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Abstract

Sophisticated natural language processing (NLP) applications are entering

everyday life in the form of translation services, electronic personal assis-

tants or open-domain question answering systems. The more voice-operated

applications like these become commonplace, the more expectations of users

are raised to communicate with these services in unrestricted natural lan-

guage, just as in a normal conversation.

One obstacle that hinders computers to understand unrestricted natural

language is that of collocations, combinations of multiple words that have

idiosyncratic properties, for example, red tape, kick the bucket or there’s no

use crying over spilled milk. Automatic processing of collocations is nontriv-

ial because these properties cannot be predicted from the properties of the

individual words.

This thesis addresses multi-word units (MWUs), collocations that appear

in the form of complex noun phrases. Complex noun phrases are important

for NLP because they denote real-world entities and concepts and are often

used for specialized vocabulary such as scientific or legal terms.

Virtually every NLP system uses tokenization, the partitioning of textual

input into meaningful units, or tokens, as part of preprocessing. Tradition-

ally, tokenization does not deal with MWUs which leads to early errors and

error propagation in subsequent NLP tasks, resulting in poorer quality of

NLP applications.

The central idea presented in this thesis is the proposition of multi-word

tokenization (MWT), MWU-aware tokenization as a preprocessing step for

NLP systems. The goal of this thesis is to drive research towards NLP

applications that understand unrestricted natural language.

Our main contributions cover two aspects of MWT. First, we conducted

fundamental research into asymmetric association, the phenomenon that lex-

ical association from one component of an MWU to another can be stronger

in one direction than in the other. This property has not been investigated

deeply in the literature. We position asymmetric association in the broader
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context of different types of word association and collected human syntag-

matic associations using a novel experiment setup. We measured asymmetric

association in human syntagmatic production and showed that it is a phe-

nomenon that is indicative of MWUs. Furthermore, we created corpus-based

asymmetric association measures and showed that asymmetry in word com-

binations can be predicted automatically with high accuracy using these

measures.

Second, we present an implementation of MWT where we cast MWU

recognition as a classification problem. We built an MWU classifier whose

features address properties of MWUs. In particular, we targeted semantic

non-compositionality, a phenomenon of unpredictable meaning shifts that

occurs in many MWUs. In order to detect meaning shifts, we used features

of contextual similarity based on distributional semantics. We found that

context features significantly improve MWU classification accuracy but that

there are unreliable aspects in the workings of such features. Additionally,

we integrated MWT into an information retrieval system and showed that

incorporating MWU information improves retrieval performance.
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Zusammenfassung

Hoch entwickelte Anwendungen der maschinellen Sprachverarbeitung (NLP,

von engl. natural language processing) erhalten Einzug in das tägliche Leben

in Form automatischer Übersetzungs-, allgemeiner Frage-Antwort-Systeme

sowie elektronischer persönlicher Assistenten. Mit der Etablierung sprachges-

teuerter Anwendungen steigen die Erwartungen der Benutzer, diese Anwen-

dungen mit unbeschränkter natürlicher Sprache zu bedienen, sich also ganz

normal mit ihnen zu unterhalten.

Ein Hindernis, das es Computern erschwert, uneingeschränkte natürliche

Sprache zu verstehen, sind Kollokationen, Kombinationen mehrerer Wörter

mit besonderen Eigenschaften, wie zum Beispiel toller Hecht, den Löffel

abgeben oder wo gehobelt wird, da fallen Späne. Die Automatische Verar-

beitung von Kollokationen ist ein nicht-triviales Problem, weil deren beson-

dere Eigenschaften nicht aus den Eigenschaften ihrer Bestandteile vorherge-

sagt werden können.

Die vorliegende Arbeit beschäftigt sich mit Mehrworteinheiten (MWUs,

von engl. multi-word unit), Kollokationen, die als komplexe Nominalphrasen

auftreten. Komplexe Nominalphrasen sind für NLP von besonderer Bedeu-

tung, da sie Objekte und Konzepte der realen Welt bezeichnen und häufig

in Fachbegriffen auftreten, so zum Beispiel in wissenschaftlichen oder juris-

tischen Begriffen.

