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Abstract

This thesis deals with algorithmic group theory and the application of data
compression techniques in this area. Elements of the Baumslag-Solitar groups
can be represented by comparatively short sequences of generators while their
canonical normal forms are exponentially longer. As a consequence, algo-
rithms that solve the word problem by computing such normal forms have
to apply compression of the same order to their working data in order to
satisfy polynomial time and space constraints. A common way to do this
is to write numbers in binary. Going in the opposite direction, the problem
of finding a shortest representation of a group element, a so-called geodesic,
is also of interest. For example, geodesics can be used to make statements
about growth inside groups. In Chapter 2, geodesic normal forms for the
Baumslag-Solitar group BS(p, q) are defined and an algorithm is developed
that computes them in polynomial time if p divides q. For arbitrary p and
q, a partial solution is given which includes the horocyclic subgroup. Ex-
perimental results suggest that the horocyclic growth series of BS(2,3) is
irrational.

In some extensions of the Baumslag-Solitar groups, for example Higman’s
group and the Baumslag-Gersten group, the discrepancy between the lengths
of geodesics and normal forms cannot even be described by an elementary
function. This makes conventional approaches to the word problem infea-
sible. Recently, a data structure has been introduced that makes integers
of this magnitude manageable. With the help of these so-called “power cir-
cuits”, the word problem for the Baumslag-Gersten group BG(1,2) has been
proved to be polynomial-time solvable. In Chapter 3, the crucial reduction
procedure for power circuits is improved, thereby decreasing the best known
upper time bound for the word problem for BG(1,2) from O(n7) to O(n3).
At the same time, power circuits are generalized so as to allow bases other
than 2. This makes the data structure apt for the generalized Baumslag-
Gersten groups BG(1, q) with q ≥ 2.

In Chapter 4, power circuits are used to solve the word problem for Hig-
man’s group H4(1,2), an amalgamated product of four copies of BS(1,2).

7



8 ABSTRACT

For this group, a time bound of O(n6) is proved. Again, the generalized
notion of power circuit allows an extension of the solution to a larger class of
groups H4(1, q). The algorithm also works for an even more generalized ver-
sion Hf(1, q) of Higman’s group, where an arbitrary number f ≥ 4 of copies
of BS(1, q) are amalgamated. The time complexity of the algorithm remains
O(n6) and does not depend on f .

Preliminary work for this thesis has been published in journals and con-
ference proceedings or submitted for publication [DL11, DLU12, DLU13,
Lau12].



Zusammenfassung

Diese Arbeit handelt von der Anwendung von Datenkompressionstechniken
in der algorithmischen Gruppentheorie. In Gruppen, welche durch Erzeuger
und Relationen gegeben sind, haben Elemente grundsätzlich viele verschiede-
ne Darstellungen als Wörter über den Erzeugenden. Bedingt durch die Kon-
struktion der jeweiligen Gruppe gibt es jedoch häufig eine kanonische Darstel-
lung für jedes Element, die sogenannte Normalform. In manchen Gruppen,
wie den Baumslag-Solitar-Gruppen BS(p, q), sind diese Normalformen expo-
nentiell länger als die kürzestmögliche Darstellung. Dies führt dazu, dass
Algorithmen zur Lösung des Wortproblems dieser Gruppen ihre Eingabe in
sehr kompakter Form erhalten und daher besonders effizient arbeiten müssen,
um polynomielle Zeit- und Platzschranken einzuhalten. Sollen solche Algo-
rithmen dennoch Normalformen berechnen, so müssen sie diese ebenfalls ex-
ponentiell komprimieren. Im Falle der Baumslag-Solitar-Gruppen kann diese
Kompression beispielsweise durch Verwendung der binären Zahlendarstellung
erfolgen.

Von Interesse ist auch die umgekehrte Problemstellung, eine kürzeste
Darstellung eines gegebenen Gruppenelements – eine sogenannte Geodätische
– zu finden. Mit Hilfe Geodätischer lassen sich beispielsweise Aussagen über
das Wachstum in Gruppen treffen. In Kapitel 2 werden geodätische Nor-
malformen für BS(p, q) definiert und Algorithmen vorgestellt, die diese in
Polynomialzeit berechnen, sofern p ein Teiler von q ist. Für beliebige Werte
von p und q wird eine Teillösung für bestimmte Gruppenelemente, darunter
die horozyklischen, vorgestellt. Auch auf die Spezialfälle negativer Parame-
ter p und q wird eingegangen. Experimentelle Ergebnisse auf der Grund-
lage der entwickelten Algorithmen legen nahe, dass die Wachstumsreihe der
Baumslag-Solitar-Gruppe BS(2,3) nicht rational ist.

In bestimmten Erweiterungen der Baumslag-Solitar-Gruppen, wie zum
Beispiel der Baumslag-Gersten-Gruppe, tritt das Problem der komprimierten
Eingabe in verschärfter Form auf. Hier ist der Längenunterschied zwischen
Geodätischen und den zugehörigen kanonischen Normalformen durch eine
nicht-elementare Funktion gegeben. Dies macht Standardverfahren zur Lö-
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10 ZUSAMMENFASSUNG

sung des Wortproblems undurchführbar. Lange Zeit galt daher die Baum-
slag-Gersten-Gruppe BG(1,2) als Kandidat für eine Einrelatorgruppe mit
sehr schwierigem Wortproblem. Vor Kurzem wurde jedoch von Myasnikov,
Ushakov und Won gezeigt, dass das Wortproblem dieser Gruppe in Linearzeit
lösbar ist. Dies geschah durch Verwendung einer besonderen Datenstruktur,
den sogenannten ,,Power Circuits“. Hierbei handelt es sich um arithme-
tische Schaltkreise mit der Potenzierungsfunktion (n1, . . . , nk) ↦ 2n1+...+nk

als Gatter. Power Circuits erlauben eine sehr kompakte Darstellung extrem
großer Zahlen, wie sie bei Lösung des Wortproblems in BG(1,2) auftreten.
Die notwendigen arithmetischen Operationen lassen sich mit Power Circuits
effizient durchführen. Die eigentliche Schwierigkeit besteht darin, zwei mit-
tels Power Circuits dargestelle Zahlen zu vergleichen. Hierzu werden die
Schaltkreise in eine Normalform überführt, ein Prozess, der als Reduktion
bezeichnet wird. Der Reduktionsalgorithmus von Myasnikov et al. benötigt
kubische Zeit. In Kapitel 3 wird dieser Algorithmus optimiert, was in einer
nur noch quadratischen Laufzeit resultiert. Diese und weitere Verbesserung-
en schlagen sich in einer kürzeren Laufzeit des Algorithmus zur Lösung des
Wortproblems in BG(1,2) nieder: anstelle von O(n7) wird O(n3) erreicht.

Gleichzeitig werden Power Circuits dahingehend verallgemeinert, dass
anstelle der Basis 2 beliebige Basen q ≥ 2 zugelassen werden. Um dies zu
erreichen, müssen Konzepte wie die Kompaktheit binärer Summen, die für
q = 2 noch sehr einfach sind, verallgemeinert und die zugehörigen Algorith-
men angepasst werden. Das Ergebnis ist eine Datenstruktur, die in allen
Belangen – insbesondere der Effizienz – den ursprünglichen Power Circuits
ebenbürtig ist, jedoch mit beliebigen Basen q ≥ 2 umgehen kann. Dies hat un-
mittelbare Auswirkungen auf gruppentheoretische Fragestellungen. Anstelle
von BG(1,2) kann das Wortproblem nun in den verallgemeinerten Baumslag-
Gersten-Gruppen BG(1, q) effizient gelöst werden.

Eine Gruppe mit aus algorithmischer Sicht ähnlichen Eigenschaften wie
BG(1,2) ist die Higman-Gruppe H4(1,2). Anders als die Baumslag-Gersten-
Gruppe entsteht diese aus der Baumslag-Solitar-Gruppe BS(1,2) nicht durch
eine HNN-Erweiterung, sondern durch Amalgamierung von vier Kopien von
BS(1,2). Auch in dieser Gruppe tritt ein nicht-elementarer Längenunter-
schied zwischen Geodätischen und kanonischen Normalformen auf. Mit Hilfe
von Power Circuits lässt sich, wie in Kapitel 4 gezeigt wird, das Wortproblem
der Higman-Gruppe in O(n6) Zeit lösen. Dies ist allerdings weniger offen-
sichtlich als im Fall von BG(1,2) und erfordert eine detailliere Auseinander-
setzung mit der Gruppenstruktur.

Die Erweiterung von Power Circuits auf beliebige Basen q ≥ 2 ermöglicht
auch bei der Higman-Gruppe eine Verallgemeinerung: das Wortproblem der
Gruppe H4(1, q), welche auf BS(1, q) aufbaut, ist ebenfalls in O(n6) lösbar.
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Die Higman-Gruppe erlaubt noch eine zweite Form der Verallgemeinerung:
anstelle von vier Kopien der BS(1, q) kann eine beliebige Anzahl f ≥ 4 amal-
gamiert werden. Dies liefert die Klasse von Gruppen Hf(1, q). In Kapitel 4
wird gezeigt, dass auch hier das Wortproblem mit Zeitaufwand O(n6) gelöst
werden kann, unabhängig von f .

Im Anhang wird eine Implementierung von Power Circuits vorgestellt,
die im Rahmen eines studentischen Projektes im Jahr 2011 erstellt wurde.
Diese als Machbarkeitsstudie ausgelegte Projektarbeit demonstriert die Ver-
wendbarkeit der Datenstruktur in realen Anwendungen.

Teile dieser Arbeit wurden in Zeitschriften und Konferenzbänden veröf-
fentlicht oder zur Veröffentlichung eingereicht (gemäß §2 (4) der Promotions-
ordnung):

• Volker Diekert and Jürn Laun. On Computing Geodesics in Baumslag-
Solitar Groups. International Journal of Algebra and Computation,
21(1-2):119–145, 2011

• Volker Diekert, Jürn Laun, and Alexander Ushakov. Efficient algo-
rithms for highly compressed data: The Word Problem in Higman’s
group is in P. In 29th International Symposium on Theoretical Aspects
of Computer Science (STACS 2012), volume 14 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 218–229, 2012

• Volker Diekert, Jürn Laun, and Alexander Ushakov. Efficient algo-
rithms for highly compressed data: The word problem in Higman’s
group is in P. International Journal of Algebra and Computation, 2013.
To appear

• Jürn Laun. Efficient algorithms for highly compressed data: The Word
Problem in Generalized Higman Groups is in P. Preprint, 2012.
http://arxiv.org/abs/1006.2570
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Chapter 1

Introduction

Group theory has been a source of difficult computational problems for more
than a century. Most famously, Max Dehn is credited with bringing some of
them to the attention of mathematicians in 1911. The word problem, ask-
ing whether a given product of group generators equals the identity element
of a group, is the most basic and most important of them. Since this was
well before formal notions of computability were established, it is not sur-
prising that the first results were positive ones. For example, Dehn gave an
algorithm solving the word problem for fundamental groups of certain types
of manifolds. Later, Gromov showed that Dehn’s algorithm can be applied
to much larger classes of groups. In the 1950s, the first negative result ap-
peared, when Novikov (and later but independently, Boone) found groups
with undecidable word problems.

Apart from mere decidability, more refined questions about complexity
are of interest. Lots of groups have a polynomial time solvable word problem,
a prominent example being hyperbolic (or more general, automatic) groups.
For many others, no efficient algorithm is known.

For some groups, the difficulty of finding efficient algorithms arises from
a phenomenon which might be described as “compression”: in principle, we
know an effective way of solving the problem (usually some standard tech-
nique like Britton reductions in HNN extensions), but during the computa-
tion, some words or numbers become too large (e.g. exponential in the input
size or even worse). For example, an algorithm might require computing
normal forms of some kind, but in the particular group, a short input might
have a very long normal form.

The Baumslag-Solitar groups are the most basic example of groups having
large compression in this sense. Standard techniques like Britton’s Lemma
yield normal forms for these groups, thus allowing conceptually simple solu-
tions for most algorithmic problems. However, the normal form of a word

13



14 CHAPTER 1. INTRODUCTION

can be exponentially longer than the word itself. Thanks to the relatively
mild compression (only exponential), this is easily remedied in the case of the
word problem. Representing certain group elements by binary numbers, we
can compress normal forms to acceptable sizes and manipulate them using
integer arithmetic.

Another way of solving the word problem efficiently in a group with com-
pression is to choose shorter normal forms or even ones with minimal length.
These so-called geodesic normal forms are interesting in their own right.
However, in most cases, geodesic normal forms are very hard to compute.
Solving this problem for as many Baumslag-Solitar groups as possible is the
main concern of Chapter 2.

The situation becomes worse, when we use Baumslag-Solitar groups as
building blocks for more complicated groups. Two historically important
examples are Higman’s Group and the Baumslag-Gersten group. Both al-
low not only exponential but non-elementary compression. Immediately, the
word problem becomes non-trivial, as even binary integer variables of polyno-
mial bit-length cannot hold such numbers. The solution comes from a more
potent data structure, called “power circuits”, which was invented recently
by Myasnikov, Ushakov, and Won, who used it to solve the word problem for
the Baumslag-Gersten group in polynomial time. In Chapter 3, we present
an enhanced version of this data structure and we give more efficient algo-
rithms operating on them. This allows us to accelerate their algorithm and
to apply it to a generalized class of Baumslag-Gersten groups in Chapter 4.
We also prove polynomial time decidability of a generalization of Higman’s
group.

1.1 Algorithms and Complexity

A significant part of this work is about efficient algorithms, which is why we
need to fix some conventions regarding the details of computing machinery
and time measurement.

Unless stated otherwise, all computations are done on a deterministic
Random Access Machine (RAM) which can perform arithmetic operations
of reasonably long numbers in one step. The choice of “reasonable” length
determines the actual time complexity on other models of computation such
as Turing machines. In this thesis we require the bit-length of numbers to
be linear in the input size. Arithmetic operations on longer numbers have to
be counted extra in time analysis. This means that algorithms designed for
a RAM can be simulated by a deterministic Turing machine at polynomial
additional cost.
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We express time and space complexity using the common Landau sym-
bols O, o, Ω, ω, and Θ (see e.g. [CLRS09], Chap. 3.1). Sometimes, when
the exact bound is less important or depends on technical details of the im-
plementation, we use the Õ notation, usually pronounced “soft Oh”. This
symbol ignores logarithmic factors. It is defined by

f ∈ Õ(g) ∶⇔ ∃k ∶ f ∈ O (g ⋅ (logk(g + 1) + 1)) .

1.2 Rewriting Systems

Rewriting systems are an important tool in algorithmic group theory and
many other areas (cf. the introductory chapters of the books [BO93, Jan88]).
The basic idea is to turn equivalences (for instance of strings that determine
the same group element) into directed rules while preserving certain proper-
ties. We start with an alphabet Σ (possibly infinite) and the free monoid Σ∗

generated by Σ. A rewriting system S is a set of pairs (`, r) ∈ Σ∗×Σ∗. Instead
of (`, r) ∈ S we usually write ` Ð→

S

r or ` Ð→ r if the system is understood.

Rewriting systems are sometimes called “string rewriting systems”, “semi-
Thue systems”, or “reduction systems”, although the latter often refers to
the more general notion where the elements need not be strings.

The relation Ð→
S

gives rise to the rewriting (or reduction) relation Ô⇒
S

defined by

x`yÔ⇒
S

xry if and only if `Ð→
S

r and x, y ∈ Σ∗.

As usual, the reflexive transitive closure of Ô⇒
S

is denoted
∗

Ô⇒
S

. The sym-

metric reflexive transitive closure
∗

⇐⇒
S

is a congruence relation. It defines the

quotient monoid Σ∗/
∗

⇐⇒
S

.

A string that contains no left-hand side of any rule in S is called irre-
ducible (with respect to S). The set of all irreducible elements is denoted
IRR(S).

There are several important properties that rewriting systems may pos-
sess:

• S is called locally confluent if for all u, v′, v′′ ∈ Σ∗ with v′⇐Ô
S

uÔ⇒
S

v′′

there is an element w ∈ Σ∗ with v′
∗

Ô⇒
S

w
∗

⇐Ô
S

v′′.

• S is called confluent if for all u, v′, v′′ ∈ Σ∗ with v′
∗

⇐Ô
S

u
∗

Ô⇒
S

v′′ there

is an element w ∈ Σ∗ with v′
∗

Ô⇒
S

w
∗

⇐Ô
S

v′′.
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• S is said to have the Church-Rosser property if for all v′, v′′ ∈ Σ∗ with

v′
∗

⇐⇒
S

v′′ there is an element w ∈ Σ∗ with v′
∗

Ô⇒
S

w
∗

⇐Ô
S

v′′.

• S is called terminating (or “noetherian”) if every infinite chain

u1
∗

Ô⇒
S

u2
∗

Ô⇒
S

. . .

eventually becomes stationary (i.e., there is some n0 with ui = uj for
all i, j ≥ n0).

Obviously, the Church-Rosser property implies confluence which in turn im-
plies local confluence. In fact, confluence and Church-Rosser are equivalent
([BO93], Lem. 1.1.7). Local confluence and termination together imply con-
fluence ([BO93], Thm. 1.1.13).

If S is confluent, the irreducible elements IRR(S) are unique representa-
tives of their respective congruence classes in Σ∗. If S is terminating, each

element of Σ∗/
∗

⇐⇒
S

has an irreducible representative. Rewriting systems

that are both confluent and terminating (sometimes called “convergent”) are
of particular importance as they provide a unique irreducible representative
(normal form) for each class.

In general, it is undecidable whether a given system is confluent, locally
confluent, or terminating, even if it is finite ([Jan88], Chap. 2.1). For specific
systems, a common strategy is to prove local confluence and termination.
Local confluence can be tested by looking at all possible overlaps of the left-
hand sides of the rules.

For termination, there is an obvious sufficient condition: a system S
is called length-reducing if for every rule (`, r) ∈ S we have ∣`∣ > ∣r∣. The
following lemma is folklore (e.g. [DDM10], Lem. 3.1), but we give a complete
proof since we will rely heavily on it later.

Lemma 1.1. Let S be a length-reducing rewriting system. Then for any word

w we find a word ŵ ∈ IRR(S) with w
∗

Ô⇒
S

ŵ using at most ∣w∣⋅(C+1) tests for

reducibility (at most ∣w∣ reduction steps are actually conducted, obviously),
where

C = max{
∣r∣

∣`∣ − ∣r∣
∶ (`, r) ∈ S} .

Proof. We work with a word uv, where u ∈ IRR(S) and w Ô⇒
S

∗ uv. At

the beginning we have u = 1 and v = w and we gradually enlarge u while
shortening v until we end up with u = ŵ and v = 1. We will show that in
every step the number

p(u, v) ∶= ∣uv∣ ⋅C + ∣v∣ ,



1.3. GROUPS, AMALGAMS, AND HNN EXTENSIONS 17

which is initially ∣w∣ ⋅ (C +1), decreases at least by one. This gives the bound
on the number of tests.

Let a be the first letter of v and v = av′. If ua does not contain the
left-hand side of any rule in S, we can replace u by u′ ∶= ua and v by v′. This
does not change ∣uv∣, but ∣v∣ is decreased by one, so p(u′, v′) = p(u, v) − 1.

If ua does contain the left-hand side of some rule (`, r) ∈ S, then due to
irreducibility of u, ` must involve a. We define u′ by ua = u′` and we get the
situation shown in Figure 1.1 (a). Replacing ` by r and setting v′′ ∶= rv′ we
arrive at Figure 1.1 (b), where u′ (being a subword of u) is irreducible, and
we have

p(u′, v′′) − p(u, v) ≤ (∣r∣ − ∣`∣) ⋅C + ∣r∣ − 1 ≤ −1.

(a)
u v

a
u′ ` v′

(b)
u′ r v′

v′′

Figure 1.1: Word problem for length-reducing rewriting systems

1.3 Groups, Amalgams, and HNN Extensions

In algorithmic group theory, groups are usually given via a setX of generators
and a set R ⊆ (X ∪X−1)∗ of relators which are sequences of generators and
their inverses. The thus presented group is defined by

⟨X ∣ R⟩ ∶= F (X)/ ◁R▷,

where F (X) is the free group with basis X and ◁R▷ is the normal subgroup
of F (X) generated byR. For example, ⟨{a, b} ∣ {aba−1b−1}⟩ denotes the group
Z ×Z. It is common to relax the notation and write ⟨a, b ∣ ab = ba⟩ instead.

Elements of the group ⟨X ∣ R⟩ are written as strings w ∈ (X ∪ X−1)∗.
This notation is ambiguous, for instance aba, a2b, and b−1b2a2 denote the
same element in ⟨a, b ∣ ab = ba⟩. Whenever it is crucial to distinguish equality
of strings from equality of group elements, we write = for the former and ∼
for the latter.
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The most important algorithmic problem that arises from the representa-
tion of groups by generators and relators is the word problem: given a word
w ∈ (X ∪X−1)∗, determine whether w ∼ 1 in G = ⟨X ∣ R⟩. The word prob-
lem was formulated by Dehn in his 1912 paper [Deh12] (where it was more
aptly called the “identity problem”), along with other algorithmic problems
in group theory such as the conjugacy problem (“transformation problem”)
and the isomorphism problem. All three problems are undecidable for arbi-
trary (finitely presented) groups [Nov55, Boo58], although many classes of
groups are known where some or all of these problems are solvable.

If ⟨X ∣ R⟩ is a finite presentation (∣X ∣ , ∣R∣ < ∞), the word problem is
recursively enumerable, since every element in the subgroup ◁R▷ of F (X)
is a finite product of conjugates of relators from R. The Dehn function
DehnX,R(n) gives the least upper bound of the number of relators that are
needed for words of length ≤ n. The Dehn function is recursive if and only if
the word problem is solvable. Although there are some further ties between
the complexity of the word problem and the growth of the Dehn function
(e.g. [Ger93], Thm. 3.1), the gap between the two can be quite large. For
example, the Baumslag-Gersten group has a non-elementary Dehn function,
but the word problem is solvable in polynomial time, as we will see in Sec-
tion 4.3.

We use two major methods of constructing new groups from existing ones:
HNN extensions and amalgamated products. HNN extensions (named after
Graham Higman, Bernhard H. Neumann, and Hanna Neumann [HNN49])
start with a group G, an unused symbol t called “stable letter”, and an
isomorphism ϕ ∶H1→̃H2 of two subgroups H1,H2 of G. In the HNN extension

HNN(G, t,H1→̃H2) ∶= G ∗ ⟨t⟩/ ◁ th1t
−1 = ϕ(h1) ∶ h1 ∈H1▷,

the subgroups are conjugated via t. The most important property of HNN
extensions is that the original group G embeds in HNN(G, t,H1→̃H2). This
follows from Britton’s Lemma:

Theorem 1.2. (Britton’s Lemma, cf. [LS01], Chap. IV Sect. 2) If w is a
non-empty alternating sequence of elements g ∈ G∖{1} and powers of letters
tn (n ∈ Z ∖ {0}) and if w ∼ 1 in HNN(G, t,H1→̃H2), then w contains either
a subword tgt−1 with g ∈H1 or a subword t−1gt with g ∈H2.

This subword can be replaced by ϕ(g) or ϕ−1(g). Such a replacement is
called a “Britton reduction” and often denoted by the symbol Ô⇒

B

. In other

words, Britton’s Lemma states that a non-empty Britton-reduced sequence
does not equal the identity in an HNN extension.
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We formalize the notion of Britton reduction by giving a rewriting system
B over (G ∖ {1} ∪ {t, t−1})∗:

tt−1, t−1tÐ→ 1

g1g2 Ð→ g if g1g2 ∼ g in G

tgt−1 Ð→ ϕ(g) if g ∈H1

t−1gtÐ→ ϕ−1(g) if g ∈H2

On the right-hand sides of these rules, we identify the group identity with
the empty string. It follows from Britton’s Lemma that this system is con-
fluent on the subset of strings representing the identity element of the group.
However, it is not globally confluent and in particular, group elements other
that 1 may have more than one irreducible representation.

Since the rewriting system B is length-reducing, we obtain an algorithm
for the word problem in HNN extensions, given that we have effective access
to H1, H2, and ϕ:

Proposition 1.3. If the subgroup membership problems of H1 and H2 in G
are solvable and we can effectively compute ϕ ∶ H1 → H2 and ϕ−1 ∶ H2 → H1,
then the word problem in HNN(G, t,H1→̃H2) is solvable.

The subgroup membership problem of a subgroup H ≤ G asks whether a
given element of G is in fact in the subgroup H.

