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Summary

Logic diagnosis is the task of finding defects within a random logic circuit based
on its faulty behavior. Fast and accurate algorithms for logic diagnosis are an in-
tegral part of modern chip development. Classic diagnosis algorithms were often
based on fault models which contain a priori assumptions on the behavior of
defects. In recent technologies, fault model based approaches become ineffective
because defect mechanisms get more and more complex. So research has started
on location–based diagnosis algorithms, which use more general fault models or
no model at all and report defective substructures directly.

The generality however may also have a negative effect on the accuracy of the
diagnosis results. With the lack of a fault model, a diagnosis algorithm has
less knowledge on possible or likely malfunctions of a circuit. This increases
the search space dramatically and may even lead to defect candidates which
are physically impossible. Reducing a priori assumptions while retaining suffi-
cient knowledge on likely defect mechanisms is the key to effective logic diagno-
sis.

This work introduces the Conditional Line Flip (CLF) calculus as a way to
describe arbitrary defects in logic circuits. This generalized fault modeling ap-
proach is used to investigate the assumptions made by diagnostic fault models
and diagnosis algorithms found in the literature.

The second main contribution of this work is a location–based logic diagno-
sis algorithm called Partially Overlapping Impact couNTER (POINTER). It
builds directly upon the CLF calculus, works independently of any specialized
fault model and offers powerful heuristics for sorting defect candidates according
to their likelihood in physical chips. The POINTER approach is extended and
modified to account for the particular challenges of high precision diagnostics in
a lab, during production, and in autonomous online diagnosis in the field.

Experimental results on industrial designs confirm that, despite its generality
and lack of application specific knowledge, POINTER performs much better than
previous diagnosis approaches. In cases where very high response compaction
ratios are used, POINTER even enables fault model independent diagnosis for
the first time.
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Zusammenfassung

Mit Logik–Diagnose bezeichnet man die Aufgabe, Fehler in logischen Schal-
tungen anhand der beobachteten Syndrome der Gesamtschaltung zu finden.
Schnelle und genaue Algorithmen dafür sind essentieller Bestandteil der mod-
ernen Chipentwicklung. Klassische Algorithmen basierten oft auf Fehlermod-
ellen, welche a–priori Annahmen über mögliche Defekte treffen. Das Verhalten
von Defekten wird mit fortschreitender Technologie jedoch immer vielfältiger, so
dass fehlermodell–basierte Algorithmen immer ineffektiver werden. Damit be-
gann die Erforschung von ortsbasierten Diagnosealgorithmen, die unter weitaus
schwächeren Fehlerannahmen defekte Unterstrukturen in Schaltungen direkt
auffinden können.

Diese Allgemeingültigkeit kann jedoch auch einen negativen Effekt auf die Präzi-
sion der Ergebnisse haben. Mit dem Fehlen eines exakten Fehlermodells hat ein
Algorithmus auch weniger Wissen über mögliche und wahrscheinliche Fehlfunk-
tionen eines Chips. Dies erweitert den Suchraum dramatisch und kann sogar zu
Diagnoseergebnissen führen, die physikalisch unmöglich sind. Der Schlüssel zu
einer effektiven Diagnose ist daher die Reduktion von Annahmen unter Beibehal-
tung von hinreichendem Wissen über mögliche Defektmechanismen.

Die vorliegende Arbeit führt mit dem Conditional Line Flip (CLF) Kalkül eine
Methode ein, um beliebige Defekte in Logik–Schaltungen zu beschreiben. Diese
verallgemeinerte Fehlermodellierung wird dann dazu genutzt, die Annahmen und
Eigenschaften vorgeschlagener diagnostischer Fehlermodelle und Diagnosealgo-
rithmen zu beleuchten.

Der zweite Hauptbeitrag dieser Arbeit ist ein ortsbasierter Logik–
Diagnosealgorithmus namens Partially Overlapping Impact couNTER
(POINTER). Er basiert direkt auf dem CLF–Kalkül, arbeitet unabhängig
von spezialisierten Fehlermodellen und bietet leistungsfähige Heuristiken zur
Sortierung von Defekt–Kandidaten anhand ihrer Wahrscheinlichkeit, tatsächlich
im Chip vorzukommen. Der POINTER–Ansatz wird daraufhin noch erweitert,
um den speziellen Herausforderungen der Präzisionsdiagnose im Labor, der
Diagnose während der Produktion, und der autonomen Diagnose im Feld
Rechnung zu tragen.
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Die experimentellen Ergebnisse bestätigen, dass POINTER trotz seiner Allgeme-
ingültigkeit und ohne tiefes Wissen über die physikalischen Vorgänge bei Defek-
ten, wesentlich bessere Ergebnisse liefert als bisherige Diagnose–Ansätze. Wenn
extreme Test–Antwort–Kompaktierung eingesetzt wird, ermöglicht POINTER
sogar erstmals die fehlermodell–unabhängige Diagnose der Syndrome.
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1. Introduction

The development and production of modern chips is an error–prone, expensive
and highly competitive task. Every semiconductor company competing in the
field of leading edge technologies has to face the challenge of building more
powerful and more complex silicon chips in large quantities and high quality in
a very short time. The faster the development and the production ramp–up, the
higher is the potential profit by being the market leader with a new generation
of processors or memory chips. To offset the high investment necessary to gain
market leadership with a new product, a company must be an efficient learner
to reduce the production cost of this product as fast as possible. As competitors
enter the market with comparable products and begin their learning process,
the competitive advantage of the former market leader is now defined over the
achieved production efficiency and margins [Hutch2008].

Today, only very few firms can afford this kind of competition. One indicator
are the enormous investments needed to build a high–class production facility.
In the recent years, the average cost of a single production site was about 1.5
Billion dollars [Hutch2008], Intel recently announced in [Intel2011] an investment
of over 5 Billion dollars to build a new fab. Some even argue, that Moore’s Law
[Moore1965, Moore1975] will eventually end because of economic considerations
rather than technological or physical limits [RuppS2011].

The advancements in manufacturing technology made it possible to exponen-
tially increase the complexity of chips [ITRS2011] fulfilling Moore’s Law for more
than 40 years. With growing circuit complexity and shrinking geometries, the
actual behavior of the silicon is hard to model and cannot always be predicted
or simulated [ITRS2011]. In order to improve production efficiency and mar-
gins, one has to learn from the flawed chips directly through failure analysis.
Essential tools for failure analysis are logic diagnosis algorithms, which iden-
tify the defective structures within a chip by analyzing its faulty test responses
[WangWW2006, WundeEH2007, WundeEH*2007a].
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1. Introduction

This chapter will first discuss the most common sources of malfunctions in logic
circuits to identify the targets for all the investigations. Then, common practices
in logic test, design–for–test, and design–for–diagnosis are presented in order to
show the environments logic diagnosis algorithms have to work in. Then, after
highlighting the main applications and challenges for logic diagnosis algorithms,
this chapter finishes with an overview of this thesis.

1.1. Sources of Malfunctions in Random Logic
Circuits

Due to process variations , the behavior of a manufactured chip may differ from
expectations or simulation models. In many cases, the chips can be used despite
the varied behavior and simulation models are refined to match the observed
behavior to improve predictability for future designs. In some cases however,
some functionality is rendered unusable due to an abnormality in the behavior,
which is then called a malfunction and causes yield loss .

Figure 1.1 shows one way to categorize the main factors contributing to mal-
functions and their possible causes in modern chip manufacturing. The goal of
yield learning is to identify the causes of yield loss (yield limiters) and to avoid
them in the future. One of the first steps is the identification of defects within
the circuit using logic diagnosis algorithms. Although the diagnosis algorithms
developed here work without any knowledge about specific defect mechanisms,
the most common ones are discussed here in order to relate them to the causes
in the production process.

First, an overview over the most common causes of random defects is given.
Afterwards, the section on systematic defects will focus on the interaction be-
tween the design (the layout) and the production process. The physical causes
of aging are discussed last.

1.1.1. Random Defects

Chip manufacturing consists of hundreds of physical processing steps applied
to a silicon wafer. The single steps involve deposition of materials using liq-
uids, gases and galvanic processes, defining structures using photolithography,

18



1.1. Sources of Malfunctions in Random Logic Circuits

Yield Loss

Random Systematic
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Litho CMP Etch Stress EM Device 
Reliability
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Dielectric 
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effects

Depth of Focus
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Gate damage 
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Interconnect 
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due to current 
density
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Gate Oxide 
Integrity
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base materials
Chemical 
contamination
Defects in 
crystal structure

Figure 1.1.: Sources of yield loss; based on [ChianK2007].

implantation of ions using plasmas, removal of materials by etching and me-
chanical polishing. Although the base materials and processing environments
are very pure and clean, impurities and trace amounts of moisture or oxygen are
inevitable [BreauC2008]. The majority of these contaminants originate from the
source materials, the equipment and the processes themselves rather than from
the cleanroom or people [BreauC2008]. Depending on the process step, contam-
inations can cause various kinds of random defects. Some typical examples are
[BreauC2008]:

� Early gate oxide breakdown (malfunctioning transistors) due to impurities
in the silicon wafer, residual oxygen or other gases entering the reaction
chambers in the front–end process.

� Excess or missing material in transistors or interconnect can be caused by
improper surface cleaning. Residual contaminants may act as nucleation
sites during film growth and the following processing steps are disturbed.
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1. Introduction

� Micro–bridging and pattern erosion are typical results of a contaminated
lithography step. In photolithography, chemical contamination from the
light source can lead to lens clouding, particles on the backside of the
wafer may cause defocus and the mask material is known to degrade over
continued exposure to the ultraviolet light.

� Interconnect defects (like opens or bridges) are often caused by etch
residues, incomplete etches, scratches and resulting debris from chemical–
mechanical polishing.

The strive for cleaner base materials and the reduction of contaminations adds
considerable cost to the production process. To guide and focus these ef-
forts towards maximum gain in yield, it is important to locate defects stem-
ming from random sources and attribute them to the specific process steps
[SharmBL*2008].

1.1.2. Systematic Defects

In a common definition, systematic defects are the results of causes which are
avoidable by tuning of process parameters or changes in the design [ChianK2007].
Of this broad area of research, this section will focus on the dependencies be-
tween the layout of random logic and the fabrication process. The two major
contributors to the so–called design–process–interactions for logic circuits are
photolithography and chemical–mechanical polishing during fabrication of the
interconnect layers of the chip (back–end process).

Photolithography

Photolithography is the technique to define the structures to be processed in
a chip. A wafer is coated with a light sensitive photo resist material and is
illuminated by a light source shining through a mask . The illuminated part of
the photo resist changes its chemical properties and is etched away in the follow-
ing processing steps. The best known light source used in chip manufacturing,
the Argon Floride excimer laser, produces ultraviolet light with a wavelength of
λ = 193nm. The most advanced technology node for logic circuits currently en-
tering mass production uses a half–pitch size of 22nm [KuhnLK2010, Intel2011a].
Since many years now, the chip structures are much smaller than the wavelength
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1.1. Sources of Malfunctions in Random Logic Circuits

of the used light and complex resolution enhancement techniques (RET) are
used to print these structures [Liebm2003]. The most prominent among these
techniques are optical proximity correction (OPC) to reduce corner rounding
and line shortening in the silicon, and phase shifting masks to exploit optical
interference to print structures smaller than λ. RET poses restrictions on the
layout of the metal interconnect. Many configurations of neighboring features
are impossible to manufacture as they cannot be translated into a RET–enabled
mask. These conflicts are mostly taken care of by design rules and lithography–
aware routing [Liebm2003]. Others can be manufactured, but affect yield due to
marginalities in the lithography process [ChianK2007]. Using these configura-
tions is often a trade–off between yield and performance of the layout. Typical
results are bridge and open defects in the interconnect which have to be diag-
nosed in order to discover problematic structures and quantify their impact on
the yield.

Chemical–Mechanical Polishing

The interconnect layers of modern chips are fabricated using the Damascene
process [ChianK2007]. To process a single metal layer, first, an insulator is added
to the surface. Then, the insulator is partly removed with photolithography
and etching steps to form trenches and holes for metal lines and vias. Using a
step called electroplating, metal (usually copper) is deposited onto the surface
filling the trenches and holes. Finally, the excess metal is removed by chemical–
mechanical polishing (CMP).

The challenge is to polish the complete surface as evenly as possible despite the
irregularity of the layout features beneath. If the irregularities are not properly
accounted for, the polishing process may remove too much or too little mate-
rial in some regions which in turn increases the probability for open defects or
bridging defects [ChianK2007]. Logic diagnosis of each failing chip and statisti-
cal processing of the layout locations of the defect candidates is typically used
to locate the regions polished improperly.
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1.1.3. Aging

Modern circuits may change their behavior under continued use and eventually
fail in the field long after production. Many aging–related defects are caused
by a design or a production problem which accelerates the physical processes
described below. Such defects are called latent defects and can be discovered
to a certain extend by burn–in testing, which accelerates the aging processes by
factors of 1000 to 10000. A more complete discussion on burn–in testing can be
found in [McPhe2006].

Electromigration

Under certain conditions, electrons in metal wires carry enough momentum
in order to dislocate metal atoms and create voids and bulges in the metal
[Segura2004]. An empirical study on aluminum interconnects lead to the so–
called Black’s Law [Black1967] which states that the median time to failure tF
depends on the temperature T in Kelvin, the electron current density je (A/cm2),
the activation energy Ea (eV), the Boltzmann constant k, and a technology con-
stant A0:

tF =
A0

j2e
eEa/kT

With shrinking structures, the electron current density je usually increases and
reduces the mean time to failure considerably. Even more importantly, as there
are more and more structures in the same chip area, the power density might
increase leading to higher operation temperatures. This temperature has an
exponential effect on tF. There are design rules in place in order to keep elec-
tromigration under control. However, tF is just a statistical quantity and the
effects within a signal line strongly depend on the actual metal grain structure
[Segura2004]. Some chips may fail much earlier due to this effect than pre-
dicted.

Electromigration commonly causes two types of failures. The first type is an open
defect caused by a void left by migrated metal atoms which eventually spans the
width of the signal line and disconnects it. The second type of defects are bridges
caused by bulges created by the dislocated metal atoms and eventually connect
to neighboring metal lines [Segura2004].
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1.1. Sources of Malfunctions in Random Logic Circuits

Oxide Wearout and Breakdown

There is evidence that in so–called ultrathin gate oxides (below 30 Å in thick-
ness), electrons tunneling through the oxide can cause traps [Segura2004]. Traps
are missing oxygen (O) atoms in the amorphous SiO2 structure causing the re-
sistance of the gate oxide to decrease. The percolation model [DegraKD*2001]
states that, in continuously stressed transistors, more and more punctual traps
are formed within the oxide leading to wearout. Critically aligned traps may
finally create a path through the oxide barrier and the increased current ther-
mally damages the transistor leading to a hard breakdown, a conducting path
through the gate oxide leading to a catastrophic failure of the transistor.

Hot Carrier Injection

Transistors designed for high switching frequencies usually feature relatively
short channel lengths. The strong electric field at the drain of such transistors
in saturation state can cause hot electrons entering the depletion region causing
damage to nMOS transistors [Segura2004]. This effect increases the threshold
voltage of nMOS transistors leading to a reduction of operating frequency of
the circuit over time. Proper guardbanding in the operating frequency can be
of help, however unexpected stress on transistors may lead to larger parameter
shifts and to timing failures of the circuit [Segura2004].

Negative Bias Temperature Instability

This effect mainly affects pMOS transistors causing an increase in the threshold
voltage like hot carrier injection does for nMOS transistors. The parameter shift
depends on the stress applied to the device. In contrast to hot carrier injection,
transistors are known to recover significantly after the stress is reduced leading to
a relaxation of the threshold voltage shift [Segura2004, GieleWM*2008]. The ex-
act physical cause of NBTI is still not fully understood [Segura2004], among the
most accepted factors for NBTI are a hydrogen release from the oxide/substrate
border and hole trapping in the oxide [GieleWM*2008].
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1.2. Cost Efficient Logic Test Infrastructure

During mass production, each chip goes through a series of tests to ensure an
acceptable quality of the shipped products [BushnA2000]. The tests that target
logic circuits (the networks of state–elements and logic gates which implement
the functionality of the chip) are called logic tests .

Logic test is performed by automatic test equipment (ATE), which provides
power and input stimuli, and records electrical characteristics as well as logic
data produced by the chip. The chip contains test infrastructure to provide the
ATE access to logic blocks or to perform self–tests.

Adding the test infrastructure during design (design–for–test , DfT), the addi-
tional chip area spend and the investments in and operation of ATE create major
additional costs which may even exceed the cost for fabrication [BushnA2000].
Moreover, the methods used to test logic circuits and other parts of the chip
are already designed to provide the best trade–off between desired product qual-
ity and test cost. Any additional feature in the test infrastructure or ATE and
any increase in test time per chip needed for logic diagnosis approaches have
to be carefully examined regarding increase in test cost and benefit of diagnosis
results.

The common industrial practices in design–for–test, design–for–diagnosability
(DfD) and their implications for logic diagnosis algorithms are discussed be-
low.

1.2.1. Scan Test

Scan test [EicheW1977] is the most widely used method to test logic circuits.
The added test infrastructure connects the state elements like flip–flops or latches
to shift registers called scan chains . Typical industrial designs use multiple
scan chains in parallel to reduce the number of shift cycles (see figure 1.2).
During the normal operation of the logic circuit (functional mode), these scan
chains are deactivated. In test mode , data can be shifted via the scan chains
and independently of the surrounding logic through the circuit. This enables
direct control and direct observation of the state elements within the circuit
[WangWW2006].
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1.2. Cost Efficient Logic Test Infrastructure

Figure 1.2.: Logic test using scan chains.

If every state element within the tested circuit is accessible via a scan chain,
it is called a full scan design . In this case, test pattern generation as well
as logic diagnosis algorithms are only concerned with the combinational logic
structures (gates and signals) between the state elements. Figure 1.3 illustrates
the conversion of a full scan design into a purely combinational simulation model
called combinational equivalent . On the left hand side, a design is sketched,
which has two primary inputs i1, i2, two primary outputs q1,q2 and three flip–
flops. All flip–flops are accessible via a scan chain. As all flip–flops can be
set directly in test mode using the scan chain, it is equivalent to regarding the
output signals of the flip–flops z1, z2, z3 as inputs of the circuit. These inputs are
commonly called pseudo–primary inputs . All flip–flops can be directly observed
in test mode via the scan chain, thus the input signals of the flip–flops coming
from the logic circuit a1,a2,a3 can be regarded as pseudo–primary outputs
[BushnA2000].

The combinational equivalent is independent of the number of scan chains or
the ordering of the flip–flops in the chains. Test generation algorithms as well as
logic diagnosis algorithms can operate directly on the combinational equivalent
under the assumption that the test infrastructure itself is fault–free. For test-
ing and diagnosing the test infrastructure itself, specialized methods are used
[WangWW2006] which are not the concern of this thesis. The remainder of
this work will always assume a full scan test and use the combinational equiva-
lents.
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Figure 1.3.: Combinational equivalent of a full scan design.

1.2.2. Scan Compression

The amount of test data to be transfered between the ATE and the chip is
reduced by the use of on–chip test data decompressors and test response com-
pactors [WangST2008, HakmiHW*2009] illustrated in figure 1.4.

Figure 1.4.: Principle of scan compression.

Test data decompression can be supported rather easily by logic diagnosis al-
gorithms, because the inputs to the combinational equivalent can be obtained
by simulating the decompressor structure with the known compressed test data.
However, there is no direct access anymore to the full test response of the com-
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binational equivalent. Three basic approaches can be distinguished for enabling
diagnosis with test response compaction [Cheng2004].

Bypassing

Failing chips are re–tested with reduced or completely disabled response com-
paction to obtain more response data for diagnosis [WangWW2006]. The re–
testing introduces a major test time overhead, which may be acceptable during
prototyping or precision diagnosis but not in a production test environment or
for in–field diagnosis. All applications but in–depth failure analysis in a lab
require other diagnosis approaches described later.

The major benefit of bypass approaches is that they work with any test com-
paction structure and logic diagnosis algorithm. One typical use–case of bypass-
ing is the application to logic built–in self–test (LBIST) structures. During
normal test, a LBIST like STUMPS [BardeM1982] can operate autonomously
without the need for an external tester [AbramBF1990]. The multiple–input
shift register (MISR) in a STUMPS structure is used to calculate a single sig-
nature of a complete test of a logic block. The final MISR signature provides
only very little diagnostic information which is typically insufficient for reaching
the required diagnostic resolution.

Besides completely bypassing the MISR, more advanced methods for enabling
diagnosis in a BIST environment include obtaining more information by sepa-
rating the BIST session into multiple test intervals [Savir1998, WohlWPM2002,
LiuC2003, CookHW2012] or running the BIST multiple times while generating
each time a signature over a different subset of responses [WuA1999, RajskT1999,
GhoshT2000a]. In these approaches, diagnosis is performed indirectly or directly
as described below.

Indirect Diagnosis

In indirect diagnosis, the failing scan cells are calculated out of the com-
pacted data and this reconstructed fail data is used for diagnosis. Indirect
diagnosis requires sufficient information for reconstructing fail data. Many
techniques have been proposed which are based on error correcting codes
[MitraK2004, SalujK1983, PatelLR2003, Das2000], convolutional compactors

27



1. Introduction

[RajskTW*2005, WangCHW2003] or special signature registers [LeiniGM2004,
Touba2007, LiuC2003]. To identify a single failing scan cell out of n, at least
log(n) bits must be transferred. Reconstructing failure information out of com-
pacted data is also error–prone. If the number of failing scan cells exceeds the
capabilities of the used code, wrong fail information is reconstructed and diag-
nosis may be mislead.

Direct Diagnosis

Logic diagnosis algorithms may work directly with compacted data by consid-
ering the compaction hardware as part of the design itself (see figure 1.5). The
direct diagnosis approach does not use an error–prone reconstruction of fail data
and works also with compaction circuits with much a higher compaction ra-
tios.
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Figure 1.5.: Combinational equivalent for direct diagnosis on a compacted
response.

The combinational equivalent grows linearly with the number of test responses
compacted into a single signature. Because of this, direct diagnosis is usually only
effective with space compactors (one test response per signature) or compactors,
which compute each signature out of very few test responses [Elm2011]. Direct
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diagnosis applied to time compactors is often less effective than indirect diagnosis
or bypassing approaches. The high fan–in of compactors pose a challenge to some
classes of diagnosis algorithms. Especially back–tracing–based and intersection–
based approaches, which will be explained in chapter 3, may loose effectiveness
if confronted with compactors and high compaction ratios.

1.3. Volume Diagnosis for Yield Improvement

Some chips will fail the production tests for reasons explained before. The goal
of yield improvement, yield ramp, or yield learning is the optimization of the
manufacturing process or the design to achieve higher yield. A higher yield both
reduces the production cost per functional chip and improves the product quality
of the chips delivered to the customers [WilliB1981].

Volume diagnosis combines diagnosis results from many failing chips in a pro-
duction line in order to find design and production problems. The results of
logic diagnosis of the individual chips are correlated to layout data to iden-
tify features or regions on the wafer which are not well manufactured and fail
in many chips [KeimTTS*2006]. Statistical learning approaches are applied
on aggregated diagnosis data to find features failing more often than usual
[BastaWA2008, TamPB2010]. Based on this information, layout and process
parameters are optimized [HoraSEL2002].

While there is a huge amount of data to be analyzed for each production line,
the fail data for a single device is rather limited. The limitation in response data
has multiple reasons. The most obvious one is the test response compaction used
to reduce the bandwidth needed between tester and device, and diagnosis has
to be performed on compacted response data. Moreover, as tester memory is
limited and the test time used on failing devices is usually kept as short as pos-
sible, only the first erroneous signatures are recorded. Another limitation stems
from the used production test patterns. These pattern sets are kept small to
reduce test time. Hence, each pattern excites many faults at the same time mak-
ing it hard for diagnosis algorithms to distinguish between possible candidates
[ChenRPR2006].

Despite all these limitations of the input data for diagnosis, the algorithms must
provide good predictions with a limited amount of computing power. With
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thousands of fail data sets coming in each minute during production, any increase
in the analysis time per data set has a great impact on the overall computing
power requirement.

1.4. Precision Diagnosis for Failure Analysis

Failure analysis is the investigation of the root cause of a malfunction in a
single chip. To understand the underlying defect mechanisms within a fail-
ing chip, physical failure analysis (PFA) with its complex and time intensive
de–processing and imaging techniques is often unavoidable. As finding defects
directly through physical inspection of a chip with Billions of transistors is way
too expensive, logic diagnosis algorithms are used to identify the structures af-
fected by the defect [Wagne2008].

Precision diagnosis is performed in a lab environment on a small selected set
of chips like prototypes or representatives for systematic defects determined by
volume diagnosis to guide PFA for the individual chips. Compared to volume
diagnosis, the constraints on computing time are reduced but high diagnostic
resolution has to be provided to guide the physical inspection accurately. The
performance of a diagnosis algorithm in this application is measured by the
area that has to be examined physically until the defect is found. This area is
reduced by an efficient ranking of possible defect locations and by investigating
the functional behavior of the defect itself.

The available time permits the bypassing of any on–chip test compression logic
and the application of large diagnostic pattern sets. Logic diagnosis, diagnostic
pattern generation and pattern application can even be coupled to diagnose a
defect adaptively [GongC1995]. Based on the suspicious region determined by
diagnosing responses to a standard pattern set, special diagnostic patterns are
generated and applied to improve diagnostic resolution.