Beinahe jedes NLP-System beruht auf dem Vorverarbeitungsschritt der

Tokenisierung, der Unterteilung textueller Daten in bedeutungstragende Ein-

heiten, sogenannter Tokens. Für gewöhnlich beinhaltet Tokenisierung keine

Behandlung von Mehrworteinheiten, was zu frühen Fehlern, Fehlerfortpflan-

zung und schlechterer Qualität in NLP-Anwendungen führt.

In der vorliegenden Arbeit schlagen wir Mehrwort-Tokenisierung (MWT,

engl. multi-word tokenization) vor, Tokenisierung, die Mehrworteinheiten er-

kennt. Ziel unserer Arbeit ist, Forschung voranzutreiben, die es Anwendun-

gen ermöglicht, uneingeschränkte natürliche Sprache verstehen. Die Haupt-

beiträge decken zwei Bereiche ab, die für MWT relevant sind.
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Erstens präsentieren wir Grundlagenforschung zu asymmetrischer As-

soziation, dem Phänomen, das lexikalische Assoziation zwischen den Be-

standteilen von MWUs unterschiedlich stark ausgeprägt sein kann. Diese

Eigenschaft wurde bisher in der Literatur noch nicht tiefer gehend behan-

delt. Zum einen verorten wir asymmetrische Assoziation in einem breiteren

Kontext verschiedener Typen von Wortassoziationen, zum anderen haben

wir menschliche syntagmatische Assoziationen in einem dafür neu entwick-

elten Experiment gemessen. Wir zeigen, dass asymmetrische Assoziation ein

Indikator dafür ist, dass eine Phrase eine MWUs ist. Außerdem haben wir

korpus-basierte Assoziationsmaße entwickelt und gezeigt, dass Asymmetrie

in Wortpaaren automatisch und mit hoher Genauigkeit vorhergesagt werde

kann.

Zweitens präsentieren wir eine MWT-Implementierung, in der MWU-

Erkennung als Klassifikationsproblem definiert wird. Dazu haben wir einen

Klassifikator entwickelt, dessen Features auf MWU-Eigenschaften zugeschnit-

ten sind. Dabei zielen wir insbesondere auf Nicht-Kompositionalität ab, das

Phänomen unvorhersehbarer Bedeutungsverschiebungen, das in vielen MWUs

auftritt. Zur Erkennung von Bedeutungsverschiebungen benutzen wir Fea-

tures kontextueller Ähnlichkeit, die auf distributioneller Semantik aufbauen.

Wir zeigen, dass diese Features MWU-Klassifikation entscheidend verbessern,

Aspekte ihrer Funktionsweise jedoch unzuverlässig sind. Darüber hinaus haben

wir MWT in ein Information-Retrieval-System integriert und gezeigt, dass

das Einbeziehen von MWU-Informationen die Leistung des Systems verbessert.
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Chapter 1

Introduction

Tokenization, the process of dividing up text into meaningful units, or tokens,

is a fundamental preprocessing step in almost all applications of natural lan-

guage processing (NLP). The standard tokenization approach is single-word

tokenization where input is split into words using white space characters as

delimiters. This approach introduces errors at an early stage into the NLP

pipeline because it ignores multi-word units. Multi-word units are colloca-

tions, habitual word combinations with idiosyncratic properties. Because of

these properties, multi-word units require special treatment that goes beyond

straightforward processing of individual words.

In this thesis, we propose multi-word tokenization for natural language

processing to address the problem of single-word tokenization and multi-

word units. We present (i) a supervised classification method to identify

multi-word units based on their idiosyncratic properties and (ii) fundamental

research into asymmetric association, a new property of multi-word units.

