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Abstract

Network emulation constitutes an approved methodology to evaluate the performance

of distributed applications and communication protocols. The approach of network

emulation models computer networks by connecting instances of the Software under

Test (SuT), representing routers and hosts, using a distributed emulation tool. The

emulation tool allows for specifying the parameters of these connections, like band-

width, delay and loss rate. Therefore, network emulation combines the benefits of

network simulation, like controllability and repeatability of network experiments, with

the benefits of real world testbeds, like accuracy and realism of running the unmodified

implementations of the SuT.

Recently, researchers have spent much effort to increase the scalability of network

emulation to allow for the evaluation of distributed systems in large network topologies

with thousands of network nodes. Basically two concepts are introduced to reach that

goal: node and time virtualization. Node virtualization allows for partitioning the

physical nodes of an emulation testbed to run multiple instances of the SuT on each

physical node. However, the available resources of the physical nodes limit the number

of virtual nodes that can be executed by the physical nodes without overloading the

hardware. This overload can be avoided by applying the concept of time virtualization.

Executing the network experiment with a virtual time, that runs a factor slower than real

time, allows for increasing the resources like CPU and network capacity of the testbed

by the same factor. However, the runtime of network experiments is also increased by

that factor.

The goal of this work is to reduce the runtime of network experiments and, thus, in-

crease the satisfaction of testbed users and testbed operators. Therefore, this thesis

makes the following contributions. First, we present an efficient emulation architecture

for testbeds with multi-core processors that provides node and time virtualization and

minimizes CPU and memory consumption as well as the communication overhead.

Second, we introduce the new concept of adaptive virtual time, that allows for dynam-

ically adjusting the speed of the experiment to the resource requirements during the
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experiment runtime. Using this approach, the experiment can run with an increased

speed during periods of low resource requirements. Third, we provide an accurate

testbed model to capture the resource requirements of an experiment. Fourth, based

on this model, we introduce an approach to calculate an initial placement of virtual

nodes onto the physical nodes that minimizes the experiment runtime based on the

experiment specification. Finally, in order to react on varying resource requirements

during the experiment, we provide an approach to adapt the placement during the

running experiment based on transparent migration of virtual nodes to further reduce

the experiment runtime.

The developed concepts are implemented and integrated in our Network Emulation

Testbed (NET). Detailed evaluations of our prototype show the efficiency and effec-

tiveness of our concepts to minimize the runtime of experiments based on network

emulation.
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Deutsche Zusammenfassung

Laufzeitminimierung von skalierbarer
Rechnernetz-Emulation

1 Einleitung

Der Softwaretest ist ein integraler Bestandteil des Entwicklungsprozesses von Software

[Pre92]. Hierbei wird neben den funktionalen Anforderungen auch die Leistungsfä-

higkeit der zu testenden Software überprüft. Solche Leistungstests werden auch in

der Forschung bei der Evaluation neu entwickelter verteilter Software (verteilte An-

wendungen und Kommunikationsprotokolle) eingesetzt. Die Leistungsfähigkeit der

verteilten Software hängt hierbei entscheidend von der Umgebung ab, in der sie ausge-

führt wird. Daher erfordert eine akkurate Leistungsprüfung die Berücksichtigung der

Zielumgebung der zu testenden Software.

Zur Leistungsprüfung von verteilter Software existieren vier Methodiken [Liu08a]: analy-

tische Modelle [Gro06], Realwelt-Testumgebung [CCR+03, ABKM01], Netzwerksimula-

tion [Liu08b, Fuj89, Ril03] und Netzwerkemulation [AC06, HRS+08, GMHR08]. Während

bei der Leistungsprüfung mittels analytischer Modelle und der Netzwerksimulation Mo-

delle der zu testenden Software evaluiert werden, kann bei Realwelt-Testumgebungen

und bei der Netzwerkemulation unmodifizierte Software auf ihre Leistungsfähigkeit

überprüft werden. Im Gegensatz zu Realwelt-Testumgebungen ist bei der Evaluation

auf Basis der Netzwerkemulation die Zielumgebung der Software frei wählbar und nicht

auf die Topologie der Testumgebung beschränkt.

Bei der Methode der Netzwerkemulation wird die Zielumgebung als Netzwerk von

Knoten (Router und Endsysteme) modelliert. Auf diesen Knoten werden die Instanzen

der zu testenden Software ausgeführt. Mittels konfigurierbarer Netzwerkhardware und

Softwarewerkzeugen [Riz97, HR02] kann die Topologie des Netzwerks sowie dessen

Eigenschaften (z.B. Bandbreite, Verzögerung und Verlustrate) bereitgestellt werden.
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Diese Netzwerkexperimente werden auf Clustern aus handelsüblicher PC-Hardware

ausgeführt. Das Konzept der Knotenvirtualisierung [WSG02, VYW+02, JX03, Mai11] er-

laubt es, mehrere Instanzen der zu testenden Software (virtueller Knoten) auf jedem der

PC-Knoten des Clusters (physischer Knoten) auszuführen und somit die Skalierbarkeit

der Netzwerkemulation zu steigern.

Die Anzahl der virtuellen Knoten pro physischem Knoten ist durch dessen Leistung

limitiert. Eine zu hohe Anzahl an virtuellen Knoten pro physischem Knoten führt zu

dessen Überlastung, was schließlich zu einer Verfälschung der Experimentergebnisse

führen kann. Das Konzept der virtuellen Zeit [CFH+80, GYM+06] erlaubt es, ein Experi-

ment langsamer als Echtzeit auszuführen und somit die Last der physischen Knoten in

der Emulationsumgebung zu reduzieren. Beispielsweise kann durch Verlangsamung

des Experiments um den Faktor 10 ein reales 10 Mbps Netzwerk genutzt werden, um

100 Mbps in der Emulation zu übertragen. Der Quotient der Experimentzeit (virtuelle

Zeit) und der Realzeit wird Zeitdehnungsfaktor TDF (engl. time dilation factor) genannt.

Somit kann ein an dieses reale 10 Mbps Netzwerk angeschlossener physischer Knoten

zehn virtuelle Knoten ausführen, wobei jeder dieser virtuellen Knoten 10 Mbps nutzen

kann. Existierende Systeme [GYM+06, ELL09] mit konstantem TDF wählen den TDF

sehr konservativ, um Überlast auch in Zeiten von Spitzenlast zu vermeiden. Daher

werden bei Experimenten mit wechselnden Ressourcenanforderungen während einem

Großteil der Experimentlaufzeit die physischen Ressourcen nur teilweise ausgelastet.

Die Konsequenz ist eine suboptimale Laufzeit des Experiments, da die Ausführungs-

geschwindigkeit der Experimente in diesen Teilen ohne Überlastung der physischen

Ressourcen beschleunigt werden könnte. Zur Vermeidung von Überlast und gleichzeiti-

ger Optimierung der Experimentlaufzeit wird in dieser Arbeit das Konzept der adaptiven

virtuellen Zeit [GMHR08] eingeführt. Die Grundidee ist hierbei die Überwachung der

Last der physischen Knoten und die dynamische Anpassung der Ausführungsgeschwin-

digkeit des Experiments, basierend auf der aktuellen Lastsituation [GHR09a].

Bei der Nutzung von adaptiver virtueller Zeit wird die Ausführungsgeschwindigkeit und

somit die Laufzeit eines Experiments durch den am stärksten belasteten physischen

Knoten bestimmt. Diese Last hängt stark von der Platzierung der virtuellen Knoten

auf die physischen Knoten ab. Existierende Verfahren [RAL03, ZN03, LC04, CBMP04,

LLXC05] zur Berechnung einer solchen Platzierung berücksichtigen keine Zeitvirtualisie-

rung. Sie gehen von physischen Knoten mit festgelegten Kapazitäten aus und berechnen

eine Platzierung, welche diese Kapazitäten nicht übersteigt. Bei der Wahl einer geeigne-

ten Ausführungsgeschwindigkeit kann ein Experiment mit beliebiger Platzierung ohne

Überlastung der Ressourcen ausgeführt werden. Allerdings führt eine Verlangsamung
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der Ausführungsgeschwindigkeit zu einer Erhöhung der Experimentlaufzeit. Daher wird

ein Platzierungsalgorithmus benötigt, der eine Platzierung berechnet, welche die Last

des am meisten belasteten Knoten minimiert. Im Folgenden wird die Platzierung der

virtuellen Knoten zu Beginn des Experiments als initiale Platzierung bezeichnet.

Selbst unter der Annahme einer optimalen initialen Platzierung können wechselnde

Ressourcenanforderungen von virtuellen Knoten während der Experimentlaufzeit zu

temporär suboptimalen Platzierungen und somit zu einer suboptimalen Ausführungs-

geschwindigkeit des Experiments führen. Durch Überwachen der Last der virtuellen

und physischen Knoten können diese Situationen erkannt und eine optimierte Platzie-

rung berechnet werden. Die Migration von virtuellen Knoten erlaubt es, eine optimierte

Platzierung in der Emulationsumgebung herzustellen. Hierdurch wird eine Balancie-

rung der Last zwischen den physischen Knoten erreicht und somit Spitzenlast auf

einzelnen physischen Knoten vermieden. In Kombination mit dem Konzept der adap-

tiven virtuellen Zeit erlaubt es die Migration von virtuellen Knoten, die Laufzeit von

Netzwerkexperimenten mit wechselnden Ressourcenanforderungen zu reduzieren.

Diese Arbeit leistet folgende sechs Hauptbeiträge: eine leichtgewichtige Architektur zur

Knoten- und Zeitvirtualisierung mit Unterstützung von Multikern-Architekturen, eine

auf Epochen basierende adaptive Zeitvirtualisierung zur Minimierung der Experiment-

laufzeit durch Maximierung der Ressourcenauslastung bei gleichzeitigem minimalen

Synchronisierungsaufwand, ein generisches Kostenmodell für die Kommunikation

zwischen virtuellen Knoten zur Abschätzung der Laufzeit von Netzwerkexperimen-

ten, ein Algorithmus zur Berechnung einer initialen Platzierung zur Minimierung der

Experimentlaufzeit, eine Architektur zur effizienten Unterstützung von Migrationen

virtueller Knoten zur Laufzeit von Experimenten, ein Verfahren zur Minimierung der

Experimentlaufzeit durch Umplatzierung von virtuellen Knoten.

Die Arbeit ist folgendermaßen gegliedert: in Kapitel 2 werden die Grundlagen dieser

Arbeit betrachtet und die Grundkomponenten skalierbarer Emulationsumgebungen

vorgestellt. Kapitel 3 gibt einen Überblick über das zugrunde liegende Emulationssys-

tem NET sowie dem Zusammenspiel der entwickelten Konzepte. In Kapitel 4 wird eine

Architektur zur effizienten Knoten- und Zeitvirtualisierung vorgestellt und das Konzept

der adaptiven virtuellen Zeit zur Minimierung der Experimentlaufzeit bei gleichzeitiger

Verhinderung von Überlast eingeführt. Kapitel 5 befasst sich mit der Minimierung der

Experimentlaufzeit durch eine laufzeitoptimale Platzierung von virtuellen Knoten. Hier-

bei werden Mechanismen zur initialen Knotenplatzierung zu Beginn des Experiments

und der dynamischen Knotenplatzierung während eines Experimentlaufs betrachtet.
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Die Arbeit schließt mit einer Zusammenfassung und der Diskussion möglicher zukünf-

tiger Arbeiten in Kapitel 6.

2 Grundlagen

In Kapitel 2 werden zunächst die Grundkomponenten skalierbarer Emulationsum-

gebungen betrachtet. Diese Komponenten umfassen Werkzeuge zur Emulation von

Verbindungen zwischen virtuellen Knoten, Konzepte zur Knotenvirtualisierung sowie

Konzepte zur Virtualisierung der Zeit. Im Anschluss werden aus diesen Grundkompo-

nenten bestehende Werkzeuge zur Leistungsbewertung verteilter Systeme vorgestellt.

Zur Emulation von Verbindungen zwischen virtuellen Knoten werden unterschiedli-

che Methoden verwendet. In Realwelt-Testumgebungen [CCR+03, BL03] werden die

Eigenschaften der Verbindungen durch Eigenschaften des zugrunde liegenden Netz-

werks bestimmt. Die Emulation von beliebigen Netzeigenschaften kann durch verteilte

Emulationswerkzeuge [HR02, Riz97] oder durch den Einsatz eines angeschlossenen

Netzwerksimulators [Fal99, SU03, TRR08, WSHW08, LLH09] erreicht werden. Je nach

Position des Emulationswerks beziehungsweise dem Ort der Anbindung des Netzwerk-

simulators im Protokollstapel, wird hierbei zu testende Software auf der Anwendungs-

und Transportschicht [Riz97] oder zusätzlich auf Netzwerkschicht [HR02, CS03, Hem05,

GMHR08, CR10] ermöglicht.

Zur Knotenvirtualisierung kommen in Emulationssystemen zwei verschiedene Vir-

tualisierungstechniken zum Einsatz: virtuelle Maschinen [SM79, Cre81] und virtuelle

Protokollstapel [KHS+03]. Virtuelle Maschinen erlauben es, jedem virtuellen Knoten

sein eigenes Betriebssystem inklusive aller Komponenten, wie dem Protokollstapel, aus-

zuführen und sind daher sehr flexibel. Im Unterschied zu virtuellen Maschinen teilen

sich virtuelle Knoten, im Falle virtueller Protokollstapel, ein gemeinsames Betriebssys-

tem. Hierbei nutzt jeder virtuelle Knoten eine eigene Instanz des Protokollstapels. Durch

Techniken wie Partitionierung der Namensräume sowie der Virtualisierung des Datei-

systems [BDM99, Sch00, KW00] können virtuelle Knoten von einander isoliert werden.

Der Vergleich des notwendigen Ressourcenbedarfs beider Virtualisierungstechniken

bezüglich Speicherbedarf und Kommunikationskosten zeigt, dass virtuelle Maschinen

einen um eine Größenordnung höheren Aufwand als virtuelle Protokollstapel besitzen

[BQ06a, MGWR07, CGMV07, SPF+07].

Das Konzept der virtuellen Zeit erlaubt es, Netzwerkexperimente schneller oder lang-

samer als Echtzeit auszuführen. Während eine schnellere Ausführung beispielsweise
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genutzt werden kann, um das zukünftige Verhalten von Schadsoftware zu untersuchen

[CWdO+06], erlaubt es eine langsamere Ausführung [CFH+80, GYM+06], die Ressour-

cen der Testumgebung künstlich zu vergrößern und somit eine Ressourcenüberlastung

zu verhindern. Virtuelle Zeit kann auf drei Arten bereitgestellt werden: durch Erweite-

rung der Anwendungsschnittstelle des Betriebssystems [ZN11, BF11], durch Einführung

einer virtuellen Zeit im Betriebssystems [WK02] und durch Ausführung der zu testenden

Software innerhalb einer um virtuelle Zeit erweiterten virtuellen Maschine [GYM+06].

Letzteres stellt virtuelle Zeit der zu testenden Software transparent dar und erfordert

keine Anpassungen des Betriebssystems.

Werkzeuge zur Leistungsbewertung verteilter Anwendung werden typischerweise in

Realwelt-Testumgebungen, Netzwerkemulatoren und Netzwerksimulatoren unterschie-

den. Traditionell führen Realwelt-Testumgebungen und Netzwerkemulatoren die Ex-

perimente in Realzeit durch, während Netzwerksimulatoren eine virtuelle Zeit nutzen.

Im Gegensatz zu Realwelt-Testumgebungen erlauben Netzwerkemulatoren eine Leis-

tungsbewertung von Software in beliebigen Netzwerktopologien. Es zeigt sich aller-

dings, dass diese Grenzen durch neuere Entwicklungen unscharf werden. Wie bereits

erwähnt wurde, nutzen aktuelle Netzwerkemulatoren virtuelle Zeit um Überlast zu

verhindern [GVV08, GHR12]. Gleichzeitig werden Realzeit-Scheduler in Netzwerksi-

mulatoren verwendet, um realen Netzwerkverkehr in der Simulation zu verarbeiten

[Fal99, SU03, TRR08, LLH09, KP09, AOC+10].

3 Systemüberblick

In Kapitel 3 wird zunächst die für diese Arbeit als Basis dienende Emulationsumgebung

NET (Network Emulation Testbed) vorgestellt. Darauf folgend wird die entwickelte

Architektur zur Minimierung der Laufzeit von Netzwerkexperimenten eingeführt. Als

Abschluss des Kapitels werden Anwendungsbeispiele des im Rahmen dieser Arbeit

entstandenen Prototyps diskutiert.

Die Konzepte und Methoden dieser Arbeit sind Teil des NET-Projekts der Abteilung

Verteilte Systeme der Universität Stuttgart. Hierbei dienen die Forschungsergebnisse

früherer Arbeiten in diesem Projekt als Basis. Die Arbeit von Herrscher [Her05] befasst

sich mit der Entwicklung des Emulationswerkzeugs NETshaper [HR02] zur akkuraten

Emulation von drahtlosen und drahtgebundenen Netzwerken. Die Arbeit von Maier

[Mai11] erweitert die Emulationsumgebung NET um das Konzept der virtuellen Knoten

auf Basis von virtuellen Protokollstapeln.
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Die Komponenten dieser Arbeit sind auf mehrere Knoten der Emulationsumgebung

verteilt. Zunächst wird vom Benutzer mittels eines Spezifikationswerkzeugs [Gra11,

VGR+11] eine Experimentbeschreibung erstellt. Diese Beschreibung umfasst die zu tes-

tende Software, die zu emulierende Netzwerktopologie sowie eine Beschreibung der zu

verwendenden Experimentumgebung. Basierend auf diesen Beschreibungen berechnet

ein Knoten in der Rolle des Koordinators mittels des entwickelten Platzierungsalgorith-

mus NETplace eine initiale Knotenplatzierung. Gemäß dieser Platzierung werden die

virtuellen Knoten auf die physischen Knoten verteilt, die virtuelle Netzwerktopologie

aufgebaut und die zu testende Software auf den virtuellen Knoten gestartet. Zur Verhin-

derung von Ressourcenengpässen wird die Last der physischen Knoten überwacht und

an den Koordinator gemeldet. Auf Basis dieser Lastinformationen passt der Koordinator

die Ausführungsgeschwindigkeit des Experiments an. Um die Platzierung der Knoten an

den sich ändernden Ressourcenbedarf der virtuellen Knoten anzupassen, wird die Last

der virtuellen Knoten ebenfalls überwacht und an den Koordinator gesendet. Auf Basis

dieser Lastinformationen berechnet der Koordinator (NETbalance) eine optimierte Plat-

zierung. Bei einer erwarteten Reduzierung der Experimentlaufzeit durch die optimierte

Platzierung wird diese in der Testumgebung umgesetzt.

4 Effiziente Knoten- und Zeitvirtualisierung

Kapitel 4 beschäftigt sich mit Konzepten zur Erhöhung der Skalierbarkeit der Netz-

werkemulation bezüglich der Größe der Szenarien und dem Ressourcenverbrauch.

Hierzu wird erstens eine Architektur zur effizienten Knoten- und Zeitvirtualisierung auf

Multikern-Architekturen vorgestellt, welche den Speicherbedarf sowie den Kommunika-

tionsaufwand minimiert. Zweitens wird das eingesetzte Emulationswerkzeug NETshaper

für den Einsatz in einer zeitvirtualisierten Emulationsumgebung angepasst. Drittens

wird ein skalierbarer Multiplexing-Ansatz zur Emulation einer Vielzahl an virtuellen

Verbindungen mittels einer einzigen physischen Netzwerkkarte vorgestellt. Schließlich

wird das Konzept der adaptiven virtuellen Zeit eingeführt. Das Kapitel schließt mit

einer Leistungsbewertung der vorgestellten Konzepte. Teile der vorgestellten Konzepte

wurden bereits zuvor in Tagungsbänden [GMHR08, GHR09a, GHR10] sowie in einem

Fachblatt [GHR12] veröffentlicht.

Virtuelle Maschinen können der zu testenden Software eine virtuelle Zeit transparent

bereitstellen. Um den Mehraufwand für die Knotenvirtualisierung bei gleichzeitiger

Zeitvirtualisierung zu minimieren, werden die Ressourcen der virtuellen Maschine
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durch virtuelle Protokollstapel partitioniert (virtuelle Knoten). Hierdurch können mit-

tels Referenzweitergabe die Kommunikationskosten und mittels geteilten Zugriffs auf

Systembibliotheken der Speicherbedarf reduziert werden [GMHR08]. Zur Unterstüt-

zung von Multikern-Architekturen wird auf jedem Kern der CPU eine virtuelle Maschine

ausgeführt. Die Zuweisung einer CPU pro virtueller Maschine ermöglicht es, einerseits

auf teure Synchronisation mehrerer CPUs innerhalb einer virtuellen Maschine zu ver-

zichten und andererseits die Last der virtuellen Maschine ohne Instrumentierung des

Gastbetriebssystems zu überwachen [GHR10, GHR12].

Emulationswerkzeuge [HR02] nutzen Timer des Betriebssystems, um die Auslieferung

von Rahmen zu verzögern und somit die Eigenschaften der virtuellen Verbindungen

(Bandbreite und Verzögerung) zu emulieren. Die auf Interrupts basierenden Timer des

Betriebssystems erfordern im Falle der Emulation von Hochgeschwindigkeitsnetzen

(> 1Gbps) eine hohe Interrupt-Rate. Die mit jedem Interrupt verbundenen Kontext-

wechsel führen zu einem erheblichen Mehraufwand. Zur Minimierung des Mehrauf-

wands wird das Konzept der ereignisgesteuerten Timer [GMHR08] eingeführt. Hierbei

lösen im Emulationswerkzeug eintreffende Rahmen das Versenden verzögerter Rahmen

aus. Somit kann eine hohe Interrupt-Rate und der daraus resultierende Mehraufwand

vermieden werden.

In Emulationssystemen auf Basis von Knotenvirtualisierung übersteigt typischerweise

die Anzahl an virtuellen Knoten die Anzahl verfügbarer physischer Netzwerkadapter.

Daher wird mittels Multiplexing-Techniken eine Vielzahl virtueller Verbindungen über

einen physischen Netzwerkadapter übertragen. Existierende Verfahren [Her05, Mai11]

auf Basis von Hardware-gestützter VLANs (IEEE 802.1q [IEE06]) sind hierbei durch die

Begrenzung von VLAN auf 4.096 virtuelle Verbindungen innerhalb der Emulationsumge-

bung begrenzt. Um diese Limitierung aufzuheben, wurde der VLAN-basierte Ansatz um

ein Verfahren auf Basis eines softwarebasierten Multiplexing-Verfahrens erweitert. Hier-

bei können sich mehrere virtuelle Verbindungen ein VLAN teilen und so die Gesamtzahl

emulierbarer virtueller Verbindungen erhöht werden.

Zur Verhinderung von Überlast bei gleichzeitiger Maximierung der Ausführungsge-

schwindigkeit von Experimenten wurde das Verfahren der adaptiven virtuellen Zeit

entwickelt [GHR09a]. Die Grundidee ist hierbei, die Last der physischen Knoten bezie-

hungsweise der virtuellen Maschinen zu überwachen und in Abhängigkeit der aktuellen

Last die Ausführungsgeschwindigkeit des Experiments zu erhöhen beziehungsweise

zu verlangsamen. Hierbei muss die Auslastung der Emulationsumgebung auf einen

Wert geregelt werden, der es bei einer Steigerung des Ressourcenbedarfs erlaubt, eine
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rechtzeitige Reduzierung der Ausführungsgeschwindigkeit vorzunehmen. Im Gegensatz

zu Emulationsumgebungen mit konstanter Ausführungsgeschwindigkeit kann mittels

adaptiver virtueller Zeit die Laufzeit von Experimenten mit wechselndem Ressourcen-

bedarf maßgeblich reduziert werden.

Die Evaluation der vorgestellten Konzepte zeigt die Effizienz der entwickelten Archi-

tektur bezüglich dem Speicheraufwand und der Kommunikationskosten sowie die

Genauigkeit bei der Emulation von Netzeigenschaften wie Bandbreite und Verzögerung.

Ebenso zeigt die Evaluation der adaptiven virtuellen Zeit die Effektivität der Regelung

der Ausführungsgeschwindigkeit von Experimenten. Einerseits belegt die Evaluation,

dass es trotz wechselnder Ressourcenanforderungen zu keiner Verfälschung der Er-

gebnisse kommt und andererseits eine Optimierung der Ausführungsgeschwindigkeit

erfolgt.

5 Experimentkonfiguration

In Kapitel 5 werden Verfahren zur Minimierung der Experimentlaufzeit durch Opti-

mierung der Knotenplatzierung vorgestellt. Hierfür wird zunächst ein Überblick der

Werkzeugunterstützung zur Experimentbeschreibung in NET gegeben. Im Folgenden

wird ein Modell für Emulationsumgebungen entwickelt, um die Laufzeit von Netzwerk-

experimenten auf Basis der Experimentbeschreibung sowie der erwarteten Datenraten

zu berechnen. Dieses Modell dient als Basis für den entwickelten Platzierungsalgorith-

mus NETplace zur Berechnung einer initialen Knotenplatzierung. Um die Laufzeit von

Experimenten auch bei wechselnden Ressourcenanforderungen während eines Expe-

riments zu minimieren, wird das Verfahren NETbalance vorgestellt. Hierbei wird bei

Ressourcenänderungen zur Experimentlaufzeit die Knotenplatzierung optimiert, um

eine laufzeitoptimale Platzierung wiederherzustellen. Teile der vorgestellten Konzepte

wurden bereits zuvor in Tagungsbänden [GHR10, GHR11] sowie in einem Fachblatt

[GHR12] veröffentlicht.

Der Einsatz von virtuellen Protokollstapeln innerhalb der virtuellen Maschinen macht

eine Unterscheidung der Kommunikationskosten virtueller Verbindungen nötig. Hier-

bei verursachen Verbindungen zwischen virtuellen Knoten innerhalb einer virtuellen

Maschine die geringsten Kosten. Verbindungen zwischen virtuellen Knoten in ver-

schiedenen virtuellen Maschinen innerhalb eines physischen Knoten benötigen etwa

eine Größenordnung mehr Ressourcen. Sind die virtuellen Knoten einer Verbindung

auf verschiedenen physischen Knoten platziert, verdoppeln sich die Kosten nochmals.
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Basierend auf diesen Kostenfaktoren, der Platzierung der virtuellen Knoten, den erwar-

teten Datenraten der virtuellen Knoten sowie dem erwarteten Ressourcenverbrauch

der zu testenden Software, kann der Ressourcenbedarf der physischen Knoten bezie-

hungsweise der virtuellen Maschinen berechnet werden. Auf der Basis der benötigten

Ressourcen sowie der Kapazität der physischen Knoten kann die Experimentlaufzeit

berechnet werden.