1.5. In–Field Diagnosis of Reliability Problems

Also the fault free chips delivered to customers may start to malfunction at
a later time during operation due to aging effects or an unforeseen impact of
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the physical environment. One way to investigate such problems is to collect
diagnostic data of structural tests in the field under the environment, where
the malfunction is active [CookEWA2011]. For this purpose, the design–for–test
infrastructure built in for production test is adapted and extended for in–field
use. Diagnosis capabilities built into the chip and in–depth analysis of customer
returns help to pinpoint the origin of the malfunctions. With this information,
the design can be changed to improve the reliability of future products.

As the test results must be stored somewhere in the system itself, the memory
constraints are even more severe than during production test. Thus, the test
responses have to be extremely compacted prior to storage, and the biggest
challenge for a diagnosis algorithm is to still extract as much information as
possible from just a few bits of fail information.

1.6. Overview and Contributions

This chapter has highlighted the two principal challenges logic diagnosis algo-
rithms have to face. The first challenge is the reduction of a–priori fault assump-
tions to be able to diagnose a wide range of different defect types stemming from
all possible sources. The second challenge is test data economy. Constraints on
response data storage and test time force diagnosis algorithms to use the available
data most effectively. Diagnostic fail data for a single chip may originate from
multiple different sources like production test, lab test, or in–field self–test. The
effective use of all these sources calls for versatile diagnosis algorithms, which
are able to use and combine fail data of various sources and properties to com-
pute the best possible diagnosis result. If the constraints are reduced, diagnosis
algorithms should make effective use of the provided flexibilities and provide the
best possible diagnosis result despite the lack of specific fault models.

The remainder of this thesis addresses these challenges and is organized as fol-
lows:

Chapter 2 Formal Foundation develops the formal basis and notations used in
this thesis. It includes a new notation for generalized fault modeling, the Con-
ditional Line Flip (CLF) calculus, defines the requirements in circuit modeling
and the logic diagnosis problem itself.
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Chapter 3 State–of–the–Art presents the state of the art in diagnostic fault
modeling and logic diagnosis. The CLF calculus is used here as a tool to analyze
the assumptions made in common fault models.

Chapter 4 POINTER presents a new location–based logic diagnosis algorithm
called Partially Overlapping Impact couNTER. Compared to previous ap-
proaches, this algorithm is capable of extracting more diagnostic information
out of the available fail data using a sophisticated, yet efficiently computable
ranking technique. By using the CLF calculus, it is able to point directly to
the faulty structures within the circuit without relying on any particular fault
model.

The remaining chapters describe extensions to POINTER in order to apply the
algorithm in the main application fields of logic diagnosis.

Chapter 5 Adaptive Precision Diagnosis discusses POINTER in a prototyping
domain, in which fully interactive communication with the device is possible.
The goal is to pinpoint defects as precisely as possible by adaptively generating
additional diagnostic tests on demand. By focusing diagnostic test generation
in this way, diagnosis time is reduced as well as the dependency on specific fault
models.

Chapter 6 Production Diagnosis focuses on a production environment, where
the tests are predetermined and only the first few failing responses are known.
Fast and predictable pattern analysis times are very important in such a setting.
POINTER is extended in a way, that analysis time increases linearly with the
number of failing tests to analyze, but considers still all passing tests in between
to obtain maximum diagnostic resolution.

Chapter 7 Diagnosis and Extreme Space Compaction takes the response com-
paction to an extreme so that it is possible to store test results directly on chip for
later analysis. It is shown how POINTER can handle even extremely compacted
fail data without compromising diagnostic resolution.

Chapter 8 Experimental Evaluation discusses a series of experiments and obser-
vations that shows the efficiency and efficacy of the new diagnosis method. The
experiments are conducted on known benchmark circuits as well as on industrial
designs.

Chapter 9 Conclusions summarizes the contributions of this work and discusses
possible research directions this work may enable in the future.
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This chapter develops the formal basis for the investigation of fault model inde-
pendent diagnosis algorithms. First, a generalized fault modeling is developed
based on some fundamental considerations on defect mechanisms and defects.
Then, the used circuit model is introduced and the logic diagnosis problem is
defined. This chapter also establishes the notations for circuits, faults and test
data used in the remainder of this work.

2.1. Defect Mechanisms, Defects and Faults

A defect mechanism is the physical process that increases the probability of
defects. Understanding these mechanisms qualitatively and quantitatively is the
ultimate goal of any failure analysis. Relating defects to their underlying mech-
anisms is the task of humans interpreting diagnosis results, performing measure-
ments and physical failure analysis. The most common defect mechanisms and
typical defects caused by these physical processes have been covered in chapter
1.

A defect is an unwanted structure or electrical property in the silicon chip. In
this thesis, a defect is always assumed to have a specific location within the chip,
called defect site . Sometimes, the term spot defects is used in the literature to
contrast the defects handled in this thesis from non–local phenomena leading to
failing chips. A defect disturbs the voltages and currents at the defect site.

In the diagnosis literature, faults are often closely related to defects. Therefore,
a fault is defined here as a representation of a defect with respect to a given
circuit model. The circuit model used in this thesis will be defined later in this
chapter. If a circuit C was altered according to a fault f, the fault is said to be
injected into the circuit and is noted as Cf. Sets of faults are typically denoted
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as F. A circuit with an unknown defect is noted with the symbol Cud, which
can also be read as circuit under diagnosis .

As shown earlier, diagnosis algorithms should be designed with less restrictive
assumptions on possible faults to be able to point to the defective structures
regardless of the exact nature of the defects. To describe these defects, a gen-
eralized fault modeling calculus is needed, which describe the structural and
functional aspects of the defect candidates formally.

2.2. Defect Behavior and Failure Observation

Any detectable defect in a Cud disturbs the electrical behavior of the circuitry
close to the defect site. These disturbances include degenerated voltage levels
of signal lines, increased current drain at gate inputs, increased power consump-
tion, or faulty timing behavior. The nature of the alterations by a defect may
exceed the capabilities of the circuit model. For instance, it may introduce in-
deterministic behavior in an otherwise deterministic circuit model.

Partitioning the defective circuit into two parts helps to abstract from the elec-
trical specifics. One part is the defect site. It contains all the gates and signals
whose behavior cannot be explained or modeled with the circuit model used.
For instance, if the circuit is modeled on the logic level, then all signals with
degraded electrical characteristics, all influenced, and all inoperable gates are
contained in this defect site. The other part is the rest of the logic circuit, which
implements the specified logic functionality and operates normally. The signals
that connect these two parts are considered to be ordinary logic signals.

Figure 2.1 shows the defect site and its surrounding circuit. The input cone is
controlled by the inputs of the circuit and provides the defect site with values
according to the circuit model. The defect site may be influenced by the values
from the input cone and provides possibly faulty values to the output cone . The
output cone again performs the specified functionality according to the circuit
model.

During test, patterns are applied at the inputs of the circuit and the values
at the outputs are observed. As a consequence, logic diagnosis cannot observe
the electrical conditions at the defect sites directly, but has to rely on the sig-
nals leaving the defect sites towards the outputs. From the perspective of logic
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Figure 2.1.: Defect site and surrounding logic

diagnosis, certain internal signals have values, which are inconsistent with the
fault–free operation of the circuit according to the circuit model. By finding for
each test a small set of signal lines, which have to be altered in order to explain
the erroneous outputs, the defect site itself can be located. This set of altered
lines form the structural aspect of the diagnosis result.

With each new pattern, the electrical conditions at the defect sites change. The
output cone receives different inputs and may provide different responses. Even
the same pattern can lead to different results each time, if the defect site behaves
in a nondeterministic way or depend also on other parameters like temperature or
supply voltage level and the alterations are not always the same. The alterations
at the defect site are correlated to the electrical conditions within the defect site.
They form the functional aspect of the diagnosis result.

2.3. Circuit Models

As circuit models, combinational circuits are used. The structure of a combi-
national circuit C is modeled here as a directed, acyclic graph. An example is
shown in figure 2.2. The vertices without any incoming edges are called sources
or inputs to the circuit C. The vertices without any outgoing edges are called
sinks or outputs of the circuit C. An output vertex may have at most one incom-
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ing edge. The vertices with incoming as well as outgoing edges are called gates of
the circuit C. The edges are commonly called signals and their direction denotes
the flow of information from a sending vertex called driver to a receiving vertex
called receiver . The receivers of a specific driver are also called its successors ,
and the drivers of a specific receiver are also called its predecessors .

A single driver passes the same information to all its receivers. A line or signal
line is either one of the inputs of a vertex, or the output of a vertex. Analogous to
a single metal line connected to the output of a CMOS cell, at most one output
line is defined per vertex. If a CMOS cell has multiple outputs and different
information has to be passed to different receivers, the driver can be split into
multiple vertices without loss of generality.

If a driver has more than one direct successor, its fanout contains multiple re-
ceivers. In a layout of a chip, a fanout starts typically in a single line of metal
and then branches possibly multiple times forming a tree structure to distribute
the logic signal to all individual receivers. The tree structure can be represented
in the circuit model by a tree of branch–points . A branch–point is a vertex with
two or more direct successors and models a single branch in the fanout–tree. If
necessary, buffer–gates (one–input vertices, which simply pass on the informa-
tion they receive) can be added to the circuit to include additional branch–points
without changing the behavior of the circuit (see figure 2.3). The lines at the
inputs of vertices (input lines) identify specific fanout branches of a preceding
branch–point, the lines at the outputs of branch–points (output lines) identify
fanout stems.

Each gate implements a function over values of the direct predecessors of the
gate. The value of this function is passed to all direct successors of the gate.
The input vertices of the circuit do not implement any function. Their values
are defined by an input vector ~t = (t1, t2, . . . , tn) in a freely chosen but fixed
order and with n being the number of input vertices in the circuit. The values
of the output vertices are written as an output vector ~r = (r1, r2, . . . , rm) in a
freely chosen but fixed order and with m being the number of output vertices in
the circuit. The inputs applied to a combinational circuit and the output values
generated by the circuit are called test data . An input vector is also called test
vector or test pattern , an output vector is also called a response vector or
simply response . A set of test vectors is typically noted as T .
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Figure 2.2.: A graph representation of the combinational circuit c17.
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Figure 2.3.: Modeling a complex fanout tree.
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As each individual gate implements a function and the circuit structure is defined
to be free of any cycles, the output vector of the complete circuit depends only
on the applied input vector. This observation is easy to verify as in any acyclic
graph there exist an ordering of vertices such that each vertex is either an input
or has all its predecessors at an earlier position in this ordering. Therefore,
the functions of all gates can be rewritten as functions over the input vector
itself by repeated substitution of the functions from the respective predecessors.
Especially all elements of the output vector can be expressed as functions over
the input vector and leads to the so–called circuit function C(~t) = ~r.

The remaining aspect to define is the nature of the values passed through the
circuit. Depending on the accuracy desired, they may range from simple Boolean
values over temporal information even to electrical characteristics.

With the values being Boolean values B = {0, 1} and all functions of the vertices
being Boolean functions, a circuit model for two–valued logic simulation is ob-
tained. In this case, the circuit function C(~t) = ~r is a Boolean function as well
and ~t, ~r are vectors of Boolean values. This simple model for the circuit sur-
rounding the potential defect sites is already quite effective for locating a wide
range of permanent defects and it will be used in this thesis to validate the new
diagnosis approaches.

For locating defects, that influence the timing of internal signals, the same meth-
ods can be applied to a circuit model, which also include timing information.
As long as the used circuit model is able to properly reflect the behavior of
the circuit around potential defect sites, the sites themselves can be located.
A discussion on different timing models can be found in [Sapat1994]. The only
requirement for applying the conditional line flip calculus defined below to time–
aware circuit models is that, for each signal line, a Boolean value is defined at
any point in time.

2.4. A Definition of Logic Diagnosis

Given a combinational circuit C and a list of input stimuli T = (~t1, . . . ,~tn).
In the fault–free circuit, the response is completely determined by the current
input: ~ri = C(~ti) for 1 6 i 6 n. By applying all n input stimuli, a list of n
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responses is obtained R = (~r1, . . . ,~rn). The combination of the two lists T and
R specifies the fault–free functional behavior of the circuit C.

Given a circuit Cud which is similar to C but contains unknown defects. The
responses Rud = Cud(T) obtained from this circuit with the same input stimuli
are different from R. The problem of logic diagnosis is to locate and describe
the differences between the circuit structures C and Cud based on the observed
functional behavior T ,R,Rud. In addition to the functional behavior, one of the
circuit structures (usually C) is also known.

The description of the differences between C and Cud usually contains the set of
lines and gates involved in the defect site (structural or spatial information) and
information on the behavior of those lines (functional information).

2.5. Conditional Line Flips

A conditional line flip (CLF) describes a faulty behavior at a single line in the
circuit. A CLF at line l describes the fact that the receiving gates sometimes read
a faulty value from l. In Boolean logic, a faulty value is always the opposite of
the correct one, so this situation can be viewed as a line flip, which is sometimes
active.

The lines, which are influenced directly by a CLF, are called victims or victim
lines. A CLF is noted by the name of the victim line and an XOR–symbol
followed by a condition clause:

line⊕ [condition]

The condition describes the activity of the CLF. If the condition is satisfied, the
affected line is flipped to the opposite value. If the condition is not satisfied, the
line is fault free.

The CLF calculus does not pose any restrictions on the structure of the con-
ditions. The conditions may be arbitrary functions over signal values, time,
and may include also external parameters supply voltage levels or temperature.
Even nondeterministic behavior can be captured by using random variables in
the condition. If signal lines are specified in the condition, the general conven-
tion is that their fault–free values according to the circuit model are used in the
evaluation.
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Each line in the circuit can bear a single CLF. Multiple CLFs at the same line
can be merged into a single one without loss of generality by combining their
conditions appropriately. Figure 2.4 shows all possible locations of CLFs in a
combinational circuit. A CLF can be located at all input lines of gates and
output ports like f2, f3, f4 or at an output line of branch–points like f1. Nodes
with a single fanout like d do not have a CLF at the output line, because this
CLF would be logically equivalent to f4 with the same condition. A CLF at the
output line of a branch–point affects the logic values for all successors of the
node. For example, f1 at gate b will flip the inputs of both successors c and d,
whereas f2(f3) only influences c(d).

A static fault can be described using a set of CLFs in which every CLF condition
is expressed as a Boolean formula over the signals of the circuit. It has the form
f = {v1 ⊕ [f1], v2 ⊕ [f2], . . .} with v1, v2, . . . being the victim signals and f1, f2, . . .
being Boolean functions. Again, the condition is evaluated using the fault free
value of each signal. The activity of static faults are completely determined by
the current fault free signal values in the static state of the circuit. Neither the
time domain nor indeterministic behavior is taken into account.

The behavior of dynamic faults not only depend on the steady state of a circuit,
but also on time. Such behavior can be modeled with CLFs to a large extend
by allowing the Boolean functions in the conditions to also depend on previous
signal values. This work uses subscripts to the signal names to specify a time
difference to the current point in time. Previous clock cycles are specified by
using integer values: v−1 is the value of v in the previous clock cycle, v−2 the
value before that. If time differences smaller than one clock cycle need to be
specified, real values between 0 and −1 are used. For instance, v−0.5 evaluates
to the value of v half a clock cycle in the past.

More modeling examples and the relation to known fault models can be found
in the next chapter.

2.5.1. Defect Site

The defect site can now be formally defined based on CLFs. Given a set D of
CLFs that describe together a defective behavior. A defect site is the set of all
signal lines that are either victims in D or are used in the conditions of the CLFs
in D. The size of a defect site is the cardinality of its set of signal lines.
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Figure 2.4.: Combinational circuit with conditional line flips.

41





3. State of the Art

3.1. Diagnostic Fault Modeling

Traditionally, fault models have been introduced to reduce the complexity of pat-
tern generation and pattern analysis algorithms. This reduction has mainly been
achieved due to both the limited amount of faults which have to be considered
and their simple behavior. These fault models are still used in many diagnosis
systems, so they are discussed in the section Basic Fault Models.

With increasingly complex defect mechanisms in modern process technologies,
two alternatives in fault modeling can be observed in research. On the one
hand, more and more specialized fault models have been developed to capture
specific defective behaviors in the circuit [Aitke1995]. These efforts are dis-
cussed in Defect–Oriented Fault Models. On the other hand, there is a trend
towards more and more generalized fault models to encompass many different
defective behaviors. These are discussed here in the section Generalized Fault
Models.

3.1.1. Basic Fault Models

Stuck–at Faults

A stuck–at fault [Eldre1959] ties a victim line to a fixed logic value. This model
is used today in a broad array of applications from test generation over test
coverage analysis to logic diagnosis.

The activity of a stuck–at fault depends on the original value of the victim signal.
A stuck–at 0 at signal v is active only, when v carries a logic 1, and a stuck–at
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1 on the signal is only active, when v carries a 0. Thus, the canonical CLF
representations of stuck–at faults are:

v⊕ [v] : stuck–at 0

v⊕ [v] : stuck–at 1

This notation reflects the basic properties of stuck–at faults. A fault only affects
one line and can be expressed with a single CLF. The fault is deterministic and
static as the conditions are Boolean functions. The Boolean conditions of the
two CLFs depend on and only on the victim line v itself. Any more complex
Boolean functions with this property can be simplified into one of these two
functions using the known Boolean identities.

Although stuck–at faults do not model defective behavior of circuits accurately,
it was shown that stuck–at fault pattern sets also test for many other defects
[McCluT2000]. Many diagnosis algorithms follow the idea in [WaicuL1989],
where stuck–at faults are not assumed to explain all, but only some failing re-
sponses in order to diagnose more complex defects. This generalization of the
stuck–at fault model is discussed in detail in the section 3.1.3.

Gross Delay Faults

A gross delay fault [KrstiC1998, BushnA2000] assumes that a signal transition
gets delayed at a gate by such a large amount that it won’t reach any output
before the observation time. If a gross delay fault is active for a particular test,
it produces at that time the same response as a stuck–at fault at the same signal.
In the literature, transition faults are often used synonymously with gross delay
faults [BushnA2000]. Some works link transition faults more closely to transistor
open defects and define additional conditions for fault activation [Wunde1991].
These conditions are further detailed in section 3.1.2.

The activity of time–related faults like gross delay faults depends not only on the
current signal values but also on previous values of signals. In CLFs, these past
values of a line are noted with a subscript giving the difference to the current
time. For gross delay faults, it is sufficient to use discrete time values to identify
the appropriate clock cycles.
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Just like the derivation of the basic stuck–at fault in the previous section, CLF
can be used now to derive all possible gross delay faults on a signal, given that
there are no external aggressors. Two conditions must hold for a gross delay
fault to be active. The first condition is that the current signal value must be
different from the previous one. With v being a signal, this first condition is
v⊕v−1. The second condition may depend on the current value of signal v itself,
since no external aggressors are allowed and v−1 is determined by v and the first
condition. All three possible gross delay faults are therefore:

v⊕ [(v⊕ v−1) · f(v)] with f(v) ∈ {v, v, 1}

This modeling accounts for slow–to–rise and slow–to–fall faults as well as a gross
delay fault affecting both rising and falling transitions.

Small Delay Faults

If an additional delay at a gate or a signal is too small to fail every possible
propagation path, then the syndrome cannot be accurately explained by the
gross delay fault model. To distinct such faults from the gross delay model, they
are usually called small delay faults [ParkMW1988, PramaR1988, CarteIR1987,
TehraPC2011]. Small delay faults are of growing concern especially in high–
performance circuits with narrow timing margins and variations.

One simple way to express timing behavior within a single clock cycle is to extend
the integer subscripts used for denoting time frames towards real numbers. The
following CLF delays a signal line v by 10% of the duration of a single clock
cycle (T):

v⊕ [v⊕ v−0.1]

Whenever the current (fault free) value of v is different from the fault free value
of v 0.1T in the past, the signal line is flipped. Therefore, the faulty value of v
equals at any time the past fault free value (v−0.1).

While stuck–at faults and gross delay faults can be correctly evaluated using
only logic simulation, time simulation is necessary to correctly evaluate CLFs
for small delay faults. This involves also the selection of a timing model to
sufficiently reflect the fault–free circuit behavior. An extensive body of research
is available on this topic [Sapat1994, BushnA2000].

45



3. State of the Art

3.1.2. Defect–Oriented Fault Models

Bridging Fault Models

Bridges are described by various fault models with different properties in the
literature [Wunde2010, Engel2009]. This subsection presents the most common
fault models with the help of the CLF calculus focusing on the direct conse-
quences of a short between signal lines for driving and receiving gates. Bridges
are also possible between internal features of gates, or they may lead to indi-
rect consequences like combinational loops with additional states or oscillating
behavior [Engel2009], which are not discussed here.

In CMOS technology, shorts between signal lines may show quite complex be-
havior [RenovHB1994], because both signals may be driven with roughly the
same strength and the defect causes intermediate voltages on the victim lines.
Let v be a victim line involved in a bridge and showing a degenerated voltage
level in some situations. If the fault free value of v is 1(0) and the degenerated
voltage is below(above) the threshold voltage uth, the line is faulty. A possible
CLF formulation is shown in figure 3.1a. The function u(. . .) calculates a voltage
for the victim line. This voltage can depend on the bridging resistance, the logic
values and relative strengths of the bridged signals. The values and strengths in
turn depend on the logic inputs of the driving gates. Determining the precise
voltage u(. . .) every time through SPICE simulation at the electrical level is usu-
ally not practical. Therefore SPICE simulation is used to characterize the cells
in a technology once and the generated data is fed into advanced bridging models
like the Voting Model [AckenM1991], the Biased Voting Model [MaxweA1993]
or the Direct Voting Model [RenovHB*1994a] in order to determine the relative
signal strengths and the behavior of the bridge.

Multiple receiving gates may come to different interpretations of the same de-
generated input voltage due to variations in the threshold voltages of the tran-
sistors in these gates. While one receiver considers a certain voltage on a vic-
tim line being logic 1, another receiver of the same victim line reads logic 0

[WilliA1973]. This is known as the Byzantine effect or Byzantine Generals
Problem [AckenM1992]. In this case, individual CLFs at each receiver are nec-
essary in order to evaluate the voltage on the victim line against the distinct
threshold voltages uthi, i ∈ {1, . . . ,n} (figure 3.1b). The requirement for a larger
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Figure 3.1.: CLF modelling for lines with degenerated voltage. a) all receivers
agree on the voltage interpretation, b) receivers disagree due to dis-
tinct threshold voltages (Byzantine effect).

number of CLFs (the increase of the defect site) is a consequence of the higher
complexity in the behavior of such bridges.

The bridging resistance is often high enough to influence the behavior of the
bridge and models were developed to describe such bridges [RenovHB1994,
Engel2009]. The bridging resistances of defects are not known in advance and
their estimation may be part of diagnosis results [GhoshT2000, KhursRA*2008].
The two main effects to consider in addition to non–resistive bridging fault
models are different voltages on the two bridged signal lines and possible time–
dependent behavior. The first effect is easily incorporated into CLF formula-
tions presented so far by considering the bridge resistance in the calculation
of u(. . .). CLF formulations for time–dependent, dynamic behavior of bridges
[FavalDO*1993] are obtained by combining bridge conditions with conditions for
gross delay faults or small delay faults.

Many bridge fault models abstract from electrical specifics to obtain faults, which
are easy to evaluate. Instead of taking voltages and signal strengths explicitly
into account, the behavior of the such bridges is just determined by the fault–
free logic values of the involved signals. Although, these models may not reflect
the behavior of CMOS bridges exactly, they are widely used in the literature
[AbramBF1990] and shall get special attention here. Such bridges can be re-
garded as a special case of the more general CLF formulations above. The fol-
lowing discussion derives a general CLF–formulation of all possible static bridge
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models involving two signal lines. Similar considerations are possible for bridges
involving more than two lines as well.

Fault activation is determined only by considering the logic values of the two
bridged signals. Depending on the type of bridge and the current values of
the signal lines, one or both signals may change their logic value. Such faulty
behavior is described by two CLFs at most with Boolean conditions depending on
the current values of the involved signals. A necessary precondition for a static
bridge to be active is that the two involved signal lines must carry different logic
values. If this precondition is true, the behaviors of the two signals v and w
are determined by two Boolean functions fv and fw. The function fv depends
only on signal w, because the value of signal v is already determined by the
precondition. Similarly, function fw depends only on signal v. This leads to the
following generalized CLF formulation of an arbitrary static bridge between two
signal lines v and w:

v⊕ [fv(w) · (v⊕w)],
w⊕ [fw(v) · (v⊕w)].

There are exactly four basic expressions for fv and fw, respectively. An expres-
sion may be constant 0, constant 1 or may use the positive or the inverted value
of the other signal in the bridge:

fv(w) ∈ {0, 1,w,w},

fw(v) ∈ {0, 1, v, v}.

Any more complex Boolean formula can be simplified by using the precondition
and Boolean identities. The formulas given above therefore model every possible
static bridge configuration. There are 42 = 16 possible configurations that are
derived by choosing one of the four possible expressions for fv and fw. From
these 16 configurations, there are six that are actually derived from other bridges
by interchanging the roles of the signals v and w. This leads to ten unique bridge
types including the fault free case (Table 3.1).