There are also confluent rewriting systems for HNN extensions. If C1 and
C2 are right coset representatives of H1 and H2 in G with 1 ∈ C1∩C2, we can
define the following rules:

tt−1, t−1tÐ→ 1

g1g2 Ð→ g if g1g2 ∼ g in G

g1tg2 Ð→ g′1tc1 if g2 = h1c1 with h1 ∈H1, c1 ∈ C1, and g′1 ∼ g1ϕ(h1)

g1t
−1g2 Ð→ g′1t

−1c2 if g2 = h2c2 with h2 ∈H2, c2 ∈ C2, and g′1 ∼ g1ϕ
−1(h2)

One can easily show that this system is both locally confluent and termi-
nating, and hence confluent. The rules of this second system leave Britton-
reduced strings Britton-reduced, which proves Britton’s Lemma. The normal
forms with respect to this system start with an element from G, followed by
an alternating sequences of representatives from C1∪C2 and letters t±1, where
t is followed by an element from C1 and t−1 by one from C2.

Amalgamated products (also called ”free products with amalgamation“)
are the second important construction. We start with two groups G1,G2
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that contain isomorphic subgroups, i.e., G1
ι1
↩ H

ι2
↪ G2. The amalgamated

product of G1 and G2 with respect to H is defined by

G1 ∗H G2 ∶= G1 ∗G2/ ◁ ι1(h) = ι2(h) ∶ h ∈H ▷ .

Like with HNN extensions, the groups G1 and G2 embed into G1 ∗H G2.
There is an analogon of Britton’s Lemma:

Theorem 1.4. If a non-empty alternating sequence w of elements from G1∖
{1} and G2 ∖{1} equals 1 in the amalgamated product G1 ∗H G2, then one of
the elements in the sequence is in ι1(H) or ι2(H).

This element, say g, can be replaced by ι2(ι−1
1 (g)) or ι1(ι−1

2 (g)) and
then merged with its neighbor(s), making the sequence again alternating
but shorter. There is no specific name for this operation, although one
might arguably call it a Britton reduction as well. Like with Britton re-
ductions for HNN extensions, we get a terminating rewriting system over
(G1 ∖{1}∪G2 ∖{1})∗ that is confluent on the subset of sequences represent-
ing the group identity:

g′g′′ Ð→ g if g′, g′′ ∈ G1 or g′, g′′ ∈ G2 and in both cases g′g′′ ∼ g

or if g′ = ι1(h) and g ∼ ι2(h)g
′′ ∈ G2

or if g′ = ι2(h) and g ∼ ι1(h)g
′′ ∈ G1

or if g′′ = ι1(h) and g ∼ g′ι2(h) ∈ G2

or if g′′ = ι2(h) and g ∼ g′ι1(h) ∈ G1

Again, this leads to an algorithm for the word problem:

Proposition 1.5. If the subgroup membership problems for ι1(H) in G1 and
for ι2(H) in G2 are solvable and we can effectively compute ι2○ι−1

1 and ι1○ι−1
2 ,

then the word problem in G1 ∗H G2 is solvable.

Finally, there is also a confluent rewriting system for G1 ∗H G2. Let
C1 and C2 be right coset representatives of ι1(H) in G1 and ι2(H) in G2,
respectively.

g′g′′ Ð→ g if g′, g′′ ∈ G1 or g′, g′′ ∈ G2 and in both cases g′g′′ ∼ g

g1g2 Ð→ g′1c2 if g2 ∼ ι2(h)c2 with c2 ∈ C2 and g′1 ∼ g1ι1(h) ∈ G1

g2g1 Ð→ g′2c1 if g1 ∼ ι1(h)c1 with c1 ∈ C1 and g′2 ∼ g2ι2(h) ∈ G2



Chapter 2

Baumslag-Solitar Groups

The Baumslag-Solitar groups BS(p, q) have a simple description, yet they
feature characteristics that render them interesting, especially as counterex-
amples. In this chapter we explore their basic properties, so we can build
upon them in later chapters. In addition, we investigate the problem of
finding geodesics. From the results, we deduce statements about the growth
series of these groups.

Definition 2.1. For any two integers p, q ∈ Z, the group

BS(p, q) = ⟨a, t ∣ tapt−1 = aq⟩.

is called the Baumslag-Solitar group.

If p = 0 or q = 0, then BS(p, q) is isomorphic to the free product of Z
and another cyclic group. We exclude these rather uninteresting cases from
further consideration. Other special cases are BS(1,1) = Z×Z and BS(1,−1),
which is the fundamental group of the Klein bottle.

The mapping a ↦ a, t ↦ t−1 defines an isomorphism BS(p, q)→̃BS(q, p).
Furthermore, BS(p, q) = BS(−p,−q). This allows us to fix the following con-
vention:

Remark 2.2. From now on, for any Baumslag-Solitar group BS(p, q), we
assume that 0 < p ≤ ∣q∣.

Note that when working with words over the alphabet {a, a−1, t, t−1}, the
above isomorphism is a letter-by-letter substitution that can be computed in
linear time and is length-preserving. Thus, the restriction 0 < p ≤ ∣q∣ remains
justified when we discuss algorithmic problems such as the word problem or
the geodesic search problem.

21



22 CHAPTER 2. BAUMSLAG-SOLITAR GROUPS

The Baumslag-Solitar groups were introduced by Gilbert Baumslag and
Donald Solitar in [BS62]. They used BS(2,3) as an example of a finitely gen-
erated one-relator group that is non-Hopfian. In fact, BS(p, q) is residually
finite if and only if ∣p∣ = 1 or ∣p∣ = ∣q∣ (see [BS62] with a correction in [Mes72])
and in this case also Hopfian. In the non-residually finite case, BS(p, q) is
Hopfian if and only if p and q have the same set of prime divisors.

The group BS(p, q) is one of the most basic examples of an HNN exten-
sion:

BS(p, q) = HNN(⟨a⟩, t, ⟨ap⟩→̃⟨aq⟩)

Therefore, Britton’s Lemma applies, so any (freely reduced) word over
{a, a−1, t, t−1} that equals 1 in the group has to contain a subword of the
form tan⋅pt−1 or t−1an⋅qt. For example, if 2 ≤ p ≤ ∣q∣ and r divides p, then

[a, ta
p/rt−1] = ata

p/rt−1a−1ta−
p/rt−1 /∼ 1 in BS(p, q),

so the mapping

ϕ ∶ BS(p, q) → BS(p, q); a↦ ar, t↦ t

has a non-trivial kernel. Yet, if r is a prime dividing only p but not q, then
a ∈ ϕ(BS(p, q)), which proves the above statement about non-Hopficity.

An important special case is BS(1, q). This group is isomorphic to the
semi-direct product Z[1/q]⋊Z, where Z[1/q] is the (additive) group of fractions
whose denominators are powers of q. Since the projection of Z[1/q] ⋊Z onto
its second component has the abelian group Z[1/q] as its kernel, BS(1, q) is
metabelian. Baumslag-Solitar groups with p > 1 are not solvable.

None of the Baumslag-Solitar groups BS(p, q) are hyperbolic (apart from
the excluded cases p ⋅ q = 0). If p ≠ ∣q∣, BS(p, q) is not even automatic since
its Dehn function is exponential [Ger91]. Moreover, a group that contains
a Baumslag-Solitar group cannot be hyperbolic. In particular, Dehn’s algo-
rithm cannot be used to solve the word problem. However, since we have
Britton’s Lemma, there is no need for that.

Throughout this chapter, we regard p and q as constants. The time
bounds stated in the results are not uniform with respect to these parameters.

2.1 The Word Problem

Writing BS(p, q) as an HNN extension immediately proves decidability of the
word problem. However, the resulting algorithm uses exponential space. For
instance, starting with the word tnat−n in BS(1,2), the computed normal
form is a2n . Storing the exponents of a’s in binary circumvents this problem
and results in a polynomial time solution of the word problem:
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Theorem 2.3. The word problem in BS(p, q) can be solved in linear time
(on a RAM; Õ(n2) time on a Turing machine).

More precisely, given a word w ∈ {a, a−1, t, t−1}∗, it takes at most linear
time (Õ(∣w∣

2
) time on a Turing machine) to find a Britton-reduced word ŵ

with w
∗

Ô⇒
B

ŵ.

Proof. We take the Britton rewriting system B for BS(p, q) over the infinite
alphabet Σ = {t, t−1, an ∶ n ∈ Z ∖ {0}} as defined in Section 1.3. Note that an

is regarded as a single letter, needing O(logn) space on the tape of a Turing
machine. The input string consists only of the letters t, t−1, a1, a−1. The rules
of B are:

aman Ð→ am+n

tan⋅pt−1 Ð→ an⋅q

t−1an⋅qt Ð→ an⋅p (for m,n ∈ Z)

For convenience, we identify a0 with the empty word. As stated in Theo-
rem 1.2, the system B is not confluent, but every word that equals 1 in the
group BS(p, q) reduces to the empty word.

By Lemma 1.1, we need at most 2n tests for reducibility to solve the
word problem, if we start with an input word of length n. The sum of the
exponents is bounded by ∣q/p∣

n
⊆ 2O(n), so their bit-length in binary notation

remains linear.

In BS(p, q) = ⟨a, t ∣ tapt−1 = aq⟩, the subgroup generated by a is called the
horocyclic subgroup. The HNN construction of BS(p, q) implies that ⟨a⟩ is
isomorphic to Z. From Theorem 2.3 we obtain:

Corollary 2.4. The subgroup membership problem for the horocyclic sub-
group is solvable in linear time (Õ(n2) time on a Turing machine). More-
over, given a word w ∈ {a, a−1, t, t−1}∗, we can compute the number α (in
binary notation) such that w ∼ aα within the same time bound.

This follows simply from the fact that aα is the unique Britton-reduced
form for horocyclic elements. In fact, if w ∼ aα, then wa−α ∼ 1, and all Britton
reductions must occur inside w.

Recently, Elder, Elston, and Ostheimer have proposed a logspace algo-
rithm for the word problem in solvable Baumslag-Solitar groups BS(1, q)
[EEO12].
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2.2 Geodesics and Growth

Elements of a group G presented by ⟨X ∣ R⟩ are expressed by strings from
(X ∪X−1)∗. Among the possibly many words representing the same group
element, those with minimal length are called geodesics (with respect to
the generating set X). They describe shortest paths from the origin of the
Cayley graph of G (w.r.t. X) to the node corresponding to the group element
in question. In general, geodesics of a given group element g ∈ G are far from
being unique. However, their length, called the geodesic length of g, is well-
defined for fixed X.

If the word problem for a group has time complexity t(n), then the prob-
lem of deciding whether a given word is geodesic is in co-NTIME(t(2n)),
for one can guess a shorter word and verify that it represents the same
group element. Using Theorem 2.3 we get co-NTIME(n) for the Baumslag-
Solitar groups. The geodesic search problem which, given a group element
of BS(p, q), asks for a corresponding geodesic word (or all of them), has an
obvious solution in linear space: enumerate all words in order of increasing
length and look for the first one that represents the group element.

More efficient algorithms are not as easy to obtain. The first result in
this area was by Elder [Eld10], who presented a linear time algorithm for the
geodesic search problem for the solvable groups BS(1, q). In [DL11], Diekert
and the author extended these results by showing that the problem is solvable
for BS(p, q) in polynomial time if p ∣ q (see Section 2.7). It is open whether
this remains true for arbitrary p and q. There are partial results by Freden
et al. [FKS11] concerning the horocyclic subgroup ⟨a⟩ ≤ BS(p, q) (see also
Section 2.4).

Apart from being an interesting subject on their own, geodesic words are
connected to other important properties of groups. For a group G, finitely
generated by X, define

Bn(G,X) ∶= ∣{g ∈ G ∶ g has geodesic length n (w.r.t. X)}∣ .

This is the cardinality of the sphere consisting of the group elements at
distance n from the identity in the Cayley graph. If we define two sequences
(an)n∈N and (bn)n∈N to be equivalent if there is a number C such that an/C ≤
bn ≤ an⋅C for all n, the equivalence class of (Bn(G,X))n∈N is called the growth
rate of G (see [Mil68]). The growth rate does not depend on the set X.
The growth rate of G = ⟨X ∣ R⟩ is naturally bounded by (2 ⋅ ∣X ∣)n. Apart
from groups with exponential (e.g. BS(2,3)) or polynomial growth, there
are groups with an intermediate growth rate, as was shown by Grigorchuk
[Gri83].
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The formal power series

SG,X(z) = ∑
n≥0

Bn(G,X)zn

is called the growth series of G (w.r.t. X). If N ⊆ (X ∪X−1)∗ is a set of
geodesic normal forms (a set of geodesic words containing exactly one for
each group element), then SG,X(z) = ∑n≥0 ∣N ∩ (X ∪X−1)n∣ zn. The case
where SG,X(z) is rational (i.e., the quotient of two polynomials) is of partic-
ular interest, since then all the information about growth inside the group
is encoded in a finite object. According to a theorem by Chomsky and
Schützenberger, the growth series is rational if some set of geodesic normal
forms is an unambiguous linear context-free language [CS63, Kui70].

Example 2.5. Both for BS(1,1) and for BS(1,−1), {tman ∶ m,n ∈ Z} is a
set of geodesic normal forms. There is one word of length 0 and for n ≥ 1
there are 4n words of length n (a±n, t±n, and t±ia±(n−i) for 0 < i < n), so the
growth series of these groups is

SBS(1,±1),{a,t}(z) = 1 + ∑
n≥1

4nzn = 1 +
4z

(1 − z)2
.

The growth series is also rational and known for the other residually finite
cases BS(1, q) ([CEG94] and Corollary 2.11; rationality independently by
[Bra74]) and BS(q, q) ([EJ92] and Theorem 2.41 and Corollary 2.11) and for
some other groups, mostly arising from geometry (see Section 0 of [EJ92]).
For other Baumslag-Solitar groups, such as BS(2,3), the growth series is
unknown, although there have been attempts leading to partial results, see
[FKS11] and Section 2.4.1.

2.3 The Structure of BS(p, q)

In order to make words over the generators a and t of BS(p, q) and their
inverses a−1 and t−1 easier to read, we use T as a shorthand for t−1. Elements
of the horocyclic subgroup ⟨a⟩ ≃ Z are identified with the corresponding
integer. For instance, we write:

taaaat−1a−1a−1 = ta4Ta−2 = t4T (−2)

Words containing the letters t and T as well as integers, may be regarded as
mere abbreviations or, alternatively, as elements of the group ⟨t⟩ ∗Z, which
has BS(p, q) as a quotient. When it comes to measuring the length ∣w∣ of a
word w, in order to sustain consistency, the length of an integer is defined
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as its absolute value. For example, ∣t4T (−2)∣ = 1 + ∣4∣ + 1 + ∣−2∣ = 8. We
use greek letters for horocyclic elements. The Britton rewriting system from
Section 2.1 translates to a system for ⟨t⟩ ∗Z, which we also call B.

The Cayley graph of BS(p, q) is made of “bricks” corresponding to the
relator tapt−1a−q (see Figure 2.1). Starting at the line that corresponds to the

a a a

t

a a

t

Figure 2.1: A “brick”, a 2-cell in the Cayley complex of BS(2,3)

horocyclic subgroup ⟨a⟩, we glue the aq side of a brick to every aq segment
of that line. These bricks naturally fall into q classes, each of which forms a
“row” of bricks. The same can be done with the ap side, resulting in a further
p such rows. The part of the Cayley graph constructed so far is depicted in
Figure 2.2. In all pictures, we draw the t edges going in an upward direction
and the a edges sideways. In order to construct the whole Cayley graph,
we have to repeat this procedure recursively for the lines ait⟨a⟩ (0 ≤ i < q)
and aiT ⟨a⟩ (0 ≤ i < p). Thus, topologically, the Cayley complex is the direct
product of R and an infinite tree in which all nodes have degree p + q.

For every infinite simple upward-going path in this tree starting at 1 and
given by the word w = α0tα1t . . ., the set ⋃i≥0α0tα1 . . . αi−1t⟨a⟩ ⊆ BS(p, q) is
called a sheet of the Cayley graph. If w = tω, this is called the main sheet
(cf. Sect. 2 of [FKS11]). The main sheet of BS(2,3) is depicted in Figure 2.3.
This picture can be interpreted as an embedding of the sheet graph (endowed
with the word metric) into the Poincaré half-plane model of the hyperbolic
plane. The line corresponding to ⟨a⟩ becomes a horocycle, which explains
the naming of this subgroup.

Words over the generators of BS(p, q) describe paths in the Cayley graph.
Throughout this chapter we regularly use a graphical representation of words,
which, while reflecting some of the structure of the Cayley graph, flattens
this path to a two-dimensional image with t edges going up, T edges down,
and edges labeled an going to the right. An example is shown in Figure 2.4.
Sometimes horocyclic elements are contracted to points.

Being an HNN extension, BS(p, q) has a confluent rewriting system (see
Section 1.3, with coset representatives C1 = {0, . . . , p−1}, C2 = {0, . . . , q−1}).



2.3. THE STRUCTURE OF BS(P,Q) 27

Figure 2.2: A clipping from the Cayley graph of BS(2,3)

a a a a a a a a a

a a a a a a

a a a a

a a

t t t t

t t t

t t

. . .

⋮

Figure 2.3: The main sheet of BS(2,3)

The rules are:

tT, T tÐ→ 0

αβ Ð→ (α + β)

αtβ Ð→ (α + µ ⋅ q)tρ if β = µ ⋅ p + ρ with 0 ≤ ρ < p

αTβ Ð→ (α + µ ⋅ p)Tρ if β = µ ⋅ q + ρ with 0 ≤ ρ < q

We identify 0 ∈ Z ≃ ⟨a⟩ with the empty word (except for the left-hand side of
the second rule which is supposed to be length-reducing). When applying one
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5

2

1

3 5

2

1

3

Figure 2.4: Graphical representations of the word t5T2T1tt3

of these rules to a Britton-reduced word, the result is also Britton-reduced.
Aside from proving Britton’s Lemma, this shows that the sequence of the
letters t and T in a Britton-reduced word is uniquely determined by the
group element. Furthermore, we obtain:

Proposition 2.6. Let w1,w2 ∈ {t, T} ∗Z be Britton-reduced words with w1 ∼
w2 in BS(p, q). Then we get from w1 to w2 via finitely many replacements
of the form

(α ± q)tβ ←→ αt(β ± p) and (α ± p)Tβ ←→ αT (β ± q).

The graphical representation of words introduced above motivates the
following notions.

Definition 2.7. Let w be a word and w
∗

Ô⇒
B

ŵ with ŵ Britton-reduced. We

call w

• horocyclic, if ŵ contains neither t nor T ,

• a slope, if ŵ contains no t,

• a hill, if in ŵ no T occurs before any t,

• a valley, if the number of t’s equals the number of T ’s and in every
prefix of ŵ, the number of t’s does not exceed the number of T ’s.

The height of a slope or a valley is the number of T ’s in ŵ. The height of a
hill is the number of t’s or T ’s, whichever is larger.

By Proposition 2.6, these definitions do not depend on the choice of ŵ.
Examples of Britton-reduced slopes, hills, and valleys are shown in Figure 2.5.
In [Eld10], Slopes are called words of type N and hills are called words of
type PN.

The following proposition is rather obvious but nevertheless a key obser-
vation for the computation of geodesics.
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Figure 2.5: A slope, a hill, and a valley

Proposition 2.8.

(i) Let w be geodesic and w
∗

Ô⇒
B

ŵ with

ŵ = α0t
ε1α1 . . . αn−1t

εnαn

Britton-reduced. If we choose some geodesic word wi ∼ αi for each αi,
then

w̃ = w0t
ε1w1 . . .wn−1t

εnwn

is geodesic, too.

(ii) If w,wi ∈ N for some set N of geodesic normal forms compatible with
subwords (i.e., uv ∈ N implies u, v ∈ N ; for instance shortlex normal
forms), then w̃ = w.

Proof. Let w = v0tε1v1 . . . vn−1tεnvn where vi
∗

Ô⇒
B

αi for 0 ≤ i ≤ n. Being

subwords of w, all vi are geodesic (or normal forms). Thus, ∣vi∣ = ∣wi∣ (or
vi = wi) and ∣w∣ = ∣w̃∣ (or w = w̃).

Definition 2.9. For each word w = α0tε1α1 . . . αn−1tεnαn, we define

∥w∥ = n +
n

∑
i=0

[geodesic length of the horocyclic element αi].

Note that the triangle inequality holds for ∥⋅∥.
By now, we already have a coarse recipe for finding a geodesic of a word w:

All Britton-reduced words corresponding to w can be obtained by taking an
arbitrary Britton-reduced word and shifting a’s around, as in Proposition 2.6.
Among these words, look for one that minimizes ∥⋅∥. Finally, replace all horo-
cyclic integers in that word by geodesics, which according to Proposition 2.8
results in a geodesic for w.
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Following this outline, we first examine the horocyclic subgroup in Sec-
tion 2.4. After that, in Sections 2.6 and 2.7, we deal with ever larger classes
of words, using the notions from Definition 2.7.

Before we start, let us make some general observations on geodesic normal
forms for BS(p, q). Although for some purposes (such as determining the
growth of these groups) any set of geodesic normal forms will do, we attempt
to get such ones that are as “natural” as possible. By that we mean geodesic
normal forms that have a simple and straightforward characterization (for
example being lexicographically minimal). If, however, the particular choice
of geodesic normal forms is not important, we can use the following reduction
to get rid of the case q < 0.

Let Ξ be the mapping that sends each word

w = α0t
ε1α1t

ε2α2t
ε3α3 . . . αk−1t

εkαk (αi ∈ Z, εi ∈ {±1})

to
Ξ(w) = α0t

ε1(−α1)t
ε2α2t

ε3(−α3) . . . ((−1)k−1αk−1)t
εk((−1)kαk).

Lemma 2.10. Ξ gives rise to a bijective mapping BS(p, q) → BS(p,−q) (also
denoted Ξ). For horocyclic elements w ∼ α ∈ Z ≃ ⟨a⟩ ≤ BS(p, q), we have
Ξ(w) ∼ α ∈ BS(p,−q). Geodesics are mapped to geodesics.

Proof. The mapping Ξ commutes with Britton reductions. Thus, for horo-
cyclic words w ∼ α ∈ BS(p, q), we have Ξ(w) ∼ α ∈ BS(p,−q).

Let w1 and w2 be non-horocyclic words, representing the same element

of BS(p, q), and let wi
∗

Ô⇒
B

ŵi with ŵi Britton-reduced (i ∈ {1,2}). Since Ξ

is compatible with Britton reductions, we have Ξ(wi) ∼ Ξ(ŵi). It remains
to show that Ξ(ŵ1) = Ξ(ŵ2). By Proposition 2.6, we get from ŵ1 to ŵ2

by a succession of replacements of the forms (α ± q)tβ ←→ αt(β ± p) and
(α ± p)Tβ ←→ αT (β ± q). Mimicking these replacements on Ξ(ŵ1) with
(α ∓ q)tβ ←→ αt(β ± p) and (α ± p)Tβ ←→ αT (β ∓ q) (which are the correct
replacements in BS(p,−q)), yields exactly Ξ(ŵ2).

Since Ξ is an involution, the same argument applies to Ξ−1. It is also
length-preserving and hence maps geodesics to geodesics.

Note that Ξ does not respect lexicographic order. For example, the word

w = t64TT1T1TT (−2)T (−1) ∼ 50

in BS(2,3) is geodesic and minimal with respect to the lexicographic order
that we will formally introduce in Section 2.4. Yet,

Ξ(w) = t64TT1T (−1)TT2T (−1),
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which represents 50 in BS(2,−3), is not lexicographically minimal, since 50 ∼
t64TT1T1T1T (−1)T (−1) is smaller with respect to that order. However, if
N is a set of geodesic normal forms for BS(p, q), then Ξ(N) = {Ξ(w) ∶ w ∈ N}
is a set of geodesic normal forms for BS(p,−q). This shows:

Corollary 2.11. The growth series of BS(p, q) and BS(p,−q) coincide. The
same is true of the growth series of their horocyclic subgroups.

In particular, the growth series of BS(1,−q) and BS(p,−p) are rational
and known [CEG94, EJ92].

2.4 Horocyclic Elements and Slopes

The importance of the horocyclic subgroup for the computation of geodesics
has been highlighted by Freden et al. who for p ∣ q showed the rationality of
its growth series and how to compute it [FKS11]. Yet, for our later treatment
of the whole group BS(p, q), we need to know more about geodesic normal
forms, which is why we follow the slightly different approach of [DL11].

We postpone the case p = ∣q∣ to Section 2.8 and assume until then 0 < p <
∣q∣. This is a generalization of [DL11], where q > 0 is assumed.

Lemma 2.12. ([DL11], Lem. 1) Let w be a geodesic word corresponding to
some horocyclic element α ∈ Z ≃ ⟨a⟩ ≤ BS(p, q), where 0 < p < ∣q∣. Let k be
the number of t’s in w.

(i) w has the form
w = βkt . . . β1tα0Tα1 . . . Tαk.