Wegen der Schwere des Platzierungsproblems (NP-hard) wird ein auf Heuristiken ba-

sierendes Verfahren (NETplace) mit anschließender Optimierung zur Berechnung der

initialen Knotenplatzierung vorgeschlagen [GHR10, GHR12]. Hierbei wird zunächst

die virtuelle Topologie in einen gewichteten Graphen umgewandelt, wobei die Kan-

tengewichte den erwarteten Datenraten und die Knotengewichte dem erwartenden

Ressourcenbedarf der zu testenden Software entsprechen. Durch zweimalige Partitio-

nierung dieses Graphen mittels des k-way edge-cut Algorithmus [KK98a] werden die

Knoten zunächst auf die physischen Knoten und dann auf die virtuellen Maschinen

verteilt. In einer anschließenden Optimierungsphase wird diese Platzierung durch eine

auf Hill-Climbing basierte Optimierung verbessert.

Wechselnde Ressourcenanforderungen der virtuellen Knoten können trotz einer opti-

malen initialen Platzierung zu zeitweise suboptimalen Platzierungen führen und somit

die Experimentlaufzeit verlängern. Durch eine Umplatzierung von virtuellen Knoten

während des Experiments kann eine Platzierung hergestellt werden, welche eine Be-

schleunigung der virtuellen Zeit erlaubt (NETbalance [GHR11, GHR12]). Hierfür wird

mittels einer Lastüberwachung der Ressourcenbedarf der virtuellen Knoten überwacht

und an einen Koordinator gesendet. Auf Basis dieser aktualisierten Lastinformationen

kann der Koordinator eine optimierte Platzierung berechnen. Durch Migration virtueller

Knoten zwischen physischen Knoten kann die optimierte Platzierung in der Emula-

tionsumgebung umgesetzt werden. Hierfür wurde ein Verfahren entwickelt, welches es

erlaubt, virtuelle Knoten während eines laufenden Experiments ohne Beeinflussung

der Experimentergebnisse zu migrieren. Damit die aus der optimierten Platzierung

resultierende beschleunigte Experimentausführung auch zu einer Laufzeitreduktion

des Experiments führt, müssen jedoch zunächst die Migrationskosten kompensiert

werden. Mittels eines Kostenmodells für die Migrationskosten können diese berechnet

und mit der erwarteten Laufzeitverkürzung verrechnet werden. Zur Minimierung des

Migrationsaufwands wurde eine Architektur entwickelt, um Dateien mit ausschließ-

lichem Lesezugriff (z.B. Bibliotheken der zu testenden Software) zwischen virtuellen

Knoten zu teilen. Durch den gemeinsamen Zugriff auf diese Dateien müssen diese bei

einer Migration nicht zwischen den virtuellen Knoten transferiert werden.
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Im Zuge der Evaluation der vorgestellten Konzepte wird zunächst die Genauigkeit des

Modells für Emulationssysteme untersucht. Hierbei zeigt sich, dass das entwickelte Mo-

dell die Last der Komponenten mit einer Genauigkeit von etwa 8,9 % sowie die Laufzeit

der Experimente mit einer Genauigkeit von etwa 4,3 % vorhersagen kann. Bezüglich der

Evaluation des Verfahrens zur initialen Platzierung zeigt sich, dass NETplace die Laufzeit

gegenüber dem Referenzalgorithmus um bis zu 60 % reduzieren kann. Die Evaluation

der dynamischen Neuplatzierung mittels NETbalance belegt, dass eine Migration von

virtuellen Knoten während eines Experiments, transparent für die zu testende Software,

durchgeführt werden kann. Zudem belegen die Evaluationsergebnisse, dass NETbalance

die Laufzeit von Netzwerkexperimenten gegenüber einer initialen Platzierung um bis

zu 70 % reduzieren kann.

6 Zusammenfassung

Der Softwaretest ist ein essentieller Bestandteil der Softwareentwicklung. Hierbei wird

neben einer Funktionsprüfung auch die Leistungsfähigkeit der Software evaluiert.

Die Zielumgebung beeinflusst maßgeblich die Leistung verteilter Software und muss

daher bei der Evaluation berücksichtigt werden. Die Methode der Netzwerkemula-

tion kombiniert die Vorteile der Netzwerksimulation und der Evaluation in Realwelt-

Testumgebungen. Sie erlaubt wiederholbare Experimente von unmodifizierter verteilter

Software in benutzerdefinierten Umgebungen.

Um die Nützlichkeit der Netzwerkemulation zu maximieren, liegt der Fokus dieser

Arbeit auf der Entwicklung von Konzepten zur Maximierung der unterstützten Szenari-

engröße und zur Minimierung der Experimentlaufzeit. Hierfür wurden zunächst die

zugrunde liegenden Techniken der skalierbaren Netzwerkemulation betrachtet. Neben

verteilten Emulationswerkzeugen zur Emulation von Netzeigenschaften wurden die

Konzepte der Knoten- und Zeitvirtualisierung diskutiert. Die Knotenvirtualisierung

ermöglicht es, eine Vielzahl an Instanzen der zu testenden Software pro physischem

Knoten der Emulationsumgebung auszuführen. Das Konzept der Zeitvirtualisierung

erlaubt es, Experimente verlangsamt auszuführen und somit Ressourcenengpässe zu

vermeiden.

Zur Minimierung der Experimentlaufzeit wurde zunächst eine Architektur entwickelt,

welche effiziente Knotenvirtualisierung bei gleichzeitiger transparenter Zeitvirtualisie-

rung unterstützt. Ereignisgesteuerte Timer erlauben hierbei eine realistische Emulation

von Hochgeschwindigkeitsnetzen bei gleichzeitiger Reduzierung des Mehraufwands.
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Mittels des entwickelten Konzepts der adaptiven virtuellen Zeit wird die Ausführungs-

geschwindigkeit des Experiments an dessen Ressourcenbedarf angepasst. Somit kann

eine Reduktion der Laufzeit bei gleichzeitiger Verhinderung von Ressourcenengpässen

erreicht werden.

Neben der Effizienz der Emulationsumgebung beeinflusst die Platzierung virtueller

Knoten auf die physischen Knoten der Emulationsumgebung maßgeblich die Ausfüh-

rungsgeschwindigkeit von Experimenten. Zur Optimierung dieser Platzierung wurde

zunächst ein Modell zur Berechnung der Experimentgeschwindigkeit auf Basis der

Experimentbeschreibung entwickelt. Hierauf aufbauend wurde der Platzierungsalgo-

rithmus NETplace zur Berechnung einer laufzeitoptimalen Platzierung entwickelt. Um

die Platzierung an wechselnde Ressourcenanforderungen während eines Experiment-

laufs anpassen zu können, wurde NETbalance entwickelt. Mittels NETbalance kann

während eines Experimentlaufs eine Platzierung zur Minimierung der Restlaufzeit eines

Experiments berechnet und durch Migration von virtuellen Knoten in der Emulations-

umgebung umgesetzt werden.

Die Evaluation belegt die Effizienz der entwickelten Emulationsarchitektur. Diese er-

laubt es, tausende virtueller Knoten pro physischem Knoten auszuführen. Ferner zeigte

sich, dass das Konzept der adaptiven virtuellen Zeit effektiv Überlast vermeidet und

gleichzeitig die Ausführungsgeschwindigkeit optimiert. Bezüglich der Leistung des

Platzierungsalgorithmus NETplace belegte die Evaluation eine Reduzierung der Experi-

mentlaufzeit im Vergleich zu bisher genutzten Platzierungsverfahren von bis zu 60 %.

Ebenso konnte gezeigt werden, dass eine Anpassung der Platzierung an sich ändernde

Ressourcenanforderungen die Laufzeit von Experimenten um bis zu 70 % reduzieren

kann.

Zusammenfassend stellen die in dieser Arbeit entwickelten Methoden eine große Ver-

besserung der Netzwerkemulation dar. Die Effizienz und Skalierbarkeit der entwickelten

Konzepte erlauben die Evaluation von unmodifizierten Anwendungen und Kommuni-

kationsprotokollen mit einer Vielzahl an Instanzen der zu testenden Software. Darüber

hinaus ermöglichen es die Konzepte NETplace und NETbalance, dass Wissenschaftler

mehr Experimente in kürzerer Zeit ausführen können und somit Ergebnisse von höhe-

rer statischer Relevanz erzielen können. Schlussendlich kann durch NETbalance der

Aufwand für die Vorbereitung von Netzwerkexperimenten erheblich reduziert werden,

da kein Vorwissen mehr über das Verhalten der zu testenden Software benötigt wird.

In möglichen zukünftigen Arbeiten kann die Nützlichkeit der Netzwerkemulation weiter

gesteigert werden, indem Methoden entwickelt werden, um beispielsweise Netzwerk-
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emulatoren um die Anwendungsunterstützung von mobilen Betriebssystemen wie

Android oder iOS zu erweitern. Zudem können in zukünftigen Arbeiten Methoden

zur weiteren Reduzierung der Laufzeit von Netzwerkexperimenten entwickelt werden.

Insbesondere bei Experimenten mit langer Initialisierungsphase kann das Anlegen

von Experimentschnappschüssen genutzt werden, um diese Initialisierungsphase bei

wiederholter Ausführung des Experiments zu überspringen.
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1 Introduction

1.1 Motivation

Software test is an integral part of the software engineering life cycle [Pre92]. The gen-

eral goal is to check whether the software complies with requirements documented in

the specification. Besides the functional requirements defined by the use cases in the

specification, the performance of the software is evaluated. Performance tests are also

used in research, e.g., to evaluate the behavior of newly developed distributed software

(distributed applications or communication protocols). However, the performance of

a distributed software heavily depends on the execution environment. A simple data

transmission that delays the transmission of a frame until the reception of an acknowl-

edgement of the previous frame, can achieve a high channel utilization on channels

with small bandwidth-delay product. However, a large bandwidth-delay product results

in a worse channel utilization. Therefore, accurate performance evaluations need to

consider the target environment of the software to be evaluated.

In the field of distributed software, there are mainly four types of performance evalua-

tion methodologies [Liu08a]: analytical models [Gro06], real world testbeds [CCR+03,

ABKM01], network simulation [Liu08b, Fuj89, Ril03], and network emulation [AC06,

HRS+08, GMHR08]. Analytical models, such as Network Queuing Models, model the re-

sources (e.g., CPUs, discs, channels) of the distributed system as queues. These queues

are connected according to the information flow of the system to be evaluated. Using

queuing theory it is possible to evaluate several performance metrics, such as the aver-

age time a message spent in the system of a specific queue, or answer questions like,

what if we increase the capacity of that link by factor 2. However, the analytical models
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are typically based on the design of the software. Therefore, they cannot be used to

evaluate the performance of the actual implementation. Additionally, the complexity of

distributed systems often makes an analytical evaluation infeasible.

Real world testbeds [CCR+03, BL03] allow for evaluating the actual implementation of

the Software under Test (SuT). Here, instances of the SuT are executed on computers

distributed around the world. Since the Internet is used to connect these devices, the

SuT is tested under realistic conditions. However, the properties of Internet-based

connections, such as throughput, are not controllable by the experimenter and, thus,

experiments can hardly be repeated with the same network conditions. Additionally,

the number of SuT instances is limited to the number of testbed nodes.

Experiments with an arbitrary number of nodes and topologies can be performed

using network simulation [Liu08b, Fuj89, Ril03]. Here, the network properties and the

behavior of the SuT are simulated by software models, which allows for controllable

and repeatable results. In order to achieve reasonable simulation times, these models

introduce some abstractions from the real world (e.g., the operating system of the nodes

is not simulated). To enable large scale experiments with millions of nodes, some

simulators abstract from individual packets and simulate only packet flows [LFG+01,

Kid05]. Choosing the right level of abstraction to accurately model the behavior of the

SuT is a non trivial task.

Network emulation [HRS+08, GMHR08, AC06], which combines the benefits of network

simulation and real world testbeds, allows for running reproducible experiments for

evaluating the performance of distributed applications and communication protocols

in user-defined networks without adapting the SuT to a simulation framework. These

networks are modeled by connecting routers and hosts running instances of the SuT

using configurable network hardware and software tools. The parameters of these

network links are adjustable and include bandwidth, delay, and loss rate [Riz97, HR02].

These experiments are executed on a cluster of commodity PC-nodes which provides a

cost efficient evaluation platform [AC06, MHR07]. To enable large scale experiments,

node virtualization [JX03, WSG02, VYW+02] allows for running multiple instances of

the SuT (encapsulated in so-called virtual nodes) on each of these PC-nodes (called

physical nodes).

However, the number of virtual nodes per physical node is limited, as mapping too many

virtual nodes to a physical node overloads the physical node. Such an overload may

bias evaluation results since the SuT experiences resource shortages that do not exist in

a real execution environment. Using a virtual time [CFH+80, GYM+06] that runs slower
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than real time allows for reducing the system load and, therefore, allows for increasing

the number of virtual nodes per physical node. For example, a real 10 Mbps network can

be used to transport 100 Mbps in the emulation if the experiment is executed 10 times

slower than real time. The quotient of the time used by the experiment (virtual time) and

the real time is called time dilation factor (TDF). With this time dilation factor (TDF=10),

a physical node connected to this real network can host 10 virtual nodes, each executing

a software instance that consumes 10 Mbps. Existing systems [GYM+06, ELL09] with

a constant TDF choose a very conservative TDF to prevent overload even when load

peaks occur. Therefore, in scenarios with changing resource requirements, the system

may experience considerable underload most of the time. The consequence is that the

runtime of the experiment is suboptimal because, in these situations, the execution

speed of the experiment could be increased without overloading the physical resources.

In order to prevent overload situations and, at the same time, optimize the experiment

runtime, we introduce the concept of adaptive virtual time [GMHR08]. The basic idea is

to monitor the load of the physical nodes and to dynamically adjust the clock rate to the

current load situation [GHR09a].

In presence of adaptive virtual time, the physical node with maximum load determines

the rate of the virtual clock and, thus, the runtime of the experiments. This load is

strongly affected by the placement of virtual resources of a test scenario (hosts, routers,

etc.) onto the physical nodes of the testbed. Since manual placement is not feasible

for large scenarios, automatic placement tools [RAL03, ZN03, LC04, CBMP04, LLXC05]

have been developed. Since these tools do not consider time virtualization, they assume

physical nodes with a fixed capacity and, therefore, calculate a placement without over-

loading the physical nodes. As a result of time virtualization, for any given placement

of virtual nodes, the virtual clock rate can be adjusted such that no physical resources

are overloaded. However, slowing down the virtual clock rate increases the experiment

runtime. Therefore, we need a placement tool that calculates a placement of virtual

nodes, that minimizes the load of the maximum loaded physical node and thus the

experiment runtime. We call the placement of virtual nodes at the beginning of an

experiment the initial placement.

Even with an optimal initial placement, varying load of virtual nodes during the exper-

iment may result in a temporarily suboptimal placement and, thus, in a suboptimal

execution speed of the experiment. By monitoring the load of the virtual and physical

nodes, we can detect these situations and calculate an optimized placement. Using the

migration of virtual nodes, the optimized placement can be established in the testbed.

This migration allows for balancing the load between the physical nodes and, thus,
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avoids a high load on single nodes, which is the main reason for a suboptimal experi-

ment runtime. In combination with adaptive virtual time, the migration of virtual nodes

allows for minimizing the runtime of network experiments with varying load.

1.2 Contributions

In order to minimize the runtime of network emulation experiments, this thesis makes

the following contributions:

• A classification of existing performance evaluation tools based on the three build-

ing blocks of scalable network emulation: distributed emulation tool, node virtu-

alization and time virtualization. (cf. Chapter 2)

• A lightweight node virtualization approach supporting multi-core architectures

to provide virtual time transparently to the Software under Test with low memory

and communication overhead. (cf. Section 4.1)

• A mechanism to ensure the accuracy of frame delays in a network emulation tool

despite time virtualization. (cf. Section 4.2)

• An efficient multiplexing scheme for virtual links to abolish the hardware limita-

tions of VLAN-based emulation approaches. (cf. Section 4.3)

• An epoch-based time virtualization to minimize the experiment runtime by maxi-

mizing the hardware utilization during experiments with minimum synchroniza-

tion overhead. (cf. Section 4.4)

• A generic cost model for the communication between virtual nodes to estimate

the runtime of network emulation experiments. (cf. Section 5.2)

• An algorithm to calculate an initial placement of virtual nodes onto physical nodes

that minimizes the runtime of network experiments. (cf. Section 5.3)

• An architecture to efficiently support virtual node migration during the experi-

ment execution without altering the emulation results. (cf. Section 5.4.2)

• An approach to minimize the experiment runtime by adapting the placement

of virtual nodes to varying resource requirements of the virtual nodes based on

transparent node migration. (cf. Section 5.4.4)

• An extensive evaluation showing the accuracy and scalability of our network emu-

lator as well as the effectiveness of our approaches to minimize the experiment

runtime. (cf. Section 4.5 and Section 5.5)
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1.3 Structure

The remainder of this thesis is structured as follows: In Chapter 2, we first introduce

the three building blocks of scalable network emulation: distributed network emula-

tion tools, node virtualization, and time virtualization. Second, we classify existing

approaches for evaluating the performance of distributed applications and communi-

cation protocols.

In Chapter 3, we first introduce the Network Emulation Testbed which acts as a founda-

tion for this work. Second, we present the general architecture and the interaction of

the components discussed in this thesis. We conclude the chapter by a discussion of

application case studies using our emulation testbed for performance evaluations.

Chapter 4 introduces the concepts for efficient node and time virtualization. These

concepts include an architecture for efficient node and time virtualization with low

overhead, a mechanism to multiplex virtual links on a single physical network inter-

face, and an approach to adapt the virtual clock rate to the system load. A detailed

evaluation investigates the introduced overhead of the presented approaches as well

as the achieved level of resource utilization using the adaptive virtual time concept. A

summary concludes this chapter.

The experiment configuration is discussed in Chapter 5. After introducing the experi-

ment workflow, a detailed cost model of an emulation testbed followed by approaches

to specify an experiment are discussed. Based on this testbed model, we introduce an

algorithm (NETplace) to calculate an initial placement of virtual nodes onto physical

nodes that minimizes the experiment runtime. Using NETplace as a foundation, we

present an extended approach, called NETbalance, to adapt the initial node placement

during the experiment runtime to cope with changing resource requirements of virtual

nodes. Detailed evaluations show the improvements in terms of reduced experiment

runtime of the presented concepts. The chapter concludes with a summary.

The thesis is closed by Chapter 6. Here, we give a summary of the contributions of the

thesis and draw conclusions. Finally, we discuss promising future research directions.
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This chapter gives an overview on the three basic building blocks of scalable network

emulation: First, a mechanism to emulate link properties such as bandwidth, delay and

packet loss. Second, node virtualization to run multiple instances of the Software under

Test (SuT) on each physical node. Third, time virtualization to avoid overloading the

physical resources. Based on that, we classify the related work in the field of performance

evaluation of distributed systems.

2.1 Emulation of Link Characteristics

In real world testbeds [CCR+03, BL03] link properties result from the location of the

hosts running the SuT in the underlying network (e.g., the Internet). Moreover, the

current traffic situation in the Internet influences the properties of the links. Additionally,

the testable topologies are limited to the topology of the testbed or a subset of it.

Network Emulation allows for evaluating the SuT using arbitrary topologies with user-

defined link characteristics [GHR09b]. The links between the instances of the SuT can

be modeled using two different approaches: a distributed network emulation tool

[HR02, Riz97] or an attached network simulator such as NS [Fal99], IP-TNE [SU03],

OMNeT++ [TRR08, WSHW08], and PRIME [LLH09].

In case of a distributed network emulation tool the network topology and the link char-

acteristics are modeled by two different mechanisms. Initially, the emulated network

topology is modeled by physically connecting the network interface cards of the physical

nodes. Techniques such as VLAN (IEEE 802.1q [IEE06], (cf. Section 4.3) and node virtu-

alization [MHR07] (cf. Section 2.2) replace the physical wires by virtual counterparts.
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Figure 2.1: Protocol stack extended by emulation tools

The emulation tool itself only emulates the characteristics of the links such as delay,

bandwidth and loss. Therefore, the emulation tool is inserted into the protocol stack

and is attached to each instance of the SuT. Frames to and from the SuT are piped

through the emulation tool and, thus, the tool can delay and drop frames to emulate

the link characteristics.

The emulation tool can be inserted at different locations into the protocol stack to

intercept frames (cf. Figure 2.1). NETshaper [HR02, GMHR08] acts as a virtual Ethernet

device on Layer 2 and, thus, it allows for evaluating protocols and applications on

Layer 3 and above. Inside NETshaper a queue is used to delay frames. NETem [Hem05]

intercepts outgoing packets at the interface between Layer 2 and 3 by acting as a Linux

queuing discipline and, thus, only allows for delaying or dropping outgoing packets.

NISTnet [CS03] and a revised version of dummynet [CR10] act as packet classifiers to

intercept packets at the Layer 2–Layer 3 interface. Intercepted packets are matched

against a rule table and matching rules are executed. These rules allow for specifying

the delay, the bandwidth and the loss of the links between instances of the SuT. Finally,

the original dummynet [Riz97] uses hooks at the Layer 3–Layer 4 interface to evaluate

distributed applications (Application Layer) and protocols on the Transport Layer.

An alternative to the application of emulation tools is network emulation using an

attached network simulator. Based on DES (Discrete Event Simulation) [Fis78], the

network topology and the link characteristics are simulated. The SuT is not part of the

simulated network model, moreover, unmodified applications or communication pro-
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SuT Instance SuT Instance 
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Transport Layer 

Frame Intercept 

Network Layer 
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Transport Layer 

Frame Intercept 

Network Layer 

Simulation Framework 

Figure 2.2: Network emulation using simulation frameworks

tocols are executed. As shown in Figure 2.2, the network traffic of the SuT is intercepted

and forwarded to the simulation framework. Most centralized network simulators

[WVLW09], such as NS [Fal99], NS-2 Emulation [KP09], NS-3 [AOC+10], and OMNET++

[TRR08], support the interception and the processing of real network traffic within the

simulation. The usage of a parallel simulation framework, based on PDES (Parallel

Discrete Event Simulation) [SU03, LLH09], provides enough resources to keep the exe-

cution of a simulation model, even for large network topologies, synchronized with the

SuT.
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2.2 Node Virtualization

Running only one instance of the Software under Test (SuT) on each physical node of

the emulation testbed limits the scalability of network emulation. To get around this

limitation, the concept of node virtualization allows for partitioning of the physical

testbed resources and, thus, allows for running multiple instances of the SuT on each

physical node. Each partition is called virtual node. These virtual nodes are connected

by the emulation tool (cf. Section 2.1) and run an instance of the SuT.

Resource partitioning can be done on different layers. The spectrum ranges from

emulating the entire hardware platform [Boc12, Bel05] including the emulation of the

processor architecture to the separation of process memory [PF07, KW00], where each

process runs in exclusive virtual memory as provided by common operating systems.

Here, we focus on concepts that are typically used for network emulation and that

support partitioning of the required resources: virtual machines and virtual protocol

stacks. Figure 2.3 shows the resource virtualization approaches classified by means of

flexibility and efficiency. In the following sections, we discuss the different approaches

for virtualization based on virtual machines and virtual protocol stacks in detail.

2.2.1 Virtual Machines

Virtual machines (VMs) [SM79, Cre81] are used to partition the physical resources of

a computer by virtualizing the hardware. The software running inside the VM can

access the virtual hardware in the same way as if it directly accesses the real hardware.

Virtual Protocol Stack 

Platform 
Emulation 

Virtual Machine 

Socket 
Interface 

Resource Virtualization 

Layer 2-3 
Interface 

Para- 
virtualization 

Full 
Virtualization 

Bel05 
Boc12 Wal02 

Dik01 
BDF+03 
WSG02 

PF07  
KW00 

Sch00  
Ope12 

KHS+03 

flexibility 

efficiency 

Figure 2.3: Resource virtualization approaches
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Therefore this virtualization is transparent to software running inside the VM. Since

multiple VMs share the same physical resources, a software called Virtual Machine

Monitor or Hypervisor is used to schedule and manage the access of the VMs to these

resources. The hypervisor ensures that the software instances, running in different VMs,

are isolated from each other, and cannot access or modify resources of other VMs.

Emulation approaches based on virtual machines execute each virtual node inside

a virtual machine [AC06]. The protocol stacks are located on top of virtual network

devices, which are connected to other VMs by a software switch with an uplink to other

computers. Due to the virtualization at the hardware interface, such approaches are

fully transparent to the SuT.

Virtual machines can be classified by means of the provided hardware abstraction. Ap-

proaches such as BOCHS [Boc12] or QEmu [Bel05] emulate an entire hardware platform

including the processors instruction set architecture. Therefore, these approaches can

be used to evaluate software written for specific processor architectures, e.g., operating

systems for mobile devices running on MIPS [PH08] or ARM [Fur00] processors. How-

ever, providing a processor architecture differing from the processor architecture of the

testbed introduces a high overhead, because every instruction of the virtual CPU must

be translated and executed by a set of instructions on the physical CPU.

Providing a virtual CPU with a processor architecture equal to the processor architec-

ture of the physical CPU reduces the computation overhead by an order of magnitude

[GWS06]. Using CPU virtualization [Gol74], instructions of the virtual CPU can be

directly executed on the physical CPU. Privilege levels of the CPUs are used to pro-

vide resource isolation. However, Goldberg [Gol73] shows that the used privilege level

changes the result of some instructions, e.g., virtual memory access [Ros04] of the

x86 processor architecture [Int10]. Rose [Ros04] calls these non-virtualizable instruc-

tions ”problem instructions”. In literature, there are two approaches to virtualize those

instructions: full virtualization and paravirtualization.

Full virtualization [Wal02] uses just in time code translation to replace the non-

virtualizable instructions. After the replacement the instructions of the virtual CPU

can be executed directly on the physical CPU. However, the replacement introduces

runtime overhead [Ros04]. Systems based on paravirtualization, such as Xen [BDF+03]

or UML [Dik01], avoid this overhead by modifying the guest operating system such

that these non-virtualizable instructions are not used. In addition, the Virtual Machine

Monitor or Hypervisor provides only a simplified hardware which can be accessed by

the guest operating system efficiently [FHN+04b].
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Each virtual machine runs a guest operating system which causes memory overhead.

The same buffer cache entries may possibly exist in each guest and they may exist in

the host operating system or virtual machine monitor, too. A minimal Linux instance

needs several megabytes of memory when executed in a VM based on the Xen [BDF+03]

hypervisor. Equal program libraries used in different VMs at the same time increase the

memory overhead. While the memory overhead can be mitigated by content based page

sharing [GLV+08, VMC+05, Wal02], this in turn implies some computation overhead to

calculate and compare page content. Lightweight VMs, such as the Denali Isolation

Kernel [WSG02, WCSG04], combines a simplified hardware interface with a custom,

size-optimized guest operating system to minimize the memory overhead.

