
Statistical Models for Unsupervised,
Semi-supervised and Supervised Transliteration

Mining

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Hassan Sajjad
aus Lahore

Hauptberichter: Prof. Dr. Hinrich Schütze
Mitberichter 1: Prof. Dr. Alex Waibel
Mitberichter 2: PD Dr. Helmut Schmid
Mitberichter 3: Dr. Alexander Fraser

Tag der mündlichen Prüfung: 30. October 2012

Institut für maschinelle Sprachverarbeitung
der Universität Stuttgart

2012

Abstract

Transliteration is a process of converting a word written in one script to another
script in such a way that pronunciation remains almost the same. It is useful in
major applications of natural language processing such as machine translation
and cross language information retrieval.
A transliteration system is generally built using two types of manually cre-

ated resources – hand-crafted transliteration rules and a list of translitera-
tion pairs. It either uses the transliteration rules with an edit distance metric
to produce transliterations or automatically learns character alignments from
transliteration pairs to build a model. The system requires language pair de-
pendent resources for training which are not available for all language pairs.
Using transliteration mining, one can automatically extract a list of translit-

eration pairs from a parallel corpus. However, all the state-of-the-art translit-
eration mining techniques are supervised or semi-supervised and require lan-
guage dependent information for training. Until the work described here was
carried out, there was no fully unsupervised method in the literature.
In this thesis, I solve this issue by showing that transliteration mining can

be done in an unsupervised fashion. The proposed method does not require
any language pair dependent resources. I also incorporate transliteration into
machine translation and word alignment and show that it improves the per-
formance of the systems.

Following is the summary of the steps which I have gone through to accomplish
this task:
In the first part of my work, I have shown the applicability of transliteration

to machine translation. I have presented a novel machine translation model

2

that incorporates transliteration. During disambiguation, transliteration and
translation options compete with each other and the decoder has to decide on
the fly which translation or transliteration to choose. For closely related lan-
guage pairs with significant vocabulary overlap, I showed that transliteration
is effective for more than just translating out-of-vocabulary words.
I have proposed a heuristic-based transliteration mining system and showed

that transliteration mining can be done in an unsupervised fashion. It shows
competitive results when compared with the previous semi-supervised and su-
pervised systems. This system has a few limitations. I then presented a novel
model for unsupervised transliteration mining that consists of a translitera-
tion sub-model and a non-transliteration sub-model. The unsupervised system
performed better than most of the previous semi-supervised and supervised
systems. I extended the unsupervised model to use the available resources and
presented a semi-supervised and supervised version of it. I showed that if some
labeled data is available, it is better to build a semi-supervised system than a
supervised or unsupervised system.
I have incorporated unsupervised transliteration mining model to an unsu-

pervised word aligner. The new alignment system is also fully unsupervised and
showed a big improvement in both precision and recall when compared with
the baseline alignment. This showed that the proposed unsupervised method of
mining can be effectively used to improve the performance of natural language
processing applications.

3

Zusammenfassung

Der Begriff "Transliteration" bezeichnet die Konvertierung eines Wortes aus
einer Schrift in eine andere Schrift unter annähernder Beibehaltung der Aussprache.
Transliteration ist für viele Anwendungen in der maschinellen Sprachverar-
beitung nützlich, beispielsweise für die maschinelle Übersetzung oder für Cross-
Language Information Retrieval.
Es gibt zwei wichtige Methoden, um Transliterationssysteme zu erstellen.

Die erste Methode verwendet handgeschriebene Regeln und den String-Edit-
Distance-Algorithmus, um die beste Transliteration zu bestimmen. Das an-
dere Verfahren lernt ein statistisches Modell aus einer Liste von Transliter-
ationspaaren. Beide Methoden erfordern sprachabhängige Ressourcen (hier
Transliterationsregeln, dort Transliterationspaare), die manuell erstellt werden
müssen und nur für wenige Sprachpaare verfügbar sind.
Mit Hilfe von Transliteration Mining ist es möglich, eine Liste von Translit-

erationspaaren automatisch aus einem parallelen Korpus zu extrahieren. Die
besten bisherigen Transliteration-Mining-Methoden sind jedoch alle überwachte
oder halbüberwachte Verfahren, die eine kleine Liste von Transliterationspaaren
für das Training benötigen.
Die vorliegende Arbeit zeigt erstmals, dass Transliteration Mining auch mit

einem rein unüberwacht trainierten System erfolgen kann. Die vorgestellte
Methode erfordert keinerlei sprachabhängige Ressourcen. Ferner beschreibe
ich, wie Transliteration zur Verbesserung der maschinellen Übersetzung und
der Wortalignierung eingesetzt werden kann.
Im Folgenden fasse ich die Schritte zusammen, mit denen ich die Aufgabe

gelöst habe:

4

Im ersten Teil meiner Arbeit zeige ich, dass Transliteration zur Verbesserung
der maschinellen Übersetzung eingesetzt werden kann. Ich präsentiere ein neuar-
tiges Übersetzungsmodell, in das ein Transliterationsmodul integriert ist. Während
der maschinellen Übersetzung konkurrieren die Transliteration und die wort-
basierte Übersetzung von Wörtern miteinander, und der Übersetzer entschei-
det laufend zwischen der Verwendung der beiden Methoden. Ich zeige, dass
bei der Übersetzung zwischen verwandten Sprachen mit einem großen gemein-
samen Wortschatz die Transliteration nicht nur für die Übersetzung unbekan-
nter Wörter sondern auch bei anderen Wörtern nützlich ist.
Anschließend schlage ich ein heuristisches Transliteration-Mining-System

vor und zeige damit, dass unüberwachtes Transliteration Mining möglich ist.
Die Genauigkeit des Systems ist mit derjenigen von bisherigen halbüberwachten
und überwachten Systemen vergleichbar. Das System hat jedoch einige Ein-
schränkungen. Daher präsentiere ich eine weitere Methode für unüberwachtes
Transliteration Mining, die zwei statistische Modelle kombiniert, eines für
Transliterationen und eines für Nichttransliterationen. Dieses unüberwachte
System ist genauer als die meisten bisherigen überwachten und halbüberwachten
Systeme. Ich erweitere das unüberwachte System zu einem halbüberwachten
System, um auch gegebenenfalls vorhandene manuell erstellte Transliterationspaare
beim Training nutzen zu können. Ich stelle auch eine rein überwacht trainierte
Variante meines Ansatzes vor. Wenn einige manuell annotierte Trainingsdaten
zur Verfügung stehen, liefert das halbüberwachte System bessere Ergebnisse
als das unüberwachte und das voll überwachte System.
Schließlich zeige ich, wie unüberwachtes Transliteration Mining die unüberwachte

Wortalignierung verbessern kann. Das neue Wortalignierungssystem ist eben-
falls unüberwacht und wesentlich genauer als das Ausgangssystem, sowohl
bzgl. Precision als auch bzgl. Recall. Damit wird gezeigt, dass die vorgestellte
Transliteration-Mining-Methode die Leistung von Sprachverarbeitungssyste-
men effektiv verbessern kann.

5

Contents

1. Introduction 14
1.1. Transliteration . 14
1.2. Transliteration Mining . 16
1.3. Contributions . 18

1.3.1. Theoretical Contributions 18
1.3.2. Resource Contributions 19

1.4. Outline of the Dissertation . 20

2. Background 22
2.1. Introduction . 22
2.2. Transliteration Foundation . 23

2.2.1. Alignment . 24
2.2.2. Joint Probability Model 25
2.2.3. Conditional Probability Model 25
2.2.4. Alignment Methods . 26

2.3. Previous Work on Transliteration 33
2.3.1. Extraction of Multigrams 33
2.3.2. Transliteration Methods 36

2.4. Previous Work on Transliteration Mining 39
2.4.1. Generative Approaches 40
2.4.2. Discriminative Approaches 46

2.5. Summary . 48

3. Machine Translation Through Transliteration 51
3.1. Introduction . 51
3.2. Previous Work . 52
3.3. Hindi and Urdu Language . 53
3.4. Our Approach . 56

3.4.1. Model-1 : Conditional Probability Model 57
3.4.2. Model-2 : Joint Probability Model 60
3.4.3. Search . 61

6

Contents

3.5. Evaluation . 62
3.5.1. Training . 62
3.5.2. Experimental Setup . 68

3.6. Error Analysis . 71
3.6.1. Heuristic-1 . 71
3.6.2. Heuristic-2 . 72
3.6.3. Heuristic-3 . 73

3.7. Final Results . 74
3.8. Sample Output . 76
3.9. Summary . 78
3.10. Research Contribution . 78

4. Algorithm for Unsupervised Transliteration Mining 79
4.1. Introduction . 79
4.2. Models . 80

4.2.1. Joint Sequence Model Using g2p 80
4.2.2. Statistical Machine Transliteration System 81

4.3. Extraction of Transliteration Pairs 82
4.3.1. Algorithm: Mining of Transliteration Pairs 84
4.3.2. Algorithm: Selection of Stopping Criterion 85

4.4. Transliteration Mining Using the NEWS10 Dataset 88
4.4.1. Training . 89
4.4.2. Results . 89

4.5. Transliteration Mining Using Parallel Corpora 91
4.5.1. Training . 92
4.5.2. Motivation for Median9 Heuristic 93
4.5.3. Motivation for Splitting Method 93
4.5.4. Results . 96

4.6. Summary . 98
4.7. Research Contribution . 99

5. Transliteration Mining Model 100
5.1. Introduction . 100
5.2. Unsupervised Transliteration Mining Model 102

5.2.1. Model Estimation . 104
5.2.2. Implementation Details 107

5.3. Semi-supervised Transliteration Mining Model 109
5.3.1. Model . 110
5.3.2. Model Estimation . 111

7

Contents

5.3.3. Implementation Details 111
5.4. Supervised Transliteration Mining Model 112

5.4.1. Model Estimation . 113
5.4.2. Implementation Details 114

5.5. Higher Order Transliteration Mining Models 115
5.6. Smoothing to Deal with Unknowns in Testing 116
5.7. Transliteration Mining Using the NEWS10 Dataset 119

5.7.1. Training Data . 119
5.7.2. Experimental Setup . 123
5.7.3. Unsupervised Model-based System vs. Heuristic-based

System . 125
5.7.4. Comparison of My Unigram Transliteration Mining Sys-

tems . 126
5.7.5. Comparison of My Higher Order Transliteration Mining

Systems . 129
5.7.6. Comparison with the State-Of-The-Art Systems 133
5.7.7. Error Analysis . 135
5.7.8. Additional Experiments 137

5.8. Transliteration Mining Using Parallel Corpora 145
5.8.1. Training . 145
5.8.2. Results . 146

5.9. Summary . 150
5.10. Research Contribution . 151

6. Transliteration Mining to Improve Word Alignment 152
6.1. Introduction . 152
6.2. Transliteration Module . 153
6.3. Modified EM Training of the Word Alignment Models 155
6.4. Evaluation . 156

6.4.1. Training Data . 156
6.4.2. Experiments . 157
6.4.3. Additional Experiments 159

6.5. Summary . 160
6.6. Research Contribution . 161

7. Contributions and Future Work 162
7.1. Conclusion . 162
7.2. Contributions . 162

7.2.1. Theoretical Contributions 162

8

Contents

7.2.2. Resource Contributions 163
7.3. Shortcomings . 164
7.4. Future Work . 166

7.4.1. Training using Noisier Data 166
7.4.2. Comparable Corpora . 167
7.4.3. Various Non-transliteration Models 167
7.4.4. Back Transliteration . 167
7.4.5. Transliteration Mining involving Non-alphabetic Lan-

guages . 168
7.4.6. Bayesian Approach . 169
7.4.7. Incorporate Unsupervised Mining Model to NLP Appli-

cations . 169

Bibliography 171

A. Transliteration Mining Software 180
A.1. Modules . 180

A.1.1. Character Aligner . 180
A.1.2. Unsupervised Transliteration Miner 181
A.1.3. Semi-supervised Transliteration Miner 181
A.1.4. Supervised Transliteration Miner 181

A.2. Instructions to Run . 182

B. Gold Standard for English/Hindi 185
B.1. Data Format . 185

B.1.1. Transliteration . 186
B.1.2. Close Transliteration . 186
B.1.3. Non-Transliteration . 187

C. Gold Standard for English/Arabic 188
C.1. Data Format . 188

C.1.1. Transliteration . 189
C.1.2. Close Transliteration . 189
C.1.3. Affix Pair . 190
C.1.4. Non-Transliteration . 190

9

List of Tables

2.1. Example of one-to-one and many-to-many character alignments 24
2.2. Ambiguous Hindi characters . 34

3.1. Hindi words that can be transliterated differently in different
contexts . 56

3.2. Hindi words that can be translated or transliterated in different
Contexts . 56

3.3. Hindi/Urdu handcrafted equivalence rules 64
3.4. Alignment (a) before (b) after merge 66
3.5. Comparing Model-1 and Model-2 with phrase-based systems . . 70
3.6. Applying heuristics 1 and 2 and their combinations to Model-1

and Model-2 . 74
3.7. Summary of results of applying Heuristic 1 and Heuristic 2 and

their combinations to Model-1 and Model-2 75
3.8. Summary of results of applying Heuristic 3 and its combinations

with other heuristics to Model-2 75

4.1. Result of my unsupervised transliteration mining system on the
NEWS10 dataset . 90

4.2. Summary of results on the NEWS10 dataset 90
4.3. Transliteration mining results on different values of stopping

iteration using the English/Hindi parallel corpus 97
4.4. Transliteration mining results on different values of stopping

iteration using the English/Arabic parallel corpus 97
4.5. Transliteration mining results using the parallel corpus of En-

glish/Hindi and English/Arabic 98

5.1. One possible alignment of a word pair (cef, ACDF) 103
5.2. Character alignment of a word pair (abc ACD) 108
5.3. Bigram and trigram multigram context 116
5.4. Statistics of word-aligned and cross-product list calculated from

the NEWS10 dataset, before mining 124

10

List of Tables

5.5. Comparison of my unsupervised heuristic-based system and my
unsupervised model-based system 126

5.6. Results of my unigram unsupervised, semi-supervised and su-
pervised transliteration mining systems 128

5.7. Results of my bigram unsupervised, semi-supervised and super-
vised transliteration mining systems 130

5.8. Results of my trigram unsupervised, semi-supervised and super-
vised transliteration mining systems 131

5.9. Results of my systems on the English/Hindi NEWS10 dataset . 132
5.10. Results of my systems on the English/Arabic NEWS10 dataset . 132
5.11. Results of my systems on the English/Tamil NEWS10 dataset . 132
5.12. Results of my systems on the English/Russian NEWS10 dataset 133
5.13. Comparison of my system with the state-of-the-art semi-supervised

and supervised systems . 134
5.14. Word pairs with pronunciation differences 135
5.15. Examples of word pairs which are wrongly annotated as translit-

erations in the gold standard . 136
5.16. Cognates from the English/Russian corpus extracted by my sys-

tems as transliteration pairs . 137
5.17. Results of the unigram unsupervised transliteration mining sys-

tem on the posterior probability of non-transliteration less than
θ . 139

5.18. Results of the semi-supervised mining system trained on the
English/Hindi and English/Russian data using different values
of ηs . 141

5.19. Results of the unigram semi-supervised mining system using dif-
ferent threshold θ on the posterior probability of non-transliteration142

5.20. Results of the unigram supervised English/Hindi and English/Arabic
mining system using different threshold θ on the posterior of
non-transliteration . 143

5.21. Result of the unigram supervised English/Tamil and English/Russian
mining system using different threshold θ on the posterior of
non-transliteration . 144

5.22. Result of the English/Russian semi-supervised transliteration
mining system using filtered seed data 144

5.23. Statistics of the word-aligned list and the cross-product list of
the English/Hindi and English/Arabic parallel corpus 146

11

List of Tables

5.24. Comparison of the heuristic-based system and the unsupervised
unigram model-based system using the English/Hindi and En-
glish/Arabic parallel corpus . 147

5.25. Results of the unsupervised, semi-supervised and supervised
mining systems trained on the word-aligned list and tested on
the cross-product list of the English/Hindi parallel corpus. The
bolded values show the best precision, recall and F-measure for
the unigram, bigram and trigram systems 148

5.26. Results of the unsupervised, semi-supervised and supervised
mining systems trained on the word-aligned list and tested on
the cross-product list of the English/Arabic parallel corpus. The
bolded values show the best precision, recall and F-measure for
the unigram, bigram and trigram systems 148

5.27. Examples of the English/Hindi close transliterations mined by
the unigram unsupervised system and correctly classified as non-
transliterations by the unigram semi-supervised system 149

5.28. Examples of the English/Hindi close transliterations mined by
the unigram semi-supervised system and correctly classified as
non-transliterations by the bigram semi-supervised system . . . 150

6.1. Word alignment results on the English/Hindi and English/Arabic
data . 158

6.2. Lambda optimization on the gold standard development set of
English/Hindi . 159

6.3. Results of my word alignment system built using two different
training data for the transliteration module 160

A.1. Transliteration mining software user manual 184

B.1. English/Hindi transliteration examples 186
B.2. English/Hindi close transliteration examples 187
B.3. English/Hindi non-transliteration examples 187

C.1. English/Arabic transliteration examples 189
C.2. English/Arabic close transliteration examples 190
C.3. English/Arabic affix pairs . 190
C.4. English/Arabic non-transliteration examples 191

12

List of Figures

1.1. Examples of transliteration . 15

2.1. PHMM for transliteration . 30
2.2. Motivation of graph reinforcement technique 42
2.3. Finite State Transducer . 46

3.1. Transliteration as post-processing step in machine translation . 54
3.2. Transliteration in decoding . 54
3.3. Complete procedure of the transliteration system 66
3.4. An example of a map file used in the DISAMBIG module of

Figure 3.3 . 67
3.5. Different transliterations in different contexts 77
3.6. Translation or transliteration 77

4.1. Example of an English/Hindi word-aligned list 83
4.2. Procedure of Algorithm 1 . 84
4.3. Procedure of Algorithm 2 . 88
4.4. Cognates from the English/Russian corpus 91
4.5. A working example of splitting method 95
4.6. Statistics of held-out prediction of English/Hindi data using

modified Algorithm 2 with random division of the word-aligned
list . 95

4.7. Statistics of held-out prediction of English/Hindi data using Al-
gorithm 2 . 96

5.1. Semi-supervised training . 112
5.2. Example of English/Hindi NEWS10 training data 120
5.3. A few examples of English/Hindi NEWS10 reference data 121
5.4. A few examples of English/Hindi NEWS10 seed data 122

13

1. Introduction

1.1. Transliteration
Languages often borrow words from other languages. One borrowing process
is the conversion from one script to another script in such a way that pronun-
ciation remains almost the same. This process is called transliteration. Words
which are written differently and pronounced in the same way are translitera-
tions of each other. Table 1.1 shows a few examples of English, Hindi and Urdu
words. The English, Hindi and Urdu words are written in Latin, Devanagari
and Arabic scripts respectively. However, they are pronounced in the same way
and are transliterations of each other.
Transliteration is important to improve the quality of multilingual NLP tasks

such as cross language information retrieval (CLIR) and machine translation.
For instance, machine translation systems face the problem of translating out
of vocabulary words (OOVs). OOVs are the words which do not occur in the
training data. State-of-the-art systems fail to produce a translation of these
words. The most trivial way to handle OOVs is to automatically transliterate
unknown source words into target language script. This improves the quality
of the machine translation output and makes it more readable and under-
standable (Durrani et al., 2010). Similarly cross language information retrieval
systems are dependent on the translation lexicon extracted from a parallel
corpus. Their performance drops when the query contains OOVs that are un-
known to the lexicon. OOVs are often proper nouns and technical terms. They
are crucial for the successful retrieval of an CLIR system as they are the most
distinct terms in the query. Saravanan et al. (2010) addressed the problem of

14

1. Introduction

Figure 1.1.: Examples of transliteration

15

1. Introduction

OOVs in CLIR by transliteration mining and transliteration generation and
showed that transliteration is effective in improving the retrieval results.
There are various ways to build a transliteration system for a language pair.

It requires the mapping of source language characters to target language char-
acters in order to learn the relationship between the language pair. I later call
these character mappings as multigrams. For a rule-based system, the multi-
grams are manually defined, requiring knowledge of both languages. Rule-based
systems use multigrams together with the edit distance metric to generate
transliterations of the source words. A model-based system learns multigrams
automatically from a list of transliteration pairs. It uses the multigrams and
their probabilities calculated from the training data to generate translitera-
tions. Both of these methods require language dependent resources to build
a system. Such resources are not readily available for all language pairs and
creating them is expensive in terms of time and money.

1.2. Transliteration Mining
Given a list of word pairs containing transliterations and non-transliterations,
the task of transliteration mining is to extract only transliteration pairs from
the list. Kumaran et al. (2010) presented a shared task on transliteration min-
ing which aims at automatically extracting a list of transliteration pairs from
parallel corpora which can eventually be used to build a high quality translit-
eration system. This task is called NEWS10. It will be used throughout the
thesis.
Transliteration mining can be done using rule-based methods, semi-supervised

methods or supervised methods. Rule-based methods require transliteration
rules/multigrams and an edit distance metric that assigns a score to every
word pair in the list. Only pairs having a score below a certain threshold are
considered as transliteration pairs.
Supervised transliteration mining systems require a list of transliteration

pairs for training. They automatically learns multigrams from the training

16

1. Introduction

data. The trained model is then applied to the word pairs list. The word
pairs having a probability greater than a certain threshold are classified as
transliteration pairs.
Similarly to supervised approaches, the semi-supervised system also requires

a list of transliteration pairs. However, here the list is generally small. So
the system does not fully rely on the training data to mine transliteration
pairs. The system uses training data for initial training and scores every word
pair from the list of word pairs (similar to the supervised system). Then it
extracts a few word pairs from the list of word pairs which are most likely
to be transliterations and adds them to the training data. It again builds a
transliteration mining system on the new training data and the procedure is
iterated, adding few more transliteration pairs to the training data. The system
stops when there are no more transliteration pairs in the list of word pairs.
All the above described transliteration mining methods are dependent on re-

sources. Rule-based systems requires hand-crafted transliteration rules (multi-
grams). These rules are not available for all language pairs and building these
rules is a tedious task. Supervised and semi-supervised transliteration mining
systems require a list of transliteration pairs which is also not available for all
language pairs. The NEWS10 shared task provides a small list of translitera-
tion pairs for initial training. So, all systems that participated at the shared
task are semi-supervised or supervised (Kumaran et al., 2010). To the best of
my knowledge, prior to my work, there was no fully unsupervised translitera-
tion mining system that uses only the list of word pairs as training data and
does not require any pre-existing resources.
In this thesis, I present the first fully unsupervised transliteration mining

system. The system learns multigrams from the list of word pairs and requires
neither hand-crafted transliteration rules nor a list of transliteration pairs. I
evaluate it on parallel corpora and show that it has competitive results to
semi-supervised and supervised systems. Later, I present a novel model for
unsupervised transliteration mining. This system is more efficient than my
previous system and outperforms most of the semi-supervised and supervised
systems which participated in NEWS10.

17

1. Introduction

1.3. Contributions
In this section, I present contributions that I will make in my dissertation. I
divide them into theoretical and resource contributions. They are described as
follows:

1.3.1. Theoretical Contributions

Following are my theoretical contributions:

• Transliteration in machine translation: I present a novel model
which combines translation and transliteration models into a single MT
model. It considers both translation and transliteration when translating
a particular source word given the context. For closely related languages
with significant vocabulary overlap, I show that transliteration is helpful
for more than just translating out-of-vocabulary words and named en-
tities. I use it as a tool for disambiguation of homonyms which can be
translated or transliterated or transliterated differently based on different
contexts.

• The first fully unsupervised algorithm for transliteration min-
ing: I present the first unsupervised algorithm for transliteration mining.
It is an iterative algorithm that trains on unlabeled data. In every iter-
ation, it filters out a few word pairs from the unlabeled data which are
least likely to be transliterations and retrains on the modified unlabeled
data. The process is iterated until the unlabeled data contains all translit-
eration pairs. The unsupervised mining system shows competitive results
with the state-of-the-art semi-supervised and supervised transliteration
mining systems.

• A novel model for unsupervised transliteration mining: I pro-
pose a novel model to automatically extract transliteration pairs from
parallel corpora. My model is very efficient and language pair indepen-
dent. It models unlabeled data which consists of transliterations and

18

1. Introduction

non-transliterations. I define it as an interpolation of a transliteration
sub-model and a non-transliteration sub-model. The results show that it
is better than most of the semi-supervised and supervised transliteration
mining systems.

A framework for transliteration mining: I show that the model for
unsupervised transliteration mining can easily be extended and general-
ized. It can be used as a common framework for both semi-supervised
and supervised learning, when labeled data is available. This is the first
framework that uses only one model for all three kinds of learning.

• An application to word alignment: I incorporate my unsupervised
transliteration mining system into an unsupervised word alignment sys-
tem. The resulting word alignment system is also fully unsupervised. It
shows a large gain in both precision and recall over the baseline alignment
system when compared with gold standard alignments.

1.3.2. Resource Contributions

The following are my resource contributions:

• Gold standard for transliteration mining: I evaluate my translit-
eration mining systems using English/Hindi and English/Arabic parallel
corpora. This is the first evaluation of transliteration mining on this
dataset. I built a gold standard dataset by annotating a subset of the
training data. The annotation task consists of disambiguating word pairs
as either transliterations or non-transliterations. This gold standard is
freely available to the research community. It will be useful for future
system’s evaluations.

• A transliteration mining tool: I implement the transliteration mining
system. The system has four modules - character aligner, unsupervised
transliteration mining, semi-supervised transliteration mining and su-
pervised transliteration mining. The system with its source code is freely
available to the research community.

19

1. Introduction

1.4. Outline of the Dissertation
I have shown that a list of transliteration pairs is required to build a translit-
eration system which can further be used in many major applications of NLP.
In this section, I present the flow of my dissertation describing the motivation
of my work, the way I solved the transliteration mining problem and its appli-
cation to an NLP task.

Chapter 2 is divided into four parts. First, I describe the literature of ma-
chine translation systems that use transliteration information for OOVs and
named entities. Later, I describe various models and alignment methods that
are used in the literature for the character alignment of transliteration pairs.
Then, I summarize the previous work on transliteration. In the last part of
this chapter, I present the previous work on semi-supervised and supervised
transliteration mining (there is no unsupervised system in the literature).

I consider the fact of choosing a transliteration based on context and present
a novel model which incorporates transliteration information at decoding time.
For every word, the translation and transliteration compete with each other
on the fly and decoder decides which translation or transliteration to choose.
The system shows an improvement in translation quality when compared with
the baseline systems. This shows that transliteration is helpful for machine
translation systems in more than just transliterating out-of-vocabulary items.
Chapter 3 describes the system and its evaluation.

Chapter 4 presents the unsupervised transliteration mining algorithm. The
algorithm uses no form of supervision, and does not require linguistically in-
formed preprocessing. I compare it with semi-supervised and supervised sys-
tems and show that it has competitive results.

Chapter 5 proposes a novel model to automatically extract transliteration
pairs from parallel corpora. I model transliteration mining as an interpolation

20

1. Introduction

of transliteration and non-transliteration sub-models. The model is efficient,
language pair independent and mines transliteration pairs in a consistent fash-
ion in all unsupervised, semi-supervised and supervised settings. In evaluation,
I show that my model-based unsupervised system outperforms most of the
state-of-the-art semi-supervised and supervised systems.

In Chapter 6, I integrate a transliteration module to unsupervised word
alignment and show that it improves word alignment quality. The transliter-
ation module is trained on the transliteration pairs which my transliteration
mining method (presented in Chapter 5) extracts from parallel corpora. The
new word alignment system with transliteration module is also unsupervised.

Chapter 7 describes future work and concludes the dissertation.

21

2. Background

2.1. Introduction
I divide the background work into three parts.
First, I lay down the foundation of statistical transliteration and translit-

eration mining. Both take labeled data (a list of transliteration pairs) and
character align it in training. Several tools have been used in the literature for
character alignment. The commonly used tools are based on either a condi-
tional probability model or a joint probability model. Section 2.2 presents an
overview of them.
In Section 2.3, I describe the previous work on building transliteration sys-

tems. Heuristic-based systems use a list of hand-crafted transliteration rules
with an edit distance metric for transliteration generation. The substitution,
insertion and deletion costs need to be manually adjusted. Heuristic-based
methods are language dependent and require a lot of manual effort to build
transliteration rules. Statistical transliteration systems avoid this manual ef-
fort by using a list of transliteration pairs to automatically learn transliteration
rules and their probabilities. In Section 2.3, I focus on statistical approaches
to transliteration.
The third and last part of the literature review discusses mining of translit-

eration pairs from parallel corpora. Simple heuristic-based systems use the
edit distance metric with hand-crafted transliteration rules to score a list of
candidates. Word pairs with edit distance less than a threshold are chosen as
transliteration pairs. Statistical transliteration mining methods use a list of
transliteration pairs to train their model. There are generally two approaches

22

2. Background

to statistical transliteration mining – generative and discriminative. Genera-
tive models use positive labeled examples (a list of transliteration pairs) while
discriminative approaches require positive and negative labeled examples for
training. The major limitation of previous transliteration mining techniques is
that they require labeled data for training. Section 2.4 summarizes the previous
work on transliteration mining. Section 2.5 summarizes this chapter.

2.2. Transliteration Foundation
A transliteration system converts a string written in one script to another
script. It uses either a list of hand-crafted transliteration rules or is trained on
a list of transliteration pairs. The development of hand-crafted transliteration
rules is a tedious task. Section 2.3.1 talks about it in detail. Here, I focus on
the transliteration systems that use transliteration pairs for training.
A list of transliteration pairs consists of source and target language strings

that are transliterations of each other. A few examples of English/Hindi/Urdu
transliterations are shown in Figure 1.1. A statistical transliteration system
aligns the list of transliteration pairs at character level. It extracts the character
mappings with their probabilities from the aligned pairs to build a list of
transliteration rules. In test mode, given a test word, the system generates its
transliteration based on the probabilities of the transliteration rules learned
from the training data.
A transliteration mining system on the other hand automatically extracts

transliteration pairs from a list of word pairs. Similar to the transliteration
system, it is trained on a list of transliteration pairs. At test time, the trained
model classifies whether a given word pair is a transliteration pair or not.
In this section, I present the foundations of building transliteration systems

and transliteration mining systems. Both require the alignment of translit-
eration pairs. As in machine translation, the alignment plays a vital role in
the performance of the transliteration (mining) systems. In transliteration and
transliteration mining, alignment is easier than in machine translation as it

23

2. Background

One-to-one Source b c d p f
Target X C D ∅ F

One-to-one Source ∅ b c d p f
Target X ∅ C D ∅ F

Many-to-many Source b cd pf
Target X CD F

Table 2.1.: Example of one-to-one and many-to-many character alignments of
a word pair bcdpf XCDF where ∅ represents a null character

does not involve reordering. In the following section, I first describe the com-
monly used models and then describe various tools used for this purpose.

2.2.1. Alignment

Consider a transliteration pair (e, f) where eJ1 = e1, ..., ej, ..., eJ is the source
string and f I1 = f1, ..., fi, ..., fI is its transliteration. J and I are the number
of characters in e and f respectively. A transliteration pair can be aligned in
more than one way. Table 2.1 shows a few possible alignments of the word pair
(bcdpf XCDF). The first row is an example of a one-to-one alignment which
means that a source character is aligned to only 0 or 1 target character and the
same is true for the target language characters. In many-to-many alignment,
there can be more than one characters of source and target that can be aligned
to each other like the alignment subsequence cd→ CD and pf → F .
I call alignment subsequences multigrams, often referring to a particular

multigram using the variable q, later on. cd → CD, pf → F , b → X and
∅ → X are examples of multigrams. In Section 2.2.4, I describe alignment
methods in detail.

24

2. Background

2.2.2. Joint Probability Model

The joint probability of the word pair (e, f) is the sum over all alignment
sequences:

p(e, f) =
∑

a∈Align(e,f)
p(a)

where Align(e, f) is the set of all possible alignments of a word pair, a is
one alignment sequence and p(a) is the probability of that sequence. Consider
an alignment sequence (q1, q2, ..., q|a|) where q is the multigram as defined in
Section 2.2.1 and |a| is the length of the alignment sequence. The probability
of an alignment sequence is the product of the probabilities of all multigrams
it contains:

p(a) = p(q1, q2, ..., q|a|) =
|a|∏
j=1

p(qj)

The above equation assumes that the multigrams are independent of each
other. It can be modified to consider the preceding context:

p(e, f) =
|a|∏
j=1

p(qj|qj−1
j−M+1)

where M is the ngram size.

2.2.3. Conditional Probability Model

The conditional probability distribution p(e|f) models the relationship be-
tween the values of two random variables. It is defined as:

p(e|f) = p(e, f)
p(f)

The conditional probability captures how the source string can be gener-
ated from the target string. The joint model models how the source and target

25

2. Background

strings can be generated together. Li et al. (2004) present a comparison of these
two models for transliteration and show that the joint probability model per-
forms better than the conditional model. In my transliteration mining model,
I use the joint probability model.

2.2.4. Alignment Methods

In this section, I provide a summary of various alignment methods that are used
in transliteration systems and transliteration mining systems for the character
alignment of labeled data.