(ii) The words

w1 = t
kα0T (α1 + β1) . . . T (αk + βk) and

w2 = (αk + βk)t . . . (α1 + β1)tα0T
k

are also geodesic representations of α.

(iii) If ∣α∣ ≥ 2 ∣q∣, there are geodesics that contain the letter t (which means
we can assume k ≥ 1 in (ii)).

Proof. We prove (iii) first. Choose γ, δ ∈ Z such that α = γ ⋅ q + δ, ∣γ∣ ≥ 2,
∣δ∣ < ∣q∣, and sign(δ) = sign(α) (where sign ∶ Z → {−1,0,+1} denotes the sign
of an integer). Then α ∼ t(γ ⋅ p)Tδ, and the length of this word is at most
∣α∣.

For (i) and (ii) we use induction on k. For k = 0, there is nothing to do.
Let k ≥ 1. We distinguish two cases to prove (i):
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1.) Assume that w = uv for two shorter horocyclic geodesic words u and v.
By induction, we can choose geodesics u2 (ending with T if possible)
and v1 (beginning with t if possible) and replace w = uv with u2v1.
Having the same length as uv, this word is also geodesic and thus
cannot be shortened, so at least one of the subwords u2, v1 does not
contain any t or T .

2.) If w is not a product of two non-empty horocyclic subwords, then we
have either w = tuT or w = Tut for some geodesic word u. In the first
case, (i) follows by induction. If w = Tut and k ≥ 2, using induction,
we choose a geodesic u1 ∼ u beginning with the letter t. The word
Tu1t ∼ w has the same length as w, but is not geodesic, leading to a
contradiction.
If w = Tut and k = 1, then, by Britton’s Lemma, u = (γ ⋅ q) for some
γ ∈ Z. But w = T (γ ⋅ q)t ∼ (γ ⋅ p) which is shorter, again contradicting
the assumption that w is geodesic.

Finally, (ii) follows from (i), since every subword tβ` . . . α`T of w is horocyclic
and thus commutes with the horocyclic elements β`+1 and α`+1.

Lemma 2.12 can be paraphrased in more geometric terms: geodesics of
horocyclic words do not branch into different sheets of the Cayley graph. In
this sense, for horocyclic elements, the pictures introduced in Section 2.3 are
almost exact depictions of the relevant cutouts of the Cayley graph. The
word w1 uses only the main sheet.

In order to define a geodesic normal form, we introduce an order on
strings.

Definition 2.13. The order <s is defined on the alphabet {a, a−1, t, t−1} via
t <s t−1 <s a <s a−1 and extended to the shortlex (sometimes called length-
lexicographical) order on {a, a−1, t, t−1}∗. More precisely, u <s v if and only
if either ∣u∣ < ∣v∣ or ∣u∣ = ∣v∣ and u is lexicographically smaller than v (i.e.,
u = xby and v = xcz with x, y, z ∈ {a, a−1, t, t−1}∗, b, c ∈ {a, a−1, t, t−1}, and
b <s c).

The shortlex normal form snf(g) of an element g ∈ BS(p, q) is a word
over {a, a−1, t, t−1} such that snf(g) ∼ g and among all such words, snf(g) is
minimal with respect to <s.

Shortlex normal forms are, by definition, geodesic normal forms. Note
that the isomorphism a↦ a, t↦ t−1 that was used for the assumption 0 < p ≤
∣q∣ (see Remark 2.2) is not compatible with the shortlex order <s. However,
the same algorithms for computing shortlex normal forms still work, if we
change t <s t−1 to t−1 <s t. This does no harm, as t <s t−1 <s a <s a−1 was
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an arbitrary choice in the first place. For many practical purposes (such as
computing growth) any geodesic normal form suffices.

If w is the shortlex normal form of a horocyclic word, then w equals the
word w1 from Lemma 2.12 (ii).

The next proposition generalizes Proposition 3 of [DL11] to negative q.

Proposition 2.14. Let w ∼ α ∈ Z ≃ ⟨a⟩ ≤ BS(p, q) (0 < p < ∣q∣) be a horocyclic
word.

(i) We can compute in linear time (Õ(∣w∣
2
) time on a Turing machine) a

number ` ∈ Θ(log ∣α∣) and a slope u such that

α ∼ t`α0t
−1ν1 . . . ν`−1t

−1ν`
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u

and ∣α0∣ < 2 ∣q∣ and ∣νi∣ < ∣q∣ for 1 ≤ i ≤ `.

(ii) snf(α) = t`snf(u)

Proof. Using Theorem 2.3 we compute the number α ∼ w (in binary notation)
within the time bound. We proceed by computing a string similar to snf(α),
but not quite geodesic. If ∣α∣ ≥ 2 ∣q∣, write α = µ ⋅ q + ν with µ, ν ∈ Z and
∣ν∣ < ∣q∣, where we choose the remainder ν to have the same sign as α (if ν is
non-zero). We have α ∼ t(µ ⋅ p)Tν. If ∣µ ⋅ p∣ ≥ 2 ∣q∣, we repeat this procedure
with µ ⋅ p in place of α. Iterating this, we end up with

α ∼ v ∶= t`α0Tν1 . . . ν`−1Tν`,

where

• ` ∈ Θ(log ∣α∣),

• αi ∶= µi ⋅ q + νi ∼ tiα0Tν1 . . . νi−1Tνi for 0 < i ≤ `,
αi = µi+1 ⋅ p for 0 ≤ i < ` and α` = α,

• ∣α0∣ < 2 ∣q∣, and

• ∣νi∣ < ∣q∣ and either νi = 0 or sign(νi) = sign(αi) = sign(q) ⋅ sign(αi−1) for
0 < i ≤ `.

This proves (i). The word v is depicted in Figure 2.6.
For (ii) we have to show that snf(α) starts with t`. Define vi to be the

subword tiα0Tν1 . . . νi−1Tνi ∼ αi. We prove by induction on i, that for every
α′ with ∣α′∣ ≥ ∣αi∣, the word snf(αi) starts with ti. Since α = α`, this completes
the proof.
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α` = α

µ` ⋅ q
α`−1 = µ` ⋅ p

µ`−1 ⋅ q
α`−2 = µ`−1 ⋅ p

µ`−2 ⋅ q

α1 = µ2 ⋅ p

µ1 ⋅ q

α0 = µ1 ⋅ p

ν1

ν`−2

ν`−1

ν`

Figure 2.6: The precomputed word from Proposition 2.14

For i = 0 there is nothing to do, so let i ≥ 1. Since ∣α′∣ ≥ ∣αi∣ ≥ 2 ∣q∣, it
follows from Lemma 2.12 that

snf(α′) = ti
′

γ0Tγ1 . . . γi′−1Tγi′

for some i′ ≥ 1 and some γ0, . . . , γi′ ∈ Z. Since snf(α′) is geodesic, ∣γj ∣ < ∣q∣
for 1 ≤ j ≤ i′, or else the word could be shortened by replacing the subword
γj−1Tγj by (γj−1 ± p)T (γj ∓ q). We have α′ = µ′ ⋅ q + γi′ for some µ′ ∈ Z. From
∣α′∣ ≥ ∣αi∣, αi = µi ⋅ q + νi, and the choice of νi we deduce ∣µ′∣ ≥ ∣µi∣, hence
∣µ′ ⋅ p∣ ≥ ∣αi−1∣. By induction, snf(µ′ ⋅ p) begins with ti−1, thus snf(α′) starts
with ti.

The underlying idea of the next proposition is that the shortlex normal
form of a horocyclic element α does not differ much from the word t`u com-
puted in Proposition 2.14. Basically, the only point where we might have
gone wrong there, was the choice of νi based on the sign instead of the
length of the resulting word. In terms of complexity, however, the main work
is done. Starting from the already computed slope u, we find the shortlex
normal form in linear time (even on a Turing machine) using a dynamic pro-
gramming approach. We start with a lemma about the shape of shortlex
normal forms of slopes.

Lemma 2.15. Let u be a slope of height ` in BS(p, q) with 0 < p < ∣q∣. Then

snf(u) = tkβk+`Tβk+`−1 . . . β1Tβ0

with ∣βk+`∣ < 2 ∣q∣ and ∣βi∣ < ∣q∣ for 0 ≤ i < k + `.
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Proof. Performing Britton reductions on snf(u), we get a Britton-reduced
slope w = γTβ`−1 . . . β1Tβ0 with the same height as u. By Proposition 2.8,
we have

snf(u) = snf(γ)T snf(β`−1) . . . snf(β1)T snf(β0).

For i < `, snf(βi) contains no t, or else, by Lemma 2.12 (ii), it would start
with a t, making Tt a subword of snf(u). Hence, snf(βi) = βi. Furthermore,
if ∣βi∣ ≥ ∣q∣, the subword βi+1Tβi of snf(u) could be replaced by the shorter
word (βi+1 ±p)T (βi ∓ q). Thus, ∣βi∣ < q for i < `. The rest follows by applying
Lemma 2.12 (ii) to γ.

Proposition 2.16. ([DL11], Prop. 4 and Cor. 7) Let 0 < p < ∣q∣.

(i) There is a linear time algorithm (on a Turing machine) which, given a
slope

u = α0Tα1 . . . α`−1Tα`

with ∣α0∣ < 2 ∣q∣ and ∣αi∣ < ∣q∣ for 1 ≤ i ≤ `, computes snf(u).

(ii) The set of shortlex normal forms of slopes is regular.

Proof. We give the proof in two parts. First, we describe a polynomial (but
not linear) time algorithm for finding snf(u). In the second part, we improve
this algorithm in such a way that it needs only a constant amount of memory
which leads us to (i) and (ii). A reader who is only interested in polynomial
time results, can skip the second part.

Let r be the smallest positive integer such that

r ≥ p ⋅
r + ∣q∣ − 1

∣q∣
+ ∣q∣ − 1.

For each 0 ≤ i ≤ ` and γ ∈ Z we define the word

u(i, γ) ∶= α0Tα1 . . . αi−1Tγ.

We will show how to compute snf(u(i, γ)) for ∣γ∣ ≤ r, assuming we already
know all the words snf(u(i − 1, γ′)) with ∣γ′∣ ≤ r. Since u = u(`, α`) and
∣α`∣ ≤ ∣q∣ − 1 ≤ r, we obtain snf(u) after the `-th iteration.

Precompute snf(u(0, γ)) = snf(γ) for ∣γ∣ ≤ r + ∣q∣. This can be done
beforehand and the result hard-wired into the algorithm. Now, let i ≥ 1.
According to Lemma 2.15, the word snf(u(i, γ)) ends with Tρ for some ρ ∈ Z
with ∣ρ∣ < ∣q∣ and, by Proposition 2.6, ρ ≡ γ mod q. Thus, we have

snf(u(i, γ)) = min{snf(u(i − 1, αi−1 + ρ
′))Tρ ∶ ρ ≡ γ mod q,

∣ρ∣ < ∣q∣ ,

ρ′ = p ⋅
γ − ρ

q
} ,
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where the minimum is taken with respect to the shortlex order <s. Note that
there are at most two choices for ρ. Because of

∣ρ′ + αi−1∣ ≤ p ⋅
∣γ∣ + ∣ρ∣

∣q∣
+ ∣αi−1∣ ≤ p ⋅

r + ∣q∣ − 1

∣q∣
+ ∣αi−1∣ ≤

⎧⎪⎪
⎨
⎪⎪⎩

r if i > 1,

r + ∣q∣ if i = 1,

the word snf(u(i − 1, αi−1 + ρ′)) is among those computed in the previous
iteration. This completes the description of the algorithm. A demonstration
of the algorithm can be found in Example 2.18.

The algorithm described above needs quadratic time on a Turing machine.
In each of the linearly many iterations, we have to compute a constant num-
ber of geodesics, each of which has linear length. For each computation we
have to compare two words. All the necessary arithmetic operations only
concern integers bounded by a constant.

In order to achieve linear time, we observe that

∣ ∣snf(u(i, γ))∣ − ∣snf(u(i, γ′))∣ ∣ ≤ 2r

for ∣γ∣ , ∣γ′∣ ≤ r. This is true in general: multiplying an element by a gener-
ator can change the geodesic length at most by one. If we split each word
snf(u(i, γ)) into

snf(u(i, γ)) = vi,γ wi,γ

with ∣vi,γ ∣ = min{∣snf(u(i, δ))∣ ∶ ∣δ∣ ≤ r}, we have ∣wi,γ ∣ ≤ 2r. Now we modify
the algorithm in such a way that after the i-th iteration, instead of all the
words snf(u(i, γ)) we only store the following information:

• wi,γ for ∣γ∣ ≤ r and

• the lexicographical order of the vi,γ (this coincides with the shortlex
order since they all have the same length).

This information only takes a constant amount of space. If, during the
minimum search, we have to compare snf(u(i−1, γ))Tρ and snf(u(i−1, δ))Tτ ,
we first compare their lengths by looking at the lengths of wi−1,γTρ and
wi−1,δTτ . If they are equal, we check the lexicographic order of vi−1,γ and
vi−1,δ. If vi−1,γ = vi−1,δ, we finally compare wi−1,γTρ and wi−1,δTτ . All of this
takes constant time and uses only the available data.

The length of the shortest word among the snf(u(i, γ)) (∣γ∣ ≤ r) strictly
increases in each iteration, since a factor Tρ is appended. After each itera-
tion, we cut prefixes of the same length off the computed words in order to
get new suffixes wi,γ with length at most 2r. The prefixes that have been
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cut off are used to update the lexicographic order. In order to permit recon-
struction of the word afterwards, we print them out, along with the positions
ρ′ + αi−1 where the minimum was attained. In other words, the output of
the algorithm consists of a sequence (ci)i of tuples ci = (xiγ, τ

i
γ)γ, such that

snf(u(i, γ)) = snf(u(i−1, τ iγ))x
i
γ for each ∣γ∣ ≤ r. In the last tuple c`, we write

all the remaining w`,γ.
An application of this algorithm to a concrete word can be found in the

second part of Example 2.18. There we visualize the output as a matrix,
where the columns are the tuples ci. The result snf(u) = snf(u(`, α`)) can
be recovered from right to left by starting at x`α`

and following the pointer
τ `α`

to the appropriate entry in the previous column and so on.
Having reduced the space needed by the algorithm to a constant, every

iteration only takes constant time. This proves (i). If, as in (ii), the task is
only to recognize shortlex normal forms instead of computing them, we can
omit the second step of going backwards through the output. Instead, we
monitor which of the potential outputs correspond to the input string. This
one-pass Turing machine translates to a finite automaton.

Combining Propositions 2.14 and 2.16 (i), we get:

Theorem 2.17. (cf. [DL11], Cor. 5) Let 0 < p < ∣q∣. The shortlex normal
form of a horocyclic word in BS(p, q) can be computed in linear time (Õ(n2)
time on a Turing machine).

Example 2.18. In order to illustrate the quite technical constructions leading
to Theorem 2.17, we apply them to an example. Let p = 2, q = 3 and α = 22.
The algorithm from Proposition 2.14 yields

22 ∼ t3 4T2T2T1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u

.

We have r = 10. Figure 2.7 shows the result of the simpler version of the
algorithm from Proposition 2.16. The first column contains the precomputed
shortlex normal forms of u(0, γ) = γ for ∣γ∣ ≤ r + ∣q∣ = 13. As an example of
how to compute the other entries, let us take a closer look at snf(u(2,4)) =
snf(4T2T4). The choices for ρ ≡ 4 mod 3 are 1 and −2, resulting in

snf(4T2T4) = min{snf(4T4)T1, snf(4T6)T (−2)}

= min{4TT1T1, 4T2TT (−2)}

= 4TT1T1.

Having computed all the other entries of the table in a similar way, we
get snf(u) = t4TT1T (−1)T1 and the final result:

snf(22) = t3snf(u) = tttt4TT1T (−1)T1 = ttttaaaaTTaTATa
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γ snf(u(0, γ)) snf(u(1, γ)) snf(u(2, γ)) snf(u(3, γ))

−13 tt(−4)T (−2)T (−1)
−12 tt(−4)T (−2)T
−11 tt(−4)TT (−2)
−10 tt(−4)TT (−1) (−2)T (−1) TT2 2T1TT2
−9 tt(−4)TT (−2)T T2T 2T1T2T
−8 t(−4)T (−2) T (−2) T2T1 2T1T2T1
−7 t(−4)T (−1) T (−1) T2T2 4TT1T (−1)
−6 t(−4)T T 2T1T 4TT1T
−5 −5 T1 2T1T1 4TT1T1
−4 −4 T2 2T1T2 4TT1T2
−3 −3 2T 4TT 4T2TT
−2 −2 2T1 4TT1 4T2TT1
−1 −1 2T2 4TT2 4T2TT2

0 4T 4T2T t4TT1T (−1)T
1 1 4T1 4T2T1 t4TT1T(−1)T1
2 2 4T2 t4TT1T (−1) t4TT1T1T (−1)
3 3 t4TT t4TT1T t4TT1T1T
4 4 t4TT1 t4TT1T1 t4TT1T1T1
5 5 t4TT2 t4TT1T2 t4T2TTT (−1)
6 t4T t4T2T t4T2TT t4T2TTT
7 t4T1 t4T2T1 t4T2TT1 t4T2TTT1
8 t4T2 tt4TT1T (−1) t4T2TT2 t4T2TTT2
9 tt4TT tt4TT1T tt4TT1T (−1)T t4T2TT2T

10 tt4TT1 tt4TT1T1 tt4TT1T (−1)T1 t4T2TT2T1
11 tt4TT2
12 tt4T2T
13 tt4T2T1

Figure 2.7: Results of the algorithm for the slope u = 4T2T2T1

The output of the linear time version of the algorithm is shown in Fig-
ure 2.8. After the words snf(u(1, γ)) are computed in the same way as before,
the first letter of each word is cut off and printed out, giving the column i = 1.
After the second iteration, a further three letters are cut off and printed, along
with the indices indicating where the minimum was attained. For example,
the tuple (3,2) at i = 2, γ = 1 tells us, that

snf(u(2,1)) = snf(4T2T1) = [entry at i = 1, γ = 2]3w2,1 = 4w2,1.
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γ i = 1 i = 2 i = 3

−10 (−1) (T2, −6) (TT2, −6)
−9 (−1) (2T, −4) (T2T, −4)
−8 T (2T, −4) (T2T1, −4)
−7 T (2T, −4) (TT1T (−1), −2)
−6 T (1T1, −2) (TT1T, −2)
−5 T (1T1, −2) (TT1T1, −2)
−4 T (1T1, −2) (TT1T2, −2)
−3 1 (3, 0) (T2TT, 0)
−2 1 (3, 0) (T2TT1, 0)
−1 1 (3, 0) (T2TT2, 0)

0 1 (3, 2) (1TT1T (−1)T, 2)
1 1 (3, 2) (1TT1T(−1)T1, 2)
2 1 (3, 4) (1TT1T1T (−1), 4)
3 t (3, 4) (1TT1T1T, 4)
4 t (3, 4) (1TT1T1T1, 4)
5 t (3, 4) (1T2TTT (−1), 6)
6 t (3, 6) (1T2TTT, 6)
7 t (3, 6) (1T2TTT1, 6)
8 t (3, 6) (1T2TTT2, 6)
9 t (t2, 8) (1T2TT2T, 8)

10 t (t2, 8) (1T2TT2T1, 8)

Figure 2.8: Output of the linear time algorithm for the slope u = 4T2T2T1

Corollary 2.19. ([DL11], Cor. 7) If 0 < p < ∣q∣ and p divides q, then the set
of shortlex normal forms of horocyclic elements in BS(p, q) is a deterministic
linear context-free language. The growth series of the horocyclic subgroup of
BS(p, q) is rational.

Proof. The language of shortlex normal forms of horocyclic elements is the
intersection of the following sets:

1.) {w ∶ the number of t’s in w equals the number of T ’s}

2.) {tkα0Tα1 . . . Tαk ∶ p divides αi for 0 ≤ i < k}

3.) {tksnf(u) ∶ u is a slope}

The first language is recognized by a deterministic one-turn pushdown au-
tomaton (see [Har78], Sect. 5.7). The second one is regular and ensures



40 CHAPTER 2. BAUMSLAG-SOLITAR GROUPS

horocyclicity. This is where we need the assumption p ∣ q. The regularity of
the third language was shown in Proposition 2.16 (ii).

Having an unambiguous linear context-free grammar for a set of geodesic
normal forms, the rationality of the growth series follows from the Chomsky-
Schützenberger theorem [CS63, Kui70].

Corollary 2.19 was first proved in [FKS11]. However, Proposition 2.16 is
stronger than the corresponding result there, since it also applies to p ∤ q. We
need the assumption p ∣ q only to check horocyclicity. For this, however, p ∣ q
is necessary, see Theorem 7.2 in [FKS11]. In addition to that, we have given
a linear time algorithm for computing geodesic normal forms of horocyclic
elements. For p = 1, this has been done before in [Eld10]. Corollary 6.3 in
[FKS11] gives a quadratic time acceptor for another set of geodesic normal
forms for the horocyclic subgroup of BS(p, q).

2.4.1 Horocyclic Growth in BS(2,3)

The first case where Corollary 2.19 does not apply is p = 2, q = 3. It is still
unknown whether the growth series of the horocyclic subgroup of BS(2,3)
is rational or not. Usually, irrationality is conjectured [EJ92, FKS11]. In
[FKS11], Freden et al. base this conjecture on some undisclosed experimen-
tation. Using the algorithm developed in Section 2.4, we show:

Result 2.20. If the growth series of the horocyclic subgroup of BS(2,3) is
rational, its total degree is at least 70.

The total degree of a rational function r is

tdeg(r) = min{max{deg f,deg g} ∶ f, g polynomials, r = f/g}.

In order to get this result, we use two lemmas:

Lemma 2.21. If some growth series S(z) = ∑n≥0Bnzn is rational and its
total degree is smaller than k, then the following system of linear equations
has a solution:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Bk Bk−1 . . . B2 B1

Bk+1 Bk B2

⋮ ⋱ ⋮
B2k−2 Bk Bk−1

B2k−1 B2k−2 . . . Bk+1 Bk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
q1

⋮
qk−2

qk−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 (2.1)
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Proof. Assume that S(z) = p(z)/q(z) for two polynomials p, q with deg p,deg q <
k. We write

p(z) =
k−1

∑
i=0

piz
i and q(z) = 1 +

k−1

∑
i=1

qiz
i.

The equation S(z) = p(z)/q(z) can be rewritten as S(z)⋅q(z) = p(z). Comparing
the coefficients of zk, . . . , z2k−1 leads to Equation 2.1.

Lemma 2.22. Let w be a geodesic word representing the horocyclic element
α > 0 in BS(2,3). Then

α ≤ 8 ⋅ (3/2)⌊
∣w∣/2⌋−1.

Proof. According to Lemma 2.12, we have w = βkt . . . β1tα0t−1α1 . . . t−1αk
with α0 ≥ 2, so the number of t’s in w is bounded by k = ⌊∣w∣−2/2⌋. Furthermore,
we have α0 ≤ 4 (since α0 = 6 could be replaced by t4t−1) and αi < 3 for i > 0.
Thus,

α ≤ (. . .((4 ⋅
3

2
+ 2) ⋅

3

2
+ 2) ⋅

3

2
+ 2 . . .) ⋅

3

2
+ 2 ≤ 8 ⋅ (3/2)k.

Algorithm 5.1 in the appendix is an implementation (for p = 2, q = 3) of
the procedure developed in Section 2.4. It computes the geodesic lengths of
horocyclic elements up to 8 ⋅ (3/2)k−2 for k = 70 and then counts how many
of each length between 0 and 2k − 1 = 139 occur. Since the geodesic length
of the horocyclic element α is the same as that of −α (replace a by a−1 in
the geodesic), only geodesics of positive integers need to be computed, and
we get the coefficients Bn (n ≥ 1) of the growth series by doubling these
numbers. Finally, the unsolvability of the equation in Lemma 2.21 is verified
using the computer algebra system Maple.

Although Result 2.20 by no means proves irrationality, it might be con-
sidered (albeit weak) evidence, particularly by contrast with the compara-
tively small degrees of the horocyclic growth series of other Baumslag-Solitar
groups:

Result 2.23.

group horocyclic growth series total degree

BS(1,3)
1 + 2z + z2 − 2z3 − 2z4

1 − z2 − 2z3
4

BS(2,4)
1 + 2z + z2 − 2z7 − 2z8

1 − z2 − 2z6
8 (cf. [FKS11], Sect. 5)

BS(q, q)
1 + z

1 − z
1
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2.5 Peak Normal Forms

In this section we introduce a geodesic normal form for all elements of the
group BS(p, q). It differs from the shortlex normal form used for horocyclic
elements in that it is more symmetric. For example, take a Britton-reduced
hill

w = αktαk−1 . . . α1t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u

α0 Tβ1 . . . β`−1Tβ`
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

v

.

