
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diploma Thesis No. 3480

Complete Enterprise Topologies
with routing information of

Enterprise Services Buses to enable
Cloud-migration

Andre Grund

Course of Study: Software Engineering

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dipl.-Inf. Tobias Binz

Commenced: May 01, 2013

Completed: October 28, 2013

CR-Classification: E.1, K.6

Abstract

The Enterprise Service Bus is an important part of todays enterprise IT landscape. It offers
the integration of applications build on different platforms without adaptation. This is
accomplished by offering message transformation and routing capabilities of client requests
to the designated endpoint service. However, Enterprise Service Buses also introduce an
additional indirection between the client and the called backend application.
Enterprise Topology Graphs capture a snapshot of the whole enterprise IT and are used in
various use cases for analysis, migration, adaptation, and optimization of IT. The focus of
this work is to enhance the ETG model with structural and statistical information about an
enterprise. However, due to the decoupled architecture the information is hidden inside the
ESB and not directly accessible. Furthermore, the arrangement and semantics of the routing
entities are unknown.
The existing ETG Framework includes the automated discovery and maintenance of ETGs,
but offers no solution for ESB components in the enterprise IT. This thesis provides an in depth
analysis of the ESBs Apache Camel and Apache Synapse. It applies information gathering
concepts and evaluate them with a prototypical implementation of an ETG Framework plugin.
Using tailored information gathering and presentation methods to enhance ETGs with routing
information. The result has been evaluated using scenarios provided by the ESBs, including a
detailed actual-target comparison.
With this thesis, fundamental concepts for routing information gathering from ESB have been
developed. Thereby, the routing information and statistics are gathered into a generic data
model which has been defined to universally model ESB information of different ESBs. In
the last step, this information is used to complete and enhance the ETG with ESB routing
information and statistics. This work closes a gap in the ETG coverage and completes the
ETG by providing insight into the relations of the different enterprise IT components.

3

Contents

1 Introduction 11
1.1 Motivating Example . 11
1.2 Problem Statement . 12
1.3 Outline . 13

2 Fundamentals and State of the Art 15
2.1 Cloud Computing . 15
2.2 Enterprise Service Bus . 16
2.3 Enterprise Topology Graphs . 17
2.4 ETG Framework . 18
2.5 Apache Camel . 19
2.6 Apache Synapse . 20
2.7 Information Gathering Strategies . 21

3 Focus on Apache Camel 23
3.1 Classification . 23
3.2 Architecture and Concept . 24
3.3 Pattern Overview and Structure . 27

3.3.1 Splitter . 28
3.3.2 Recipient List . 29
3.3.3 Pipes and Filters . 30
3.3.4 Aggregator . 31
3.3.5 Message Router . 32
3.3.6 Dynamic Router . 33

3.4 User Stories . 33
3.4.1 Apache ServiceMix . 33
3.4.2 Fuse ESB Enterprise . 34

3.5 Camel Technologies . 35
3.5.1 Apache CFX . 35
3.5.2 Direct Component . 35
3.5.3 Jetty Component . 35
3.5.4 SEDA Component . 36
3.5.5 Spring Framework . 36

5

3.6 Evaluation Scenarios . 37
3.6.1 Load Balancer . 37
3.6.2 Business Example - The Coffee Shop . 39

3.7 Applied Gathering Methods . 43
3.8 Crawler Implementation Details . 45

3.8.1 Crawler Data Model . 45
3.8.2 JMX Object Helper . 46
3.8.3 Camel Structure Builder . 47
3.8.4 Camel JMX Connection Client . 48

3.9 Discussion of Crawling Results . 49

4 Focus on Apache Synapse 51
4.1 Classification . 51
4.2 Architecture and Concept . 52
4.3 Functional Components . 54

4.3.1 Sequence . 54
4.3.2 Proxy . 55
4.3.3 Endpoint . 56
4.3.4 Mediator . 57
4.3.5 Core Mediators . 57
4.3.6 Filter Mediators . 58
4.3.7 Transformation Mediators . 59
4.3.8 Extension Mediators . 60
4.3.9 Advanced Mediators . 61

4.4 Pattern Overview . 63
4.5 User Stories . 65
4.6 Evaluation Scenarios . 65

4.6.1 Content Based Routing Example . 66
4.6.2 Aggregation and Splitter Example . 67
4.6.3 Load Balance Example . 69

4.7 Information Gathering Methods . 70
4.8 Crawler Implementation Details . 71

4.8.1 JAXB parsing . 71
4.8.2 Crawling Static Routing Information . 72
4.8.3 Crawling Routing Statistics . 75

4.9 Discussion of Crawling Results . 75

5 Generic Model for Enterprise Service Bus Routing 79
5.1 Usage and Requirements . 79
5.2 Model Specification . 80

5.2.1 Model Structure . 80
5.2.2 Entity Descriptions . 80
5.2.3 Entity Characteristics . 81
5.2.4 Best Practices . 82

5.3 Interpretation and Design . 84

6

5.3.1 Data Model . 84
5.4 ETG Builder . 85

6 ETG Framework Integration 87
6.1 Enterprise Service Bus Discovery . 87
6.2 ESB Structure Rendering in the ETG . 88
6.3 Apache Camel Plugin . 90
6.4 Apache Synapse Plugin . 90
6.5 Evaluation . 91

7 Summary and Outlook 93

A Synapse Deployment and Installation Guide 95
A.1 Deploying Apache Synapse . 95

A.1.1 Pre-requisites . 95
A.2 Step by Step Guidance . 96
A.3 LoadBalancer Example . 96

Bibliography 97

7

List of Figures

3.1 Illustration of the main components of Apache Camel 26
3.2 Structure of the load balance example evaluation 39
3.3 Structure of the expected splitter route elements 42
3.4 The recipient list with the unknown target endpoint. 42
3.5 Preparation routes of either cold or hot drinks. 43
3.6 The expected aggregator route elements. 43
3.7 The camel crawler data model depicted as UML class diagram 46
3.8 The Apache Camel internal crawler structure . 47
3.9 Example of several interpretation alternatives of two Apache Camel routes . . 49

4.1 Overview of the main components of the Apache Synapse architecture 53
4.2 The Synapse messaging flow structure . 55
4.3 Illustration of the create packages from JAXB xjc 72
4.4 The definition of the message flow elements proxy and sequence 73
4.5 Transformation example of the Apache Synapse model to the generic ESB data

model . 76

5.1 Base call of all generic data model entities . 84
5.2 Illustration of the processing steps of the ETG route builder. 85

6.1 Synapse and Camel application topology rendered without routes as Enterprise
Topology Graph. 87

6.2 Example of an complete Apache Synapse topology with two routes illustrated
as ETG . 89

List of Tables

3.1 Comparison of ESB characteristics and Apache Camel functionality 24
3.2 Apache Camel splitter . 28
3.3 Apache Camel recipient list . 29
3.4 Apache Camel pipes and filters . 30
3.5 Apache Camel aggregator . 31

8

3.6 Apache Camel message router . 32
3.7 Apache Camel dynamic router . 33

4.1 Comparison of ESB characteristics and Apache Synapse functionality 52
4.2 Correlation of Synapse mediators and Enterprise Integration Patterns 64

5.1 Characteristics of the generic model entities . 81
5.2 Mapping between Enterprise Integration Patterns and Generic Data Model

elements . 83

List of Listings

3.1 The syntax of the Apache Camel JMX output . 27
3.2 Service interface of the Calculator WSDL file . 37
3.3 Example of one endpoint configured as jaxws endpoint 38
3.4 Calculator example route using a load balancer with four endpoints 38
3.5 First coffee shop route from direct:cafe invoking a splitter then send to direct:drink 40
3.6 Second coffee shop route from direct:drink invoking a recipient list bean 40
3.7 Coffee shop preparation route alternative A for cold drinks 41
3.8 Final route aggregating the orders, preparing and finally deliver the drinks . . 41
3.9 Example of an camel route configuration using Java DSL 44
3.10 MObjectHelper: Query an endpoint using the getObjectInstance method 46
3.11 MObjectHelper: Query a arbitrarily object instance in JMX 47
3.12 Simplified Apache Camel structure clustering algorithm 48

4.1 The syntax outline of a sequence definition . 54
4.2 Example of an main Synapse sequence with three mediators 54
4.3 The syntax outline of an Apache Synapse proxy service 56
4.4 Example: Content based routing with Apache Synapse 66
4.5 Example: Aggregation and Splitter with Apache Synapse 67
4.6 Example: LoadBalancer with Apache Synapse 69
4.7 Starting the RouteBuilder with proxy and routes 73
4.8 Route Builder algorithm building the AbstractRoute 74
4.9 Information Assembler . 74

6.1 HTTP Response header of an HTTP Request . 88

9

CHAPTER 1

INTRODUCTION

This Chapter introduces the context and motivation of this diploma thesis. It discusses the
need of enhancing enterprise typology with routing information from Enterprise Service
Buses. This will be illustrated with an example that shows the need to solve the unknown
routing problem. In addition the problem statement and the outline is given.

1.1 Motivating Example

Today enterprises have to be competitive in an global market that challenge a business to
reduce costs. Additional in times with slowdown in the global economy the pressure on the
IT spending will rise [Roe12].
Service-oriented computing offers a flexible infrastructure and processing environment for
reusable application functions as services. The services reflect a “service-oriented” approach
that is based on the idea of composing applications. Web services make use of open standards,
that enable easily integration of application components into a loosely coupled network
of services. The requirements of SOA and Web services can be adapted to the concept of
the Enterprise Service Bus [PTDL07]. Large international enterprises like Hermes [Red12]
and Deutsche Post [ES08] already operate on a heavily SOA orientated structure with an
sophisticated ESB product. Additionally, the worldwide SOA market will grow steadily and
should strengthen the ESB as the dominant application-integration approach [Ort07]. Through
the fast changing IT environment administrators often loose track of their infrastructure and
struggle to discover dependencies between different parts of their components and their
orchestration [BBKL13]. The rising complexity and the huge amount of components makes a
manual modeling of the IT structure a time-consuming, costly, and error-prone task.
The ETG Framework enables the automated discovery of components, business processes,
software and infrastructure. However, today the ESB information are not represented in the
Enterprise Topology Graph. The reason is that several challenges remain unsolved regarding
the discovery and analysis of ESBs. The internal message routing and Web services are not
visible from the outside. More precisely, the ESB places an indirection between the requesting
client an the called service. This is also called the unknown routing problem, because the ESB
conceals the message flow and the identity of the back-end application. These predefined

11

1 Introduction

routes are defined by the static configuration of the ESB.
In addition, besides the static route information the IT administration are also interested in
statistical data about the internal message routing and utilization of applications. Typically a
request invokes a linear route that handles the message directly to an endpoint. But its also
possible building routes with dynamic elements that effects the routing outcome. They are
called routing mediators and can implement arbitrary routing strategies. For instance, the
ESB could determine an endpoint based on the message content or on the endpoint workload.
The ETG Framework facilitates specialized plugins that discovers different components and
adds them to the ETG [BBKL13]. The Enterprise Topology Graph describes an enterprise
topology as an formal model based on established graph theory [BFL+12]. Features like
structural queries and sophisticated search algorithm can be applied for IT consolidation
to reduce operational costs. Additional plugins are needed with ESB specific concepts to
gather static routing information and statistical data. Both enterprise decision makers and IT
administrators would benefit from automated discovery and documentation including state
of the art enterprise middleware. ETGs enhanced with detailed ESB information could lead to
further consolidation, migration, or outsourcing of IT.

1.2 Problem Statement

This work implements concepts to extract static routing information and statistical results
from the ESB products Apache Camel and Apache Synapse. This research is evaluated with a
plugin implementation for each respective ESB in the ETG Framework.

• Research general concepts of Apache Synapse and Apache Camel
The products are different in their architecture and used technologies to implement an
Enterprise Service Bus. This includes the message mediators and their orchestration as
ESB routes. The domain specific semantic has to be correctly represented in the ETG.

• Concepts to solve the unknown routing problem
The ESB is designed to decouple the client request from the back end application. This
indirection is called the unknown routing problem. These hidden information have to
be made accessible.

• Concept to represent the information in the ETG
The ETG model can describe enterprise topology including every component of the IT
infrastructure. The Enterprise Service Bus implements various routes, mediators and
endpoints. They have to be integrated in the structure of the ETG graph. Finally this
task needs to adapt the ETG model, while providing semantic correctness and easy
adaptation on different ESB products.

• ESB information crawler implementation
Apache Camel and Apache Synapse provide different implementation of an ESB that
needs custom solutions to gather routing information. Moreover, these concepts should
provide minimal operational impact for the enterprise that utilizes the ETG Framework.

12

1.3 Outline

So it is elementary to choose a suitable data crawling method. This concept needs to be
implemented and provided as a tested and evaluated crawling application.

• Evaluation Scenarios
A creation of suitable test scenarios is needed for the research, implementation and the
final evaluation of the implemented ESB plugin. Besides the examples should cover the
main features and patterns of the ESB.

• ETG Framework Integration
The ESB crawling concepts have to be integrated in the ETG Framework. It is also
needed to discover running Apache Camel or Apache Synapse instance. The crawling
result have to be imported to the ETG model.

• Generic model for Enterprise Service Bus routing rules
After all the generic model should assist ETG Framework plugin developer to provide
routing information in the ETG model. It unifies the representation with defined
semantics and correlation of ESB entities.

1.3 Outline

This document describes the fundamentals and concepts to complete enterprise topologies
with routing information.
Foremost, the necessary fundamentals of this research will be discussed. It covers the cloud
computing paradigm in Section 2.1, followed by the Enterprise Service Bus technology
in Section 2.2. Section 2.3 and 2.4 discusses the ETG and the corresponding Framework.
Additionally, the ESB products Apache Camel in Section 2.5 and Apache Synapse in Section
2.6 will be briefly summarized. Finally, the available information gathering methods are
discussed in Section 2.7.
Chapter 3 and 4 focus on the Enterprise Service Buses Apache Camel and Apache Synapse.
Initially, both applications will be classified according the ESB characteristics formed by
D.A. Chappell. Hereafter the ESB Architecture and configuration entities will be discussed.
Both Chapters review user stories that already make use of the specific product. Finally the
developed crawler application will be presented. Beginning with the evaluation scenarios
followed by an in depth implementation description.
During the implementation the possible benefits of an generic data model for enterprise
service buses became obvious became necessary. This model for ESB routes information will
be part of the 5th Chapter.
The findings and implementation of the previous Sections will be integrated in the ETG
Framework Chapter 6.
Eventually, the work of this document will be wrapped up in a summary and a outlook will
be given.

13

CHAPTER 2

FUNDAMENTALS AND STATE OF THE

ART

In this Chapter the fundamental and state of the art concepts and technologies are discussed.
These sections are providing the needed knowledge to understand the key concepts connected
with this thesis. The first section 2.1 explains cloud computing and the significant in todays
enterprise IT. The Enterprise Service Bus basics and characteristics are discussed in 2.2.
Furthermore the enterprise topology in section 2.3 with the ETG Framework covered in 2.4
can be used to formalized and automate discovery of IT architecture.
Finally the ESBs Apache Camel in Section 2.5 and Apache Synapse in Section 2.6 will be
introduced. Followed by the fundamental information gathering strategies in Section 2.7.

2.1 Cloud Computing

Cloud computing is a new paradigm and has recently attracted significant momentum which
was mainly driven by the industry. Jeffrey Voas and Jia Zhang call cloud computing a new
phase in the computing paradigm shift of the last half century [VZ09]. IT technology has
begun with terminals connected to centralized mainframe computers. Then the decentralized
computers became powerful enough to satisfy users daily work. Finally network technology
connected all the standalone computers together and utilized remote applications and storage
resources. In todays IT evolution all resources will be exploited and made available over the
Internet. This technology can be called cloud computing.
Yet there exists no commonly accepted definition for cloud computing [Erd09].
The NIST1 definition of cloud computing describes the technology with several essential
characteristics [MG09]:

• On-demand self-service
The customer can acquire computing capabilities automatically on request. An analogy

1National Institute of Standards and Technology - http://www.nist.gov/

15

http://www.nist.gov/

2 Fundamentals and State of the Art

of this is the power grid distribution system that offers customers power without
requiring human interaction as customer service from the power supplier.

• Broad network access
The service is available over the Internet through standard mechanism.

• Resource pooling
All resources are pooled to serve multiple customers. The computing capacity is shared
without exposing the exact location of the resource.

• Rapid elasticity
The service can be purchased and used in any demanded quantity at any time. The
underlying capabilities are automatically provisioned in a rapidly and elastically way.

• Measured service
The service can be automatically controlled by a metering capability that is appropriate
to the kind of service.

The NIST definition also groups service models that can be offered through cloud computing.
The core criteria focus on cloud architecture, virtualization and services. The service is ar-
ranged in defined "XaaS" where X represents what the service basically is offering, for instance
SaaS (Software-as-a-Service), PaaS (Platform-as-a-Service) or IaaS (Infrastructure-as-a-Service)
[RCL09]. There are key advantages and opportunities that cloud computing can offer. The
technology can dramatically lower the costs for the IT infrastructure of a business. It is
possible to acquire a large amount of computer power for relatively short amounts of time
and at low costs. Furthermore the upfront capital investments will be lower when a business
applies to a cloud computing product. Also, an enterprise can easily scale their computing
capacity based on the demand of the services. These advantages drive the development of
this new paradigm in industry and research [MLB+11].

2.2 Enterprise Service Bus

The Enterprise Service Bus is a result of an evolutionary process of existing integration
architectures. The Message Orientated Middleware was created in the early 90’s and was the
first approach in the field of product integration. The technical advances lead to application
servers and Web services. The common goal of these technologies is the integration of
enterprise applications. The Enterprise Service Bus represents a new infrastructure as a
combination of existing technologies. These components are among others message-oriented
middleware, web services, transformation and routing intelligence. But these are just the
ingredients of an Enterprise Service Bus and not a reliable definition or architecture. The
technology is driven by the needs of the industry and built to solve problems and reduce IT
costs. So there is a market with many competitors trying to gain attention in this growing IT
business. In fact many products claiming to be an Enterprise Service are leading to a blurred
meaning and confusion what an Enterprise Service Bus really is. Basically David Chappell is
using the following characteristics as a reference:

16

2.3 Enterprise Topology Graphs

• Pervasiveness
The ESB should be the basis of all applications in the enterprise network. New applica-
tions can be plugged and unplugged to the system and can all be reached through the
bus. It is a unified messaging system that decouples the applications and makes them
available in an entire enterprise network.

• Standards-Based Integration
It should be easy to integrate applications based on a variety of technologies. The
ESB should provide adapters to integrate an application to the Enterprise Service Bus.
Standards like SOAP, XML, WSDL or BPEL4WS are supported out of the box. Also
adapters can be used to connect applications built with .NET, COM, C#, J2EE and C/C++
without changing their implementation.

• Highly distributed, event-driven SOA
There is no hub and spoke architecture with a tightly coupled server. All components
on the bus can be independently integrated and are globally asynchronous accessible
on the bus.