This introduction is organized as follows: we first describe collocations

and their idiosyncratic properties. We then introduce statistical associa-

tion measures which play a central role in collocation research. We define

multi-word units and introduce the property of asymmetric association and

asymmetric association measures. In the context of NLP applications, we

discuss the benefits of multi-word tokenization over standard single-word to-

kenization. We conclude the introduction by summarizing our contributions.
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1.1 Collocations and Idiosyncratic Properties

Achieving full command of a language goes beyond knowing its morphology,

syntax and the semantics of its individual words. Speakers who are limited

to this knowledge cannot understand everything that is said and written

in the language, nor can they use the language to its full potential. This

is because part of the expressivity of a language rests upon certain habitual

word combinations. These combinations have additional function or meaning

that often cannot, or can only partly, be derived from their components.

The are many different kinds of habitual word combinations. Virtu-

ally every grammatical category and every part of speech can be involved:

noun phrases (hot dog, red tape, credit crunch), verb-object constructions

and phrasal verbs (kick the bucket, give up), adverbial constructions (by and

large, to and fro), prepositional phrases (out of the frying pan into the fire)

and complete sentences (There’s no use crying over spilled milk).

These habitual combinations have been given different names in the lit-

erature: collocations, idioms, multi-word expressions or multi-word units:

• Choueka (1988) defines collocations as “sequences of words whose un-

ambiguous meaning cannot be derived from that of their components,

and which therefore require specific entries in the dictionary.”

• Manning and Schütze (1999) give a similar definition: “a collocation is

a word combination whose semantic and/or syntactic properties cannot

be fully predicted from those of its components, and which therefore

has to be listed in a lexicon.”

• Sag et al. (2002) define multi-word expressions as “idiosyncratic inter-

pretations that cross word boundaries (or spaces).”

There are no clear boundaries between the definitions; the terminology

is used interchangeably in the literature. Throughout this thesis, we use the

term collocation as the top-level term to refer to habitual word combinations.

We distinguish this from another term, multi-word unit, below.
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Collocations are pervasive in language. For example, Jackendoff estimates

that “[...] their number is about of the same magnitude as [...] single words of

the vocabulary.” (Jackendoff, 1997, p.156). All collocations have in common

that they comprise multiple words and that they exhibit idiosyncratic proper-

ties with regards to morphology, syntax or semantics. Manning and Schütze

(1999) define the following, widely accepted properties of collocations:

non-compositionality: Collocations carry meaning that cannot be inferred

from the meaning of their components, e.g. kick the bucket means to

die and not to physically kick a bucket.

non-modifiability: Collocations are restricted in terms of morphological or

syntactical modification, e.g. changing kick the bucket to kick a bucket

or kick the small bucket does not preserve the idiomatic status.

non-substitutability: Collocations are restricted in terms of replacing com-

ponents with semantically similar words, e.g. pail is semantically close

to bucket but kick the pail is not semantically close to kick the bucket.

Native speakers share the knowledge about collocations and children pick

up this knowledge during language acquisition. Humans learn the meaning

of new collocations either through context or through feedback from other

speakers. For native speakers, learning new collocations is a life-long task.

For foreign language learners, mastering collocations is an important step in

increasing their proficiency in that foreign language.

If we equipped computers with the knowledge of a language’s morphology

and syntax, and the semantics of its individual words, collocations would still

be missing and natural communication with computers would not be possi-

ble. In the long run, sophisticated NLP applications, for example personal

assistants in mobile computers, need proper treatment of collocations to en-

able natural human-computer interaction. This thesis deals with improving

automatic treatment of collocations to help NLP applications move closer to

human-computer interaction using natural language.
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1.1.1 An Alternative Definition of Collocations

In this thesis, we adopted Manning and Schütze’s framework for describing

the idiosyncratic properties of collocations because it captures the phenom-

ena relevant for multi-word tokenization in a straightforward way. Sag et al.

(2002) propose an alternative approach to collocations. Although their work

focuses on deep syntactical analysis of verb constructions, they offer a dif-

ferent perspective on the basic concepts that we are concerned with in this

thesis. Below, we briefly introduce their approach and discuss differences to,

and commonalities with, Manning and Schütze view.

Sag et al. focus on what they call multi-word expressions1 (MWEs) which

they define as “idiosyncratic interpretations that cross word boundaries (or

spaces)” (Sag et al., 2002, p. 2). They identify MWEs as one of two major

obstacles to successful NLP (the other being ambiguity). They distinguish

two main classes of MWEs, lexicalized phrases and institutionalized phrases.