Network communication between virtual nodes based on VMs requires expensive con-

text switches involving the hypervisor. Approaches like XenLoop [WWG08] avoid copy-

ing memory pages between the VMs and the hypervisor using shared memory-based

channels between the VMs. Nevertheless, the overhead of virtual machines reduces the

possible scenario sizes significantly [BQ06a, MGWR07, CGMV07, SPF+07]. The over-

head of virtual machines can be partially reduced by offloading functionality of the

hypervisor to the hardware [RGSX06, BYMX+06]. However, the overhead introduced by

virtual machines can be further reduced by the concept of virtual protocol stacks (dis-

cussed in the following section). In previous work [MGWR07], we were able to execute

six VMs on a physical node, while on the same hardware, a lightweight virtualization

with virtual protocol stacks allowed for running scenarios with up to 30 virtual nodes.

2.2.2 Virtual Protocol Stacks

Partitioning of the operating system allows for minimizing the node virtualization over-

head [Mai11]. All virtual nodes running on a physical node share a common operating

system. Using protocol stack virtualization [KHS+03] each virtual node can be attached

to a separated instance of the protocol stack.

Figure 2.4 shows two possible approaches to virtualize the protocol stack. Using virtual-

ization at the Layer 2–3 interface [KHS+03] (cf. Figure 2.4a), each virtual node has its

own protocol stack, including own routing tables, on top of a virtual network device.

In contrast, all virtual nodes share the network and transport layer state in case of a

virtualization at the socket interface [PF07] (cf. Figure 2.4b). However, as a benefit of

the latter approach, it can be implemented entirely in the user space by intercepting the

system calls of the Software under Test. Virtualization of additional operating system
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Figure 2.4: Virtual nodes based on protocol stack virtualization

resources like name spaces and file systems [BDM99, Sch00, KW00] allows for isolating

virtual nodes and, therefore, are completely transparent to the SuT.

The benefit of virtual protocol stacks is that only one operating system runs on each

physical node, resulting in a significantly reduced memory and computation overhead

[BQ06b]. Since all SuT executed on the same physical node run under a single operating

system, program libraries and operating system caches can be shared between the

virtual nodes. Due to the shared operating system, virtual nodes running on the same

physical node can communicate using reference passing without additional, expensive

context switches.

The comparison of virtual machine-based and virtual protocol stack-based emulation

approaches shows that virtual protocol stacks imply less overhead and, thus, provide

higher scalability. The only remaining limiting factors for emulating large scale scenarios

with thousands of virtual nodes per physical node are the computation and network

resources provided by the testbed hardware. These limitations can be abolished by the

concept time virtualization, which we discuss in the next section.

2.3 Time Virtualization

Emulation systems [HRS+08, AC06, Mai11] typically execute experiments at real time.

This approach requires at any time enough resources to run the SuT and the emulation

tools. A resource shortage or resource overload can bias the emulation results, because

for example frames may experience additional undesired delay.

Node virtualization (cf. Section 2.2) increases the resource consumption of physical

nodes and, therefore, increases the risk of resource overload. The state of the art solution

is to monitor the resource consumption to detect overload [HRS+08, Mai11] and, in case
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of an overload situation, the experiment is repeated with less virtual nodes per physical

node until the experiment can be completed without overload. However, executing an

experiment multiple times increases the overall experiment runtime.

Instead of repeating the experiment with fewer virtual nodes on each physical node,

Gupta et al. [GYM+06] adopted the concept of virtual time [CFH+80] to network emula-

tion. The basic idea is to run an experiment a factor slower than real time. The reduced

execution speed of the experiment reduces the system load by artificially increasing the

resources of the testbed. For example, a real 10 Mbps network can be used to transport

100 Mbps in the emulation if the time dilation factor1 is set to 10 (virtual time runs 10

times slower than real time). Similarly to the network load, slowing down the virtual

time reduces the CPU load of the physical nodes. Therefore, virtual time allows for

increasing the number of virtual nodes per physical node.

Virtual time can also run faster than real time [CWdO+06]. Thus, it can be used to

discover the behavior of software with low resource consumption over a long period of

time, e.g., the future behavior of malware (e.g., computer viruses and Internet worms).

Therefore, the software (malware) is deployed on virtual nodes and the timely behavior

of the SuT is monitored. This concept applied to network emulation could possibly

reduce the runtime of network experiments as well. However, the delay (¿1 ms) of the

physical network of a network emulation testbed increases with the speed of the virtual

time. While this delay has insignificant effects on the emulation results running at real

time [Her05], the effect increases with speeding up the virtual time. Finally, this delay

will bias the emulation results. Therefore, emulation systems only slow down the virtual

time to prevent resource overload.

Several approaches increase scalability of network emulation by replacing real time

with virtual time. The following sections cover different approaches for implementing

and presenting virtual time.

1Factor describing the quotient of the experiment speed and the real time speed.
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2.3.1 Implementation Approaches for Virtual Time

There are basically three approaches to provide virtual time to the Software under Test:

virtual time based on virtual machines, virtual time at the system call interface, and

virtual time through operating system modifications.

Gupta et al. [GYM+06] introduce the virtual time concept using virtual machines

[BDF+03]. By defining a time dilation factor (TDF), which is used to scale the time

provided by the hypervisor to the virtual machine, it is possible to run a VM with an

arbitrary virtual time. All components running inside the VM, including the guest

operating systems as well as the SuT experience virtual time instead of real time. Due to

the virtual machine abstraction, no modifications to the SuT are required.

As discussed in Section 2.2, virtual machines introduce additional overhead. Imple-

menting virtual time at the interface between the applications and the operating system,

denoted system call interface, avoids this overhead [ZN11]. However, the lower layers

of the protocol stack, including the Network and Transport layer, are typically imple-

mented as part of the operating system and, thus, do not experience virtual time if this

approach is used. Therefore, by providing virtual time at the system call interface only

SuT at the Application layer [BF11] can be evaluated.

A third approach to provide virtual time introduces a real time independent virtual time

into the operating system kernel [WK02]. The entire operating system is modified, such

that the applications, the protocol stack, as well as their timers use virtual time as the

time source. Using this approach, no VMs are required which results in less overhead.

The missing VM abstraction causes an increased implementation overhead, because the

virtual time concept has to be implemented throughout the entire kernel including the

implementation of the protocol stack and not only at the interface between hypervisor

and the VM. These modifications have to be applied to the SuT located at lower layers

of the protocol stack, too.

Comparing the three approaches, only a virtual time implementation based on vir-

tual machines allows for evaluation of unmodified distributed applications and com-

munication protocols. However, this transparency comes with an increased runtime

overhead.
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2.3.2 Approaches to Virtual Time Representation

Two extreme cases for the measurement and advancement of virtual time exist in the

literature: slowing down the real time by a factor or discrete events.

The time dilation factor (TDF) introduced by Gupta et al. [GYM+06] scales real time by

a factor. This factor is constant during the entire experiment. First, such an approach

leads to the problem of selecting an adequate value for the entire experiment duration.

Selecting the TDF a too high wastes processing power and setting it too low results

in biased emulation results. Second, the load generated by the scenario varies over

time. Hence, the TDF has to be selected for periods with maximum load and, therefore,

hardware resource are not optimally utilized in periods of low resource consumption.

The authors of dONE (distributed open network emulator) [BVB06] follow another

approach. The idea is similar to discrete event simulation. Virtual time is advanced

after processing events such as transmission of packets or triggered by timers. Such an

approach provides the emulator with unlimited processing power. dONE introduces a

time warp operator to advance virtual time and skip periods where no events happen.

In case of a parallel discrete event-based approach, synchronization mechanisms are

required to schedule events without causality errors [Fuj89]. A causality error occurs

when node 1 and node 2 have concurrently processed all events with timestamps less

than t1 and t2, respectively, where t2 > t1. If node 1 now sends a message to node 2

which has to arrive before t2 the causality error occurs because node 2 has processed at

least one event that has to be executed after the arrival of the message from node 1. Two

basic approaches exist to handle this problem: a conservative [CM79] and an optimistic

[Jef85, JS82] synchronization scheme. The conservative scheme prevents the existence

of causality errors by executing events only if it can be guaranteed that no other node

sends a message that has to be processed before. In case of an optimistic scheme,

events can be executed without limitations, but when a causality error is detected, the

simulation state has to be rolled back.

When executing real applications, rollback-based approaches are very expensive since

each memory operation of the SuT needs to be logged and possibly recovered on a

rollback operation. In the field of network emulation with event-based virtual time, only

conservative approaches are feasible. Since the transmission times of frames are small,

this results in a huge synchronization overhead [GMHR08]. Weingärtner et al. reduce

this overhead by trading the synchronization precision against the synchronization

overhead while maintaining the emulation accuracy [WSHW08].
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2.4 Performance Evaluation Tools

This section gives an overview on tools for performance evaluation of distributed sys-

tems. There are three types of tools: real world testbeds, emulation-based testbeds and

network simulators. A classification of these approaches used to be simple. Real world

testbeds use existing networks to evaluate the Software under Test, emulation-based

testbeds make use of an emulation tool to build a virtual network with arbitrary network

characteristics and network simulators use abstract models of the network and the SuT.

Additionally, both testbeds run at real time whereas simulations are executed in virtual

time.

However, in recent years the border between simulators and testbeds diffuses. Real

world testbeds evolve to emulators by applying the concept of network virtualization to

form arbitrary overlay networks on top of the real world networks. Emulation-based

systems apply the concept of time virtualization to run the experiment with virtual time

independent of real time and, therefore, provide a feature that used to be unique to

network simulation. At the same time network simulators have been extended by a real

time scheduler and the support for the evaluation of unmodified real applications and,

therefore, emerge towards a network emulator. In the following, we discuss the recent

developments of these three performance evaluation methods in detail.

2.4.1 Real World Testbeds

Real world testbeds, such as PlanetLab [PACR03, CCR+03] and RON [ABKM01], are

closely related to network virtualization [CB10b]. Network virtualization allows for

building virtual networks as a subset of a physical network [EGH+10]. These networks

can be used to implement isolated experimental networks for new communication

protocols and applications.

The network virtualization can be implemented on different layers. XBone [TH98]

creates overlay networks on the Network layer. Resources within the virtual networks

are addressed by IP addresses, which can be global addresses of the underlaying Internet

or local addresses of the overlay. In both cases only resources that are part of the overlay

can be accessed. VNET [SD04] and VINI [BFH+06] virtualize the network on Layer 2.

Here, the SuT is executed in virtual machines running on arbitrary nodes with Internet

access. The virtual network between these VMs is built of virtual links that are tunneled

through the Internet.
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In real world testbeds [PACR03, CCR+03, ABKM01] based on overlay networks, the

characteristics of the virtual links are a result of the path conditions in the underlay

network. Since the testbed nodes are typically operated by large research institutions,

the nodes have well-connected Internet access. In order to support more heterogeneity,

SatelliteLab [DHB+08] allows for connecting additional nodes, such as desktops and

handhelds, via low bandwidth connections (DSL, cellular links) to the virtual network.

2.4.2 Network Simulation

The scalability of network simulation is increased by the concepts of parallelization

and abstractions. The concept of parallelization reduces load on single computers by

distributing the network model to multiple computers [Mis86, RFA99]. The computers,

each simulating only a fraction of the network model, are exchanging synchronization

messages to keep the distributed fractions of the network model synchronized. The

performance of the distributed simulation is primarily related to the efficiency of the

synchronization mechanism [Fuj89].

The concept of abstractions is used to reduce the simulation load [LFG+01, Kid05].

Instead of simulating every packet flowing through a network link, only the flow behavior

of a transport layer protocol is simulated. An extension of IP-TNE [KSU05] allows mixing

of packet and fluid flows to increase the scalability of the simulation. The fluid flows

are used to generate synthetic background traffic on the network used to evaluate the

SuT.

An opposite approach to abstraction is the introduction of emulation capabilities to

network simulation. Here, the network simulator is extended by a real time scheduler

and a facility to process real network traffic generated by a SuT running on separated

machines or virtual machines. Such extensions are available for almost all common

network simulators: NS [Fal99], NS-2 Emulation [KP09], NS-3 [AOC+10], OMNET++

[TRR08, WSHW08], IP-TNE [SU03], and PRIME [LLH09].

The concept of time dilation [CFH+80, GYM+06] can also be used with simulations

extended by emulation capabilities [LR09, ELL09]. For SuT on the application level

the operating system interface can be adapted to provide virtual time [WK02, BVB06].

Evaluation of SuT on the Network, Transport and Application layer without any modifi-

cation of the SuT can be achieved by synchronizing a virtual machine to the simulation

[WSvL+11]. Any software running inside the virtual machine experiences virtual time.
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2.4.3 Emulation-based Testbeds

In order to evaluate unmodified distributed applications and communication protocols,

distributed emulation testbeds [HR02, VYW+02, JNVP06] are used. Here, each physical

node of the testbed runs one instance of the Software under Test (SuT). In contrast to

network simulation, the experiments based on emulation run at real time.

The acquisition and operation of such testbeds is rather costly and, therefore, with

the availability of virtualization technologies (cf. Section 2.2), multiple instances of the

SuT can be executed on each physical node. This allows for running many network

experiments on a single desktop PC. Approaches like Netkit [PR08], vBET [JX03], and

VNUML [GFR+04] make use of the virtual machine UML [SPYH03] to provide virtual

nodes. Experiments are restricted to a single physical node, however, the virtual topology

can be connected to the Internet. VITT [CFDL08] provides the same functionality based

on the more efficient virtual machine KVM [KKL+07].

The available resources of a single node limit the possible experiment size. Therefore, the

resources of an emulation testbed consisting of multiple physical nodes are combined

with node virtualization based on the virtual machine XEN [BDF+03] (V-eM [AC06],

viNEX [MvdPJ09], and Neptune [DGCV09]). Since virtual machines come with some

overhead, limiting the scalability of network emulation, a more lightweight virtualization

based on virtual protocol stacks is applied in NET [MHR07] and Emulab [HRS+08].

The emulation of large networks can easily have a resource consumption that exceeds

the resources of emulation testbeds. Testbeds such as Diecast [GVV08] make use of the

concept of time dilation [CFH+80, GYM+06] (cf. Section 2.3) to run network experiments

a factor slower than real time and, thus, virtually increase the available resources.

In this work [GMHR08, GHR09a, GHR12], we extend the lightweight virtualization ap-

proach by the concept of time dilation to increase the scalability of network emulation

further. Therefore, in the following chapters, we will introduce a architecture to combine

transparent virtual time based on virtual machines with efficient node virtualization

based on virtual protocol stacks.
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3 System Overview

In this chapter, we first give an overview on the network emulation testbed used as

a foundation for this thesis. Second, we briefly introduce the general architecture of

our system and the interaction between the components described in Chapter 4 and

Chapter 5. This chapter is closed by an introduction of research projects using our

prototype implementation as a performance evaluation platform.

3.1 Network Emulation Testbed

The research has be conducted within the NET project (Network Emulation Testbed)

at the Department of Distributed Systems of the University of Stuttgart. The project

was funded by the German Science Foundation2. Two preceding theses [Her05, Mai11]

originating from this project build the foundation of this work. In the thesis of Herrscher

[Her05], a distributed emulation tool [HR02] for accurate and scalable emulation of

wireless and wired networks was developed. The thesis of Maier [Mai11] extends the

Network Emulation Testbed by a lightweight approach for node virtualization [MHR07]

based on virtual protocol stacks (cf. Section 2.2).

The foundation of both theses was the emulation testbed based on a cluster of 64 com-

modity PC-nodes. The architecture of the cluster is shown in Figure 3.1. The physical

nodes of the testbed are equipped with a 2.4 GHz Intel Pentium 4 processor, 512 MB

of main memory (RAM), and two network interface cards. One 100 Mbps network in-

terface is connected to a control network used to setup the network experiments (e.g.,

deploy and run the Software under Test). The second network interface runs at 1 Gbps

2Funded under grant DFG-GZ RO 1086/9-{1–3}
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Figure 3.1: Physical architecture of the Network Emulation Testbed

and is connected to the emulation network. The emulation network is partitioned using

VLANs (IEEE 802.1q [IEE06]) to emulate arbitrary network topologies. Details on the

VLAN-based network emulation are discussed in Section 4.3.1. The emulation testbed

is accessed and controlled by a dedicated control node. The control node is connected

to the control network as well as to the intranet of the Distributed Systems Lab. The

control node is also used to configure the emulation network. Further details on the

hardware can be found in the thesis of Herrscher [Her05].

During the research reported in this thesis, the hardware of the network emulation

testbed was replaced. The new testbed is also composed of two dedicated networks for

control and emulation purposes. However, the cluster is now built of 16 PC nodes, each

equipped with two QuadCore Intel Xeon processors running at 2.4 GHz and 16 GB of

main memory (RAM). The evaluations presented in this thesis are partially executed

on the old and on the new testbed hardware. We will refer to the used hardware at the

corresponding evaluation sections.
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3.2 General Architecture

This section gives an overview of our architecture to minimize the runtime of scalable

network emulation. We briefly introduce the components of our network emulator and

the interaction between them (cf. Figure 3.2). The components of our network emulator

are executed on three types of devices. First, a client is used to specify the network

experiment. Second, a coordinator is used to setup and to control the experiment. Third,

the experiment itself is executed on a set of physical nodes. In the following, we discuss

these components in detail.

At the beginning of a network experiment using the Network Emulation Testbed (NET),

we first need to specify the scenario. The scenario description consists of three compo-

nents:

• The Software under Test (SuT) running on the virtual nodes. The SuT can be a

distributed application or a communication protocol.

• The network topology defining the links between the virtual nodes. These links

can be parameterized by link properties such as bandwidth, delay and loss rate.
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• The testbed specification defining the number of physical nodes used to run the

experiment and testbed specific parameters. The parameters include a testbed

model (cf. Section 5.2) defining the load generated by transferring data between

virtual nodes.

In NET, there are two alternatives to support the description of the scenario: a frame-

work [Gra11] based on Ruby 3 allowing for a text-based specification of the scenario and

NETcaptain, a GUI-based client that allows for a graphical description of the scenario.

The experiment specification is discussed in detail in Section 5.1.

Taking the scenario description as an input, our placement tool NETplace [GHR10]

(cf. Section 5.3), running on the coordinator, calculates an initial assignment of the

virtual nodes onto the physical nodes to minimize the runtime of the experiment. Using

the calculated placement, the scenario is deployed to the physical nodes.

In order to allow for large scale experiments with low runtime overhead, we have

developed an architecture [GMHR08, GHR10] (cf. Section 4.1) to efficiently combine

node and time virtualization. The network between the virtual nodes running the SuT

is emulated using our distributed emulation tool NETshaper [HR02]. We extended

the emulation approach by a scalable link multiplexing scheme (cf. Section 4.3), to

overcome the limited number of virtual links supported by VLAN-based emulation.

With the large number of virtual nodes running on each physical node, the load of a

physical node may exceed the capacity of the physical node. This overload can result

in biased emulation results. To prevent these overload situations, we have developed

the concept of adaptive virtual time [GHR09a] (cf. Section 4.4). Using load reports from

physical nodes, the coordinator can adapt the execution speed of the experiment to the

system load (cf. TDF Adaptor in Figure 3.2) and, therefore, effectively prevent overload

of the physical node. An epoch switcher is used to establish the new experiment speed

simultaneously on all physical nodes.

Finally, we introduced a mechanism, called NETbalance [GHR11] (cf. Section 5.4), to

adapt the placement of virtual nodes to changed load distributions between physical

nodes. Again, we monitor the load generated by the virtual nodes. Based on these load

reports, we can calculate an optimized placement of the virtual nodes while considering

the time to change the placement, too. The improved placement is established by

migrating virtual nodes between physical nodes.

3Ruby scripting language: http://www.ruby-lang.org
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3.3 Application Case Studies

In this section, we provide a selection of application case studies that use the Network

Emulation Testbed for performance evaluations. These applications show the applica-

bility and utility of our system for performance evaluation. The evaluated distributed

systems are in the field of distributed pervasive applications [SHR10], distributed stream

processing [RDR11], and distributed file systems [Kie09].

The first application is from the field of distributed pervasive applications [SHR10]. Here,

applications are composed by several tasks (e.g. input, processing, and output) that can

be deployed and run on different devices. In pervasive environments, multiple devices

can provide the functionality of a task. For example a video projector or the video

monitor can be used for the output task. In order to run an application, a configuration

that binds the tasks to devices has to be calculated. With an increasing number of

devices and tasks, this calculation is a complex problem. Schuhmann et al. [SHR10]

have developed a distributed algorithm to run this calculation on resource-rich devices

to minimize the configuration time.

During the performance evaluation of their approach, the Network Emulation Testbed

was used to extend real-world experiments based on smart devices such as smart

phones, PCs, and notebooks. Due to the limited number of physical devices, real-world

experiments where performed with up to 10 devices. The emulation testbed allows

for conducting scalability experiments using the same implementation as used for the

real-world experiments. In these experiments up to 85 emulated devices were executed

in the emulation testbed. As a conclusion, the usage of the emulation testbed enables

the scalability analysis and, therefore, improves the value of the evaluation to a great

extent.

The second application focuses on distributed stream processing [RDR11]. Here, sen-

sors deployed in a network (e.g., the Internet) provide a continuous stream of sensor

values. Operators are used to combine these sensor values to produce higher level

information (e.g., pictures of multiple cameras are processed to detect activities). These

events can be used again by operators or be consumed by customers. The challenge

of operator placement is to calculate a placement that, for example, minimizes the

end-to-end delays between the sensors and the event consumers.

To evaluate the performance of their approach, Rizou et al. [RDR11] used the Network

Emulation Testbed to set up a network consisting of up to 200 hosts running the sensors,

the event consumers and the operators. Here, the latencies between the hosts were
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specified to be equal to the delays measured between the hosts in PlanetLab [CCR+03].

The benefit of the emulation system is, that these delays are exact the same for ev-

ery experiment run and, therefore, allow for comparing the performance of different

placement strategies.

Finally, the emulation testbed was used by Kierzkowski [Kie09] to evaluate the perfor-

mance of a self-organizing and distributed file system (SoDFS). The basic idea is to

adapt the placement of replicas to the location of readers and writers in the network to

minimize the average delay for these operations. Kierzkowski used the Network Emula-

tion Testbed to setup a network consisting of 31 autonomous systems generated with

BRITE [MLMB01]. One virtual node running the distributed file system was assigned to

each autonomous system. Using this setup, Kierzkowski was able to evaluate the SoDFS

with different parameters in a controlled environment.

These case studies show the applicability of our network emulator for research and

development of distributed applications and communication protocols. The main

benefit for the users is the possibility to run unmodified applications in arbitrary user-

defined networks. There was no need to modify the evaluated software to run the

experiments using the network emulator. Therefore, the network emulation approach

allows for minimizing the effort for preparing network experiments.

The network sizes of these experiments results from the evaluation demands and are

not constraint by the emulation testbed. For example the emulation of the stream

processing application using the PlanetLab topology was executed on a single physical

node. With the available 16 physical nodes the network could easily be increased

to 3.200 nodes (despite that PlanetLab does not contain so many nodes). Therefore,

these case studies rather show the different application domains than the scalability of

network emulation. A detailed performance evaluation is presented in Section 4.5 and

Section 5.5.
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4Efficient Node and Time

Virtualization

In Chapter 2, we discussed two major building blocks for scalable network emulation:

node and time virtualization. Node virtualization allows for evaluating scenarios with

a number of virtual nodes beyond the number of physical nodes by partitioning the

physical testbed resources. The concept of time virtualization prevents overloading the

physical resources by virtually increasing the testbed resources like CPU and network.

In this chapter, we introduce concepts to increase the scalability of network emu-

lation in terms of possible scenario sizes and resource consumption. First, in Sec-

tion 4.1, we discuss the system architecture (see Section 3.2), previously published in

[GMHR08, GHR10], to efficiently support node and time virtualization by minimizing

the memory footprint and the communication overhead in detail. Second, in Section 4.2,

we extend our network emulation tool NETshaper to accurately emulate network prop-

erties in a time virtualized emulation environment [GMHR08]. Third, in Section 4.3,

we provide a scalable multiplexing scheme to emulate multiple virtual links using a

single physical network interface. The approach is based on the diploma thesis of

Schirmer [Sch11a]. Finally, in Section 4.4, we present the concept of adaptive virtual

time, previously published in [GMHR08, GHR09a], which minimizes the experiment

runtime by adapting the experiment speed to the load of the system. This chapter closes

with a detailed evaluation of the presented concepts in Section 4.5 and a summary in

Section 4.6.
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4.1 Architecture for Efficient Virtual Time

As discussed in the previous chapter, scalable network emulation can be achieved by

combining efficient node virtualization and time virtualization. In this section, we

present our emulation architecture which allows for memory and network I/O efficient

virtual nodes in the presence of transparent time virtualization. The architecture was

previously published in [GMHR08, GHR10].

The remainder of this section is structured as follows: First, we introduce a hardware

model of the virtual nodes and an application model of the Software under Test run-

ning inside these nodes. We classify the operations executed by a Software under Test.

Second, we present our hybrid virtualization architecture supporting node and time vir-

tualization to minimize the memory and communication overhead. Finally, we discuss

approaches to efficiently connect virtual nodes to the emulation network. We show that

depending on the number of CPUs and the number of network interfaces available at

the testbed nodes different approaches are applicable.

4.1.1 Application Model and Hardware Model

The performance of distributed applications and communication protocols is heavily

influenced by the environment in which the software is executed. In the case of network

emulation, the properties of the environment are modeled by connected virtual nodes

with emulated virtual hardware. Figure 4.1 shows the hardware model of a virtual node

as well as the application model of the Software under Test (SuT) executed by the virtual

node.

Application Model 

Hardware Model 

Clock / Timer 
- sleep 
- gettimeofday 

CPU 
- arithmetic 
- memory 

Network-IO 
- send 
- receive 

Storage-IO 
- read 
- write 

Virtual Clock with 
Time Dilation 

Virtual CPU with 
Cycle Limitation 

Emulated NIC  
using NETshaper 

Emulated 
Storage Device 

Figure 4.1: Model of the Software under Test and the virtual hardware
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The hardware of a virtual node can be roughly divided into four components: a virtual

clock, a virtual CPU, an emulated network interface and an emulated storage device. All

these hardware components can be access by the Software under Test. In Figure 4.1 we

have exemplary included typical operations of a SuT to access the hardware components.

In the following, we define these four types of operations in detail:

a) Clock and timer-based operations are used to explicitly describe the behavior of

the SuT over time. These operations allow for delaying other operations (e.g., sleep)

or to access the time (e.g., gettimeofday). In a time-virtualized network emulator,

these operations need to access a virtual clock instead of the real time clock.