GIZA++

GIZA++ is a word alignment tool which can be used for the character align-
ment of transliteration pairs. Normally, GIZA++ is used to align words in
sentences. In transliteration, word pairs are treated as parallel sentences. By
putting a space after each character of a word, every character can be treated
as if it were a word in word alignment.
GIZA++ is based on a conditional probability model which captures how a

target string can be generated from a source string. It builds two conditional
probability models, one in each direction – from source to target and from
target to source. The Viterbi alignments of both directions of a string pair
are combined using several heuristics to generate a many-to-many alignment
sequence (Och and Ney, 2003).
Consider a source string eJ1 = e1, ..., ej, ..., eJ and its corresponding target

string f I1 = f1, ..., fi, ..., fI . Alignment models tend to define the relationship
between source and target strings with a hidden alignment variable aJ1 which is
the mapping from a source position J to a target position aj. The probability of
a source string given the target string is the sum over all its possible alignments:

P (eJ1 |f I1) =
∑
aJ1

pθ(eJ1 , aJ1 |f I1)

26

2. Background

θ represents the unknown parameters. Their values are determined using
expectation maximization (EM) training that maximizes the likelihood of the
training data. For a given string pair, the goal is to find the best alignment
which is called the Viterbi alignment of the string pair (eJ1 , f I1):

âJ1 = argmax
aJ1

pθ̂(e
J
1 , a

J
1 |f I1)

GIZA++ has an option of using a combination of five IBM models and an
HMM. All models contain a lexicon (for transliteration, it is a list of character
pairs) and a set of parameters to describe the probability of a character pair.
They differ in the decomposition of (eJ1 , aJ1 |f I1). Here I briefly describe the
difference between IBM Models. For details, see Och and Ney (2000, 2003);
Koehn (2010). I describe the HMM in Section 2.2.4.
Model 1 is a uniform probability model. The probability of an alignment of

a string pair depends on the lexical probability p(ej|faj) so the character order
does not affect the alignment probability (Och and Ney, 2003):

p(eJ1 , aJ1 |f I1) = p(J |I)
(I + 1)J .

J∏
j=1

p(ej|faj) (2.1)

In contrast to Model 1, Model 2 explicitly models the position of source and
target characters. However, the alignment probabilities are independent from
their neighboring alignments:

p(eJ1 , aJ1 |f I1) = p(J |I).
J∏
j=1

[p(aj|j, I, J)p(ej|faj)] (2.2)

Model 1 and Model 2 have a limitation of not modeling the fertility which
is the number of target characters aligned to a source character ej. Model 3
adds a fertility model p(φ|f).
Model 4 introduces a relative distortion model which exploits the fact that

characters that are close to each other tend to stay next to each other in the
output. So, it models the alignment of an input character dependent on the
alignment of the preceding input character.

27

2. Background

Model 3 and Model 4 are deficient alignment models. They have the problem
that multiple output characters can be placed at the same position according
to the model. Model 5 fixes this problem by introducing a variable that keeps
a record of occupied places.
To summarize, a major difference between the models is the contextual in-

formation. The HMM model, IBM Model 4 and Model 5 are first order models
whereas Model 1, Model 2 and Model 3 are zero order models.
The character alignment of a transliteration pair is easier than the word

alignment of a parallel sentence as it does not involve reordering. For translit-
eration pairs, GIZA++ is used with the assumption that the EM training
would learn from the monotonic nature of the training data and would give
low probability to the alignments that involve reordering.
I did not use GIZA++ for alignment of word pairs in unsupervised translit-

eration mining because of the training data which is unlabeled. Most part of
the unlabeled data consists of noise and there are only a few transliteration
pairs. GIZA++ would learn wrong multigrams from the noisy pairs and would
not work in the context of transliteration mining.

Hidden Markov Model-based Aligner

The Hidden Markov Model (HMM) is composed of a set of states which are
interconnected through transitions. Every state has an emission probability
distribution and a transition probability distribution. The emission probability
is the probability of emitting the observed symbol. The transition probability
is the probability of moving from the current state to another state (Rabiner,
1990).
The states are hidden in an HMM model. For transliteration pairs, they

represent character alignments. The Expectation Maximization algorithm can
be used to learn the model parameters from unaligned data. The Viterbi algo-
rithm is then used to find the best alignment sequence for the data.
The Hidden Markov Model aligner, as opposed to IBM Model 1, 2 and 3, is

a first order model so the alignment position aj is dependent on the previous

28

2. Background

alignment position aj−1. The alignment model is given by (Och and Ney, 2003):

P (eJ1 , aJ1 |f I1) = P (J |f I1)
J∏
j=1

P (ej, aj|ej−1
1 , aj−1

1 , f I1)

P (J |f I1) is the length probability. P (ej, aj|ej−1
1 , aj−1

1 , f I1) can be written as
a product of an alignment probability P (aj|ej−1

1 , aj−1
1 , f I1) and a lexical prob-

ability P (ej|ej−1
1 , aj1, f

I
1).

The above equation is a general model of alignment. We may modify it by
applying a few assumptions. The alignment probability is only dependent on
its previous alignment. The lexical probability is independent of context. The
equation for the HMM is given by:

P (eJ1 , aJ1 |f I1) = P (J |I)
∑
aj1

J∏
j=1

[p(aj|aj−1, I).p(ej|faj)]

Due to the first-order assumption, the HMM performs better than Model 1
and Model 2. The HMM alignment is sensitive to the value of initial parame-
ters.

Pair Hidden Markov Model for Alignment

A Pair Hidden Markov Model (PHMM) is an extension of the Hidden Markov
Model that generates two observation sequences in parallel. It is first intro-
duced by Durbin et al. (1998) for aligning biological sequences. Mackay and
Kondrak (2005) modify their model to use it for string similarity to identify
cognates. A PHMM alignment model contains three states described as follows:

• Substitution state (S): matches the source character sequence with the
target character sequence. The emission probability is the probability
of emitting a pair of characters (x,y) where x is the source language
character and y is the target language character

29

2. Background

Figure 2.1.: PHMM for transliteration

• Deletion state (D): matches the source character sequence with a gap on
the target language side. The emission probability is defined as p(x, -)
i.e. probability of aligning source language character x to NULL

• Insertion state (I): matches a gap on the source character sequence with
the target language character sequence. The emission probability p(- ,
y) is defined as the probability of aligning target language character y to
NULL

The standard PHMM model has three transition parameters: δ (for transi-
tion from the match state M to a gap state), ε (for transition of staying on
a gap state) and τ (for transition to the end state). It keeps the transition
probability τ to the end state equal for all other states. Mackay and Kon-
drak (2005) separate τ to τS for match state, and τDI for the gap states. This
would help the model to capture end word operations which are important in
the identification of cognates. The PHMM of Mackay and Kondrak (2005) is
shown in Figure 2.1.

30

2. Background

The standard PHMM model assumes that a deletion operation followed by
an insertion operation is equal to a substitution operation. This is not true
for transliteration where a substitution operation is only applied for a legal
character alignment between a source and a target character sequence. To fix
this, Mackay and Kondrak (2005) introduce a pair of transitions between state
D and I. The transition parameter is denoted by λ. The parameters can be
learned using EM.
PHMM is similar to the joint sequence model used in g2p (see Section 2.2.4)

except that there are only three states. They are stronger than the zero-order
joint sequence models (one state) but are weaker than the first-order joint
sequence models (one state per multigram).

Phrase-based Alignment

A phrase-based alignment system learns alignment of large transliteration
units. Generally, a many-to-many character alignment is generated using an
alignment tool such as the HMM aligner or GIZA++. The phrase extraction al-
gorithm is then applied to the many-to-many alignment to extract larger units.
The details of the phrase extraction algorithm are described in Koehn (2010).
In the context of transliteration, phrase level alignments are important in align-
ing non-alphabetic languages like English/Japanese and Japanese/Chinese.
These language pairs require many-to-one/one-to-many/many-to-many char-
acter mappings to learn correct transliteration rules. The larger phrases also
manage insertions and deletions in a better way.
In the Moses toolkit, GIZA++ is used to produce an initial alignment for the

phrase extraction algorithm. GIZA++ produces a one-to-many and a many-
to-one alignment. A set of heuristics are applied on the two alignments to
extract reliable many-to-many alignments. The phrase extraction algorithm is
then applied to them. I use phrase-based alignment to build a transliteration
system in Chapter 4. In the context of unsupervised transliteration mining, the
phrase-based alignment tends to learn noise and the system performs poorly.
Section 5.7.5 presents results of my higher order unsupervised transliteration

31

2. Background

mining system. The system learns noise by memorizing larger units and does
not perform well.

Grapheme-to-Phoneme Converter g2p

Grapheme-to-phoneme conversion is a similar task to transliteration. g2p is a
grapheme-to-phoneme conversion tool (Bisani and Ney, 2008). It is based on
a joint sequence model as presented in Section 2.2.2. The system uses expec-
tation maximization (EM) to learn many-to-many character alignments from
the training data. I use it in my unsupervised transliteration mining algorithm
as a transliterator (see Chapter 4). However, I restrict the transliteration units
to 0-1,1-1,1-0 character alignments as in the PHMM described in Section 2.2.4.
For unsupervised transliteration mining, larger transliteration units tended to
learn noise.

M2M-aligner

Ristad and Yianilos (1998) proposed a stochastic string edit distance based
method to learn character alignments from transliteration pairs. The model is
presented as a memoryless stochastic transducer. It automatically learns the
substitution, insertion and deletion costs from the training data. Ristad and
Yianilos (1998) calculate two alignment scores from the transducer. The first
one is the Viterbi score – the score of the most likely alignment between the two
strings. The second score is the sum of the scores of all alignments of a given
string pair which is called stochastic edit distance. Sherif and Kondrak (2007b)
use the string edit distance based method of Ristad and Yianilos (1998) in the
transliteration extraction system which is explained in Section 2.4.
The model of Ristad and Yianilos (1998) is equivalent to my unigram model

presented in Chapter 5. My system differs in training where I model the data
using two sub-models – transliteration and non-transliteration. This is impor-
tant when modeling unlabeled data that contains both transliterations and
non-transliterations.

32

2. Background

The stochastic transducer model produces one-to-one alignments. Jiampo-
jamarn et al. (2007) extend it to infer many-to-many alignments of grapheme
to phoneme pairs. They present an algorithm that modifies the Forward-
Backward training of the one-to-one aligner to calculate the partial counts of
subsequence alignments. The probabilities are calculated by normalizing the
partial counts. They produce the most likely alignment of a word pair using
the Viterbi algorithm.
I use one-to-one character alignment for unsupervised transliteration mining.

The many-to-many alignment does not work for unsupervised transliteration
mining (see chapter on transliteration mining model, Section 5.7.5).

2.3. Previous Work on Transliteration
Transliteration can be defined as a process of converting the text written in
one script to another script. The pronunciation of the text generally remains
the same. A transliteration system requires two main modules: mapping table
and transliteration. The former is a list of multigrams that can be built either
manually or automatically using the alignment methods described in Section
2.2.4. In the following sections, I first discuss the work on the extraction of
multigrams. Later, I talk about several methods that use these units to build
a transliteration system.
I build two transliteration systems – one using a joint sequence model and

another using a phrase-based machine transliteration system. The former is
used with a machine translation system in Chapter 3 and the latter is used in
unsupervised transliteration mining in Chapter 4.

2.3.1. Extraction of Multigrams

A mapping table between source and target language characters can be pro-
duced by either manually creating hand-crafted transliteration rules/multigrams
(Tao et al., 2006; Sajjad et al., 2011a) or by automatically character aligning
the transliteration pairs (Kashani et al., 2007b; Noeman and Madkour, 2010).

33

2. Background

Table 2.2.: Ambiguous Hindi characters (characters which can
transliterate to many different Urdu characters)

The manual generation of multigrams is a complex task and requires a lot of
effort. A source language character may map to 0, 1 or many target language
characters and the same holds for target language characters as well. Also there
can be more source characters that may map to the same target character and
vice versa. Consider the example of the Hindi and Urdu language. They have
similar sound systems but transliteration from Hindi to Urdu is still hard be-
cause some phonemes in Hindi have several orthographic equivalents in Urdu.
Table 2.2 shows examples of ambiguous Hindi/Urdu transliteration units. The
“z” sound can only be written as whenever it occurs in a Hindi word but can
be written as , , and in an Urdu word. Transliteration becomes non-
trivial in cases where multiple orthographic equivalents for a Hindi word are
valid Urdu words. In order to build an edit distance based transliteration sys-
tem on the hand-crafted multigrams, one needs to define the cost of choosing
a multigram.
In Section 3.5.1, I extracted a list of character aligned transliteration pairs

using hand-crafted multigrams and an edit distance based metric (Sajjad et al.,
2011a) and used it to build a statistical transliteration system. The system
shows high accuracy but is not robust and is unable to produce complex
transliterations with several ambiguous character transliterations. Secondly,
the multigrams built for one language pair can not be used for other language
pairs. In this section, I describe the previous work of automatic extraction of
multigrams from a list of transliteration pairs. The transliteration models that

34

2. Background

are trained on the transliteration data are discussed in Section 2.3.2.
Kashani et al. (2007b) use GIZA++ to learn multigrams from a list of

transliteration pairs. GIZA++ generates non-monotonic alignments for a few
word pairs. They use this effect to filter out bad transliteration pairs from
the list of transliteration pairs. Rama and Gali (2009); Shishtla et al. (2009);
Tiedemann and Nabende (2009) also use GIZA++ for the alignment of translit-
eration pairs. Rama and Gali (2009) apply a post-processing step to handle
non-monotonic alignments.
Knight and Graehl (1998) use a conditional probability model for back

transliteration. They use a series of models which step-by-step convert the
Japanese string to an English string. In this way, the output of the first model
is the input of the second model and so on. Stalls and Knight (1998) mod-
ify their generative process and use it for back transliteration from Arabic to
English. These systems are explained later.
Noeman (2009) uses the HMM aligner with the Forward-Backward algorithm

to align transliteration pairs. The character alignments are further extended
to character sequence level using various heuristics (similar to the one used in
the phrase based machine translation system (Koehn et al., 2003)).
Li et al. (2004) present a joint probability model for transliteration. It is

equivalent to an HMM whose states correspond to pairs of input and output
symbols and whose emission probabilities are one for the symbol pair encoded
in the state and zero for all other symbols pair. They apply Expectation Maxi-
mization (EM) to learn multigrams from the training data. Ekbal et al. (2006)
also use a joint probability model for transliterating English/Bengali. In con-
trast to Li et al. (2004), they use linguistic knowledge to extract transliteration
units from an English/Bengali transliteration corpus.
Nabende (2009) trains a transliteration system using the PHMM align-

ment model and shows that the model works better than one trained using
a weighted Finite State Transducer.
Finch and Sumita (2008) use phrase-based alignment for both translitera-

tion and back transliteration of English/Japanese. Rama and Gali (2009); Noe-
man and Madkour (2010) show that phrase-based alignment combined with a

35

2. Background

phrase-based statistical machine translation system can be successfully used
for machine transliteration. I also build a phrase-based transliteration system
in Chapter 4. The phrase-based alignment is normally used for the alignment
of parallel sentences which involves several complex steps such as reordering.
They do not exist in the alignment of transliteration pairs. The phrase-based
alignment combined with phrase-based decoding is an approximation of the
true transliteration system with the assumption that the system will not learn
the phenomena which are not prevalent in the data.
Jiampojamarn et al. (2009) and Ammar et al. (2012) use the M2M-aligner

for the alignment of transliteration pairs.
I did not use a statistical alignment method in aligning the Hindi/Urdu list

of transliteration pairs in Chapter 3. Instead the list is aligned from a parallel
corpus using a list of multigrams and an edit distance metric.

2.3.2. Transliteration Methods

The multigrams extracted from the transliteration pairs are used in various
models to build a transliteration system. This section summarizes these meth-
ods.
Knight and Graehl (1998) present a phonetic-based system for back translit-

eration. They divide the transliteration process into five models. The output
of one model is the input of the next model and so on. The phonetic-based
transliteration method involves mapping the source language words to their
phonemic representation and converting the phonemic form to the target lan-
guage script.
The process of transliterating Japanese to English is divided into the follow-

ing five generative steps:

• p(w) – probability of generating English word sequences

• p(e|w) – given an English word sequence, produce its phonetic translit-
eration which maximizes p(e|w)

36

2. Background

• p(j|e) – probability of producing Japanese sound sequences given English
sound sequences

• p(k|j) – producing katakana script from Japanese sounds (in Japanese,
most foreign words are written in katakana)

• p(o|k) – katakana is written which is extracted by optical character recog-
nition (OCR)

Knight and Graehl (1998) implement the conditional probability models us-
ing a Finite State Transducer, (FST) and the unigram word based model p(w)
using a Finite State Acceptor (FSA). The best transliterations are extracted
using Dijkstra’s shortest path algorithm and k-shortest-path algorithm.
Stalls and Knight (1998) modify the generative model proposed by Knight

and Graehl (1998) for back transliteration from Arabic into English. The prob-
lem of Arabic to English transliteration is more challenging as short vowels are
not written in Arabic. The true phonemic representation of Arabic words is
hidden so it is difficult to generate the correct Arabic phonemic mapping from
the English phonemic mapping. They build a new model p(a|e) to generate
Arabic letter sequences directly from English phonemic sequences. The first
two models of Knight and Graehl (1998) – p(w) probability of an English
word and p(e|w) probability of producing an English pronunciation given an
English word, are used without any change. The probabilities are learned from
an Arabic/English dictionary of 150 word pairs. The system is tested on 2800
Arabic names. It generates the correct transliteration of 900 words and fails
to correctly transliterate the rest. The error analysis shows that the translit-
eration of foreign words into Arabic is dependent on their language of origin.
It is difficult to correctly back transliterate them in English.
The phonetic-based systems can only be applied to words whose pronunci-

ation is known. The conversion of grapheme to phoneme adds an additional
layer of vulnerability. Al-Onaizan and Knight (2002) compare a grapheme-
based transliteration model with a phonetic-based transliteration model and
show that the grapheme-based method performs better than the phonetic-

37

2. Background

based method. In this chapter, I will focus on grapheme-based methods. Later
in Chapter 3 and Chapter 4, I present two grapheme-based transliteration
systems.
Kashani et al. (2007b); Shishtla et al. (2009); Tiedemann and Nabende

(2009) and Rama and Gali (2009) present grapheme-based methods for translit-
eration. They all use GIZA++ for the alignment of transliteration pairs. How-
ever, they differ in the transliteration method. Kashani et al. (2007b) use two
generative steps, followed by a comparative step to find the transliteration of
a word. The first step takes the test corpus as input and outputs k candidates
for each Arabic word. The k candidates are then used in step 2 to generate an-
other k candidates. The difference between step 1 and step 2 is only in handling
the English characters aligned to null. In the third step, the Google unigram
dataset was used to filter out non-English words. They use edit distance to
calculate the similarity between dictionary entries and the candidates and to
filter names that have minor errors. The Viterbi score of step 1 and 2, and
Levenshtein distance of step 3 is combined to select the right candidate.
The transliteration system of Rama and Gali (2009) is different from others

which used GIZA++ for alignment in the decoding step where they use a beam
search algorithm. Noeman (2009) also uses a monotone beam search decoder to
generate k best transliterations of a source word. All candidates are then ranked
on their transliteration model and monolingual language model probabilities.
In my ngram-based transliteration system, I use the Viterbi algorithm to find
the best transliteration of the source word. My phrase-based transliteration
system uses the beam search algorithm in decoding.
Shishtla et al. (2009) align transliteration pairs using GIZA++ and Ammar

et al. (2012) use the M2M-aligner for that. They both use the Conditional
Random Field (CRF) framework for transliteration generation. The character
alignment is transformed to a sequence by assigning each source language char-
acter to a label which is a sequence of one or more target language characters.
Ammar et al. (2012) use the size of the label, unigram and bigram labels and
unigram, bigram and trigram context as features for the model.
The phrase-based statistical machine translation system (PSMT) (Koehn

38

2. Background

et al., 2003) is often used for transliteration generation. Noeman and Madkour
(2010) use the PSMT system to build a substring based transliteration system.
Tiedemann and Nabende (2009) align the transliteration pairs using GIZA++
and use PSMT with monotonic decoding for generation. They compare the
PSMT system with a WFST system and show that PSMT performs better. I
also built a phrase-based system for transliteration in Section 4.3.2. The major
advantage of PSMT is the phrase table which contains larger transliteration
units. The contextual information helps to generate better transliterations.
Jiampojamarn et al. (2009) present a discriminative transliteration system,

DirecTL. The transliteration pairs are aligned at substring level by using EM.
Every word from the training data is represented as a vector of features – ngram
context, HMM-like transition features and linear-chain features. An ngram
context feature contains information of neighboring letters of a source character
when it is aligned to a target character. The HMM like transition feature acts
as a language model to restrict the production of non-target language words.
They use first order markov assumption which is a bigram feature vector. The
linear chain features are like the ngram context features except that the single
target language character is replaced with a bigram sequence of characters.
A linear model is trained in the feature space using iterative training. Each
iteration produces the n most likely output words for an input word. The
parameter vector of an iteration is updated by comparing the correct output
and the n best output using the margin infused relaxed algorithm (MIRA).
The training is iterated using the new values of the parameters.

2.4. Previous Work on Transliteration Mining
The transliteration mining systems use the same alignment model as translit-
eration systems. The alignment methods are described in Section 2.2.4. In the
following section, I provide a summary of the systems used for the mining
of transliteration pairs from parallel corpora. I divide them into generative
methods (Noeman and Madkour, 2010; Darwish, 2010; Nabende, 2010) and

39

2. Background

discriminative methods (Jiampojamarn et al., 2010). All systems in the litera-
ture (that I am aware of) use manually labeled (seed) data for initial training
or for the optimization of parameters so they are either supervised or semi-
supervised. There is no unsupervised system. A lot of work has been done
on discovering and learning transliterations from comparable corpora by using
temporal and phonetic information (Tao et al., 2006; Klementiev and Roth,
2006; Sproat et al., 2006). I do not have access to such data and will not
discuss these approaches here. My focus is on extracting transliteration pairs
from parallel corpora.
In Chapter 4, I present a heuristic-based unsupervised mining system based

on a joint probability model. It is an iterative algorithm that filters out a
few word pairs from unlabeled training data in every iteration until the train-
ing data contains only transliteration pairs. In Chapter 5, I propose a novel
model for unsupervised transliteration mining which consists of a translitera-
tion model and a non-transliteration model. In the following section, I sum-
marize the previous transliteration mining systems which are either supervised
or semi-supervised and compare them with my unsupervised systems where
needed.

2.4.1. Generative Approaches

Edit Distance based Measures

Edit distance based measures are often used for transliteration mining (Ji-
ampojamarn et al., 2010; Noeman and Madkour, 2010). They require a table
with the mapping of source and target language characters. Noeman and Mad-
kour (2010) achieve this mapping by aligning labeled data at character level
using GIZA++ and extract the most probable character alignments with their
probability. Jiampojamarn et al. (2010) align labeled data using the M2M-
aligner. For a target character sequence, they take the highly probable English
character sequence according to the trained model as its romanization. They
define a uniform cost of substitution, insertion and deletion for the experi-
ments. To increase the precision of the mining system, they remove all those

40

2. Background

candidate pairs from the list of word pairs in which the English word ends with
a consonant and the foreign word ends with a vowel. This heuristic helps them
to filter out morphological variants which only differ by an ending character
from a transliteration.
In initial experiments, I build hand-crafted transliteration rules and use

them with the edit distance metric to mine transliteration pairs from a par-
allel corpus. The deletion, substitution and insertion costs are optimized on
the development set. I extrinsically evaluated the mined list by building a
transliteration system on it. The system achieves high precision but could not
produce complex transliterations. The details of the system are presented in
Section 3.5.1.

Graph Reinforcement

The labeled data is generally small and might not include the complete set
of possible multigrams of a language pair. The idea of graph reinforcement is
to use the existing labeled data and deduce new multigrams which are not
directly visible in the labeled data.
Kahki et al. (2011) propose a supervised transliteration mining system which

uses graph reinforcement to deduce character mappings which are missing in
the labeled data. They build a baseline transliteration mining system on the
labeled data which is aligned using the HMM aligner of He (2007) which uses
word-dependent transition probabilities and Bayesian learning. The baseline
system is evaluated on four language pairs. It shows high precision but low
recall of transliteration pairs. The labeled data does not contain examples of
all multigrams. Consider an example of an English/Arabic corpus (from Kahki
et al. (2011)): the Arabic letter /qa can be aligned to English letters q, k
and c. However, in the alignment of the training data, no alignment from
to c exists. The Arabic letter /ka can also be aligned to English letters q, k
and c, and all these mappings are prevalent in the training corpus. Using the
overlapping English characters mapped to and , a number of paths can
be deduced which lead to the alignment of to c. In Figure 2.2, there are two

41

2. Background

Figure 2.2.: Motivation of graph reinforcement technique

paths: → q → → c and → k → → c which give evidence to a new
multigram → c. The method is formalized as follows.
Consider a bipartite graph G consisting of a set of source language character

sequences S, a set of target language character sequences T and a mapping
M between them. The Bayesian learner used in the baseline system provides
mappings of source character sequences to target character sequences with con-
ditional probabilities calculated on labeled training data. I refer to these map-
pings as multigrams. The probability of each multigram is defined as m(t|s)
where s and t are source and target character sequences. The new multigrams
are deduced by traversing the alignment graph from S → T → S → T . The
induced multigram score m(t′|s′) is defined as follows:

m(t′|s′) = 1−
∏

∀s∈S,t∈T
(1−m(t′|s)m(s|t)m(t|s′))

where s′ and t′ represents the source and target character sequence of a new
multigram. The term 1−m(t′|s)m(t|s)m(t|s′) ensures that a multigram should
get high probability if it is achieved from multiple paths.
Apart from deducing good multigrams, the graph reinforcement also in-

troduces irrelevant multigrams. Kahki et al. (2011) apply link reweighting to
decrease the weight of those multigrams whose target character sequence has
more source character sequences that map to it.
The Kahki et al. (2011) system is built only on labeled data. They learn

42

2. Background

character alignments using an HMM aligner which is based on a conditional
probability model while I use a joint probability model for alignment. Due to
the training on the labeled data, they learn larger alignment units. I restrict
myself to one-to-one alignment as my systems are unsupervised and use only
unlabeled data for training.

Self Training

Self training is a semi-supervised method of learning. It first builds a classifier
using labeled data. The trained model is then applied to unlabeled data and
assigns a score to every example. Based on the score, it extracts the most
confident predictions of the classifier and adds them to the labeled data. A
classifier is trained on the new labeled data and the process is iterated. At
every iteration, a few examples are added to the labeled data. The procedure
stops when there are no more examples the classifier is confident about. A
complete self-training procedure is shown on Page 43.

Self-training Algorithm (Abney, 2007)
1: L0 ← labeled data
2: U ← unlabeled data
3: c ← train(L0)
4: repeat
5: L ← L0 + select(label(U,c))
6: c ← train(L)
7: until Stopping criterion is met

Sherif and Kondrak (2007a) apply self-training to mine transliteration pairs.
They build a transliteration system on 14 carefully selected transliteration
pairs. They use the Forward-Backward algorithm for the training. Every word
pair from the unlabeled data is scored using the trained model. Based on
the forward probability of word pairs, a few are selected as highly probable
transliterations. The selected transliteration pairs are added to the labeled
data and the process is iterated. The training stops when there are no more
probable transliteration pairs in the unlabeled data.

43

2. Background

Huang (2005) presents a mining system to find named entity pairs from
a bilingual corpus. He proposes a binary cost function that defines a cost
zero for identical characters and one otherwise. The cost function with an
edit distance metric is applied to English/X list of word pairs where X is
the romanized form of the target language. Based on a threshold on the edit
distance score, a list of transliteration pairs is extracted which is later used
as seed data for self training. Huang (2005) builds a joint-sequence model on
the list of transliteration pairs and scores the list of word pairs. He filters top
500 word pairs based on their probability and adds them to the training data.
The process is iterated until there is no more increase in the NE extraction
accuracy.
Huang (2005)’s transliteration mining system is the only system in litera-

ture which does not use any labeled data for training. However, it requires
labeled data and other language dependent resources at various steps of the
mining process. His system uses labeled data to find the stopping iteration of
self training. The candidate pairs (list of word pairs) are built using source
and target language named entity taggers. The general cost function requires
both source and target languages to be in Latin script which is not always
deterministic. The advantage of Huang’s system over my unsupervised mining
systems (presented in Chapter 4 and Chapter 5) is that it works for both al-
phabetic and non-alphabetic languages. My systems work only for alphabetic
languages. The advantage of my unsupervised systems is that they do not re-
quire any language dependent resource and use only a list of word pairs for
training.
Darwish (2010) uses a generative transliteration model initially built on la-

beled data. The alignment between the transliteration pairs is learned using
the HMM alignment model of He (2007). The learner models a full transition
model including the self transition probability and the probability of transi-
tion from one state to another state. Darwish (2010) uses 1000 transliteration
pairs for training. The labeled data is small and might not contain all possible
multigrams of a language pair. He applies a variant of SOUNDEX on the En-
glish side to reduce the number of characters. Darwish (2010) performed six

44

2. Background

runs of his system by varying the training data. The first two runs trained on
the labeled data, one of them aligns unlabeled data and the other aligns the
modified form of the unlabeled data where the English side is modified with
SOUNDEX. In both runs, the system extracts a few word pairs from the unla-
beled data that are very probable to be transliteration pairs. In the next four
runs, he takes a combination of the mined pairs from the first two runs, uses
them to train the system and tests it to different variations of the unlabeled
data.
The method of Darwish (2010) is different from Sherif and Kondrak (2007a)

as Darwish does not add the probable transliteration pairs to the labeled
data and uses only the probable transliteration pairs for training and min-
ing. Huang (2005)’s work is similar to Sherif and Kondrak (2007a). It differs
in the seed data which Huang (2005) automatically mined from the bilingual
corpus. The major limitation of Huang (2005)’s technique is the requirement
of language dependent resources for the optimization of parameters. My un-
supervised transliteration mining systems are different as I do not use labeled
data and do not require any language specific resource. My heuristic-based
system trains the model on the unlabeled data and filters out a few word pairs
that are less likely to be a transliteration pair, which is the opposite of what
they do. My model-based system models the unlabeled data.

Finite State Automata Framework

Noeman and Madkour (2010) propose a generative model for transliteration
mining using the Finite State Transducer Framework. They train the transliter-
ation model on the labeled examples using a phrase based machine translation
approach. The labeled examples are character aligned using the Hidden Markov
Model (HMM) implemented in GIZA++ (Och et al., 1999). The alignments
are further modified by applying heuristics (Koehn et al., 2003) to generate
character sequence alignments. They extract the most probable alignments
and generate an Arabic to English mapping table which is then used to build
a Finite State Transducer (FST). For each source word, the FST generates a

45

2. Background

Figure 2.3.: Finite State Transducer

list of candidate transliteration pairs. The candidates which are recognized by
a Finite State Acceptor of the target language are considered as translitera-
tions. Figure 2.3 shows an FST model of a Hindi/Urdu word pair
(tareeka). The last state is the end state.
Nabende (2010) uses PHMM training for the alignment of the training data

and a WFST technique to mine transliteration pairs. The PHMM model is
trained using the Expectation Maximization (EM) algorithm. He applies a
threshold on the Forward probability to filter transliteration pairs.
PHMM is similar to the joint sequence model that I used in my heuristic-

based system and my model-based system except that it has only three states.
I also used EM for training. However, my systems are trained on unlabeled
data while Nabende (2010) system is trained on labeled data.

2.4.2. Discriminative Approaches

Discriminative approaches require positive and negative labeled data for train-
ing. Both types of labeled data is not available for most of the language pairs. I
build a generative model for transliteration mining. My system is unsupervised
so it does not require any labeled data.
There is some work done on generating negative data using positive labeled

data and unlabeled data. However, the automatically generated negative data
might not represent all kinds of negative examples that exist in the unlabeled
data. The quality of the positive and negative examples is crucial for the per-
formance of the discriminative approaches. Following is the description of the
transliteration mining systems that are based on discriminative approaches.

46

2. Background

String Similarity

Jiampojamarn et al. (2010) propose a discriminative approach based on string
similarity features to learn transliteration information from positive and neg-
ative labeled examples. They align the positive labeled word pairs using the
M2M-aligner (Jiampojamarn et al., 2007). The positive features are the sub-
strings whose character sequence alignments are consistent with the one-to-one
character alignments. This helps the classifier to identify close transliterations
as non-transliterations. For negative examples, they generate a list of word
pairs from the positive labeled examples by generating all possible source-
target word pairs and extract the word pairs which are not transliterations
and have a longest common subsequence (LCS) ratio above 0.58. A Support
Vector Machine (SVM) classifier is then trained on the positive and negative
examples.

String Kernel

The generation of negative examples using LCS requires the target language
to be romanized which additionally adds a layer vulnerable to error. Jiampo-
jamarn et al. (2010) use a string kernel method for transliteration mining.
The kernel-based methods map the data to a high dimension kernel matrix.
A variety of algorithms can then be used to get and analyze the information
contained in the matrix. Jiampojamarn et al. (2010) use a string kernel with
an SVM which enhances the capability of the SVM to handle long sequences of
strings. They use a list of 1000 positive labeled examples for the training. For
the negative examples, every word on the source side of the positive labeled
examples is paired with every word on the target side of the labeled examples
to form a list of negative examples. An M2M-aligner is trained on the positive
labeled examples and is applied to 20k randomly selected word pairs from the
list of negative examples. For negative examples, they choose the 10k word
pairs which are successfully aligned by the aligner.

47

2. Background

DirecTL+

Jiampojamarn et al. (2010) use an extension of the transliteration system
of Jiampojamarn et al. (2009) for transliteration mining (DirecTL+). They
include joint n-gram features to enable the model to learn longer source-target
character substrings. The training procedure is as follows.
The model is trained on the positive labeled character aligned examples. For

every source word of the labeled data, it generates a list of m-best translit-
erations. The result is compared with the target side of the examples. Based
on the errors made by the system, it updates the weights of the features. The
process is iterated with new values of the features.
Jiampojamarn et al. (2010) use the trained transliteration model for translit-

eration mining. Given a test word pair, they generate a transliteration of the
source word and the target word using the transliteration system. A translit-
eration score function is defined from the edit distance of the source word and
its generated transliteration, and the target word and its generated translit-
eration. A word pair is considered a transliteration pair if its score is greater
than a threshold.
My unsupervised mining systems are based on generative models. They are

built using only unlabeled data while the discriminative approaches generally
require both positive and negative labeled data for training.