• Security and reliability
The transport between nodes in the ESB has to be firewall-capable. Authorization,
credential-management and access control has to be ensured by the bus. The ESB has
to provide asynchronous communication and reliable delivery of business data with
transaction integrity.

• Orchestration and process flow and data transformation
The ESB must orchestrate processes as messages flow ranged of any complexity. The
internal messages should be able to perform any necessary message transformation
flow.

These characteristics represent the basic functionality of an ESB. They are mandatory to
provide the functionality needed to establish enterprise integration with the architectural
benefits of an Enterprise Service Bus [Cha09].

This thesis will describe the routing logic inside an ESB as message flows or mediator flows.
According to Bobby Woolf2 ESB routing implements mediation flows but no business pro-
cesses. Workflows can use an ESB but typically run in a workflow engine.

2.3 Enterprise Topology Graphs

The structure of the enterprise IT is very complex and often causes a loss of insight into
the enterprise topology. This complexity of the IT landscape covers not only the hardware
topology but also extends to all entities of an enterprise IT, including their logical, functional,
and physical relationships.

2DeveloperWorks Blog of Booby Woolf - https://www.ibm.com/developerworks/community/blogs/
woolf/entry/esb_and_workflow?lang=en

17

https://www.ibm.com/developerworks/community/blogs/woolf/entry/esb_and_workflow?lang=en
https://www.ibm.com/developerworks/community/blogs/woolf/entry/esb_and_workflow?lang=en

2 Fundamentals and State of the Art

All these elements spread over different levels of abstractions which can be modeled with
an Enterprise Topology Graph [BFL+12]. The standard is mainly influenced by the OASIS
Topology and Orchestration Specification for Cloud Applications (TOSCA) [Top11][BBLS12].
The flexible graph-based structure of the ETG makes it possible to model an application with
arbitrary composition and structure. Thus the advantage of this approach is that a formal
graph enables processing of the complete enterprise architecture. This should solve the lack
of available machine-readable enterprise topology and could establish new requirements and
market demands, integration and IT consolidation.
The Enterprise Topology Graph model consist of a set of nodes and edges. These entities
are typed with domain specific semantics that can be used to establish different kind of
abstraction. Every part of an enterprise topology can be assigned as a node, e.g an application
server or operating system. However these elements of the enterprise IT are linked together
as trees. These links are basically relations between nodes modeled by directed edges with a
specific type.
The ETG should contain all information that is available to satisfy the demand of a complete
snapshot of the enterprise IT landscape. Consequently of this all steps of the routing in an
Enterprise Service Bus should be documented and represented in the graph [BFL+12].
The left side of Figure 6.2 representing a running Apache Synapse ESB displayed in the ETG
model. It depends on ApacheAxis2 Web server hosted on the ApacheOS that is running on an
virtual machine. This could only describe a segment of the complete enterprise IT. Both nodes
Server and Operating System are connected by an edge with the node type hosted on. The
same relation exist between the operating system and the ApacheAxis2 Web server. Apache
Synapse depends on the Web server because it will receive the request messages from it. The
nodes can also capture domain-specific information as key-value pairs as properties. These
information can be processed with the context of the specific node type [BLNS12].
This sub graph only consists of three nodes and two edges. But in a real scenario a graph may
consist of millions of nodes. However, this complexity of the enterprise architecture has to be
reflected in the ETG. But the model has to cope with requirements like queries, transformation
and consolidation in the data format. Associated with the ETG model, there are approaches
which reduce these complexities problems. That address the current problems of analyzing
an IT infrastructure. The ETG Model has been implemented with the current ETG Framework
[BFL+12].

2.4 ETG Framework

Enterprises often have no comprehensive view of the structure of their IT landscape [BFL+12].
The main problem is the complexity and the diversity in the topology of countless compo-
nents. The manually maintenance of a huge topology could only be realized with a high
level abstraction. With this simplification a Content Management System can be abstractly
represented as one node in a the ETG graph. But the dependencies and relationships of the
components would be lost due to this abstraction. The other option is an automated discovery
that reveals the inner structure of complex architecture components [BLNS12].
The ETG Framework implements an automated discovery of enterprise IT [BBKL13]. The

18

2.5 Apache Camel

implementation works like a search engine crawler, with component specific logic provided
as plugins. The frameworks architecture invokes specialized plugins with a scheduling
algorithm. The scheduler decides when and which plugin will be executed in what node.
The execution is an iterative process with a step wise discovery of the IT landscape of an
enterprise. Each step in the iteration will execute a compatible plugin that matches the given
type of the previous discovered node. For instance, a server node will be examined which
operating system is running on it. There are also modifying plugins which change the type
or properties of an element. In a nutshell the basic strategy of the scheduler is to pick a
compatible plugin only once for every node and terminate if every node was processed.
The previous mentioned plugins are used to provide the discovery logic. They are designed
for a specific type in the ETG model that represents a functionality or component in the IT
structure. The plugin gathers all information like environment, dependencies and relation
details of a node. The plugins also update the nodes and edges or even remove them if they
are stale, like a node has been shut down or has been reconfigured.
The plugins are even capable to work together. For instance an plugin would discover a web
service that is hosted on an undiscovered application server. The web service plugin would
create a new node that would be picked up by application server plugins in a future iteration
step by the scheduler. Plugins cannot provide agents that run on the enterprise servers and
possible scan for installed software in the domain.

The ETG Framework is implemented by using the approach for discovery and a recon-
ciliation concept using Java technology. Furthermore, there are already several working
plugins within the framework.

2.5 Apache Camel

Integration is the key to accomplish the usability of existing Software artifacts of today’s IT
landscape. Hohpe and Woolf summarized theses approaches in their work. They stated 65
different enterprise integration patterns as help for architects and developers to design a
proper integration solution [HW02]. These patterns represent the theoretically framing for a
eligible software solution to empower engineers to integrate their products. The first version
of Apache Camel was released in 2007 and provided several endpoint implementations
and an easy to use Domain Specific Language for creating Enterprise Integration Patterns3

and routing. Today Apache Camel is a sophisticated integration framework with a large
open-source community. The Release 2.7 provides a rich set of features. The important
characteristics for this diploma thesis with the focus on the ESB aspects are as follows:

• Routing and mediation engine

• Payload-agnostic router

• Enterprise Integration Patterns

3Apache Camel Release Notes - https://issues.apache.org/jira/secure/ReleaseNote.jspa

19

https://issues.apache.org/jira/secure/ReleaseNote.jspa

2 Fundamentals and State of the Art

Claus Ibsen and Jonathan Anstey accentuate that Apache Camel is not an Enterprise Service
Bus because of the absence of a container or a reliable message bus. But this functionality
can be extended with products like Apache Active MQ or the OSGi framework [The13].
These features are bundled in a distribution called Apache ServiceMix. However the core
functionality is provided by an unchanged Apache Camel implementation. Guillaume Nodet4

argued in a discussion about Apache ServiceMix that users tend to start their project directly
with Camel without the feature overhead of the ServiceMix. This thesis will follow the same
approach and focus only on the Apache Camel framework and will enhance the framework
with features from the Apache ServiceMix if needed. In a nutshell Apache Camel is a
lightwight Enterprise Service Bus and can be expanded with features from other open source
products. It is easy to use, easy to deploy and comes with a large and vibrant community. The
core features are routing, transforming, usage of Enterprise Integration Patterns, management
and monitoring [IA10].

2.6 Apache Synapse

The roots of Apache Synapse go back to the year 2005. The project started by several cooperat-
ing small companies in the Bay Area. The first release in the year 2006 is still the codebase
of the current Apache Synapse release. Finally, in the late 2007 the project was leveled as
an Apache top level project. Since then there were 3 major releases [Thed]. Today, Apache
Synapse can be downloaded and used under the Apache Software License 2.0. The Documen-
tation [Thee] describes Apache Synapse as an extremely lightweight and easy-to-use Open
Source Enterprise Services Bus. This definition implies Enterprise Service Bus characteristics
like:

• Routing and mediation Engine

• Runtime container

• Messaging

• Support of different transport Formats like HTTP, Mail and JMX.

The Framework can be configured by using a simple, XML-based configuration language.
According to the documentation, the user can choose between different functional components
designed with SOAs best practice in mind [Thed]. The portfolio of mediators contains filter,
transformation and routing Elements, that can indeed be compared with Enterprise Service
Patterns. Synapse can be run as a standalone Java application or in a Tomcat Application
Server.

4Guillaume Nodet post- http://servicemix.396122.n5.nabble.com/DISCUSS-ServiceMix-future-td3212177.html

20

2.7 Information Gathering Strategies

2.7 Information Gathering Strategies

Software analysis is the primary research subject of software maintenance. In maintenance it
is most important to have an accurate, up-to-date and useful knowledge about the system
that is being maintained. This is a difficult task because the sources of information are often
limited, inaccessible or unknown [Sea02].
This thesis faces the same difficulties and we need to consider good strategies that can be
used to gather information from an ESB. Therefore the different routing information can be
categorized as follows:

• Static routing information
The description of the internal execution progress of the defined routes. They can have a
proxy endpoint that exposes an address to the outside. Followed by optional mediators
and gateways with route condition elements, finally targeting an endpoint that serves
the request.

• Statistical routing information
These are statistical information that only accrue while the ESB is running. The received
messages of an endpoint is such a value.

There are only several gathering techniques viable for the analyses of the routing of Enterprise
Service Bus middleware. There are several possible static sources of routing data that ESB can
offer:

• Log files
Java application usually generate log files during execution. They could be analyzed for
routing information.

• Routing configuration files
Apache Synapse uses external configuration files as XML to setup the ESB. These files
are accurate sources for static routing information.

• Source code of the application
The source code of an mediation flow scenario could be parsed and analyzed.

• Machine readable ESB scenario descriptions
Several ESB like Apache Camel are based on Enterprise Integration Patterns. They are
useful to develop integration scenarios into an ESB middleware system. The Genius
Tool has implemented a parameterized EAI pattern called the EMF model. This can be
transformed to BPEL and Apache Camel. An platform independent model could be
used as information source for an ESB analysis [SL09].

Not all of these options can be considered as source of the plugin information gathering. The
inspection of the source code does not match with the requirement of the ETG Framework,
that a plugin should require minimized operational impact [BBKL13]. And the plugin cannot
determine if there is a machine readable ESB scenario description accessable. So only log files
and routing configuration files are practical for retrieving static information from an ESB.
Hence, the statistical information cannot be obtained in all of the previous mentioned sources.

21

2 Fundamentals and State of the Art

Dynamic information is generated on an running ESB system. So the information has to be
produced or accessed through the application. There are three possible sources to get access
to the information:

• Log files
Log files could register the message flow in the application. This could be used to
reassemble the needed statistics.

• Custom ESB management API
The Enterprise Service Bus could support a management API that can be used to access
information.

• Java Management Extensions (JMX)
The Java Management Extension Technology was introduced in the J2SE platform 5.0
and is now included in the Java SE platform. It is designed for management and
monitoring of resources. JMX can change application configuration and accumulation
statistics about behavior that can be made available. It is also possible to access these
information remotely [ORA11].

The ETG Framework plugin developer must choose the most applicable solution for the
information gathering. Therefore, the choice should be reviewed within a new release if better
options are available to ensure minimized operational impact and quality [BBKL13].

22

CHAPTER 3

FOCUS ON APACHE CAMEL

This Chapter focus on Apache Camel. In Section 3.1 the ESB will be classified using character-
istics from David Chappell. Followed by the architecture and concepts of Apache Camel in
Section 3.2. Yet, the focus of this Chapter is to gather static routing information and statistics
from an ESB. Section 3.3 analyses the structure of the routing information. Apache Camel is
widely used as ESB implementation and Section 3.4 presents two use cases. For the purposes
of this thesis, several technologies are needed to enhance Apache Camel they are documented
in Section 3.5. The Apache Camel scenarios in Section 3.6 are used to evaluate the information
gathering methods introduced in Section 3.7. Finally, all the research has been implemented
as Apache Camel information crawler. The technical details are discussed in Section 3.8 and
the results will be discussed in Section 3.9.

3.1 Classification

Apache Camel is designed as an easy to use open source integration framework. The core of
the framework is a routing engine that orchestrates the dispatching and receiving of messages.
The transport protocol is not part of the core of Apache Camel and users can freely choose a
protocol that suites their architectural environment best. It is even possible to use different
protocols for message channels between endpoints. These can freely be utilized without
dealing with specific implementation efforts.
The higher-level abstraction of Apache Camel decouples the route configuration with the
transportation between a receiver and sender. The participants in the message interaction are
also abstractly defined as Apache Camel endpoints entities that encapsulated the message
exchanges as abstract processors. The message flow is facilitated with channels between
two or multiple endpoints. Thereby Apache Camel is using a unified communication API
regardless of the transport and request format of the message.
These concepts build the core functionality of the Camel Framework that implements the
ESB characteristics. The messaging capability is provided by Apache MQ messaging broker.
These extensions are necessary to provide a capable ESB middleware [IA10] [The13]. Table 3.1
compares the ESB characteristics defined by David Chappell in 2004 with the Apache Camel

23

3 Focus on Apache Camel

ESB Characteristics Apache Camel functionality
Pervasiveness Every Java Application can simply be attached as a Camel

endpoint. Adapters for the conversion of data types are
present. Every endpoint can be reached within the same
camel context.

Standards-Based Integration Camel provides an out-of-the-box support with over 60
transport protocols. Applications based on different tech-
nologies can be attached with a custom made Java adapter.
Internet based standards like SOAP and WSDL are sup-
ported.

Highly distributed, event-
driven SOA

The message exchange is orchestrated over a central Apache
Camel instance. This can be extended on multiple servers
with different camel context. But this limitation is connected
with the flow engine and orchestration feature of Apache
Camel. Asynchronous communication can be used as trans-
portation protocol (e.g. Apache MQ).

Security and reliability The camel-spring-security ensures security for routes. Also
there are broad categories offered like route, payload, end-
point and configuration security. There are components that
enhance Apache Camel route with reliability like the SEDA
component (cf. section 3.5.5).

Orchestration and process
flow

Orchestration is implemented as a routing engine in the
core of the application. A process flow can be built with the
Apache Camel pattern system.

Table 3.1: Comparison of ESB characteristics and Apache Camel functionality

functionality. Apache Camel meets the requirements discussed in Chapter 2.2 formalized as
characteristics of an Enterprise Service Bus [Cha09].

3.2 Architecture and Concept

The concepts and architecture of Apache Camel are fundamental for solving the unknown
routing problem. The Apache Camel routing rulebase is programmatically represented as the
camel context. It centralizes the access to all orchestrated components, endpoints and routes.
The camel context instance also represents the life cycle of the application. It controls the
different Camel entities and routing rules from the start of the context to its terminations
[The13].
ESB flows can be composed using messaging patterns and Web services. A single operational
task or logical functionality can be built as a route. Thereby a mediator flow is often crafted

24

3.2 Architecture and Concept

by combining several predefined Apache Camel routes.
Usually an endpoint can be created by a component that is referenced with their URIs. The
instance of an endpoint, which represents the giving work of the activity, can be very versatile.
Depending on the used Apache Camel component the exposed transportation type can vary.
The transportation logic used by Apache Camel is auto-discovered using the prefix of the
endpoint address URI. Endpoints can be accessed using several transport protocols and access
methods. The type of component of an endpoint can vary:

• Web service component using a WSDL port.

• A messaging queue like Apache MQ, Websphere MQ or a JMS queue with a polling
backend application.

• Direct access to a software entity

• File component

• FTP server component

• E-Mail component

The message exchange is defined by the Producer and Consumer interfaces associated with
the endpoint implementation. The messages can be received either as polling or pulling
consumer.
This illustrates the wide possibilities to connect several services to the Enterprise Service
Bus. The abstraction does not make any assumptions about the used transport protocol.
Surprisingly, even an e-mail address can be used as an Endpoint. The given service would be
invoked with an incoming e-mail from a unknown decoupled client service. This transport
and processing step is out of the Apache Camel scope, Camel just needs access to the endpoint
features given in the corresponding processor interface.
Besides, the processor interface implementation describes the exchange of messages within a
Apache Camel node and the outside. Every enterprise pattern refers to an implementation of
a processor exchange functionality. Also the message exchange patterns are using a custom
implementation of the processor interfaces. For instance the routing pattern that usually is
prepended in front of multiple endpoints and acts as a content-based, load <balance or static
router. All in all, the processor controls the consumption and exchange of messages of every
Apache Camel entity.
The previous mentioned component paradigm is a central concept of Apache Camel architec-
ture. The component acts like an Java factory method pattern that creates objects of a specific
type of endpoint. The used component implementation enables Apache Camel to integrate
applications using different protocols.

25

3 Focus on Apache Camel

 CamelContext Elements

Endpoint

Processor Component Route Endpoint

Endpoint

Router
<Load Balancer>

Router Component

Load Balancer “Round Robin” Processor

From Router to Endpoint

JMS Component

Message Consumer Processor

Endpoint

Figure 3.1: Illustration of the Main Components of Apache Camel building an example route

With this technique the endpoint can be automatically invoked by interpreting a URI, whose
prefix indicates the type of transportation and the address or other information parameters.
There are already mandatory Apache Camel components available, for example the FileCom-
ponent that gets an URI passed with a prefix file and an appended URL to the destination.
Then Apache Camel creates an FileEndpoint.
These Apache Camel nodes are organized into a defined route pattern. This message chain
defines the invoked mediators on the message flow. Each node is connected by channels that
are used for transportation of a message. A node can also provide decision making, if it acts
as a filter or router. There are two ways to specify a route either direct in the code through the
camel context object or via a Java Domain Specific Language in a XML file.
Figure 3.1 shows the key components in correlation with a possible camel context. On the
right side of the Figure there is a sample route from a router to a JMS endpoint. The router
is called a loadbalancer router (simplified in the picture) and distributes messages with a
round-robin algorithm. The abstraction makes it easy to define such an orchestration between
different entities and endpoints. This is the key concept of camel that you can combine every
piece of component and build a route to establish the defined business logic.
Apache Camel is a universal tool for enterprise integration challenges. The concept of com-
bining different enterprise patterns and endpoints with different processors and transport
protocols using the component factory enable flexible application integration.

26

3.3 Pattern Overview and Structure

3.3 Pattern Overview and Structure

The subsections discussed concepts and components that can be allocated to defined patterns
in Apache Camel. Now this section covers the patterns that are necessary for the interpretation
of the camel structure crawler. The complete list of the available patterns is documented in
the Apache Camel manual [The13].
The Camel JMX output has been collected using the output of the camel crawler. This section
categorizes Apache Camel patterns with the crawled JMX information from the deployment
scenarios discussed in Section 3.6. Unfortunately the JMX output is unstructured and repre-
sented as string. There is no documentation of the precise syntax of the JMX description of
the routes. Each subsection will show a table with the enterprise integration pattern, a short
description and the JMX output [The13].
This categorization helped to re-engineer the description syntax. The crawler needs this
syntax to analyze the components of a Apache Camel route. The normalized structure of the
output can be compared in Listing 3.1.

