
Faculty of Computer Science
University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Student Research Project No. 2372

Visualization of Polarization
Domains in Ferroelectric

Materials

Katrin Scharnowski

Course of Study: Computer Science

Examiner: Prof. Dr. Thomas Ertl

Supervisor: Dipl.-Inf.Michael Krone

Commenced: April 9, 2012

Completed: October 9, 2012

CR-Classification: I.3.7, I.3.8, J.2

Contents

List of Figures II

List of Tables III

List of Listings III

1 Introduction 1

2 Data Processing and Feature Extraction 5
2.1 Theoretical Background . 5
2.2 Data Basis . 8
2.3 Extracting the Vector Field . 12
2.4 Extracting Domains . 15
2.5 Locating Critical Points by Calculating the Topological Degree 17

3 Visualization 19
3.1 GPU Glyph Ray Casting . 19
3.2 Direct Volume Rendering . 24
3.3 Line Integral Convolution (LIC) . 28
3.4 Combining Arrow Glyphs and Isosurfaces 34

4 Results and Discussion 37
4.1 Performance of the Implementation . 37
4.2 Atom Movement over Time . 38
4.3 Visualization of Domains . 44
4.4 Future Work . 53

5 Summary 57

Bibliography 59

A Appendix 63
A.1 Task description SciVis Contest 2012 . 63

I

List of Figures

1.1 A schematic hysteresis loop of a generic ferroeletric. 2

2.1 Reorientation of a dipole moment by applying an external field. 6
2.2 The three phenomenons resulting in polarization. 7
2.3 The cell deformation in the four phases of barium titanate. 9
2.4 Cubic and tetragonal phase of barium titanate. 10
2.5 Magnitude of the atom displacement. 12
2.6 Averaging atom positions using different time windows. 13
2.7 Magnitude of the atom displacement using different time ranges for aver-

aging the position. 14
2.8 Relation of atom displacements as measurement for cell symmetry. 15
2.9 Texture slices of different scalar fields extracted from the vector field. . . . 17

3.1 Dipole glyph and the adjustable visualization parameters. 20
3.2 A summary of basic glyph types. 21
3.3 The arrow glyph type and the associated parameters. 22
3.4 Determining the pixel size for a point sprite. 23
3.5 Extracting an isosurface using ray marching. 26
3.6 The texture coordinates stored in the color values. 27
3.7 LIC applied to 3D vector fields. 28
3.8 The different paths used in DDA convolution and LIC. 30
3.9 The DDA approach and the LIC algorithm applied to a procedural circular

vector field. 30
3.10 Projection of vectors onto the surface. 32
3.11 Comparison of LIC with and without vector projection. 33
3.12 Texture slices illustrating the density grid. 36

4.1 Visualization of a unit cell using GPU ray casting. 39
4.2 The displacement field of all atoms over the whole timespan of 10 ns . . . 40
4.3 Rendering of the displacement field using arrow glyphs. 41
4.4 Rendering of atoms’ displacement field. 42
4.5 Rendering of the displacement field using arrow glyphs. 45
4.6 Isosurfaces based on vector magnitude. 46
4.7 Isosurfaces based on curl magnitude. 47
4.8 Rendering of the displacement field using LIC. 48
4.9 Isosurfaces based on a density grid using coloring by vector orientation. . 50
4.10 Isosurfaces based on a density grid using coloring by vector magnitude. . 51

II

4.11 Isosurfaces based on a density grid using LIC. 52
4.12 Rendering of the time series using isosurfaces based on the density map. . 54

List of Tables
4.1 The performance of the calculations necessary for the time dependent data. 37
4.2 The performance of rendering. 38

List of Listings

2.1 Example of the ASCII DCD file format used in the SciVisContest2012 . . 11

3.1 Basic convolution algorithm in GLSL . 31

III

1 Introduction
Computational material science is an emerging research field which combines the method-
ology and theory of material science with computer aided simulation techniques and
algorithms. High-performing computational resources can be obtained more and more
easily. Molecular Dynamics (MD) particularly benefit from this, as well as from the
development of new simulation techniques. The output of structured data also allows
for the application of suitable visualization techniques. This is crucial for exploratory
analysis, especially when dealing with large sets of particles or volumetric data.
Since the discovery of the first material showing ferroelectric behavior in 1921 by

Valasek [Val21], ferroeletrics have been the matter of extensive studies in material science.
Ferroelectric materials have two defining properties. A dielectric material is called
ferroelectric, if it exhibits spontaneous polarization, and, additionally, this polarization can
be reversed by applying an external electric field [RDL+07]. Figure 1.1 illustrates that
the development of induced polarization in a ferroelectric material follows a hystereses
loop, rather than being linear. This behavior is crucial for a lot of applications based
on ferroelectrics, since it enables switching between two different states by changing
the direction of the electric field [RDL+07]. The term "ferroelectric" was established by
analogy with ferromagnetic materials, which where already widely known and showed the
same ability to switch between two states of differently oriented polarization.
In most ferroelectrics a phase transition from a paraelectric to a ferroelectric state

takes place when the material is exposed to decreasing temperature. This transition often
corresponds to a distortion of the atomic displacement, relative to the high symmetry
reference state in the paraelectric phase. The temperature at which the transition happens
is called Curie temperature.

According to [Uch05], a variety of applications for ferroelectric materials can be thought
of. Among others, the possibility to produce capacitors and memory devices is mentioned.
High-permittivity capacitors are the major application for ferroelectric materials. The
application of ferroelectric materials as memory devices has been investigated only recently.
Conventional memory devices use SiO2 films, which fail to maintain sufficient capacity
with decreasing area. Due to their high dielectric constant at room temperature, several
ferroelectric materials are promising alternatives for the fabrication of both volatile and
non-volatile memory devices. Further applications mentioned in [Uch05] and elsewhere
(see e.g. [Wad00]) include pyroelectric sensors, electro-optic devices, electrostrictive
transducers or PTC thermistors.

The simulation of the movements of atoms and molecules through MD has been widely
established and is applied in various areas, such as nanotechnology, biochemistry or
biophysics. Here, atoms are represented by particles and their position in every time

1

1 Introduction

Figure 1.1: A schematic hysteresis loop of a ferroeletric (cf. [RDL+07, Wad00, WDH74]).
Point A represents a generic starting point with randomly oriented domains
and overall zero polarization. When applying an electric field, the dipoles start
orienting according to the field until polarization of the material is saturated
(point B). If the field is then reversed until it reaches zero, the material still
exhibits the spontaneous polarization Ps (point C). The field is then completely
reversed until point D is reached and the polarization of the material is saturated
again. If the field is then raised again until the zero field is reached (point G)
the material again possesses spontaneous polarization which, however, defers
from the polarization exhibited in point C. The material, therefore, possesses
two different states of spontaneous polarization. The state of the material can
be switched by reversing the field back and forth.

step is computed by numerically solving Newton’s equation of motion. This allows for
insight into the structure and the properties of the examined material on a molecular
level, which would be difficult or even impossible using experimental methods. Recent
research allows for the simulation of phase transitions of ferroelectric materials when
exposed to a graduate temperature decrease. This enables gaining detailed knowledge
about the development of the size and structure of polarization domains.
The visualization of phase transitions, or polarization domains in general, is a rather

novel research field. Recent work of Grottel et al. [GBM+12] shows how a combination
of glyph based visualizations and isosurfaces derived from the original data can help
understanding electrostatic properties of metal oxides.
The topic of the IEEE SciVis Contest 2012 is the detection of phase transitions in

ferroelectric materials. The SciVis contest mainly targets computer scientists, who are
not expected to have expert knowledge about the material scientific background. Hence,
a list of several succeeding tasks was provided on the contest home page, in order to give

2

clues and some reference points to start with. The first task suggests to extract a vector
field by calculating the temporal displacement of all titanium atoms. Regions which
contain vectors of similar orientation should than be defined as domains. Furthermore
the extraction of domain boundaries by the means of standard vector field operations is
suggested. Here, zero lines are important, since these are the regions were the polarization
changes and, therefore, vanishes. These domains, as well as other vector field singularities
(critical points) should than be visualized. Additionally, a material scientific task was
provided. Here, the participants were asked to use their visualization to investigate
whether the phase transition occurs globally or starts locally and is than spreading
through the rest of the material. The tasks can be found in Appendix A.1.
The goal of this work is to extract a vector field off the data provided for the SciVis-

Contest 2012 which indicates polarization. Furthermore, to develop a visualization which
helps understanding how the shape and size of polarization domains evolve over time. It
should also allow for the identification of the phase transitions. Therefore, the tasks of the
contest are to be addressed and used as a basis. However, in this student research project,
the task description was only used as a lose orientation rather than following it exactly.
Based on the provided data a combination of a glyph based visualization and semi-

transparent isosurfaces was implemented. It allows identifying some aspects of the phase
transitions, as well as the movement and reshaping of domains. The results have been
submitted to the IEEE visualization contest [SKBS12]. It has been awarded as winning
submission to the contest and received outstanding marks by the reviewers.
The rest of this document is structured as follows:

Chapter 2 – Data Processing and Feature Extraction: This chapter starts by
providing a minimal theoretical background. Then the data provided by the SciVis-
Contest 2012 is described. Furthermore, the data processing and the derivation of
the domains are adressed.

Chapter 3 – Visualization: In this chapter basic visualization techniques, which are
combined later, are described. This includes GPU glyph raycasting, direct volume
rendering and Line Integral Convolution (LIC). Additionally, possible issues when
combining these methods are addressed.

Chapter 4 – Results and Discussion: In this chapter results are presented and dis-
cussed, which are obtained by applying basic visualization methods to the data
extracted before. Furthermore, potential future work is pointed out.

Chapter 5 – Summary: This chapter summarizes the document.

3

2 Data Processing and Feature
Extraction

The data provided for the IEEE visualization contest does not contain electrostatic dipoles.
Therefore, a way has to be found to approximate the polarization of the material by only
using the provided atom positions. In order to extract a vector field from this data, a
basic understanding of the theoretical background is necessary. Another challenge is the
strong thermal vibration of the individual atoms. Finally, domains have to be defined
and a way has to be found to extract them from the vector field.

2.1 Theoretical Background
In [CR08] a dielectric material is defined as a material which exhibits a dipole structure.
This means that there are oppositely charged entities present on a molecular or atomic
level. This separation of positive and negative electric charge can be represented by field
vectors or dipole moments as illustrated in Figure 2.1a. The magnitude of a dipole’s field
vector can be calculated by the the product of distance d between the oppositely charged
particles and the amount of charge q.

p = qd (2.1)

By applying an electric field to a dielectric material, the dipoles can be redirected in the
direction of the field. This process is called polarization and is illustrated in Figure 2.1.