2.5. Summary
The major limitation of the previous transliteration mining systems is the
use of labeled data for training. The generative approaches require positive
labeled data and the discriminative approaches generally require both positive
and negative labeled examples for training. The labeled data is not available
for most language pairs. This limits the applicability of these systems to only
a few language pairs.
I overcome this limitation by presenting the first unsupervised transliteration

mining algorithm (See Chapter 4 for detail). I build a joint sequence model

48

2. Background

using g2p on unlabeled data. The training is limited to one-to-one alignment
which makes it similar to PHMM and identical to Ristad and Yianilos (1998).
The model scores the unlabeled data and filters out a few word pairs from the
unlabeled data which have the least score, assuming that they are less likely
to be transliterations. The joint sequence model is again built on the reduced
set of unlabeled data. This is an iterative process, cleaning the unlabeled data
in every step until a clean list of transliteration pairs is left. This procedure
of mining is close but opposite to self training where in every iteration, a few
word pairs that are likely to be transliterations are added to the training data.
A second difference is the training which is done using labeled data in self
training.
In Chapter 5, I present an unsupervised transliteration mining model. It is

a generative model that models the unlabeled data. In contrast to previous
generative systems, it consists of two sub models – a transliteration model and
a non-transliteration model. The transliteration model is a joint probability
model as presented by Li et al. (2004). The non-transliteration model consists
of two unigram character models which generate the source and target words
independently.
My transliteration model is a simplified form of g2p. I restrict character

alignments to a combination of 0–1,1–1,1–0 character alignments. This is equiv-
alent to the stochastic transducer model of Ristad and Yianilos (1998). I train
my model using EM. The difference to other models that also use EM for
training is that I use EM to learn parameters maximizing the likelihood of the
interpolation of both sub-models rather than only the transliteration model.
This helps the system to model the complete unlabeled data that consists of
both transliterations and non-transliterations, in contrast to the previous sys-
tems which train on only labeled data or on a mixture of labeled and unlabeled
data.
In the next chapter, I present an application of transliteration by incorporat-

ing it into machine translation. I show that it is helpful in more than translating
OOVs. I use a rule-based system for transliteration mining which restricts the
applicability of this machine translation system to only those language pairs

49

2. Background

for which transliteration rules are available. This limitation motivates my work
on unsupervised transliteration mining.

50

3. Machine Translation Through
Transliteration

Transliteration has been previously used in machine translation only as a back-
off measure to translate named entities (NEs) and out-of-vocabulary (OOV)
words in a pre- or post-processing step as outlined in Section 3.2. In this
chapter, I present a novel approach to integrate transliteration into statisti-
cal machine translation and show that transliteration is helpful for more than
just translating out-of-vocabulary words. I use it to increase the weight of
transliterations observed infrequently in the word aligned data and to translit-
erate source language words which are not OOV, but whose target language
transliteration is incorrectly not observed.

3.1. Introduction
The work on the machine translation system is joint work with Nadir Dur-
rani. In this chapter, I will use the pronoun "we" to represent the work of two
persons. We propose a machine translation model that considers both translit-
eration and translation when translating a source word. The transliteration
system is a joint sequence model. For the training, we mine transliteration
pairs using a rule-based mining system which uses the edit distance metric
and hand-crafted transliteration rules. The translation model is defined as a
word-based joint probability model. At decoding time, the system has to decide
whether to translate or transliterate and which translation or transliteration
to choose based on the context. Closely related language pairs like Hindi/Urdu

51

3. Machine Translation Through Transliteration

and Lao/Thai are interesting cases in this scenario. In these language pairs,
the choice of choosing a translation or transliteration is dependent on the con-
text and there are more than one correct transliterations of a word which are
disambiguated using the context. We conduct experiments on the Hindi/Urdu
language pair and show that transliteration is helpful in machine translation.
A complete report on the end-to-end system can be found in Durrani et al.

(2010). An extended description of the transliteration system used can be found
in Sajjad et al. (2011a).

3.2. Previous Work
There has been a significant amount of work on using transliteration to deal
with out-of-vocabulary (OOV) words for SMT systems. These systems focus
on name transliteration, which is largely independent of context. So, the choice
of a transliteration is not dependent on its neighboring words. Figure 3.1 shows
an example of an MT system that uses transliteration in a post-processing step
for translating only OOVs. A second type of MT system uses transliteration
inside of decoding as shown in Figure 3.2. So transliterations compete with
translations on the fly and the decoder has to decide based on the language
model context which translation to choose or which transliteration to choose.
The previous work on these systems is limited to handling OOVs and NEs.
In this chapter, we present a novel model for machine translation which uses
transliteration in decoding like in Figure 3.2. Here, transliterations compete
with translations for all source language words. The system shows an improve-
ment in translation quality and we conclude that transliteration is useful for
more than just translating OOVs. Following is a summary of the previous MT
systems that use transliteration.
Zhao et al. (2007) present a log-linear block transliteration model to translit-

erate unseen named entities in Arabic to English machine translation system.
Their system shows an improvement in machine translation quality. The lim-
itation of their work is that they are transliterating only NEs and not doing

52

3. Machine Translation Through Transliteration

any disambiguation. The best method proposed by Kashani et al. (2007a) in-
tegrates translations provided by external sources such as transliteration or
rule-base translation of numbers and dates, for an arbitrary number of entries
within the input text. The limitation of Kashani et al. (2007a) is that translit-
erations do not compete with the internal phrase table and are only used for
OOV words. They only compete amongst themselves during a second pass of
decoding. Hermjakob et al. (2008) add transliterations to the SMT phrase ta-
ble dynamically such that they can directly compete with translations during
decoding. They first use a named-entity tagger to identify good candidates for
transliteration from the Arabic source text and apply a transliterator to words
that occur up to 50 times in the training corpus. The assumption here is that
frequent words tend to translate properly so there is no need to transliterate
them. They add the transliterations to the phrase table where they compete
with translations during decoding. This is closer to our approach except that
we use transliteration as an alternative to translation for all source language
words. So, for every source word the decoder has to disambiguate between a
number of translation and transliteration options.
Our focus is disambiguation of Hindi homonyms whereas Hermjakob et al.

(2008) are concentrating only on transliterating NE’s. Moreover, they are work-
ing with a large bitext so they can rely on their translation model and only
need to transliterate NEs and OOVs. Our translation model is based on data
which is both sparse and noisy. Therefore we pit transliterations against trans-
lations for every input word. Sinha (2009) presents a rule-based MT system
that uses Hindi as a pivot to translate from English to Urdu. This work also
uses transliteration only for the translation of unknown words.

3.3. Hindi and Urdu Language
Hindi is an official language of India and is written in Devanagari script. Urdu
is the national language of Pakistan, and also one of the state languages in
India, and is written in Perso-Arabic script. Hindi inherits its vocabulary from

53

3. Machine Translation Through Transliteration

Figure 3.1.: Transliteration as
post-processing step in
machine translation

Figure 3.2.: Transliteration in de-
coding

Sanskrit while Urdu descends from several languages including Arabic, Farsi
(Persian), Turkish and Sanskrit. Hindi and Urdu share grammatical structure
and a large proportion of vocabulary that they both inherited from Sanskrit.
Most of the verbs and closed-class words (pronouns, auxiliaries, case-markers,
etc) are the same. Because both languages have lived together for centuries,
some Urdu words which originally came from Arabic and Farsi have also mixed
into Hindi and are now part of the Hindi vocabulary. The spoken form of the
two languages is very similar.
The extent of overlap between Hindi and Urdu vocabulary depends upon

the domain of the text. Text coming from the literary domain like novels or
history tend to have more Sanskrit (for Hindi) and Persian/Arabic (for Urdu)
vocabulary. However, news wire that contains text related to media, sports
and politics, etc., is more likely to have common vocabulary.
In an initial study on a small news corpus of 5000 words, randomly selected

54

3. Machine Translation Through Transliteration

from BBC1 News, we found that approximately 62% of the Hindi types are
also part of the Urdu vocabulary and thus can be transliterated while only 38%
have to be translated. This provides a strong motivation to implement an end-
to-end translation system which strongly relies on high quality transliteration
from Hindi to Urdu.
Hindi and Urdu have similar sound systems but transliteration from Hindi

to Urdu is still very hard. Urdu text is generally written without diacritics
whereas Hindi text is written with diacritics. There are some phonemes in
Hindi that have several orthographic equivalents in Urdu. For example the “z”
soundcan only be written as whenever it occurs in a Hindi word but can be
written as , , and in an Urdu word. Transliteration becomes non-trivial
in cases where the multiple orthographic equivalents for a Hindi word are all
valid Urdu words. Context is required to resolve ambiguity in such cases. Our
transliterator (described in Section 3.4.1 and Section 3.5.1) gives an accuracy
of 81.6% and a 25-best accuracy of 92.3% when tested on a test corpus of 820
words.
The problem we are solving here is more difficult than techniques aimed at

handling OOV words, which focus primarily on name transliteration, because
we need different transliterations in different contexts; in their case context
is irrelevant. For example: consider the problem of transliterating the English
word “read” to a phoneme representation in the context “I will read” versus
the context “I have read”. An example of this for Hindi to Urdu transliteration:
the two Urdu words (face/condition) and (chapter of the Koran)
are both written as (surat) in Hindi. The two are pronounced identically
in Urdu but written differently. In such cases we hope to choose the correct
transliteration by using context. Some other examples are shown in Table 3.1.
Sometimes there is also an ambiguity of whether to translate or transliterate

a particular word. The Hindi word , for example, will be translated to
(peace, sakun) when it is a common noun but transliterated to (shanti,

1http://www.bbc.co.uk/hindi/index.shtml

55

3. Machine Translation Through Transliteration

Hindi Urdu Roman Gloss

/ Aam Mango/Ordinary
/ Jaali Fake/Net

/ Shaer Lion/Verse

Table 3.1.: Hindi words that can be transliterated differently in different con-
texts

Hindi Urdu Roman Gloss

/ Seema Border/Seema
/ Ambar Sky/Ambar
/ Vijay Victory/Vijay

Table 3.2.: Hindi words that can be translated or transliterated in different
Contexts

shanti) when it is a proper name. We try to model whether to translate or
transliterate in a given situation. Some other examples are shown in Table 3.2.

3.4. Our Approach
We present a conditional probability model and a joint probability model
for translation. Both of our models combine a character-based transliteration
model with a word-based translation model. Our models look for the most
probable Urdu token sequence un1 for a given Hindi token sequence hn1 . We
assume that each Hindi token is mapped to exactly one Urdu token and that
there is no reordering. The assumption of no reordering is reasonable given
the fact that Hindi and Urdu have identical grammar structure and the same

56

3. Machine Translation Through Transliteration

word order. An Urdu token might consist of more than one Urdu word.2 The
following sections give a mathematical formulation of our two models, Model-1
and Model-2.

3.4.1. Model-1 : Conditional Probability Model

Applying a noisy channel model to compute the most probable translation ûn1 ,
we get:

arg max
un1

p(un1 |hn1) = arg max
un1

p(un1)p(hn1 |un1) (3.1)

Language Model

The language model (LM) p(un1) is implemented as an n-gram model using the
SRILM-Toolkit (Stolcke, 2002) with Kneser-Ney smoothing. The parameters of
the language model are learned from a monolingual Urdu corpus. The language
model is defined as:

p(un1) =
n∏
i=1

pLM(ui|ui−1
i−k) (3.2)

where k is a parameter indicating the amount of context used (e.g., k = 4
means 5-gram model). The token sequence un1 is converted to a word sequence
wm1 in order to compute its LM probability. ui can be a single or a multi-
word token. A multi-word token consists of two or more Urdu words. For a
multi-word ui we do multiple language model look-ups, one for each uix in
ui = ui1 , . . . , uim and take their product to obtain the value pLM(ui|ui−1

i−k).

Language Model for Unknown Words: Our model generates translitera-
tions that can be known or unknown to the language model and the translation

2 This occurs frequently in case markers with nouns, derivational affixes and compounds
etc. These are written as single words in Hindi as opposed to Urdu where they are written
as two words. For example (beautiful ; khobsurat) and (your’s ; apka) are
written as (khob surat) and (ap ka) respectively in Urdu.

57

3. Machine Translation Through Transliteration

model. We refer to the words known to the language model and to the trans-
lation model as LM-known and TM-known words respectively and to words
that are unknown as LM-unknown and TM-unknown respectively.
We assign a special value ψ to the LM-unknown words. If one or more

uix in a multi-word ui are LM-unknown we assign a language model score
pLM(ui|ui−1

i−k) = ψ for the entire ui, meaning that we consider partially known
transliterations to be as bad as fully unknown transliterations. The parameter
ψ controls the trade-off between LM-known and LM-unknown transliterations.
It does not influence translation options because they are always LM-known in
our case. This is because our monolingual corpus also contains the Urdu part
of the translation corpus. The optimization of ψ is described in Section 3.5.2.

Transliteration Model

We define a character-based transliteration model pc(h|u) in terms of pc(h, u), a
joint character model, which is also used for Chinese-English back-transliteration
(Li et al., 2004) and Bengali-English name transliteration (Ekbal et al., 2006).
The character-based transliteration probability is defined as follows:

pc(h, u) =
∑

an1∈align(h,u)
p(an1)

=
∑

an1∈align(h,u)

n∏
i=1

p(ai|ai−1
i−j) (3.3)

where ai is a pair consisting of the i-th Hindi character hi and the sequence of
0 or more Urdu characters that it is aligned with. A sample alignment is shown
in Table 3.4(b) in Section 3.5.1. Our best results are obtained with a 5-gram
model. The parameters p(ai|ai−1

i−j) are estimated from a small transliteration
corpus which we automatically extracted from the translation corpus. The
extraction details are also discussed in Section 3.5.1. Because our overall model
is a conditional probability model, joint-probabilities are marginalized using
character-based prior probabilities:

58

3. Machine Translation Through Transliteration

pc(h|u) = pc(h, u)
pc(u) (3.4)

The prior probability pc(u) of the character sequence u = cm1 is defined with
a character-based language model:

pc(u) =
m∏
i=1

p(ci|ci−1
i−j) (3.5)

The parameters p(ci|ci−1
i−j) are estimated from the Urdu part of the character-

aligned transliteration corpus.

Translation Model

The translation model (TM) p(hn1 |un1) is approximated with a context-independent
model:

p(hn1 |un1) =
n∏
i=1

p(hi|ui) (3.6)

where hi and ui are Hindi and Urdu tokens respectively. Our combined model
estimates the conditional probability p(hi|ui) by interpolating a word-based
(translation) model and a character-based (transliteration) model.

p(hi|ui) = λpw(hi|ui) + (1− λ)pc(hi|ui) (3.7)

The parameters of the word-based translation model pw(h|u) are estimated
from the word alignments of a small parallel corpus. We only retain 1-1/1-N
(1 Hindi word, 1 or more Urdu words) alignments and throw away N-1 and
M-N alignments for our models. This is further discussed in Section 3.5.1.
Replacing Equation (3.4) in Equation (3.7) we get:

p(hi|ui) = λpw(hi|ui) + (1− λ)pc(hi, ui)
pc(ui)

(3.8)

Having all the components of our model defined we insert (3.8) and (3.2) in

59

3. Machine Translation Through Transliteration

(3.1) to obtain the final equation:

ûn1 = arg max
un1

n∏
i=1

pLM(ui|ui−1
i−k)[λpw(hi|ui) + (1− λ)pc(hi, ui)

pc(ui)
] (3.9)

The optimization of the interpolating factor λ is discussed in Section 3.5.2.

3.4.2. Model-2 : Joint Probability Model

This section briefly defines a variant of our model where we interpolate joint
probabilities instead of conditional probabilities. The motivation behind us-
ing joint probability p(h, u) instead of conditional probability p(h|u) is that
the joint probability pw(h, u) is easily interpolated with the character-based
translation model, which is also a joint model. Again, the translation model
p(hn1 |un1) is approximated with a context-independent model:

p(hn1 |un1) =
n∏
i=1

p(hi|ui) =
n∏
i=1

p(hi, ui)
p(ui)

(3.10)

The joint probability p(hi, ui) of a Hindi and an Urdu word is estimated by
interpolating a word-based model and a character-based model.

p(hi, ui) = λpw(hi, ui) + (1− λ)pc(hi, ui) (3.11)

and the prior probability p(ui) is estimated as:

p(ui) = λpw(ui) + (1− λ)pc(ui) (3.12)

The parameters of the translation model pw(hi, ui) and the word-based prior
probabilities pw(ui) are estimated from the 1-1/1-N word-aligned corpus (the
one that we also used to estimate translation probabilities pw(hi|ui) previ-
ously).
The character-based transliteration probability pc(hi, ui) and the character-

based prior probability pc(ui) are defined by (3.3) and (3.5) respectively in the

60

3. Machine Translation Through Transliteration

previous section. Putting (3.11) and (3.12) in (3.10) we get

p(hn1 |un1) =
n∏
i=1

λpw(hi, ui) + (1− λ)pc(hi, ui)
λpw(ui) + (1− λ)pc(ui)

(3.13)

The idea is to interpolate joint probabilities and divide them by the interpo-
lated marginals. The final equation for Model-2 is given as:

ûn1 = arg max
un1

n∏
i=1

pLM(ui|ui−1
i−k)×

λpw(hi, ui) + (1− λ)pc(hi, ui)
λpw(ui) + (1− λ)pc(ui)

(3.14)

3.4.3. Search

The decoder performs a stack-based search using a beam-search algorithm
similar to the one used in Pharaoh (Koehn, 2004a). It searches for an Urdu
string that maximizes the product of translation probability and the language
model probability (Equation3.1) by translating one Hindi word at a time. It
is implemented as a two-level process. At the lower level, it computes n-best
transliterations for each Hindi word hi according to pc(h, u). The joint prob-
abilities given by pc(h, u) are marginalized for each Urdu transliteration to
give pc(h|u). At the higher level, transliteration probabilities are interpolated
with pw(h|u) and then multiplied with language model probabilities to give the
probability of a hypothesis. We use 20-best translations and 25-best translit-
erations for pw(h|u) and pc(h|u) respectively and a 5-gram language model.
We start with an empty hypothesis. Input is read from left to right and the

Hindi words are translated one by one. A hypothesis is expanded by picking
a possible translation/transliteration of the next Hindi word. The parameters
pw(h|u) and pc(h|u) are both non-zero only for options that occur in the inter-
section of the two sets otherwise pc(h|u) is zero for translations and pw(h|u) is
zero for transliterations. The language model probabilities are calculated and
the hypothesis probability is updated. A Hindi word is marked as translated
after its n-best translation and transliteration lists are exhausted.

61

3. Machine Translation Through Transliteration

The hypotheses are maintained in stacks. Each stack Si stores hypotheses for
possible translations up to Hindi word hi. To keep the search space manageable
and time complexity polynomial we apply pruning and recombination. Since
our model uses monotonic decoding we only need to recombine hypotheses that
have the same context (last n-1 words). Next we do histogram-based pruning,
maintaining the 100-best hypotheses for each stack.

3.5. Evaluation

3.5.1. Training

This section discusses the training of the different model components - trans-
lation model, language model and transliteration model. The translation prob-
abilities are learned using a parallel corpus. For language model, we use mono-
lingual data in addition to the target side of the parallel corpus. The transliter-
ation model requires a list of transliteration pairs for training. We use an edit
distance metric with the hand-crafted transliteration rules to extract translit-
eration pairs from word-aligned parallel corpus. The following subsections de-
scribe each corpus in detail.

Translation Corpus

We used the freely available EMILLE Corpus as our bilingual resource which
contains roughly 13,000 Urdu and 12,300 Hindi sentences. From these we were
able to sentence-align 7000 sentence pairs using the sentence alignment algo-
rithm given by Moore (2002).
The word alignments for this task were created by using GIZA++ (Och and

Ney, 2003) in both directions. We extracted a total of 107323 alignment pairs
(5743 N-1 alignments, 8404 M-N alignments and 93176 1-1/1-N alignments).
Of these alignments M-N and N-1 alignment pairs were ignored. We manually
inspected a sample of 1000 instances of M-N/N-1 alignments and found that
more than 70% of these were (totally or partially) wrong. Of the 30% cor-

62

3. Machine Translation Through Transliteration

rect alignments, roughly one-third constitute N-1 alignments. Most of these
are cases where the Urdu part of the alignment actually consists of two (or
three) words but was written without space because of lack of standard writing
convention in Urdu. For example (can go ; ja saktay) is alternatively
written as (can go ; jasaktay) i.e. without space. We learned that these
N-1 translations could be safely dropped because we can generate a separate
Urdu word for each Hindi word. For valid M-N alignments we observed that
these could be broken into 1-1/1-N alignments in most of the cases. We also
observed that we usually have coverage of the resulting 1-1 and 1-N alignments
in our translation corpus. Looking at the noise in the incorrect alignments we
decided to drop N-1 and M-N cases. We do not model deletions and insertions
so we ignored null alignments. Also 1-N alignments with gaps were ignored.
Only the alignments with contiguous words were kept.

Monolingual Corpus

Our monolingual Urdu corpus consists of roughly 114K sentences. This com-
prises 108K sentences from the data made available by the University of
Leipzig3 + 5600 sentences from the training data of each fold during cross
validation.

Transliteration Corpus

The training corpus for transliteration is extracted from the 1-1/1-N word-
alignments of the EMILLE corpus discussed in Section 3.5.1. We use an edit
distance algorithm to align this training corpus at the character level and we
eliminate word pairs with high edit distance which are unlikely to be translit-
erations.
We used our knowledge of the Hindi and Urdu scripts to define the initial

character mapping. The mapping was further extended by looking into avail-

3http://corpora.informatik.uni-leipzig.de/

63

3. Machine Translation Through Transliteration

Table 3.3.: Hindi/Urdu handcrafted equivalence rules

able Hindi/Urdu transliteration systems[4,5] and other resources (Gupta, 2004;
Malik et al., 2008; Jawaid and Ahmed, 2009). Each pair in the character map
is assigned a cost. A Hindi character which is always mapped to the same Urdu
character is assigned zero cost. In some cases, a Hindi character, say H1, can
be mapped to several different Urdu characters, say U1, U2 and U3. We assign
an equal cost of 0.3 to all three mappings H1 to U1, H1 to U2 and H1 to U3 as
shown in the last three rows of Table 3.3. Likewise, I assign a cost of 0.2 to the
mappings generated from an Hindi character mapped to two Urdu characters.
The edit distance metric allows insert, delete and replace operations. We

manually defined the cost of edit operations. We set a cost of 0.6 for deletions
and insertions, except the deletion of Hindi diacritics where the cost of deletion
is zero. These costs are optimized on held out data.
We now discuss two special phenomena: If two identical characters occur

next to each other in an Urdu word then either only one character is written
with a shadda sign after it or both characters are written next to each
other. The shadda sign is treated as a diacritic by most Urdu writers and is
thus frequently omitted in Urdu text. We deleted all shadda characters in a

4CRULP: http://www.crulp.org/software/langproc.htm
5Malerkotla.org: http://translate.malerkotla.co.in

64

3. Machine Translation Through Transliteration

preprocessing step in order to obtain a consistent representation. Hindi, on
the other hand, uses a special joining symbol between two characters to write
conjuncts. If the joining symbol is used between two identical characters then
it will be transliterated with a shadda in Urdu. Assume the joining symbol
is “z" and L is a character in Hindi. The occurrence L“z"L in Hindi will be
transliterated as L in Urdu. In the hand-crafted rules, we add separate entries
mapping Hindi L“z"L to Urdu L.
Urdu and Hindi differ in their word definition for some particular categories.

For example, in Hindi the case marker is always attached to the pronoun,
whereas in Urdu, the case marker can be written either as a separate token
after the pronoun or can be attached to the pronoun. The edit distance metric
was modified to avoid penalizing spaces in Urdu text.
The raw list of word pairs extracted from the aligned training corpus con-

tains translations (that are not transliterations), transliterations and alignment
errors. We apply the edit distance metric to the list of word pairs and extract
the list of transliteration pairs. We optimized the costs on a held-out set. We
filter out word pairs with a cost of more than 0.6 thus allowing only one dele-
tion/insertion or at most two ambiguous replacements in the Hindi/Urdu pairs
(Table 3.3). If we decrease the filtering threshold or increase the replacement
cost, the number of types extracted reduces significantly.
We align the list of word pairs at the character level using the same hand-

crafted equivalence rules and the edit distance algorithm. We get four kinds of
alignments of Hindi characters to Urdu characters i.e. 1−N , ∅−N , N−∅ and
N − 1. The alignments are modified by merging unaligned ∅ − N alignments
(no character on source side, N character on target side) with the preceding
alignment pair. If there is no preceding alignment pair then it is merged with
the following pair. Table 3.4 gives an example showing initial alignment (a)
and the final alignment (b) after applying the merge operation. Our model
retains N − ∅ alignments as deletion operations.
We apply a threshold on the edit distance cost of the character aligned

word pairs and extract character aligned transliteration pairs. The parame-
ters pc(h, u) and pc(u) are trained on the aligned transliteration pairs using

65

3. Machine Translation Through Transliteration

a) Hindi ∅ b c ∅ e f
Urdu A XY C D ∅ F

b) Hindi b c e f
Urdu AXY CD ∅ F

Table 3.4.: Alignment (a) before (b) after merge

Figure 3.3.: Complete procedure of the transliteration system

the SRILM toolkit. We use Add-1 smoothing for unigrams and Kneser-Ney
smoothing for higher n-grams. The DISAMBIG command of the SRILM toolkit
uses pc(h, u) and a map file (source to target language character mappings with
their probability) for training and generates N-best transliterations of the in-
put source words. We use probability of one for all character mappings. These
probabilities are later automatically learned from the training data. Figure 3.4
shows an example of a map file of Hindi/Urdu. The complete training proce-
dure of the transliteration system starting from the 1-1/1-N word alignments
to decoder is summarized in Figure 3.3.

66

3. Machine Translation Through Transliteration

Figure 3.4.: An example of a map file used in the DISAMBIG module of Figure
3.3. A Hindi character h is mapped with one or more Urdu charac-
ters u with probability 1.0. Due to the right to left text direction
of Urdu, the character mappings look a bit different. An example
of character mapping is "h-u 1.0"

67

3. Machine Translation Through Transliteration

Diacritic Removal and Normalization

In Urdu, short vowels are represented with diacritics but these are rarely writ-
ten in practice. In order to keep the data consistent, all diacritics are removed.
This loss of information is not harmful when transliterating/translating from
Hindi to Urdu because undiacritized text is equally readable to native speakers
as its diacritized counterpart. However leaving occasional diacritics in the cor-
pus can worsen the problem of data sparsity by creating spurious ambiguity.6

There are a few Urdu characters that have multiple equivalent Unicodes. All
such forms are normalized to have only one representation.7

3.5.2. Experimental Setup

We perform a 5-fold cross validation taking 4/5 of the data as training and
1/5 as test data. Each fold comprises roughly 1400 test sentences and 5600
training sentences.

Parameter Optimization

Our model contains two parameters λ (the interpolating factor between trans-
lation and transliteration modules) and ψ (the factor that controls the trade-off
between LM-known and LM-unknown transliterations). Both of these param-
eters are optimized as described below.
Because our training data is very sparse we do not use held-out data for

parameter optimization. Instead we optimize these parameters by performing
a 2-fold optimization for each of the 5 folds. Each fold is divided into two
halves. The parameters λ and ψ are optimized on the first half and the other
half is used for testing, then optimization is done on the second half and the

6It should be noted though that diacritics play a very important role when transliterating
in the reverse direction because these are virtually always written in Hindi as dependent
vowels.

7www.crulp.org/software/langproc/urdunormalization.htm

68

3. Machine Translation Through Transliteration

first half is used for testing. The optimal value for parameter λ occurs between
0.7-0.84 and for the parameter ψ between 1e−5 and 1e−10.

Results

Baseline Pb0: We ran Moses (Koehn et al., 2007) using Koehn’s training
scripts,8 doing a 5-fold cross validation with no reordering.9 For the other pa-
rameters we use the default values i.e. 5-gram language model and maximum
phrase-length= 6. Again, the language model is implemented as an n-gram
model using the SRILM-Toolkit with Kneser-Ney smoothing. Each fold com-
prises roughly 1400 test sentences. From the data in the other folds, we used
5000 in training and 600 in dev.10 We also used two methods to incorporate
transliterations in the phrase-based system:

Post-process Pb1: All the OOV words in the phrase-based output are re-
placed with their top-candidate transliteration as given by our transliteration
system. This is similar to the method proposed by (Kashani et al., 2007a) other
than that they give n-best transliterations to their system along with their
probabilities and let the model choose the best one based on internal decoder
features whereas we are feeding in the transliteration given the phrase-based
system is unable to produce translation.

Pre-process Pb2: Instead of adding transliterations as a post process we do
a second pass by adding the unknown words with their top-candidate translit-
eration to the training corpus and rerun Koehn’s training script with the new
training corpus and run the decoder again.

8http://statmt.org/wmt08/baseline.html
9Results are worse with reordering enabled.

10After having the MERT parameters, we add the 600 dev sentences back into the training
corpus, retrain GIZA, and then estimate a new phrase table on all 5600 sentences. We
then use the MERT (Och, 2003) parameters obtained before together with the newer
(larger) phrase-table set.

69

3. Machine Translation Through Transliteration

Systems F1 F2 F3 F4 F5 Avg

Pb0 21.8 14.3 10.6 10.8 14.0 14.3
Pb1 26.9 15.7 11.6 11.7 15.4 16.25
Pb2 26.3 15.7 11.5 12.0 15.2 16.13
M1 35.1 18.5 11.9 12.6 15.0 18.6
M2 31.7 17.4 11.0 11.5 13.7 17.05

Table 3.5.: Comparing Model-1 and Model-2 with phrase-based systems where
Fi is the ith fold

Table 3.5 shows results (taking arithmetic average over 5 folds) from Model-
1 and Model-2 in comparison with three baselines discussed above. Both our
systems (Model-1 and Model-2) beat the baseline phrase-based system with a
BLEU point difference of 4.30 and 2.75 respectively. The transliteration aided
phrase-based systems Pb1 and Pb2 are closer to our Model-2 results but are
way below Model-1 results. The difference of 2.35 BLEU points between M1

and Pb1 indicates that transliteration is useful for more than only translating
OOV words for language pairs like Hindi/Urdu. Our models choose between
translations and transliterations based on context unlike the phrase-based sys-
tems Pb1 and Pb2 which use transliteration only as a tool to translate OOV
words.
The results from Fold 1 are much higher than other folds especially Fold 3

and Fold 4 where they are roughly 3 times lower. We observed that the data in
EMILLE is not uniform. In Fold 1 translators have preferred to transliterate
where ever it is possible. Fold 2 is a good mix of translations and transliter-
ations whereas Fold 3, 4 and 5 are largely translated. This explains the fact
that our results are roughly the same as phrase-based results for these folds
whereas transliteration gives us a massive gain in fold 1 and a reasonable
advantage in Fold 2. The reason for this is that the Urdu part of EMILLE

70

3. Machine Translation Through Transliteration

was partially translated directly from English to Urdu and partially translated
from Hindi to Urdu. We suspect that due to the similar sentence structure of
Hindi/Urdu, translators unintentionally stick to the same sentence structure
as that of the source sentence and prefer to transliterate Hindi words to Urdu
words where possible. That is why Fold 1 and Fold 2 have a higher number of
transliterations than other folds.

3.6. Error Analysis
Based on preliminary experiments we found three major flaws in our initial for-
mulations. This section discusses each one of them and provides some heuristics
and modifications that we employ to try to correct deficiencies we found in the
two models described in Section 3.4.1 and Section 3.4.2.

3.6.1. Heuristic-1

A lot of errors occur because our translation model is built on very sparse
and noisy data. The motivation for this heuristic is to counter wrong align-
ments at least in the case of verbs and functional words (which are often
transliterations). This heuristic favors translations that also appear in the n-
best transliteration list over only-translation and only-transliteration options.
We modify the translation model for both the conditional and the joint model
by adding another factor which strongly weighs translation+transliteration op-
tions by taking the square-root of the product of the translation and translit-
eration probabilities. Thus modifying equations (3.8) and (3.11) in Model-1
and Model-2 we obtain equations (3.15) and (3.16) respectively:

p(hi|ui) = λ1pw(hi|ui) + λ2
pc(hi, ui)
pc(ui)

+ λ3

√√√√pw(hi|ui)
pc(hi, ui)
pc(ui)

(3.15)

71

3. Machine Translation Through Transliteration

p(hi, ui) = λ1pw(hi, ui) + λ2pc(hi, ui)

+ λ3

√
pw(hi, ui)pc(hi, ui) (3.16)

For the optimization of lambda parameters we hold the value of the transla-
tion coefficient λ1

11 and the transliteration coefficient λ2 constant (using the
optimized values as discussed in Section 3.5.2) and optimize λ3 again using
2-fold optimization on all the folds as described above. After optimization, we
rescale the lambdas to make their sum equal to 1.