Listing 3.1 The syntax of the Apache Camel JMX output
routeType[endpoint->Instrumentation:route[transmissionSynchronization]
[UnitOfWork(ProcessorType[Channel/Pipeline[PatternType[endpoints*])])

The structure of the JMX string can be analyzed with a string parser iterating the String
structure from left to right. The semantics and rules for each item are defined as follows:

1 routeType
Typically an EventDrivenConsumerRoute. That represents the default route type in
Apache Camel.

2 endpoint
That represents a proxy endpoint which receives a message from a client.

3 ->Instrumentation:route
JMX metadata can be ignored.

4 transmissionSynchronization
Usually DelegateAsync or DelegateSync messages processor for the routing pattern
invocation.

5 UnitOfWork
JMX metadata signal word introducing the start of mediator patterns and endpoints.

6 Channel/Pipeline
Either a Channel or an Pipeline to the next patternType

7 PatternType[endpoints*]
The patternType followed by zero or multiple endpoints.

27

3 Focus on Apache Camel

The Camel crawler implementation can use this knowledge and parse the objects contained
in the string. The following pattern catalog is used to illustrate the JMX output. They are the
backbone information for the re-engineering process. The result is the decoded syntax.

3.3.1 Splitter

Splitter [HW02]

Description A Message can be composed of multiple logical different
parts. The handling of these parts could need a isolation of
the information. The splitter produces a new message for
each element.

Camel route DSL <route>
<from uri="direct:cafe"/>
<split>

<method bean="orderSplitter"/>
<to uri="direct:drink"/>

</split>
</route>

Camel JMX Out-
put

EventDrivenConsumerRoute[Endpoint[direct://cafe] -> In-
strumentation:route[DelegateAsync[UnitOfWork(Route
ContextProcessor[Channel[Splitter[on: BeanExpression[]
to: Channel[sendTo(Endpoint[direct://drink])] aggregate:
null]]])]]]

Table 3.2: Apache Camel splitter

28

3.3 Pattern Overview and Structure

3.3.2 Recipient List

Recipient List [HW02]

Description An incoming message will be sent to a selected list of end-
points.

Camel route DSL <route>
<from uri="direct:drink"/>
<recipientList>

<method bean="drinkRouter"/>
</recipientList>

</route>
Camel JMX Out-
put

EventDrivenConsumerRoute
[EventDrivenConsumerRoute[Endpoint[direct://drink] ->
Instrumentation:route[DelegateAsync[UnitOfWork(
RouteContextProcessor[Channel[RecipientList[
BeanExpression[]]]])]]]

Table 3.3: Apache Camel recipient list

29

3 Focus on Apache Camel

3.3.3 Pipes and Filters

Pipes and Filters [HW02]

Description The processing of a task could require a sequence of smaller
independent tasks.

Camel route DSL <route>
<from uri="seda:coldDrinks"/>
<to uri="bean:barista?method=prepareColdDrink"/>
<to uri="direct:deliveries"/>

</route>
Camel JMX Out-
put

EventDrivenConsumerRoute[Endpoint
[seda://coldDrinks?concurrentConsumers=2] ->
Instrumentation:route[DelegateAsync
[UnitOfWork(RouteContextProcessor[Pipeline[[Channel
[sendTo(Endpoint
[bean://barista?method=prepareColdDrink])], Chan-
nel[sendTo(Endpoint[direct://deliveries])]]]])]]]

Table 3.4: Apache Camel pipes and filters

30

3.3 Pattern Overview and Structure

3.3.4 Aggregator

Aggregator [HW02]

Description The Aggregator stores correlated messages until all have
been collected. Then a single message will be consolidated
as a result of the complete set of small messages.

Camel route DSL <from uri="direct:deliveries"/>
<aggregate strategyRef="aggregatorStrategy"
completionTimeout="5000">

<correlationExpression>
<method bean="waiter" method="checkOrder"/>

</correlationExpression>
<to uri="bean:waiter?method=prepareDelivery"/>
<to uri="bean:waiter?method=deliverCafes"/>

</aggregate>
</route>

Camel JMX Out-
put

EventDrivenConsumerRoute[Endpoint[direct://deliveries]
-> Instrumentation:route[DelegateAsync[UnitOfWork
(RouteContextProcessor[Channel[AggregateProcessor
[to: UnitOfWork(RouteContextProcessor[Pipeline[[Channel
[sendTo(Endpoint [bean://waiter?method=prepareDelivery
])], Channel[sendTo(Endpoint[bean://waiter?method=
deliverCafes])]]]])]]])]]]

Table 3.5: Apache Camel aggregator

31

3 Focus on Apache Camel

3.3.5 Message Router

Message Router

Description The static message router consumes a message and is redi-
recting the request to an endpoint [The13].

Camel route DSL <route>
<from uri="jetty:http://localhost:port/Cx/Port"/>
<loadBalance ref="roundRobinRef">

<to uri="direct:CalcEndpointA" />
<to uri="direct:CalcEndpointB" />
<to uri="direct:CalcEndpointC" />
<to uri="direct:CalcEndpointD" />

</loadBalance>
</route>

Camel JMX Out-
put

EventDrivenConsumerRoute[Endpoint
[http://localhost:9001/Cx/Port] ->
Instrumentation:route[DelegateAsync[UnitOfWork(
RouteContextProcessor[Channel
[RoundRobinLoadBalancer]])]]]

Possible Routing-
Policies

RoundRobin, Random, Sticky, Topic, Failover, Weighted
Round Robin, Weighted Random and Custom

Table 3.6: Apache Camel message router

32

3.4 User Stories

3.3.6 Dynamic Router

Dynamic Router

Description It provides message routing based on a dynamic Routing-
Policy to a suitable endpoint. The Routing policy is defined
in a custom Java bean. [The13]

Camel route DSL <route>
<from uri="direct:start"/>

<dynamicRouter>
<method ref="myBean" method="route"/>

</dynamicRouter>
<to uri="mock:result"/>

</route>
Camel JMX Out-
put

EventDrivenConsumerRoute[Endpoint[direct://start] ->
Instrumentation
:route[DelegateAsync[UnitOfWork(RouteContextProcessor
[Pipeline
[[Channel[RoutingSlip[expression=BeanExpression
[method: route] uriDelimiter=,]], Chan-
nel[sendTo(Endpoint[mock://result])]]]])]]]

Parameter uriDelimiter and ignoreInvalidEndpoints

Table 3.7: Apache Camel dynamic router

3.4 User Stories

3.4.1 Apache ServiceMix

The product description [Thei] promotes ServiceMix as a flexible, open-source integration
container that unifies the features and functionality of Apache ActiveMQ, Camel, CXF, ODE,
Karaf into a powerful runtime platform. The framework can help developers to create their
own integration solutions. It is basically a ready to go distribution of an Enterprise Service Bus.
The package includes complete messaging, routing and enterprise integration functionality
powered by an unmodified Apache Camel. The integration of other packages from the Apache
Foundation enhance the functionality of the ESB:

33

3 Focus on Apache Camel

• Reliable messaging with Apache MQ
Camel provides a direct component in their core libraries [Theg]. It allows synchronous
invocation of messages by sending from a producer to an consumer directly. It is a
simple transport protocol between Java service beans. The Apache MQ project supports
many cross languages clients and protocols, as well as full support for the Enterprise
Integration Patterns and a sophisticated Message Broker [Thea].

• WS-* and RESTful web services with Apache CFX
Apache CFX is a framework that provides a frontend API that enables an easy creation
of Web services based on standards like SOAP, XML/HTTP, RESTful HTTP, or CORBA
[Theb].

• Complete WS-BPEL engine with Apache ODE
With Apache ODE it is possible to write business processes with the XML-based lan-
guage defined as WS-BPEL. The framework relies on WSDL to express Web service
interfaces and supports long and short living process execution [Thec].

• OSGi-based server runtime with Apache Karaf
The Apache ServiceMix is enhanced by Apache Karaf a lightweight container for various
applications. These can be hot deployed, controlled and managed.

The distribution of Apache Service Mix is a prepackaged ESB all-in-one solution for enterprises.
But it is also possible to selectively enhance Apache Camel with the desired features.

3.4.2 Fuse ESB Enterprise

Fuse ESB is a supported distribution of Apache ServiceMix. They are integrated, tested and
supported with the reliability and expertise of commercially provided enterprise services.
The ESB product also provides IT organizations with installers, support for patching and
verification for security flaws. The developing company Red Hat contributes with over 25
active developers under the Apache License. They introduce extension for the service mix for
example, JBI container for JBI artifacts or user tools helping to create routes from a diagram to
implementation [Red].
Fuse ESB become accepted in the industry. At this point one should not forget to mention two
user stories:
Hermes is a logistic enterprise that is the largest home deliver courier in the United Kingdom.
The company wanted to avoid a vendor lock-in but was also not comfortable with a pure
open source due to the lack of support. With the Fuse ESB they could use an supported and
consulted Apache service mix distribution and they could get a grip on some of its problems
like real time delivering information and increased control and monitoring of the business
[Red12].

Another example of a successful user story is a warehouse management system built with
Fuse ESB for a major retail pharmacy chain. This warehouse management solution should
eliminate manual scheduling while limiting the costs of operation. The delivery of products
is scheduled to avoid idling of trucks. All existing applications had to be interfaced including

34

3.5 Camel Technologies

third-party systems and legacy mainframes. Within a short time they could remodel the
whole system using Fuse ESB. This was done without major implementation effort [Theh].

3.5 Camel Technologies

As mentioned before, Apache Camel does not come prepackaged with the components needed
in this thesis. This section will briefly introduce some key technologies used with Apache
Camel. They are used for the implementation of the Apache Camel examples (cf. Section
3.6) or in the Apache Camel crawler (cf. Section 3.8). They are basically third-party program
providing key functionality. The following components are arranged in alphabetical order
and the content focuses on the usage.

3.5.1 Apache CFX

Apache Camel enables Web service support as an Apache Camel CFX component. It provides
the integration of protocols such as SOAP, XML/HTTP, RESTful HTTP, or CORBA and enables
the connection to JAX-WS services. Using Apache Maven the needed dependencies can be
imported adding the following artifacts: the transport (cxf-rt-transports-http-jetty or cxf-rt-
transports-jms) and SOAP bindings (cxf-rt-bindings-soap). The CFX component can easily be
instantiated as Apache Spring bean. Then the cxfEndpoint represents the bean ID in the Spring
bean registry [The13].

3.5.2 Direct Component

The direct component is a transmission channel for messages. It provides an easy direct
message exchange inside of Apache Camel. But it is not suitable for asynchronous communi-
cation. It has often been used to link two routes together. You can also invoke a route from an
accessible Java class that can access the camel context object. It is good practice that the start
endpoint (more precisely the proxy cf. section 5.2.2) is called “direct:start”.

3.5.3 Jetty Component

Jetty is the only Apache Camel supported web server that is standards-based and available
under the Apache License 2.01 and Eclipse Public License 1.02. The project also provides a
HTTP client and an javax.servlet container. The container features JNDI, JMX and session
management. The client and server supports highly scalable asynchronous communication
[Jet12]. The performance of Jetty is not well suited for static content. However it performs

1Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0.html
2Eclipse Public License 1.0 - http://www.eclipse.org/legal/epl-v10.html

35

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.eclipse.org/legal/epl-v10.html

3 Focus on Apache Camel

better with dynamic content generating. It is robust under overload and is capable for
emerging Web technologies like cloud computing [TAW03].

3.5.4 SEDA Component

Camel provides asynchronous staged event-driven architecture (SEDA) behavior. All mes-
sages are stored in a BlockingQueue that provides thread safety between consumers and
producer. The SEDA concept is designed for highly concurrent Internet services. The archi-
tecture is event-driven and can be used for massive concurrency demands. That is helpful
because an ESB often faces huge loads of requests from clients. Request with dynamic context
creates more messages and automatically lead to massive I/O and computation.
There is a lack of concurrency support in traditional operating system designs. Also the widely
promoted models on concurrency do not provide a sufficient management of load. SEDA
solves this issues and serves as general framework for concurred service instance [WCB01].
The SEDA queue can be facilitated within a single camel context. The usage of the queue is
very simple. The user must not define the SEDA bean inside the Spring configuration. On
default the component will be instantiate as LinkedBlockingQueue. The SEDA queue can be
addressed in the camel context just by using URI format seda:someName.

3.5.5 Spring Framework

Apache Camel heavily utilizes the Spring Framework in their application concept and is also
capable to support several Spring features like:

• Spring Transactions
Transactions can be applied to the message flow of Apache Camel.

• Spring XML Processing
The camel context can be invoked in a spring XML configuration.

• Spring beans
Beans can be designed in a Spring application context. Spring beans act like a container
that produces a fully configured system which is ready for use. The user configures
the Spring beans with XML-based metadata in the corresponding Spring XML file. The
beans can be instantiated in the camel route XML or directly in the Java code [Spr13].

• Integration of various Spring Helper classes
Camel provides a type converter that support Spring resources.

• Spring dependency inject component
This feature enables an external definition of the camel context as XML file. The corre-
sponding objects like the routes themselves, will be automatically exposed as compo-
nents and endpoints.

36

3.6 Evaluation Scenarios

3.6 Evaluation Scenarios

3.6.1 Load Balancer

Szenario:

This example deploys one proxy endpoint that is consuming a SOAP message over a client
HTTP request. There are four redundant endpoints that host the same implementation of a
service.
The scenario of this example is a calculator application acting as Apache Camel client and
performing add, subtract, multiply and divide operations against the proxy. Each endpoint
implements these basic mathematical functions and return the result. Those Web services
will be hosted simultaneously in an Apache Jetty server instance. The calculator application
addresses the calculation requests to the ESB while acting like a normal Windows calculator
for the user. There is also an exception handling implemented for division by zero violations.
The exceptions will be raised on the backend services, hosted on Apache Camel and finally
handled in the user-application. This whole functionality represents a complete Web service
powered client application with an Apache Camel configuration that could handle a huge
amount of requests.

Architecture:

The calculation service implements the calculator interface. This interface is being derived
from the corresponding WSDL file.

Listing 3.2 Service interface of the Calculator WSDL file
@WebService
public interface ICalculator {

public Result[] addition(@WebParam(name="numberA") double numberA,
@WebParam(name="numberB") double numberB);

public Result[] substraction(@WebParam(name="numberA") double numberA,
@WebParam(name="numberB") double numberB);

public Result[] multiplication(@WebParam(name="numberA") double numberA,
@WebParam(name="numberB") double numberB);

public Result[] division(@WebParam(name="number") double numberA,
@WebParam(name="devisor") double numberB) throws NaNException;

}

The code in Listing 3.2 illustrates the operations provided by the service. The return class
encapsulates the result and will be serialized to the client. The result objects contain the result
value of the operation and also have a correlation ID enabling the client to map the calculation
outcome with an application context like an equation. As discussed a division by zero causes
a NaNException that will be thrown. These classes are the input for the cxf-java2ws-plugin
which builds the WSDL file and the Web service Interface.

37

3 Focus on Apache Camel

The calculation server creates a SpringBusFactory that instantiate the Apache Camel route XML
file which automatically setups the camel context. The server publishes the Java implemen-
tation of the backend web service endpoints. This represents the integration of calculation
applications exposed as an Web service.
The calculator client implementation facilitate the communication using the WSDL port.
Using the proper XML binding it enables the communication with the endpoint. The message
serialization has been automated using CFX annotation. Finally the calculator application can
invoke the function division(double number, double divisor) like a local Java function. All the
complexity is hidden using Apache Camel with Apache CFX.

Listing 3.3 Example of one endpoint configured as jaxws endpoint
<jaxws:endpoint id="calcEndpointA" implementor="#calculationA"

address="camel://direct:CalcEndpointA" />

Consequently the configuration of the endpoints using the jaxws endpoint (cf. Listing 3.3)
declaration that provides the Web service functionality and using the JAX-WS-APIS interface
that enables the CFX support.

Camel Context:

Listing 3.4 Calculator example route using a load balancer with four endpoints
<route>

<from uri="jetty:http://localhost:{{port}}/CalculationContext/CalcPort" />
<loadBalance ref="roundRobinRef">

<to uri="direct:CalcEndpointA" />
<to uri="direct:CalcEndpointB" />
<to uri="direct:CalcEndpointC" />
<to uri="direct:CalcEndpointD" />

</loadBalance>
</route>

Listing 3.4 illustrates the camel context of this example. The Client can invoke the route using
the jetty:http://localhost:port/CalculationContext/CalcPort URI. The client request message will be
distributed to an calculation endpoint using a round robin algorithm. The round robin algorithm
can be considered as fair and can execute in constant time. In this example we can ignore the
packet sizes because the calculator class file will be serialized by Apache CFX. The difference
would be so small that there is no need to implement a deficit round robin. The different four
calculation task of the services have no high computation complexity. So there is no need for
queuing based on the load [SV96]. The classical round robin is very suitable for this example.

38

3.6 Evaluation Scenarios

Expected Crawling Result:

Proxy

URI=http://localhost:9001/
Context/Port

Gateway

Type=RoundRobinLoadBalancer

Endpoint

URI=direct://CalcEndpointA
RecivedMessages: InMsg

Endpoint

URI=direct://CalcEndpointB
RecivedMessages: InMsg

Endpoint

URI=direct://CalcEndpointC
RecivedMessages: InMsg

Endpoint

URI=direct://CalcEndpointD
RecivedMessages: InMsg

Figure 3.2: Structure of the load balance example evaluation

Figure 3.2 illustrates the evaluated crawling result. The crawler has identified all correspond-
ing endpoint nodes. The result is consistent with the generic ESB data model of Ssection 5.
The crawler plugin returned the correct structure stored in the CamelStructure object. The
strings analysis method discussed in Section 3.3 has been used.

Summarized the crawler has detected six generic ESB model entities:

• One Proxy node that addresses the route.

• One Gateway
type = RoundRobinLoadBalancer

• Four Endpoints
each connected to the gateway, all providing different internal endpoint URIs.

3.6.2 Business Example - The Coffee Shop

Szenario:

The Apache Camel cafe example3 will be used to illustrate the collaboration between different
Apache Camel components and represent a standard scenario for an Apache Camel mediator

3http://camel.apache.org/cafe-example.html

39

3 Focus on Apache Camel

flow.
The example describes a coffee shop use case that receives orders and then prepares the
desired drinks for the client. First the client sends an order to a proxy representing the start
of the Apache Camel route. An order usually includes several items. Every item will be
processed individually. The shop offers cold and hot drinks, which are prepared from different
entities. The waiter delivers the coffee after all items of the order are ready.

Camel Context:

Listing 3.5 First coffee shop route from direct:cafe invoking a splitter then send to direct:drink
<route>
<from uri="direct:cafe"/>
<split>
<method bean="orderSplitter"/>
<to uri="direct:drink"/>

</split>
</route>

First Apache Camel route illustrated in Listing 3.5 declares the proxy endpoint that receives
messages from clients. It forwards the messages to a splitter mediator. The splitter implemen-
tation is provided by an orderSplitter bean.
The Order contains a list of one or more drinks each now referred to as items. Each item will
be isolated and sent to the next route.