Lexicalized phrases are phrases that are syntactically or semantically idiosyn-

cratic (hot dog, kick the bucket, get in line). They represent the bulk of the

phenomena that are discussed in the paper and they are further divided into

a number of hierarchical subclasses. Institutionalized phrases are defined as

semantically and syntactically compositional but they are idiosyncratic from

a statistical point of view, i.e. they are so frequent and conventionally used,

that they exhibit increased lexical association (see Section 1.2). Examples for

institutionalized phrases are traffic light and telephone booth. Semantically,

telephone closet is as plausible as telephone booth, but Sag et al. argue that

it is not used because telephone booth has been institutionalized.

Sag et al. (2002) approach MWEs based on the difficulties they pose for

deep linguistic analysis with standard NLP approaches. For most of the

problems described we can make a connection to Manning and Schütze’s

characterization of collocations.

Sag et al. (2002) emphasize problems with MWEs from two different

perspectives, (i) a “words-with-spaces” approach that simply tries to list

1Their use of the term MWE differs from ours; we exclusively use it for verb con-
structions. For the remainder of this discussion we use their MWE interpretation unless
otherwise noted.
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MWEs in the lexicon and (ii) “general, compositional methods of linguistic

analysis”, that corresponds to a classic NLP pipeline (see Figure 1.1). The

problems they report are:

overgeneration problem: A general, compositional generation system has

no way of preventing generalization from correct MWEs like telephone

box or telephone booth to non-MWEs like telephone cabinet or telephone

closet. This problem can be linked to non-substitutability because the

overgeneration step replaces booth and box with semantically similar

words and the results are not MWEs.

idiomaticity problem: The same approach cannot predict the meaning of

an MWE if it is unrelated to the meanings of the MWE’s parts. This

problem is the counterpart of non-compositionality.

lexical proliferation problem: This problem addresses the inadequacy of

listing MWEs in the dictionary. Some productive MWE families ex-

emplified by light verbs (take a walk/hike/trip/flight/etc.), cause loss

of generality when listed individually.

flexibility problem: This problem pertains to the syntactic flexibility of

verb constructions that, in general, cannot be handled by the words-

with-spaces approach (e.g. look up the tower vs. look the tower up).

For the problems of lexical proliferation and flexibility there are no di-

rect analogies in Manning and Schütze’s (1999) three-property classification.

Lexical proliferation, the fact that exhaustive lists are not a general solution,

is a general problem with collocations. The flexibility problem is a narrow

problem that applies mainly to phrasal verbs. We did not find an explicit

analog to non-modifiability in Sag et al.’s work.

Sag et al. (2002) reserve the term collocation for all constructions that

fall under their MWE definition and “any statistically significant cooccur-

rence” (Sag et al., 2002, p. 8), e.g. the frequent co-occurrence of sell and

house. Here, the high frequency is simply due to real-world facts rather than

linguistic factors. Such constructions are not classified as multi-word units

or collocations in our terminology.
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1.2 Association Measures

Collocations are complex linguistic phenomena that are difficult to capture

automatically. When building NLP systems, the most common approach to

collocations involves counting events in corpora and then calculating statis-

tics based on these counts to indicate that a particular combination is a

collocation.

Given a corpus, the problem is to distinguish between random co-occurrence

and actual statistical association. Raw frequency counts are often insufficient

for this task. High frequency is not per se a reliable indicator that a com-

bination is indeed a collocation. For example, the combination last year is

very frequent in news corpora but exhibits none of the idiosyncratic proper-

ties typical for collocations (see Section 2.1.4). If the components themselves

are frequent enough, the high frequency of the combination might just be

a coincidence. This is why corpus counts have to be further interpreted in

some statistically meaningful way. The most widely used technique for this

purpose is the use of association measures. Association measures quantify

the lexical association between words, i.e. the statistical association between

the event of one word occurring together with another word.