Many of the bridge types in this table were first proposed by considering the
electrical behavior of shorted signal lines. If v dominates w, the value of a
strong signal always prevails over a weaker signal [WilliA1973]. More recently,
the dominant–AND and dominant–OR models were proposed [EmmerSB2000]
to more accurately capture some resistive bridges in CMOS. In the wired–AND
(wired–OR) model, the strong value 0 (1) always overwrites the weaker value
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fv(w) fw(v) Bridge Type

0 0 Fault free
0 1 v dominates w [WilliA1973]
0 v v AND–dominates w [EmmerSB2000]
0 v v OR–dominates w [EmmerSB2000]
1 1 v and w swap values
1 v w dominates v & v AND–dominates w
1 v w dominates v & v OR–dominates w
w v wired–AND [Roth1966]
w v w AND–dominates v & v OR–dominates w
w v wired–OR [Roth1966]

Table 3.1.: The ten possible static bridge types

1 (0), which was common in resistor–transistor logic, diode–transistor logic or
emitter–coupled logic [Mei1974, Roth1966]. Physical defect mechanisms for the
remaining four more exotic bridge behaviors were not reported in the litera-
ture.

Open Fault Models

Stuck–open defects on transistors [Case1976, Wadsa1978] or interconnect open
defects [XueDJ1994, ArumiRF2008] cause signal lines to not being actively
driven to a clear logic value in some situations.

In case of a full open defect, the victim line is said to be floating. The value
of a floating signal may depend on the value it was previously driven to. In
case of a resistive open defect, the victim line is still connected to a driver,
but showing an additional resistance. This resistance lead to an additional delay
caused by the defective signal. If the delay is large enough, it can be described
using the gross delay fault model, otherwise, it may behave similar to a small
delay fault.

Transistor stuck–open defects are typically modelled by variants of transition
faults [ReddyRA1984, JainA1985a, SodenTT*1989]. In contrast to gross delay
faults, transition faults modelling stuck–open defects require additional robust-
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ness conditions for proper fault activation as shown by the following simple
example.

If the p–transistor of the input x in a CMOS NAND gate is stuck–open, the
output v = x NAND y will be disconnected and hold its charge for the input
pattern (x,y) = (0, 1). The expected fault–free value for this input pattern is
v = 1, so the gate output must have been discharged (v−1 = 0) before applying
this pattern for the faulty gate to show an erroneous v = 0. The only pattern
sequence that satisfies these conditions is (1, 1); (0, 1). These patterns have to
be applied in direct succession, which is not trivial if the inputs of the NAND
gate are computed by some other circuitry. Even if two circuit input patterns
generate the appropriate logic values at the inputs of the gate, the transition
from the first to the second pattern might generate a hazard at the gate input
y. If y is 0 even for a short time, the second p–transistor may charge the gate
output enough to be interpreted as logic 1 and the open defect is not observed
with the second pattern. The gate input y must therefore stay 1 at all times
during the application of the test sequence. Hazards at x do not invalidate the
test. A CLF that is only active under the proper activation condition of the
transistor open defect discussed above can be intuitively noted as:

v⊕ [∀0 6 t 6 1 x−1 · x · y−t].

More elaborate notations are possible by using temporal logic [Prior1957] to-
gether with appropriate definitions.

While many transistor stuck–open faults allow still some direct control over
the victim line, interconnect open faults usually lead to permanently float-
ing lines or additional delay [RodriAF*2008]. Efforts to model the behavior
of such interconnect opens usually include considerations concerning the open
resistance, capacitive coupling to neighboring signal lines, tapped charges and
leakage [XueDJ1994, LiTM2001, SpinnJP*2007, RodriAF*2007, HillePE*2008].
Such considerations can enable diagnosis algorithms identify the exact via or
line segment with an open defect on a signal line [VenkaD2000a, RodriAF*2007,
RodriAF*2010].

Crosstalk Faults

With continued downscaling, signal lines are placed closer and closer to-
gether. This trend increases the probability that capacitive coupling be-
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tween signal lines causes additional delay or unexpected glitches on signal lines
[ChenGB1997].

A very basic model for crosstalk faults can be obtained on the basis of a gross
delay fault as follows. In a crosstalk fault, transitions on an aggressor line w
cause glitches on an influenced (victim) line v. A glitch is only produced if line
w changes from the value equal to w towards the opposite value (see fig. 3.2).
The CLF notation of such a fault may be noted as:

v⊕ [(w⊕w−1) · (v⊕w)]

The first part of the condition is true, if there is an event on line w, and the
second part is true, if the final value of w is different from the current value of
line v. Similar and more realistic CLF formulations can be found based on the
small delay fault model.

More recent works consider multiple aggressors [ZachaCK*2003] on a sin-
gle victim, for instance to generate tests with maximum impact on possi-
bly weak signal lines [GanesK2010]. Some recently proposed diagnosis al-
gorithms use such specialized models to identify crosstalk related problems
[TakahPH*2001, MehtaMT*2006].

3.1.3. Generalized Fault Models

Generalized fault models seek to express a large class of possible defective be-
haviors. Logic diagnosis algorithms based on these fault models have reduced
assumptions on the defective behavior of the Cud and allow defect mechanisms
to be target of the investigation rather than given by a defect–oriented fault
model.

v

w

v

w

Figure 3.2.: An example of a crosstalk fault.
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The most popular notations are pattern faults, the X–fault model, and fault
tuples. All of them are described below by showing a way to transform the
notations into CLF–formulations. This underlines that the CLF calculus is pow-
erful enough to encompass the general fault models described in the literature
and highlights at the same time the assumptions made by the various nota-
tions.

Pattern Faults

Pattern faults [Kelle1996] are developed to aid test generation for complex de-
fects. A pattern fault specifies a set of requirements for fault activation and a
set of signal line changes to describe the fault effect.

The fault activation requirements are noted as a set of logic values for internal
signal lines. Let l1, . . . , ln being signal lines which are required to be set to the
values x1, . . . , xn respectively, with xi ∈ {0, 1} for 1 6 i 6 n. If the signals need
to be set in the current clock cycle, a requirement block is noted as:

req-block ::= REQ { NET l1 x1 NET l2 x2 ... NET ln xn }

This requirement block is satisfied if the following Boolean formula evaluates to
true:

req(l1, . . . , ln) =

n∧
i=1

(li = xi)

If the signals need to be set in the previous clock cycle, a initialization block is
noted as:

init-block ::= INIT { NET l1 x1 NET l2 x2 ... NET lm xm }

which corresponds to the Boolean formula:

init(l1, . . . , lm) =

m∧
i=1

(li−1 = x
i)

The fault effect is noted as a set of signal changes in a propagation block. This
block specifies that if a victim signal line vi has a correct value ci, it will change
to an erroneous value ei 6= ci (ci, ei ∈ {0, 1} for all 1 6 i 6 p):

prop-block ::= PROP { NET v1 c1/e1 NET v2 c2/e2 ... NET vp cp/ep }
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This fault behavior corresponds to the following set of CLFs:

{v1 ⊕ [v1 ⊕ e1], . . . , vp ⊕ [vp ⊕ ep]}

Static pattern faults combine a requirement block and a propagation block:

STATIC { req-block prop-block }

and the CLF representation of this fault is

{v1 ⊕ [(v1 ⊕ e1)∧ req(l1, . . . , ln)], . . . , vp ⊕ [(vp ⊕ ep)∧ req(l1, . . . , ln)]}.

Dynamic pattern faults include in addition an initialization block to express the
necessary transitions for activation of time–dependent faults:

DYNAMIC { init-block req-block prop-block }

and the CLF representation of this fault is

{v1 ⊕ [(v1 ⊕ e1)∧ init(l1, . . . , lm)∧ req(l1, . . . , ln)], . . . ,

vp ⊕ [(vp ⊕ ep)∧ init(l1, . . . , lm)∧ req(l1, . . . , ln)]}.

Every pattern fault can be represented as a set of CLFs as shown above. However,
the reverse is not true even if all the conditions of the CLFs contain only Boolean
formulas. Pattern faults do not allow for disjunctions of requirements. For
instance, a CLF like v⊕ [x∨y] cannot be noted as a single pattern fault because
multiple different assignments to signals x and y activate the fault. In general,
a set of CLFs can be formulated as a pattern fault if their conditions can be
rewritten using Boolean identities to match the forms presented above.

A similar notation is used in the generalized fault model (GFM)
[KunduZC*2005, KunduSG2006] which also targets test generation. The fault
effect can be described as slow–to–rise or slow–to–fall signal with a certain de-
lay. This way, a pattern generation algorithm can be used to sensitize a path of
sufficient length from the fault site to an observation point to observe the fault
effect.

53



3. State of the Art

X–Fault Model

The X–fault model was first used in [BoppaF1998] for describing defects. The
refined model described in [WenTSK2003, WenKMYS*2006] assigns each vic-
tim line of a defect a distinct X symbol, an unknown value. If l1, . . . , ln are
victim lines (possibly fanout branches of the same driver to capture the Byzan-
tine effect), this assignment is equivalent to using unknown Boolean variables
X1, . . . ,Xn in the CLFs:

{v1 ⊕ [v1 ⊕ X1], . . . , vn ⊕ [vn ⊕ Xn]}

This way, no assumptions are made on the actual logic behavior of the victim
lines. This is an example of an incomplete model of the functional behavior of
the defect. Appropriate diagnosis algorithms identify the functional behavior by
providing assignments to the unknown values. Such faults cannot be handled by
two–valued logic simulation, as the conditions cannot be evaluated right away.
Instead, multi–valued simulation is used in order to propagate the unknown
values through the circuit to the outputs, then, an assignment to the X–values
can be found by implication [WenTSK2003, WenKMYS*2006]. More details are
given in section 3.2.2.

Fault Tuples

Another very general fault modeling technique with a wide application field uses
fault tuples [BlantDD2006]. Among the fault tuple types covered in the work of
Blanton, the most relevant for diagnostic fault modeling are tuples that model
an activation condition and a fault impact on a signal line. Given a signal line l,
a Boolean value x and a time constraint T , then a condition fault tuple :

{l, x, T }c

evaluates to true if there is a time t that satisfies time constraint T and, at that
time, l has the value x:

cond(l, x, T) = ∃t with T(t)∧ (l = x)

The time constraint may specify a fixed clock cycleN, or relations to an unknown
but fixed clock cycle i: {N, i, i+N,> i,< i,> i}. Error fault tuples are used to
describe the impact of a fault on a signal line.

{l, x, T }e
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drives victim signal line l to value x whenever the time constraint T holds. In
CLF notation:

l⊕ [T ∧ (l⊕ x)]

A product is a conjunction of multiple fault tuples and is used to model complex
defective behavior:

{l1, x1, T1}
c · · · {lj, xj, Tj}c · {lj+1, xj+1, Tj+1}

e · · · {ln, xn, Tn}e

which is equivalent to n− j CLFs

{lj+1 ⊕ [T ∧ (lj+1 ⊕ xj+1)∧ ccond], . . . , ln ⊕ [T ∧ (ln ⊕ xn)∧ ccond]}

with the common condition

ccond =

j∧
i=1

cond(li, xi, Ti).

3.2. Logic Diagnosis

In the literature, logic diagnosis algorithms are often classified into the paradigms
cause–effect and effect–cause [AbramBF1990].

� Effect–cause analysis looks at the failing outputs and starts reasoning
using the logic structure of the circuits [AbramB1980].

� Cause–effect analysis is based on a fault model. For each fault of the
model, fault simulation is performed, and the behavior is matched with
the outcome of the Cud [RichmB1985].

These paradigms are explored in the next subsection. Then, the following basic
concepts of logic diagnosis algorithms are discussed along with the diagnosis
systems they are implemented in:

� Inject–and–validate simulates a large number of faulty circuits and
matches their responses to the syndromes of the Cud [WaicuL1989].

� Back–tracing starts from failing observation points and traces the
sensitized paths towards the circuit inputs to find the defect sites
[AbramB1980a, AbramMM1983].
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� SAT–based approaches formulate the diagnosis problem as a Boolean sat-
isfiability instance and a satisfying assignment gives a fault candidate
[SmithVV2004].

� Model allocation techniques correlate internal signal values to observed
fault activations to extract their behavior [MillmMA1990, DesinPB2006].

The former two concepts are per–test analysis approaches where each response
is first analyzed individually and independently. All the results of the individual
analyzes are then combined to obtain the final diagnosis result. The latter two
concepts consider multiple or even all tests at the same time.

3.2.1. Effect–Cause and Cause–Effect

Cause–effect analysis [RichmB1985] starts with a set F of possible causes in
the circuit. An element of this set f ∈ F is called a fault and the set is generated
according to a fault model. Diagnosis is performed by comparing for each test
~t ∈ T and each fault f ∈ F the failures generated by the fault f with the observed
response of the Cud. The result of logic diagnosis is the set of faults, which show
the same behavior as the Cud:

result = {f ∈ F | ∀~t ∈ T Cud(~t) = Cf(~t)}

In order to avoid costly fault simulations during diagnosis, a fault dictio-
nary is constructed. This dictionary is created once by simulating every fault
f1, . . . , fn ∈ F with every pattern ~t1, . . . ,~tm ∈ T in the circuit C and storing
the responses in a table. Two major disadvantages with this procedure were
quickly identified. First, the size of the fault dictionary became a major issue
and a lot of research effort was spend on reducing its size by various means
[PomerR1992, ChessL1999]. As the size of the dictionary grows with the size of
F, this approach is not very effective for more complex fault models. The sec-
ond disadvantage is the a–priori selection of a fault model to generate F. Many
defects cause a behavior of the Cud that does not match with any of the faults
in F. In this case, cause–effect diagnosis will fail.

To reduce the dependency on a single fault model as well as to handle fault
models with very large number of faults, effect–cause diagnosis was proposed
[BreueCS1976, AbramB1980, AbramB1980a]. Effect–cause based diagnosis algo-
rithms derive candidate causes directly from the observed effects. The majority
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of modern diagnosis algorithms implement effect–cause methods and are dis-
cussed below based on their algorithmic principles.

There is also a trend of combining effect–cause and cause–effect ideas and di-
agnose a defect in two passes. First, a fast effect–cause analysis is performed
to constrain the circuits region where possible culprits may be located. Second,
for each of the possible fault sites and suspected fault model, a cause–effect ap-
proach is performed for identifying those faults which match the real observed
behavior [DesinPB2006, AmyeeNV2006].

3.2.2. Inject–and–Validate

Inject–and–validate is a per–test analysis concept that generalized the cause–
effect principle. Also here, a set of faults F is simulated and their responses are
compared to the responses of the Cud. But inject–and–validate procedures do
not restrict themselves to exact matches between the simulated faults and the
defective behavior of the Cud. Instead, they determine fault candidates based on
the similarity between the simulated and the observed responses.

The diagnosis approach in [WaicuL1989] was one of the first proposing this pro-
cedure to localize defects. This diagnosis method reports stuck–at faults that
are able to explain most of the failing responses. Let F be the set of all stuck–at
faults in the circuit C and T a test set. Let further expl(T , f) be the subset of
test patterns whose failing responses are explained by a fault f ∈ F:

expl(T , f) = {~t ∈ T | Cf(~t) = Cud(~t) 6= C(~t)}.

Then, this diagnosis approach returns:

{ f ∈ F | |expl(T , f)| = max{ |expl(T ,g)| | g ∈ F } }.

This basic idea was subsequently refined by a number of researchers by propos-
ing more and more refined comparison metrics and candidate ranking heuris-
tics.

One of the most prominent technique is the single location at a time (SLAT)
method introduced in [BarteHH*2001, Huism2004]. A test pattern ~t ∈ T has
the SLAT property if there is at least one observable stuck–at fault f ∈ F which
produces a response on that pattern identical with the response of the Cud:
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∃f ∈ F with expl({~t}, f) 6= ∅. As diagnosis result, SLAT based algorithms report
a set of multiplets . A multiplet M is a subset of F with the property that each
SLAT pattern observed in the Cud is explained by at least one fault in M. Let
T ′ ⊆ T the set of all SLAT patterns, then:

M = minimal set with
⋃
f∈M

expl(T ′, f) = T ′

By solving this set covering problem, single–line faults are combined to form
candidates for multi–line faults such as bridging faults. The concept of con-
structing complex faults out of simpler components is also known as composite
signatures . It was first proposed by [MillmMA1990] and can be found in various
other diagnosis algorithms [VenkaD2000]. A rather similar concept to the SLAT
property are curable vectors or correctable vectors [HuangCC*1997] used in
design debug. A curable vector in this context is a failing response, which can
be fixed by manipulating a single signal line within the circuit. This idea was
applied to logic diagnosis of multiple defects at roughly the same time SLAT
diagnosis was introduced [Huang2001].

The main drawback of the original SLAT method is the fact that informa-
tion for fault location is only extracted from patterns with the SLAT prop-
erty. All the other patterns are not taken into account, neither failing nor
passing ones. To address this shortcoming, many works propose improved
matching and scoring procedures to encompass non–SLAT patterns as well
[LavoHL2002, WangMTR2006, Liu2007]. In [ZouCRT2006] not only single
stuck–at faults are simulated, but also possible Byzantine effects at fanout
branches in order to find possible explanations for otherwise unexplained non–
SLAT tests. Several methods use SLAT to locate suspect signal lines and then
proceed with specific fault model based analysis like considering activation con-
ditions for opens and bridges [SatoSSY*2006], trapped charges in interconnect
opens [ZouCR2006], or layout information for via defects [LiuZRCS*2007].

By using multi–valued logic simulation in inject–and–validate diagnosis algo-
rithms, defects can be located in a circuit despite incomplete knowledge on
their actual behavior [BoppaF1998]. Such a diagnosis algorithm reports the
minimum set of signal lines that need to be set to an unknown value (X–
value) in the fault simulator, such that fault simulation will produce a X for
every failing response bit from the Cud. The same idea was used more recently
[PokuB2007] for diagnosing delay faults. Three–valued logic simulation is pes-
simistic and will result in X–values at outputs which are actually fault–free.
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The works [WenTSK2003, WenKMYS*2006] alleviate this problem by using dis-
tinct X–symbols for every signal line and a more sophisticated X–propagation
method that preserves some logic properties during X–propagation (inversion
and branches). After location of the defect site, the unknown values at the site
are resolved by 2–valued simulation exhaustively assigning the X–symbols to
logic values.

Inject–and–validate diagnosis is computational expensive as it relies heavily on
fault simulation of many possible candidates. Many proposals on high perfor-
mance fault simulation are also applicable to inject–and–validate algorithms.
Common techniques used in fast fault simulation can be found in [Schul1988].
Another canonical way is to trade computing time against memory storage
by constructing a fault dictionary [RichmB1985, PomerR1992]. In contrast to
cause–effect approaches, the dictionary is only used to replace some fault simula-
tion runs by table lookups. The fault simulation problem can also be mapped to
emerging data parallel architectures like General Purpose Graphics Processing
Units (GPGPUs) [LiH2010, LiXHCL2010, HolstSW2012] or hybrid systems as
the Cell Broadband Engine [KochtSW*2010] to gain speedup compared to a
simulation on standard hardware.

3.2.3. Back–Tracing

Back–tracing based diagnosis strategies start with the failure information (test
responses) at the output of the circuit and infer successively towards the inputs
of the circuit internal signal values, possible fault propagation paths, and fault
candidates.

The simplest technique, the so–called back–coning or structural pruning , con-
siders all signal lines as possible fault locations, which have at least one struc-
tural path to a failing circuit output [WaicuL1989]. This alone is not sufficient
for logic diagnosis, but it is used in numerous algorithms to provide the first
initial pruning of the fault candidates.

Logic reasoning, first proposed by [AbramB1980a], searches for consistent values
of all internal signals based on an observed response. Finding proper input values
in order to generate a desired output is called justification . Two situations can
arise at a gate. First, there is only one set of input values to the gate that
produces the desired output. For example, to get a 1 at the output of a 2–input
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AND–gate, the only possible input vector is (1, 1). In this case, the input values
are implied and the algorithm can proceed justifying the two new found values.
Second, there is more than one possible input vector (e.g. justifying a 0 at a
2–input AND–gate leads to 3 possible input vectors). In this case, the algorithm
takes a decision and branch into a search tree. This search tree is explored
until a solution is found. This method was refined in [CoxR1988a] and used for
multi–fault diagnosis. Justification is used to identify all fault–free lines in the
circuit. The reported suspects are lines, which could not be shown to be fault–
free. This way multiple faults can be diagnosed without exhaustive simulation
of all possible multi–faults.

Critical path tracing techniques trace back error propagation paths from the
outputs towards the possible culprits within the circuit. The concept of crit-
ical path tracing was first introduced in [AbramMM1983] as an efficient al-
ternative to fault simulation and was first applied to delay fault diagnosis in
[GirarLP1992, GirarLP*1992a]. The diagnosis procedure for delay faults uses a
six–valued logic algebra to describe logic values, transitions and hazards in the
circuit. This approach was later refined [RoussBG*2007], applied to bridging
fault diagnosis [RoussBG*2007a, WangGB2006] as well as to crosstalk–induced
delay faults [MehtaMT*2006].

Path tracing based diagnosis can be improved by taking into account the timing
uncertainties (variation) of manufactured circuits [YangC2006]. The approach
in [YenLLYL*2008] extends back–tracing over multiple time frames to analyze
responses of functional tests.

Many path tracing based diagnosis techniques fail in the case of multiple inter-
acting faults in the Cud as they assume all the off–path signals of the currently
traced fault propagation path to be fault–free or affected by the same fault in case
of a re–convergence. If multiple faults are present, the effect of a fault x may sen-
sitize a propagation path of a fault y at gate g. If fault x is not considered, path
tracing would assume that the fault is located between g and the outputs, be-
cause a fault effect stemming from y would not propagate over g. This challenge
was addressed in [YuB2008, YuB2008a, YuB2010] by using a more conservative
path tracing approach in combination with fault simulation to diagnose multiple
stuck–at, bridges, and transition faults. The situation described above is called
an underexplained propagation path in these works.
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3.2.4. SAT–Based Algorithms

The first formulation of the logic diagnosis problem as a Boolean satisfiability in-
stance was proposed in [SmithVV2004]. Logic circuits are represented as Boolean
formulas using the Tseitin–transformation [Tseit1968, Larra1992]. Each logic
signal in the circuit corresponds to a variable in the formula, and the formula is
satisfied if and only if the signals assignment is consistent with the logic function
of the circuit. For logic diagnosis, first, fault injection circuits are added to the
model to enable the SAT solver to activate faults in the circuit using some con-
trol variables f1, . . . , fn. Further constraints are added in order to limit the fault
multiplicity and to assign a test pattern to the input signals and the observed re-
sponse to the output signals. If the resulting SAT instance is satisfiable, possible
fault locations are given by the assignment to the variables f1, . . . , fn.

More recent works also apply maximum satisfiability solvers to the diagnosis
problem [SafarMV*2007, ChenSMV2010]. The maximum satisfiability problem
is the problem of finding the maximum set of satisfiable clauses in a Boolean
formula. In this case, no fault injection circuitry is necessary and the signals
involved in unsatisfied clauses point to inconsistencies in the circuit and the
possible fault locations.

More details on SAT–based diagnosis and a comparison simulation–based tech-
niques can be found in [FeySVD2006].

3.2.5. Model Allocation

Model allocation techniques seek to extract more information about the behavior
of the defect in order to further constrain the suspected chip area to be physically
inspected and provide more insight into the actual defect mechanism.

A basic variant of model allocation is the concept of composite signatures for
bridges [MillmMA1990] or open faults [VenkaD2000] already discussed with the
inject–and–validate approaches. If both signal lines involved in a bridge can
be identified for instance by a composite of stuck–at faults, only the area in
the chip layout where these signals are close together is suspect. This fails for
bridges with a dominant signal, which only influences a victim signal but always
propagates a fault–free value itself.
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One way to identify such aggressor lines is by correlating the defect ac-
tivation to the signal values of the relevant neighborhood and extracting
an activation function depending on the states of the neighboring signals
[DesinPB2006, YuB2010a].

Cell–internal defects (i.e. bridges, opens, or transistor faults within a CMOS cell)
can be identified if the observed output values of a cell are correlated to its input
values [AmyeeNV2006, HigamST*2006, SharmCT*2007, LadhaM2010].

If a model is assumed in advance, signal correlations can also be used for initial
pruning. The bridge fault diagnosis method proposed in [VogelMB2003] exploits
the fact that bridge defects are only active if the two involved signal lines have
different logic values. All failing tests ~t1,~t2, . . . ∈ T ′ are simulated to obtain the
values of all internal signal lines L for the fault–free case. With the simulation
of the first pattern ~t1, L can be partitioned into two sets: L0t1 the signals with
the fault–free value 0 and L1t1 the signals with the fault–free value 1. Because ~t1
is a failing test, a bridge can only be located between one signal of L0t1 and one
signal of L1t1. Let (L0t1,L1t1) denote all possible bridge candidates in this case. By
simulating the next failing test ~t2, the sets L0t2 and L1t2 are obtained to further
reduce the number of possible bridge candidates to:

{ (L0t1 ∩ L0t2,L1t1 ∩ L1t2), (L0t1 ∩ L1t2,L1t1 ∩ L0t2) }

The remaining failing patterns are processed in the same way to obtain a reduced
set of possible bridge candidates.