Listing 3.6 Second coffee shop route from direct:drink invoking a recipient list bean
<route>
<from uri="direct:drink"/>
<recipientList>
<method bean="drinkRouter"/>

</recipientList>
</route>

In the next step in Listing 3.6 each item will be redirected to a recipient list that acts like a
content router. The drinkRouter bean routes the message depending on the context of the item
to a suitable endpoint.
The recipient is choosen based whether the item equates as cold or hot drink. The cold drinks
will be routed to “seda:coldDrinks” and the hot drinks to “seda:hotDrinks”. The routing
alternatives are hidden from the crawler. The implementation of the drinkRouter bean routes
the message outside of the camel context. Both drink routes, targeted by the drinkRouter, pulls
messages from a SEDA (cf. section 3.5.5) queue. The address of the queue is defined in the
from element with the URI attribute.

40

3.6 Evaluation Scenarios

Listing 3.7 Coffee shop preparation route alternative A for cold drinks
<route>
<from uri="seda:coldDrinks?concurrentConsumers=2"/>
<to uri="bean:barista?method=prepareColdDrink"/>
<to uri="direct:deliveries"/>

</route>

The bean in Listing 3.7 has a load limit of two concurrent customers. This illustrates a typical
option that can be set in the SEDA component. After the preparation of the cold drink, the
direct:deliveries route will be invoked.
The second alternative is related to the previous route with the exception of preparing hot
drinks and accepts three concurrent customers.

Listing 3.8 Final route aggregating the orders, preparing and finally deliver the drinks
<route>
<from uri="direct:deliveries"/>
<aggregate strategyRef="aggregatorStrategy" completionTimeout="5000">
<correlationExpression>
<method bean="waiter" method="checkOrder"/>

</correlationExpression>
<to uri="bean:waiter?method=prepareDelivery"/>
<to uri="bean:waiter?method=deliverCafes"/>

</aggregate>
</route>

Finally the order-items are directed to the direct:deliveries route illustrated in Listing 3.8. The
aggregation pattern collects all items until all items of one order have been delivered. The
waiter bean can investigate the order number of an item. This will be used as correlation
expression for the aggregationStrategy. If the complete condition was meet, the order will be
delivered using the bean:waiter?method=deliverCafes bean. This bean prints the final prepared
order on the console.

Expected Crawling Result:

The crawler does not assume any correlation between the routes. This limitation of the crawler
will be discussed in section 3.9. This example creates an indirection between the routes. The
hidden router implementation in the drinkRouter causes unavoidable disconnections in the
logical chain of routes. The evaluated crawling results are following in the same scenario
appearance using the notion of the generic ESB data model:

41

3 Focus on Apache Camel

Proxy
URI: direct:cafe

Mediator
Type: Splitter

Endpoint
URI= direct:drink

Figure 3.3: Structure of the expected splitter route elements

The first route in Figure 3.3 represents the crawling result that splits the order in order-items.
The splitter is not a gateway because it can only have one successor and acts like a mediator.

Generally a list of recipients can define a multicast among defined endpoints. In this case,
there is a bean that implements the routing behavior. As discussed this represents a dead end
for the crawler that cannot be resolved. It would be necessary to parse the code of the bean
class or extend the JMX support. So the crawling result includes one proxy endpoint and the
recipient list gateway (cf. Figure 3.4).

Proxy
URI=direct:drink

Gateway
Type=RecipientList

Figure 3.4: The recipient list with the unknown target endpoint.

The previous crawled recipient list gateway invokes either the route with the proxy
seda:coldDrink or seda:hotDrink. The crawled entities are identical besides of the drink method
and number of concurrent customers. They represent a pipes and filter pattern. The filter is
implemented as Java bean which will be invoked in sequence. First the proxy, then the drink
preparation Endpoint followed by the connection endpoint to the next route.

42

3.7 Applied Gathering Methods

Proxy
URI=seda:hotDrinks?concurrentC
onsumers=3

Endpoint
URI=bean:barista?method=prepa
reHotDrink

Endpoint
URI=direct:deliveries

Proxy
URI=seda:coldDrinks?concurrent
Consumers=2

Endpoint
URI=bean:barista?method=prepa
reColdDrink

Endpoint
URI=direct:deliveries

Figure 3.5: Preparation routes of either cold or hot drinks.

This is also a good example that the crawler should not interpret the crawling result. The
crawler could judge the prepare Endpoint as a dead end. Because he could determine if this is
an entity or a proxy endpoint of another route. It is of advantage to avoid this systematical
complexity. The user of the ETG Framework could define a query reassembling the complex
structure of the mediator flow. But the query needs some context knowledge that must include
insight of the architecture and constitution of the mediator flow. Figure 3.5 illustrates the
crawled result of both routes.

Proxy
URI=seda:hotDrinks?concurrentC
onsumers=3

Mediator
Type= Aggregator

Endpoint
URI=bean:waiter?method=prepar
eDelivery

Endpoint
URI=bean:waiter?method=delive
rCafes

Figure 3.6: The expected aggregator route elements.

Finally all the prepared items will be aggregated within the final route. Figure 3.6 represents
the structure of one proxy, one mediator and two endpoints. Again the endpoints represents
a pipes and filter modeling concept.

3.7 Applied Gathering Methods

The user can define Apache Camel routes using a Java DSL in Java classes that can access the
RouteBuilder entity. The routes can be placed in any class in the ESB project of the enterprise.

43

3 Focus on Apache Camel

Listing 3.9 Example of an camel route configuration using Java DSL
RouteBuilder builder = new RouteBuilder() {

public void configure() {
errorHandler(deadLetterChannel("mock:error"));
from("direct:a").to("direct:b");

}
};

There is no central registry that could be accessed to determine the static configuration of the
routes.

The route in Listing 3.9 illustrates a programmatically defined route added to the camel context.
Apache Camel even encourage developers using this concept to setup an Apache Camel
mediator flow. This would provide maximum IDE completion and functionality. Furthermore
it should also be the most expressive way to define routes in Apache Camel [The13].
The implementation of the scenarios used in this thesis, mainly configures the routing rules
using the Apache Camel XML language. The usage of the XML language can be compared to
the Spring application context. Both routing description alternatives must be crawled and
detected for the static routing information of the Apache Synapse routes. So it is not sufficient
to analyze the camel-route.xml or the source code.
However Apache Camel provides a sophisticated Java JMX support, the user can monitor
and control the ESB with a JMX client. The Camel JMX catalog provides different information
sections:

• Components
The components represent a used and supported technology by Apache Camel. For
instance the direct- (cf. Section 3.5.2) or the SEDA-component (cf. Section 3.5.5).

• Context
If there is more than one context active in the Camel instance it could be determined in
this section.

• Endpoints
Every Camel endpoint container implements the ManagedEndpoint interface. This makes
them manageable using JMX.

• Processors
All entities that implement the processor pattern are built to consume and send messages.
This can be either channels or mediators. Each of these entries are correlated to a route.

• Routes
The Route defines the address that will be exposed for the route invocation. This can
also be modeled as an proxy endpoint.

The route information contains all properties in their description formatted as string. Unfortu-
nately these information is not accessible as JMX Attributes. Basically the string represents the
structure using a recursive language with the syntax Object[Object next Object]. The Object is
an internal Camel Object. There is no documentation of the used structure of the description.

44

3.8 Crawler Implementation Details

Section 3.2 delivers a solution of this issue. The illustrated mapping of the JMX description
with the correspondent EAI pattern made a breakdown of the structure possible. This univer-
sal syntax and correlation of the JMX description string has also been re-engineered in this
Section.
With this solution the method can be used to gather all routing information either defined as
Java code or with the Apache Camel XML language. The JMX method also enables the access
to statistical information from Apache Camel. Needless to say, because of the sophisticated
JMX support there is no other custom management API available.

One should also consider that log files are no useful alternative because the default logging
level does not display any routing information. This configuration of the logger can be
changed using the camel context. It would require to enable DEBUG level. Yet the debug
output of Apache Camel is verbose and would need additional parsing effort. Hence, the
JMX solution can be considered as the superior crawling practice. The JMX approach has
been mentioned in the documentation as the recommended service interface for third-party
programs.

3.8 Crawler Implementation Details

3.8.1 Crawler Data Model

The crawler model illustrated in Figure 3.7 reflects the JMX entities used by Apache Camel.
There are three important entities for the gathering of static and statistical information (i)
endpoint, (ii) processor and (iii) route.

The JMX output contains attributes that are needed as information for the ETG Framework
plugin. They are modeled as private members of each data model class. The get-methods
are private because the JMX client logic is integrated in the constructor. The constructor
arguments of the CamelEndpoint includes the MBeanServerConnection, ObjectInstance and
the MBeanInfo object. The connection is stored in every object to clearly define the instance
reference. It is also needed to query attributes from the JMX interface.
Some information can be directly retrieved from the ObjectInstance. It encapsulates all infor-
mation about the source object. The MBeanInfo describes the management interface that is
exposed by an MBean. For example the MBean class managedSendProcessors provides a destina-
tion property contrary to the managedProcessor. Subsequently each object will be instantiated
with the same arguments and the information will be gathered automatically inside of the
class. The advantage is that the information gathering logic is attached to the object to avoid
assignment errors with set-methods. This architecture also ensures clear enclosure of the
source code and easy code maintenance.

45

3 Focus on Apache Camel

Figure 3.7: The camel crawler data model depicted as UML class diagram

3.8.2 JMX Object Helper

Listing 3.10 MObjectHelper: Query an endpoint using the getObjectInstance method
public static ObjectInstance getEndpoint(MBeanServerConnection conn, String

endpointName) throws Exception {
return getObjectInstance(conn, "endpoints", "\"" + endpointName +

"\"");
}

The Camel crawler project supports a static MObjectHelper utility class. Queries on the JMX
interface can be very complex and error prone. Interface query functions help the developer to

46

3.8 Crawler Implementation Details

avoid errors and duplicated code. An endpoint can easily be found with the helper function in
Listing 3.10 The implementation searches for a given endpoint name in the endpoint category
of the Apache Camel JMX interface.

Listing 3.11 MObjectHelper: Query a arbitrarily object instance in JMX
private static ObjectInstance getObjectInstance(MBeanServerConnection conn,

String type, String name) throws MalformedObjectNameException,
NullPointerException, IOException {

Set<ObjectInstance> beans = conn.queryMBeans(new
ObjectName("org.apache.camel:type=" + type + ",name=" + name +
",*"), null);

return beans.isEmpty() ? null : beans.iterator().next();
}

The function facilitates the utility function getObjectInstance represented in Listing 3.11. The
code iterates through all objects with a user defined type. In our case the function returns the
appropriate endpoint instance. These are just snippets of one use case of the MObjectHelper.
The Java class provides 17 custom static functions which enables easy query mechanism using
JMX. It also offers simple extension of the camel crawler, if there are more information needed
in the future.

3.8.3 Camel Structure Builder

The CamelEndpoint, CamelProcessor and CamelRoute objects (displayed in Figure 3.7) will be
added to the CamelStructure object illustrated in Figure 3.8 that represents the complete Camel
topology.

Figure 3.8: The Apache Camel internal crawler structure

47

3 Focus on Apache Camel

The crawler iterates over the Apache Camel JMX management interface and then adds all
endpoints, routes and processors to the structure. After this is done, all objects can be corre-
lated together. That makes it easier because the user of the Camel crawler does not need any
Apache Camel specific knowledge to correlate the JMX entities together. The createStructure()
function starts the clustering algorithm. The algorithm in Listing 3.12 is performing several
clustering steps.

Listing 3.12 Simplified Apache Camel structure clustering algorithm
for (CamelProcessor processor : processorList) {

for(CamelRoute route : routeList) {
if(route.getRouteId().equals(processor.getRouteId())) {

if(!routeEndpointCorrelationMap.containsKey(route)) {

*** add new processor and endpoint pair to route ***
}
for(CamelEndpoint endpoint : endpointList) {
if(endpoint.getEndpointUri().equals(processor.getDestination()))

{

*** Processor is a gateway. Add more Endpoints to the processor
subList ***

}
}

}
}

}

The idea behind this algorithm is that every route has mediators that connect one or more
endpoints. Each processor represents a mediator that connects an endpoint. This connection
can be resolved by mapping the endpoints to the processor endpoint address. The clustering
creates a simple data-structure that can be described as follows:
“a Apache Camel route contains one or more processors with zero or more endpoints”
This is the underlying clustering idea behind this algorithm. An external application like the
ETG Framework plugin can simply iterate through the routes and can access all mediator,
gateway, condition and endpoint entities that are deployed in the Apache Camel instance.

3.8.4 Camel JMX Connection Client

The crawler implements a custom JMX client to establish the connection to the Apache Camel
management. The documentation is inaccurate regarding the correct connection string that
a client needs to connect a Camel instance. There are several possible connection strings,
depending on the implementation and used Apache Camel version. The default connection
string is URL:service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi. The Crawler API provides a
connection tester that will try several connection methods. The default configuration of Camel
enables the JMX support.
The JMXConnector class uses the javax.managment.remote.JMXConnectorFactory to establish

48

3.9 Discussion of Crawling Results

the connection. The MBeanServerConnection provides access to all JMX services that Apache
Camel provides.

3.9 Discussion of Crawling Results

The crawling results represent a direct view on the Camel configuration. As mentioned in
Chapter 3.6.2, there are several limitations in that discovery.

Proxy
A

Mediator(s)

Endpoint
E

Proxy
E

Mediator(s)

Endpoint
L

Camel crawling result disjoint
route1 and route2

Endpoint E and Proxy E
share the same endpoint

address.

Proxy
A

Mediator(s)

Endpoint
E

Proxy
E

Mediator(s)

Endpoint
L Mediator(s)

Endpoint
L

Proxy
A

Mediator(s)

Endpoint
E

Mediator(s)

Endpoint
L

Proxy
A

Mediator(s)

Proxy
A

Mediator(s)

Endpoint
E

Mediator(s)

Endpoint
L

Gateway

Interpretion alternative I Interpretion alternative II Interpretion alternative III Interpretion alternative IV

Figure 3.9: Example of several interpretation alternatives of two Apache Camel routes

• Correct distinction between configuration and crawling results
The Camel crawler only detects patterns that are listed in Section 3.3.1. Channels are
also part of the internal camel routing process. The crawler abstracts this concept and
implicitly represents a channel as a relation between processors and endpoints.

• Routing logic implemented as Java beans
The Apache Camel crawler has no insight on routing logic inside of Java beans. The
coffee shop example in Section 3.6.2 illustrated this limitation in practice. The routing
algorithm behind the bean is out of scope of the crawler. This leads to dead ends in the
camel route chain.

49

3 Focus on Apache Camel

• Concatenation of routes
Camel routes typically represent a complete mediator flow. Every route defines one ac-
tivity or functionality of that message flow. The crawler does not join possible matching
routes because it could lead to wrong representation of the structure. The example in
Figure 3.9 explains the difficulties of reassembling routes:
The Camel developer defines two different routes in the Apache Camel ESB:
Route A can be invoked with the proxy endpoint P listening to the addressee direct:A.
After some processing steps the endpoint E with the addressee direct:E receives the
message. Route B can be invoked with the same addressee as endpoint E and acts in
this route like a proxy endpoint. After some processing the request will be handled to
the last endpoint L.
In a nutshell the Endpoint E and Proxy E are the same endpoint exposing the same
address. This can lead to multiple interpretation alternatives how both routes are corre-
lated together. Four possible interpretation alternatives are illustrated in Figure 3.9.
On the other hand Alternative I assume that the incoming request logic is separated
from the outgoing logic. Apache Synapse sequences often deal with this separated end-
point implementation model. Alternative II joins the endpoint E with the proxy E. Both
entities would act as one entity. But E can only be invoked with proxy A. Alternative
III removes endpoint E, because it could only implement internal message transport
mechanics. Finally the Alternative IV adds a gateway to connect both routes. Because it
depends on the payload of the request if the Endpoint E is the last processing step or
could trigger additional mediator flow.
The untouched disjoint representation does not make any assumptions of the correlation
between both routes. This can be considered as a real snapshot of the Camel structure.
The ETG Framework provides graph transformation that perform an automatically
interpretation of the Camel structure. This transformation cannot be done without
information about the business context of the routes and endpoints.

50

CHAPTER 4

FOCUS ON APACHE SYNAPSE

This Chapter deals with Apache Synapse describing the general analysis and research to
achieve a sophisticated information crawler implementation. Furthermore, Section 4.1 clas-
sifies Apache Synapse using characteristics from David Chappell. Followed by a summary
about the architecture and concepts of Apache Camel in Section 4.2, using the chronological
order of all involved Apache Camel parts in the message flow. The mediator flow can be
defined using the functional components discussed in Section 4.3. These components has
been mapped in Section 4.4 to the Enterprise Integration Patterns. The concepts of Apache
Synapse has been adapted by WSO2 ESB introduced as a user story in Section 4.5. Finally all
the research has been implemented as Apache Synapse information crawler and evaluated
using custom Apache Synapse scenario deployments explained in Section 4.6. The technical
details are discussed in Section 4.7 and 4.8 and the results will be discussed in Section 4.9.

4.1 Classification

Apache Synapse can be described as a lightweight and high-performance Enterprise Service
Bus. It provides support for Web services and REST. The latest stable release of Apache
Synapse is version 2.1 from january 2012. The Synapse architecture provides fundamental
services for complex architectures like message routing and message transformation [Thee].
Table 4.1 compares the ESB characteristics defined by D. Chappell [Cha09] with the Apache
Synapse functionality. Apache Synapse meets the requirements discussed in Chapter 2.2
formalized as characteristics of an Enterprise Service Bus [Cha09].

51

4 Focus on Apache Synapse

ESB Characteristics Synapse functionality
Pervasiveness Every Application can be anonymously added to the config-

uration of Apache Synapse. Typically the endpoint will be
discovered using a service address or a WSDL file. Apache
Synapse just need the address of the endpoint that is being
used to invoke the message exchange with the supported
transportation protocol.

Standards-Based Integration Synapse supports Web services and REST. The Internet-
based standards SOAP and XML are supported as content
interchange formats. It provides also support for several
industry standard protocols like HTTP/S, Mail, Java Mes-
sage Service, TCP, UDP, Virtual File System a, Short Message
Service b, XMPPc and FIX d.

Highly distributed, event-
driven SOA

Synapse can invoke any application that is accessible via a
supported transport protocol. Synapse can be used as an
event source and enables integration of other systems based
on an Event Driven Architecture (EDA).

Security and reliability WS-Security is one example of a supported security feature
in Apache Synapse. ASF Project Security Information Home-
page gives the user insight about current security issues and
their solutions. The reliability of the provided Web services
are ensured with the support of WS-Reliable Messaging.

Orchestration and process
flow

Orchestration is implemented as a routing engine in the core
of the ESB. Apache Synapse provides a sophisticated catalog
of mediators.