In simple terms, association measures are functions that assign to each

word pair an association score that represents the pair’s amount of lexical

association. The calculation of the score is based on the pair’s distribution

in the corpus.

Research on collocations is tightly interwoven with statistical associa-

tion measures. However, association measures are not directly aimed at any

of the idiosyncratic properties of collocations. Collocations and association

measures are linked by the assumption that the idiosyncratic properties of

collocations are – at least to a certain extent – reflected in the collocation’s

co-occurrence patterns and that the degree of lexical association can serve as

a universal indicator for the “interestingness” of a word combination. The

idea behind this is the following: collocations are habitual word combinations;

they appear with certain regularity in natural language. This regularity is

reflected in the co-occurrence patterns of words in the corpus.
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The background of lexical association measures is indispensable for dis-

cussing our contributions to asymmetric association and multi-word tokeniza-

tion. We give a thorough introduction to statistical association measures in

Section 2.1.

1.3 Multi-Word Units

This thesis focuses on multi-word units. We define a multi-word unit (MWU)

as a type of collocation, namely a noun phrase (NP) consisting of multiple

contiguous words that have to be processed as a whole. We reserve the term

multi-word expression (MWE) for collocations that involve verbs such as

verb-NP, verb-PP constructions and phrasal verbs.2 The bold noun phrases

in (1.1) and (1.2) are MWUs. In both sentences they act as a single unit.

(1.1) He ate a hot dog in three big bites.

(1.2) There are regulations, laws and red tape.

MWUs are worth examining because they make up a considerable part

of language. Nicholson and Baldwin (2008) found 345 MWUs in a 1000

sentence sample of the British National Corpus (BNC).3 Noun phrases are

used to refer to concepts and objects in the real world. In particular, MWUs

are used to encode domain-specific terminology. Tanaka and Matsuo (1999)

report that in a bilingual terminology dictionary of financial terminology of

105,000 entries, 30% of Japanese terms are noun compounds and 37% of

English terms are either noun compounds or adjective-noun combinations.

In this dissertation, we make two main contributions to research on

MWUs. The first contribution deals with a theoretical aspect. We inves-

tigate a property of MWUs that so far has received very little attention in

2The processing of MWEs is similar to that of MWUs but has its own unique challenges.
MWE processing is beyond the scope of this thesis.

3The number refers to noun compounds, MWUs consisting only of nouns. The fre-
quency of non-restricted MWUs including, for example, adjective-noun combinations
should be higher.
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the computational linguistics literature: the association between the compo-

nents of many MWUs is asymmetric. Our second major contribution focuses

on a practical problem, namely a new approach to the automatic detection of

MWUs in the context of tokenization. We describe these two contributions

in more detail in the next two sections.

1.4 Asymmetry in MWUs

As collocations, MWUs exhibit the three properties mentioned above. For ex-

ample, hot dog is non-compositional because it does not refer to a hot animal

but a sausage in a bun. Red tape, as in excessive bureaucracy, exhibits both

non-modifiability and non-substitutability. First, it has its special meaning

only when used in singular. Second, red cassette is not similar in meaning to

red tape even though cassette is similar in meaning to tape.

These three criteria are well-understood and there are many publications

addressing them in the literature.4 One of the goals of this thesis is to gain

a deeper understanding of the theoretical properties of MWUs. To this end,

we want to emphasize another idiosyncratic property that has not received

a lot of attention in the literature. This property is asymmetric association,

as defined below.

asymmetric association: In some MWUs, lexical association between com-

ponents is much stronger from one component to another than vice

versa.

