity field coincides with its total
one dv/dt|X fixed at fixed material positions. The traction boundary condition changes to

PN = t̄ on ∂Bt̄ (4.22)

in terms of the given physical traction field t̄.

4.2.3. Variation with respect to Material Coordinate. Turning next to the varia-
tion of the action functional (4.12) with respect to the material position X, attention is
focused on possible changes of the material structure of the solid described by an arbitrary
field δX referred to as the variation of X. According to the essential boundary conditions
(4.13)2, this rearrangement of matter is restricted to the bulk material while the boundary
must remain unaffected, X = const. on ∂B. In this sense, the material variation δX is
constrained by the homogeneous form of the boundary conditions

δX ∈ {δX | δX = 0 on ∂B} (4.23)

Recalling Remark 4.2 as well as the discussion outlined in the context of equation (3.11) in
Section 3.2.1, a movement of material positions along the boundary ∂B could be permitted
inducing the alternative boundary condition δX ∈ {δX | δX ·N = 0 on ∂B} with the
outward normal N already introduced above. Performing the variation with respect to
the material coordinates, the time t is kept constant

δXH =

∫ t2

t1

{
∫

B

{
d

dǫ
L(t,X +ǫδX,ϕ(X +ǫδX),v(X +ǫδX),F (X +ǫδX))

∣
∣
ǫ=0

+ L(1 :∇XδX)

}

dV +

∫

∂Bt̄

d

dǫ
L̄(t,X + ǫδX,ϕ(X+ǫδX))

∣
∣
ǫ=0
dA

}

dt = 0.

(4.24)

By now, the variation δXdV of the integration limit of the volume integral has to be
considered. This variation is computed in analogy to the time derivative of the spatial
and material volume elements, cf. Section 2.1.5 and Appendix B, and leads to the first
contribution in the second line of (4.24). In contrast, the material boundary remains
constant, δXdA = 0. The derivative with respect to the perturbation ǫ results in

δXH =

∫ t2

t1

{
∫

B

{
∂L

∂X

expl

· δX +
∂L

∂ϕ
·
∂ϕ

∂X
δX +

∂L

∂v
·
∂v

∂X
δX +

∂L

∂F
:
∂F

∂X
δX

}

dV

+

∫

B

L(1 : ∇XδX) dV +

∫

∂Bt̄

∂L̄

∂X
· δX dA

}

dt = 0.

(4.25)

Due to the homogeneous boundary condition (4.23) the surface integral is eliminated.
By virtue of relation (4.2) the third component can be expressed in terms of the time
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derivative of the deformation gradient. Application of integration by parts with respect
to time and reference coordinate yields

δXH =

∫ t2

t1

{
∫

B

{
∂L

∂X

expl

· δX + F T ∂L

∂ϕ
· δX +

∂

∂t

[

F T ∂L

∂v

]

· δX

−(F T ∂

∂t

[
∂L

∂v

]

) · δX + Div

[

F T ∂L

∂F

]

· δX − (F T Div

[
∂L

∂F

]

) · δX

+Div
[

LδX
]

−Div
[

L1
]

· δX

}

dV

}

dt = 0.

(4.26)

Using Gauss integration theorem, the first component of the third line is transformed into
a surface integral which also vanishes due to the boundary conditions (4.23). Finally, the
variation of the action functional with respect to the material coordinates reads

δXH =

∫ t2

t1

{
∫

B

{(

Div

[

−L1 + F T ∂L

∂F

]

+
∂L

∂X

expl

−
∂

∂t

[

−F T ∂L

∂v

])

· δX

+ F T

(

−Div

[
∂L

∂F

]

+
∂L

∂ϕ
−

∂

∂t

[
∂L

∂v

])

· δX

}

dV

}

dt = 0.

(4.27)

The second expression represents the spatial Euler-Lagrange equation (4.19) being multi-
plied by the transpose of the deformation gradient in order to generate a purely material
quantity. The variational form has to be satisfied for arbitrary admissible material varia-
tions δX. Subjected to the condition that the spatial balance is fulfilled, the dual material
or configurational Euler-Lagrange equation can be extracted

Div

[

−L1 + F T ∂L

∂F

]

+
∂L

∂X

expl

=
∂

∂t

[

−F T ∂L

∂v

]

in B. (4.28)

For the material branch of the variational setting no natural boundary condition arises
since the whole boundary is governed by the Dirichlet condition X = const. on ∂B. The
material Euler-Lagrange equation can be reformulated by insertion of the Lagrangian
density (4.9)1. On the one hand, consider the specification of the divergence term

Div

[

−L1 + F T ∂L

∂F

]

= Div
[
(ψ − 1

2
ρ0v · v)1 − F T P

]
− F T γ̄0 − ϕ∇X γ̄0 (4.29)

with the first Piola-Kirchhoff stress tensor P = ∂Fψ. On the other hand, the explicit
derivative of the Lagrangian density with respect to the material coordinates reads

∂L

∂X

expl

= 1
2
∇Xρ0v · v − ∂Xψ

expl + ϕ∇X γ̄0. (4.30)

Upon summation, the last addends of (4.29) and (4.30) cancel and the configurational
Euler-Lagrange equation is recast into the form of the local material balance equation

DivΣ + Γ̄0 =
∂

∂t
P in B. (4.31)
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This purely material balance law is denoted the balance of material pseudomomentum
and states the dual material counterpart to the spatial balance law (4.21). It relies on the
definition of the dynamic Eshelby tensor

Σ := (ψ − 1
2
ρ0v · v)1 − F T P = −L̃1 − F T P with L̃ := 1

2
ρ0v · v − ψ (4.32)

in terms of the reduced Lagrangian density L̃ and the material vector fields

P := −ρ0F
T v and Γ̄0 := 1

2
∇Xρ0v · v − ∂Xψ

expl − F T γ̄0 (4.33)

denoted the material pseudomomentum and the configurational or material volume force,
respectively. From (4.33)2 it follows that configurational forces occur for the case that
(i) spatial volume forces γ̄0 take effect, and/or the material body exhibits a material
inhomogeneity which can be characterized by an explicit dependence of the (ii) free energy
function ψ and (iii) the reference density ρ0 on the material position X.

Remark 4.3: For the restriction to the quasi-static case, the pseudomomentum vector
vanishes, P = 0 , and the dynamical Eshelby tensor Σ boils down to its quasi-static
counterpart (3.27) as the modified Lagrangian density reduces to the free energy function,
−L̃ = ψ. Thus, the equation (4.31) of material motion passes into the material equilibrium
condition (3.34) derived in the previous chapter and, on the one hand, appears as the
dynamical generalization of the quasi-static material balance law. On the other hand, due
to the fact that the current investigations are restricted to the isothermal elastic case, the
configurational force Γ̄0 specified in (4.33)2 does not include any contributions from the
gradients of the temperature or internal variable field and consequently turns out to be a
particular format of the more general expression (3.29). This expression basically captures
the fundamental interpretation of a configurational force as an inhomogeneity force, or,
more precisely, the driving force acting on an inhomogeneity embedded in a material
body. It is of interest to point out that the full material inhomogeneity, including the
explicit dependence of the density ρ0 and, as usual, of the free energy ψ on the material
coordinates X can be exhibited only in the dynamical framework because it is naturally
related to the inertial contribution.

Remark 4.4: The derivation of the material balance equation in terms of a Lagrangian
density L directly refers to the classical approach of Eshelby [43]. This procedure starts
with the evaluation of the material gradient of the Lagrangian density (4.9)

∇XL = 1
2
∇Xρ0v · v + ρ0∇

T
X v v − ∂Fψ : ∇XF − ∂Xψ

expl + F T γ̄0 (4.34)

Using the constitutive expression for the first Piola-Kirchhoff stress tensor, P = ∂Fψ, the
spatial balance equation (4.21) as well as the kinematic compatibility conditions ∇XF =
FiJ,K = FiK,J and ∇Xv = ∂F /∂t, this relation can be recast into the material balance
law (4.31). For the sake of completeness, it has to be mentioned that Eshelby [43] used
the parameterization of the Lagrangian density in terms of the displacement gradient
∇u = ui,J instead of the deformation gradient F = FiJ and thus ended up with the
following representation of the energy-momentum tensor

ΣO := −L̃1 +∇T
X u

∂L

∂∇Xu
. (4.35)

Referring to Remark 3.1, the material balance equation is related to its spatial counterpart
by a pull-back operation via premultiplication of the latter one with F T . While the link
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between the left hand sides of both equations is obtained by the algebraic manipulations
outlined in Remark 3.1 based on the material gradient (4.34), the pull-back transformation
of the right hand side yielding the pseudomomentum P is rather obvious.

4.2.4. Variation with respect to Time. With the objective of providing a compre-
hensive variational framework, in the final step the variation of the action functional with
respect to time t is derived. As the Lagrangian space-time coordinates (X, t) are assumed
to be independent variables, the temporal change of X is not explicitly included. On the
contrary, the dependence of the deformation map, the velocity field and the deformation
gradient on the time t needs to be taken into account

δtH =

∫ t2

t1

{
∫

B

d

dǫ
L(t+ ǫδt,X,ϕ(t+ ǫδt),v(t+ ǫδt),F (t+ ǫδt))

∣
∣
ǫ=0

dV

+

∫

∂Bt̄

d

dǫ
L̄(t+ ǫδt,X,ϕ(t+ ǫδt))

∣
∣
ǫ=0

dA

}

dt

+

∫ t2

t1

{∫

B

L dV +

∫

∂Bt̄

L̄ dA

}

δtdt = 0.

(4.36)

As the reference coordinates are kept unchanged, no variations of the integration limits
concerning the bulk and the material boundary occur, δtdV = δtdA = 0. In contrast, the
variation δtdt of the infinitesimal time increment is evaluated in analogy to the variation
of an infinitesimal volume element resulting in δtdt = ∂δt/∂t = dδt/dt|X fixed. Next, the
variation of the action functional is evaluated

δtH =

∫ t2

t1

{
∫

B

{
∂L

∂t

expl

δt+
∂L

∂ϕ
·
∂ϕ

∂t
δt+

∂L

∂v
·
∂v

∂t
δt+

∂L

∂F
:
∂F

∂t
δt

}

dV

+

∫

∂Bt̄

{
∂L̄

∂t
δt

}

dA

}

dt +

∫ t2

t1

{∫

B

L dV +

∫

∂Bt̄

L̄ dA

}
d

dt

∣
∣
∣
X fixed

δt dt = 0.

(4.37)

Both time integrals, say δtH1 and δtH2, are analyzed separately. Regarding the first in-
tegral, the partial time derivative in the surface integral coincides with the total one at
fixed material position. The time derivative of the deformation gradient is replaced by the
space derivative of the velocity field. In the next step, integration by parts with respect
to time and reference coordinates is applied

δtH1 =

∫ t2

t1

{
∫

B

{
∂L

∂t

expl

δt+
∂L

∂ϕ
· vδt+

∂

∂t

[
∂L

∂v
· v

]

δt−
∂

∂t

[
∂L

∂v

]

· vδt

+ Div

[

v
∂L

∂F

]

δt− v ·Div

[
∂L

∂F

]

δt

}

dV +

∫

∂Bt̄

{
d

dt

∣
∣
∣
X fixed

L̄ δt

}

dA

}

dt.

(4.38)

Turning next to the second integral, integration by parts with respect to time is performed

δtH2 =

∫ t2

t1

{

d

dt

∣
∣
∣
X fixed

[(∫

B

L dV +

∫

∂Bt̄

L̄ dA

)

δt

]}

dt

−

∫ t2

t1

{(
d

dt

∣
∣
∣
X fixed

[∫

B

L dV +

∫

∂Bt̄

L̄ dA

])

δt

}

dt.

(4.39)
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In the first expression time integration and differentiation cancel out each other whereupon
the argument is to be evaluated at the integration limits. As the motion of the system
between two fixed points in time t1 and t2 is investigated, δt(t1) = δt(t2) = 0, this term is
eliminated. With regard to the second term, time and space integration commute because
the material coordinates are kept constant. Using the same reasoning, the variation δt
can be written inside of the volume and boundary integrals

δtH2 = −

∫ t2

t1

{
∫

B

(
d

dt

∣
∣
∣
X fixed

L) δt dV +

∫

∂Bt̄

(
d

dt

∣
∣
∣
X fixed

L̄)δt dA

}

dt. (4.40)

By comparison of (4.38) and (4.40) the surface integral vanishes. Combining all the results,
the variation of the action functional with respect to time can be expressed in the form

δtH =

∫ t2

t1

{
∫

B

{ (

Div

[

v
∂L

∂F

]

+
∂L

∂t

expl

−
d

dt

∣
∣
∣
X fixed

L+
∂

∂t

[
∂L

∂v
· v

])

δt

+ v ·

(

−Div

[
∂L

∂F

]

+
∂L

∂ϕ
−

∂

∂t

[
∂L

∂v

])

δt

}

dV

}

dt = 0

(4.41)

to be fulfilled for all admissible variations δt. The second contribution displays the spatial
Euler-Lagrange equation multiplied by the velocity field to obtain a power expression.
In case the spatial balance law is satisfied, the first term is identified as the temporal
Euler-Lagrange equation

Div

[

v
∂L

∂F

]

+
∂L

∂t

expl

−
d

dt

∣
∣
∣
X fixed

L = −
∂

∂t

[
∂L

∂v
· v

]

in B. (4.42)

Note that the explicit partial time derivative ∂Lexpl/∂t does not coincide with the total
time derivative dL/dt|X fixed at fixed material positions since the latter one accounts for
the implicit time-dependence of the Lagrangian density L via the deformation map, the
velocity field and the deformation gradient. Observe furthermore that the specific choice of
the Lagrangian density is such that no explicit time-dependence of L and L̄ is assumed, see
also the comments at the end of Section 4.2.5 below. Opening all the terms, the temporal
Euler-Lagrange equation can be transferred to the more compact form

v ·Div

[
∂L

∂F

]

− v ·
∂L

∂ϕ
= − v ·

∂

∂t

[
∂L

∂v

]

in B. (4.43)

By substitution of the Lagrangian density (4.9)1 this equation passes into the local form
of the balance of kinetic energy

v ·DivP + v · γ̄0 = ρ0v ·
∂

∂t
v in B (4.44)

which is already known from the investigations within Section 2.3.4.

4.2.5. Additional Remarks. Noether’s Theorem. Starting from Hamilton’s princi-
ple, the variations with respect to spatial and material coordinates and time are performed
in a completely analogous way. At first, the variation is expressed by the Gateaux deriva-
tive whereupon integration by parts with respect to the Lagrangian coordinates and time
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is applied. Subsequently, the corresponding Euler-Lagrange equations of the variational
principle are extracted. Upon specification of the Lagrangian density these Euler-Lagrange
equations are identified as the local formats of the balances of spatial linear momentum,
material pseudomomentum and kinetic energy. The material and energetic balances are
related to the spatial equation of motion by premultiplication with the transpose of the
deformation gradient or the velocity field, respectively. Therefore, in the continuous set-
ting all equations are entirely equivalent in the sense that the remaining equations are
automatically fulfilled in case one balance is satisfied.
Within the derivations of the material and temporal balance equations, the spatial Euler-
Lagrange equation arises as well. Subjected to the condition that this equation is satisfied,
the corresponding balances can be extracted. This reasoning directly exploits so-called
Noether’s first theorem which dates back to the trendsetting work of Noether [139].
Noether considered variational problems having the property that the action integral re-
mains invariant with respect to a group of transformations, applied either to the dependent
or the independent variables. Then, every parameter associated with such transformations
leads to a corresponding conservation law. Following this argumentation, the variational
formulation deals with two types of equations. The first group arises due to the require-
ment that the variation of the action functional has to be zero with respect to a variation
of the dependent variables or fields, i.e. the current position x = ϕ. The second group,
called conservation laws, are the result of the variation of the parameterization, namely
the independent variables, i.e. the material coordinates X and the time t, and therefore
a simultaneous transformation of both the dependent and the independent variables. A
formally slightly different procedure is, in the author´s opinion, closer to the formalism of
Noether, however, on the other hand, appears to be more abstract in nature. It conceptu-
ally follows the processing proposed by Kienzler & Herrmann [76] and is presented in
Appendix D. Further literature on the application of Noether’s theorem and its relevance
in the context of configurational mechanics have been proposed e.g. by Knowles &

Sternberg [78], Chadwick [30], Olver [143, 144], Li [94], related to the quasi-static
case, as well as Gupta [58], Li & Gupta [93], see also Maugin [99] among others.
Irrespective of the methodological approach, the variational formulation results in the
standard Euler-Lagrange equation, the notation ELϕ has been introduced in Appendix
D, associated with the variation with respect to the field, i.e. the current position, which
represents the spatial balance of linear momentum. On account of Noether’s reasoning, by
variation of the action functional with respect to the independent variables and provided
that the above field equation is satisfied, ELϕ = 0 , the procedure implies the existence of
conservation laws. These are the local balances of material pseudomomentum and energy
also denoted the canonical equations of momentum and energy, see e.g. the recent con-
tribution of Maugin [107]. Typically, Noether’s procedure ends up with so-called strict
conservation laws. The accentuated expression strict induces that no source term enters
the balance law. On the contrary, the balance equations derived above do contain some
source terms arising from the explicit dependence of the Lagrangian functional on the in-
dependent variables. Hence, they are just denoted conservation laws. Within the present
analyses, the independent variables are given by the Lagrangian space-time (X, t) and
therefore the general case, where source terms are present, is characterized by the de-
pendence of both the reference density ρ0 and the free energy function ψ on (X, t). The
dependence on X indicates an inhomogeneous material body and results in the occurrence
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of the configurational inhomogeneity force within the balance of pseudomomentum

−
∂

∂t
P + DivΣ− F T γ̄0 = − 1

2
∇Xρ0v · v + ∂Xψ

expl =: Γ̄X, (4.45)

cf. Remark 4.3. In contrast, within the current investigations neither the reference density
ρ0, cf. equation (2.41)1 in Section 2.3.1, nor the free energy function ψ explicitly depend on
time. This is due to the fact that the description of the phenomena of growth or resorption,
related to a time-dependent field ρ0, and of ageing, indicated by a time-dependent free
energy ψ, are out of the scope of this work. In this sense, the local format of the kinetic
energy balance can be classified as a strict conservation law.

4.3. Global Material and Spatial Balance Equations

The three Euler-Lagrange equations of the variational formulation represent local balance
laws. The notation local is adopted as the balance equations constitute partial differential
equations governing the response at every material point of the solid. Focusing on the
variation with respect to the spatial and material coordinates, the local formats of spatial
linear momentum and material pseudomomentum are given by (4.21) and (4.31)

DivP + γ̄0 = ρ0
d

dt

∣
∣
∣
X fixed

v and DivΣ + Γ̄0 =
d

dt

∣
∣
∣
X fixed

P in B. (4.46)

Observe that the partial time derivative employed before characterizes the total time
derivative at frozen material position, ∂(•)/∂t = d(•)/dt|X fixed. Recalling the results
outlined within Section 2.3.2, the first equation has been derived from the global balance
of linear momentum (2.43). During these former investigations the global balance has
been formulated with respect to a cut-out part PS of the current configuration S but is
now formally related to S itself

d

dt

∫

S

ρv dv =

∫

S

γ̄ dv +

∫

∂St̄

t̄ da. (4.47)

The Eulerian object ρv denotes the physical linear momentum per unit volume of S.
The balance states that the temporal change of the global momentum equals the resul-
tant physical force acting on the body. Starting from this global statement, the local
balance law has been obtained. This procedure is now applied the other way round. The
local spatial balance (4.46)1 is integrated over the reference configuration B whereupon
the divergence term is recast into a surface integral by means of Gauss integration theo-
rem. As the time differentiation is performed at fixed material coordinates, it commutes
with the integration over the reference configuration. Finally, the analyses end up with
the Lagrangian, or rather two-point formulation of the global balance of physical linear
momentum

d

dt

∣
∣
∣
X fixed

∫

B

ρ0v dV =

∫

B

γ̄0 dV +

∫

∂B

PN dA. (4.48)

This equation still constitutes an Eulerian expression as all the ingredients are spatial
objects. The surface integral can be rewritten in terms of the prescribed physical tractions
due to the natural boundary conditions (4.22), i.e. PN = t̄ on ∂Bt̄.
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The same procedure is now applied to the local material balance (4.46)2. The resulting
expression characterizes the global balance of material pseudomomentum

d

dt

∣
∣
∣
X fixed

∫

B

P dV =

∫

B

Γ̄0 dV +

∫

∂B

ΣN dA (4.49)

being the material counterpart of (4.48). In analogy to the spatial setting, the right hand
side is governed by a resultant global configurational or material force which in turn
consists of a volume contribution and a surface part in terms of the configurational volume
force Γ̄0 and the Eshelby tensor Σ, respectively. The left hand side is formed by the
temporal change of the global pseudomomentum. All these balances are also referred to
as conservation laws. If no source terms are present, i.e. γ̄0 = 0 and Γ̄0 = 0 , the notation
strict conservation laws is used instead. Upon restriction to the quasi-static case, the left
hand sides of the global balance equations vanish inducing the dual spatial and material
equilibrium conditions of physical Newtonian and configurational Eshelbian forces

∫

B

γ̄0 dV +

∫

∂B

PN dA = 0 and

∫

B

Γ̄0 dV +

∫

∂B

ΣN dA = 0 . (4.50)

These global statements render in their local representation the balance equations (3.33)1

and (3.34) introduced in Chapter 3. Configurational volume forces Γ̄0 occur if the material
body contains any arbitrary type of inhomogeneities which is why its global format is also
denoted the inhomogeneity force, see e.g. Maugin [99]. Vice versa, in case of a homoge-
neous body, the local and global configurational force cancels. The material balance law
reduces to the surface-independent integral which, on the local level, coincides with the
demand for a divergence free Eshelby stress

∫

∂B

ΣN dA = 0
localization

=⇒ DivΣ = 0 in B (4.51)

representing a strict conservation law. It is of interest to point out that the identity
(4.50)2 allows for the computation of the inhomogeneity force by evaluation of the surface-
independent integral. This result has been in some way anticipated in Appendix A where
the surface-independent integral, introduced on account of Eshelby’s reasoning in (A.6)
and (A.17), has been denoted the driving force on a singularity or an inhomogeneity.

Remark 4.5: The third balance equation (4.44), namely the local form of the balance
of kinetic energy, can also be transformed to a global counterpart in the afore-mentioned
way. This has already been discussed in detail within Section 2.3.4.

4.4. Numerical Treatment: Discretization in Space and Time

Attention is focused on the numerical implementation. Subsequent to some brief intro-
ductory comments, space and time discretization of the governing equations is performed.

4.4.1. General Aspects and Numerical Solution Procedure. The continuous for-
mulation of configurational solid dynamics ends up with three field equations, namely the
equations of spatial and material motion and the balance of kinetic energy. It has been
shown that in the continuous setting all these equations are equivalent. This means, that
in case the spatial balance of linear momentum is satisfied, the two other equations are
fulfilled automatically. This equivalence does not hold in the discrete setting. For this
reason, in the most general context, all three equations have to be considered within the
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numerical framework. Following for instance the ideas proposed by Zielonka [191], a
promising approach towards the numerical implementation appears when the solution of
these three equations is performed simultaneously by means of a time-dependent varia-
tional arbitrary Lagrangian Eulerian formulation.
In the present work an alternative procedure is incorporated. However, the balance of
kinetic energy is not explicitly enforced as a strong form equation but just assumed to
be satisfied at the spatial solution state. Thus, the dynamical problem is given by the
material and spatial momentum balances (4.21) and (4.31)

equation of spatial motion DivP + γ̄0 = ρ0
∂

∂t
v in B

equation of material motion DivΣ + Γ̄0 =
∂

∂t
P in B

(4.52)

constrained by the essential boundary conditions for the current and reference coordinates

ϕ = ϕ̄ on ∂Bϕ and X = const. on ∂B. (4.53)

Recall that the prescribed spatial deformation ϕ̄ can be expressed by a prescribed velocity
v̄ according to ϕ̄ = X + tv̄. In view of the spatial problem, the remaining part of the
boundary is governed by the natural boundary conditions

PN = t̄ on ∂Bt̄ (4.54)

with the given traction field t̄. The processing employed for the forthcoming investigations
coincides with that proposed in Chapter 3 for thermo-mechanically coupled problems at
finite inelastic deformations. To be specific, a staggered solution strategy is used wherein
the field equations are not treated contemporaneously, i.e. in the sense of an ALE ap-
proach, but successively at frozen state with respect to the dual problem, cf. Figure 3.5
within Section 3.4 for a sketch of this idea. In the first step, the standard spatial mo-
tion problem is analyzed by solving the spatial balance of linear momentum (4.52)1 for
the primary unknowns, i.e. the current Eulerian coordinates. Once the spatial problem is
solved, the equation of material motion is investigated in a postprocessing step directly
related to the evaluation of discrete configurational nodal forces.

4.4.2. Solution of Equation of Spatial Motion. Several approaches exist for the
numerical implementation of this standard problem of structural dynamics. The first
class is concerned with Galerkin-type schemes, in which the discretization with respect to
space and time is performed via the finite element method. A second class, used in the
following, is posed by Newmark-type schemes. The temporal discretization is carried out
via finite step size integration algorithms usually denoted finite differences, see e.g. the
textbook of Belytschko, Liu & Moran [14] and the references given therein.

4.4.2.1. Space Discretization by Finite Element Method. Starting point is the
weak form of the boundary value problem or the variational formulation. By substitution
of the Lagrangian densities L and L̄ given in (4.9) the variation (4.16)2 of the action
functional with respect to the spatial coordinates reads

δϕH =

∫ t2

t1

{
∫

B

(
∂

∂t
δϕ) · ρ0v −∇Xδϕ : P + δϕ · γ̄0 dV +

∫

∂Bt̄

δϕ · t̄ dA

}

dt = 0 (4.55)
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with ∇X(•) = ∂(•)/∂X . After some straightforward manipulations using integration by
parts with respect to time and the fact that the motion of the system between two fixed
points in time is considered, δϕ(t1) = δϕ(t2) = 0 , the following integral is obtained

δϕHt =

∫

B

−δϕ · (ρ0
∂ 2

∂t2
ϕ)−∇Xδϕ : P + δϕ · γ̄0 dV +

∫

∂Bt̄

δϕ · t̄ dA = 0. (4.56)

This represents the variational or weak formulation at every point in time within the
interval t ∈ [t1, t2] indicated by the subscript t. For the solution of this non-linear equation
Newton-Raphson-type iteration is adopted demanding its consistent linearization

Lin δϕHt = δϕHt +

∫

B

−δϕ · (ρ0
∂ 2

∂t2
∆ϕ) − ∇Xδϕ : C : ∇X∆ϕ dV = 0 (4.57)

in terms of the fourth order nominal elasticity moduli C. Within a typical Newton step,
this equation has to be solved for the incremental deformation ∆ϕ.
In the next step space discretization is applied. The continuous body B is subdivided into
nele finite elements Be, cf. equation (3.51),

B ≈ Bh =
nele

A
e=1

Be. (4.58)

The spatial deformation map as well as its variation and increment are approximated on
the element level

ϕ ≈ N dt , δϕ ≈ N δdt and ∆ϕ ≈ N ∆dt (4.59)

in terms of an overall matrix of shape functions N and the global vectors dt, δdt, ∆dt

representing the discrete nodal values of the spatial displacements as well as their varia-
tions and increments at all Nt nodal points of the current mesh. With the discrete motion
ϕ at hand, the derivatives with respect to the Lagrangian space-time can be evaluated

∂ 2

∂t2
ϕ ≈ N d̈t and ∇Xϕ ≈ B dt. (4.60)

Here, d̈t denotes the global vector of discrete spatial nodal accelerations and the matrix B

contains the derivatives of the shape functions with respect to the material coordinates.
The same relationships apply for the derivatives of the variation and the increment of ϕ.
By substitution of the finite element interpolation into the weak form (4.56) the approx-
imation of the variational expression appears as a sum of discrete nodal contributions

δϕH
h
t =

Nt∑

I=1

{[−aI + f I + pI ] · δdI} = 0. (4.61)

The nodal quantities f I and pI have already been introduced in Section 3.3.2.1 within
the quasi-static framework

f I := −
nele

A
e=1

∫

Be

BT
I P dV and pI :=

nele

A
e=1

{

∫

Be

NT
I γ̄0 dV +

∫

∂Be

NT
I t̄ dA }. (4.62)
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They represent the discrete nodal vectors of external and internal spatial forces governed
by the volume forces γ̄0, the surface tractions t̄ and the first Piola-Kirchhoff stresses P .
In the dynamical setting, an additional nodal vector aI arises denoted the inertia force

aI := mIJ d̈J with mIJ :=
nele

A
e=1

∫

Be

NT
I ρ0 NJ dV. (4.63)

It is defined by the contraction of the nodal accelerations d̈J and the mass matrix mIJ

which in the given format is a natural result of the discretization process and usually
referred to as consistent mass matrix. In many cases a diagonalization of this matrix,
so-called lumping, has proven to be reasonable, see e.g. Zienkiewicz & Taylor [192]
and Section 3.5.2 regarding the lumping procedure. Equation (4.61) has to be fulfilled for
all admissible variations δdI resulting in the semi-discrete equation of spatial motion

−aI + f I + pI = 0 in Bh and on ∂Bh
t̄ (4.64)

to be satisfied at every node I = 1,Nt of the mesh. For the quasi-static case inertia forces
do not exist, aI = 0 , and (4.64) boils down to the spatial equilibrium condition (3.63).
The equation of spatial motion can be recast into the more familiar format

Md̈t −P int = P ext (4.65)

based on the global internal and external load vectors and the system mass matrix

P int =
Nt∑

I=1

f I , P ext =
Nt∑

I=1

pI and M =
Nt∑

I,J=1

mIJ . (4.66)

The linearized system of equations is obtained by substitution of the finite element ap-
proximation into the linearization (4.57)

M∆d̈t + K∆dt = P ext + P int −Md̈t (4.67)

where ∆dt and ∆d̈t denote the global vectors of incremental nodal displacements and
accelerations and

K =

Nt∑

I,J=1

kIJ =

Nt∑

I,J=1

{
nele

A
e=1

∫

Be

BT
I C BJ dV

}

(4.68)

characterizes the global tangential stiffness matrix.

4.4.2.2. Time Discretization by Finite Difference Method. Upon spatial dis-
cretization by means of finite elements, the weak form passes into a semi-discrete sys-
tem of equations (4.65) being still continuous in time. For the solution of this system
of second order ordinary differential equations in time the implicit Newmark method, cf.
Newmark [137], is used. This type of solution algorithms possesses algorithmic damping.
To handle this problem, Chung & Hulbert [31] proposed the generalized-α method,
also referred to as Newmark-α method, characterized by an improved numerical dissipa-
tion. Unfortunately, it has been found to be just conditionally stable in the context of
non-linear dynamics. For particular choices of the parameters that guarantee stability, the
algorithm is too dissipative and violates the requirement of energy conservation. Hence, it
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appears not suitable for long-run analysis. Improved unconditionally stable algorithms are
provided for instance by the energy-momentum method, Simo & Tarnow [166, 167], so-
called energy conserving/decaying schemes, Armero & Petöcz [5], or the generalized
energy-momentum method, Kuhl & Crisfield [82]. Long-run computations are out of
the scope of the present work but attention is focused on the evaluation and utilization
of configurational forces within the dynamical framework. Thus, the Newmark-α method
is supposed to be an appropriate solution strategy in view of the forthcoming studies.
The basic feature of a step-by-step integration scheme is the subdivision of the continuous
time interval [t1, t2] into nt discrete time steps ∆t

[t1, t2] =
nt⋃

n=1

[tn, tn+1] with ∆t = tn+1 − tn. (4.69)

The current nodal velocities and accelerations are expressed in terms of the current
nodal displacements and the respective values of the previous time step via the classi-
cal Newmark-approximation

ḋn+1 =
γ

β∆t
(dn+1 − dn)−

γ − β

β
ḋn −

γ − 2β

2β
∆t d̈n

d̈n+1 =
1

β∆t2
(dn+1 − dn)−

1

β∆t
ḋn −

1− 2β

2β
d̈n

(4.70)

with the algorithmic parameters γ and β of the Newmark method and the subscripts n+1
and n referring to times tn+1 and tn, respectively. Following Chung & Hulbert [31],
the current kinematic quantities are modified in the sense of a mid point approximation

d̈n+1−αm
= (1− αm)d̈n+1 + αmd̈n and ḋn+1−αf

= (1− αf)ḋn+1 + αf ḋn (4.71)

involving an averaging of the previous and current values controlled by the algorithmic
parameters αm and αf . The nodal displacements dn+1−αf

are given in the same format
as the velocities (4.71)2. The generalized-α method bases on the representation of the
semi-discrete equation of spatial motion (4.65) at times tn+1−αm

and tn+1−αf

Md̈n+1−αm
− P int

n+1−αf
= P ext

n+1−αf
. (4.72)

This system of non-linear equations has to be linearized with respect to the nodal displace-
ments dn+1 at the endpoint of the time interval. Taking into account that due to (4.70)2

the incremental accelerations are directly related to the incremental displacements, i.e.
∆d̈n+1 = ∆dn+1/(β∆t2), the governing system of linear equations is obtained

Keff(dk
n+1)∆dn+1 = Reff(dk

n+1). (4.73)

The effective stiffness matrix and residual vector are respectively defined by

Keff = M
1− αm

β∆t2
+ (1− αf)K(dn+1−αf

(dk
n+1))

Reff = P ext
n+1−αf

+ P int(dn+1−αf
(dk

n+1))−Md̈n+1−αm
(d̈n+1(d

k
n+1))

(4.74)

and depend on the actual displacements dk
n+1 associated with the k-th step of the Newton

iteration. The global external and internal load vectors as well as the global mass and
stiffness matrices have been introduced in (4.66) and (4.68). The effective space-time
discrete system of linear equations is solved for the incremental nodal displacements ∆d

whereupon the current nodal values are evaluated by the Newton update d← d + ∆d.