3.6.2. Heuristic-2

When an unknown Hindi word occurs for which all transliteration options are
LM-unknown then the best transliteration should be selected. The problem in
our original models is that a fixed LM probability ψ is used for LM-unknown
transliterations. Hence our model selects the transliteration that has the best
pc(hi,ui)
pc(ui) score i.e. we maximize pc(hi|ui) instead of pc(ui|hi) (or equivalently
pc(hi, ui)). The reason is an inconsistency in our models. The language model
probability of unknown words is uniform (and equal to ψ) whereas the transla-
tion model uses the non-uniform prior probability pc(ui) for these words. There
is another reason why we can not use the value ψ in this case. Our translit-
erator model also produces space inserted words. The value of ψ is very small
because of which transliterations that are actually LM-unknown, but are mis-
takenly broken into constituents that are LM-known, will always be preferred
over their counter parts. An example of this is (America) for which
two possible transliterations as given by our model are (america, without
space) and (ameri ca, with space). The latter version is LM-known as
its constituents are LM-known. Our models always favor the latter version.
Space insertion is an important feature of our transliteration model. We want
our transliterator to tackle compound words, derivational affixes, case-markers

11The translation coefficient λ1 is same as λ used in previous models and the transliteration
coefficient λ2 = 1− λ

72

3. Machine Translation Through Transliteration

with nouns that are written as one word in Hindi but as two or more words in
Urdu. Examples were already shown in Section 3.4’s footnote.
We eliminate the inconsistency by using pc(ui) as the 0-gram back-off prob-

ability distribution in the language model. For an LM-unknown transliteration
we now get in Model-1:

p(ui|ui−1
i−k)[λpw(hi|ui) + (1− λ)pc(hi, ui)

pc(ui)
]

= p(ui|ui−1
i−k)[(1− λ)pc(hi, ui)

pc(ui)
]

= [
k∏
j=0

α(ui−1
i−j)]pc(ui)[(1− λ)pc(hi, ui)

pc(ui)
]

= [
k∏
j=0

α(ui−1
i−j)][(1− λ)pc(hi, ui)]

where ∏k
j=0 α(ui−1

i−j) is just the constant that SRILM returns for unknown
words. The last line of the calculation shows that we simply drop pc(ui) if
ui is LM-unknown and use the constant ∏k

j=0 α(ui−1
i−j) instead of ψ. A similar

calculation for Model-2 gives ∏k
j=0 α(ui−1

i−j)pc(hi, ui).

3.6.3. Heuristic-3

This heuristic discusses a flaw in Model-2. For transliteration options that are
TM-unknown, the pw(h, u) and pw(u) factors become zero and the translation
model probability as given by Equation(3.13) becomes:

(1− λ)pc(hi, ui)
(1− λ)pc(ui)

= pc(hi, ui)
pc(ui)

In such cases the λ factor cancels out and no weighting of word translation
vs. transliteration occurs anymore. As a result of this, transliterations are
sometimes incorrectly favored over their translation alternatives.
In order to remedy this problem we assign a minimal probability β to the

word-based prior pw(ui) in case of TM-unknown transliterations, which pre-

73

3. Machine Translation Through Transliteration

Systems F1 F2 F3 F4 F5 Avg

M1 35.1 18.5 11.9 12.6 15.0 18.6
M2 31.7 17.4 11.0 11.5 13.7 17.05
M1H1 35.9 18.6 12.0 12.7 15.1 18.86
M2H1 33.7 17.4 11.2 11.7 13.8 17.56
M1H2 36.2 18.6 11.9 12.6 15.5 18.97
M2H2 34.2 18.0 11.1 11.7 14.3 17.85
M1H12 37.2 18.7 12.4 12.8 15.6 19.35
M2H12 36.7 18.0 11.2 11.7 14.2 18.34
M2H3 33.9 18.7 12.0 12.7 15.3 18.52
M2H13 36.3 18.7 12.1 12.5 15.0 18.93
M2H23 34.4 18.6 11.9 12.6 15.3 18.55
M2H123 36.9 18.7 12.0 12.4 15.1 19.00

Table 3.6.: Applying heuristics 1 and 2 and their combinations to Model-1 and
Model-2

vents it from ever being zero. Because of this addition the translation model
probability for LM-unknown words becomes:

(1− λ)pc(hi, ui)
λβ + (1− λ)pc(ui)

where β = 1
Urdu Types in TM

3.7. Final Results
This section shows the improvement in BLEU score by applying heuristics
and combinations of heuristics in both the models. Tables 3.6 and 3.8 show
the improvements achieved by using the different heuristics and modifications
discussed in Section 3.6. We refer to the results as MxHy where x denotes
the model number, 1 for the conditional probability model and 2 for the joint
probability model and y denotes a heuristic or a combination of heuristics

74

3. Machine Translation Through Transliteration

H1 H2 H12

M1 18.86 18.97 19.35
M2 17.56 17.85 18.34

Table 3.7.: Summary of results of applying Heuristic 1 and Heuristic 2 and
their combinations to Model-1 and Model-2

H3 H13 H23 H123

M2 18.52 18.93 18.55 19.00

Table 3.8.: Summary of results of applying Heuristic 3 and its combinations
with other heuristics to Model-2

applied to that model.12

Both heuristics (H1 and H2) show improvements over their base models M1

and M2. Heuristic-1 shows notable improvement for both models in parts of
test data which has high number of common vocabulary words. Using heuristic
2 we were able to properly score LM-unknown transliterations against each
other. Using these heuristics together we obtain a gain of 0.75 over M-1 and a
gain of 1.29 over M-2.
Heuristic-3 remedies the flaw inM2 by assigning a special value to the word-

based prior pw(ui) for TM-unknown words which prevents the cancellation of
interpolating parameter λ. M2 combined with heuristic 3 (M2H3) results in a
1.47 BLEU point improvement and combined with all the heuristics (M2H123)
gives an overall gain of 1.95 BLEU points and is close to our best results
(M1H12).
We concatenate all the fold results to perform significance test. Both our

12For example M1H1 refers to the results when heuristic-1 is applied to model-1 whereas
M2H12 refers to the results when heuristics 1 and 2 are together applied to model 2.

75

3. Machine Translation Through Transliteration

best systems M1H12 and M2H123 are statistically significant (p < 0.05)13 over
all the baselines discussed in Section 3.5.2.
One important issue that has not been investigated yet is that BLEU has

not yet been shown to have good performance in morphologically rich target
languages like Urdu, but there is no metric known to work better. We observed
that sometimes on data where the translators preferred to translate rather
than doing transliteration our system is penalized by BLEU even though our
output string is a valid translation. For other parts of the data where the
translators have heavily used transliteration, the system may receive a higher
BLEU score. We feel that this is an interesting area of research for automatic
metric developers, and that a large scale task of translation to Urdu which
would involve a human evaluation campaign would be very interesting.

3.8. Sample Output
This section gives two examples showing how our model (M1H2) performs dis-
ambiguation. Given below are some test sentences that have Hindi homonyms
(underlined in the examples) along with Urdu output given by our system. In
the first example (given in Figure 3.5) the Hindi word can be transliterated
to (lion) or (verse) depending upon the context. Our model correctly
identifies which transliteration to choose given the context.
In the second example (shown in Figure 3.6) the Hindi word can be

translated to (peace, sakun) when it is a common noun but transliterated
to (shanti, shanti) when it is a proper name. Our model successfully decides
whether to translate or transliterate given the context.

13We used Kevin Gimpel’s tester (http://www.ark.cs.cmu.edu/MT/) which uses bootstrap
resampling (Koehn, 2004b), with 1000 samples.

76

3. Machine Translation Through Transliteration

Shaer jungle ka raja he
“Lion is the king of jungle”

Iqbal ka aik khoob surat_d shaer he
“There is a beautiful verse from Iqbal”

Figure 3.5.: Different transliterations in different contexts

phir bhi voh sakun se nahi reh sakta he
“Even then he can’t live peacefully”

Aom Shanti aom farah khan ki dusri film he
“Om Shanti Om is Farah Khan’s second film”

Figure 3.6.: Translation or transliteration

77

3. Machine Translation Through Transliteration

3.9. Summary
We have presented a way to integrate transliterations into machine translation.
In closely related language pairs such as Hindi/Urdu with a significant amount
of vocabulary overlap, transliteration can be very effective in machine trans-
lation. We have addressed two problems. First, transliteration helps overcome
the problem of data sparsity and noisy alignments. We are able to gener-
ate word translations that are unseen in the translation corpus but known to
the language model. Additionally, we can generate novel transliterations (that
are LM-Unknown). Second, generating multiple transliterations for homograph
Hindi words and using language model context helps us solve the problem of
disambiguation.
The transliteration system used in the machine translation system is based

on hand-crafted transliteration rules and the edit distance metric. In order
to use this machine translation system for other language pairs, one needs
transliteration rules. Hand-crafted rules (with weights which work well with
the edit distance algorithm) are only available for few language pairs and
making these rules is an expensive process in terms of time and effort.
In the next chapter, I will present an unsupervised method to mine translit-

eration pairs from a parallel corpus which can later be used to automatically
learn transliteration units.

3.10. Research Contribution
We presented a novel model that incorporates transliteration into machine
translation system. Our experimental results showed that transliteration is
helpful for more than just translating OOVs and named-entities. I use it as a
tool for disambiguation of homonyms which can be translated or transliterated
or transliterated differently based on different contexts.

78

4. Algorithm for Unsupervised
Transliteration Mining

In the previous chapter, I presented a machine translation model that incorpo-
rates a transliteration model. The system showed an improvement in perfor-
mance over the baseline system when tested on the Hindi/Urdu parallel corpus.
The transliteration system used in the MT system is based on hand-crafted
multigrams. In order to replicate the similar experiment for other language
pairs, I need either hand-crafted multigrams or a list of transliteration pairs
to build the transliteration system. I presented the previous work on translit-
eration systems in Section 2.3. Most of the methods are supervised, requiring
language dependent resources that are not available for all language pairs.
Using transliteration mining, the list of transliteration pairs can be mined au-
tomatically from a parallel corpus. However, all previous mining systems are
either supervised or semi-supervised as mentioned in Section 2.4. There is no
unsupervised system in the literature.
In this chapter, I show that it is possible to extract transliteration pairs from

a parallel corpus using an unsupervised method. The automatically extracted
transliteration pairs can then be used to build a transliteration system.

4.1. Introduction
I propose an unsupervised transliteration mining algorithm to mine transliter-
ation pairs from parallel corpora. It takes a list of word pairs for training and
iteratively mines transliteration pairs from it. For the list of word pairs, I first

79

4. Algorithm for Unsupervised Transliteration Mining

align a bilingual corpus at the word level using GIZA++ and create a word-
aligned list containing a mix of non-transliterations and transliterations. The
non-transliteration is defined as a word pair which is not a transliteration pair.
It contains misalignments, translations, etc. I train a statistical transliterator
on the word-aligned list. The transliterator is able to learn some transliteration
information from the noisy data. I then filter out a few word pairs (those which
have the lowest transliteration probabilities according to the trained translit-
erator) from the word-aligned list which are likely to be non-transliterations. I
retrain the transliterator on the filtered list. This process is iterated, filtering
out more and more non-transliteration pairs until a nearly clean list of translit-
eration word pairs is left. The optimal number of iterations is automatically
determined by a novel algorithm for stopping criterion. The published report
of this work can be found in Sajjad et al. (2011b).

4.2. Models
My algorithms use two different models. The first model is a joint character
sequence model which I apply to transliteration mining. I use the grapheme-
to-phoneme converter g2p to implement this model. The other model is a
standard phrase-based MT model which I apply to transliteration (as opposed
to transliteration mining). I build it using the Moses toolkit. Figure 4.2 and
Figure 4.3 show the complete procedure of my algorithms with the models.

4.2.1. Joint Sequence Model Using g2p

Here, I briefly describe g2p using notation from Bisani and Ney (2008). The
details of the model, its parameters and the utilized smoothing techniques can
be found in Bisani and Ney (2008). The training data is a word-aligned list (a
set of word pairs consisting of a source word e and its presumed transliteration
f) extracted from a word-aligned parallel corpus.
g2p builds a joint sequence model on the character sequences of the word

pairs and infers m-to-n alignments between source and target characters with

80

4. Algorithm for Unsupervised Transliteration Mining

Expectation Maximization (EM) training. The m-to-n character alignment
units are referred to as multigrams q. The model built on multigrams con-
sisting of source and target character sequences greater than one learns too
much noise (non-transliteration information) from the training data and per-
forms poorly. In my experiments, I use multigrams with a maximum of one
character on the source and one character on the target side (i.e., 0–1, 1–1,
1–0 character alignment units).
The joint probability p(e, f) of a word pair can be defined as a sum over all

multigram sequences:

p(e, f) =
∑

a∈Align(e,f)
p(a) (4.1)

where Align(e, f) is the set of all possible multigram sequences producing
pair (e, f). The N-gram approximation of the joint probability can be defined
in terms of multigrams qj as:

p(a) = p(qk1) ≈
k+1∏
j=1

p(qj|qj−1
j−N+1) (4.2)

where q0, qk+1 are set to a special boundary symbol.
N-gram models of order > 1 did not work well because these models tended

to learn noise (information from non-transliteration pairs) in the training data.
For my experiments, I only trained g2p with the unigram model.
The model is trained with the EM algorithm. In test mode, I look for the

best sequence of multigrams given a fixed source and target string and return
the probability of this sequence.
For the transliteration mining process, I trained g2p on lists containing both

transliteration pairs and non-transliteration pairs.

4.2.2. Statistical Machine Transliteration System

I build a phrase-based machine translation system for transliteration using the
Moses toolkit (Koehn et al., 2003). I also tried using g2p for implementing

81

4. Algorithm for Unsupervised Transliteration Mining

the transliteration decoder but found Moses to perform better. Moses has an
advantage of using a large language model (LM). I build the LM on the target
word types in the data to be filtered. Secondly, it uses Minimum Error Rate
Training (MERT) which optimizes transliteration accuracy rather than the
likelihood of the training data as g2p does. The training data contains more
non-transliteration pairs than transliteration pairs. I don’t want to maximize
the likelihood of the non-transliteration pairs. Instead I want to optimize the
transliteration performance for test data.
For training Moses as a transliteration system, I treat each word pair as if it

were a parallel sentence, by putting spaces between the characters of each word.
The model is built with the default settings of the Moses toolkit. Except that
the distortion limit d is set to zero (no reordering). The LM is implemented
as a five-gram model using the SRILM-Toolkit (Stolcke, 2002), with Add-1
smoothing for unigrams and Kneser-Ney smoothing for higher n-grams.
Using the log linear formulation, the best target word given a source word

can be described as:

ebest = argmaxe
I∏
i=1

φ(f̄i|ēi)λφ
|e|∏
i=1

pLM(ei|e1...ei−1)λLM (4.3)

The distortion feature is dropped from the formulation as transliteration
involves no reordering. f̄ I1 and ēI1 are the I phrase pairs which together form
to word pair (f, e). φ(f̄i|ēi) is the translation probability of the i-th source
phrase given the i-th target phrase. pLM is the language model probability.
λφ and λLM are the weights of the translation model and the language model
respectively.

4.3. Extraction of Transliteration Pairs
Training of a supervised transliteration system requires a list of transliteration
pairs which is expensive to create. Such lists are usually either built manually
or extracted using a classifier trained on manually labeled data and using other

82

4. Algorithm for Unsupervised Transliteration Mining

Figure 4.1.: Example of an English/Hindi word-aligned list

language dependent information. In this section, I present an iterative method
for the extraction of transliteration pairs from parallel corpora which is fully
unsupervised and language pair independent.
Initially, I extract a word-aligned list from a word-aligned parallel corpus

using GIZA++. I extract all word pairs which occur as 1-to-1 alignments in
the word-aligned corpus and call it the word-aligned list. The extracted word
pairs are either transliterations, other kinds of translations, or misalignments.
I call the word pairs which are not transliterations as non-transliterations.
Figure 4.1 shows an example of an English/Hindi word-aligned list.
In each iteration, I first train g2p on the word-aligned list. Then I delete

those 5% of the (remaining) training data which are least likely to be translit-
erations according to g2p.1 I determine the best iteration according to my stop-
ping criterion and return the filtered dataset from this iteration. The stopping
criterion uses unlabeled held-out data to predict the optimal stopping point.
The following sections describe the transliteration mining method in detail. I
will first describe the iterative filtering algorithm (Algorithm 1) and then the
algorithm for the stopping criterion (Algorithm 2). In practice, I first run Al-
gorithm 2 for 100 iterations to determine the best number of iterations. Then,
I run Algorithm 1 for that many iterations.

1Since I delete 5% from the filtered data, the number of deleted data items decreases in
each iteration.

83

4. Algorithm for Unsupervised Transliteration Mining

Figure 4.2.: Procedure of Algorithm 1

4.3.1. Algorithm: Mining of Transliteration Pairs

Algorithm 1 builds a joint sequence model using g2p on the training data and
computes the joint probability of all word pairs according to g2p. The word
pairs with longer source and target strings get lower probability as compare to
the smaller strings. I normalize the probabilities by taking the Nth square root
where N is the average length of the source and the target string. The train-
ing data contains mostly non-transliteration pairs and a few transliteration
pairs. Therefore the training data is initially very noisy and the joint sequence
model is not very accurate. However it can successfully be used to eliminate a
few word pairs which are very unlikely to be transliterations. On the filtered
training data, I can train a model which is slightly better than the previous
model. Using this improved model, I can eliminate further non-transliterations.
The process is iterated. Ideally, the iterative process of Algorithm 1 should stop
when the training data contains only transliterations. I propose Algorithm 2 to
determine the stopping iteration for Algorithm 1. My results show that at the
iteration determined by my stopping criterion, the filtered set mostly contains

84

4. Algorithm for Unsupervised Transliteration Mining

Algorithm 1 Mining of transliteration pairs
1: training data ←word-aligned list
2: I ← 0
3: repeat
4: Build a joint source channel model on the training data using g2p and

compute the joint probability of every word pair.
5: Remove the 5% word pairs with the lowest length-normalized proba-

bility from the training data. {and repeat the process with the filtered
training data}

6: I ← I+1
7: until I = Stopping iteration from Algorithm 2

transliterations and only a small number of transliterations have been mistak-
enly eliminated (see Section 4.5). Figure 4.2 shows the step-by-step procedure
of Algorithm 1.

4.3.2. Algorithm: Selection of Stopping Criterion

In every step of Algorithm 1, the training data is cleaned by a small percentage.
Therefore, the percentage of transliterations in the training data increases
for every iteration. The idea for selecting the stopping iteration is to build a
transliteration system on the training data of every iteration and evaluate its
quality on a development set. The assumption here is that the transliteration
system built on the training data of iteration j should perform better than the
system built on the training data of iteration j − 1. If this assumption does
not hold for an iteration, I select the training data of the previous iteration as
the filtered data.
The problem here is that I do not have a development set to find the stopping

iteration of Algorithm 1. Therefore, Algorithm 2 automatically determines the
best stopping point of the iterative transliteration mining process by using
held-out data from the word-aligned list. It is an extension of Algorithm 1.
It runs the iterative process of Algorithm 1 on half of the word-aligned list

85

4. Algorithm for Unsupervised Transliteration Mining

(training data) for 100 iterations. For every iteration, it builds a translitera-
tion system on the filtered data. The transliteration system is tested on the
source side of the other half of the word-aligned list (held-out). The output of
the transliteration system is matched against the target side of the held-out
data. (These target words are either transliterations, translations or misalign-
ments.) I match the target side of the held-out data under the assumption
that all matches are transliterations. The iteration where the output of the
transliteration system best matches the held-out data is chosen as the stop-
ping iteration of Algorithm 1.
I will now describe Algorithm 2 in detail. Algorithm 2 initially splits the

word pairs into training and held-out data. This could be done randomly, but
it turns out that this does not work well for some tasks. The reason is that the
parallel corpus contains inflectional variants of the same word. If two variants
are distributed over training and held-out data, then the one in the training
data may cause the transliteration system to produce a correct translation
(but not transliteration) of its variant in the held-out data. This problem is
further discussed in Section 4.5.3. Instead of randomly splitting the data, I
first create clusters of word pairs which have a common prefix of length 2 both
on the source and target language side. I randomly add each cluster either to
the training data or to the held-out data.
I repeat the mining process (described in Algorithm 1) to eliminate non-

transliteration pairs from the training data. For each iteration of Algorithm 2,
i.e., steps 4 to 9, I build a transliteration system on the filtered training data
and test it on the source side of the held-out. I collect statistics on how well the
output of the system matches the target side of the held-out. The matching
scores on the held-out data often make large jumps from iteration to iteration.
I take the median of the results from 9 consecutive iterations (the 4 iterations
before, the current and the 4 iterations after the current iteration) to smooth
the scores. I call this median9. I choose the iteration with the best smoothed
score as the stopping point for the mining process. In my tests, the median9
heuristic indicated an iteration close to the optimal iteration. Figure 4.3 shows
the procedure of Algorithm 2.

86

4. Algorithm for Unsupervised Transliteration Mining

Algorithm 2 Selection of the stopping iteration for the transliteration mining
algorithm
1: Create clusters of word pairs from the word-aligned list which have a com-

mon prefix of length 2 both on the source and target language side.
2: Randomly add each cluster either to the training data or to the held-out

data.
3: I ← 0
4: while I < 100 do
5: Build a joint sequence model on the training data using g2p and com-

pute the length-normalized joint probability of every word pair in the
training data.

6: Remove the 5% word pairs with the lowest probability from the train-
ing data. {The training data will be reduced by 5% of the rest in each
iteration}

7: Build a transliteration system on the filtered training data and test
it using the source side of the held-out and match the output against
the target side of the held-out.

8: I ← I+1
9: end while
10: Collect statistics of the matching results and take the median from 9 con-

secutive iterations (median9).
11: Choose the iteration with the best median9 score for the transliteration

mining process.

Sometimes several nearby iterations have the same maximal smoothed score.
In that case, I choose the one with the highest unsmoothed score. Section 4.5
explains the median9 heuristic in more detail and presents experimental results
showing that it works well.

87

4. Algorithm for Unsupervised Transliteration Mining

Figure 4.3.: Procedure of Algorithm 2

4.4. Transliteration Mining Using the NEWS10
Dataset

I evaluate my transliteration mining algorithm on the dataset from NEWS 2010
shared task on transliteration mining (NEWS10). These are pairs of titles of
Wikipedia pages on the same topic written in different languages. I evaluate my
unsupervised system on four language pairs:2 English/Arabic, English/Hindi,
English/Tamil and English/Russian, and compare it with the semi-supervised
systems presented at the NEWS10 (Kumaran et al., 2010). My unsupervised
system shows an F-measure of up to 92% and outperformed most of the semi-
supervised systems on three language pairs.

2I do not evaluate on the English/Chinese data because the Chinese data requires word
segmentation which is beyond the scope of my work. Another problem is that my extrac-
tion method was developed for alphabetic languages and probably needs to be adapted
before it is applicable to logographic languages such as Chinese.

88

4. Algorithm for Unsupervised Transliteration Mining

4.4.1. Training

The NEWS10 dataset contains training set, reference set and seed set. The
training data is a list of parallel phrases. The reference data is a subset of
the training data which is annotated with positive and negative examples.
The seed data is a small list of positive examples used by the semi-supervised
system for initial training. A few examples of the training, reference and seed
data is mentioned in Section 5.7.1. I make no use of seed data since my system
is fully unsupervised.
I align the parallel phrases of the training data using GIZA++ (Och and

Ney, 2003). The alignment is done in both directions i.e. source to target
and target to source. For each direction, I run GIZA++ with 5 iterations of
Model 1, 4 iterations of the HMM model, and 4 iterations of Model 4. The two
alignments are symmetrized using the grow-diag-final-and heuristic (Koehn
et al., 2003). I extract all word pairs which occur as 1-to-1 alignments in the
word-aligned corpus. I ignore non-1-to-1 alignments because they are less likely
to be transliterations for most language pairs. I remove numbers from the list
as they are non-transliterations according to the definition of NEWS10. The
source language words occurring on the target language side and vice versa are
removed. The extracted set of word pairs will be called word-aligned list later
on. I use it as the training data for Algorithm 1.

4.4.2. Results

I run Algorithm 2 for 100 iterations using the word-aligned list to determine
the stopping iteration. Then, I run Algorithm 1 up to the iterations returned
by Algorithm 2. I calculate the F-measure of my filtered transliteration pairs
against the supplied gold standard using the supplied evaluation tool. Table
4.1 shows the precision and recall of my system. On three language pairs, my
system achieves high precision and high recall with an F-measure of up to
92.2% on the English/Hindi dataset. It also maintains a good balance between
the values of precision and recall.

89

4. Algorithm for Unsupervised Transliteration Mining

P R F
English/Arabic 87.9 86.9 87.4
English/Hindi 90.7 93.9 92.2
English/Tamil 90.9 89.3 90.1
English/Russian 76.8 75.3 76.0

Table 4.1.: Precision, Recall and F-measure of my unsupervised transliteration
mining system on the NEWS10 dataset

Unsupervised Semi-supervised Statistics
My S-Best S-Worst Systems Rank

English/Arabic 87.4 91.5 70.2 16 3
English/Hindi 92.2 94.4 71.4 14 3
English/Tamil 90.1 91.4 57.5 14 3
English/Russian 76.0 87.5 44.4 15 14

Table 4.2.: Summary of results on the NEWS10 dataset where My shows the
F-measure of my unsupervised mining system against the gold stan-
dard using the supplied evaluation tool, S-Best is the best result
from NEWS10 and S-Worst is the worst result from the NEWS10.
Systems is the total number of participants in the subtask, and
Rank is the rank I would have obtained if my system had partici-
pated

I compare my results with the semi-supervised systems that participated
at NEWS10. For English/Arabic, English/Hindi and English/Tamil, my sys-
tem is better than most of the semi-supervised systems presented at the NEWS
2010 shared task for transliteration mining. It achieves an F-measure of 87.4%,
90.7% and 90.9% when evaluated on English/Arabic, English/Hindi and En-
glish/Tamil datasets respectively. Table 4.2 summarizes the F-measures on
these datasets.
On the English/Russian dataset, my system achieves 76% F-measure with

76.8% precision and 75.3% recall which is not good compared with the systems

90

4. Algorithm for Unsupervised Transliteration Mining

Figure 4.4.: Cognates from the English/Russian corpus extracted by my min-
ing system as transliteration pairs. None of them are correct
transliteration pairs according to the gold standard

that participated in NEWS10. The English/Russian corpus contains many
close transliterations which – according to the NEWS10 definition – are not
transliterations of each other. My system learns them and extracts them as
transliterations. Figure 4.4 shows a few examples of close transliterations. All
these pairs differ by one or two ending characters. They are non-transliterations
according to the NEWS10 gold standard and my unsupervised system mines
them as transliterations. The issue of close transliteration is discussed in detail
in Section 5.7.7.
The two best teams on the English/Russian task presented various extrac-

tion methods (Jiampojamarn et al., 2010; Darwish, 2010). Their systems be-
have differently on English/Russian than on other language pairs. Their best
systems for English/Russian are only trained on the seed data and the use
of unlabeled data does not help the performance. Since my system is fully
unsupervised, and the unlabeled data is not useful, I perform badly.

4.5. Transliteration Mining Using Parallel Corpora
The Wikipedia InterLanguage Links shared task data contains a much larger
proportion of transliterations than a parallel corpus. In order to examine how
well my method performs on parallel corpora, I apply it to parallel corpora
of English/Hindi and English/Arabic. This is the first transliteration mining

91

4. Algorithm for Unsupervised Transliteration Mining

evaluation on this task. I manually build gold standard data to compare and
evaluate my system.
Algorithm 2 uses two heuristics – median9 and splitting method. The split-

ting method is used to avoid early peaks in the held-out statistics, and the
median9 heuristic smooths the held-out statistics in order to obtain a single
peak.3 In the following sections, I also describe the median9 heuristic and the
splitting method of Algorithm 2.

4.5.1. Training

I use the English/Hindi corpus from the shared task on word alignment, orga-
nized as part of the ACL 2005 Workshop on Building and Using Parallel Texts
(WA05) (Martin et al., 2005). For English/Arabic, I use a freely available
parallel corpus from the United Nations (UN) (Eisele and Chen, 2010). I ran-
domly take 200,000 parallel sentences from the UN corpus of the year 2000. I
word-aligned the parallel sentences of English/Hindi and English/Arabic using
GIZA++ and apply the grow-diag-final-and heuristic as described in Section
4.4.1. I extract word pairs with 1-to-1 alignments in the word-aligned list. I re-
move numbers from the word-aligned list. If a source language character occurs
on the target language side or vice versa, I remove that word pair.
I create gold standards for both language pairs by randomly selecting a

few thousand word pairs from the word-aligned lists extracted from the two
corpora. I manually tag them as either transliterations or non-transliterations.
The English/Hindi gold standard 4 contains 180 transliteration pairs and 2084
non-transliteration pairs and the English/Arabic gold standard contains 288

3I do not use the seed data in my system. However, to check the correctness of the stopping
point, we tested the transliteration system on the seed data (available with NEWS10)
for every iteration of Algorithm 2. I verified that the median9 held-out statistics and
accuracy on the seed data have their peaks at the same iteration.

4For English/Hindi gold standard, I take a subset of the word-aligned list which consists
of m-to-n alignments broken down to 1-to-1 word pairs. So, the gold standard might
contain more transliterations and non-transliterations then the word-aligned list built
using only the 1-to-1 alignment.

92

4. Algorithm for Unsupervised Transliteration Mining

transliteration pairs and 6639 non-transliteration pairs. The gold standards
are available to the research community.

4.5.2. Motivation for Median9 Heuristic

Algorithm 2 collects statistics from the held-out data (step 10) and selects the
stopping iteration. Due to the noise in the held-out data, the transliteration
accuracy on the held-out data often jumps from iteration to iteration. The
dotted line in Figure 4.7 shows the held-out prediction accuracy for the En-
glish/Hindi parallel corpus. The curve is very noisy and has two peaks. It is
difficult to see the effect of the filtering. I take the median of the results from 9
consecutive iterations to smooth the scores. The solid line in Figure 4.7 shows
a smoothed curve built using the median9 held-out scores. A comparison with
the gold standard (Section 4.5.4) shows that the stopping point (peak) reached
using the median9 heuristic is better than the stopping point obtained with
unsmoothed scores.

4.5.3. Motivation for Splitting Method

Algorithm 2 initially splits the word-aligned list into training and held-out
data. A random split worked well for the WIL data, but failed on the parallel
corpora. The reason is that parallel corpora contain inflectional variants of the
same word. Figure 4.5 (left) shows a few English/Hindi example word pairs
which are morphologically related to other word pairs either in the source
language (2nd) or the target language (5th) or in both (1st, 3rd, 4th). If these
variants are randomly distributed over training and held-out data, then a non-
transliteration word pair such as the English-Hindi pair “change – badlao” may
end up in the training data and the related pair “changes – badlao” in the held-
out data. The Moses system used for transliteration will learn to “transliterate”
(or actually translate) “change” to “badlao”. From other examples, it will learn
that a final “s” can be dropped. As a consequence, the Moses transliterator
may produce the non- transliteration “badlao” for the English word “changes”

93

4. Algorithm for Unsupervised Transliteration Mining

in the held-out data. Such matching predictions of the transliterator which are
actually translations lead to an overestimate of the transliteration accuracy
and may cause Algorithm 2 to predict a stopping iteration which is too early.
I could try to solve this problem by reducing the phrase length of the translit-

eration system. However, this might also decrease the ability of the translit-
eration system to produce correct transliterations. Therefore I instead solve
it in such a way that inflectional variants of a word are placed either in the
training data, or in the held-out, but not in both. In this way, the problem can
be solved.5

I first create clusters of word pairs which have a common prefix of length
2 or more, both on the source language side and on the target language side.
In Figure 4.5, the 1st, 3rd and 4th word pair belong to the same cluster as
they are inflectional variants of each other. I randomly add each cluster either
to the training data or to the held-out data. The word pairs which are not
in any cluster are also randomly added to the training and held-out data (see
Algorithm 2).
The graph in Figure 4.6 shows that the median9 held-out statistics obtained

after a random data split of the Hindi/English corpus contains two peaks which
occur too early. These peaks disappear in the graph of Figure 4.7 which shows
the results obtained after a split with the clustering method.
The overall trend of the smoothed curve in Figure 4.7 is very clear. I start

by filtering out non-transliteration pairs from the data, so the results of the
transliteration system go up. When no more non-transliteration pairs are left, I
start filtering out transliteration pairs and the results of the system go down. I
use this stopping criterion for all language pairs and achieve consistently good
results.

5This solution is appropriate for all of the language pairs used in my experiments, but
should be revisited if there is inflection realized as prefixes, etc.