For a reasonably symmetric normal form of w, one would expect that the
subwords corresponding to u and v−1 are both normal forms of the same type
(for example shortlex normal forms). This is the case for the Britton peak
normal form which we are going to introduce shortly. We start by defining
the peak of a Britton-reduced word.

Definition 2.24. Let w = α0tε1α1 . . . αn−1tεnαn be a Britton-reduced word.
We define the level of a position 0 ≤ i ≤ n by

lev(0) = 0 and lev(i + 1) = lev(i) + εi+1.

The peak of w is the maximum (rightmost) position among those of maxi-
mum level.

The motivation for the notion of level is obvious from the graphical rep-
resentation. An example can be found in Figure 2.9. The peak is actually a
property of the group element rather than the particular word w, since the
peaks of any two Britton-reduced words w1 ∼ w2 coincide. The choice of the
peak as the rightmost among all potential peaks is somewhat arbitrary, yet
a simple way of avoiding ambiguity.

-2

-1

0

1
peak

Figure 2.9: Levels and peak of a Britton-reduced word

In the next definition, we use the norm

∥α0t
ε1α1 . . . αn−1t

εnαn∥ = n +
n

∑
i=0

∣snf(αi)∣



2.6. HILLS AND DIFFICULT WORDS 43

from Definition 2.9.

Definition 2.25. Let w1 = α0tε1α1 . . . αk−1tεkαk and w2 = β0tε1β1 . . . β`−1tε`β`
be Britton-reduced words with i and j being the peaks of w1 and w2, respec-
tively. Let w1 = u1αiv1 and w2 = u2βjv2 be the factorizations of w1 and w2

into the parts to the left and to the right of their peaks. We define w1 <p w2

if and only if

(i) ∥w1∥ < ∥w2∥ or

(ii) ∥w1∥ = ∥w2∥ and u1 <s u2 or

(iii) ∥w1∥ = ∥w2∥ and u1 = u2 and v−1
1 <s v−1

2 (v−1 denotes the word v read
from right to left with every letter replaced by its inverse) or

(iv) ∥w1∥ = ∥w2∥ and u1 = u2 and v1 = v2 and αi <s βj.

The Britton peak normal form of w (Bpnf(w)) is the minimal word with
respect to <p among all Britton-reduced words w′ with w′ ∼ w.

If Bpnf(w) = α0tε1α1 . . . αk−1tεkαk, then

pnf(w) ∶= snf(α0)t
ε1snf(α1) . . . snf(αk−1)t

εksnf(αk)

is called the peak normal form of w.

Both Britton peak normal forms and peak normal forms are normal forms
in the sense that there is exactly one such word for each group element. If
Condition (iv) is omitted, <p becomes a partial order on Britton-reduced
words, but it remains a total order inside the equivalence classes given by
the group relator, thus defining the same normal forms. By definition, peak
normal forms are geodesics (cf. Proposition 2.8).

If w = α0tε1α1 . . . αn−1tεnαn is a Britton peak normal form, then snf(αi) =
αi whenever εi = −1 or εi+1 = +1. In other words, apart from horocyclic
elements on “hilltops”, Britton peak normal forms are already geodesics.

Since shortlex normal forms of horocyclic element can be computed in
linear time, our real concern is to find Britton peak normal forms. We use ∥w∥
as a measure of the length of an input word w ∈ {t, T}∗Z, since for horocyclic
elements α ∈ Z, ∣snf(α)∣ ∈ Θ(log ∣α∣). Hence ∥w∥ is (asymptotically) the
length of the word w with the integers written in binary.

2.6 Hills and Difficult Words

When computing geodesics for slopes, the idea was roughly to go from bottom
to top and propagate upwards as many a’s (or a−1’s) as possible. Obviously,
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things are not as easy when we have a word like αTβtγ with two possibilities
of “going up” from the position of β. This motivates the following definition.

Definition 2.26. A Britton-reduced word w = α0tε1α1 . . . αn−1tεnαn is called
difficult, if ε1 = −1 and εn = +1.

For every Britton-reduced word w, there is a unique factorization

w = αktαk−1 . . . α1tDTβ1 . . . β`−1Tβ`,

such that D is either difficult or horocyclic. In the latter case, w is a hill.
An example is shown in Figure 2.10.

αk

αk−1

α1

D

β1

β`−1

β`

Figure 2.10: Factorization of a word

For the next proposition, let DT (d) be an upper bound on the time
needed for computing the Britton peak normal form of any difficult word D
with ∥D∥ ≤ d. Later in this chapter we will prove DT (d) ∈ O(d3) for the case
p ∣ q.

Proposition 2.27. ([DL11], Thm. 9)
Let w = αktαk−1 . . . α1tDTβ1 . . . β`−1Tβ` be a Britton-reduced word, where D
is either horocyclic or difficult.

1.) If D is horocyclic, then Bpnf(w) can be computed in O(∥w∥) time.

2.) If D is difficult, then Bpnf(w) can be computed in

O(DT (∥D∥ +C ⋅ (max{∥αi∥ , ∥βj∥} + 1)) + ∥w∥
2
)

time, for some constant C depending only on p and q.
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If DT is polynomial, for example DT (d) = dm (m ≥ 2), the time bound
from this proposition simplifies to O(∥w∥

m
).

To a large degree, the proof resembles that of Proposition 2.16 (the anal-
ogous result for slopes). For this reason, we skip some of the details. Fig-
ure 2.11 shows the word w.

αk

αk−1

α1

D

β1

β`−1

β`

Figure 2.11: Input for the algorithm from Proposition 2.27

Proof. After some replacements of the form γtδ Ð→ (γ∓q)t(δ±p) or γTδ Ð→
(γ ± p)T (δ ∓ q), we may assume that 0 ≤ ∣αi∣ , ∣βj ∣ < ∣q∣ for 1 ≤ i ≤ k, 1 ≤ j ≤ `.
This preprocessing takesO(∥w∥) time. Due to these replacements, ∥D∥ might
increase by up to O(max{∥αi∥ , ∥βj∥}). In case 1.) we have a linear time
algorithm for D, so this does not matter. For 2.), it suffices to prove the
time bound O(DT (∥D∥ +C) + ∥w∥

2
) for the new word.

As we did for slopes, we define subwords of w, but this time with four
parameters:

w(i, j, γ, δ) = γtαi−1 . . . α1tDTβ1 . . . βj−1Tδ

We prove by induction on i + j that pnf(w(i, j, γ, δ)) can be computed for
all ∣γ∣ , ∣δ∣ ≤ r within in the time bound. As before, r is the smallest natural

number such that r ≥ p ⋅ r+∣q∣−1
q + ∣q∣ − 1.

For i + j = 0, we need to compute the Britton peak normal form of γDδ.
If D is horocyclic, nothing needs to be done. If D is difficult, we need
DT (∥γDδ∥) ≤DT (∥D∥ + ∥2r∥) time.

Let i + j ≥ 1. Note that the peak is inside D. If i ≥ 1 (j ≥ 1 is similar),
we compute Bpnf(w(i, j, γ, δ)) using the words Bpnf(w(i − 1, j, τ, δ)) with
∣τ ∣ ≤ r. Since Bpnf(w(i, j, γ, δ)) starts with ρt for some ρ ≡ γ mod q with
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∣ρ∣ < ∣q∣, we have

Bpnf(w(i, j, γ, δ)) = min{ρtBpnf(w(i − 1, j, ρ′ + αi−1, δ)) ∶ ρ ≡ γ mod q,

∣ρ∣ < ∣q∣ ,

ρ′ = p ⋅
γ − ρ

q
},

where min refers to the order <p. The choice of r ensures ∣ρ′ + αi−1∣ ≤ r. Each
comparison takes O(∥w∥) time, resulting in the claimed time bound for the
entire algorithm.

Let D be horocyclic. In order to eliminate the square from the term
∥w∥

2
, we optimize the algorithm using a similar idea as in the procedure for

slopes. To make things easier, we assume that in the algorithm described
above, we do all the steps on the left-hand side first (in other words, compute
Bpnf(w(k,0, αk, δ))) and only after that we process the right-hand side.

The first part can be done independently for each δ. We store the dif-
ferences of the norms of the words Bpnf(w(i,0, γ, δ)) (for ∣γ∣ ≤ r), their
order with respect to <p, and the differences of the lengths of their sub-
words left of the peak. Using only this constant amount of data, we can
compare ρtBpnf(w(i,0, γ, δ)) and ρ′tBpnf(w(i,0, γ′, δ)) in constant time:
first, we look at the difference between ∥ρ∥ + ∥Bpnf(w(i,0, γ, δ))∥ and ∥ρ′∥ +
∥Bpnf(w(i,0, γ′, δ))∥, second, at the length differences of the subwords left
of the peak, then we compare ρt and ρ′t using <p, and finally we look at the
<p order of Bpnf(w(i,0, γ, δ)) and Bpnf(w(i,0, γ′, δ)).

Having found Bpnf(w(i + 1,0, γ, δ)) for all ∣γ∣ ≤ r, we update the infor-
mation in constant time. For i = 0, the necessary data can be computed in
O(∥w∥) time. A similar approach works for the right-hand side, where we
compare words like Bpnf(w(k, j, αk, δ))Tρ and Bpnf(w(k, j, αk, δ′))Tρ′.

Remark 2.28. For horocyclic elements we have shown that the linear time
(and constant space) algorithm can be turned into a deterministic one-turn
pushdown automaton, thus proving rationality of the horocyclic growth se-
ries. Something similar can be done for hills. However, since this is rather
technical and we never use that statement in this thesis, we leave the details
to the interested reader.

So far, we have solved the problem of computing peak normal forms for
hills and reduced the general task to the case of difficult words. This is as
far as we get for arbitrary p and q. In the next section we restrict ourselves
to the case where p divides q and solve the remaining problem under this
assumption.
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2.7 Geodesics in BS(p, q) with p ∣ q

Throughout this section, we assume that p divides q. We deviate slightly
from [DL11] in favor of a clearer exposition. We start with the case where
the input word is a valley and then extend our solution to difficult words.

Definition 2.29. In a Britton-reduced word w = α0tε1α1 . . . αn−1tεnαn, a po-
sition 0 ≤ i ≤ n is called a sink, if εi ≠ +1 and εi+1 ≠ −1. The number of sinks
in w is denoted sk(w).

The position i = 0 is a sink if n = 0 or ε1 = +1. The number sk(w) is
bounded by ⌊n/2⌋ + 1 ∈ O(∥w∥).

Recall that a Britton-reduced valley is a word, in which every position has
level ≤ 0 and the last position has level 0. Valleys will play a crucial role in
the algorithms developed in this section. The next lemma is the main reason
why the problem of finding geodesic normal forms becomes easier when p ∣ q.

Lemma 2.30. ([DL11], Lem. 13) Let p ∣ q and v be a valley. Then vp ∼ pv.

Proof. A Britton-reduced valley is either horocyclic or a concatenation of two
(non-empty) valleys or it has the form Tut for some valley u. If v = α ∈ Z,
the claim is obvious. If v = uw for two valleys u and w, then, by induction,
uwp ∼ upw ∼ puw. Finally, if v = Tut, then

vp = Tutp

∼ Tuqt

∼ Tqut (by induction, since p ∣ q)

∼ pTut = pv.

Valleys always have their peak at the last position. This makes the de-
scription of the order <p particularly simple: For two Britton-reduced valleys
v1α1 and v2α2, where v1 and v2 end with the letter t (if they are non-empty),
we have v1α1 <p v2α2 if either ∥v1α1∥ < ∥v2α2∥ or ∥v1α1∥ = ∥v2α2∥ and v1 <s v2

or ∥v1α1∥ = ∥v2α2∥ and v1 = v2 and α1 <s α2.

Definition 2.31. A Britton-reduced valley V = α0tε1α1 . . . αn−1tεnαn is called
a standard valley if αn = 0 and ∣αi∣ < 2 ∣q∣ for 0 ≤ i < n.

Proposition 2.32. ([DL11], Lem. 14) For every Britton-reduced valley v,
there is a standard valley V and an integer γ ∈ Z with v ∼ V γ and V γ ≤p v.
Given v, such V and γ can be found in O(∥v∥) time.
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Proof. We use induction on the structure of v to find V and γ:

1.) For v = α ∈ Z, take V = 0 and γ = α.

2.) Let v = uw, where u and w are shorter valleys and u ends with t. By
induction, we find a standard valley U and an integer β with u ∼ Uβ and
Uβ ≤p u. Applying induction a second time, we get a standard valley
W and an integer γ such that βw ∼ Wγ and Wγ ≤p βw. Defining
V ∶= UW , we get v = uw ∼ Uβw ∼ UWγ = V γ. Since the partition
of v into u and w does not cut through a horocyclic element, we have
v = uw ≥p Uβw ≥p UWγ = V γ.

3.) Finally, let v = αTut for some valley u. If ∣α∣ ≥ 2 ∣q∣, then snf(α)
contains the letter t and has the form snf(α) = t snf(ζ ⋅ p)Tα′ with
∣α′∣ < ∣q∣. We define v′ ∶= α′Tut(ζ ⋅ q). Since p ∣ ζ ⋅ q, v ∼ v′. Moreover,
snf(ζ ⋅ q) = tsnf(ζ ⋅ p)T and therefore

∥v∥ = ∥αTut∥ = ∣snf(α)∣ + ∥Tut∥ = ∣t snf(ζ ⋅ p)Tα′∣ + ∥Tut∥

= ∣α′∣ + ∥Tut∥ + ∣t snf(ζ ⋅ p)T ∣ = ∥v′∥ .

Together with v′ ≤s v, this implies v′ ≤p v. We replace v with v′ and
from now on assume that v = αTutβ with ∣α∣ < 2 ∣q∣.

By induction, u ∼ Uδ and u ≥p Uδ for some standard valley U and
δ ∈ Z. If ∣δ∣ < 2 ∣q∣, V ∶= αTUδt is a standard valley and we take
γ ∶= β. Otherwise, snf(δ) = t snf(µ ⋅ p)Tν with ∣ν∣ < ∣q∣. We have
v = αtuTβ ∼ αtUδtβ ∼ αtUνT (µ ⋅ p + β) =∶ v′. Again, we get v′ ≤p v.
We define V to be the standard valley αtUνT and γ ∶= µ ⋅ p + β, which
completes the proof.

Proposition 2.32 implies that Britton peak normal forms of valleys are
standard valleys with some integer appended. The next lemma restricts the
set of possible integers, thereby preparing the ground for a dynamic program-
ming approach. We define a constant r similar to the one in Section 2.4. Let
r be the smallest positive integer such that

r ≥ p ⋅
r + 4 ∣q∣ − 2

∣q∣
+ 4 ∣q∣ − 2.

Lemma 2.33. (cf. [DL11], Lem. 14) Let V be a standard valley. We define
a set of integers

R(V ) = pZ ∩ {ρ ∈ Z ∶ ∣ρ∣ ≤ r ⋅ sk(V )}.
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For any integer ρ ∈ Z and any standard valley Vρ such that V ∼ Vρ ρ, we have
ρ ∈ R(V ).

Proof. We prove the claim by structural induction on V .

1.) If V = 0, then necessarily ρ = 0 ∈ R(V ).

2.) Let V = UW be the product of two shorter non-zero standard valleys.
We claim that ρ = σ + τ for some σ ∈ R(U) and τ ∈ R(W ). Note that
sk(V ) = sk(U) + sk(W ), so the bound holds.
We can split Vρ into two standard valleys U ′,W ′ in such a way that
U ∼ U ′ζ and ζW ∼W ′ρ. By induction, this implies ζ ∈ R(U) ⊆ pZ, soW
and ζ commute. Therefore, W ∼W ′(ρ−ζ) and hence τ ∶= ρ−ζ ∈ R(W ).

3.) Let V = αTUβt with ∣α∣ , ∣β∣ < 2 ∣q∣. Write Vρ = α′TU ′β′t with ∣α′∣ , ∣β′∣ <
2 ∣q∣ and U ′ a standard valley. Necessarily, there are µ,σ, ζ ∈ Z such
that α = µ ⋅ p + α′, (µ ⋅ q)U ∼ U ′σ, σ + β = ζ ⋅ q + β′, and ζ ⋅ p = ρ. Since
µ ⋅ q and U commute, we have U ∼ U ′(σ − µ ⋅ q) and, by induction,
σ − µ ⋅ q ∈ R(U). Since sk(U) = sk(V ), we obtain

∣ρ∣ ≤ p ⋅ ∣ζ ∣ ≤ p ⋅
∣σ∣ + ∣β − β′∣

∣q∣
≤ p ⋅

∣σ − µ ⋅ q∣ + ∣µ ⋅ q∣ + ∣β − β′∣

∣q∣

≤ p ⋅
r ⋅ sk(U) + 4 ∣q∣ − 2

∣q∣
+ ∣α − α′∣ ≤ p ⋅

r ⋅ sk(U) + 4 ∣q∣ − 2

∣q∣
+ 4 ∣q∣ − 2

≤ sk(U) ⋅ (p ⋅
r + 4 ∣q∣ − 2

∣q∣
+ 4 ∣q∣ − 2) ≤ r ⋅ sk(U) = r ⋅ sk(V ).

For each ρ ∈ R(V ) there may be several standard valleys Vρ such that
V ∼ Vρ ρ. We have to find the one that is minimal with respect to <p. With
the help of Lemma 2.33, it is not particularly difficult to do this in polynomial
time. Note that the time bound in [DL11] is overly optimistic. We prove a
cubic bound here.

Proposition 2.34. There is an O(sk(V )⋅∥V ∥
2
) time algorithm, which, given

a standard valley V , computes for every ρ ∈ R(V ) the word

Vρ = min{U ∶ U is a standard valley with V ∼ Uρ}.

The minimum is taken with respect to <p. For some ρ ∈ R(V ), we might have
Vρ = min∅, in which case Vρ remains undefined.
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Proof. We prove the time bound C ⋅ sk(V ) ⋅ ∥V ∥
2

(for some sufficiently large
constant C) using the same kind of induction as we did in the proof of
Lemma 2.33.

1.) If V = 0, then V0 = 0. For ρ ≠ 0, Vρ does not exist.

2.) Let V = UW for two shorter non-zero standard valleys U and W . By
Lemma 2.33, we have

Vρ = min{UσWτ ∶ σ ∈ R(U), τ ∈ R(W ), σ + τ = ρ}.

There are ∣R(V )∣ ∈ O(sk(V )) = O(sk(U) + sk(W )) many values for ρ
that we have to consider. For each ρ, we have to find the minimum
among min{∣R(U)∣ , ∣R(W )∣} ∈ O(min{sk(U), sk(W )}) words, which
takes the same number of comparisons. For each comparison, we need
O(∥U∥ + ∥W ∥) time. Recursively computing the Uσ and Wτ takes C ⋅
sk(U) ⋅ ∥U∥

2
+C ⋅ sk(W ) ⋅ ∥W ∥

2
time. This adds up to

O((sk(U) + sk(W )) ⋅min{sk(U), sk(W )} ⋅ (∥U∥ + ∥W ∥))

+C ⋅ sk(U) ⋅ ∥U∥
2
+C ⋅ sk(W ) ⋅ ∥W ∥

2

≤C ⋅ (sk(U) ⋅ (∥U∥ + ∥W ∥)2 + sk(W ) ⋅ (∥U∥ + ∥W ∥)2)

=C ⋅ (sk(U) + sk(W )) ⋅ (∥U∥ + ∥W ∥)2 = C ⋅ sk(V ) ⋅ ∥V ∥
2
.

3.) Finally, let V = αTUβt. For each ρ ∈ R(V ) we have

Vρ = min{α′TUσβ
′t ∶ α = µ⋅p+α′, σ ∈ R(U), σ+β = ζ ⋅q+β′, (ζ+µ)⋅p = ρ}.

Since ∣α∣ , ∣α′∣ , ∣β∣ , ∣β′∣ < 2 ∣q∣, there is only a constant number of choices
for µ and hence also for ζ and σ. For every ρ ∈ R(V ) = R(U), we have
to compare a constant number of words of length O(∥U∥). Together
with the recursion, we get the time bound

O(sk(U) ⋅ ∥U∥) +C ⋅ sk(U) ⋅ ∥U∥
2
≤ C ⋅ sk(U) ⋅ (∥U∥ + 2)2

≤ C ⋅ sk(V ) ⋅ ∥V ∥
2
.

Putting all things together, we obtain:

Corollary 2.35. The (Britton) peak normal form of a Britton-reduced valley
v can be computed in O(sk(v) ⋅ ∥v∥

2
) time.
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Proof. According to Proposition 2.32, we find a standard valley V and an
integer γ with v ∼ V γ and V γ ≤p v in linear time. We have

Bpnf(v) = Bpnf(V γ) = min{Vρ(ρ + γ) ∶ ρ ∈ R(V )},

where Vρ is the standard valley from Proposition 2.34. Thus, finding the
Britton peak normal form amounts to computing all the Vρ (ρ ∈ R(V )) and
carrying out a minimum search.

Due to the properties of valleys, the peak normal form of v is

pnf(v) = Vρ snf(ρ + γ).

It remains to close the gap between valleys and difficult words. We start
with an observation on Britton peak normal forms of difficult words.

Lemma 2.36. Let w be a difficult word and i its peak. Then

Bpnf(T lev(i)w) = T lev(i)Bpnf(w).

Proof. There is nothing to do if i = 0. For i > 0, let α0tε1α1 . . . αn−1tεnαn be
the Britton peak normal form of T lev(i)w. By Proposition 2.6 and because p ∣
q, the numbers α0, . . . , αlev(i)−1 are all multiples of p. For each 0 ≤ j < lev(i),
there is a position j′ ≥ lev(i) with the same level as j. If there is more than
one such position j′, we choose the leftmost one. By Lemma 2.30, each αj
can be shifted to the position j′:

αj(Tαj+1 . . . αj′−1t)αj′ ∼ (Tαj+1 . . . αj′−1t)(αj + αj′)

See Figure 2.12 for an example. This decreases the word with respect to <p,
contradicting the fact that w is a Britton peak normal form, unless α0 = . . . =
αlev(i)−1 = 0.

Proposition 2.37. The Britton peak normal form of a difficult word w can
be found in O(sk(w) ⋅ ∥w∥

2
) time.

Proof. Let w = uβv with β being the horocyclic element on the peak. Let
`,m ≥ 0 be the smallest integers such that T `wtm is a valley. Compute
standard valleys U and V and integers γ, δ such that T `u ∼ Uγ and Tmv−1 ∼
V δ, according to Proposition 2.32. Using Proposition 2.34, compute the
words Uσ (σ ∈ R(U)) and Vρ (ρ ∈ R(V )). By Lemma 2.36, all Uσ start with
T ` and all Vρ with Tm. Thus, we get:

Bpnf(w) = min{Uσ(σ + γ + β − δ − ρ)V
−1
ρ ∶ σ ∈ R(U), ρ ∈ R(V )}.

The minimum can be computed in O(sk(W ) ⋅ ∥W ∥) time, which is absorbed
by the time bound of Proposition 2.34.
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Figure 2.12: Shifting numbers towards the peak (The indicated levels refer
to the original word w.)

We summarize the results of this Section in the following Theorem:

Theorem 2.38. ([DL11], Thm. 12) Given any word w in BS(p, q) where
p ∣ q, Bpnf(w) and pnf(w) can be computed in O(sk(w) ⋅ ∥w∥

2
) ⊆ O(∥w∥

3
)

time.

2.8 Geodesics and Growth in BS(p,±p)

In this final section, we deal with the formerly excluded case of p = ∣q∣. The
simplest example ∣q∣ = 1 has already been mentioned briefly in Section 2.2.
Both for BS(1,1) ≃ Z×Z and for BS(1,−1) = Z⋊Z, {tman ∶ m,n ∈ Z} is a set of
geodesic (shortlex) normal forms. It is obviously regular, and so the growth
series is rational (see Example 2.5). Given any word w ∈ {a, a−1, t, t−1}∗, a
logspace-bounded Turing machine can compute the corresponding geodesic
normal form in Õ(∣w∣) time.

The case p = ∣q∣ differs in a fundamental way from p < ∣q∣, since there is
no heuristic of the kind “propagate as many a’s as possible up to hilltops”.
The idea that locally changing a word has only limited effect on parts of
that word further “up” (this is essentially what the constant r was for), loses
validity. On the other hand, finding geodesics is facilitated by the fact that
the only way to shorten a word is by free cancellation.

Proposition 2.39. Every horocyclic element in BS(p,±p), has an (for some
n ∈ Z) as its unique geodesic.

Proof. In BS(p,±p), every Britton reduction decreases the length exactly by
2. Thus, the Britton-reduced form, which for horocyclic elements is uniquely
an, is the only geodesic.
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The normal forms presented in the next lemma and theorem were first
introduced in Section 4 of [EJ92]. We alter them slightly so as to allow
q = −p in addition to q = p. We also show that our modification not only
yields geodesic normal forms but even shortlex normal forms. Finally, we
give a time bound for computing these normal forms.