Table 4.1: Comparison of ESB characteristics and Apache Synapse functionality

aVFS - http://commons.apache.org/proper/commons-vfs/
bGSM Technical Specification - http://www.etsi.org/
cXMPP Protocols - http://xmpp.org/xmpp-protocols/
dFIX Standard - http://www.fixtradingcommunity.org/

4.2 Architecture and Concept

Figure 4.1 provides an overview of the Apache Synapse high level architecture. It shows
the interactions between the main components. The architectural concept is driven by the
messaging handling of the software. Each component will be discussed in order of the
components work with the message flow, beginning with the receiving of an message:

52

http://commons.apache.org/proper/commons-vfs/
http://www.etsi.org/
http://xmpp.org/xmpp-protocols/
http://www.fixtradingcommunity.org/

4.2 Architecture and Concept

Figure 4.1: Overview of the main components of the Apache Synapse architecture [Thed]

An application sends a message to the Apache Synapse ESB and it will be proceeded by the
transport component. The system picks an implementation of a transport that is capable of
receiving and sending messages.
Synapse only processes the content as needed. This model is implemented in the message
formatters and builder. They create objects that are handled as internal representation of the
request. The message builder identifies the message data type and assembles the Synapse XML
format. The message formatters are doing the reverse work while converting the messages
back to the original format [Fre].
After that the message will be handled by Quality of Service (QoS) components that provide
security, caching, throttling and reliable messaging features.
Now the mediation engine of Apache Synapse handles the request. The routing logic is defined
using sequences. The sequences contain a routing chain with proxy services, mediators and
endpoints. Theses features are discussed in Section 4.3. The Mediator Engine can also access
a local or remote registry that provides additional configurations. There is also access to
external databases that can be used.
Finally after the request propagation to the endpoint, the generated reply takes the reverse
way through the architecture. Again the QoS components will be applied to the reply and the
message formatted will transform the reply to a compatible format for the calling application.
In a final step suited transport component will deliver the reply message.

53

4 Focus on Apache Synapse

Listing 4.1 The syntax outline of a sequence definition
<sequence name="string" [onError="string"] [key="string"] [trace="enable"]

[statistics="enable"]>
mediator*

</sequence>

Listing 4.2 Example of an main Synapse sequence with three mediators
<sequence name="main" onError="errorSequence">

<log/>
<property name="test" value="test value"/>
<send/>

</sequence>

4.3 Functional Components

The Mediator Engine can be deployed using a XML-based configuration language. The SOA
components can be used an orchestrated using a large collection of mediators that are able to
solve complex enterprise integration scenarios. This Section introduces the concepts that are
build with sequences, mediators and endpoints [Thee].
The outlines are using POSIX Extended Regular Expression (ERE) syntax elements. The +
sign defining (0,1) occurrence and * sign defining (0,n) occurrence.

4.3.1 Sequence

A sequence can also be described as mediator sequence that is basically a list of mediators.
Listing 4.1 displays the syntax of a sequence element that only allows to define a list of
mediator elements. The sequence has to be named uniquely. The Synapse configuration
contains two special sequences with reserved names:

• Main
The main-sequence will handle all requests that are accepted for the message mediation.
It acts like a default message route.

• Fault
The fault-sequence is handling every error encounter during processing of an message.

Even if the user does not declare these sequence in the configuration, the ESB will automati-
cally generate suitable main- and fault-sequences.

This chain of mediators can be compared with the pipe and filter pattern. The messages are
sent through a pipe of filters that are represented by the mediators. For instance the filter
mediators can transform messages to interact services without changing their implementation.
There are similarities with the previous discussed Apache Camel routes. But in contrast to
Camel the routes are not nested and typically execute a complete task. Usually in Apache
Camel it is best practice to chain the routes instead of the mediators. Finally an endpoint will

54

4.3 Functional Components

be invoked. An example of Synapse sequence containing three mediators is illustrated in
Listing 4.2.
But it is also possible to chain sequences like in Apache Camel. This can be useful to reuse the
different processing tasks in the Synapse configuration. This usage can be compared with the
functionality of a procedure in a programming language. The code of a procedure represents
a functionality that can be invoked in any other context. The sequence example in the Listing
4.2 for instance reuses the errorSequence to handle a possible exception in a mediator. Figure
4.2 illustrates a possible Apache Synapse routing. The proxy endpoints receive and deliver
the messages to the client.

4.3.2 Proxy

Figure 4.2: The Synapse messaging flow structure [Thed]

Typically Synapse ESB mediates between the calling application and the internal backend ser-
vice. The mediation is orchestrating the message flow and invokes the mediator that perform
authentication, validation, transformation, routing based on the content etc. and then executes
the destination target endpoint. This functionality is defined in the Apache Synapse sequence.

55

4 Focus on Apache Synapse

Normally it is not possible, except for the main route, that a route can get a message without
a proxy endpoint. The proxy service exposes the specific transports through an underlying
Apache Axis2 server. Each of these services could define a sequence or a direct endpoint. Basi-
cally its the communication layer between the client and the internal Synapse endpoint service.

Listing 4.3 The syntax outline of an Apache Synapse proxy service
<proxy name="string" [transports="(http |https |jms |..)+|all"]

[pinnedServers="(serverName)+"] [serviceGroup="string"]>
<description>...</description>?
<target [inSequence="name"] [outSequence="name"] [faultSequence="name"]

[endpoint="name"]>
<inSequence>...</inSequence>?
<outSequence>...</outSequence>?
<faultSequence>...</faultSequence>?
<endpoint>...</endpoint>?

</target>?
<publishWSDL key="string" uri="string">

(<wsdl:definition>...</wsdl:definition> |
<wsdl20:description>...</wsdl20:description>)?

<resource location="..." key="..."/>*
</publishWSDL>?
<enableAddressing/>?
<enableSec/>?
<enableRM/>?
<policy key="string" [type="(in | out)"]/>? // optional service or message

level policies such as (e.g. WS-Security and/or WS-RM policies)
<parameter name="string"> // optional service parameters such as (e.g.

transport.jms.ConnectionFactory)
string | xml

</parameter>
</proxy>

Listing 4.3 shows the complexity of a proxy and the nested children. One the one hand the
inSequence mediator describes the mediator flow for the incoming requests. Mediators on that
incoming path will be annotated with (In path). On the other hand the outSequence describing
the mediator flow of the response path. These Mediators will be annotated with (Out path).
As mentioned the proxy can also directly target an endpoint. The service is designed to
publish a WSDL file for the client as service description.

4.3.3 Endpoint

Endpoints are backend services that can be defined in the Synapse configuration. Service
endpoints can be either address endpoints or WSDL endpoints. They are both addressed with
a URI. But the WSDL endpoint could also have an inline definition within the configuration.
There are also internal endpoints like the failover endpoint that is a backup for the first listed
endpoint in the published WSDL configuration.
Apache Synapse also defines the loadbalancer as an endpoint that invokes backend endpoints

56

4.3 Functional Components

depending on the load algorithm. This semantic is different from Apache Camel. Similarly,
the recipient list endpoint can be defined using the recipient list element. The structure is
similar to a loadbalance endpoint, with the difference that the message will be send to a list of
recipients. This implements the recipient list pattern.

4.3.4 Mediator

Mediators can perform a specific function such as sending or filtering messages. Apache
Synapse provides a mediator library that provides functionality for implementing the En-
terprise Integration Patterns. The functionality of each available mediator will be discussed
the subsequent sections. These filters are processing the messages in different ways. It is
necessary to illustrate those concepts. They can affect the message flow and final routing to
an endpoint [WSO13].
Section 4.3.5 discusses the core mediators representing basic functional expressions. Followed
by the section 4.3.6 with filter type mediators. Specialized mediators for SOAP transformation
are covered in section 4.3.7. Followed by the Extension Mediators in section 4.3.8 and finally
the advanced mediators are discussed in 4.3.9.

4.3.5 Core Mediators

The Core mediators represent the basic functional expressions to create a message flow with
Apache Synapse. They are very useful in variety of scenarios and they are utilized to improve
the messages handling. There are four different utility mediators:

Drop Mediator:

<drop/>

The Drop-Mediator will drop the current messages from the flow. The message flow will be
terminated.

Log Mediator:

<log [level="simple|full|headers|custom"] [separator="string"]
[category="INFO|DEBUG|WARN|ERROR|TRACE|FATAL"]>

<property name="string" (value="literal" | expression="xpath")/>*
</log>

The mediated messages can be logged at any given position in the message flow. This log will
go into the standard Apache Synapse log files. This is a log4j1 logging mechanism and can be
configured further outside of the Synapse configuration file. The logging detail, category and

1http://logging.apache.org/log4j/2.x/

57

http://logging.apache.org/log4j/2.x/

4 Focus on Apache Synapse

property name can be specified. This mediator will be used to establish routing statistics in
the ESB.

Property Mediator:

<property name="string" [action=set|remove] [type="string"] (value="literal" |
expression="xpath") [scope=default|transport|axis2|axis2-client]
[pattern="regex" [group="integer"]]>
<xml-element/>?

</property>

This property can manipulate some properties of the messages. This can be very helpful for
controlling the runtime behavior of a message. Important Message detail could be added and
changed while processing. A possible use case could be a mediator that stores a intermediate
results for further processing by other mediators.

Send Mediator:

<send [receive="string"]>
(endpointref | endpoint)?

</send>

This send operation can transport requests to endpoints. But this could be also be used to
create response messages back to the client. A send mediator without configuration of any
child endpoints, will forward the messages to an implicit endpoint (e.g. inspecting the “to”
header of the message). If it is a response message of a backend client then the message will
be send to the requester client.

4.3.6 Filter Mediators

Simple Filter Mediator:

<filter (source="xpath" regex="string") | xpath="xpath">
mediator+

</filter>

The filter validates messages and passes them to the next one if the regular expression is
matched. It is possible to use if/else semantic for different evaluations that would make
conditional actions necessary. The evaluation scenario in Section 4.6.1 demonstrates such a
usage as content based router.

In/Out Mediator:

<in>
mediator+

</in>

<out>
mediator+

</out>

58

4.3 Functional Components

The in mediator only applies to incoming messages flow and the out mediator to out-going
message flow. According to the origin of the message (from the client or from the backend
endpoint) different mediators will be applied.

Switch Mediator:

<switch source="xpath">
<case regex="string">

mediator+
</case>+
<default>

mediator+
</default>?

</switch>

This mediator acts like a switch statement in Java. The source XPath will be executed on the
message and the resulting value will be matched against the case expression.

4.3.7 Transformation Mediators

The transformation mediators are specialized for SOAP messages. They are specialized on
different parts and transformation of a message.

Header Mediator:

<header name="qname" (value="literal" | expression="xpath") [action="set"]/>
<header name="qname" action="remove"/>

Header mediator can change the header from the current SOAP specification. The name
attribute describes the field which can be changed in the header.

MakeFault Mediator:

<makefault [version="soap11|soap12|pox"] [response="true|false"]>
<code (value="literal" | expression="xpath")/>
<reason (value="literal" | expression="xpath")/>
<node>...</node>?
<role>...</role>?
(<detail expression="xpath"/> | <detail>...</detail>)?

</makefault>

This transformations mediator can for instance transform a SOAP message into a fault message.
The error handling must be invoked after that.

Payload Factory Mediator:

<payloadFactory>
<format>"xmlstring"</format>
<args>

<arg (value="literal" | expression="xpath")/>*
</args>

</payloadFactory>

59

4 Focus on Apache Synapse

It creates a new payload for the SOAP message. This is provided by using a XPath expression
against the existing Payload of the SOAP message or message context. But it is also possible
to change the payload with a static value.

URL Rewrite Mediator:

<rewrite [inProperty="string"] [outProperty="string"]>
<rewriterule>

<condition>
...
</condition>?
<action [type="append|prepend|replace|remove|set"] [value="string"]
[xpath="xpath"] [fragment="protocol|host|port|path|query|ref|user|full"]

[regex="regex"]>+
</rewriterule>+

</rewrite>

Every URL values in the message can be modified and transformed. By default the to header
of the message will be changed by the rewrite rules.

XQuery Mediator:

<xquery key="string" [target="xpath"]>
<variable name="string" type="string" [key="string"] [expression="xpath"]

[value="string"]/>?
</xquery>

In this mediator the key attribute targets a specific XQuery transformation, the optimal target
attribute specifies the part of the message that should be transformed. The key with the XPath
expression selects the variable.

XSLT Mediator:

<xslt key="string" [source="xpath"] [target="string"]>
<property name="string" (value="literal" | expression="xpath")/>*
<feature name="string" value="true | false" />*
<attribute name="string" value="string" />*
<resource location="..." key="..."/>*

</xslt>

XSLT Mediator transforms a selected element of a SOAP message payload.

4.3.8 Extension Mediators

It is possible to create custom mediators for Apache Synapse. These extension mediators assist
the user with the creation of an instance. Synapse provides different interfaces for several
implementation alternatives:

• Class Mediator
By implementing the org.apache.synapse.api.Mediator interface. The user can integrate
custom Java mediators.

60

4.3 Functional Components

• POJO Command Mediator POJO is a popular Command design pattern to encapsulate
method calls to invoke an object. Implementing the org.apache.synapse.Command interface
with an execute() signature provides the functionality of the mediator.

• Script Mediator
Variety of script languages like JavaScript, Python and Ruby can be used to implement
custom mediators.

• Spring Mediator
Like the Class Mediator it is possible to invoke and instantiate Spring beans.

4.3.9 Advanced Mediators

Aggregate Mediator:

<aggregate [id="string"]>
<correlateOn expression="xpath"/>?
<completeCondition [timeout="time-in-seconds"]>

<messageCount min="int-min" max="int-max"/>?
</completeCondition>?
<onComplete expression="xpath" [sequence="sequence-ref"]>

(mediator +)?
</onComplete>

</aggregate>

This acts like the Message Aggregation Pattern described in the Enterprise Integration Patterns
combining messages together. They have to correlateOn a XPath expression and will be
collected till the completion condition is met. If the completionCondtion was met the messages
will be merged and forwarded to the onComplete sequence.

Cache Mediator:

<cache [id="string"] [hashGenerator="class"] [timeout="seconds"] [scope=(per-host
| per-mediator)]

collector=(true | false) [maxMessageSize="in-bytes"]>
<onCacheHit [sequence="key"]>

(mediator)+
</onCacheHit>?
<implementation type=(memory | disk) maxSize="int"/>

</cache>

This mediator detects already processed messages. If an incoming message has already been
sent and can be correlated in the cache then the onCacheHit sequence will be invoked.

Callout Mediator:

<callout serviceURL="string" [action="string"]>
<configuration [axis2xml="string"] [repository="string"]/>?
<source xpath="expression" | key="string">
<target xpath="expression" | key="string"/>

</callout>

61

4 Focus on Apache Synapse

This is basically a blocking call on an external service. The response will be attached to the
current message context as a property. It cannot be used with HTTP/s protocol (because of
the blocking characteristics).

Clone Mediator:

<clone [id="string"] [sequential=(true | false)] [continueParent=(true | false)]>
<target [to="uri"] [soapAction="qname"] [sequence="sequence_ref"]

[endpoint="endpoint_ref"]>
<sequence>

(mediator)+
</sequence>?
<endpoint>

endpoint
</endpoint>?

</target>+
</clone>

The incoming messages will be copied several times. These clones are identical copies of the
incoming messages and can be processed in parallel or sequential.

DBLookup Mediator:

<dblookup>
...

</dblookup>

The DB Mediator can process SQL Statements on a defined SQL Database. The resulting
data will be stored in the Synapse message context. Similar to this behavior is the DBReport
mediator. Instead of reading data it will write data to a given database.

Iterate Mediator:

<iterate [id="string"] [continueParent=(true | false)] [preservePayload=(true |
false)] [sequential=(true | false)]

(attachPath="xpath")? expression="xpath">
<target [to="uri"] [soapAction="qname"] [sequence="sequence_ref"]

[endpoint="endpoint_ref"]>
<sequence>?
</endpoint>?

</target>+
</iterate>

The Iterator splits the message in multiple items using an XPath expression. For each item a
new message will be created forwarded to a sequence or an endpoint.

RMSequence Mediator:

<RMSequence (correlation="xpath" [last-message="xpath"]) | single="true"
[version="1.0|1.1"]/>

Creating a sequence of messages to communicate via WS-Reliable Messaging.

Store Mediator:

<store messageStore="string" [sequence="sequence-ref"]>

62

4.4 Pattern Overview

The messages can be harvested in a message storage.

Throttle Mediator:

<throttle [onReject="string"] [onAccept="string"] id="string">
(<policy key="string"/> | <policy>..</policy>)
<onReject>..</onReject>?
<onAccept>..</onAccept>?

</throttle>

This can be used to control the load and limiting as well as the concurrency of messages. This
is defined in WS-Policy. Depending on the load the onReject or onAccept sequence will be
used.

Transaction Mediator:

<transaction
action="new|use-existing-or-new|fault-if-no-tx|commit|rollback|suspend|resume"/>

Transaction Mediator enables transaction procession of defined child mediators.

4.4 Pattern Overview

The functional components discussed in Section 4.3 can be mapped to Enterprise Service
Patterns (EIP) [HW02]. This proves that it is possible to integrate applications using EIP with
Apache Synapse. All the necessary patterns are present in the standard mediator library. These
patterns are the basic for the evaluation of the Apache Synapse crawler. Also the generic data
model can be applied for the transformation because its complete with EIP. This correlation is
needed because the Apache Synapse documentation does not provide a complete mapping.
The Table 4.2 illustrates the EIP with the corresponding Apache Synapse concept.

63

4 Focus on Apache Synapse

Messaging Systems
Message Router Simple filter mediator with conditions.
Message Translator Transformation mediator can translate a

message to an arbitrary format.
Message Endpoint Provided by Apache Synapse as endpoint

with same semantics.
Message Routing
Content-Based Router Simple filter mediator with conditions.
Message Filter Filter mediators.
Dynamic Router Not supported. But the concept can be im-

plemented using an extension mediators.
For instance, the class mediator can imple-
ment state-full routing.

Recipient List A recipient list endpoint can be used to send
a single message to a list of recipients

Splitter The iterator mediator with the clone media-
tor (cf. example usage in 4.6.2)

Aggregator Aggregator mediator
Resequencer Not supported. But the concept can be im-

plemented using an extension mediators.
Composed Message splitter mediator followed by router media-

tor that connects a gateway. The gateway
have several elements as children for the
sub-messages. These elements all have the
aggregator as child.