Running virtual nodes inside a virtual machine, allows for providing virtual time

transparently to the SuT without any modifications on the SuT.

b) The performance of CPU-based operations is mainly dependent on the perfor-

mance of the CPU (e.g., arithmetic operations). By slowing down the rate of the

virtual clocks, we are able to emulate virtual CPUs with an arbitrary speed. For any

amount of resource requirement of a SuT an adequate TDF can be chosen to pre-

vent overloading the emulation testbed. However, in time-sensitive applications,

such as video players on portable devices, the available CPU resources determine

the performance of the application. Here, the emulator need to provide an ar-

tificially constraint virtual CPU. Emulators like FoxyLargo [YYK08] allow for the

emulation of the CPU speed. Here, the cycles of the virtual CPU that the Software

under Test can allocate per time unit can be limited. In our application model,

operations on the memory such as copying memory pages are included in this

category, because their execution requires, dependent on the system architecture,

significant CPU interaction.

c) Network-based operations allow for communication between virtual nodes. The

behavior of network I/O can be emulated by network emulation tools such as

NETshaper [HR02]. Based on the bandwidth and delay of an emulated network

device as well as the number of enqueued frames, the tool can calculate the

delivery time of a frame.

d) Storage-based operations refer to accessing the secondary memory (e.g., hard disc)

of virtual nodes. Software, such as distributed transaction monitors, makes use of

secondary memory as stable storage. Therefore, the performance of the storage-

based operations can be essential for the performance of the SuT. Disk emulators

[GSS+02, Gc12] allow for emulating storage devices with specific performance

characteristics.
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In the remainder of this thesis, we restrict our focus on clock and timer-based and

network-based operations. The extension of our network emulator by using existing

CPU and disk emulators can be the subject of future research activities.

4.1.2 Hybrid Virtualization Architecture

Highly scalable network emulation [GHR12] can be achieved by combining two basic

concepts: node and time virtualization. However, the performance of network emula-

tion depends on an efficient integration of these concepts. In the following, we present

an architecture to efficiently combine both virtualization techniques by minimizing the

memory and communication overhead.

The physical nodes of the emulation testbed are connected by an emulation network.

This network is partitioned using IEEE 802.1q VLAN (Virtual Local Area Network) [IEE06]

to form arbitrary virtual network topologies between the virtual nodes [Her05]. Our

network emulation tool NETshaper [HR02, GMHR08] is used to connect a virtual node

to the virtual network. Thereby, the emulation tool allows for emulating the network

properties like bandwidth, delay and packet loss of the virtual nodes’ network devices.

Due to the emulated network devices on the Data Link layer, this approach allows for

SuT located at Network, Transport, and Application layer. Placing the emulation tool

inside the virtual protocol stack instances enables back pressure on saturation of the

emulated network connection as with real network devices.

A virtual machine [BDF+03] running on each physical node4 provides virtual time trans-

parently to the operating system and the SuT inside the VM [GYM+06]. The resources of

the VM are partitioned using a virtual protocol stack [KHS+03] to create virtual nodes.

The processes that make up a virtual node all share the same operating system, but each

of these virtual nodes has its own protocol stack instance, including sockets and routing

tables. By virtualizing additional operating system components [KW00, Ope12] like

process name spaces and file systems, processes of different virtual nodes are clearly

separated from each other.

Due to the common operating system, all virtual nodes running inside the same VM

can share resources of the operating system like caches and libraries. Therefore, this

architecture minimizes the memory overhead per virtual node. At the same time, virtual

protocol stacks allow for efficient communication between virtual nodes. Reference

passing can be used to transmit frames between virtual nodes running inside the same

4Assuming a physical node with one CPU core.
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Figure 4.2: Maximum supported number of CPUs sockets and cores per CPU socket in
AMD server processors5

virtual machine. Due to the common operating system, no additional, expensive context

switches are required for communication.

An ongoing trend in processor design is the increasing number of CPU cores per ma-

chine to meet the performance demands of the customers. Latest CPU generations (cf.

Figure 4.2) integrate up to 16 cores per CPU socket and typical machines are equipped

with up to four CPU sockets. Although network emulation is inherently distributed,

exploiting up to 64 cores is challenging in the presence virtual machine-based time

virtualization. Generally, there are two extremes for utilizing the available resources.

Either, we could assign all cores to a single virtual machine or we could run for each

physical core one virtual machine with one virtual CPU. In either case, we run multiple

virtual nodes inside these VMs. In the following, we abstract from CPU cores and CPU

sockets and use only the term CPU. A physical node with n CPU sockets each with m

cores is named a physical node with n ·m CPUs.

The assignment of all CPUs to a single virtual machine requires the execution of only

one guest operating system per physical node and, therefore, has minimal memory

overhead. Running multiple virtual nodes inside a VM in parallel, allows for utilization

of multiple CPUs. However, the lower layers of the protocol stack are shared between

the virtual nodes, and processing the protocol stack requires expensive locking of

memory which leads to performance penalties. Since the locking effort increases with

the number of CPUs, this approach would limit the scalability of the system. In addition

to the scalability problem, monitoring the load of the physical node, which is required

for the adaptive virtual time (cf. Section 4.4), is challenging. From the point of view of

5Advanced Micro Devices, Inc. http://www.amd.com
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Figure 4.3: Hybrid emulation architecture: node and time virtualization

the virtual machine monitor (hypervisor), it is impossible to reliably detect overload.

A situation where a single threaded application runs interchangeably on two CPUs,

utilizing each by 50 %, cannot be distinguished from a situation where two applications

run on two CPUs and both CPUs are 50 % idle. Although in the first situation the speed

of the application is limited by the CPU (system overload), in the second situation, this

is not the case. Without instrumenting the operating system inside a virtual machine,

which we want to avoid to ensure realistic emulation results, it is hard to distinguish

between overload and underload in such situations.

In order to be able to consider a VM as a black box and to efficiently exploit multi-core

architectures, we propose to assign exactly one CPU to each virtual machine. The virtual

CPU of a VM is pinned to a physical CPU, which ensures that each VM is executed on a

dedicated physical CPU. Since each VM has only one CPU and runs its own operating

system on exclusive memory, no memory locking between CPUs is required.

Figure 4.3 shows a physical node with two CPUs using our hybrid emulation architecture

which combines virtual protocol stack and virtual machine-based virtualization. On

each CPU one virtual machine is executed. The interface between the virtual machine

and the hypervisor is extended by the virtual time layer. The VMs execute a guest

operating system which provides virtual protocol stacks. In the figure, four virtual nodes

executing the SuT are distributed to the two VMs. The network between the virtual

nodes is emulated by our emulation tool NETshaper.
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Figure 4.4: Intra virtual machine communication

4.1.3 Efficient Network Access

Scalable network emulation requires efficient communication between virtual nodes.

Our emulation architecture, discussed in the previous section, allows for efficient com-

munication of virtual nodes running inside the same virtual machine. Figure 4.4 shows

two virtual nodes running inside the same VM. Both nodes are attached to a software

bridge to pass frames between the nodes. The software bridge is the virtual repre-

sentative of the signal carrier such as a physical wire or the air in case of a wireless

transmission. Our network emulation tool NETshaper, placed between the software

bridge and the virtual network interface of a virtual node, allows for emulating the

characteristics of the virtual network link.

In order to enable communication between virtual nodes running in different virtual

machines, the software bridge is attached to the virtual network interface of the virtual

machine. Connecting the virtual network interfaces of the virtual machines to the

emulation network switch allows for communication between virtual nodes running in

arbitrary virtual machines. In case of multiple virtual links that need to be connected to

the emulation network, multiplexing techniques (cf. Section 4.3) are used to connect all

software bridges, representing the virtual links, to the single virtual network interface of

the virtual machine.

There are several techniques [YBYW08] to connect a virtual machine with the emulation

network. These approaches can be divided into approaches utilizing the host to connect

virtual machines with the emulation network (cf. Figure 4.5a) and approaches where

the virtual machines directly access the hardware (cf. Figure 4.5b and 4.5c). Device

Emulation [SVL01] is a host-based approach, where the hardware interface of a network
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Figure 4.5: Alternatives for network access

interface card is emulated in software running inside the host operating system. An

unmodified network driver running inside the VM provides the network access to the

operating system inside the VM. On the host side, the emulation software can access

the network interface of the host to send and receive frames. The flexibility of emulation

testbed users to evaluate the performance of device drivers is paid by the large overhead

of this approach [YBYW08, GWS06]. The main reason for this overhead are the require

memory operations to copy frames between the memory of the host and the guest

operating system.

This overhead can be reduced by paravirtualized drivers [BDF+03, Rus08], also known

as virtual I/O drivers. Here, the software for device emulation and the unmodified

device driver are replaced by a connected backend and frontend driver, respectively.

These custom drivers are efficiently connected by shared memory. For medium speed

network interface cards (1 Gbps), the network throughput of this approach is similar

to the native approach, where the network is accessed from the host operating system

[YBYW08, GWS06]. However, in case of high speed network interface cards (10 Gbps),

the introduced CPU consumption prohibits fully utilizing the network capacity.

Almost native network performance as well as low CPU consumption can be achieved

by providing direct hardware access [LUSG04, YBYW08] to the virtual machine (cf. Fig-

ure 4.5b). Since the device driver running inside the virtual machine directly accesses

the hardware, each physical network interface can only be accessed by one virtual ma-

chine. As discussed in the previous section, the number of virtual machines running on
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Figure 4.6: Inter virtual machine communication

a physical node is equal to the number of CPUs of a physical node. Even with network

adapters with multiple network interfaces [Int12], this approach only scales for physical

nodes with a low number of CPUs because of the limited number of switch ports.

Virtualization support in network devices, such as VMDq [CH07], allows for partitioning

of network devices (cf. Figure 4.5c). The network device provides a set of virtual network

devices which can be assigned to the VMs and directly accessed by them. Since the

virtualization is done by the hardware, the performance is equal to accessing multiple

physical network interfaces.

Independent of the network access method, all communication between virtual nodes

running in different virtual machines requires physical network access or at least in-

teraction with the host operating system. In case of a communication of virtual nodes

running in virtual machines of the same physical node, establishing a direct link be-

tween virtual machines (cf. Figure 4.6) can circumvent the overhead associated with

the physical network access. Approaches such as XenLoop [WWG08] provide a virtual

network interface to each virtual machine and connect them using shared memory.

In the remainder of this thesis, we apply the direct network access for testbeds with only

one CPU per physical node. In case of testbeds with multiple CPUs per physical node,

we apply a host-based network access.
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4.2 Fine-Grained Timer for NETshaper

In order to properly emulate link properties like bandwidth and delay, the network

emulation tool NETshaper [HR02, GMHR08] is attached to the virtual network interface

of a virtual node running the Software under Test. The basic mode of operation of the

emulation tool is as follows:

For each frame to process, the emulation tool calculates the transmission time of the

frame based on the bandwidth and the delay of the link as well as the transmission time

of the previous frame. Thereafter, the tool starts a timer to go off at this time, and places

the frame in a delay queue. The frame is removed from the queue and transmitted

when the timer expires. Since our emulation tool runs inside the virtual machine,

the only available timers are based on the timer interrupt with a typical granularity

of 1 ms. Generally it is possible to extend the VM to support hardware timers with a

higher resolution such as APIC timers [Int01]. However, this requires a large number of

expensive context switches involving the hypervisor which we would like to avoid to

minimize the system load.

application 
sending 
frame x 

kernel 

1 2 3 11 12 13 21 22 23 

settimer() xmit(1-10) 
settimer() 

xmit(11-20) 
settimer() 

… … 

timer timer 

time 

Figure 4.7: Emulation with interrupt triggered timers

For emulating high speed links (>1 Gbps) the granularity of interrupt triggered timers

available inside the virtual machines is too coarse. These links transmit more than a

hundred frames per millisecond which results in a bursty transmission behavior. In

Figure 4.7 the bursty behavior is visualized by an example of an application sending a

frame every 0.1 ms at a configured propagation delay of 1 ms. Each timer activates the

transmission of ten frames. Such a behavior is not only unrealistic but it also leads to

load peaks which prohibits a load-aware adaptation of the virtual time (cf. Section 4.4).

To avoid these effects, we use a timer triggered by events [AD99] instead of interrupts.

The basic idea behind event triggered timers [GMHR08] is to reuse existing system

events, such as in network interrupts [JNVP06], to trigger the timer. We use frame level
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Figure 4.8: Emulation with event triggered timers (q = enqueue frame; x = transmit
frame)

sending and receiving events to trigger delayed frame transmissions. Whenever a frame

enters the emulation tool the delay queues are checked for frames to be transmitted.

Figure 4.8 again shows an application sending a frame every 0.1 ms. However, here an

event triggered timer is used for frame delays. After the first ten frames are enqueued,

transmission requests of the following frames trigger the transmission of previously

delayed frames. Using this technique, in this example, one frame is transmitted every

0.1 ms.

The main benefit of this approach is that increasing the link speed increases timer

granularity, too. The granularity of the timers can be further improved by sharing the

events of all instances of the emulation tool in a virtual machine. In case of periods

where the duration between two frame level events is higher than the configured delay,

interrupt triggered timers are used as a fall back solution, which guarantees a worst case

timer resolution equal to the resolution of the interrupt-based timer, which is sufficient

for realistic delay emulation. Since there are only a few frames to be delayed in such

situations, this approach does not result in a bursty transmission.

Additionally, the usage of event-based timers to transmit delayed frames minimizes

context switches and is cache friendly (memory and processor cache), because frames

are transmitted while the emulation tool is executed anyway [PBR+08]. Therefore, no

other tasks of the operating system are interrupted.
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4.3 Multiplexing of Virtual Links

Network emulation requires a configurable network infrastructure to establish virtual

links between virtual nodes. In the following, we first introduce the VLAN-based emula-

tion approach (Virtual Local Area Network) [Her05, Mai11] previously used in the NET

project (Network Emulation Testbed) and discuss its limitations. Thereafter, we discuss

related work in the area of virtual link emulation. Finally, we introduce our concepts of

a scalable emulation scheme for the emulation of virtual links. For further details, we

refer to the diploma thesis of Schirmer [Sch11a].

4.3.1 VLAN-based Network Emulation

In the NET project, VLAN-based network emulation [Her05] is used to emulate virtual

links between virtual nodes. VLANs (IEEE 802.1q [IEE06]) are used to partition the

physical network hardware. Figure 4.9 shows a simple network consisting of four virtual

nodes (A, B, C, and D). Node A and B are connected by a point to point link and nodes B,

C, and D are attached to the same LAN (e.g., switched network).

A B C D 

Figure 4.9: Example network topology

Figure 4.10 shows the emulation of this example network using VLAN-based emulation

[Her05] without the use of node virtualization, i.e., one virtual node per physical node.

Each virtual link (point to point link or switched network) is emulated by a unique

VLAN. Frames leaving a physical node are tagged by a VLAN. The outgoing ports of

the emulation switch are also tagged by a list of VLANs. The emulation switch then

propagates such frames only to those ports, where the VLAN is included in the list of

assigned VLANs.

The VLANs ensure that transmitted frames are only received by virtual nodes attached

to the same virtual link (same VLAN). Without the use of VLANs a broadcast of node A

would also be received by node C and D. The VLAN ensures that only node B receives

broadcasts of node A. Since the VLAN identifier is contained in the Ethernet header, this

approach does not reduce the size of MTU (Maximum Transmission Unit). Therefore,

this approach is fully transparent to the upper layer of the protocol stack.
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Figure 4.10: VLAN-based emulation [Her05]

Maier [Mai11] extended this approach to support node virtualization. Figure 4.11 shows

the same example network emulated by two physical nodes. The virtual nodes A, C,

and D are placed onto physical node 0 and virtual node B is placed onto physical node 1.

Again, each virtual link is mapped to a unique VLAN to ensure that frames are only

received by virtual nodes attached to the same virtual link.

The concept of node virtualization allows for increasing the number of virtual nodes

and, therefore, the number of virtual links, too. Each virtual link between virtual nodes

running on different physical nodes requires a unique VLAN6. However, the number

of VLANs is limited and, therefore, the VLAN-based emulation limits the number of

virtual links. Two factors limit the number of VLANs. First, the header field storing the

VLAN identifier in a frame is limited to 12 bit (212 = 4,096 VLANs). Second, the amount

of VLANs actually supported by hardware switches can be below this number. Table 4.1

shows the number of supported VLANs for a selection of common Ethernet switches.

6Virtual links between nodes running on the same physical node can be emulated without VLANs
[Mai11].

phy. node 0 

emulation switch 

phy. node 1 
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node B node D 
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VLAN2 

NIC NIC 

VLAN1 

node A 

Figure 4.11: VLAN-based emulation in presence node virtualization [Mai11]
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Manufacturer/Model #VLANs
#Multicast Groups

Reference
Layer 2 Layer3

Arista 7148S 4,094 2,048 2,048 [Ari12]
D-link DGS-6600 4,096 1,024 1,024 [D-l12]
Netgear GSM7352S-200 1,024 1,024 1,024 [Net12a]
Cisco ME 4924-10G 4,096 16,000 8,000 [Cis12]

Table 4.1: Properties of common Ethernet switches

For comparison, we have included the number of supported multicast groups on Layer 2

and Layer 3, too.

4.3.2 Related Work

The simplest approach to increase the number of supported virtual links makes use

of additional hardware. Instead of one physical network interface per physical node

connected to an emulation switch, multiple network interface cards connected to

multiple switches are used. Each additional network interface (plus the corresponding

switch) provides additional 4,096 VLANs. The same VLANs can be reused to emulate

virtual links on different physical network interfaces. However, the additional hardware

costs limit the applicability of this approach.

In V-eM [AC06] different approaches are used for the emulation of unicast and broad-

cast traffic. In case of unicast traffic, backward learning of MAC addresses is used. All

common switches maintain a table mapping Layer 2 MAC addresses to ports. Using

these table, a unicast frame is transmitted to the correct receiver. For broadcast traffic,

each virtual link is mapped to a Layer 2 multicast address. On the sender, the emulation

tool replaces the broadcast address by a Layer 2 multicast address. On the receiving

physical nodes these frames are delivered to the virtual nodes attached to the corre-

sponding virtual link after replacing the multicast address by the broadcast address.

Common switches used for emulation have Layer 2 multicast support and, therefore,

allow for filtering out physical nodes without a virtual node attached to the virtual link

addressed by the multicast address. However, similar to the VLAN-based approach, the

scalability depends on the number of multicast groups the switch supports. Table 4.1

shows, that this number is similar to the number of supported VLANs and, therefore,

the scalability of this approach is limited, too.

MobiNet [MRBV05] and Empower [ZN03] emulate virtual links by transmitting the

frames to the destination node using tunneling. In case of unicast traffic, this approach
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adds overhead for additional protocol headers. These protocol headers decrease the

supported MTU (Maximum Transmission Unit) or introduce additional overhead due

to the required fragmentation. Broadcast traffic can be emulated using multicast or mul-

tiple unicasts which limits the scalability (limited switch support) or requires additional

overhead, respectively.

In NEPTUNE [GBC09] virtual links are identified using unique Layer 2 addresses. In

case of unicast frames, the target address on Layer 2 is used to forward the frame to the

correct virtual nodes. In case of broadcast frames, the hardware switch will transmit

the frame to each physical node. Here, NEPTUNE filters duplicates by enforcing non

overlapping subnets on the Network layer.

As a conclusion, all related multiplexing schemes have either limited scalability due to

the limited hardware support for multicast groups or require additional overhead due

to frame fragmentation or message duplicates.

4.3.3 Concepts for Scalable Link Multiplexing

In this section, we present our approach to increase the number of supported virtual

links. The base of our approach is the VLAN-based approach discussed on Section 4.3.1.

However, instead of using one VLAN per virtual link, multiple virtual links between

virtual nodes running on the same subset of physical nodes are mapped to the same

VLAN. In the following, we first show how to multiplex and demultiplex the virtual links.

Second, we discuss the number of virtual links supported by this approach. Finally, we

compare the scalability of the extended VLAN-based approach and the previously used

approach.

Figure 4.12 shows our architecture to efficiently emulate multiple virtual links using

a single physical network interface. The first demultiplexer (demux1, see Table 4.2) is

used to forward incoming frames to virtual machines hosting virtual nodes attached

to the virtual link the incoming frame belongs to. The second demultiplexer (demux2,

see Table 4.2) forwards the frames to the bridge connecting virtual nodes attached to

Source MAC address Virtual Link Virtual Machine

FE:14:43:D2:F1:5A link 11, link 23 (bridge) VM 2
C2:21:73:3D:E1:11 link 42 (bridge) VM 1
12:34:56:78:9A:BC link 11 (bridge) VM 3, VM 4

Table 4.2: Table mapping MAC addresses to virtual links and virtual machines
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Figure 4.12: Scalable VLAN-based emulation architecture

this virtual link. In order to perform the demultiplexing, a table M : s 7→ l , mapping

the MAC address s of a virtual node to the corresponding virtual link l , is used by both

demultiplexers. This allows for identifying the virtual link the frame belongs to based on

the source address field of a frame. If, for example, a frame with the source MAC address

C2:21:73:3D:E1:11 arrives at the NIC (see Figure 4.12) the demultiplexer demux1

can identify the virtual machines the frames needs to be forwarded to. According to

Table 4.2, it is VM 1. Inside the virtual machine the demultiplexer (demux2) can use the

table again to identify the virtual links (link 42), emulated by bridges, and forward to

frames to them. This table can be generated based on the experiment specification and

can be deployed to the physical nodes while setting up the topology.

The transmission of frames involves multiplexing virtual links to a single physical net-

work interface. Correct demultiplexing requires only the source address of a frame.

Therefore, the simplest approach for the multiplexer is to transmit the frame without

any additional handling. In case of unicast frames, the MAC table7 of the Ethernet

switches allows for forwarding the frame only to the switch port of the physical node

hosting the virtual node. However, since the entries of the table are filled using back-

ward learning, frames addressed to unknown addresses are flooded to all ports. The

previously introduced demultiplexer can be used to discard frames received by physical

nodes that do not host the virtual nodes addressed by the frame. However, the physical

nodes dropping undesired frames experience additional load. Since these duplicates

only occur at the beginning of the experiment, the introduced load can be neglected.

7The table is build up using backward learning and maps MAC addresses to switch ports.
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Additionally, it is possible to build up the MAC table transmitting a dummy frame from

each virtual node.

Broadcast frames, transmitted by virtual nodes, are forwarded by the Ethernet switch to

all physical nodes. Like with unicast frames, the demultiplexers can be used to discard

accidentally received frames. In case of point-to-point8 links, this approach results in a

large number of frames to be discarded and thus a large overhead, because each frame

is received by all physical nodes, and all except of one will discard it.

The usage of VLANs avoids the accidentally received frames. One VLAN is assigned to

each subset of physical nodes hosting virtual nodes of a virtual link. Multiple virtual

links covering the same subset of physical nodes use the same VLAN. If the virtual nodes

attached to two virtual links are executed on the same set of physical nodes n1,n2, . . . ,ni ,

then both virtual links are emulated by the same VLAN. Different sets of physical nodes,

require different VLANs. The VLAN ensures that a frame is only forwarded to switch

ports connected to physical nodes hosting virtual nodes of the virtual link addressed by

the frame.

In case of point-to-point links, there are n·(n−1)
2 subsets of physical nodes (n is the

number of physical nodes in the testbed). Therefore, the commonly supported number

of 4,096 VLANs is sufficient to establish a VLAN between each pair of physical nodes for

testbeds with up to 91 physical nodes. In case of collision domains covering multiple

virtual nodes, such as for LAN emulation, the number of subsets is 2n −n −19. The

number of VLANs allows for establishing a VLAN between each subset of physical nodes

for testbeds with up to 12 physical nodes. However, the virtual nodes of one LAN are

typically placed onto the same physical node rather than distributed over a random

subset of physical nodes of the testbed and, therefore, the size of supported testbeds

increases. For example, if no virtual link exists that has attached virtual nodes running

on physical nodes n1,n2, . . . ,ni than no VLAN needs to be assigned to this subset of

physical nodes.

In the following, we compare the possible scenario sizes of our link multiplexing scheme

with the previously used VLAN-based approach (cf. Section 4.3.1). The previously

used VLAN-based multiplexing scheme allows for emulation of up to 4,096 point to

8A virtual link between only two virtual nodes.
9A set of n elements has 2n subsets (including the empty and the full set). However, no VLANs are

required for virtual links with virtual nodes running on a single physical node, because the switch of
the testbed is not involved in the communication between the virtual nodes. Additionally, no VLAN is
require for the empty set. Therefore, the n sets containing only one physical node and the empty set
are removed form the 2n subsets.
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point links between virtual nodes running on different physical nodes. The extended

approach, allows for emulating an arbitrary10 number of virtual links. For testbeds with

up to 91 physical nodes, this approach introduces no additional overhead in terms of

additional message transmissions. In case of testbeds beyond that limit, virtual links

between 4,096 pairs of physical nodes require no additional overhead. Virtual links

between additional pairs of physical nodes cause extra frame receptions.

The previously used VLAN-based emulation limits the number of supported collision

domains with more than two attached virtual nodes to 4,096. The extended approach

abolishes that limit for testbeds with up to 12 physical nodes without any extra overhead

in terms of message transmissions. In case of larger testbeds, 4,096 subsets of physical

nodes hosting collision domains can be emulated without additional overhead. Further

subsets cause extra message overhead.

As a conclusion, the extended multiplexing scheme allows for increased scenario sizes

while maintaining the benefits of VLAN-based emulation. The developed architec-

ture provides an efficient link multiplexing scheme for our virtualization architecture

composed of virtual machines and virtual protocol stacks.

10Limitations due to the memory consumption for running virtual nodes still exist.
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4.4 Adaptive Virtual Time

Physical resources of emulation testbeds, such as the CPU capacity, the memory band-

width, the network throughput, and the disk throughput, are limited. In presence of

node virtualization, these resources are shared between multiple virtual nodes. The

case where the sum of requested resources exceeds the provided resources is called

overload. Overloading any resources at any time during the experiment may lead to

biased emulation results, e.g., message transmissions experience additional, undesired

delay.

Unbiased emulation results can be achieved by monitoring the resource utilization

during the experiment to detect overload [Mai11]. In case of a detected overload, there

exist two approaches to handle it: First, rerun the experiment with a different mapping

of virtual nodes onto physical nodes that reduces the load on the physical nodes. Second,

rerun the experiment with a reduced emulation speed using the concept of virtual time

[CFH+80, GYM+06] (cf. Section 2.3). Finding a suitable node placement or emulation

speed that avoids overload may require multiple experiment executions and, therefore,

extends the total experiment runtime.