Lemma 2.40. Let 2 ≤ p = ∣q∣. We call a word w = α0tε1α1 . . . αn−1tεnαn
reduced, if

(i) w is Britton-reduced,

(ii) ∣αi∣ < p for 0 ≤ i < n,

(iii) ∣αi∣ + ∣αj ∣ ≤ p for all i ≠ j with sign(αi) ≠ sign(q)j−isign(αj), and

(iv) ∣αi∣ < ∣αj ∣ or 0 ≤ αi = ∣αj ∣ for all i < j with sign(αi) ≠ sign(q)j−isign(αj)
and ∣αi∣ + ∣αj ∣ = p.

If w1 and w2 are both reduced and w1 ∼ w2, then w1 = w2.

We give a full proof of this lemma, since this is omitted in [EJ92], where
the authors claim that the proof is rather long (which it isn’t).

Proof. Since both w1 and w2 are Britton-reduced and describe the same
group element, the number of t’s and the sequence of their exponents are
equal, thus

w1 = α0t
ε1α1 . . . αn−1t

εnαn and

w2 = β0t
ε1β1 . . . βn−1t

εnβn.

We use induction on n. For n = 0 there is nothing to prove, so let n ≥ 1.
If α0 = β0, we can use induction on w1 and w2 with the common prefix
α0tε1 = β0tε1 cut off. Thus, we assume α0 ≠ β0. From w−1

1 w2 ∼ 1 and the
fact that both words are Britton-reduced, we deduce that α0 − β0 ≡ 0 mod p
and due to (ii) even ∣α0 − β0∣ = p. By symmetry, let β0 < 0 < α0. In order to
simplify the rest of the proof, we assume q > 0. Choose i ≥ 1 such that αi < 0
and ∣αi∣ is maximal. If several such i exist, take the smallest; if none exist,
take i = n. Then

w1 ∼ (α0 − p)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

=β0

tε1 α1 . . . t
εi1(αi + p)t

εi . . . αn−1t
εnαn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w′1

.

In order to apply induction, it remains to show that w′

1 is reduced. (i) is
obvious and (ii) is a consequence of αi < 0 or i = n. For (iii) take any j ≠ i
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with αj < 0. Since ∣αj ∣ ≤ ∣αi∣, we have ∣αj ∣ + ∣αi + p∣ = −αj + αi + p ≤ p. The
latter becomes an equality only if αj = αi. Then i < j, by the choice of i, so
(iv) holds as well.

For q < 0, all of this remains true if we replace αi by αi ⋅ (−1)i and αj by
αj ⋅ (−1)j in our reasoning.

Theorem 2.41. Let 2 ≤ p = ∣q∣. The set of reduced words coincides with the
set of shortlex normal forms for BS(p, q). This set is regular and the growth
series of BS(q,±q) is rational. Given any word, the corresponding shortlex
normal form can be computed in quadratic time (Õ(n2) time on a Turing
machine).

Proof. The properties of Lemma 2.40 translate directly into rules:

(i) Compute a Britton-reduction of w (see Theorem 2.3).

(ii) For every i < n write αi = µ ⋅p+ν with ∣ν∣ < p. Replace αi by ν and add
sign(q)n−i ⋅ µ ⋅ p to αn.

(iii) For every i ≠ j with sign(αi) ≠ sign(q)j−isign(αj) and ∣αi∣ + ∣αj ∣ > p,
replace αi by αi − sign(αi) ⋅ p and αj by αj − sign(αj) ⋅ p.

(iv) For every i < j with sign(αi) ≠ sign(q)j−isign(αj), ∣αi∣ + ∣αj ∣ = p, and
either ∣αi∣ > ∣αj ∣ or −αj = αi < 0, swap αi and αj.

Rules (i) and (iii) shorten the word while rule (iv) preserves the length but
decreases the word lexicographically. Rule (ii) either shortens the word or
lexicographically decreases it. Therefore, shortlex normal forms are reduced
and the first claim of the theorem follows from Lemma 2.40.

The rules can be applied in their order, since none of them affects the
applicability of the ones before: rules (ii)-(iv) leave Britton-reduced words
Britton-reduced, rules (iii) and (iv) do not make the absolute value of any
αi larger than p, and (iv) just swaps αi and αj. Rules (i) and (ii) take linear
time, whereas (iii) and (iv) take quadratic time. As all numbers are bounded
by the input length, arithmetic operations can be done in polylogarithmic
time on a Turing machine.

Since all four properties of Lemma 2.40 can be checked by a finite au-
tomaton, the set of shortlex normal forms is regular. This already implies
the rationality of the growth series. Moreover, one can explicitly compute
the growth series using these properties, see [EJ92].



Chapter 3

Power Circuits

In this chapter we will describe the data structure needed in Chapter 4 to
solve the word problem in the Baumslag-Gersten groups and in Higman’s
groups. These so-called power circuits can store the huge integer values that
appear as exponents in Britton normal forms in these groups.

Power circuits were introduced by Myasnikov, Ushakov, and Won and first
published in [MUW12]. In a second paper [MUW11] they used power circuits
to show that the word problem for the Baumslag-Gersten group is polynomial
time decidable. While some ideas presented in this chapter are due to their
work, there are important differences. First of all, we use a different (and
hopefully more accessible) notation, following [DLU12] and [DLU13]. We
also allow multiple markings in one circuit. A second modification, which
distinguishes [Lau12] and this thesis from earlier papers, is the generalization
from base 2 to arbitrary bases q ≥ 2. The possibility of this generalization
was claimed in [MUW12], but no details or proofs were given.

3.1 Power Circuits, Markings, and Evalua-

tion

For the remainder of this thesis, we fix an integer q ≥ 2 and the interval
D = {−q + 1, . . . , q − 1} ⊆ Z. We start with a directed acyclic edge-labeled
graph without multi-edges, given by Π = (Γ, δ). Here, Γ is a finite set which
acts as the set of nodes (or vertices). The labeled edges (or arcs) are given
by the mapping δ ∶ Γ × Γ → D where δ(u, v) = 0 means that there is no edge
from u to v and δ(u, v) = e ≠ 0 implies an edge from u to v labeled with the
number e. In other words, the edge set is supp δ, the support of the map δ.
In addition, we require that the resulting graph (Γ, supp δ) is acyclic. We
shall make this assumption throughout this chapter without mentioning it

55
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again. For any operation on graphs introduced in this chapter, it will be
obvious that acyclicity is preserved.

A marking of Π = (Γ, δ) is a mapping M ∶ Γ → D. Often we regard M
more intuitively as a labeled subset of the nodes of Π, where the subset is
suppM and the labels are given by M ∣suppM ∶ suppM → D. In this sense,
M = 0 (the constant zero marking) and M = ∅ (the empty marking) are the
same. Each node u ∈ Γ induces a marking Λu, called the successor marking
of u, defined by

Λu ∶ Γ→D; v ↦M(u, v).

From the more intuitive point of view, the successor marking of a node u
consists of the target nodes of edges starting at u and their labels are given
by those of the edges.

The evaluation function ε assigns a real number to each node and each
marking of Π. As Π is acyclic, we can define ε inductively:

ε(M) = ∑
u∈suppM

M(u) ⋅ ε(u) for each marking M

ε(u) = qε(Λu) for each node u ∈ Γ

Note that this implies ε(∅) = 0, so leaves in the graph (nodes with no outgoing
edges) receive the value 1. For every node u ∈ Γ we have

ε(Λu) = logq ε(u).

Example 3.1. Figure 3.1 shows an example of such a graph for q = 3. The
set of nodes is Γ = {u1, u2, u3, u4, u5} and δ is given by

δ(u2, u1) = +1, δ(u3, u1) = +2, δ(u4, u1) = −1,
δ(u4, u2) = −2, δ(u4, u3) = +1, δ(u5, u2) = +2,
δ(u5, u3) = +1, δ(u5, u4) = −2.

The nodes evaluate to

ε(u1) = 1, ε(u2) = 3, ε(u3) = 9, ε(u4) = 9, ε(u5) =
1

27
.

Lemma 3.2. Let Π = (Γ, δ) be as described above. The following statements
are equivalent:

(i) ε(u) ∈ qN0 = {qn ∶ n ∈ N0} for every node u ∈ Γ

(ii) ε(Λu) ≥ 0 for every node u ∈ Γ
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u1

u2 u3

u4

u5

+1
+2

−1

−2 +1

+2

+1
−2

Figure 3.1: Example of an edge-labeled graph (q = 3)

(iii) ε(M) ∈ Z for every possible marking M in Π

Proof. This is easily seen by noetherian induction with respect to a topolog-
ical order of Γ (i.e., some order compatible with the directed edges).

Definition 3.3. A power circuit (sometimes just “circuit”) is a finite acyclic
edge-labeled graph Π = (Γ, δ) without multiple edges that meets the equivalent
conditions of Lemma 3.2.

Example 3.4. The graph in Figure 3.1 is not a power circuit since ε(u5) /∈ Z.
In contrast, Figure 3.2 depicts a power circuit for q = 2. The values of the
nodes are given for illustrative purposes. In general, these number grow too
fast to be written. The marking M evaluates to ε(M) = 29.

1 1

2 4

32

+1
+1

+1

−1

+1 +1

M ∶ +1

M ∶ −1

M ∶ +1

Figure 3.2: Example of a power circuit (q = 2)
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In Corollary 3.16 we will show that it can be efficiently tested whether a
given graph is a power circuit. In [MUW12], a power circuit does not have
to satisfy the criteria of Lemma 3.2, but if it does, it is called proper. In this
parlance, we only deal with proper power circuits.

The next proposition shows how to convert numbers from “ordinary”
(e.g. binary) representation to markings in power circuits.

Lemma 3.5. For every integer n ∈ Z, there is a marking M in a power circuit
with O(log ∣n∣) nodes and O(log ∣n∣ ⋅ log log ∣n∣) edges such that ε(M) = n.

Proof. Write n as a q-ary number, i.e., n = (−1)s∑
k
i=0αi ⋅ q

i with s ∈ {0,1},
0 ≤ αi < q and k = ⌈logq(∣n∣ + 1)⌉ − 1 ∈ O(log ∣n∣). Create a power circuit
with nodes u0, . . . , uk such that ε(ui) = qi. This can be done inductively:
If u1, . . . , ui−1 already exist, write i as a q-ary number i = ∑

i−1
`=0 β` ⋅ q

` (this
number has in fact only O(log i) ⊆ O(log log ∣n∣) digits) and take Λui(u`) = β`
for all 0 ≤ ` < i. Finally, define M(ui) = (−1)sαi.

The time complexity of this algorithm is dominated by writing the num-
ber n in q-ary notation. This takes Õ(log2 ∣n∣) time. In group theoretic
applications this is negligible, since n is usually given in unary (the input is
a word over the group’s generators, see Chapter 4), making ∣n∣ the input size
rather than log ∣n∣.

3.2 Arithmetic Operations

With regard to the group theoretic applications of power circuits in the next
chapter, we need to implement two arithmetic operations: given two mark-
ings K and M , we want to compute markings which values ε(K)+ε(M) and
ε(K) ⋅ qε(M). For both, we need the notion of cloning.

Let Π = (Γ, δ) be a power circuit and u ∈ Γ a node. The operation Clone
with result v = Clone(u) creates a new node v with the same successor
marking as u, but no incoming arcs. We extend this operation to mark-
ings M , by cloning every single node in suppM . The resulting marking
Clone(M) is defined as the marking consisting of all these clones, where
the signs are copied from M :

Clone(M) ∶ Γ∪̇{Clone(u) ∶ u ∈ suppM} →D; Clone(u) ↦M(u),

Γ ∋ u↦ 0.

Example 3.6. In Figure 3.3, the marking M , consisting of two nodes, is
cloned.
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Figure 3.3: Cloning a marking (q = 3)

Now we can define arithmetic operations. Let Π = (Γ, δ) be a power
circuit and let K and M be markings in Π. If the supports of K and M are
disjoint, the mapping K +M defined by (K +M)(u) = K(u) +M(u) is a
marking with ε(K +M) = ε(K)+ε(M). In general, however, the supports of
K and M will not be disjoint. In this case we have nodes u ∈ suppK∩suppM
with K(u) +M(u) /∈ D, hence K +M is not a valid marking. We solve this
problem by cloning: for every node u with K(u) +M(u) /∈ D, we create a
clone u′ = Clone(u) and modify K +M by putting (K +M)(u) ∶= K(u)
and (K +M)(u′) ∶=M(u). We obtain a valid marking in the (now enlarged)
circuit with value ε(K) + ε(M).

Example 3.7. In Figure 3.4, ε(K) = 7 and ε(M) = 35 are added. In the
resulting marking, the node with value 1 cancels out, whereas both the original
node with value 4 and its newly created clone are included.

For the second operation, we observe that

ε(K) ⋅ qε(M) = ∑
u∈suppK

qε(Λu) ⋅ qε(M) = ∑
u∈suppK

qε(Λu)+ε(M),

so in principle we could just introduce new edges from each node in suppK
to each node in suppM , where the edge signs come from the respective target
nodes. This works as long as

1. no cycles are introduced into the circuit,

2. no multi-edges between two nodes are introduced,
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Figure 3.4: Addition of markings (q = 2)

3. there are no edges between nodes in suppK (as the value of the origin
of such an edge would change unintentionally, when adding edges from
the target node to suppM), and

4. no other marking in the circuit is affected (note that the original value
of K is lost in any case).

Again, cloning provides a solution. Let K ′ ∶= Clone(K) and M ′ ∶=
Clone(M) and introduce new edges by putting δ(u, v) ∶= M(v) for all u ∈
suppK ′, v ∈ suppM ′. Being clones, nodes in suppK ′ and suppM ′ have
no incoming edges, which prevents cycles and multi-edges. Also, no other
marking in the circuit depends on K ′ or M ′ directly (by containing these
nodes) or indirectly (by containing nodes that are topologically above any
node in K ′ or M ′). An example (in which no further cloning is necessary) is
shown in Figure 3.5.

Finally, the operation M ↦ −M which negates the value of M is easy to
conduct without any complications or the need for cloning.

By nature, power circuits are particularly suited to compress integers that
arise from the operations discussed so far. This includes the tower function
towq (sometimes called “tetration”) which is defined by towq(0) = 1 and
towq(n+ 1) = qtowq(n). Figure 3.6 shows how to express the value towq(n) by
a marking in a power circuit with n + 1 nodes.

Other operations such as multiplication of two markings are possible as
well (see [MUW12], Sect. 7.3), but the size of the circuit grows by more than
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Figure 3.5: Multiplication of ε(K) by qε(M) (q = 2)
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Figure 3.6: Marking with value towq(n)

O(suppK + suppM). As we will not need multiplication (except by powers
of q) in the following chapter, we do not expand on this.

3.3 Reduction

The operations K +M and K ⋅ qM introduced in the previous section are
quite efficient. Assuming that the graph is stored using adjacency lists, the
time they take depends only on the size of the markings M and K, not on
the size of the circuit. The price for this efficiency is that the structure of
a power circuit can quickly become rather intransparent. In particular, it is
unclear how (in)equality of the values of two markings can be determined
in an arbitrary circuit. Remember that evaluating the nodes or markings is
not an option, due to the vast growth permitted by power circuits. For this
reason, we restrict ourselves to a subclass of circuits and augment them with
some additional data:

Definition 3.8. A reduced power circuit is a power circuit Π = (Γ, δ) to-
gether with an ordered list of its nodes Γ = (u1, . . . , un) and a bit vector
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(b1, . . . , bn−1) ∈ Bn−1 such that

(i) different nodes evaluate to different numbers, i.e., for all u, v ∈ Γ with
u ≠ v, ε(u) ≠ ε(v),

(ii) the nodes are sorted by value, i.e., ε(u1) < ε(u2) < . . . < ε(un),

(iii) bi = 1 if and only if q ⋅ ε(ui) = ε(ui+1).

Proposition 3.9. (cf. [MUW12], Sect. 2.1 and [DLU12], Prop. 5) Given a
reduced circuit and two markings K and M , the values ε(K) and ε(M) can
be compared (yielding “<”, “=”, or “>” as the result) in O(∣Γ∣) time. The
algorithm can also determine whether ∣ε(K) − ε(M)∣ = 1.

Proof. Assume that we want to determine whether for a sum ε = ∑
n
i=0 δi ⋅ q

i

with ∣δi∣ ≤ 2q − 2 whether we have ε ≤ −2, ε = −1, ε = 0, ε = +1 or ε ≥ +2. We
can do this inductively using the following procedure:

1.) If δn = 0, use induction on ε = ∑
n−1
i=0 δi ⋅ q

i.

2.) If ∣δn∣ ≥ 2, then ∣ε∣ ≥ 2 ⋅ qn −∑
n−1
i=0 (2q − 2) ⋅ qi = 2 and the sign of ε is the

same as the sign of δn.

3.) If ∣δn∣ = 1, look at δn−1. If δn−1 = 0 or if it has the same sign as δn, then
∣ε∣ ≥ qn−∑

n−2
i=0 (2q−2)⋅qi = qn−1(q−2)+2 ≥ 2 since q ≥ 2. Again, ε has the

same sign as δn. If δn−1 has the opposite sign of δn, use induction on
ε = δ̂n−1 ⋅qn−1+∑

n−2
i=0 δi ⋅q

i, where δ̂n−1 = δn ⋅q+δn−1 ∈ {−2q+2, . . . ,2q−2}.

The answer to the original problem can be found by applying this algo-
rithm to the mapping M −K ∶ Γ→ {−2q+2, . . . ,2q−2} given by (M −K)(u) =
M(u) − K(u). Note that the absolute indices i of the δi are not actually
needed. Instead one can use the information provided by the reduced cir-
cuit.

Corollary 3.10. For two markings K and M in a reduced circuit Π = (Γ, δ),
it can be tested in O(∣Γ∣) time whether qε(K) divides ε(M).

Proof. Let u be the node of minimal value in suppM . As node values are
unique in the circuit, qε(K) ∣ ε(M) if and only if qε(K) ∣ ε(u). Using Proposi-
tion 3.9, we can check the equivalent condition ε(K) ≤ ε(Λu).

Power circuits arising from a sequence of arithmetic operations are usually
far from being reduced. Every cloning creates a pair of nodes with the same
value. Therefore we need an algorithm that takes an arbitrary circuit and
produces an equivalent reduced circuit. In this context, equivalence means
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that for each node and each marking in the old circuit, there is one with the
same value in the reduced circuit. Before specifying the algorithm, we need
some preparations.

Definition 3.11. A list u1 . . . , uk of nodes in a power circuit is called a chain
(starting at u1), if q ⋅ ε(ui) = ε(ui+1) for all 1 ≤ i < n. It is called a maximal
chain, if it is not part of a longer chain.

Note that chains have nothing to do with paths in the graph. For example,
the graph in Figure 3.6 is not a chain, unless n is very small. In arbitrary
power circuits, chains are difficult to spot. However, in a reduced power
circuit, they can easily be identified using the bit vector.

In a reduced circuit, the maximal chain starting at the unique node with
value 1 is of particular interest. It is called the base chain of the power circuit.
For later use, we define in Algorithm 1 a procedure ProlongBaseChain
which appends a new node at the top of this chain without destroying the
reducedness property of a circuit.

Algorithm 1: Procedure ProlongBaseChain

input : a reduced power circuit Π = (Γ, δ)
output: a reduced power circuit Π′ = (Γ∪̇{u}, δ′) which is Π with an

additional node u prolonging the base chain of Π

1 Let Γ = (v0, . . . , vn) be the ordered list of the nodes of the reduced
circuit Π. Using this list and the bit vector, find the smallest i ≥ 0
such that ε(vi) > qi.

2 As in Lemma 3.5, write i as a q-ary number i = ∑
i−1
`=0α` ⋅ q

` and use this
to define the marking M(v`) = α` with value ε(M) = i. Insert a new
node u with Λu =M into the circuit.

3 Place u in the ordered list of nodes between vi−1 and vi.
4 Check whether q ⋅ ε(u) = ε(vi) by applying Proposition 3.9 to Λu and

Λvi (both are contained in the reduced circuit Π). Set the bit vector
for u accordingly.

The procedure ProlongBaseChain takes O(∣Γ∣) time on a RAM.
Now we can state an algorithm that reduces power circuits. Reduction

is done node by node. This means that at any point during the reduction
procedure, the circuit consists of a reduced part and a part that is not yet
reduced. The nodes in the non-reduced part are processed in topological
order. Therefore, the procedure only has to work for nodes which have all
their successors in the already reduced part.
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This approach allows us to be more economical in the reduction pro-
cedure. Instead of always reducing the complete circuit, we can take into
account that parts of it might already be reduced. This will turn out to
be useful in applications. The procedure ExtendReduction described in
Algorithm 2 takes as its input not only the power circuit but also a list M
of markings that need to be adjusted during reduction in order to preserve
their value.

Proposition 3.12. ([Lau12], Prop. 2.11) The procedure ExtendReduc-
tion is correct and takes Õ ((∣Γ∣ + ∣U ∣) ⋅ (∣U ∣ +m)) time. The circuit growth
∣Γ′ ∖ Γ∣ is bounded by 2 ∣U ∣.

Proof. At first, a topological order of U is computed. The time for this is
bounded by the size of the subgraph U (nodes and edges) which is O(∣U ∣

2
).

In the main loop starting at step 2, the nodes are eliminated from U one by
one. Let n = ∣Γ∣ + ∣U ∣ be the number of nodes in the input graph. Since Γ
grows during the procedure (although we keep calling it Γ for convenience),
O(n) is the correct bound for the size of Γ.

For each node ui ∈ U , its position in the ordered list of Γ has to be found in
step 5. Since uj is chosen to be topologically minimal, the successor marking
Λu is contained in the reduced circuit Γ, so u can be compared to any node
v ∈ Γ in O(n) time (see Proposition 3.9). Using binary search, O(logn)
comparisons suffice, taking Õ(n ⋅ ∣U ∣) time in total.

For the insertion of ui in Γ, we distinguish two cases. In the first one (step
7), there is no node in Γ with the same value as ui. In this case, ui is moved
from U to Γ without any modification. Markings containing ui (including
successor markings, i.e., edges with target ui) are not affected either.

The second case (step 11), where there is a node vj with the same value as
ui, is more complicated. Figure 3.7 shows an example. The idea is to delete
ui and replace it in all markings M (both markings from M and successor
markings of nodes in U) by vj. This may cause vj to by “overmarked” by M ,
i.e., M(vj) /∈D. For example, in the simplest case q = 2, ifM(ui) =M(vj) = 1,
then M(vj) = 2 after the replacement. The solution is inspired by the idea
of carry digits that are used when adding two q-ary numbers: if ∣M(vj)∣ ≥ q,
subtract the appropriate number α ⋅ q and add α to the value that M assigns
to the next node vj+1 in the chain, which has q times the value of vj. The
carry might propagate to the end of the chain, which is why we preventively
prolonged it with v.

Note that the time bound for one execution of step 15 is not Õ(∣Γ∣), but
rather O(∣Γ∣ ⋅#of markings). Since this estimate is not sufficient to prove the
claimed bound, we count the total amount of time spent in step 15 during the
whole procedure instead. The key observation is that for every carry that has
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Algorithm 2: Procedure ExtendReduction

input : a graph Π = (Γ∪̇U, δ) with δ∣Γ×U = 0 and (Γ, δ∣Γ×Γ) a reduced
power circuit, a list M= (M1, . . .Mm) of markings in Π

output: a reduced power circuit Π′ = (Γ′, δ′) with Γ ⊆ Γ′ and
δ′∣Γ×Γ = δ∣Γ×Γ and δ′∣Γ×(Γ′∖Γ) = 0, a list M′ = (M ′

1, . . . ,M
′

m) of
markings in Π′ such that ε(Mi) = ε(M ′

i)

1 Compute a topological order of U , i.e., U = (u1, . . . , uk) such that
δ(ui, uj) ≠ 0 implies i > j.

2 for i = 1, . . . , k do
3 U ∶= U ∖ {ui}
4 If Γ = ∅, set Γ ∶= {u1} (a circuit with just one node is obviously

reduced) and continue with the iteration i = 2.
5 Let Γ = (v1, v2, . . .) be the ordered list of the nodes of the reduced

circuit Γ. Using binary search, find the minimal j such that
ε(ui) ≤ ε(vj). Comparing ui to some v ∈ Γ is done by comparing
Λui to Λv.

6 if ε(Λui) < 0 = ε(Λv1) then the graph Π is not a power circuit;
abort the algorithm.

7 if ε(ui) < ε(vj) (or no such vj exists) then
8 Γ ∶= Γ ∪ {ui}
9 Insert ui into Γ’s sorted list of nodes between vj−1 and vj.