3.3. Conclusions

Defect oriented fault models describe the behavior of specific defect types. Ap-
plying such fault models to diagnosis adds restrictions to specific defect types
and diagnosis algorithms may fail, if the assumptions on the defective behavior
are not true. Instead, diagnosis algorithms should be based on more general
fault models. Several general fault models and notations are available in the
literature, and it has been shown that all faults in the most popular notations
can be translated into a CLF representation. The generality of the CLF calculus
allows it to encompass all previous notations and basing a diagnosis algorithm
directly on this calculus provides a promising way to develop analysis methods
with as few assumptions on defects as possible.
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The goal is a diagnosis algorithm, which works in as many application areas
as possible and is able to locate arbitrary defects. Only an effect–cause based
algorithm is able to reach this goal. Among these algorithms, back–tracing is
promising for its efficiency of finding time–related and multiple defects, but it
has not been shown that this efficiency can be maintained in combination with
test response compaction. SAT–based diagnosis techniques use heuristics of
efficient SAT solvers to solve an NP–complete problem. The runtime of such
algorithms on specific diagnosis cases are usually unpredictable and it has yet to
be shown that these techniques are able to handle industrial–sized designs and
large test sets. Model allocation techniques are applicable only if the location of
a potential defect site is already known. This leaves inject–and–validate based
algorithms as the only choice.

Exploiting the SLAT property of test responses has been proven very successful
in diagnosing complex defects using fault simulation of much simpler faults.
The original SLAT algorithm however uses just failing patterns with this SLAT
property for diagnosis and needs to solve a set covering problem in order to
compute the diagnosis result. Proposed extensions to this original algorithm are
able to improve diagnosis results by passing pattern validation and analysis of
failing patterns without SLAT property. However, these approaches add even
more complexity to the SLAT algorithm and the diagnosis performance becomes
very hard to predict.

A location–based effect–cause logic diagnosis approach, which

� exploits the SLAT property and yet extracts maximum diagnostic infor-
mation out of all available failing and passing responses,

� provides predictable analysis times for easy deployment in volume produc-
tion environments,

� and works at the same time on highly compacted response data

was not available in the literature and has been contributed to the state–of–the–
art by the works published along with the research for this thesis.
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The Partial Overlapping Impact couNTER (POINTER)[HolstW2007,
HolstW2007a, HolstW2009b] is a new location–based logic diagnosis algorithm
based on inject–and–validate per–test analysis. Given the structure of a combi-
national circuit C, it infers from a known test set T and the observed responses
Rud = Cud(T) a sorted list of locations in C, which are likely to be defective
in the Cud. These locations are expressed as CLFs with additional measures to
quantify how well the particular CLF explain the syndromes of the defect in the
Cud. Using the locations of the CLFs, the defect site is identified.

4.1. Fault–Model Independence

POINTER compares each response of the Cud to a set of responses generated by
a fault simulator. However, it is impossible to simulate every possible defect in
the fault simulator because the set of all possible defects is infinite. Instead, only
a few defect representatives are simulated and the criterions for the comparison
of the syndromes from the Cud and the fault simulation results accommodate for
all possible defects in the Cud.

The POINTER algorithm considers a certain defect representative f a candidate
for the unknown defect in the Cud as long as the set of failing responses from the
fault simulation of f is a superset of the faulty syndromes of the Cud:

∀~t ∈ T Cud(~t) 6= C(~t)⇒ Cf(~t) 6= C(~t)

So, f is a candidate if it predicts a faulty response for all tests ~t where Cud(~t)

shows a faulty syndrome. The representative f does not have to model the
defect in the Cud exactly. It is sufficient for f to satisfy the implication defined
above.
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The set of defect representatives F can have the same cardinality as the set of
stuck–at faults in the circuit. In the simplest case, a defect representative of the
form s⊕ [1] (with s being an arbitrary signal line) satisfies above implication for
all defects s⊕ [c] with signal line s and an arbitrary condition c. The condition
c is not restricted in any way. It may include Boolean conditions, timing and
even random factors. By simulating the set of unconditional line flips s⊕ [1] for
all signals s in the circuit, POINTER will be able to include the correct defect
location in the set of candidates as long as faulty responses from the Cud exist
and are caused by a single–line defect.

Defects may also influence more than one internal signal directly. More than one
CLF may be necessary to model such defects and some responses of the Cud might
not match with any response of the fault simulation with single unconditional
line flips. In many cases, some syndromes exist, which can be explained by
a defect representative f and it will be shown in the experiments that these
representatives most likely identify the defect location even in this situation.
If there is no syndrome that matches the response of any defect representative
exactly, POINTER will output defect representatives, which match the observed
syndromes best. The reasoning behind the matching of two similar responses is
explained in the next section.

4.2. Response Matching Criterions

Besides using the pass/fail information of complete tests, POINTER also com-
pares the individual responses of the fault simulator and the Cud bit–wise with
each other to quantify their similarity. Not the output values themselves are
compared to each other but the pass/fail information of the individual circuit
outputs. This pass/fail information is obtained by computing the differences to
a fault–free simulation Cud(~t)⊕C(~t) for ~t ∈ T . POINTER considers two aspects
while comparing two responses.

The first aspect is overlap in the failing bits of two responses as illustrated
in figure 4.1. It shows a Cud response compared to the responses from fault
simulation of faults f and g. The number of failing outputs is the same in all three
responses. However Cg(~t) has a larger overlap with the observed syndrome Cud(t)

which indicates that the defect representative g is located nearer to the actual
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defect site than f. POINTER therefore will consider g as a better candidate
compared to f.

f

g

C

�t

Cf(�t) C (�t) Cg(�t)

Figure 4.1.: Overlap between failing response bits.

One special case is a complete overlap or a perfect match between the syndrome
and the effect of a defect representative. In this case, the syndrome of the Cud can
be explained completely by a defect representative f ∈ F for a test ~t ∈ T :

Cud(~t)⊕ C(~t) = Cf(~t)⊕ C(~t) 6= ~0

This condition is also known as SLAT property [BarteHH*2001] already dis-
cussed in section 3.2.2. In general, not all patterns will have the SLAT property,
and not all the SLAT patterns will point to the same stuck–at faults but is has
been shown that SLAT patterns provide very strong evidence towards the actual
defect sites [BarteHH*2001, Huism2004].

Also in POINTER, the SLAT condition carries extra weight. If there is a defect
representative, which matches all failing responses of the Cud perfectly:

∃f ∈ F ∀t ∈ T Cud(t)⊕ C(t) 6= ~0⇒ Cud(t)⊕ C(t) = Cf(t)⊕ C(t)

it will take precedence over all other representatives with partial matches, even
if other candidates explain more response bits or lead to less additional failures.
If no perfect match candidates are available, the amount of overlap is taken into
account as previously explained. In this aspect, POINTER is a generalization of
the original SLAT based diagnosis approach.
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The second aspect taken into account in POINTER is the impact the defect has
on the response under specific tests (see fig. 4.2). If the unknown defect leads
only to a few failing outputs (low impact), the chance is high that many suspects
in the output cone of the actual defect lead to similar responses. In contrast, if
the impact of the defect is high, only a few fault candidates may produce similar
responses and these candidates are close to the real defect site. Thus POINTER
will rate the evidence produced in the latter case higher than the evidence in
the former case.

f

C

g

CCfC CgC

Figure 4.2.: Relation between evidence and impact of defects.

4.3. Evidence Calculation

As a per–test analysis approach, POINTER analyzes each Cud response individ-
ually. A response ~rud = Cud(~t) to a test vector ~t is analyzed by comparing it to
the responses ~rf = Cf(~t) of a set of defect representatives F 3 f in the circuit.
For each test ~t, a comparison between ~rud and ~rf yields a tuple of 4 integer num-
bers called evidence e(~t, f) = (σ, ι, τ,γ). These numbers reflect the similarity
between the two responses and are defined in the next section. The evidence is
constructed in a way that the summation over the evidences of multiple tests
component–by–component

e(T , f) =
∑
~t∈T

e(~t, f)
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preserves important properties. The accumulated evidence e(T , f) is then used
to produce a ranked list of defect candidates in section 4.3.2.

4.3.1. Response Comparison

Let ~r be the correct response, ~rud the response of the Cud, and ~rf the response
of a circuit Cf with a known defect representative f ∈ F. The similarity between
~rud and ~rf is quantified by four natural numbers σ, ι, τ and γ. The first three
numbers σ, ι, τ are defined by the following functions:

σ(~rud,~rf,~r) := ‖(~rud ⊕~r)∧ (~rf ⊕~r)‖

is the number of response bits that are faulty both in ~rud and ~rf. It can be
interpreted as the number of explained fails or predictions by assuming f as the
culprit. This function relates to the common term tester–fail simulation–fail
(TFSF) [Huism2005].

ι(~rud,~rf,~r) := ‖(~rud ≡ ~r)∧ (~rf ⊕~r)‖

is the number of response bits which are faulty in ~rf, but correct in ~rud. This
is the number of mispredictions by assuming fault f. It relates to the common
term tester–pass simulation–fail (TPSF) [Huism2005].

τ(~rud,~rf,~r) := ‖(~rud ⊕~r)∧ (~rf ≡ ~r)‖

is the number of response bits which are faulty in ~rud but correct in ~rf (nonpre-
dictions). These are failures which cannot be explained by f. This function is
also known as tester–fail simulation–pass (TFSP) [Huism2005].

When Cud and C are clear from the context, functions depending directly on a
fault f and a test ~t are used for a more compact notation:

σ(f,~t) := σ(Cud(~t),Cf(~t),C(~t)),

ι(f,~t) := ι(Cud(~t),Cf(~t),C(~t)),

τ(f,~t) := τ(Cud(~t),Cf(~t),C(~t)).

Figure 4.3 visualizes these three comparison values. The Cud on the left hand
side and the Cf on the right hand side get the same test vector ~t as an input.
The gray areas in the responses are the failing bits.
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If a response ~rf is identical to ~rud, the two values ι and τ are 0:

ι(~rud,~rf,~r) = τ(~rud,~rf,~r) = 0⇔ ~rf = ~rud

This is easily observed in figure 4.3 and follows from the function definitions
with ‖(~rf ⊕~r)∧ (~rf ≡ ~r)‖ = 0. With τ being 0, σ equals the number of failing
bits in ~rud which is the maximum possible value σ can have for the current test
~t. There is no other fault ~f ∈ F with a higher number of predictions:

∀~f ∈ F Cud(~t) = Cf(~t)⇒ σ(f,~t) > σ(~f,~t)

Again, this perfect match with a single defect representative for a single test is
the SLAT–condition and in the original SLAT algorithm [BarteHH*2001], only
this special case is used for evidence.

If the Cud response does not contain any fails in the current test (~rud = ~r), σ
is 0 for all faults f ∈ F. So all σ–values are equal and especially, σ(f,~t) is now
maximum for all faults f ∈ F.
The fourth value is the minimum of σ and ι:

γ(f,~t) = min{σ(f,~t), ι(f,~t)}.

γ will be zero, if the SLAT condition holds for the current test (ι = γ = 0),
or if the Cud passes the current test (σ = γ = 0). In the case of γ > 0 like in
figure 4.3, the corresponding defect representative is not a candidate for a single
fault.

4.3.2. Accumulation and Ranking

For a fault f, each test of a test set ~t ∈ T yields the evidence

e(f,~t) = (σ(f,~t), ι(f,~t), τ(f,~t),γ(f,~t)).

The evidence of a fault f and a test set T is

e(f, T) = (σ(f, T), ι(f, T), τ(f, T),γ(f, T))

with
σ(f, T) =

∑
~t∈T

σ(f,~t),
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Figure 4.3.: Response comparison

ι(f, T) =
∑
~t∈T

ι(f,~t),

τ(f, T) =
∑
~t∈T

τ(f,~t),

γ(f, T) =
∑
~t∈T

γ(f,~t).

While processing pattern after pattern, ~t1, . . . ,~ti, the knowledge base is con-
structed by the evidences e(f, Ti), Ti = {~t1, . . . ,~ti} for all the defect representa-
tives f. If a fault is not observable under a certain pattern, no value change takes
place and this fault is not considered within this iteration. If the Cud gives the
correct output under a pattern ~t, only ι(f, T) is increased for faults which are
observable under this pattern and hence lead to a misprediction. In this way, can-
didates can be excluded using passing patterns, too. If the real culprit behaves
exactly like a defect representative f, its evidence will show ι(f, T) = τ(f, T) = 0

and σ(f, T) will be maximum. If the fault in the Cud is not always active due to
nondeterministic behavior or some unknown activation mechanism, the measure
still provides consistent evidences.

For instance, let a defect d behave like a slow to rise gross delay fault. For
some patterns ~t, fault d will appear as a stuck–at 0 fault f, for others it is not
observable. In both cases, σ(f,~t) > σ(~f,~t) with respect to all other faults ~f ∈ F as
shown in the previous section. Consequently, this also holds for the accumulated
values: σ(f, T) > σ(~f, T) and the evidence e(f, T) still contributes information
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for locating the fault. However, the value ι(f, T) will not be zero anymore and
can be used for ranking fault candidates.

For further analysis, the evidences in the knowledge base are ordered to create
a ranking with the most suspicious fault sites at the beginning (lowest rank).
Firstly, evidences are sorted by increasing γ, i.e.

γ(f, T) > γ(g, T)⇒ rankT (f) > rankT (g)

moving defect representatives with only perfect matches in front. When assum-
ing multiple faults, mutual fault masking is rather rare, and ranking the defect
representatives according to the size of γ provides a good heuristic. Evidences
with equal γ are then sorted by decreasing σ moving candidates in front, which
explain most failures:

σ(f, T) > σ(g, T)⇒ rankT (f) < rankT (g).

Finally evidences with equal γ and σ are ordered by increasing ι:

ι(f, T) > ι(g, T)⇒ rankT (f) > rankT (g).

4.3.3. Example

For a brief example of the pattern analysis approach, consider the circuit in
figure 4.4. It contains two gates and four exemplary stuck–at faults as defect
representatives for fault simulation. The exhaustive test set and the response
from the Cud are shown in the first two columns of table 4.1. The erroneous bits
are shown in bold, the Cud has failed on output x in the third pattern.

Now, the four faults are simulated for the given pattern set and their signatures
are shown in the remaining columns in table 4.1. The fault f1 is observable in

1

&

a

b

x

y

f f

f
f

Figure 4.4.: Circuit model for fault simulation
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Pattern Syndrome f1 f2 f3 f4
ab xy xy xy xy xy

00 10 00 10 10 10
01 10 01 10 10 10
10 10 00 10 01 00
11 01 01 10 01 00

Table 4.1.: Syndrome and result from stuck–at fault simulation

three response bits, but it fails to explain the erroneous bit in the syndrome.
This leads for this fault to an evidence of e(f1, T) = (σ, ι, τ,γ) = (0, 3, 1, 0). The
evidence is derived for the other stuck–at faults as well; Table 4.2 shows the
result.

Fault σT ι τ γ Rank

f1 0 3 1 0 4
f2 1 2 0 0 1
f3 0 1 1 0 2 or 3
f4 0 1 1 0 3 or 2

Table 4.2.: Evidences and rank of the four faults

All evidences show γ = 0, so the ranking procedure continues with σ. Only f2
has positive σ, so this fault is ranked above all other faults. The other faults
are ranked by increasing ι. The top–ranked evidence f2 shows positive σ and
positive ι. Therefore, none of the simulated faults can explain the syndrome
completely, but f2 explains a subset of all fails. This leads to a CLF of the form
a⊕ [a · cond] with some arbitrary condition.

4.4. Evidence Interpretation

After analysis of a test set T , each defect representative f ∈ F has an evidence
e(f, T) associated with it. The evidence values reflect the relation of a defect
representative to the defective behavior of the Cud and certain evidence forms
imply information about the unknown defect beyond the probable locations of
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victim signal lines. For further discussion of these forms, evidences are classified
into so–called match conditions . Table 4.3 shows the definitions of the different
match conditions. The table is sorted with respect to the quality of the match
between defect representative and Cud behavior with perfect match being the
strongest match and best guess being the weakest. The ranking procedure in
POINTER also ranks the candidates in the same way as shown in the table.
For instance, if there is an evidence with perfect match condition, it will take
precedence over an evidence with partial match condition.

Match Condition ι(f, T) τ(f, T) γ(f, T)

Perfect Match 0 0 0

Perfect Tester Fail Match > 0 0 0

Partial Match 0 > 0 0

Partial Tester Fail Match > 0 > 0 0

Best Guess > 0 > 0 > 0

Table 4.3.: Match conditions and evidence forms for e(f, T)

4.4.1. Perfect Match

If ι, τ, and γ are all zero in a e(f, T), then the defect representative f is able to
explain the Cud behavior completely. In other words, under the test set T both
the Cud as well as Cf give exactly the same responses for all the tests. Thus, the
model chosen for the defect representative is able to exactly model the defect in
the Cud. This is the strongest possible evidence provided by POINTER.

The value σ in the evidence equals the number of explained failing bits in the Cud

responses and can serve as additional confidence measure. One special case is
σ = 0. In this case, the Cud did not produce any failures under test set T and the
evidences for all defect representatives f not observable during fault simulation
will show a perfect match e(f, T) = (0, 0, 0, 0). These defect representatives iden-
tify all insufficiently tested circuit parts and the diagnosis result is completely
valid also in this case.

There may be multiple defect representatives with perfect match conditions. The
behavior of all these representatives is the same under the test set T and it is
impossible to distinguish between these candidates with this test set.
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4.4.2. Perfect Tester Fail Match

Evidences with τ = 0, γ = 0 and positive ι are classified as perfect tester fail
match, because in this case, all failing responses from the Cud match completely
with the behavior of the defect representative.

Because of τ = 0, there are no unexplained failing response bits from the Cud.
The γ = 0 ensures that all failing responses from the Cud are equal to the re-
sponses of the fault simulation of the associated defect representative. Suppose,
there is a failing response of the Cud that does not match fault simulation. Be-
cause there are no unexplained failing response bits (τ = 0) the only difference
can be that fault simulation leads to additional fails (ι > 0). With γ being the
maximum of σ and ι, it would be positive in this case.

As fault simulation of the defect representative match all failing responses, the
difference to a perfect match are the existence of tests, which pass in the Cud

but not in fault simulation. The number of failing bits in these additional failing
tests is given by ι > 0.

If the defect representative can be expressed as a CLF of the form f ⊕ [c] with
a victim signal f and a known, deterministic condition c, then the defect in the
Cud can be modelled by a CLF of the form f⊕ [c ·u] with an additional, unknown
condition u.

If σ = 0 in a perfect tester fail match evidence, the Cud did not produce any
failures. In contrast to defect representatives with perfect match condition, rep-
resentatives with perfect tester fail match lead to failing responses and were
tested by the given test set. If the Cud passed all tests and the best ranked evi-
dence is a perfect tester fail match, all defect representatives in the circuit were
tested. In this case, the Cud might contain a defect whose unknown condition u
was never satisfied for tests that failed in fault simulation.

4.4.3. Partial Match

Evidences with partial match condition show ι = 0, γ = 0 and a positive τ.
The defect representative associated with such an evidence explains a subset of
all tester fails, but some other faulty behavior is present in the Cud.
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If the best observed evidence is a partial match and defect representatives can be
modeled with a single CLF of the form f⊕ [c] with a victim signal f and a known,
deterministic condition c, the defect in the Cud can be modeled either

� by a single CLF on a signal line, which has no representative in the fault
machine;

� by a single CLF of the form f⊕ [c∨ u] with an unknown condition u and
u 6→ c;

� by multiple CLFs on different signal lines.

If the defect representatives include CLFs of the form f⊕ [1] on every signal line
in the circuit, the first two modeling alternatives are not possible anymore and
the behavior of the Cud cannot be explained by any single fault.

Given multiple fault sites in the Cud, the defect representative with the best
ranked partial match evidence provides the best explanation for one of the fault
sites. Also, there is a very high probability that the other fault sites are inde-
pendent from the defect representative at hand, i.e. a failing output is either
caused by the defect representative only or by some other fault sites.

4.4.4. Partial Tester Fail Match

A partial tester fail match is a evidence that shows γ = 0 and positive values
for ι and τ. The basic reasoning for partial matches are also applicable to partial
tester fail matches. Given that the defect representatives include CLFs of the
form f⊕ [1] on every signal line in the circuit, multiple faults must be present in
the Cud.

The difference to partial matches is that now, ι has a positive value. This means,
combined with γ = 0, that fault simulation of the defect representative lead to
additional failures not present in the syndromes of the Cud in the following
situations:

� a test passed in the Cud;

� a test failed in the Cud, but the failing outputs caused by the defect repre-
sentative are disjoint from the failing bits of the Cud.
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Again, there is a very high probability that the other fault sites are independent
from the defect representative that show a partial tester fail match.

4.4.5. Best Guess

If all suspects show positive values in all components ι, τ,γ, all simplistic fault
models would fail to explain the Cud behavior.

This may happen in two situations:

� At least one response of the Cud was caused by multiple interacting fault
sites. I.e. an output of the Cud was influenced by at least two faults on
different signal lines at the same time.

� Error propagation was insufficiently modeled in fault simulation. If the
defect is a time–related issue, which cannot be modeled as gross delay fault,
and fault simulation employs the zero delay model for error propagation,
no matching can be achieved. One typical example are small delay faults
[TehraPC2011].

In this case, POINTER just reports the defect representatives, which explains
many of the failing outputs of the Cud. This heuristic still works well to identify
the circuit regions, faults are located in. However, it is not any more true that
the defect representative at one of the defective lines always explains the highest
number of errors. To investigate this situation further, the ranking can serve as
a starting point for more specialized diagnosis algorithms that target the cases
described above.

4.5. Final Suspect List

Let ft ∈ F be the defect representative at the top of the ranking (rankT (ft) = 1).
Depending on the match condition observed in the top–ranked evidence e(ft, T)
of the final ranking, the following defect representatives are included in the
reported list of suspects:

� Perfect match (ι(ft, T) = τ(ft, T) = γ(ft, T) = 0): only defect representa-
tives with equivalent evidence are included in the suspect list.
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� Perfect tester fail match (τ(ft, T) = γ(ft, T) = 0): only defect representa-
tives f with σ(f, T) = σ(ft, T) are included in the suspect list and this list
is sorted by increasing ι(f, T).

� In all other cases, all defect representatives with positive σ(f, T) are in-
cluded in the suspect list, which is then sorted first by decreasing σ then
by increasing ι.

The number of suspects reported by POINTER gives a good indication on the
confidence in the computed diagnosis result. The better the matching to a defect
representative, the fewer suspects are reported. The experimental evaluation will
show that, although the number of reported suspects can be quite high in the
best guess case, the real defect site can be very often found by examining just
the first few suspects at the top of the ranking.

4.6. Summary

POINTER is a location–based logic diagnosis algorithm that is based on an
inject–and–validate approach. It is able to diagnose arbitrary spot defects and is
not restricted to a specific fault model as it outputs locations of possible defects
within the circuit structure directly with the help of defect representatives.

For each defect representative, an evidence containing four integer number is
maintained: The number of predictions σ, the number of mispredictions ι, the
number of nonpredictions τ, and γ = min{σ, ι}. The value of γ relates to the
SLAT property of individual tests. While SLAT–based diagnosis algorithms only
extract information out of failing responses with SLAT property, POINTER
extracts diagnostic information from every available response. Failing responses
are used to find defect locations, which lead to equal or similar syndromes.
Fault–free responses are used to rule out defect locations, which likely would
have failed the current test.

With every new response, the evidences are simply summed up and the final
diagnosis result is generated just by sorting the set of evidences. Compared to
SLAT, which solves a set covering problem for generating the diagnosis result,
the runtime behavior of POINTER is very predictable and scales linearly with
the size of the design and the size of the test set.
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4.6. Summary

The forms of the evidences (matching conditions) describe the relationship be-
tween the defect in the Cud and defect representatives. These matching condi-
tions range from a perfect match between defect and representative, over perfect
tester fail match and partial matches down to a best guess. The quality of the
matching also reflects the confidence of the algorithm in the diagnosis result.
Depending on this confidence, more or less suspects are reported as final re-
sult.
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High precision logic diagnosis is one of the tools for the in–depth analysis of
malfunctioning chips in a lab environment. If the defect is suspected in a logic
block of the chip, the tool is used to pin–point the defective structure as precisely
as possible in order to guide physical failure analysis.

Very precise logic diagnosis needs besides an efficient response analysis method
also tests with high diagnostic resolution. The production test pattern set is not
an ideal choice, because they are often generated based on simple fault models
like the stuck–at fault model and aim to test as many faults as possible at the
same time in order to reduce the number of test patterns [BushnA2000]. For fault
model independent diagnosis algorithms like POINTER, better options might be
n–detect test sets [McCluT2000, LinPBNL*2008] or pseudo–exhaustive test sets
[McClu1984]. However, these test sets are either still based on a fault model or
contain such a large number of patterns that the resulting test time may not be
acceptable anymore even in a lab environment.

Besides relaxed time and test data volume constraints, a lab environment pro-
vides additional flexibility that will be exploited by the diagnosis approach de-
scribed in this chapter. While test sets are usually fixed during production test,
now full interactive access to the Cud is possible and tests may depend on the
responses to previously applied patterns. After analysis of the first few test re-
sponses by a logic diagnosis algorithm, it is possible to generate new diagnostic
tests specifically targeted to the defect in the Cud based on collected evidence.
This procedure is called adaptive diagnosis and has two advantages which lead
to a more precise and faster diagnosis:

� Test patterns can be generated specifically for suspicious signals and gates
in the circuit. If the suspicious region of the circuit is sufficiently small,
it can even be tested exhaustively without any dependence of an a–priori
chosen fault model.
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� Compared to other fault model independent test sets, the time for test and
diagnosis is greatly reduced as for every specific Cud only patterns of high
diagnostic value are applied.