Configurational Solid Dynamics 71

4.4.3. Treatment of Equation of Material Motion. In the sense of the staggered
solution strategy, the numerical treatment of the material balance equation (4.52)2 does
not pose a new boundary value problem. Nevertheless, recalling the investigations of
Section 3.5, some additional effort had to be done within the framework of inelasticity to
generate the material gradient of the internal variable field. This is no longer required in
the current context of hyperelastodynamics since at every time step all the ingredients
to compute the Eshelby tensor, the pseudomomentum and the configurational force are
obtained by the solution of the equation of spatial motion. Therefore, the numerical
implementation of the balance of material motion is captured by its space discretization
which in turn offers a postprocessing tool to be exploited at the end of every time step.
Space discretization by the finite element method demands a weak counterpart of the
equation of material motion. This is intrinsically provided by the variational formulation
upon variation of the action functional with respect to the reference coordinates δXH ,
cf. (4.24), subjected to the condition that the standard Euler-Lagrange equation, i.e. the
equation of spatial motion, is fulfilled. Alternatively, the weak form can be derived by
standard Galerkin procedure. The strong form equation (4.52)2 is multiplied by some
arbitrary test functions or variations δX satisfying the homogeneous form (4.23) of the
essential boundary conditions. This expression is integrated over the reference volume

δXHt =

∫

B

δX ·

(

−
∂

∂t
P + DivΣ + Γ̄0

)

dV = 0. (4.75)

The subscript t again indicates this relation holding at every time t ∈ [t1, t2]. Integration by
parts with respect to the Lagrangian coordinates X and application of Gauss integration
theorem along with the boundary conditions render the weak form

δXHt =

∫

B

−δX ·
∂

∂t
P −∇XδX : Σ + δX · Γ̄0 dV = 0. (4.76)

It formally displays the same structure compared to the weak form (4.56) of the spatial
balance law apart from the surface integral which does not appear for the material problem
as the whole boundary is governed by the essential boundary conditions.
Using finite element scheme, the Lagrangian coordinates X and their variations δX are
approximated via global nodal vectors Dt and δDt containing the discrete material nodal
positions and variations at every node I = 1,Nt of the mesh

X ≈ N Dt , δX ≈ N δDt and ∇XδX ≈ B δDt. (4.77)

Without loss of generality, the same shape functions N are employed for the material and
the spatial problem which is why the matrix B remains unchanged as well. Upon insertion
of these relations into the weak form (4.76) its space-discrete counterpart is obtained

δXH
h
t =

Nt∑

I=1

{[−AI + F I + P I ] · δDI} = 0. (4.78)

This equation has to be satisfied for arbitrary admissible nodal variations δDI . Thus, the
bracket term has to vanish and it remains the discrete equation of material motion in the
format of a nodal balance equation

−AI + F I + P I = 0 in Bh (4.79)
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to be enforced at all nodes I = 1,Nt at every time t. The vectorial quantities F I and
P I denote the material internal nodal force and the discrete configurational nodal force.
Their definitions formally coincide with those introduced in the quasi-static setting

F I := −
nele

A
e=1

∫

Be

BT
I Σ dV and P I :=

nele

A
e=1

∫

Be

N T
I Γ̄0 dV. (4.80)

Despite the formal analogy, these nodal vectors are naturally associated to the dynamical
framework as they base on the dynamical Eshelby stress tensor Σ and the continuous
configurational volume force Γ̄0 specified in equations (4.32) and (4.33)2. Additionally,
the discrete counterpart AI of the pseudomomentum vector P , (4.33)1, reads

AI :=
nele

A
e=1

∫

Be

NT
I

∂

∂t
P dV =

nele

A
e=1

∫

Be

NT
I ρ0

∂

∂t
(−F T v) dV. (4.81)

Rather than solving explicitly for the Lagrangian coordinates X, the material nodal
balance (4.79) is used in a postprocessing step according to the staggered solution strategy.
The different nodal contributions are obtained just by function evaluation with all the
ingredients being provided by the solution of the equation of spatial motion.

4.5. Specification and Numerical Example

The numerical procedures elaborated in the previous chapter are applied to a descriptive
boundary value problem. The oscillation of a strip is analyzed focusing in particular on
the effects arising from the treatment of the equation of material motion.

4.5.1. Material Model and Constitutive Relations. Before starting with the dis-
cussion of the numerical example, a material model of finite elasticity is introduced. This
specific model will be employed for all analyses concerned with elastic material response
throughout this thesis. The constitutive behavior of an elastic system is governed by the
free Helmholtz energy ψ representing the energy storage of the material. A compressible
Neo-Hookean type storage function is assumed

ψ(F ) =
µ

2

(
tr

[
F T gF

]
− 3

)
+
µ

β

(
(det F )−β − 1

)
. (4.82)

The elastic constants are the shear modulus µ and an additional constant β which can be
expressed in terms of Poisson´s ratio ν, i.e. β = 2ν/(1−2ν). Based on this function the first
Piola-Kirchhoff stress tensor and the fourth-order nominal elasticity moduli are readily
obtained by the derivatives P = ∂Fψ and A = ∂2

FFψ. The free energy ψ and the nominal
stresses P establish the constitutive ingredients of the material balance equation as they
directly contribute to Eshelby’s energy-momentum tensor Σ = (− 1

2
ρ0v ·v +ψ)1 −F T P .

4.5.2. Numerical Example: Oscillation of a Strip. The oscillation of a two-dimen-
sional strip is examined as an elementary but very illustrative benchmark problem. A
schematic sketch of the system is given in Figure 4.3. The reference density is chosen by
ρ0 = 1000 kg/m3. The strip is assumed to be homogeneous and no spatial volume forces
take effect. Regarding the material parameters µ = 80.19 kN/mm2 and β is set to a very
small number. By this choice the boundary value problem turns out to be close to an
one-dimensional setting. For the spatial triangulation 15x75 bilinear quadrilaterals are
used. At the lower boundary the body is entirely fixed in axial direction and the midpoint
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5

ū

1

Figure 4.3: System and boundary conditions of two-dimensional strip. All dimensions are
given in [mm]. The specimen is discretized with four-noded quadrilaterals.

is constrained in lateral direction as well. The specimen is pre-stretched by a top surface
displacement of one fifth of the original height with the deformation being continuously
distributed along the body. No external loading or deformation are applied during the
simulation but the system performs a free oscillation. A time step of ∆t = 0.001 s has
been chosen. The simulation terminates after 2000 time steps when the body reaches its
initial pre-stretched configuration.
At first the spatial problem is solved. The motion of the system is visualized in Figure 4.4.
Two phenomena can be observed. On the one hand, consider the deformation of the strip.
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Figure 4.4: Contour and profile of axial velocity for one oscillation period plotted in terms
of the current configuration. The jump in the velocity field characterizes the wave front
moving through the strip. The arrow indicates the direction of this movement.

Starting from the deflected position at height H = 6 mm, the specimen relaxes. Passing
the undeformed configuration at H = 5 mm, it changes into the compressed state with
maximum compression at H ≈ 4 mm. The direction of the motion switches and the body
elongates up to the initial deformation at H ≈ 6 mm. On the other hand, this deformation
is accompanied by the change in the axial velocity field depicted in Figure 4.4 by means of
a contour plot and its profile. This profile is characterized by a jump moving through the
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material body. This jump is identified as the wave front of the oscillation. Note that the
arrows shown in the figure do not refer to the sign of the velocity but indicate the direction
of the movement of the wave front. The deformation of the body and the movement of
the wave front are linked in the following way. During the downward motion, outlined
in the first line of the figure, the velocity has a negative value of vy = −2 mm/s. The
wave front reaches the bottom of the body when the deformation passes the undeformed
configuration. The direction of the movement of the wave front changes and hits the top
surface of the specimen at the state of maximum compression. The upward motion, see
the second line of the figure, comes along with a positive velocity vy = 2 mm/s. The
wave front moves downwards and matches the bottom of the strip in its undeformed state
H = 5 mm. The orientation of the movement of the wave front again changes and the
wave front reaches the top surface at the initial deformation at H ≈ 6 mm.
Turning next to the description of the material motion, the discrete nodal forces are
evaluated in a postprocessing step subsequent to each time increment. Since the body is
assumed to be homogeneous and no spatial volume forces exist, the configurational forces
are expected to vanish at all interior nodes. Referring to (4.79), this condition reads

P I = AI − F I = 0 for all I inside Bh. (4.83)

On the contrary, true material forces occur at the discrete boundary ∂Bh of the body.
As the outer shape of the body must remain unchanged during the deformation pro-
cess, material forces occur as reaction forces to this constraint. The development of these
boundary forces is presented in Figure 4.5 for the same time steps used in the previous
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Figure 4.5: Configurational forces at the discrete boundary. Their orientation changes
according to the jump in the axial velocity whose profile is visualized alongside. Boundary
forces at the lower support are scaled by 0.2.
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figure. The profile of the velocity field is plotted alongside to allow for a link to the spatial
motion. The main characteristic of these boundary forces is their changing in orientation
according to the movement of the wave front. With regard to the forces at the lower
support it has to be mentioned that they are scaled by the factor 0.2 and consequently
are much larger than those at the vertical edges. For the spatial downward motion they
show in the opposite direction compared to the orientation of the movement of the wave
front. On the contrary, for the upward motion their orientation is in accordance with
the movement. The boundary forces at the vertical edges behave quite different. They
point in the outward direction in those parts where the axial velocity is equal to zero.
Vice versa, in zones where the velocity field is non-zero the orientation of the boundary
forces is opposite irrespective of the sign of the velocity. It is a remarkable circumstance
that the configurational forces especially at the vertical boundary are mainly governed by
the dynamical effects. Since a lateral spatial deformation is almost excluded due to the
specific choice of the material parameters, the main ingredient controlling the dynamic
and internal material nodal forces AI and F I at the boundary is the axial velocity field.
The final discussion is devoted to the situation in the interior of the strip. For this purpose
in Figure 4.6 the three components of the equation of material motion are displayed for
two different time steps. Again, the profile of the velocity field is included to visualize the
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Figure 4.6: Configurational forces in the interior of the homogeneous body for two typical
time steps. a), e) Internal part F I and b), f) dynamical part AI . c), g) Sum of both contri-
butions governing the discrete configurational nodal forces. d), h) Profile of axial velocity.

current location of the wave front. The first columns, Figure 4.6a), e), show the internal
contribution F I based on the energy-momentum tensor while the second columns, Figure
4.6b), f) deal with the dynamic part AI in terms of the pseudomomentum. Both quan-
tities concentrate in the region of the wave front and point in the same direction. The
orientation is opposite to the movement of the wave front. Turning to the third columns,
Figure 4.6c), g), the resulting configurational nodal forces evaluated by the sum of both
components are plotted. As required by the discrete nodal balance (4.83), these nodal
forces vanish in the interior of the strip. However, some spurious forces appear due to
an insufficient triangulation. These out of balance forces quantify the deviation from the
material nodal balance (4.83) and are exploited to set up adaptive refinement procedures
within the forthcoming sections.
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5. Material-Force-Based Optimization Strategies

In this section configurational forces are employed in the context of optimization. The
theoretical basis is provided by a dual variational formulation of isothermal finite elasto-
statics. Within this scenario, the fundamental equations can be derived in a variational
framework based on the principle of minimum potential energy. The objective function of
the optimization problem is the potential energy and accordingly, the optimization process
results in a structural response exhibiting an optimal energetic state. The formulation to
follow appears as the quasi-static counterpart of the variational setting of solid dynamics
established in the previous chapter. Adopting a similar conceptual proceeding, the varia-
tion is carried out with respect to both the Eulerian as well as the Lagrangian coordinates.
The corresponding Euler-Lagrange equations are the quasi-static analogs of the spatial
and material equations of motion and represent dual spatial and material equilibrium
conditions. Hence, the variational formulation leads to a simultaneous equilibration of
physical and configurational forces. Subsequent to some preliminary notes the continuous
setting of the dual variational formulation is discussed briefly. Afterwards various aspects
concerning the numerical solution procedure of the dual or rather coupled spatial-material
problem are investigated. Finally, the entire framework is adjusted to mesh improvement
and structural optimization. The capability of the proposed strategies is demonstrated by
the analyses of representative boundary value problems.

5.1. General Remarks

Without doubt, it is far beyond the scope of this thesis to capture the problem area of
optimization as it per se constitutes a wide field of scientific research activities. Without
claim of completeness, the author refers to the monographs of Haftka, Gurdal &

Kamat [65] with respect to structural optimization and Bendsøe & Sigmund [15] with
regard to topology optimization. Further fundamentals as well as quotations of related
literature can be found in the review articles of Kirsch [77] and Rozvany, Zhou &

Sigmund [155] on optimal topologies of structures, Rozvany, Bendsøe & Kirsch [154]
on layout optimization and Maute, Schwarz & Ramm [111] on structural optimiza-
tion, to name but a few. In this section the optimization process is related in a rather
natural fashion to the notion of configurational forces. In Section 5.4 and Section 5.5 a
spectrum of relevant literature on this particular field of the application of material forces
is provided, see also the recent report of Bruss [23] for further informations.
It is supposed to be appropriate to introduce some basic features of the terminology of
optimization in order to embed the subsequent analyses into a more general framework.
In applied mechanics, optimization means a combination of mechanical problems, varia-
tional or differential calculus and mathematical programming. Typical examples are the
optimization of the shape or the topology of a structure or the optimization of the dis-
tribution of material within a mechanical system. The notation optimization implies that
there exists the possibility to vary certain parameters describing the particular system
under consideration. These parameters are called the designvariables and may be con-
tinuous or discrete in nature. The branch of mathematical programming refers to the
minimization or maximization of a specific function usually denoted the objective func-
tion of the optimization problem. This function is parameterized by the designvariables.
Typically, the optimization process is restricted by some equality or inequality constraints
that evoke the domain of feasible solutions and govern possible variations of the design-
variables. Familiar examples are geometric constraints such as the dimensions of a system
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or restrictions concerning the mechanical response of the structure such as maximal dis-
placements or stresses. In an abstract setting, the optimization problem of an objective
function f parameterized by the designvariables x subjected to certain constraints is
expressed by

minimize f(x) subjected to hi(x) = 0 i = 1, ..., ne

gj(x) ≤ 0 j = 1, ..., ni

(5.1)

with ne and ni indicating the number of equality and inequality constraints, respectively.
As analytical solution can be obtained only for very few special cases, (5.1) is normally
solved by means of numerical strategies adopted from mathematical programming, cf.
Section 5.3 below for two particular algorithms.

5.2. Dual Variational Formulation of Finite Elastostatics

For problems of isothermal finite elastostatics, the current state of a material body sub-
jected to an arbitrary deformation is governed by the principle of minimum potential
energy. This principle states, that the work of deformation done to the solid reaches a
minimum at the solution point. For the elastic case the work of deformation coincides
with the potential energy stored in the solid. Hence, the principle reads

Π = Πint + Πext → Min (5.2)

and Π is identified to be the objective function of the optimization problem. The potential
energy of an elastic system is the sum of the total strain energy and the potential of the
external physical loading. Recalling definitions (4.5) and (4.6) in Section 4.2, i.e.

Πint =

∫

B

ψ(∇Xϕt,X) dV and Πext = −

∫

B

ϕt · γ̄0(X) dV −

∫

∂Bt̄

ϕt · t̄ dA, (5.3)

these quantities are formulated in terms of the free energy function ψ per unit reference
volume and the physical forces acting on the body, namely the spatial volume forces
γ̄0 and surface tractions t̄. The free energy is a function of the deformation gradient
F = ∇Xϕt and of the material coordinates X. By means of the latter dependence pos-
sible inhomogeneities of the material body are taken into account. Referring to Remark
4.1, it is of interest to point out that for conservative systems the external power P and
the stress power S, see Section 2.3.4 for their definitions, are obtained from the external
and internal potentials by their time derivatives, P = −dΠext/dt and S = dΠint/dt.
Due to the fundamental kinematic identity x = ϕt(X), the material and spatial coor-
dinates constitute the designvariables of the optimization problem and govern the pa-
rameterization of the functional Π = Π(x,X). Starting from (5.2), a dual variational
formulation in terms of the spatial position x and simultaneously the material position
X can be derived. This treatment follows conceptually the dynamical framework outlined
within Chapter 4 and the works of Knowles & Sternberg [78], Olver [143, 144] and
Kienzler & Herrmann [76] based on Noether’s theorem, Noether [139].
The minimization principle (5.2) is valid for the essential boundary conditions

x = x̄ on ∂Bϕ and X = const. on ∂B (5.4)

introduced in (3.5) and (4.13) within the previous chapters, see also Remark 4.2 for
further comments. These boundary conditions characterize the equality constraints of the
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optimization problem. The crucial point of the simultaneous variational formulation is
that the energy functional Π needs to be stationary with respect to variations of both
the spatial as well as the material coordinates to attain a global minimum. The necessary
condition of (5.2) requires that the first variation of the energy functional vanishes

δΠ = δxΠ + δXΠ = 0. (5.5)

Here, δxΠ and δXΠ denote the first variations of Π with respect to the spatial and material
coordinates x and X . The resulting variational expressions are obtained in an intuitive
fashion from the investigations of the previous chapters upon restriction to the particu-
lar case of isothermal finite elastostatics. Nevertheless, the derivation of the fundamental
equations is recapitulated shortly. Two alternative procedures are adopted, namely the
true variational formulation, Section 5.2.1, and a rate formulation based on the exploita-
tion of the global dissipation postulate, Section 5.2.2, displaying the two fundamental
approaches previously used in Chapter 3 and Chapter 4.

5.2.1. Variational Formulation. To start with, consider the variation with respect to
the spatial coordinates. Upon introduction of the variation δx instead of δϕ employed in
Section 4.2.2 satisfying the homogeneous form of the essential boundary conditions (5.4)1,
cf. (4.15), the variational expression is readily obtained

δΠx =

∫

B

P : ∇Xδx dV −

∫

B

γ̄0 · δx dV −

∫

∂Bt̄

t̄ · δx dA = 0 . (5.6)

with the nominal stresses P = ∂ψ/∂F . Turning next to the variation of Π with respect to
the material positions, the variation δX is introduced, constrained by the homogeneous
form of the boundary conditions (5.4)2, cf. (4.23). The variational form is given by

δΠX =

∫

B

P : ∇XF δX + ∂Xψ
expl · δX + ψ1 : ∇XF δX dV

−

∫

B

γ̄0 · F δX + x · ∇X γ̄0δX + γ̄0 · x (ψ1 : ∇XδX) dV = 0

(5.7)

By means of integration by parts and substitution of the homogeneous boundary condi-
tions, this equation can be reformulated in the format

δΠX =

∫

B

−F T

{

DivP + γ̄0

}

· δX dV +

∫

B

Σ : ∇XδX dV −

∫

B

Γ̄0 · δX dV = 0 (5.8)

Anticipating the results of Section 5.2.3, the first contribution includes the Euler-Lagrange
equation of the spatial branch of the variational formulation. Subjected to the condition,
that this equation is satisfied, the variation with respect to the material coordinates reads

δΠX =

∫

B

Σ : ∇XδX dV −

∫

B

Γ̄0 · δX dV = 0 . (5.9)

This equation constitutes the material counterpart of (5.6) but does not contain any
surface part because the whole boundary is governed by the Dirichlet conditions (5.4)2. It
relies on the definitions of the Eshelby stress tensor and the configurational volume force

Σ = ψ1 − F T P and Γ̄0 = −∂Xψ
expl − F T γ̄0. (5.10)
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It is convenient, to reformulate the variational expressions in the compact matrix format

δΠ =

∫

B

[
∇Xδx

∇XδX

]

·

[
P

Σ

]

dV −

∫

B

[
δx

δX

]

·

[
γ̄0

Γ̄0

]

dV −

∫

∂Bt̄

δx · t̄ dA = 0 (5.11)

representing the necessary condition of the dual spatial-material minimization problem.

5.2.2. Exploitation of Global Dissipation Postulate. An alternative way to derive
the variational expression (5.11) is provided by the exploitation of the global dissipation
postulate. To this end, recall its representation (3.22) for the elastic case

D = P −
d

dt
Πint = 0. (5.12)

It demands that for elastic processes no dissipation occurs and consequently the power of
the external physical loading equals the change of energy storage. By substitution of the
definition of the external power and the internal energy this condition becomes

D =

∫

B

v · γ̄0 dV +

∫

Bt̄

v · t̄ dA −

∫

B

d

dt
ψ dV −

∫

B

ψ
d

dt
dV = 0. (5.13)

Possible changes of the bulk material have been taken into account via the time derivative
of the integration limit. The motion of the material body is parameterized with respect to
a parameter space Ω by the material and spatial configurational maps Ξ and ξ, cf. (3.3)
and Figure 3.1 in Section 3.2.1. The time derivatives of the geometric objects

v =
∂

∂t
ϕ = ξ̇ − F Ξ̇ ,

d

dt
F = ∇X ξ̇ − F∇XΞ̇ ,

d

dt
dV = (1 : ∇XΞ̇) dV (5.14)

are formulated in terms of the time derivatives Ξ̇ and ξ̇. These rates are restricted by
homogeneous boundary conditions (3.10) and (3.11) in a completely analogous fashion to
those for the variations δX and δx. The time derivative of the free energy function is

d

dt
ψ = P :

d

dt
F + ∂Xψ

expl · Ξ̇. (5.15)

By substitution of these intermediate results into (5.13) and application of integration by
parts the dissipation postulate appears in the form

D =

∫

B

−P : ∇X ξ̇ dV +

∫

B

ξ̇ · γ̄0 dV +

∫

Bt̄

ξ̇ · t̄ dA

+

∫

B

−Σ : ∇XΞ̇ dV +

∫

B

Ξ̇ · Γ̄0 dV = 0

(5.16)

with the Eshelby tensor Σ = ψ1 −F T P and the material force Γ̄0 = −∂Xψ
expl −F T γ̄0.

The link to the variational formulation is as follows. For conservative systems the external
power coincides with the time derivative of the external potential P = −dΠext/dt and
condition (5.12) can be expressed by the negative time derivative of the total energy Π.
As the rates of the spatial and material configurational maps describe the change of the
coordinates with respect to a change in time, they can be identified with their variations.
Thus, the change of the energy functional coincides with its first variation

D = P −
d

dt
Πint = 0 ⇐⇒

d

dt
Π =

d

dt
Πint +

d

dt
Πext = 0 ⇐⇒ δΠ = 0 (5.17)
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and the necessary condition of the minimization principle is written in matrix notation

∫

B

[

∇X ξ̇

∇XΞ̇

]

·

[
P

Σ

]

dV −

∫

B

[

ξ̇

Ξ̇

]

·

[
γ̄0

Γ̄0

]

dV −

∫

∂Bt̄

ξ̇ · t̄ dA = 0. (5.18)

This condition equals (5.11) for the identification ξ̇ ← δx and Ξ̇ ← δX of the rate
expressions in the sense of point variations.

5.2.3. Dual Euler-Lagrange Equations of the Variational Formulation. The dual
Euler-Lagrange equations are obtained from the variational expression (5.18) or (5.11) by
application of Gauss theorem and the lemma of variational calculus. For arbitrary spatial
rates ξ̇ or variations δx and fixed material position, Ξ̇ = δX = 0 , the standard spatial
equilibrium condition and the traction boundary condition arise

DivP + γ̄0 = 0 in B and PN = t̄ on ∂Bt̄ (5.19)

valid in combination with the essential boundary conditions. Vice versa, for arbitrary
material rates Ξ̇ or variations δX at fixed spatial position, ξ̇ = δx = 0 , the procedure
ends up with the dual material equilibrium condition

DivΣ + Γ̄0 = 0 in B. (5.20)

For the material problem no natural boundary condition appears because the essential
boundary condition governs the whole material boundary.

5.3. Discussion of Numerical Solution Procedures

The solution of the dual variational problem is performed by means of the finite element
method. It directly starts with the variational expression (5.18). This relation coincides
with the weak formulations of the local balance expressions (5.19), (5.20) obtained by
testing these balance laws with some arbitrary test functions ξ̇ or Ξ̇ and integrating over
the body B. The subsequent representations use the above rate formulation and adopt
the notation outlined in Chapter 3.3 but can be alternatively reformulated in terms of
the true variational expressions as shown within Section 4.4.
Applying finite element discretization, the Lagrangian configuration is subdivided into a
set of nele finite elements. The spatial and material positions are approximated on the
element level in terms of the global vectors d ∈ RNt and D ∈ RNt of discrete spatial and
material nodal coordinates of all Nt nodes of the finite element mesh, see (3.52), i.e.

x ≈ ξh
t (θ) = N(θ)d and X ≈ Ξh

t (θ) = N(θ)D. (5.21)

The approximations of the rates ξ̇, Ξ̇ and their gradients ∇X ξ̇, ∇XΞ̇ are specified in (3.55)
and (3.56) using the global vectors ḋ ∈ RNt and Ḋ ∈ RNt of discrete nodal velocities
instead of the real positions. The shape functions for the interpolation of the material and
spatial positions do not necessarily coincide but are chosen identically.
By substitution of the finite element approximation into (5.18) the discrete weak form is
obtained. The range of feasible spatial and material rates ḋ, Ḋ is defined by the discrete
versions (3.62) of the homogeneous forms of the essential boundary conditions (5.4). For
admissible spatial and material rates the formulation ends up with the system of equations

R̂ = −
Nt∑

I=1

[
f I + pI

F I + P I

]

= −
Nt∑

I=1

[
rI

RI

]

= 0 . (5.22)
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The global spatial-material residual vector R̂ consists of Nt discrete spatial and material
nodal residuals, rI and RI , associated with every node I of the mesh. The different nodal
contributions represent the internal and external spatial forces

f I := −
nele

A
e=1

∫

Be

BT
I P dV and pI :=

nele

A
e=1

{

∫

Be

NT
I γ̄0 dV +

∫

∂Be

NT
I t̄ dA } (5.23)

as well as the dual material counterparts

F I := −
nele

A
e=1

∫

Be

BT
I Σ dV and P I :=

nele

A
e=1

∫

Be

NT
I Γ̄0 dV (5.24)

denoted the material internal force and the discrete configurational nodal force.

Remark 5.1: Focusing on the Lagrangian subproblem, the material residual expression

RI = F I + P I = 0 ⇐⇒ F I = −P I (5.25)

is extracted. This identity encourages that the material internal force F I can be denoted
the discrete configurational nodal force as well. This will be adopted in the absence of
inhomogeneities, i.e. in case the continuous configurational force vanishes, Γ̄0 = 0 .

Recalling the strong form equations (5.19), (5.20) as local counterparts of global balances,
cf. Section 4.3, the solution of the necessary condition (5.22) of the minimization problem
(5.2) coincides with the simultaneous equilibration of global spatial and configurational
forces. The set of equations (5.22) is highly non-linear in both the spatial and material
nodal coordinates d and D. For the solution, two different procedures are elaborated,
namely a non-linear conjugate gradient method and a Newton-Raphson iteration scheme.

5.3.1. Polak-Ribière Non-Linear Conjugate Gradient Method. The dual problem
(5.22) can be solved by an iterative non-linear conjugate gradient method. In an abstract
framework, the algorithm is as follows. Consider the minimization of a function f(Q)
with computable gradient f ′. In the present case, f is the total energy Π and the gradient
f ′ = R is given by the residual expression (5.22). The global vector Q = [d,D]T contains
the primary variables, i.e. the spatial and material nodal positions d and D. The solution
procedure is initialized by an initial guess Q0 with the associated residual vector

R̂0 = −R̂(Q0). (5.26)

Based on this residual, the direction q0 = R̂0 of the first iteration is evaluated governing
an additional parameter β0 = qT

0 q0. The new solution Q is computed via the update

Q← Qn + αqn (5.27)

where the subscript n refers to the old iteration step. The step size α minimizes the
function Π(Qn+αqn). To satisfy this requirement, the gradient R̂ has to be perpendicular
to the direction qn, [R̂(Qn + αqn)]

T qn = 0. The new residual R̂(Q) is evaluated and in
case its norm falls below a certain tolerance, |R̂| ≤ tol, convergence is achieved and the
procedure stops. This convergence condition coincides with the approximative solution
of the necessary condition (5.18) of the minimization principle (5.2). For |R̂| > tol, the
current value of β is computed by the Polak-Ribière update

βPR =
R̂

T
(R̂− R̂n)

R̂
T

nR̂n

. (5.28)
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The parameter β determines the new direction q = R̂ + βqn. Convergence of the Polak-
Ribière method is guaranteed for the specific choice β = max{βPR, 0}, which coincides
with a restart of the procedure for βPR < 0. A flowchart of the conjugate gradient method
similar to that presented in Press et al. [149] is shown in Box 5.1.
To compute the step size α introduced in equation (5.27), the root of the expression

Box 5.1: Non-linear conjugate gradient method

1. Initialization
Initial guess of solution vector and initial direction

Q0 , R0 = R(Q0) , q0 = R0 and β0 = qT
0 q0

2. Iteration loop
(i) Compute step size α and update solution vector

[R(Qn + αqn)]T qn = 0 and Q← Qn + αqn

(ii) Compute residual and check convergence

R = R(Q) , IF |R| < tol THEN Exit

(iii) Perform Polak-Ribière update and determine new direction

βPR = RT (R−Rn) / RT
nRn and q = R + βPRqn

(iv) Increase iteration counter and perform next step

n← n+ 1 GOTO (i)

[R̂(Qn +αqn)]T qn = 0 needs to be evaluated. This is done by an iterative secant method.
Although this procedure demands that the second derivative of the objective function does
exist, its explicit evaluation is not required but it is approximated by function evaluation
at two different points α = 0 and α = σ. Finally, the step size is obtained by

α = −σ
[R̂(Qn)]T qn

[R̂(Qn + αqn)]T qn − [R̂(Qn)]T qn

. (5.29)

with σ being a small number not equal to zero.
It has to be mentioned, that non-linear conjugate gradient methods include some draw-
backs. The result depends on the initial guess Q0 of the solution vector and the algorithm
does not guarantee convergence to a global minimum and might not even find a local min-
imum in case the goal function f = Π does not have a lower bound, see Thoutireddy

& Ortiz [182] for a more detailed discussion. Nevertheless, non-linear conjugate gradient
methods are widely used due to their numerical efficiency. This efficiency can be enhanced
if some pre-conditioner M is used. Instead of evaluating the second derivative of the po-
tential Π a diagonal matrix can be used approximatively but it has to be ensured that
this matrix is positive definite, see Shewchuk [158].
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5.3.2. Newton-Raphson Iteration Scheme. To solve the discrete version (5.22) of
the necessary condition (5.18) of the dual problem by a monolithic Newton-Raphson-
type iteration, the non-linear function δΠ has to be linearized with respect to its primary
variables, namely the spatial and material positions x and X. In a first step the continuous
setting is considered. The linearization is performed for fixed values of the material and
spatial positions in the direction of incremental changes ∆x and ∆X. Based on these
incremental quantities the increments ∆F of the deformation gradient and ∆(dV ) of the
material volume element are computed in analogy to the rate expressions (5.14)2,3

∆F = ∇X∆x− F∇X∆X and ∆(dV ) = (1 : ∇X∆X)dV. (5.30)

As the gradients ∇X ξ̇ and ∇XΞ̇ refer to the non-constant material coordinates X, their
linearization has to be taken into account as well requiring their increments

∆(∇X ξ̇) = −∇X ξ̇∇X∆X and ∆(∇XΞ̇) = −∇XΞ̇∇X∆X. (5.31)

Assuming that the material and spatial volume forces and the surface tractions do not
contribute, the linear increment of the variation (5.18) can be written as

∆(δΠ) =

∫

B

[

∇X ξ̇ : {∆P + P (1 : ∇X∆X)} − (∇X ξ̇∇X∆X) : P
]

dV

+

∫

B

[

∇XΞ̇ : {∆Σ + Σ (1 : ∇X∆X)} − (∇X ξ̇∇X∆X) : Σ
]

dV.
(5.32)

Substitution of the increments of the dual stress tensors P , Σ renders the coupled relation

∆(δΠ) =

∫

B

[
∇X ξ̇

∇XΞ̇

] [ C KKT M ] [
∇X∆x

∇X∆X

]

dV (5.33)

with the fourth-order nominal elasticity moduli C = ∂FP = ∂2
FFψ and the definitionsK := −C 3

◦F − P ⊙ 1 + P ⊗ 1M := C 1
◦F

3
◦F −Σ⊙ 1 + Σ⊗ 1 + 1 ⊙ (F T P )− 1 ⊗ (F T P ).

(5.34)

Here, the following abbreviations have been introduced: (•)
i
◦F means the composition

of the i-th component of (•) with F while (a⊙ b)ijkl=ailbjk and (a⊗ b)ijkl=aijbkl denote
tensorial dyadic products. Due to the variational structure of the formulation, the coupled
tangent matrix is symmetric.

Remark 5.2: Due to the dependence of the volume element dV and the gradients ∇X ξ̇,
∇XΞ̇ on the material coordinates X the linearization of the dual problem consists of a
material tangent and a geometric part. The geometric part only occurs for the mixed
material-spatial or purely material contributions whereas for the purely spatial part just
the material tangent arises. Within the two-point setting of a purely spatial formulation
only the increment of the stresses P has to be evaluated and consequently just the ma-
terial tangent occurs. The split of the increment into a material tangent and a geometric
part corresponds to the structure of alternative representations of the finite deformation
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framework, i.e. the Lagrangian or the Eulerian setting based on the work conjugated ob-
jects (S,C) and (τ , g). In these approaches a geometric contribution already appears for
the purely spatial problem due to the linearization of the non-linear deformation measures.

In the next step, the algorithmic scenario is discussed. The approximation δΠh of the first
variation of the energy functional is solved via the linear expression

Lin δΠh = δΠh + ∆(δΠ)h = 0. (5.35)

By introduction of the finite element approximation of the gradients of the increments of
the material and spatial coordinates, i.e. ∇X∆x = B∆d and ∇X∆X = B∆D, the linear
set of equations (5.35) can be written in the compact format

R̂ + K̂∆Q = 0 . (5.36)

The global solution vector ∆Q = [∆d,∆D]T contains the increments of the spatial and
material nodal coordinates while R̂ and K̂ denote the global residual and stiffness matrix

R̂ = −
Nt∑

I=1

[
rI

RI

]

= −
Nt∑

I=1

[
f I + pI

F I + P I

]

and K̂ =

Nt∑

I,J=1

[
kIJ mIJ

mT
IJ KIJ

]

. (5.37)

The nodal contributions of the residual are defined in (5.23) and (5.24) whereas the
components of the coupled stiffness matrix rely on the above tangent operators

kIJ =
nele

A
e=1

∫

Be

BT
I CBJdV , mIJ =

nele

A
e=1

∫

Be

BT
IKBJdV , KIJ =

nele

A
e=1

∫

Be

BT
IMBJdV. (5.38)

Within a typical Newton step equation (5.36) is solved for the nodal increments ∆Q and
the current material and spatial nodal positions Q = [d,D]T are updated according to

Q← Q + ∆Q (5.39)

until convergence is obtained, i.e. |R̂| < tol with given tolerance tol. As mentioned above,
this convergence condition represents the approximative solution of the discrete version
(5.22) of the necessary condition (5.18) of the variational principle and therefore states
the approximative solution of the minimization problem (5.2).