10 Check whether ε(Λui) + 1 = ε(Λvj) and set the bit vector for ui
accordingly

11 else ε(ui) = ε(vj)
12 Find the last node vk of the maximal chain starting at vj and

create v ∶= Clone(vk).
13 Multiply the value of v by q by adding 1 to Λv: Let v` be the

first node in the base chain with Λv(v`) < q − 1. If such v` does
not exist, call ProlongBaseChain to create it. Set
Λv(v1) = . . . = Λv(v`−1) = 0 and increment M(v`) by one.

14 Insert v in the ordered list after vk and set the bit vector for v
by comparing Λv to Λvk+1 .

15 foreach M ∈ {Λu ∶ u ∈ U} ∪M with ui ∈ suppM do
16 Replace ui in M by vj, i.e., set M(vj) ∶=M(vj) +M(ui)

and M(ui) ∶= 0. If now M(vj) = α /∈D, write α = β ⋅ q + γ
with γ ∈D, set M(vj) ∶= γ and add β to M(vj+1). If again
M(vj+1) /∈D, repeat. This terminates at the latest at the
newly created node v which is not marked by M .
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to be moved to the next node in the chain, the number C ∶= ∑M ∑v∈Γ∪U ∣M(v)∣
decreases. Initially, C ≤ (q − 1) ⋅ (n ⋅ (∣U ∣ +m)), so the total time complexity
of the loop starting at step 15 is O(n ⋅ (∣U ∣ +m)).
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Figure 3.7: Reduction step (q = 2)

Remark 3.13. Not all markings need to be included inM. Since Π remains
a subcircuit of Π′ and the values of nodes in Γ do not change, all markings
whose support is completely contained in Γ are automatically preserved. Only
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markings using nodes in U have to be put into M. In most applications, M
consists only of a constant number of markings.

Remark 3.14. The bound on the circuit growth given in Proposition 3.12
is not tight. A more detailed analysis shows that a call to ProlongBase-
Chain is only necessary once every time ∣Γ∣ grows by a factor of q. If one
does some “cleaning up” in the circuit (for instance delete unmarked nodes
with no incoming edges), [MUW12] shows that the growth during reduction is
even bounded by 1. However, this bound is of no importance in our applica-
tions since during arithmetic operations cloning increases the size by O(∣U ∣)
anyway.

In practice, reduction rarely ever increases the circuit size. Usually, the
circuit even shrinks.

Theorem 3.15. ([Lau12], Thm. 2.14) There is a procedure Reduce which,
given a power circuit Π = (Γ, δ) and a list M = (M1, . . . ,Mm) of markings
in Π, returns a reduced circuit Π′ = (Γ′, δ′) and a list M′ = (M ′

1, . . . ,M
′

m)
of markings in Π′ such that ε(Mi) = ε(M ′

i) (1 ≤ i ≤ m). Reduce takes

Õ(∣Γ∣
2
+ ∣Γ∣ ⋅m) time and the size of Γ′ is bounded by 2 ∣Γ∣.

Proof. Invoke ExtendReduction with ∅ as the reduced part and the whole
circuit as U .

Step 6 in ExtendReduction tests whether ε(Λu) ≥ 0. This is one of
the equivalent conditions specified in Lemma 3.2 for a graph to be a power
circuit. Therefore, reduction is at the same time a test whether a graph is a
power circuit:

Corollary 3.16. ([Lau12], Cor. 2.15) Given a dag Π = (Γ, δ) it can be
determined in Õ(∣Γ∣

2
) time whether Π is a power circuit.

3.4 Compactness

In this section, we will show that by using a richer data structure for re-
duced circuits, the time complexity of ExtendReduction can be reduced
to O((∣Γ∣ + ∣U ∣) ⋅ (∣U ∣ +m)). This eliminates the logarithmic factors both for
Reduce and for the test from Corollary 3.16. We start by taking a closer
look at the kind of sums that occur when we evaluate markings.

3.4.1 Compact Power Sums

A power sum is a formal sum S = ∑i≥0αi ⋅ q
i whose coefficients αi are in D

and only finitely many are non-zero. The value ε(S) ∈ Z is the integer we



68 CHAPTER 3. POWER CIRCUITS

get when evaluating the formal sum S like a usual term. On the set of all
power sums, we define a rewriting system P consisting of the rules

(1) α ⋅ qi + β ⋅ qi+1 Ð→ (α − q) ⋅ qi + (β + 1) ⋅ qi+1 for α > 0, β < 0,

(2) α ⋅ qi + β ⋅ qi+1 Ð→ (α + q) ⋅ qi + (β − 1) ⋅ qi+1 for α < 0, β > 0,

and for i < j

(3) α ⋅ qi + (q − 1) ⋅ (qi+1 + . . . + qj) + β ⋅ qj+1

Ð→ (α − q) ⋅ qi + (β + 1) ⋅ qj+1 for α > 0, β < q − 1,

(4) α ⋅ qi + (−q + 1) ⋅ (qi+1 + . . . + qj) + β ⋅ qj+1

Ð→ (α + q) ⋅ qi + (β − 1) ⋅ qj+1 for α < 0, β > −q + 1.

Although we use shorthands like a for a⋅q0 or a⋅(1+q+q2) for a⋅q0+a⋅q1+a⋅q2,
power sums should be regarded as strings and the rules as rewriting rules.
For example, we are not allowed to make an algebraic rearrangement before
applying a rule like in

1 ⋅ q + 1 ⋅ q2 = 1 ⋅ q − 1 ⋅ q2 + 2 ⋅ q2 Ô⇒
(1)

−2 ⋅ q + 0 ⋅ q2 + 2 ⋅ q2 (q = 3),

since rule (1) could not have been applied to the original power sum.
None of the rules change the value of the power sum. We omit the proof

of the next lemma, since it consists of a long but simple enumeration of cases.

Lemma 3.17. The rewriting system P is locally confluent.

Lemma 3.18. The rewriting system P is terminating and therefore confluent
([Jan88], Prop. 1.1.19).

Proof. Let S1
∗

Ô⇒
P

S2
∗

Ô⇒
P

. . . be a sequence of rewritings. Since none of the

rules of P increase the number of non-zero coefficients, this number must
eventually reach a minimum. Thus, ignoring a finite number of terms, we
can assume that the number of non-zeros is constant within the sequence.
No rule in P moves a non-zero coefficient to the left (in the direction of
smaller exponents). As the value of the Si is fixed, non-zeros cannot be
moved indefinitely to the right either. Again, by disregarding a finite prefix
of the sequence, we assume that the positions of the non-zero coefficients are
fixed. At this point, no application of (3) or (4) is possible. Finally, rules of
type (1) and (2) move pairs of consecutive coefficients with opposite signs
to the left (or remove them), which can also occur only finitely often. Thus,
the sequence S1, S2, . . . is eventually constant.
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We call power sums that are irreducible with respect to P compact. If
S = ∑i≥0αiq

i is compact, then so is −S = ∑i≥0(−αi)q
i.

Proposition 3.19. ([Lau12], Prop. 2.18)

(i) For each power sum there is a unique compact power sum with the same
value.

(ii) Compact power sums have the minimal number of non-zero coefficients
among all power sums of the same value.

(iii) If S and T are compact power sums, then ε(T ) = ε(S)+1 if and only if

S =
i−1

∑
j=0

αj ⋅ q
j + αi ⋅ q

i +U ⋅ qi+1 and

T =
i−1

∑
j=0

βj ⋅ q
j + βi ⋅ q

i +U ⋅ qi+1

for some power sum U , βi = αi+1, and for each 0 ≤ j < i either αj = q−1
and βj = 0 or αj = 0 and βj = −q + 1.

(iv) The usual order on D gives rise to a lexicographical order on power
sums (where coefficients of higher powers of q are compared before those
of lower powers). Restricted to compact power sums, this lexicographical
order coincides with the order by value.

Proof. For (i) it suffices to show that for two power sums S and T with

the same value, we have S
∗

⇐⇒
P

T . This is true, since applying the rules of

P forward or backward, one can turn any power sum into an ordinary q-ary
number with coefficients from {0, . . . , q−1}. (For instance, for positive values
of S, use rules of type (1) backward and rules of type (2) forward to push
negative coefficients to the right until they eventually disappear.)

Claim (ii) follows from the fact that no rule increases the number of non-
zero coefficients.

For the “if” part of (iii), we observe that component-wise subtraction
yields

T − S = −(q − 1)
i−1

∑
j=0

qj + qi,

which evaluates to 1. For the “only if” part, let S = ∑`≥0α` ⋅ q
` be compact.

Consider S′ = (α0+1)+∑`≥1α` ⋅q
`. If S′ is a valid power sum (i.e., α0+1 ∈D)

and S′ is compact, it already has the desired form (for i = 0). Otherwise we
have one of the following cases:
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1.) S′ is not a valid power sum, since α0 = q−1. Let k ≥ 0 be the maximum
number such that α0 = . . . = αk = q − 1. We transform S′ into

(αk+1 + 1) ⋅ qk+1 + ∑
`>k+1

α` ⋅ q
`

and use induction on (αk+1 + 1) +∑`>k+1α` ⋅ q
`−k−1.

2.) A rule of type (1) can be applied. We have α0 = 0 and α1 < 0. Applying
the rule gives

S′Ô⇒
(1)

(−q + 1) + (α1 + 1) ⋅ q +∑
`≥2

α` ⋅ q
`.

Use induction on (α1 + 1) +∑`≥2α` ⋅ q
`−1.

3.) A rule of type (3) can be applied. We have α0 = 0 and α1 = . . . = αk =
q − 1 and αk+1 < q − 1 for some k ≥ 1. This yields

S′Ô⇒
(3)

(−q + 1) + (αk+1 + 1) ⋅ qk+1 + ∑
`>k+1

α` ⋅ q
`

and induction applies to (αk+1 + 1) +∑`>k α` ⋅ q
`−k−1.

Finally, (iv) is a consequence of (iii).

The notion of compactness was introduced in [MUW12] for q = 2 and
subsequently used in [DLU13]. Our definition originates from [Lau12] and
it is a generalization that inherits most of the original characteristics as we
have seen in Proposition 3.19.

There is, however, one important difference: it is much less obvious for
q > 2 how to make a power sum compact in linear time. In the case q = 2 it
suffices to apply the rules of P from left to right. Yet, if for instance q = 3,
the application of rule (1) to

1 + q + q2 + q3 − 2q4 Ô⇒
(1)

1 + q + q2 − 2q3 − q4

turns the previously compact prefix 1 + q + q2 + q3 into the P-reducible sum
1 + q + q2 − 2q3.

Proposition 3.20. ([Lau12], Prop. 2.19) Any power sum S = ∑
n
i=0αi ⋅q

i can
be transformed into a compact power sum with the same value in O(n) time.
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Proof. Any two power sums S and T with ε(S) = ε(T ) can be transformed
into each other using only replacements of the form

α ⋅ qi−1 + β ⋅ qi Ð→ (α ∓ q) ⋅ qi−1 + (β ± 1) ⋅ qi. (⋆±i )

Moreover, at most one application of (⋆+i ) or (⋆−i ) is needed for each i. In
fact, whether (⋆+i ) or (⋆−i ) or neither is needed, depends only on S and T .
This can be seen using induction on i.

Let T = ∑
n+1
i=0 βi ⋅ q

i be the compact power sum with ε(S) = ε(T ). Define
Ji ∈ {+1,−1,0} (1 ≤ i ≤ n) depending on whether the replacement (⋆+i ) or

(⋆−i ) or neither of them occurs in the sequence S
∗

Ô⇒
(⋆

±

i )

T . For convenience,

we define J0 = Jn+2 = 0 and αn+1 = 0. Then we have βi = αi + Ji − q ⋅ Ji+1 for
0 ≤ i ≤ n + 1.

It remains to compute the values Ji (1 ≤ i ≤ n + 1). These are the unique
solution of the following system of conditions (1 ≤ i ≤ n + 1):

(◇i) αi−1 + Ji−1 − q ⋅ Ji ∈D and αi + Ji − q ⋅ Ji+1 ∈D and

sign(αi−1 + Ji−1 − q ⋅ Ji) ⋅ sign(αi + Ji − q ⋅ Ji+1) ≠ −1 and

if sign(αi−1 + Ji−1 − q ⋅ Ji) = sign(αi + Ji − q ⋅ Ji+1) = ±1,

then αi + Ji − q ⋅ Ji+1 ≠ ±(q − 1).

Note that each condition (◇i) can be checked locally without the knowledge
of any other value than Ji−1, Ji, Ji+1 (and αi−1, αi). For all 2 ≤ i ≤ n + 2 we
define Ji to be the set of possible values for Ji, depending on Ji−1:

Ji ∶= {(Ji−1, Ji) ∈ {−1,0,+1}2 ∶ there are J1, . . . , Ji−2 such that

J0 = 0, J1, . . . , Ji−2, Ji−1, Ji

satisfy (◇1), . . . , (◇i−1)}

The set J2 can be computed directly in constant time. For i ≥ 3 we have

Ji = {(Ji−1, Ji) ∶ ∃Ji−2 ∶ (Ji−2, Ji−1) ∈ Ji−1 ∧ Ji−2, Ji−1, Ji satisfy (◇i−1)}.

Hence, knowing Ji−1, the set Ji can be computed in constant time. Since we
already know that there is exactly one solution, Jn+2 must contain a unique
pair (Jn+1,0). For this value of Jn+1 we find exactly one pair (Jn, Jn+1) ∈ Jn+1

and so on.

Example 3.21. Let q = 3 and suppose we want to make S = 1+q−2q2−2q3+
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q4 − q5 compact. We get:

J2 = {(0,0), (1,1)}

J3 = {(0,−1), (1,0)}

J4 = {(−1,−1)}

J5 = {(−1,0)}

J6 = {(0,0), (0,−1)}

J7 = {(0,0)}

From (J6,0) ∈ J7 we get J6 = 0. Looking at J6, we find J5 = 0, and so on.
We end up with J0 = J1 = J2 = 0, J3 = J4 = −1, J5 = J6 = J7 = 0 which results
in T = 1 + q + q2 − q5.

3.4.2 Inherent Limitations of Power Circuits

Property (ii) of Proposition 3.19 can be used to prove lower bounds for power
circuits. The following two propositions are straightforward generalizations
of the results in Section 9 of [MUW12].

Proposition 3.22. (cf. [MUW12], Prop. 9.1) Dividing a number, given as a
marking in a power circuit, by q2−1 (and representing the result as a marking
in the circuit) can cause non-elementary growth of the circuit.

Proof. Let m = towq(n) and Am = ∑
m
i=1 q

2i and Bm = q2m+2. We have Am =
Bm

q2−1 . Bm can be realized as a marking in a power circuit with n + 3 nodes,
see Figure 3.8. Yet, the power sum used to define Am is compact (no two
consecutive coefficients are non-zero), so by Proposition 3.19 (ii), no marking
using fewer than m nodes can evaluate to Am.

Proposition 3.23. (cf. [MUW12], Sect. 9.2) Multiplication of linearly many
numbers given as markings in a power circuit can cause exponential growth
of the circuit.

Proof. Let k be a constant which we will choose later. There is a power
circuit with n + 1 nodes in which we can choose markings Mk, . . . ,Mn with
values ε(Mi) = towq(i) + 1 (cf. Figure 3.6). Multiplying these numbers and
expanding, we get

n

∏
i=k

ε(Mi) =
n

∏
i=k

(towq(i) + 1) = ∑
σk,...,σn∈{0,1}

∏
k≤i≤n,
σi=1

towq(i)

= ∑
σk,...,σn∈{0,1}

∏
k≤i≤n,
σi=1

qtowq(i−1) = ∑
σk,...,σn∈{0,1}

qs(σk,...,σn),
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1 2 ⋯ towq(n − 1) m

mq2m+1

+1 +1 +1 +1

+1+1

+1

+1

Bm ∶ +1

Figure 3.8: Power circuit for Bm

where s(σk, . . . , σn) = ∑
n
i=k σi ⋅ towq(i − 1). For sufficiently large k, the sum

∑ qs(σk,...,σn) is compact. Hence, any power containing a marking with value

∏
n
i=k ε(Mi) must have at least 2n−k+1 ∈ Θ(2n) nodes.

3.4.3 Power Circuits and Trees

Property (iv) of Proposition 3.19 is the main motivation for the following def-
inition. The idea of using a tree to store markings originates from [DLU13].

Definition 3.24. A power circuit Π = (Γ, δ) is called treed (a shorthand for
“reduced and equipped with additional data in the form of a tree”) if

(i) Π is reduced (i.e., different nodes evaluate to different values and it is
equipped with an ordered list Γ = (u1, . . . , un) of the nodes and a bit
vector (b1, . . . , bn−1) ∈ Bn−1, see Definition 3.8)

(ii) Π is equipped with a directed tree T in which each node has up to ∣D∣ out-
going edges, labeled with pairwise distinct values from D (and ordered
by increasing values). For each leaf in T , the unique path from the root
to this leaf must consist of exactly n = ∣Γ∣ edges. The sequence of labels
α1, . . . , αn of such a path (read from the leaf to the root) corresponds
to a marking M ∶ ui ↦ αi. For each leaf, the power sum ∑

n
i=1αi ⋅ ε(ui)

(which evaluates to ε(M)) must be compact. Any marking represented
as a leaf in this way is called compact.

(iii) All successor markings Λv (v ∈ Γ) are compact.

The exact data structure used for storing the tree is not important, as
long as the usual tree operations (such as enumerating all children of a node,



74 CHAPTER 3. POWER CIRCUITS

adding a child, getting the parent of a node) can be performed in constant
time. In addition, we need some means of enumerating all the nodes in each
level of the tree (a linked list, for example).

Example 3.25. Figure 3.9 shows a treed circuit (with q = 2) alongside the
tree containing its successor markings and an additional compact marking
M . The order of the nodes is implicitly given by the lowest level of the tree.

u1

u2

u3

u4u5

+1

+1

−1

+1

+1

+1
M ∶ −1

M ∶ +1

0

0

−1 0 +1

0 0 +1 0

+1 0 +1 0 −1 +1u1

u2

u3

u4

u5

M Λu1 Λu2 Λu3 Λu4 Λu5

Figure 3.9: Treed power circuit (q = 2) with compact marking M

The most time consuming step in ExtendReduction was to find the
position of a new node in the sorted list of Γ. Using binary search, this took
O(n logn) time. If Γ is treed and Λu is compact, we can improve this to O(n):
the position of the leaf corresponding to Λu already determines the position
of u in Γ. In order to adjust the bit vector, we have to read the paths from
the root of the tree to the respective leaves and check the condition given
by Proposition 3.19 (iii). On the other hand, making a circuit treed is more
complicated than just reducing it.

For the time analysis of the new reduction procedure, we will use amor-
tization with respect to a potential function pot, mapping power circuits
to numbers, see Section 17.3 in [CLRS09]. An algorithm on power circuits
is said to run in amortized time t, if the real running time is bounded by
t + pot(Π) − pot(Π′), where Π is the input and Π′ is the resulting circuit.
Therefore, an algorithm may take longer than its indicated amortized time,
as long as it decreases the potential by the same amount. The potential
can be thought of as an asset which is accumulated whenever the algorithm
finishes early and reduced if the algorithm does not terminate in time.
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The number of leaves in a treed power circuit depends not only on the
circuit itself (i.e. Γ and δ) but also on the number of compact markings that
are not successor markings. Furthermore, a power circuit usually grows in
the course of the execution of an algorithm. In order to keep time analysis as
simple as possible, we take n to be an upper bound on the number of nodes
and leaves.

Definition 3.26. For a power circuit Π = (Γ, δ), the number of maximal
chains (see Def. 3.11) is denoted by ch(Π). The potential of Π is pot(Π) =
ch(Π) ⋅ n.

In a situation where Π = (Γ∪̇U, δ) is a graph with a power circuit Π′ =
(Γ, δ∣Γ×Γ) as a subgraph, we define ch(Π) ∶= ch(Π′) and pot(Π) ∶= pot(Π′).

Lemma 3.27. ([Lau12], Lem. 2.24) There is a procedure InsertNode,
which takes a treed power circuit Π = (Γ, δ) and a compact marking M in Π
and which inserts a new node u with Λu =M into Π, leaving the circuit treed.
InsertNode runs in amortized time O(n).

Proof. Since M is compact, the position of v in the ordered list of nodes is
determined by the position of the leaf corresponding to M in the tree. The
bit vector can be adjusted by comparing M to the successor markings of
the nodes immediately before and after v. The tree has to be “stretched” by
inserting a new level corresponding to v. All edges on this level are labeled 0,
since no marking uses the new node v. This takes O(n) time. The insertion
of v may increase ch(Π) by one. Thus, the potential grows by up to n.

Incrementing a compact marking by 1 is easier than doing the same with
an arbitrary marking. Let M be a compact marking in a treed circuit and let
u1, u2 be the unique nodes with values 1 and q, respectively. If M(u1) < q−1,
M(u1) can be incremented directly. If M(u1) = q − 1, then M(u2) < q − 1
due to compactness. In this case, we set M(u1) ∶= 0 and increment M(u2).
However, the resulting marking is not always compact.

Lemma 3.28. ([Lau12], Lem. 2.25) There is a procedure Compactify-
Marking which, given an arbitrary marking M in a treed circuit Π = (Γ, δ),
computes in O(n) time a compact marking M ′ in Π with ε(M ′) = ε(M),
given that the following condition holds:

For each maximal chain C ⊆ Γ, either the power sum ε(M ∣C)

is compact or suppM does not contain the top node of C. (3.1)

Proof. If S = ∑
`
i=k αi ⋅ q

i is a power sum, only the coefficients of qk, . . . , q`+1

can be non-zero in the corresponding compact power sum. For each maximal
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chain C ⊆ Γ, we can apply the algorithm from Proposition 3.20 to the power
sum ε(M ∣C) individually. Condition (3.1) ensures that a node for q`+1 exists
in Π, if needed. After that, we create a path for the marking in the tree.

In the case of ProlongBaseChain, Condition (3.1) is satisfied. The
successor marking of the new top node of the base chain only uses nodes
further down in that chain which, by definition, already exist. This shows:

Corollary 3.29. ([Lau12], Cor. 2.26) The procedure ProlongBaseChain
given in Algorithm 1 can be adapted for treed power circuits. The amortized
time complexity is O(n).

Corollary 3.30. ([Lau12], Cor. 2.27) There is a procedure Increment-
Marking which, given a compact marking M in a treed power circuit Π =
(Γ, δ), computes a compact marking M ′ in a (possibly enlarged) treed circuit
Π′ with ε(M ′) = ε(M)+1. IncrementMarking takes O(n) amortized time
and increases the circuit size by 1 + ch(Π) − ch(Π′).

Proof. We invoke ProlongBaseChain which creates a new node u. If u
is not the new top node of the base chain, the insertion of u has linked two
maximal chains, decreasing ch(Π) by one. We use the released potential to
pay for the O(n) time used so far and repeat until we have created a new
top node of the base chain which is not used by any marking.

As discussed above, incrementing M by 1 only affects the two nodes
with values 1 and q. As a consequence, the compactification process of the
incremented marking is limited to the base chain of Π and ends at the newly
created node.

The procedure ExtendTree given in Algorithm 3 replaces ExtendRe-
duction for treed circuits.

Proposition 3.31. ([Lau12], Prop. 2.28) The procedure ExtendTree is
correct and runs in amortized time O(n⋅(∣U ∣+m)). The circuit growth ∣Γ′ ∖ Γ∣
is bounded by 4 ⋅ ∣U ∣ + ch(Π) − ch(Π′).

Proof. The basic structure of ExtendTree is the same as that of Extend-
Reduction, so we focus on the differences. Between cycles of the main loop,
we keep up the following invariants for all markings M ∈ M∪ {Λu ∶ u ∈ U}:

(a) If the support of M is completely contained in Γ, M is compact.

(b) For each maximal chain C ⊆ Γ, either the power sum ε(M ∣C) is compact
or the top node of C is not contained in suppM .
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The second invariant is true by assumption, the first one is established in
step 1.

The time for finding vj in step 7 is reduced to O(n) due to the represen-
tation of markings as leaves.

If Γ contains no node with the same value as ui, we can insert it as we
did in ExtendReduction. Remember that Λui is compact due to (a). The
case ε(ui) = ε(vj) also resembles ExtendReduction and has the same
(although now amortized) time bound.

Let C ⊆ Γ be the maximal chain starting at vj. If a marking M ∈ M∪{Λu ∶
u ∈ U} had ui in its support, the power sum ε(M ∣C) is probably not compact
anymore after replacing ui in M by vj. In order to restore (b), we create a
new top node for C in step 15. As we have seen in Corollary 3.30, this takes
amortized time O(n) and increases the circuit size by 1 + ch(Π) − ch(Π′).

All markings M whose support is completely contained in Γ after the
processing of ui must be made compact in order to maintain (a). This is
done in step 18. Invariant (b) ensures that Condition (3.1) of Lemma 3.28
holds.