The mechanics which enable the polarization of a material, can be further split up into
three aspects, all of which are described in [WDH74]. Electronic polarization (Pe) only
exists while an electric field is externally applied to the material. It can theoretically
occur in every atom. It is the result of the relative displacement of the electrons’ gravity
center to the positive nucleus (cf. Figure 2.2a). Ionic polarization (Pi) only occurs in
materials which contain ionic bindings. Here, the electric field causes a displacement of
the positive and the negative ions opposite directions. This leads to a dipole moment and,
therefore, polarization (cf. Figure 2.2b). Orientation polarization (Po) can only take place
in materials that possess permanent dipoles, which are present even without an external
field being applied. This phenomenon is known as spontaneous polarization. By applying
an external electric field, the permanent dipoles can be reoriented in the direction of the
field, causing the orientation polarization (cf. Figure 2.2c). This behavior is temperature
dependent though. Since thermal vibrations counteract the alignment of the dipoles, the
polarization decreases with increasing temperature. Every dielectric material exhibits

5

2 Data Processing and Feature Extraction

(a)

Field

(b)

Field

(c)

Figure 2.1: Reorientation of a dipole moment by applying an external field [CR08]. (a)
schematically illustrates the field vector p representing a dipole. It starts at
the negatively charged pole and points towards the positively charged pole. Its
magnitude is defined by the charge q and the distance d between the two poles.
In (b) an external electrical field is applied to the dipole. Consequently the dipole
starts reorienting according to the field direction E . (c) shows the resulting
orientation after the field has been applied.

at least one of those components. The overall polarization of the material is, therefore,
determined by the sum of all three components:

P = Pe + Pi + Po (2.2)

Ferroelectrics are a group of materials which exhibit spontaneous polarization. Addi-
tionally, this polarization can be switched between two states by applying an external field.
One extensively studied group of ferroelectrics are perovskite oxides. Ghosez et al. [Gho02]
describe their structure as a characteristic composition ABO3. In this compound A and B
represent generic particles of positive charge. These particles are opposing the negatively
charged O atoms. The ideal perovskite structure is a centrosymmetric cubic structure
with the A atoms being the corners and one O atom at the center of each face.

Barium titanate (BaTiO3) is a ferroelectric oxide which has a perovskite structure at
high temperature. This state is known as the cubic phase. If exposed to a temperature
decay, it undergoes three phase transitions, each of which leads to a new ferroelectric
state. A detailed description of the phase transitions, as well as the ferroelectric phases
can be found in [KLBC93]. In all known ferroelectric crystals, the permanent dipole is
the result of the positioning of the ions in the unit cells. Here, the displacement of the
atoms causes a distortion of the symmetry present in the paraelectric phase [RDL+07].

The phase transitions in BaTiO3 are temperature dependent. Above the Curie temper-
ature, 393K, BaTiO3 possesses a typical cubic perovskite structure. Since the cells are
centrosymmetric, there is no spontaneous polarization and the material is paraelectric. If
the temperature is decreased, a change from the paraelectric cubic phase to the ferroelec-
tric tetragonal phase occurs. The Ti atom then moves away from the cell center parallel

6

2.1 Theoretical Background

+ +

No field applied Field

(a)

(b)

(c)

Figure 2.2: The three phenomenons resulting in polarization (taken from [WDH74]). (a)
illustrates electronic polarization by the displacement of the electron cloud caused
by the electric field. Ionic polarization can be seen in (b). It is caused by a
rearrangement of ions. The third phenomenon is illustrated in (c). It shows
orientation polarization, which only occurs in materials with permanent dipoles.
By applying the electric field these dipoles get reoriented according to the field
direction.

7

2 Data Processing and Feature Extraction

to the [100] axis. At the same time, the cell is elongated in this direction. At 278K, the
Ti atom movement, as well as the cell elongation, follow the [011] axis and the material
transforms into another ferroelectric state with orthorombic structure. Finally, at 183K,
the last transition takes place and the resulting symmetry of the Ti movement and the
cell elongation is rhombohedral.
There are different approaches to identify the different phases in BaTiO3. According

to Rabe et al. [RDL+07], the distortion is dominated by the movement of the Ti atoms
relative to the oxygen atoms. In [KLBC93], on the other hand, the overall cell elongation
along different axes is taken into account. In Figure 2.3, the development of the cell shape
is illustrated for all phases.
Even when there is no electric field present, the dipoles of a ferroelectric interact

with another. According to [WDH74], adjacent dipoles show a tendency to align in the
same direction. This gives rise to the formation of ferroelectric polarization domains,
i.e. clusters of dipoles exhibiting similar orientation. The application of an electric field
particularly leads to a growth of domains which are aligned in the direction of the field.
Since the permanent dipoles originate from the distortion of the cell symmetry in the
tetragonal phase, the rise of large domains could be used as indication for the transition
from the cubic to the tetragonal phase.

2.2 Data Basis
In order to fulfill the visualization tasks of the SciVis Contest 2012 (see Appendix A.1),
several data sets were provided on the contest homepage. The data set contains the
results of MD simulations, which use potential models based on ab-initio calculations. It
consists of a block of 50×50×50 unit cells of BaTiO3 and a total of 625000 atoms. For
every atom, the atom type and the Cartesian coordinates are provided. Additionally,
the instantaneous velocity of all atoms was given. The atom positions are in Ångström
(Å), velocities are in Å/fs. In general, the information contained in the data sets is time
dependent. The simulation was executed over a time span of 10.0 ns in total and a history
snapshot was taken every 20 ps resulting in 500 consecutive frames. The simulation
contains the transition from the paraelectric cubic phase to the ferroelectric tetragonal
phase, which is achieved by decreasing the temperature gradually.

In addition to the files containing the whole the time series, two separate time steps, one
at the beginning of the series, and one relatively at the end of the series, were provided.
Apparently, these two files should be used to achieve a before/after comparison for the
material with regard to the phase transition. The data was provided using two different
ASCII file formats. The VTK file format used by the visualization software Paraview1

and the DCD file format, which can be read e.g. by VMD2. The complete time series was
given in both formats, however the two individual time steps were only provided in the

1http://www.paraview.org/
2http://www.ks.uiuc.edu/Research/vmd/

8

http://www.paraview.org/
http://www.ks.uiuc.edu/Research/vmd/

2.2 Data Basis

Ba

O
Ti

(a) Cubic phase (b) Tetragonal phase

(c) Orthorombic phase (d) Rhombohedral phase

Figure 2.3: The cell deformation in the four phases of barium titanate (c.f. [KLBC93]). The
unit cell has a perovskite structure with eight Ba atoms being the corners. In
the (paraelectric) cubic phase the unit cell is centrosymmetric. In the phases
illustrated in (b), (c) and (d) the material is ferroelectric. In the tetragonal phase
the cell is elongated alongside the [001] axis. In the orthorombic phase the cell
is elongated alongside the [011] axis laying inside one of the cube sides. In the
rhombohedral phase the cell is deformed according to the [111] axis.

9

2 Data Processing and Feature Extraction

3.98Å

3
.9
8
Å

Ba

TiO

(a)

3.98Å

4
.0
3
Å

0.09Å

0.09Å

0.06Å

0.06Å

(b)

Figure 2.4: Cubic and tetragonal phase of barium titanate. In the tetragonal phase, the
titanium atom starts shifting away from its original position, which creates a
permanent dipole moment. The orientation of the resulting dipole moment is
shown in blue.

DCD format. Thus, for simplicity, in this student research project, the data sets given in
the DCD format were used.
In this file format, every time step contains of two commentary lines followed by four

columns of data for every atom, respectively. The first commentary line contains the
number of atoms, while the second commentary line contains additional information
regarding the simulation, like e.g. the total energy. The first column contains the atom
type and the other three columns contain x-, y- and z-values of the atom position. An
example of the file format is given in Listing 2.1.
Since the framework used to implement the visualization, MegaMol [GRE12], uses

streaming for large data sets, the atom positions were written to a simple binary format
in order to reduce I/O operations to a minimum. All time independent information was
computed beforehand and written to separate binary files. This includes the atom types
as well as the unit cells and the connectivity information obtained from their definition.
The atom types were decoded in char values (one char per atom), before being written
into a separate file.
The connectivity of the crystal structure defined by the unit cells can be obtained

in advance as well, since it does not change over time. Here, a unit cell was defined
containing four Ba atoms in the corners, one Ti atom in the center and one O atom in
the middle of every face, as illustrated in Figure 2.3a. In order to find all atoms belonging
to one cell, a simple neighborhood search was executed for all Ti atoms. Since the atom
types of all atoms are known, the 8 nearest Ba atoms and the 6 nearest O atoms could

10

2.2 Data Basis

625000
i = 4500 , time = 900.000 , E = -497481.4576749648

O 2.0412313295 1.8817370173 -0.0745821260
O 2.0357246595 1.8648101554 3.9490123179
O 1.9401344984 2.0561252788 7.8955649008
O 2.0938016553 2.0005280326 11.8685820573
O 1.8947569302 2.0271176774 15.9288616358
O 2.0511723827 2.0951983376 19.9188875456
O 1.9182841173 1.9796873200 23.8144226579
O 1.9659986184 2.0706196003 27.8294866854
O 2.0429181287 1.9647054977 31.9209885780
O 1.9892337415 1.9560424318 35.8655190735
O 2.0700183761 2.1064522698 39.8478397430
...
...

Listing 2.1: Example of the ASCII DCD file format used in the SciVisContest2012. The
first line contains the number of atoms. It is followed by a commentary line
containing information concerning the simulation. Then the atom type and the
coordinates are given in four columns for every atom, respectively.

easily be found for every Ti atom. Since the atoms roughly remain in their initial spatial
order, these unit cells are feasible over the whole time series.
Additionally the cells were sorted according to the position of the Ti atom associated

with every cell. Sorting the cells is necessary for operations which require the neighborhood
of every cell to be known. The sorting is considerably simplified by the fact, that the whole
data set is roughly axis aligned. First, all Ti atoms are reordered by the x-coordinate
of their position. Subsequently, the data set can be divided into slabs aligned on the
x-axis by taking 2,500 consecutive cells into account. Now, all Ti atoms contained in one
slab are sorted by their position’s y-value. This step results in scan lines. Finally, all
Ti atoms in one scan line can be sorted by their position’s z-value. The unit cells were
then enumerated and written to a binary file as well. Here, one line per cell was written,
containing the index of the cell as well as the indices of all atoms contributing to that
cell. First, the indices of the eight barium atoms are given, followed by the six oxygen
atoms. The last index is the titanium atom. Consequently, both the atom types and the
unit cells can then be loaded independently of the usual streaming process.
As shown in Figure 2.5, the overall movement of the atoms is superposed by a strong

thermal vibration. This is expected behavior in an environment like this, however, it
is much more difficult to extract the local displacement under this circumstances. In
order to filter the thermal vibration, the atom positions were averaged using a sliding
time window, thereby producing a sequence of time-averaged positions for each atom.
This should reduce the noisy oscillation of the atoms which might superpose the more
subtle atom displacements causing the polarization. In order to find an appropriate time
window several ranges were tested. An averaging of less than ten frames (200 ps) provided
too little smoothing while an averaging over more than 35 frames (700 ps) caused too
strong smoothing. The average atom displacement in each frame when using different

11

2 Data Processing and Feature Extraction

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 M
ag

ni
tu

de
 o

f t
he

 D
is

pl
ac

em
en

t/Å

t/ps

Ba atoms
O atoms
Ti atoms

Figure 2.5: Magnitude of the atom displacement. The displacement has been computed
over 1 frame (20 ps). The plot illustrates the average value of the displacement
magnitude of all atoms per frame. The average has been computed separately
for the three different atom types. The oxygen atoms are obviously the most
mobile atom type. Their movement per frame even exceeds the expected length
of the dipole moment in the fully developed tetragonal phase. To avoid that this
vibration superposes the dipole moment, the atom positions have to be averaged
over a certain time window.

time windows is illustrated in Figures 2.7 and 2.6. Consequently, a time window of 25
frames is used, which results in a time series of 475 frames.