Additionally, varying resource requirements of virtual nodes lead to situations during

the experiment run where the sum of requested resources are less than the provided

resources. These situations are called underload. In presence of time virtualization,

underload unnecessarily extends the runtime of experiments by leaving resources

unused. Minimizing the overall experiment runtime requires to maximize utilization of

available resources.

In order to maximize the resource utilization without overloading the physical re-

sources, we provide the concept of adaptive virtual time, previously published in

[GMHR08, GHR09a]. During the experiment, we monitor the resource utilization and

adapt the emulation speed to prevent overload and avoid underload. Details on the

implementation can also be found in two diploma theses by Egorenkov [Ego08] and

Pakai [Pak08].

The remainder of this section is structured as follows: First, we give an overview on

related work. Second, we discuss the concept of adaptive virtual time in detail. A

detailed and expressive evaluation of our prototype implementation is provided in the

subsequent section.
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4.4.1 Related Work

Canon et al. [CFH+80] were the first to introduce virtual time in emulations. However,

no adaptive clock rate is used in their approach. Therefore, the clock rate has to be

preconfigured to a value that ensures that no overload situation occurs throughout the

experiment run. This leads to very conservative clock rates to avoid overload during

load peaks. Besides the period of a load peak, the system does not utilize the existing

resources efficiently and, thus, the experiment runs much longer than necessary.

Hybrid systems combine the benefits of network simulation and network emulation,

by connecting physical nodes [Liu08b] running real implementations to a simulated

network based on Parallel Discrete Event Simulation (PDES) [Fuj89, RFA99]. In addition,

these approaches use a combination of node and time virtualization [ELL09]. However,

a constant clock rate is used here too. The necessary synchronization in the simulation

produces additional overhead.

Weingärtner et al. [WSHW08] have proposed an approach to conservatively synchronize

multiple virtual machines to a simulation framework. Here, an experiment is evenly

divided into time slices. The end of each slice constitutes a barrier to synchronize

the VMs with the simulation framework. Yoginath and Perumalla [YP11] follow a sim-

ilar approach. Here, multiple virtual machines running the Software under Test are

synchronized using a discrete event simulation framework NetWrap. However, the VM-

based node virtualization increases the overhead introduced by the synchronization

scheme.

Emulation of arbitrary powerful virtual resources can be achieved by adapting the Linux

protocol stack to use virtual time instead of real time. While Wang et al. [WK02] only

use a simulation framework running on a single physical node, dONE [BVB06] uses

a distributed simulation framework. In contrast to our system, dONE only supports

testing of application layer implementations using the BSD socket interface [GN98].

All existing approaches either have additional synchronization overhead or only support

a constant clock rate which both results in a suboptimal experiment runtime. We

solve these problems by dynamically adjusting the clock rate to the current load of the

system.

70



4.4. ADAPTIVE VIRTUAL TIME

4.4.2 TDF Adaptation Process

In this section, we introduce the concept of adaptive virtual time. To minimize the

runtime of experiments, we dynamically adjust the virtual clock rate to the current

resource demand of the experiment. The rate of the virtual nodes’ clocks is slowed down

by a factor named time dilation factor τ (TDF) [GYM+06]. Equation 4.1 shows how the

virtual nodes’ clocks rate (Rv ) and the rate of a real clock (Rr ) are related by means of

the TDF τ.

Rv = 2− τ
10 ·Rr (4.1)

This transformation from real time to virtual time is executed whenever the virtual

machine monitor updates the virtual machine’s time during the periodic timer inter-

rupt (1 kHz). Since interrupt handlers should only run for a short time to maintain

responsiveness of the operating system to other events (e.g., message reception) an

efficient implementation of this transformation is required. Additionally, floating point

arithmetic is not accessible from the virtual machine monitor and can only be emulated

by multiple integer operations. To allow an efficient implementation using integer

arithmetic, we use (in contrast to the linear relation proposed by Gupta et al. [GYM+06])

a logarithmic relation between the rate of virtual time and the real time (cf. Table 4.3).

Using only integer arithmetics, we can adjust the rate of the virtual clock with a step

width of about 6.7 %. This granularity is sufficient for the adaptation algorithm that

we will introduce in the following. In addition, without a logarithmic relation, this

granularity depends on the virtual clock rate. As shown in Table 4.3, for fast rates (small

value of τ) the granularity is coarse and it increases with slower rates (large value of

τ).

In order to perform the adaptation of the TDF, we propose the concept of epoch-based

virtual time [GMHR08]. The experiment is divided in epochs of different lengths where

the TDF is constant within each epoch. Whenever the resource demand changes, an

epoch switch is triggered to adapt the TDF to the load of the system.

Figure 4.13 shows the TDF adaptation scheme. Each physical node of the emulation

system runs a Load Monitor to monitor the load of the physical node and to report it

to a central coordinator which calculates the overall system load. The overall load is

defined as the maximum over all individual node load values. This definition is chosen

to ensure that no physical node is overloaded at any time.

Using the overall load, the coordinator determines a new TDF and initiates an epoch
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Figure 4.13: Feedback loop for TDF adaptation

switch. The Epoch Switcher is used to distribute the new TDF to the physical nodes and

to perform an epoch switch. In the following, each component (Load Monitor, TDF

Adaptor and Epoch Switcher) is discussed in detail.

Distributed Load Monitoring

The Load Monitor is used to measure the load of a physical node and report the load to

the TDF Adaptor. Overloading any resources of the system can bias emulation results. In

network emulators the most limiting resource is the CPU. Accessing I/O resources like

network or disc are typically very CPU intensive. Mechanisms such as TCP offloading

[FHL+05] and RDMA (Remote Direct Memory Access) [HGLP07, XOP11] allow for a direct

linear [GYM+06] logarithmic
(
2

−τ
10

)
[GMHR08]

τn → τn+1
Rr,n
Rv,n

Rr,n+1
Rv,n+1

slowdown factor
Rr,n
Rv,n

Rr,n+1
Rv,n+1

slowdown factor

1 → 2 1.000 0.500 50.0 % 0.933 0.871 6.7 %
10 → 11 0.100 0.091 9.1 % 0.500 0.467 6.7 %
20 → 21 0.050 0.048 4.8 % 0.250 0.233 6.7 %
30 → 31 0.033 0.032 3.2 % 0.125 0.117 6.7 %
40 → 41 0.025 0.024 2.4 % 0.063 0.058 6.7 %

10 → 20 0.100 0.050 50.0 % 0.500 0.250 50.0 %
20 → 30 0.050 0.033 33.3 % 0.250 0.125 50.0 %
30 → 40 0.033 0.025 25.0 % 0.125 0.063 50.0 %
40 → 50 0.025 0.020 20.0 % 0.063 0.031 50.0 %

Table 4.3: Granularity comparison for linear and logarithmic time dilation factors
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communication between the main memory and the I/O devices which reduces the load

of the CPU. However, in the presence of virtual machines the I/O access is still CPU

intensive [BDF+03]. Our experiments verified this assumption and showed that the

CPU capacity limits the network bandwidth between virtual nodes. The throughput

of a transmission between two virtual nodes running on different physical nodes is

constraint by the CPUs and not the physical network.

Therefore, load definition that only focuses on the CPU also avoids overloading the

I/O in our system. However, the approach can be easily extended to consider also

network or disc resources. First, we measure the resource utilization for each resource

(loadCPU, loadnetwork, loaddisc) and combine them using the following equation:

loadcombined = max(loadCPU, loadnetwork, loaddisc) (4.2)

For the following description of our epoch-based virtual time, we assume the CPU-based

metric.

As discussed in Section 4.1.2, for each physical CPU one virtual machine is executed.

Each CPU is only accessed by one assigned virtual machine and the host operating

system. The host operating system is used to establish communication between virtual

machines. The load of the host operating system can be distributed arbitrarily to the

CPUs 1, . . . , i . We used a load monitor in the Virtual Machine Monitor (VMM) to measure

the percentage of CPU time consumed by the virtual machines (LVM
1 , . . . ,LVM

i ) and host

operating system Lhost-os. Here, 100 % corresponds to the capacity of one CPU. The load

of a physical node is defined as the load of the CPU with the maximum load. Preventing

overload of this CPU, prevents overload of the other CPUs, too. Therefore, we define the

load of a physical node loadCPU as follows:

loadCPU = max

[
max

1..i

(
LVM

i

)
,

1

i
·∑

1..i

(
LVM

i +Lhost-os
)]

(4.3)

The term max1..i
(
LVM

i

)
determines the resource requirements of the maximum loaded

virtual machine. Since each virtual machine runs on an exclusive CPU, this term acts

a lower bound of the maximum loaded CPU. In addition to the virtual machine, one

host operating system is executed on each physical node. The host operating system

can access all CPUs and, therefore, is executed on any CPU with free resources. The

second term calculates the portion of the overall load (execution of the host operating

system and the i virtual machines) that is at least assigned to each CPU (assuming a
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uniform distribution of the load to all CPUs). This value constitutes a second lower

bound. The maximum of both terms determines the load of the maximum loaded CPU

and, therefore, defines loadCPU.

Virtual machine monitors provide a per virtual machine statistic, which counts the num-

ber of used CPU cycles c(t ), which is typically used for scheduling the virtual machines.

Requesting this value at two points in time (c(t1) and c(t2)) allows for calculation of the

load LVM = c(t2)−c(t1)
t2−t1

∗ 1
C CPU (C CPU defines the number of cycles a CPU can execute per

time unit). Similarly the load of the host operating system Lhost-os can be measured.

To meter the time between the measurements with a sub-microsecond granularity, we

use the time stamp counter register of the processor (TSC), which is increased on every

CPU clock cycle.

The length of the sampling interval has a large effect on the performance of load moni-

toring. Short intervals are required for a fast reaction to load changes, but also result in

a large number of load reports. Transmission and processing of large amounts of load

reports would overload the coordinator and, therefore, limit the scalability. To limit the

amount of load reports, we use three mechanisms: adaptive sampling, threshold-based

discretization and hysteresis-based state changes. These mechanisms effectively and

substantially reduce communication overhead for reporting.

Adaptive sampling adjusts the length of the sampling interval (time period between

two consecutive load reports) to the currently used TDF. For a higher TDF (slower

virtual time) a longer sampling interval is chosen. The idea behind this is that overload

situations develop proportionally slower when the virtual time runs slower. Therefore,

the sampling interval may be increased without taking the risk of missing any relevant

change. To illustrate this effect, we consider an emulation example consisting of one

instance of the SuT with a timer that fires every 10 ms. To accurately emulate the SuT

the system must have free resources in every 10 ms interval of virtual time to execute

the timer. In case the system runs at real time, the load of the system needs to be

monitored at least at 10 ms intervals to detect overload. In case the system runs 10 times

slower than real time, the monitoring interval can be increased by factor 10. With this

increased interval, a possible overload during any 10 ms interval of virtual time can still

be detected. Therefore, we increase the sampling interval linearly with the TDF.

Threshold-based discretization maps the possible load values of a physical node to the

four states load panic, load warning, reasonable load, and underload (cf. Figure 4.14)

using three thresholds (ΘP ,ΘW , andΘU ). The load monitor determines the state locally

and only in case of a state change, a load report is sent to the TDF Adaptor. Underload
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Figure 4.14: Thresholds used for TDF adaptation

indicates that there are unused resources and, therefore, virtual time could be accel-

erated. Analogously, the two states load panic and load warning signal that resource

consumption is becoming too high. When the system is in one of these states, virtual

time has to be slowed down. The two thresholds ΘP and ΘW are used to differentiate

between light and heavy load. We describe the different reaction on these states in the

next section and determine the values for the thresholds ΘP , ΘW , and ΘU during the

evaluation in Section 4.5.2.

Hysteresis-based state changes are used to avoid oscillation between two states which

causes a high number of load reports. A state change is only triggered if load exceeds

the threshold and its surrounding hysteresis range (cf. Figure 4.14).

TDF Adaptation

Based on the load reports, the time dilation factor (TDF) τ may need to be adjusted. The

TDF Adaptor achieves this adjustment by means of a very simple proportional feedback

control mechanism that is shown in Algorithm 1. Whenever the system load is outside

the reasonable range, the algorithm adapts the TDF to reach the reasonable load state.

As long as the system load is in state load warning or underload, a small adjustment

Ss is applied (added or subtracted) to avoid overshooting the reasonable load state.

If there is a fast increase in load, this adjustment will not suffice and the system will

eventually reach the load panic state. In this situation, a larger step size Sl is used for

the adjustment in order to decrease the load quickly and avoid overload. If this results

in an underload situation, the algorithm will gradually decrease the TDF again to speed
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up virtual time.

After each adjustment, the algorithm needs to wait for feedback from the load monitor

to see whether the load is back in the state reasonable load. Due to the adaptive sampling

rate of the load monitor, the time until the feedback arrives depends on the current TDF.

Therefore, we dynamically adjust the waiting time (Ts) to the used sampling interval.

In case of temporarily constant resource demands, the utilization can be kept steady

at any level between theΘU andΘW thresholds in the state reasonable load. For good

resource usage, however, the system utilization should be near theΘW threshold. There-

fore, we decrease the TDF in the reasonable load state, too. However, the speed of this

adjustment is very low, through a waiting time Tl of an order of magnitude larger than

the waiting time Ts . In combination with the hysteresis around the thresholds, the

additional adjustments caused by the oscillation aroundΘW introduce an insignificant

overhead.

Our evaluation shows that the introduced algorithm prevents overload and underload

for scenarios with and without changes of resource requirements.

Algorithm 1: TDF adaptation process
input : st ate, τn

1 while true do
2 if state != reasonable_load then
3 if state = load_panic then
4 τn+1 = τn +Sl

5 else if state = load_warning then
6 τn+1 = τn +Ss

7 else if state = underload then
8 τn+1 = τn −Ss

9 end
10 sleep Ts

11 else if state = reasonable_load then
12 τn+1 = τn −Ss

13 sleep Tl

14 end
15 end
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Epoch Switching

After determining the TDF for the next epoch, a mechanism is required for propagating

the new value to the physical nodes. To ensure a fast reaction to upcoming overload,

the time between detecting the resource demand and the actual TDF change must be

as small as possible. Since the time to compute the new TDF is negligibly small, we

need to minimize the time for transmitting load reports and TDF change requests. In

addition, unbiased emulation requires all virtual clocks to run at the same rate at any

time. Therefore, we need mechanisms to minimize the difference in propagation times

of TDF change requests. A third problem related to epoch switching is the occurrence

of message loss which cannot be detected in time.

We have developed a protocol [Ego08] for minimizing the propagation time of TDF

change requests and load reports. The basic assumption behind this protocol is that all

nodes are connected to a LAN. We are using the previously mentioned control network

of the cluster. The delay of TDF change requests and load reports using this network

consists of several components: network transmission delay, packet processing time in

the protocol stack, and delay in queues. The time to transmit a frame in the network is

insignificant because it is below 200µs and has small variability. The processing time

in the protocol stack is a magnitude below the transmission time and can be ignored

as well. Most of the message delay is caused by waiting in egress and ingress queues of

the physical nodes and the switch. In order to limit these delays, we are using priority

queues based on Type of Service (TOS) of IP QoS11 and prioritize TDF change requests

and load reports. A last source of delay are the hardware based FIFO queues inside the

network interface cards (NICs). Since we cannot change theses queues, we are limiting

the traffic on these interfaces to 95 % of the link capacity to keep the queues empty.

Using these mechanisms, the maximum packet transmission delay can be reduced

below 2 ms and message loss can be prevented with a very high probability.

Variations of the arrival and processing time of the TDF change requests may result

in virtual clocks running slightly out of synchronization. Especially in long running

experiments these multiple small delays can sum up to a significant error. To avoid this

and keep the virtual clocks synchronized, the coordinator simulates its own virtual clock

by applying the TDF change requests, too. Each TDF change request contains the virtual

time of the coordinator. In case of a deviation from the virtual time of the coordinator,

the execution of the next TDF change requests can be slightly delayed. Using this

approach, the virtual clocks of all virtual nodes are synchronized. Our evaluations (see

11Ethernet switches can evaluate the payload of Layer 2 frames and read the TOS header field of IP.
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Section 4.5.2) show a maximum clock skew of less than 5 ms and a clock skew of less

than 2 ms for 99.5% of time.

4.5 Evaluation

In the following, we first evaluate the accuracy of our emulator to emulate link proper-

ties such as bandwidth and delay. Second, we investigate the overhead of our emulation

architecture. Third, we subject the concept of adaptive virtual time to a detailed perfor-

mance evaluation.

4.5.1 Architecture for Efficient Virtual Time

We evaluate our proposed emulation architecture as follows. First, we present the

software and hardware base of our experiments. Second, we evaluate our prototype

with respect to the accuracy of bandwidth and delay emulation. Finally, we determine

the introduced overhead of the emulation architecture. Therefore, the communication

and memory overhead of the prototype is measured.

Xen [BDF+03] in version 3.1.0 using Linux 2.6.1812 acts as foundation of our prototype

implementation. Including OpenVZ [Ope12] into Xen provides virtual nodes based on

virtual protocol stacks [KHS+03] and virtualization of name spaces and file systems

[Sch00, KW00]. The operating system of the virtual machine is based on Debian13. In

order to achieve maximum performance, all background services of the Debian system

are disabled. Essentially, only the Linux kernel, init14 and sshd15 are running. The

virtual nodes run a minimized custom Linux distribution. In order to minimize the

memory footprint of a virtual node, all background services are disabled, too. After a

start of a virtual node, only the default init process is running. We extended the virtual

machine interface of Xen to provide guests a virtual time instead of a real time. Finally,

we extended the Virtual Ethernet Device Driver (veth) of OpenVZ by the functionality

of NETshaper [HR02] to emulate network properties such as bandwidth, delay, and

message loss.

All evaluation benchmarks are performed on a cluster consisting of 64 PC-nodes. Each

PC is equipped with an Intel Pentium 4 2.4 GHz processor, a Gigabit Ethernet adapter

12The Linux Kernel Archives http://www.kernel.org
13Debian GNU/Linux http://www.debian.org
14System process and parent of all processes of a Linux-based system.
15SSH (secure shell) daemon used to configure the experiment.
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and 512 MB of main memory (RAM). A second 100 Mbps network interface is used to

setup and control the experiments (control network) without influencing the experi-

ment traffic on the Gigabit network interface (emulation network). In the following

evaluations, we used VLANs to multiplex multiple virtual links to the single emulation

network interface (cf. Section 4.3.1). We divide the memory into 64 MB for dom016

and 429 MB for domU17. The memory assigned to dom0 could be further decreased by

running a custom minimal Linux system, similar to the operating system running inside

the domU. However, this constant amount does not affect the evaluation results.

In the following, we evaluate the accuracy of the emulation layer. First, we measure

if the emulation layer is able to enforce a configured bandwidth faithfully. Therefore,

we set up a scenario with two connected virtual nodes in two variations. One variant

uses a single physical node hosting both virtual nodes and the other uses two physical

nodes, each with one virtual node. We configure the bandwidth of the link with different

values ranging from 64 kbps to 100 Gbps without any additional delay. To measure the

maximum throughput of the emulated link, we use the netperf 18 tool in UDP mode.

It generates load according to configured send and receive buffers of 64 kB and an

Ethernet MTU of 1,500 bytes.

As shown in Figure 4.15, the measured throughput corresponds, in both scenario vari-

ants, to the configured bandwidth. Note that, due to the used hardware, for high speed

links (100 times faster than the used network hardware) an emulation running at real

time is not possible. Therefore, we increased, the TDF to avoid overloading the physical

nodes.

Next, we examine if the emulation tool faithfully reproduces configured delays. Again,

the scenario consists of two connected virtual nodes. The virtual link between the

virtual nodes has a configured bandwidth of 100 Mbps and a variable delay between

1 ms and 100 ms. We use the ping tool to generate ICMP ECHO requests19 to measure

the RTT (Round Trip Time) between the virtual nodes. Variations of this scenario

use one or two physical nodes to host virtual nodes on same or on different physical

nodes, respectively. Additionally, we run the experiment with two different TDF values

rt (real time) and vt (virtual clock rate is 1
10 th of real clock rate). Figure 4.16 shows

the average measured RTT and the interval of the minimal and maximal value for

16dom0 is a privileged domain in Xen. The dom0 is typically used to run device drivers and to manage
(e.g., start and stop) the virtual machines.

17Name for a virtual machine in the Xen terminology
18netperf http://www.netperf.org
19Internet Control Message Protocol (ICMP) RFC 792, 1981
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Figure 4.16: Accuracy of delay emulation (ping)20

100 measurements per configuration20. As can be seen in the figure, the average values

and the maximum values of the measurement are almost equal to the configured delay

of the links. The minimal measured value, denoted by the error bars in Figure 4.16,

20All four variants have same configured delays. To increase readability, they are plotted side by side.
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Figure 4.17: Experiment execution speed vs. scenario size

deviates slightly (∼0.25 ms for a configured delay of 1 ms21) from the configured delay.

For each measurement, only one packet is transmitted in both directions of the link and,

therefore, our fine-grained timers cannot be used to increase the accuracy of the timer.

Nevertheless, with a maximum deviation of about 0.25 ms, we can conclude that our

emulation tool is able to accurately emulate the delays of the links.

In the following, we determine the overhead of our emulation architecture in terms

of communication effort and memory consumption. To measure the communication

effort, we use our network emulator to measure a TCP flow through a chain of routers

in an emulated network. The scenario consists of two physical nodes, one hosting a

router chain and the other a sender and receiver of a TCP connection. The sender is

connected to one end of the router chain and the receiver to the other end. All links

in the scenario are configured with a bandwidth of 100 Mbps without any additional

delay. We run the experiment with different chain lengths ranging from 4 to 253 routers.

The maximum TTL (Time to Live) of IP packets prohibits longer chains. We measure the

maximum TCP throughput for different rates of the virtual clocks ranging from 1
2 of real

time to 1
32 of real time. We use netperf 22 with configured send and receive buffers of

64 kB to transmit data using sendfile23 for 10 s.

The results of this experiment are visualized in Figure 4.17. With all evaluated execution

speeds up to 16 routers can be emulated without overloading the physical resources.

21Due to the logarithmic scale of the y-axis, the deviation seems to be larger for smaller emulated delays.
22netperf http://www.netperf.org
23Linux system call to transfer data between file descriptors (http://kernel.org/doc/man-pages/

online/pages/man2/sendfile.2.html)
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Figure 4.18: Memory consumption of virtual nodes

An overload of the system results in a drop of the TCP throughput. The system is then

unable to process the frames in time, which results in frame loss and TCP will throttle

the data rate. As can be seen in the figure, slowing down the executing speed of the

experiment, allows for a faithful emulation of a longer router chain. Particularly, slowing

down the executing speed by a factor of 2 doubles the router chain length without a data

rate reduction. As a conclusion, by slowing down the execution speed of the experiment,

we can emulate scenarios with arbitrary communication demand.

Besides the communication demand, the scalability of an emulation system heavily

depends on the memory overhead. To evaluate the memory overhead of our approach,

we create a scenario with an increasing number of virtual nodes attached to a single

network. Figure 4.18 shows the required memory usage for this experiment. Here,

we distinguish between the total allocated memory, the memory for caches, and the

memory allocated by the operating system.

The operating system of the virtual machine including the Linux kernel requires about

27 MB and each virtual node increases the memory consumption by about 300 kB. Since

we are interested in the memory overhead, no Software under Test is executed by the

virtual nodes. In comparison, a virtual node based on Xen requires a minimum of 6 MB

of memory [BDF+03]. As shown in Figure 4.18, the memory footprint increases linearly

with the number of virtual nodes. This allows us to run over a thousand virtual nodes on

a single physical node which is equipped with half a gigabyte of main memory. Please

note that the main memory is shared by hypervisor (VMM), dom0 (64 MB), and the

virtual machine.
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4.5.2 Adaptive Virtual Time

In order to evaluate the performance of the adaptive virtual time, we integrated the

concepts for load monitoring, TDF adaptation and epoch switching into our prototype.

The prototype, running on the NET Cluster equipped with 64 nodes (Intel Pentium 4

2.4 GHz, 512 MB RAM, 1 Gigabit NICs), is based on Xen [BDF+03] version 3.1.0 running

Linux Kernel 2.6.18 inside a virtual machine (domU in Xen jargon) and inside the control

domain (dom0). In addition, OpenVZ [Ope12] is used to create virtual nodes inside

the virtual machine. The mechanisms for adaptive virtual time were implemented as

Linux Kernel Modules [SBP07] (LKMs) running in dom0 to minimize latencies for epoch

switching.

The evaluation is structured as follows: First, we briefly discuss the chosen parameters

for the load monitoring and the TDF adaptation. Then, we investigate the achieved

resource utilization. Finally, we exemplify how to evaluate the performance of a routing

daemon in a large scenario using our network emulator.

An extensive search of the parameter space using scenarios with different resource

requirements has been performed to identify a configuration which generally mini-

mizes experiment runtime and ensures unbiased results for our network emulator. The

determined thresholds of the load monitor are: ΘU = 50, ΘW = 70, and ΘP = 90. The

adaptive sampling interval ranges from 5 ms for a TDF of 0 to 200 ms for a TDF of 100.

TDF adjustments with a step width Ss of 1 and Sl of 20 give best results for the TDF

adaptation. This configuration is used for the following experiments.

To quantify the achieved level of resource consumption, we are emulating a chain of

routers routing two TCP flows (cf. Figure 4.19). The experiment is executed on two

physical nodes. On the first one, two virtual nodes are running the TCP sender and

receiver of the first flow f (foreground flow). This flow is routed through the chain of

routers with different lengths. The routers are hosted by the second physical node.

flow f 

flow b routers 

physical 
node 2 

physical 
node 1 

n
2

 routers 
n
2

 

sender receiver 

Figure 4.19: Evaluation scenario for TDF adaptation
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Figure 4.20: Load-based TDF adaptation

Additionally, one link of the router chain is used by a second flow b (background flow).

The emulated network between the virtual nodes has a bandwidth of 1 Gbps except for

the first and last link which have 100 Mbps. During each experiment, we run the TCP

flow b for 20 s of virtual time. 5 s after the experiment start, we run the flow f for 10 s

and measure the achieved throughput. In addition, the resource usage on both physical

nodes is measured during the experiment. For each router chain length, the experiment

is repeated 50 times.

Figure 4.20 shows the CPU utilization of the physical node running a chain of 32 routers.

The time axis has two scales: the upper scale is the real time and the lower scale is the

virtual time. Running only the flow b (first and last 5 s of virtual time of the experiment)

requires the system to run with a TDF of about 10 (2− 10
10 ∼= 1

2 · real time, cf. Section 4.4.2)

to keep the CPU utilization inside the reasonable load range denoted by the gray area.

Running flow f between 5 s and 15 s of virtual time increases the resource requirements.

In order to prevent overload, the system automatically adapts the TDF to a value of

about 27 (2− 27
10 ∼= 1

6 · real time, cf. Section 4.4.2). As flow f stops, the system adapts the

TDF back to the original value.