94

4. Algorithm for Unsupervised Transliteration Mining

Figure 4.5.: A working example of splitting method

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90

ac
cu

ra
cy

iterations

held out
median9

Figure 4.6.: Statistics of held-out prediction of English/Hindi data using mod-
ified Algorithm 2 with random division of the word-aligned list.
The dotted line shows unsmoothed held-out scores and solid line
shows median9 held-out scores

95

4. Algorithm for Unsupervised Transliteration Mining

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90

ac
cu

ra
cy

iterations

held out
median 9

Figure 4.7.: Statistics of held-out prediction of English/Hindi data using Al-
gorithm 2. The dotted line shows unsmoothed held-out scores and
solid line shows median9 held-out scores

4.5.4. Results

According to the gold standard, the English/Hindi and English/Arabic datasets
contain 8% and 4% transliteration pairs respectively. I repeat the same min-
ing procedure – run Algorithm 2 up to 100 iterations and return the stopping
iteration. Then, I run Algorithm 1 up to the stopping iteration returned by
Algorithm 2 and obtain the filtered data.
In the English/Hindi experiments, I automatically stopped at iteration 45,

where 170 transliteration pairs out of 180 and 98 non-transliteration pairs out
of 2084 are left. Table 4.3 shows the precision, recall and F-measure of different
iterations of Algorithm 1. At 50th iteration, the number of non-transliteration
pairs reduces from 2084 to 46 and there is only a loss of 16 transliteration
pairs.
The English/Arabic mining task is harder than the English/Hindi task as it

contains only 4% transliteration pairs. I run Algorithm 2 on the English/Arabic
word-aligned list. It returns iteration 79. Algorithm 1 is then run up to that
iteration. Table 4.4 shows the variation in results on different values of stopping
iteration. At 79th iteration, the system filters out 6580 non-transliteration pairs

96

4. Algorithm for Unsupervised Transliteration Mining

Iteration P R F

0 8.0 100.0 14.7
10 12.5 96.7 22.2
20 20.3 94.4 33.4
30 32.4 94.4 48.3
40 50.3 94.4 65.5
50 78.1 91.1 84.1

Table 4.3.: Transliteration mining results on different values of stopping it-
eration using the English/Hindi parallel corpus against the gold
standard

Iteration P R F

0 4.16 100.0 8.0
10 9.6 96.5 17.5
30 27.9 94.8 43.1
50 49.9 94.8 64.9
70 67.6 91.3 77.7
90 84.8 44.4 58.3

Table 4.4.: Transliteration mining results on different values of stopping iter-
ation using the parallel corpus of English/Arabic against the gold
standard

from 6639 non-transliteration pairs and there is a loss of only 91 transliteration
pairs.
Table 4.5 shows the mining results on the English/Hindi and English/Arabic

corpora. The mining system has wrongly identified a few non-transliteration
pairs as transliterations (see Table 4.5, last column). Most of these word pairs
are close transliterations and differ by only one or two characters from perfect
transliteration pairs. The word-aligned list contains very few transliteration
pairs and might not contain all multigrams of source and target language
characters. The close transliterations provide many valid multigrams and are

97

4. Algorithm for Unsupervised Transliteration Mining

TP FN TN FP P R F

English/Hindi 170 10 2039 45 79.1 94.4 86.1
English/Arabic 197 91 6580 59 77.0 68.4 72.5

Table 4.5.: Transliteration mining results using the parallel corpus of En-
glish/Hindi (EH) and English/Arabic (EA) against the gold stan-
dard

helpful for the mining system. A few examples of close transliteration pairs is
shown in Figure 5.27.

4.6. Summary
I have proposed a method to automatically extract transliteration pairs from
parallel corpora without supervision or linguistic knowledge. I evaluated it
against the supervised and semi-supervised systems of NEWS10 and achieved
high F-measure and performed better than most of the semi-supervised sys-
tems. I also evaluated my method on parallel corpora. This is a more diffi-
cult task than NEWS10 dataset as there are very few transliterations in the
word-aligned list. My unsupervised system achieved high F-measure on both
language pairs.
On English/Russian NEWS10 dataset, my system learned close transliter-

ations and classified them as transliterations. The number of close translit-
erations is very high in the English/Russian data. The unsupervised system
learns to delete the ending characters of these word pairs at high probability
and extracts them as transliterations. This shows that the unlabeled data is
not providing enough evidence to correctly classify close transliterations. A
semi-supervised system that uses a combination of labeled and unlabeled data
might solve this problem. In the next chapter, I present a model-based ap-

98

4. Algorithm for Unsupervised Transliteration Mining

proach to transliteration mining. The model is flexible enough to be used for
supervised, semi-supervised and unsupervised transliteration mining.

4.7. Research Contribution
I showed that transliteration mining can be done in an unsupervised fashion.
The system has competitive results with the state-of-the-art supervised and
semi-supervised systems.
I observed that the unsupervised mining system has problem of wrongly

classifying close transliterations as transliterations when trained on a dataset
with large number of close transliterations. For these datasets, the translitera-
tion pairs in the unlabeled data are not sufficient for the correct classification
of close transliterations.

99

5. Transliteration Mining Model

I call the transliteration mining system described in the previous chapter the
heuristic-based system from now on.
The heuristic-based system is computationally expensive. Algorithm 2 runs

EM training 100 times and each EM training runs for 100 iterations. For ev-
ery EM, it also builds a phrase-based machine translation system (used as a
transliteration model) on the training data. Another weakness of the heuristic-
based system is that it is not extendable to use the available labeled data, which
could help solve the problem of wrongly classifying close transliterations as
transliterations.
In this chapter, I present a novel model of unsupervised transliteration min-

ing. It uses only unlabeled data for training. The system is language pair
independent and very efficient. It requires only a single EM training run to
mine transliteration pairs. I also propose an extension of the unsupervised
model that is able to use the labeled data resources and work both in a semi-
supervised and in a supervised fashion.

5.1. Introduction
I propose an unsupervised transliteration mining model. It models unlabeled
data which consists of transliterations and non-transliterations. I define the
transliteration mining model as a mixture of a transliteration sub-model and
a non-transliteration sub-model. The intuition in dividing the model into two
sub-models is that if there is a good transliteration model, then a translitera-
tion pair should have high probability according to the transliteration model

100

5. Transliteration Mining Model

and a low probability according to the non-transliteration model. Likewise, a
non-transliteration pair should have a low transliteration probability according
to the transliteration model and a high non-transliteration probability.
I propose a semi-supervised extension of my unsupervised model which uses

small labeled data and is able to learn close transliterations correctly. The ba-
sic idea of the semi-supervised system is to rely on the probability estimates
calculated from labeled data and to use unlabeled data probability distribu-
tion as a backoff distribution. An extended presentation and evaluation of my
unsupervised and semi-supervised systems can be found in Sajjad et al. (2012).
I also present a fully supervised model for transliteration mining. It uses an

identical model as that of the unsupervised mining. The only difference is the
training data which consists of only positive labeled examples in contrast to
unlabeled data used in the unsupervised system.
I compare the results of my three systems and show that if labeled data is

available, it is always good to build a semi-supervised system than an unsu-
pervised system or a supervised system.
I define the transliteration model using a joint source channel model (Li

et al., 2004). The character alignments of a source word and a target word
are deduced using Expectation Maximization (EM). The non-transliteration
model is a fixed joint probability model of randomly seeing a source word with
a target word. At test time, a word pair is classified as transliteration if it
has a higher probability assigned by the transliteration sub-model than by the
non-transliteration sub-model.
For semi-supervised system, I modify EM training and add a new S-step to it.

The S-step takes the probability estimates from the unlabeled data (computed
in the M-step) and uses them as a backoff distribution to smooth probabilities
which were estimated from the labeled data. The smoothed probabilities are
then used in the next E-step. In this way, the parameters learned by EM are
constrained to values which are close to those estimated from the labeled data.
All three transliteration mining systems use the same basic model for translit-

eration mining. They differ in the training data. The mathematical formula-

101

5. Transliteration Mining Model

tion, model estimation and implementation details of the systems are described
in the following sections.
This chapter is organized as follows. Section 5.2, 5.3 and 5.4 present my

unsupervised, semi-supervised and supervised transliteration mining models.
In Section 5.5, I describe my higher order transliteration mining models. I dis-
cuss the smoothing to deal with unknowns in testing in Section 5.6. I evaluate
my transliteration mining systems on the dataset provided at NEWS 2010
shared task on transliteration mining (Kumaran et al., 2010) (NEWS10) and
on parallel corpora. Section 5.7 presents an analysis of my unsupervised, semi-
supervised and supervised systems with varying ngram order on the NEWS10
dataset. It also compares the results with the state-of-the-art semi-supervised
and supervised systems. In Section 5.8, I evaluate my mining model on paral-
lel corpora. Section 5.9 summarizes the chapter and Section 5.10 presents the
contributions made in this chapter.

5.2. Unsupervised Transliteration Mining Model
A source word and its corresponding target word can be character-aligned in
many ways. I refer to a possible alignment sequence which aligns a source
word e and a target word f as a. The function Align(e, f) returns the set of
all valid alignment sequences a of a word pair (e, f). The joint transliteration
probability p1(e, f) of a word pair is the sum of the probabilities of all alignment
sequences:

p1(e, f) =
∑

a∈Align(e,f)
p1(a) (5.1)

Transliteration systems are trained on a list of transliteration pairs. The
alignment between the pairs is learned with Expectation Maximization (EM).
I use a simple unigram character alignment model, so an alignment sequence
from function Align(e, f) is a combination of 0–1, 1–1, and 1–0 character
alignments between a source word e and its transliteration f . I refer to a

102

5. Transliteration Mining Model

Source word ∅ c ∅ e f
Target word A C D ∅ F
Multigrams ∅-A c-C ∅-D e-∅ f-F

Table 5.1.: One possible alignment of a word pair (cef, ACDF)

character alignment unit as multigram later on and represent it by the symbol
q.
There can be more than one multigram sequences that represent an align-

ment of a transliteration pair. Table 5.1 shows one possible sequence of multi-
grams of the transliteration pair (cef, ACDF). In a unigram model, the prob-
ability of a sequence of multigrams a is the product of the probabilities of the
multigrams it contains.

p1(a) = p1(q1, q2, ..., q|a|) =
|a|∏
j=1

p1(qj) (5.2)

For an M-gram model, the probability of a sequence of multigrams a is
defined as follows:

p1(a) =
|a|∏
j=1

p1(qj|qj−1
j−M+1) (5.3)

where qj−1
j−M+1 is the preceding context.

For M = 2 and |a| = 4, the formulation would be:

p1(a) = p1(q1|ŝ)p1(q2|q1)p1(q3|q2)p1(q4|q3)p1(/ŝ|q4)

where ŝ and /ŝ are boundary symbols.
The transliteration model p1(e, f) handles only the transliteration pairs.

The transliteration mining system has to learn from data containing both
transliterations and non-transliterations. I propose a second model p2(e, f) to

103

5. Transliteration Mining Model

deal with non-transliteration pairs (the non-transliteration model). In a non-
transliteration word pair, the characters of the source and target words are
unrelated. Therefore, I model them as randomly seeing a source word and a
target word together. The non-transliteration model is a fixed model and uses
random generation of characters from two unigram models (Gale and Church,
1993). It is defined as follows:

p2(e, f) = pE(e) pF (f) (5.4)

pE(e) = ∏|e|
i=1 pE(ei) and pF (f) = ∏|f |

i=1 pF (fi). Likewise Equation 5.3, the
(monolingual) higher order source and target language models can be defined
as pE(e) = ∏|e|

i=1 pE(ei|ei−1
i−M+1) and pF (f) = ∏|f |

i=1 pF (fi|f i−1
i−M+1).

The transliteration mining model is an interpolation of the transliteration
model p1(e, f) and the non-transliteration model p2(e, f):

p(e, f) = (1− λ)p1(e, f) + λp2(e, f) (5.5)

λ is the prior probability of non-transliteration.
Interpolation with the non-transliteration model allows the transliteration

model to concentrate on modeling transliterations during EM training. After
EM training, transliteration word pairs are assigned a high probability by the
transliteration submodel and a low probability by the non-transliteration sub-
model, and vice versa for non-transliteration pairs. This property is exploited
to identify transliterations.

5.2.1. Model Estimation

In this section, I discuss the estimation of the parameters of the transliteration
model p1(e, f) and the non-transliteration model p2(e, f).
The non-transliteration model captures the random generation of the source

and target word characters from two unigram character models. These are
fixed models and their parameters are estimated from the source and target

104

5. Transliteration Mining Model

words of the training data, respectively, and the parameters do not change
during EM training.
For the transliteration model, I implement a simplified form of the grapheme-

to-phoneme converter, g2p (Bisani and Ney, 2008). In the following, I use
notations from Bisani and Ney (2008). g2p learns m-to-n character alignments
between a source and a target word. I restrict myself to 0–1,1–1,1–0 character
alignments. In preliminary experiments, using more than one character on
the source side or the target side or both sides of the multigram caused the
transliteration model to incorrectly learn non-transliteration information from
the training data.
Given a training corpus of N word pairs, the log-likelihood ll can be calcu-

lated as the sum of the log probabilities of all training items:

ll =
N∑
i=1

logp(ei, fi)

=
N∑
i=1

log
(

(1− λ)p1(ei, fi) + λp2(ei, fi)
)

The Expectation Maximization (EM) algorithm is used to train the model.
It maximizes the log-likelihood ll of the training data. In the E-step the EM
algorithm computes expected counts for the multigrams and in the M-step the
multigram probabilities are reestimated from these counts. These two steps
are iterated.
The expected count of a multigram q is computed by multiplying the poste-

rior probability of each alignment a with the frequency of q in a and summing
these weighted frequencies over all alignments of all word pairs.

c(q) =
N∑
i=1

∑
a∈Align(ei,fi)

(1− λ)p1(a, ei, fi)
p(ei, fi)

nq(a) (5.6)

nq(a) is here the number of times the multigram q occurs in the sequence a,

105

5. Transliteration Mining Model

1−λ is the prior probability of transliteration, p1(a, ei, fi) is the transliteration
probability of a particular alignment a, and p(ei, fi) is defined in Equation 5.5.
The new estimate of the probability of a multigram is given by:

p(q) = c(q)∑
q′ c(q′)

(5.7)

If I extend the model to a higher order model, the expected count of a
multigram sequence qM1 is defined as:

c(qM1) =
N∑
i=1

∑
a∈Align(ei,fi)

(1− λ)p1(a, ei, fi)
p(ei, fi)

nqM1 (a) (5.8)

nqM1 (a) is the number of times the multigram occurs in the sequence a.
The conditional probability of the multigram qi in an M-order model is

estimated by:

p(qi|qi−1
i−M+1) = c(qii−M+1)∑

q′ c(qi−1
i−M+1, q

′)
(5.9)

The posterior probability of non-transliteration pntr(e, f) is calculated using
Bayes’s rule by multiplying the prior non-transliteration probability with the
non-transliteration probability p2(e, f) and normalizing it by dividing it with
the total probability of the word pair p(e, f) (see Equation 5.5).

pntr(e, f) = λp2(e, f)
p(e, f) (5.10)

I calculate the expected count of non-transliterations by summing the pos-
terior probabilities of non-transliteration given each word pair:

cntr =
N∑
i=1

pntr(ei, fi) =
N∑
i=1

λp2(ei, fi)
p(ei, fi)

(5.11)

λ is then reestimated by dividing the expected count of non-transliterations
by the number of word pairs N .

106

5. Transliteration Mining Model

λ = cntr
N

(5.12)

For the first EM iteration, the multigram probabilities are uniformly ini-
tialized with the inverse of the number of all possible multigrams that can
be built from source and target language characters. After the training, the
prior probability of non-transliteration is an approximation of the number of
non-transliteration pairs in the training data. If the system uses different data
for training and test, I re-estimate the prior probability of non-transliteration
in the test mode on the test data using Equation 5.12. The procedure of reesti-
mation of the prior probability is iterated until there is no change in the value
of the prior.

5.2.2. Implementation Details

In this section, I discuss the implementation details of my unsupervised mining
system. I represent the character alignments of a word pair as a graph G(N,E)
with a set of nodes N and edges E. A node n(i, j) ∈ N represents the coverage
vector of the character alignment of a source and a target word. A node n(i, j)
means that the source word is aligned up to the ith character and the target
word is aligned up to the jth character with 0 < i < |e| and 0 < j < |f |. The
transitions between the nodes (called edges) are labeled with multigrams. I
allow 0–1,1–1,1–0 character alignments. Every node, except the last node, has
three possible transitions to next nodes which are defined as follows:

E is the transition between a set of node pairs ((i, j), (i′, j′))
if i′ = i+ 1 & j′ = j + 1
or i′ = i & j′ = j + 1
or i′ = i+ 1 & j′ = j

A node n(i, j) can be connected to nodes with coverage vector (i, j + 1),
(i + 1, j + 1) and (i + 1, j). Table 5.2 shows an example of the character
alignments of a word pair (abc ACD). The first alignment a − A in Table

107

5. Transliteration Mining Model

a b c ∅
A ∅ C D

Table 5.2.: Character alignment of a word pair (abc ACD)

5.2 shows (i + 1, j + 1) character alignment scenario where (i + 1)th source
character and (j + 1)th target character are aligned to each other. The second
character alignment b−∅ is a case of (i+1, j) alignment as no new target side
character is covered as shown in the left side of Table 5.2. The third alignment
is again (i + 1, j + 1) case and the last character alignment is an example of
(i, j + 1) alignment.
I use the Forward-Backward algorithm to estimate the counts of the multi-

grams. The algorithm has a forward variable α and a backward variable β
which are calculated in the standard way (Deligne and Bimbot, 1995). α(s) is
defined as the sum of the product of incoming edges to node s with the value
of α at the start node of the incoming edge:

α(s) =
∑

r:(r,s)∈E
α(r)p(qrs) (5.13)

r is the start node of the incoming edge to node s and qrs is the label of the
edge (r, s)
The backward probability is defined in the similar way but in opposite di-

rection starting from the end node of the graph to the first node:

β(s) =
∑

s:(s,t)∈E
β(t)p(qst) (5.14)

s and t are the start and end nodes of the edge labeled qst. β((i, j), (|e|, |f |))
and α(0) are equal to one.
Consider a node r connected to a node s via an edge labeled with the

108

5. Transliteration Mining Model

multigram qrs. The expected count of a transition between r and s is calculated
using the forward and backward probabilities as follows:

γ′rs = α(r) p(qrs) β(s)
α(E) (5.15)

where E = (|e|, |f |) is the final node of the graph.
The expected count of a transition is multiplied by the posterior probability

of transliteration (1 − pntr(e, f)) which indicates how likely the string pair is
to be a transliteration.

γrs = γ′rs(1− pntr(e, f)) (5.16)

The counts γrs are then summed for all multigram types q over all training
pairs to obtain the frequencies c(q):

c(q) =
N∑
i=1

∑
(r,s)∈Ei

γrs

N is the set of nodes. The re-estimation of the probability of a multigram is
calculated using Equation 5.9
The unsupervised mining system can be trained on one unlabeled dataset

and tested on different data. In test mode, it is possible that a few multigrams
are unknown to the trained model. I use Witten-Bell smoothing to assign a
probability to unknown characters and unknown multigrams. This is explained
in Section 5.6.

5.3. Semi-supervised Transliteration Mining
Model

Our unsupervised transliteration mining system does not require labeled data
for training and learns the transliteration information from unlabeled data. The
benefit of an unsupervised mining system is that it can be applied to language
pairs for which no labeled data is available. However, the unsupervised system

109

5. Transliteration Mining Model

is prone to errors. It focuses on high recall and also mines close transliterations
(see Section 5.7.4 for details). In a task dependent scenario, it is difficult for
the unsupervised system to mine transliteration pairs according to a particular
definition of what is considered a transliteration (which may vary somewhat
with the task). In this section, I propose an extension of my unsupervised model
which overcomes this shortcoming by using labeled data. The idea is to rely
on probabilities from labeled data where they can be estimated reliably and to
use probabilities from unlabeled data where the labeled data is sparse. This is
achieved by smoothing the labeled data probabilities using the unlabeled data
probabilities as a backoff. The following subsections describe the model and
the implementation details.

5.3.1. Model

The semi-supervised model uses an identical model to the unsupervised translit-
eration mining. However, it is trained on both labeled and unlabeled data. The
transliteration model trained on the labeled data has better multigram esti-
mates for frequent multigrams than the model trained on the unlabeled data
but suffers from sparse data problems. The system can rely on the probabil-
ity estimates of the labeled data and use the unlabeled data estimates only
where the labeled data is either less confident or has no information. I accom-
plish this by introducing a smoothing mechanism motivated from Witten-Bell
smoothing. The labeled data estimates are smoothed using the unlabeled data
probability distribution as a backoff distribution. The smoothed probability
estimate p̂(q) is defined as follows:

p̂(q) = cs(q) + ηsp(q)
Ns + ηs

(5.17)

where cs(q) is the labeled data count of the multigram q, p(q) is the unlabeled
data probability estimate, and Ns = ∑

q cs(q), and ηs is the number of different
multigram types observed in the Viterbi alignment of the labeled data. The

110

5. Transliteration Mining Model

smoothing formulation is motivated from Witten-Bell smoothing (Witten and
Bell, 1991).

5.3.2. Model Estimation

I calculate the unlabeled data probabilities in the E-step using Equation 5.5.
For labeled data (containing only transliterations) I redefine our transliteration
mining model as consisting of only the transliteration sub-model, i.e. set λ = 0.
The transliteration mining model for labeled data is defined as follows:

p(e, f) =
∑

a∈Align(e,f)
p1(e, f, a) (5.18)

In every EM iteration, I smooth the probability distribution using Equation
5.17 in such a way that the estimates of the multigrams of the unlabeled data
that do not occur in the labeled data would be used as a backoff.
For different training and test data, the prior probability of non-transliteration

is reestimated on the test data using Equation 5.12. The other parameters are
kept fixed. The procedure is iterated until convergence.

5.3.3. Implementation Details

I divide the training process of semi-supervised mining in two steps as shown
in Figure 5.1. The first step creates a reasonable alignment of the labeled data
from which multigram counts can be obtained. The labeled data is a small
list of transliteration pairs and it might be too small to learn good character
alignments. Therefore I use the unlabeled data to help correctly align it. I
combine the labeled and unlabeled data and train the unsupervised translit-
eration mining system on them. In the expectation step, the prior probability
of non-transliteration λ is set to zero on the labeled data since it contains
only transliterations. The first step passes the resulting multigram probability
distribution to the second step.
I start the second step with the probability estimates from the first step and

run the E-step separately on labeled and unlabeled data. The E-step on the

111

5. Transliteration Mining Model

Figure 5.1.: Semi-supervised training

labeled data is done using Equation 5.18, which forces the posterior probabil-
ity of non-transliteration to zero, while the E-step on the unlabeled data uses
Equation 5.5. After the two E-steps, I estimate a probability distribution from
the counts obtained from the unlabeled data (M-step) and use it as a back-
off distribution in computing smoothed probabilities from the labeled data
counts (S-step). Figure 5.1 shows a complete procedure of the semi-supervised
training.

5.4. Supervised Transliteration Mining Model
On English/Russian, the unlabeled data contains many close transliterations
and the semi-supervised system achieved low precision (See Section 5.7.4). The
unlabeled information might be harmful for the system and it might make sense

112

5. Transliteration Mining Model

to use only labeled data for training. To achieve this, I implement a supervised
model of transliteration mining.
The supervised transliteration mining system uses an identical model as

described in Section 5.2. However, here the training data consists of only
transliteration pairs. The prior probability of non-transliteration will be zero
for the training. The test data consists of both transliterations and non-
transliterations. I train the non-transliteration model using the training data
and estimate the prior probability of non-transliteration using the test data.
This is similar to the re-estimation of the prior described in Section 5.2.1 for
cases when training and test data are different.

5.4.1. Model Estimation

In this section, I describe the estimation of the parameters of the supervised
model. The training consists of estimating only the transliteration model. In
the test mode, both transliteration and non-transliteration models are used.
Given a training corpus of N word pairs, the log-likelihood llsupervised can be

calculated as the sum of the log probabilities of all training items:

llsupervised =
N∑
i=1

log
(
p1(ei, fi)

)

The Expectation Maximization (EM) algorithm maximizes the log-likelihood
llsupervised of the training data. The E-step computes expected counts for the
multigrams and the M-step reestimates the multigram probabilities from these
counts. These two steps are iterated.
The expected count of a multigram q (E-step) is computed by multiplying

the transliteration probability of each alignment a with the frequency of q in
a and summing them over all alignments of all word pairs.

c(q) =
N∑
i=1

∑
a∈Align(ei,fi)

p1(a, ei, fi)nq(a) (5.19)

113

5. Transliteration Mining Model

For the first iteration of EM, I initialize the multigrams with a uniform dis-
tribution which is an inverse of the total number of multigrams in the training
set. The new estimate of the probability of a multigram is calculated using
Equation 5.7.
The training data consists of only labeled examples. The test data is a

mixture of transliteration and non-transliteration word pairs. I build a non-
transliteration model on the labeled data using Equation 5.4. The prior prob-
ability of non-transliteration is reestimated on the test data using Equation
5.12. The process is iterated until convergence. Every word pair in the test
data is scored using the trained transliteration and non-transliteration model.
The posterior probability of non-transliteration is calculated using Equation
5.10.
Due to the insufficient training data, there are a few characters and multi-

grams in test data which are unseen to the training data. I apply the Witten-
Bell smoothing to avoid zero probability. I present the higher-order details
of the supervised system in Section 5.4.2. The higher order multigram and
character sequences from test which are unknown to the trained model are
smoothed also using the Witten-Bell smoothing. It is described in Section 5.6.

5.4.2. Implementation Details

I use a similar implementation as described in Section 5.2.2. The character
alignments of a word pair are implemented as a graph. The Forward-Backward
algorithm is used to estimate the parameters. The training of the supervised
mining system involves the labeled data. I did not apply Equation 5.16 on
the expected counts of a transition (calculated using Equation 5.15). Instead
I directly calculate the counts of multigrams, since in the supervised model I
assume all word pairs are transliterations.

114

5. Transliteration Mining Model

5.5. Higher Order Transliteration Mining Models
The unsupervised, semi-supervised and supervised systems described in previ-
ous sections build a unigram model of transliteration mining. I also calculate
a higher order model from the unigram model to learn contextual information
from the training data. In this section, I present a higher order translitera-
tion mining procedure, built on the unigram model which is identical for all
unsupervised, semi-supervised and supervised mining systems.
For ngram order M > 1, I did not reestimate the counts of a higher order

model during the EM training. I instead train only the unigram model and
generate the Viterbi alignments of the word pairs. I learn the context informa-
tion from the Viterbi alignments of the unigram model to build higher order
models. The assumption here is that the unigram model is good enough to
generate good alignments of test data. The reestimation of higher order mod-
els is computationally expensive. Using only the unigram model for training is
very efficient and the system is able to learn contextual information from the
Viterbi alignments.
The transliteration mining procedure of higher order models is as follows:
I train a unigram transliteration mining model on the training data, generate

its Viterbi alignments and compute the higher order counts. The higher order
probabilities are then calculated using the higher order counts of the training
data using Equation 5.8. Table 5.3 shows the unigram Viterbi alignment of a
word pair abc ACD with bigram and trigram context.
In the test mode, for every word pair I compute the Viterbi alignment which

is the most probable multigram sequence according to the model. The translit-
eration probability of a test word pair (e, f) is calculated as:

p1(e, f, â) = p(q1, q2, ...q|â|) =
|â|+1∏
i=1

p(qi|qi−1
1) (5.20)

where q|â|+1 = /ŝ. â is the most probable multigram sequence of the word
pair (e, f) which is calculated using the Viterbi algorithm. For M = 2, the
bigram transliteration probability of the word pair (e, f) is calculated as:

115

5. Transliteration Mining Model

Unigram– a-A b-∅ c-C ∅-D

Bigram– ŝ, a-A a-A, b-∅ b-∅, c-C c-C, ∅-D ∅-D, /ŝ

Trigram– ŝs, ŝ, a-A (s), a-A, b-∅ ... c-C, ∅-D, (/s) ∅-D, /ŝ, /ŝs

Table 5.3.: Bigram and trigram multigram context deduced from unigram
Viterbi alignment of a word pair “abc” and “ACD” where ŝ, /ŝ,
ŝs and /ŝs are the boundary symbols

p1(e, f, â) = p(q1|ŝ)p(q1|q2), ..., p(/ŝ|q|â|)

5.6. Smoothing to Deal with Unknowns in Testing
The transliteration mining system is capable of training on one set of unlabeled
data and testing on a different set of unlabeled data.1 There are cases when a
test multigram is unknown to the trained model. I apply Witten-Bell smooth-
ing (Witten and Bell, 1991) to assign a small probability to unknown charac-
ters and unknown multigrams. The Witten-Bell formulation for the smoothed
probability of a multigram qi is given by:

p̂1(qi) = c(qi) + η(.)p1(qi)∑
q′ c(q′) + η(.) (5.21)

η(.) is the number of observed multigram types. For an unknown multigram the
probability p1(qi) is calculated as the inverse of the product of the total number
of source and target language character types plus one i.e. p(unknown) =
1/(S + 1)(T + 1) where S and T are source and target language character
types respectively.

1For supervised system, training and test data are always different.

116

5. Transliteration Mining Model

In case of higher order models, there are higher order multigrams of the test
data that are unknown to the trained model. I also implement Witten-Bell
smoothing to calculate the probability for the unknown higher order multi-
grams:

p̂1(qi|qi−1
1) = c(qi1) + η(qi−1

1)p̂1(qi|qi−1
1)

c(qi−1
1) + η(qi−1

1)
(5.22)

qi−1
1 is the preceding context of multigram qi. c(q

i
1) is the count of the multigram

sub-sequence calculated on the training data, c(qi−1
1) is the count of the context

irrespective of the current multigram and η(qi−1
1) is the number of different

multigram sub-sequence types that follow qi in the training data.
For a bigram model, c(qi−1, qi) is the frequency of the bigram in the training

data and c(qi−1) is the count of the previous multigram in the training data.
The smoothed probability estimate of the multigram qi given the previous
multigram qi−1 is defined as follows:

p̂1(qi|qi−1) = c(qi−1, qi) + η(qi−1)p̂1(qi)
c(qi−1) + η(qi−1)

η(qi−1) is the number of multigram types that follow qi−1 in the training
data.
The non-transliteration model is also built on the training data and is formu-

lated in Equation 5.4. I also use Witten-Bell smoothing to assign probabilities
to unknown characters and to unknown character sequences of the test data.
The smoothed non-transliteration probability of the source language is defined
as:

p̂E(ei|ei−1
1) = c(ei1) + η(ei−1

1)p̂E(ei|ei−1
1)

c(ei−1
1) + η(ei−1

1)
(5.23)

where ei−1
1 is the preceding context of character ei, c(ei1) is the count of char-

acter ei with context ei−1
1 and c(ei−1

1) is the frequency of the context. η(ei−1
1)

is the number of character types that follow the context ei−1
1 . The values of all

variables are calculated on the training data.

117

5. Transliteration Mining Model

The unigram smoothed probability p̂E(ei) is defined in similar way:

p̂E(ei) = c(ei) + η(.)pE(ei)∑
e′ c(e′) + η(.) (5.24)

The number of unique characters in the test data can at most be the twice
the number of characters in the training data. I take this assumption and de-
fine the probability of unknown characters pE(ei) as an inverse of twice the
total number of character types in the training data. This can be written as

1
2η(.) where η(.) is the total number of characters in the source language. This
smoothing formulation is similar to the Add-λ Smoothing with an additive con-
stant of 0.5. Equation 5.23 and Equation 5.24 are also used for the smoothing
of target language characters.
The smoothing formulation slightly differs for the semi-supervised system

as the training data consists of both labeled and unlabeled data. The semi-
supervised model relies on the labeled data. For a bigram system, when a
bigram multigram does not exist in the labeled data distribution, the model
backs off to the labeled data unigram distribution which is calculated using
Equation 5.17.

p̂(qi|qi−1) = cs(qi−1, qi) + ηs(qi−1)p̂(qi)
cs(qi−1) + ηs(qi−1) (5.25)

cs(qi−1, qi) is the count of the bigram multigram in the labeled data and cs(qi−1)
is the count of some multigram qi−1 in the labeled data. ηs(qi−1) is the number
of multigram pair types in the labeled data where qi−1 is the first element.
The generalized smoothing equation for the semi-supervised system is:

p̂(qi|qi−1
1) = cs(qi1) + ηs(qi−1

1)p̂(qi|qi−1
1)

cs(qi−1
1) + ηs(qi−1

1)
(5.26)

118

5. Transliteration Mining Model

5.7. Transliteration Mining Using the NEWS10
Dataset

I evaluate my transliteration mining systems using the dataset provided at
NEWS 2010 shared task on transliteration mining (Kumaran et al., 2010)
(NEWS10). NEWS10 is a standard task on transliteration mining fromWikipedia
InterLanguage Links (WIL), which link the titles of Wikipedia pages that are
on the same topic but in different languages. I compare my results on the
NEWS10 dataset with the best supervised and semi-supervised systems pre-
sented at NEWS10 (Kumaran et al., 2010) and the best supervised and semi-
supervised results reported in the literature for the NEWS10 task.
I conduct experiments on the datasets of four language pairs: English/Arabic,

English/Hindi, English/Tamil and English/Russian. Each dataset contains train-
ing data, seed data and reference data. Figure 5.2 shows a few examples of the
English/Hindi WIL phrases taken from the training data. The WIL phrases
contain “_” to separate English words while the words of other languages (tar-
get languages) are separated by a space. The reference data is a small subset
of the training data which is manually annotated with positive and negative
examples of transliterated words. A WIL phrase which does not contain any
transliteration is represented with an empty title tag. The “Title ID = 5614” in
Figure 5.3 is an example of such a phrase. If a phrase is partially a transliter-
ation and partially a non-transliteration, the reference data only contains the
transliteration pair (see “Title ID = 6736” in Figure 5.2 and Figure 5.3). The
seed data is a list of 1000 transliteration pairs provided to semi-supervised sys-
tems or supervised systems for initial training. I use the seed data only in our
supervised and semi-supervised system, and not in the unsupervised system.
Figure 5.4 shows examples of seed data.