2.3 Extracting the Vector Field
Ferroelectric polarization domains are clusters of dipoles which exhibit a similar orientation.
The overall goal of the visualization is to illustrate the development (e.g. the size, the
orientation of the contained dipoles) and movement of these polarization domains over
time. This should allow for the identification of the phase transition from the cubic to the
tetragonal phase, since the domains origin from the local displacement of the titanium
atom in the tetragonal phase.

Exact electrostatic dipoles are not obtainable in this case, therefore, an approximation
for the polarization has to be found. The approximation basically has to meet two
requirements. There have to be identifiable domains towards the end of the time series
which are not present at the beginning. Additionally, the vector field has to imply
polarization. Since the displacement of the titanium atom is a strong indicator for the
polarization, calculating the relative displacement of the titanium atom to the cell center
is used as a starting point.

12

2.3 Extracting the Vector Field

(a) No averaging (b) 5 frames

(c) 10 frames (d) 25 frames

(e) 35 frames (f) 50 frames

Figure 2.6: Averaging atom positions using different time windows. Here, the effect on the
temporal displacement field of titanium atoms over 25 frames is illustrated. The
vectors have been normalized for clarity. Using a time window larger than 25
frames only leads minor changes in the distribution of the vectors.

13

2 Data Processing and Feature Extraction

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 M
ag

ni
tu

de
 o

f t
he

 D
is

pl
ac

em
en

t/Å

t/ps

No averaging
5 frames

10 frames
25 frames
35 frames
50 frames

Figure 2.7: Magnitude of the atom displacement (over 1 frame) using different time ranges
for averaging the position. The plot illustrates, that averaging over more than 25
frames does not lead to significantly weaker oscillation.

If idealized cells are assumed, the orientation of the polarization can be calculated by
computing the displacement of the positive and the negative centroid of each cell. The
position of the positive centroid is the average of the positions of the barium atoms and
the titanium atom. The position of the negative centroid can be obtained by averaging
over the positions of all oxygen atoms. Unfortunately, the vector field obtained by this
method does not exhibit domains consisting of more than a few vectors. Particularly,
there is no growth of these domains towards the end of the series.

It is possible that some of the atoms distort the results, since idealized cells as described
above are usually not to be expected and, therefore, exact dipole orientations cannot be
obtained. Concentrating on selected atom types might give an indication of the orientation
of the polarization. In order to test several approaches, three vector fields were extracted.
One vector field contains the displacement of the titanium atom and the centroid of all
oxygen atoms. The second vector field contains the displacement of the titanium atom
from the cell center which, in this case, is defined by the eight barium atoms in the cell
corners. The third vector field solely uses the temporal displacement of the titanium atoms
over a fixed time range. Please note, that, in an idealized cell structure, the orientation
of all of these vector fields would be a feasible approximation.

The first two vector fields mentioned exhibit behavior similar to the vector field based
on all atoms in the unitcell. The domains are relatively small (five to six vectors) and
do not change significantly in size or shape. The third vector field, based solely on the
temporal displacement of the titanium atoms, shows a noticeable development of domains
through the whole time series. Since this vector field contains absolute displacements, it is
naturally superposed by any deformation the material exhibits. This includes a noticeable
shrinking of the whole structure as the temperature decreases. However, the displacements

14

2.4 Extracting Domains

0.09Å

0.09Å

0.06Å

d
n
= 1.865 Å

d
f
= 2.165 Å

Figure 2.8: Relation of atom displacements as measurement for cell symmetry. The relation
of the two distances dn and df can be seen as a measurement of the cells
symmetry. If their difference is significantly high in one direction in comparison
with the other directions, the cell has probably developed a permanent dipole in
that direction.

of the titanium atom are the strongest indicator for the transition from the paraelectric
to ferroelectric phase. This vector field definition is also mentioned explicitly in the task
description of the IEEE Visualization Contest. Thus, the temporal displacement field is
used subsequently.

Another approach to identify the phase transitions is to concentrate on the cell elongation
in the direction of one axis. This elongation goes along with the transition from the cubic
to the tetragonal phase. One possibility to identify elongated cells is to compare the
distances of the neighboring barium atoms of one unit cell. However, doing so does not
deliver useful results, in which the distances along one axis are noticeably longer than
the others. This might be a result of the averaging, since the elongation of the cuboid
defined by the eight barium atoms is rather small (in theory, 0.05Åin the fully developed
tetragonal phase).
An alternative method uses the relation of the distances from the titanium atom to

two opposing oxygen atoms, respectively (see Figure 2.8 for an illustration). This relation
can be seen as a measurement for the symmetry of the cell. It is computed for all three
axes of the unit cell and the maximum is taken into account. This maximum should allow
for the identification of the elongation of the cell, since it is much more prominent that
the very subtle elongation of cuboid defined by the barium atoms. However, using this
approach it was not possible to clearly identify the elongation of cells.

2.4 Extracting Domains
In order to extract domains which deliver indications about the material’s polarization,
clusters of vectors with similar orientation have to be found.

15

2 Data Processing and Feature Extraction

To allow for better handling of the data, a uniform grid containing the vector field was
extracted. There are several methods to create the uniform grid which mainly differ in
the used interpolation method. In this case, a Gaussian splatting algorithm according
to [KSES12] was used. Here, a Gaussian kernel is used for each particle to represent the
density contribution at its position in space. The density of all neighboring particles is
then accumulated for each voxel together with a vector quantity. In this case, the vector
quantity was the displacement of the titanium atoms. In order to achieve appropriate
smoothing, the radius of the Gaussian kernel was globally set to 2.5 Å. That way, the
Gaussian kernel located in a unit cell slightly overlaps with the Gaussian kernels in
adjacent cells.
In the extracted vector field, areas containing similarly oriented vectors also exhibit a

high vector magnitude. Since domains contain vectors of similar or equal orientation, the
vector magnitude could, therefore, be utilized to define the domains. However, in a more
general case, this coherence cannot be expected. Therefore, a better approach would be
to take the local rotation of the vector field into account. This was done by calculating
the curl magnitude of the vector field. For a vector field F (x, y, z) the curl ∇× F can be
calculated as

∇× F =
(
∂Fz
∂y
− ∂Fy

∂z

)
ex +

(
∂Fx
∂z
− ∂Fz

∂x

)
ey +

(
∂Fy
∂x
− ∂Fx

∂y

)
ez, (2.3)

where ex, ey and ez are the unit vectors for the x-, y- and the z-axis, respectively. The
curl value is influenced by both the local vector orientation and the vector magnitude.
Consequently, a small vector magnitude leads to a smaller curl magnitude. However,
the vector orientation is the defining property for the sought domains. The vector field
was, therefore, normalized before calculating the curl, to avoid that the vector magnitude
affects the resulting scalar field. This leads to a high curl magnitude only in areas, where
the vectorfield exhibits high local rotation, i.e. where domain boundaries are located.
The curl calculation was implemented using C for CUDA. CUDA (Compute Unified

Device Architecture) is the computing engine in Nvidia GPUs, which can be accessed by
using standard programming languages. This allows executing parts of the computation
on the GPU, while taking advantage of the parallel architecture. The calculation takes
place in several steps using five CUDA kernels subsequently. First, the vector field is
normalized in order to suppress the influence of the vector magnitude on the resulting curl.
Subsequently, three kernels are executed, which each are used to calculate one component
of the curl vector using central differences to approximate the partial derivatives. Finally,
the curl magnitude is computed and sent back to the CPU.
Figure 2.9 shows a summary of the scalar fields mentioned above. Strikingly, the

curl magnitude based on the normalized vector field and the vector magnitude clearly
correspond to each other. In areas of high vector magnitude, the curl magnitude is rather
small. Subsequently, when using the term curl magnitude, the curl magnitude based on
the normalized vector field is meant.

16

2.5 Locating Critical Points by Calculating the Topological Degree

(a) (b) (c)

Figure 2.9: Texture slices of different scalar fields extracted from the vector field. In (a), the
curl magnitude without prior normalization of the vector field is shown. (b) shows
a slice textured by the vector magnitude in the data set. The magnitude roughly
corresponds to areas containing vectors of similar orientation. (c) contains the
magnitude of the curl after normalizing the vector field. When calculating the
curl based on the normalized vector field, the curl magnitude and the vector
magnitude correspond to each other. Here, the curl magnitude is especially high
in areas of little vector magnitude.

2.5 Locating Critical Points by Calculating the Topological
Degree

Locating critical points in the extracted displacement field can give hints about the
location and size of domains. In this case, critical points are vector field singularities.
Greene[Gre92] described a way of calculating roots in three dimensional functions by

recursively partitioning regions into smaller cells and discarding cells which do not contain
the root. This approach can be utilized to find first order critical points in 3D vector fields.
Here, the aim is finding cells which contain critical points by calculating the topological
degree. The topological degree indicates whether the field vanishes inside the cell. Since
critical points are points in which the vector field vanishes, the topological degree can be
used to test whether a volume contains a first order critical point.
The topological degree of a cuboid cell can be calculated as follows [Gre92]. First

the field is sampled at the eight corners of the cell. Each of the six sides of the cell is
then divided into two triangles. The values sampled before can now be used to estimate
the development of the field on the triangles. This can be done by assuming linear
interpolation. In the case of a 3D vector field, this yields the solid angle AT the vectors
v1, v2 and v3, sampled at the three corners of the triangle, are enclosing:

tan2(0.25AT) = tan(θ1 + θ2 + θ3)
4 × tan(θ1 + θ2− θ3)

4 ×

tan(−θ1 + θ2 + θ3)
4 × tan(θ1 − θ2 + θ3)

4 ,

(2.4)

17

2 Data Processing and Feature Extraction

with θ1 being the angle between the vectors v2 and v3. If the triple cross product v1 ·v2×v3
is negative, the area calculated for that triangle is taken to be negative. In order to decide
whether the volume encloses a vanishing point, the solid angles of all twelve triangles are
accumulated. If their sum is greater than 4π, and, therefore, greater than the solid angle
of the unit sphere, the volume contains a null point.
In this project, no bisection algorithm was implemented. Instead, the topological

degree was calculated for the smallest possible cell size (depending on the resolution of
the extracted uniform grid) using a straightforward CPU implementation. Additionally,
the calculation was parallelized using OpenMP (Open Multi-Processing), which allows
executing code in several threads on the CPU.

18

3 Visualization
In this chapter, basic techniques are explained, which are later combined to achieve the
actual visualization. This includes point based glyph ray casting, Line Integral Convolution
and direct volume rendering. For each of these techniques the theoretical background is
given before describing details of the actual implementation and modifications made by
the author. The implementation was done using OpenGL, GLSL and CUDA and was
embedded into the visualization framework MegaMol [GRE12].

3.1 GPU Glyph Ray Casting
Using glyph representations has been established as a standard approach to visualize large
sets of particles. A way of rendering glyphs by using programmable graphics hardware
is described in [KE04]. Here, one GL_POINT per glyph is sent to the render pipeline
and the correctly projected glyph is then created in the fragment shader. The basic
idea is to define an implicit surface, representing the glyph, by only a few parameters.
Both the position and the parameters are sent to the shader program. Based on this
information, the surface of every glyph is then shaded in the GPU. This technique was
further developed by Reina et al. [RE05] by combining several basic glyph types to a
dipole glyph. In this project GPU Glyph Ray Casting similar to the one described in
[RE05] was used.