This chapter starts with an introduction as well as a review of the state–of–the–
art in adaptive diagnosis and diagnostic pattern generation. After this, a new
adaptive diagnosis approach is introduced, which combines POINTER with a
diagnostic pattern generator to obtain maximum diagnostic resolution.

5.1. Introduction to Adaptive Diagnosis

The paradigm adaptive diagnosis was first proposed for system diagnosis
[Nakaj1981, HakimN1984] and applied for diagnosing bridging defects in
[GongC1995]. The method in [GongC1995] uses Iddq measurements for diag-
nosis and exploits the fact that a circuit draws more current if the two signals
involved in a bridge are driven to different logic values. First, random patterns
are applied to the circuit, then patterns targeting signals with low controllability
and finally patterns to distinguish the remaining fault candidates. The pattern
generation process is guided by a list of fault candidates which is in turn refined
by the results of the patterns applied to the Cud.

Figure 5.1 depicts this principle. A pattern analysis step extracts information
from responses of the Cud and accumulates it in a knowledge base. This knowl-
edge in turn guides an automatic test pattern generator (ATPG) to generate
relevant patterns for achieving high diagnostic resolution. The loop ends when
an acceptable diagnostic resolution is reached.

Some works exploit this concept by generating additional high–resolution pat-
terns after an initial diagnosis pass. In [LinLC2007], SLAT is used for the initial
pass and new diagnostic patterns are adaptively generated to propagate the fault
candidates individually to specific outputs. In [YangC2007] the tests are con-
structed in a way so that none of the propagation paths of a candidate passes
through another candidate site.

Given two faults f and g, a diagnostic test generator calculates a test ~t,
which is able to distinguish between these faults: Cf(~t) 6= Cg(~t). Such
diagnostic pattern generators are available for stuck–at faults [RothBS1967,
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Figure 5.1.: Adaptive diagnosis flow.

CamurMP*1990, VenerCA*2004, Barte2000] as well as for more complex com-
pound faults [WangHLL*2008].

Any diagnostic test generator can be combined with POINTER by choosing the
model for the defect representatives accordingly. The following section describes
a combination of POINTER with a pattern generator, which is able to generate
patterns to detect a given defect representative or distinguish between two defect
representatives.

5.2. Adaptive Diagnosis with POINTER

An iteration consists of pattern analysis and, based on its outcome, pattern
generation. The number n of patterns analyzed and generated within an iteration
is a trade–off between diagnostic value of each pattern and the time needed to
apply the test set. If the application of a new test set to the Cud involves a
high constant overhead (setup time and time for response readout), iterations
with larger sets are more favorable [GongC1995]. If the constant time overhead
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is negligible, each iteration may contain just very few patterns which are highly
focused to the current analysis results.

With each response analysis, a ranked list of defect representatives are generated.
Each representative is associated with evidence values as explained in chapter 4.
Based on the matching condition of the best ranked defect representative, the
strategy for pattern generation for the next iteration is chosen according to table
5.1. The newly generated patterns are applied to the Cud and the new responses
are analyzed to improve the evidences by adding the new values for σ, ι, τ, and
γ to the existing ones for each defect representative. If the pattern generation
strategy does not yield any new test patterns, the final result is reported.

σ(f, T) ι(f, T) τ(f, T) γ(f, T) Strategy

0 0 0 0 Fail Discovery
> 0 0 0 0 Perfect Match Refinement
> 0 > 0 0 0 Perfect Tester Fail Match Refinement
> 0 > 0 > 0 > 0 Best Guess Refinement

Table 5.1.: Evidence forms for e(f, T) and test generation strategies.

5.2.1. Fail Discovery

A top–ranked evidence of e(f, T) = (0, 0, 0, 0) implies the following situa-
tion:

� The Cud did not fail any of the tests in T , because σ(f, T) + τ(f, T) = 0.

� At least the defect representative f was not tested by T , because σ(f, T) +
ι(f, T) = 0.

This situation occurs especially at the very beginning, when no responses have
been analyzed yet. Then, the evidences of all defect representatives f ∈ F are
empty: e(f, ∅) = (0, 0, 0, 0).

The goal of the discovery phase is to generate new patterns T ′, so that the Cud

eventually fails some tests in T ′. If the Cud shows at least one fail at one output
for a test in T ′, the evidences for all defect representatives f ∈ F will show
σ(f, T ∪ T ′) + τ(f, T ∪ T ′) > 0 and another test generation strategy will be used.
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Until then, new tests are generated to target all defect representatives f ∈ F with
σ(f, T) + ι(f, T) = 0.

Fail discovery may start with an existing production test set Tp. In this case, n
new patterns from Tp are returned in each iteration until all patterns in Tp were
analyzed. If no test pattern set is available, fail discovery starts by returning
log(g) random test patterns (g is the number of gates in the Cud) in the first
iterations to test all random testable defect representatives. If a pattern detects
a f ∈ F, its analysis will will yield an evidence with σ(f, T ∪ T ′) + ι(f, T ∪ T ′) >

0.

Any untested defect representative left after applying the these patterns is tar-
geted using a test pattern generator. If such a pattern can be generated for a f ∈
F, again its analysis will will yield an evidence with σ(f, T ∪T ′)+ ι(f, T ∪T ′) > 0.
If the pattern generator fails to generate a test for a f ∈ F, this defect representa-
tive will be excluded from further consideration because it is deemed untestable
and will not show σ(f, T ∪ T ′) + ι(f, T ∪ T ′) > 0 for any T ′.

Until some failing responses are observed, POINTER is used for fault dropping
to continuously focus the pattern generation to the remaining undetected defect
representatives. At the end of fail discovery, either the Cud failed some tests
or the test set cannot be improved any further. In both cases, the top–ranked
evidence will not have the form e(f, T ∪ T ′) = (0, 0, 0, 0) anymore and adaptive
diagnosis proceeds with one of the following pattern generation strategies.

5.2.2. Perfect Match Refinement

Let ft ∈ F be the top–ranked defect representative. The evidence of the form
e(ft, T) = (σ(ft, T), 0, 0, 0) with σ(ft, T) > 0 implies the following situation:

� The Cud failed at least one test in T .

� At least f is able to explain all responses of the Cud completely.

Let F ′ be the set of all defect representatives f with the same evidence as ft:
e(f, T) = (σ(ft, T), 0, 0, 0). As all these defect representatives are located at the
top of the ranking, this set is easily found by iterating over the top–ranked
evidences. The goal of perfect match refinement is to generate tests in order to
reduce the size of F ′.
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To reduce the size of F ′, tests can be used, which are able to distinguish between
two defect representatives fa, fb ∈ F ′, fa 6= fb. A test ~t distinguishes between
fa and fb, if Cfa(~t) 6= Cfb(~t). If Cud(~t) is analyzed and the unknown defect
can indeed be modeled by a defect representative, the evidences will be different
e(fa,~t) 6= e(fb,~t) and at least one of the defect representatives fa, fb will not be
included in F ′ anymore.

Let P the set of all pairs of F ′:

P = {〈fa, fb〉|fa, fb ∈ F ′ ∧ fa 6= fb}

To generate the test set of maximum size n for the next iteration, the pairs in P
are given to a diagnostic test pattern generator. If the pattern generator returns
a distinguishing test, it is added to the test set. If the pattern generator fails to
generate a test, the pair is deemed undistinguishable and not considered further.
All pairs given to the diagnostic pattern generator are also added to the set P ′.
The pairs are processed in arbitrary order until enough tests are generated for
the next iteration or P − P ′ = ∅.

The termination of perfect match refinement is guaranteed by the maintenance
of P ′ over all iterations so that a test is not generated twice for a specific pair.
If the defect in the Cud can be modelled completely by a defect representative,
this refinement approach guarantees maximum diagnostic resolution.

5.2.3. Perfect Tester Fail Match Refinement

Let ft ∈ F be the top–ranked defect representative. The evidence of the form
e(ft, T) = (σ(ft, T), ι(ft, T), 0, 0) with σ(ft, T), ι(ft, T) > 0 implies the following
situation:

� The Cud failed at least one test in T .

� At least f is able to explain all failing responses of the Cud completely and
no defect representative can explain all failing as well as passing responses
of the Cud.

Let F ′ be the set of all defect representatives f with the same evidence as ft:
e(f, T) = (σ(ft, T), ι(ft, T), 0, 0). Like in perfect match refinement, distinguishing
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tests are generated to reduce the size of F ′. To guide pattern generation, again
the set of all pairs of all f ∈ F ′ is constructed:

P = {〈fa, fb〉|fa, fb ∈ F ′ ∧ fa 6= fb}

and given to diagnostic test pattern generation.

There is evidence now that the defect in the Cud has an additional activation
condition not captured in the model for the defect representatives. Therefore,
a diagnostic test pattern might not satisfy the activation conditions and fail to
distinguish between the two considered representatives.

Several approaches can be used to increase the probability of successful distinc-
tion by generating patterns with additional constraints. For instance, multiple
diagnostic patterns can be generated that distinguish between two defect rep-
resentatives and at the same time set the neighboring signals to various logic
values in order to improve the resolution for possible bridging faults. To pro-
voke delay faults, an activation pattern can be generated to set the signal lines
of fa and fb to values opposite to these in the distinguishing pattern. The
consecutive application of the activation pattern and the distinguishing pattern
ensures transitions at the suspected signal lines and possible activation of time
dependent faults.

For demonstration purposes, only delay fault provoking pattern pairs will be used
in perfect tester fail refinement during experimental evaluation. However, this
refinement can easily be extended with more sophisticated approaches reported
in literature [DesinPB2006] that also involve neighboring signal lines.

5.2.4. Best Guess Refinement

If the top–ranked evidence does not match any of the forms discussed above,
best guess refinement is used. Best guess refinement follows the same strategy
as perfect tester fail match refinement of distinguishing fault pairs with delay
fault provoking pattern pairs. The difference lies in the considered set of fault
pairs P.

In the case at hand, it is possible that the Cud contains multiple interacting fault
sites and not all defect representatives related to one of these sites are at the
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very top of the ranking. To refine the ranking as best as possible in this case,
the m best ranked defect representatives with σ > 0 are considered:

F ′ = {f ∈ F | rankT (f) <= m∧ σ(f, T) > 0}

And pairs are formed between all f ∈ F ′ with equal evidences:

P = {〈fa, fb〉|fa, fb ∈ F ′ ∧ fa 6= fb ∧ e(fa, T) = e(fb, T)}

The elements of P are given to a diagnostic test pattern generator and added to
the set P ′ like in the previously discussed strategies. The process terminates as
soon as P − P ′ = ∅.

The selection of m allows a trade–off between runtime and refinement scope. A
low m only refines the very top of the ranking and may miss a defect represen-
tative corresponding well to the unknown defect in the Cud but ranked lower
in early iterations. A high m considers many well ranked candidates, but may
increase diagnosis runtime and the number of iterations until the final result
considerably.

5.3. Summary

Adaptive diagnosis provides a way for high precision diagnosis without restrict-
ing fault assumptions. Based on partial diagnosis results, new diagnostic test
patterns are generated to gradually refine them. This allows for fault model inde-
pendent and very focused diagnostic testing of the suspicious circuit region.

A POINTER–based adaptive diagnosis approach was built by combining the re-
sponse analysis method with a diagnostic test pattern generator which is able
to generate fault distinguishing tests for defect representatives. The algorithm
may start from scratch without any previous knowledge, or just refine a previous
result (e.g., from production data or in–field data) further with a few focused
tests. A simple scan over the sorted list of evidences identifies defect represen-
tatives, which have not been distinguished so far by the applied tests. Based
on this information and the matching condition of the top–ranked evidence, a
couple of patterns are generated in order to refine the ranking. This method
yields the best possible diagnosis result in the perfect match case, and signif-
icant improvements are expected even if the defect in the Cud is not perfectly
modeled by a representative.
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Integrating diagnosis into the production test flow is very challenging, yet it is
necessary for effective yield learning. The main challenges for implementing logic
diagnosis in a production environment are:

� The high cost sensitivity of the production test. Any additional test time
spend for diagnosis purposes adds cost.

� The storage of the diagnostic data gathered from the chip in production
testers.

� The fail data from a large amount of chips have to be analyzed, which puts
strict constraints on the computing time spend per failing chip.

� Production test patterns are fixed and optimized for pattern count rather
than diagnostic resolution to reduce test time.

The first two challenges are typically addressed by the so–called stop–on–nth–
fail strategy in which a test of a logic block is stopped after the first n failing
responses. In standard (non–diagnostic) production test of single chips at a
time, the test can be aborted after observing the first failing response (n = 1)
to increase the chip throughput per ATE. Another common way to increase the
throughput is to test multiple chips at a time on the same tester in a multi–site
test [VolkeKR*2002] (see figure 6.1). The test data is distributed to multiple
chips and their responses are evaluated in parallel. Stopping the test for failing
chips prematurely provides no throughput benefit in this case because the chips
can only be exchanged after the completion of the test for all the chips on the
tester. The benefit lies in the reduction of fail memory needed per chip. For
standard production test, it is highly sufficient to store just the first failing
response for each pass/fail decision. This reduced memory requirement per chip
enables to test more chips in parallel on the same tester and reduce the test cost
per chip.
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Figure 6.1.: Multi–site test setup.

For diagnostic production test, n can be set to a value, which provides the
best trade–off between the additional test cost and the diagnostic data gathered
per failing chip. The experimental evaluation will show that even a rather low
number of n = 8 already provides near–optimal diagnostic resolution.

As test patterns are optimized towards low pattern count rather for high di-
agnostic resolution, it is even more important to extract as much diagnostic
information as possible from all responses observed during test. At the same
time, diagnosis must provide short and predictable runtimes in order to reduce
the compute power needed for analysis of all the failing chip from a production
line.

This chapter will present an extension to POINTER, which combines it with a
small dictionary and a structural pruning approach for enhanced runtime per-
formance without compromising on diagnosis quality.

6.1. Diagnostic Production Test

In standard production test for digital logic, the tester applies patterns to the
Cud and compares its responses to the expected ones. The expected responses
are stored in the tester, too. If a response of the Cud differs from the expected
one, the test stops and the tester reports a fail. If all responses are correct, the
test is continued until the end and the tester reports a pass.
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To implement a stop–on–nth–fail strategy for diagnostic production test, two
modifications are necessary. First, not only pass/fail information needs to be
reported from by the tester, but also the test pattern number and the incorrect
response from the Cud for this pattern. Second, the test must continue until n
failing responses were observed or the test is finished. The outcome of such a
diagnostic production test is a so–called fail–log , which is a list of at most n
rows, each row containing the test pattern number of a failing response and the
response itself.

The additional cost for enabling a diagnostic production test has two compo-
nents. First, as failing responses are recorded instead of directly reporting a
failing chip, more time is spend on faulty devices than during basic production
test. Second, the failing responses need to be stored in the tester memory and
transferred to the computing cluster performing the analysis.

The memory requirements and communication bandwidth needed is proportional
to n. Also the additional tester time increases with larger n. Thus, all cost
components can be controlled by setting this parameter to an appropriate value.
Of course, diagnosis results will be of lower quality if n is chosen too low as not
enough diagnostic information is available.

6.2. Passing Pattern Analysis using ι–Dictionary

The information in the fail–log from a failing chip implies the knowledge about
some passing patterns as well. Let i be the test pattern index of the last record
in a fail–log. Then, the Cud passed all tests ~t0, . . . ,~ti−1 ∈ T except those present
in the records of the fail–log. An example is shown in figure 6.2. The standard
POINTER algorithm would analyze all i patterns one after another and summing
up the evidences for each defect representative.

The analysis of a passing pattern ~t ∈ T only contributes to ι(f,~t) of some defect
representatives f ∈ F. All other components of the evidences are zero for this
pattern as the Cud has no failing outputs. The test pattern set is the same for
all Cud under consideration, so instead of simulating all defects representatives
for the passing patterns in all failing chips, it is reasonable to store the values
for ι in memory and re–use it for analysing each fail–log.
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Figure 6.2.: Expansion of a fail–log into a set of test responses.

Let Ti denote the set of the first i tests of T (i 6 |T |):

{~t0, . . . ,~ti−1} = Ti ⊆ T

The ι–dictionary contains for each defect representative f ∈ F and test pat-
tern index 0 < i 6 |T | the value ι(f, Ti). For convenience, we define further
ι(f, T0) = 0. The number of values stored in the dictionary is |F| · |T | and can
be handled by modern computing systems even with industrial–sized designs
and naive encoding. Many techniques proposed for the compact storage of fault
dictionaries are also applicable to the ι–dictionary proposed here to reduce its
memory footprint.

The basic POINTER algorithm is modified in the following way for incorporating
the ι–dictionary. Instead of iterating over each known response of the Cud, now
POINTER iterates just over all failing responses. Let i be the pattern index for
the current failing response and i ′ the test pattern index of the previously ana-
lyzed failing response. If POINTER currently analyses the first failing response,
we define i ′ = −1. For each failing response, the evidence for a f ∈ F is:

e(f, {~ti ′+1, . . . ,~ti}) = (σ(f,~ti), ι(f,~ti) + ι(f, Ti−1) − ι(f, Ti ′+1), τ(f,~ti),γ(f,~ti))

Two accesses to the ι–dictionary are involved in order to incorporate the dif-
ference of the ι–values generated by the passing patterns between the previous
failing pattern and the current failing pattern under consideration. The evi-
dence calculated in this way is equivalent to the sum of evidences between i ′

and i explicitly computed in the basic approach:

e(f, {~ti ′+1, . . . ,~ti}) =
∑

~t∈{~ti ′+1,...,~ti}

e(f,~t)
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So the use of the ι–dictionary lead to the same diagnosis results as the basic
POINTER algorithm, but provides a runtime proportional to the number of
failing patterns. In particular, the runtime of this approach is independent from
the distribution of the fails within the test. The basic algorithm needs more time
if a failing response was recorded near the end of the complete test, compared
with a fail–log containing only failures very early in the test. By using the ι–
dictionary, the diagnosis runtime per fail–log becomes very predictable and can
be tightly controlled by n, the maximum number of fails in a fail–log.

6.3. Structural Pruning

Structural pruning is a standard technique in simulation based diagnosis to speed
up pattern analysis. The idea is to consider only these circuit parts during anal-
ysis of a failing test ~t, which have at least one structural path to an output,
that failed in the Cud. This can speed up diagnosis especially for current in-
dustrial designs which tend to have short paths and rather small cones in the
combinational logic.

Implementing structural pruning in POINTER just by skipping defect represen-
tatives, which do not have a structural path to a failing output, would affect
the evidences and lead to lower diagnostic resolution. A simple example is the
analysis of a passing pattern with structural pruning enabled. In this case, no
evidence would be changed as there is no defect representative in the circuit
having a structural path to a failing output and the passing patterns are simply
ignored by the diagnosis algorithm.

In the general case, two components of the evidences are affected by pruning:
ι and τ. The following approach generates these two values for evidences of
defect representatives skipped by structural pruning without simulation. This
way, structural pruning can be implemented to speed up diagnosis significantly
and without compromising on the diagnosis quality.

Let ~ti ∈ T be a test and let o be the number of failing bits in the response
Cud(~ti). Let further Fs(~ti) ⊆ F be the set of defect representatives having at
least one structural path to one of the failing outputs of the Cud under test ~ti
(see also figure 6.3). The evidences for the set of defect representatives Fp(~ti) =
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F − Fs(~ti) are not determined by simulation, but just set as follows. For each
fp ∈ Fp(~ti):

e(fp,~ti) = (0, ι(f, Ti) − ι(f, Ti−1),o, 0).

A defect representative fp ∈ Fp(~ti) cannot explain any failing bit in Cud(~ti)

because it lacks a structural path to any of the failing outputs. Therefore, the
values σ(fp,~ti) and γ(fp,~ti) are both zero and all failing bits of fp will contribute
to ι(fp,~ti). This value can be calculated from the data in the ι–dictionary defined
in the previous section. As a direct consequence of σ(fp,~ti) = 0, the number
of unexplained failing bits is the same for all fp ∈ Fp(~ti): τ(fp,~ti) = o. The
remaining evidences fs ∈ Fs(~ti) are determined by simulation.

C (�ti)

�ti

Fp(�ti)

Fs(�ti)

Figure 6.3.: Structural pruning for a failing response to the test pattern ~ti.

Structural pruning can be combined with the efficient passing pattern consider-
ation described in the previous section in the following way. Let ti ∈ T now be a
pattern with o > 0 failing outputs in Cud(~ti) and i ′ the number of the previous
failing pattern or, otherwise −1. For all defect representatives fs ∈ Fs(~ti) the
evidences are calculated as before:

e(fs, {~ti ′+1, . . . ,~ti}) = (σ(f,~ti), ι(f,~ti) + ι(f, Ti−1) − ι(f, Ti ′+1), τ(f,~ti),γ(f,~ti))

All defect representatives in the pruned circuit part fp ∈ Fp(~ti) cannot explain
any of the o failing bits and the mispredictions can be calculated from the dic-
tionary: ι(f,~ti) = ι(f, Ti) − ι(f, Ti−1). The evidence is therefore:

e(fp, {~ti ′+1, . . . ,~ti}) = (0, ι(f, Ti) − ι(f, Ti ′+1),o, 0).
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6.4. Summary

In production test, the test set is fixed and only the first n failing responses are
recorded per chip for diagnosis purposes. The value of n controls the additional
costs like increased test time and additional memory requirements, and is usually
set as low as possible.

With the first n fails, also passing responses are known and the standard
POINTER algorithm can already exploit this information. This advantage above
other algorithms, which are only using failing responses for diagnosis, can be
translated into a lower n for the same quality of diagnosis results.

The fixed test set allows the use of an ι–dictionary containing the number of
failing response bits for each test and defect representative. This dictionary
enables structural pruning and highly efficient passing pattern consideration in
POINTER. Structural pruning greatly reduces the runtime for each failing re-
sponse as fault simulation is not needed for circuit parts with no structural path
to a failing output. With dictionary–based passing pattern consideration, the
runtime becomes proportional to the number n of failing patterns. Now, the
parameter n also controls the computing resources needed for logic diagnosis in
high volume testing. The evidences calculated and the diagnosis results gener-
ated are still identical to these of the original POINTER algorithm.
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Compaction

Embedded testing including logic built–in self–test (LBIST) and multi–site
testing are quite effective test cost reduction techniques. Compared to stan-
dard production test, more sophisticated on–chip test infrastructure is used to
reduce the communication to external test equipment to a minimum. This re-
duces the test resources needed in the ATE and reduces test time by cutting the
communication overhead over a slow, external test interface.

Two compaction principles are used in this context: space compaction and time
compaction . A space compactor calculates a signature for each circuit response
individually and independently. Typical examples for space compactors are par-
ity trees [VrankGG*2006] or X–Compact [MitraK2004]. Time Compactors like
multiple–input shift registers (MISR) [BardeM1982] on the other hand use mul-
tiple or even all responses of the Cud for the calculation of a single signature.
Time compactors can provide higher compaction ratios than space compactors
but multiple test runs may be necessary in order to diagnose a failing signature as
already discussed in section 1.2.2. To avoid the increased test time and the more
complex test control necessary for the diagnostic test, a viable option might be
the use of a space compactor paired with the direct diagnosis approach. Given
an on–chip storage of s bits for diagnostic data, a very interesting question is
how to use the available space most efficiently to maximize the quality of the
diagnosis results obtained from these s bits.

This chapter will approach this question by introducing a very aggressive re-
sponse compaction combined with an extended version of the POINTER algo-
rithm. The experimental results will show that compacting responses aggres-
sively can be more beneficial for diagnosis than storing less compacted data,
given a limited storage of s bits. First, the approaches for enabling diagnosis in
multi–site testing and BIST environments are discussed in more detail. Then,
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extreme space compaction is introduced as a technique for using the limited
on–chip resources most efficiently in both embedded testing approaches. Finally,
the modifications to POINTER are presented to enable the analysis of extremely
compacted response data.

7.1. Diagnostic Embedded Testing

In multi–site testing, many chips are tested in parallel by the same ATE
[VolkeKR*2002]. All chips receive identical input by the ATE, but the out-
put side of the tested chips cannot be handled in the same straightforward way,
as the defective chips will respond in many different, unpredictable ways. One
solution is feeding all the dies with the correct output by the ATE, equipping
them with an on–chip comparator and comparing the expected and computed
response on chip (figure 7.1).

Figure 7.1.: Principle of multi–site testing with on–chip fail–logs.

In standard test, it would be sufficient for the chip to signal the ATE a fail after
observing the first mismatch in the responses. To enable diagnosis, a small on–
chip memory may be used to store information on the first n failing scan slices
[PoehlRB*2006, KinsmON2006]. In contrast to the multi–site test approach
discussed in chapter 6, the fail logs are now located on the chips themselves and
the memory and communication requirements for the ATE are reduced further.
After the parallel test of all chips, this data can be unloaded die by die and
passed on as fail–logs to a logic diagnosis algorithm.

98



7.1. Diagnostic Embedded Testing

As with standard scan testing, throughput requirements and test application
time are reduced, if each chip is equipped with test data decompression and test
response compaction logic (figure 7.2) [PoehlRB*2006]. In addition, a higher
number of fails n can be stored on the chip in a fail memory of the same size
s.

Figure 7.2.: Test data decompression and response compaction.

The standard approach for enabling diagnosis in BIST structures discussed so
far is bypassing. Using bypassing in diagnostic production test would mean
that each chip failing the BIST is re–tested with an external test for gathering
diagnostic data. This would increase test cost dramatically especially if the yield
is low and many failing chips needed to be diagnosed. An alternative without
this disadvantage can be provided by extreme space compaction.