5.3.3. Viscous-Type Relaxation of Configurational Forces. The dual variational
setting appears to be very promising as it extends the well-known variational framework
of finite elasticity to the modern notion of configurational mechanics. Despite this con-
ceptual attraction, a robust numerical implementation displays some major drawbacks
whereupon the Newton-Raphson iteration fails to converge in general. Consider for in-
stance the tangent matrix (5.37) of the linearized functional for the particular case of zero
deformation, i.e. F = 1 . Evaluating the sub-operators K and M , the stiffness matrix
is detected to be singular and the linearized problem cannot be solved. In addition, and
this is probably the essential difficulty, the resulting minimization problem is non-convex
in general and thus possesses a variety of local minima. Due to this lack of convexity, in
particular circumstances the tangent operator is found to have negative eigenvalues.
To overcome these problems, Askes, Kuhl & Steinmann [8] proposed a dynamic con-
straint for eliminating the rank deficiency of the tangent operator. Configurational forces
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are associated with a variation of the material coordinates X at fixed spatial positions
x. A zero material residual allows for arbitrarily large variations of X implying a van-
ishing stiffness of the material problem that is why a singularity of the whole system
exists. Hence, if the absolute value of a component of the material residual is lower than
a numerical tolerance, the corresponding equation is eliminated from the iteration step.
However, this procedure only works in special cases, in general the null subspace of the
stiffness matrix needs not to coincide with the space spanned by the degrees of freedom
in material equilibrium and the rank deficiency is not eliminated by restricting the latter
one. In addition, the modes corresponding to negative eigenvalues are not stabilized.
Alternatively, it is proposed to add temporarily a unit matrix on the material stiffness.
This approach is close to another procedure elaborated by Mosler & Ortiz [130]. Vis-
cous damping is used to regularize the problem. Upon discretization the minimization
principle (5.2) appears as a function of the current discrete material and spatial nodal
coordinates, Π ≈ Πh(d,D)→ Min. This functional is penalized by an additional term

Π̄ := Πh(d,D) + ǫ |D −Dn|
2 (5.40)

where ǫ is a positive parameter and |D−Dn| denotes the Euclidean norm of the difference
between the current material coordinates and their values of the previous solution step.
Based on (5.37), the only terms that have to be modified are the material residual RI

and its linearization KIJ with respect to the material coordinates

R̄I = RI + 2ǫ (DI −DIn) and K̄IJ = KIJ + 2ǫ 1 . (5.41)

The parameter ǫ is used to ensure the positive definiteness of the tangent operator, i.e.
to enforce a strictly convex energy functional. The smallest possible value of ǫ is chosen.
For the particular case that the energy functional is a priori convex, no regularization is
needed, ǫ = 0. As ǫ is a small number and above all convergence of the Newton-Raphson
iteration is guaranteed, by what |D−Dn| → 0 , the penalty term of the modified energy
functional (5.40) becomes very small and the value of Π is not affected.

5.4. Topology Optimization of Finite Element Meshes

The dual variational setting is exploited in view of the topology optimization of finite
element meshes or, more precise, adjusted to r-adaptive mesh improvement. Subsequent
to the theoretical discussion, descriptive numerical examples are studied.

5.4.1. r-Adaptive Mesh Optimization. In general, mesh optimization is used to
generate an improved finite element mesh. The optimization criterion is formulated with
respect to particular criteria concerning the accuracy of the triangulation by means of
a finite element mesh, or rather the solution obtained by a certain mesh. For example,
the element shape or the ratio between the edge lengths of neighboring elements may
constitute such a quality criterion.
Upon discretization, a material body is subdivided into a set of finite elements. In what
follows, the number of elements and correspondingly the number of nodal points is kept
unchanged during the optimization process. In the sense of the dual variational formula-
tion, the objective function is the potential energy parameterized, in the discrete setting,
by the discrete spatial and material nodal coordinates dI and DI . A variation of the
objective function with respect to the coordinates renders the optimal structure. In the
current scenario, the structure means the topology of the finite element mesh while opti-
mal refers to the minimum of the potential energy associated with that mesh. The work
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conjugate objects of the nodal coordinates are the discrete spatial and configurational
nodal forces, or rather nodal residuals rI and RI representing the discrete counterparts
of the dual local equilibrium conditions (5.19) and (5.20).
Assuming a material body without spatial forces acting on it, γ̄0 = t̄ = 0 , the discrete
representation of the spatial balance equation boils down to

r =
Nt∑

I=1

rI =
Nt∑

I=1

f I = 0 with f I = −
nele

A
e=1

∫

Be

BT
I P dV (5.42)

corresponding to the strict conservation law DivP = 0 in the continuous case. The solu-
tion of this subproblem yields the spatial nodal positions of the deformed mesh.
Even in the absence of spatial volume forces, the material balance equation still includes
a configurational volume force Γ̄0 = −∂Xψ

expl due to a possible inhomogeneity of the
material. In the subsequent investigations the material is assumed to be homogeneous
and the configurational force vanishes as well, Γ̄0 = 0 . Thus, the material residual reads

R =

Nt∑

I=1

RI =

Nt∑

I=1

F I = 0 with F I = −
nele

A
e=1

∫

Be

BT
I Σ dV. (5.43)

and reflects the discrete version of the strict material conservation law DivΣ = 0 . In
reference to Remark 5.1, RI represents the discrete configurational forces at point I.
In the continuous setting, the solution of the spatial equilibrium condition automatically
guarantees the fulfillment of the material balance equation by what both conditions are
entirely equivalent. Consequently, (5.43) is expected to be satisfied as well for a solution
of (5.42). However, the finite element triangulation induces an artificial inhomogeneity of
the system and breaks the equivalence between the dual branches of the coupled problem.
Using finite element scheme, the coordinates are approximated by C0-continuous shape
functions which is why the strains and all the dependent quantities are discontinuously
distributed over the mesh. This discontinuity evokes numerically caused, non-vanishing
material nodal forces, RI 6= 0 . Vice versa, the deviation from the material equilibrium
indicates an inhomogeneity arising from an insufficient triangulation.
As the configurational force and the material position associated with a certain node are
conjugated objects, a reduction of the material residual is achieved by a rearrangement
of the nodal coordinates. This r-adaptive alignment of the finite element mesh renders
an improved approximation of the material subproblem (5.43). The configurational force
points into the direction of an energy increase upon movement of the material node point
position. Thus, the change of the material nodal coordinates into the opposite direction
enforces a decrease of the energetic state of the mesh.
A possible attempt towards the numerical realization has been proposed in the seminal
work of Braun [21] and latter on by Müller & Maugin [134]. Subsequent to the so-
lution of the spatial problem, the r-adaptive mesh optimization, i.e. the solution of the
material subproblem, is performed in a postprocessing procedure step.
In the present contribution an alternative approach is adopted, cf. Kuhl, Askes &

Steinmann [83], Askes, Kuhl & Steinmann [8], Askes, Bargmann, Kuhl &

Steinmann [7], Thoutireddy & Ortiz [182], Thoutireddy [183] and Mosler &

Ortiz [130]. The coupled material and spatial problem in terms of the dual variational
formulation is solved in a monolithic fashion using the solution procedures discussed in
Section 5.3. In this scenario, the solution of the spatial problem, i.e. the equilibration of
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physical forces in the sense of Newton, and the solution of the material problem, i.e. the
equilibration of configurational forces in the sense of Eshelby, are carried out simultane-
ously. The procedure results in the optimal mesh associated with its minimal energetic
state as demanded by the governing minimization principle. The spatial problem provides
the current Eulerian coordinates while the material problem gives the optimal referential
coordinates reducing the inhomogeneity induced upon discretization.
An extension of this method to the inelastic setting is proposed in the recent work of
Mosler & Ortiz [131] based on an incremental variational formulation.
The r-adaptive method exploits the configurational forces as an indicator for the accuracy
of the current triangulation. The mesh improvement is achieved in a natural way during
the solution step without employing an additional error estimator. The procedure may
be denoted a (variational) Arbitrary-Lagrangian-Eulerian (ALE) formulation identifying
the spatial equations with the Lagrangian description and the material equations with the
Eulerian description of the motion including the adaption of the underlying triangulation.

The material model used for the ensuing analyses has been introduced within Section 4.5.1.
It relies on the assumption of a compressible Neo-Hookean type free energy function

ψ(F ) =
µ

2

(
tr

[
F T gF

]
− 3

)
+
µ

β

(
(det F )−β − 1

)
(5.44)

formulated in terms of the shear modulus µ and an additional constant β linked to Pois-
son´s ratio ν via β = 2ν/(1 − 2ν). In the simulations discussed below, these parameters
are set to µ = 80.19 kN/mm2 and ν = 0.29 corresponding to β = 1.4.

5.4.2. Numerical Example: Plane Sheet in Tension. In the first example, a squared
two-dimensional sheet with edge length h = 1.0 mm is considered. This boundary value
problem has been studied by Müller & Maugin [134] and Askes, Kuhl & Stein-

mann [8]. The slab is assumed to be homogeneous, ∂Xψ
expl = 0 and spatial volume

forces are set to zero, γ̄0 = 0 . Consequently, the configurational force vanishes as well,
Γ̄0 = 0 . The slab is discretized by sixteen four-noded quadrilateral elements with bilinear
shape functions for both the spatial and the material problem. The computations were
performed under plane strain conditions. With regard to the spatial problem, the upper
and lower edges of the slab are clamped and subjected to prescribed vertical displacement
increments ∆ū = 0.025 mm up to a total deformation of 50% of the original height. For
the material problem, three different boundary conditions have been investigated.
In the first step, all the nodes are constrained in view of the material problem coinciding
with a purely spatial computation. For the underlying assumptions, the solution of the
spatial problem is expected to satisfy the material equilibrium condition automatically.
However, the discretization procedure induces an inhomogeneity of the system resulting
in a non-vanishing material residual R. In other words, as any changes of the material
node point positions are forbidden, the material equilibrium of the whole structure cannot
be achieved. In Figure 5.1a), d) the remaining material residual or rather the configura-
tional nodal forces are plotted with respect to the reference configuration after the first
and the final spatial deformation step. As the boundary of the system does not change
its material position, physically motivated configurational forces occur at the boundary
nodes in order to maintain the shape of the specimen in the reference configuration, i.e.
to prevent the body from shrinking. In contrast, the forces at the interior nodes are just
numerically caused and for this reason are used for the r-adaptive mesh improvement.
These interior forces are by some magnitudes smaller than the boundary forces. In the
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a) b) c)

d) e) f)

Π = 0.290504 Nm Π = 0.290493 Nm Π = 0.290409 Nm

Π = 23.413982 Nm Π = 23.413980 Nm Π = 23.404455 Nm

Figure 5.1: Configurational nodal forces at the interior nodes of the mesh for a), d) the
purely spatial problem, b), e) 2 and c), f) 18 material degrees of freedom. a), b), c) visualize
the forces after the first deformation step scaled by 250, and d), e), f) after the final step
scaled by 5.5. In the plots c), f) no material residual occurs indicating an optimal energetic
state. The values of the potential Π are given below.

figure, only the nodal forces at the interior nodes of the mesh are depicted. Observe that
the forces on the boundary also include in inaccuracy due to an insufficient triangulation.
This effect is reported on in detail in the next example.
In the second step, two material degrees of freedom are introduced. To be specific, the
upper and lower interior node on the vertical middle axis of the slab are allowed to move
in vertical direction with respect to the reference configuration. Figure 5.1b), e) shows
the reference configuration of the body including the configurational nodal forces for the
respective spatial deformation states. The two crucial nodes have moved in the opposite
direction of the configurational force obtained for the previous computation. Additionally,
as the magnitude of the node point force after the first load step is larger than after the
final one, the amount of the material displacement decreases as well. Recalling that the
configurational forces point into the direction of an energy increase upon movement of the
node point position, the change in the opposite direction coincides with a decrease of the
potential energy Π. This reasoning is verified by a comparison of the values of the energy
listed beneath the pictures. However, the difference between the corresponding values is
very small. While the forces at the nodes with material degrees of freedom are now zero
according to the material equilibrium condition, numerically caused configurational forces
still occur at those interior nodes being not allow to change their material position.
In the third step, all interior nodes are allowed to move with respect to the material
setting of the slab. This scenario incorporates 18 material degrees of freedom. Now, the
material coordinates of the interior nodes are able to achieve their equilibrium state, i.e.
the particular positions for which the material residual vanishes, R = 0 , or, respectively,
no numerically caused configurational forces occur. In Figure 5.1c), f) the corresponding
optimized referential meshes are shown. Considering the amount of energy stored in the
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specimen reported beneath the pictures, a further decrease of the energetic state of the
body has taken effect, even though the differences are still small. This observation holds
for the comparison with the case of two material degrees of freedom or, more distinct, with
the purely spatial computation. To be precise, the energetic state decreases by ≈ 0.038%
and ≈ 0.041% for the first and final deformation step, respectively.

5.4.3. Numerical Example: Homogeneous Block in Tension. The investigations
are extended to the three-dimensional context. To this end the deformation of a block
of dimensions h × h × h/4 with h = 1.0 mm is analyzed. A similar example has been
discussed by Mosler & Ortiz [130]. The body is discretized with 152 tetrahedral ele-
ments with linear interpolation functions for the material and the spatial problem. Again,
spatial volume forces are neglected and the specimen is assumed to be homogeneous by
what no configurational forces occur, Γ̄0 = 0 . In the spatial setting, the upper and lower
surfaces of the body are clamped. The upper surface is subjected to prescribed incremen-
tal displacements ∆ū = 0.0075 mm. The specimen is deformed up to a total deformation
of approximately 7% of the original height.
In the first step, a purely spatial computation has been performed, see Figure 5.2a) for
the undeformed and Figure 5.2c) for the deformed configuration. The energetic state of

a) b)

c) d)Π = 0.12135 Nm Π = 0.11880 Nm

Figure 5.2: Lagrangian and Eulerian configuration of a), c) the purely spatial and b), d) the
coupled problem. The nodes are allowed to change their material position in any tangential
direction of the respective surface corresponding to 95 material degrees of freedom. The
values of the potential Π are given for the final deformation state.

the deformed structure is Π = 0.12135 Nm.
Following the procedure of the above example, material degrees of freedom are introduced
within the reference setting of the mesh. However, the goal of the subsequent investigations
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is different. As the current triangulation only consists of one single node lying entirely
inside the volume, i.e. only one node does not belong to any surface of the slab, a move-
ment of that single node will not result in a considerable change of the energetic state
of the system. Hence, and this is in contrast to the previous studies, attention is focused
on the situation on the material boundary of the specimen. To be specific, all the nodes
of the surfaces are allowed to move within that surface. In other words, only a change
of the material position in the direction of the respective normal vector of the surface is
forbidden. For the current triangulation, this scenario leads to a total number of 95 ma-
terial degrees of freedom (including the three of the single interior node). The improved
mesh in both its undeformed and spatially deformed state, is depicted in Figure 5.2b),d).
Apparently, the movement of the material node point positions is in the direction of the
spatially constrained surfaces of the body whereas no changes of the material coordinates
occur on these surfaces themselves. The potential energy of the deformed system is given
by Π = 0.11880 Nm which coincides with a significant reduction of ≈ 2.1% compared to
that of the purely spatial computation.
In the sense of the dual variational setting based on the principle of minimum potential en-
ergy, the simultaneous equilibration of spatial and material forces results in a r-adaptively
improved mesh or rather material configuration that minimizes the energy of the system.
The consideration of a movement of the material node point positions along the material
boundary is found to increase the accuracy of the triangulation.

5.5. Topology Optimization of Truss Structures

The dual variational formulation is applied to the topology optimization of truss structures
whereupon the r-adaption appears as a concept of structural optimization. At first, the
dual variational setting is adopted to the particular situation of truss systems. Afterwards
a representative boundary value problem is examined.

5.5.1. Structural Optimization of Truss Systems. Several approaches exist in view
of the optimization of truss structures. The objective function may characterize the entire
weight of the structure or displacements at some particular joints. Typical designvariables
are for instance the cross sections of the pin-jointed bars.
For a given connectivity, the variational r-adaption renders the optimal mesh, i.e. the
optimal material and spatial nodal positions, with respect to its energetic state. Extend-
ing this method to the optimization of truss structures, originally proposed by Askes,

Bargmann, Kuhl & Steinmann [7], the mesh means the structure or rather geometry
of the system. The unknowns are the material and spatial coordinates of the truss joints.
The material equilibrium is associated with the optimal truss geometry in the undeformed
state. This geometry is obtained by moving the joints into the opposite direction of the
configurational force acting on the respective node. Exploiting the duality of the varia-
tional setting, the spatial problem is solved simultaneously for the current nodal positions
of the deformed system. The resulting truss exhibits a minimal energetic state compared
to all admissible configurations. Note that only the truss geometry is analyzed but no
change of the cross sections of the bars or of the connectivity is taken into account.
In order to specify the fundamental equations of the dual variational formulation with
regard to truss structures, consider the parameterization of a single pin-jointed bar with
constant cross section A = const. in terms of the time-independent parameter space A
as depicted in Figure 5.3. The time-dependent Lagrangian and Eulerian configurations B
and S are obtained via the material and spatial configurational maps Ξ and ξ, cf. (3.3),



92 Material-Force-Based Optimization Strategies

X x

θ

ϕt

F

Ξt

J

ξt

j

B S

Ω

−L− −l−

−l0−

Figure 5.3: Kinematics of a pin-jointed bar. Parameter space Ω with time-independent
coordinates θ. The reference and current configurations are obtained via the material and
spatial configurational maps Ξt, ξt. Their composition defines the non-linear point map ϕt.

governing the non-linear deformation map ϕt = ξ ◦ Ξ−1. By definition, only axial forces
occur in a pin-jointed bar and consequently just the 11-component of the gradients of the
basic kinematic objects need to be taken into account, J11 =: J , j11 =: j and F11 =: F .
The minimization principle (5.2) is recast into the one-dimensional format

Π =

∫

lB

ψ A dlB → Min. (5.45)

The ficticious integration limit lB indicates the integration over all pin-jointed bars of the
entire truss structure. For simplicity, spatial volume forces and surface tractions have been
neglected. Assuming a homogeneous material, the free energy exclusively depends on the
deformation gradient, ψ(F11) = ψ(F ). The length of every single bar in each configuration
is evaluated using the respective coordinates of the truss joints

l0 = |θ2 − θ1| , L = |X2 −X1| , l = |x2 − x1|. (5.46)

The ratio of the respective lengths describes the scalar valued gradients of the material and
spatial configurational maps, J = L/l0 and j = l/l0, constituting the deformation gradient
F = jJ−1 = l/L. The investigations to follow once more rely on the rate formulation based
on the global dissipation postulate which has proven to be close to a variational setting.
To perform the time derivative of the energy functional (5.45), the time derivatives of the
deformation gradient and of the infinitesimal line element have to be computed

Ḟ = l̇L−1 − FL−1L̇ and ˙dlB = L−1L̇dlB. (5.47)

The spatial and material rates l̇, L̇ are governed by the rates of the respective coordinates

l̇ =
˙

|x2 − x1| = n (ξ̇2 − ξ̇1) and L̇ =
˙

|X2 −X1| = N (Ξ̇2 − Ξ̇1) (5.48)

with the Eulerian and Lagrangian direction vectors n = (x2 − x1)/|x2 − x1| and N =
(X2 −X1)/|X2 −X1| of the bar. The spatial and material velocities ξ̇, Ξ̇ of the truss
joints have to satisfy the homogeneous forms (3.10), (3.11) of the essential boundary
conditions.
The time derivative dΠ/dt of the energy functional governs its first variation inducing the
following representation of the necessary condition of the minimization principle

δΠ = 0 ⇐⇒

∫

lB

(P l̇L−1 + Σ L̇L−1)A dlB = 0 (5.49)
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in terms of the scalar valued first Piola-Kirchhoff stress P = ∂Fψ and the Eshelby stress
Σ = ψ−FP . As the deformation gradient F is constant along the bar, the stresses P and
Σ are constant as well. For a constant cross section A, the integral (5.49) is reformulated
as a sum over all nb bars of the structure

δΠ = 0 ⇐⇒

nb∑

e=1

[

(P l̇ + Σ L̇)A
]

= 0. (5.50)

Substituting the rate expressions (5.48), the procedure results for arbitrary admissible
spatial and material rates in a discrete set of non-linear equations

R̂ =

[
r

R

]

= 0 with r =
nb

A
e=1

{PA

[
−n

n

]

} and R =
nb

A
e=1

{ΣA

[
−N

N

]

} (5.51)

where r and R denote the dual spatial and material residuals and the assembly operator

A accounts for the connectivity of the truss. The coupled problem (5.51) has to be
solved for the current coordinates of the truss joints in both the material and the spatial
configuration by means of the numerical solution procedures discussed in Section 5.3.
Applying the Newton-Raphson scheme, the consistent linearization of (5.51) has to be
evaluated. This linearization consists of a material tangent part arising from the non-
linearities of the stress measures and a geometric part due to the linearization of the
direction vectors upon their projection onto the global coordinate system. The analyses
end up with the coupled system of linear equations

R + K∆Q = 0 . (5.52)

After having solved for the nodal increments ∆Q = [∆x,∆X], the Newton update yields
the current spatial and material coordinates Q← Q+∆Q with Q = [x,X]T . A detailed
derivation of the this relation is provided in Appendix E.
Irrespective of the solution procedure, the algorithm stops if convergence is achieved, i.e.
if the residual norm falls below a given tolerance, |R̂| < tol. This criterion corresponds to
the approximative simultaneous equilibration of physical and configurational forces.

5.5.2. Numerical Example: Optimization of a Truss Structure. Exemplarily, the
optimization of a truss bridge is discussed. This model problem has been investigated in a
similar fashion by Askes, Bargmann, Kuhl & Steinmann [7]. At first, the constitutive
model based on the free energy function (5.44) is adjusted to the one-dimensional setting.
On condition that only stresses P11 in the axial direction of the pin-jointed bars occur,
i.e. P22 = P33 = 0, the components F22, F33 of the deformation gradient are computed in
terms of the axial component F11. Then, the axial stress can be evaluated

F22 = F33 = F
(−β/(2(β+1)))
11 and P11 = µ(F11 − F

((−2β+1)/(β+1))
11 ). (5.53)

The material parameters are µ = 80.19 kN/mm2 and β = 1.4. The truss structure and
its spatial boundary conditions are shown in Figure 5.4. The length is set to L = 100 mm
while the cross section of the bars is given by A = 10 mm2. The system is subjected to a
concentrated load P = 100 N at the joints along the lower edge of the bridge. For the nu-
merical simulation, the Newton-Raphson solution procedure has been adopted. A purely
spatial computation results in a maximum vertical displacement of umax = 16.12 mm at
the lower midnode and an energetic state of Π = 0.146668 Nm.
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Figure 5.4: Spatial boundary conditions of the truss bridge. The length is L = 100 mm.
The bridge is loaded by concentrated loads P = 100 N at the joints along the lower edge.

In what follows, the optimal material structure of the truss bridge is to be found for
the case that the joints along the upper chord of the system are allowed to change their
material position in vertical direction. This scenario coincides with a number of five ma-
terial degrees of freedom. The optimized truss structure in its spatially undeformed and
deformed state is presented in Figure 5.5. The displacements of two particular joints are

a) b)
u1

u2

Figure 5.5: Improved truss structure in its spatially a) undeformed and b) deformed state.
The displacements of the midnodes of the lower and the upper chords are specified, namely
u1 = 7.48 mm and u2 = 6.02 mm.

indicated. To be specific, the displacements of the lower and upper midnodes are u1 =
7.48 mm and u2 = 6.02 mm. Comparing the first one to the maximum displacement umax

gained from the purely spatial computation, a decrease of more than 50% is achieved.
The evolution of the norm of the dual spatial-material residual R̂ during the equilibrium
iteration of the Newton-Raphson scheme is given in Table 5.1. As expected, the algorithm

Table 5.1: Norm of dual residual, potential, displacement of lower midnode

iteration 1 |R| = 2.2360680E+02 Π = 0.115225 Nm u1 = 13.7415 mm
2 7.9967532E+01 0.052922 Nm 8.0452 mm
3 1.9247672E+02 0.035374 Nm 6.5295 mm
4 1.7094751E+02 0.036986 Nm 7.2951 mm
5 3.6053893E+01 0.039251 Nm 7.4755 mm
6 1.9736807E+00 0.039230 Nm 7.4827 mm
7 3.3212359E–02 0.039231 Nm 7.4828 mm
8 6.4764280E–07 0.039231 Nm 7.4828 mm

shows a quadratic convergence in the near of the solution point. In addition, the table
deals with the evolution of the amount of the energy potential Π. Considering the energy
stored in the system after the final deformation step, the value of Π = 0.039231 Nm for
the optimized system corresponds to a reduction of almost 75% compared to the purely
spatial case. Furthermore, the change of the displacement u1 of the lower midnode is
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presented. The reduction of the maximum value has already been emphasized. However,
the evolution u2 is of particular interest from the structural engineering point of view.
After the first iteration step, the displacement is u2 = 13.7415 mm. Then, the material
positions of the joints of the upper chord move upwards by what the moment arm of the
axial forces in the upper and lower chord increases. This effect results in an increase of
the stiffness of the structure and therefore in a decrease of the displacement u2. After the
fourth iteration only minor changes in the material node point positions occur and no
major changes of the displacement u2 arise as well.
In the final step, the influence of the initial geometry on the optimization process is to be
investigated. To this end, the truss structure shown in Figure 5.4 is replaced by a non-
symmetric system displayed in Figure 5.6a). Only the initial coordinates of two nodes of
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Figure 5.6: a) Non-symmetric initial geometry and b) optimized material configuration
which is identical to that obtained starting form a symmetric initial system.

the upper chord have been modified. All the material data as well as the spatial boundary
conditions, loads and dimensions remain unchanged. Again, quadratic convergence of the
Newton-Raphson iteration is achieved and one finally ends up with the optimized struc-
ture depicted in Figure 5.6b) in its undeformed state. The resulting material configuration
coincides identically with that obtained when starting from a symmetric geometry. Hence,
the optimal reference configuration of the truss does not depend on the initial geometry
but is exclusively governed by the material node point positions that belong to a vanishing
material residual, or, respectively, to vanishing discrete configurational nodal forces.
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6. Material-Force-Based h-Adaptive Refinement Procedures

This chapter focuses on a configurational-force-based refinement indicator in h-adaptive
finite element strategies. The material balance equation corresponds to an equilibrium of
discrete configurational nodal forces and discrete internal material forces based on the
energy-momentum tensor and, in dynamics, a contribution arising from the pseudomo-
mentum. However, due to insufficient discretization, or rather triangulation by means
of a finite element mesh, numerically caused forces occur at the interior nodes of the
mesh. These nodal forces can be utilized as an indicator for mesh refinement. In this
scenario, the accuracy of the finite element solution is determined in a postprocessing
procedure which is referred to as an a posteriori strategy. Following the argumentation
of elasticity where configurational forces have a clear energetic meaning the magnitude
of the remaining discrete nodal forces is interpreted as an energetic misfit of the current
triangulation. The section starts with a short overview on existing literature and some
general remarks. Then, exploiting the energetic interpretation of configurational forces, a
global criterion is defined which is used for the decision on mesh refinement. In the next
step a criterion on the element level is set up governing the local refinement procedure
within a h-adaptive strategy. Afterwards some aspects of the algorithmic treatment and
the numerical implementation are discussed. Finally, the proposed procedure is applied to
a representative variety of model problems. In addition to the adaptive simulations some
benchmark solutions are performed for the sake of comparison.

6.1. General Aspects

Methodologically, two fundamental approaches exist to measure the accuracy of a finite
element solution. The a priori error estimation deals with predictions about existence of
solutions, properties of finite element approximations and convergence criteria without
specification to a particular boundary value problem, see e.g. Szabo & Babuška [180]
or Braess [20] among others. On the other hand, the so-called a posteriori error esti-
mation bases on the approximative finite element solution and consequently allows for an
assessment of the accuracy of the solution of a particular boundary value problem under
consideration. The very first treatments date back to the work of Babuška & Rhein-

boldt [9] for linear problems. The error estimation based on smoothing algorithms has
been proposed by Zienkiewicz & Zhu [193]. Therein, solution variables, typically stress-
or strain-measures, directly obtained from the finite element approximation are compared
to their improved counterparts generated by the application of smoothing algorithms, e.g.
the patch recovery technique presented within Section 3.5.2 of this work. Mathematical
analyses of this kind of error estimation can be found in Ainsworth, Zhu, Craig &

Zienkiewicz [3] or, more recently, Carstensen & Funken [27, 28, 29]. The adaption
of this technique to small strain inelasticity has been investigated for instance by Peric,

Yu & Owen [146], Li & Bettess [92] and Boroomand & Zienkiewicz [17] in which
the smoothing procedure is applied to incremental quantities.
An extension to finite deformation problems is provided by Rheinboldt [151] and later
on by Stein, Seifert, Ohnimus & Carstensen [170]. In addition, Radovitzky

& Ortiz [150] proposed an adaptive procedure for non-linear dynamical problems. Ap-
proaches to the construction of adaptive strategies to finite inelasticity have been estab-
lished e.g. by Ortiz & Quigley [145] and Molinari & Ortiz [129]. In the recent work
of Koch [79] a detailed discussion about adaptive strategies is provided including a broad
spectrum of citations to corresponding literature.
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In general, adaptive strategies in the context of the finite element method may be classi-
fied as follows. In r-adaptive strategies the number of nodal points and elements remains
unchanged during the adaption process. The material node point positions of the finite el-
ement mesh are moved to optimize the element size with respect to a certain criterion, cf.
Section 5. The structure and the dimension of the governing system of equations remains
unchanged. However, due to the constant number of elements an appropriate resolution
of complex geometries is not possible. In p-adaptive strategies higher order interpolation
functions are introduced on the element level. Consequently, the total number of degrees
of freedom of the finite element mesh increases. In what follows, the methodology of h-
adaptivity will be applied. Here, the parameter h characterizes the edge length of a typical
finite element. This refinement technique again yields an increase of the total number of
degrees of freedom because elements are replaced by smaller elements of the same type
and the refined mesh exhibits regions with high element density.
Basically, two different ways exist to generate partially refined meshes. In the context
of hierarchical refinement the current mesh is refined locally by introducing additional
nodal points at the element edges resulting in a reduced element edge length h. Using the
procedure of complete remeshing, a new mesh is generated. The element edge length h of
the improved mesh is controlled by a specific local criterion.
The use of configurational nodal forces within adaptive procedures dates back to the
seminal work of Braun [21]. Referring to Section 5, configurational-force-based mesh
improvement can also be embedded into a dual variational setting of elasticity. This ap-
proach is denoted a variational arbitrary Lagrangian Eulerian formulation and can be
classified as a r-adaptive strategy. A combination of both a r- and a h-adaptive scheme is
proposed by Gangadharan, Rajagopal & Sivakumar [51] in which the r-adaptive
part is governed by the dual variational formulation. The application of configurational
forces in the context of an adaptive strategy in fracture mechanics is discussed by Heintz,

Larsson, Hansbo & Runesson [68]. A purely h-adaptive procedure based on config-
urational forces has been presented by Müller, Gross & Maugin [132] using their
magnitude to assign new mesh sizes. The subsequent treatments follow the recent con-
tribution of Miehe & Zimmermann [127] where a complete procedure of h-adaptivity
based on configurational forces is set up. The material nodal forces serve as the key quan-
tities for the evaluation of a global criterion governing the decision on mesh refinement
as well as a local criterion used for the control of the local refinement process.

6.2. Refinement Criterion Based on Discrete Material Nodal Forces

The change of Lagrangian coordinates or, say, the material motion is described by the
material balance equation, i.e. the balance of material pseudomomentum. At first the con-
siderations are restricted to the quasi-static case whereas the extension to the dynamical
setting is done in Subsection 6.6 below. Consequently, for the time being the material
balance law reduces to the material equilibrium condition (3.74)2

DivΣ + Γ̄0 = 0 . (6.1)

In this equation with all contributions being purely material objects

Σ = ψ1 − F T P and Γ̄0 = −F T γ̄0 − ∂θψ∇Xθ − ∂Iψ · ∇XI − ∂Xψ
expl (6.2)

denote Eshelby’s energy-momentum tensor and the continuous configurational force, re-
spectively. The formulation to follow presumes homogeneous bodies B which means that
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the free energy function ψ does not explicitly depend on the material coordinates X,
∂Xψ

expl = 0 . Furthermore, spatial volume forces are neglected, γ̄0 = 0 . Nevertheless, in
general the material balance law still includes a contribution of the configurational force
arising from the material gradients of the temperature field θ and the internal variable vec-
tor I. Turning next to the discrete setting, attention is focused on a nodal representation
of the material equilibrium condition. According to (3.75)2, it reads

F I + P I(∇Xθ,∇XI) = 0 (6.3)

and has to be satisfied at all interior nodes I of the finite element mesh. This condition
demands the equilibration of the internal material contribution F I defined by (3.61) in
terms of Eshelby’s energy-momentum tensor and the discrete configurational nodal force
P I given in (3.60) being a function of the material gradients of the temperature and the
internal variable fields. Referring to Remark 3.1, the pull-back relationship between the
dual spatial-material balance laws states that in the continuous setting both balances are
equivalent in the sense that if one equation is satisfied the other one is automatically sat-
isfied as well. Thus, condition (6.3) is expected to be fulfilled identically for homogeneous
bodies or in the discrete setting for an optimal mesh that perfectly resolves the homo-
geneous structure of the body. However, this property is not preserved in the continuous
setting. In contrast, upon discretization, i.e. by introduction of a triangulation of the ma-
terial body by means of an arbitrary finite element mesh, an artificial inhomogeneity is
introduced. Due to this inhomogeneity the discrete form of the material equilibrium con-
dition is violated. This means that the triangulation breaks the equivalence between the
material and spatial balance equations. In other words, due to an insufficient triangula-
tion, numerically caused, often also denoted spurious, nodal forces occur originating from
the fact that the triangulation is not smooth with respect to strain and stresses. These out
of balance discrete forces which actually preclude the satisfaction of the material balance
law indicate that the current triangulation is not yet optimal and serve as a measure for
the inaccuracy of the triangulation. Therefore, they may be used as an indicator for mesh
improvement.
The procedure provided in the previous Section 5, which in fact is restricted to elastic
problems, is classified as a r-adaptive strategy. It enforces the fulfillment of the material
equilibrium condition by means of a rearrangement of the material node point positions
for a fixed number of nodal points within the mesh.
For now, the material equilibrium condition or, to be precise, the remaining spurious
forces are employed as a refinement indicator within a h-adaptive strategy. To this end,
recall the fundamental energetic interpretation of configurational forces in inhomogeneous
elastic bodies. They describe the change of energy within the material configuration of the
body upon movement of the material coordinates. In this sense, the norm of all numer-
ically caused nodal forces is assumed as an energetic misfit of the current triangulation.
Incorporating this methodology into the more general context of thermo-inelasticity, it is
straightforward to define an estimate of the inaccuracy of the current triangulation by
the sum of all non-vanishing nodal forces of the discrete body

∆Π = (1 +
nbnd

nint
)

nint∑

I=1

| (F I + P I) | . (6.4)

Here, nint and nbnd denote the number of interior nodes and of the nodes on the discrete
boundary. Obviously, Nt = nint + nbnd represents the total number of nodal points of
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the current finite element mesh. The computation of the energetic misfit ∆Π demands
a more detailed explanation. As pointed out before, on account of the discrete material
equilibrium condition (6.3), the sum F I + P I of nodal forces has to vanish at all nint

interior nodes of the finite element mesh. In contrast, true physically motivated nodal
forces (F I + P I)

real
bnd occur at all nbnd nodes on the discrete boundary ∂Bh of the body.