Scatter-Gather Implemented in section 4.6.2 combination of
splitter and aggregator

System Management
Control Bus Simple filter mediator targeting sequence

with additional mediators
Detour Simple filter mediator targeting sequence

with additional mediators
Wire Tap Content based router with recipient list
Message History Log mediator
Message Store Store mediator
Smart Proxy mediator with id property for the request

and response message path

Table 4.2: Correlation of Synapse mediators and Enterprise Integration Patterns

64

4.5 User Stories

4.5 User Stories

WSO2 Enterprise Service Bus is built on the Apache Synapse project. It uses the exactly same
core architecture. The WSO2 ESB has enhanced features like a management console that
assists the configuration of mediator flows with a web interface. The ESB can be installed
on local servers, private clouds or in an Infrastructure as a Service cloud like Amazon EC2.
But WSO2 also provides a public cloud that allows on-premise out of the box functionality.
Like in Apache Synapse, the configuration is provided by XML files using the Synapse XML
schema definitions [WSO13].
There are several released business case studies that uses the WSO2 ESB product:
EBay considered a new internal system or adopted a third-party technology. EBay employed
deep analysis of each ESB products on the market and finally has chosen WSO2 ESB with a
24 hour support contract. The product suits the requirements of the online marketplace in
both speed and reliability. After one year the bus handles over 1 billion calls per day. The
business functions are supported with the routing, orchestration and service chaining features
of WSO2. According to the case study the instances of the ESB remained fast, stable and
ensured high availability with very efficient resource utilization [WSO12a].
Another use case is the Alfo-Bank that is part of the international Alfa Group Consortium.
The bank used a single handled banking system that was integrated as a classical enterprise
system. The structure involved large amounts of point-to-point connections between systems.
The new core banking with WSO2 has to handle the hard-to-change legacy applications that
were tightly coupled. These problems were handled by the WSO2 Enterprise Service Bus
with effective collaboration, management and mediation of Web services with external legacy
applications [WSO12b].

4.6 Evaluation Scenarios

The Apache Synapse packed includes a large catalog of sample configurations. They demon-
strate several features of the ESB. The general deployment and installation of the samples is
described in Appendix A.
Despite of this large amount of examples, this Section only focuses on the enterprise integra-
tion pattern listed in the section 4.4. These patterns are needed to build the business example
of a coffee shop (cf. Section 3.6.2) with Apache Synapse.
Those examples are provided in the Apache Synapse source package. They represent devel-
opers best practice in the development and usage of the patterns [Thee].

65

4 Focus on Apache Synapse

4.6.1 Content Based Routing Example

Listing 4.4 Example: Content based routing with Apache Synapse
<definitions xmlns="http://ws.apache.org/ns/synapse">

<sequence name="main">
<filter source="get-property(’To’)" regex=".*/StockQuote.*">

<then>
<send>

<endpoint>
<address uri="http://../../SimpleStockQuoteService"/>

</endpoint>
</send>
<drop/>

</then>
</filter>
<send/>

</sequence>
</definitions>

Listing 4.4 represents a simple routing example. The filter mediator (cf. Section 4.3.6) can
access the message data and validate the content with a regular expression. In this case
Apache Synapse accepts all kinds of messages but only route messages from .*/StockQuote.* to
the endpoint.
For instance, the header http://localhost:8280/services/StockQuote matches with the regular
expression of the child mediator. Finally the sequence will be terminated with the drop
mediator [Thef].
The crawler detected four Entities in the following order:

1. Filter Mediator with the properties:
source = get-property(’To’) regex = .*/StockQuote.*

2. Then Mediator

3. Send Mediator

4. Endpoint
address = http://localhost:9000/services/SimpleStockQuoteService

5. Drop Mediator

66

http://localhost:9000/services/SimpleStockQuoteService

4.6 Evaluation Scenarios

4.6.2 Aggregation and Splitter Example

Listing 4.5 Example: Aggregation and Splitter with Apache Synapse
<definitions xmlns="http://ws.apache.org/ns/synapse">

<proxy name="SplitAggregateProxy">
<target>

<inSequence>
<iterate xmlns:m0="http://services.samples"

expression="//m0:getQuote/m0:request"
preservePayload="true" attachPath="//m0:getQuote">

<target>
<sequence>

<send>
<endpoint>

<address uri="http://../../SimpleStockQuoteService"/>
</endpoint>

</send>
</sequence>

</target>
</iterate>

</inSequence>
<outSequence>

<aggregate>
<onComplete xmlns:m0="http://services.samples"

expression="//m0:getQuoteResponse">
<send/>

</onComplete>
</aggregate>

</outSequence>
</target>

</proxy>
</definitions>

This scenario shows how aggregation and splitter can be used in the Synapse configuration.
The proxy SplitAggregateProxy is used to automatically send a number of request containing in
one message. Synapse iterates trough each request and sends them as separate requests to the
endpoint. After the processing the endpoint returns reply messages that will be aggregated.
After all, correlated messages have been collected the response will be sent to the calling
application.
The crawler inspected the example in Listing 4.5 and returned following different entities:

1. Proxy Endpoint with the properties:
name = SplitAggregateProxy

2. Target Gateway

(In path) 1. InSequence Mediatator

(In path) 2. Target Mediatator

67

4 Focus on Apache Synapse

(In path) 3. Sequence Mediatator

(In path) 4. Send Mediatator

(In path) 5. Endpoint
address = http://localhost:9000/services/SimpleStockQuoteService

(Out path) 1. OutSequence Mediatator

(Out path) 2. Aggregate Mediatator

(Out path) 3. onComplete Mediatator

(Out path) 4. Send Mediatator

This is a very interesting and complex case and made several issues during development.
There are different routing semantics depending on the direction of the message. The in path
is applied to the request message, instead the out path to the reply message. Target handle the
incoming and out-going messages. For compatibility reasons with the generic data model (cf.
Section 5) the crawler change the target mediator to a gateway.

68

http://localhost:9000/services/SimpleStockQuoteService

4.6 Evaluation Scenarios

4.6.3 Load Balance Example

Listing 4.6 Example: LoadBalancer with Apache Synapse
<definitions xmlns="http://ws.apache.org/ns/synapse">

<sequence name="main" onError="errorHandler">
<in>

<send>
<endpoint name="dynamicLB">

<dynamicLoadbalance failover="true"
algorithm="org.apache.algorithms.RoundRobin">

<membershipHandler
class="org.apache.synapse.Axis2LoadBalanceMembershipHandler">

<property name="applicationDomain"
value="apache.axis2.app.domain"/>

</membershipHandler>
</dynamicLoadbalance>

</endpoint>
</send>
<drop/>

</in>
<out>

<send/>
</out>

</sequence>
<sequence name="errorHandler">

<makefault response="true">
<code xmlns:tns="http://www.w3.org/2003/05/soap-envelope"

value="tns:Receiver"/>
<reason value="COULDN’T SEND THE MESSAGE TO THE SERVER."/>

</makefault>
<send/>

</sequence>
</definitions>

Load balancing is very useful in an ESB to enable high scalability of the system. It is also pos-
sible that the Apache Synapse mediator engine changes the amount of endpoints depending
of the dynamic loadbalancer control.
To execute the example in Listing 4.6 it is necessary to run 3 instances of the Axis2 server with
different HTTP and HTTPs ports. Please consult the Appendix A for the example deployment.
The client is implemented to send 100 request messages to the Synapse instance. They will
be distributed among the three endpoints. After that, the message will be sent back with the
information which server has processed the message.
The crawler should detect several entities in the following order:

1. Main sequence

(In path) 1. In Mediatator

(In path) 2. Send Mediatator

69

4 Focus on Apache Synapse

(In path) 3. Endpoint Mediatator

(In path) 4. Loadbalance Mediatator

(In path) 4.a Endpoint
address = http://localhost:9001/services/LBService1

(In path) 4.b Endpoint
adress = http://localhost:9002/services/LBService2

(In path) 4.c Endpoint
adress = http://localhost:9003/services/LBService3

(Out path) 1. Out Mediatator

(Out path) 2. Send Mediatator

2. errorHandler sequence

2.1 Makefault Mediator

4.7 Information Gathering Methods

Apache Synapse only deployment method is the import of XML files containing routing
configurations. All these files are stored in the repository/conf/synapse-config directory of the
Apache Synapse installation. This file contains all the functional components mentioned in
this Section.
It is important to mention that the WSO2 ESB (cf. Section 4.5) also allows to configure with a
web plugin. But this is only a creation tool for the Synapse configuration files.
The XML files represent a full snapshot of the Apache Synapse ESB. These configurations can
be crawled and analyzed for routing information.
Unfortunately the JMX support of Apache Synapse has not been completely implemented yet.
The management interface does not offer any static routing information. In contrast, WSO2
ESB implemented a more sophisticated JMX support, that hopefully will be contributed to the
next Apache Synapse release. In the current state Apache Synapse provides no alternatives to
get grip on the static routing data.
On the other hand, the dynamical information can be looked up in JMX. Synapse also provides
logging mechanism with the log element that is part of the core mediators (cf. section 4.3.5).
But this element is optional and the administrators would have to enhance their message
flows with the log mediator to enable the feature. But JMX provides statistical information
of the Apache Synapse ESB. The dataset only contains information from the running ESB
instance. A reset would wipe the data and the crawler could not include the data.
This approach is a trade-off between easy usage for the enterprise IT and the possible amount
of data being collected. But the ESB is considered as a long running application. And the log
files could be located on an arbitrary place that is not reachable for the crawler. Considering
this, the information from JMX are substantial, complete and easy to collect.

70

http://localhost:9001/services/LBService1
http://localhost:9002/services/LBService2
http://localhost:9003/services/LBService3

4.8 Crawler Implementation Details

4.8 Crawler Implementation Details

4.8.1 JAXB parsing

The Java Architecture for XML Binding (JAXB) is used to convert XML schema documents
into Java objects. The content of the objects represent content of the XML document that has
been unmarshaled according to the JAXB schema binding. Every object class is using code
annotations that describes the mapping between the java and XML. representation of the data.
This annotation can be done manually, but JAXB provides a binding compiler that can be
launched using the xjc tool. Eclipse also provides a xjc plugin that makes the Java model
generation very easy [Ora].
The Apache Synapse configuration XML schema can be downloaded from the project page2

and it is also packaged in the source files. The Apache Synapse schema is very complex and
there are several issues while trying to compile the Java model:

• Structure mapping
There are several problems with mapping xs:all elements in the Synapse configuration
combined with xs:any elements. These can be manually solved by relaxing the quantity
restrictions in these constructs or using xjc binds that solve the issue. These changes are
leading to equivalent parsing results.

• Java inner class naming problem
The endpoint.xsd contains valid structures that cannot be represented in Java code. The
failover and failure endpoint were modeled as group of endpoints with additional
attributes. That generated an endpoint class with two inner Java classes that all share
the same name. This can be valid but causes problems if the fully qualified class name
has not been used. To avoid these problems there is a workaround in the source code
that the two mentioned endpoints are exported in own XSD files. Then the xjc will
compile the schema using correct naming.

These changes result in a useful parsing binding from JAXB for the Synapse configuration.
But the generated objects can have issues with marshalling the Java objects to an XML repre-
sentation. This points to people who possibly want to modify the crawler application of this
thesis, to use it as a backend for an Apache Synapse configuration creation tool. It is possible,
but the documented modifications in the schema have to be validated for marshalling.

2http://synapse.apache.org/ns/2010/04/configuration/synapse_config.xsd

71

http://synapse.apache.org/ns/2010/04/configuration/synapse_config.xsd

4 Focus on Apache Synapse

Figure 4.3: Illustration of the create packages from JAXB xjc

Figure 4.3 shows the six created packages by xjc. JAXB uses naming conventions that
takes the XML namespaces of the schema files as package names. Only the first package
etg.crawler.plugins.esb.synapse.model.ws.ns.synapse contains Apache Synapse objects. The other
packages are imported schema that are used inside the Synapse data types. For example
the etg.crawler.plugins.esb.synapse.model.ns.wsdl package consists of the WSDL definitions like
portType, binding and service. Finally the Definition.class is used as XML root element for the
initialization of the JAXBContext. The context creates the unmarshaller that can parse and
create the Java objects containing the routing information.
The Definition.class also contains the routing information in the Proxy.class and NamedSe-
quence.class. The children of these classes are the mediators (cf. section 4.3.5) and endpoints.
Figure 4.4 shows the high level routing information objects.

4.8.2 Crawling Static Routing Information

The crawling algorithm is using the generic data model discussed in Chapter 5. Briefly
the model contains of several generic types with defined semantics. There are endpoints,
gateways, gateways with conditions and mediators. These Entities are designed to reflect any
ESB structure.
The crawler first starts to get all sequences (cf. Section 4.3.1) and proxys (cf. Section 4.3.2) of
the Apache Synapse configuration. Both of them we will now refer to as routes. Basically the
crawler first iterates through all routes.

72

4.8 Crawler Implementation Details

Listing 4.7 Starting the RouteBuilder with proxy and routes
for each Sequence ∈ Definition do

abstractRoute ← routeBuilder(sequence.getMediatorList())
}
for each proxy ∈ Definition do

abstractRoute ← routeBuilder(proxy.getMediatorList())
}

Listing 4.7 shows that for each element the routeBuilder(List<Mediator> mediators) function is
called. The JAXB binding provides the getMeditatorList() that returns all children mediators.
The RouteBuilder is iterating on the first level elements of the Apache Synapse configuration
file.

Figure 4.4: The definition of the message flow elements proxy and sequence

73

4 Focus on Apache Synapse

Listing 4.8 Route Builder algorithm building the AbstractRoute
function appendChild(parentElement)
for each element ∈ parentElement.getMediatorList() do {

if(isMediator(element) {
element ← assembleMediatorInformation(element)
parent.addChild(element)

}
if(isGateway(element) {

element ← assembleGatewayInformation(element)
parent.addChild(element)

}
if(isEndpoint(element) {

element ← assembleEndpointInformation(element)
parentElement.addChild(element)

}
}

The pseudo code in Listing 4.8 shows that the input can be of the type: (i) mediator, (ii)
gateway or (iii) endpoint. Condition elements are handled by the gateways.
Depending on the generic model semantics the functional components have been categorized.
They have a strong correlation to the gateway element. The returned element will be added
as child of the parent. This function is crawling the graph recursively while checking each
element of the Apache Synapse configuration for additional element children. For each
mediator pattern there is an implementation in the assembleMediatorInformation() function.
There are two examples illustrated in Listing 4.9.

Listing 4.9 Information Assembler
function assembleMediatorInformation(Object obj)

if (obj instanceof Log) {
Log element = (Log) obj;
addMediatorProperty("Level", element.getLevel().toString(), element);
return abstractMediator;

}
if (obj instanceof Send) {

Send element = (Send) obj;
if (element.getEndpoint() != null{

abstractMediator.setChild(assembleEndpInfo(element.getEndpoint()));
}
else {

addMediatorProperty("to:Endpoint:", "message ’To’ header",
iator);

}
return abstractMediator;

}
}

Generally every element is assigned to the role mediator, gateway or endpoint. The log
element is a simple mediator that cannot have any children. So the crawler returns the

74

4.9 Discussion of Crawling Results

element without calling another assemble function or calls the routeBuilder again. On the other
hand the send element has two possible structures:

• There exists no children only a </send> element
So there are no children to add at this element. After adding the properties the send
mediator will be returned.

• If there are endpoint child elements
The send element adds an endpoint child that is being assembled by assembleEnd-
pointInfo(element.getEndpoint()) function.

This individual structure and syntax can be compared to Section 4.3. The syntax outline
defines the possible children of the Apache Synapse configuration element. The possibility
of a mediator+ or endpoint? structure is reflected by an assemble function in the code. The
recursive crawler will stop if there are no child structures in the outline. This implementation
is easy to maintain. Because if Synapse change a configuration element then only the specific
logic has to be adapted. Also the logic atomically bound to the specific assembler step. If the
log mediator would enabled child elements in the future, then only the specific assemble logic
would change while the rest of the code will be untouched.

4.8.3 Crawling Routing Statistics

The dynamic routing statics cannot be found in the configuration files. It would only be
possible to estimate the routing in a limited way. For example a round robin load balancer
would obviously invoke the endpoints proportionally. But the number of client calls would
be unknown.
Because of this limitation it is necessary to gather real routing information from the Synapse
instance. The Synapse JMX (cf. Section 4.7) enables the crawling of endpoint statistics. This
covers the received messages and faults. The statistics are bound to the endpoint name that
has been defined in the Synapse configuration file.
Synapse enables JMX by default and it can be connected with an arbitrary JMX client. The
implementation uses the MBeanServerConnection provided by Java. Then the MBean of Synapse
can be queried with the object name org.apache.synapse:Type=Endpoint,*. This returns all JMX
interfaces of all used endpoints of the Synapse instance. Finally the attributes MessagesReceived
and FaultsReceiving contain the statistics. They will be added to the endpointStatistics object. It
contains the endpoint statistics correlated to the name. The assembleEndpInfo() function adds
these information to the properties of the endpoint object.

4.9 Discussion of Crawling Results

The crawler tries to create an exact snapshot of the structure of Synapse. Every functional
component can be crawled and mapped to the generic data model. But there are also some

75

4 Focus on Apache Synapse

limitations and adaptions to enable the transformation:

LoadBalance
Endpoint

original Synapse
configuration of an

loadbalance endpoint

Endpoint
A

Endpoint
A

Endpoint
A

LoadBalance
Endpoint

adapted structure to
enable the generic ESB

data model

Endpoint
A

Endpoint
A

Endpoint
A

Loadbalance
gateway

Figure 4.5: Transformation example of the Apache Synapse model to the generic ESB data
model

• Endpoint semantics
The generic data model defines that an endpoint can only have one child. Multiple
endpoints are only possible with the gateway element. Figure 4.5 illustrates the transfor-
mation to the generic data model. The loadbalancer is still an endpoint but is connected
to a gateway with the type loadbalancer. The gateway has no conditions so the semantics
are clear that the gateway does not contain any routing logic. The gateway dispatches
the message to the given endpoint.

• Remote registries
Apache Synapse allows to load configuration from a remote registry. These data location
is not accessible for the crawler. They will be ignored.

• Dynamic routes
Synapse can configure elements such as dynamic sequences and endpoints. They can be
changed with external scripts or XSDs in the registry. The Synapse crawler cannot cover
these dynamical changes and only takes a snapshot of the current routing structure
while accessing the Synapse configuration files.

• Custom mediators
The prototype of the Apache Synapse crawler cannot detect custom mediators. They can
be implemented using Java. It is needed to plugin the Java class into Apache Synapse.
The crawling would see the last predecessor of the custom mediator as a dead end.
Fortunately custom mediators can also be implemented using the extension mediators

76

4.9 Discussion of Crawling Results

(cf. Section 4.3.8). These mediators can be handled by the Synapse crawler and correctly
processed.

• Concatenation of routes
As already discussed in the interpretation of the Camel crawling results 3.9 the correla-
tion of routes will not correlated in the resulting generic data model structure. There
are the same issues like multiple interpretation alternatives. The crawler only changes
the structure if the transformation is inevitable. The crawler can also be considered lazy
because it will only rebuild the structure found in the configuration and never interlink
them.

77

CHAPTER 5

GENERIC MODEL FOR ENTERPRISE

SERVICE BUS ROUTING

The research gave an structural insight of the ESBs Apache Camel and Apache Synapse.
They both implement a routing with enterprise integration patterns compatible structures.
For developers of plugins for the ETG Framework it would be handy to adapt a model
that automatically can be imported to the Enterprise Topology Graph. The Synapse crawler
discussed in the Chapter 4 directly adapts the generic model. The crawler implementation
adapt the concept of the model entities and transform the inner structure accordingly.