An example of asymmetry in MWUs is the phrase wishful thinking. There

is a stronger association from wishful to thinking than there is from thinking

to wishful. The first word strongly suggests that the following word is thinking

while the effect is not as strong in the reverse direction. Thinking as the

second word of a combination leaves a range of plausible first components,

for example quick, good or clear.5

4See, for example, the on-going workshop series on multi-word expressions (http://
multiword.sourceforge.net/)

5The resulting combinations are not necessarily MWUs.
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Asymmetry in MWUs constitutes one out of four possible types of word

association. First, word associations can be distinguished by being either

paradigmatic or syntagmatic. Words are paradigmatically related if they can

be substituted for each other. In contrast, words are syntagmatically related

if they occur in sequence. Second, word associations can be either symmetric

or asymmetric. This distinction is orthogonal to the previous one. In NLP,

word associations and word similarity are commonly assumed to be sym-

metric relations. Experimental evidence suggests, however, that cognitively,

similarity can also be asymmetrical. Table 1.1 summarizes the four types

of word association that exist along the two axes paradigmatic-syntagmatic

(first and second row) and symmetric-asymmetric (first and second column).

The first cell contains good-bad, a word pair whose association is paradig-

matic and symmetric. The second cell represents paradigmatic associations

that are asymmetric, for example, the pair bird-canary. The third cell shows

an example of a symmetric syntagmatic word association, epileptic-seizure.

The subject of our research are asymmetric MWUs which are located in

the bottom right cell. MWUs – as well as all other types of collocations

– fall into the syntagmatic category. Because the syntagmatic level em-

phasizes sequentiality, there is an inherent directional aspect in asymmetric

MWUs. Consequently, syntagmatic asymmetry can be further distinguished

by the direction of stronger lexical association. If the first word predicts

the second, we have right-predictive MWUs. If the second predicts the first,

we speak of left-predictive MWUs. The above example, wishful thinking, is

right-predictive (RP); high fidelity is an example of a left-predictive (LP)

MWU.

There is little prior work on this aspect of MWUs and how to measure it.

We developed corpus-based measures that capture asymmetric association in

MWUs. The measures can distinguish right-predictive from left-predictive

MWUs. These asymmetric association measures extend classic association

measures. They are pairs of functions that assign to each word pair two

association scores: forward association (association from the first to the sec-

ond word) and backward association (association from the second to the first

word).
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paradigmatic + symmetric

good

bad

paradigmatic + asymmetric

bird

canary

syntagmatic + symmetric

epileptic seizure

syntagmatic + asymmetric

wishful thinking (RP), high fidelity (LP)

Table 1.1: Four types of word association. We corroborate this classification
with experimental evidence in Chapter 3.

Word association data sets investigated in the psycholinguistic literature

predominantly capture paradigmatic associations. For our investigation of

asymmetry in MWUs, we designed a novel experiment setup and captured

syntagmatic associations. We found asymmetry in human syntagmatic word

associations in the resulting data set. We showed that with asymmetric

association measures we can predict the asymmetry in those associations with

high accuracy, demonstrating the theoretical justification and the feasibility

of these new measures.

1.5 Single-Word and Multi-Word Tokeniza-

tion

As discussed above, our second contribution is a new method for the auto-

matic detection of MWUs. This is an important practical problem for NLP

because the first step in the processing pipeline of NLP systems is usually

tokenization, i.e. the detection of the basic units that will be used in subse-

quent stages of processing. Standard tokenization in NLP returns a stream

of single words. With an effective module for MWU recognition in place, this

standard tokenization procedure can be replaced by a more useful module

that recognizes single words as well as MWUs.
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Figure 1.1: Typical NLP pipeline with single-word tokenization (SWT)

1.5.1 Single-Word Tokenization

Tokenization is an integral part of virtually every NLP task. In intuitive

terms, tokenization is commonly understood as “splitting text into words.”

In this section, we describe how tokenization is typically handled in NLP and

what problems arise with respect to the processing of MWUs. Motivated by

the challenges we faced in two different research projects, we propose a new

way of tokenization that is geared towards MWUs. We discuss our approach

in the context of a typical NLP pipeline.

Figure 1.1 shows a typical NLP pipeline. The system is roughly di-

vided into four modules: non-linguistic preprocessing, linguistic preprocess-

ing, NLP tasks and NLP applications.

The first module deals with data acquisition.6 This includes collecting

data from different sources like web pages, databases, PDF documents or

scanned books (OCR7) and converting them into a format that can be pro-

cessed by standard NLP tools (e.g. UTF-8 or ASCII).