3.1.1 Algorithm

The exact type of the surface is generic, the method can, therefore, be applied to different
glyph types without changing much of the procedure. All glyph types used in this student
research project as well as the according parameters are summarized in Figures 3.2 and
3.3. Assuming that the center point of the glyph lays at the origin, the implicit surface of
a sphere is defined byxy

z

2

− r2 = 0. (3.1)

A cylinder, oriented parallel to the x-axis, is defined by0
y
z

2

− r2 = 0. (3.2)

19

3 Visualization

Figure 3.1: Dipole glyph and the adjustable visualization parameters (taken from [RE05]).
r1 and r2 are the radii of the two spheres representing the particles. r3 is the
radius of the cylinder, l is the total length of the dipole and d is the distance
between the two particles’ midpoints. The colormap index c is used to determine
the color of the glyph.

However, additional boundary conditions are needed to clamp the sides of the cylinder
and define the boundary surfaces:1

0
0

 · ~x ≤ l

2 ,

−1
0
0

 · ~x ≥ − l2 (3.3)

The third basic glyph type, a cone, oriented parallel to the x-axis, with its tip at the
origin, can be specified by(

r

h

)
x2 − y2 − z2 = 0 (3.4)

With the boundary conditions being

x ≤ h, x ≥ 0. (3.5)

More complex glyph types can be specified by combining the implicitly defined surfaces
and setting the parameters according to the context. For instance in [RE05], a dipole
glyph consisting of one cylinder and two spheres is defined as illustrated in Figure 3.1. In
this project, basic sphere glyphs, basic cylinder glyphs and arrow glyphs, defined by a
combination of the cone and the cylinder glyph, were used.
Once the surface is defined, it is intersected with a ray cast from the eye position.

~r = λ · ~s+ ~peye (3.6)

In order to rotate the glyph, the eye position is orbited around the glyph before doing
the intersection. That way local orientation is emulated when rendering the surface.

20

3.1 GPU Glyph Ray Casting

(a) (b)

r
l

(c) (d)

r

h

(e) (f)

Figure 3.2: A summary of basic glyph types. The row on the left hand side schematically
illustrates the parameters needed to define the implicit surfaces for the different
glyph types. In the images shown on the right hand side Blinn-Phong Shading
has been applied to the surfaces.

21

3 Visualization

r

l

r x
 1.5l x 0.4

(a) (b)

Figure 3.3: The arrow glyph type and the associated parameters. The arrow glyph combines
the cylinder and the cone glyph. The overall length of the arrow and the cylinder
radius are sent to the shader program. The dimensions of the tip are then
extracted from these two parameters as illustrated in (a). In (b), BLinn-Phong
Shading has been applied to the surface.

3.1.2 Implementation

All calculations regarding the geometry of the glyph are done on the GPU. The position of
the glyph objects is transferred to the render pipeline as GL_POINTS. Further information
sent to the vertex program consists of all parameters describing the dimensions of the
glyph (see Figures 3.2 and 3.3 for a summary) as well as a quaternion specifying the
local orientation. If possible, texture coordinates are used to store the information.
Otherwise, additional vertex attribute arrays can be used. The vertex program then
does all calculations which are constant for all fragments of the glyph. This includes
the transformation of the camera position and the light position to the local coordinate
system of the glyph. Additionally, a rotation matrix is obtained from the quaternion.
However, this step is not necessary for sphere glyphs, since their reorientation does not
visually change the glyph object.

The vertex program also determines the point size necessary to enclose the whole
glyph. The point size can dynamically be set in the vertex program through the built-in
vertex shader variable gl_PointSize. In order to use this variable, it has to be enabled
beforehand in the current OpenGL context. The actual size of the point sprite is calculated
as follows: Depending on the selected glyph type, the normalized device coordinates
of the corners of the surrounding object are computed. In the case of sphere glyphs, a
bounding rectangle is sufficient. Therefore, only four corners have to be transformed in
this case. In the case of non-centrosymmetric glyph types, the local rotation has to be
taken into account as well. Thus, all other aforementioned glyph types require a bounding
cuboid, consisting of eight corners. The result are maximum and minimum values for

22

3.1 GPU Glyph Ray Casting

Figure 3.4: Determining the pixel size for a point sprite. In order to yield maximum and
minimum values for the dimensions of the point sprite, screen space coordinates
of the eight corners of the surrounding cuboid are computed. The point size is
then set according to the maximum side length defined by that coordinates.

the fragment positions the point sprite has to cover to surround the whole glyph. The
point size is then set according to those values. Figure 3.4 illustrates the calculation of
the point size for a cylinder glyph.

In the fragment program, the coordinates of the current fragment in the local coordinate
system of the glyph are calculated. This is done by transforming the screen space
coordinates to view space using the parameters of the viewport (top t, bottom b, left l,
right r), the viewport size (width w, height h) and the position of the near clipping plane
(zN). The view space coordinates can then be calculated asxy

z

V S

=

xSS
w · (r − l) · zN + l · zN
ySS
h · (t− b) · zN + b · zN

−zN .

 (3.7)

These coordinates are then transformed to object space by multiplying them with the
inverse GL_MODELVIEW matrix. Subsequently the object space position of the fragment is
transformed to the local coordinate system of the glyph, which is done by subtracting the
object space position of the glyphs pivot point.
If not using sphere glyphs, the rotation matrix calculated in the vertex shader is then

multiplied with these glyph space coordinates. Using the fragment’s and the camera’s
glyph space position the correctly rotated viewing ray can be calculated, it is then given
by

ray = normalize(fragPos− camPos). (3.8)

23

3 Visualization

In order to obtain the intersection point, different quadratic equations have to be solved,
depending on what glyph type is used. If none of these equations can be solved, the ray
did not hit any of the implicit surfaces and the fragment is discarded. Otherwise, this
yields a number of possible intersection points. To test whether an intersection point
is inside the boundaries of the glyph, different criteria can be defined according to the
glyph type. When using arrow glyphs, two quadratic equations are to be solved, which
yields two possible intersection points for the cylinder and the cone, respectively. In
order to test which of those points are feasible (i.e. inside the boundaries of the glyph),
the intersection points are first projected onto the x-axis of the glyph’s local coordinate
system. The boundary conditions of the cone and the cylinder can than be applied to the
four resulting scalar values. The intersection of the cylinder glyph can be addressed using
the same principle. When using a combined glyph type, more than one intersection point
can be feasible at the same time. For instance, feasible intersection points for both the
cone and the cylinder can be obtained, when using arrow glyphs. Therefore, a priority
order is applied to the intersection points as an additional criterion. If an intersection
point is feasible, all intersection points with lower priority are set infeasible.
Depending on what surface is hit by the ray, the normal is computed in glyph space

accordingly. Subsequently, local lighting is computed per pixel by using the Blinn-Phong
shading model [Bli77]. The Blinn-Phong shading model is based on the shading algorithm
developed by Phong [Pho75]. Here, the local lighting is separated into three terms:
ambient, diffuse and specular. While the ambient term is a fixed value, the diffuse and
the specular term have to be calculated. In order to compute the diffuse term, which
distributes reflected light evenly in all directions, the dot product of the normal N and
the light direction vector L has to be obtained. For the specular term, the dot product of
the reflection vector R and the viewing ray V is needed. Blinn modified the calculation
of the specular term, by using the halfway vector H, which is the sum of L and V.
Once the intersection point of the current fragment has been determined, the screen

space depth is computed and written to the depth buffer. This can be done by transforming
the glyph space coordinates to object space and then multiplying the result with the
GL_MODELVIEWPROJECTION matrix.

3.2 Direct Volume Rendering
In order to render isosurfaces based on a three dimensional scalar field, direct volume
rendering was used by implementing a front-to-back ray marching approach on the GPU.

3.2.1 Algorithm

Ray Marching is an image order algorithm for direct volume rendering, where a ray is
cast from the position of the camera through every pixel. The resulting color of the pixel
is computed by evaluating the volume rendering integral along the ray. This integral is

24

3.2 Direct Volume Rendering

representing a simplified optical model which only contains absorption and emittance and
ignores scattering properties of light. The intensity reaching the observer is given by

C =
∫ ∞

0
c(t) · e−τ(0,t) (3.9)

with c(t) being the intensity at location t and τ(0, t) the loss of intensity caused by
absorption. In praxis, C is computed by sampling scalar values alongside the ray and
accumulating the intensity assigned to these values, e.g. by a predefined transfer function.
The computation is done iteratively using the over operator, which was first described in
[PD84] (see also [Lev90]). Cin and αin are the values computed in the preceding step, C
and α are the values obtained by applying the transfer function to the sample and Cout
and αout are the newly computed values. Here, the color value is given by

Cout = Cin + C(1− αin) (3.10)

and the alpha value is separately computed with

αout = αin + α(1− αin). (3.11)

The final color is then defined as

Cfinal = Cout/αout. (3.12)

The approach described above generally applies to generating volumetric images. It
can also be used to extract isosurfaces from scalar fields. Isosurfaces are sets of points
which all exhibit the same constant value in the scalar field. This value is called isovalue.
As mentioned before, the resulting image of the ray marching algorithm depends on the
transfer function used. Isosurfaces can, therefore, be extracted by using a transfer function
which assigns an α value of zero to all samples except the ones containing the user defined
isovalue.
The light intensity is accumulated using interpolated samples at discrete locations.

Thus, even when using a rather small step size, the algorithm is likely to miss the exact
location of the isosurface. Therefore, for every intersection point, the two enclosing
samples have to be found. In every iteration, the difference of the sample’s scalar value
and the isovalue is computed and stored. The result is then compared to the value
computed in the last iteration. If both values have opposite signs, the isovalue has been
passed and, therefore, the two enclosing samples have been found (see Figure 3.5 for an
illustration).
The difference calculated before can then be used to find the exact location of the

isosurface. If two samples sa and sb are taken at the enclosing points of the intersection
point, the value sc at the intersection point can be obtained using linear interpolation
(see Figure 3.5). If the difference of sa from the isovalue is ∆a and the difference of b from
then isovalue is ∆b, sc can be calculated as

sc = sb
∆a

∆a + ∆b
+ sa

∆b

∆a + ∆b
(3.13)

25

3 Visualization

Figure 3.5: Extracting an isosurface using ray marching. After every step, ∆a and ∆b are
compared. If both values have opposite signs, the isosurface has been passed by
the ray. In this case, the exact location of the intersection point can be obtained
using interpolation.

3.2.2 Implementation

When implementing the algorithm described above using OpenGL and GLSL, a color
texture was precomputed before the rendering. The color of a sample is then determined
by sampling the color texture rather than evaluating a transfer function.
In order to reduce the per-pixel workload, the direction vector of the ray has been

calculated in a two-pass approach as described in [KW03]. In the first render pass, the
backside of the cuboid representing the volume texture is rendered. In OpenGL, this can
be achieved by enabling front face culling and then rendering the cube into a texture
with the color value of every vertex set to its texture coordinates. For the second render
pass, the same cuboid is drawn again, only this time the back is culled and the front is
rendered. The assignment of texture coordinates for the back and the front of the cube is
illustrated in Figure 3.6.
The actual ray for every fragment in texture space can then be computed by the

fragment program. The interpolated texture coordinates of the front side deliver the
starting point for the ray tracing algorithm in texture space. The following GLSL code
snippets shows how the direction vector of the ray can be computed. Here, the texture
coordinates at the backside of the cube are subtracted from the texture coordinates of
the current fragment:

vec3 ray_end = texture2D (back_buffer , texc).rgb;
vec3 ray_start = gl_TexCoord [0]. stp;
vec3 ray_dir = normalize (ray_end - ray_start);

The actual ray is then given by

vec3 ray = ray_start + delta* ray_dir ;

26

3.2 Direct Volume Rendering

(a) (b)

Figure 3.6: The texture coordinates stored in the color values (c.f. [KW03]). (a) shows the
backside of the cube, (b) shows the front.

where delta is the step size used for the ray marching. This also delivers the maximum
ray length, which can be used as a criterion to stop the ray marching. The ray traversal
now can take place in texture space and no coordinate transformations are necessary.
The ray marching is practically done by precomputing a vector which is pointing in

the direction of the ray and subsequently adding that vector to the starting. In every
iteration, the scalar field is sampled and the difference with the isovalue is calculated as
described above. Once the samples which are enclosing the isosurface have been found,
the fragment is shaded.
For this purpose, the corresponding color is obtained, e.g. from a color texture, and

the gradient is computed based on the neighboring scalar values. The normals can be
obtained by computing the gradient of the scalar field at the respective position of the
intersection point using central differences. However, the exact texture coordinates of
the intersection point have to be computed first. Since the ray traversal takes place in
texture space, it is sufficient to take the texture coordinates of the last sample before the
intersection point into account and add an accordingly scaled vector in the direction of the
ray. The color and the gradient of the intersection point are then set using texture samples
at this location. Once the normal and the color are available, the computation of local
lighting can take place and the result is accumulated as described above. Additionally,
the backside of the surface is drawn darker to give additional visual clues.