Figure 4.21 shows the measured results for different lengths of the routers chain. The

evaluation metrics are: the achieved TCP throughput, the load of the physical node

running the router chain, and the average TDF. Although these measurements have

different scales, we show them in a single graph to increase clearness of display. For

comparison, we have also included the results for the experiment without flow f . The

TCP throughput allows for rating the accuracy of the emulation by comparing the
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Figure 4.21: Effectiveness of the TDF adaptation

measurements with the TCP throughput in real environments. In the emulation as

well as in measurements in real environments, TCP is able to achieve about 96 Mbps

throughput and, therefore, we can conclude that the emulation results are not biased.

The experiments are repeated 50 times. The deviation from the average is about +0.78%

and −1.34% in the worst experiment run and, therefore, negligible.

As shown in the figure, for up to eight routers the resource utilization mainly results

from flow b and, therefore, the load as well as the TDF are constant. As the number of

routers increases, the resource requirements for flow f increase likewise. Since each

router basically does the same, the load increases linearly with the number of routers.

At a length of about 11 routers, the flow f consumes a significant amount of the CPU

and, therefore, the system needs to slow down the virtual time, resulting in an increase

of the TDF.

The gray area in Figure 4.21 marks the reasonable load range. For the experiment to

exhibit minimal runtime, the resource utilization should be near the upper bound of

the reasonable load range. As the figure shows, the load of the physical node hosting

the routers approaches this limit and stays below the threshold as desired. For shorter

router chains, the low TDF results in a small sampling interval (cf. Section 4.4.2) which

makes the system more sensitive to short load peaks. These load variations can cause

false positives of overload warning messages and, finally, a temporary suboptimal TDF.

However, the sensitivity is required to prevent overload situations in the presence of

short load peaks.

In the next experiment, we investigate the scalability aspects with respect to the used
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Figure 4.22: Number of control messages sent by virtual routers running OLSR

number of physical nodes used for the emulation. In this experiment, we emulate a

MANET (Mobile Ad-Hoc Network) with an increasing number of virtual nodes. Each vir-

tual node runs the OLSR protocol (Optimized Link State Routing) using the unmodified

version of olsrd24. The nodes are arranged in a grid topology. Due to the configured

transmission range, each virtual node can only directly communicate with its four

neighbors. To verify that emulation results are not biased, we compare the number of

control messages of the routing protocol transmitted in an experiment. This number

is depicted in Figure 4.22 for four different setups with 4, 8, 16, and 32 physical nodes

and an increasing number of virtual nodes running uniformly distributed on them. As

the number of virtual nodes increases, the amount of control messages should increase

linearly since each node emits such messages to its neighbors periodically.

If results were biased by overload situations in the experiments, this would mean that

the olrsd instances would not be able to emit the required control messages in time.

Messages would be delayed or dropped. As a result, the linear increase would change

and a kink would appear at the point where the number of virtual nodes gets too high.

Figure 4.22 clearly shows no such sign of an overload situation throughout the entire

24An Adhoc Wireless Mesh Routing Daemon. http://www.olsr.org
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Figure 4.23: Required real time to emulate scenario with virtual routers running OLSR

range despite the increase in virtual as well as physical nodes.

Figure 4.23 shows the time required for running the OLSR scenario with different num-

bers of physical nodes. For low numbers of virtual nodes (< 300), increasing the number

of physical nodes does not produce a notable effect as these experiments can easily be

run using 4 and 8 physical nodes. However, the figure shows that, for a larger number

of virtual nodes, the resources of all physical nodes are efficiently exploited. For exam-

ple, with 2,700 virtual nodes, doubling the resources from 16 to 32 physical nodes can

reduce the required experiment time by about 40 % if the number of virtual nodes is

kept constant (cf. Arrow a in Figure 4.23). Conversely, through doubling the resources,

the number of virtual nodes and, thus, the size of the scenario can be increased by 50 %

without increasing the experiment time (cf. Arrow b in Figure 4.23).

Finally, we are investigating the number of load reports sent by the physical nodes to

the coordinator to adapt the TDF to the load of the system and the resulting number

of TDF changes. As can be seen in Figure 4.24 and Figure 4.25, for small numbers of

virtual nodes (< 300) only a small number of load reports are required, because the

system is most time in the underload state. As the number of virtual nodes increases,

the resource requirements of the scenario increase, too. As a reaction to the increasing

resource requirements, the system needs to adapt the TDF to avoid overload. In order to

minimize the experiment runtime, the system aspires at a load near the border between

overload and reasonable load state. The change between these two states requires load

reports. However, as can be seen in the figure, our mechanisms to reduce the number

of load reports (cf. Section 4.4.2) are effective and cause about 200 load reports per
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Figure 4.25: Number of TDF switches

second for all physical nodes. The number of TDF switches is at about 100 switches per

second. The figures also show that the number of load reports and TDF switches are

almost independent of the number of physical nodes used for the experiment. Due to

the low number of load reports and TDF switches, the TDF adaptation results in almost

no measurable load on the coordinator. Therefore, the coordinator can easily perform

the TDF adaptation for multiple experiments in parallel.

Finally, we investigated the synchronization of the virtual nodes’ clocks. Since the clock

drift results from small variations of the arrival and processing time of the TDF change
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Figure 4.26: Clock drift without synchronization protocol

requests, these variations increase with the load of the virtual machine. Therefore,

we evaluated the clock skew in a scenario where four physical nodes have no load

(running a SuT that sleeps forever) and four physical nodes are heavily load (running

the aforementioned OLSR scenario). Each physical node runs one virtual machine. In

case of the loaded physical nodes, 200 virtual nodes are executed inside each virtual

machine. In the following we name the physical nodes without load idle and the physical

nodes with load loaded.

Figure 4.26 shows the drift of the virtual time for the 4 idle and the 4 loaded physical
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Figure 4.27: Clock drift with synchronization protocol
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Figure 4.28: Distribution of clock drift

nodes without the synchronization protocol. As can be seen in the Figure, the drift in-

creases during the experiment execution for all nodes. However, in case of loaded nodes

the drift increases about 5 times faster than the drift of the idle nodes. Figure 4.27 shows

the drift in the same scenario with the clock synchronization protocol (see Section 4.4).

To increase readability we show the loaded and idle nodes separately. The Figure shows,

that the drift varies faster for the loaded nodes. However, the synchronization protocol

can effectively limit the drift for the load and idle nodes.

In order to quantify the synchronization accuracy, we included the 99.5% percentiles

(dashed lines in the Figure 4.27) and showed the distribution of the clock drift in Fig-

ure 4.28. As can be seen in the figures, the introduced synchronization protocol allows

for limiting the drift to an 5 ms interval. Moreover, the drift remains within a 2 ms inter-

val for 99.5% of time. In conclusion, with the synchronization protocol the drift does

not increase over time and, therefore, the protocol allows for synchronized clocks in

long running experiments, too.
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4.6 Summary

In this chapter, we introduced our emulation architecture to efficiently provide node

virtualization and time virtualization in the presence of multi-core CPUs [GMHR08,

GHR10]. In order to minimize the communication overhead and the memory over-

head, we applied the concept of virtual protocol stacks for node virtualization. We

argued that virtual protocol stacks extended by name space partitioning and file system

virtualization allow for virtual nodes that are isolated from each other.

In order to cope with the resource requirements of multiple instances of the Software

under Test on each physical node, we applied the concept of time virtualization. Here,

we can reduce the resource requirements by slowing down the execution speed of the

experiment. To minimize the runtime of an experiment we have developed the concept

of adaptive virtual time [GHR09a]. Here, the load of physical nodes is monitored and

overload or underload of physical nodes is reported to a coordinator. Based on these

load reports, the coordinator accelerates or slows down the execution speed of the

experiment.

During the evaluation of the presented concepts, we first showed the accuracy of our

network emulator. Here, we showed that the system is able to accurately emulate links

from slow dial-up links to future high speed connections. We also showed that the

system can faithfully emulate the delay of links. Second, we investigated the scalability

of our system by measuring the memory and communication overhead. The evaluation

shows that our system has an overhead per virtual node of about 300 kB, which allows

for running up to a thousand virtual nodes on a physical node equipped with 512 MB

memory. Finally, we evaluated the adaptive virtual time concept. Here, we showed

that our adaptation algorithm is able to counterbalance varying resource requirements

of a network experiment and can achieve a high resource utilization. Additionally, we

showed that our system scales with the number of physical nodes. Additional physical

resource can be used to reduce the runtime of an experiment or to increase the emulated

virtual network.
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The placement of the virtual nodes onto the physical nodes determines the perfor-

mance of network emulation. From the perspective of testbed users as well as testbed

operators, experiments with minimal runtime are desired. In order to minimize the

experiment runtime, we have developed the workflow depicted in Figure 5.1. In a first

step, NETplace (previously published in [GHR10, GHR12]) calculates an initial place-

ment that minimizes the experiment runtime. The input of NETplace consists of the

testbed specification (e.g. number of physical nodes, CPUs per physical node, and CPU

capacity), the network topology, and the expected average resource requirements of

the Software under Test (SuT). As a second step, we setup the network topology in the

network emulator and deploy the SuT. Finally, we execute the SuT on the virtual nodes

and evaluate the properties of the SuT.

In this basic workflow, resource requirements of the SuT deviating from the average may

Network 
Topology 

Software 
under Test 

Testbed 
Specification 

NETplace 
Initial Node 
Placement 

Results 

NETbalance 

Node and Time 
Virtualization 

avg. Data Rates 
avg. CPU Usage 

Reconfiguration 
Actions 

Experiment 
Execution 

Figure 5.1: Experiment workflow using initial placement and dynamic reconfiguration
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lead to temporary suboptimal placements which can lead to an extended experiment

runtime. NETbalance, previously published in [GHR11, GHR12], extends this workflow

to minimize the experiment runtime in scenarios with varying resource requirements

by adapting the placement of virtual nodes. At runtime, NETbalance detects changes in

the resource requirements of virtual nodes. These changes trigger the recalculation of

the virtual nodes’ placement. We transform the current placement into the optimized

placement by the migration of virtual nodes between virtual machines. For extended de-

tails on the implementation of NETbalance, we refer to the diploma thesis of Bartmann

[Bar11].

The remainder of this chapter is structured as follows. First, we introduce in Section 5.1

the configuration interface of the Network Emulation Testbed to specify network experi-

ments. Second, we present our testbed model that allows for calculating the runtime of

an experiment based on the placement of the virtual nodes in Section 5.2. This model

acts as a basis of our approaches NETplace and NETbalance to minimize the experiment

runtime, which are discussed in Section 5.3 and Section 5.4, respectively. A detailed

evaluation of the presented concepts is given in Section 5.5. The chapter is concluded

by a summary in Section 5.6.
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5.1 Experiment Specification

Before running an experiment in our Network Emulation Testbed (NET), the experiment

needs to be specified. In NET this task is supported by two independent approaches.

First, there is an object-oriented description language [Gra11] based on the scripting

language Ruby 25. Second, we have developed a graphical user interface (GUI) using

the Eclipse Rich Client Platform 26. In the following, we provide a brief outline of both

approaches.

5.1.1 Textual Experiment Specification

The base of our textual experiment specification is an object-oriented framework

[Gra11] reflecting the components of the network experiment. Active network ele-

ments, such as routers, access points, mobile devices, and hosts, that can execute the

Software under Test, are abstracted by the class VNode (virtual node). These virtual

nodes can be connected by passive network elements, such as an Ethernet switch or

radio in case of wireless communication. The passive network elements are model by

the class CollisionDomain. The properties of these connections, such as bandwidth and

delay, can be specified using the properties of the class NIC (network interface card).

In order to efficiently specify network experiments, our framework allows for an auto-

matic configuration of the network layer. Therefore, the framework assigns IP addresses

to each virtual node and calculates routing tables to provide communication between

each pair of nodes. Besides the automatic configuration, it is also possible to configure

the network layer manually.

In case of the wireless communication, the automatic configuration allows for deter-

mining the properties of the radio links between virtual nodes based on the location

of a virtual node. The properties are calculated using pregenerated radio propagation

maps [Ste08]. An extension of the framework developed by Schuh [Sch11b] allows for

mobility emulation. Here, the framework adapts the properties of the wireless links

according to the position of the mobile nodes during the experiment run.

Figure 5.2 shows an example of a network topology. The topology consists of four virtual

nodes: a host, a router, an access point, and a phone. The host and the router are

connected by an Ethernet switch. An access point is connected to the router via a direct

25Ruby scripting language: http://www.ruby-lang.org
26http://www.eclipse.org/home/categories/rcp.php
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phone host 
ICMP 
ECHO 

switch 

access 
point router 

Figure 5.2: Sample network topology

cable. A phone is connected to the access point via wireless communication. In this

simple experiment we initiate an ICMP ECHO request 27 to measure the delay between

the phone and the host. Algorithm 2 shows a script file using our framework to setup

and run this experiment.

27Internet Control Message Protocol (ICMP) RFC 792, 1981
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Algorithm 2: Sample script to setup a topology with a phone connected to an access
point, which is connected to a LAN by a router.

1 #!/usr/bin/ruby
/* load the testbed configuration */

2 require ’tvee’
3 NET.cleanup

/* setup a switched LAN with 1 host and 1 router */
4 switch=CollisionDomain.new

/* setup a host connected by 100Mbps and 1ms delay */
5 host = VNode.start(NET.tvee[0])
6 switch.attach_node(host.nic[0])
7 host.nic[0].configure(100000, 0, 1, 0)

/* setup a host connected by 1Gbps and 1ms delay */
8 router=VNode.start(NET.tvee[0], nil, 2)
9 switch.attach_node(router.nic[0])

10 router.nic[0].configure(1000000, 0, 1, 0)
/* Setup an access point with one phone */

11 air=CollisionDomain.new
/* setup the phone at position 1010/1030 */

12 phone = VNode.start(NET.tvee[0])
13 air.attach_node(phone.nic[0])
14 phone.nic[0].enable_manet_mode
15 phone.set_position(1010, 1030)

/* setup the access point at position 1000/1000 */
16 accesspoint=VNode.start(NET.tvee[0, nil, 2)
17 air.attach_node(accesspoint.nic[0])
18 accesspoint.nic[0].enable_manet_mode
19 accesspoint.set_position(1000, 1000)

/* connect the access point and the router with 100Mbps and 10ms delay */
20 TVEE.create_link (router.nic[1], accesspoint.nic[1], 100000, 100000, 10, 10)

/* assign IP addresses and routing entries and setup the wireless links */
21 NET.autoconf ({:wave5data_threshold=>50})

/* determine the delay of the path between the phone and the host */
22 phone.exec("ping -c 1 #{host.nic[0].ip}")
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5.1.2 Graphical Experiment Specification

Our graphical user interface NETcaptain [VGR+11] constitutes an alternative approach

to specify and execute an experiment. The screen shot of NETcaptain is shown in

Figure 5.3. The base of our GUI is the Eclipse Rich Client Platform 28. The integration into

the development platform Eclipse allows for directly evaluating distributed applications

using our network emulator.

NETcaptain supports an easy, GUI-based specification of the network topology includ-

ing the link characteristics as well as the assignment of the Software under Test. The

nodes can be connected by shared media, switched networks or point to point links. To

efficiently support large scenarios, importers for common network topology generators

(e.g., BRITE [MLMB01]) are integrated. The mobility and connectivity of wireless con-

nected mobile nodes is based on trace files and several radio propagation models (e.g.,

ray racing [Ste08]). The experiments can be live visualized using a flexible visualization

engine and controlled by a powerful scripting engine.

28http://www.eclipse.org/home/categories/rcp.php

Figure 5.3: NETcaptain
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5.2 Testbed Model

In the following, we present a detailed testbed model for emulation testbeds running at

virtual time. The main purpose of the model is to provide a mechanism to calculate the

runtime of an experiment based on the experiment specification. The model acts as

a foundation of our placement approaches NETplace and NETbalance (cf. Section 5.3

and Section 5.4, respectively).

A network experiment in NET consists of a set N of virtual nodes. Each virtual

node ni ∈N runs a SuT which consumes λi CPU cycles and transmits βij data to virtual

node n j per time unit. The experiment runs for θvirtual time units of the virtual time.

Here, we assume the knowledge of the average data rates produced by the SuT on

the links between the virtual nodes. The specification of a virtual node’s load and

the average data rates is provided by the experimenter or can be gathered during the

execution of a scenario. However, the latter approach can only be applied in case

the experiment is executed multiple times. Initial work on minimizing the required

user interaction to specify this information is provided in the diploma thesis by Zhou

[Zho11]. Moreover, the specification of the virtual links’ bandwidth provides a worst

case estimation of these data rates.

The experiment is executed on a testbed containing a set P of physical nodes. Each

physical node p ∈P is equipped with a setCp of CPUs and runs |Cp | virtual machines.

Each CPU can perform νCPU CPU cycles per real time unit. We identify each VM by

addressing the physical node p and the CPU c ∈ Cp that is assigned to the VM (p,c).

The set of VMs is denoted V. We define the placement of the virtual nodes onto the

virtual machines as a function φ :N 7→V. Based on this placement φ, the cost model µ,

shown in Equation 5.1, allows for the calculation of a physical node’s, say p, load.

µ : (φ, p) 7→ (Λhost-os
p ,Λvm

p,1, . . . ,Λvm
p,|Cp |) (5.1)

As discussed in Section 4.1.3, there exist approaches to enable communication between

virtual machines with and without involving the host operating system (host-os). The

presented cost model supports both approaches, however, we focus on host-based

network access in the remainder of this section. Due to the fixed assignment of CPUs

to the virtual machines and the host operating system, the cost model µ determines

the load of the host operating systemΛhost-os
p and the load of the virtual machinesΛvm

p,c

separately. The unit ofΛ is CPU cycles per time unit.
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Physical Node 

VM 

Virtual 
Node 

Virtual 
Node 

VM 

Virtual 
Node 

Phy. Node 

VM 

Virtual 
Node 

a 
b c 

Figure 5.4: Link types: a) intra-vm, b) inter-vm, and c) intra-pnode

In order to define µ, we distinguish three types of links between virtual nodes: a) intra-

vm, b) inter-vm and c) inter-pnode links (cf. Figure 5.4).

a) Intra-vm links are the most efficient way to connect two virtual nodes. Here,

both virtual nodes are running inside the same VM and, therefore, make use of

the same CPU. Attaching the virtual nodes’ NIC (network interface card) to a

software bridge, also running inside the VM, enables communication. Since the

communication involves only components inside the VM, only the send (VMtx)

and receive (VMrx) path of the VM’s protocol stack is loaded (cf. Table 5.1).

b) Inter-vm links allow for connecting two virtual nodes running in different VMs

on the same physical node. Here, communication requires to copy the packets

between the VMs and the host-os, which introduces some additional overhead.

Evaluations [GHR10] show that inter-vm links are about 10 times more expensive

than intra-vm links.

c) Inter-pnode links allow for connecting two virtual nodes running on different

physical nodes. Here, packets need to be copied to the host-os and passed down

the complete network stack including the device driver for the network hardware.

Evaluations [GHR10] show that these type of links introduce the highest overhead

and cause about two times more load than the inter-vm links and 20 times more

load than the intra-vm links.

Knežević et al. [KSK09] further divide the inter-vm links and investigate the overhead

when communicating between CPU cores located on the same or on different CPU sock-

ets. Their results confirm our assumption that this differentiation has only a marginal

effect on the performance and, therefore, can be neglected.

The last two columns in Table 5.1 show the load generated by the different link types on

a physical node (column pnode) and the load throughout the testbed (column Testbed).

The load of a physical node (column pnode) is composed by the load of the sending
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VMtx VMrx host-os pnode testbed

intra-vm + + − + +
inter-vm ++ ++ ++ ++ ++
inter-pnode ++ ++ +++ ++/++ +++

Table 5.1: Cost matrix κ, where the number of + denotes the amount of load generated
by a link to the system components (no load is indicated by −).

and receiving VM as well as two times the load of host-os. In case of inter-pnode links,

this load is distributed to two physical nodes. The column Testbed defines the generated

load throughout the testbed.

Based on the link type, the data rates βij, βji of a link between two virtual nodes i and j ,

and the cost matrix κ (cf. Table 5.1), Equation 5.2 defines the generated load of the

host-osΛhost-os
p .

Λhost-os
p = ∑

ni ,n j∈N
φ(ni )=(p,c)
φ(n j )=(p ′,c ′)

(
βij +βji

) ·

κintra-vm,host-os if p = p ′∧ c = c ′,

κinter-vm,host-os if p = p ′∧ c 6= c ′,

κinter-pnode,host-os if p 6= p ′
(5.2)

The load of a virtual machine Λvm
p,c is calculated using Equation 5.3, where ΛVMtx

p,c and

Λ
VMrx
p,c are defined analogous toΛhost-os

p . The virtual machine running the virtual node i

that transmits data is loaded by κVMtx and the virtual machine running the virtual node j

that receives data is loaded by κVMrx . The SuT additionally loads the virtual machines by

λi and λ j , respectively.

Λvm
p,c =ΛVMtx

p,c +ΛVMrx
p,c + ∑

ni∈N∧φ(ni )=(p,c)
λi (5.3)

We calculate the load of the maximum loaded physical CPU Λmax
p of physical node p

using Equation 5.4. Since the virtual CPUs of the virtual machines are pinned to physical

CPUs, a physical CPU (p,c) experiences at least the load Λvm
p,c of the virtual machine

that it is assigned to. Therefore, the maximum loaded CPU experiences at least the load

of the maximum loaded virtual machine. In addition, the load Λhost-os
p of the host-os

can be distributed arbitrarily to the CPUs. Therefore, each CPU experience at least the
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fraction 1
|Cp | of the overall load generated on the physical node p.

Λmax
p = max

(
max
c ′∈Cp

(
Λvm

p,c ′
)

,
1

|Cp |
·
(
Λhost-os

p + ∑
c ′∈Cp

Λvm
p,c ′

))
(5.4)

Knowing the load of the maximum loaded CPUs of each physical node, we can define

the experiment runtime using Equation 5.5. The maximum loaded CPU throughout the

testbed executes maxp∈P
(
Λmax

p

)
·θvirtual CPU cycles during the experiment running for

θvirtual time units (in virtual time). The number of cycles divided by the speed of the

CPUs νCPU results in the experiment runtime θreal (in real time).

θreal = max
p∈P

(
Λmax

p

)
· θvirtual

νCPU
(5.5)

The cost matrix κ highly depends on the used hardware and software base, such as the

speed of the physical memory, the CPU architecture, the VM implementation, and the

used operating system. Therefore, we propose the following approach to determine

the cost matrix κ for a testbed: First, a sample scenario is executed with a number of

arbitrary placements while we monitor the generated load on the VMs and the host-os,

and the data rates. Second, genetic programming is used to find values for the cost

matrix κ in Table 5.1 by minimizing the difference between the measured load and the

calculated load based on κ and the measured data rates. During the evaluation of the

testbed model in Section 5.5.1, we provide details on the used scenarios to determine

the cost matrix κ.
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5.3 Initial Node Placement

The placement of virtual nodes onto physical nodes is essential to achieve good em-

ulation performance. Different emulation architectures require different assignment

strategies. In this section, we first discuss related network emulators and their place-

ment strategies. Second, we provide a formal problem statement. Finally, we introduce

our placement approach NETplace [GHR10] to minimize the runtime of experiments

executed by our node and time virtualized network emulator. A detailed evaluation of

the initial node placement is presented in the Section 5.5.2.

5.3.1 Related Work

In real time testbeds [AC06, HRS+08] the capacities of network links in terms of available

bandwidth and the processing capabilities of the physical nodes are limited. In testbeds

based on real-world networks [CCR+03] the delay of the physical links between the

nodes constrains the assignment of virtual nodes as well. There exist several approaches

to solve this Constraint Satisfaction Problem (CSP) [And02].

Evolutionary algorithms are used in Emulab’s assign [RAL03, ROLV06] and the place-

ment strategy by Liu et al. [LLXC05]. While assign uses simulated annealing, the latter

makes use of a genetic algorithm to solve the CSP. In Virtual Grid [KLH+05] the CSP

is mapped to a multidimensional range search. The idea of wanassign [CBMP04] is to

model the testbed properties as an interference matrix and the requirements of links

between virtual nodes as a constraint matrix. The CSP is solved by searching for an

embedding of the constraint matrix to the interference matrix using a backtracking

approach with a heuristics to prune the search tree and caching of partial solutions. In

EMPOWER [ZN03] the capacity of each physical node represents the network load that

a physical node can handle. Assuming the knowledge of the generated data rates of the

virtual nodes, a Bin Packing algorithm based on a heuristic best-fit strategy is used to

map the virtual nodes onto the physical resources. McGeer et al. [MAS10] use graph

partitioning techniques to assign nodes to switches without exceeding the inter-switch

capacity. In contrast to our strategy, all these approaches do not distinguish the costs

of the different link types. In addition, every solution satisfying the constraints has the

same experiment runtime. Therefore, these approaches can hardly be used to minimize

the experiment runtime of a virtual time-based network emulator.

In parallel computing [HK00] as well as in network simulation [LC04] and network

emulation [YED+03] the execution time is minimized by modeling networks of com-
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a) minimum k-way edge-cut b) runtime optimal partitioning 

intra-vm links  
inter-vm links  

a) b) 

total #inter-vm links 6 7 

maximum  
loaded VM 

#inter-vm links 6 4 

#intra-vm links 3 2 

Figure 5.5: Network with 12 virtual nodes partitioned into 4 partitions (1 physical node
with 4 VMs). K-way edge-cut (a) minimizes the total number of inter-vm
links. However, the maximum loaded CPU (VM) determines the experiment
runtime. b) shows an optimal partitioning minimizing the load of the maxi-
mum loaded VM and, thus, the runtime of an experiment.

ponents or virtual nodes as graphs. The weight of an edge represents the amount of

traffic between the virtual nodes, whereby the weight of a vertex denotes the amount

of computation. Frameworks like metis [KK98a] can partition the graph in subgraphs

while minimizing the summed weight of the edges between partitions (edge-cut) and

at the same time balancing the summed vertex weights in each partition (minimized

k-way edge-cut). However, this approach has several problems which prohibit the min-

imization of the runtime of network emulation experiments: First, the cut edges are

not balanced between the partitions. Since inter-vm and inter-pnode links generate

large CPU load, the load is unequally distributed to the physical nodes (cf. Figure 5.5).

Second, this approach does not consider multiple VMs per physical node. Inter-vm and

inter-pnode links generate a different amount of costs and, therefore, minimizing only

the total edge-cut may result in suboptimal runtime. Third, multi-core architectures

are not considered. Depending on the link type (intra-vm, inter-vm and inter-pnode)

load is generated in different system components which run on different CPU cores.