5.7.1. Training Data

The transliteration mining system is trained and tested on a list of word pairs.
Every entry in the list consists of a word pair which is a source language

119

5. Transliteration Mining Model

Figure 5.2.: Example of English/Hindi NEWS10 training data

120

5. Transliteration Mining Model

Figure 5.3.: A few examples of English/Hindi WIL reference data. The empty
title tag represents a negative example like “Title ID = 5614”
where the word pair corresponds to it is a non-transliteration pair

121

5. Transliteration Mining Model

Figure 5.4.: A few examples of English/Hindi NEWS10 seed data

122

5. Transliteration Mining Model

word and its corresponding target language word. A word pair can be either a
transliteration pair or a non-transliteration pair. A non-transliteration pair is
defined as a word pair which is not a transliteration pair. I generated a list of
word pairs from the NEWS10 dataset in the following way:
I word-aligned the parallel phrases of the training data using GIZA++ (Och

and Ney, 2003), and symmetrized the alignments using the grow-diag-final-and
heuristic (Koehn et al., 2003). I extracted all word pairs which occur as 1-to-
1 alignments and I will later refer to them as the word-aligned list (this list
will be used in some experiments). I compared the word-aligned list with the
NEWS10 reference data and found that the word-aligned list is missing some
transliteration pairs because of word-alignment errors. I built another list by
adding a word pair for every source word that cooccurs with a target word in
a parallel phrase/sentence and call it the cross-product list later on. The cross-
product list is noisier but contains almost all transliteration pairs in the corpus.
Table 5.4 shows the statistics of the word-aligned list and the cross-product
list calculated using the NEWS10 reference data.2

I preprocess both lists and automatically remove numbers from source and
target language side as they are defined as non-transliterations (Kumaran
et al., 2010). I also automatically remove the source language words that occur
on the target language side or vice versa.

5.7.2. Experimental Setup

The unsupervised transliteration mining system is trained on the cross-product
list.3 The semi-supervised system is trained on the cross-product list and the

2Due to an inconsistent word definition used in the reference data, I did not achieve 100%
recall in the cross-product list. For example, the underscore is defined as a word bound-
ary for English WIL phrases. This assumption is not followed for certain phrases like
“New_York” and “New_Mexico”. There are 16, 9, 4, and 3 transliteration pairs miss-
ing out of 884, 858, 982 and 690 transliteration pairs in the cross- product list of En-
glish/Arabic, English/Russian, English/Hindi and English/Tamil respectively.

3In Section 5.7.3, I trained the unsupervised system on the word-aligned list to compare
the results with my heuristic-based system presented in Chapter 4.

123

5. Transliteration Mining Model

Word-aligned Cross-product
P R F P R F

EA 27.8 97.1 43.3 14.3 98.0 25.0
EH 42.5 98.7 59.4 20.5 99.6 34.1
ET 32.0 98.1 48.3 17.2 99.6 29.3
ER 25.5 95.6 40.3 12.8 99.0 22.7

Table 5.4.: Statistics of word-aligned and cross-product list calculated from
the NEWS10 dataset, before mining. EA is English/Arabic, EH is
English/Hindi, ET is English/Tamil and ER is English/Russian

seed data. The supervised system is trained on only the seed data. The multi-
grams are initialized with a uniform distribution which is the inverse of the
sum of all possible multigrams of the source and target language characters.
The prior probability of non-transliteration λ is initialized with value 0.5. For
every iteration of EM, the prior probability is reestimated using Equation 5.12.
In the test mode, the trained model is applied to the test data. The prior

probability is estimated on the training data. If the training data is identical
to the test data then the estimated value of λ in the training is used at test.
If they are different, as in the case of the supervised system, I reestimate the
prior probability on the test data. The estimated value of the prior probability
approximates the number of non-transliteration pairs in the data. The word
pairs with a posterior probability of non-transliteration of less than 0.5 are
classified as transliteration pairs. Section 5.7.8 discusses the effect of varying
threshold on the mining systems in detail.
The word-aligned list calculated from the NEWS10 dataset is used to com-

pare the unsupervised transliteration mining system with my unsupervised
heuristic-based system presented in Chapter 4. I could not train the heuristic-
based system on the cross-product list because of time complexity. The model-
based system trained on the word-aligned list performs better than the heuristic-
based system and the model-based system trained on the cross-product list

124

5. Transliteration Mining Model

performs better than the model-based system trained on the word-aligned list.
Therefore, for comparison with other systems that evaluated on NEWS10 data,
I use only the model-based system trained on the cross-product list.

5.7.3. Unsupervised Model-based System vs.
Heuristic-based System

In this section, I compare my heuristic-based system trained on the word-
aligned list with my model-based system trained on the word-aligned list and
the cross-product list. The heuristic-based system first runs Algorithm 2 to se-
lect a stopping iteration for the transliteration mining algorithm. The mining
algorithm (Algorithm 1) is then run up to the number of iterations returned
by Algorithm 2. Table 5.5 shows the results of the heuristic-based and model-
based systems. The model-based system clearly outperformed the heuristic-
based system irrespective of the training data. The model-based mining sys-
tem trained on the word-aligned list shows F-measures 4.3%, 3.3%, 2.8% and
1.7% better than the heuristic-based system on English/Arabic, English/Hindi,
English/Tamil and English/Russian respectively. The good thing about the
heuristic-based system is that it tends to balance precision and recall. The
model-based system focuses on high recall with slightly lower precision. A
lower value of the threshold on the posterior probability of non-transliteration
would increase precision and lower recall as shown in Section 5.7.8.
The heuristic-based system is computationally expensive. Algorithm 2 runs

EM 100 times and for every time it runs EM training, it trains a phrase-based
machine translation system for transliteration. The transliteration mining al-
gorithm (Algorithm 1) also runs EM for the number of times returned by
Algorithm 2. In contrast, the model-based system runs only one EM training
to learn character alignments of the training data.
The model-based transliteration mining system built on the cross-product

list consistently performed better than the one built on the word-aligned list.
Later, I consider only the model-based systems built on the cross-product list
for comparison. I call them the transliteration mining systems later on. So, the

125

5. Transliteration Mining Model

Heuristic-based (WA) Model-based (WA) Model-based (CP)
P R F P R F P R F

EA 87.9 86.9 87.4 87.6 96.2 91.7 89.2 95.7 92.4
EH 90.7 93.9 92.2 92.6 98.5 95.5 92.6 99.0 95.7
ET 90.9 89.3 90.1 88.5 97.7 92.8 88.3 98.6 93.2
ER 76.8 75.3 76.0 66.0 94.6 77.7 67.2 97.1 79.4

Table 5.5.: Result of my unsupervised heuristic-based system trained on the
word-aligned list (WA) and my unsupervised model-based system
trained on the word-aligned list (WA) and on the cross-product
list (CP). EA is English/Arabic, EH is English/Hindi, ET is En-
glish/Tamil and ER is English/Russian. The bolded numbers show
the best F-measure

unsupervised model-based system is called the unsupervised transliteration
mining system.

5.7.4. Comparison of My Unigram Transliteration Mining
Systems

In this section, I compare my unigram unsupervised, semi-supervised and su-
pervised transliteration mining systems. All systems use similar initialization of
parameters. The word pairs with a posterior probability of non-transliteration
of less than 0.5 are mined as transliteration pairs. Table 5.6 summarizes the
results of the unsupervised, semi-supervised and supervised systems on four
language pairs.
The unsupervised system achieves high recall with somewhat lower precision.

The datasets contain a few non-transliteration pairs that get high probability
from the transliteration model. Most of these word pairs only differ by one
or two characters from an exact transliteration. There are various phenomena
that motivate such constructions. Section 5.7.7 describes them in detail. I call
word pairs which differ by one or two characters from an exact transliteration

126

5. Transliteration Mining Model

pair close transliterations. The unsupervised mining system is trained only on
the unlabeled data. It is difficult for the system to learn the difference between
close transliteration pairs and true transliteration pairs. The unsupervised min-
ing system is able to achieve a reasonable precision for English/Arabic, En-
glish/Hindi and English/Tamil. In the English/Russian dataset the percentage
of close transliterations is very high. These pairs have one or two additional
characters from exact transliteration pairs. The unsupervised system learns to
delete the additional characters with a high probability and incorrectly mines
these word pairs.
On three language pairs, the semi-supervised system achieves only a small

gain in F-measure over the unsupervised mining system. This shows that the
unlabeled training data is already providing most of the transliteration infor-
mation. The labeled data is used to help the transliteration mining system to
learn the right definition of transliteration. On the English/Russian dataset,
the semi-supervised system achieves almost 7% increase in precision with a
2.2% drop in recall compared to the unsupervised system. This provides a
3.7% gain on F-measure. The increase in precision shows that the seed data is
helping the system in disambiguating transliteration pairs from close translit-
erations. However, precision achieved by the semi-supervised system on En-
glish/Russian is still less than for other language pairs. In order to learn the
contextual information, I build bigram and trigram semi-supervised models.
Results are discussed in Section 5.7.5.
The supervised system is built only on the labeled data. It has higher pre-

cision than the unsupervised system but recall is lower and for most language
pairs overall F-measure is lower than for both the unsupervised and semi-
supervised systems. The reason for the low recall is that the seed data consists
of only 1000 transliteration pairs which is not enough for the model to learn
good estimates. There are various multigrams of the test data that are unknown
to the trained model. The smoothed estimate of the unknown multigrams is
very low. That helps the supervised system to achieve high precision but at
the cost of recall. Another reason might be the reestimation of the prior on the
test data which is different from the unsupervised and semi-supervised systems

127

5. Transliteration Mining Model

Unsupervised Semi-supervised Supervised
Unigram P R F P R F P R F
EA 89.2 95.7 92.4 92.6 92.2 92.4 84.9 95.1 89.7
EH 92.6 99.0 95.7 95.5 97.0 96.3 94.2 94.6 94.4
ET 88.3 98.6 93.2 93.4 95.8 94.6 90.4 95.8 93.0
ER 67.1 97.1 79.4 74.0 94.9 83.1 70.0 95.3 80.7

Table 5.6.: Results of the unsupervised, semi-supervised and supervised
transliteration mining systems trained on the cross-product list
and used the unigram model for transliteration and non-
transliteration. EA is English/Arabic, EH is English/Hindi, ET is
English/Tamil and ER is English/Russian. The bolded values show
the best precision, recall and F-measure for each language pair

where the prior is reestimated during EM training. The value of the prior has a
direct effect on the posterior probability based on which the system generates
a mined list of transliteration pairs. In Section 5.7.8, I show the variation of
the threshold on the posterior probability of transliteration. The supervised
system achieved better F-score at lower values of the posterior than 0.5 which
works fine for most of the unsupervised and semi-supervised systems.
On the English/Russian dataset, the supervised system is better than the

unsupervised system. The unsupervised system has the problem of classifying
close transliterations incorrectly as described before. The supervised system is
trained only on the labeled data. It is able to achieve about 3% better precision
than the unsupervised system with a recall drop of 1.8%. The phenomenon of
close transliterations is described in Section 5.7.7.
The semi-supervised system has the best results for all four language pairs.

The unsupervised system has the second best results on three language pairs.
It uses only unlabeled data for training, thus could not differentiate between
close transliterations and transliterations. The supervised system uses a small
labeled dataset for the training which is not enough for the model to learn
good estimates of all the multigrams. From the results of Table 5.6, it can be

128

5. Transliteration Mining Model

concluded that if a small labeled dataset is available, it is always good to build
a semi-supervised system and if no labeled data is available, an unsupervised
system is able to mine transliterations but that there may be a problem with
erroneous inclusion of close transliterations.

5.7.5. Comparison of My Higher Order Transliteration
Mining Systems

I extend the unigram model to a bigram and trigram model. The unigram
model is first trained on training data using the same initialization of param-
eters as used for the unigram unsupervised, semi-supervised and supervised
systems. The model returns Viterbi alignments of word pairs of the training
data. The bigram and trigram probabilities of the training pairs are then esti-
mated from the unigram Viterbi alignments. This is an approximation of the
higher order model probabilities.
In the test mode, the unigram probability distribution estimated from the

training data is used to get the Viterbi alignments of the test data. The bigram
and trigram transliteration probabilities are calculated from the Viterbi align-
ments. A word pair with a posterior probability of non-transliteration less than
0.5 is chosen as a transliteration pair. If the training data and the test data are
identical, then the system does not smooth multigram probability distribution
and uses the prior probability estimated on the training data. However, there
are options provided in the tool to turn on the smoothing and to estimate the
prior probability in the test mode.
Table 5.7 summarizes the results of my bigram unsupervised, semi-supervised

and supervised systems on four language pairs. The semi-supervised system
achieves the best F-measure for all language pairs. The unsupervised system
shows lower precision as compared to the semi-supervised and supervised sys-
tem. I see a similar behavior of the unsupervised system when using a trigram
model for transliteration and non-transliteration as shown in Table 5.8. The
unsupervised system uses only unlabeled data for training. When used with a
higher order model it tends to learn noise from the training data and performs

129

5. Transliteration Mining Model

Unsupervised Semi-supervised Supervised
Bigram P R F P R F P R F
EA 79.2 96.4 86.9 93.4 91.5 92.5 87.9 95.4 91.5
EH 81.6 99.2 89.5 96.9 95.3 96.1 95.3 94.1 94.7
ET 73.7 98.8 84.5 95.2 92.5 93.8 93.6 91.9 92.8
ER 58.9 98.0 73.6 77.7 94.3 85.2 74.6 94.3 83.3

Table 5.7.: Results of the unsupervised, semi-supervised and supervised
transliteration mining systems trained on the cross-product list and
using the bigrammodel for transliteration and non-transliteration.
EA is English/Arabic, EH is English/Hindi, ET is English/Tamil
and ER is English/Russian. The bolded values show the best pre-
cision, recall and F-measure for each language pair

poorly with a low precision and high recall. The supervised system on the other
hand learns only from the labeled data. Thus it shows an increase in precision
and a drop in recall from the unigram to bigram model. The trigram model
shows a decrease in both precision and recall which is due to data sparsity.
The English/Hindi, English/Arabic, English/Tamil and English/Russian un-

igram, bigram and trigram results of the unsupervised, semi-supervised and
supervised transliteration mining systems are shown in Table 5.9, Table 5.10,
Table 5.11 and Table 5.12 respectively.4 The unsupervised results of different
ngram order are consistent on all language pairs. The unigram unsupervised
system achieves the best F-measure among all unsupervised systems with a de-
cent balance of precision and recall. For unsupervised transliteration mining,
it can be concluded that it is best to use unigram models for transliteration
and non-transliteration.
On two language pairs, English/Hindi and English/Tamil, the unigram semi-

supervised system shows the best results as compared to the bigram and tri-

4These are the identical results presented in Tables 5.6, 5.7 and 5.8. Here, I clustered them
in terms of language pair.

130

5. Transliteration Mining Model

Unsupervised Semi-supervised Supervised
Trigram P R F P R F P R F
EA 58.4 95.0 72.4 95.8 83.4 89.2 82.0 94.6 87.9
EH 45.7 97.5 62.2 97.8 88.6 92.9 94.5 94.0 94.2
ET 33.5 99.4 50.1 97.2 84.3 90.3 92.6 90.7 91.7
ER 38.1 97.1 54.7 81.8 88.0 84.8 72.7 95.3 82.2

Table 5.8.: Results of the unsupervised, semi-supervised and supervised
transliteration mining systems trained on the cross-product list
and using the trigram model for transliteration and non-
transliteration. EA is English/Arabic, EH is English/Hindi, ET is
English/Tamil and ER is English/Russian. The bolded values show
the best precision, recall and F-measure for each language pair

gram semi-supervised systems. The bigram and trigram systems show high
precision. However, the F-measure drops because of a decrease in recall. The
bigram English/Arabic semi-supervised system shows a small F-measure im-
provement of 0.1% over the unigram semi-supervised system. On the En-
glish/Russian dataset, the bigram semi-supervised system shows an F-measure
improvement of 2.1% over the unigram semi-supervised system with a 3.7%
gain in precision and only a 0.6% drop in recall. The English/Russian dataset
contains many close transliterations. This is because of Russian nouns that are
marked and their English counterparts do not contain this information. The
unigram model is unable to fully learn to differentiate them from transliter-
ations. The contextual information used in the bigram and trigram systems
help to learn this information. The F-measure of the trigram system drops
0.4% from the bigram system. It achieves an improvement of 4% in precision
from the bigram semi-supervised system but recall drops by 6.3% which causes
an overall drop in F-measure.
The bigram and trigram supervised systems show an improvement over the

unigram model. On three language pairs, the bigram system obtained high
precision and shows the best F-measure for the supervised system.

131

5. Transliteration Mining Model

Unsupervised Semi-supervised Supervised
English/Hindi P R F P R F P R F

Unigram 92.6 99.0 95.7 95.5 97.0 96.3 94.2 94.6 94.4
Bigram 81.6 99.2 89.5 96.9 95.3 96.1 95.3 94.1 94.7
Trigram 45.7 97.5 62.2 97.8 88.6 92.9 94.5 94.0 94.2

Table 5.9.: Results of the unsupervised, semi-supervised and supervised
transliteration mining systems trained on the cross-product list of
English/Hindi. The bolded values show the best precision, recall
and F-measure for the unigram, bigram and trigram systems

Unsupervised Semi-supervised Supervised
English/Arabic P R F P R F P R F

Unigram 89.2 95.7 92.4 92.6 92.2 92.4 84.9 95.1 89.7
Bigram 79.2 96.4 86.9 93.4 91.5 92.5 87.9 95.4 91.5
Trigram 58.4 95.0 72.4 95.8 83.4 89.2 82.0 94.6 87.9

Table 5.10.: Results of the unsupervised, semi-supervised and supervised
transliteration mining systems trained on the cross-product list
of English/Arabic. The bolded values show the best precision, re-
call and F-measure for the unigram, bigram and trigram systems

Unsupervised Semi-supervised Supervised
English/Tamil P R F P R F P R F
Unigram 88.3 98.6 93.2 93.4 95.8 94.6 90.4 95.8 93.0
Bigram 73.7 98.8 84.5 95.2 92.5 93.8 93.6 91.9 92.8
Trigram 33.5 99.4 50.1 97.2 84.3 90.3 92.6 90.7 91.7

Table 5.11.: Results of the unsupervised, semi-supervised and supervised
transliteration mining systems trained on the cross-product list
of English/Tamil. The bolded values show the best precision, re-
call and F-measure for the unigram, bigram and trigram systems

132

5. Transliteration Mining Model

Unsupervised Semi-supervised Supervised
English/Russian P R F P R F P R F

Unigram 67.1 97.1 79.4 74.0 94.9 83.1 70.0 95.3 80.7
Bigram 58.9 98.0 73.6 77.7 94.3 85.2 74.6 94.3 83.3
Trigram 38.1 97.1 54.7 81.8 88.0 84.8 72.7 95.3 82.2

Table 5.12.: Results of the unsupervised, semi-supervised and supervised
transliteration mining systems trained on the cross-product list
of English/Russian. The bolded values show the best precision,
recall and F-measure for the unigram, bigram and trigram sys-
tems

5.7.6. Comparison with the State-Of-The-Art Systems

In this section, I compare my transliteration mining systems with the state-
of-the-art semi-supervised and supervised transliteration mining systems that
participated in NEWS10 or evaluated on the NEWS10 dataset. There is no
unsupervised system in the literature. However, I compare the results of my
unsupervised system and semi-supervised system with the semi-supervised and
supervised systems. Table 5.13 shows the result of my unigram unsupervised
transliteration mining system, unigram and bigram semi-supervised translit-
eration mining systems in comparison with the best supervised systems pre-
sented at NEWS10 (SBEST) and the best supervised/semi-supervised results
reported on the NEWS10 dataset (GR, DBN). All systems that evaluated
on NEWS10 dataset are supervised or semi-supervised. On three language
pairs, my unigram unsupervised mining system performed better than all
semi-supervised/supervised systems which participated in NEWS10. It also
has competitive results with the best supervised results reported on NEWS10
data sets. On English/Hindi, my unsupervised system outperforms the state-
of-the-art supervised and semi-supervised systems.
Kahki et al. (2011) (GR) achieved the best results on the English/Arabic,

English/Tamil and English/Russian dataset. For the English/Arabic task, they

133

5. Transliteration Mining Model

My Systems State-of-the-art systems
Unsuper Semisupervised Semisupervised/supervised
Unigram Unigram Bigram SBest GR DBN

EA 92.4 92.4 92.5 91.5 94.1 -
EH 95.7 96.3 96.1 94.4 93.2 95.5
ET 93.2 94.6 93.8 91.4 95.5 93.9
ER 79.4 83.1 85.2 87.5 92.3 82.5

Table 5.13.: Comparison of my system with the state-of-the-art semi-
supervised and supervised systems where SBest is the best
NEWS10 system, GR is the supervised system of kahki11 and
DBN is the semi-supervised system of nabende11

normalized the data using language dependent heuristics. They applied an
Arabic word segmenter which uses language dependent information. Arabic
long vowels which have identical sound but are written differently were merged
to one form. English characters were normalized by dropping accents. They also
used a non-standard evaluation method (discussed in Section 5.7.7).
On the English/Russian dataset, my unsupervised system faces the problem

that it extracts close transliterations as transliterations. I have the same prob-
lem with my heuristic-based system. These close transliterations are discussed
in Section 5.7.7.
There are two English/Russian supervised systems, (Kahki et al., 2011; Ji-

ampojamarn et al., 2010), which are better than my bigram semi-supervised
system. Jiampojamarn et al. (2010)’s best system on English/Russian is based
on the edit distance method. It achieved 87.5% F-measure with a precision of
88.0% and a recall of 86.9% (in Table 5.13 SBest result on the English/Russian
dataset). The Kahki et al. (2011) system is built on seed data only. Both of
these systems are focused on high precision. My systems are focused on high
recall at the cost of lower precision.

134

5. Transliteration Mining Model

Table 5.14.: Word pairs with pronunciation differences

5.7.7. Error Analysis

The general errors made by my transliteration mining systems can be classified
into the following categories.

Pronunciation Differences
Proper names may be pronounced differently in two languages. Sometimes,

English short vowels are converted to long vowels in Hindi such as the English
word “Lanthanum” which is pronounced “Laanthanum” in Hindi. A similar
case is the English/Hindi word pair “Donald/Donaald”. Sometimes two lan-
guages use different vowels to produce a similar sound like in the English word
“January” which is pronounced as “Janvary” in Hindi. All these words only
differ by one or two characters from an exact transliteration. They are non-
transliterations according to the gold standard but my unsupervised system
extracts them as transliterations. The semi-supervised system is able to learn
them as non-transliterations. Table 5.14 shows a few examples of such word
pairs.

Inconsistencies in the Gold Standard
There are several inconsistencies in the gold standard where my semi-supervised

transliteration mining system correctly identifies a word pair as a translitera-
tion but it is marked as a non-transliteration or vice versa. Consider the exam-
ple of the English word “George” which is pronounced as “Jaarj” in Hindi. My
semi-supervised system learns this as a non-transliteration but it is wrongly
annotated as a transliteration in the gold standard.

135

5. Transliteration Mining Model

Table 5.15.: Examples of word pairs which are wrongly annotated as translit-
erations in the gold standard

There are a few word segmentation inconsistencies in the gold standard. The
underscore “_” is used to separate the target language words in WIL phrases
(consider English as the source language). This assumption is not followed for
a few word pairs like “New_York” and “New_Mexico”. In the reference data,
these phrases are included with the “_” sign while all other phrases are word
segmented on “_”. I did not get these words in my training data as I tokenize
English words on “_” and get words “New”, “York” and “Mexico” from the
above phrases.
Arabic nouns have an article “al” attached to them which is translated in

English as “the”. There are various cases in the training data where an English
noun such as “Quran” is matched with an Arabic noun “alQuran”. My semi-
supervised mining system correctly classifies such cases as non-transliterations,
but 24 of them are incorrectly annotated as transliterations in the gold stan-
dard. I did not correct this as I use the standard gold standard with the stan-
dard evaluation method, and therefore my system is unfairly penalized by the
wrong annotation. Kahki et al. (2011) preprocessed such Arabic words and
separated “al” from the noun “Quran” before mining. They report a match
if the version of the Arabic word with “al” appears with the corresponding
English word in the gold standard. Table 5.15 shows examples of word pairs
which are wrongly annotated as transliterations in the gold standard.

Cognates
Sometimes a word pair differs by only one or two ending characters from a

136

5. Transliteration Mining Model

Table 5.16.: Cognates from the English/Russian corpus extracted by my sys-
tems as transliteration pairs. None of them are correct transliter-
ation pairs according to the gold standard

true transliteration. Such word pairs are very common in the WIL data. For
example in the English/Russian training data, the Russian nouns are marked
with case and when they are translated/transliterated to English, the case
marking of the noun is omitted or translated because their English counterparts
do not mark the case or translate it as a separate word. Often the Russian word
differs only by the last character from a correct transliteration of the English
word. Due to the large amount of such word pairs in the English/Russian data,
my unsupervised transliteration mining system learns to delete the final case
marking characters from the Russian words. It assigns a high transliteration
probability to these word pairs and extracts them as transliterations. In the
English/Hindi dataset, such word pairs are mostly English words that are
borrowed in Hindi. Sometimes the base form of a word is borrowed from the
language of origin and then it gets morphology from the target language like
the word “calls” which is translated in Hindi as “callain”. Table 5.16 shows
some examples from the training data of English/Russian. All these pairs are
mined by my systems as transliterations but they are non-transliterations in
the gold standard.

5.7.8. Additional Experiments

In this section, I show the effect of my systems on different values of parame-
ters. Later, I present an analysis on the English/Russian dataset. I use a few

137

5. Transliteration Mining Model

variations of the seed data for the semi-supervised system and show that the
seed data might contain a few wrong transliterations that are harmful for the
semi-supervised mining system.

Variation of Parameters

I used a single setting of parameters for my transliteration mining systems. For
the first iteration of EM, a uniform probability distribution is used and the
prior probability of non-transliteration is set to 0.5. EM training maximizes
the likelihood of the training data. After the training, the word pairs with
a posterior probability of non-transliteration pntr(e, f) = λp2(ei, fi)/p(ei, fi)
less than 0.5 are selected as transliteration pairs. I do not have development
data to find the best value for the threshold. The threshold value of 0.5 means
that I am assuming that the system is able to classify transliteration and non-
transliteration correctly. In this section, I show the effect of the variation of
parameters on the results of my mining systems.

Unsupervised Transliteration Mining System
The unsupervised transliteration mining system is trained on the cross-

product list. Table 5.17 shows the precision, recall and F-measure of the unsu-
pervised mining system on different values (θ) of the posterior probability of
non-transliteration. θ values close to zero tend to produce high precision lists of
transliteration pairs as the system selects only highly probable transliteration
pairs. The value of θ = 0.5 works fine for three language pairs – English/Hindi,
English/Arabic and English/Tamil and is either equal or close to the best F-
measure the system is able to achieve. On the English/Russian dataset, the
system achieves low precision at θ = 0.5. The F-measure increases with the
decrease in the value of θ. At θ = 0.1, the system shows the best F-measure.
I tried different values of θ < 0.1. It balances precision and recall but the
system could not achieve an F-measure better than 80.0%. The nature of the
English/Russian dataset is different from others which is discussed under cog-
nates in Section 5.7.7. I also tried different initial values of the prior probability

138

5. Transliteration Mining Model

English/Arabic English/Hindi English/Tamil English/Russian
θ P R F P R F P R F P R F

0.1 92.2 89.8 91.0 94.0 96.4 95.2 91.0 95.1 93.0 69.2 94.6 80.0
0.2 91.0 93.1 92.1 93.4 98.1 95.7 89.6 96.5 93.0 68.4 95.5 79.7
0.3 90.3 94.6 92.4 93.1 98.6 95.7 89.0 97.5 93.1 67.8 95.9 79.5
0.4 90.2 95.0 92.6 92.7 98.8 95.7 89.1 97.8 93.2 67.7 96.5 79.6
0.5 89.2 95.7 92.4 92.6 99.0 95.7 88.3 98.6 93.2 67.1 97.1 79.4
0.6 88.3 96.0 92.0 92.4 99.1 95.6 87.7 99.0 93.0 66.9 97.1 79.2
0.7 87.8 96.5 91.9 92.0 99.1 95.4 87.5 99.1 92.9 66.6 97.2 79.1
0.8 86.9 96.7 91.5 91.6 99.1 95.2 87.2 99.3 92.8 66.3 97.4 78.9
0.9 85.8 96.8 91.0 91.4 99.2 95.1 85.9 99.6 92.2 65.5 98.3 78.6

Table 5.17.: Results of the unigram unsupervised transliteration mining system
on the posterior probability of non-transliteration less than θ

of non-transliteration to see its effect on the final mined transliteration pairs.
The mining system is not very sensitive to λ. On different values of λ, it shows
only a small variation in F-measure.

Semi-supervised Transliteration Mining System
The semi-supervised mining system consists of two steps. The first step

trains using standard EM. The second step runs two E-steps separately on
the labeled and unlabeled data. It estimates a probability distribution from
the unlabeled data which is used as a backoff distribution for smoothing the
estimates from the labeled data.
The smoothing technique used in the semi-supervised system is motivated

from the Witten-Bell smoothing which is normally applied to integer frequen-
cies obtained by simple counting (see Equation 5.17). I apply it to fractional
counts obtained during EM training. I automatically choose the value of the
smoothing parameter ηs as the number of different multigram types observed
in the Viterbi alignment of the labeled data. This value works fine for all lan-
guage pairs. Table 5.18 shows the variation of results on different values of ηs.
The system is trained on the English/Hindi and English/Russian cross-product

139

5. Transliteration Mining Model

list and the seed data. All results in Table 5.18 are calculated using θ = 0.5.
The ηs = 0 means that the model is not giving any weight to the unlabeled
data and relies only on the smoothed labeled data probability distribution. The
result of the system from ηs = 0 to ηs = 50 shows a gain in F-measure which
leads to the conclusion that the unlabeled information is useful for the mining
system. For higher values of ηs like 1800, the mining model gives more weight
to the multigram probability distribution calculated from the unlabeled data
which decreases precision and increases recall. At the automatically calculated
value of ηs = 165 and ηs = 178 for English/Hindi and English/Russian, the
mining system shows the best or close to best F-measure and shows a good
balance in precision and recall.
The semi-supervised system uses the same initialization of the parameters

as is used for the unsupervised system. The prior non-transliteration prob-
ability λ initializes to 0.5 and a threshold θ = 0.5 is used on the posterior
probability of non-transliteration pntr(e, f) to decide between transliterations
and non-transliterations. Table 5.19 shows the variation in the result of the
semi-supervised system on different thresholds θ. It shows a similar behavior
like the unsupervised system on different threshold. The threshold θ = 0.5
works for all language pairs including English/Russian. The system is able to
achieve more balanced precision and recall and higher F-measure than the un-
supervised system.

Supervised Transliteration Mining System
The supervised transliteration mining system uses only the transliteration

model and the labeled data for training. In the test mode, the non-transliteration
model is used with the transliteration model to estimate the prior proba-
bility on the test data and to calculate the posterior probability of non-
transliteration. The mining system later uses the posterior to separate out
transliterations from non-transliterations. Table 5.20 and Table 5.21 show the
results of English/Hindi, English/Arabic, English/Tamil and English/Russian
supervised mining systems using the threshold θ on the posterior probability
of non-transliteration. The value θ = 0.5 does not work perfectly. However, the

140

5. Transliteration Mining Model

English/Hindi English/Russian
ηs P R F P R F
0 97.0 92.3 94.6 75.6 91.4 82.7
50 96.1 96.3 96.2 74.6 94.2 83.3
100 95.9 96.6 96.2 74.4 94.4 83.2
150 95.6 96.8 96.2 74.2 94.8 83.2
AUTO 95.5 97.0 96.3 74.0 94.9 83.1
200 95.5 97.1 96.3 74.0 94.9 83.1
250 95.3 97.1 96.2 73.7 94.9 82.9
300 95.1 97.1 96.1 73.5 94.9 82.8
400 95.1 97.1 96.1 73.4 95.0 82.8
500 95.1 97.3 96.2 73.2 95.3 82.8
600 94.9 97.3 96.1 72.9 95.5 82.7
700 94.8 97.5 96.1 72.6 95.6 82.5
800 94.7 97.5 96.0 72.4 95.6 82.4
900 94.7 97.5 96.0 72.4 95.6 82.4
1000 94.6 97.5 96.0 72.2 95.6 82.3
1100 94.6 97.7 96.1 72.1 95.7 82.3
1200 94.6 97.7 96.1 72.1 95.7 82.2
1300 94.6 97.7 96.1 71.2 95.9 81.7
1400 94.6 97.7 96.1 71.1 95.9 81.7
1500 94.6 97.7 96.1 71.1 95.9 81.7
1600 94.2 97.7 95.9 71.0 95.9 81.6
1700 94.2 97.7 95.9 70.9 95.9 81.6
1800 94.2 97.8 96.0 70.9 96.0 81.5

Table 5.18.: Results of the semi-supervised mining system trained on the En-
glish/Hindi and English/Russian data using different values of ηs.
AUTO is the automatically calculated value of ηs as number of
multigram tokens in the Viterbi of the seed data. The value of ηs is
165 and 178 for English/Hindi and English/Russian respectively

141

5. Transliteration Mining Model

English/Arabic English/Hindi English/Tamil English/Russian
θ P R F P R F P R F P R F

0.1 94.0 85.0 89.2 96.0 95.8 95.9 94.9 91.9 93.4 75.5 91.6 82.8
0.2 93.5 88.2 90.8 95.5 96.5 96.0 94.0 93.9 94.0 74.7 93.1 82.9
0.3 93.6 90.6 92.1 94.9 96.9 95.9 93.6 94.6 94.1 74.5 93.8 83.1
0.4 93.2 91.9 92.5 94.8 97.1 96.0 93.5 95.4 94.4 74.3 94.2 83.1
0.5 92.6 92.2 92.4 94.7 97.4 96.0 93.4 95.8 94.6 74.0 94.9 83.1
0.6 91.9 92.4 92.2 94.6 97.6 96.0 93.3 96.2 94.7 73.3 95.5 82.9
0.7 91.3 92.9 92.1 94.4 97.7 96.0 93.0 96.5 94.7 72.9 96.2 82.9
0.8 91.1 93.4 92.2 94.0 98.2 96.1 92.7 97.4 95.0 72.6 96.7 83.0
0.9 90.2 95.0 92.6 93.9 98.5 96.1 92.1 98.1 95.0 71.8 96.9 82.5

Table 5.19.: Results of the unigram semi-supervised mining system using differ-
ent threshold θ on the posterior probability of non-transliteration

results of the system obtained at θ = 0.5 are still close to the best F-measure
the system is able to achieve.