One of the acceleration techniques used in this implementation is early ray termination
[KW03]. Since the colors are accumulated front-to-back, the ray marching can be stopped
if the alpha value is greater than one. In this case, the fragment is completely opaque
and objects behind it are not visible. Another criterion for ray termination is the total
length of the ray, which can be compared to the maximum ray length obtained before.

27

3 Visualization

(a) (b)

Figure 3.7: LIC applied to 3D vector fields. (a) is an example for the application of LIC
on a tessellated surface (taken from [BSH97]). Here, the vectors are projected
onto triangles. (b) shows the use of clipping surfaces in combination with LIC to
illustrate vector field features in a 3D vector field (taken from [RSHTE99]).

3.3 Line Integral Convolution (LIC)
Line Integral Convolution (LIC) is a texture synthesis technique, which can be used
to visualize vector field features. It was first described by Cabral et al. [CL93], who
extended the spot noise algorithm introduced by van Wijk [Wij91]. Cabral et al. [CL93]
combined this approach with known line drawing techniques and developed a DDA (Digital
Differential Analyzer) based convolution algorithm as well as the line integral convolution.

The original LIC implementation has a lot of redundancies. This was taken care of by
Stalling et al. [SH95], who describe an improved LIC algorithm, which reuses information
already computed before. They also introduce the use of fourth order numerical integration
in order to determine the ideal step size adaptively for every step.

The original LIC only refers to 2D vector fields defined in a 2D Cartesian grid. However,
LIC actually can be applied to arbitrary surfaces in 3D space by using both 2D or 3D
vector fields. In [For94, LVW95], the application of the algorithm to curvilinear grids
which can be parameterized by 2D coordinates, is described. A method to use LIC on
general 3D surfaces was given by Battke et al. [BSH97]. Here the surface is first tessellated
and a local coordinate system is computed for all triangles. LIC is then applied to every
triangle respectively. When using 3D vector fields, a straightforward application of the
LIC method often leads to problems with occlusion of interesting details. There are
several possibilities to circumvent these issue. In [BSH97], the vector field is projected
on the 2D surfaces, while maintaining their magnitude. This leads to areas with little
vector magnitudes to contain the original noise texture (see Figure 3.7a). Another way to
use LIC with 3D vector fields are clipping surfaces. This method has been described in
[RSHTE99], an example is shown in Figure 3.7b.

28

3.3 Line Integral Convolution (LIC)

3.3.1 Algorithm

In all approaches, the intensity of a pixel is computed by convolving a filter kernel with a
texture containing random noise. In general, the pixels intensity is defined by

I(x0) =
s0+L∫
s0−L

k(s− s0)N(σ(s))ds, (3.14)

where σ(s) is the path being used to do the convolution, parameterized by the arc length,
N is the noise texture and k is the 1D filter kernel. In praxis, a discrete version of that
method is used. Here, a box filter can be used to compute the intensity. The intensity is
then defined by

I(x0) = 1
2L+ 1

L∑
i=−L

N(xi), (3.15)

with xi being discrete points on the sampling path.
Using the DDA approach the vector field is sampled once for every pixel and then the

noise texture is convolved with a straight line which is parallel to the sample. Consequently,
the intensity of the noise texture is integrated along the chosen direction in the vector
field. With ~v0 being the sample of the vector field at position x0 and λ being a scale
factor, the path can iteratively be defined as

xi = xi−1 + ~v0λ (3.16)

For the actual LIC algorithm, Cabral et al. [CL93] suggest starting a stream line at
the center of all pixels which is defined by

xi = xi−1 + ~vi−1λi−1. (3.17)

Here the λi are chosen accordingly to make sure, that the stream line exactly hits the
nearest pixel. The actual LIC algorithm is, therefore, more complex and less efficient, but
represents the vector field features in a more accurate way. The difference between the
two approaches is illustrated in Figure 3.8. In both cases the application of the kernel
results in a visual coherence between pixels which also show similarities in the vector field,
when sampled at the respective position. Both cases, therefore, allow illustrating vector
field features, such as domain walls and the location of critical points. A comparison of
the results of both approaches is given in Figure 3.9.

3.3.2 Implementation

In this project, a variation of the classic LIC algorithm was implemented on the GPU to
be used in combination with axis aligned clipping planes and isosurfaces. Both the LIC
approach for 2D slices and the algorithm for the isosurfaces have been implemented using
GLSL.

29

3 Visualization

p(x,y)

Figure 3.8: The different paths used in DDA convolution and LIC. The path used in the LIC
algorithm is shown in blue, whereas the path in red illustrates the straight line
used in the DDA approach.

(a) (b) (c) (d)

Figure 3.9: The DDA approach and the LIC algorithm applied to a procedural circular
vector field. The vector field in (a) is defined by (x, y) = (−y, x) ∗ 3.54, it is,
therefore, vanishing at the origin (0, 0). The vector field is combined with a noise
texture (see (b)) using the both DDA (c) approach and the LIC (see (d)). Both
approaches illustrate the overall shape of the vector field. However, the vector
field is represented more accurately by the LIC generated pattern. This is clearly
visible in the areas around the critical point. Here, the DDA generated image
implies a sink/source which is not present in the original vector field.

30

3.3 Line Integral Convolution (LIC)

float LIC(int l) {
int i;
vec3 v;
vec3 stp = gl_TexCoord [0]. stp;

float colLic = texture3D (randNoiseTex , stp).a;
v = texture3D (uniGridTex , stp).xyz;

for(i = 0; i < l; i++) {
stp -= v;
stp = clamp(stp , 0.0f, 1.0f);
colLic += texture3D (randNoiseTex , stp).a;

}

stp = gl_TexCoord [0]. stp;

for(i = 0; i < l; i++) {
stp += v;
stp = clamp(stp , 0.0f, 1.0f);
colLic += texture3D (randNoiseTex , stp).a;

}

colLic /= float(l+l+1);
return colLic ;

}

Listing 3.1: Basic convolution algorithm in GLSL (c.f. [BC11]).

A straightforward implementation of the DDA convolution on the GPU, is given in
[BC11]. The program code can be found in Listing 3.1. It basically implements the DDA
convolution described above in the fragment program. The vector grid as well as the
noise texture are sampled using bilinear interpolation. The vector field is sampled once
per fragment, whereas the noise texture is sampled on equidistant steps on a line oriented
according to the local vector field. The path is then followed backwards and forwards,
starting at the fragment position. Subsequently, the color values obtained from the noise
texture are accumulated. Finally, the accumulated color intensity is normalized. Applying
the LIC only to visible fragments, rather than precomputing it for the whole vector field,
saves computation time and bandwidth, especially when using 3D vector fields.
The implementation described above was used as a basis to apply LIC to arbitrary

surfaces. Both slices and isosurfaces, generated by the ray marching algorithm described
in Section 3.2, have been used. However, several modifications have been applied to the
original implementation. The code given by [BC11] actually implements DDA convolution,
since the vector field is sampled only once per fragment. In this project streamlines, have
been used for more accuracy.

Applying LIC to a surface using a 3D vector field often leads to noisy spots in areas in
which the vector field is nearly orthogonal to the surface. This can be desirable in some
cases, e.g. when identifying exactly those areas. Nonetheless, it is practical to project the
sampled vectors on the surfaces, in this case. For a general surface with the normal ~n,

31

3 Visualization

Figure 3.10: Projection of vectors onto the surface. ~n is the local normal of the surface. The
tangent ~t can be computed by calculating the cross product of the sampled
vector ~v and the normal. The projected vector ~vp is the bitangent of the local
tangent space coordinate system and is therefore obtained by the cross product
of ~n and ~t.

this can be done by first computing the tangent, which is orthogonal to both the sampled
vector ~v and the normal. This can be achieved using the cross product:

~t = ~n× ~v (3.18)

In the same way, the bitangent can be calculated:

~vp = ~n× ~t (3.19)

The bitangent is in this case, the projected and normalized vector ~vp. The whole process
is illustrated in Figure 3.10.
In the case of axis aligned slices, the calculation gets much easier. It reduces to

~vp =

xvxnyvyn
zvzn

 . (3.20)

In fact, it is sufficient to set the according coordinate to zero.
In order to visualize the orientation of polarization domains, LIC has been implemented

for the extracted isosurfaces. To create a noise free and clear result, the vectors are
projected onto the isosurface. Following the surface exactly is not possible in this case,
since it is created via ray marching and, therefore, no parameterization of the surface is
available. However, it is sufficient to project only the first vector onto the isosurface to
create a visual coherence.

32

3.3 Line Integral Convolution (LIC)

(a) (b)

(c) (d) (e)

Figure 3.11: Comparison of LIC with and without vector projection. (a) and (b) show LIC
applied to axis aligned slices. (d) and (e) show the LIC applied to the vector
field shown in (c). In both cases, projecting the vector field onto the surface
eliminates the noisy areas, where vectors tend to be orthogonal to the surface.

In an interactive environment, the user is expected to visually explore the LIC by
changing the camera position and orientation. Therefore, zooming by the user should be
taken into account. Here, the chosen resolution of the random noise texture has a great
impact on the resulting texture. If the resolution is too high, the stream lines are not
distinguishable any more when zooming out too much. On the other hand, when it is too
small, the pixels of the noise texture become visible when zooming in. The reason for that
is that the LIC calculation is done on a per-fragment level, whereas the size of the texture
is fixed. Letting the user scale the texture coordinates used to sample the random noise
texture is one possible approach to circumvent this issue. In effect, this leads to tiling the
random noise texture. It should, therefore, be taken care, that the original texture is not
too small, since otherwise, repetitive patterns could be visible in the LIC.
Choosing the right step size is crucial for the quality of the final image. Ideally, the

path would follow the current direction until it hits either the next pixel in the random
noise texture or the next vector from the vector grid, whichever is closer. In order to
make the resulting image controllable, all sampled vectors are normalized and rescaled by
a user defined scalar factor. Adaptive scaling, like e.g. described in [CL93], seems to be a
more accurate approach but it requires more computation time.