Finally, load generated by links inside a partition (intra-vm links) is also not considered

by edge-cut-based approaches.
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5.3.2 Formal Problem Statement

Before presenting our placement approach, we first define the problem formally:

Placement Problem: Given a network experiment with virtual nodesN and an

emulation testbed consisting of physical nodes P that execute the virtual ma-

chinesV (for details see Section 5.2), we are searching for a function φ :N 7→V

that minimizes maxp∈P
(
Λmax

p

)
.

Several related placement problems [WLS+02, VYW+02, RAL03, LC03, CBMP04,

HRS+04, LLXC05, GRL05, AC06] are proofed to be NP-hard. As outlined during the

discussion of the related work, our placement problem has a different focus and, thus,

related works’ proofs of the NP-hardness cannot be directly applied to our problem.

Therefore, we give a proof of the NP-hardness of our placement problem by reducing

the NP-complete problem of Bin Packing [GJ79] to our Placement Problem.

Bin Packing is defined as follows: Given k ∈N+ bins with a capacity c ∈N+ and n ∈N+

objects with sizes a1, a2, . . . , an , where ai ≤ c. The question is ∃ f : 1..n ⇒ 1..k, so that

∀ j=1..k

(∑i=1..n
f (i )= j ai

)
≤ c.

To reduce Bin Packing to our placement problem we construct a network experiment

with n virtual nodes, where virtual node ni runs a SuT with a load of ai CPU cycles

per time unit. We create a fully connected network with βij = 1. The virtual network is

placed onto a testbed consisting of one physical node p equipped with k CPUs running

k virtual machines and using a cost matrix κ= 0. A solution of Bin Packing exists iff the

load of the most loaded VMΛmax
p is less or equal than c.
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5.3.3 Placement Algorithms

Next, we present our approach to calculate the placement φ that minimizes the experi-

ment runtime. As shown in the previous section, the placement problem is NP-hard

and, therefore, rather than calculating the optimal solutions we rely on heuristics to

quickly calculate a reasonable good solution. In the following, we first propose two

extensions to the original edge-cut algorithm to overcome its shortcomings. As an

alternative, we propose a simple greedy algorithm to calculate the placement. After the

placement calculation, a subsequent optimization phase further reduces the runtime of

the experiment.

Edge-Cut-based Approaches

In order to place virtual nodes using edge-cut-based approaches, the virtual network is

modeled as a weighted graph γ. The weight of a vertex vi , which represents a virtual

node, is defined as the load of the virtual nodes’ SuT λi and the weight of an edge eij is

defined as the bandwidth of the virtual link (βij+βji). The edge-cut algorithm [KK98a] is

used to partition the graph into n partitions, where n is the number of virtual machines

in the testbed. The nodes of each partition are placed onto the same virtual machine. In

the following, we extend this approach to minimize the runtime of network emulation

experiments.

Balanced Edge-Cut EB In order to consider intra-vm links, we add the cost of emulat-

ing the intra-vm links to the vertex weight. The vertex weight vi is, therefore, redefined

as the load of the virtual nodes’ SuT λi plus the sum of all virtual links of the virtual

node times the intra-vm costs (cf. Equation 5.6).

vi =λi +
∑

n j∈N

(
βij +βji

) ·κintra-vm,pnode (5.6)

Since the edge-cut algorithm balances the vertex weights between partitions, costs

generated by the emulation of intra-vm links do not cause load imbalances between

physical nodes. However, inter-vm and inter-pnode links can still cause load imbalances.

From now on, we assume the modified vertex weights.

Hierarchical Edge-Cut EH In order to support multiple VMs per physical node and

minimizing the inter-pnode links, algorithm EH partitions the graph γ two times. During
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the first run, we partition the graph γ into |P| partitions {γ1, . . . ,γ|P|}. Each partition

is assigned to a single physical node. For each physical node p, we again partition

the corresponding subgraph γp into |Cp | partitions {γp,1, . . . ,γp,|Cp |} . The partitions

γp,c , generated in this second run, are assigned to the virtual machines running on the

physical node p.

Greedy Approach

A simple greedy approach G constitutes an alternative to place virtual nodes. Here,

the assignment of virtual nodes to clusters (virtual nodes running inside the same VM)

consists of two phases. First, we assign one random initial virtual node to each cluster.

Second, we assign the remaining nodes randomly, one by one to the minimum loaded

cluster.

Selecting the minimum loaded CPU or virtual machine requires the calculation of

their load. For efficiency, we update the load on these components incrementally after

assigning a virtual node to a cluster. When updating the load of the components, we

need to handle the links between an already assigned virtual node i and an unassigned

virtual node j . The type of these links depends on the future assignment of j . Therefore,

we propose a heuristics to estimate the load generated by these links. Following an

optimistic approach, we consider only those links, where both virtual nodes are already

placed. This model reflects the actual load of the intermediate assignment (unassigned

nodes are temporarily removed).

To select the minimum loaded cluster, we first determine the physical node p where the

load of the maximum loaded CPU maxc∈Cp (Λp,c ) is minimal. From the VMs running

on this physical node, we select the VM (p,c) where the loadΛvm
p,c is minimal. Assigning

additional virtual nodes to this VM will unlikely increase the experiment time.

Due to the random selection of the virtual nodes, the greedy approach balances the load

between the physical nodes without minimizing the inter-vm and inter-pnode links.

Therefore, we propose to optimize the placement in a subsequent optimization phase.

This optimization is used for the greedy and the edge-cut-based approach.

Optimization of Node Placements

Due to the use of heuristics, the introduced clustering algorithms cannot guarantee

that the load of the maximum loaded CPU is minimized. Therefore, an optimization is
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performed after the cluster creation to reduce the load on the maximum loaded CPU,

which decreases the experiment runtime. The proposed optimization is performed after

the edge-cut based approaches as well as the greedy approaches.

Let {t1, . . . , t|V|} = a be a placement of virtual nodesN onto VMsV, where ti ∩ t j =; and⋃|V|
i=1 ti =N. We also call such a placement a state. In order to optimize a placement,

we use hill climbing to minimize a cost function ζ(a). We define ζ later in this section.

During each round, we generate neighboring states {a′
1, . . . , a′

e } by removing a virtual

node n form a cluster i and assigning n to a cluster j : {t1, . . . , ti \ {n}, . . . , t j ∪ {n}, . . . , t|V|}.

The neighboring states are rated by ζ(a). In case the costs of the best neighboring state

a′
b is lower than the costs of the current state ζ(a′

b) < ζ(a) the optimization continues

with the state a′
b.

Due to the large number of neighboring states O(|N| · |V|), rating these states is ex-

pensive. In order to reduce this effort, we propose to sequentially generate and rate

the neighboring states. Instead of generating all the states in each optimization round

we generate and evaluate the neighboring states iteratively a′
i ∈ {a′

1, . . . , a′
e }. In case

ζ(a′
i) < ζ(a) the optimization continues with a′

i, otherwise we check the next neighbor-

ing state of a. The optimization terminates if we cannot find any neighboring state with

lower costs or a time limit is reached. However, experiments have shown that the local

optimum was always reached after a short period of time.

The number of neighboring states can be further reduced by filtering the neighboring

states using a heuristics. We remove states from the set of neighboring states which

will unlikely have lower costs than the current state. In order to minimize the costs,

the number of inter-pnode and inter-vm links must be minimized. Assigning a virtual

node i to a cluster c, which runs no virtual node j connected to i (∀ j ∈ c :βij = 0∧βji =
0), will unlikely reduce the costs because all virtual links of the virtual node n will

become inter-vm or inter-pnode links. Therefore, we only consider neighboring states

{t1, . . . , ti \{n}, . . . , t j∪{n}, . . . , t|V|}, where ∃m ∈ t j :βnm > 0∨βmn > 0. However, evaluation

shows that this heuristics is too restrictive. Therefore, instead of removing all affected

states from the set of neighboring states, we include some randomly selected states to

the set of neighboring states. This approach allows for exploring more states before

reaching a local minimum.

Based on our primary optimization goal, an obvious cost function would be the ex-

periment runtime of an assignment. However, this cost function has a lot of plateaus,

because the runtime of an assignment is only decreased in the case where the load of

the maximum loaded CPU max(Λp,c ) is reduced. The hill climbing-based optimization
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cannot escape from such a plateau because the gradient is zero in all directions. There-

fore, we propose a two-part cost function (cf. Equation 5.7) to eliminate the plateaus.

The first part of the cost function is determined by the maximum loaded CPU max(Λp,c ).

The second part is calculated by summing up the squared load of all physical CPUs. We

are using the squared load of a CPU because, this metric penalizes assignments with

unequally loaded CPUs.

ζ=
(
ζ1

ζ2

)
=

(
maxp∈P∧c∈Cp (Λp,c )∑

p∈P∧c∈Cp (Λp,c )2

)
(5.7)

Equation 5.8 is used to compare a state a and a neighboring state a′. Here, we first

compare ζ1 because reducing the load of the maximum loaded CPU results directly

in a reduced experiment runtime. In case ζ1 is equal for both states (third line of

Equation 5.8), we compare ζ2.

ζ(a′) < ζ(a) ⇔


true if ζ1(a′) < ζ1(a),

false if ζ1(a′) > ζ1(a),

ζ2(a′) < ζ2(a) if ζ1(a′) = ζ1(a)

(5.8)
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5.4 Dynamic Reconfiguration

Varying CPU or network load of virtual nodes during an experiment run may result in a

temporal suboptimal placement and, thus, a longer experiment runtime. In this section,

we present NETbalance [GHR11] an extended approach to minimize the experiment

runtime in scenarios with varying resource requirements. At runtime, NETbalance

detects changes in the resource requirements of virtual nodes and recalculates an opti-

mized placement of the virtual nodes. We adopt the concept of live migration [CFH+05]

to transform the current placement into the optimized placement by migrating virtual

nodes between the virtual machines.

The remainder of this section is structured as follows: First, we present related work in

the field of migration and load balancing. Second, we extend our emulation architecture

to efficiently support the migration of virtual nodes. Third, we introduce a cost model

covering the migration costs. Finally, we discuss the concepts of placement adaptation.

A detailed evaluation of the reconfiguration concepts is presented in Section 5.5.3.

5.4.1 Related Work

Live migration of virtual machines [MKK08, Han09, ASR+10] as well as process migra-

tion [DO91, HH02, BD02, OSSN02] is commonly available in virtualization products

and operating systems, respectively. These migration techniques are used in a wide

area ranging from the field pervasive computing [KS02], where mobile applications are

migrated between users’ devices, to High Performance Computing (HPC) to build fault

tolerant systems [RHV06, RH11]. Up to now, there has been no network emulator that

uses the migration of virtual nodes to reduce the runtime of experiments. Therefore, we

investigate approaches from other areas using similar concepts for their applicability to

our problem.

In data centers live migration of virtual machines is used to avoid load imbalances

[AK10] and to eliminate load hot spots [KBKK06] by migrating virtual machines from

high loaded servers to servers with low load. These approaches consider load of dif-

ferent resources: CPU [KBKK06, WSVY07], memory [WTLS+09], network [SGRC10],

and storage [SKM08]. A multidimensional load, covering multiple resources, is of-

ten considered [SKM08, SGRC10]. These systems are using centralized components

[KBKK06, WTLS+09, AK10] or distributed approaches [SGRC10] to select the VM to be

migrated. However, in contrast to our system, VMs can be migrated without suspending

all other VMs in the data center.
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The migration of virtual nodes is similar to task migration in parallel computing, too.

Here, load balancing [SKS02, WLR02] is achieved by migrating tasks from nodes with

high load to nodes with low load. Willebeek-LeMair and Reeves [WLR02] investigate

several different algorithms (GM, SID, RID, HBM, DEM) for minimizing the computation

and communication effort of identifying the highly loaded nodes. In contrast to our

problem, local information can be used to decide which task to migrate, because the

placement of one task does not influence the execution costs of another task. Addi-

tionally, the migration of tasks can be performed independently without the need to

suspend all other task in the system.

In the area of process migration and virtual machine migration, there exist several

approaches for minimizing the migration time. Techniques such as pre-copy [TLC85,

CFH+05], demand-migration/post-copy [Zay87, HDG09], or combinations [LZW+08]

minimize the time between suspending and resuming a process. The idea is to transfer

the memory state before suspending or after resuming the process and, therefore, to

minimize the time a service (provided by the process) is unaccessible. However, applied

to network emulation, in both approaches the state is transfered in parallel to the

running experiment and, therefore, will increase the CPU usage which leads to a slower

experiment execution. Additionally, the total amount of transfered data is increased,

since the memory is transfered multiple times or memory pages need to be explicitly

requested from the source.

Other techniques such as zero elimination [SCP+02], compression [SCP+02] and du-

plicate elimination [SCP+02] can be used to reduce the size of the transfered state.

However, these approaches introduce additional CPU overhead. In the field of grid

computing application support is used to reduce the memory state. Instead of complete

operating systems or processes, here, only lightweight threads are migrated. However,

this approach limits the applicability of network emulation because of the required

adaptation of Software under Test to support migration.

In the field of network emulation, migration has been used to increase the scalability for

performance evaluation of wireless connected applications in heterogeneous testbeds

[HLW+11]. In such testbeds some testbed nodes are connected to an emulated RF envi-

ronment (Radio Frequency). Due to the limited capacity of these nodes, disconnected

virtual nodes (no radio connection in the virtual topology) are migrated to testbed nodes

without access to the emulated RF environment. However, since the virtual nodes are

disconnected from the virtual topology, here, the migration can run in parallel to the

running experiment.
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Related to the migration of virtual nodes is creating snapshots of virtual nodes [SPYH03].

Emulab has been extended to support preemptively swap out running experiments

[BRHL09]. Experiments can be resumed from these snapshots. In contrast to our system,

here, the focus is not on runtime minimization but on offline analysis and debugging of

the Software under Test.

5.4.2 Migration Support for Network Emulation

An integral part of NETbalance is the replacement of virtual nodes using live migration

[CFH+05]. To ensure that the replacement of virtual nodes does not influence the emula-

tion results, the migration of virtual nodes must be transparent to the SuT. Transparency

requires to perform changes of the placement during a suspended experiment because

otherwise the SuT could detect the migration of virtual nodes. However, this experiment

interruption contradicts with the goal of reducing the runtime of the network experi-

ments and, therefore, the amount of time when the experiment is suspended needs to

be minimized. In the following, we present an extension to our emulation architecture

(cf. Section 4.1), to efficiently and transparently migrate virtual nodes.

VMsrc 

VMdst 

transfer 
state 

suspend 
virtual time 

resume 
virtual time 

restore 
reconnect to virtual 

topology 

disconnect from 
virtual topology 

checkpoint 

Figure 5.6: Transparent migration of virtual nodes

The process to migrate virtual nodes transparently is visualized in Figure 5.6. In the

following, we explain each step in detail. In order to achieve transparency, we suspend

the experiment synchronously on all physical nodes which includes two phases. First,

by setting the time dilation factor to infinity, the virtual clocks are paused. This ensures

that NETshaper will not deliver any frames and that timed actions are not triggered, e.g.,

in the protocol stack. In the second phase, we exclude the processes of the virtual nodes

from process scheduling.

After the experiment is suspended, we change the placement of virtual nodes. For this,

we adopt the concepts of the ZAP system [OSSN02]. First, we create a snapshot of a

virtual node using checkpointing. Figure 5.7 shows the state of a virtual node for each
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Figure 5.7: State of a virtual node

protocol layer. The Application layer state contains the memory pages and open file

descriptors of the SuT, the Transport layer state contains the open sockets and the state

of the corresponding protocols, and the Network layer state contains the IP addresses

as well as the routing tables. We extended the state of the Data Link layer by the

state of NETshaper, including buffered messages. After disconnecting the virtual node

from the virtual topology, the virtual node is shut down. The state of the virtual node

is then transfered to VMdst and restored thereafter. RDMA29-based communication

[HGLP07, XOP11], where the data transfer between physical nodes is offloaded to the

network devices, can be used to speed up the state transfer. The network interfaces of

the restored virtual nodes are reattached to the virtual topology.

VM1 VM2 

Master 

Hard Links 

File Server 

Network 

3 2 1 

Figure 5.8: Server-based file system of virtual nodes

The SuT might have modified the file system or it might have open file descriptors.

Therefore, we need to transfer the virtual node’s file system to VMdst. Due to the typical

size of a file system, copying all files introduces a large overhead. To avoid this overhead,

29remote direct memory access
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we store the file system of a virtual node on a central server30 (cf. Figure 5.8). Typically,

most files of a virtual node (including the system files of the operating system and the

libraries of the SuT) are read-only and shared among the virtual nodes. Therefore, all

virtual nodes use a common Copy-on-Write [FG95] file system to share these files. To

minimize the overhead, we are using hard links to make shared files available to all

virtual nodes. This approach saves a lot of disk space on the file server and shared files

need to be cached only once on the file server and the virtual machines.

The caching effort to keep the entire file system in memory is almost independent of

the number of virtual nodes. Node-specific files are only cached by the VM running

the virtual node. Buffering of write operations and caching of read operations hide the

latencies of the network-based file I/O. Due to the concept of the file server, the effort

of synchronizing the virtual nodes’ file system is limited to writing back the modified

files to the file server. Using techniques such as NFS over RDMA [NCTP07], the CPUs of

the physical nodes are not involved in the file transfer. The files are written back while

the virtual nodes are suspended in parallel to the reconfiguration process. Since we are

assuming only small changes to the file system, implying a fast synchronization and a

negligible effect on the node’s state size, the synchronization time does not contribute

to migration time of a virtual node state. In the case of larger changes, the state of

the virtual node grows. In our evaluation, we show the impact of the state size on the

performance of NETbalance.

The migration is completed by resuming the execution of all virtual nodes and by

restoring the time dilation factor. From the SuT’s point of view the migration takes zero

time. Therefore, the migration is not detectable by the SuT.

5.4.3 Migration Cost Model

The time to migrate virtual nodes counteracts the possible experiment runtime reduc-

tion of a placement reconfiguration. In order to calculate if the increased emulation

speed outweighs the reconfiguration time Tr , we need a cost model for the reconfigura-

tion time. Since we are using suspend/resume migration [KS02], the reconfiguration

time Tr is defined as follows:

Tr = Tsuspend +Tmigrate +Tchange-topology +Tresume (5.9)

30The central file server could be implemented by a cluster of file servers to avoid performance bottlenecks
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Tsuspend and Tresume are small, because we only need to exclude or include the virtual

nodes from process scheduling. The time for changing the virtual topology is short,

too. The dominating factor of Tr is Tmigrate, because it grows linearly with the memory

pages allocated by the SuT. The actual values for Tsuspend, Tmigrate, Tchange-topology, and

Tresume can be measured based on a sample scenario (cf. evaluations in Section 5.5.3).

Additionally, better estimations can be learned while the experiment is running.

The migrations of virtual nodes running in the same Virtual Machine (VM) are per-

formed sequentially. However, since the migration of a virtual node generates only load

on VMsrc and VMdst, we can migrate virtual nodes running on different VMs in parallel.

The reconfiguration costs are calculated for each VM based on the migrations involving

the VM. The VM with the maximum value of Tr determines the overall reconfiguration

costs.

5.4.4 Reconfiguration Concepts

In this section, we discuss the calculation of a new placement of virtual nodes that

minimizes the remaining experiment runtime. After changing the placement, the

experiment runs with an increased execution speed. However, this speedup only leads

to a reduction in the runtime if it outweighs the time required for migrating the virtual

nodes. The time for which the experiment can run with the increased speed after a

reconfiguration determines the overall speedup. Our assumption is that we can predict

the future load accurately within a certain time period. We call this time period the

prediction window. Based on the prediction window and the migration costs, we can

determine if the migration of virtual nodes reduces the experiment runtime. In the

following, we discuss the prediction window and the algorithm for optimizing the

placement in detail.

The research on load prediction shows, that the load of a machine can be predicted

up to 30 s in advance [DO00]. As reported by Yang et al. [YFS03] a very simple load

predictor using the last measured value as the prediction gives similar results to more

sophisticated approaches. In order to minimize the computation effort, we apply this

simple prediction scheme. Due to the usage of virtual time, the changes of a virtual

node’s load experience time dilation. Therefore, the prediction window Tp is scaled

by the time dilation factor τ, and we can assume the load to be known for a real time

window of Tp ·τ.

The load of the virtual nodes is captured by a load monitor running inside the VMs and
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periodically sent to the coordinator with an interval equal to the prediction window.

Even for large scenarios with a thousand virtual nodes per physical node, the amount

of data is about 20 kB per physical node31. Significant changes in the load of virtual

nodes trigger the calculation of a new placement φ′. More precisely, if the actual TDF

of the experiment deviates from the TDF calculated on the basis of the load reports,

the coordinator can initiate an optimization of the placement. To calculate φ′, the

coordinator adapts the current placement φ to the changed load. Using the testbed cost

model (cf. Section 5.2) developed for NETplace [GHR10], we can calculate the time dila-

tion factor for the current placement τφ and the new placement τφ′ . For the transition

φ→φ′, we need to migrate virtual nodes. This migration requires reconfiguration costs

Tr , that can be calculated using our migration cost model introduced in the previous

section.

Since we can predict the load of the virtual nodes for the time window Tp , we limit the

optimization to the time To with To ¿ Tp . Note that similar to Tp , the optimization

time To is scaled by the TDF τ. After To ·τ, we abort the simulated annealing-based

algorithm [Bar11] used for minimizing the cost function χ:

χ= [
(Tp −To) ·τφ′ +Tr

]− (Tp −To) ·τφ (5.10)

χ represents the alteration of the experiment runtime in the prediction window Tp .

The runtime of the current placement φ is subtracted from the runtime of the new

placement φ′, taking into account the time Tr required for the reconfiguration and the

different time dilation factors. Since we need time To for calculatingφ′ and for executing

the transformation φ→φ′, φ′ takes effect over the time window Tp −To . If χ is negative,

then the transition to φ′ will result in a speedup of the experiment and NETbalance

configures the system accordingly. If, however, χ is positive, then φ′ performs worse

than φ and we keep the configuration φ. Thus, the experiment runtime cannot increase

through the optimization.

The value of To determines the performance of NETbalance. A larger To increases the

time for finding better placements. At the same time, however, the time Tp −To left

for actually running the better configuration φ′ gets smaller. In our evaluation, we

investigate the optimal value of To .

Small changes of a virtual node’s load may result in slightly different optimal placements

and, therefore, in a potential for oscillation. However, the gain of a new placement has

31Scenario with four network links per virtual node
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to exceed the reconfiguration costs; otherwise, it is discarded. This effectively serves as

a hysteresis, avoiding constant reconfiguration with minimal gain.

After calculating a new placement of virtual nodes, we need to enforce the changes to the

placement by migrating virtual nodes using the techniques discussed in Section 5.4.2.
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5.5 Evaluation

The evaluation of the performance of the experiment configuration is structured as

follows. First, we show the accuracy of the testbed model. Second, we discuss the effi-

ciency and effectiveness of the initial node placement (NETplace). Finally, we evaluate

the performance of the dynamic reconfiguration (NETbalance).

5.5.1 Testbed Model

As the basis for the evaluation of the testbed model we used the new NET cluster

(cf. Section 3.1). Each cluster node is equipped with two QuadCore Intel Xeon processors

running at 2.4 GHz and 16 GB of main memory (RAM). The nodes are interconnected

by a 1 Gbps for control network and 10 Gbps emulation network. Depending on the

number of VMs used for the experiment, we deactivate non assigned CPUs.

Physical Node 

VM0 

VM2 VM1 

VM3 S 

segment 1 

segment 2 

segment 5 

R 

Router 

Inter-VM Link 

Intra-VM Link 

Figure 5.9: Scenario to determine testbed’s cost matrix (Router chain with 6 segments,
each of length 5)

In order to evaluate the accuracy of the cost model, we determine the cost matrix κ using

the method introduced in Section 5.2. A router chain loaded by a single TCP connection

(cf. Figure 5.9) is used as the sample scenario. The chain is divided into several equal-

sized segments. All virtual nodes (routers) of the same segment are placed on the

same virtual machine. The segments are alternately placed on the virtual machines.

By varying the segment length and the number of segments, all ratios of intra-vm and

inter-vm links are possible. In order to get a setup with inter-pnode links, we replace the

inter-vm links with inter-pnode links, by inserting an additional virtual node between

each neighboring pair of segments. These additional nodes are placed onto a second

physical node.
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VMtx VMrx host-os pnode testbed

intra-vm 0.43 0.01 0.88 0.88
inter-vm 1.11 1.09 3.06 8.32 8.32
inter-pnode 2.01 1.67 5.67 7.68/7.31 15.09

Table 5.2: Cost matrix κ for an emulation testbed consisting of quad-core machines

(unit of κ is c ycles
by te )

Table 5.2 shows the cost matrix κ for the three types of links. The values indicate the

number of required CPU cycles to transmit one byte. Column VMtx shows the costs

of a VM running a virtual node that transmits data. Column VMrx shows the costs of

a VM running a virtual node that receives data. The costs of the host-os are shown

in Column host-os. Column pnode indicates the summed up costs per physical node

(costs for the VMs and the host-os). In case of an inter-pnode link, we provide the costs

for the physical node hosting the sender and the physical node hosting the receiver,

respectively. The last column (testbed) shows the sum of the costs generated by a link

throughout the testbed. The values show that inter-vm links generate almost 10 times

more costs than intra-vm links. Inter-pnode links generate two times more costs than

inter-vm and about 20 times more costs than intra-vm links. However, in case of inter-

pnode links, the costs are distributed to two physical nodes and, therefore, the physical

node costs (pnode) are slightly lower than the costs generated by inter-vm links.

Figure 5.10 shows the results for a router chain with 10 virtual nodes per segment. The

right side shows the measured resource requirements (CPU) for a number of segments

varying from 4 to 12. The upper part shows the results for inter-vm links between the

segments and the lower part shows the results for inter-pnode links. The left side shows

the resource requirements calculated by the testbed model on the basis of the measured

data rates of the emulation. We differentiate the resource requirements by the resources

running the host-os and the resources allocated by the VMs.

By comparing the calculated resource requirements with the actual resource require-

ments allocated during the experiment, we can rate the accuracy of the testbed model.

As can be seen from the figure, the calculated resource requirements match with the

measured resource requirements. In this scenario, we are able to calculate the load with

an average error of about 10%.

In order to ensure that the testbed model can calculate the resource requirements for

an arbitrary scenario, we evaluated the gathered cost matrix κ in a second application

scenario. The scenario, depicted in Figure 5.11, consists of 3,600 video cameras acting
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Figure 5.10: Model accuracy for router chain with 10 virtual nodes per segment
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Figure 5.11: Scenario to evaluate the testbed model accuracy

as sensor nodes arranged in a regular grid. The one node on the left acts as a sink. The

routes in the scenario are using geometric routing. The nodes are running a synthetic

application which monitors a moving virtual tornado. A full circle of the tornado takes

300 s. In case the tornado is in sight (distance between the sensor and the tornado is less

than 120 m), the sensor sends a 2 Mbps stream to the sink, otherwise a 16 kbps stream.