With regard to invariant (b), we can weaken the requirement of Extend-
Tree that the Γ-parts of markings must correspond to compact power sums
and alternatively demand that the top nodes of the respective chains are
not marked by M . However, in our applications, the stronger precondition
always holds. If we drop the requirement entirely, we lose the time bound.
Up to O(n) new nodes are required to make an arbitrary marking compact.
It takes O(n2) time to create these nodes.

The next theorem is the analogon of Theorem 3.15 for treed circuits.

Theorem 3.32. ([Lau12], Thm. 2.29) There is a procedure MakeTree
which, given a power circuit Π = (Γ, δ) and a listM= (M1, . . . ,Mm) of mark-
ings in Π, returns a treed circuit Π′ = (Γ′, δ′) and a list M′ = (M ′

1, . . . ,M
′

m)
of compact markings in Π′ such that ε(Mi) = ε(M ′

i) (1 ≤ i ≤m). MakeTree
takes O(n2 + n ⋅m) time and the size of Γ′ is bounded by 4 ∣Γ∣.

Remark 3.33. Seen from the outside, ExtendReduction and Extend-
Tree as well as Reduce and MakeTree behave very much alike. In
applications, all four procedures are used as “black boxes” and of the resulting
circuits only the weaker property of reducedness is used. Therefore, in order to
simplify nomenclature, we will speak of “reduction” and “reduced circuits”,
subsuming both concepts. The reader may then choose whether to use the
simpler reduction concept at the cost of logarithmic factors or go for the
more complicated procedures for treed circuits with better asymptotic time
complexity.
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Algorithm 3: Procedure ExtendTree

input : a graph Π = (Γ∪̇U, δ) with δ∣Γ×U = 0 and (Γ, δ∣Γ×Γ) a treed
power circuit, a list M= (M1, . . .Mm) of markings in Π. For
all M ∈ M∪ {Λu ∶ u ∈ U}, the power sum ε(M ∣Γ) must be
compact.

output: a treed power circuit Π′ = (Γ′, δ′) with Γ ⊆ Γ′ and
δ′∣Γ×Γ′ = δ∣Γ×Γ, a list M′ = (M ′

1, . . . ,M
′

m) of compact markings
in Π′ such that ε(Mi) = ε(M ′

i)

1 foreach marking M ∈ M∪ {Λu ∶ u ∈ U} with suppM ⊆ Γ do
2 CompactifyMarking(M)

3 Compute a topological order U = (u1, . . . , uk).
4 for i = 1, . . . , k do
5 U ∶= U ∖ {ui}
6 if Γ = ∅ then set Γ ∶= {u1}, create a tree for u1 and insert all

markings with support {u1}. Continue with i = 2.
7 Traversing the lowest level of the tree, find the first node vj in the

ordered list Γ = (v1, v2, . . .) such that ε(ui) ≤ ε(vj).
8 if ε(Λui) < 0 then abort the algorithm.
9 if ε(ui) < e(vj) (or no such vj exists) then

10 Insert ui into Γ using InsertNode.
11 else ε(ui) = ε(vj)
12 Prolong the maximal chain . . . , vj, vj+1, . . . , vk by a new node by

creating a copy of Λvk and applying IncrementMarking and
InsertNode.

13 foreach marking M with ui ∈ suppM do
14 Replace ui in M with vj by adding M(ui) to M(vj) and

setting M(ui) ∶= 0. If, after this, M(vj) /∈D, add ±q to
M(vj) and ±1 to M(vj+1). Repeat if M(vj+1) /∈D and so
on.

15 repeat
16 Prolong the maximal chain starting at vj using

IncrementMarking and InsertNode
17 until the newly created node is the top of the chain
18 foreach marking M ∈ M∪ {Λu ∶ u ∈ U} of which ui was the last

node not in Γ do
19 CompactifyMarking(M)



Chapter 4

The Word Problem in
Extensions of BS(1, q)

In this chapter, we apply the data structures and algorithms developed in
Chapter 3 to algorithmic group theory. We show that the word problem for
two classes of groups – generalized forms of the Baumslag-Gersten groups
and Higman’s groups – is decidable in polynomial time.

4.1 BS(1, q) and Swapping

All groups discussed in this chapter are extensions of the solvable Baumslag-
Solitar group BS(1, q) = ⟨a, t ∣ tat−1 = aq⟩. This group is isomorphic to the
semidirect product Z[1/q] ⋊Z, where Z[1/q] is the additive group of quotients
with powers of q as denominators and Z acts on this group via multiplication
by q. The elements of Z[1/q] ⋊ Z can be written in a unique way as pairs
(u, k) ∈ Z[1/q]×Z with the following formulae for multiplication and inversion:

(u, k)(v, `) = (u + v ⋅ qk, k + `)

(u, k)−1 = (−u ⋅ q−k,−k) (4.1)

The isomorphism BS(1, q) → Z[1/q] ⋊Z is given by a↦ (1,0), t↦ (0,1). The
inverse of this map is (u, k) ↦ txavtk−x where u = qx ⋅ v, v ∈ Z, and x ≤ 0 is
maximal. Note that we avoid non-integer exponents like in a1/q by writing
t−1at instead. We formalize this technique in the following definition:

Definition 4.1. We define [u,x, k] ∶= (u ⋅ qx, x+k) ∈ Z[1/q]⋊Z = BS(1, q) for
u,x, k ∈ Z, x ≤ 0 ≤ k and call [u,x, k] a triple.

If U , X, and K are markings in a power circuit with base q and ε(X) ≤ 0,
ε(K) ≥ 0, we call T = [U,X,K] a triple marking and define its value ε(T ) ∶=
[ε(U), ε(X), ε(K)] ∈ BS(1, q).

79
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Each element of BS(1, q) can be written as a triple, but not in a unique
way. For instance, [2,0,0] = (2,0) = [4,−1,1] in BS(1,2).

The group operations (4.1) translate to formulae for multiplication and
inversion of triples:

[u,x, k] ⋅ [v, y, `] = [u ⋅ q−y + v ⋅ qk, x + y, k + `]

[u,x, k]−1 = [−u,−k,−x] (4.2)

Furthermore, [u,x, k] ∈ ⟨a⟩ ≤ BS(1, q) if and only if x = −k and u ⋅ qx ∈ Z, in
which case [u,x, k] = [u ⋅ qx,0,0]. Similarly, [u,x, k] ∈ ⟨t⟩ ≤ BS(1, q) if and
only if u = 0, and finally [u,x, k] is the identity of the group if and only if
u = 0 and x = −k.

For the Baumslag-Solitar group BS(1, q) alone, the use of triple markings
in power circuits is not necessary. As we have seen in Chapter 2, binary
representation of integers offers sufficient compression. This changes when
we introduce another operation beside those given by the group.

Definition 4.2. In BS(1, q), swap is the partially defined operation given by

swap(u, k) ∶= (k, u) if u ∈ Z

or equivalently for triples

swap[u,x, k] ∶=

⎧⎪⎪
⎨
⎪⎪⎩

[(x + k) ⋅ q−u⋅q
x
, u ⋅ qx,0] if 0 ≥ u ⋅ qx ∈ Z

[x + k,0, u ⋅ qx] if 0 ≤ u ⋅ qx ∈ Z.
(4.3)

Example 4.3. Using swap, we can define

w0 = (1,0) and

wn+1 = swap(wn) ⋅ (1,0) ⋅ swap(wn)
−1 for n ≥ 0.

The length of the terms wn (as a sequence of tuples and operators) is exponen-
tial in n. Yet, wn ∼ (towq(n),0) in BS(1, q). Hence, if we want to compute
normal forms of expressions containing swap, we need higher compression
for integers.

The next result shows that power circuits allow us to solve the word
problem in BS(1, q) despite the complexity added by the swap operation.
At the same time, this is a first demonstration of how to use power circuits
in specific applications. The techniques exhibited here will be reused in the
next section.
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Algorithm 4: Algorithm for the word problem in BS(1, q) with swap

input : a term w consisting of letters a, t, operators ⋅,−1 , swap, and
brackets

output: “True” if w ∼ 1 in BS(1, q), otherwise “False”

1 Create a base q power circuit Π with one node v (which has ε(v) = 1).
2 For each occurrence of a letter a or t in w, create a new marking M

with suppM = {v} and M(v) = +1. Replace the letter by [M,0,0] (if
it was an a) or by [0,0,M] (if it was a t).

3 Reduce(Π,M) (where M contains all the markings created so far)
4 while ∣w∣ > 0 do
5 Observing brackets and operator precedence, find in w an

occurrence of
v ∈ {[U,X,K] ⋅ [V,Y,L], [U,X,K]−1, swap([U,X,K])}.

6 if none was found then return False
7 if v = [U,X,K] ⋅ [V,Y,L] then
8 Create clones U ′,X ′,K ′, V ′, Y ′, L′ of the respective markings.

Compute markings W = U ′ ⋅ q−Y
′

+ V ′ ⋅ qK
′

, Z =X ′ + Y ′, and
M =K ′ +L′ using the algorithms from Section 3.2. Note that
no further cloning is needed. Replace v in w by [W,Z,M].

9 if v = [U,X,K]−1 then
10 Create clones U ′,X ′,K ′ and markings

W = −U ′, Z = −K ′,M = −X ′ and replace v by [W,Z,M].

11 if v = swap([U,X,K]) then
12 Test whether q−ε(X) divides ε(U) (see Corollary 3.10) and if

not, return False. Otherwise, depending on the sign of ε(U),
create clones U ′,X ′,X ′′,K ′ and markings W =X ′ +K ′ and
Z = U ′ ⋅ qX

′

or, in case ε(U) < 0, W = (K ′ +X ′) ⋅ qZ . Replace v
by [W,0, Z] or [W,Z,0], accordingly.

13 Call ExtendReduction(Γ,D,M), where D is the set containing
all clones created during this iteration and M contains the newly
created markings W,Z,M . Check if the newly inserted triple
evaluates to the identity in BS(1, q) and if so, remove it from w.

14 return True

Theorem 4.4. (cf. [DLU13], Thm. 15) Algorithm 4 decides the word prob-
lem for the algebraic structure BS(1, q) with multiplication, inversion and
swapping in O(∣w∣

4
) time.

Proof. We work on a sequence w of triple markings in a power circuit and
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operators (and possibly brackets). Between cycles of the main loop (starting
at step 4), we keep up the following invariants: the circuit Π is reduced, no
triple marking in w equals the identity in BS(1, q), and the group element
represented by w does not change.

In order to establish these invariants, the letters of the input are rewritten
as triple markings. This creates a circuit with one node and at most n = ∣w∣
markings. Reducing this circuit takes O(n2) time.

In the main loop, w is shortened as much as possible. The replacements
reflect the rules for multiplication, inversion, and swapping in BS(1, q) which
we introduced earlier in this chapter. There are at most n cycles of the
main loop, since each cycle decreases the length of w. On the power circuit
level, we need a constant number of basic operations (addition, multiplication
by a power of q, comparison) in each cycle of the main loop. Note that
we use clones for all arithmetic operations and call ExtendReduction
immediately afterwards, hence Γ stays reduced all the time. In order to get
an upper bound for the time complexity, we first need to estimate the growth
of Π.

We call the sum ω = ∑ ∣suppM ∣, taken over all markings M in w, the
weight of Π. During the replacements in the main loop, ω never increases. For
example, when replacing [U,X,K]⋅[V,Y,L] by [W,Z,M], we have ∣suppW ∣ ≤
∣suppU ∣ + ∣suppV ∣, ∣suppZ ∣ ≤ ∣suppX ∣ + ∣suppY ∣, and ∣suppM ∣ ≤ ∣suppK ∣ +
∣suppL∣. Similar inequalities hold for the other two cases. Hence, the number
of non-reduced nodes ∣D∣ for each call of ExtendReduction is in O(ω) =
O(n). Therefore, the circuit size remains bounded by O(n2) and Extend-
Reduction needs Õ(n2 ⋅n) time. All the other operations in the main loop
are linear time, so we get an overall bound of Õ(n4).

The stronger precondition of ExtendTree is also satisfied: the markings
W,Z,M are completely outside Γ and the successor markings of their nodes
are either exact copies of (compact) markings inside Γ (e.g. in step 8 for
m ∈ suppM , Λm = Λv with v ∈ suppK or v ∈ suppL) or the union of such
markings and nodes outside Γ (e.g. in step 12 for z ∈ suppZ, Λz = Λu +X ′

with u ∈ suppU). Hence we get the time bound O(n4).

4.2 Higman’s Groups Hf(1, q)

The group H4 was introduced by Higman in 1951 and served to provide
the first known example of a finitely generated infinite simple group [Hig51].
Such a group can be found by taking a minimal non-trivial quotient of H4,
since H4 is infinite and has no non-trivial normal subgroups of finite index.

The group H4 belongs to a family of groups Hf (f ≥ 1) with f generators
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and f relators:

Hf = ⟨a1, . . . , af ∣ ai+1aia
−1
i+1 = a

2
i (i ∈ Z/fZ)⟩

For f < 4 these groups are trivial, which is easy to see for f ∈ {1,2}, but
surprisingly hard for f = 3. The latter case was proven by Hirsch [Hig51],
see also §23 in [Neu54] and [All12]. If f ≥ 4, then Hf is infinite ([Ser02],
Sect. 1.4).

Until recently, Higman’s Group H4 was a candidate for a “natural” group
with non-elementary word problem. This was suggested by the huge com-
pression that this group allows. In fact, the words w(i, j) defined by

w(i,0) ∶= ai and

w(i, j + 1) ∶= w(i + 1, j)aiw(i + 1, j)−1

have exponential length in j, yet w(i, j) ∼ a
tow2(j)
i . Thus any algorithm solv-

ing the word problem by computing normal forms like ani , needs tow2(Θ(n))
space, even when using binary notation. Despite this, it was shown in
[DLU12] that the word problem for H4 is decidable in O(n6 ⋅ logn) time
and [DLU13] improved this bound to O(n6). Both results rely on power
circuits.

Following [Lau12], we generalize Hf even further by replacing the under-
lying Baumslag-Solitar group BS(1,2) with BS(1, q). As we have seen in
Section 4.1, power circuits with base q are naturally suited for computations
in this group.

Definition 4.5. The generalized Higman group Hf(1, q) is defined as

Hf(1, q) = ⟨a1, . . . , af ∣ ai+1aia
−1
i+1 = a

q
i (i ∈ Z/fZ)⟩. (4.4)

While for f > 4, Hf = Hf(1,2) retains the essential properties of H4, this
is not true for Hf(1, q) in general. For example, for all f ≥ 1, the map

Hf(1,3) ↠ Z/2Z;

a1 ↦ 1,

a2, . . . , af ↦ 0

sends Hf(1,3) onto a finite non-trivial group.
In this section we will prove:

Theorem 4.6. ([Lau12], Thm. 4.2) Let q ≥ 2, f ≥ 4. The word problem for
the generalized Higman group Hf(1, q) can be solved in O(n6) time.
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The key observation for the solution of the word problem is the decompo-
sition of Hf(1, q) into a series of amalgamations of f copies of the Baumslag-
Solitar group BS(1, q) = ⟨a, t ∣ tat−1 = tq⟩, see [Ser02]:

Hf(1, q) = G1,...,f−1 ∗F1,f−1
Gf−1,f,1,

where

G1,...,f−1 = ⟨a1, . . . , af−1 ∣ ai+1aia
−1
i+1 = a

q
i (1 ≤ i < f − 1)⟩ and

Gf−1,f,1 = ⟨af−1, af , a1 ∣ afaf−1a
−1
f = aqf−1, a1afa

−1
1 = aqf ⟩.

In both cases F1,f−1 is the subgroup generated by a1 and af−1 which in fact
freely generate F1,f−1 (since f ≥ 4). Furthermore, we can break G1,...,f−1 and
Gf−1,f,1 down to

G1,...,f−1 = G1,2 ∗F2 G2,3 ∗F3 . . . ∗Ff−2
Gf−2,f−1 and

Gf−1,f,1 = Gf−1,f ∗Ff
Gf,1,

where Gi,i+1 = ⟨ai, ai+1 ∣ ai+1aia−1
i+1 = a

q
i ⟩, Fi = ⟨ai⟩ and the indices are read in

Z/fZ.
Each group Gi,i+1 is a copy of the Baumslag-Solitar group BS(1, q) and

thus isomorphic to the semidirect product Z[1/q] ⋊Z. Since there are several
copies of BS(1, q) involved, we endow the pairs and triples from Section 4.1
with a subscript:

[u,x, k]i = (u ⋅ qx, x + k)i = a
x
i+1a

u
i a

k
i+1 ∈ Gi,i+1

In order to solve the word problem for Hf(1, q), we first need a solution
for the subgroup membership problem of F1,e in G1,...,e (with e ≥ 3; this covers
both G1,...,f−1 and Gf−1,f,1). Furthermore, we have to do this in an effective
way, i.e., given a sequence of pairs (u, k)i representing an element of F1,e,
we have to find a corresponding sequence of pairs of the form (u,0)1 and
(0, `)e−1.

We start by giving a reduction system L for G1,...,e:

(1) (u, k)i(v, `)i Ð→ (u + v ⋅ qk, k + `)i for 1 ≤ i ≤ e − 1

(2) (u, k)i(v,0)i+1 Ð→ (u, k + v)i for 1 ≤ i < e − 1 and v ∈ Z
(3) (u,0)i+1(v, `)i Ð→ (v ⋅ qu, ` + u)i for 1 ≤ i < e − 1 and u ∈ Z
(4) (u, k)i+1(0, `)i Ð→ (u + ` ⋅ qk, k)i+1 for 1 ≤ i < e − 1

(5) (0, k)i(v, `)i+1 Ð→ (k + v, `)i+1 for 1 ≤ i < e − 1
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On the right hand sides of these rules, we identify the pair (0,0)i with
the empty sequence 1, so for example (0,1)i(−1,0)i+1 Ð→ 1 is an instance of
rule (2).

The system L is not confluent, but it has the Britton property of being
confluent on strings that equal the group identity. Note that in general,
Britton reductions do not work for iterated amalgamated products like G1,...,e.
However, in this case the amalgamated subgroups are disjoint due to the
structure of the Baumslag-Solitar group, and we get:

Proposition 4.7. If w is an L-reduced word that equals 1 in G1,...,e, then w
is the empty word.

Let L′ be the system L extended by the rules

(6) (x1,−x2)1(x2,−x3)2 . . . (xe−2,−xe−1)e−2(x̃e−1, xe)e−1

Ð→ (x1,0)1(x̃e−1 − xe−1, xe)e−1

(7) (−xe−1 ⋅ q
xe , xe)e−1(−xe−2 ⋅ q

xe−1 , xe−1)e−2 . . . (−x2 ⋅ q
x3 , x3)2(x1 ⋅ q

x2 , x̃2)1

Ð→ (0, xe)e−1(x1, x̃2 − x2)1,

where all xi ≠ 0.
The new rules respect the group structure and hence Proposition 4.7 holds

for L′ as well. They are not length-increasing, since e ≥ 3.
Starting with an arbitrary sequence w of pairs (u, k)i representing an

element in G1,...,e, one can compute an equivalent L′-reduced word ŵ with
linearly many operations: First, compute an L-reduced word w̃, then apply
rules (6) and (7). Note that the latter leave w̃ L-reduced. The rules (6)
and (7) can be applied in one pass from left to right, since the left-most
application of any of the two prolongs the L′-reduced prefix of w̃.

Proposition 4.8. ([Lau12], Prop. 4.4) Let w be a sequence of pairs (u, k)i
representing an element of the subgroup F1,e ≤ G1,...,e. If w is L′-reduced, then
w is an alternating sequence of pairs of types (u,0)1 and (0, `)e−1.

Proof. Let w = (u1, k1)i1(u2, k2)i2 . . . (un, kn)in . We assume that

w ∼ w̃ = (v1,0)1(0, `1)e−1(v2,0)1(0, `2)e−1 . . . ∈ F1,e

and that w̃ contains no trivial pairs (0,0)i which makes w̃ L-reduced. The
case where w̃ starts with (0, `1)e−1(v1,0)1 . . . is similar. The sequence

w̃−1w = . . . (−v2,0)1(0,−`1)e−1(−v1,0)1(u1, k1)i1(u2, k2)i2(u3, k3)i3 . . .

equals 1 in G1,...,e and must therefore L-reduce to the empty sequence. Note
that both w̃−1 and w are L-reduced, so any L-reduction can only occur at
the border between the two words.
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Clearly, we cannot have i1 ≥ 3 or else w̃−1w would be L-reduced. If i1 = 2,
then a reduction of type (2) is possible if k1 = 0 and u1 ∈ Z, in which case we

get (−v1,0)1(u1,0)2

(2)
Ð→ (−v1, u1)1. But after that, the sequence is L-reduced

since k1 = 0 and u1 ∈ Z imply i2 ≠ 1.

Hence, we are left with i1 = 1. In that case, we get (−v1,0)1(u1, k1)1

(1)
Ð→

(−v1 + u1, k1)1. If this is (0,0)1, we have (u1, k1)i1 = (v1,0)1 and we proceed
inductively with the remaining sequence. Otherwise, we must have u1 = v1

in order to continue applying rules. If e ≥ 4, the next rule can only apply

to (0, k1)1(u2, k2)i2 , so i2 = 2 and we get (0, k1)1(u2, k2)2

(5)
Ð→ (k1 + u2, k2)2.

Again, the sequence is L-reduced unless u2 = −k1. We iterate this argument
until we arrive at

w̃−1w
∗

Ô⇒
L

. . . (−v2,0)1(0,−`1)e−1(0, ke−2)e−2(ue−1, ke−1)ie−1 . . . .

On the way, we have found u1 = v1, u2 = −k1, u3 = −k2, . . . , ue−2 = −ke−3, and
ij = j for 1 ≤ j ≤ e − 2. One further reduction of type (4) brings us to

w̃−1w
∗

Ô⇒
L

. . . (−v2,0)1(ke−2 ⋅ q
−`1 ,−`1)e−1(ue−1, ke−1)ie−1 . . . .

Since `1 ≠ 0, the next reduction requires ie−1 = e − 1. Thus, rule (6) of L′ can
be applied to the prefix (u1, k1)1 . . . (ue−1, ke−1)e−1 of the original word w.

Proposition 4.8 shows that the system L′ can solve the subgroup mem-
bership problem with respect to F1,e ≤ G1,...,e.

For the amalgamated product Hf(1, q) = G1,...,f−1 ∗F1,f−1
Gf−1,f,1, Theo-

rem 1.4 can be stated as follows:

Proposition 4.9. Let w = w1w2 . . .ws be a non-empty sequence with wi ∈
{(u, k)i ∶ 1 ≤ i < f − 1}∗ or wi ∈ {(u, k)i ∶ f − 1 ≤ i ≤ f}∗, alternatingly. If w
equals 1 in Hf(1, q), then wi ∈ F1,f−1 for some index i.

From this proposition, we can derive Algorithm 5 which solves the word
problem in Hf(1, q). In this algorithm, the word w = w1w2 . . .ws is split
into w1 . . .wt and wt+1 . . .ws. The first part is an alternating sequence of
group elements from G1,...,f−1 and from Gf−1,f,1, and no wi with i ≥ t is in the
subgroup F1,f−1. In each loop cycle either t increases, or t decreases by one
and s decreases. Thus, the loop is executed only linearly often.

In order to get a time bound for Algorithm 5, it remains to show how the
tests and arithmetic operations on the pairs (u, k)i are to be performed in
an efficient way. This is similar to Algorithm 4.

At the beginning of Algorithm 5, we create a power circuit with base q
consisting of a single node v with ε(v) = 1. We represent each pair (u, k)i by
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Algorithm 5: Procedure for solving the word problem in Hf(1, q)

input : a word w over ai, a−1
i (1 ≤ i ≤ f)

output: the answer to w
?
∼ 1 in Hf(1, q)

1 Rewrite the input w by replacing each a±1
i with (±1,0)i.

2 Break w into subsequences w = w1w2 . . .ws such that in each wj the
subscripts of all pairs are either in {1,2, . . . , f − 2} or in {f − 1, f}.

3 Let t ∶= 0.
4 while (t = 0 ∧ s > 1) ∨ (0 < t < s) do
5 if t = 0 ∧ s > 1 then
6 L′-reduce w1. If w1 becomes empty, remove it (thereby

decreasing s) and continue with the next iteration.
7 if w1 ∈ F1,f−1 then
8 Merge w1 and w2. Before doing so, if w1 and w2 are from

different groups (one from G1,...,f−1 and the other one from
Gf−1,f,1), swap all the pairs in w1 using the following rules:
(x,0)1 ↔ (0, x)f and (0, x)f−2 ↔ (x,0)f−1

9 else
10 Increment t by one.

11 else (0 < t < s)
12 if wt and wt+1 are both from G1,...,f−1 or both from Gf−1,f,1 then
13 Merge wt and wt+1.
14 Decrement t by one.