33

3 Visualization

Changing the stream length, as well as the vector scaling, has a great impact on the
resulting image. If the stream length is too low, the picture gets very noisy, however, if it
is too long, the final image is smeared out too much and the overall contrast gets very
low. As stated in [CR08], this choice influences the overall performance of the algorithm.
Since it is important to maintain interactivity in this implementation, the smallest value
delivering still good results is used. In this case a stream length of ten used for all paths
has provided the best results.

3.4 Combining Arrow Glyphs and Isosurfaces
In order to emphasize vector clusters forming the domains, a combination of the arrow
glyph based representation described above and semitransparent isosurfaces is used. This
can be achieved by first filtering the vectors according to the curl magnitude. In order to do
that, the curl magnitude is obtained at the positions of the vectors using nearest neighbor
sampling. When the value of the curl magnitude is above a user-defined threshold, the
vector is filtered out. Subsequently, Gaussian kernels are placed in a density map for all
vectors which were not filtered out. The resulting density map then resembles the actual
distribution of the vector clusters. Isosurfaces can now be extracted from that density
map and combined with the arrow glyph representation described in Section 3.1. If LIC
is applied to that isosurface, the resulting texture represents the movement inside the
isosurface, rather than the original vector field at the exact location of the surface. In this
case, this is a desired effect, since the isosurface is used to visualize additional properties
of the cluster it is encircling. When combining the arrow glyphs with the isosurfaces, two
additional issues have to be addressed.
The first issue is the combination of semitransparent isosurfaces, obtained by ray-

marching, and the opaque arrow glyphs. Combining those two visualization methods
requires a modification of the raymarching algorithm. Thus, a modified version of the
two-pass method described above has been used to implement a z-buffer test inside the
ray marching algorithm. First, all opaque objects are rendered into a frame buffer object.
This delivers a buffer containing depth values and colors of the scene. When rendering
the backside of the cube, in addition to the texture coordinates, screen space coordinates
are written to the buffer. In the final render pass, where the ray marching takes place,
the ray is traversed both in texture space and in screen space. Every iteration the screen
space depth of the current position is compared with the one in the source buffer. When
the screen space z-value of the current position on the ray is larger than the one stored
in the source buffer, the traversal is terminated and the current accumulated color is
combined with the one stored in the source buffer. This actually enables an additional
criterion for the early ray termination.

Another issue that has to be addressed is the fact that parts of the arrow glyphs tend to
stick out of the encircling isosurface, which disrupts the visual appearance of the smooth
isosurfaces. If the isosurfaces are based on a density grid, obtained by Gaussian kernel
splatting as described above, the position of the isosurface can be aligned with the arrow
glyphs by using a kernel size according to the arrow length. In this project, both the

34

3.4 Combining Arrow Glyphs and Isosurfaces

arrow glyphs and the Gaussian kernel size was set according to the actual vector length,
linearly scaled for better visibility.
Figure 3.12 shows texture slices based on the density grid obtained with the method

described in this section.

35

3 Visualization

(a) (b)

(c)

Figure 3.12: Texture slices illustrating the density grid. In (a), no filtering has been applied
to the vector field. However, the approximate shape of the domains is already
noticeable, since vector magnitude and orientation correspond in this case.
(b) shows the final density grid, with the domains being extracted by filtering
according to the curl magnitude. In (c), a cutout of the isosurfaces extracted
from the density grid can be seen.

36

4 Results and Discussion
One of the main goals of the SciVisContest was to show the connection between atom
displacements and polarization. Thus, the methods described in the previous chapter
were applied to the provided data in order to gain insight into the development of both
the polarization and the changes in the perovskite structure of the material. This allows
for the determination of the time span, in which the phase transition is taking place. In
order to reduce visual clutter, both the glyph ray casting and the direct volume rendering
were combined with axis aligned clipping planes, which produce a cube shaped cutout of
the data.

4.1 Performance of the Implementation
The data processing and visualization methods described in the previous chapter were
applied to the time dependent vector field defined by the displacement of the titanium
atoms (125,000 vectors in total). The time needed for data related computations was
measured separately, since those computations are only necessary if the time step in the
data set changes. The test system was an Intel Core 2 Quad Q6600 with 4 GB RAM and
a NVIDIA GeForce GTX 560 with 1 GB VRAM.
The major workload for the data related computations in each time step includes the

extraction of the uniform grid, the calculation of the curl magnitude and the calculation
of the density map. Additionally, the time needed to locate critical points was measured.
The results for the time dependent calculations are given in Table 4.1.

In order to test the performance of the actual rendering several representations were
compared with each other. Here, some reasonable scenarios were tested using arrow
glyphs and both opaque and semitransparent isosurfaces with different textures. The
resolution was 1024x768 and the camera was fully zoomed in. All vector were filtered

Calculation [s]
Extraction of a uniform grid 0.18
Calculation of curl magnitude 0.08
Generation of the density grid 4.94
Location of critical points 100.5

Table 4.1: The performance of the calculations necessary for the time dependent data in
seconds.

37

4 Results and Discussion

Render mode [Frames/s]
Arrow glyphs 85
Semitransparent isosurfaces 14
Arrow glyphs and semitransparent isosurfaces using a color texture 16
Arrow glyphs and opaque isosurfaces using LIC (streamlength 10) 40

Table 4.2: The performance of rendering in frames per seconds.

using a reasonable threshold for the curl magnitude, which resulted in 17968 visible
vectors (about 14% of the original count). Finally, the combination of the arrow glyphs
and the isosurfaces was tested using both a color texture and the LIC. The results for the
rendering related calculations are given in Table 4.2.
In general, interactivity cannot be maintained when using dynamic data, however for

static data an interactive frame rate can be achieved. In this case, the bottleneck seams
to be the semitransparent isosurfaces obtained by raymarching.

4.2 Atom Movement over Time
In most ferroelectric materials, the polarization heavily depends on local atom displace-
ments. The overall atom movement over different time spans can, therefore, be useful
to determine the changes in the perovskite structure, as well as the deformation of the
material. The changes in the perovskite structures of the unit cells can deliver hints about
their state regarding the phase change. The deformation of the material is important as
well, since the material is expected to change its shape while undergoing temperature
changes.
In order to get a first impression of the material and the distribution of the unit cells,

the perovskite structure was rendered using sphere and stick ray casting. Figure 4.1 shows
the whole structure as well as a single unit cell. For time independent data the atom
positions were linearly interpolated for every rendered frame. Applying this method to
the time dependent data without any averaging highlights the strong oscillation of the
individual particles representing the atoms. When averaging the positions over 25 frames,
as suggested in Chapter 2, no vibration can be perceived. However, the overall movement
of the atoms over the whole time span gets visible when using an adequate frame rate.
The arrow glyph ray casting described in 3.1 was applied to the displacement field

covering several time windows. The length of the arrow glyphs corresponds to the actual
vector length, but has been linearly scaled for better visibility. The arrow glyphs midpoint
is positioned at the position of the vector and the glyph is oriented according to the vector
orientation. The deformation of the material over time can be visualized by color coding
the arrow glyphs based on their orientation and their magnitude.
Figure 4.2 shows the displacement of all atoms over a time span of 10 ns, thus, the

whole time series. The visualized data has been reduced to a slice of 50×50×10 unit

38

4.2 Atom Movement over Time

(a) (b)

Figure 4.1: Visualization of a unit cell using GPU ray casting. (a) shows the entire cube-
shaped data set. (b) contains a single unit cell. Here, Ba atoms are shown in
green, the red spheres represent O atoms and the Ti atom at the cell center is
rendered in grey. The sphere glyphs are scaled according to the atoms’ van der
Waal radii.

cells. The color coded vector orientation illustrated in the texture slices shows that the
movement of the atoms tends towards the center, which implies an overall shrinking of the
structure. When coloring the arrow glyphs according to vector magnitude, the stronger
movement of atoms in off-center areas is highlighted, while atoms near the center seem to
move much less.
When using the smallest possible time window of one frame and coloring the glyphs

according to the element type, it is possible to gain insight in the strength of the movement
of the different element types. As already mentioned in Section 2.2, the different atom
types are not equally mobile. In general, the oxygen atoms are the most mobile.
Figure 4.4 shows some of the key time steps, with a length filter applied. At the

beginning, a series of short peeks in the overall displacement length can be perceived.
This is also visible when plotting the average displacement length (see Figure 2.5) and is
probably a byproduct of the simulation. At about 800 ps the atoms start getting more
mobile, which lasts until the end of the simulation. This is staggering since the mobility
is expected to get lower when decreasing the temperature. Therefore, the increasing
mobility might have something to do with the ongoing phase transition, which until then
has been counteracted by the temperature decrease.

Using a smaller displacement time frame shows other characteristics of the material. In
Figure 4.3 arrow glyphs have been rendered for some key moments of the time series using
a time window of 25 frames for the displacement field. The material is indeed shrinking
as stated before, however, at about frame 410 the shrinking stops and the structure is

39

4 Results and Discussion

Figure 4.2: The displacement field of the Ti atoms over a timespan of 10 ns. The arrow
glyphs are colored by the displacement field magnitude using hot-cold coloring
scheme (blue: low values; red: high values). The low mobility of the atoms near
the center and the fact that the rest of the atoms clearly move toward the center
illustrate the contraction of the material. Additionally, slices color-coding the
vector field orientation at the boundaries of the data set are shown. They also
convey the overall movement of the atoms toward the center.

40

4.2 Atom Movement over Time

Step 62 Step 312

Step 422 Step 486

Figure 4.3: Rendering of the displacement field using arrow glyphs, while using the coloring
according to the vector orientation. Here, the time window for the displacement
field is 25 frames. (a) illustrates the small evenly distributed domains at the
beginning of the time series. The temperature related deformation in (b) is
illustrated by large clusters of vectors pointing towards the center of the material
and, therefore, exhibiting similar orientation. The smaller clusters in (c) illustrate,
how the expansion of the material is beginning to take effect. In (d) most of the
vectors are pointing away from the center.

41

4 Results and Discussion

260 ps 510 ps 760 ps

1010 ps 1260 ps 1510 ps

1760 ps 2010 ps 2260 ps

Figure 4.4: Rendering of atoms’ displacement field. Here, a time window of only one frame
was used to compute the displacement field for all atom types using averaged
atom positions (25 frames). Several pulsating peaks can be observed right at the
beginning of the time series. Starting at about 6000 ps the atoms are becoming
more mobile. Their mobility further increases until the end of the time series is
reached.

42

4.2 Atom Movement over Time

6250 ps 8250 ps 8450 ps

8650 ps 8850 ps 9050 ps

9250 ps 9450 ps 9650 ps

43

4 Results and Discussion

expanding again. This indicates the phase transition from the cubic to the tetragonal
phase, since it is accompanied by cell elongation.
Texture slices can give clues about the movement of the atoms over time, although

they only represent a small part of the data. In order to get a good overview, three axis
aligned texture slices were rendered. Their exact position can interactively be changed
by the user. Figure 4.8 shows key moments of the time series using 2D LIC and critical
points, which are represented by sphere glyphs. The movement towards the center is
highlighted by the LIC as well as the distribution of the critical points in the vector field.

4.3 Visualization of Domains
Since the dipoles in the material tend to align to each other when undergoing a phase
transition, domain sizes and shapes are an indication for the phase transition. These
domain features can be visualized by using arrow glyphs in combination with adequate
filtering, as well as volume rendering. These two methods can also be combined.