These forces are essential to maintain the original material shape of the body which
means to prevent the material configuration of the body from shrinking. However, due
to discretization the approximation (F I + P I)bnd of these boundary forces also includes

RI,int

RI,int

Rreal
I,bnd

RI,bnd

|RI |bnd

∂B

∂Bh

Figure 6.1: Treatment of nodal forces on discrete boundary. Physically motivated forces

Rreal
I,bnd := (F I + P I)

real
bnd occur maintaining the material shape of the body. By assumption,

the inaccuracy |RI |bnd := |(F I + P I)|bnd of the approximated counterparts RI,bnd := (F I +
P I)bnd equals an averaged value of the forces RI,int := (F I + P I)int at the interior nodes.

an inaccuracy, see Figure 6.1. This inaccuracy |(F I + P I)|bnd is assumed to coincide with
the average value of the norm of the nodal forces at all interior nodes with respect to the
number of interior nodes

| (F I + P I) |bnd :=
1

nint

nint∑

J=1

| (F J + P J) | . (6.5)

Multiplying this quantity with the number nbnd of boundary nodes and adding the sum
of the norm of all spurious interior forces defines the energetic misfit ∆Π as specified in
(6.4) in terms of the weighting factor (1 + nbnd/nint).
Based on this estimate of the inaccuracy of the current triangulation a relative global
criterion is set up as the ratio between the energetic misfit ∆Π and the elastically stored
energy Πe of the body, i.e.

η =
∆Π

Πelast
with Πelast =

∫

B

ψelast dV. (6.6)

Based on this global criterion the decision on mesh refinement is carried out in the fol-
lowing manner. For the case that the accuracy of the current triangulation is said to be
sufficient which means that the global criterion is lower than a given admissible criterion,
η ≤ ηperm, no refinement of the current mesh is needed. Otherwise, η > ηperm, the accu-
racy of the current triangulation is insufficient and mesh refinement is required.
In order to set up a local refinement procedure, in the first step a modified element quan-
tity ξe is constructed. This value is the key ingredient of the data-processing that governs
the local refinement within the strategy of complete remeshing. The element criterion
ξe is defined as the ratio between an energetic defect ∆πe of the current element under
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consideration and an averaged element value πm

ξe =

[
∆πe

πm

]1/p

with πm = ηperm fS
∆Π

nele
. (6.7)

Here, nele denotes the total number of elements of the current mesh and p indicates the
order of the finite element shape functions. Furthermore, ηperm is the admissible global
threshold and fS a safety factor. The global misfit ∆Π has been defined in (6.4). The
contribution ∆πe of the current element e is evaluated as the amount of all nodal forces
belonging to that element

∆πe = (1 +
ne

bnd

ne
int

)

ne
int∑

I=1

| (F I + P I)
e | . (6.8)

In analogy, the overall quantities, ne
int is the number of interior nodes per element whereas

ne
bnd denotes the number of nodes of the current element belonging to the discrete bound-

ary ∂Bh of the entire body, and ne = ne
int + ne

bnd being obvious. Computing this element
value the particular situation at the boundary needs to be taken into account as well.
Recalling the above discussion, along the discrete boundary physically based nodal forces
occur preserving the material shape of the body. As schematically depicted in Figure

a) b)
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e,real
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Figure 6.2: Computation of element criterion. a) Element e within the body B. The
element criterion is defined as the average of the norm of the discrete nodal forces
Re

I,int := (F I + P I)
e of the current element e. b) Situation on material boundary ∂B.

Physically motivated forces R
e,real
I,bnd := (F I + P I)

e,real
bnd appear. By assumption, the inaccu-

racy |Re
I |bnd := |(F I + P I)e|bnd of these forces equals the averaged value of the norm of the

resultant forces Re
I,int := (F I + P I)

e at the interior nodes of element e.

6.2, the approximative element nodal forces (F I + P I)
e
bnd differ from their true counter-

parts (F I + P I)
e,real
bnd due to an insufficient triangulation. Conceptually in line with the

treatments provided for the global criterion, the formulation to follow presumes this in-
accuracy |(F I + P I)

e|bnd to coincide with an averaged value of the amount of all nodal
forces belonging to each element e

| (F I + P I)
e |bnd :=

1

ne
int

ne
int∑

J=1

| (F J + P J)e | . (6.9)

Summing up all contributions the weighting factor (1 + ne
bnd/n

e
int) enters the element

misfit (6.8). The configurational-force-based global and local criteria are central to the
h-adaptive strategy to be elaborated in the next subsection.
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6.3. Algorithms and Numerical Implementation

The overall goal of an adaptive strategy is a self-controlled simulation providing at different
time or loads steps an appropriate triangulation including a suitable resolution of crucial
regions within the system. The general procedure of the proposed h-adaptive strategy
acts in the following steps, cf. Brenner & Carstensen [22]:

Solve: Perform load step i on mesh or triangulation j:
Enforce spatial equilibrium condition.

Estimate: Evaluate global criterion η and decide on mesh refinement:
Check material equilibrium condition.

Mark : Compute element criterion ξe.

Refine/ Coarsen: Generate an improved triangulation j ⇐ j + 1:
Enforce better approximation of material balance equation.

Map Solution Data: Transfer solution data onto new mesh.

To be precise, after the solution of load step i on mesh j by a standard local spatial
computation the internal variables are projected from the integration point level onto
the node point level of the current mesh by means of smoothing algorithms, cf. Section
3.5.2. Within a further element loop the elastic energy storage and the contributions to
the discrete configurational nodal forces are computed according to (3.60) and (3.61).
Afterwards, the global criterion (6.6) can be evaluated directly. If no mesh refinement
is required, the next load step i ⇐ i + 1 is going to be solved on the same mesh j. In
case the global criterion violates the admissible threshold, i.e. the global criterion assesses
the current triangulation to be inaccurate, the element criterion (6.7) is computed. The
new mesh j ⇐ j + 1 is generated with the local criterion informing about the element
refinement factor. Prior to the next analysis, the solution variables of the last accepted
load step have to be transferred onto the new mesh. Basically, the nodal variables, i.e.
the spatial displacements and the temperature field as well as, for inelastic problems, the
projected internal variables, cf. Section6.5.1, of the old mesh are mapped onto the nodes
of the new mesh. Obviously, the data evaluated on the old mesh does not necessarily
constitute an equilibrium state for the new mesh. This demands that the same load step i
has to be solved for the new mesh until the global criterion states the triangulation to be
sufficiently accurate. The load step is increased i⇐ i+ 1 and the analysis continues with
the accepted mesh. The entire procedure recurs until a maximum load or deformation
step is reached. The flowchart provided in Figure 6.3 schematically illustrates the overall
scenario. In the following, two particular topics of the above procedure are considered,
namely the mesh generation and the mapping of the solution variables.

6.3.1. Mesh Generation. In case the triangulation was assessed to be inappropriate
for the current load step, the mesh has to be improved in certain regions. Thus, a locally
refined mesh has to be generated. This local refinement can be performed by hierarchical
mesh adaption or via remeshing of the geometry model. For the two-dimensional simula-
tions both strategies have been adopted, a comparative study in the context of a numerical
example is provided in Section 6.4.3 below. The three-dimensional examples solely incor-
porate complete remeshing. Irrespective of the refinement strategy, the key part of both
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Create mesh j

Map nodal data and history to actual mesh

Initialize nodal variables and history

Solve load step i on mesh j

Project integration point data onto nodes

Evaluate configurational nodal forces

Check global criterion

if η ≤ ηperm if η > ηperm

increase load step
i⇐ i + 1

update mesh
j ⇐ j + 1

Figure 6.3: Flowchart of the general procedure for the configurational-force-based h-
adaptive refinement procedure. ηperm denotes the admissible threshold for which the tri-
angulation is said to be sufficiently accurate.

approaches is the generation of an at least primary finite element mesh. Within all the
analyses to follow unstructured meshes consisting of quadratic elements are used.
In view of the two-dimensional setting six-noded triangular elements have been employed.
The strategy of remeshing bases on the construction of a density function ϕ(X) evaluated
in terms of the local criterion ξe. The density function covers the interval ϕ ∈ [0; 1] and
assigns the element edge lengths of the new mesh in the sense that for ϕ = 1 no refinement
occurs whereas ϕ < 1 determines the grade of refinement. For the hierarchical strategy
a bisection method is used. The algorithms for the mesh generation have been developed
and described at full length by Koch [79], see also Welschinger [187] for some more
detailed informations. They base on a Delaunay-triangulation of the geometry model in
the sense of the ideas of Ruppert [156], Shewchuk [157], and Sloan [168], [169].
With regard to three-dimensional setting, the adaptive strategy is embedded into an over-
all solution procedure based on the coupling of different software packages controlled by
means of Python-scripts. In the following only the basic concepts are presented, a more
detailed discussion of the algorithmic treatment and the numerical implementation can
be found in the recent report of Fürle [50]. The preprocessing including the mesh gen-
eration is performed by the commercial software package Abaqus and controlled by the
Python-based scripting interface of Abaqus, see the reference manual Abaqus [1]. The
preprocessing of an analysis consists of three major parts, namely the creation of the
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geometry, the partitioning of the body and finally the mesh generation. The geometry
is created within the non-graphical CAE-environment of Abaqus by exploitation of the
program’s Python-based scripting capabilities. Next, partitioning means the subdivision
of the geometry model into smaller regions in order to assign different element sizes at
different locations of the body. This is achieved by the introduction of planes intersecting
with the model. Due to this partitioning process, new edges occur inside the body and on
its surface in case a plane intersects with an existing edge or with another plane. After
the body is partitioned sufficiently, all the edges which arose from the actual partitioning
can be used to seed the model differently, dependent on the location of the edge. Seed-
ing means to define a certain element size on a certain edge which coincides with the
assignment of a particular element size to every single edge. This seeding procedure is
governed by the element criterion ξe evaluated in terms of the numerically caused config-
urational nodal forces and therefore guarantees a local refinement of the critical regions
of the material body. In particular, the element criteria ξe are scaled with respect to a
certain interval that allows to use them directly as scaling factors for future element sizes
or rather element edge lengths. To this end, at first the minimum and maximum element
values ξe

min and ξe
max are determined. Based on these values the scaled criterion reads

ξ̄e =
ξe − ξe

min

ξe
max − ξ

e
min

(α− β) + β (6.10)

with α, β representing the lower and upper bounds of the desired interval. In the numerical
studies, the values α ≈ 1.0 and β = 2.0 have proven to be reasonable. This particular
choice means that the element sizes in areas of the lowest local criterion remain unchanged,
ξ̄e
min = α = 1.0. In those areas of the highest indicator, the element edge lengths will be

half the size because the old values are divided by ξ̄e
max = β = 2.0. For α < 1.0 coarsening

in regions with small element values ξe can be taken into account. The final step is to mesh
the body by ten-noded tetrahedrons whereupon the mesh data, i.e. the nodal coordinates
and the element connectivity, can be written to an input file in an arbitrary format
depending on which finite element processing software is employed for the execution of
the analysis of the respective load or deformation step.

6.3.2. Mapping of Solution Variables. In order to restart the analysis at the last
accepted load increment, the solution variables of that step have to be initialized. However,
the solution data of the last accepted analysis belongs to a different mesh. To be able
to perform the initialization all the solution data has to be transferred onto the actual
new mesh. This demands the development of a mapping algorithm to perform that data
transfer. The solution variables to be mapped are the current spatial nodal displacements
and, in the event of the simulation of inelastic problems, the history data. The treatment
of the latter one will be highlighted in Section 6.5.1 below. In any case, the data transfer
results in the mapping of nodal values of the last accepted old mesh onto the nodal points
of the new mesh. The crucial point of the algorithm is to evaluate for every point of
the new triangulation the local element coordinates within the old mesh. This at first
requires to find this unique element of the old mesh containing the physical coordinates of
the new node. This task is carried out by application of a specific search algorithm. With
the unique element at hand, the local coordinates ξI of an arbitrary point, for the time
being the new node I, in an element ẽ are computed in the following way. The physical
coordinates Xnew

I of the point I are evaluated by the isoparametric geometry approach
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in terms of the nodal coordinates X
old,ẽ
i of the element belonging to the old mesh

Xnew
I =

nẽ
∑

i=1

N i(ξI) X
old,ẽ
i . (6.11)

As the coordinates of the point of interest as well as the element coordinates of the element
of the old mesh are given, the unknowns in this equation are the local element coordinates
ξI which actually need to be evaluated. Since quadratic shape functions are employed, the
non-linear system of equations (6.11) is solved by standard Newton-type iteration. The
solution of this non-linear system of equations is constrained by the condition that all
three coordinates of the solution ξI have to be within the interval [0; 1] otherwise the new
node lies outside the element. Therefore, the solution of (6.11) serves as a check whether
the search algorithm has found the correct element. Now, with the unique element ẽ of
the old mesh containing the physical coordinates Xnew

I of the new node and in addition
with the local element coordinates ξI of that point at hand, the nodal displacements dnew

I

of node I of the new mesh are computed by the standard finite element approach

dnew
I = uh(ξI) =

nẽ
∑

i=1

N i(ξI) d
old,ẽ
i . (6.12)

Here, d
old,ẽ
i represents the nodal displacements at every node i of the particular element

ẽ within the old mesh. Obviously, if the node of the new triangulation appears to have
identical coordinates as a node of the old mesh, as it occurs for instance in the corners of
the model, no mapping has to be done, since the displacements stay the same

dnew
I = dold

i . (6.13)

Consequently, the respective node I is not to be treated by the above procedure.
At that point, all the ingredients for the material-force-based h-adaptive finite element
simulation have been elaborated. In order to demonstrate the capability and versatileness
of the proposed method it is now applied to a variety of model problems starting from
finite deformation elasticity up to finite plasticity and thermo-plasticity.

6.4. Application to Finite Elasticity

The fundamental equations of the material-force-based strategy are adjusted to purely
elastic problems. Subsequently, two different aspects are elaborated. On the one hand,
within the two-dimensional framework, a comparison of the proposed configurational-
force-based procedure to a rather well-established recovery-based method is highlighted.
Some essential aspects of the latter approach are recapitulated briefly. Then, the results of
the simulations of a representative boundary value problem obtained from both strategies
are discussed. On the other hand, the material-force-based technique is analyzed in more
detail within the general three-dimensional setting. Thereby, the quality of the results is
examined by means of comparison with fine and coarse mesh solutions. The constitutive
basis of the subsequent treatments is provided by the assumption of a Neo-Hookean type
free Helmholtz energy ψ introduced in equation (4.82) within Section 4.5.1.

6.4.1. Material-Force-Based Refinement Indicator in Finite Elasticity. In order
to assign the adaptive strategy proposed in Section 6.2 to problems of finite elasticity
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recall the dual material equilibrium condition (6.1). It states

DivΣ + Γ̄0 = 0 (6.14)

with Eshelby’s energy-momentum tensor Σ and the configurational force Γ̄0. Now, the
same argumentation that has been adopted within the context of topology optimization
in Chapter 5 allows for the subsequent reformulations. Within the setting of isothermal
elasticity no change of temperature occurs and no internal variables need to be accounted
for. Hence, the configurational force boils down to Γ̄0 = −F T γ̄0 − ∂Xψ

expl. Furthermore,
spatial volume forces are neglected, γ̄0 = 0 . Finally, the material body is assumed to be
homogeneous which means that the free energy does not depend explicitly on the material
coordinates, ∂Xψ

expl = 0 . Consequently, the configurational force vanishes, Γ̄0 = 0 , and
the material equilibrium condition reduces to the strict conservation law

DivΣ = 0 . (6.15)

Upon discretization this balance equation is reformulated in a nodal expression corre-
sponding to (6.3) that has to be enforced at every interior node I of the current mesh,

F I = 0 . (6.16)

Thereby, F I is defined according to (3.61). This statement obviously coincides with the
nodal entries of the material residual arising in the discrete version of the dual variational
formulation presented in Section 5. On account of the discussion provided in Remark 5.1
and in the sense of a discrete representation of the governing material balance law (6.14),
the internal material nodal force F I can evidently be denoted the discrete configurational
node point force. The essential criteria of the material-force-based strategy, i.e. the global
criterion (6.6), η = ∆Π/Πelast, and the local element criterion (6.7), ξe = (∆πe/πm)1/p,
conceptually remain unchanged. The global energetic misfit ∆Π given in (6.4) as well as
its counterpart on the element level ∆πe, see (6.8), are slightly modified in that way that
the discrete quasi-inhomogeneity, or rather configurational nodal force vanishes, P I = 0 .

6.4.2. A Short Review of Recovery-Based Error Estimation. For finite deforma-
tion problems the error e of a finite element solution is defined as the difference between
the exact and the approximative spatial positions x = ϕt(X) and xh = ϕh

t (X), see also
Figure 6.4 for a sketch of this definition. This coincides with the difference between the
exact displacement field u and the finite element solution uh

e := x− xh = u− uh. (6.17)

S

Sh

xh

e
B X x

ϕt, ϕh
t

Figure 6.4: Definition of the error e of the finite element solution as the difference between

exact spatial position x and approximative spatial position xh.
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The methodology of error estimation employed for the comparative study within Sec-
tion 6.4.3 goes back to the work of Zienkiewicz & Zhu [193] and is referred to as
recovery-based error estimation. A detailed discussion and especially its extension to fi-
nite deformations is provided by Koch [79]. Based on energetic arguments it can be
shown that the error of the energy norm equals the energy norm of the error BC(∆e,∆e)
and, furthermore, that the finite element solution uh minimizes this quantity. The bilinear
functional BC corresponds to the linear increment of the linearization of the variational
expression obtained from the principle of minimum potential energy, cf. the spatial branch
of the variational setting outlined in Section 5. It is defined by

BC(ũ)(∆u, δu) :=

∫

B

δF : C(ũ) : ∆F dV (6.18)

with the fourth order nominal moduli C = ∂2
FFψ(F ). The energy norm of error is obtained

by function evaluation in terms of the incremental error

BC(∆e,∆e) := BC(∆u−∆uh,∆u−∆uh) = BC(∆u,∆u)− BC(∆uh,∆uh). (6.19)

In what follows, the energy norm of the error will be used to determine the error of the
finite element mesh. In this scenario, the relative global refinement criterion reads

η =

√

BC(∆e,∆e)

BC(∆u,∆u)
. (6.20)

In general, the exact solution of a boundary value problem is not known. Thus, the energy
norm of the error can not be computed directly. Hence, the error may be estimated based
on the approximative finite element solution. This approach is referred to as a posteriori
error estimation. Instead of the exact solution, an improved approximative solution u∗

is used to evaluate the energy norm of the error. Considering the gradient ∇X∆u of the
increments of the displacement field it can be observed, that at the integration points of
a typical finite element this quantity has a better rate of convergence than elsewhere in
the element. Therefore, the gradient is said to be superconvergent, cf. Zienkiewicz &

Zhu [194, 195]. The improved gradient ∇X∆u∗ is computed via a so-called patch recovery
technique, see Section 3.5.2. Based on definition (6.18) an approximation of the energy
norm of the error can be expressed in terms of the gradient of the incremental displacement
field ∇X∆uh and its improved counterpart ∇X∆u∗ via

BC(∆e,∆e) ≈

∫

B

[
∇X∆u∗ −∇X∆uh

]
: C(ũ) :

[
∇X∆u∗ −∇X∆uh

]
dV. (6.21)

Remark 6.1: The recovery-based error estimation demands the application of the patch
recovery technique. In contrast, for elastic problems the global and local criteria of the
material-force-based strategy are evaluated just in terms of the internal material nodal
force F I . This quantity, however, only depends on Eshelby’s energy-momentum tensor Σ.
Due to the fact that the ingredients of this field are directly obtained by a standard spatial
computation, the nodal forces F I can be evaluated by just one more element loop without
employing any further algorithms. Consequently, the numerical effort with respect to the
assessment of the accuracy of the current triangulation is significantly smaller compared
to that of the recovery-based approach.
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6.4.3. Numerical Example: Plate with a Circular Hole. At first, a circular plate
with a hole is considered. System and boundary conditions are taken from Müller,

Gross & Maugin [132] and are depicted in Figure 6.5. The ratio of the diameter of the
hole with respect to the edge length is 0.4. The material parameters are µ = 400.0 kN/mm2

5

5

55

2

ū

ū

x
y

Figure 6.5: System and boundary conditions of a plate with a circular hole. All dimensions
are given in [mm]. Due to symmetry only a quarter of the specimen is discretized.

and ν = 0.3571, i.e. β = 2.5. Due to symmetry only a quarter of the specimen is dis-
cretized with a primary number of 36 six-noded quadratic triangular elements. Plane
strain conditions are assumed for the analyses. A total displacement ū = 5 mm of the
top edge corresponding to a deformation of 100% of the original height is applied using
ten increments ∆ū = 0.5 mm. By means of this boundary value problem the proposed
configurational-force-based strategy is compared to the well proven recovery-based proce-
dure. In addition, both refinement strategies, namely the hierarchical refinement as well
as the complete remeshing are considered. However, the recovery-based approach is only
used in combination with the hierarchical procedure for the sake of abbreviation whereas
the material-force-based refinement indicator is employed with regard to both strategies.
Figure 6.6 deals with the evolution of the relative global criterion η versus the number of

 0.001

 0.01

 0.1

 0  200  400  600  800  1000  1200
 0.001

 0.01

 0.1

 0  200  400  600  800  1000  1200
 0.001

 0.01

 0.1

 0  200  400  600  800  1000  1200

a) b) c)number of elements number of elementsnumber of elements

g
lo

b
a
l
cr

it
er

io
n

η

g
lo

b
a
l
cr

it
er

io
n

η

g
lo

b
a
l
cr

it
er

io
n

η

Figure 6.6: Plate with circular hole: Global criterion versus number of elements during first
deformation step at ū = 0.5 mm. Hierarchical refinement for a) recovery- and b) material-
force-based method. c) Material-force-based procedure using remeshing. Permitted value is
depicted as straight line.

elements during the first deformation step at ū = 0.5 mm. The axis of the global criterion
is plotted in logarithmic scale and the number of elements refers to the discretized quarter
of the specimen. Using the hierarchical procedure combined with either the recovery-based
or the material-force-based refinement indicator, Figure 6.6a), b), the mesh is refined in six
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steps until the global criterion falls below the permitted threshold ηzz
perm = ηmf

perm = 0.27%.
For the recovery-based estimation the number of elements increases from 36 up to 1250
while the material-force-based method yields a total number of 1285 elements which co-
incides with a difference of less than 3%. The third method, i.e. the material-force-based
refinement indicator utilizing the strategy of complete remeshing, is shown in Figure 6.6c).
It ends up with 1027 elements received after just two refinement steps.
In Figure 6.7 the progress of mesh refinement is presented for the three different method-

a) b) c)

d) e) f)

g) h) i)

Figure 6.7: Mesh refinement during first deformation step at ū = 0.5 mm. Hierarchical
refinement for a)–c) recovery- and d)–f) material-force-based indicator. g)–i) Remeshing for
material-force-based approach. Primary mesh, intermediate state and final triangulation.

ologies within the first deformation step at ū = 0.5 mm. All approaches display the same
characteristics in the refined meshes. To be specific, the mesh is highly densified around
the circular hole whereas the mesh at the outer edges of the specimen remains relatively
coarse. The process of hierarchical mesh refinement is very well observable in Figure 6.7a)-
f). Starting from a coarse primary triangulation, the mesh is refined locally by introducing
additional nodes at the midpoints of single elements. Considering the element shapes, the
remeshing procedure, Figure 6.7g)-i), turns out to give the most regular mesh.
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The distribution of the yy-component of the first Piola-Kirchhoff stress tensor is visualized
in Figure 6.8 for the final state of deformation. The contour plots display no difference

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0

a) b) c)

Figure 6.8: Distribution of Pyy–component of first Piola-Kirchhoff stress tensor for a)
recovery-based, b) material-force-based method in terms of hierarchical refinement, and c)
the material-force-based approach in combination with remeshing for final deformation state.

in the results of all approaches. This observation is confirmed when comparing the ab-
solute values of the stresses. In view of the minimum Pyy-values −65.77 N/mm2 for the
recovery-based and −66.77 N/mm2 for the material-force-based procedure using remesh-
ing are obtained. Additionally the maximum Pyy-stresses are between 1265.20 N/mm2 for
the recovery-based and 1265.30 N/mm2 for the material-force-based approach combined
with hierarchical refinement. Hence, the maximum difference is less than 1.0%.
Consequently, within this comparative study the material-force-based procedure deals
with results that are almost identical to those obtained from the well-known recovery-
based error estimation. Taking into account the advantages of the configurational-force-
based method regarding the numerical efficiency emphasized in Remark 6.1, the proposed
strategy turns out to be more favorable.

6.4.4. Numerical Example: Buckling of a Circular Bar. The objective of the sec-
ond example is to capture the three-dimensional case. To this end a circular bar subjected
to compression is considered. The geometry and boundary conditions are illustrated in
Figure 6.9. The ratio between the diameter d and the length l of the bar is d/l = 1/10.

1010

ū ū

z
2

Figure 6.9: Buckling of a circular bar: Geometry and boundary conditions. All dimensions
are given in [mm]. Exploiting symmetry only half of the specimen is discretized.

Exploiting symmetry, only one half of the bar has to be investigated. Consequently, at the
middle plane of the entire specimen symmetry boundary conditions are enforced which
permit motion in lateral direction. The upper end of half the system is clamped. Within
a deformation-driven process an axial displacement of the top surface is applied within
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52 increments ∆ū = 0.1 mm up to a maximum of ū = 5.2 mm corresponding to a defor-
mation of 52% of the original height. The longitudinal axis of the bar is slightly off-center
by an angle of 0.57◦ with respect to the z-axis. This prescribed horizontal deflection of
the middle of the entire bar serves as a geometric perturbation and basically induces the
particular buckling-type shape of the deformed structure. For the analysis the following
material parameters were chosen: µ = 100.0 kN/mm2 and β = 0.667 corresponding to
ν = 0.2. The primary triangulation of the upper half of the bar used for the adaptive anal-
ysis is depicted in Figure 6.10a). This initial mesh consists of 164 ten-noded tetrahedron
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YZ

X

YZ

X

YZ

a) b) c)

Figure 6.10: a) Initial mesh for adaptive simulation containing 164 elements, 345 nodes.
b) Fine mesh with 39855 elements, 58278 nodes, c) coarse mesh holding 2254 elements, 3743
nodes. Only that part of the specimen is shown which has been used for the computations.

elements resulting in 345 nodes. In addition, Figure 6.10b) and c) show the triangulation
used for the benchmark analyses to be considered below.

Remark 6.2: Observe that the software package utilized for the visualization of the
simulation data is only capable of displaying linear finite element interpolations. As a
matter of course, the CAE-model of the bar considers the real cylindrical shape of the
structure. Hence, the rough even though weird topology that appears especially in Figure
6.10a) is exclusively a result of that drawback of the software tool. However, one should
recognize that even for the case that higher-order interpolation functions could be treated,
the real structure of the bar still would be approximated by a combination of piecewise
linear polygons as the curvature of the outer shape of the body is exclusively available
within the CAE-model.

The development of both the deformation of the system as well as the evolution of the
adaptively refined mesh during the analysis is shown in Figure 6.11. To be precise, the
structure at a deformation of 3%, 11%, 18%, 25%, 39% and for the the final deformation
state at 52% are exemplarily depicted. Initiated by the slight perturbation of the geometry
a deformed structure evolves which displays a typical buckling-mode shape. Obviously,
this is accompanied with large elastic deformations. The local mesh refinement is well
observable. In the areas of high tension and pressure, that are sections of maximum cur-
vature, the mesh is significantly finer than in the areas between those points. For the
whole bar under consideration, this refinement results in three regions with high element
density characterized by small element edge lengths h. These zones are at the top and
the bottom as well as in the middle of the bar. In contrast, in the two regions in-between
the mesh remains relatively coarse. Starting from the primary triangulation with just 164
tetrahedrons, the development of the mesh refinement passes the states of 242, 393, 1552,
3797, 6930 and 10500 elements and reaches its maximum at 17930 elements. This coin-
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Figure 6.11: Evolution of mesh during adaptive analysis. The whole bar is obtained by
mirroring at the xy-plane. a) Mesh with 6105 nodes at 3%, b) 10779 nodes at 11%, c), d)
16164 nodes at 18% and 25%, and e), f) 26877 nodes at 39% and 52% deformation.

cides with a number of 26877 nodes or, respectively, 78030 degrees of freedom.
The adaptive procedure is controlled by the global criterion η. The evolution of this rel-
ative quantity versus the deformation of the top surface is presented in Figure 6.12. The
admissible value was set to ηperm = 4.0% and is depicted by the straight line. When-
ever the global criterion violates the permissible value the current analysis is discarded.
The geometry is remeshed with a more accurate mesh at those locations where the local
element criterion demands mesh refinement. Subsequently, the same load, or rather in-
cremental deformation step has to be re-computed in order to obtain spatial equilibrium.
This procedure recurs until the global criterion falls below the admissible threshold. Then,
the load level is increased in the sense that the next increment of deformation is applied.
Considering the diagram in detail, it turns out that the solution of the first deformation
step is accepted whereas the solution of the second and third increment violate the global
criterion. This holds in particular for the latter one which necessitates three refinement
steps until the mesh is assessed to be appropriate. After a vertical displacement of the top
surface of about 4%, remeshing has to be done less frequently. To be precise, to two more
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Figure 6.12: Buckling of a circular bar: Evolution of global criterion versus deformation.
If the global criterion η violates the permitted value ηperm = 4% mesh refinement is applied
and the same deformation increment is computed until η falls below the admissible value.

refinement steps have to be performed at 12% and 26% deformation. For the final time
step corresponding to 52% deformation, the global criterion reaches a value of η ≈ 3.9%
which is still somewhat below the admissible threshold.
In the next step, the change of the discrete material nodal forces prior and subsequent
to a remeshing event is discussed. In Figure 6.13 half of the bar is presented at a defor-

a) b)

Figure 6.13: Material nodal forces at vertical displacement of 2.6 mm a) prior to and
b) after refinement. Discarded mesh possessed 16164 nodes, new triangulation holds 26877
nodes. Energetic misfit decreases from ∆Π = 1.532 N to ∆Π = 1.04 N, i.e. a reduction of
more than 30%. Boundary forces have been omitted as they do not contribute to the global
criterion.

mation state of 26%. The mesh shown in Figure 6.13a) consists of 10500 elements and
16164 nodes. In the Figure the out of balance configurational nodal forces are presented
which appear at the interior nodes of the mesh due to an insufficient triangulation. Note
that the boundary forces do not contribute to the global criterion and have therefore been
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omitted. Furthermore, for the sake of a better visualization the specimen is shaded by
what, however, the comparatively smaller forces are blinded out. What remains visible are
those forces that penetrate the shading. Thereby their magnitude is scaled by factor 750
which clearly demonstrates that they are undoubtedly numerically caused and therefore
spurious in nature. Concentrations of material forces occur at the points of maximum
curvature above all in the region around the top surface. The energetic misfit of the tri-
angulation, i.e. the sum of the magnitude of all the material nodal forces, is evaluated
by ∆Π = 1.53 N. Taking into account the elastically stored energy Πelast = 38.184, the
global relative criterion is η = ∆Π/Πelast = 0.040134 Nm violating the admissible crite-
rion ηperm = 4%. Consequently, mesh refinement is required. The adaptively refined mesh
which is constructed in terms of the local configurational-force-based element criterion ξe

contains 17930 elements and 26877 nodes. The same deformation step is computed for
this new mesh whereupon once more the configurational nodal forces are computed. They
are visualized in Figure 6.13b). A considerable decrease of those forces compared to the
discarded mesh is very well observable. The same scaling by factor 750 is adopted. Around
the top surface a concentration of material forces still remains which nevertheless is con-
spicuously reduced. Focusing attention to the middle section of the bar, which apparently
coincides to the lower part of the analyzed half of the system, they even vanished in total.
The resulting energetic misfit is given by ∆Π = 1.04 N corresponding to a reduction
of more than 30%. This effect is accompanied by a slight decrease in the elastic energy
down to Πelast = 38.06 Nm. Based on these values, the global criterion is estimated by
η = 0.027325 and falls below the permissible value ηperm = 4%. Thus, the new mesh is
said to be sufficiently accurate and therefore appropriate for the current deformation step.
Hence, the next displacement increment can be applied.
Finally, in order to quantify the performance of the adaptive simulation by means of a
comparative study two benchmark analyses were accomplished. The respective triangu-
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Figure 6.14: Contour plot of the distribution of stress-component σzz for the final de-
formation step at a vertical top surface displacement of 5.2 mm corresponding to 52%. a)
Adaptive mesh, b) fine mesh and c) coarse mesh.
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lations are shown in Figure 6.10b), c). The fine mesh contains 39855 elements and 58278
nodes whereas the coarse mesh consists of 2254 elements and 3743 nodes. Figure 6.14 visu-
alizes the distribution of the normal stresses σzz obtained for the final deformation of 52%.
Again, only half of the bar is considered. In the region close to the top surface the negative
σzz stress gained from the coarse mesh solution, Figure 6.14c), significantly differs from
the results of the fine mesh simulation shown in Figure 6.14b). Apparently, the coarse
mesh is not capable of resolving the critical area. In contrast, the adaptive simulation,
Figure 6.14a), deals with a stress distribution that is in very good agreement to the fine
mesh as the refined mesh provides an appropriate resolution of the zone under considera-
tion. These characteristics are also highlighted when comparing the overall minimum and
maximum stresses σzz of the three different simulations. In view of the negative range the
fine mesh computation ends up with σmin

zz = −228.0 N/mm2 while the adaptive solution
renders σmin

zz = −240.0 N/mm2. Thus, the difference is about ≈ 5%. On the contrary, the
minimum stress obtained from the coarse mesh simulation is σmin

zz = −203.0 N/mm2 and
therefore more than 10% lower than the fine mesh benchmark. The same behavior occurs
for the maximum values. While the fine mesh and the adaptive solution nearly coincide,
i.e. σmax

zz = 123.4 ≈ 124.36 N/mm2, the coarse mesh result, σmax
zz = 112.44 N/mm2, de-

viates by almost 9%. Note that the absolute values of the adaptive solution are higher
than those obtained from the fine mesh computation but the coarse mesh results are
significantly smaller.