English/Russian Dataset

Although my semi-supervised system is trained on labeled data, it also has
low precision on the English/Russian dataset. The reason is that the seed data
contains close transliteration pairs which are causing the mining system to
learn them as transliterations. I propose a heuristic to filter out the wrong
transliteration pair from the seed data which are likely to be close translitera-
tions and then use the updated seed data in the training of the semi-supervised
transliteration mining system. I did that in the following way:
I generate the Viterbi alignments of the seed data after the first step of the

semi-supervised training and count the number of times a multigram occurs
at the end of a Viterbi string. This gives a set of multigrams with counts
where count is the number of times a multigram occurs at the end of the
Viterbi alignment of the seed data. If a multigram count is less than a certain
threshold, I consider them wrong transliteration pairs and drop from the seed
data. The assumption here is that the seed data contains only few wrong pairs.

142

5. Transliteration Mining Model

English/Hindi
θ P R F
0.01 96.0 93.4 94.7
0.02 95.9 94.0 95.0
0.03 95.9 94.1 95.0
0.04 95.9 94.1 95.0
0.05 95.8 94.2 95.0
0.06 95.6 94.3 94.9
0.07 95.5 94.4 94.9
0.08 95.4 94.4 94.9
0.09 95.3 94.4 94.8
0.1 95.2 94.4 94.8
0.2 95.0 94.5 94.7
0.5 94.2 94.6 94.4
0.8 93.3 94.9 94.1

English/Arabic
θ P R F
0.01 90.4 86.8 88.6
0.02 89.3 90.0 89.7
0.03 88.5 91.1 89.7
0.04 88.6 92.2 90.4
0.05 88.6 92.6 90.6
0.06 88.2 92.6 90.3
0.07 88.0 92.9 90.4
0.08 88.0 93.1 90.5
0.09 87.8 93.1 90.4
0.1 87.8 93.1 90.4
0.3 86.1 94.5 90.1
0.5 84.9 95.1 89.7
0.8 81.9 95.6 88.2

Table 5.20.: Results of the unigram supervised English/Hindi and En-
glish/Arabic mining system using different threshold θ on the pos-
terior of non-transliteration

This heuristic would not work if there are many wrong pairs in the seed data.
I use the new seed data for the training of the semi-supervised system. Table
5.22 shows the results of the semi-supervised system using the seed data filtered
with different thresholds. All systems show a consistent increase in F-measure
for an increase in threshold up to values 3 or 4 (afterwards F-score decreases).
The removal of word pairs with infrequent endings help the system to achieve
high precision. The trigram semi-supervised system at threshold = 3 shows
the best F-measure of 86.1%. Threshold values of 2, 3, 4 reduce the size of
the seed data by 53, 68 and 80 pairs respectively where the original seed data
contains 1000 transliteration pairs. Due to data sparsity, the F-measure drops
after threshold > 4.

143

5. Transliteration Mining Model

English/Tamil
θ P R F
0.002 94.5 91.3 92.9
0.004 94.4 92 93.2
0.006 94 92.8 93.4
0.008 93.9 93.5 93.7
0.01 93.5 93.5 93.5
0.02 92.6 93.9 93.2
0.03 92.5 94.3 93.4
0.04 92.2 94.6 93.4
0.05 92.1 94.9 93.5
0.06 92.1 95.1 93.6
0.07 92.1 95.1 93.6
0.08 92.0 95.1 93.5
0.09 92.0 95.1 93.5
0.1 91.9 95.1 93.4
0.2 91.4 95.2 93.3
0.5 90.4 95.8 93
0.8 88.5 95.8 92.0

English/Russian
θ P R F
0.002 74.2 88.7 80.8
0.004 73.9 89.9 81.1
0.006 73.0 91.8 81.4
0.008 72.9 92.0 81.3
0.01 72.9 92.2 81.4
0.02 72.1 92.7 81.1
0.03 72.0 93.0 81.2
0.04 71.9 93.2 81.2
0.05 71.7 93.5 81.2
0.06 71.7 93.7 81.2
0.07 71.4 94.2 81.2
0.08 71.2 94.3 81.1
0.09 71.1 94.4 81.1
0.1 71.1 94.4 81.1
0.2 70.5 94.9 80.9
0.5 70.0 95.3 80.7
0.8 69.7 95.8 80.7

Table 5.21.: Result of the unigram supervised English/Tamil and En-
glish/Russian mining system using different threshold θ on the
posterior of non-transliteration

Unigram Bigram Trigram
ER P R F P R F P R F
0 74.0 94.9 83.1 77.7 94.3 85.2 81.8 88.0 84.8
2 75.2 93.9 83.5 78.3 93.5 85.2 83.3 88.2 85.7
3 75.4 94.1 83.7 79.1 93.6 85.7 83.9 88.3 86.1
4 75.5 93.8 83.7 79.3 93.5 85.8 84.1 87.4 85.7

Table 5.22.: Result of the semi-supervised transliteration mining system for
English/Russian using filtered seed data. 0, 2, 3, 4 is the value of
the threshold on the count of the ending multigrams. 0 means no
filtering.

144

5. Transliteration Mining Model

5.8. Transliteration Mining Using Parallel Corpora
The percentage of transliteration pairs in the NEWS10 datasets is much larger
than in a normal parallel corpus. I further check the effectiveness of my translit-
eration mining systems by evaluating them on parallel corpora with as few as
2% transliteration pairs. I conduct parallel corpus experiments using two lan-
guage pairs, English/Hindi and English/Arabic. The English/Hindi corpus is
from the shared task on word alignment organized as part of the ACL 2005
Workshop on Building and Using Parallel Texts (WA05) (Martin et al., 2005).
For English/Arabic, I use 200,000 parallel sentences from the United Nations
(UN) corpus (Eisele and Chen, 2010). I manually build a gold standard for
the English/Hindi corpus and for the English/Arabic corpus by manually an-
notating a subset of the list of word pairs as either transliteration or non-
transliteration.

5.8.1. Training

I follow the same procedure for creating the training data as described in
Section 5.7.1. I align the parallel sentences using GIZA++ and refine them
using the grow-diag-final-and heuristic. I extract a word-aligned list from the
1-to-1 alignments. Later, for every parallel source and target sentence, I make
a pair of every source word that cooccurs with a target word and build a
cross-product list.
The cross-product list is huge and it is computationally expensive to build

a mining system on it. In order to keep the experiment computationally inex-
pensive, I train my transliteration mining systems on the word-aligned list and
test them on the cross-product list. To compare the unsupervised model-based
system with the heuristic-based system, I test it on the word-aligned list. The
cross-product list is noisier than the word-aligned list but has almost 100%
recall of transliteration pairs. The English-Hindi cross-product list has almost
130% more transliteration pairs (412 types) than the word-aligned list (180
types). I can not report these numbers on the English/Arabic cross-product

145

5. Transliteration Mining Model

Translit Non-translit Total

English/Hindiword−aligned 180 2084 5612
English/Hindicross−product 412 12408 478443
English/Arabicword−aligned 288 6639 178342
English/Arabiccross−product 288 6639 26782146

Table 5.23.: Statistics of the word-aligned list and the cross-product list of the
English/Hindi and English/Arabic parallel corpus

list since the English/Arabic gold standard is built on the word-aligned list.
Table 5.23 shows the statistics of the word-aligned list and the cross-product
list calculated using the gold standard of English/Hindi and English/Arabic.
The “total” is the number of word pairs in the list. It is not equal to the sum of
transliterations and non-transliterations in the list because the gold standard
is only a subset of the training data.

5.8.2. Results

The unsupervised system is built on the word-aligned list. The semi-supervised
system is trained on the word-aligned list and the English/Hindi and En-
glish/Arabic seed data provided by NEWS10. The supervised system is trained
on the seed data only. All systems are then tested on the cross-product list.
I initialize multigrams with a uniform probability distribution and set the
prior probability of non-transliteration to 0.5. At test mode, the prior prob-
ability is reestimated on the test data. A threshold of 0.5 on the posterior
probability of non-transliteration is used to decide between transliteration and
non-transliteration.
I first train and test my unsupervised unigram model-based system on the

word-aligned list and compare it with my heuristic-based system. Table 5.24
shows the results. On both languages, the model-based system shows high

146

5. Transliteration Mining Model

TP FN TN FP P R F

English/Hindiheuristic 170 10 2039 45 79.1 94.4 86.1
English/Hindimodel 176 4 2034 50 77.9 97.8 86.7
English/Arabicheuristic 197 91 6580 59 77.0 68.4 72.5
English/Arabicmodel 288 0 6440 199 59.1 100.0 74.3

Table 5.24.: Transliteration mining results of the heuristic-based system and
the unsupervised unigram model-based system trained and tested
on the word-aligned list of the English/Hindi and English/Arabic
parallel corpus

recall of up to 100% with lower precision and achieves 0.6% and 1.8% higher
F-measure than the heuristic-based system.
Table 5.25 shows the transliteration mining results of unsupervised, semi-

supervised and supervised systems trained on the word-aligned list and tested
on the cross-product list. The unsupervised mining system for higher order per-
forms poorly. It achieves very low precision and learns noise from the training
data. The unigram semi-supervised system shows the best results of 85.6% F-
measure with high precision and high recall. The higher order semi-supervised
systems show a significant recall drop which resulted in a lower F-measure.
The unigram supervised system performs better than the bigram and trigram
supervised system (similar behavior to the unsupervised and semi-supervised
system). The best F-measure achieved by the supervised system is 78.9% which
is much lower than the best F-measure achieved by unsupervised and semi-
supervised system. One reason is data sparsity. The seed data consists of only
1000 transliteration pairs. Secondly, the seed data and the training data used
in the supervised systems are from different domains (Wikipedia and UN).
Seed data extracted from the same domain is likely to work better, resulting
in even higher scores than I have reported.
The mining systems show consistent behavior on the English/Arabic parallel

corpus as well (see Table 5.26). The semi-supervised trigram system shows

147

5. Transliteration Mining Model

Unsupervised Semi-supervised Supervised
English/Hindi P R F P R F P R F

Unigram 72.9 93.9 82.1 79.8 92.2 85.6 80.4 77.4 78.9
Bigram 4.2 97.6 8.1 88.4 81.3 84.7 79.9 76.0 77.9
Trigram 4.9 97.6 9.3 87.2 62.6 72.9 72.6 77.2 74.8

Table 5.25.: Results of the unsupervised, semi-supervised and supervised min-
ing systems trained on the word-aligned list and tested on the
cross-product list of the English/Hindi parallel corpus. The bolded
values show the best precision, recall and F-measure for the uni-
gram, bigram and trigram systems

Unsupervised Semi-supervised Supervised
English/Arabic P R F P R F P R F

Unigram 41.1 100.0 58.3 51.4 99.3 67.7 54.1 97.9 69.7
Bigram 4.2 100.0 8.1 61.3 98.3 75.5 61.0 98.3 75.3
Trigram 4.2 100.0 8.1 63.8 97.2 77.0 44.9 98.6 61.7

Table 5.26.: Results of the unsupervised, semi-supervised and supervised min-
ing systems trained on the word-aligned list and tested on the
cross-product list of the English/Arabic parallel corpus. The
bolded values show the best precision, recall and F-measure for
the unigram, bigram and trigram systems

the best F-measure. The parallel corpus contains only few transliterations.
However, my unsupervised unigram system is able to mine transliterations
with high recall. The higher order unsupervised system tends to learn noise
from the training data. If labeled data is available, it is best to use the semi-
supervised system.
The semi-supervised system performs better in correctly classifying close

transliterations as non-transliteration. Table 5.27 shows a few word pairs from
the English/Hindi experiment. These pairs are wrongly classified by the uni-
gram unsupervised system and correctly classified by the unigram semi-supervised
system. The unigram semi-supervised system is better than the unsupervised

148

5. Transliteration Mining Model

Table 5.27.: Examples of the English/Hindi close transliterations mined by
the unigram unsupervised system and correctly classified as non-
transliterations by the unigram semi-supervised system

system but there also a few close transliteration pairs which are wrongly clas-
sified by the unigram semi-supervised system. The bigram semi-supervised
system uses the contextual information to correctly classify them. Table 5.28
shows a few word pairs from the English/Hindi experiment that are wrongly
classified by the unigram semi-supervised system and correctly classified by
the bigram semi-supervised system.
I looked into the errors made by my bigram semi-supervised system. The

mined transliteration pairs still contain close transliterations. These are ar-
guably better than other classes of non-transliterations like translations where
source and target language words do not have a transliteration relationship
between them. It is even possible that they provide transliteration information
to system and it is very likely that they could be helpful when the available
labeled data is very small.

149

5. Transliteration Mining Model

Table 5.28.: Examples of the English/Hindi close transliterations mined by the
unigram semi-supervised system and correctly classified as non-
transliterations by the bigram semi-supervised system

5.9. Summary
I presented a novel model to automatically mine transliteration pairs. My ap-
proach is efficient, language pair independent (for alphabetic languages) and is
flexible to use for unsupervised, semi-supervised and supervised transliteration
mining. My best unsupervised system achieved high F-measure up to 95.7%
and on three language pairs performed better than all supervised and semi-
supervised systems that participated in NEWS10. On English/Russian dataset,
it wrongly classified close transliterations as transliterations. The completely
supervised system performed poorly due to data sparseness as labeled data is
a small list of transliteration pairs.
The semi-supervised system resolved the limitations of my unsupervised and

supervised systems. It has the best results and showed that labeled data helps
the mining system to achieve high precision list of transliteration pairs and

150

5. Transliteration Mining Model

unlabeled data helps to avoid data sparseness. The bigram semi-supervised
system generally showed high F-measure and kept a good balance between
precision and recall. The results showed that the semi-supervised system of
order>2 focused on high precision and showed a significant drop in recall.
Transliteration information is helpful in major applications like machine

translation and word alignment. In the next chapter, I incorporate the un-
supervised transliteration mining model to unsupervised word alignment and
show a significant improvement in the quality of word alignment.

5.10. Research Contribution
I presented a novel model for unsupervised transliteration mining. I also pro-
posed a single framework that is able to mine transliteration pairs in an unsu-
pervised, semi-supervised and supervised fashion.
In addition, I presented an analysis of the unsupervised, semi-supervised

and supervised systems with varying ngram sizes and concluded the following
points:

• If there is no labeled data available for a language pair, it is better to
build a unigram unsupervised transliteration mining system. The higher
order unsupervised systems tended to learn noise from the data and
performed poorly.

• If there is some labeled data available, it is always better to build a semi-
supervised system than a completely supervised or unsupervised system.
The higher order semi-supervised systems learn the contextual informa-
tion at the end of the word pairs and helped to achieve high precision.
This is particularly helpful on training data with a large number of close
transliterations.

151

6. Transliteration Mining to
Improve Word Alignment

I presented an unsupervised model to automatically mine transliteration pairs
from a parallel corpus. These transliteration pairs are helpful in major applica-
tions like cross language information retrieval, machine translation and word
alignment. In this chapter, I show the applicability of transliteration in word
alignment. The word alignment system works at word level and learns the
translation correspondence in a parallel sentence. I integrate the unsupervised
transliteration mining module into word alignment. So, the selection of a word
pair to be a correct alignment is decided using both translation probabilities
and transliteration probabilities. The new alignment method is fully unsuper-
vised. The results show that transliteration information improves the quality
of word alignment.

6.1. Introduction
The GIZA++ toolkit aligns parallel sentences at word level and builds a trans-
lation table (t-table) with the translation probability of every word pair. I de-
fine a transliteration sub-model and train it on the transliteration pairs mined
by my unsupervised transliteration mining system using parallel corpora. I
integrate it to the GIZA++ word aligner. The probability of a word pair is
calculated as an interpolation of the transliteration probability and the transla-
tion probability stored in the t-table of the different alignment models used by

152

6. Transliteration Mining to Improve Word Alignment

Algorithm 3 Estimation of transliteration probabilities, e-to-f direction
1: unfiltered data ←word-aligned list
2: filtered data ←transliteration pairs extracted using Algorithm 1
3: Train a transliteration system on the filtered data
4: for all e do
5: nbestTI(e)← 10 best transliterations for e according to the translit-

eration system
6: cooc(e)← set of all f that cooccur with e in a parallel sentence
7: candidateTI(e)← cooc(e) ∪ nbestTI(e)
8: end for
9: for all f do
10: pmoses(f, e)← joint transliteration probability of e and f according to

the transliterator
11: Calculate conditional transliteration probability pti(f |e) ←

pmoses(f,e)∑
f ′∈CandidateTI(e) pmoses(f

′,e)

12: end for

the GIZA++ aligner. The experiments show an improvement in both precision
and recall over the baseline alignment.

6.2. Transliteration Module
Consider e is the source language and f is the target language. GIZA++ ap-
plies the IBM models (Brown et al., 1993) and the HMM model (Vogel et al.,
1996) in both directions, i.e., e-to-f and f -to-e. The alignments are refined
using the grow-diag-final-and heuristic (Koehn et al., 2003). GIZA++ gener-
ates a list of translation pairs with alignment probabilities, which is called the
t-table. In this section, I present a method to estimate conditional translitera-
tion probabilities in the e-to-f direction. An identical procedure provides the
transliteration probabilities in the other direction. These transliteration prob-
abilities are later interpolated with the conditional translation probabilities
generated by GIZA++.

153

6. Transliteration Mining to Improve Word Alignment

The transliteration module requires two things - a transliteration system and
a candidate list that covers all possible word pairs that can be generated from
the parallel corpus. For the transliteration system, I use the Moses toolkit. I
take the filtered transliteration pairs extracted using my unsupervised translit-
eration mining system (Chapter 5) as training data for Moses. The characters
of source words and target words in the filtered transliteration pairs are sepa-
rated by space. So, every word pair behaves like a parallel sentence and every
character of the word behaves like a word. The modified filtered transliteration
pairs are used to train Moses.
For the candidate list, I first apply the transliteration system (Moses) to

the e side of the list of word pairs (word-aligned list/cross-product list). For
a source word, I generate the 10-best transliterations and call it nbestTI(e).
Then, I extract every f that cooccurs with e in a parallel sentence and add it to
nbestTI(e) which gives the list of candidate transliteration pairs candidateTI(e).
The next step is to compute the transliteration probability of the word pairs

in candidateTI(e). I use the constraint decoding option of Moses to compute
the joint probability of e and f . It divides the translation score of the best
target sentence given a source sentence by the normalization factor. Moses
with the constraint decoding option takes a pair of e and f , and calculates its
joint probability. The joint probability is 0 if the decoder fails to produce the
transliteration f for e.
GIZA++ generates conditional translation probabilities. In order to gen-

erate conditional transliteration probabilities, I use the sum of translitera-
tion probabilities ∑f ′∈CandidateTI(e) pmoses(f ′, e) as an approximation for the
prior probability pmoses(e) = ∑

f ′ pmoses(f ′, e) which is needed to convert the
joint transliteration probability into a conditional probability. The conditional
transliteration probability pti(f |e) is defined as:

pti(f |e) = pmoses(f, e)∑
f ′ pmoses(f ′, e)

(6.1)

where pmoses(f, e) = escoremoses(f,e) and (f, e) ∈ candidateTI.

154

6. Transliteration Mining to Improve Word Alignment

The complete procedure of the transliteration module is described in Algo-
rithm 3.

6.3. Modified EM Training of the Word
Alignment Models

In this section, I propose a method to modify the translation probabilities of the
t-table by interpolating the translation counts with transliteration counts. The
interpolation is done in both directions. In the following, I will only consider
the e-to-f direction.
I combine the transliteration probabilities with the translation probabilities

of the IBM models and the HMM model. The normal translation probability
pta(f |e) of the word alignment models is computed with relative frequency
estimates:

pta(f |e) = fta(f, e)
fta(e)

(6.2)

I smooth the alignment frequencies by adding the transliteration proba-
bilities weighted by the factor λ and get the following modified translation
probabilities:

p̂(f |e) = fta(f, e) + λpti(f |e)
fta(e) + λ

(6.3)

where fta(f, e) = pta(f |e)fta(e). pta(f |e) is obtained from the original t-table of
the alignment model. f(e) is the total corpus frequency of e. λ is the transliter-
ation weight which is defined as the number of counts the transliteration model
gets versus the translation model. It is optimized for every language pair (see
Section 6.4). Apart from the definition of the weight λ, this smoothing method
is equivalent to Witten-Bell smoothing.
I smooth after every iteration of the IBMmodels and the HMMmodel except

the last iteration of each model. Algorithm 4 shows the smoothing for IBM
Model4. IBM Model1 and the HMM model are smoothed in the same way. I

155

6. Transliteration Mining to Improve Word Alignment

Algorithm 4 Interpolation with the IBM Model4, e-to-f direction
1: {I want to run four iterations of Model4}
2: f(e)← total frequency of e in the corpus
3: Run MGIZA++ for one iteration of Model4
4: I ← 1
5: while I < 4 do
6: Look up pta(f |e) in the t-table of Model4
7: fta(f, e)← pta(f |e)f(e) for all (f, e)
8: p̂(f |e)← fta(f,e)+λpti(f |e)

fta(e)+λ for all (f, e)
9: Resume MGIZA++ training for 1 iteration using the modified t-table

probabilities p̂(f |e)
10: I ← I + 1
11: end while

also apply Algorithm 3 and Algorithm 4 in the alignment direction f to e. The
final alignments are generated using the grow-diag-final-and heuristic (Koehn
et al., 2003).

6.4. Evaluation
In this section, I present the results of my word alignment model. I use MGIZA++
(Gao and Vogel, 2008) for incorporation. It is an extension of GIZA++ with
the additional ability to resume training from any model rather than starting
with Model1. Here, I use the term GIZA++ instead of MGIZA++.

6.4.1. Training Data

I evaluate my word alignment model on English/Hindi and English/Arabic.
The English/Hindi corpus available from ACL 2005 Workshop on Building
and Using Parallel Texts (WA05) (Martin et al., 2005) consists of training,
development and test data. For English/Arabic, I use the parallel corpus from
the United Nations (Eisele and Chen, 2010). I randomly pick 200,000 par-

156

6. Transliteration Mining to Improve Word Alignment

allel sentences from the year 2000. For the development and test data for
English/Arabic, I use manually created gold standard word alignments for
155 sentences, available from Fraser and Marcu (2007). I use 50 sentences for
development and 105 sentences for test.
For the transliteration module, I generate a word-aligned list and a cross-

product list for both English/Arabic and English/Hindi using the method de-
scribed in Section 5.7.1. I build two versions of the transliteration system –
one is trained and tested on the word-aligned list and the other is trained on
the word-aligned list but tested on the cross-product list. I compare the effect
of using the different lists for the transliteration module on the English/Hindi
word alignment in the next section.

6.4.2. Experiments

I align the data sets using GIZA++ (Och and Ney, 2003). It runs with 5
iterations of Model1, 4 iterations of HMM and 4 iterations of Model4 and
refines the alignments using the grow-diag-final-and heuristic (Koehn et al.,
2003). I obtain the baseline F-measure by comparing the alignments of the
test corpus with the gold standard alignments.
In my word alignment model, I also use GIZA++ with 5 iterations of Model1,

4 iterations of HMM and 4 iterations of Model4. I interpolate translation and
transliteration probabilities at different iterations (and different combinations
of iterations) of the three models and always observe an improvement in align-
ment quality. For the final experiments, I interpolate at every iteration of the
IBM models and the HMM model except the last iteration of every model
where I could not interpolate for technical reasons.1 Algorithm 4 shows the
interpolation of the transliteration probabilities with IBM Model4. I used the

1I had problems in resuming MGIZA++ training when training was supposed to continue
from a different model, such as if I stopped after the 5th iteration of Model1 and then
tried to resume MGIZA++ from the first iteration of the HMM model. In this case, I ran
the 5th iteration of Model1, then the first iteration of the HMM and only then stopped
for interpolation; so I did not interpolate in just those iterations of training where I was
transitioning from one model to the next.

157

6. Transliteration Mining to Improve Word Alignment

Pb Rb Fb Pti Rti Fti

EH 49.1 48.5 51.2 58.5 52.8 55.5
EA 50.8 49.9 50.4 56.1 55.4 55.7

Table 6.1.: Word alignment results on the test data of English/Hindi (EH) and
English/Arabic (EA) where Pb is the precision of baseline GIZA++
and Pti is the precision of my word alignment system

same procedure with IBM Model1 and the HMM model. The parameter λ is
optimized on development data for every language pair. The word alignment
system is not very sensitive to λ. Any λ in the range between 20 and 100 works
fine for all language pairs. The optimization helps to maximize the improve-
ment in word alignment quality. For my experiments, I use λ = 35. For the
transliteration system, I train the unsupervised transliteration mining system
on the word-aligned list and mine transliteration pairs from the cross-product
list. On test data, I achieve an improvement of approximately 9.6% and 5.3%
in precision and 4.3% and 5.5% in recall on English/Hindi and English/Arabic2

word alignment, respectively. Table 6.1 shows the scores of the baseline model
and my word alignment model.
I compare my English/Hindi word alignment results with the systems pre-

sented at WA05. There are three systems, one limited and two un-limited,
which participated in the English/Hindi task. I outperformed the limited sys-
tem and one un-limited system. The other un-limited system uses language
dependent information like transliteration similarity and dictionary lookup.
It’s results are not directly comparable with my results.

2The English/Arabic results reported here are obtained by interpolating for every iteration
of Model1 only because for this pair t-table probabilities go to infinity when interpolation
is done for Model4 and HMM model.

158

6. Transliteration Mining to Improve Word Alignment

λ P R F
5 56.8 50.4 53.4
10 59.5 50.6 54.7
15 61.0 50.8 55.4
20 61.8 52.3 56.6
25 60.5 52.1 56.0
30 62.1 53.1 57.3
35 62.4 53.1 57.4
40 59.6 51.5 55.3
45 59.2 50.6 54.6
50 59.4 51.0 54.9
55 60.5 51.5 55.6
60 60.0 51.0 55.2
65 60.9 51.7 55.9
70 61.0 51.7 56.0
75 61.1 52.5 56.5
80 61.3 52.5 56.5
85 60.9 51.7 55.9
90 60.3 51.5 55.5
95 61.0 51.7 56.0

Table 6.2.: Lambda optimization on the gold standard development set of En-
glish/Hindi. The transliteration module is trained and tested on
the word-aligned list

6.4.3. Additional Experiments

The interpolation parameter is optimized on the development set. A value
between 20 to 100 works fine. Table 6.2 shows the effect of varying λ on the
development set of English/Hindi. The transliteration module is trained and
tested on the word-aligned list.
In the word alignment experiments above, I trained the transliteration sys-

tem on the list of transliteration pairs extracted from the word-aligned list. I
later call this word alignment system AlignmentWA. I build another version of

159

6. Transliteration Mining to Improve Word Alignment

P R F
Baseline 49.2 44.2 46.6
AlignmentWA 62.4 53.1 57.4
AlignmentCP 61.2 50.6 55.4

Table 6.3.: Word alignment results on the development data of English/Hindi.
Baseline is the alignment result of GIZA++, AlignmentWA is the
word alignment system where the transliteration module is built on
the transliteration pairs extracted from the word-aligned list and
in AlignmentCP , they are extracted from the cross-product list

the word alignment system in which the transliteration module is built using
the list of transliteration pairs extracted from the cross-product list. I call this
system AlignmentCP for later reference. Table 6.3 compares the results of these
two word alignment systems. AlignmentWA shows 0.1% better precision and
2.5% better recall than AlignmentCP . It achieves an overall F-measure gain
of 1.5% over AlignmentCP . The mined list of transliteration pairs extracted
from the word-aligned system is very clean and contains mostly translitera-
tions and close transliterations. The close transliterations are not harmful for
word alignment as the alignment of these words are correct. The transliteration
pairs extracted from the mining system using the cross-product list are noisy.
They contain transliterations, close transliterations and wrong alignment pairs.
These are the word pairs where one word is a frequent word like a Hindi case
marker and is attached with almost every other word in the cross-product list.
These word pairs are also mined as transliteration pairs by the system. For
word alignment, they are wrong alignments and are harmful for the system.

6.5. Summary
I presented an unsupervised word alignment model that uses transliteration
information to improve the quality of word alignment. The alignment model

160

6. Transliteration Mining to Improve Word Alignment

has two components, the translation model and the transliteration model. I
used the GIZA++ word aligner which provides the translation model prob-
abilities. For transliteration probabilities, I trained my unsupervised mining
system on the training data and extracted a list of transliteration pairs. I built
a transliteration system using Moses on the extracted transliteration pairs and
calculated the transliteration probabilities. I interpolated the transliteration
and non-transliteration models inside of GIZA++. The new word alignment
system showed a large improvement in the quality of word alignment.

6.6. Research Contribution
I presented an unsupervised word aligner that uses both translation and translit-
eration information and showed that it improves the quality of word alignment.

161

7. Contributions and Future Work

7.1. Conclusion
I revise the contributions that I claimed in Section 1.3 and discuss the short-
comings in Section 7.3. Section 7.4 presents the suggested future work.

7.2. Contributions

7.2.1. Theoretical Contributions

The following are my theoretical contributions:

• Transliteration in machine translation: I have presented a novel way
to integrate transliterations into machine translation. I have showed that
for language pairs with significant vocabulary overlap, transliteration
can be effective in machine translation for more than just translating
OOV words. I have used transliteration as a tool for disambiguation of
homonyms which can be translated or transliterated or transliterated
differently based on different contexts.

• The first unsupervised algorithm for transliteration mining: I
have presented the first unsupervised algorithm for transliteration min-
ing. It is an iterative algorithm which trains on unlabeled data. In every
iteration, it filters out a few word pairs which are less likely to be translit-
erations. The algorithm stops based on a stopping criterion and returns

162

7. Contributions and Future Work

a list of transliteration pairs. The unsupervised mining system is evalu-
ated on parallel corpora. I showed that it has competitive results with
the state-of-the-art semi-supervised and supervised systems.

• A novel model for unsupervised transliteration mining: I have
proposed a novel model for unsupervised transliteration mining defined
as an interpolation of a transliteration sub-model and a non-transliteration
sub-model. The unsupervised mining model is very efficient and language
pair independent. It models the unlabeled data and mines transliteration
pairs from it. The results showed that it performs better than most of
the semi-supervised and supervised systems.

A framework for transliteration mining: I have presented the first
general framework for transliteration mining that uses a single model for
all – unsupervised, semi-supervised and supervised learning. I evaluated
my mining system using different learning models and showed that the
semi-supervised system is better than the unsupervised and supervised
systems. This shows that both labeled and unlabeled data are important
for learning. The labeled data helps to achieve high precision while the
unlabeled data helps to avoid the problem of data sparseness. A combi-
nation of them balances out these two effects.

• An application to word alignment: I have incorporated the unsu-
pervised transliteration mining module into the unsupervised word align-
ment toolkit GIZA++. The new alignment system is also unsupervised.
I showed that applying transliteration mining and transliteration model-
ing improves word alignment in terms of both precision and recall when
compared against gold standard word alignments.

7.2.2. Resource Contributions

• Gold standard for transliteration mining: I have built a gold stan-
dard for the English/Hindi and English/Arabic transliteration mining
experiments. I annotated a subset of the word pairs extracted from the

163

7. Contributions and Future Work

word-aligned corpora as either transliteration or non-transliteration. The
gold standard has been made freely available.

• A transliteration mining tool: I have implemented the model-based
transliteration mining system. The system has four major modules –
character aligner, unsupervised mining, semi-supervised mining and su-
pervised mining. The tool provides the options to manually set the pa-
rameters instead of using the automatically calculated values of the pa-
rameters. The system is freely available.

7.3. Shortcomings
The unsupervised mining system has the limitation of learning only unigram
multigram units. Higher order multigram units should help to learn a wide
variety of transliteration phenomena which the unigram multigram units are
unable to learn. For example, consider the English character sequence ph and
its equivalent transliteration character in Urdu f. The unigram training aligns
p to f and aligns h to ∅ while the higher order training produces a single align-
ment ph→f. The alignment p→f and h→ ∅ learned by the unigram model
are wrong. If these alignments are frequent in the training data, the unsuper-
vised mining system would learn to align p to f and to delete h with a high
probability.
The unsupervised mining system on the English/Hindi cross-product list

observed the problem of high deletion probability and wrongly classified a few
non-transliteration pairs. These are the pairs where Hindi word is a small string
consisted of 2-3 characters and English word is a large string. However, the
English word contains the transliteration of the Hindi word as its substring,
like the word pair .1 Due to the noisy nature of the training data, the
unsupervised transliteration mining system learns to delete at high probability.

1The Hindi word contains only two characters. Its romanization is represented by three
characters.

164

7. Contributions and Future Work

For the above word pair, it aligns English p to Hindi p and English r to
Hindi r and delete other English characters k and e at high probability. The
word pair gets a high transliteration probability and is incorrectly mined as a
transliteration pair.
I may modify the system to learn m-to-n alignments. However, the training

data is very noisy. The unsupervised system memorizes larger noisy units from
the unlabeled data and performs poorly (see Section 5.7.5 for results on the
higher order models). This is a standard problem of the approaches based on
maximum likelihood training. They tend to overfit the training data. A solution
to this problem is to use the Bayesian approach as an alternative to maximum
likelihood training. It avoids the overfitting of the data by preferring smaller
character alignments. Section 7.4.6 talks about using the Bayesian approach
in detail.
Non-transliteration data consists of translations, misalignments, close translit-

erations, numbers2 and word pairs for which both source and target language
words are identical (identical words like English to English). The current model
considers them under one class and models them as randomly seeing source
and target language characters together. But, aside from translations and mis-
alignments, most of these word pairs do have some character relationship
between them. I call them regular non-transliteration categories. The non-
transliteration model is not capturing this information and is not a true rep-
resentative of all types of non-transliterations. The regular non-transliteration
categories can cause problems for the mining system when they occur fre-
quently in the training data. For example, suppose the percentage of identical
words is larger than the percentage of transliterations in the training data. This
would mislead the transliteration model and it will learn identical-words as
transliterations.3 In Section 7.4.3, I talk about dividing the non-transliteration
model into more than one smaller models. This would separately model differ-

2Numbers are classified as non-transliterations according to the NEWS10 guidelines.
3Currently, I am automatically removing identical-words in a pre-processing step but this
problem holds also for other categories like numbers.