The second stage deals with linguistic preprocessing. Tokenization is the

first step of this stage. Commonly, some form of lemmatization or stemming

6In this thesis, we discuss an NLP pipeline based on textual data.
7OCR, or optical character recognition, is the conversion of images of text into charac-

ters.
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and part-of-speech (POS) tagging is performed. The de facto standard ap-

proach to tokenization in NLP is to split text into words using white space

characters as delimiters and isolate punctuation symbols when necessary.

This approach originates from the Penn Treebank project (Marcus et al.,

1993) and has remained essentially unchanged for the last two decades (Dri-

dan and Oepen, 2012). We refer to this tokenization approach as single-word

tokenization (SWT). Tokenization is arguably the first step in preprocessing

that is linguistically motivated because it identifies the basic units on which

all other processing is based.8

NLP tasks, the main part of the pipeline, are the third step. Here, NLP

algorithms are applied and combined to solve or assist in solving particular

problems, e.g. speech synthesis, sentiment analysis, co-reference resolution,

machine translation or information retrieval.

The final step consists of NLP applications. NLP applications integrate

the results of NLP tasks with other components, e.g. the user interface, and

make them accessible for end users. Typical NLP application inlcude search

engines, question answering systems or translation services.

1.5.2 Multi-Word Tokenization

In this section we motivate, define and discuss multi-word tokenization, and

introduce our approach to tokenization that is geared towards MWUs.

Motivation

From the perspective of automatic MWU processing, SWT is problematic.

MWUs comprise multiple words and SWT offers no mechanism to process

multiple words as the same unit. Mistakes made with SWT propagate to the

following stages and result in poorer quality in the final application.

8It could be argued that, for example, converting German text encoded in UTF-8 into
ASCII during the first stage and removing diacritics is a form of linguistic processing
because linguistic information can get lost (e.g. converting Äpfel (apples) to Apfel (ap-
ple) turns plural into singular). We consider this to be a technical issue as opposed to
linguistically-motivated transformation.

28



In the WordGraph project, we encountered this problem with SWT. One

of the goals of the project was to develop a graph-based word-similarity

measure for bilingual lexicon extraction (Laws et al., 2010). We created a

graph of nouns, connecting two noun vertices if they appeared in the same

coordination, e.g. cats and dogs. We used SWT to map surface text to noun

nodes.

The word cat often appears in coordinations with dog and the word burger

often appears with the MWU hot dog. With SWT-based mapping, dog and

hot dog were unified into the same node dog. The similarity measure found

the word semantically closest to cat to be burger. The reason for this lies in

the structure of the graph and the recursiveness of the similarity measure

which spreads similarity across the graph beyond first-order, i.e. direct,

neighbors. In this scenario, the node dog acts as a semantic bridge between

the cat and burger nodes resulting in these nodes becoming similar. With

SWT, the animal meaning of dog and the food meaning of hot dog are put

together in one node that ends up representing a mix of both meanings

(Figure 1.2a).

mixed meaning

dog

pizza

burger

cat

rabbit

(a) SWT: mixed meaning of dog, hot dog

food meaning

animal meaning

hot dog

pizza

burger

dog

cat

rabbit

(b) MWT: Separate nodes for dog, hot dog

Figure 1.2: Effect of different tokenization techniques on graph structure and
similarity spread

In the Scalable Visual Patent Analysis project, we worked on information

retrieval for patent data. One of the goals of the project was to develop ad-
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vanced visualization techniques that allow users to quickly get an overview

of patents, for example lawyers conducting prior art searches. Patents con-

tain a large number of domain-specific terminology, for example terms from

electrical engineering or chemistry. Domain-specific vocabulary is commonly

encoded in MWUs such as free radical or absolute pressure transducer. With

SWT, there is no structured way to extract domain-specific MWUs for visual

patent search.

The challenges regarding MWU processing we faced in the two projects

encouraged us to explore a structured approach to MWU-aware tokenization.

We developed multi-word tokenization which we define in the next section.