6.5. Application to Finite J2-type Thermo-Plasticity

Within the investigations to follow the configurational-force-based h-adaptive strategy
is applied to quasi-static problems of isothermal and non-isothermal plasticity. After an
explanation of some basic aspects of the numerical implementation the adaptive proce-
dure is combined with different constitutive approaches to finite J2-type plasticity and
utilized for two- and three-dimensional analyses in order to demonstrate its versatileness.
Within the respective subsections some remarks on the constitutive framework are given
whereupon the results of the finite element simulations are discussed in detail. For each
example two benchmark computations have been performed which allow for an appraisal
of the capability of the proposed method.

6.5.1. General Remarks. The basic equations of the material-force-based refinement
strategy in the quasi-static context have been introduced at full length in Section 6.2 for
the general framework of non-isothermal inelasticity. Hence, they are easily adjusted to
the particular model problems which deal with the isothermal setting just by dropping the
dependence on the material gradient of the temperature field, θ = const., i.e. ∇Xθ = 0 .
Nevertheless, one slight modification concerns the relative global criterion (6.6) which is
enhanced by an averaging of the global misfit ∆Π with respect to the number nint of
interior nodes

η =
∆Π/nint

Πelast
. (6.22)

This averaging has proven to be appropriate due to the following reasoning. For inelastic
problems, the evaluation of the discrete material nodal forces induces an additional inac-
curacy via the application of the projection algorithm for the internal variable field. In
adverse circumstances, this effect can cause an increase of the energetic misfit ∆Π upon
mesh refinement due to an increase of the number of nodal points in turn affecting the



116 Material-Force-Based h-Adaptive Refinement Procedures

projection procedure. The scaling of the global criterion by the number of interior nodes
counteracts this characteristic and ensures convergence of the adaptive refinement pro-
cedure as it guarantees a decrease of the global criterion. An additional refinement step
is performed irrespective of the value of the global criterion. The process recurs until a
global criterion below the permissible value is found that is accompanied by a reduced
energetic misfit. In this way, a decrease of the misfit ∆Π from its primary value obtained
from the first discarded mesh up to its magnitude evaluated in terms of the finally ac-
cepted mesh is enforced during the simulations. Note furthermore that the influence of
the additional inaccuracy originating from the smoothing procedure results in a range of
the energetic misfit which is a priori larger compared to that obtained in purely elastic
simulations. The scaling brings the range of the global criterion close to that obtained for
the elastic case. Finally, the notation Πelast for the reference value of the global criterion
is still convenient as solely the elastic part ψelast of the free energy function is used for its
evaluation.
To set up the global and local refinement criteria (6.22) and (6.7) the evaluation of the
discrete configurational nodal forces is required. They depend on the material gradients
∇Xθ of the temperature field and ∇XI of the internal variable vector. The treatment of
the first contribution is readily done as the temperature field θ acts as a primary variable
of the thermo-mechanically coupled problem. With regard to the internal variable field
the methodology is as follows. For the different constitutive models to be introduced be-
low the internal variable vector I consists of a second order tensorial object related to a
plastic strain measure and a scalar hardening variable. The computation of the respective
gradient by means of a global approach appears inappropriate as a full discretization of I

would be necessary because both the amount and the direction of the evolution of the in-
ternal variables are non-constant in general, cf. Section 3.5.1. Hence the local formulation,
see Chapter 3.5.2, is adopted which has proven to be sufficiently accurate and numerically
much cheaper.
For inelastic problems one further crucial point has to be considered in more detail. In
addition to the standard nodal variables, i.e. for the quasi-static case the spatial dis-
placements and the temperature, the history data of the last accepted mesh needs to be
transferred to the new mesh. To this end, in a first step the history field is projected
from the integration points onto the nodal points. However, this projection has already
been performed to evaluate the discrete configurational nodal forces. Consequently, no
additional numerical effort arises within the whole procedure. Once the history variables
are available at the nodal points they can be mapped in exactly the same manner as
the standard nodal fields, see Section 6.3.2. After this transfer the history variables are
provided at the nodal points of the new mesh and therefore have to be evaluated at the
integration points. This is achieved by application of the standard finite element approach

I
e
l =

ne
∑

I=1

N I(ξl) ĨI (6.23)

at each integration point of every single element. Here, ĨI denotes the nodal history and
I

e
l refers to the history field at integration point l of the current element e.

6.5.2. Numerical Example: Plate with a Circular Hole. Within this section the
two-dimensional scenario is highlighted. Some aspects concerning the constitutive model
are given. Subsequently, a representative boundary value problem is analyzed in detail.
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6.5.2.1. Material model of finite J2-type elasto-plasticity. The first constitutive
model to be combined with the material-force-based adaptive strategy goes back to the
work of Simo & Miehe [164], see also Simo [160] and Miehe [121].
Starting with the geometric setting, the fundamental approach to finite strain plasticity is
the multiplicative decomposition of the deformation gradient into an elastic and a plastic
part, F = F eF p, cf. (3.95). Based on the metric Ḡ of the intermediate configuration the
Eulerian elastic Finger tensor is defined by

be := F eḠ
−1

F eT = FCp−1F T with Cp = F pT ḠF p, (6.24)

cf. Figure 3.8 in Section 3.6.1. The formulation to follow bases on the alternative repre-
sentation as the push-forward of the right plastic Cauchy-Green tensor Cp−1 to be used as
an internal variable field. The spectral representation of the elastic Finger tensor induces
the definition of the logarithmic elastic stretches εe

i,i=1,2,3

be =
3∑

i=1

λ2
i n

i ⊗ ni and εe
i := 1

2
ln

[
λ2

i

]
= ln [λi] (6.25)

where λi,i=1,2,3 denote the elastic principal stretches and ni
,i=1,2,3 the Eulerian eigenvec-

tors. The logarithmic stretches are split up into a volumetric contribution related to the
Jacobian Je of the elastic part of the deformation gradient and an isochoric part ε̃e

i,i=1,2,3

ln Je :=

3∑

j=1

εe
j = ln [λ1λ2λ3] , ε̃e

i := εe
i −

1
3

ln Je. (6.26)

Enforcing the plastic incompressibility condition, i.e. Jp := det F P = 1, the volumetric
part is governed by the determinant of the deformation gradient, ln Je = ln J . A Hencky-
type free energy function is chosen consisting of an elastic contribution depending in
a decoupled volumetric-isochoric fashion on the logarithmic stretches and a non-linear
hardening contribution in terms of the scalar hardening variable A

ψ = 1
2
κ ln2 J + µ

3∑

i=1

[ε̃e
i ]

2 + 1
2
hA2 + (y∞ − y0)(A+

1

ω
(exp [−ωA]− 1)). (6.27)

The material parameters are specified in Table 6.1 below. The yield criterion function
is defined in terms of the principal stresses σi,i=1,2,3, i.e. the eigenvalues of the mixed-
variant Eulerian stresses gτ = Jgσ. As the von-Mises-type plasticity model assumes
incompressible purely isochoric plastic flow, the yield criterion function only depends on
the deviatoric principal stresses σ̃i,i=1,2,3

φ =
√

∑3
i=1 [σ̃i]

2 −
√

2
3
(y0 −B) with B = −∂Aψ. (6.28)

The specific representation of the constitutive functions based on the logarithmic elastic
stretches allows for the application of a return mapping scheme that completely preserves
the structures of the infinitesimal theory.
With regard to the evaluation of the discrete configurational nodal forces and the map-
ping of the history data, the internal variable vector consists of the inverse right plastic

Cauchy-Green tensor and the scalar hardening variable, i.e. I =
[
Cp−1, A

]T
. Exploiting

symmetry, for the two-dimensional case in total four scalar variables have to be accounted
for, namely the 11-, 22-, and 12-components of the plastic deformation measure Cp−1 and
the hardening variable A.
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6.5.2.2. Discussion of boundary value problem. In extension to the analyses in the
purely elastic context in Section 6.4.3, the plate with a circular hole is investigated now
within the framework of elasto-plasticity. A sketch of the system and boundary conditions
has already been provided in Figure 6.5. The material parameters are summarized in Ta-
ble 6.1. By prescribing incremental displacements ū at the top edge the body is deformed

Table 6.1: Material parameters of elasto-plastic specimens

bulk modulus κ 164.206 kN/mm2

shear modulus µ 80.1938 kN/mm2

initial yield stress y0 0.45 kN/mm2

infinite yield stress y∞ 0.715 kN/mm2

hardening modulus h 0.12924 kN/mm2

saturation parameter ω 16.93 –

up to a maximum state of 12% of the original height which coincides with a total displace-
ment of ū = 0.6 mm. The deformation is applied by 48 increments of ∆ū = 0.0125 mm.
Due to symmetry only a quarter of the specimen is discretized, cf. Figure 6.15. The h-

a) b) c)

Figure 6.15: a) Initial mesh of the adaptive simulation containing 36 elements. b) Fine
mesh with 21831 elements and f) coarse mesh with 129 elements.

adaptive simulation starts with a primary mesh with 36 six-noded triangular elements
corresponding to 87 nodes or 155 degrees of freedom.
The procedure of adaptive mesh refinement during the deformation process is documented
in Figure 6.16. The development of the relative global criterion is plotted versus the de-
formation of the top edge. The deformation is increased up to that point when the global
criterion violates the permitted threshold ηperm = 1.0%. Then, the accuracy of the under-
lying triangulation is said to be insufficient and refinement is required. After the generation
of the new mesh the same deformation step is solved again in order to obtain an equi-
librium state. Afterwards the global criterion is evaluated again for the new mesh. For
the particular example at hand, in total seven refinement procedures are necessary. After
the respective refinement, the global criterion falls below the permitted threshold and the
next time step is to be solved. Only in the first refinement process a second refinement
step is required.
The evolution of the mesh during the deformation can be observed in Figure 6.17 where
the triangulation is depicted for 4%, 8% and 12% deformation with respect to the original
height. The mesh is heavily densified along the lower segment of the circle and in addition
in a broad band towards the right vertical edge. This characteristic follows the hardening
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Figure 6.16: Disc with circular hole: Evolution of relative global criterion versus deforma-
tion. Permitted threshold ηperm = 1% is plotted as straight line.

a) b) c)

Figure 6.17: Deformed meshes at a) 4% b) 8% and c) 12% deformation corresponding to
a top edge displacement of ū = 0.2, 0.4, 0.6 mm. The final mesh consists of 1371 elements.

variable A which will be discussed below, see Figure 6.19. In contrast the upper left corner
remains almost unrefined.
The h-adaptive refinement process is carried out by remeshing of the entire domain in
terms of a density function ϕ. It is computed from the element criterion ξe which in turn is
governed by the non-vanishing numerically caused configurational nodal forces. A three-
dimensional contour plot of this density function is visualized in Figure 6.18 for the very
last refinement step. The maximum element criterion causes a density function ϕ = 0
whereupon the maximum refinement is applied. On the contrary, for ϕ = 1 no refinement
is employed. The resulting mesh is plotted underneath and contains 1371 elements which
corresponds to 2852 nodes and 5585 nodal degrees of freedom.
In addition to the adaptive simulation a fine and a coarse mesh solution are presented. By
means of a comparison between the results of the different approaches the capability of
the proposed adaptive procedure will be demonstrated. The fine mesh contains 21831 ele-
ments and 44016 nodes whereas the coarse mesh consists of 129 elements and 288 nodes,
see Figure 6.15b), c). In both cases the region around the lower segment of the circle is
a priori refined. The distribution of the scalar internal hardening variable A is illustrated
in Figure 6.19. Obviously, the results of the adaptive and fine mesh simulation are very
similar. Having a look at the distribution of A, the maximum value occurs at the lower left
corner at the intersection of circle and middle axis. Then, the plastic zone evolves towards
the right vertical edge. Comparing the maximum values of A, the fine mesh solution yields
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Figure 6.18: Density function ϕ of the last refinement step. For ϕ = 1 no refinement occurs,
for ϕ = 0 maximum refinement is applied. The resulting mesh is plotted underneath.
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a) b) c)

Figure 6.19: Distribution of scalar internal hardening variable A for a) the adaptive ap-
proach, b) the fine and c) the coarse mesh solution. Plastic deformation concentrates at the
lower segment of the circle and evolves in a band towards the right vertical edge of the body.

A = 1.8362 whereas the adaptive strategy ends up with A = 1.8126 corresponding to a
deviation of just 1%. In contrast, the coarse mesh is not able to resolve the concentration
of plastic deformation at the respective corner. Thus the maximum value A = 1.1937
differs dramatically by more than 30% from the other solutions.
These characteristics also arise when comparing the structural response of the elasto-
plastic plate by considering the contraction of the middle axis of the specimen, Figure
6.20a). The contraction is defined by the ratio between current width l and reference width
l0 of the middle axis of the entire specimen, i.e. the lower edge of the quarter of the plate.
Up to a deformation of about 9%, corresponding to a displacement of the top edge of
≈ 0.45 mm the response of the plate is almost identical for all the three approaches. After
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Figure 6.20: Disc with circular hole: a) Contraction of middle axis in terms of ratio between
current width l and reference width l0 versus deformation. b) Deviation between adaptive
and fine mesh solution as well as deviation between adaptive and coarse mesh solution.

that, the adaptive and fine mesh solution further on render a similar response whereas
the coarse mesh solution deviates. Hereby, the response of the coarse mesh is stiffer which
originates from the fact that the plastic deformation does not evolve by the same mag-
nitude as it does for the other two simulations. This observation can be visualized by
evaluating the deviation between fine mesh and adaptive solution on the one hand and
the fine and coarse mesh solution on the other hand as it is done in Figure 6.20b).
Consequently, also within the framework of inelasticity the results of the adaptive simu-
lation are very close to the fine mesh solution which clearly demonstrates the capability
of the proposed procedure.

6.5.3. Numerical Example: Necking of an Axisymmetric Bar. The objective of
the subsequent treatments is to generalize the investigations to non-isothermal inelasticity.
The J2-type plasticity model is extended to the non-isothermal case. Afterwards the whole
scenario is applied to a boundary value problem.

6.5.3.1. Extension of material model to thermo-plasticity. In view of the solution
of thermo-mechanically coupled problems the constitutive equations are enhanced by a
dependence on the temperature field θ. The modified free energy function reads

ψ = 1
2
κ ln2 J − κα ln J(θ − θ0) + c(θ − θ0 − θ ln

θ

θ0
) + µ

3∑

i=1

[ε̃e
i ]

2

+

[

(y∞ − y0)(A+
1

ω
(exp(−ωA)− 1)) + 1

2
hA2

]

(1− w(θ − θ0)).

(6.29)

For the denotation of the material parameters see Table 6.2. In addition, the temperature
field enters the yield criterion function

φ =
√

∑3
i=1 [σ̃i]

2 −
√

2
3

[

y0(1− w0(θ − θ0))− B
]

. (6.30)

The temperature induced softening effects characterized by the factors (1 − w0(θ − θ0))
and (1−w(θ−θ0)) are denoted flow stress softening and hardening softening, respectively.
The parameters w and w0 can be chosen independently from each other.
Obviously, the constitutive model incorporates the same internal variable vector I as
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the isothermal formulation does. The only modification concerning the evaluation of the
discrete configurational forces is such, that the gradient of the temperature field has to
be taken into account.

6.5.3.2. Discussion of boundary value problem. In this example the necking of
a bar is investigated. For the time being the particular symmetry of a bar is exploited
which results in an axisymmetric simulation. In Figure 6.21 the system is depicted. The

1010

ūū

4

Figure 6.21: System and boundary conditions of axisymmetric necking. All dimensions are
given in [mm]. Due to symmetry only a quarter of the specimen is discretized.

ratio between length and, say, radius of the entire specimen is l/r = 10/1. The necking
phenomenon is initiated by a reduction of the radius of the middle axis -or plane- of
the body to 1.9 mm corresponding to a decrease of 5% compared to the original value.
Within a deformation-driven process the bar is elongated up to a total displacement of
2.16 mm which coincides with a deformation of 21.6% of the original height. To be specific,
216 increments ∆ū = 0.01 mm are used. In view of the thermal problem, the adiabatic
case is assumed. Exploiting symmetry of the two-dimensional geometry, only a quarter of
the specimen is investigated, see Figure 6.22a). The system is discretized with six-noded
quadratic triangles. In particular, for both subproblems, i.e. the spatial deformation and
the temperature evolution, the same interpolation functions have been chosen. The pri-
mary mesh used for the adaptive simulation is shown in 6.22b). It contains 138 elements
and 317 nodes. For the sake of comparison, two benchmark solutions are performed. Fig-

a) b) c) d)

Figure 6.22: a) Quarter of the system together with displacement boundary used for the
numerical simulation. b) Undeformed bar with primary triangulation of 138 triangular ele-
ments. c) Fine mesh with 10964 elements and d) coarse mesh with 251 elements.

ure 6.22c), d) show the respective meshes used for these analyses. The fine mesh holds
10964 elements and 22347 nodes which corresponds to 66362 nodal degrees of freedom
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whereas the coarse mesh contains 251 elements and 566 nodes which results in 1621 un-
knowns. The material parameters are summarized in Table 6.2.
With regard to the progression of the adaptive refinement procedure in Figure 6.23 the

Table 6.2: Material parameters of elastoplastic specimens

bulk modulus κ 164.206 kN/mm2

shear modulus µ 80.1938 kN/mm2

initial yield stress y0 0.45 kN/mm2

infinite yield stress y∞ 0.715 kN/mm2

hardening modulus h 0.12924 kN/mm2

saturation parameter ω 16.93 –
thermal expansion coefficient α 1 · 10−5 1/K
conductivity k 0.045 1/K
reference temperature θ0 293.0 K
heat capacity c 3.558 · 10−3 kN/(s·K)
hardening softening w 0.0002 1/K
flow stress softening w0 0.0002 1/K

evolution of the relative global criterion η versus the deformation of the top edge is pre-
sented. The permitted threshold ηperm = 7.5% is plotted as a straight line. Note that
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Figure 6.23: Necking of an axisymmetric bar: Global criterion versus deformation. Plot
starts at ≈14.0% deformation. Permitted criterion ηperm = 7.5% is plotted as straight line.

only the last 7.5% of deformation are depicted because before that state no adaptive step
occurs for the particular choice of the permitted criterion. The global criterion and thus
the inaccuracy of the mesh is assessed in terms of the numerically caused configurational
node point forces at the interior nodes. It increases during ongoing deformation. In case
the permitted threshold is violated refinement is required. Afterwards the same time step
is computed again in order to achieve equilibrium. In total seven refinement steps have
been performed.
In Figure 6.24 different deformation states are shown including the respective triangu-
lation. For a clear visualization of the necking progress the entire domain is plotted.
Nevertheless, the following data refer to a quarter of the specimen used for the computa-
tion. First, the system at a deformation of 18.6% is depicted. The mesh consists of 306
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a) b) c) d) e)

Figure 6.24: Visualization of adaptive mesh refinement. Intermediate states at a) 18.6%,
b) 19.2%, c) 19.8%, and d) 20.4% deformation. e) Final mesh containing 4x1547 elements
at ū = 2.16 mm corresponding to 21.6% deformation.

elements. In the sequel deformation states of 19.2%, 19.8%, 20.4% and the final state of
21.6% deformation are presented, containing 402, 553, 768 and 1547 elements, respec-
tively. The final triangulation corresponds to 3244 nodes and 9539 degrees of freedom.
At the very beginning the mesh refinement takes place in that zone of the system that
exhibits the maximum shear stress just a bit above the middle axis. This effect appears
in a more distinct manner within the three-dimensional analysis to follow in the next ex-
ample. For ongoing deformation the plastic deformation concentrates in the necking zone
at the middle of the bar and therefore the mesh is densified in this region. In contrast,
the element sizes in the upper and lower parts of the body remain almost unchanged.
In the last step, the results of the adaptive computation are compared with those obtained
from the fine and the coarse meshes, cf. Figure 6.22c), d). To this end, Figure 6.25 displays
the distribution of the change ∆θ in the temperature gained from the different analyses.
All the results turn out to be similar. In view of the minimum and maximum values the
fine mesh, Figure 6.25b), ends up with ∆θmin = 12.994 K and ∆θmax = 40.094 K whereas
the adaptive simulation, Figure 6.25a), yields ∆θmin = 13.018 K and ∆θmax = 41.879 K.
Thus the deviation is less than 4.5%. The results of the coarse mesh simulation, Figure
6.25c), are just in-between.
This characteristic dramatically changes when comparing the distribution of the scalar
internal hardening variable A visualized in Figure 6.26. It is obvious that the coarse mesh
solution in Figure 6.26c) is not capable of resolving the concentration of inelastic defor-
mation in the necking zone. By contrast, the adaptive approach, Figure 6.26a), yields a
contour plot that is very close to that of the fine mesh solution in Figure 6.25b). To be
precise, the maximum value of A is A = 2.0729 for the adaptive and A = 2.0215 for the
fine mesh solution corresponding to a deviation of less than 2.5%. The coarse mesh gives
A = 1.5998 and thus differs by almost 20% from the fine mesh benchmark.
Finally the structural response of the three different simulations is investigated. This is
achieved by a comparison of the contour plots of the distribution of the x-component ux of
the spatial displacement field, Figure 6.27. The plot features a distinct visualization of the
necking event as it reflects the concentration of deformation at the lower right corner of
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Figure 6.25: Change ∆θ in temperature. a) Adaptive, b) fine and c) coarse mesh solutions.
Maximum values appear in the necking zone at the bottom of the quarter of the system.
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Figure 6.26: Distribution of hardening variable A for a) adaptive, b) fine and c) coarse
mesh solution. Concentration of plastic deformation the middle axis of the entire bar.

the system, i.e. the middle plane of the entire bar. It is rather obvious that the coarse mesh
solution is not capable to picture this phenomenon. Once more the adaptive simulation
turns out to be close to the fine mesh benchmark. This is highlighted when considering
the maximum horizontal displacement ux which apparently is related to the node located
at the lower right corner. The fine mesh and adaptive solutions provide ux = −1.1382 mm
and ux = −1.1065 mm deviating by just 2.8%. The coarse mesh diverges considerably by
more than 11% due to a maximum displacement of ux = −1.0089 mm.
Hence, also for non-isothermal problems the configurational-force-based adaptive proce-
dure turns out to be a sufficiently accurate approach dealing with results that are very
close to a benchmark solution.
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Figure 6.27: Contour plot of horizontal displacements ux. a) Adaptive simulation, b) fine
and c) coarse mesh benchmarks. The plot perspicuously characterizes the necking phe-
nomenon, i.e. a concentration of deformation at the middle axis of the entire bar.

6.5.4. Numerical Example: Necking of a Metallic Rod. In the last part the three-
dimensional setting is discussed. With the objective of demonstrating the universality of
the material-force-based strategy its combination to an alternative constitutive formula-
tion is presented. Afterwards the results of a characteristic boundary value problem are
described.

6.5.4.1. Material model for three-dimensional analyses. The constitutive ap-
proach to be discussed below has been elaborated by Miehe, Apel & Lambrecht [122].
A brief synopsis of the essential properties is given. For more detailed informations the
reader is referred to the recent work of Apel [4].
The key ingredient of finite plasticity is the multiplicative decomposition (3.95) of the
deformation gradient into elastic and plastic part, F = F eF p. A common approach in
finite elasto-plasticity is the multiplicative definition of an elastic strain measure

Ê
e

m := fm(F P−T

CF P−1

) (6.31)

describing the elastic energy storage of the material. The function fm represents the Seth-
Hill family of generalized strain measures, cf. equation (2.19) in Section 2.1.4. For some
materials it can be shown that the plastic map F P enters the energy storage only through
the metric GP := F P T

ḠF P and furthermore that the logarithmic strain measure

Ee =
1

2
ln C −

1

2
ln GP (6.32)

is close to the multiplicative approach (6.31). The logarithmic plastic strain EP := 1
2
ln GP

is considered as the internal variable. In the afore-mentioned contributions it is outlined
by means of numerical studies that the additive approach (6.32) yields results close to
those obtained from the reference multiplicative split (6.31) for the Hencky-type strain
measures, m = 0. The additive split of the total strains into elastic and plastic parts is
a typical feature of the geometrically linear theory of plasticity. Based on this arguments
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Miehe, Apel & Lambrecht [122] proposed a modular structure defining a class of
finite strain plasticity models consistent with (6.32). It acts in three different steps:

1. Geometric Preprocessing : evaluate logarithmic strain measure

Ee = 1
2

ln C −EP

2. Constitutive model : perform stress update in the logarithmic strain space

{E,I} ⇒ model ⇒ {T ,Eep}

3. Geometric Postprocessing : get nominal stresses and moduli via chain rule

P = T : P and C = P
T : E

ep : P + T : L

(6.33)

Within the geometric postprocessing the total logarithmic strain measure E = 1
2

ln C is

computed in terms of the right Cauchy Green tensor C = F T gF . The plastic strains EP

are introduced as an internal variable. Based on these objects the elastic strain measure
Ee is evaluated whereupon its spectral decomposition can be performed

Ee =
1

2
ln C −EP and Ee =

3∑

i=1

εe
ini ⊗ ni (6.34)

in what εe
i,i=1,2,3 denote the elastic principal stretches and ni

,i=1,2,3 the respective eigenvec-
tors. Observe that the spectral representation of the elastic strain measure is not required
in general by the modular structure but is adopted here in order to use the specific form
of the constitutive equations given in Section 6.5.2.1.
The constitutive modeling in the logarithmic strain space is identical to the geometrically
linear theory. The input are the total strains E and the generalized internal variable vec-
tor I containing the plastic strains EP and a scalar hardening variable A. These variables
define the storage mechanism of the material. The free energy function is given by (6.27),

ψ = 1
2
κ

[
3∑

i=1

εe
i

]2

+ µ

3∑

i=1

[ε̃e
i ]

2 + 1
2
hA2 + (y∞ − y0)(A+

1

ω
(exp [−ωA]− 1)) (6.35)

whereas the yield criterion is defined by (6.28),

φ =
√

∑3
i=1 [σ̃i]

2 −
√

2
3
(y0 −B) (6.36)

The deviatoric principal stresses σ̃i,i=1,2,3 are obtained by a spectral representation of
the logarithmic stress tensor T . The output gained from the constitutive model are the
logarithmic stresses T and the respective moduli Eep.
Within the geometric postprocessing the stresses T and moduli Eep are transformed to
the physical space. Attention is focused on a two-point representation referring to the
nominal stresses P and moduli C. Application of chain rule results in

P = ∂Fψ = T : P and C = ∂FP = P
T : E

ep : P + T : L (6.37)

with the fourth- and six-order transformation tensors P := ∂FE and L := ∂2
FFE. Algo-

rithms for the evaluation of these objects are provided by Miehe & Lambrecht [125].
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For the evaluation of the discrete configurational nodal forces within the general three-
dimensional setting all components of the internal variable vector have to be taken into
account. Due to symmetry of the plastic strain measure Ep a total of seven scalar fields
has to be considered.

6.5.4.2. Discussion of boundary value problem. The last boundary value problem
is devoted to the tension of a circular metallic rod. The material parameters coincide with
those used for the plastic plate with a circular hole and are provided in Table 6.1 in Section
6.5.2.2. The geometry and the boundary conditions are shown in Figure 6.28. The notion

10.0 10.0

ū ū

z
3.32

Figure 6.28: Necking of a metallic rod: System and boundary conditions. All dimensions
are given in [mm]. Due to symmetry only an eighth of the rod is analyzed.

necking describes the decrease of the area of the cross section at the middle of the bar
under tensile loading. To achieve this behavior a geometric imperfection has to be applied
in the form of a slightly smaller radius at that location. The radius decreases linearly from
the ends with a value of 1.66 mm to the middle with 1.6 mm. The length of the body is
20.0 mm. The specimen is subjected to a maximum prescribed displacement of 2.0 mm
at the ends corresponding to 20% deformation with respect to the original length. The
symmetry of the specimen is exploited by analyzing only an eighth of the entire body. For
the triangulation ten-noded quadratic tetrahedrons have been used. The primary mesh for
the adaptive simulation contains 360 elements, 738 nodes and is depicted in Figure 6.29a).
Regarding the outer shape of the elements the shortcoming of the visualization software
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Figure 6.29: a) Primary triangulation for the adaptive analysis holding 360 elements. b)
Fine mesh with 34922 elements and c) coarse mesh with 2289 elements.

has to be mentioned which is only capable to display linear elements, see also Remark
6.2. In addition once again two benchmark analyses have been investigated which later
on allow for the assessment of the adaptive solution. The respective meshes are shown in
Figure 6.29b), c).
During the analysis the global criterion η develops as depicted in Figure 6.30. Observe
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Figure 6.30: Necking of a metallic rod: Global criterion versus displacement of top surface.
Admissible value ηperm = 3% is plotted as straight line. The plot starts at a top surface
displacement of 0.023 mm. Subsequent to mesh refinement the displacement increment is
reduced for just one deformation step in order to ensure convergence to an equilibrium state.

that the axis of the global criterion starts at 0.001 or 0.1%. The very first deformation
steps up to a deformation of 0.22% exhibit a global criterion beyond this value. The per-
mitted criterion is set to ηperm = 3%. It is readily identifiable that the initial mesh is
sufficiently accurate until a prescribed displacement of 0.74 mm is achieved. Then, the
solution of that deformation step performed on the initial mesh is discarded and the first
remeshing event takes place. The number of nodes increases from 738 to 2542 resulting
in a decrease of the global criterion down to η = 0.5% for the improved mesh. In the
sequel remeshing is required more frequently. In total five more meshes are created dur-
ing the analysis. With regard to the remeshing one crucial point has to be explained in
detail. For the case a triangulation is said to be insufficient the current deformation step
is discarded and a locally refined mesh is generated. The solution of the last accepted
deformation state is mapped onto the new mesh. This state does not necessarily pose a
spatial equilibrium state with respect to the new mesh. Hence the same deformation step
is computed once again until equilibrium is achieved. Thereby, and this is contrast to the
procedure in the previous examples, in order to guarantee convergence of that deforma-
tion step an incremental displacement is applied that is only a tenth of that employed
prior to remeshing. Afterwards, when the system is equilibrated, the magnitude of the
incremental displacement is adjusted to the old value used before. It has to be mentioned,
that the deformation steps finally used in the simulation are very small. Thus, in Figure
6.30 the discrete points uniquely indicating one single deformation step almost appear as
a continuous line.
In Figure 6.31 the six different meshes generated during the analysis are shown. Recall
that the initial triangulation is presented in Figure 6.29a). With the objective of providing
a proper visualization of the deformed structure for now the whole system is depicted.
Figure 6.31a) deals with the second mesh featuring 1490 elements and 2542 nodes at 10%
deformation. Obviously the top and bottom regions as well as the middle zone of the
body are unaffected until that point but an area a little bit above the middle plane is
considerably refined. The same scenario, even though less distinct, is detectable for the
third and fourth triangulation shown in 6.29b), c) including 2207 and 5285 elements at
12% and 14.8% deformation, respectively. The mesh refinement in this area originate from
the concentration of the shear stress in this region which is a typical characteristic of the
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Figure 6.31: Adaptively refined meshes during deformation. a) 1490 elements at ū =
1.0 mm. b) 2207 elements at 1.2 mm, c) 5285 elements at 1.48 mm, d) 9162 elements at
1.81 mm, e) 14054 elements at 1.9 mm. f) Final mesh with 22031 elements or 32354 nodes
at maximum displacement of 2.0 mm.

necking process. Upon ongoing deformation this effect is overlaid by the concentration of
plastic deformation within the necking zone. Consequently, the remaining meshes reveal
massive refinement of this region. Passing deformation states of 18% and 19% Figure
6.29f) visualizes the system at 2.0 mm displacement of the top surface, i.e. 20% deforma-
tion of the original height. The final mesh consists of 22031 elements or 32354 nodes which
corresponds to 92986 unknowns. Note that the mesh at the top and bottom surfaces of
the entire bar remains completely unchanged during the simulation. The cross section of
the middle plane of the bar is significantly reduced, the necking phenomenon is very well
observable. Hence, the configurational-force-based adaptive strategy deals with a combi-
nation of two different effects. At first, the dominating effect arises form the shear-stress
distribution within the system which affect internal nodal contribution F I in terms of the
Eshelby tensor Σ. Then, for ongoing deformation due to the onset of huge plastic defor-
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mations the influence of the internal part decreases and the configurational nodal force P I

driven by the gradient of the internal variable vector becomes more important. Carefully
note that the sum of both quantities needs to vanish at the interior nodes of the discrete
domain from the theoretical viewpoint. Apparently, this condition is not satisfied exactly
which results in the occurrence of numerically caused remaining nodal forces. These forces
originate from the violation of the material nodal equilibrium, i.e. F I + P I 6= 0 , which
allows for the afore-mentioned reasoning.
The effect of local mesh refinement on these spurious configurational nodal forces is illus-
trated in Figure 6.32. Both pictures display a state of 11.68% deformation. The plots only

a) b) c)

d) e) f)

Figure 6.32: Change of out of balance forces upon mesh refinement. a), d) Internal part F I ,
b), e) discrete configurational nodal forces P I , and c), f) resulting forces, scaled by 3.0, prior
to and after refinement. Second line is scaled by 2.0 compared to first line. Boundary forces
are omitted. Discarded mesh possessed 2542 nodes, new triangulation holds 3680 nodes. The
sum of the magnitude of the nodal forces decreases from ∆Π = 0.5435 N to ∆Π = 0.4372 N
corresponding to η = 0.030084 and η = 0.0209 and a reduction of about 25%.

show the vectors related to the interior nodes because the true boundary nodes are not
taken into account. In addition, the visualization of the structure is shaded for the sake
of clarity. Therefore, however, only those vectors are visible which penetrate the outer
shape of the body whereas the smaller vectors are suppressed. Furthermore it has to be
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mentioned that the particular deformation state has been chosen on purpose as it features
a comparatively coarse triangulation which allows for a precise visualization of the crucial
effects. In the first line the old mesh successfully employed for the previous deformation
states is shown containing 1490 elements and 2542 nodes. After having performed the
spatial computation the discrete material nodal forces are evaluated. Figure 6.32a) and
b) deal with the internal contribution F I and the configurational nodal force P I . The
sum of both parts is depicted in Figure 6.32c) using a scaling factor of 3.0 compared to
the previous plots. Obviously the material equilibrium condition is violated in the discrete
setting. The norm of all non-vanishing nodal forces sums up to ∆Π = 0.5435 N resulting in
a relative global criterion η = 3.01% which breaches the admissible threshold ηperm = 3%.
Hence, mesh refinement is required. The new mesh is generated taking into account the
element criterion ξe in terms of the spurious nodal forces. The new mesh is refined in that
regions which exhibit large non-vanishing nodal forces. It contains 2207 elements and 3680
nodes. In order to achieve spatial equilibrium with respect to the mapped solution data
the old deformation step is solved for the second time. In the postprocessing step the
global criterion is evaluated once again. In Figure 6.32d) and e) the internal part and the
configurational nodal forces are presented whereas in Figure 6.32f) the remaining nodal
forces (F I + P I) are shown again scaled by 3.0. It is clearly observable that for all three
cases the forces are smaller compared to those appearing at the nodes of the old mesh.
This holds all the more as the scaling factor of the forces related to the new mesh is twice
the factor of the old mesh. The success of the refinement procedure is manifested by the
fact that the sum of numerically caused resultant interior forces is now ∆Π = 0.4372 N
which coincides with a decrease of the inaccuracy of almost 25% upon mesh refinement.
The respective relative global criterion is η = 2.09% and falls below the permitted value.
The triangulation is said to be sufficient and the next deformation step is applied.
In the last step the results of the adaptive simulation are compared to those obtained
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Figure 6.33: Distribution of scalar hardening variable A. a) Adaptive, b) fine and c) coarse
mesh solutions at a final deformation of 20%. Plastic deformation concentrates in the necking
zone, or vice versa, accumulation of plastic deformation initiates necking of the bar.
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from two benchmark analyses. The triangulation of the fine and coarse mesh computa-
tions has been introduced in Figure 6.29b), c) above. The fine mesh consists of 34922
elements and 51034 nodes or 147231 degrees of freedom. On the other hand, the coarse
mesh features 2289 elements and 3773 nodes or 10387 nodal degrees. It is well observable
that in both triangulations the element sizes or rather element edge length h decrease
from the top to the middle, i.e. the zone where the neck occurs. The contour plots in
Figure 6.33 display the distribution of the hardening variable A at the final deformation
state of 20%. The adaptive solution, Figure 6.33a), turns out to be almost identical to
the fine mesh benchmark depicted in Figure 6.33b). In contrast the coarse triangulation
is not able to provide an appropriate resolution of the necking zone, cf. Figure 6.33c). The
maximum values Amax prove this observation. The fine mesh and the adaptive solution
end up with Amax = 2.18275 ≈ 2.21617 whereas the coarse solution differs significantly
by Amax = 1.71673 or more than 20%.
The same behavior arises for a comparison of the structural response of the three analyses.
To this end, Figure 6.34a) deals with a diagram where the area of the cross section at
the middle of the bar is plotted versus the maximum vertical displacement. The deviation
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Figure 6.34: Necking of a metallic rod: a) Area, in [mm2], of the cross section at the middle
of the bar versus displacement of the top surface in [mm]. b) Deviation between adaptive
and fine mesh solutions as well as between adaptive and coarse mesh solutions.

of the adaptive and coarse mesh solutions from the fine mesh benchmark is highlighted
in Figure 6.34b). Up to a displacement of 1.15 mm no differences between the three ap-
proaches is detectable. Then, the adaptive simulation provides a slightly stiffer response
up to a maximum deviation of 7% at a top surface displacement of 1.8 mm. At that time,
the next remeshing event occurs and the final mesh is generated whereupon the response
of the adaptive simulation tends to the benchmark solution. At the final deformation state
of 2.0 mm or 20% the deviation between both approaches is negligible. The coarse mesh
solution remains close to the fine mesh simulation up to a deformation state of 1.6 mm
or 16%. Then the solution starts to diverge. Of course, no mesh improvement is adopted
and therefore the deviation from the fine mesh benchmark increases rapidly which finally
results in a dramatic difference of about 30%.