When visualizing a time step of the displacement field using arrow glyphs using either
orientation or magnitude coloring vector clusters can easily be identified. The rather
high magnitude inside clusters is also highlighted. Figure 4.5 shows a comparison of both
coloring modes when applied to the last frame of the time series of the displacement field.
When representing the data set using arrow glyphs most parts of the data set are

concealed due to the dense distribution of data. This issue can be addressed by only
showing parts of the data set as shown in Figure 4.5. Another option to reduce the visual
clutter is adequate filtering. There are two possible filters which can be applied to the
displacement field. In regions of similar orientation, the magnitude of the curl is quite
small, while, at the same time, the vector magnitude tends to be high. In this project
the curl magnitude was used since orientation is the defining property of the domains.
As illustrated in Figures 4.5l and 4.5m, filtering by curl magnitude gives clues about the
location and size of domains.

In order to visualize the movement and the resizing of domains in the extracted vector
field, isosurfaces were rendered using the ray marching approach described in Section 3.2.
This allows for a comparison of the different ways of extracting the domains. This includes
the domains extracted by the curl magnitude, by the vector magnitude and by the density
map. The isosurfaces were colored using the magnitude, the orientation and a surface
LIC based on the vector field.

As mentioned before, the vector magnitude inside the vector clusters tends to be higher
than in the rest of the vector field. The magnitude can, therefore, be used to extract
isosurfaces which correspond to the domains. In Figure 4.6 isosurfaces were extracted
based on the vector magnitude. The shrinking and subsequent expansion is clearly visible.
However, fine structures of the polarization domains are only approximated. Additionally,
this approach assumes that the vector field has a high vector magnitude in areas of high
curl magnitude, which is not always the the case in a more general application.

The curl magnitude is the defining property of the domains, therefore, the representation
should be more accurate than the one achieved by using the vector magnitude. Isosurfaces

44

4.3 Visualization of Domains

(j) (k)

(l) (m)

Figure 4.5: Rendering of the displacement field using arrow glyphs. In (j) and (l) the
orientation is color-coded. In (k) and (m) the color is determined by magnitude.
The vectors inside the clusters appear to have a significantly higher magnitude
than the rest of the vector field.

45

4 Results and Discussion

Step 62 Step 312

Step 422 Step 486

Figure 4.6: Isosurfaces based on vector magnitude. The isosurfaces extracted from the vector
magnitude show a development similar to the one illustrated in Figure 4.5. The
reason for that similarity is the coherence between the vector magnitude and the
vector curl magnitude.

46

4.3 Visualization of Domains

Step 62 Step 312

Step 412 Step 486

Figure 4.7: Isosurfaces based on curl magnitude. The growth of domains caused by the
deformation of the material is clearly visible. However, the irregular isosurfaces
make it difficult to distinguish between individual domains.

47

4 Results and Discussion

Step 62

Step 312

Figure 4.8: Rendering of the displacement field using LIC. In the beginning of the time series,
the vector orientation is quite irregular, which is illustrates in the high number
of evenly distributed singularities (shown in orange). When the material starts
deforming, adjacent vectors tend to be oriented similarly and the number of
singularities is significantly reduced.

48

4.3 Visualization of Domains

Step 412

Step 486

49

4 Results and Discussion

Figure 4.9: Isosurfaces based on a density grid using coloring by vector orientation. Using
the density map as a basis for the isosurfaces emphasizes vector clusters without
producing too much visual clutter.

were extracted using the curl magnitude, as shown in Figure 4.7. Although the curl
magnitude delivers a more accurate representation of the vector field’s domains, it produces
a rather noisy visualization. When applying this visualization to the time dependent data,
it is hard to perceive certain developments in the domains, e.g. a change in size and shape
or location.

Aiming for isosurfaces which encircle the vector clusters should give a good impression
about the movement and reshaping of domains with a certain level of accuracy while
not producing as much visual clutter as when using the curl magnitude alone. Here,
the density grid derived from the vector clusters was used as a basis. The resulting
isosurfaces encircle the domains and can be combined with the glyph based representation,
to give additional clues about the orientation of the vectors inside the clusters. Using the
isosurfaces in combination with the arrow glyphs further emphasizes the vector clusters,
since it is hard to perceive the actual spatial distribution of the clusters using arrow
glyphs alone. Figures 4.9, 4.10 and 4.11 show the three different textures applied to the
isosurfaces.

50

4.3 Visualization of Domains

Figure 4.10: Isosurfaces based on a density grid using coloring by vector magnitude. Although
the domains have been obtained by filtering according to the curl magnitude,
they also roughly correspond to the vector magnitude, which is especially high
inside the clusters.

Applying the visualization based on arrow glyphs and the density grid to the time
series allows observing the evolution of the location and shape of the domain boundaries
over time (see Figure 4.12). The material starts out with a number of evenly distributed
domains of relatively small size which are rather unstable. During the first 200 time
steps (4 ns), the atoms start getting more mobile. This mobility is mainly caused by the
temperature related shrinking of the material. Since the absolute temporal displacement of
the titanium atoms is used, this leads to vector clusters of increasing size. The movement
in these areas is mainly oriented towards the center. Additionally, these clusters tend
to be larger and more stable in off-center regions. After about 8 ns the clusters start to
get unstable. This might indicate the beginning of the phase transition, which involves
an elongation of the unit cells and, therefore, the material is expected to gain volume.
This trend is counteracting the previous domain formation, which presumably was mainly
caused by the contraction of the material. Towards the end of the time series at about
8.5 ns, the contraction of the material caused by the decreasing temperature seems to
be compensated by the elongation of cells. At this point, only small, unstable domains

51

4 Results and Discussion

Figure 4.11: Isosurfaces based on a density grid using LIC. In the cutout the texture coordi-
nates used to access the noise texture have been scaled up, in order to obtain a
finer LIC texture. Using the LIC illustrates the actual orientation of the vectors
inside the clusters, which cannot be achieved by the color coding of the vector
orientation alone.

52

4.4 Future Work

can be observed. Subsequently, the size of the domains increases once again until the
end of the simulation is reached. Since these domains only partially comply with the
volume dilatation of the material, it can be assumed, that they are influenced by the
phase transition and, therefore, can be seen as an indication for the actual polarization
domains.

The overall goal of the SciVisContest 2012 was to find a suitable visualization to be able
to identify phase transitions and get indications of polarization domains in ferroelectric
materials. Neither the data set nor the task description provided a lot of details about how
to extract the actual vector field. Nonetheless, using the visualization developed in this
student research project, proposals about the correlation between the atom displacement
and the phase transition could be made.
This is also brought out in the reviewer comments received for the submission. Here,

it is noted that, despite problems with the data a "meaningful visualization of several
aspects of the transition" was provided which also suggests "interpretations and criteria for
further thinking about the physical phenomenon". Additionally, using the curl magnitude
to pre-filter the vector field is pointed out as a crucial step. Furthermore, the use of
techniques used in more established research fields, like e.g. fluid dynamics, was recognized
as a "very good innovation."

4.4 Future Work
All in all, the visualization implemented in this student research project can be used in
various other cases, e.g. when clusters of vectors are to be emphasized or, in a more
general case, when certain areas in volumetric data sets are to be emphasized.
The data used in this work represents a very special case with certain features, which

cannot be expected in the general case. For instance, in some cases, clusters of dipole
moments are actually just chains of dipoles (see e.g. [PBL09]). The method used for
extracting domains in this project fails in that case, since it needs domains to be separated
by a certain distance. A better way to extract regions with vectors of similar orientation
might be to perform actual clustering algorithms instead of filtering out vectors based
on vector field features. In this case, features of the clusters like their size or orientation
can be used to filter out clusters of little interest. This way visual clutter can be reduced
further. If the actual clusters are available, dipole chains could be visualized e.g. by using
stream ribbons.
For some of the techniques used, alternative or extended algorithms could have been

implemented. An alternative to using arrow glyphs in order to visualize features of the
3D vector field could be the 3D Line Integral Convolution presented in [FW08]. However,
using this approach would produce a similar output where domains appear as clusters
of objects and it would still be hard to perceive the actual spatial distribution of the
domains. The extracted isosurface could have been further improved by adding more
visual clues to the final image. There are several methods to add global illumination
to the image while keeping interactive frame rates. One possibility is the Screen Space
Ambient Occlusion developed by Crytek [Mit07]. A way of simulating ambient occlusion

53

4 Results and Discussion

500 ps 1500 ps 2000 ps

2500 ps 3000 ps 3500 ps

4000 ps 4500 ps 5000 ps

Figure 4.12: Rendering of the time series using isosurfaces based on the density map. Here,
semitransparent isosurfaces were drawn in combination with a glyph based
representation of the vectors. The shrinking and subsequent growth of the
clusters caused by the deformation of the material are clearly visible.

54

4.4 Future Work

5500 ps 6000 ps 6500 ps

7000 ps 7500 ps 8000 ps

8500 ps 9000 ps 9500 ps

55

4 Results and Discussion

when using direct volume rendering was presented by [HLY10]. Both approaches could
help further emphasizing the shape of the isosurfaces representing the domains. Using
the current implementation of the calculation of the topological degree, in order to find
critical points, it is not possible to maintain interactive frame rates. Implementing an
actual bisection method would have made the implementation much faster. It could also
have profited from using the GPU in order to parallelize the algorithm.

56

5 Summary
The goal of this project was to use the data provided by the SciVis Contest 2012 to gain
insight into the development of domains and phase transitions in ferroelectric materials.
This should help material scientists to detect phase transitions and investigate the details
of domain structures and their development over time. However, the task description
provided for the contest was followed only loosely. The data provided contained atom
types and the respective atom positions, which, exhibited high oscillation. Since the
oscillation was likely to superpose the local displacement defining the polarization, the
atom position have been averaged over a sliding time window.
Since the data provided did not contain exact electrostatic dipoles, a suitable approxi-

mation had to be found. The strongest indicator for the polarization in the tetragonal
phase of barium titanate is the displacement of the titanium atom in the cell center.
Several methods of approximating the polarization based on the displacement of the
titanium atom relative to the cell center have been tested, however, none of them showed
a noticeable development of domains in shape or size. Therefore, the absolute temporal
displacement of the titanium atoms was used, although this approximation is likely to be
superposed by the contraction of the material due to the temperature decay.

In this project, domains were defined as clusters of vectors exhibiting a similar orientation.
One way of measuring the local change of orientation of the vector field is to take the curl
magnitude of the normalized vector field into account. Here, domains are defined, were
this value is rather low. Domains can then be obtained by filtering out vectors, which are
located in areas of high curl magnitude.

The pervoskite structure of the lattice as well as the movement of atoms can be visualized
using glyph based representations. The unit cells were rendered using sticks and spheres,
whereas the atom movement was illustrated using arrow glyphs, with different coloring
modes. This highlighted the deformation of the material, which was caused by both the
temperature and the phase transition. Domains were visualized using a combination of
arrow glyphs and isosurfaces based on different scalar fields. The isosurfaces based on the
vector magnitude represented the domains only approximately, whereas the more accurate
representation based on the curl magnitude produced rather noisy outputs. Thus, in the
end, a density grid based on the vectors, which are forming the clusters, was used in order
to emphasize the domains.

The visualization of the atom movement as well as the domains allowed for the interactive
exploration of some aspects of the phase transition in barium titanate. Additionally, the
visualization methods described can also be applied to more general cases, e.g. where
clusters of similarly oriented vectors have to be highlighted.

57

Bibliography
[BC11] M. Bailey, S. Cunningham. Graphics Shaders: Theory and Practice. CRC

Press, 2 edition, 2011.

[Bli77] J. F. Blinn. Models of light reflection for computer synthesized pictures.
SIGGRAPH Comput. Graph., 11(2):192–198, 1977. doi:10.1145/965141.
563893.