If the compaction ratio is sufficiently high, the same idea for diagnostic multi–site
test can also be applied to BIST. Here, the correct responses are not provided
externally, but must be stored internally as shown in figure 7.3. The mem-
ory requirement for the response memory decreases by the ratio of compaction
used.

Figure 7.3.: Built–in self–diagnosis.
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7.2. Extreme Space Compaction

The response compaction ratio determines the memory requirements for built–
in diagnosis, and the bandwidth for multi–site testing. Given a budget s for
the maximum size of fail data, implementing a stop–on–nth–fail strategy is the
natural choice.

While time compactors and convolutional compactors are highly effective in gen-
eral [RajskTW*2005, LeiniGM2004, Touba2007], they are not the optimal choice
for implementing a stop–on–nth–fail strategy. After the occurrence of a faulty re-
sponse for a single pattern, the signature gets contaminated over multiple or even
all clock cycles filling up the fail memory with data not providing any additional
diagnostic information. Space compaction techniques are more appropriate in
the given context [LeiniMC*2005, MitraK2004]. The combinational compactor
with highest compaction ratio is the parity tree. It was shown in [VrankGG*2006]
that the amount of aliasing and masking between stuck–at faults introduced by
a parity tree is negligible and fault coverage as well as diagnostic resolution for
stuck–at faults are only marginally affected.

Extreme space compaction [HolstW2009, HolstW2009a] is provided by increasing
the number of scan chains and hence the scan slice length, and by compacting
complete scan slices into single parity bits. A scan slice is the set of bits that is
shifted out of the scan chains in a single shift cycle. Figure 7.4 shows the scheme,
which maps a complete scan slice into a single bit and provides the highest space
compaction ratio possible.

Figure 7.4.: Extreme response compaction.

Extreme space compaction greatly reduces test time and response data volume
and can be applied to both test cost reduction approaches. Figure 7.5 shows the
extreme compaction scheme applied to multi–site testing and embedded test.
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Here, merely the expected parity bits are either sent by the ATE or stored on–
chip. This significantly reduces the amount of on–chip storage and the ATE
bandwidth requirements. The comparator is now a single XOR–gate controlling
a memory which records the n first scan clock cycles for which the parity bits
mismatch.

Figure 7.5.: Target scheme for extreme response compaction.

Let k ′ be the number of scan chains and l ′ the maximum length on a chain in
the original design. Let k and l the number of scan chains and their maximum
length after splitting them for extreme compaction. Given that the same number
of patterns p are applied in both cases. Test time is reduced by a factor of nearly
l/l ′, because less scan cycles are needed for loading patterns and reading out
responses. The total response data to be distributed to the chips in multi–site
test or to be stored on chip for BIST is reduced by a factor of k ′ · l ′/l.

In the fail memory, only the scan cycles numbers with mismatching parity bits
need to be stored. This information from the fail memory together with the
known, expected parities is sufficient to obtain the parity bits produced by the
Cud for diagnosis. Given a straight–forward binary encoding of the failing scan
cycles, the correspondence between the number of fails n and the fail memory
size s in bits is:

s = n · log2(p · l)

Besides the very high compaction ratio, the main advantage of extreme space
compaction over the compactors proposed in the literature is that, in combi-
nation with a variant of POINTER, the diagnostic success for arbitrary defects
can be maintained. In the next sections, the necessary extensions to the ba-
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sic POINTER algorithm are presented. The experimental results in chapter 8
will show that the diagnosis results are only marginally affected by the extreme
compaction.

7.3. Combinational Representation

For extreme space compaction, only the direct diagnosis approach is applicable.
Parity information is insufficient to reconstruct the scan cell failures and make
the indirect diagnosis approach impossible to implement. Bypassing based diag-
nosis defies the purpose of this approach tuned to production test. However, it
may be implemented also in this infrastructure in order to assist high–precision
diagnosis in lab environments.

For direct diagnosis as well as for pattern generation, the combinational equiva-
lent of a circuit with extreme compaction is constructed as shown in figure 7.6.
Let k be the number of scan chains, and l the maximum length of a scan chain
after splitting the default scan configuration. All flip–flops which are at the
same positions in the scan chains are compressed into a single parity. Hence the
combinational representation contains l parity trees each compacting at most k
pseudo–primary outputs.

⊕
⊕

⊕

a

aa a
b b b

a
b

b

b

a

a

a

a

a

Figure 7.6.: Combinational representation for extreme response compaction, ex-
ample with k = 2 and l = 3.

The circuit 7.6b has a higher global reconvergent fanout in general, a significantly
higher fan–in, and is more difficult to test. But the approach rarely introduces
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new redundancies which would lead to fault masking, and the negative impact
can be reduced by an appropriate scan chain organization [ElmW2008]. How-
ever the unusually high fan–in of compactor structures poses a great challenge
especially for fault model independent diagnosis approaches. The effect–cause
approaches relying on cone intersections or path tracing may loose effectiveness.
Since the input cone of a failing parity bit spans all flip–flops in a scan slice, a
single failing parity bit can be caused by a much larger number of possible defect
candidates than a single failing bit in the uncompacted response. All paths in a
parity tree are sensitized regardless of the inputs, so back–tracing also need to
consider all flip–flops in a scan slice with an incorrect parity bit. For inject–and–
validate based algorithms however, the impact of extreme compaction is minimal.
Although there may be a slowdown because structural pruning is not as effective,
it will be shown, that the loss in diagnostic resolution is only marginal.

7.4. Response Parity Analysis

From the fail memory, the failing scan cycles are known. This information is
translated into the stream of the first m = n + p parity bits (denoted as Pud)
of the response with p being the number of passing scan slices before the nth

failing one.

The main difference to the diagnosis applications discussed so far is, that m may
not be a multiple of l, i.e., the parity bits contain a partial response from the Cud.
One possibility is to discard partial responses and apply POINTER in the same
way as discussed in the previous chapters using the combinational equivalent for
extreme compaction. This reduces the quality of the diagnosis results because
not all available information is used. If the first failing pattern contain more
than n failing scan slices, diagnosis would even lead to no result at all.

Incorporating partial responses in the analysis need some special precautions
described in the following. Figure 7.7 depicts the principle for obtaining the
components for the evidence e(f,~t) for a test ~t with a partially known response
Cud(~t) and a defect representative f. Only the known response bits are compared
to the ones from Cf(~t) and contribute to the evidence. The remaining response
bits from Cf(~t) must be discarded because the information to which components
of the evidence they contribute to is missing.
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Figure 7.7.: Evidence calculation for partial responses.

The properties of evidences as well as the ranking and match conditions are still
valid with the modified calculation. For the evidence components σ, ι and τ,
this follows from the associativity of addition. Regardless in what granularity
the evidences are summed up (e.g. response–wise or output–wise), the resulting
values don’t change and the properties hold in every partial sum. This fact was
also used in adaptive diagnosis, where additional patterns are generated and new
evidences were added to the existing ones. The value of γ(f,~t) for the partial
response is always less or equal to γ(f,~t) generated for the full response. This
means that POINTER will reduce the matching condition for a defect repre-
sentative to best guess only in cases, where a partial matching within a single
response is evident, and all potential candidates for better matching conditions
will maintain γ = 0.

7.5. ι–Dictionary and Pruning

The runtime optimization methods based on ι–dictionary and structural pruning
introduced in the previous chapter is in principle also applicable for the analysis
of partial responses. However, they have to be generalized in order to still provide
valid evidences in this case.

Consider a defect representative f propagating to known as well as unknown
outputs like in figure 7.7. The ι–dictionary cannot be used for processing a
passing partial response in this case, because the actual ι(f,~t) may be lower
than the value in the dictionary. Let i be the pattern index of the current
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failing or partially known response Cud(~ti) and i ′ the index of the previous
failing or partially known response Cud(~ti ′). For the patterns ~ti ′+1, . . . ,~ti−1 ∈ T ,
completely known, passing responses of the Cud are available. Let further o 6= 0

the number of failing bits in the current response Cud(~ti). Based on the structural
output cone starting at a defect representative f its evidence e(f,~ti) is calculated
in the following way:

� If f can only propagate to known outputs, which are correct in Cud(~ti),
structural pruning is valid and the evidence is:

e(f, {~ti ′+1, . . . ,~ti}) = (0, ι(f, Ti) − ι(f, Ti ′+1),o, 0)

� If f can only propagate to unknown outputs, ι(f, {~ti ′+1, . . . ,~ti}) is zero and
must not be read from the dictionary:

e(f, {~ti ′+1, . . . ,~ti}) = (0, 0,o, 0)

� All other cases (fmay propagate to at least one failing output, or may prop-
agate to known and unknown outputs at the same time) require explicit
simulation and the evidence is:

e(f, {~ti ′+1, . . . ,~ti}) = (σ(f,~ti), ι(f,~ti)+ι(f, Ti−1)−ι(f, Ti ′+1), τ(f,~ti),γ(f,~ti))

The evidences calculated in this way are still equivalent to the ones obtained
by explicit simulation in every case. Only in cases where a defect representative
may propagate to known passing outputs and unknown outputs at the same time,
additional simulations are required. For the given application, the performance
decrease is negligible, as there is only one partial pattern possible (the last one)
and the known outputs in this partial patterns always contain failing bits.

7.6. Summary

Extreme space compaction uses a broad scan configuration and compacts com-
plete scan slices into single parity bits. Direct diagnosis is the only viable option
for analyzing the extremely compacted responses. The high fan–in of the com-
pactor structure poses a great challenge to fault model independent diagnosis
algorithms. POINTER as an inject–and–validate approach is able to handle
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such extremely compact diagnostic data without performance degradation. The
proposed extensions enable POINTER to extract maximum diagnostic informa-
tion out of partial responses. This is necessary, because in combination with a
stop–on–nth–fail strategy, extreme response compaction may lead to responses,
which are not completely known.

The diagnostic fail data generated after extreme space compaction is small
enough to fit into on–chip memories. This enables highly efficient diagnostic
multi–site testing setups as well as diagnostic in–field tests.
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The goal of the experimental evaluation is to show the effectiveness of the pro-
posed diagnosis approaches in terms of runtime performance and the quality of
the diagnosis results. Most experiments follow the general principle of simulat-
ing the application environments for the logic diagnosis approaches as closely as
possible in all important aspects. Within the setups, large numbers of Monte–
Carlo experiments with randomly injected defects are performed to obtain the
performance values, which can be expected in actual deployments of these ap-
proaches.

The overall experimental setup is depicted in figure 8.1. The fail data is gen-
erated by a Cud–simulator, which simulates the combinational equivalent of a
circuit under consideration containing a defect. The defects are chosen randomly
from a set of defects generated on the basis of a selected defect model. The test
patterns are either production test patterns generated by a commercial ATPG
or provided by the adaptive diagnosis approach. The logic diagnosis determines
from the test patterns and the fail data the evidences for the set of defect rep-
resentatives generated on the basis of a selected defect representative model.
The diagnosis results are ranked lists of defect representatives with their re-
spective evidence values. Before the result evaluation, the injected defects have
to be translated into identifying defect representatives. This translation will be
further detailed together with the used defect models in section 8.1. Using the
identifying defect representatives of the injected defect, the diagnosis result is
evaluated with various metrics introduced in section 8.2. After the introduction
of the used benchmark circuits in section 8.3, the conducted experiments are
presented and discussed.
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Figure 8.1.: Overall experimental setup.

8.1. Defect Models

Various models for defect representatives are applicable to the POINTER ap-
proach. POINTER is then able to locate arbitrary defects in the Cud based
on the assumption that the error propagation in the surrounding logic is suffi-
ciently modelled in the fault simulation. To demonstrate this capability in the
experiments, the stuck–at fault model is chosen for generating the set of defect
representatives, and a zero delay model is used for circuit simulation. By this
model selection, POINTER cannot effectively diagnose small delay faults for
instance, because the simulation of their fault effect propagation need to incor-
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porate the timing of the different paths. Diagnosis of such timing related defects
is possible by choosing the appropriate model for fault simulation, but again, the
goal here is to assess the matching capabilities of POINTER under a sufficient
error propagation model. This goal is achieved by choosing the model for defect
representatives and the injected defects accordingly.

The following fault models are used for generating the Cud instances in the
Monte–Carlo experiments. They challenge the matching approach in various
ways.

� Single stuck–at fault

The experiments with this fault model represent all diagnosis cases, in
which a defect representative in fault simulation is able to completely model
the defect in the Cud. This fault model is used to validate that POINTER
diagnosis will always report perfect match candidates in these cases and
to assess the performance of POINTER in the best case.

The faults used for generating the Cud are randomly sampled from the
structurally collapsed set of all stuck–at faults in the circuit.

The identifying defect representative is, of course, the corresponding stuck–
at fault in the fault simulator.

� Single gross delay fault

The experiments with gross delay faults represent the diagnosis cases, in
which the defect in the Cud is partially modeled by a defect representative in
fault simulation. It is reasonable to expect that diagnosis results obtained
here are comparable to diagnoses on Cuds containing defects, which can be
described by the CLF of a defect representative in combination with an
additional activation condition. This includes a large range of defects like
bridges with a single victim signal or crosstalk faults.

The faults used for generating the Cud are randomly sampled from the
structurally collapsed set of all stuck–at faults in the circuit. The stuck–
at faults sampled in this way are used to determine the location and the
polarity of the gross delay faults to be injected.

The identifying defect representative is again the corresponding stuck–at
fault in the fault simulator.
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� Single swap bridge fault

This fault model swaps the drivers of two randomly chosen signal lines
within the circuit. Corresponding to the bridge fault models presented in
section 3.1.2, such a bridge between signal lines v and w can be described
by the following tuple of two CLFs: v⊕ [v⊕w], w⊕ [v⊕w]. If the bridge
is excited (v and w have different values), both line flips are active and
possibly propagate to the outputs. This represents the most challenging
defect type in these experiments, because in most cases, the behavior of
the Cud can not be explained by any single defect representative in fault
simulation.

Four defect representatives identify a swap bridge between v and w: v⊕ [v],
v⊕ [v], w⊕ [w], w⊕ [w]. The identifying defect representative among them
with the best rank determines the diagnosis success as well as the estimated
number of PFA attempts.

A Cud with a swap bridge is generated by the random selection of two
distinct signal lines within the circuit. The calculation of the syndrome
is performed in three steps. First a good simulation is performed, then
the faulty values at the two victim lines are calculated based on the good
circuit state. If there are any faulty values, they are propagated as far as
possible towards the outputs in the last step.

8.2. Quality and Performance Metrics

To measure the quality of a diagnosis result, the best ranked evidence corre-
sponding to the injected defect is determined. Several metrics are used to report
the performance of POINTER.

� Top1 success, top1 hit, first hit success

A diagnosis of a defect is counted as top1 success, if and only if the top–
ranked evidence corresponds to the defect and no non–identifying evidence
has the same confidence. If the resulting candidate ranking is not perfect in
this sense, the diagnosis failed. This rigid definition of diagnostic success
is suitable for benchmarking the algorithm because the resulting figures
form a lower bound to the success rates expected in different applications.
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Depending on the diagnosis environment, additional candidates from top
of the ranking can be considered. This consideration may only improve
the success rates.

� Top10 success, top10 hit

A diagnosis of a defect is a top10 success if an identifying defect repre-
sentative is among the ten best ranked candidates. The number of ten is
somewhat arbitrarily chosen, but is generally believed that no more than
ten failure analysis attempts will be performed on a single chip.

� PFA attempts

The second parameter which is important for any diagnosis approach is
the average number of low level investigations that have to be invoked.
One defect representative corresponds to one PFA attempt. If diagnosis is
successful (top10 success), this number is the rank, otherwise it is 10.

� Suspect count

This is the total number of suspects reported by diagnosis.

All numbers reported are averaged over multiple defect injection experiments
giving the success probability, the average number of PFA attempts and the
average suspect count.

To express the relative runtime performance between different designs and sim-
ulation acceleration approaches, a metric called million evidences per second
(MEPS) is used. This is the number of patterns that can be analyzed in a sec-
ond with one Million evidences considered in the circuit. One MEPS corresponds
therefore to the performance for evaluating 1000 patterns for 1000 evidences in
one second. All MEPS values reported in this thesis were measured on the same
hardware so that they are comparable to each other.

8.3. Benchmark Circuits

To obtain statistically relevant data, diagnosis must be performed on a wide
range of different logic circuits. This work will use the public benchmark cir-
cuits sets ISCAS’89 [BrgleBK1989] and ITC’99 [David1999, CornoRS2000] as
well as industrial designs provided by NXP which are named NXP’08 in here.
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All circuits are synthesized into flat combinational equivalents of full–scan de-
signs containing only the two–input gates AND, NAND, OR, NOR, XOR, XNOR
and the one–input gates NOT and BUF. From the ISCAS’89 and ITC’99 bench-
mark sets only circuits with 10000 logic gates or more are considered. For the
NXP’08 circuits, also the original scan chain configurations are available. Tables
A.1 and A.2 show various statistics on the designs like gate counts, structurally
longest paths, the number of inputs and outputs as well as the original scan chain
configuration where available. Production test sets targeting stuck–at faults in
these benchmarks were generated using a commercial ATPG. The number of test
patterns and the corresponding stuck–at fault coverage are reported in columns
p ′ and fc. ISCAS’89 circuit names start with "s", ITC’99 circuits start with "b"
and NXP’08 circuits start with "p". It can be seen that these three benchmark
sets span the complete range of designs from very small ones up to one Million
gates.

8.4. Pattern Analysis Performance

The runtime performance of POINTER is determined by the efficiency of the
fault simulator used. The operations performed beside simulation like sorting
of the evidence only contribute very little to the overall runtime and are ne-
glected in the following. The fault simulator is based on the parallel–pattern
single–fault propagation (PPSFP) paradigm [WaicuEF*1985, Schul1988]. Mul-
tiple patterns (64 in the implementation used here) are simulated in parallel to
optimally exploit bitwise operations on machine words. Only defect representa-
tives on branch–points need to be simulated explicitly. The remaining evidences
are determined without simulation by considering the activation conditions and
the propagation conditions to the next branch–point.

The first experiment shows the baseline performance of the fault simulator for
all benchmarks and the performance gain obtained by using the ι–dictionary
and structural pruning. For each benchmark circuit, multiple Cud are generated
each containing a randomly selected single stuck–at fault. For each Cud, the
previously generated test pattern set is applied and the responses are analyzed
using the PPSFP fault simulator. The time spend for fault simulation and the
number of Cud analyzed is measured over a time of at least one minute. Then,
the MEPS value is calculated.
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Tables A.3 and A.4 show the performance characteristics. By comparing the
number of evidences and the number of branch–points in the benchmarks, it can
be observed, that only 11.6% of the defect representatives need to be simulated
explicitly. The performance degrades for larger circuits due to multiple factors.
First, very small circuits allow for cache local simulation and lead to very high
performance. The larger a benchmark gets, the more time is spend on simulating
fault propagations and the MEPS value decreases. On average 4.89 MEPS can
be achieved without using a dictionary. The use of a ι–dictionary improves the
average simulation performance by a factor of 28.8X to 140.97 MEPS.

The performance also depends on the general observability of the stuck–at faults
within the circuit. This is the reason, why the use of the ι–dictionary does not
show the same effectiveness on all benchmarks and the variation in the perfor-
mance values are much higher. One extreme case is benchmark p469k, where
almost complete observability for every fault leads to a very low performance
with and without dictionary.

8.5. Adaptive Precision Diagnosis

The adaptive diagnosis was conducted on all benchmark circuits and the three
different defect types. A Cud was obtained by randomly injecting a defect into a
benchmark circuit and performing a production test using a pattern set targeting
stuck–at faults previously generated by a commercial ATPG. If the potential Cud

passes the production test, no diagnosis will be performed on this circuit. If the
potential Cud fails the production test, adaptive diagnosis is performed starting
with the fail data generated by the production test. For each defect type and
each benchmark circuit, 1000 test cases are diagnosed and the average diagnostic
success is reported.

Adaptive Stuck–At Fault Diagnosis

The average diagnostic success for stuck–at faults in all benchmarks is shown in
figure 8.2. The exact numeric results shown in this graph are reported in the
tables A.5 and A.6.
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Figure 8.2.: Diagnostic success for adaptive diagnosis of stuck–at faults.

The fault model used for the defects is the same as the model for the defect
representatives. The adaptive diagnosis approach will therefore always perform
a perfect match refinement in which all the fault candidates f with e(f, T) =

(σ, 0, 0, 0) and a maximum number σ of predictions are distinguished as far as
possible using diagnostic patterns. The diagnosis in this case is complete, i.e.
POINTER provides an optimal resolution given that the diagnostic ATPG is
able to generate all required distinguishing patterns.

The average number of PFA attempts over all circuits is 1.11, the average top10
success probability is 99.9% and the probability for a perfect diagnosis is 85.9%.
The average number PFA attempts is larger than one, because the set of de-
fect representatives is determined using simple structural fault collapsing. Dur-
ing diagnosis, the diagnostic pattern generator has either proven the functional
equivalence for more fault pairs or aborted some distinguishing attempts. The
average number of equivalent stuck–at faults is especially large in the bench-
marks s35932, p77k and p469k and causes a reduction in diagnostic success. In
the case of p77k, the number of equivalent fault candidates at the top of the
ranking even exceeded 20 sometimes, thus leading to a top10 success probability
of less than 100%.

The average number of diagnostic patterns generated in addition to the produc-
tion test set is 0.15. This shows, that the production test set already provides a
reasonable diagnostic resolution for stuck–at faults.

114



8.5. Adaptive Precision Diagnosis

Adaptive Gross Delay Fault Diagnosis

The average diagnostic success for gross delay faults in all benchmarks is shown
in figure 8.3. The exact numeric results shown in this graph are reported in the
tables A.7 and A.8.
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Figure 8.3.: Diagnostic success for adaptive diagnosis of gross delay faults.

Gross delay faults can be regarded as stuck–at faults with an additional ac-
tivation condition. With stuck–at faults as defect representatives, POINTER
will discover either perfect match or perfect tester fail match defect candi-
dates. The implementation used in these experiments generates gross delay
fault tests for perfect tester fail match refinement. The same adaptive diagnosis
approach can also be combined to layout–aware diagnostic pattern generation
[DesinPB2006] in order to provoke the activation of bridge defects and crosstalk
issues in the same way.

The average number of PFA attempts (1.50), the average top10 success proba-
bility (98.1%) and the probability for a perfect diagnosis (80.8%) is still almost
as good as for stuck–at fault diagnosis. It is noticeable, that the results for the
industrial designs of NXP’08 (av. PFA attempts 1.36) are better than the re-
sults for the synthetic benchmark circuits (av. PFA attempts 1.70). The drop
in diagnostic performance for the benchmarks s35932, p77k and p469k is also
observable in this experiment.
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Adaptive Swap Bridge Diagnosis

The average diagnostic success for swap bridge faults in all benchmarks is shown
in figure 8.4. The exact numeric results shown in this graph are reported in the
tables A.9 and A.10.
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Figure 8.4.: Diagnostic success for adaptive diagnosis of swap bridge faults.

Whenever a swap bridge is active, two faulty signal lines are present in the Cud.
For POINTER, which compares the behavior of the Cud with the behavior of
single line faults, this defect type is most challenging. Depending on the ob-
served behavior of the Cud, the algorithm may decide on any of the refinement
types from perfect match refinement to best guess refinement. In most cases,
best guess refinement is used, because the behavior of the Cud can not be ex-
plained by a fault on a single signal line. The resulting average number of suspect
defect representatives is much higher in this case, because every evidence with
σ(f, T) > 0 is included into this list. The average number of additional diag-
nostic test patterns generated is with 3.60 also higher, because more pairs of
defect representatives near the top of the ranking are targeted. Still the num-
ber of additional patterns is very low compared to the number of production
test patterns. This shows, that a diagnostic ATPG can be focused very well
on the suspected circuit parts using the proposed adaptive diagnosis approach.
POINTER provides consistently good results with all benchmarks except of four:
p35k, and the circuits already identified as hard to diagnose (s35932, p77k and
p469k). The average number of PFA attempts (1.47), the average top10 success
probability (97.2%) and the probability for a perfect diagnosis (82.6%) is still
comparable to diagnosis of single line faults.
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8.6. Production Diagnosis

On each Cud, a production test is performed with the stuck–at fault test set
previously generated by a commercial ATPG. The production test is aborted
after observing the nth failing response from the Cud. For each Cud, three tests
are performed with different abort limits: n = 1, 4, and 8. After each produc-
tion test, diagnosis is performed on the fail data. For each benchmark circuit,
defect model and test abort limit, the averages over 1000 diagnosis runs are
reported.

The results of POINTER are compared to the original SLAT algorithm
[BarteHH*2001]. Both algorithms are provided with the same fail data gen-
erated by the production test. The outcome of the SLAT approach is not a
ranked list of suspects but an unordered set of multiplets. Each multiplet is a
minimal set of evidences which can explain all the SLAT patterns. For the SLAT
algorithm, the rank is defined as the expected number of drawings from these
multiplets until the real culprit is found, however the maximum is set to 10 as
for POINTER.

The diagnosis results for single stuck–at faults are shown in tables A.11 and
A.12, for gross delay faults in tables A.13 and A.14, and for swap bridge faults
in tables A.15 and A.16. Since the diagnostic performance of both algorithms is
independent from the size of the used benchmark circuits, unweighted averages
over all benchmarks can be used to compare their results.