Within the above numerical studies the proposed configurational-force-based h-adaptive
strategy has been successfully applied to a variety of model problems in the quasi-static
context. The capability of the method has been demonstrated by means of comparisons
to benchmark solutions. The adaptive approach renders results very close to fine mesh
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solutions while the numerical effort of the computation is decreased dramatically. Con-
sequently, the configurational-force-based procedure turns out to be a very powerful and
appropriate tool for an efficient simulation of problems of finite elasticity and inelasticity.

6.6. Application to Finite Elastodynamics

The investigations of the previous subsections are extended to the more general dynam-
ical framework. However, attention is restricted to purely elastic material behavior. The
treatment of dynamical problems demands some modifications concerning the numerical
implementation which are commented on in the first step. Subsequently, a descriptive
boundary value is discussed.

6.6.1. Remarks on Particular Numerical Treatment. Up to now, the essential
equations of the material-force-based adaptive strategy have been formulated in view of
the solution of quasi-static problems. Turning now to dynamical problems the basic ideas
remain unchanged. Instead of the material equilibrium condition (6.14) from now on the
equation of material motion governs the change of Lagrangian coordinates

DivΣ + Γ̄0 =
∂

∂t
P . (6.38)

Remember that not only the pseudomomentum P enters the material balance law but also
the other two quantities are affected. To be precise, the kinetic energy per unit reference
volume enters Eshelby’s energy-momentum tensor, Σ = (ψ − 1

2
ρ0v · v)1 − F T P , and

the configurational force depends on the material gradient ∇Xρ0 of the reference density.
Neglecting once again spatial volume forces and assuming a homogeneous material body
the configurational force disappears, Γ̄0 = 0 . Upon discretization the remaining strict
conservation law, DivΣ = ∂P/∂t, results in the discrete nodal balance

F I −AI = 0 (6.39)

with the internal and dynamical -material- nodal forces F I and AI . The overall energetic
misfit ∆Π, (6.4), and the element misfit ∆πe specified in (6.8) are readily adjusted by
replacing the true configurational force P I with the dynamical contribution −AI .
With all these quantities at hand, the local criterion (6.7) is evaluated without any modifi-
cation. On the contrary, the global process of the adaptive simulation cannot be controlled
in the same manner as it has been done for the quasi-static case. The global criterion was
defined by the ratio of the energetic misfit with respect to the elastically stored energy of
the system. For problems of elastodynamics this argumentation is no longer appropriate
in particular with regard to undamped oscillations investigated here. For such a system
the total energy, i.e. the sum of the potential and kinetic energies, remains always constant
while a continual change between both contributions proceeds including the case that one
of the contributions even vanishes.
It has proven to be convenient to control the simulation in the following way. As it has been
exemplarily elaborated for the boundary value problem in Section 4.5.2 the non-vanishing
out of balance forces indicate the, say, critical region within the discrete body. Conse-
quently, based on the local criterion which in fact represents these numerically caused
forces a new mesh is generated after a prescribed number of time steps. This allows for a
controlled motion of the refined zones of the mesh. An alternative possibility compares the
distributions of the values of the local criterion obtained for the current and the previous
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time steps. In case that these comparison reveals significant changes a remeshing in terms
of the current criterion has to be performed. Apparently, both procedures do not incor-
porate a global criterion in the sense of the one employed within the quasi-static setting
but the decision on mesh refinement is made in a rather intuitive fashion. Nevertheless,
they allow for a self-controlled adaptive simulation. Anticipating the key conclusion of the
next subsection, the first approach turns out to give very reasonable results.

6.6.2. Numerical Example: Oscillation of a Two-dimensional Strip. The inves-
tigations to follow directly resume the analysis of the free oscillation of a two-dimensional
strip presented in Chapter 4.5 where also a description of the boundary value problem is
given in detail. The only difference concerns the triangulation of the strip. In contrast to
the bilinear quadrilaterals in the sequel six-noded quadratic triangular elements are em-
ployed due to simplicity of the mesh generation. Recall that the spatial motion problem
is characterized by two interacting phenomena. On the one hand, the oscillation of the
specimen starts from a pre-stretched position at H = 6 mm passes maximum compression
at H ≈ 4 mm and finally again reaches the initial pre-stretched state. On the other hand,
this oscillation is accompanied by the movement of a jump in the axial velocity which
characterizes the wave front.
At first, a non-adaptive solution has been performed. The mesh consists of 534 triangu-
lar elements. Referring to Figure 4.6 in Section 4.5 the internal and dynamical material
nodal forces arise in the region of the wave front. Although the equation of material mo-
tion (6.38) or rather its discrete version (6.39) expects the sum of these forces to vanish,
numerically caused forces appear induced by an insufficient triangulation. To use these
out of balance forces within the proposed adaptive strategy their norm |(F I −AI)| has
to be evaluated. A contour plot of the distribution of this scalar measure is provided in
Figure 6.35 for some selected time steps. Note that the original values are scaled with
respect to the interval [0; 1] for the sake of visualization. Apparently, the occurrence of
non-vanishing nodal forces concentrates in one region of the strip. Furthermore, it is well
observable that the change of the position of this crucial region coincides with the move-
ment of the wave front through the strip. Consequently, the configurational-force-based
indicator demands a higher resolution of the region around the wave front.
Turning next to the adaptive simulation, the overall control of the analysis is such that
a new mesh is generated after ten time steps. The initial mesh which also has been used
for the non-adaptive simulation holds 534 elements. The refinement process is performed
by remeshing of the body in terms of a density function ϕ which in turn is constituted by
the local element criterion ξe obtained from the material out of balance forces. The topol-
ogy of this density function is displayed in Figure 6.36 by means of a three-dimensional
contour plot for one typical time step associated with the same state of the oscillation
as shown in the second picture in the first line of Figure 6.35. Carefully note that these
previous results are obtained form a non-adaptive computation but as a matter of course
the characteristic remains unchanged within the adaptive simulation. The contour of the
density function mirrors the distribution of the norm of the non-vanishing nodal forces.
The resulting mesh which is plotted underneath with respect to the undeformed geometry
incorporates massive refinement of the crucial region.
Finally, in Figure 6.37 the evolution of the adaptively refined meshes is depicted with
the profile of the axial velocity plotted alongside. The number of elements of the refined
meshes varies from about 1500 elements up to ≈ 3400 elements. The motion of the evolv-
ing mesh exactly matches the movement of the wave front. The range of the jump of the
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Figure 6.35: Contour plot of the norm of non-vanishing nodal forces. The range is scaled to
the interval [0; 1]. The out of balance forces concentrate in a certain region that corresponds
to the position of the wave front indicated by the profile of the axial velocity.
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Figure 6.36: Density function ϕ of a typical refinement step. For ϕ = 1 no refinement, for
ϕ = 0 maximum refinement is employed. The resulting mesh is plotted underneath.
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Figure 6.37: Mesh refinement during oscillation of the strip controlled by the local criterion.
Movement of the refined region coincides with the motion of the jump in the axial velocity.

axial velocity is fitted by a highly refined zone within the mesh whereas the edge lengths
within the other regions of the mesh remain unaffected.

To conclude, the above example demonstrates that the configurational-force-based adap-
tive procedure is applicable even to the simulation of dynamical problems. This once more
confirms the versatileness and universality of the proposed method.
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7. Material-Force-Based Simulation of Crack Propagation

The investigations of this section are devoted to brittle fracture mechanics. A staggered
solution strategy is elaborated capturing the crack propagation process accompanied by
a local mesh refinement of the crack tip zone. As a crack characterizes an inhomogeneity
within the material structure of a solid, the study of fracture processes appears as an
intrinsic feature of configurational mechanics. The crack tip driving force, i.e. the config-
urational force acting on the inhomogeneity, or rather singularity at the tip, is used to set
up a global criterion for the decision on crack propagation and to determine the direction
of crack evolution. This scenario is combined with h-adaptive mesh refinement controlled
by a configurational-force-based remeshing algorithm. Subsequent to some introductory
remarks including a brief synopsis on existing literature the theoretical framework is pre-
sented. It bases on the reformulation of the global dissipation postulate introduced in
Section 3.2 in view of dissipative mechanisms in non-linear elasticity and renders a vari-
ational formulation of brittle fracture. The crack evolution problem is described by an
evolution equation locally at the crack tip. Upon spatial and temporal discretization the
field equations appear as discrete nodal expressions. The crack evolution is recast into a
discrete crack extension algorithm. The solution scheme relies on the separation of the ge-
ometry and the triangulation. The crack propagation is carried out on the geometry model
and the generation of the new finite element mesh incorporates adaptive refinement. In
the last part, the procedure is applied to representative boundary value problems.

7.1. Introductory Aspects

The classical theory of brittle fracture dates back to the seminal works of Griffith [54,
55], Irwin [72] and Barenblatt [10]. The description of the crack evolution problem
of brittle fracture by means of variational formulations has been elaborated by Stumpf

& Le [177] and Maugin & Trimarco [110]. An extension to finite inelastic problems
is suggested by the first authors as well, Stumpf & Le [178]. These local variational
formulations exploit Eshelby’s idea on a driving force acting on the crack tip singularity
and are in line with the trendsetting work of Rice [152], see also Gurtin [59]. Later on,
Gurtin & Podio-Guidugli [62, 63] used configurational forces in fracture mechanics
in a non-variational setting where these forces are assumed to be independent primitive
objects governed by their own balance law. Configurational forces in dynamical fracture
have been studied by Maugin [102] and Gurtin & Shvartsman [64] whereas Mau-

gin, Epstein & Trimarco [109] discuss the application to electromagnetic materials.
In the theoretical part in a series of two papers Steinmann [171] elaborated the notion
of material forces in hyperelastostatic fracture mechanics. Further theoretical aspects are
presented by Agiasofitou & Kalpakides [2] while Oleaga [141, 142] deal with the
variational setting of dynamic crack propagation in two and three dimensions.
With regard to the numerical treatment, Steinmann, Ackermann & Barth [175] and
Denzer, Barth & Steinmann [35] considered the evaluation of configurational forces
in elastic solids at frozen crack state, see also Müller, Kolling & Gross [133]. An
attempt including adaptive refinement strategies can be found in Heintz, Larsson,

Hansbo & Runesson [68]. The interaction of cracks and embedded inclusions is shown
by Kolling, Baaser & Gross [80]. The use of configurational forces in inelastic frac-
ture mechanics has been investigated by Nguyen, Govindjee, Klein & Gao [138] at
small strains and Näser, Kaliske & Müller [136] in the finite strain context.
The numerical implementation of configurational forces in view of the simulation of crack
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propagation was first performed by Müller & Maugin [134] and later on, Kolling &

Müller [81], extended to the dynamical setting. Recently, Miehe & Gürses [123] pro-
posed a configurational-force-based algorithm incorporating r-adaptive mesh alignment.
This approach has also been successfully applied in the small strain context, cf. Miehe,

Gürses & Birkle [124]. In the works of Larsson & Fagerstroem [87] and Fager-

stroem & Larsson [45] the simulation of configurational-force-driven crack propagation
is based on the extended finite element method (XFEM) while Heintz [67] employs a
discontinuous Galerkin scheme.
The simulation of crack propagation accompanied by adaptive remeshing is discussed by
Bittencourt et al. [16], Bouchard et al. [19], Bouchard, Bay & Chastel [18]
and Phongthanapanich & Dechaumphai [147]. In a series of papers, Mediavilla,

Peerlings & Geers [112, 113, 114] elaborated the setting of ductile fracture and com-
bined continuum damage models as well as damage enhanced constitutive models for
softening plasticity with the discrete crack modeling using adaptive remeshing.
The theoretical formulation of brittle fracture used in the following bases on a global
dissipation analysis as proposed by Miehe & Gürses [123]. The conceptual treatment
follows the recent contribution of Miehe & Zimmermann [128] who suggested a stag-
gered solution scheme for the h-adaptive modeling of brittle crack propagation with both
the crack propagation and the adaptive remeshing being controlled by configurational
forces.

7.2. Variational Setting of Brittle Fracture

This section provides the theoretical basis for the present investigations. The formulation
to follow appears as a modification of the fundamental approach based on the global
dissipation postulate evoked in Section 3.2. The geometric setting is adjusted to the
description of a cracked body and the global dissipation postulate is exploited in view of
the formulation of a crack propagation criterion for brittle fracture.

7.2.1. Basic Geometry of a Cracked Solid. Let B ⊂ E
3 be the reference configuration

of a material body containing a crack. The crack is assumed to be a smooth surface Γ, its
boundary ∂Γ is denoted the crack tip. The set of material points in the Euclidean space
is the region

BΓ := B \ {Γ ∪ ∂Γ} ⊂ E
3 (7.1)

referred to as the bulk material. Its boundary decomposes into an exterior part ∂B and
an interior part formed by the crack. As usual, the exterior boundary splits up into a
part ∂Bϕ with prescribed spatial deformation and a part ∂Bt̄ subjected to given tractions
by von Neumann-type boundary conditions with ∂B = ∂Bϕ ∪ ∂Bt̄ and ∂Bϕ ∩ ∂Bt̄ = ∅
being obvious. The interior part consists of the crack surfaces Γ+, Γ− and a torus-like
tube surface C ∪ ∂Γ with outward normal N

∂BΓ := ∂B ∪ Γ− ∪ Γ+ ∪ {C ∪ ∂Γ}. (7.2)

The curve C encircles the crack tip and is denoted the process zone. A sketch of the
present situation is depicted in Figure 7.1. Observe that in the two-dimensional setting
the crack surfaces are curves and the crack tip is just a point. The subsequent analyses
consider the limits

Γ− → Γ , Γ+ → Γ and |C| → 0. (7.3)
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Figure 7.1: Deformation of a cracked solid. The limits Γ−, Γ+ → Γ and |C| → 0 give
the crack surface Γ with the crack tip ∂Γ. The spatial deformation of the bulk material
BΓ := B \ {Γ ∪ ∂Γ} is described by the non-linear point map ϕt.

Turning next to the spatial deformation, the material coordinates X ∈ BΓ are mapped
onto the their spatial counterparts x ∈ SΓ by the non-linear point map at time t ∈ R+

ϕt :

{
BΓ → SΓ

X 7→ x = ϕt(X)
(7.4)

where SΓ ⊂ E3 is the current configuration of the cracked solid. On the part ∂Bϕ of the
exterior boundary the deformation is prescribed by the Dirichlet conditions (3.2), i.e.

ϕt(X) = X + tv̄(X) on ∂Bϕ. (7.5)

Note that the non-linear point map is exclusively defined on the bulk material BΓ but not
at positions X ∈ {Γ ∪ ∂Γ}. Typically, the deformation across the surfaces of the crack is
characterized by a jump in the deformation field

[[ϕt]] := ϕt(X
+)−ϕt(X

−) with X± ∈ Γ±. (7.6)

Recalling the geometric framework introduced in Section 3.2.1, the kinematics of a body B
including material inhomogeneities is governed by the dual material and spatial coordinate
maps (3.3). The non-linear deformation map appears as their composition

ϕt(X) = ξt(θ) ◦Ξ−1
t (X) with Ξt :

{
ΩΓ → BΓ

θ 7→X = Ξt
, ξt :

{
ΩΓ → SΓ

θ 7→ x = ξt
. (7.7)

The material configurational map Ξt describes the movement of the crack tip with respect
to the ambient material in the sense of a change of the material structure. The spatial
coordinate map ξt includes the motion of the crack tip as well as the opening of the
crack due to physical loading. Both objects are parameterized by the coordinates θ of the
time-independent parameter space ΩΓ ⊂ E3. Figure 7.2 visualizes this geometric scenario.
The deformation gradient is the composition F = jJ−1 of the gradients j = ∇θξt and
J = ∇θΞt of the spatial and material coordinate maps with respect to the parameter
coordinates θ. The time derivatives of the basic kinematic quantities are given by (3.8),
see also Appendix B for more details. They use the time derivatives (3.9) of the spatial
and material configurational maps, ξ̇ = ∂ξ/∂t◦Ξ−1

t (X) and Ξ̇ = ∂Ξ/∂t◦Ξ−1
t (X). These

fields are constrained by Dirichlet boundary conditions defining the admissible velocities.
While the spatial velocity is still governed by (3.10), the admissible material velocity takes
into account the particular situation at the crack front

Ξ̇ ∈ { Ξ̇ | Ξ̇ = 0 on ∂B ∪ Γ and Ξ̇ = ȧ on ∂Γ }. (7.8)

Here, ȧ describes the rate of extension of the crack surface Γ at the crack tip ∂Γ. The
determination of this quantity constitutes the goal of the forthcoming treatments.
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Figure 7.2: Kinematics of a cracked solid. The material coordinate map Ξt describes the
movement of the crack tip with respect to the ambient material. The spatial coordinate map

ξt includes the motion of the crack tip as well as the crack opening. The deformation of the
solid is governed by the non-linear point map ϕt(X) = ξt(θ) ◦Ξ−1

t (X).

7.2.2. Global Response of a Cracked Solid. Based on the above kinematic relation-
ships, the exploitation of the global dissipation postulate renders a constitutive formula-
tion for the crack evolution.

7.2.2.1. Formulation of a global dissipation postulate. The global dissipation pos-
tulate (3.21) elaborated in Section 3.2.2 within the context of non-isothermal inelasticity
is reformulated with regard to dissipative processes in finite isothermal elasticity. It states
that the difference between the external stress power P and the change of the bulk energy
storage Πint is always greater than or equal to zero

D = P −
d

dt
Πint =

∫

∂Bt̄

v · t̄ dA −
d

dt

∫

BΓ

ψ dV ≥ 0. (7.9)

For simplicity, spatial volume forces have been omitted, γ̄0 = 0 , and the bulk material is
assumed to be homogeneous, ∂Xψ

expl = 0 .

7.2.2.2. Global elastic response. By substitution of the kinematic relations, equation
(3.31) for the global dissipation boils down to

D =

∫

BΓ

{ −P : ∇X ξ̇ −Σ : ∇XΞ̇ } dV +

∫

∂Bt̄

t̄ · ξ̇ dA ≥ 0. (7.10)

with the well-known constitutive expressions for the first Piola-Kirchhoff stresses P = ∂Fψ
and the Eshelby stress tensor Σ = ψ1 − F T P . For the surface integral, the first part
of the material boundary condition (7.8) has been inserted. Application of integration
by parts and a generalized version of Gauss integration theorem, cf. e.g. Maugin &

Trimarco [110], for cracked solids
∫

BΓ

Div(•) dV =

∫

∂B

(•) ·N dA−

∫

Γ

[[(•)]] ·N dA−

∫

∂Γ

{ lim
|C|→0

∫

C

(•) ·NdS } dΓ, (7.11)

yields the alternative representation of the global dissipation

D =

∫

BΓ

DivP · ξ̇ + DivΣ · Ξ̇ dV +

∫

∂Bt̄

t̄ · ξ̇ dA

+

∫

Γ

[[ξ̇ P ]] ·N + [[Ξ̇ Σ]] ·N dA +

∫

∂Γ

f
∂Γ
· ξ̇ + F

∂Γ
· Ξ̇ dΓ ≥ 0.

(7.12)
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This inequality has to be satisfied for arbitrary admissible spatial and material configu-
rational changes. The integral around the crack tip bases on the definitions of the limits

f
∂Γ

:= lim
|C|→0

∫

C

PN dS and F
∂Γ

:= lim
|C|→0

∫

C

ΣN dS. (7.13)

Apparently, the integral in the second expression is the global inhomogeneity force, cf.
(A.6) for its derivation based on Eshelby’s thought experiment or (4.49) and the following
for the formulation of global material forces. For the limit |C| → 0 the vector F

∂Γ
repre-

sents the configurational force at the crack tip. Proceeding in the sense of a Coleman–type
exploitation, (7.12) induces for admissible spatial velocities the local equations

DivP = 0 in BΓ , PN = t̄ on ∂Bt̄ , PN = 0 on Γ± and f
∂Γ

= 0 on ∂Γ. (7.14)

The first two equations display the spatial equilibrium condition for the bulk material
and the traction boundary condition. The third identity demands traction free crack
surfaces Γ± while the fourth contribution enforces the limit (7.13)1 to vanish at the crack
tip. For admissible material velocity fields the volume integral renders the dual material
equilibrium condition for the bulk material

DivΣ = 0 in BΓ (7.15)

whereas the contribution in the integral over the crack surfaces Γ vanishes due to the first
part of the material boundary condition (7.8). The second part of this condition concerns
the final integral associated with the crack tip and causes the ensuing developments.

7.2.2.3. Crack evolution obtained from principle of maximum dissipation. Upon
Coleman-type exploitation the global dissipation postulate degenerates to the reduced dis-
sipation inequality

D =

∫

∂Γ

δ∂Γ dΓ ≥ 0 with δ∂Γ := F
∂Γ
· ȧ. (7.16)

Here, δ∂Γ characterizes the dissipation per unit length of the crack tip being the inner
product of the driving force F

∂Γ
and the rate ȧ of crack propagation at X ∈ ∂Γ which

remains unspecified up to now. The crucial idea is to formulate an evolution equation for
ȧ in formally the same way at is has been done for the internal variable field in Section
3.2.2.4. In this sense, an isotropic Griffith-type crack criterion function is introduced

φ(F
∂Γ

) = f(F
∂Γ

)− gc = |F
∂Γ
| − gc ≤ 0 (7.17)

with the level set function f being identified as the absolute value of the driving force
F

∂Γ
. The material parameter gc is a threshold for the critical energy release per unit crack

length. The crack criterion defines an elastic domain bounding the configurational force
at the tip. Using the principle of maximum dissipation for the rate-independent limit the
procedure results in a normality rule analogous to (3.49)

ȧ = λ ∂F
∂Γ
φ(F

∂Γ
) = λ

F
∂Γ

|F
∂Γ
|

(7.18)

governing the evolution of crack propagation locally at the crack tip ∂Γ. The crack prop-
agation is characterized by an amount λ into the direction of the configurational driving
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force F
∂Γ

according to (7.13)2. This evolution equation is valid along with the Karush-
Kuhn-Tucker loading-unloading conditions

φ ≤ 0 , λ ≥ 0 and φλ = 0. (7.19)

The normality rule provides the direction of crack propagation and the loading-unloading
conditions govern its discontinuous evolution but the amount λ remains still unspecified.

7.3. Space-Time-Discrete Setting of Brittle Fracture

The constitutive formulation of configurational-force-driven crack propagation is rewritten
in the discrete setting including both the spatial discretization of cracked solid as well as
the algorithmic integration of the crack evolution equation.

7.3.1. Global Response of the Spatially Discretized Cracked Solid. The spa-
tial discretization of the cracked solid is performed in the same way as in Section 3.3.1.
The cracked body is subdivided into a set of nele finite elements, see Figure 7.3 for a
schematic visualization. The spatial and material coordinate maps are approximated via

Bh
Γ Sh

Γ

ϕh
t

Γh

Figure 7.3: Discretization of the cracked solid. Spatial discretization of the configurational
maps ξt and Ξt by typical finite elements.

the standard finite element approach (3.52) in terms of global vector fields dt ∈ RNt and
Dt ∈ R

Nt containing the discrete spatial and material positions at every node I ∈ Nt

of the finite element mesh. The same procedure is applied for the spatial and material
velocity fields ξ̇, Ξ̇, cf. (3.55). With these approximations at hand, the global dissipation
postulate is rewritten in its discrete representation (3.57), i.e.

Dh =

Nt∑

I=1

{ [ pI + f I ] · ḋI + F I · ḊI } ≥ 0. (7.20)

The spatial external and internal nodal forces pI and f I are specified in (3.58) and (3.59),
the first one obviously without spatial volume forces due to γ̄0 = 0 . The internal material
nodal contribution F I is given by (3.61)

F I := −
nele

A
e=1

∫

Be
Γ

BT
I Σ dV (7.21)

and, on account of Remark 5.1, can also be denoted the – negative – discrete configura-
tional node point force. Due to discretization, the admissible spatial and material velocities
(3.10) and (7.8) are transferred into conditions for the discrete nodal velocities. For the
spatial part (3.62)1 still holds whereas the admissible material nodal velocities are

ḊI := { ḊI | ḊI = 0 on ∂Bh ∪ Γh and ḊI = ȧI on ∂Γh }. (7.22)
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Exploitation of the discrete version of the global dissipation postulate renders for arbitrary
admissible spatial configurational changes the spatial nodal equilibrium conditions

f I = 0 in Bh
Γ , f I = pI on ∂Bh

t̄ and f I = 0 on Γh. (7.23)

The last expression demands vanishing spatial nodal forces on the discrete crack sur-
faces Γh. On the other hand, for arbitrary material nodal velocities the discrete material
equilibrium condition is obtained

F I = 0 in Bh
Γ. (7.24)

It has proven to be a suitable basis for the setting up of an adaptive refinement indicator,
cf. Section 5 and Section 6, and consequently states a condition for an optimal mesh.

7.3.2. Time Discretization of Crack Evolution Problem. With the spatial and
material nodal conditions (7.23) and (7.24) at hand and on account of the second part of
condition (7.22) for admissible material velocities, the dissipation postulate reduces to

Dh =
∑

I∈∂Γh

F I · ȧI ≥ 0. (7.25)

Hence, the discrete version of the reduced dissipation inequality is governed by the product
of the configurational nodal forces F I at node I of the crack tip and the rate of crack
propagation ȧI of the respective node. In view of the formulation of an evolution equation
for the rate ȧI it is appropriate to describe the movement of node I of the crack tip by
means of the normality rule (7.18)

ȧI = λI
F I

|F I |
at I ∈ ∂Γh (7.26)

in combination with the loading-unloading conditions

(|F I | − gc) ≤ 0 , λI ≥ 0 and (|F I | − gc)λI = 0. (7.27)

The time integration of the evolution equation within the time interval [tn; tn+1] defines
the incremental dissipation

∆Dh
n+1 :=

∫ tn+1

tn

Dh dt ≈
∑

I∈∂Γh
n+1

F I ·∆aI ≥ 0. (7.28)

By assumption, the amount ∆γ of the increment ∆aI of the crack surface is constant and
will be related to the maximum edge length hmax of the finite element mesh. Note the
association γ = λ∆t. Consequently, the discretization reads

∆aI = ∆γI
F I

|F I |
at I ∈ ∂Γh

n+1 with ∆γI =

{

αhmax for |F I | > gc

0 otherwise
(7.29)

in terms of a scaling factor α to be commented on below.

Remark 7.1: As already mentioned in the context of equation (7.21) the internal material
nodal contribution F I can be denoted the discrete configurational nodal force. Using the
discrete material nodal balance, e.g. equation (5.25), the sign of these objects differs
from each other, i.e. F I = −P I . For this reason, the material crack tip force, which
in the present context is the internal force, points in the opposite direction of the true
configurational force and consequently in the direction of an energy decrease, or rather
release upon movement of the material node point position.
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7.4. Solution Procedure for Adaptive Fracture Simulation

In this section an adaptive solution procedure for the simulation of crack propagation in
brittle materials is proposed. The whole algorithm is driven by configurational forces. The
key feature is the separation of finite element mesh and geometry model. Basically, the
approach consists of three major parts as visualized in Figure 7.4. At first, the discrete

a) b) c)
F I

∆γ

Figure 7.4: Separation between finite element triangulation and geometry model. a) Pri-
mary mesh used for the evaluation of the material force at the crack tip. b) The mesh has
been discarded and crack propagation is performed on the geometry model. c) Remeshing
of the geometry using configurational-force-based refinement indicator.

configurational nodal forces belonging to the primary triangulation are computed. For the
case that crack propagation takes effect, its process is carried out by an update of the
geometry model. Finally, a new mesh is generated incorporating h-adaptive refinement
of the crack tip zone. The algorithmic treatment of these essential aspects is discussed in
detail within the following subsections. In the end, an overall strategy is developed in the
sense of a staggered solution scheme.

7.4.1. Material-Force-Based Geometry Update. The implementation of the crack
propagation process is subdivided into three parts. A schematic sketch of this scenario is
depicted in Figure 7.5 and the fundamental steps are summarized in Box 7.1.

a) b) c) d)

no
3

no
1 nn

3

nn
1

F no
1

no
2

nn
2

l > lmax l ≤ lmax

Figure 7.5: Structural update of geometry model. a) Discrete material crack tip force at
node no

1. b) Insertion of new crack tip node nn
1 and doubling of old crack tip node into nn

2

and nn
3 . c) Erasure of old crack tip node and introduction of new border segments or d)

erasure of all old contour nodes keeping the number of border segments constant.

First of all the configurational force at the crack tip has to be evaluated in a postprocessing
step subsequent to the solution of the spatial problem. Following the idea of Denzer,

Barth & Steinmann [35], not only the crack tip force itself is used but all material
forces within a certain radius rc around the crack tip are summed up defining the driving
force at the crack tip node no

1

F no
1

=

nR∑

I=1

F I with nR = { I | |XI −Xno
1
| ≤ rc }. (7.30)
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Box 7.1: Material-force-driven geometry update for crack propagation

1. Compute material force at the crack tip
Sum up all material nodal forces within a certain radius rc around the tip

F no
1

=

nR∑

I=1

F I with nR = {I | |XI −Xno
1
| ≤ rc}.

2. Check global criterion

IF |F no
1
| > gc crack propagates

ELSE increase load step t⇐ t+ ∆t. EXIT

3. Insert new contour nodes

– Crack propagation into the direction of the crack tip force
defines new crack tip node nn

1

∆a = ∆γ F no
1
/|F no

1
| with ∆γ = αhmax

– Doubling of old crack tip node no
1 into nn

2 and nn
3

– Crack opening by moving nn
2 and nn

3 according to

∆p = ± 1
2
∆γ n/|n| with n · F no

1
= 0

4. Generate geometry model
Update length of current border segment

l ⇐ l + ∆γ

IF l > lmax delete old crack tip node no
1

introduce additional border segments

ELSE delete old contour nodes no
1, n

o
2, and no

3

keep number of border segments constant

5. Generate new finite element mesh

Based on the amount of this quantity the global decision on crack propagation is made. In
case a given critical value gc is violated, i.e. |F no

1
| > gc, the crack propagates. Otherwise,

|Fno
1| ≤ gc, no crack propagation occurs.