5.1 Usage and Requirements

The Generic Data Model for Enterprise Service Bus (GDMESB) should assist ETG Framework
developer implementing crawler plugins to complete enterprise topologies with routing
information. The GDMESB can be used:

• to assist developers to easily integrate their crawler API to the ETG Framework.

• to map ESB platform entities with generic semantics that can be compared between
different ESB products

• to provide an automatically transformation from the GDMESB to the ETG model.

The structure of the crawled data can be very different. The routing information are generally
represented by a concatenation of routing entities. Despite of the variably of the data the
GDMESB have to enable a conceptual schema in a generic way. That requires several GDMESB
characteristically requirements to the model:

R1 The model structure describes routing logic as a directed graph.

R2 The model structure allows free combination of entities if the entity itself provides the
possibility to do so.

79

5 Generic Model for Enterprise Service Bus Routing

R3 The model entities have defined orchestration purposes. Those cannot be combined in
ways that disagree with their semantics.

R4 Each model entity has unique semantics that distinguishes itself from every other one.

R5 Every model entity allows custom properties and notations. This includes the denotation
of the entity type.

These requirements ensure the compatibility with ESB routing information. It also ensures a
precise transformation to the ETG model.

5.2 Model Specification

5.2.1 Model Structure

The GDMESB is designed for describing ESB routes. Theses routes typically represent an
mediator flow in the Enterprise Service Bus. Typically they are structured as a directed graph.
Generally the GDMESB will adapt this model and also represents a message flow as a chain of
mediators. This enables flexible structure containing abstract entities. These model elements
can also be called abstract model elements. The graph structure is created with a child/parent
between those elements. Also the combination of the abstract model elements is limited to
provide correct usage of the model entities. The user can create a generic representation of a
message flow with route, mediator, gateway with condition, endpoint and proxy elements.

5.2.2 Entity Descriptions

Every entity of the GDMESB has a defined purpose and functionality.

• Route
An ESB can have several routes defined. A route defines chain of routing elements that
perform some processing steps. The mediator of the ESB uses the logic defined in the
route to create a message flow.
This is considered as the root element of all following GDMESB entities. But it can
also be used as a reference to another reusable route. A route has only one child that
describes the entry point to the route.

• Mediator
There are several processing steps designed typically as pipe and filters on a route. The
mediator represents a filter and the child connection pipes usually to another mediator
or an endpoint. This entity represents processing semantics on the message of the route.

• Gateway
A gateway is a dispatcher of messages in the Enterprise Service Bus. It is the only entity
that can have multiple children. It does not do any processing as it only doing the

80

5.2 Model Specification

routing. The gateway can implement the routing logic or the gateway can be upstream
connected by a mediator or endpoint.

• Routing Condition
A routing condition can be a child of the a gateway or mediator. It annotates a route with
a conditional expression. As an example a filter mediator could check messages based
on the content. If the content matches the condition it will sent to the next mediator.
Otherwise the message will be dropped. Then the filter mediator would have a gateway
with a if condition and an else condition.

• Endpoint
The backend service invoked by the ESB system is called an endpoint. It is doing
request processing from the outside client application. The service can be any executable
program or Web service.

• Proxy
The proxy is the exposed service of a route. Like Synapse the routes can only be
invoked by a proxy endpoint that routes the message to the internal backend endpoint.
There is only semantically difference here because ETG Framework users could want to
differentiate between those endpoints.

5.2.3 Entity Characteristics

The entities have restrictions and properties that have to be satisfied. Thus the restrictions can
be used to validate the correctness of a generic data model. The characteristics are flexible
as possible to ensure compatibility with several ESB model structures. For every entity type
Table 5.1 lists following characteristics:

Entity type Number
of child-
relations

ETG Type occurence
(max)

Possible predecessors

Route (1,1) ESBmodel_Route 1 unrestricted
Mediator (0,1) ESBmodel_Mediator N unrestricted
Gateway (1,n) ESBmodel_Gateway N endpoint or mediator
Routing
Condition

(1,1) ESBmodel_RouteCondition N gateway

Endpoint (0,1) ESBmodel_Endpoint N unrestricted
Proxy (0,1) ESBmodel_Proxy 1 route

Table 5.1: Characteristics of the generic model entities

81

5 Generic Model for Enterprise Service Bus Routing

• Number of child relations
The GDMESB entity relations are modeled with parent child relations. The number of
child relations depends on the semantic of the entity. For instance, only the gateway can
have multiple children.

• ETG type
This property is needed to address the entity in the ETG Framework.

• Occurence
There is a restriction how often an entity can be used in a route structure. This includes
the route and proxy that are only allowed once in the route.

• Possible predecessors
The semantics of the entities sometimes restrict their usage in the route relation. The
gateway is built for routing. The routing logic has to be modeled with an endpoint or
mediator. Hence the gateway can only be a child of an endpoint or mediator. The route
condition is a tool to model control structures. Only the gateway can have child routing
conditions. Finally the proxy can only be the second optional element in the structure.

The ETG Framework plugins have to ensure theses characteristics to use the transformation
to the builder. It also ensures the correct usage of the entities.

5.2.4 Best Practices

Enterprise Service Buses can utilize the enterprise integration patterns that support complex
integration of applications. It is a consistent vocabulary and a visual notation to describe
large-scale integration solutions. They represent the core language of EAI and enable a defini-
tion of ESB flows.
Many of the route elements of Apache Synapse and Apache Camel can also be mapped to the
pattern elements. The Table 5.2 shows the mapping between the EAI patterns and how they
can be assembled with the GDMESB. These can be considered as usage recommendation. Fur-
thermore the ETG Framework plugin developer will probably have to do various adaptions.
This is anticipated because the model is designed to be flexible. The prototype of the Apache
Synapse adapts these best practices.

82

5.2 Model Specification

Messaging Systems
Message Router one mediator with gateway as child
Message Translator one mediator
Message Endpoint one endpoint
Message Routing
Content-Based Router one mediator with gateway as child
Message Filter one mediator
Dynamic Router one mediator with gateway as child that has

several routing conditions
Recipient List one mediator with gateway as child
Splitter one mediator
Aggregator one mediator
Resequencer one mediator
Composed Message splitter mediator followed by router medi-

ator that connects a gateway. The gateway
has several elements as children for the sub-
messages. These elements all have the ag-
gregator as child.

Scatter-Gather content based router mediator with a gate-
way. Every child element of the gateway is
referring to the aggregator.

System Management
Control Bus separate route with the control bus logic
Detour Gateway with two children that reference

the default route and the detour route
Wire Tap route element with the reference to another

route
Message History one mediator
Message Store one mediator
Smart Proxy mediator with id property for the request

and response message path

Table 5.2: Mapping between Enterprise Integration Patterns and Generic Data Model elements

83

5 Generic Model for Enterprise Service Bus Routing

5.3 Interpretation and Design

5.3.1 Data Model

The Generic Data Model is implemented and accessable in the ETG Framework project. It
provides data classes that represent the entities discussed in this Chapter. The Frameworks
also implement a transformation to convert a GDMESB to an ETG. This enables easy integra-
tion of Enterprise Service Bus structure.
Every model entity extends the abstract ESBModelElement. As discussed every entity has
a type, an element and properties defined. They are already provided by this class. The
functions are derived from the ESBModelElement interface. It covers all the getter and setter
functions to common function signatures across every entity.

Figure 5.1: Base call of all generic data model entities

The class diagram in Figure 5.1 displays all objects of the generic data model. Every parent
object can only add a ESBModelElement to ensure type safety.

84

5.4 ETG Builder

5.4 ETG Builder

The ETGBuilder exports the structures of the GDMESB in the ETG graph. It performs a
worklist algorithm that iterates over a worklist of discovered route elements. Every processing
step of one element will be checked for children and then appended to the ETG model. The
route builder needs four input variables:

• WrappedETG
This entity represents the current state of the ETG graph.

• ICrawlerPlugin
The Plugin implementation that uses the ETGBuilder. The ETG Framework force to
indicate the responsible plugin for change operation on the graph.

• WrappedNode
The parent node that will be connected to the first route element.

• AbstractRoute
The GDMESB route object that is the first input for the algorithmn. Every entity will
depend on this with a is subset of relation (cf. Section 6).

return

First route input
Fetch first

children of the
input

for each worklist element

Check the
entity type

Add node to
ETG

Add edge
child belongs

to route

Add
properties to

the ETG
node.

worklist

Has children? NO

R
em

o
ve

el

em
en

t

Add Elements

Fetch first
children of the

input

Add Elements

Figure 5.2: Illustration of the processing steps of the ETG route builder.

After creation of the ETGBuilder object with the input data, the import can be started with the
build() method that returns the modified ETG graph. The simplified process of the method is
illustrated in Figure 5.2. The work contains the following processing steps:

1. Process the route element and add it to the ETG.

2. Initialize the worklist with the children of the route element.

85

5 Generic Model for Enterprise Service Bus Routing

3. Get one worklist item and start the processing loop:
Processing and transformation of an discovered child element

a) Check the entity type of the input. There is a custom implementation for each
entity of the add methods.

b) Add the route to the ETG

c) Add the edges to the parent route (depends-on relation) and the father child relation
to the ETG.

d) Export the properties in the create ETG node.

e) Remove element from the worklist.

f) Has the element children? If yes add them to the worklist. If not return.

4. Loop until the worklist is empty.

Finally the model has been transformed to the ETG model. The structure of the resulting ETG
model is part of the Chapter 6. The iterative worklist algorithm has some limitations. There
could be memory issues if the worklist was very large. This would need millions of entities in
one route. However one message flow does typically not contain a large set of entities, in fact
they rarely exceed hundred entities.

86

CHAPTER 6

ETG FRAMEWORK INTEGRATION

6.1 Enterprise Service Bus Discovery

Before invoking the Enterprise Service Bus crawler it is necessary to detect a possible ETG
instance in the enterprise IT topology. Typically ESB are exposing their functionality with
addressable endpoints. For instance in Apache Synapse they are called proxy endpoints.
Clients typically invoke them with HTTP request.

Public DNS: […]
InstanceID: [...]
InstanceSize: m1.small

VmApache

hosted on

SSHuser: ec2-user
Certificate: […]
Version: AMI 2013.03

OsApache

hosted on

URL : http://[…]:80

ApacheAxis2

Version: 2.1.0

Apache Synapse

depends on

Public DNS: […]
InstanceID: [...]
InstanceSize: m1.small

VmApache

hosted on

SSHuser: ec2-user
Certificate: […]
Version: AMI 2013.03

OsApache

hosted on

URL : http://[…]:80

Jetty

Version: 2.11.1

Apache Camel

depends on

Figure 6.1: Synapse and Camel application topology rendered without routes as Enterprise
Topology Graph. (following the Visual Notation for TOSCA) [BBLS12]

87

6 ETG Framework Integration

Like the Web Server Plugin the HTTP request usually contains a server header that can contain
more details of the application. This concept has already been tested and implemented by
Jakob Krein [Kre12]. The ESB can be added in the same iteration like the applications. Because
it typically depends on a server that is running the application. Basically an ESB product will
be discovered in the same step like PHP modules or web applications. Figure 6.1 shows an
example ETG and illustrates Apache Synapse and Apache Camel in a sample enterprise IT
structure.
Typically an ESB depends on a transportation application that invokes the routes. If the
ESB itself represents the Web server than they would be hosted on an operating System like
Windows or Linux. This is not the case with Apache Camel and Apache Synapse. They
directly depend on a Web server engine that appears as standalone from the outside.

Listing 6.1 HTTP Response header of an HTTP Request
[Status-Line] HTTP/1.1 200 OK
Content-Type: text/xml; charset=UTF-8
Date Tue, 24 Sep 2013 12:55:21 GMT
Server Synapse-HttpComponents-NIO
Transfer-Endcoding chunked
Connection Keep-Alive

The Listing 6.1 illustrates a response header of Apache Synapse. The Service is hosted on
an Axis2 server that directly invokes the Synapse instance. The Server field indicates a
running ESB instance. Based on the discussed fact that most ESB depend on their web server
component, they usually run in the same instance and can be addressed with the same URI as
proxy service.
The NetworkHelper of the ETG Framework can be used to analyze the content of the HTTP
messages. If a HTTP field hints on a running ESB the ESB plugin crawler will investigate the
URL.

6.2 ESB Structure Rendering in the ETG

Enabling Enterprise Topology Graphs to represent routing information the Framework has to
be enhanced with nodes and edges that suit the semantic of an ESB flow. The ETG types are
based on the generic data model for ESB routes. The nodes can be categorized as ESB product
and route element types. For supported ESBs like Apache Synapse and Apache Camel there
is a derived node type like ESB_Camel and ESB_Synapse.
The catalog of available route elements to model an ESB structure is the same as the entities of
the generic data model. The properties and requirements of Section 5.1 will also be applied
in the ETG model. The Apache Synapse plugin shows the successful usage of the model in
the core of the crawler API. On the other hand Apache Camel uses a custom CamelStructure
model that was also successful converted in the ETG model.
The route node types ESBmodel_Route, ESBmodel_Endpoint, ESBmodel_Proxy, ESBmodel_Mediator,

88

6.2 ESB Structure Rendering in the ETG

Public DNS: […]
InstanceID: [...]
InstanceSize: m1.small

VmApache

hosted on

SSHuser: ec2-user
Certificate: […]
Version: AMI 2013.03

OsApache

hosted on

URL : http://[…]:80

ApacheAxis2

Version: 2.1.0

Apache Synapse

depends on

Name : main

Route

hosted on

URI: http://[…]:42

Proxy

connects to

Type: Log

Mediator

Name: endpoint1
Address: http://
[…]:1337

Endpoint

connects to

connects to

depends on

Name : alternative

Route

hosted on

URI: http://[…]:42

Gateway

type: Filter
Address: http://
[…]:1337

Mediator

Type: If
Regex: */foo/*

RouteCondition

Type: Else

RouteCondition

Name: endpoint1
Address: http://[…]:201
RecivedMessages: 18

Endpoint

Name: endpoint1
Address: http://[…]:10
RecivedMessages: 93

Endpoint

connects toconnects to

connects to connects to

connects to

depends on depends on

depends on

depends on

depends onconnects to

Figure 6.2: Example of an complete Apache Synapse topology with two routes illustrated as
ETG

ESBmodel_Gateway and ESBmodel_RoutingCondtion can be used to complete ETGs with routing
information. Figure 6.2 illustrates a complete example of two Apache Synapse routes.
The usage of the edges: depends-on, connected-to are also illustrated in the picture. Every route

element node is connected to the route node. This enables to determine which route element
belongs to which route. Eventually this could be interesting for query purposes.
However to ensure correct edge connection of the nodes the plugin developer should use the
ETGBuilder. Otherwise the following relation rules should be applied:

• Every route element node needs to have a parent route node. The reflexive depended
on relationship on the route node itself should not be applied.

• Only the route node depends on the ESB node.

• Every node can be connect to one or zero nodes. No reflexive relationships are allowed.

• Only the gateway node has multiple children with a connect-to relation.

89

6 ETG Framework Integration

6.3 Apache Camel Plugin

The Plugin for Apache Camel is based on the JMX driven crawler plugin. The only needed
information to connect to the management interface is the IP address. But the discovery is
more complicated because Camel is not correlated with the response HTTP headers. The
Apache Synapse plugin can determine a Synapse instance based on these information. The
only supported Web server that can handle HTTP requests is provided by the Camel jetty-
component (cf. Section 3.5.3). Every discovered Jetty instance of the ETG Framework has to be
tested if there is an Apache Camel ESB hosted on the server. There is no alternative to this
try and error solution. Because Camel can run in an application server or as standalone Java
program on any operating system. It would be possible to check the running processes in the
operation system, for instance with the top command in Linux. The more viable way is to try
a Camel connection to every found Jetty URL.
There is a connection tester implemented in the CamelConnecter utility in the API. If the utility
fails to connect the plugin assumes that the Jetty instance is deployed without an Apache
Camel.
The Camel API returns a CamelStructure object which is not consistent with the in Section 5.1
mentioned requirements of the generic data model for the ETG graph. So there is a transfor-
mation needed. After that process the ETGBuilder applies the camel routing information to
the ETG.

6.4 Apache Synapse Plugin

The Apache Synapse plugin uses the Synapse Crawler API discussed in section 4.8. The
crawler needs access to the configuration files of Apache Synapse. Their location is defined
and can be accessed in the path [SYNAPSE_HOME]/repository/conf.
The Server must provide an SSH access to the file system of the Synapse instance. The ETG
Framework enables to run scripts on the operation system. The SSHHelper provides an
execution for bash scripts. For the discovery of the Synapse configuration files the “fgrep -rl
–include=*.xml "definitions xmlns=ḧttp://ws.apache.org/ns/synapse" *” command. This is a fast and
very flexible way to get the configuration files with matching configuration definitions.
The command line utility grep is mandatory on Linux systems. The program searches files
that match a regular expression defined by the user. The plugin prototype assumes that a
Windows server also uses grep.
Finally paths containing sample files will be filtered out of the result string. The string now
contains the locations of the Apache Synapse configuration files. If the files are accessible they
can be passed to the JAXB XML unmarshaller(cf. Section 4.8.1). It invokes the RouteBuilder for
every route and proxy found in the XML.
The Synapse plugin uses the Synapse crawler API to get the statistical result. As mentioned in
4.8.2 the API uses the generic data model for describing ESB routes (cf. Chapter 5). So the
route information can be imported using the RouteBuilder transformation functionality.
The dynamic routing information will be gathered with the SynapseStatistics tool in the API
package. It uses the JMX Interface of Synapse to gather the data. The management support is

90

6.5 Evaluation

reachable by default with the connection string service:jmx:rmi:///jndi/rmi://:/synapse for Apache
Synapse. The detailed implementation has been discussed in the Section 4.8.3.

6.5 Evaluation

Both plugins were evaluated in several steps. Firstly the crawling API was tested, secondly
the model transformation was evaluated and then finally the plugin itself.
Firstly the examples of Apache Camel were analyzed. Because of the variety of implemen-
tation of the examples they would be hard to deploy on a test system without needing a lot
of customization. To avoid this the complete business coffee shop example (cf. Section 3.6.2)
has been chosen. First the crawling entities of the JMX output have been analyzed and then
compared with the Apache Camel structure. The prototype can crawl all patterns mentioned
in Section 3.3. Even unknown patterns will be correctly appended to the ETG with the JMX
output as property. So the Camel Crawler is capable to fetch any Apache Camel structure.
Both examples produced correct results in the ETG Framework.
Secondly the Apache Synapse Crawler API was evaluated against every mediator and proxy
example contained in the Synapse source. Overall, there are 18 examples that have been
successfully tested. Based on the fact that the configuration of Apache Synapse is formalized
in machine readable XML they could be tested without deploying a Synapse instance. The
information gathering method of parsing configuration files also ensure correctness among
different deployment scenarios. The examples mentioned in Section 4.6 were tested in a
running Synapse instance using the ETG Framework.
The evaluation of the ETGBuilder ensures correctness of the transformation and representation
of the routing information in the ETG. The builder was tested with random generated test
input and indirectly tested with the examples of both ESBs covered in this thesis.