15 else
16 L′-reduce wt+1. If wt+1 becomes empty, remove it and

continue with the next iteration.
17 if wt+1 ∈ F1,f−1 then
18 Perform the replacements (x,0)1 ↔ (0, x)f and

(0, x)f−2 ↔ (x,0)f−1 in wt+1, then merge it with wt.
19 Decrement t by one.

20 else
21 Increment t by one.

22 return whether s = 0

a triple marking. Of the three markings in each initial triple, two are empty
and the third has value +1 or −1 and can be created using v. Let ω be the
weight, i.e., the sum of the sizes of (the supports of) all the markings in w.
The initial value of ω is exactly n = ∣w∣ and it never increases during the



88 CHAPTER 4. THE WP IN EXTENSIONS OF BS(1,Q)

algorithm.
After step 1, we reduce the circuit, which takes O(n2) time. From now

on, we keep Π reduced so that tests like “ε(M) ≤ ε(K)?” or “qε(M) ∣ ε(K)?”
are possible at any time.

The last thing we have to discuss is L′-reduction of words. For each
operation (addition or multiplication by a power of q), the involved markings
are cloned, the operation is performed on the clones and finally, the circuit is
reduced using ExtendReduction. The set U for this call contains at most
O(ω) nodes and the list M contains only a constant number of markings
(the results of the operation). The circuit size ∣Γ∣ grows by O(ω). The whole
algorithm performs O(n) L′-reductions, each of which applies O(n) rules
from L′. Each such rule in turn necessitates a constant number of calls of
ExtendReduction (these dominate the time complexity). The circuit size
remains bounded by O(n2 ⋅ ω) ⊆ O(n3). Thus, one call of ExtendReduc-
tion takes O(n3 ⋅ ω) ⊆ O(n4) time. We get a total time bound of O(n6).

This concludes the proof of Theorem 4.6.

Remark 4.10. The constant hidden in the O notation in Theorem 4.6 can
be made independent of f . If f is larger than the size of the input string
w, some letter (af , say) does not occur in w. In this case, we can solve the
word problem in the group G1,...,f−1 instead of Hf(1, q). If even more letters
are missing, we can replace G1,...,f−1 by some free product ∗ni=1G1,...,ei with

∑ ei ∈ O(∣w∣).

4.3 Baumslag-Gersten Groups

Definition 4.11. Let q ≥ 2. The Baumslag-Gersten group BG(1, q) is the
one-relator group defined by

BG(1, q) = ⟨a, b ∣ aa
b

= aq⟩ = ⟨a, b ∣ (bab−1)a(bab−1)−1 = aq⟩

≃ ⟨a, b, t ∣ bab−1 = t, tat−1 = aq⟩.

This is a generalization of the notion usually found in the literature,
which focuses on BG(1,2). Sometimes this group is just called the “Baumslag
group”, for example in [MUW11]. The group was introduced by Baumslag in
1969 to serve as an example of a non-cyclic group all of whose finite quotients
are cyclic.

Like Hf(1, q), the group BG(1, q) allows compression of tower function
magnitude: the words Tn, defined by T0 = t and Tn+1 = bTnaT −1

n b−1 have
exponential length in n, but T (n) ∼ ttowq(n). It can be shown that the Dehn
function of BG(1,2) is non-elementary ([Ger91], §6). More precisely, it grows
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like tow2(logn) [Pla04]. This implies that the group is neither automatic nor
hyperbolic.

The word problem for BG(1,2) was first proved to be polynomial time
solvable in [MUW11]. This was surprising, given the huge growth of the
Dehn function. The time bound shown in [MUW11] is O(n7). In [DLU12]
this was reduced to Õ(n3), and [DLU13] finally brought the complexity down
to O(n3). In this Section we will prove:

Theorem 4.12. (cf. [MUW11], Thm. 5.5 and [DLU12], Thm. 9) Let q ≥ 2.
The word problem for the Baumslag-Gersten group BG(1, q) is solvable in
O(n3) time.

An interesting thing about the algorithm for the word problem of BG(1, q)
is that we deviate substantially from the basic idea of the last two sections.
Instead of keeping the power circuit reduced and thus having to clone a lot,
we try to keep track of the structure of the graph. This allows us to avoid
cloning altogether.

Proof. The group BG(1, q) can be viewed as an HNN extension of BS(1, q)
with stable letter b:

BG(1, q) ≃ ⟨a, t, b ∣ tat−1 = aq, bab−1 = t⟩

≃ HNN(⟨a, t ∣ tat−1 = aq⟩, b, ⟨a⟩→̃⟨t⟩)

Thus the Britton reductions banb−q → tn and b−1tnb → an and Lemma 1.1
provide a standard way of solving the word problem. We transform this into
a rewriting system using the triple notation for BS(1, q) = ⟨a, t ∣ tat−1 = aq⟩:

[u,x, k] ⋅ [v, y, `] Ð→ [u ⋅ q−y + v ⋅ qk, x + y, k + `],

b[u,x, k]b−1 Ð→ [0,0, u ⋅ qx] if x = −k, q−x ∣ u, u ≥ 0

b[u,x, k]b−1 Ð→ [0, u ⋅ qx,0] if x = −k, q−x ∣ u, u < 0

b−1[u,x, k]bÐ→ [x + k,0,0] if u = 0

In fact, this already shows that the word problem is solvable in O(n4) time.
All we have to do is interpret conjugation by b as swap(⋅) and apply Algo-
rithm 4. However, we aim for a cubic time bound.

To this end, we perform rewritings on a sequence w consisting of letters
b, b−1 and triples [U,X,K], while maintaining the following invariants:

(a) The supports of all markings that appear in w are pairwise disjoint.

(b) For all triples [U,X,K] in w, the nodes in suppU have no incoming
edges.



90 CHAPTER 4. THE WP IN EXTENSIONS OF BS(1,Q)

(c) For all triples [U,X,K] in w, all the incoming edges of nodes in suppX
and suppK originate in suppU . For edges ending in suppX, their
label is the negative of the value that X assigns to the target node, i.e.,
δ(u,x) = −X(x) for x ∈ suppX, u ∈ suppU .

We create a new node v and a marking M ∶ v ↦ 1 for every occurrence of
a, a−1, t, or t−1 in the input string w and replace it by the triple [M,0,0],
[−M,0,0], [0,0,M], or [0,−M,0], respectively. Thus, the initial circuit has
no edges and each node is marked by exactly one marking, so the invariants
hold. The size is ∣Γ∣ = n = ∣w∣. Our aim is to prove that due to the invariants
no cloning is necessary and hence the circuit size remains bounded by n.

For multiplication of two triples [U,X,K] and [V,Y,L], the invariants
remain valid: we insert new edges from U to Y (with the correct label) and
from V to K. After that, we take the component-wise (disjoint) union of
both triples. Figure 4.1 illustrates this operation.

For b[U,X,K]b−1 we test whether ε(X) = −ε(K) and q−ε(X) ∣ ε(U) and
we detect the sign of ε(U). This is done by creating a copy of the whole
circuit and reducing the copy. After the tests we trash the copy. This might
seem wasteful, but it ensures that we keep the invariants which would surely
be destroyed during reduction. If both tests are positive, we introduce new
edges from U to X. Since existing edges have the negative values of the
target nodes, they cancel out. Hence, no cloning is needed. We replace
b[U,X,K]b−1 by [0,0, U] or [0, U,0], depending on the sign of U . The oper-
ation is illustrated in Figure 4.2.

Finally, for b−1[U,X,K]b, we check whether ε(U) = 0 by reducing a copy
of the circuit as before. In the positive case, we can remove all nodes in suppU
from the circuit, since they have no incoming edges and no other marking
uses them. This removes all incoming edges of X and K, so the union X +K
can be placed in the first component of the new triple [X +K,0,0]. This
operation is shown in Figure 4.3.

Note that the invariants wouldn’t hold if we tried to swap a pair (u, k) ∈
Z×Z with both u and k non-zero. This is why we didn’t get the O(n3) time
bound in Theorem 4.4.

Using the strategy from Lemma 1.1, we need O(n) arithmetic operations
and, more importantly, a linear number of reductions. The latter take O(n2)
time each, since the circuit size remains bounded by n. This gives an overall
time bound of O(n3).
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Figure 4.1: Multiplication of the triples [U,X,K] and [V,Y,L]
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Figure 4.2: Swapping a triple with ε(X) + ε(K) = 0
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Figure 4.3: Swapping a triple with ε(U) = 0



Chapter 5

Conclusion and Open Questions

We hope to have emphasized the importance of data compression techniques
in algorithmic group theory. In this sense, this thesis might be seen as part of
a larger effort of applying such methods in group theory, cf. [Loh04, Sch08].
Starting with the exponential compression offered by binary representation,
we have proved that the non-trivial problem of finding geodesics in a sub-
stantial class of Baumslag-Solitar groups is solvable in polynomial time. This
is a large extension of the previously known results which dealt mainly with
the solvable case BS(1, q). The problem remains open for the groups BS(p, q)
with p ∤ q. Here we have achieved partial results and identified the difficult
cases. However, it seems that entirely new techniques are required for a com-
plete solution of these cases. It is also possible that there is no solution or
that the problem is co-NP complete.

In the second part of this thesis, we have introduced power circuits, a
data structure that is able to store integers with the magnitude of the tower
function. We have implemented arithmetic operations such as addition and
multiplication by a power of q and, most importantly, we have given new
reduction procedures that turn power circuits into a form that allows efficient
comparison of markings. This is both a technical improvement over the
original form of power circuits given in [MUW12] as well a conceptual one,
since only the putting together of all markings in a single power circuit allows
for our improvements in time complexity. Furthermore, we have introduced
power circuits with arbitrary base q ≥ 2 and given counterparts of concepts
such as compactness.

As a consequence, we were able to find efficient algorithms for the word
problem in groups that are based on BS(1, q) and have some means of swap-
ping their generators. This leads to huge compression, which was until re-
cently considered a serious obstacle to solving the word problem efficiently.
We have given polynomial-time algorithms for two classes of such groups –

93
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the Baumslag-Gersten groups BG(1, q) and Higman’s groups Hf(1, q). In the
latter case, we were also able to generalize the algorithm to arbitrary values
f ≥ 4. Maybe surprisingly, the value of f does not affect the asymptotical
complexity of the word problem for Hf(1, q).

Both the Baumslag-Gersten groups BG(1, q) and the Higman groups
Hf(1, q) can be generalized even further to BG(p, q) and Hf(p, q). Unfor-
tunately, our results do not translate to p > 1. On a technical level, this is
because the underlying Baumslag-Solitar group BS(p, q) is not a semi-direct
product when p > 1. The deeper reason is that power circuits are unable
to perform division by integers that are not powers of q (such as p, which
would be needed for Britton reductions like tan⋅pt−1 Ð→ an⋅q). We have seen
in Chapter 2 that allowing p > 1 can make algorithmic problems in BS(p, q)
much harder.

Although power circuits have so far only been applied to group theory,
they might prove useful in other areas as well. The greatest obstacle is prob-
ably the small set of arithmetic operations that can be conducted without
heavy growth of the circuit. Although operations other than addition and
multiplication by a power of q may be possible, there are some serious limita-
tions of power circuits when it comes to dividing numbers, see Section 3.4.2.
Another shortcoming of power circuits seems to be the close tie between a
circuit and its base q. For instance, we have no efficient way of converting
a marking in a base q power circuit to one with the same value in another
circuit with a different base q′.

Although a real-world implementation of power circuits requires a sub-
stantial amount of overhead, they can and have been got up and running. In
particular, the algorithm for the word problem for BG(1,2) with the quite
moderate O(n3) time complexity has been implemented. Details can be
found in the appendix.



Appendix

This chapter collects experimental work and results.

Horocyclic Growth in BS(2, 3)

Algorithm 5.1 is an implementation of the procedure from Section 2.4. It
computes the first coefficients of the growth series of the horocyclic subgroup
of BS(2,3). Details can be found in Section 2.4.1. The results are shown in
Figure 5.1.

Algorithm 5.1: horo23.cpp

1 #include <iostream >

2 #include <string >

3 #include <cstring >

4 #include <cmath >

5 #include <cassert >

6 #include <pthread.h>

7

8 /* maximum length of words */

9 const unsigned int MAX_WORD_LENGTH = 139;

10

11 /* number of threads */

12 const unsigned int NUM_THREADS = 24;

13

14 /* size of chunks that a thread is given at a time */

15 const unsigned long CHUNK_SIZE = 1<<25;

16

17 /* maximum value of horocyclics */

18 const long MAX_HORO_VAL = (long)std::ceil (8*std::pow (3.0/2.0 ,

MAX_WORD_LENGTH /2-1));

19

20 /* maximum height of slopes */

21 const unsigned int MAX_SLOPE_HEIGHT = MAX_WORD_LENGTH / 2 +

5;

22

23 /* geodesic lengths of horocyclics elements 0,...,13 */

95
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24 int small [14] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 10,

11};

25

26 /* Function for computing geodesic lengths of slopes that

occur in shortlex normal forms of horocyclic elements.

Assumes that the slope has the form "a_0 T a_1 T ... T a_h

" with |a_0|<6 and |a_i|<3 for i>0 and |a_0|>=3 (>=4, in

fact , otherwise it would not be horocyclic) if the height

is non -zero. */

27 int compute_slope_geod_length(unsigned int height , const int*

slope)

28 {

29 if(height == 0)

30 return small[slope [0]];

31

32 /* tables for geodesic lengths of u(i,g) with i>0, 0=<g

=<10 */

33 int t1[14], t2 [14];

34 int* table1 = t1;

35 int* table2 = t2;

36 memcpy(table1 , small , sizeof(small));

37

38 for(int i = height - 1; i >= 0; i--)

39 {

40 for(int g = 0; g <= 10; g++)

41 {

42 if(g % 3 == 0)

43 table2[g] = table1[slope[i + 1] + g / 3 * 2]

+ 2;

44 else

45 {

46 int div = g / 3, rem = g % 3;

47 int snf1 = table1[slope[i + 1] + div * 2] + 2

+ rem;

48 int snf2 = table1[slope[i + 1] + (div + 1) *

2] + 2 + 3 - rem;

49 table2[g] = (snf1 <= snf2 ? snf1 : snf2);

50 }

51 }

52 /* swap tables */

53 std::swap(table1 , table2);

54 }

55 return table1[slope [0]];

56 }

57

58 /* compute geodesic length of a horocyclic element */

59 int compute_horo_geod_length(long horoVal)

60 {
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61 /* prepare a slope suitable for compute_slope_geod_length

*/

62 int slope[MAX_SLOPE_HEIGHT +1];

63 unsigned int height = 0;

64 while(horoVal >= 6)

65 {

66 slope[height ++] = (int)(horoVal % 3);

67 horoVal = horoVal / 3 * 2;

68 }

69 slope[height] = (int)horoVal;

70 return compute_slope_geod_length(height , slope);

71 }

72

73 /* helper function assigning tasks to threads */

74 pthread_mutex_t getNextTaskMutex;

75 long horoCurrent = 1;

76

77 bool getNextTask(long* pHoroFirst , long* pHoroLast)

78 {

79 pthread_mutex_lock (& getNextTaskMutex);

80 if(horoCurrent >= MAX_HORO_VAL)

81 {

82 pthread_mutex_unlock (& getNextTaskMutex);

83 return false;

84 }

85 *pHoroFirst = horoCurrent;

86 horoCurrent = (horoCurrent + CHUNK_SIZE < MAX_HORO_VAL +

1 ? horoCurrent + CHUNK_SIZE : MAX_HORO_VAL + 1);

87 *pHoroLast = horoCurrent - 1;

88 pthread_mutex_unlock (& getNextTaskMutex);

89 return true;

90 }

91

92 /* thread computing horocyclic geodesics in a certain range

*/

93 struct ThreadData {unsigned int numGeods[MAX_WORD_LENGTH +

1];};

94 void* thread(void* p)

95 {

96 ThreadData* td = (ThreadData *)p;

97 memset(td ->numGeods , 0, (MAX_WORD_LENGTH + 1) * sizeof(

unsigned int));

98

99 long horoFirst , horoLast;

100 while(getNextTask (&horoFirst , &horoLast))

101 {

102 for(long n = horoFirst; n <= horoLast; n++)

103 {
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104 unsigned int geodLength =

compute_horo_geod_length(n);

105 if(geodLength <= MAX_WORD_LENGTH)

106 td ->numGeods[geodLength ]++;

107 else

108 /* Increasing n by 1 can shorten the geodesic

length by at most 1, so if it was too

long this time , we may skip some values of

n. */

109 n += geodLength - MAX_WORD_LENGTH - 1;

110 }

111 }

112 return 0;

113 }

114

115 int main()

116 {

117 pthread_mutex_init (& getNextTaskMutex , NULL);

118 pthread_t threadids[NUM_THREADS ];

119 ThreadData td[NUM_THREADS ];

120 for(unsigned int t = 0; t < NUM_THREADS; t++)

121 {

122 int rc = pthread_create (& threadids[t], NULL , &thread ,

(void*)&td[t]);

123 assert(rc >= 0);

124 }

125 /* wait for termination of all threads */

126 for(unsigned int t = 0; t < NUM_THREADS; t++)

127 pthread_join(threadids[t], NULL);

128 pthread_mutex_destroy (& getNextTaskMutex);

129

130 /* collect results */

131 unsigned int numGeods[MAX_WORD_LENGTH + 1];

132 memset(numGeods , 0, (MAX_WORD_LENGTH + 1) * sizeof(

unsigned int));

133 numGeods [0] = 1; /* there is one geodesic of length 0 */

134 for(unsigned int t = 0; t < NUM_THREADS; t++)

135 for(unsigned int i = 0; i <= MAX_WORD_LENGTH; i++)

136 /* count both the positive and negative elements

*/

137 numGeods[i] += 2 * td[t]. numGeods[i];

138

139 /* output */

140 for(unsigned int g = 0; g < MAX_WORD_LENGTH; g++)

141 std::cout << "B[" << g << "] = " << numGeods[g] <<

std::endl;

142 return 0;

143 }
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B0 = 1 B35 = 186 B70 = 44096 B105 = 10624906
B1 = 2 B36 = 208 B71 = 51614 B106 = 12436968
B2 = 2 B37 = 254 B72 = 60562 B107 = 14540864
B3 = 2 B38 = 294 B73 = 70326 B108 = 17006524
B4 = 2 B39 = 338 B74 = 82812 B109 = 19895006
B5 = 2 B40 = 410 B75 = 96708 B110 = 23267412
B6 = 2 B41 = 452 B76 = 112590 B111 = 27216446
B7 = 2 B42 = 564 B77 = 132660 B112 = 31831420
B8 = 4 B43 = 642 B78 = 154366 B113 = 37227130
B9 = 2 B44 = 730 B79 = 180660 B114 = 43550214
B10 = 4 B45 = 912 B80 = 211876 B115 = 50933310
B11 = 4 B46 = 1016 B81 = 247002 B116 = 59574606
B12 = 6 B47 = 1174 B82 = 289592 B117 = 69671956
B13 = 4 B48 = 1448 B83 = 338376 B118 = 81504184
B14 = 8 B49 = 1618 B84 = 395482 B119 = 95325246
B15 = 10 B50 = 1926 B85 = 463626 B120 = 111481052
B16 = 6 B51 = 2266 B86 = 540940 B121 = 130415594
B17 = 12 B52 = 2594 B87 = 633632 B122 = 152527176
B18 = 16 B53 = 3102 B88 = 740944 B123 = 178383116
B19 = 10 B54 = 3588 B89 = 865508 B124 = 208677414
B20 = 20 B55 = 4222 B90 = 1014572 B125 = 244045370
B21 = 20 B56 = 4908 B91 = 1185106 B126 = 285451874
B22 = 22 B57 = 5756 B92 = 1385484 B127 = 333884804
B23 = 30 B58 = 6756 B93 = 1623088 B128 = 390492208
B24 = 34 B59 = 7842 B94 = 1895228 B129 = 456783838
B25 = 34 B60 = 9236 B95 = 2218648 B130 = 534205772
B26 = 46 B61 = 10822 B96 = 2596182 B131 = 624856804
B27 = 56 B62 = 12560 B97 = 3032416 B132 = 730862612
B28 = 60 B63 = 14640 B98 = 3551262 B133 = 854811826
B29 = 68 B64 = 17420 B99 = 4151324 B134 = 999825280
B30 = 88 B65 = 20066 B100 = 4854608 B135 = 1169416424
B31 = 94 B66 = 23570 B101 = 5682136 B136 = 1367811466
B32 = 124 B67 = 27654 B102 = 6641712 B137 = 1599816932
B33 = 128 B68 = 32166 B103 = 7769100 B138 = 1871178314
B34 = 156 B69 = 37816 B104 = 9091012 B139 = 2188581536

Figure 5.1: The first 140 coefficients of the horocyclic growth series of
BS(2,3)
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Implementations of Power Circuits

Under the author’s guidance, Armin Weiß has implemented power circuits in
C++ for q = 2. The code is available in the CRAG library [MU]. There are
two implementations. The first one uses the simpler reduction method from
Section 3.3 and stores graphs with linked incidence lists. The second one
implements the more complicated tree version with compact markings (see
Section 3.4.3). The paths of the trees are stored in the columns of matrices.
Both implementations have the same interface and can be used interchange-
ably. Algorithm 5.2 demonstrates the usage of the library and Figure 5.2
shows the output, visualized with the open source software Graphviz. The
letter R indicates that a node belongs to the reduced part of the circuit.

Algorithm 5.2: Demonstration of the power circuit implementation
1 PowerCircuitGraph pc;

2 /* create (automatically) a marking m1 with value 9 */

3 Marking m1 = pc.createMarking (9);

4 /* create new nodes n1 and n2 , both with m1 as successor

marking */

5 Node n1 = pc.createNode(m1);

6 Node n2 = pc.createNode(m1);

7 /* create a marking m2 containing n1 and n2 */

8 vector <Node > nodelist;

9 nodelist.push_back(n1);

10 nodelist.push_back(n2);

11 Marking m2 = pc.createMarking(nodelist);

12 /* plot the circuit with m1 and m2 highlighted */

13 pc.draw("graph1", m1 , m2);

14 /* reduce and plot again */

15 pc.reduce ();

16 pc.draw("graph2", m1 , m2);

The library also contains code for solving the word problem in the Baum-

slag-Gersten group. On current desktop computers, instances like [T20, t]
?
= 1

are solved in reasonable time (see Section 4.3 for the definition of Tn). The
algorithm solving the word problem in Higman’s group has not been imple-
mented, since the O(n6) time bound is beyond the capabilities of modern
computers for practically all non-trivial instances.

It turns out that in practice the overhead needed for treed power cir-
cuits outweighs the benefits of the asymptotically more efficient reduction
procedure. This is not surprising, since the logarithmic factor in the time
complexity of the simpler version is bounded by a very small constant for
all feasible instances. In contrast, creating and maintaining a tree structure
multiplies the running time by a much larger factor.
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Figure 5.2: Demonstration of the power circuit implementation
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105



106 BIBLIOGRAPHY
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BG(1, q), 88
BS(p, q), 21
Bpnf, 43
Hf(1, q), 83
ch, 75
pnf, 43
sign, 31
sk, 47
snf, 32
∼, 17
ε, 56

addition of markings, 59
amalgamated product, 19
amortized analysis, 74

base chain of a power circuit, 63
Baumslag-Gersten group, 88
Baumslag-Solitar group, 21
Britton peak normal form, 43
Britton reduction, 18
Britton-reduced, 18

chain in a power circuit, 63
Church-Rosser property, 16
cloning, 58
compact marking, 73
compact power sum, 69
comparison of markings, 62
confluence, 15

difficult word, 44

evaluation function, 56

generalized Higman group, 83
geodesic, 24
geodesic length, 24
growth rate, 24
growth series, 25, 31, 39, 40, 54, 95

height of slopes, valleys, or hills, 28
Higman group, 82
hill, 28
HNN extension, 18
horocyclic subgroup, 23, 31, 40, 95
horocyclic word, 28

irreducible, 15

length-reducing rewriting system, 16
level, 42
local confluence, 15

marking in a power circuit, 56
multiplication by a power of q, 59

norm of a word, 29
normal form, 16

peak, 42
peak normal form, 43
peak of a word, 42
potential of a power circuit, 75
power circuit, 55, 57
power sum, 67

RAM, 14
random access machine, 14

109



110 INDEX

reduced power circuit, 61
reduced word in BS(p,±p), 53

shortlex normal form, 32
shortlex order, 32
sink, 47
slope, 28
solvable Baumslag-Solitar group, 22,

79
standard valley, 47
subgroup membership problem, 19
successor marking, 56
swap, 80

terminating rewriting systems, 16
total degree of a rational function, 40
treed power circuit, 73
triple, 79
triple marking, 79

valley, 28
value of a marking, 56

weight of a power circuit, 82
word problem, 18, 80, 83, 89