The crack propagation process is modeled by an update of the underlying geometry model.
In this scenario, new contour nodes are introduced in the following way, see Figure 7.5b).
According to (7.29) the position of the new crack tip node nn

1 is defined by

∆a = ∆γ
F no

1

|F no
1
|

(7.31)
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displaying a movement of the crack tip in the direction of the driving force, i.e. opposite
to the true material force. To enforce an opening of the crack, the old crack tip node no

1

is doubled into the nodes nn
2 and nn

3 . Their positions are obtained by the vector shift

∆p = ± (
1

2
∆γ)

n

|n|
(7.32)

where n is perpendicular to the direction of crack propagation, i.e. n·F no
1

= 0. By assump-
tion, the amount of crack extension ∆γ is evaluated by a certain fraction α of the max-
imum edge length hmax used in the context of the mesh generation, e.g. ∆γ = 0.05hmax

has proven to be reasonable. It has to be emphasized that the specific choice of the
amount ∆γ is critical for the accuracy of the algorithm in view of a realistic simulation
of crack propagation. In particular, if the incremental crack extension is chosen too big,
the configurational-force-driven procedure will fail to predict the crack path observed in
experiments.
The modified geometry model is generated by linking the contour nodes via border seg-
ments. The length of the current segment is updated by l ⇐ l + ∆γ. This length is
compared to a prescribed value lmax for the maximum segment length depending on the
maximum edge length hmax as well. For l > lmax only the old crack tip node no

1 is deleted
and additional border segments are introduced, Figure 7.5c). Otherwise, l ≤ lmax, the
old contour nodes no

1, n
o
2 and no

3 are deleted and the number of border segments is kept
constant, Figure 7.5d). The reason for this algorithmic check arises from two counteract-
ing arguments. On the one hand, as the border segments constitute a piecewise linear
traverse, an appropriate number of segments is required to be able to model curved crack
paths. On the other hand, every contour node has to be matched by a nodal point of the
new finite element mesh to be generated in the next step. By deleting the old contour
nodes in case that they are not needed any more, e.g. for straight crack propagation, this
constraint is avoided which in turn allows for coarsening upon remeshing in regions far
from the crack tip.
Subsequent to the update of the geometry model a new finite element mesh is generated.
To obtain a reasonably accurate resolution of the crack tip region, the remeshing proce-
dure incorporates the local refinement criterion evaluated in terms of the configurational
nodal forces belonging to the discarded mesh, see below for more details. The solution
data is mapped onto the new mesh using the algorithms proposed in Section 6.3.2.
It is a remarkable circumstance that the crack propagation process, i.e. the update of
the geometry model, appears as a structural update of the material configuration. Conse-
quently, the motion of the crack tip basically displays the action of the material configu-
rational map. This motion is accompanied by a change in the energetic state, namely an
energy release, of the system. It includes in a straightforward manner the definition of the
– negative – configurational force as the change of energy with respect to the structural
change of the reference configuration, i.e. the change of the material position.

7.4.2. Material-Force-Based Adaptive Refinement Procedure. The second ingre-
dient of the proposed procedure bases on the exploitation of the material balance equation
(7.15) or rather its discrete counterpart (7.24). Due to an insufficient triangulation nu-
merically caused material forces occur in the discrete bulk domain BΓ. The application of
these out of balance forces to set up a h-adaptive refinement strategy has been discussed
at full length within Section 6, particularly within Section 6.4 in view of elastic problems.
A short summary of the basic features is presented in Box 7.2. The method relies on the
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Box 7.2: Material-force-based h-adaptive refinement procedure

1. Compute global criterion η
Out of balance material forces violating the material nodal balance (7.24)
indicate an energetic misfit of the current triangulation

∆Π = (1 +
nbnd

nint
)

nint∑

I=1

| F I |

Global criterion: ratio of misfit with respect to elastically stored energy

η = ∆Π / Π with Π =

∫

B

ψ dV

2. Check global criterion

IF η > ηperm mesh refinement is required

ELSE check for crack propagation. EXIT

3. Compute element criterion ξe

Energetic misfit on the element level

∆πe = (1 +
ne

bnd

ne
int

)

ne
int∑

I=1

| (F I + P I)
e | .

Local criterion: ratio of misfit with respect to an averaged element value

ξe = [∆πe / πm]1/p with πm = ηperm fS ∆Π / nele

4. Adaptive refinement procedure
Mesh generation with local refinement based on element criterion ξe.

definition of global and local criteria used for the global decision on mesh refinement and
the control of the local refinement process, respectively.

7.4.3. Staggered Solution Algorithm. In the final step, the two algorithms intro-
duced above are linked to a staggered solution scheme for the simulation of crack propa-
gation. A flowchart of the proposed solution procedure is given in Figure 7.6.
The algorithm starts with a standard spatial computation for the current load or time step
t. Within a postprocessing step the discrete material nodal forces are evaluated. Based on
these quantities the global criterion η is computed and the decision on mesh refinement is
made. If mesh refinement is required, i.e. for η > ηperm, a new mesh has to be generated.
The local mesh refinement is controlled by the element criterion ξe also determined in
terms of the material nodal forces. The h-adaptive mesh refinement guarantees an appro-
priate resolution of the process zone. In case the triangulation is said to be sufficiently
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Solve load step t

Compute material forces

Decision on refinement

Check crack criterion

Update geometry model

Generate new mesh

if η ≤ ηperm

IF η > ηperm

mesh refinement

IF |F no
1
| > gc

crack propagation

if |F no
1
| ≤ gc

increase load level
t⇐ t + ∆t

Figure 7.6: Staggered solution scheme for h-adaptive fracture simulation. At first, the cur-
rent triangulation is checked via a global refinement criterion η. Thus a sufficiently accurate
mesh is guaranteed for the decision on crack propagation to be made in the second step.

accurate, i.e. η ≤ ηperm, the decision on crack propagation is made. To this end, the dis-
crete configurational forces at all nodes within a certain radius surrounding the crack tip
are summed up and the critical crack tip force, i.e. the energy release rate, is evaluated
according to (7.30). For |F no

1
| ≤ gc the crack does not propagate. Hence, the load level

is increased, t ⇐ t + ∆t, and the spatial solution of the next load step is performed.
Otherwise, |F no

1
| > gc, crack propagation takes effect. The underlying geometry model is

modified by the structural update and a new mesh is generated. The meshing procedure
is governed by the element value ξe and thus a priori provides a better resolution of the
process zone. However, as the element criterion stems from the discarded mesh belonging
to the old geometry model, the refined zone may not necessarily match the crack tip of
the new geometry. This will be achieved at the latest by an additional refinement step.
Subsequent to remeshing, the same time step t is computed one more time and the whole
procedure recurs until a maximum number of time step is reached.
It has to be emphasized that the key parts of the proposed algorithm, i.e. the crack propa-
gation process, the mesh generation and the refinement procedure, are driven by material
nodal forces. These quantities are evaluated in a postprocessing step by just one more
element loop and then are capable to control the whole procedure. From the numerical
point of view, the algorithm presented here allows for an extremely efficient and robust
h-adaptive simulation of crack propagation.



Material-Force-Based Simulation of Crack Propagation 151

7.5. Numerical Examples

The capability of the staggered solution procedure is demonstrated by means of numerical
examples. The constitutive model of finite elasticity relies on the particular representa-
tion (4.82) of the free energy function for a compressible Neo-Hookean-type material, see
Section 4.5.1. The material parameters are the shear modulus µ = 8.0 kN/mm2 and Pois-
son´s ratio ν = 0.3 corresponding to β = 1.5. The critical energy release rate is set to gc

= 1 · 10−6 kN referring to unit depth of the specimen in the two-dimensional case. For
the spatial discretization six-noded quadratic triangular elements have been used. The
admissible threshold for the global refinement criterion is ηperm = 5% in the first, but
ηperm = 3.5% in the other examples.

7.5.1. Tension Test of a Notched Specimen. In the first example the tension test of
a notched specimen is investigated. The system together with the boundary conditions is
depicted in Figure 7.7. Despite symmetry the full body is discretized in order to demon-

0.5 4.5

ū

ū

2.5

2.5

Figure 7.7: System and boundary conditions of notched specimen in tension. All dimensions
are given in [mm]. Despite symmetry the whole specimen is analyzed.

strate the capability of the proposed method to simulate straight crack propagation. The
body is deformed within a displacement-driven process by prescribed incremental displace-
ments ∆ū = 0.00025 mm at both the bottom and the top edges. The crack is initiated by
the given notch at the left hand side of the specimen.
In Figure 7.8 the evolution crack propagation together with the adaptively evolving meshes
is visualized. Starting form an uniform and very coarse primary triangulation with 212 ele-
ments, mesh refinement is required twice in the very first deformation step until the global
refinement indicator falls below the admissible value ηperm = 3.5% for a mesh holding 762
triangles. After the second displacement increment has been applied, i.e. at a deformation
of 0.1% of the original heights of the body, the admissible crack criterion gc is violated
and the crack starts propagating. The crack path develops as a straight line strictly along
the horizontal symmetry axis of the body. Enforcing the global adaptive criterion, the
mesh evolves according to the progress of crack propagation. The mesh is heavily refined
in the crack tip region and moves together with the crack tip. This movement ensures a
sufficient resolution of the process zone surrounding the tip. During the simulation the
number of elements increases up to 8430 elements for the final mesh when the crack tip
almost reaches the right edge of the specimen and the simulation terminates.
Figure 7.9 shows the distribution of the Pyy-component of the first Piola-Kirchhoff stress
tensor for four states of the crack evolution with y referring to the vertical direction. Due
to the geometric singularity the maximum tensile stress occurs directly at the crack tip
and the stress level decreases rapidly for an increasing distance from the tip.
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a) b) c) d)

e) f) g) h)

Figure 7.8: Progress of crack propagation and evolution of adaptively refined meshes. a)
Primary triangulation with 212 elements. Different crack states containing b) 2271, c) 2615,
d) 2363, e) 2732, f) 3554, g) 5919 and h) 8430 elements.
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Figure 7.9: Distribution of Pyy-component of first Piola-Kirchhoff stresses during crack
propagation. The crack tip singularity induces a stress concentration around the tip accom-
panied by a steep decrease for an increasing distance from the tip.

7.5.2. Three Point Bending Test. The second example is concerned with a non-
symmetric three point bending test. This example has been studied experimentally and
numerically by Bittencourt et al. [16] and, more recently, by Phongthanapanich

& Dechaumphai [147]. The system with boundary conditions is visualized in Figure 7.10.
The diameter of the holes is d =0.4 mm. The specimen is subjected to a displacement-
driven deformation by prescribed incremental displacements ∆ū = 0.0001 mm at the
midpoint of the upper edge. The crack propagation is initiated by a notch at the lower
left edge of the specimen. Two different geometries of this notch have been investigated.
In the first setting, the notch is in a distance of a = 5.0 mm from the middle axis of the
specimen and has a length of b = 1.5 mm. For the second geometry the values are a =
6.0 mm and b = 1.0 mm.
The primary uniform meshes consist of 397 and 415 triangular elements for geometry I and
II, respectively. For the first notch geometry, this triangulation is said to be insufficient
right after the first displacement increment has been applied. After two refinement steps
the improved mesh holds 702 elements and is successfully used for the next 29 load steps.
Applying the subsequent displacement increment, the global adaptive criterion again is
violated. Subsequent to two more adaptive refinement steps, the triangulation turns out
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Figure 7.10: System and boundary conditions of three point bending test. Two different
notch geometries are discussed, namely (i) a = 5, b = 1.5 and (ii) a = 6, b = 1. All dimensions
are given in [mm].
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Figure 7.11: Crack propagation and development of refined meshes for notch geometry I.
a) Primary triangulation with 397 elements. Different states of crack propagation. Meshes
contain b) 967, c) 1083, d) 1247, e) 1679, f) 1933, g) 2532, and h) 2171 triangular elements.

to be sufficiently accurate and the crack criterion is checked. The norm of the crack tip
force exceeds the critical value gc. The crack tip node is moved in the direction of the
driving force by the amount ∆γ = 0.05hmax in terms of the prescribed maximum edge
length hmax = 1.3 mm. For the updated geometry model a new mesh is generated con-
taining 934 elements and the current deformation step is recomputed. In the following,



154 Material-Force-Based Simulation of Crack Propagation

a) b)

c) d)

e) f)

g) h)

Figure 7.12: Crack propagation and development of refined meshes for notch geometry II.
a) Primary triangulation with 415 elements. Different states of crack propagation. Meshes
contain b) 847, c) 968, d) 1235, e) 1226, f) 1637, g) 2104, and h) 3005 triangular elements.

no further displacement increment can be applied as the norm of the crack tip force does
not fall below the critical threshold gc any more. The crack propagates accompanied by
adaptive remeshing until the simulation terminates. The simulation based on the second
notch geometry deals with the same characteristics, however, the onset of crack propaga-
tion does not occur until a total displacement of ū = 0.0042 mm is applied. The progress
of crack propagation and the evolution of the adaptively refined meshes are depicted for
both geometries in Figure 7.11 and Figure 7.12, respectively. The mesh is heavily densified
around the crack tip and evolves together with the movement of the crack tip. The final
meshes consist of 2171 and 3005 elements for geometry I and II. Carefully note that in the
present example the influences of both the three holes as well as the Dirichlet boundary
conditions on the mesh refinement have been neglected. Per definition, the holes rep-
resent an inhomogeneity within the material structure of the body while the boundary
constraints being prescribed at single points of the finite element mesh cause singularities
in the current triangulation. Both effects demand for mesh refinement. In present studies,
these influences are suppressed by skipping the material forces in the respective regions
in order to focus attention on the refinement at the crack tip and to allow for a precise
visualization of the crack propagation process. As a matter of course, in case the crack
tip zone intersects with these critical regions, the material forces do contribute to the
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global and local adaptive criteria and therefore are not ignored. It is emphasized that
this treatment does not pose any restriction to the staggered solution procedure as these
inhomogeneities and singularities would only induce an additional refinement but would
not effect the refinement around the crack tip. The evolution of the adaptively generated
meshes renders a very good agreement with the results shown in [147].
The capability of the proposed procedure to predict curvilinear crack geometries is high-
lighted in Figure 7.13 by a comparison of the crack paths obtained by the numerical
simulations to those gained from experiments, cf. [16]. Apparently, the results of the finite

a) b) c) d)

Figure 7.13: Comparison of crack trajectories obtained from the numerical simulation, a)
and c), to those observed in experiments, b) and d), for both initial notch geometries. The
pictures showing the experimental results are taken from Bittencourt et al. [16].

element analyses are in very good agreement with the experimental observations. For the
first notch geometry, the crack trajectory intersects the axis of the three holes and reaches
the middle hole from the right hand side. In contrast, for the second geometry the crack
directly moves towards the left hand side of the hole.
Finally, the distribution of the Pxx-component of the first Piola-Kirchhoff stress tensor
is visualized in Figure 7.14 and Figure 7.15 for different states of the crack propagation
process. The subscript x denotes the horizontal axis. The sharp geometric singularity at
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Figure 7.14: Notch geometry I: Evolution of first Piola-Kirchhoff stresses Pxx during crack
propagation. The crack tip singularity induces a concentration of the stress field.
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Figure 7.15: Notch geometry II: Distribution of first Piola-Kirchhoff stresses Pxx for dif-
ferent crack states. The stress concentration is caused by the crack tip singularity.

the crack tip induces a concentration of the tensile stresses in the region around the tip
with the maximum value occurring directly at the tip.

7.5.3. Tension Test of Planar Sheet with Two Holes. In the last example, the
tension test of a plane sheet including two holes is discussed, see Figure 7.16 for a sketch
of the system. This boundary value problem has been studied by Bouchard et al. [19]

3
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ū

ū

Figure 7.16: System and boundary conditions of a tension test of planar sheet with two
holes. All dimensions are given in [mm].

and Bouchard, Bay & Chastel [18] investigating adaptive remeshing strategies and
different criteria for crack propagation. The radius of the holes is one fifth of the heights
of the specimen. The upper and lower edges are clamped with the vertical direction being
subjected to prescribed displacement increments ∆ū = 0.0001 mm. The goal of the sub-
sequent analyses is to show the ability of the staggered solution procedure to capture the
evolution of multiple cracks. To be precise, two cracks are initiated by two notches at the
vertical boundary edges of the body. In the algorithmic implementation, this situation
is handled by an independent successive treatment of both crack tips according to the
update algorithm given in Box 7.1 above.
The primary triangulation holds 429 elements. After the first deformation step adaptive
refinement has to be done yielding an improved mesh with 683 elements. This trian-
gulation is said to be sufficiently accurate up to a deformation of ū = 0.0014 mm. By
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application of the next displacement increment at first the global adaptive criterion is vi-
olated and two further refinement steps are needed until the global crack criterion can be
enforced for a mesh with 796 elements. At both notches the crack starts propagating. The
crack propagation process along with the development of the refined meshes is depicted
in Figure 7.17. It is well observable that each crack tip has its own refinement. The cracks

a) b)

c) d)

e) f)

g) h)

Figure 7.17: Evolution of adaptively refined meshes during crack propagation. Each crack
tip possesses its own refinement. a) Primary triangulation with 429 elements, b)–g) inter-
mediate states, and h) final mesh containing 4302 elements.

evolve in a symmetric fashion and undergo multiple changes in their direction. At first, the
densified areas of the mesh concentrate in a small radius around the tips containing about
1000 elements, Figure 7.17b)-d). When the crack fronts reach the vertical middle axis of
the specimen, Figure 7.17e), f), these zones intersect and the number of elements rapidly
increases to a total number of approximately 4000 elements. This characteristic still holds
for further crack propagation as the crack tips approach the profile of the other crack, Fig-
ure 7.17g), and finally, again showing a distinct change in their orientation, move towards
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the holes, Figure 7.17h). The final mesh consists of 4302 elements. However, during this
period of the simulation the crack does not propagate at a constant external deformation
but further displacement increments are applied in between up to a final deformation of
ū = 0.0096 mm. The crack patterns gained from the computation show a good agreement
with the results presented in [19, 18].
The change in the distribution of the first Piola-Kirchhoff stresses Pyy with y denoting
the vertical axis is highlighted in Figure 7.18. As already known from the previous exam-
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Figure 7.18: Distribution of Pyy-component of first Piola-Kirchhoff stress tensor during the
crack propagation process. The crack tip singularity induces a stress concentration around
the tip. Due to an increase of the externally applied deformation, the contour plot d) showing
the final period of the simulation, is characterized by a different stress level.

ples, the maximum tensile stress localizes in the process zone surrounding the crack tip
caused by the geometric singularity. Due to the afore-mentioned further increase of the
prescribed deformation, the stress distribution or rather the stress level obtained for the
final part of the computation, Figure 7.18d), significantly differs from that of the initial
steps. However it still shows the same characteristic in view of the concentration of the
stress field surrounding the moving crack front.

In summary, the configurational-force-based staggered solution procedure has been suc-
cessfully used for the h-adaptive simulation of brittle crack propagation. The movement of
the crack tip zone is accompanied by the evolution of the finite element mesh. The adap-
tive refinement at the tip ensures a sufficient accuracy in view of the computation of the
mechanical fields, in particular the configurational nodal forces and the crack tip driving
force. From the numerical point of view, the algorithmic setting turns out to be extremely
efficient and robust. The method proves to be capable of the prediction of straight and
curvilinear crack profiles even in case of multiple cracks.
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8. Conclusion

The thesis provides a discussion about several aspects of configurational mechanics. To
be precise, various theoretical approaches, algorithmic treatments and a broad spectrum
of numerical applications are investigated.

From the theoretical point of view, two different approaches are presented. With regard
to problems of thermo-inelasticity and dissipative processes in elasticity, namely fracture
mechanics, the introduction of a global dissipation postulate turns out to be a powerful
and straightforward procedure. This postulate is established by means of a comparison
between the external and the internal power produced during the thermo-mechanical
deformation of an inelastic solid subjected to the restrictions arising from the second law
of thermodynamics in order to guarantee thermodynamical consistency. The exploitation
of this postulate in the sense of a Coleman-type procedure results in the dual material
and spatial field equations. The remaining reduced dissipation inequality is used for the
formulation of either a set of evolution equations for the inelastic state variables or an
algorithm for the crack evolution problem. For thermo-mechanically coupled problems
under consideration, an evolution equation for the temperature field is obtained starting
from the balance of internal energy.

In view of problems of structural dynamics, a true variational formulation based on Hamil-
ton’s principle is elaborated. The principle states the action functional to be stationary
and thus demands a vanishing first variation of the action functional. The variation is
performed with respect to the spatial and material coordinates as well as the time. The
corresponding Euler-Lagrange equations of the variational framework are the equations
of spatial and material motion and the balance of kinetic energy. The global counterparts
of the dual equations of motion represent the balance of linear momentum with respect to
the Eulerian setting in terms of physical Newtonian forces and the balance of pseudomo-
mentum with respect to the Lagrangian framework in terms of material Eshelbian forces.
The whole scenario is related to a variational approach in terms of Noether’s theorem
including a brief discussion about conservation laws.

The numerical treatment is carried out by means of the finite element method. In this
sense, the dual spatial-material balance equations and, in case of thermo-mechanical cou-
pling, the temperature evolution equation are recast into discrete nodal balances. For
the solution of this set of coupled equations, a staggered solution procedure is adopted
with the material subproblem being implemented as a mere postprocessing procedure
subsequent to the solution of the spatial problem. The strategy is applied to the analyses
of descriptive boundary value problems, namely the thermo-mechanical deformation of
Cook’s membrane and the free oscillation of a strip.

The second main part of the thesis is devoted to the use of configurational forces in vari-
ous fields of computational mechanics. At first, the application in the context of topology
optimization is investigated. Using the terminology of optimization, the objective func-
tion is the potential energy of the system while the spatial and material coordinates
constitute the designvariables. In contrast to the just-mentioned staggered strategy, a si-
multaneous solution of the dual spatial-material problem is performed. This procedure is
denoted a variational arbitrary Lagrangian-Eulerian (ALE) formulation and results in a
simultaneous equilibration of physical and configurational forces. Two different solution
algorithms are discussed, namely a conjugate gradient method and a Newton-Raphson
iteration scheme including a viscous-type damping technique. The variational setting is
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specified to r-adaptive mesh improvement and to structural optimization of truss struc-
tures. Representative model problems are analyzed with the coupled simulation displaying
a superior solution with respect to the energetic state of the system compared to a purely
spatial simulation.

In the next section, a configurational-force-based h-adaptive strategy is proposed. In con-
trast to the continuous setting, where the spatial and material balance equations are
completely equivalent, the discretization, or rather triangulation in terms of a finite ele-
ment mesh of an otherwise homogeneous body induces an artificial inhomogeneity in the
system. This results in the occurrence of numerically caused discrete configurational nodal
forces breaking the equivalence of the continuous setting. Adopting the afore-mentioned
staggered solution procedure, these out of balance forces are used in a postprocessing
step to set up a global criterion used for the decision on mesh refinement and an element
criterion governing the local refinement algorithm. The outline of the numerical treat-
ment incorporates the adaptive mesh generation and the mapping of the state variables.
The procedure is applied to problems of finite elasticity and (thermo-)plasticity including
the quasi-static and the dynamical framework. Representative boundary value problems
are investigated dealing with both the two- and the three-dimensional case. To appraise
their quality, the results of the adaptive simulations are compared to those obtained from
benchmark analyses. To this end, for the two-dimensional elastic case an alternative er-
ror estimator is used, whereas for the other cases coarse and fine mesh simulations are
performed. The material-force-based adaptive strategy provides results very close to the
benchmark simulations. The advantages of the adaptive strategy with respect to the com-
puting time due to a significant reduction of the nodal degrees of freedom are emphasized.

In the final chapter a material-force-based algorithm for crack propagation in brittle ma-
terials is elaborated. Starting from the global dissipation postulate, the Coleman-type
exploitation procedure ends up with the reduced dissipation inequality. An algorithm for
the crack evolution problem is derived by application of the principle of maximum dissipa-
tion. The numerical implementation again uses the staggered solution scheme. Subsequent
to the spatial computation, the discrete material nodal forces are evaluated. The decision
on crack propagation is made by means of a Griffith-type criterion comparing the amount
of the material driving force at the crack tip with a given critical energy release rate. In
case of crack propagation, the finite element mesh is discarded and the crack propagation
process is performed exclusively on the geometry model. The new mesh is generated in
terms of a element refinement criterion evaluated from the numerically caused nodal forces
of the discarded mesh. The process of crack propagation is accompanied by h-adaptive
remeshing based on the refinement strategy introduced in the previous section guarantee-
ing a suitable resolution of the crack tip region. Finally, different boundary problems are
discussed. Thereby, the proposed method proves to be capable of the prediction of curved
crack paths and of handling the propagation of multiple cracks.



A Reminder of Eshelby’s Reasoning 161

A. A Reminder of Eshelby’s Reasoning

A.1. Eshelby’s Concept of a Force on a Singularity

In his pioneering work, Eshelby [42] showed that the value of a path-independent in-
tegral surrounding a defect included in an elastic continuum can be interpreted as the
change in the total energy associated with an unit defect translation. The subsequent
treatments follow the physical interpretation given by Eshelby [44]. He suggested the
following thought experiment. Figure A.1a) shows an elastic body B containing a singu-
larity enclosed by an arbitrary surface S. The body is subjected to mechanical loading,
e.g. by the traction field t. This body is called the original system. Figure A.1b) represents

a) B

t

S
D
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t

S

S′

D
1

2
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Figure A.1: Eshelby’s thought experiment. a) Original system with defect D surrounded
by a surface S. b) Replica with surrounding surface S′ shifted by −δX. Cutting out the
material inside of S in the original system and replacing it by the suitably deformed material
inside of S′ of the replica models a shift of the defect by δX. The change of energy at fixed
spatial position defines the energy release rate associated with the translation of the defect.

an exact replica of the original body with surfaces S and S ′ marked out. The surface S ′

is the surface S that has suffered a shift −δX in the undeformed state. If the material
inside S of the original body is replaced by the material inside S ′ of the replica in the
deformed state, a configuration arises that differs from the original one by a vector shift
δX of the defect. To compute the change in energy within this scenario, the following
steps are performed:

Step 1: After both bodies, Figure A.1a) and Figure A.1b), have come to an equilibrium
state under the mechanical loading, the material inside S in the original system is cut
out and thrown away. Equivalent surface tractions on the resulting hole are applied to
prevent the rest of the original system from relaxing.

Step 2: The material inside of S ′ from the replica is cut out and surface tractions are
applied to prevent relaxation. The stored energies inside of S and S ′ are given by Πint,S :=
∫

vol(S)
ψdV and Πint,S′ :=

∫

vol(S′)
ψdV . Thereby, ψ = ρ0Ψ denotes the stored free Helmholtz

energy per unit volume of the reference configuration. The energies differ by addition of
energy in region 1 and subtraction of energy in region 2. For an infinitesimal amount of
|δX|, this difference is evaluated by integrating the flux of ψ over the surface S

δΠint,1 := Πint,S′ − Πint,S =

∫

S

ψ(−δX)NdA. (A.1)

Here, N is the outward normal on S. At this stage there is no change in the energy in the
material outside the hole in the original system, or in the energy of its loading mechanism.

Step 3: The material inside of S ′ is tried to be fitted into the hole of S of the original
system. But since, by construction, S and S ′ can be made to coincide by a simple transla-
tion in the undeformed state they will not do so after deformation. In fact, for a suitable
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translation to move it from the replica to the original system, the displacement on S ′ will
differ from that on S for an infinitesimal amount of |δX| by

δx := xS′ − xS = F (−δX) (A.2)

in terms of the deformation gradient F . To fit S ′ into the hole of the original system,
a displacement of an amount (A.2) has to be supplied on the surface of the hole. This
requires work done at the negative traction (−t) on the hole, i.e.

δΠint,2 :=

∫

S

δx(−t)dA (A.3)

raising the energy in the material outside S. The surface tractions are computed via the
Cauchy-type theorem t = PN in terms of the first Piola-Kirchhoff stress tensor P .

Step 4: Now S ′ can be fitted into S and welded across the interface. Though the displace-
ments are continuous across the interface, the stresses differ by an order of δX. As they
are relaxed, the displacements would be of the order δX and an amount of energy of the
order (δX)2 is extracted but is ignored in comparison to (A.1), (A.3). Now, the defect in
the original body has moved by δX. The total energy change during this procedure is

δΠint = δΠint,1 + δΠint,2 = −δX

∫

S

[
ψ1 − F T P

]
NdA. (A.4)

Step 5: The configurational or material force acting on the defect is defined by the negative
gradient of the total energy of the body with respect to the change of position of the defect

J := −(
∂Πint

∂X
)expl. (A.5)

The abbreviation (∂(•)
∂X

)expl – the expressions ∂
∂X

(•)expl and ∂X(•)expl will also be used –
denotes the explicit derivative of the quantity (•) with respect to the material coordi-
nate X due to the explicit dependence of (•) on X. Comparing (A.4) and (A.5), the
configurational force can be expressed by the integral

J =

∫

S

ΣN dA with Σ := ψ1 − F T P . (A.6)

The purely material second order tensor Σ is referred to as the Maxwell tensor of elasticity,
Eshelby [42], the energy-momentum tensor, Eshelby [43, 44], or nowadays the Eshelby
(stress) tensor. In the sense of the above idea, the material force, i.e. the path-independent
integral J over a surface S surrounding the defect, represents the energy release rate.

A.2. Eshelby’s Concept of a Force on an Inhomogeneity

The subsequent developments directly refer to Eshelby [42]. The goal is to compute the
configurational force acting on an inhomogeneity, i.e. a region of a body B where material
properties such as elasticity coefficients vary pointwise with respect to the material. Con-
sider the particular case of small strain kinematics and assume that the elastic constants,
and hence the fourth order elasticity moduli E, depend on three parameters ξ = ξa=1,2,3

E = Eijkl = Eijkl(xa − ξa) = E(x − ξ). (A.7)
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On the surface ∂B of the body B fixed tractions t are applied. Using Cauchy´s theorem,
t = σn, with σ denoting the Cauchy stress tensor, this condition reads

∂

∂ξ
t =

∂

∂ξ
(σn) = 0 on ∂B. (A.8)

The external potential energy Πext of the system, i.e. the potential of the external physical
loading, is computed in terms of the displacement field u and the surface tractions t based
on the assumption that physical volume forces are neglected, γ̄0 = 0 . The change of the
external potential energy with respect to a change δξ of the parameters ξ is

−
∂

∂ξ
Πext =

∂

∂ξ

∫

∂B

u · t dA =

∫

∂B

∂

∂ξ
u · (σn) dA =

∂

∂ξ

∫

B

σ : ε dV (A.9)

where ε := sym[∇u] is the strain tensor of the infinitesimal theory. The last manipulation
bases on the static equilibrium condition, div σ = 0 , and Gauss integration theorem.
Using Hooke´s law σ = E : ε, the stored energy of a linear elastic body reads

Πint =

∫

B

1
2
ε : E : ε dV =

∫

B

1
2
σ : ε dV. (A.10)

Hence, the change (A.9) of the external potential with respect to the parameters ξ coin-
cides with twice the change of the stored energy Πint, i.e. −∂Πext/∂ξ = 2∂Πint/∂ξ.
The configurational or material force acting on the inhomogeneity is defined by

J :=
∂Πint

∂ξ
= −

1

2

∫

B

ε : (
∂

∂ξ
E) : ε dV. (A.11)

In order to proof that this representation fits the above definition (A.6), consider two
material bodies of the same size and shape with different elastic constants including an
inhomogeneity as indicated in (A.7). Both bodies are loaded by the same surface traction
t on the boundary ∂B. The difference between the stored energies of both systems is

∆Πint =
1

2

∫

B

ε̄ : Ē : ε̄− ε : E : ε dV =
1

2

∫

B

σ̄ : ε̄− σ : ε dV. (A.12)

As for both bodies the same surface tractions are applied, the boundary conditions σn =
σ̄n = t on ∂B result in a vanishing difference in the external potentials ∆Πext = 0. By
substitution of the spatial equilibrium condition, div σ = div σ̄ = 0 , this identity yields

∆Πext =

∫

∂B

u · (σ̄ − σ)n dA =

∫

B

(σ̄ − σ) : ε dV = 0. (A.13)

By combination of (A.12) and (A.13), in fact being valid in terms of either ε or ε̄, and
again substitution of Hooke´s law of linear elasticity the energy difference appears as

∆Πint =
1

2

∫

B

σ : ε̄− σ̄ : ε dV =
1

2

∫

B

ε̄ : (E− Ē) : ε dV. (A.14)
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For the assumption of small changes |∆ξ|, the limit of the ratio of the energy change
∆Πint with respect to a change ∆ξ of the parameters ξ results in the derivative

∂Πint

∂ξ
= −

1

2

∫

B

ε : (
∂

∂ξ
E) : ε dV. (A.15)

This expression equals definition (A.11) of the configurational force acting on the inho-
mogeneity. This intermediate result can be transformed as follows

J = −
1

2

∫

B

ε : (
∂

∂ξ
E) : ε dV

(A.7)
=

1

2

∫

B

ε : (
∂

∂x
E) : ε dV

=
1

2

∫

B

∂

∂x
(ε : E : ε)− 2(ε : E) : (

∂

∂x
ε) dV

=

∫

B

( 1
2
εijEijklεkl),m − σklεkl,m dV =

∫

B

ψ,m − σklukl,m dV

=

∫

B

(ψδml),l − (σklukm),l + (σkl,lukm) dV =

∫

B

(ψδml − σklukm),l dV

(A.16)

where the compatibility of the displacement gradient, ui,jk = ui,kj, the definition of the
linear elastic free energy, ψ = ψ(ε) = 1

2
ε : E : ε, and the spatial equilibrium condition

div σ = σkl,l = 0 have been employed. By application of Gauss integration theorem it is
readily shown that (A.16) coincides with representation (A.6) of the configurational force

J =

∫

∂B

Σn dA with Σ := ψ1 −∇Tu σ (A.17)

in terms of the small strain Eshelby tensor Σ (or Maxwell tensor of elasticity or energy-
momentum tensor) and the outward normal n of the surface ∂B of the body B.

Remark A.1: Note that a one-dimensional formulation of the path-independent integral,
or rather material force J renders the so-called J-integral of fracture mechanics introduced
by Rice [152].