91

CHAPTER 7

SUMMARY AND OUTLOOK

In recent years, new technologies have been developed to face the challenges of todays busi-
nesses. Enterprise IT is trying to improve and re-engineer their internal IT structure using
state of the art hardware and software solutions. Enterprise Application Integration supports
the integration of application build on different kind of platforms. The Enterprise Service Bus
is a central part of todays modern SOA. Before this transformation can begin, insight to the
structure and components is crucial. Even after reorganization of the enterprise IT further
iterations of optimization are needed to reduce costs, enhance flexibility and improve the
quality of service of the whole business. Hence, continuously documentation of the complete
enterprise IT including state of the art technologies are important for the analysis and opti-
mization. The ETG Framework provides automated discovery and maintenance of Enterprise
Topology Graphs. Each Framework plugin is specialized on different components and all their
dependencies. This thesis enhances the discovery framework with the fundamentals, concepts
and implementation for the extraction of ESB routing information to complete enterprise
topologies.
First, the fundamentals have been researched based on the ESB products Apache Camel and
Apache Synapse. Both ESBs conform with the ESB characteristics defined by D. Chappell,
while following different conceptual approaches and architectures. Apache Synapse directly
implements the Enterprise Integration Patterns using a Java and an XML description lan-
guage. Apache Camel is basically only a mediation engine that has to be extended with Web
service technologies to provide full ESB functionally. Because of the simplistic architecture
Apache Camel is the routing engine of several ESB products like Apache ServiceMix and Fuse
ESB Enterprise. Therefore, the research of this thesis can also be adopted on these products.
After all Apache Synapse provides a huge catalog of fine-grained routing entities enabling
enterprise integration. It is a complete lightweight Enterprise Service Bus also available as
commercial derivative called WSO2 ESB. The thesis presents different concepts tailored for
both of the products. They are implemented as reusable application utilities and represent the
prove of concept for these approaches. All in all, two information gathering concepts have
been tested and successfully applied. The Apache Camel plugin is using the sophisticated
JMX management interface which supplies raw routing data requiring large processing efforts.
On the other hand, the Apache Synapse plugin is using a mix of parsing XML configuration
files with JMX as statistical routing information source leading to complex parsing logic. All

93

7 Summary and Outlook

in all, Java JMX technology provides a distributed and modular solution providing real time
static and statistical information that fits perfectly for our purpose.
During the implementation the possible benefits of an generic data model for Enterprise Ser-
vice Buses became obvious. The elaborated data model in this thesis can be used to describe
ESB routing information using flexible message flow elements. Future ESB plugin developers
will benefit from the provided automated transformation to the ETG model.
The evaluation has been done with suitable test scenarios that reflect workflows and ESB
configurations with Web service endpoints. The examples have been choose and modified to
cover the core functionality and provide effective testing of the concepts and prototypes of
this thesis.
Future work could evaluate the transformation to the ESB generic data model based on
different ESB vendor models. This is needed to evaluate the flexibility of the data model
for any ESB structure. Also ESB developers could provide a native ESBGDM export in their
application. The created plugin prototypes and concepts should also be tested in real world
scenarios. The concepts of this thesis could also be adapted to integrate more ESB products as
ETG Framework plugin.

94

APPENDIX A

SYNAPSE DEPLOYMENT AND

INSTALLATION GUIDE

This chapter explains how to run a Synapse ESB. It is a compact summary of the official quick
start guide1 on the Apache Synapse Project page. The guide assumes the use of a Windows
system.

A.1 Deploying Apache Synapse

A.1.1 Pre-requisites

The following software should be installed on the host system:

• Java JDK
Download: http://www.oracle.com/technetwork/java/javase/downloads/
index.html

• Apache Ant
Download: http://ant.apache.org

• Apache Synapse Release Binary Distribution 2.1.0
Download: http://synapse.apache.org/download/2.1/download.cgi

After that extract Synapse to a directory of your choice that we now will refer as
SYNAPSE_HOME

1http://synapse.apache.org/userguide/quick_start.html

95

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org
http://synapse.apache.org/download/2.1/download.cgi
http://synapse.apache.org/userguide/quick_start.html

A Synapse Deployment and Installation Guide

A.2 Step by Step Guidance

1. Running Axis2 Server

SYNAPSE_HOME/samples/axis2Server/axis2server.bat

You can check http://localhost:9000 if the server is up!

2. Deploy configuration

SYNAPSE_HOME/bin/synapse.bat -sample [EXAMPLE NUMBER]

3. Executing the sample client
This configuration does vary. Check the example catalog or the section 4.6.

But if there is no loadbalancer the following ant script will work:
\{SYNAPSE_HOME\}/samples/axis2Client/ant stockquote

-Daddurl=http://localhost:9000/services/SimpleStockQuoteService
-Dtrpurl=http://localhost:8280 -Dmode=quote -Dsymbol=IBM

A.3 LoadBalancer Example

The loadbalancer example2 needs special configuration. The ESB needs 3 instances of the
sample Axis2 server:

./axis2server.sh -http 9001 -https 9005 -name MyServer1

./axis2server.sh -http 9002 -https 9006 -name MyServer2

./axis2server.sh -http 9003 -https 9007 -name MyServer3

The Example number is 52.

The client can be invoked with:

ant loadbalancefailover -Di=100

2http://synapse.apache.org/Synapse_Samples.html#Sample52

96

http://localhost:9000
http://synapse.apache.org/Synapse_Samples.html#Sample52

Bibliography

[BBKL13] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. Automated Discovery and Main-
tenance of Enterprise Topology Graphs. In Proceedings of the 6th IEEE International
Conference on Service Oriented Computing & Applications (SOCA 2013), pp. 0–9. IEEE
Computer Society Conference Publishing Services, 2013. (Cited on pages 11, 12,
18, 21 and 22)

[BBLS12] T. Binz, G. Breiter, F. Leymann, T. Spatzier. Portable Cloud Services Using TOSCA.
IEEE Internet Computing, 16(03), 2012. doi:10.1109/MIC.2012.43. (Cited on pages 18
and 87)

[BFL+12] T. Binz, C. Fehling, F. Leymann, A. Nowak, D. Schumm. Formalizing the Cloud
through Enterprise Topology Graphs. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pp. 742–749. 2012. doi:10.1109/CLOUD.2012.143.
(Cited on pages 12 and 18)

[BLNS12] T. Binz, F. Leymann, A. Nowak, D. Schumm. Improving the Manageability
of Enterprise Topologies Through Segmentation, Graph Transformation, and
Analysis Strategies. In Enterprise Distributed Object Computing Conference (EDOC),
2012 IEEE 16th International, pp. 61–70. 2012. doi:10.1109/EDOC.2012.17. (Cited
on page 18)

[Cha09] D. A. Chappell. Enterprise service bus. O’Reilly media, 2009. (Cited on pages 17, 24
and 51)

[Erd09] H. Erdogmus. Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE
Software, 26(2):4–6, 2009. doi:10.1109/ms.2009.31. URL http://dx.doi.org/
10.1109/ms.2009.31. (Cited on page 15)

[ES08] C. Emmersberger, F. Springer. Event Driven Business Process Management taking
the Example of Deutsche Post AG - An evaluation of the Approach of Oracle and the
SOPERA Open Source SOA Framework. Ph.D. thesis, Fachhochschule Regensburg,
Regensburg, 2008. URL http://epub.uni-regensburg.de/28590/. (Cited
on page 11)

97

http://dx.doi.org/10.1109/ms.2009.31
http://dx.doi.org/10.1109/ms.2009.31
http://epub.uni-regensburg.de/28590/

Bibliography

[Fre] P. Fremantle. Paul Fremantle’s Blog - Synapse and WSO2 ESB myths. http://
pzf.fremantle.org/2012/09/synapse-and-wso2-esb-myths.html.
(Cited on page 53)

[HW02] G. Hohpe, B. Woolf. Enterprise Integration Patterns. In 9th Conference on Pattern
Language of Programs. 2002. (Cited on pages 19, 28, 29, 30, 31 and 63)

[IA10] C. Ibsen, J. Anstey. Camel in action. Manning Publications Co., 2010. (Cited on
pages 20 and 23)

[Jet12] Jetty. Jetty The Definitive Reference. http://www.eclipse.org/jetty/
documentation, 2012. (Cited on page 35)

[Kre12] J. Krein. Framework for Application Topology Discovery to enable Migration of Business
Processes to the Cloud. Master’s thesis, Universität Stuttgart, 2012. (Cited on
page 88)

[MG09] P. Mell, T. Grance. The NIST definition of cloud computing. National Institute of
Standards and Technology (NIST), 2009. (Cited on page 15)

[MLB+11] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, A. Ghalsasi. Cloud computing
- The business perspective. Decis. Support Syst., 51(1):176–189, 2011. (Cited on
page 16)

[Ora] Oracle Corporation. Java Architecture for XML Binding (JAXB). http://www.
oracle.com/technetwork/articles/javase/index-140168.html.
(Cited on page 71)

[ORA11] ORACLE Corporation. Java Management Extensions. ORACLE Corporation, java
se 6 edition, 2011. (Cited on page 22)

[Ort07] S. Ortiz. Getting on Board the Enterprise Service Bus. Computer, 40(4):15–17, 2007.
doi:10.1109/MC.2007.127. (Cited on page 11)

[PTDL07] M. Papazoglou, P. Traverso, S. Dustdar, F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges. Computer, 40(11):38–45, 2007. doi:
10.1109/MC.2007.400. (Cited on page 11)

[RCL09] B. P. Rimal, E. Choi, I. Lumb. A Taxonomy and Survey of Cloud Computing
Systems. In Proceedings of the 2009 Fifth International Joint Conference on INC, IMS
and IDC, NCM ’09, pp. 44–51. IEEE Computer Society, Washington, DC, USA, 2009.
doi:10.1109/NCM.2009.218. URL http://dx.doi.org/10.1109/NCM.2009.
218. (Cited on page 16)

[Red] Red Hat Inc. Fuse ESB Enterprise Data Sheet. http://fusesource.com/
collateral/172. (Cited on page 34)

[Red12] Red Hat Inc. Hermes Case Study - Hermes Uses FuseSource for UKs Largest
Retail Network. http://fusesource.com/collateral/104/, 2012. (Cited
on pages 11 and 34)

98

http://pzf.fremantle.org/2012/09/synapse-and-wso2-esb-myths.html
http://pzf.fremantle.org/2012/09/synapse-and-wso2-esb-myths.html
http://www.eclipse.org/jetty/documentation
http://www.eclipse.org/jetty/documentation
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://dx.doi.org/10.1109/NCM.2009.218
http://dx.doi.org/10.1109/NCM.2009.218
http://fusesource.com/collateral/172
http://fusesource.com/collateral/172
http://fusesource.com/collateral/104/

Bibliography

[Roe12] P. Roehrig. New Market Pressures Will Drive Next-Generation IT Services Out-
sourcing. Forrester Research, Inc. (2009), 2012. (Cited on page 11)

[Sea02] C. Seaman. The information gathering strategies of software maintainers. In
Software Maintenance, 2002. Proceedings. International Conference on, pp. 141–149.
2002. doi:10.1109/ICSM.2002.1167761. (Cited on page 21)

[SL09] T. Scheibler, F. Leymann. From Modelling to Execution of Enterprise Integration
Scenarios: The GENIUS Tool. In K. David, K. Geihs, editors, KiVS, Informatik
Aktuell, pp. 241–252. Springer, 2009. URL http://dblp.uni-trier.de/db/
conf/kivs/kivs2009.html#ScheiblerL09. (Cited on page 21)

[Spr13] SpringSource. Spring Framework Reference Documentation, 2013. (Cited on page 36)

[SV96] M. Shreedhar, G. Varghese. Efficient fair queuing using deficit round-robin. Net-
working, IEEE/ACM Transactions on, 4(3):375–385, 1996. doi:10.1109/90.502236.
(Cited on page 38)

[TAW03] L. Titchkosky, M. Arlitt, C. Williamson. A performance comparison of dynamic
Web technologies. SIGMETRICS Perform. Eval. Rev., 31(3):2–11, 2003. doi:10.
1145/974036.974037. URL http://doi.acm.org/10.1145/974036.974037.
(Cited on page 36)

[Thea] The Apache Software Foundation. ActiveMQ. http://activemq.apache.
org/. (Cited on page 34)

[Theb] The Apache Software Foundation. Apache CFX. http://cxf.apache.org/.
Accessed: 2013-09-07. (Cited on page 34)

[Thec] The Apache Software Foundation. Apache ODE. http://ode.apache.org/.
(Cited on page 34)

[Thed] The Apache Software Foundation. Apache Synapse. http://synapse.apache.
org/. (Cited on pages 20, 53 and 55)

[Thee] The Apache Software Foundation. Apache Synapse Documentation. http://
synapse.apache.org/docs_index.html. (Cited on pages 20, 51, 54 and 65)

[Thef] The Apache Software Foundation. Apache Synapse Samples Catalog. http:
//synapse.apache.org/userguide/samples.html. (Cited on page 66)

[Theg] The Apache Software Foundation. Camel Direct. http://camel.apache.org/
direct.html. (Cited on page 34)

[Theh] The Apache Software Foundation. Major Retail Pharmacy Chain - Builds
Warehouse Management System with Fuse ESB. http://fusesource.com/
collateral/17/. (Cited on page 35)

[Thei] The Apache Software Foundation. ServiceMix. http://servicemix.apache.
org/. (Cited on page 33)

99

http://dblp.uni-trier.de/db/conf/kivs/kivs2009.html#ScheiblerL09
http://dblp.uni-trier.de/db/conf/kivs/kivs2009.html#ScheiblerL09
http://doi.acm.org/10.1145/974036.974037
http://activemq.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/
http://ode.apache.org/
http://synapse.apache.org/
http://synapse.apache.org/
http://synapse.apache.org/docs_index.html
http://synapse.apache.org/docs_index.html
http://synapse.apache.org/userguide/samples.html
http://synapse.apache.org/userguide/samples.html
http://camel.apache.org/direct.html
http://camel.apache.org/direct.html
http://fusesource.com/collateral/17/
http://fusesource.com/collateral/17/
http://servicemix.apache.org/
http://servicemix.apache.org/

Bibliography

[The13] The Apache Software Foundation. Camel Manual. Apache Software Foundation,
version 2.11.0 edition, 2013. (Cited on pages 20, 23, 24, 27, 32, 33, 35 and 44)

[Top11] Topology and Orchestration Specification for Cloud Applications (TOSCA). OA-
SIS specification. https://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=tosca, 2011. (Cited on page 18)

[VZ09] J. Voas, J. Zhang. Cloud Computing: New Wine or Just a New Bottle? IT
Professional, 11(2):15–17, 2009. doi:\url{http://doi.ieeecomputersociety.org/10.
1109/MITP.2009.23}. (Cited on page 15)

[WCB01] M. Welsh, D. Culler, E. Brewer. SEDA: an architecture for well-conditioned,
scalable internet services. SIGOPS Oper. Syst. Rev., 35(5):230–243, 2001. doi:10.
1145/502059.502057. URL http://doi.acm.org/10.1145/502059.502057.
(Cited on page 36)

[WSO12a] WSO2 Inc. eBay uses 100% open source WSO2 ESB to process more than 1 billion
transactions per day. http://wso2.com/download/wso2-ebay-case-study.pdf,
2012. (Cited on page 65)

[WSO12b] WSO2 Inc. ESO2 Middleware ensures Alfa-Bank a promising future in SOA. http:
//wso2.com/download/wso2-alfa-bank-case-study.pdf, 2012. (Cited
on page 65)

[WSO13] WSO2 Inc. Enterprise Service Bus Documentation. WSO2 Inc., version 4.7.0 edition,
2005-2013. (Cited on pages 57 and 65)

All links were last followed on October 14, 2013.

100

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://doi.acm.org/10.1145/502059.502057
http://wso2.com/download/wso2-alfa-bank-case-study.pdf
http://wso2.com/download/wso2-alfa-bank-case-study.pdf

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Andre Grund)

	1 Introduction
	1.1 Motivating Example
	1.2 Problem Statement
	1.3 Outline

	2 Fundamentals and State of the Art
	2.1 Cloud Computing
	2.2 Enterprise Service Bus
	2.3 Enterprise Topology Graphs
	2.4 ETG Framework
	2.5 Apache Camel
	2.6 Apache Synapse
	2.7 Information Gathering Strategies

	3 Focus on Apache Camel
	3.1 Classification
	3.2 Architecture and Concept
	3.3 Pattern Overview and Structure
	3.3.1 Splitter
	3.3.2 Recipient List
	3.3.3 Pipes and Filters
	3.3.4 Aggregator
	3.3.5 Message Router
	3.3.6 Dynamic Router

	3.4 User Stories
	3.4.1 Apache ServiceMix
	3.4.2 Fuse ESB Enterprise

	3.5 Camel Technologies
	3.5.1 Apache CFX
	3.5.2 Direct Component
	3.5.3 Jetty Component
	3.5.4 SEDA Component
	3.5.5 Spring Framework

	3.6 Evaluation Scenarios
	3.6.1 Load Balancer
	3.6.2 Business Example - The Coffee Shop

	3.7 Applied Gathering Methods
	3.8 Crawler Implementation Details
	3.8.1 Crawler Data Model
	3.8.2 JMX Object Helper
	3.8.3 Camel Structure Builder
	3.8.4 Camel JMX Connection Client

	3.9 Discussion of Crawling Results

	4 Focus on Apache Synapse
	4.1 Classification
	4.2 Architecture and Concept
	4.3 Functional Components
	4.3.1 Sequence
	4.3.2 Proxy
	4.3.3 Endpoint
	4.3.4 Mediator
	4.3.5 Core Mediators
	4.3.6 Filter Mediators
	4.3.7 Transformation Mediators
	4.3.8 Extension Mediators
	4.3.9 Advanced Mediators

	4.4 Pattern Overview
	4.5 User Stories
	4.6 Evaluation Scenarios
	4.6.1 Content Based Routing Example
	4.6.2 Aggregation and Splitter Example
	4.6.3 Load Balance Example

	4.7 Information Gathering Methods
	4.8 Crawler Implementation Details
	4.8.1 JAXB parsing
	4.8.2 Crawling Static Routing Information
	4.8.3 Crawling Routing Statistics

	4.9 Discussion of Crawling Results

	5 Generic Model for Enterprise Service Bus Routing
	5.1 Usage and Requirements
	5.2 Model Specification
	5.2.1 Model Structure
	5.2.2 Entity Descriptions
	5.2.3 Entity Characteristics
	5.2.4 Best Practices

	5.3 Interpretation and Design
	5.3.1 Data Model

	5.4 ETG Builder

	6 ETG Framework Integration
	6.1 Enterprise Service Bus Discovery
	6.2 ESB Structure Rendering in the ETG
	6.3 Apache Camel Plugin
	6.4 Apache Synapse Plugin
	6.5 Evaluation

	7 Summary and Outlook
	A Synapse Deployment and Installation Guide
	A.1 Deploying Apache Synapse
	A.1.1 Pre-requisites

	A.2 Step by Step Guidance
	A.3 LoadBalancer Example

	Bibliography