165

7. Contributions and Future Work

ent kinds of non-transliterations and would better handle the noise.
The unsupervised mining model has the problem of wrongly classifying close-

transliterations as transliterations. The decision on whether a pair is translit-
eration or non-transliteration is based on the posterior probability of non-
transliteration. For the English/Russian dataset where the problem of close
transliteration is severe, there is a big difference between the value of precision
and recall. The system achieves high recall (97.1%) and low precision (67.2%).
For some applications, it would be better to choose a different decision bound-
ary that balances out precision and recall. Section 7.4.4 talks about a solution
to this problem.

7.4. Future Work

7.4.1. Training using Noisier Data

I have experimented using the NEWS10 dataset and parallel corpora. The
NEWS10 dataset contains title of Wikipedia pages written in different lan-
guages. The percentage of transliterations in the dataset are about 14-18% de-
pending on the language pair. The word-aligned list extracted from the parallel
corpora contains approximately 4-8% transliteration pairs. The unsupervised
transliteration mining of the NEWS10 dataset is easier than the word-aligned
list of parallel corpora as it contains higher percentage of transliteration pairs.
However, my unsupervised system performed well on both datasets. An inter-
esting experiment for the unsupervised system would be to see the variation in
its performance with the decrease in the percentage of transliteration pairs in
the training data. The cross-product list extracted from the English/Arabic
parallel corpus contains about 2% transliteration pairs and is the noisiest avail-
able data. I could not train my system on it as it was computationally expen-
sive. I can artificially generate noise in the data and test my mining system on
it but it might not reflect the true behavior of the system. The natural noise
in the data contains also close transliterations which are not transliterations
but provide useful information to the unsupervised system. I would like to

166

7. Contributions and Future Work

improve the computational complexity of the software and would run it on the
cross-product list of the English/Arabic parallel corpus.

7.4.2. Comparable Corpora

Another interesting experiment would be to apply unsupervised transliteration
mining to the word pairs extracted from comparable corpora. This data would
be noisier than the cross-product list (described in Section 7.4.1) and might
contain very few transliteration pairs.

7.4.3. Various Non-transliteration Models

The non-transliteration category contains various kinds of noise as described in
Section 7.3. The current non-transliteration model does not handle them sepa-
rately. A modeling solution to this problem is to divide the non-transliteration
model into several sub-models, one for each kind of noise. In this way, every
type can be modeled separately. For identical words, this would introduce two
models – one to handle source language identical-words and other to handle
target language identical-words. The training data for the source language
identical-words could be all source language words paired with themselves.
Close transliterations are hard to model separately without having labeled

data for their training. In weakly supervised setting, one may include (very
limited) interactive user feedback that helps in identifying a few close translit-
erations from the unlabeled data.

7.4.4. Back Transliteration

In order to solve the low precision problem of my unsupervised system, I pro-
pose a different decision boundary that balances out precision and recall in
case of English/Russian and increases precision from recall for other language
pairs. The idea is to use a decoder to transliterate source words and target
words of test data and then compare them with the original words under

167

7. Contributions and Future Work

some constraints. For a unigram model, it is very less likely that the decoder
transliterates a word to a close transliteration rather than a transliteration.
The procedure is explained as follows:
For a word pair (e, f) of the test set, use a decoder to produce transliteration

of the word e, say f’. Repeat the similar step for word f and generate its
transliteration, say e’. Now, there are three pairs (e, f), (e, f ′) and (e′, f). One
way to compare the generated transliteration to the original word is to calculate
their edit distance. If they differ by more than a certain threshold, classify the
original word pair (e, f) as non-transliteration. Another way is to compare the
probabilities of the word pairs. The decoder provides the probability of the
most likely sequence it generates. For the original word pair (e, f), one can
use constraint decoding to get its probability according to the model. If these
probabilities are close to each other and have a difference less than a certain
threshold, classify the word pair as a transliteration pair.

7.4.5. Transliteration Mining involving Non-alphabetic
Languages

I tested my transliteration mining system only on alphabetic languages. A
further step is to adapt the model to language pairs where one language is
alphabetic and other language is non-alphabetic such as English/Japanese.
Non-alphabetic languages have logographic writing systems. Each single unit
(character) may represent multiple characters or words of alphabetic lan-
guages. Solving the transliteration mining problem requires learning one-to-
many and/or many-to-one character alignments.
I have built higher ngram order unsupervised mining systems in Section

5.7.5. Their results showed that the unsupervised system starts incorrectly
memorizing larger units from the training data when moved from unigram to
higher order causing poor performance. In Section 7.4.6, I describe a Bayesian
approach to transliteration mining. It should be able to learn larger multigrams
without memorizing the noise from the data.

168

7. Contributions and Future Work

7.4.6. Bayesian Approach

My transliteration mining model is based on maximum likelihood training
(ML). The problem with ML training is that it overfits the training data
and gives larger units too much weight, which hurts generalization. Finch and
Sumita (2010) present a Bayesian approach to generate m-to-n character align-
ments for transliteration and compare their results with a ML based m-to-n
aligner. The Bayesian approach prefers frequent character alignments and as-
signs a lower probability to infrequent character alignments. In this way, the
model penalizes alignments of larger character units and relies more on uni-
gram character alignments.
We could extend our model to induce m-to-n alignments and modify the

training to use the Bayesian approach instead of ML training. In this way,
the model is able to learn reliable larger multigrams without memorizing the
noise from the training data. This model is different from Finch and Sumita
(2010) as it still models every word pair using both transliteration and non-
transliteration sub-models. This approach should also work well when used
with non-alphabetic languages.

7.4.7. Incorporate Unsupervised Mining Model to NLP
Applications

Word Alignment

I used transliteration information in word alignment and showed that it im-
proves the performance of the systems. I mined transliteration pairs in a pre-
processing step and calculated the transliteration probabilities. During word
alignment, I interpolated the translation probabilities of t-table with the translit-
eration probabilities. Here, the t-table is updated after every iteration of EM.
However, the transliteration probabilities are fixed and calculated from the
transliteration pairs extracted from the cross-product list.
A better way to add transliteration information to alignment is to incorpo-

rate the transliteration mining module inside of EM. In this way, the translit-

169

7. Contributions and Future Work

eration probabilities can also improve for every iteration of EM like the t-table
probabilities.
The procedure is as follows:
After every iteration of EM, generate a list of word pairs from the cur-

rent alignment of the aligner, mine transliteration pairs from it and calculate
transliteration probabilities. Then interpolate them to t-table probabilities and
resume the word aligner to the next iteration. Here, the transliteration mining
system runs after every iteration of EM on an updated list of word pairs and
the transliteration probabilities are also calculated for every iteration. The t-
table probabilities and the the transliteration probabilities are improving for
every iteration of EM. This would lead to a maximum improvement in the
word alignment quality.

Machine Translation

Transliteration can be used in machine translation at two levels – at the time
of word alignment and in decoding to generate transliteration of OOV words.
I have separately tested the effect of transliteration in the word alignment task
(see Chapter 6) and in the machine translation task (see Chapter 3). Using
it at both levels in one system might be very helpful in improving the overall
quality of translation.

170

Bibliography

Steven Abney. Semisupervised Learning for Computational Linguistics. Chap-
man & Hall/CRC, 1st edition, 2007.

Yaser Al-Onaizan and Kevin Knight. Machine transliteration of names in
Arabic text. In Proceedings of the Workshop on Computational Approaches
to Semitic Languages, Morristown, NJ, USA, 2002.

Waleed Ammar, Chris Dyer, and Noah Smith. Transliteration by sequence
labeling with lattice encodings and reranking. In Proceedings of the 4th
Named Entity Workshop, Jeju, Korea, 2012.

Maximilian Bisani and Hermann Ney. Joint-sequence models for grapheme-to-
phoneme conversion. Speech Communication, 50(5), 2008.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and R. L.
Mercer. The mathematics of statistical machine translation: parameter es-
timation. Computational Linguistics, 19(2), 1993.

Kareem Darwish. Transliteration mining with phonetic conflation and iterative
training. In Proceedings of the 2010 Named Entities Workshop, Uppsala,
Sweden, 2010.

Sabine Deligne and Frédéric Bimbot. Language modeling by variable length
sequences : Theoretical formulation and evaluation of multigrams. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 1, Los Alamitos, CA, USA, 1995.

171

Bibliography

Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological
sequence analysis: probabilistic models of proteins and nucleic acids. Cam-
bridge University Press, 1998.

Nadir Durrani, Hassan Sajjad, Alexander Fraser, and Helmut Schmid. Hindi-
to-Urdu machine translation through transliteration. In Proceedings of the
48th Annual Conference of the Association for Computational Linguistics,
Uppsala, Sweden, 2010.

Andreas Eisele and Yu Chen. MultiUN: A multilingual corpus from United
Nation documents. In Proceedings of the Seventh conference on International
Language Resources and Evaluation, Valletta, Malta, 2010.

Asif Ekbal, Sudip Kumar Naskar, and Sivaji Bandyopadhyay. A modified
joint source-channel model for transliteration. In Proceedings of the In-
ternational Conference on Computational Linguistics and Association for
Computational Linguistics, Sydney, Australia, 2006.

Andrew Finch and Eiichiro Sumita. Phrase-based machine transliteration. In
Proceedings of the Workshop on Technologies and Corpora for Asia-Pacific
Speech Translation, Hyderabad, India, 2008.

Andrew Finch and Eiichiro Sumita. A bayesian model of bilingual segmenta-
tion for transliteration. In Proceedings of the seventh International Workshop
on Spoken Language Translation, Paris, France, 2010.

Alexander Fraser and Daniel Marcu. Measuring word alignment quality for
statistical machine translation. Computational Linguistics, 33(3), 2007.

William A. Gale and Kenneth W. Church. A program for aligning sentences
in bilingual corpora. Computational Linguistics, 19(1), 1993.

Qin Gao and Stephan Vogel. Parallel implementations of word alignment
tool. In Software Engineering, Testing, and Quality Assurance for Natural
Language Processing, Columbus, Ohio, 2008.

172

Bibliography

Swati Gupta. Aligning Hindi and Urdu bilingual corpora for robust projection.
Masters project dissertation, Department of Computer Science, University
of Sheffield, 2004.

Xiaodong He. Using word dependent transition models in hmm based word
alignment for statistical machine translation. In Proceedings of the Second
Workshop on Statistical Machine Translation, Prague, Czech Republic, 2007.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III. Name translation in statis-
tical machine translation - learning when to transliterate. In Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Columbus, Ohio, 2008.

Fei Huang. Multilingual named entity extraction and translation from text
and speech. PhD thesis, Language Technology Institute, Carnegie Mellon
University, 2005.

Bushra Jawaid and Tafseer Ahmed. Hindi to Urdu conversion: beyond simple
transliteration. In Conference on Language and Technology 2009, Lahore,
Pakistan, 2009.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek Sherif. Applying many-
to-many alignments and hidden markov models to letter-to-phoneme conver-
sion. In Proceedings of the Human Language Technology and North Ameri-
can Association for Computational Linguistics Conference, Rochester, New
York, 2007.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou, Kenneth Dwyer, and
Grzegorz Kondrak. DirecTL: a language independent approach to translit-
eration. In Proceedings of the 2009 Named Entities Workshop: Shared Task
on Transliteration, Suntec, Singapore, 2009.

Sittichai Jiampojamarn, Kenneth Dwyer, Shane Bergsma, Aditya Bhargava,
Qing Dou, Mi-Young Kim, and Grzegorz Kondrak. Transliteration genera-

173

Bibliography

tion and mining with limited training resources. In Proceedings of the 2010
Named Entities Workshop, Uppsala, Sweden, 2010.

Ali El Kahki, Kareem Darwish, Ahmed Saad El Din, Mohamed Abd El-Wahab,
Ahmed Hefny, and Waleed Ammar. Improved transliteration mining using
graph reinforcement. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, Edinburgh, UK, 2011.

Mehdi M. Kashani, Eric Joanis, Roland Kuhn, George Foster, and Fred
Popowich. Integration of an Arabic transliteration module into a statis-
tical machine translation system. In Proceedings of the Second Workshop on
Statistical Machine Translation, Prague, Czech Republic, 2007a.

Mehdi M. Kashani, Fred Popowich, and Anoop Sarkar. Automatic translit-
eration of proper nouns from Arabic to English. In Second Workshop on
Computational Approaches to Arabic Script-based Languages, Stanford Uni-
versity, USA, 2007b.

Alexandre Klementiev and Dan Roth. Weakly supervised named entity
transliteration and discovery from multilingual comparable corpora. In Pro-
ceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguis-
tics, Morristown, NJ, USA, 2006.

Kevin Knight and Jonathan Graehl. Machine transliteration. Computational
Linguistics, 24(4), 1998.

Philipp Koehn. Pharaoh: A beam search decoder for phrase-based statistical
machine translation models. In Conference of the Association for Machine
Translation in the Americas, Washington DC, 2004a.

Philipp Koehn. Statistical significance tests for machine translation evaluation.
In Dekang Lin and Dekai Wu, editors, Proceedings of the Conference on
Empirical Methods in Natural Language Processing, Barcelona, Spain, 2004b.

174

Bibliography

Philipp Koehn. Statistical Machine Translation. Cambridge University Press,
The Edinburgh Building, Shaftsbury Road, Cambridge, 2010.

Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-based
translation. In Proceedings of the Human Language Technology and North
American Association for Computational Linguistics Conference, Edmonton,
Canada, 2003.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan
Herbst. Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics, Demonstration Program, Prague, Czech Republic, 2007.

A Kumaran, Mitesh M. Khapra, and Haizhou Li. Whitepaper of NEWS 2010
shared task on transliteration mining. In Proceedings of the 2010 Named
Entities Workshop, Uppsala, Sweden, 2010.

Haizhou Li, Zhang Min, and Su Jian. A joint source-channel model for machine
transliteration. In Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, Barcelona, Spain, 2004.

Wesley Mackay and Grzegorz Kondrak. Computing word similarity and identi-
fying cognates with pair hidden markov models. In Proceedings of the Ninth
Conference on Computational Natural Language Learning, Stroudsburg, PA,
USA, 2005.

M G Abbas Malik, Christian Boitet, and Pushpak Bhattacharyya. Hindi Urdu
machine transliteration using finite-state transducers. In Proceedings of the
22nd International Conference on Computational Linguistics, Manchester,
UK, 2008.

Joel Martin, Rada Mihalcea, and Ted Pedersen. Word alignment for languages
with scarce resources. In ParaText ’05: Proceedings of the Association for

175

Bibliography

Computational Linguistics Workshop on Building and Using Parallel Texts,
Morristown, NJ, USA, 2005.

Robert C. Moore. Fast and accurate sentence alignment of bilingual corpora.
In Conference of the Association for Machine Translation in the Americas,
Tiburon, California, 2002.

Peter Nabende. Transliteration system using pair HMM with weighted fsts. In
Proceedings of the 2009 Named Entities Workshop: Shared Task on Translit-
eration, NEWS ’09, Suntec, Singapore, 2009.

Peter Nabende. Mining transliterations from Wikipedia using Pair HMMs. In
Proceedings of the 2010 Named Entities Workshop, Uppsala, Sweden, 2010.

Sara Noeman. Language independent transliteration system using phrase
based SMT approach on substrings. In Proceedings of the 2009 Named En-
tities Workshop: Shared Task on Transliteration, NEWS ’09, Suntec, Singa-
pore, 2009.

Sara Noeman and Amgad Madkour. Language independent transliteration
mining system using finite state automata framework. In Proceedings of the
2010 Named Entities Workshop, Uppsala, Sweden, 2010.

Franz J. Och. Minimum error rate training in statistical machine translation. In
Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics, Sapporo, Japan, 2003.

Franz J. Och and Hermann Ney. Improved statistical alignment models. In
Proceedings of the 38th Annual Meeting of the Association for Computational
Linguistics, Hong Kong, 2000.

Franz J. Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1), 2003.

Franz J. Och, Christoph Tillmann, and Hermann Ney. Improved alignment
models for statistical machine translation. In Joint SIGDAT Conference on

176

Bibliography

Empirical Methods in Natural Language Processing and Very Large Corpora,
University of Maryland, College Park, MD, 1999.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2), 1990.

Taraka Rama and Karthik Gali. Modeling machine transliteration as a phrase
based statistical machine translation problem. In Proceedings of the 2009
Named Entities Workshop: Shared Task on Transliteration, Morristown, NJ,
USA, 2009.

Eric Sven Ristad and Peter N. Yianilos. Learning string-edit distance. IEEE
Trans. Pattern Anal. Mach. Intell., 20(5), 1998.

Hassan Sajjad, Nadir Durrani, Helmut Schmid, and Alexander Fraser. Com-
paring two techniques for learning transliteration models using a parallel
corpus. In Proceedings of the 5th International Joint Conference on Natural
Language Processing, Chiang Mai, Thailand, 2011a.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid. An algorithm for un-
supervised transliteration mining with an application to word alignment. In
Proceedings of the 49th Annual Conference of the Association for Computa-
tional Linguistics, Portland, USA, 2011b.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid. A statistical model for
unsupervised and semi-supervised transliteration mining. In Proceedings of
the 50th Annual Conference of the Association for Computational Linguis-
tics, Jeju, Korea, 2012.

K Saravanan, Raghavendra Udupa, and A Kumaran. Improving cross-language
information retrieval by transliteration generation and mining. LNCS vol-
ume on Forum for Information Retrieval Evaluation proceedings, 2010.

Tarek Sherif and Grzegorz Kondrak. Bootstrapping a stochastic transducer for
Arabic-English transliteration extraction. In Proceedings of the 45th Annual

177

Bibliography

Meeting of the Association for Computational Linguistics, Prague, Czech
Republic, 2007a.

Tarek Sherif and Grzegorz Kondrak. Substring-based transliteration. In Pro-
ceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, Prague, Czech Republic, June 2007b.

Praneeth Shishtla, V. Surya Ganesh, Sethuramalingam Subramaniam, and Va-
sudeva Varma. A language-independent transliteration schema using char-
acter aligned models at NEWS 2009. In Proceedings of the 2009 Named
Entities Workshop: Shared Task on Transliteration, Morristown, NJ, USA,
2009.

R. Mahesh K. Sinha. Developing English-Urdu machine translation via Hindi.
In Third Workshop on Computational Approaches to Arabic Script-based
Languages, MT Summit XII, Ottawa, Canada, 2009.

Richard Sproat, Tao Tao, and ChengXiang Zhai. Named entity transliteration
with comparable corpora. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th Annual Meeting of the
Association for Computational Linguistics, Sydney, Australia, 2006.

Bonnie G. Stalls and Kevin Knight. Translating names and technical terms
in Arabic text. In Proceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th International Conference on
Computational Linguistics - The Workshop on Computational Approaches
to Semitic Languages, Montreal, Quebec, Canada, 1998.

Andreas Stolcke. SRILM - an extensible language modeling toolkit. In Intl.
Conf. Spoken Language Processing, Denver, Colorado, 2002.

Tao Tao, Su-Yoon Yoon, Andrew Fister, Richard Sproat, and ChengXiang
Zhai. Unsupervised named entity transliteration using temporal and pho-
netic correlation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Sydney, Australia, 2006.

178

Bibliography

Joerg Tiedemann and Peter Nabende. Translating transliterations. interna-
tional journal of computing and ICT research, 3(1), 2009.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word
alignment in statistical translation. In 16th International Conference on
Computational Linguistics, Copenhagen, Denmark, 1996.

Ian H. Witten and Timothy C. Bell. The zero-frequency problem: Estimat-
ing the probabilities of novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4), 1991.

Bing Zhao, Nguyen Bach, Ian Lane, and Stephan Vogel. A log-linear block
transliteration model based on bi-stream HMMs. In Human Language Tech-
nologies 2007: The Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, Rochester, New York, 2007.

179

A. Transliteration Mining Software

The transliteration mining software consists of four modules – character aligner,
unsupervised transliteration miner, semi-supervised transliteration miner and
supervised transliteration miner. The software uses two kinds of data – unla-
belled data and labelled data. The unlabelled data consists of a list of word
pairs which are either transliterations or non-transliterations. The labelled data
is a list of transliteration pairs.

The software is released under a Creative Commons license. I request a ci-
tation of the following paper if the software is used in a publication.

Sajjad, Hassan; Fraser, Alexander; Schmid, Helmut (2012). A statistical model
for unsupervised and semi-supervised transliteration mining. Proceedings of
the 50th Annual Conference of the Association for Computational Linguistics.
Jeju, Korea.

A.1. Modules

A.1.1. Character Aligner

The character aligner takes a list of word pairs for training. In the test mode,
the trained model is applied to test data. The output of the aligner is the test
data aligned at character level. The generated multigrams (character align-
ments) are restricted to 0–1,1–1,1–0 i.e. zero or one character on the source
and target side. Following is the command to run the aligner.

180

A. Transliteration Mining Software

java -Xmx5g -Dfile.encoding=UTF-8 -jar multigrams.jar -aligner -
train trainFile -test testFile
If no test is specified, trainFile will be taken for test.

A.1.2. Unsupervised Transliteration Miner

The unsupervised transliteration miner trains on the unlabelled data. The
training supports an ngram order up to trigram. The trained model is then
used to mine transliteration pairs from a test set. A sample executable com-
mand is as follows:

java -Xmx5g -Dfile.encoding=UTF-8 -jar multigrams.jar -unsupervised
-train trainFile -test testFile
If no test is specified, trainFile will be taken for test.

A.1.3. Semi-supervised Transliteration Miner

The semi-supervised transliteration miner takes the unlabelled data and the
labelled data for training. The training supports an ngram order up to trigram.
In the test mode, the trained model is applied to testFile to mine translitera-
tion pairs.

java -Xmx5g -Dfile.encoding=UTF-8 -jar multigrams.jar -semisupervised
-train trainFile -test testFile -seed seedFile
If no test is specified, trainFile will be taken for test.

A.1.4. Supervised Transliteration Miner

The supervised transliteration miner trains on the labelled data and mines
transliteration pairs from the test data. The training supports an ngram order
up to trigram. Following is the command to run the supervised miner.

181

A. Transliteration Mining Software

java -Xmx5g -Dfile.encoding=UTF-8 -jar multigrams.jar -supervised
-train trainFile -test testFile
trainFile is the labelled data. testFile is mandatory for the supervised miner.

A.2. Instructions to Run
The system does not require any installation. multigram.jar is the main ex-
ecutable file. Following is the basic command to run the miner. Table A.1
describes the options provided with the executable.

java -Xmx5g -Dfile.encoding=UTF-8 -jar multigrams.jar [-aligner |
-unsupervised | -semisupervised | -supervised] -train trainFile -test
testFile [-seed seedFile]

The aligner, unsupervised and supervised modules require a training file which
is specified with the -train option. If there is no test file specified, the train file
will be taken for testing. The semi-supervised module additionally requires a
seed file for training.

Option Description

-Xmx5g It is the memory required by the software to
load and process input data. The memory re-
quirement varies with the size of the train and
test data

-Dfile.encoding=UTF-8 This specifies the encoding of the input data in
UTF-8

-aligner Invokes the alignment module. It requires a
training file specified with -train option and
character aligns the test data based on the
trained model

-unsupervised Runs unsupervised transliteration miner. It re-
quires a training file specified with -train option

182

A. Transliteration Mining Software

-semisupervised Runs semi-supervised transliteration miner. It
requires a training file and a seed file specified
with -train and -seed options respectively

-supervised Runs supervised transliteration miner. It re-
quires a training file specified with -train option
and a test file to mine transliteration pairs

-train trainFile format is a word pair on each line where words
are separated by a tab

-test testFile format is a word pair on each line where words
are separated by a tab

-seed seedFile format is a word pair on each line where words
are separated by a tab

-unsupervisedIteration N Specifies the number of iterations N for the
aligner, unsupervised miner, unsupervised part
of semi-supervised miner and supervised miner.
Default is calculated automatically based on the
likelihood of the training data

-semisupervisedIteration M Specifies the number of iterations M for the
semi-supervised part of the semi-supervised sys-
tem. Default is calculated automatically based
on the likelihood of the training data

-transliterationorder K Specifies the order of the transliteration sub-
model. Default is unigram order

-nontransliterationorder L Specifies the order of the non-transliteration
sub-model. Default is unigram order

-t T Threshold on the posterior probability of non-
transliterations. Default is no threshold and it
outputs the complete test data with their pos-
terior probability of non-transliteration. Gener-
ally, a threshold of 0.5 works fine for most of the
language pairs

183

A. Transliteration Mining Software

-s S Value of the smoothing parameter in the semi-
supervised miner. Default value is the number of
unigrams in the Viterbi alignments of the seed
data

-tirules Outputs multigrams learned from the training
data with their log probabilities in a file

-a Outputs the test data aligned at character level
with their Viterbi probabilities

Table A.1.: Transliteration mining software user manual

184

B. Gold Standard for
English/Hindi

I manually created a gold standard for the English/Hindi language pair. The
word pairs in the gold standard are extracted from a word aligned parallel cor-
pus of English/Hindi made available for the shared task on word alignment,
organized as part of the ACL 2005 Workshop on Building and Using Parallel
Texts (Martin et al., 2005). The English/Hindi parallel corpus is available at
www.cse.unt.edu/~rada/wpt05/. The gold standard is available at
www.ims.uni-stuttgart.de/~sajjad/resources.html.

The data is released under the Creative Commons license. I request a cita-
tion of the following paper if the data is used in a publication.

Sajjad, Hassan; Fraser, Alexander; Schmid, Helmut (2011). An Algorithm for
Unsupervised Transliteration Mining with an Application to Word Alignment.
In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics (ACL-11).

B.1. Data Format
The English/Hindi gold standard is in a single line format, where each line
contains a word pair and its tag (indicating whether a word is a translitera-
tion). The words and tags are separated by a tab like the following:

185

www.cse.unt.edu/~rada/wpt05/
www.ims.uni-stuttgart.de/~sajjad/resources.html

B. Gold Standard for English/Hindi

Table B.1.: English/Hindi transliteration examples

english hindi tag

There are three tags – transliteration, close transliteration and non-transliteration.
A close transliteration is also a non-transliteration but I annotate it sepa-
rately to better analyse the behavior of mining systems on different kinds
of non-transliterations. In this thesis, I have not analyzed the results using
different non-transliteration categories. I have merged them under the non-
transliteration category. However I hope that they are useful for the analysis of
future transliteration mining methods. The gold standard contains 412 translit-
eration pairs, 72 close transliteration pairs and 12339 non-transliteration pairs.

B.1.1. Transliteration

All transliteration pairs have the tag ti. Table B.1 shows a few examples of
transliteration pairs.

B.1.2. Close Transliteration

There are a few word pairs that differ by one or two characters from a translit-
eration pair. I tag them as tm. Table B.2 shows a few examples of them.

186

B. Gold Standard for English/Hindi

Table B.2.: English/Hindi close transliteration examples

Table B.3.: English/Hindi non-transliteration examples

B.1.3. Non-Transliteration

All non-transliterations other than tm are tagged ma. Table B.3 shows a few
examples of them.

187

C. Gold Standard for
English/Arabic

I manually created a gold standard for English/Arabic. The word pairs in the
gold standard are extracted from a freely available English/Arabic parallel cor-
pus of United Nations (UN) (Eisele and Chen, 2010). The parallel corpus is
available at http://www.euromatrixplus.eu/multi-un/. I randomly take 200,000
parallel sentences from the UN corpus of the year 2000, word align it and ex-
tract the list of word pairs from it. For gold standard, I randomly pick a few
word pairs and annotate them. The gold standard is available at
www.ims.uni-stuttgart.de/~sajjad/resources.html.

The data is released under the Creative Commons license. I request a cita-
tion of the following paper if the data is used in a publication.

Sajjad, Hassan; Fraser, Alexander; Schmid, Helmut (2011). An Algorithm for
Unsupervised Transliteration Mining with an Application to Word Alignment.
In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics (ACL-11).

C.1. Data Format
The English/Arabic gold standard is in a single line format, where each line
contains a word pair and its tag (indicating whether a word is a translitera-
tion). The words and tags are separated by a tab like the following:

188

http://www.euromatrixplus.eu/multi-un/
www.ims.uni-stuttgart.de/~sajjad/resources.html

C. Gold Standard for English/Arabic

Table C.1.: English/Arabic transliteration examples

english arabic tag

There are four kinds of tags – transliteration, close transliteration, non-transliteration
and word pairs where English and Arabic words just differ by an additional
affix on the Arabic side from a transliteration (affix pair). Close transliteration
and affix pair are a type of non-transliteration. For the analysis in this thesis,
I have not analyzed the results using different non-transliteration categories. I
have merged them under non-transliteration pairs. However I hope that they
are useful for the analysis of future transliteration mining methods. The gold
standard contains 288 transliteration pairs, 43 close transliteration pairs, 75
affix pairs and 6521 non-transliteration pairs.

C.1.1. Transliteration

All transliteration pairs have tag ti. Table C.1 shows a few examples of translit-
eration pairs.

C.1.2. Close Transliteration

Word pairs which differ by one or two characters to qualify as transliteration
pairs are tagged d. Table C.2 shows a few examples of them.

189

C. Gold Standard for English/Arabic

Table C.2.: English/Arabic close transliteration examples

Table C.3.: English/Arabic affix pairs

C.1.3. Affix Pair

In Arabic, article "al" and conjunction "wao" are attached to the word. There
are cases in the list of word pairs where if an Arabic word is considered without
"al" and "wao", it is a perfect transliteration of its corresponding English word.
I tag these word pairs as tm. Note that the tag tm is really a special type
of near transliteration which I otherwise mark with d. Table C.3 shows a few
examples of affix pairs.

C.1.4. Non-Transliteration

The non-transliterations other than close transliterations and affix pairs are
tagged ma. A few examples are shown in Table C.4.

190

C. Gold Standard for English/Arabic

Table C.4.: English/Arabic non-transliteration examples

191

	Introduction
	Transliteration
	Transliteration Mining
	Contributions
	Theoretical Contributions
	Resource Contributions

	Outline of the Dissertation

	Background
	Introduction
	Transliteration Foundation
	Alignment
	Joint Probability Model
	Conditional Probability Model
	Alignment Methods

	Previous Work on Transliteration
	Extraction of Multigrams
	Transliteration Methods

	Previous Work on Transliteration Mining
	Generative Approaches
	Discriminative Approaches

	Summary

	Machine Translation Through Transliteration
	Introduction
	Previous Work
	Hindi and Urdu Language
	Our Approach
	Model-1 : Conditional Probability Model
	Model-2 : Joint Probability Model
	Search

	Evaluation
	Training
	Experimental Setup

	Error Analysis
	Heuristic-1
	Heuristic-2
	Heuristic-3

	Final Results
	Sample Output
	Summary
	Research Contribution

	Algorithm for Unsupervised Transliteration Mining
	Introduction
	Models
	Joint Sequence Model Using g2p
	Statistical Machine Transliteration System

	Extraction of Transliteration Pairs
	Algorithm: Mining of Transliteration Pairs
	Algorithm: Selection of Stopping Criterion

	Transliteration Mining Using the NEWS10 Dataset
	Training
	Results

	Transliteration Mining Using Parallel Corpora
	Training
	Motivation for Median9 Heuristic
	Motivation for Splitting Method
	Results

	Summary
	Research Contribution

	Transliteration Mining Model
	Introduction
	Unsupervised Transliteration Mining Model
	Model Estimation
	Implementation Details

	Semi-supervised Transliteration Mining Model
	Model
	Model Estimation
	Implementation Details

	Supervised Transliteration Mining Model
	Model Estimation
	Implementation Details

	Higher Order Transliteration Mining Models
	Smoothing to Deal with Unknowns in Testing
	Transliteration Mining Using the NEWS10 Dataset
	Training Data
	Experimental Setup
	Unsupervised Model-based System vs. Heuristic-based System
	Comparison of My Unigram Transliteration Mining Systems
	Comparison of My Higher Order Transliteration Mining Systems
	Comparison with the State-Of-The-Art Systems
	Error Analysis
	Additional Experiments

	Transliteration Mining Using Parallel Corpora
	Training
	Results

	Summary
	Research Contribution

	Transliteration Mining to Improve Word Alignment
	Introduction
	Transliteration Module
	Modified EM Training of the Word Alignment Models
	Evaluation
	Training Data
	Experiments
	Additional Experiments

	Summary
	Research Contribution

	Contributions and Future Work
	Conclusion
	Contributions
	Theoretical Contributions
	Resource Contributions

	Shortcomings
	Future Work
	Training using Noisier Data
	Comparable Corpora
	Various Non-transliteration Models
	Back Transliteration
	Transliteration Mining involving Non-alphabetic Languages
	Bayesian Approach
	Incorporate Unsupervised Mining Model to NLP Applications

	Bibliography
	Transliteration Mining Software
	Modules
	Character Aligner
	Unsupervised Transliteration Miner
	Semi-supervised Transliteration Miner
	Supervised Transliteration Miner

	Instructions to Run

	Gold Standard for English/Hindi
	Data Format
	Transliteration
	Close Transliteration
	Non-Transliteration

	Gold Standard for English/Arabic
	Data Format
	Transliteration
	Close Transliteration
	Affix Pair
	Non-Transliteration