Remark A.2: A, in the author´s opinion, memorable aspect has been emphasized by
Maugin [99]: When he introduced material forces acting on singularities and inhomo-
geneities, Eshelby [44] remarked that this kind of force, in a sense fictitious, is introduced
to give a picturesque description of energy changes (author´s emphasis), and they must
not be confused with the ordinary surface or body forces acting on the material. Maugin

links this statement with a citation taken from Jammer [73] (a new edition is quoted
here), who pointed out, that to introduce the term ’force’ as an explanatory element in
the theory of physical sciences means to develop a misleading vocabulary.
Consequently, when using the expression configurational or material force, one should
carefully remember the afore-mentioned origin of this quantity as a measure of the change
in energy of an elastic continuum upon movement of a defect or an inhomogeneity within
the material configuration of the body.
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B. Time Derivatives of Fundamental Kinematic Objects

The rate expressions of the fundamental kinematic quantities required for the exploitation
of the global dissipation postulate are derived. Recall definition (3.4) of the non-linear
deformation map

ϕt(X) = ξt(θ) ◦Ξ−1
t (X) (B.1)

in terms of the spatial and material configurational maps ξt(θ) = ξ(θ, t) and Ξt(θ) =
Ξ(θ, t), cf. (3.3). θ are the time-independent coordinates of the parameter space Ω. (B.1)
can be solved for the spatial configurational map

ξt(θ) = ϕt(X) ◦Ξt(θ) = ϕ(X, t) ◦Ξ(θ, t) = ϕ(Ξ(θ, t), t) = ξ(θ, t) (B.2)

allowing for the evaluation of the time derivative by means of Leibniz´ formula

∂

∂t
ξ(θ, t) =

∂

∂t
ϕ(X , t) +

∂

∂X
ϕ(X, t)

∂

∂t
Ξ(θ, t) (B.3)

with the typical split into local and convective part. As θ = const., partial and total
time derivatives of the configurational maps commute. In this equation the dual partial
derivatives of the non-linear deformation map with respect to the Lagrangian space-time
(X, t) are identified, namely the deformation gradient and the spatial velocity

F =
∂

∂X
ϕ(X, t) = ∇Xϕt(X) and v =

∂

∂t
ϕ(X, t). (B.4)

Upon introduction of the abbreviations for the time derivatives ξ̇ = ∂ξ(θ, t)/∂t and
Ξ̇ = ∂Ξ(θ, t)/∂t the velocity v can finally be expressed by

v = ξ̇ − F Ξ̇. (B.5)

In the next step consider the partial derivative of the spatial configurational map with
respect to the parameter coordinates θ

∂

∂θ
ξ(θ, t) =

∂

∂X
ϕ(X, t)

∂

∂θ
Ξ(θ, t) ⇔ j = FJ (B.6)

using the gradients j, J of the material and spatial configurational maps introduced in
(3.6). This relationship states the alternative representation of the deformation gradient
F = jJ−1. Next, the time derivative of (B.6) is computed by means of the product rule

∂

∂t
(
∂

∂θ
ξ) =

d

dt
(
∂

∂X
ϕ)

∂

∂θ
Ξ +

∂

∂X
ϕ
∂

∂t
(
∂

∂θ
Ξ) (B.7)

where the functional dependencies have been dropped for the sake of clarity. The crucial
point of this derivative is that for the material gradient of the non-linear point map, i.e. the
deformation gradient, the total time derivative has to be applied as the temporal change
of the reference coordinates X has to be taken into account as well. The derivatives of
the spatial and material configurational map ξ and Ξ with respect to the coordinates θ

and time t commute as the parameter coordinates θ are time-independent

∂

∂θ
ξ̇ =

d

dt
F

∂

∂θ
Ξ + F

∂

∂θ
Ξ̇. (B.8)
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By multiplication with the inverse of the gradient of the material configurational map this
equation can directly be solved for the total time derivative of the deformation gradient

d

dt
F = ∇X ξ̇ − F∇XΞ̇. (B.9)

This multiplication coincides with a re-parameterization of the equation by the material
coordinates X which is also adopted by representation (B.5) of the velocity. Therefore,
the time derivatives of the spatial and material configurational map

ξ̇ =
∂

∂t
ξ ◦Ξ−1

t (X) and Ξ̇ =
∂

∂t
Ξ ◦Ξ−1

t (X) (B.10)

in fact depend on the Lagrangian space-time (X, t), cf. (3.9). At last, consider the total
temporal change of the material volume element

d

dt
dV =

d

dt
[det J dΩ] =

d

dt
[det J ] dΩ. (B.11)

The time derivative of dΩ vanishes because the configuration Ω is time-independent. The
rate of the determinant of the gradient of the material configurational map is evaluated

d

dt
[det J ] = det J J−T :

d

dt
J = det J (1 : (

d

dt
J)J−1). (B.12)

The total time derivative of the gradient of the material configurational map can be replace
by the partial one as the coordinates θ of the parameter space are time-independent. The
contraction of the derivative and the inverse of J can be reformulated

(
d

dt
J)J−1 = (

d

dt
(
∂

∂θ
Ξ))J−1 = (

∂

∂θ
(
∂

∂t
Ξ))J−1 = ∇XΞ̇ (B.13)

again inducing the re-parameterization of Ξ̇. At the end, the total time derivative of the
volume element dV of the reference configuration is given by

˙dV =
d

dt
dV = (1 : ∇XΞ̇) dV. (B.14)

Apparently, this development matches the derivation of the temporal change of the Eule-
rian volume element outlined in the context of equation (2.23) in Section 2.1.5.
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C. Enhanced Strain Formulation

The global formulation introduced in Section 3.5.1 is combined with an enhanced strain
formulation as proposed in Section 3.6.2. The enhanced strain formulation bases on the
method of incompatible modes which dates back to the works of Wilson, Taylor,

Doherty & Ghaboussi [188] and Taylor, Beresford & Wilson [181]. A variational
formulation starting from the Euler-Lagrange equations associated with the principle of
Hu-Washizu has been proposed by Simo & Rifai [165]. The extension to the geometrically
non-linear setting is due to Simo & Armero [161] and Simo, Armero & Taylor [162].
The investigations to follow are conceptually in line with Miehe [117].

In the subsequent treatments the temperature problem is neglected for the sake of simplic-
ity. This does not pose any restriction as in the sense of the thermo-mechanical operator
split no coupling matrices occur within the stiffness matrix of the governing system of
linear equations. The formulation is readily adjusted to the local approach by skipping
the contributions arising from the supplementary constitutive subproblem.

Central to this particular finite element formulation is the enhancement of the deformation
gradient by an incompatible part ∇XϕE in addition to the standard compatible part, i.e.
the gradient ∇XϕC of the non-linear deformation map,

F = F C + F E = ∇XϕC +∇XϕE. (C.1)

The formulation to be elaborated refers to the current configuration. The representations
outlined in Section 3.5, which actually were performed in the two-point setting, are re-
formulated in the purely Eulerian framework. To this end, the fundamental kinematic
relationship (C.1) is rewritten in the spatial format

∇xϕ = ∇xϕC +∇xϕE. (C.2)

The strong form equations can be summarized by

spatial equilibrium condition div [J−1s̄] + J−1γ̄0 = 0

stresses s̄ = τ

loading-unloading φ ≤ 0 , γ̇ ≥ 0

kinematics ∇xϕ = ∇xϕC +∇xϕE

enhanced strain part ∇xϕE = 0

(C.3)

with the Jacobian J = det F and the Kirchhoff stress tensor τ = Jσ. The strong form
is valid in combination with the essential and natural boundary conditions (3.81)1 and
the decomposition (3.82) of the entire domain into active and non-active parts. Within
the strong form the enhanced part of the deformation is set to zero. However, in the
discrete finite element setting this equation is no longer satisfied identically resulting in
the desired enhancement of the deformation gradient. To obtain the weak counterpart the
strong form equations are multiplied by some arbitrary test functions and are integrated
over the domain. For the equilibrium condition (C.3)1 it follows

Gϕc
=

∫

B

s̄ : ∇xδϕC dV −Gext = 0 (C.4)
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in which the external part represents the influence of the physical forces, i.e. the surface
tractions and the volume forces. The stress equation (C.3)2 is, on the one hand, multiplied
by the variation ∇xδϕC of the compatible part and, on the other hand, by the variation
∇xδϕE of the incompatible part of the spatial deformation gradient

GτC
=

∫

B

s̄ : ∇xδϕC dV −

∫

B

τ : ∇xδϕC dV = 0

GτE
=

∫

B

s̄ : ∇xδϕE dV −

∫

B

τ : ∇xδϕE dV = 0.

(C.5)

With regard to the loading-unloading conditions (C.3)3 the yield criterion is multiplied
by a virtual scalar field δγ̇ whereas γ̇ is tested by a virtual yield criterion δφ

Gφ =

∫

B

δγ̇ φ dV ≤ 0 and Gγ =

∫

B

δφ γ̇ dV ≥ 0. (C.6)

Finally, equation (C.3)5 for the enhanced part of the deformation gradient is multiplied
by a virtual stress field δs̄

Gτ =

∫

B

∇xϕE : δs̄ dV = 0. (C.7)

In the next step the L2-orthogonality for the stresses s̄ = τ and the enhanced strain part
is adopted. This condition states that the spaces of the stresses and the enhanced strain
field are perpendicular to each other. Consequently, (C.7) can be rewritten as

∫

B

∇xϕE : s̄ dV = 0 ⇒

∫

B

∇xϕE : δs̄ dV =

∫

B

∇xδϕE : s̄ dV = 0. (C.8)

Substitution of this intermediate result into (C.5)2 as well as substitution of (C.5)1 into
(C.4) yield the weak form expressions

Gϕc
=

∫

B

∇xδϕC : τ dV −Gext = 0 , Gτ =

∫

B

∇xδϕE : τ dV = 0

Gφ =

∫

B

δγ̇ φ dV ≤ 0 , Gγ =

∫

B

δφ γ̇ dV ≥ 0

(C.9)

valid in combination with the essential boundary conditions for the spatial deformation
and the decomposition (3.82) of the entire domain into active and non-active parts. (C.9)
represents a set of non-linear equations to be solved by a Newton-Raphson iteration
scheme. In contrast to the order used in Section 3.5, the weak form equations are lin-
earized prior to discretization. Anticipating the fact that the expression Gγ will appear in
an incremental format after temporal discretization, only the first three weak forms are
linearized, each with respect to the total deformation ϕ and the scalar parameter γ. The
non-linearity in the deformation measures has to be taken into account resulting in the
typical split of the stiffness matrix into a material tangent term and a geometric part.
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The linearized expressions read

LinGϕc
= Gϕc

+

∫

B

∇xδϕC : ∆ϕτ dV +

∫

B

∇xδϕC : ∆γτ dV = 0

+

∫

B

∆ϕ(∇xδϕC) : τ dV

LinGτ = Gτ +

∫

B

∇xδϕE : ∆ϕτ dV +

∫

B

∇xδϕE : ∆γτ dV = 0

+

∫

B

∆ϕ(∇xδϕE) : τ dV

LinGφ = Gφ +

∫

B

δγ̇ ∆ϕφ dV +

∫

B

δγ̇ ∆γφ dV = 0.

(C.10)

The increments of the virtual compatible and enhanced spatial deformation gradients are
evaluated according to

∆ϕ(∇xδϕC/E) = ∆(∇XδϕC/E F−1) = ∇XδϕC/E ∆F−1 = −∇xδϕC/E ∇x∆ϕ (C.11)

due to ∆F−1 = −F−1∇x∆ϕ. The increments of the Kirchhoff stress tensor with respect
to ϕ and γ are given by

∆ϕτ = c : ∇x∆ϕ +∇x∆ϕ τ + τ ∇T
x ∆ϕ and ∆γτ = ∂γτ ∆γ (C.12)

where c denote the fourth order Eulerian moduli. To compute the increment ∆ϕφ of the
yield criterion with respect to ϕ consider the time derivative of φ

φ̇ = ∂gφ : Lvg = 2∂gφ : 1
2
(gl + lT g) = 2∂gφ : gl (C.13)

in terms of the Lie-derivative Lvg of the current metric or the spatial velocity gradient
l = ∇xv = ∇xϕ̇, cf. (2.26). The time derivative ˙(•) can be identified with the increment
∆(•) per time increment ∆t. Then, the increments of the yield criterion function φ are

∆ϕφ = 2∂gφ : ∇x∆ϕ and ∆γφ = ∂γφ ∆γ. (C.14)

The spatial gradient of the increment of ϕ is given in analogy to (C.2)

∇x∆ϕ = ∇x∆ϕC +∇x∆ϕE. (C.15)

The spatial discretization of the linearized set of equations is performed by a three-field
interpolation. The compatible spatial deformation, the enhanced strain field and the tem-
poral change γ̇ of the scalar field γ are approximated independently. Compared to Section
3.3, a formally alternative representation of the finite element interpolation is used which
circumvents the introduction of global matrices but is directly related to the element level

ϕ ≈
ne

∑

I

N IdI , δϕ ≈
ne

∑

I

N IδdI , ∆ϕ ≈
ne

∑

I

N I∆dI

γ̇ ≈
ne

∑

I

NI
I γ̃I , δγ̇ ≈

ne
∑

I

NI
I δγ̃I , ∆γ ≈

ne
∑

I

NI
I ∆γ̃I .

(C.16)
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The matrices N I , N I
I denote the shape functions associated with node I while δdI , ∆dI

as well as δγ̃I , ∆γ̃I represent the virtual and incremental vector fields containing the nodal
variations or increments of the primary variables at all ne nodes of each element. The vir-
tual yield criterion is approximated by δφ ≈

∑ne

I NI
I δφ̃I with the nodal variations δφ̃I .

The reason to use this alternative scenario becomes clear when considering the approx-
imation of the incompatible field. For this field no interelement continuity is demanded
but it is governed by internal degrees exclusively defined on each element domain

ϕE ≈
n∑

e

Mewe , δϕE ≈
n∑

e

Meδwe and ∆ϕE ≈
n∑

e

Me∆we. (C.17)

Here, we represents the internal element degrees and δwe and ∆we their virtual and
incremental counterparts. The structure of the interpolation functions Me depends on the
incompatible modes to be generated. For the particular case of four internal degrees, the
interpolation functions read Me = 1

2
(ξ2

e−1), e = 1, 2 where ξ = [ξ1, ξ2]
T = [ξ, η]T refers to

the coordinates of the finite element parameter space Ωe. The material gradient of these
interpolation functions is evaluated according to

∇XMe :=
det J

det J0

J−T
0 ∇ξMe. (C.18)

The matrix J denotes the gradient ∇ξX̂ of the isoparametric map X̂ between the coordi-
nates ξ of the parameter space and the material coordinates X. The subscript 0 indicates
that the gradient and its determinant have to be evaluated at the element center ξ = 0 .
The spatial compatible and incompatible gradients are computed by

∇xδϕC =
ne
∑

I

δdI ⊗∇xNI with ∇xNI = F−T∇XNI

∇xδϕE =
n∑

e

δwe ⊗∇xMe with ∇xMe = F−T∇XMe

(C.19)

applying in the same manner for their incremental counterparts. It is convenient to in-
troduce the element matrices BI and Ge containing the gradients ∇xNI and ∇xMe. The
derivative of the interpolation functions with respect to the current coordinates x is com-
puted by the contraction of their derivative with respect to the reference coordinates X

and the transpose inverse of the approximated deformation gradient. This quantity is
finally given by the sum of the compatible and incompatible contributions

F = 1 +

ne
∑

I

dI ⊗∇XNI +

n∑

e

we ⊗∇XMe. (C.20)

Substitution of the finite element approximation into the linearized expressions (C.10) and
application of the lemma of variational calculus result in the following system of linear
equations on the element level






ke
ϕcϕc

ke
ϕcγ ke

ϕcw

ke
φϕc

ke
φγ ke

φw

ke
wϕc

ke
wγ ke

ww











∆d

∆γ̃

∆w




 =







− f e,int
ϕc

+ f e,ext
ϕc

− f
e,int
φ

− f e,int
w






. (C.21)
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It bases on the definitions of the element stiffness matrices

ke
ϕcϕc

=

∫

Be

BT
I [c BJ + τ BJ ◦ 1 ] dV

ke
φγ =

∫

Be

NI
K

T
∂γφ NI

L dV

ke
ww =

∫

Be

GT
e [c Gf + τ Gf ◦ 1 ] dV

ke
ϕcγ =

∫

Be

BT
I ∂γτ NI

L dV, ke
φϕc

=

∫

Be

NI
K

T
2∂gφ BJ dV

ke
ϕcw =

∫

Be

BT
I [cGf + τGf ◦ 1 ] dV, ke

wϕc
=

∫

Be

GT
e [cBJ + τBJ ◦ 1 ] dV

ke
φw =

∫

Be

NI
K

T
2∂gφ Gf dV, ke

wγ =

∫

Be

GT
e ∂γτ NI

L

T
dV

(C.22)

and the element residuals

f e,int
ϕc

=

∫

Be

BT
I τ dV, f e,ext

ϕc
=

∫

Be

NT
I γ dV +

∫

∂Be
t

NT
I t̄ dA

f
e,int
φ =

∫

Be

NI
K

T
φ dV, f e,int

w =

∫

Be

GT
e τ dV.

(C.23)

The pairs (I, J), (K,L) and (e, f) indicate a sum over the nodes corresponding to the
spatial deformation, the accompanying subproblem and the internal element parameters,
respectively. The stiffness matrices related to the compatible and incompatible part of
the deformation split up into a material tangent term arising from the linearization of
the stresses and a geometric contribution due to the non-linear deformation measure. The
expressions for the spatial deformation problem and the constitutive subproblem can be
symmetrized by multiplication of the second equation of (C.21) by −1.
Upon assembly the residual expressions can alternatively be written as a sum of discrete
nodal contributions in strict analogy to (3.84). In this sense, the weak form expressions
associated with the loading-unloading conditions are recast into the nodal residuals

rφ
K :=

nele

A
e=1

∫

Be

NI
K

T
φ dV and ∆rγ

K :=
nele

A
e=1

∫

Be

NI
K

T
(γn+1 − γn) dV. (C.24)

In addition to the spatial discretization the time discretization of the second part has
been performed within a discrete time step [tn; tn+1]. With these nodal values at hand,
the discrete counterpart of the decomposition (3.82) of the material body reads

non-active part Bh
el = { K ∈ Bh | rφ

K ≤ 0 ∧ ∆rγ
K = 0 }

active part Bh
inel = { K ∈ Bh | rφ

K = 0 ∧ ∆rγ
K > 0 }.

(C.25)

By means of this decomposition of the discrete domain the decision on inelastic loading
is no longer made at the integration points, as it is done in standard local formulations,
cf. Section 3.5.2, but from now on is performed on the node point level of the mesh.
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As already mentioned, no interelement continuity of the internal degrees is required. Thus,
they do not need to be assembled to a global array but are eliminated on the element
level by static condensation. To this end, the linear system of equations (C.21) is solved
for the increments ∆w of the internal degrees and the result is re-substituted into the
system of equations. The resulting system has to be treated in a global manner. All the
element contributions are assembled yielding a governing system of linear equations

nele

A
e=1

k̂e
nele

A
e=1

[

∆d

∆γ̃

]

=
nele

A
e=1

f̂ e (C.26)

in terms of the condensed versions of the element stiffness and the element residual

k̂e =

[

ke
ϕcϕc

ke
ϕcγ

ke
φϕc

ke
φγ

]

−

[

ke
ϕcw

ke
φw

]

ke −1
ww

[
ke

wϕc
ke

wγ

]

f̂ e =

[
− f e,int

ϕc
+ f e,ext

ϕc

− f
e,int
φ

]

−

[

ke
ϕcw

ke
φw

]

ke −1
ww

[
− f e,int

w

]
.

(C.27)

The overall system (C.26) is solved for the increments ∆d of the spatial nodal displace-
ments and ∆γ̃ of the nodal values of γ. Afterwards the current nodal solutions are obtained
via the Newton-update

d⇐ d + ∆d and γ̃ ⇐ γ̃ + ∆γ̃. (C.28)

Both contributions, the spatial balance law and the loading-unloading conditions, are
solved by a monolithic solution strategy. The constitutive subproblem only needs to be
treated if the considered nodal point is active in the sense of (C.25). Otherwise purely
elastic response occurs and only the spatial equilibrium problem has to be accounted
for. Within this procedure the current dimension of the governing system of equations
changes during the computation according to the development of inelastic deformation
which apparently demands a non-standard finite element data environment. For given
solutions of the spatial deformation ∆d and the scalar nodal variable ∆γ̃ the increments
∆w of the internal degrees are computed on the element level

∆w = ke −1
ww

(

− f e,int
w −

[
ke

wϕc
ke

wγ

]
[
∆d

∆γ̃

])

. (C.29)

Having a closer look at equation (C.27)1, it is obvious that the element stiffness of the
formulation without internal degrees is reduced by subtraction of a contribution arising
form the enhanced strain approach. This results in the elimination of locking-phenomena
which occur in standard displacement formulations. Despite the fact that an explicit
inversion of the matrix ke

ww is required for each element the numerical effort is significantly
reduced as the method avoids the introduction of higher order shape functions but the
use of bilinear shapes turns out to be sufficient.
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D. Noether’s Theorem

A formally alternative approach to derive the fundamental field equations of configura-
tional solid dynamics is presented using Noether’s reasoning, cf. Noether [139]. The
formalism follows the conceptual framework outlined by Kienzler & Herrmann [76].
Basic idea is the simultaneous variation of both the dependent and independent variables,
respectively referred to as variables and field. In the current investigations the indepen-
dent variables are given by the Lagrangian space-time coordinates (X, t) whereas the field
is represented by the non-linear point map ϕ. Consider now infinitesimal changes of these
quantities

t → t+ δt , X →X + δX , ϕ → ϕ + δϕ (D.1)

in which δt, δX and δϕ denote the variations of the respective objects. This transforma-
tions can be reformulated in terms of an ǫ-perturbation and some arbitrary functions ζ ,
ξ and η in the following way

t → t∗ = t+ ǫζ

X → X∗ = X + ǫξ

ϕ → ϕ∗ = ϕ + ǫη.

(D.2)

Upon transformation of the dependent field ϕ, its derivatives with respect to the inde-
pendent variables (X, t), namely the deformation gradient and the spatial velocity field,
transform according to

F → F ∗ = F + ǫ(
∂η

∂X
− F

∂ξ

∂X
)

v → v∗ = v + ǫ(
∂η

∂t
− F

∂ξ

∂t
− v

∂ζ

∂t
).

(D.3)

Finally, the transformations of the material volume element and the infinitesimal time
increment are obtained by

dV → dV ∗ = (1 + ǫ1 :
∂ξ

∂X
) dV

dt → dt∗ = (1 + ǫ
∂ζ

∂t
) dt.

(D.4)

Consider now the variation of the action functional H introduced in (4.12) in terms of
the Lagrangian density L per unit volume of the reference configuration. For the sake
of simplicity, the surface contribution related to the material boundary ∂B is neglected,
L̄ = 0. On account of the transformations of the above objects, the transformed action
functional reads

H∗ =

∫ t2

t1

∫

B

L(t∗,X∗,ϕ∗,v∗,F ∗) (1 + ǫ1 :
∂ξ

∂X
) dV (1 + ǫ

∂ζ

∂t
) dt. (D.5)
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Expansion of this identity in a Taylor series and truncation after the linear terms results
in the expression

H∗ = H + ǫ

∫ t2

t1

∫

B

ζ
∂L

∂t
+ ξ ·

∂L

∂X
+ η ·

∂L

∂ϕ

+ (
∂η

∂X
− F

∂ξ

∂X
) :

∂L

∂F
+ (1 :

∂ξ

∂X
)L

+ (
∂η

∂t
− F

∂ξ

∂t
− v

∂ζ

∂t
) ·
∂L

∂v
+

∂ζ

∂t
L dV dt.

(D.6)

This equation can be manipulated as follows. At first, the second line is reformulated by
means of integration by parts with respect to the material coordinates

(
∂η

∂X
− F

∂ξ

∂X
) :

∂L

∂F
= Div

[

η
∂L

∂F

]

− η ·Div

[
∂L

∂F

]

− Div

[

ξF T ∂L

∂F

]

+ ξ∇XF :
∂L

∂F
︸ ︷︷ ︸

(i)

+ ξF T ·Div

[
∂L

∂F

] (D.7)

(1 :
∂ξ

∂X
)L = Div

[

ξL1

]

− ξ · ∇XL

= Div

[

ξL1

]

− ξ ·

{
∂L

∂X
+

∂L

∂ϕ
F +

∂L

∂v
∇Xv

︸ ︷︷ ︸

(ii)

+
∂L

∂F
: ∇XF

︸ ︷︷ ︸

(i)

}

.
(D.8)

Due to compatibility, which induces the following relation for the material gradient of the
deformation gradient, ∇XF = F a

A,B = F a
B,A, the terms indicated by (i) are eliminated.

Turning now to the third line of (D.6), recall that the partial time derivative of the function
ζ coincides with its total time derivative at fixed material position, ∂ζ/∂t = ∂ζ/t|X fixed.
Then, integration by parts with respect to time provides

(
∂η

∂t
− F

∂ξ

∂t
− v

∂ζ

∂t
) ·
∂L

∂v
=

∂

∂t
(η ·

∂L

∂v
) − η ·

∂

∂t

[
∂L

∂v

]

−
∂

∂t
(ξ · F T ∂L

∂v
) + ξ ·

∂

∂t
F T ∂L

∂v
︸ ︷︷ ︸

(ii)

+ ξF T ·
∂

∂t
(
∂L

∂v
)

−
∂

∂t
(ζv ·

∂L

∂v
) + ζ

∂

∂t
v
∂L

∂v
+ ζv ·

∂

∂t
(
∂L

∂v
)

(D.9)

∂ζ

∂t
L =

∂

∂t
(ζL) − ζ

∂

∂t
L =

d

dt

∣
∣
∣
X fixed

(ζL) − ζ
d

dt

∣
∣
∣
X fixed

L

=
∂

∂t
(ζL) − ζ

{
∂L

∂t
+

∂L

∂ϕ
· v +

∂L

∂v
·
∂

∂t
v +

∂L

∂F
:
∂

∂t
F

}

.

(D.10)
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The components labeled by (ii) cancel out due to the compatibility-like identity (4.2),
∇Xv = ∂v/∂X = ∂F /∂t. Using the same reasoning, the final addend of (D.10)2 can be
expressed by

∂L

∂F
:
∂

∂t
F =

∂L

∂F
:
∂

∂X
v = Div

[

ζ

(

−v
∂L

∂F

)]

− ζv · (−Div

[
∂L

∂F

]

). (D.11)

Rearranging all the terms, the variation H∗ of the action functional can be written in the
compact format

H∗ = H + ǫ

∫ t2

t1

∫

B

[
η − ξF T − ζv

]
·

{
∂L

∂ϕ
− Div

[
∂L

∂F

]

−
∂

∂t
(
∂L

∂v
)

}

+

{

Div

[

η
∂L

∂F

]

+
∂

∂t
(η ·

∂L

∂v
)

}

+

{

Div

[

ξ(L1 − F T ∂L

∂F
)

]

+
∂

∂t
(ξ · (−F T ∂L

∂v
))

}

+

{

Div

[

ζ(−v
∂L

∂F
)

]

+
∂

∂t
(ζ(L− v ·

∂L

∂v
))

}

dV dt.

(D.12)

This equation in turn is expressed in the short cut notation

H∗ = H + ǫ

∫ t2

t1

∫

B

Q · ELϕ +
∂

∂(X , t)
E dV dt (D.13)

in terms of the characteristic Q and the spatial Euler-Lagrange equation ELϕ

Q =
[
η − ξF T − ζv

]
and ELϕ =

∂L

∂ϕ
− Div

[
∂L

∂F

]

−
∂

∂t
(
∂L

∂v
) (D.14)

as well as the current or flux E with space-time derivative

∂

∂(X , t)
E = Div

[

η
∂L

∂F

]

+ Div

[

ξ(L1 − F T ∂L

∂F
)

]

+ Div

[

ζ(−v
∂L

∂F
)

]

+
∂

∂t
(η ·

∂L

∂v
) +

∂

∂t
(ξ · (−F T ∂L

∂v
)) +

∂

∂t
(ζ(L− v ·

∂L

∂v
))

(D.15)

which basically establishes the last three lines of equation (D.12). From the current E an
additional quantity C can be extracted denoted the space-time energy-momentum tensor,
see e.g. Maugin [99], Zielonka [191],

C =







(L1 − F T ∂L

∂F
) (−v

∂L

∂F
)

(−F T ∂L

∂v
) (L − v ·

∂L

∂v
)






. (D.16)

Based on equation (D.12) it is now straightforward to adopt Noether’s reasoning. Her
first theorem states that if the action functional H is invariant with respect to the given
transformations, i.e. H = H∗, then there exists a strict conservation law. The invariance
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condition implies that the integrand on the right hand side of (D.12) has to vanish iden-
tically. Since the system is assumed to be balanced in the sense, that the Euler-Lagrange
equation is satisfied, ELϕ = 0 , the space-time derivative of the current E has to be equal
to zero as well inducing the strict conservation laws

∂

∂(X , t)
E = 0 . (D.17)

Hence, the current E itself has to be constant. Condition (D.17) governs three cases:

(i) ξ = 0 , ζ = 0 and η = const.
As η is constant, it is not affected by the respective derivatives and can be factored
out. The remaining equation is the spatial Euler-Lagrange equation (4.19) or, by
substitution of the Lagrangian density L, (4.21),

− Div

[
∂L

∂F

]

=
∂

∂t
(
∂L

∂v
) or DivP = ρ0

∂

∂t
v (D.18)

without source term which in the former representations has been established by
the physical volume forces γ̄0.

(ii) η = 0 , ζ = 0 and ξ = const.
Since ξ is constant, it can be factored out of the derivatives. This scenario results in
the material Euler-Lagrange equation (4.28) or, by substitution of the Lagrangian
density L, (4.31),

Div

[

−L1 + F T ∂L

∂F

]

=
∂

∂t
(−F T ∂L

∂v
) or DivΣ =

∂

∂t
P . (D.19)

Again, the resulting balance is a strict conservation law without source term as the
configurational or inhomogeneity force Γ̄0 does not enter the equation.

(iii) η = 0 , ξ = 0 and ζ = const.
Finally, for constant values of ζ , the procedure ends up with the temporal Euler-
Lagrange equation (4.42) or, by substitution of the Lagrangian density L and some
straightforward manipulations, (4.44),

Div

[

v
∂L

∂F

]

=
∂

∂t
(L −

∂L

∂v
· v) or v ·DivP = ρ0v ·

∂

∂t
v (D.20)

with ∂L/∂t = dL/dt|X fixed being obvious. Observe that this balance equation a
priori does not contain any source term as the phenomena of growth and resorption
as well as ageing have been excluded, cf. Section 4.2.5 for further comments.
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E. Dual Variational Formulation of Truss Structures

Recall equation (5.50) for the variation of the energy functional

δΠ = 0 ⇐⇒
nb∑

e=1

[

(P l̇ + Σ L̇)A
]

= 0. (E.1)

Substitution of the rates (5.48), i.e. L̇ = N(Ξ̇2 − Ξ̇1) and l̇ = n(ξ̇2 − ξ̇1), yields

nb

A
e=1

{

[
ξ̇1

ξ̇2

]T [
−n

n

]

PA +

[
Ξ̇1

Ξ̇2

]T [
−N

N

]

ΣA} = 0 (E.2)

with the assembly operator A accounting for the connectivity of the truss structure.

With the objective of applying a Newton-Raphson iteration scheme, the consistent lin-
earization of (5.51) needs to be evaluated. Based on (E.2) the linear increment reads

∆(δΠ) =
nb

A
e=1

[

(ξ̇2 − ξ̇1)
T{∆Pn + P∆n}A + (Ξ̇2 − Ξ̇1)

T{∆ΣN + Σ∆N}A
]

(E.3)

displaying the typical split into a material and geometric part. The material tangent term
is governed by the increments of the stress measures P and Σ

∆P = P,F ∆F = P,F (L−1∆l − FL−1∆L)

= P,F L
−1

[
nT (∆x2 −∆x1)− FNT (∆X2 −∆X1)

]

∆Σ = Σ,F ∆F = Σ,F (L−1∆l − FL−1∆L)

= Σ,F L
−1

[
nT (∆x2 −∆x1)− FNT (∆X2 −∆X1)

]
.

(E.4)

The increments of the deformation gradient and the spatial and material lengths are
defined in analogy to the rates (5.47) and (5.48). ∆X i, ∆xi denote the increments of the
material and spatial coordinates of the truss joints. The geometric parts arise form the
non-linear geometry of the structure. The increments of the direction vectors are

∆n = ∆
x2 − x1

l
= ∆

x2 − x1

|x2 − x1|
=

1

l
(1 − nnT )(∆x2 −∆x1)

∆N = ∆
X2 −X1

L
= ∆

X2 −X1

|X2 −X1|
=

1

L
(1 −NNT )(∆X2 −∆X1).

(E.5)

Substitution of these intermediate results into the linearization (E.3) yields

∆(δΠ) =
nb

A
e=1

{ (ξ̇2 − ξ̇1)
T

[
P,F A

L
nnT +

PA

l
g

]

(∆x2 −∆x1)

+ (ξ̇2 − ξ̇1)
T

[

−
P,F A

L
FnNT

]

(∆X2 −∆X1)

+ (Ξ̇2 − Ξ̇1)
T

[
Σ,F A

L
NnT

]

(∆x2 −∆x1)

+ (Ξ̇2 − Ξ̇1)
T

[

−
Σ,F A

L
FNNT +

ΣA

L
G

]

(∆X2 −∆X1) }

(E.6)
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where the abbreviations g = (1 − nnT ) and G = (1 −NNT ) have been introduced.
Rearranging the terms and using the relation F = l/L, one ends up with the expression

∆(δΠ) =
nb

A
e=1

{

[
ξ̇1

ξ̇2

]T(
P,F A

L

[
nnT −nnT

−nnT nnT

]

+
PA

l

[
g −g

−g g

]) [
∆x1

∆x2

]

+

[
ξ̇1

ξ̇2

]T
P,F Al

L2

[
−nNT nNT

nNT −nNT

] [
∆X1

∆X2

]

+

[
Ξ̇1

Ξ̇2

]T
Σ,F A

L

[
NnT −NnT

−NnT NnT

] [
∆x1

∆x2

]

+

[
Ξ̇1

Ξ̇2

]T(
Σ,F Al

L2

[
−NNT NNT

NNT −NNT

]

+
PA

l

[
G −G

−G G

]) [
∆X1

∆X2

]

}.

(E.7)

From this equation the element stiffness matrices are obtained with the split into the
material tangent terms

ke,mat
ss =

P,F A

L

[
nnT −nnT

−nnT nnT

]

, ke,mat
sm =

P,F Al

L2

[

−nNT nNT

nNT −nNT

]

ke,mat
ms =

Σ,F A

L

[
NnT −NnT

−NnT NnT

]

, ke,mat
mm =

Σ,F Al

L2

[

−NNT NNT

NNT −NNT

] (E.8)

and the geometric contributions

ke,geo
ss =

ΣA

L

[
g −g

−g g

]

, ke,geo
mm =

ΣA

L

[
G −G

−G G

]

. (E.9)

The geometric terms only appear for the purely spatial and material subproblems. Upon
assembly, the stiffness matrix of the whole truss structure is given by

K =
nb

A
e=1

[
ke,mat

ss + ke,geo
ss ke,mat

sm

ke,mat
ms ke,mat

mm + ke,geo
mm

]

. (E.10)

Due to the variational structure of the formulation, the tangent operator is symmetric.
This can easily be proven via

Σ,F A

L
=

(ψ − FP ),F A

L
=

(ψ,F −P − FP,F )A

L
= −

P,F Al

L2
. (E.11)

With relations (5.51) for the residual and (E.11) for the stiffness matrix at hand, the
overall system of linear equations can be written in the standard format (5.52).
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