[BSH97] H. Battke, D. Stalling, H.-C. Hege. Fast line integral convolution for arbi-
trary surfaces in 3D. In H.-C. Hege, K. Polthier, editors, Visualization and
mathematics, pp. 181–ff. Springer-Verlag New York, Inc., New York, NY,
USA, 1997.

[CL93] B. Cabral, L. C. Leedom. Imaging vector fields using line integral convolution.
In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’93, pp. 263–270. ACM, New York, NY,
USA, 1993. doi:10.1145/166117.166151.

[CR08] W. D. Callister, D. G. Rethwisch. Fundamentals of materials science and
engineering: an integrated approach. Wiley, Hoboken, N.J., 3. ed., interna-
tional student version edition, 2008.

[For94] L. K. Forssell. Visualizing flow over curvilinear grid surfaces using line integral
convolution. In Proceedings of the conference on Visualization ’94, VIS ’94,
pp. 240–247. IEEE Computer Society Press, Los Alamitos, CA, USA, 1994.

[FW08] M. Falk, D. Weiskopf. Output-Sensitive 3D Line Integral Convolution.
Visualization and Computer Graphics, IEEE Transactions on, 14(4):820 –
834, 2008.

[GBM+12] S. Grottel, P. Beck, C. Müller, G. Reina, J. Roth, H.-R. Trebin, T. Ertl.
Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides.
In IEEE Trans. Vis. Comp. Graph. 2012.

[Gho02] P. Ghosez. Microscopic Properties of Ferroelectric Oxides from First-
principles: Selected Topics. Number Teil 1 in Troisième cycle de la
physique en Suisse romande. Troisième cycle de la physique en Suisse ro-
mande, 2002. URL http://www.phythema.ulg.ac.be/Download/Files/
Cours_Ferro.Ghosez.pdf.

59

http://www.phythema.ulg.ac.be/Download/Files/Cours_Ferro.Ghosez.pdf
http://www.phythema.ulg.ac.be/Download/Files/Cours_Ferro.Ghosez.pdf

Bibliography

[Gre92] J. M. Greene. Locating three-dimensional roots by a bisection method.
Journal of Computational Physics, 98(1):178–178, 1992.

[GRE12] S. Grottel, G. Reina, T. Ertl. MegaMolTM: A Visualization Middleware for
Point-based Molecular Data Sets, 2012. http://www.vis.uni-stuttgart.
de/megamol.

[HLY10] F. Hernell, P. Ljung, A. Ynnerman. Local Ambient Occlusion in Di-
rect Volume Rendering. IEEE Trans. Vis. Comput. Graph., 16(4):548–
559, 2010. URL http://dblp.uni-trier.de/db/journals/tvcg/tvcg16.
html#HernellLY10.

[KE04] T. Klein, T. Ertl. Illustrating Magnetic Field Lines using a Discrete Particle
Model. In VMV’04, pp. 387–394. 2004.

[KLBC93] G. H. Kwei, A. C. Lawson, S. J. L. Billinge, S. W. Cheong. Structures of the
ferroelectric phases of barium titanate. The Journal of Physical Chemistry,
97(10):2368–2377, 1993.

[KSES12] M. Krone, J. E. Stone, T. Ertl, K. Schulten. Fast Visualization of Gaussian
Density Surfaces for Molecular Dynamics and Particle System Trajectories.
In EuroVis 2012 Short Papers, volume 1. 2012.

[KW03] J. Krüger, R. Westermann. Acceleration Techniques for GPU-based Volume
Rendering. In Proceedings IEEE Visualization 2003. 2003.

[Lev90] M. Levoy. Efficient ray tracing of volume data. ACM Trans. Graph., 9(3):245–
261, 1990. doi:10.1145/78964.78965.

[LVW95] W. C. de Leeuw, J. J. Van Wijk. Enhanced Spot Noise for Vector Field
Visualization. In Proceedings of the 6th conference on Visualization ’95, VIS
’95, pp. 233–. IEEE Computer Society, Washington, DC, USA, 1995.

[Mit07] M. Mittring. Finding next gen: CryEngine 2. In ACM SIGGRAPH 2007
courses, SIGGRAPH ’07, pp. 97–121. ACM, New York, NY, USA, 2007.
doi:10.1145/1281500.1281671.

[PBL09] M. Pasciak, S. E. Boulfelfel, S. Leoni. Size and Time Rescaling at the
Paraelectric to Ferroelectric Phase Transition in BaTiO3, 2009. http://
arxiv.org/abs/0901.4560.

[PD84] T. Porter, T. Duff. Compositing digital images. SIGGRAPH Comput.
Graph., 18(3):253–259, 1984. doi:10.1145/964965.808606.

[Pho75] B. T. Phong. Illumination for computer generated pictures. Commun. ACM,
18(6):311–317, 1975. doi:10.1145/360825.360839.

60

http://www.vis.uni-stuttgart.de/megamol
http://www.vis.uni-stuttgart.de/megamol
http://dblp.uni-trier.de/db/journals/tvcg/tvcg16.html#HernellLY10
http://dblp.uni-trier.de/db/journals/tvcg/tvcg16.html#HernellLY10
http://arxiv.org/abs/0901.4560
http://arxiv.org/abs/0901.4560

Bibliography

[RDL+07] K. Rabe, M. Dawber, C. Lichtensteiger, C. Ahn, J.-M. Triscone. Modern
Physics of Ferroelectrics:Essential Background. In Physics of Ferroelectrics,
volume 105 of Topics in Applied Physics, pp. 1–30. Springer Berlin / Heidel-
berg, 2007.

[RE05] G. Reina, T. Ertl. Hardware Accelerated Glyphs for
Mono- and Dipoles in Molecular Dynamics Visualization. In
EuroVis05: IEEE Symposium on Visualization, pp. 177–182. 2005.

[RSHTE99] C. Rezk-Salama, P. Hastreiter, C. Teitzel, T. Ertl. Interactive exploration of
volume line integral convolution based on 3D-texture mapping. In Proceedings
of the conference on Visualization ’99: celebrating ten years, VIS ’99, pp.
233–240. IEEE Computer Society Press, Los Alamitos, CA, USA, 1999.

[SH95] D. Stalling, H.-C. Hege. Fast and resolution independent line integral convo-
lution. In Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’95, pp. 249–256. ACM, New York,
NY, USA, 1995. doi:10.1145/218380.218448.

[SKBS12] K. Scharnowski, M. Krone, P. Beck, F. Sadlo. Visualization of Polarization
Domains in Barium Titanate, 2012. Submission to the IEEE SciVis Contest.

[Uch05] K. Uchino. Ferroelectric Devices. CRC Press, 2 edition, 2005.

[Val21] J. Valasek. Piezo-Electric and Allied Phenomena in Rochelle Salt. Physical
Review, 17:475–481, 1921. doi:10.1103/PhysRev.17.475.

[Wad00] V. Wadhawan. Introduction to Ferroic Materials. Gordon & Breach, 2000.

[WDH74] O. H. Wyatt, D. Dew-Hughes. Metals , ceramics and polymers: an
introduction to the structure and properties of engineering materials. Cam-
bridge Univ. Pr., London, 1974.

[Wij91] J. J. van Wijk. Spot noise texture synthesis for data visualization.
SIGGRAPH Comput. Graph., 25(4):309–318, 1991. doi:10.1145/127719.
122751.

All links were last followed on 10/06/2012.

61

A Appendix
The following section contains the task description of the IEEE visualization contest 2012
as found on the official contest website 1.

A.1 Task description SciVis Contest 2012
The overall goal is, as usual, a visualization that helps computational material scientists
to better understand exactly what is going on. In this case, this means to understand
how, when, and where the phase transitions occur.
We suggest to tackle the following visualization tasks, but you are welcome, of course,

to make additional visualizations as you deem fit.
Represent the dataset as a vector field. File A and B contain atomic positions at

time t=0 ps (pico seconds) and time t=2 ps. With respect to the initial distribution,
atoms tend to be in a less symmetrical position, which promotes the formation of local
polarization domains. The magnitude of the displacement can be obtained by evaluating
the displacement vectors for each atom. Some atoms would not displace much, some other
are more sensitive. Filter out the less mobile, concentrate on the larger displacements. It
may be appropriate to multiply the displacements by a scalar, for better visibility. Locally,
the orientation of some vectors will tend to be similar. The changes are a function of
the portion of volume considered. Try to make sense of the formation of domains with
a simple representation technique. The different directions of atom displacemente (Ti)
can be organized into "domains". That means, that some portion of the volume can be
characterized by a similar direction of displacements. This could be visualized by arrows,
particles, field lines, using something more complicated like LIC.
Polarization change may be better captured by the definition of domain boundaries.

The vector field defined under 1. can be analyzed by means of standard vector field
operations. A change of polarization in a particular volume corresponds to a sharp
rotation of displacement vectors. What mathematical descriptor can be good for this
matter of fact ? As a working hypothesis, the scientists suggest looking for zero lines in
the dataset. Zero may represent vanishing polarization (zero or very short displacement),
or vanishing of some derived scalar or vector quantity.

From the boundaries obtained under 2, try to construct a suitable visualization. Since
many combination of displacement directions and magnitudes can in principle be expected,
a number of features may be expected from the vector field. A number of singularities can

1http://sciviscontest.visweek.org/2012/VisContest/Tasks.html

63

be anticipated. A limiting case may be when a number of vectors will point away from
the same point, or merge into a single point. Many intermediate cases can be imagined.
Find a good method to make the "nodes" in the vector field visible. A Line Integral
Convolution approach might be a good tool.

Phase transition: From the experience collected above, find a suitable visualization for
the change of displacement vectors as a function of time. Is there an evolution in the
trajectory, which could suggest a phase transition ? Is it possible to capture the process
monitoring the evolution of a single function, connected with the change of the atomic
displacement? Is there an obvious (auto)correlation function ?

Evolution of shape and boundaries: How can the evolution of the clustering be described
along the transitions ? Maybe a volumetric approach can be useful to help understanding
the complex shapes, which are forming along the process. Can a suitable scalar value
be associated with the vector to help understanding what is going on inside the clusters,
giving some idea about the rapidity of the displacements taking place inside ? How about
cluster boundaries, are they at all stable?

Basic Research Question: Here it is where the visualization is asked to provide insights
into the physical process. How is the change from the initial cluster distribution towards
a different scenario taking place? Is there a means to tell whether it is a local change,
which is more and more spreading over the whole dataset, or is it more collective ? "Local"
corresponds to what in the jargon of phase transition is called nucleation. Is any of the
previous functions useful in capturing the changes in details, is the change initially just a
nucleus, a handful of atoms ? Which visualization is more suitable to make sense of this
step ?

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Katrin Scharnowski)

	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Data Processing and Feature Extraction
	2.1 Theoretical Background
	2.2 Data Basis
	2.3 Extracting the Vector Field
	2.4 Extracting Domains
	2.5 Locating Critical Points by Calculating the Topological Degree

	3 Visualization
	3.1 GPU Glyph Ray Casting
	3.2 Direct Volume Rendering
	3.3 Line Integral Convolution (LIC)
	3.4 Combining Arrow Glyphs and Isosurfaces

	4 Results and Discussion
	4.1 Performance of the Implementation
	4.2 Atom Movement over Time
	4.3 Visualization of Domains
	4.4 Future Work

	5 Summary
	Bibliography
	A Appendix
	A.1 Task description SciVis Contest 2012