The average diagnosis results over all benchmark circuits are shown in figure 8.5.
For stuck–at faults, SLAT is always able to produce a set of multiplets with the
victim line included, but the resulting rank often exceeds the top 10 and leads to
a fail even if the number n of analyzed failing patterns is increased. The average
ranks and success rates of POINTER mark the maximum achievable diagnostic
resolution because all remaining candidates are equivalent under the pattern
set applied. Since a gross delay fault is also a single line fault, similar results
are obtained as in single stuck–at fault diagnosis. Again, POINTER provides
maximum diagnostic resolution and needs a smaller number of failed responses
to be analyzed. For the hard to diagnose swap bridges, the results of both
algorithms are lower than for the previous two defect models. Still, POINTER
provides better results than SLAT and already after the analysis of the 8th fail,
less than two PFA attempts are necessary on average to find the defect.
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Figure 8.5.: Average diagnostic success of SLAT and POINTER after the first,
the 4th and the 8th failing response.

After analysis of at least 8 fails, POINTER provides a near–perfect success rate
in almost every test case. The average ranks show, that only one or two physical
inspections are required in average to find the real defect. This outcome is
highly sufficient for deciding about further adaptive diagnosis in a second step.
One of the mayor factors contributing to the clear advantage of POINTER is,
that POINTER considers passing pattern as well as all failing patterns from
the fail–log. SLAT on the other hand only considers failing patterns with the
SLAT–property. The results of SLAT can be refined towards the performance of
POINTER by performing a passing pattern validation [BhattB2006].

In most cases, the runtimes of both diagnosis approaches are almost the same,
because they are dominated by fault simulation. The SLAT approach needs to
solve a set covering problem in order to generate the diagnosis result. If there are
many patterns with SLAT–property or the failing responses can be explained by
many stuck–at faults, this covering problem might add significantly to the overall
runtime. POINTER on the other hand only uses simple sorting for generating the
diagnosis result, which is less complex than solving a covering problem. Possible
extensions to SLAT like passing pattern validation add even more to the runtime
of SLAT. It can be concluded, that POINTER is able to provide better diagnosis
results is less time compared to SLAT–based diagnosis algorithms.
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8.7. Extreme Space Compaction

This series of experiments analyzes the impact of extreme space compaction on
industrial designs and validates the performance of POINTER in this application.
Only the NXP’08 benchmark set is used here, as realistic scan configurations are
not available for the other benchmarks.

The test time is determined by the number of shifting cycles necessary to apply
the test set. For the original designs, this can be calculated with the data
reported in tables A.1 and A.2. Let p ′ the number of test patterns, l ′ the
longest scan chain, and k ′ the number of scan chains for the original designs.
The number of shifting cycles equals the number of test patterns p ′ multiplied
by the length of the longest scan chain l ′, reported in column p ′l ′ of table A.17.
In each shifting cycle, k ′ response bits are observed at the output of the scan
chains. Therefore, the original number of response bits is p ′l ′k ′ in table A.17.
For example, over 7 Million shift cycles are necessary for p295k, and the amount
of response data rises up to 257Mbit for p951k.

The original scan chains have been split into multiple shorter chains in order to
reach a ratio of approximately k ∼ 5l. This wide scan chain organization with
rather short chains will reduce test time significantly. The next columns of table
A.17 show the number of scan chains k and maximum scan chain length l of the
new configurations. Now, parity trees were attached to the designs and ATPG
was performed on the corresponding combinational representations.

The commercial ATPG was not able to compact the test sets as much as with the
original designs and a higher abort limit had to be used in order to maintain the
original fault coverage. Column ∆fc shows the difference to the stuck–at fault
coverage in the original designs. As expected, the fault masking introduced
by the compactor is negligible. Except in three cases, the fault coverage was
maintained or even improved. The slight reduction in stuck–at fault coverage
for some circuits is mainly attributed to a larger number of faults aborted by
the ATPG. The number of test patterns (column p) is higher in almost every
case. However, as the scan chain lengths are much shorter now, the number
of shifting cycles decreases in almost every case. Figure 8.6 shows the ratio
∆t = p ′l ′

pl
, the exact numbers are given in column ∆t in table A.17. An average

test time improvement of 6.3X is obtained. The test time did not improve
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for p378k, because the original scan chain configuration of this design already
satisfies k ∼ 5l and no splitting was performed.
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Figure 8.6.: Test time reduction achieved by the extreme response compaction
scheme.

In each shifting cycle, only one response bit has to be observed at the output,
hence the number of response bits equals the number of shifting cycles (column
pl in table A.17). The figures in column ∆r show the compaction ratio p ′l ′k ′

pl

and are plotted in figure 8.7. The response data volume is reduced by several
orders of magnitude with an average ratio of 135X.
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Figure 8.7.: Compaction ratio achieved by the extreme response compaction
scheme.

120



8.7. Extreme Space Compaction

8.7.1. Diagnosis on Parity Bits

Each Cud is tested two times to generate two different fail–logs. The first fail–log
contains the uncompacted responses of the test with the original test pattern
set. The second fail–log contains only the parity information for the responses
of the test with the newly generated test pattern set. Each fail–log is analyzed
by POINTER and diagnosis results are compared between the uncompacted
syndromes and the parity data. Again, for each benchmark and each defect
model, the averages over 1000 diagnosis runs are reported.

Figure 8.8 compares the diagnostic success rates on the full uncompacted re-
sponse with the diagnosis on the parity bits. The exact numeric values for each
benchmark circuit are shown in tables A.18, A.19 and A.20 for stuck–at faults,
gross delay faults, and swap bridges respectively. For single line faults, the di-
agnostic success can be maintained even with only 1/100th of the response data
available. This shows, that the analysis of a single parity bit provides the same
diagnostic resolution as 100+ uncompacted response bits. For non–target faults
like gross delay faults, the diagnostic resolution even improves because the larger
test set has higher defect coverage.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

stuck trans bridge 

 1
 2
 3
 4
 5
 6

% top1 full response
% top1 parity

PFA att. full response
PFA att. parity

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

stuck trans bridge 

 1
 2
 3
 4
 5
 6

% top1 full response
% top1 parity

PFA att. full response
PFA att. parity

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

stuck trans bridge 

 1
 2
 3
 4
 5
 6

% top1 full response
% top1 parity

PFA att. full response
PFA att. parity

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

stuck	 delay	 bridge	

 1

 2

 3

 4

 5

 6

Figure 8.8.: Comparison of diagnostic success on full response and parity data.

For multi–line faults like swap bridges, the diagnostic performance drops notice-
ably with the use of extreme compaction. This is to be expected, because the
high fan–in of the compactor increases the probability of the effects of the two
faulty signal lines interacting in the syndrome. Under this difficult condition,
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still the real defect can be found on the top of the ranking in 37.4% is all cases
and in under the top10 in 57.2% of all cases.

If a multi–line defect is encountered during analysis, the reduced confidence in
the diagnosis result is clearly indicated by the reported matching conditions
and the increased number of suspects reported. This data is still very usable for
volume diagnosis. If a more reliable result is needed for PFA guidance, bypassing
and adaptive diagnosis can be used.

8.7.2. Diagnostic Success on Limited Fail Data

This experiment aims to approach the question, whether it is more beneficial
for diagnosis to store just parity bits or more elaborate signatures in a limited
amount of fail memory. If more bits per failing scan slice are stored, more infor-
mation is available for this particular fail, and fewer signatures may be needed to
reach a certain diagnostic success. However, as more elaborate signatures take
also more memory space per fail than simple parity information, less fails can
be stored in the same amount of memory.

For generating the elaborate signatures, the X–Compact [MitraK2004] scheme
is used. The X–Compactor can be parametrized by the number u of tolerated
unknowns in a scan slice. As a parity tree does not tolerate any unknowns, u is
set to 0 for a fair comparison. The resulting compactor guarantees error detec-
tion, if a scan slice contains one, two or any odd number of fails. In addition, if
only one or two failing bits are present, these bits can be located by the signa-
ture. For a number of chains between 257 and 512, the X–Compact signature is
10 bits long.

To compare the fails storage requirements a straight forward encoding is used.
For each fail, a 20–bit scan cycle index and the signature is stored. In the case of
X–Compact, 30 bits are needed to store a fail, and for parity compaction, only
the 20 bits for the scan cycle index are needed.

Each Cud is now tested two times generating two fail–logs of limited size; one
containing only failing scan slice indices and the other one containing indices and
X–Compact signatures. Figure 8.9 show the average top1 success probability for
single–line defects to be expected with a given fails memory size in bits.
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Figure 8.9.: Diagnostic success with limited amount of fail data [HolstW2009].

With limited amount of fails memory, the success rate of extreme response com-
paction is significantly higher than the one obtained by X–Compact. The two
markings in figure 8.9 denote the break–even points where the diagnostic suc-
cess with compaction reaches the diagnostic success on the full, uncompacted
response data of the original designs. For extreme compaction, n = 165 fails are
need to be stored which requires 3300 bits of memory. At these break–even points
the fails memory for parity compaction is still smaller than for X–Compact. If
unlimited on chip resources are available, the diagnostic success rate is higher
with X–Compact as expected. In conclusion, storing just the indices of failing
scan slices in a limited fails memory is more efficient than spending additional
space for X–Compact signatures.

8.8. Summary

A series of experiments were performed on a representative set of benchmark
circuits and industrial designs ranging from 10000 to 1 Million gates in size. The
POINTER algorithm was parameterized with the stuck–at model for generating
the defect representatives and a zero–delay model for circuit simulation. Then,
it was benchmarked by generating Cuds with randomly selected defects and per-
forming logic diagnosis on their responses. The models chosen for the random
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8. Experimental Evaluation

defects represent a large class of spot defects encountered in real chips: the
stuck–at model for defects, that perfectly match a defect representative in fault
simulation; the gross delay fault model for all single–line defects with an unknown
activation condition; and the swap bridge for multi–line defects or multiple in-
teracting defects. For each benchmark, each defect model and each setting, 1000
test cases were diagnosed to obtain well–founded numeric results.

In a lab setting, adaptive diagnosis with POINTER provided very good results
across all defect models and the vast majority of benchmark circuits. For defects
with stuck–at fault behavior, the achieved results mark the best possible ones
because POINTER analysis is complete in this case and diagnostic ATPG was
not able to resolve the remaining equivalences among the suspects.

In production diagnosis, POINTER performs better than the SLAT algorithm
and yields acceptable results with just the first 8 failing responses available. The
clear advantage here, stems from the inherent passing response consideration in
POINTER.

Extreme space compaction provides shorter test times and reduces the response
data volume by several orders of magnitude. The diagnostic success for single–
line defects was maintained or even improved by extreme response compaction.
For multi–line defects, the diagnostic success drops, but an identifying defect
representative was still among the top 10 in the majority of the test cases. Such
weak call–outs are clearly communicated by POINTER by a higher number of
suspects reported.

If only limited on–chip storage is available for diagnostic fail data, it has been
shown, that storing the parity information of a higher number of responses is
more beneficial than storing bigger signatures and a lower number of fails. To
reach the same diagnostic quality as with the complete, uncompacted responses,
a fail memory of only 3300 bits is needed in average.
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9. Conclusions

Every semiconductor company competing in the field of leading edge technologies
has to face the challenge of building more powerful and more complex silicon
chips in large quantities and high quality in a very short time. In order to
improve production efficiency and margins, one has to learn from the flawed
chips directly through failure analysis, and essential tools for failure analysis
are logic diagnosis algorithms.

The two principle challenges for logic diagnosis algorithms are the reduction of
a–priori fault assumptions and test data economy. Constraints on response data
storage and test time force diagnosis algorithms to use the available data from
production test, lab test, or in–field self–test most effectively. The effective use
of all these sources calls for a versatile diagnosis algorithm, which is able to use
and combine fail data of various sources and properties to compute the best
possible diagnosis result despite the lack of specific fault models.

The challenge of reducing fault assumptions was addressed in this work by in-
troducing a new notation for generalized fault modeling, the Conditional Line
Flip (CLF) calculus. The CLF calculus is able to describe arbitrarily complex
defective behavior and provides a clear distinction between a defect site and
a fault–free circuit surrounding this area. The generality of the CLF calculus
allows it to encompass all previous notations and basing a diagnosis algorithm
directly on this calculus was the way taken in this work to develop a location–
based diagnosis method with as few assumptions on defects as possible.

The proposed diagnosis algorithm POINTER is based on this calculus and the
inject–and–validate paradigm as the natural choice for an efficient algorithm
with predictable runtimes, reduced fault assumptions and the ability to work
with highly compacted response data. POINTER draws from the concepts of
SLAT–based diagnosis and provides at the same time several key advantages over
previously proposed algorithms and extensions. The core algorithm is based on
fault simulation, summing up of integer numbers and sorting. This provides
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9. Conclusions

stable and predictable runtime performance important for efficient deployments
in high volume diagnosis environments. Maximum diagnostic information is
extracted from every available response—failing and passing ones—with a run-
time linear in the number of failing responses. POINTER can be parameterized
with various models for defect representatives and circuit simulation. Advanced
matching conditions describe the relation between the defect under investiga-
tion and their representatives in fault simulation and provides information on
the quality of the diagnosis result.

POINTER has been extended to an adaptive diagnosis method, that is able to
provide the best possible diagnosis result in many cases. Only a few diagnostic
test patterns are needed in most cases to reach this result. The fixed test set in
production test allows the use of an ι–dictionary to enable structural pruning and
highly efficient passing pattern consideration without compromising the quality
of the diagnosis results. The achieved speedup of almost 30 is especially useful for
deployments in high volume production lines. Moreover, due to efficient passing
pattern consideration, 8 failing patterns recorded per case is already enough for
highly accurate diagnosis results.

To enable diagnosis for built–in self–test in the field and for multi–site test,
extreme space compaction was proposed. Given a small fail memory of fixed
size, storing just the parity of failing scan slices was shown to be more beneficial
for diagnosis than storing more complex signatures. The diagnostic success after
analyzing just the parity bits degrades slightly for multi–line defects, but is
maintained or even improved for single–line defects. Again, POINTER clearly
points out, which of these two cases are present in a chip. The results are highly
sufficient to decide on further investigations. All applications use the same base
algorithm and results gained from production diagnosis and in–field diagnosis
can be re–used in a thorough lab analysis using adaptive diagnosis.

9.1. Further Research Directions

The results of this work may provide the foundation for a couple of further
research directions.

The CLF calculus can be applied to other fields of testing like the investigation of
its relation to higher–level fault models or the analysis of fault model independent

126



9.1. Further Research Directions

test generation approaches in the same way it was done with partial pseudo–
exhaustive testing [MumtaIH*2011, MumtaIH*2011a].

The findings on the relation between extreme space compaction and diagnosis
results have stimulated research towards even higher compaction ratios and to
further improve diagnostic information per bit of response data [KochtHE*2009,
Elm2011, CookEWA2011].

The available matching criterions are already sufficient for applications of
POINTER to graceful degradation [DalirHE*2011, DalirHE*2012], where not
a fault candidate, but the fault–free circuit parts have to be identified. Other
groups have based their candidate matching and ranking methods on some key
aspects of POINTER to further optimize the results on multiple interacting
faults [YeHL2011, TangCGR2010].

Other research directions may include extracting CLF conditions by correlating
their activation frequency with the activities of neighboring signal lines, or the
parameterization of POINTER with timing–aware CLFs and circuit models. A
timing–aware POINTER approach could diagnose small–delay faults or other
timing–related issues more precisely and even on compacted signatures. How-
ever, timing simulation is much more compute–intensive and new ways have to
be found to reduce simulation effort as much as possible. Promising approaches
could include focusing the fault simulation more precisely on the suspicious re-
gion by using the evidence collected so far, or the use of data–parallel architec-
tures for accelerating the core tasks.
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A. Additional Result Tables

circuit g t i o s k ′ l ′ p ′ fc

s15850 10211 87 611 684 597 176 96.80
b14 10735 66 277 299 245 830 99.34
b15_1 14122 55 485 519 449 1186 99.42
b20_1 15354 74 522 512 490 651 99.50
b21_1 15460 70 522 512 490 683 99.51
s35932 16353 29 1763 2048 1728 48 89.81
s38584 21462 59 1464 1730 1452 208 95.03
b20 21599 73 522 512 490 1037 99.32
b21 22055 74 522 512 490 1060 99.21
b22_1 23210 72 767 757 735 682 99.50
s38417 23537 48 1664 1742 1636 190 99.48
b22 32090 74 767 757 735 964 99.50
b17 35549 103 1452 1512 1415 1281 97.52
b17_1 42879 55 1452 1512 1415 1529 99.43
p45k 43190 60 3739 2550 2331 97 333 2133 99.69
p35k 46435 71 2912 2229 2173 23 130 4036 98.39
p77k 72370 569 3487 3400 3386 13 304 588 92.43
p78k 74243 46 3148 3484 2977 65 64 81 100.00
p469k 75572 174 635 403 332 1 706 314 98.80
p89k 88726 110 4632 4557 4301 18 963 1083 98.74
p100k 96685 105 5902 5829 5735 18 792 2054 99.50

Table A.1.: Small benchmark circuit characteristics. g: number of gates, t:
length of structurally longest combinational path, i: number of in-
puts (primary + pseudo primary), o: number of outputs (primary
+ pseudo primary), s: number of scan elements, k ′: number of scan
chains, l ′: length of the longest scan chain, p ′: stuck–at test set size,
fc: stuck–at fault coverage.
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circuit g t i o s k ′ l ′ p ′ fc

p81k 108991 55 4029 3952 3877 8 513 1336 99.47
b18_1 118263 174 3357 3342 3320 1455 99.45
b18 124886 174 3357 3342 3320 1469 99.42
p141k 172686 79 11290 10502 10501 24 486 1609 98.87
b19_1 238810 179 6666 6669 6642 1703 99.13
b19 251560 179 6666 6669 6642 1680 99.13
p239k 259241 184 18692 18495 18382 40 541 1081 98.79
p267k 271538 74 17332 16621 16528 45 494 1135 99.60
p269k 272630 74 17333 16621 16528 45 494 1152 99.60
p279k 287935 150 18074 17831 17524 55 409 1288 97.90
p295k 291022 114 18508 18521 18465 11 1852 3877 99.16
p259k 334524 187 18713 18495 18398 40 541 1248 99.08
p330k 355642 71 18010 17468 16775 64 317 5306 98.95
p286k 364343 154 18347 17831 17713 55 416 2156 98.41
p378k 371215 46 15732 17420 14885 325 64 84 100.00
p418k 439198 206 30430 29809 28616 64 830 2335 98.36
p388k 489271 225 25005 24065 23789 50 525 991 99.47
p500k 495544 170 30768 30840 29312 76 446 2352 98.45
p483k 515717 109 33264 32610 32307 71 900 481 98.84
p533k 662730 113 33373 32610 32409 71 900 737 99.15
p874k 717268 239 42899 42243 41803 59 780 1833 92.43
p951k 1002883 140 91994 104747 91410 82 1381 2270 99.03

Table A.2.: Large benchmark circuit characteristics. See table A.1 for column
definitions.
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A. Additional Result Tables

circuit e fo base MEPS pruning MEPS

s15850 12150 1518 13.76 83.44
b14 23716 2409 13.37 41.21
b15_1 30508 2910 18.91 93.22
b20_1 34710 3668 10.18 45.21
b21_1 34510 3477 9.42 39.01
s35932 39094 5295 7.58 119.47
s38584 38358 3946 9.45 299.24
b20 47376 4645 8.62 43.66
b21 48182 4613 9.62 42.13
b22_1 52172 5430 9.08 52.34
s38417 32320 4569 8.52 172.40
b22 70464 6876 7.76 58.33
b17 81330 8145 8.32 90.47
b17_1 92794 8767 10.49 139.96
p45k 72164 7625 6.48 258.55
p35k 70382 8020 5.64 46.43
p77k 124572 14033 2.34 19.61
p78k 163310 18462 3.64 173.21
p469k 169590 14399 0.26 0.37
p89k 155900 14560 5.00 215.95
p100k 168102 19057 3.54 265.18

Table A.3.: Pattern analysis performance for small benchmarks. e: number of
evidences (=number of structurally collapsed stuck–at faults), fo:
number of fanout stems explicitly simulated, base MEPS: baseline
analysis performance, pruning MEPS: analysis performance with
pruning and ι–dictionary.
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circuit e fo base MEPS pruning MEPS

p81k 224424 29440 4.13 152.90
b18_1 264022 29934 4.42 161.49
b18 277756 31022 5.10 161.23
p141k 291546 33080 1.65 38.81
b19_1 533736 60815 2.62 171.34
b19 560256 63006 2.92 200.51
p239k 456982 46960 1.43 275.02
p267k 375958 40614 1.29 171.90
p269k 378142 40629 1.29 170.17
p279k 499146 55090 1.26 149.85
p295k 488172 46293 1.52 51.80
p259k 643436 83400 1.05 218.39
p330k 566386 65730 1.52 198.44
p286k 677868 86365 1.35 139.10
p378k 816534 92302 1.68 184.39
p418k 694172 75163 1.14 249.48
p388k 913724 122962 1.20 146.40
p500k 852646 96983 0.85 345.14
p483k 943864 117055 0.80 216.23
p533k 1299188 180328 0.53 209.39
p874k 1022380 108020 0.38 92.06
p951k 1610146 178289 0.09 58.25

Table A.4.: Pattern analysis performance for large benchmarks. See table A.3
for column definitions.
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A. Additional Result Tables

circuit dp s %t10 %t1 #a

s15850 0.0 1.6 100 68 1.26
b14 0.1 1.2 100 86 1.08
b15_1 0.1 1.3 100 82 1.15
b20_1 0.1 1.2 100 84 1.08
b21_1 0.0 1.2 100 86 1.08
s35932 0.0 1.7 100 52 1.36
s38584 0.0 1.2 100 88 1.08
b20 0.2 1.2 100 85 1.09
b21 0.2 1.2 100 84 1.10
b22_1 0.1 1.2 100 85 1.09
s38417 0.1 1.2 100 84 1.12
b22 0.1 1.2 100 86 1.09
b17 0.0 1.2 100 87 1.11
b17_1 0.2 1.2 100 84 1.11
p45k 0.0 1.1 100 88 1.06
p35k 0.2 1.1 100 90 1.06
p77k 4.3 4.0 95 87 1.53
p78k 0.0 1.2 100 81 1.10
p469k 0.0 2.2 100 53 1.61
p89k 0.1 1.1 100 93 1.04
p100k 0.0 1.1 100 92 1.04

Table A.5.: Adaptive diagnosis of single stuck–at faults in small benchmarks. dp:
average number of additional diagnostic patterns generated, s: num-
ber of suspects reported, %t10: probability of top10 hit, %t1: prob-
ability of perfect diagnosis, #a: average number of PFA attempts.
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circuit dp s %t10 %t1 #a

p81k 0.0 1.0 100 99 1.01
b18_1 0.0 1.3 100 81 1.15
b18 0.0 1.3 100 81 1.14
p141k 0.0 1.1 100 93 1.04
b19_1 0.1 1.3 100 83 1.13
b19 0.0 1.2 100 82 1.12
p239k 0.0 1.1 100 90 1.05
p267k 0.1 1.1 100 94 1.05
p269k 0.1 1.1 100 92 1.04
p279k 0.0 1.1 100 93 1.04
p295k 0.0 1.1 100 94 1.05
p259k 0.0 1.1 100 88 1.07
p330k 0.0 1.1 100 88 1.07
p286k 0.0 1.1 100 91 1.05
p378k 0.0 1.2 100 80 1.10
p418k 0.1 1.1 100 92 1.05
p388k 0.0 1.1 100 91 1.05
p500k 0.1 1.2 100 92 1.08
p483k 0.0 1.1 100 88 1.07
p533k 0.0 1.1 100 91 1.06
p874k 0.0 1.1 100 93 1.04
p951k 0.0 1.1 100 94 1.04

Table A.6.: Adaptive diagnosis of single stuck–at faults in large benchmarks. See
table A.5 for column definitions.
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A. Additional Result Tables

circuit dp s %t10 %t1 #a

s15850 0.1 4.4 99 64 1.60
b14 0.1 6.8 97 70 1.92
b15_1 0.1 4.7 98 71 1.80
b20_1 0.1 7.2 98 75 1.66
b21_1 0.2 8.3 98 77 1.67
s35932 1.2 5.8 95 45 2.33
s38584 0.0 3.1 100 84 1.28
b20 0.1 6.7 97 76 1.73
b21 0.2 10.0 97 70 1.91
b22_1 0.2 6.6 98 77 1.59
s38417 0.3 3.5 98 82 1.45
b22 0.1 7.0 98 76 1.75
b17 0.0 4.9 98 77 1.63
b17_1 0.1 3.9 99 78 1.52
p45k 0.0 3.6 99 86 1.29
p35k 0.1 11.9 96 78 1.81
p77k 2.5 218.5 89 70 2.40
p78k 0.1 3.2 100 85 1.22
p469k 0.0 7.8 93 78 1.92
p89k 0.3 8.1 97 80 1.59
p100k 0.1 4.7 99 87 1.30