The stream consists of UDP packets with a size of 1,024 bytes. The nodes are distributed

to two physical nodes each running two virtual machines. We restricted the access of
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Figure 5.12: Comparison measured and calculated results for testbed model accuracy
evaluation

each physical node to only two CPUs of the available eight CPUs. Each virtual machine,

equipped with 1.5 GB memory, hosts 900 virtual nodes.

The measured data rate at the sink is illustrated in the upper part Figure 5.12a. The

upper part of Figure 5.12b shows for the same setup the calculated data rate based on

the scenario description and the testbed model (cf. Section 5.2). Here, we assume a

resource consumption of the SuT λ of 70 MCps (million cycles per second) with the

tornado in sight and 12 MCps without the tornado in sight, respectively. These values

are determined by measuring the resource consumption of the SuT using an experiment

with a single instance of the SuT. Comparing the measured data rate with the calculated

data rate shows that the emulation results are not biased. A resource congestion during

the emulation would result in message loss and, therefore, in a reduced data rate at the

sink.

In order to evaluate the accuracy of the testbed model, we measured the time dilation

factor32 τ and the load of the maximum loaded CPU during the experiment. The

measurements are visualized in Figure 5.12a. As can be seen in the figure, by adapting

32To ease readability, Figure 5.12 shows the time dilation factor τ as the quotient of the virtual time and
the real time using the linear definition of Gupta et al. [GYM+06] instead of our logarithmic definition
(cf. Section 4.4).
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the time dilation factor, the load of the maximum loaded CPU stays at about 70 %

which corresponds the used overload threshold (cf. Section 4.4). Only in case both

physical nodes experience about the same load (at time 150 s), the time dilation factor

slightly drops to about 65 % which is still at the upper quarter of the reasonable load

range (cf. Section 4.4). Additionally to the measurements, we calculated the load of the

CPUs and, based on their load, the time dilation factor τ using the testbed model. The

calculated data are shown in Figure 5.12b.

Comparing the calculated and measured results, we can conclude that our model

allows for an accurate load calculation of the system components based on the scenario

specification. The calculated resource requirements match with the measured results

with an average error of about 8.9 %. The comparison of the calculated experiment

runtime (testbed model) of 2,736 s with the actual runtime (emulation) of 2,853 s shows

an error of about 4.3%.

Gathering the cost model by an independent experiment ensures that the cost matrix κ

was not trained for the experiment. Therefore, we can conclude that the testbed model

is able to accurately calculate the resource requirements for an arbitrary experiment.

5.5.2 Initial Node Placement

In order to evaluate the experiment runtime of the placement approaches, we use the

following nine scenarios. (1) A Wlan model with 1,892 nodes randomly distributed over

the roads of the inner city of Stuttgart with wireless communication. Due to the road

network, the node density varies, resulting in nodes with a high and low number of

links. The links are established using a ray tracing-based radio model [Ste08]. (2,3,4)

Scenarios NetworkMap [MBB00], Internet33 and AT&T 34 are based on snapshots of

Internet topology gathered by RocketFuel [SMWA04] with 2,376, 2,113 and 753 routers,

respectively. (5) A Grid model with 1,600 sensor nodes arranged in a regular square grid.

Here, direct neighboring nodes can communicate. (6) A Ring scenario with 100 nodes

arranged in a ring. (7) A Campus model with a network of connected campus sites, which

is often used to evaluate scalability in the field of parallel simulation [KSU05, ELL09].

We use 20 campuses with a total of 5,480 nodes. (8,9) The final scenarios are generated

by the topology generator BRITE [MLMB01]. In the Waxman scenario 1,250 nodes are

33PoP-level ISP maps. Data file policy-dist.tar.gz available at http://www.cs.washington.edu/
research/networking/rocketfuel/, 2012

34ISP Maps. Data file rocketfuel_maps_cch.tar.gz available at http://www.cs.washington.edu/
research/networking/rocketfuel/, 2012
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Figure 5.13: Comparison of the experiment runtime using placements calculated by
NETplace and k-way edge-cut (metis)

randomly connected by a Waxman distribution. In TopoAS scenario 1,024 nodes are

equally distributed to 32 autonomous systems which are connected by a backbone

network. In all scenarios, a random link usage between 1 and 100 Mbps is assumed.

The testbeds used in the evaluation contain 2, 4, 8, 16, 32, 64, 128 and 256 CPUs dis-

tributed over machines with 1, 2, 4, 8 and 16 CPUs. In total, we are using 34 different

testbeds. Since we do not have access to such large testbeds, we used our cost model to

calculate the runtime of a placement. For each approach the placement calculation is

repeated 200 times. The placements are calculated on Intel Xeon 3 GHz processors.

Figure 5.13 shows the average experiment runtime of the placement strategies relative

to a placement calculated by minimized k-way edge-cut using the metis35 framework

[KK98a]. The figure shows the performance of the greedy approach with the subsequent

optimization phase(G+), the balanced edge-cut approach without the optimization

phase (EB) and with the optimization phase (EB+) and the hierarchical edge-cut ap-

proach with the optimization phase (EH+). Due to the NP-hardness of the placement

35As proposed by the authors of metis [KK98b], we use kmetis to partition a graph into more than eight
partitions. Otherwise we use pmetis.
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problem we cannot compute the optimum. To estimate the minimum value (MV), we

computed for each scenario the best placement out of all runs with all algorithms. Fi-

nally, for the purpose of comparison, we included the results for a random placement

followed by the placement optimization (R+).

Looking at the performance of G+, it turns out that this simple greedy approach can

outperform the reference algorithm in 8 of 9 scenarios. Only in the Grid scenario the

k-way edge-cut-based approach results in a better placement. However, the comparison

of the randomized approach R+ with the greedy approach G+ shows the effectiveness

of the placement optimization. After the placement optimization the greedy and the

randomized approach have the same experiment runtime. However in case of the greedy

approach less optimization steps are required and, therefore, the time to calculate the

placement is shorter.

The consideration of the load introduced by intra-vm links (EB) improves the placement

in all scenarios compared to the k-way edge-cut-based approach. However, in 6 out of

9 scenarios, EB results in a worse placement than the greedy approach (G+). The addi-

tional optimization phase (see EB+) improves the runtime of EB. In comparison with the

reference algorithm k-way edge-cut, EB+ reduces the experiment runtime between 20 %

and 50 %. The hierarchical approach EH+ can only slightly further reduce the experi-

ment runtime compared to EB+. As shown in the figure, the average experiment runtime

achieved with EH+ is almost as good as the minimal calculated runtime and compared

to the reference algorithm, we can reduce the runtime of network experiments by up to

60 %.

The time to run an experiment consists of the time to calculate the placement and the

experiment execution itself. Therefore, the benefit of a faster experiment experiment

execution is reduced by the time to calculate the placement using NETplace. Therefore,

we evaluate the required time to calculate the placement. In the following, we first

investigate the impact of the number of virtual nodes on the placement time. Second,

we evaluate the placement time for different testbed sizes. Finally, we show the required

placement time for the previously introduced nine scenarios.

In order to evaluate the scalability of the placement strategies, we compare the place-

ment runtime of the hierarchical approach EH+ in scenarios with different numbers

of virtual nodes. We are using the Waxman scenario, because we can easily generate

topologies with the same characteristics with respect to node density and link distribu-

tion and only vary the number of virtual nodes using the topology generator. For this

purpose, we use scenarios with 1,250, 2,500, 5,000, 10,000 and 20,000 nodes. The virtual
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networks are placed onto testbeds containing 8 to 256 CPUs with 8 CPUs per physical

node.

Figure 5.14 shows the time required to calculate a placement of the virtual nodes onto

the testbed. The graph shows that the placement time increases almost linearly with

the number of virtual nodes (about 70 seconds for 20,000 virtual nodes). The figure also

shows that the time increases sublinearly with the number of CPUs in the testbed. Apart

from the figure, there is only a small deviation between the placement runs, which is

introduced by the randomized optimization. Even if the placement time varies, the

generated placements result in almost the same experiment runtime.
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Instead of varying the number of virtual nodes, we are now varying the testbed size.

Here, testbeds with 1 to 32 physical nodes equipped with 1 to 16 CPUs are used. Again,

we make use of the generated scenario Waxman with 10,000 virtual nodes. Figure 5.15

shows the required placement time for the hierarchical approach EH+. As can be derived

from the figure, the placement time grows linearly with the number of physical nodes.

Comparing testbeds with 256 CPUs based on physical nodes with 8 and 16 CPUs per

physical node (arrow a in Figure 5.15) shows that increasing the number of CPUs per

physical node, while keeping the total number of CPUs the same, reduces the placement

time. The same is true for other testbed sizes.

Figure 5.16 shows the average and maximal placement time of the hierarchical approach

EH+ for different network topologies. Here, the topology is placed onto a testbed con-

sisting of 32 physical nodes each equipped with 16 CPUs. The figure shows, that the

average placement time is about half of the maximal placement time. Except for the

Wlan scenario, the average placement takes below 30 s and the maximum is below 1 min.

The high number of virtual links in the Wlan scenario results in a large number of neigh-

boring states in the optimization phase and, therefore, in an increased placement time.

However, even for a testbed consisting of 512 CPUs, the placement takes on average

about 1.5 min. In comparison with the typical experiment runtime, this overhead is

acceptable.
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Phase Action Time

suspend suspend all virtual nodes 6ms/vnode

migrate

snapshot virtual node’s state 4.6ms/MB
state transfer (same physical node) 13.1ms/MB
state transfer (different physical node) 15.0ms/MB
restore virtual node’s state 1.8ms/MB

change-topology reattach to virtual topology 200ms/vnode

resume resume all virtual nodes 3.5ms/vnode

Table 5.3: Costs for virtual node migration

5.5.3 Dynamic Reconfiguration

In order to evaluate NETbalance, we have extended our emulation testbed by the dy-

namic reconfiguration concepts. The basis of our implementation is the extension of

OpenVZ’s checkpoint/restore functionality [MKK08, Ope12] for capturing frames which

are queued in NETshaper during the migration of virtual nodes [Bar11]. Additionally, we

have extended NETshaper to capture statistics of average link data rates, and we have

implemented a load monitor for sending the data rates and the CPU usage of virtual

nodes to the coordinator. Finally, we have developed a coordinator to calculate the

optimized placement and to migrate the virtual nodes.

The evaluation of NETbalance is performed in three steps. First, we run a set of micro

benchmarks to identify the costs of migration. Second, we emulate a scenario with

three virtual nodes and show that the migration does not bias the results. Third, using

a synthetic evaluation based on the migration cost model and the testbed model, we

evaluate the performance of NETbalance. Here, we use the models of the testbed and the

migration to calculate the runtime of the experiments with and without NETbalance.

The results of the micro benchmarks are summarized in Table 5.3. Here, we measured

the costs for creating a snapshot of a virtual node, for transferring the snapshot and

for restoring it. Multiplying these costs with the memory footprint of a SuT gives the

migration time of a virtual node. Additionally, we measured the time for suspending

and resuming an experiment and the time required for modifying the emulated network

topology. Both linearly grow with the number of virtual nodes running in a VM. Finally,

we measured the size of the state of a virtual node with and without running a minimal

SuT which send ICMP ECHO requests36. Without the SuT, a snapshot of a virtual node

36Internet Control Message Protocol (ICMP) RFC 792, 1981

127



CHAPTER 5. EXPERIMENT CONFIGURATION

 0

 1

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30

d
a

ta
ra

te
 a

t 
si

n
k

 [
M

b
p

s]

virtual time [s]

with time freeze

 0

 1

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30  35  40

d
a

ta
ra

te
 a

t 
si

n
k

 [
M

b
p

s]

virtual time [s]

without time freeze

Figure 5.17: Datarate during migration (with and without time freeze)

consumes about 140 kB and with the SuT, the snapshot has a size of 240 kB. However, a

more complex SuT requires more memory and, therefore, we evaluate the effect of the

virtual node’s state size on the performance of NETbalance later in this section.

In order to show the emulation accuracy in presence of virtual node migrations, we

emulated a scenario with two nodes connected to a third node (sink). The two nodes

send a stream of UDP packets with 1 Mbps to the third node. At the beginning all nodes

are running inside VM1. During the experiment all nodes are migrated one by one to

VM2, and than one by one back to VM1.

Figure 5.17 shows the data rate at the sink during the experiment. The right part of

the figure shows migration of the virtual nodes without suspending virtual time. Each

migration causes a drop followed by a peak in the data rate at the sink. The left part of

the figure shows the same scenario, however, we suspended the virtual time during the

migration. From the point of the Software under Test, the migration takes zero time, and

the data rates observed by the sink are not influenced by the migration.

In the following, we show the potential of virtual node migration using four network

topologies: Internet, Grid, Campus, and Waxman. The topologies are equal to the

topologies used for the evaluation of NETplace (cf. Section 5.5.2). The evaluated scenario

consists of a wired video sensor network with periodic load changes. Each virtual

node runs a data source sending a constant data stream of 10 Mbps to a sink. During

each experiment, the node acting as the sink changes 15 times which results in large

changes of the data flows between the virtual nodes. The routes to reach the sinks are

precalculated. We use an initial placement optimized for the data flows to the first sink.

If not otherwise stated, the sink changes every 2 min. As a default, we use a testbed with
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8 physical nodes each with 8 CPUs and virtual nodes arranged in the Grid topology with

a SuT allocating 10 MB memory. The default prediction window Tp is set to 10 s, and

the default optimization time To is 1 s.

We first show the effectiveness of NETbalance to calculate an improved placement of

virtual nodes. Then, we evaluate the influence of the underlying network topology,

the optimization time To , the sink change interval Tc , the prediction window Tp , the

memory footprint of the SuT, the data rates of the SuT, and the testbed size on the exper-

iment runtime. Each setup is executed 30 times with and without migration of virtual

nodes. Our evaluation metric is the relative runtime which is defined as the experiment

runtime with NETbalance divided by the runtime without using NETbalance.

Figure 5.18 shows the required time dilation factor τ for running the scenario with the

Grid topology37. The gray area shows τ without NETbalance. Since the placement is not

adapted to the changed sink, it becomes suboptimal after the first sink change which

results in an increased τ. The black line in the figure shows τ in the same scenario using

NETbalance. As soon as the sink changes, τ rises. However, after the deployment of an

optimized placement, τ decrease again and goes back near to the original level. The

different values of τ are caused by the location of the sink in the network.

In Figure 5.19, we present the influence of the optimization time To . In contrast to

the other evaluations, we change the sink every 10 s which is equal to the prediction

window Tp . Even with a very short time of To = 0.125s (virtual time), NETbalance can

37To ease readability, Figure 5.18 shows the time dilation factor τ as the quotient of the virtual time and
the real time using the linear definition of Gupta et al. [GYM+06] instead of our logarithmic definition
(cf. Section 4.4).
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Figure 5.20: Migration benefit vs. sink change interval

reduce the experiment runtime by up to 48 %. Larger optimization times (To ≤ 1s) only

slightly decrease experiment runtime. The reason is that the increased execution speed

is almost compensated by the shorter time Tp −To left for running the experiment

with the improved placement. Further increasing To reduces the gain of NETbalance,

because the short time Tp −To enables only minimal improvements to the virtual node

placement. This graph can be generated online during the experiment run, enabling us

to learn the optimal value of To for a specific scenario.

Figure 5.20 shows the influence of the sink change interval Tc on the experiment runtime.
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Figure 5.21: Prediction window vs. network topology

Here, we used a prediction window equal to the sink change interval and an optimization

time of To = 1s. While increasing the sink change interval, the benefit of the migration

increases. The reason is again the increasing time to run the experiment with the

optimized placement.

Figure 5.21 shows the experiment runtime for prediction windows Tp between 1 s and

64 s for the different network topologies. For the Campus and the Grid scenario small

values of Tp are sufficient for a significant speedup. This mainly comes from the fact that

in these topologies small changes in the placement are sufficient to reduce the required τ

significantly. At the same time, these small changes introduce only small reconfiguration

costs which can be compensated even for short Tp . Regarding all evaluated topologies,

a prediction window of 8 s is big enough to improve the placement. A further increase of

the prediction time results only in a marginal runtime reduction. The achieved runtime

reduction is between 27 % and 55 %.

Since the memory footprint of the SuT mainly determines the reconfiguration costs,

we evaluated the required prediction window for different footprint sizes of the SuT.

Figure 5.22 shows that increasing the footprint sizes requires larger prediction windows

to outweigh the reconfiguration costs and, therefore, to reduce the experiment runtime.

As shown in the figure, even for larger SuT with 100 MB of used memory pages, a

prediction window of Tp ≥ 8s is sufficient for reducing the experiment runtime.

In contrast to the memory footprint, higher data rates between virtual nodes are ben-

eficial for NETbalance (cf. Figure 5.23). Higher data rates result in higher load of the
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physical nodes and, therefore, a higher TDF. The optimization time To and the pred-

ication time Tp both increase with the TDF. In contrast, the reconfiguration costs Tr

are unaffected. This results in more time for calculating the placement and, also, al-

lows for migrating more virtual nodes because relative to the prediction window the

reconfiguration time becomes smaller.

Finally, we evaluate the experiment runtime for different testbed sizes (cf. Figure 5.24).

Here, we vary the total number of CPUs from 4 to 512, distributed over physical nodes

with 1, 2, 4, and 8 CPUs. For testbeds with up to 64 CPUs, the size of the testbed has only
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Figure 5.24: Migration benefit vs. testbed size

marginal effects on the relative experiment runtime where a runtime reduction between

50 % and 70 % is achieved. In testbeds with more than 128 CPUs, only few virtual nodes

are executed in each VM. Due to this small number, the difference between the unopti-

mized and the optimized placement becomes small, which limits the performance of

NETbalance.

Further experiments with other network topologies conform the generality of the pre-

sented results. The selected experiments showed, the influence of the SuT’s memory

footprint, the data rate between virtual nodes, the network topology and the network

size. The general effect, that experiments with higher data rates and a smaller memory

footprint requires shorter prediction windows is confirmed by all experiments. However,

the absolute values vary for different topologies.
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5.6 Summary

In this chapter, we introduced our approaches to configure a network experiment.

The execution of an experiment is defined by the experiment workflow, with its three

building blocks: experiment and testbed specification, the initial node placement and

the dynamic reconfiguration.

We introduced a testbed model [GHR10] to determine the runtime of an experiment

based on the experiment and the testbed configuration. The experiment specification

includes the network topology and the SuT. The specification process is supported

by two independent software tools: a textual object-oriented scripting language and a

graphical user interface. In order to calibrate the testbed model to an actual testbed, we

provided an automatic approach based on the execution of a sample scenario.

Based on the testbed model, we introduced NETplace [GHR10] to calculate a placement

of virtual nodes onto the physical nodes that minimizes the runtime of the experiment.

In order to react on changing resource requirements during the experiment execution,

we extended our testbed by NETbalance [GHR11]. NETbalance adapts the placement of

virtual nodes by migrating virtual nodes during the experiment execution to reestablish

an optimal placement.

Our evaluations showed that our testbed model is able to accurately determine the

resource requirements and, thus, the runtime of an experiment based on the experiment

specification. The evaluation of multiple network topologies with different testbed

sizes showed, that NETplace is able to reduce the runtime of an experiment by up

to 60 %, in comparison to commonly used initial placement approaches based on

k-way edge-cut. With respect to the dynamic reconfiguration approach, we showed

that virtual nodes can be migrated during the running experiment without biasing the

emulation results. Finally, our evaluation demonstrated that NETbalance can reduce

the experiment runtime by up to 70 %.
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6.1 Conclusions

Software testing is an essential part of the software development. Besides the functional

testing, the performance evaluation is an important aspect of the software test. In case

of distributed systems, the performance is heavily influenced by the target environ-

ment and, therefore, needs to be considered. The methodology of network emulation

combines the benefits of network simulation and real work testbeds and constitutes a

commonly used approach for performance evaluation of distributed systems. Network

emulation enables repeatable network experiments to evaluate unmodified applica-

tions and communication protocols in controlled environments. In order to maximize

the utility of emulation testbeds, concepts to maximize the supported scenario sizes

and to minimize the runtime of the experiments are mandatory.

In this thesis, we focused on mechanisms to increase the scalability of network emula-

tion and on concepts to minimize the runtime of network experiments. Therefore, we

first introduced the fundamental concepts of scalable network emulation. Distributed

emulation tools such as NETshaper are used to reproduce the characteristics of arbitrary

networks in an emulation testbed. The number of instances of the Software under

Test (virtual nodes) is increased by partitioning the physical resources of the emulation

testbed using the concept of node virtualization. Evaluations showed that virtual nodes

based on virtual protocol stacks have an order of magnitude less overhead than virtual

machine-based virtual nodes. However, the resource requirements of an emulation

experiment running at real time can easily exceed the resources of the physical nodes

of a testbed. In order to avoid biased emulation results due to temporary or contin-
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uous resource overload, the concept of virtual time is applied. Here, the experiment

execution is slowed down by a factor. This slowdown results in a reduced resource

consumption of the experiment by the same factor. Current systems make use of virtual

machines to provide virtual time transparently to the Software under Test. Besides the

overhead of the virtual machine-based node virtualization, these network emulators

only support constant execution speed of the experiment. In case of varying resource

requirements during the experiment, resources are used suboptimal and, thus, the

experiment runtime is unnecessarily extended.

In order to minimize the runtime of network experiments, we developed an architecture

to efficiently support node and time virtualization. The basis of our architecture is the

combination of node virtualization based on virtual protocol stacks with transparent

time virtualization based on virtual machines. We execute one virtual machine per

CPU of the physical node and partition the resources of the VM using virtual protocol

stacks. While supporting testbeds based on multi-core CPUs, this approach minimizes

the communication and memory overhead. The presented architecture is able to make

use of virtualization-aware network adapters to improve the access to the emulation

network. The concept of trigger-based timers is used to improve the accuracy of the

emulation tool. In case of the emulation of high speed networks, our fine-grained

timer reduces bursty frame transmissions. In order to overcome the limitations of

the commonly used VLAN-based link multiplexing scheme, we have developed an

approach to increase the number of virtual links in the emulated network topology by

reusing VLANs for multiple virtual links. Our concept of adaptive virtual time allows for

minimizing the experiment runtime. Here, we monitor the load of the physical nodes.

Based on load reports a controller running on a central coordinator allows for adapting

the executing speed of the experiment. The executing speed is adapted to the value that

maximizes the resource utilization without overloading the resources.

Besides the efficiency of the emulation architecture, the placement of the virtual nodes

onto the physical nodes strongly influences the runtime of an experiment. In order to

minimize the runtime, we developed a cost model to determine the resource require-

ments of a network experiment based on the experiment specification. To support

the specification process, we have developed a textual and a graphical user interface.

Based on the testbed cost model and the experiment specification, our placement tool

NETplace is used to calculate an initial placement of the virtual nodes that minimizes

the runtime of the experiment. In order to react on resource changes during the experi-

ment, we have developed an extended placement approach called NETbalance. Here,

varying resource requirements of the Software under Test result in a recalculation of the

136



6.1. CONCLUSIONS

placement. In case the optimized placement results in a reduced experiment runtime,

the new placement is established by migrating virtual nodes. In order to efficiently

perform reconfigurations, we have extended our architecture by a network-based file

access for the virtual nodes.

Our evaluations showed, that our system has very low memory overhead of only about

300 kB. We showed that, using time virtualization, the performance of our emulation

system linearly scales with the execution speed of the experiment. This enables the

emulation of scenarios with thousands of virtual nodes per physical node. Additionally,

links between virtual nodes can have bandwidths, which are magnitudes larger than the

physical network bandwidth. The evaluation of the adaptive virtual time demonstrates,

that the available CPU and network capacity no longer limits the possible scenario sizes.

The scenario size is only limited by the available memory (RAM) and the permissible ex-

ecution time of an experiment. This is an important step forward in terms of emulation

scalability.

The evaluation demonstrated the accuracy of our cost model to determine the resource

requirements of an experiment. In terms of experiment runtime minimization, the

evaluation results show that our placement strategy NETplace can reduce experiment

runtime up to 60 % compared to current placement approaches. Evaluation of NETbal-

ance showed, that virtual nodes can be migrated during a running emulation experiment

without biasing the results. Moreover, the reconfiguration of the virtual nodes’ place-

ment allows for reducing the runtime of network experiments by up to 70 % for various

network topologies and load characteristics.

Overall, the concepts presented in this thesis constitute a major improvement of the net-

work emulation technology. The efficiency and scalability of our approaches allow for

large scale network experiments of unmodified applications and communication proto-

cols. The concepts NETplace and NETbalance enable scientists to run more experiments

in less time, achieving statistically more relevant results. Moreover with NETbalance

the effort of preparing experiments is drastically decreased as prior knowledge about

application behavior is no longer needed.
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CHAPTER 6. SUMMARY

6.2 Promising Research Directions

A recent trend in computer industry is shifting desktop applications running on a com-

mon operating system (e.g. Linux) to mobile devices. These devices run customized

software stacks (e.g., Android or iOS) including custom libraries and operating systems.

Similar trends are present in the area of cloud computing, where cloud operators pro-

vide the customers a specialized application interface to access the cloud resources (e.g.,

Google Cloud). These custom software stacks are typically based on virtual machines

which prohibits the execution of these applications on other operating systems. There-

fore, a direct evaluation of these applications in an network emulation system is not

possible. Generally, nested virtualization [BYDD+10] could be used to deploy these VMs

to the virtual machines of the network emulator. However, this approach results in a

high overhead. A promising research direction is to investigate emulation architectures

that efficiently support the evaluation of applications written for mobile operating

systems or cloud infrastructures. Initial work on an extension of our network emulator

to support the mobile operating system Android has been done in a supervised study

thesis by Schirmer [Sch10].

A common approach during the evaluation of distributed systems is to investigate

the behavior of an algorithm in presence of environment changes during the runtime

of the application. In case of a fault tolerant communication protocol, the reaction

to link failures, message loss, network congestion or increased network delay is of

interest. Such experiments can be easily conducted by the network emulation approach.

However, in complex scenarios such experiments have typically an initialization phase

to reach a specific application state of the Software under Test (SuT). After reaching

the state of interest, the emulated environment is altered and the behavior of the

SuT is monitored. Such experiments are typically repeated for a large set of different

environment changes. Eliminating the initialization phase would result in a significant

reduction of the experiment runtime. Initial work has been done by Burtsev et al.

[BRHL09], who have extended the Emulab testbed to create snapshots of a running

experiment. Setting up an experiment from such a snapshot can significantly speed up

experiment runtime of evaluations that require long initial setup phases.
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