Table A.7.: Adaptive diagnosis of single gross delay faults in small benchmarks.
See table A.5 for column definitions.
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circuit dp s %t10 %t1 #a

p81k 0.0 3.4 100 92 1.16
b18_1 0.1 8.1 96 75 1.77
b18 0.1 8.0 96 73 1.83
p141k 0.0 3.0 100 92 1.14
b19_1 0.2 5.4 99 76 1.56
b19 0.1 5.6 98 76 1.62
p239k 0.0 3.0 100 90 1.14
p267k 0.1 3.3 100 89 1.22
p269k 0.1 3.5 99 87 1.28
p279k 0.1 4.2 99 86 1.31
p295k 0.1 7.0 98 86 1.40
p259k 0.0 3.1 100 90 1.15
p330k 0.0 3.5 100 94 1.12
p286k 0.1 5.9 98 85 1.41
p378k 0.0 3.2 100 83 1.24
p418k 0.1 3.0 99 90 1.22
p388k 0.0 3.7 100 90 1.15
p500k 0.1 4.1 99 90 1.27
p483k 0.1 4.7 99 84 1.33
p533k 0.1 5.7 99 87 1.34
p874k 0.1 4.1 98 85 1.38
p951k 0.1 3.3 99 90 1.17

Table A.8.: Adaptive diagnosis of single gross delay faults in large benchmarks.
See table A.5 for column definitions.
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circuit dp s %t10 %t1 #a

s15850 20.4 195.4 98 74 1.59
b14 2.8 998.2 97 77 1.59
b15_1 2.1 614.8 98 83 1.41
b20_1 0.7 1204.4 98 81 1.39
b21_1 1.2 1250.6 99 82 1.32
s35932 33.7 83.4 98 54 2.20
s38584 10.9 85.6 100 84 1.18
b20 0.6 1363.1 98 81 1.40
b21 0.7 1537.5 99 83 1.33
b22_1 0.5 1287.9 98 83 1.35
s38417 4.1 210.7 99 83 1.29
b22 0.4 1565.2 99 83 1.32
b17 0.5 793.2 99 84 1.35
b17_1 2.5 704.8 99 84 1.30
p45k 2.5 429.9 99 87 1.27
p35k 0.7 6097.8 92 72 2.26
p77k 32.0 7933.1 73 64 3.59
p78k 2.1 296.3 100 86 1.19
p469k 0.4 7252.5 54 28 5.77
p89k 3.6 465.9 96 86 1.47
p100k 4.4 597.1 99 88 1.23

Table A.9.: Adaptive diagnosis of single swap bridge faults in small benchmarks.
See table A.5 for column definitions.
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circuit dp s %t10 %t1 #a

p81k 0.0 833.9 99 92 1.21
b18_1 0.9 1241.2 98 82 1.36
b18 0.9 1270.3 99 82 1.34
p141k 0.4 841.1 100 90 1.16
b19_1 1.1 1809.7 99 82 1.30
b19 2.4 1852.4 99 82 1.31
p239k 1.2 399.6 100 90 1.12
p267k 4.2 347.5 100 93 1.11
p269k 3.4 372.6 100 94 1.12
p279k 1.0 473.7 99 94 1.12
p295k 1.4 658.9 99 94 1.15
p259k 0.2 419.6 100 79 1.25
p330k 0.3 651.5 99 85 1.28
p286k 0.3 608.7 100 79 1.25
p378k 1.7 307.5 100 86 1.15
p418k 0.7 321.5 100 94 1.08
p388k 0.1 632.6 100 84 1.21
p500k 5.6 432.2 100 91 1.19
p483k 0.5 652.0 99 85 1.33
p533k 0.2 638.3 99 80 1.33
p874k 0.4 438.2 100 92 1.12
p951k 1.0 304.2 100 93 1.10

Table A.10.: Adaptive diagnosis of single swap bridge faults in large benchmarks.
See table A.5 for column definitions.
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A. Additional Result Tables

1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

circuit %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a

s15850 88 4.4 96 2.8 98 3.0 100 1.5 98 2.8 100 1.3
b14 71 6.9 94 3.4 90 3.8 100 1.3 91 3.4 100 1.2
b15_1 92 4.7 98 2.5 98 3.1 100 1.4 98 3.0 100 1.3
b20_1 70 6.7 92 3.6 91 3.4 100 1.4 93 3.0 100 1.2
b21_1 72 6.6 90 3.5 93 3.2 100 1.3 94 3.0 100 1.2
s35932 60 6.2 86 4.4 100 2.6 100 1.5 100 2.4 100 1.4
s38584 97 3.6 99 2.4 100 2.4 100 1.4 100 2.3 100 1.3
b20 66 7.1 92 3.5 90 3.6 100 1.4 92 3.3 100 1.2
b21 66 7.1 93 3.3 90 3.7 100 1.3 91 3.5 100 1.2
b22_1 74 6.6 92 3.6 93 3.2 100 1.3 94 3.0 100 1.2
s38417 86 4.3 95 2.8 98 2.5 100 1.3 98 2.3 100 1.2
b22 66 7.1 92 3.5 94 3.3 100 1.3 95 3.0 100 1.2
b17 86 5.0 97 2.7 97 3.0 100 1.4 98 2.8 100 1.2
b17_1 92 4.5 97 2.6 98 3.0 100 1.4 99 2.7 100 1.3
p45k 68 5.8 87 3.6 95 3.2 100 1.4 96 2.7 100 1.3
p35k 39 7.0 69 4.9 71 5.1 100 1.5 84 4.1 100 1.3
p77k 63 5.9 74 4.4 76 4.5 89 2.5 77 4.3 93 2.1
p78k 86 5.6 95 3.7 100 2.1 100 1.2 100 1.9 100 1.1
p469k 41 8.1 83 4.9 84 5.2 100 1.7 86 4.9 100 1.6
p89k 72 5.6 92 3.1 91 3.7 100 1.3 94 3.3 100 1.1
p100k 67 5.5 85 3.7 96 3.0 100 1.3 98 2.4 100 1.2

Table A.11.: Stuck–at fault diagnosis with limited failure information in small
benchmarks. %t10: probability of top10 hit, #a: average number
of PFA attempts.
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1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

circuit %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a

p81k 58 7.2 89 3.7 97 3.0 100 1.3 97 2.6 100 1.2
b18_1 76 5.5 86 3.6 94 3.5 99 1.5 98 2.9 100 1.3
b18 77 5.7 88 3.5 93 3.6 100 1.5 98 3.0 100 1.3
p141k 84 4.8 95 2.9 99 2.6 100 1.3 99 2.3 100 1.2
b19_1 74 5.8 86 3.6 90 3.8 99 1.5 95 3.2 100 1.3
b19 75 5.7 87 3.6 90 3.7 99 1.6 94 3.2 100 1.3
p239k 72 5.1 87 3.5 99 2.5 100 1.2 99 2.2 100 1.1
p267k 92 4.2 98 2.5 98 2.5 100 1.3 98 2.3 100 1.2
p269k 90 4.1 97 2.6 99 2.4 100 1.3 99 2.3 100 1.2
p279k 92 4.1 97 2.4 98 2.6 100 1.3 98 2.5 100 1.2
p295k 86 4.5 95 2.5 93 3.4 100 1.4 94 3.2 100 1.3
p259k 76 5.4 88 3.6 98 2.8 100 1.3 99 2.4 100 1.1
p330k 76 5.5 90 3.4 97 2.9 100 1.4 98 2.5 100 1.2
p286k 83 5.4 95 3.1 98 3.0 100 1.3 98 2.7 100 1.2
p378k 81 5.9 92 3.9 100 2.1 100 1.2 100 1.9 100 1.1
p418k 92 4.0 98 2.5 99 2.4 100 1.3 99 2.3 100 1.2
p388k 77 5.7 89 3.5 99 2.6 100 1.3 99 2.3 100 1.1
p500k 79 5.0 91 3.2 94 3.0 100 1.3 96 2.7 100 1.2
p483k 61 6.2 81 4.2 95 2.9 100 1.3 97 2.5 100 1.1
p533k 66 6.1 84 4.0 96 3.0 100 1.3 98 2.5 100 1.2
p874k 83 4.4 93 2.8 96 2.9 100 1.3 97 2.5 100 1.2
p951k 84 4.3 94 2.8 98 2.7 100 1.3 98 2.4 100 1.2

Table A.12.: Stuck–at fault diagnosis with limited failure information in large
benchmarks. %t10: probability of top10 hit, #a: average number
of PFA attempts.
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1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

circuit %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a

s15850 90 3.9 96 2.8 96 2.8 99 1.7 96 2.7 99 1.6
b14 75 6.6 86 4.4 89 3.9 97 2.0 89 3.7 98 1.9
b15_1 92 4.3 92 3.4 97 3.1 98 2.0 97 3.0 98 1.9
b20_1 74 6.4 85 4.3 90 3.6 98 1.9 90 3.4 98 1.8
b21_1 77 6.1 85 4.3 92 3.4 98 1.9 92 3.3 98 1.8
s35932 61 6.1 78 4.9 88 3.6 94 2.5 89 3.5 94 2.4
s38584 98 3.2 99 2.4 100 2.3 100 1.5 100 2.3 100 1.4
b20 72 6.7 86 4.4 90 3.8 97 1.9 90 3.7 97 1.8
b21 67 6.9 84 4.4 86 4.0 96 2.1 86 3.9 97 2.0
b22_1 77 6.2 86 4.4 93 3.3 98 1.8 93 3.2 98 1.7
s38417 89 4.0 93 3.0 95 2.5 98 1.6 95 2.4 98 1.5
b22 69 6.8 84 4.5 90 3.7 98 1.9 90 3.6 98 1.8
b17 89 4.6 91 3.5 96 3.1 98 1.9 96 3.0 98 1.7
b17_1 94 4.1 93 3.1 98 2.8 99 1.8 98 2.6 99 1.6
p45k 70 5.4 84 3.9 95 3.0 99 1.7 96 2.6 99 1.5
p35k 43 6.7 57 5.7 73 5.0 92 2.7 84 3.9 96 2.0
p77k 66 5.7 71 4.7 74 4.6 82 3.2 75 4.4 87 2.7
p78k 85 5.6 92 4.2 99 2.2 100 1.4 99 2.1 100 1.2
p469k 62 7.1 76 4.5 89 4.2 93 2.0 89 4.1 93 1.9
p89k 79 5.1 88 3.3 88 3.8 97 1.8 89 3.6 97 1.7
p100k 69 5.3 82 4.0 94 2.9 98 1.6 95 2.5 99 1.4

Table A.13.: Gross delay fault diagnosis with limited failure information in small
benchmarks. %t10: probability of top10 hit, #a: average number
of PFA attempts.
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1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

circuit %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a

p81k 56 7.1 82 4.6 97 2.7 100 1.4 97 2.3 100 1.3
b18_1 78 5.3 81 4.2 91 3.5 95 2.2 93 3.1 96 1.9
b18 78 5.3 82 4.1 91 3.4 96 2.0 92 3.2 96 1.9
p141k 87 4.4 94 3.1 98 2.4 100 1.4 98 2.2 100 1.3
b19_1 75 5.4 79 4.3 90 3.6 96 2.1 95 3.1 98 1.8
b19 76 5.5 80 4.2 90 3.7 95 2.3 94 3.2 98 1.8
p239k 71 5.1 84 3.8 98 2.5 100 1.4 98 2.1 100 1.2
p267k 91 4.0 94 2.8 97 2.4 100 1.5 98 2.3 100 1.3
p269k 92 4.0 95 2.9 98 2.5 99 1.5 98 2.3 99 1.4
p279k 91 4.0 94 2.9 97 2.6 99 1.5 98 2.4 99 1.4
p295k 88 4.0 94 2.7 93 3.2 97 1.8 94 3.0 98 1.6
p259k 74 5.3 83 4.0 98 2.5 100 1.4 98 2.2 100 1.3
p330k 79 5.2 90 3.5 97 2.6 100 1.4 98 2.3 100 1.3
p286k 81 5.2 89 3.6 95 3.1 98 1.7 95 2.9 98 1.6
p378k 85 5.6 90 4.0 99 2.2 100 1.4 99 2.1 100 1.3
p418k 92 3.8 96 2.7 98 2.4 99 1.5 98 2.2 99 1.3
p388k 77 5.5 85 3.9 98 2.6 99 1.4 98 2.3 100 1.2
p500k 81 4.7 90 3.3 95 2.8 98 1.6 96 2.5 99 1.4
p483k 61 6.1 78 4.4 94 2.9 99 1.6 94 2.6 99 1.4
p533k 69 5.8 81 4.3 94 2.9 98 1.6 94 2.5 99 1.4
p874k 84 4.2 90 3.1 95 2.8 98 1.7 96 2.6 98 1.5
p951k 87 4.1 92 3.0 98 2.5 99 1.4 98 2.2 99 1.3

Table A.14.: Gross delay fault diagnosis with limited failure information in large
benchmarks. %t10: probability of top10 hit, #a: average number
of PFA attempts.
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A. Additional Result Tables

1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

circuit %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a

s15850 69 5.2 92 3.4 87 3.3 96 2.2 91 2.8 97 2.0
b14 72 6.4 84 4.7 88 4.1 96 2.3 92 3.4 96 1.9
b15_1 89 4.4 96 3.3 98 2.8 98 2.0 98 2.5 97 1.8
b20_1 73 6.1 86 4.6 90 3.8 97 2.3 96 3.0 99 1.7
b21_1 73 6.0 85 4.5 93 3.7 97 2.2 96 2.8 99 1.6
s35932 38 7.5 66 5.7 75 4.6 93 3.0 86 3.7 96 2.4
s38584 72 5.2 98 3.3 88 3.3 99 2.0 92 2.8 100 1.6
b20 73 6.2 89 4.3 90 4.0 96 2.4 94 3.3 98 1.8
b21 74 6.1 87 4.4 90 3.9 97 2.2 95 3.0 99 1.7
b22_1 75 6.0 86 4.5 94 3.6 97 2.2 96 2.9 99 1.7
s38417 65 5.5 91 3.6 88 3.3 97 2.2 94 2.5 98 1.8
b22 69 6.6 83 4.8 91 3.9 98 2.2 95 3.1 99 1.6
b17 81 4.9 93 3.7 95 3.1 98 2.0 97 2.6 98 1.7
b17_1 85 4.7 93 3.5 97 2.8 98 2.0 98 2.4 99 1.7
p45k 65 5.5 82 4.3 87 3.6 96 2.5 92 3.0 98 2.0
p35k 54 5.8 64 5.1 70 4.6 82 3.5 81 3.9 87 2.9
p77k 61 5.7 71 4.9 78 4.4 69 4.5 83 3.8 69 4.3
p78k 47 7.5 83 5.6 81 4.7 98 2.2 91 3.2 100 1.4
p469k 42 7.8 52 6.8 84 4.9 78 4.4 96 3.6 75 4.2
p89k 70 5.3 86 3.9 92 3.4 96 2.2 96 2.9 96 1.8
p100k 63 5.6 79 4.5 89 3.5 94 2.6 94 2.8 97 1.9

Table A.15.: Swap bridge fault diagnosis with limited failure information in small
benchmarks. %t10: probability of top10 hit, #a: average number
of PFA attempts.
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1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

circuit %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a %t10 #a

p81k 51 7.2 73 5.5 88 4.0 98 2.3 95 2.9 100 1.7
b18_1 76 5.4 83 4.4 90 3.6 94 2.5 96 2.9 96 2.0
b18 71 5.8 79 4.7 89 3.8 93 2.7 96 3.0 96 2.0
p141k 77 4.9 94 3.5 93 2.9 98 2.0 97 2.3 99 1.6
b19_1 64 6.1 73 5.1 87 3.8 89 2.9 94 3.1 95 2.2
b19 69 5.8 78 4.6 86 3.9 92 2.7 93 3.2 96 2.0
p239k 54 6.2 75 4.8 85 3.8 94 2.5 93 2.8 98 1.7
p267k 75 4.7 94 3.3 93 2.8 98 2.0 94 2.4 99 1.6
p269k 74 4.9 93 3.4 93 2.8 98 2.0 96 2.3 99 1.6
p279k 72 5.1 92 3.4 92 2.8 99 1.8 95 2.3 99 1.4
p295k 75 4.7 89 3.4 91 3.3 94 2.4 94 2.7 99 1.7
p259k 63 5.8 78 4.8 86 3.8 95 2.5 92 3.0 99 1.8
p330k 66 5.7 82 4.3 89 3.5 96 2.5 93 2.9 98 2.0
p286k 70 5.6 87 4.2 90 3.5 98 2.1 95 2.8 99 1.6
p378k 52 6.9 76 5.5 83 4.4 99 2.3 93 2.9 100 1.5
p418k 72 5.0 94 3.5 91 3.0 98 2.0 95 2.4 99 1.5
p388k 67 5.9 81 4.7 89 3.6 96 2.3 94 2.9 98 1.7
p500k 71 5.3 88 4.0 91 3.3 96 2.3 95 2.7 99 1.7
p483k 51 6.5 71 5.2 81 4.1 90 3.1 92 3.0 96 2.1
p533k 69 5.4 80 4.5 87 3.8 95 2.5 93 3.0 99 1.8
p874k 69 5.2 88 3.6 90 3.2 98 2.1 94 2.6 99 1.7
p951k 62 5.7 88 3.9 86 3.5 97 2.1 90 2.9 99 1.6

Table A.16.: Swap bridge fault diagnosis with limited failure information in large
benchmarks. %t10: probability of top10 hit, #a: average number
of PFA attempts.
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A. Additional Result Tables

circuit p ′l ′ p ′l ′k ′ k l p pl ∆t ∆r ∆fc

p45k 710289 68898033 485 67 2323 155641 4.6X 443X -0.01
p35k 524680 12067640 138 22 4027 88594 5.9X 136X 0.00
p77k 178752 2323776 143 28 2023 56644 3.2X 41X -0.28
p78k 5184 336960 195 22 114 2508 2.1X 134X 0.00
p469k 221684 221684 60 12 304 3648 60.8X 61X 0.22
p89k 1042929 18772722 306 57 3391 193287 5.4X 97X 0.00
p100k 1626768 29281824 270 53 2393 126829 12.8X 231X -0.02
p81k 685368 5482944 144 29 1857 53853 12.7X 102X 0.00
p141k 781974 18767376 264 45 2723 122535 6.4X 153X 0.00
p239k 584821 23392840 360 61 3628 221308 2.6X 106X 0.00
p267k 560690 25231050 360 62 4819 298778 1.9X 84X 0.03
p269k 569088 25608960 360 62 4822 298964 1.9X 86X 0.03
p279k 526792 28973560 385 59 5367 316653 1.7X 91X 0.04
p295k 7180204 78982244 330 62 8247 511314 14.0X 154X 0.00
p259k 675168 27006720 360 61 4147 252967 2.7X 107X 0.00
p330k 1682002 107648128 320 64 8700 556800 3.0X 193X 0.07
p286k 896896 49329280 385 60 6560 393600 2.3X 125X 0.00
p378k 5376 1747200 325 65 181 11765 0.5X 149X 0.00
p418k 1938050 124035200 576 93 7384 686712 2.8X 181X 0.00
p388k 520275 26013750 400 66 3653 241098 2.2X 108X 0.02
p500k 1048992 79723392 456 75 9597 719775 1.5X 111X 0.08
p483k 432900 30735900 568 113 3806 430078 1.0X 71X 0.23
p533k 663300 47094300 568 113 6126 692238 1.0X 68X 0.04
p874k 1429740 84354660 531 87 10756 935772 1.5X 90X 0.05
p951k 3134870 257059340 820 139 7500 1042500 3.0X 247X 0.02

Table A.17.: Reduction of test time and response data volume with extreme com-
paction. p ′l ′: original number of scan cycles, p ′l ′k ′: original re-
sponse data in bits, k: new scan chain count, l: new maximum scan
chain length, p: new stuck–at test set size, pl: new number of scan
cycles (=response data in bits), ∆t, ∆r, ∆fc: change in test time,
response data volume and fault coverage.
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full response parity data

circuit s %t10 %t1 #a s %t10 %t1 #a

p45k 1.1 100 88 1.06 1.1 100 88 1.06
p35k 1.2 100 86 1.10 1.2 100 86 1.09
p77k 10.4 94 79 1.70 10.3 94 79 1.73
p78k 1.2 100 81 1.09 1.2 100 80 1.10
p469k 2.2 100 53 1.60 2.2 100 53 1.61
p89k 1.2 100 87 1.08 1.2 100 88 1.08
p100k 1.1 100 90 1.05 1.1 100 91 1.05
p81k 1.0 100 98 1.02 1.0 100 98 1.02
p141k 1.1 100 92 1.04 1.1 100 93 1.04
p239k 1.1 100 91 1.05 1.1 100 90 1.05
p267k 1.1 100 93 1.05 1.1 100 94 1.04
p269k 1.1 100 92 1.05 1.1 100 92 1.04
p279k 1.1 100 92 1.05 1.1 100 92 1.07
p295k 1.1 100 94 1.05 1.1 100 92 1.06
p259k 1.1 100 87 1.07 1.1 100 89 1.06
p330k 1.1 100 88 1.07 1.2 100 87 1.09
p286k 1.1 100 92 1.05 1.1 100 91 1.05
p378k 1.2 100 80 1.10 1.2 100 80 1.10
p418k 1.1 100 91 1.05 1.1 100 90 1.05
p388k 1.1 100 90 1.05 1.1 100 91 1.05
p500k 1.2 100 91 1.09 1.2 100 91 1.09
p483k 1.1 100 89 1.07 1.2 100 86 1.08
p533k 1.1 100 90 1.06 1.1 100 90 1.06
p874k 1.1 100 92 1.05 1.1 100 93 1.04
p951k 1.1 100 94 1.04 1.2 100 92 1.08

Table A.18.: Diagnostic success on full response data and on parity bits for stuck–
at faults. s: Number of suspects, %t10: Top10 success rate, %t1:
Perfect diagnosis rate, #a: Number of PFA attempts.
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A. Additional Result Tables

full response parity data

circuit s %t10 %t1 #a s %t10 %t1 #a

p45k 3.5 99 86 1.28 11.0 99 89 1.21
p35k 12.1 96 78 1.83 19.2 96 77 1.79
p77k 237.3 88 68 2.51 266.7 87 70 2.55
p78k 3.2 100 85 1.22 27.9 95 77 1.79
p469k 7.8 93 78 1.94 13.4 93 76 1.93
p89k 7.6 97 78 1.59 35.1 97 81 1.56
p100k 4.9 99 87 1.31 23.2 99 89 1.25
p81k 3.4 100 92 1.17 19.4 99 93 1.20
p141k 3.0 100 92 1.14 20.8 99 93 1.16
p239k 3.1 100 90 1.15 14.7 100 92 1.12
p267k 3.4 100 89 1.23 27.8 99 93 1.13
p269k 3.5 99 86 1.30 20.7 100 92 1.13
p279k 4.2 99 87 1.32 34.8 98 89 1.33
p295k 6.9 98 86 1.40 84.4 97 86 1.46
p259k 3.1 100 90 1.16 28.1 100 92 1.13
p330k 3.4 100 93 1.12 14.4 100 94 1.10
p286k 6.3 98 85 1.42 48.9 99 90 1.28
p378k 3.2 100 83 1.23 12.8 99 86 1.31
p418k 2.9 99 90 1.22 47.2 99 93 1.17
p388k 3.6 100 90 1.15 28.3 100 94 1.09
p500k 4.5 98 90 1.29 23.1 99 94 1.16
p483k 4.8 99 83 1.32 12.8 99 88 1.19
p533k 6.1 98 86 1.34 19.4 99 92 1.13
p874k 4.1 99 85 1.38 38.9 99 92 1.17
p951k 3.2 99 90 1.16 17.1 100 91 1.14

Table A.19.: Diagnostic success on full response data and on parity bits for gross
delay faults. See table A.18 for column definitions.

148



full response parity data

circuit s %t10 %t1 #a s %t10 %t1 #a

p45k 421.3 99 87 1.30 9309.5 76 50 3.84
p35k 6024.9 93 74 2.19 14438.6 65 36 4.99
p77k 7914.5 73 64 3.57 21680.8 52 28 6.10
p78k 296.6 100 86 1.19 22091.0 50 36 5.83
p469k 7335.4 53 28 5.81 12188.7 46 23 6.49
p89k 473.4 96 85 1.52 15789.9 67 39 4.89
p100k 609.6 99 88 1.22 16369.6 62 42 5.05
p81k 800.5 99 93 1.17 28104.3 57 50 5.02
p141k 807.2 100 90 1.19 41698.8 51 26 6.33
p239k 387.6 100 90 1.12 36866.0 54 37 5.63
p267k 341.8 100 93 1.11 51486.2 51 24 6.34
p269k 392.8 100 93 1.12 53533.6 51 28 6.25
p279k 431.8 100 96 1.07 56333.4 51 35 5.99
p295k 690.7 99 93 1.17 38364.5 70 47 4.42
p259k 431.7 100 79 1.25 51165.7 59 39 5.41
p330k 675.3 99 84 1.31 63141.2 63 39 5.03
p286k 554.1 100 80 1.23 71109.2 57 41 5.35
p378k 307.0 100 86 1.16 57097.7 75 61 3.51
p418k 318.7 100 92 1.09 60087.6 45 30 6.56
p388k 640.1 100 84 1.22 86383.7 61 43 5.09
p500k 435.5 100 91 1.19 67505.0 45 30 6.47
p483k 626.1 99 86 1.30 47641.8 65 44 4.72
p533k 627.5 99 80 1.32 64437.7 56 40 5.44
p874k 441.1 100 92 1.12 84874.5 50 33 6.20
p951k 305.1 100 92 1.11 71294.4 51 34 5.91

Table A.20.: Diagnostic success on full response data and on parity bits for swap
bridge faults. See table A.18 for column definitions.
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