Definition

We define multi-word tokenization (MWT) as tokenization that automati-

cally recognizes MWUs. We propose MWT as an intermediate step between

basic linguistic preprocessing (which includes SWT) and higher-level NLP

applications. MWT requires SWT to identify the words that are the build-

ing blocks for MWUs.9

The approach to MWT we suggest here works as follows: given input

text, we collect MWU candidates, i.e. noun phrases from the input. MWUs

are then selected automatically from the candidates. The result of MWT is

tokenized text where MWUs are treated as single tokens. Figure 1.3 shows

an overview of MWT. We describe the different stages with the help of an

example.

preprocessed input: The input for MWT are single-word tokens coming

out of SWT. Other linguistic preprocessing steps, for example lemma-

tization and POS tagging, are not essential to MWT but information

from these steps can be incorporated into MWT for candidate and

feature extraction.

9The proposed approach focuses on the English language. Because of its orthography,
English compound nouns are often divided by spaces which makes the language susceptible
to errors caused by SWT.
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Figure 1.3: Stages of multi-word tokenization (MWT)

In the example, we have an input of nine tokens. The tokens represent

the input My hot dog was stolen by a small child

candidate extraction: MWU candidates are extracted from the tokens.

Candidates can be extracted with shallow linguistic filters, e.g. groups

of adjacent tokens or POS patterns that match noun phrases depending

on what information is available.

We extract two NPs as candidates, c1 = hot dog and c2 = small child.

MWU decision: We see MWT as a classification problem. The goal is

to translate the idiosyncratic properties of MWUs into features and

classify candidates into MWUs and non-MWUs based on feature values.

Features are based on the candidate’s distributional behavior across a

text corpus.

We consider two properties, pI and pII . Suppose pI represents common-

ness and pII non-compositionality. Candidate c1 has both properties

and c2 has only the former, i.e. hot dog and small child both are com-
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mon candidates; hot dog is non-compositional whereas small child is

not. Features that translate pI and pII are frequency of occurrence and

semantic similarity measures, respectively.

Candidates are then turned into feature vectors ~c1 and ~c2. Feature

vectors contain numerical representations of MWU properties, e.g. the

number of times hot dog appeared in the data or a quantification of the

degree of non-compositionality of hot dog.

A binary classification function f(~c)→ {true, false} takes a feature

vector as input and decides if the candidate is an MWU (true) or not

(false).

In our example, hot dog is classified as an MWU, while small child is

not.

output: This step integrates the classification results with the input token

stream. The output is tokenized text containing multi-word tokens. A

multi-word token is a token that contains multiple tokens from SWT.

The output provides the input to subsequent processing, i.e. NLP tasks.

The tokens t2 and t3 are now merged into a single multi-word token

(hot dog).

The features we use for MWU decision in this thesis are based on asso-

ciation measures as a general purpose tool to detect lexical association and

semantic similarity to address non-compositionality. Asymmetric associa-

tion measures offer another possible feature for candidate classification. The

phrase high fidelity, for example, exhibits relatively low lexical association

according to traditional association measures. In a feature, this information

would not help the classifier to identify it as an MWU. The phrase is, however,

asymmetric in the sense described above. Assume pIII represents asymmetry.

With asymmetric association measures, we can translate pIII into a feature

value, for example the ratio of forward and backward association.10
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Figure 1.4: Multi-word tokenization (MWT) integrated into NLP pipeline

Discussion

We argue that MWT helps to eliminate early errors committed by SWT.

Consider the graph similarity example Figure 1.2. With MWT, we can map

dog and hot dog to two separate nodes. This would eliminate the unintended

semantic bridge between cat and burger and separate the animal meaning of

dog from the food meaning of hot dog as shown in Figure 1.2b. In the case of

the patent search engine, MWT facilitates presenting to users the important

domain-specific terminology contained in a certain document and encoded in

MWUs.

The benefit of using MWT is that it results in MWU-aware input for all

following steps in the NLP pipeline. Figure 1.4 shows an NLP pipeline that

includes MWT. Running NLP tasks on data preprocessed with MWT will

result in NLP applications of higher quality for end users. We give additional

NLP tasks that we believe would benefit from MWT:

• In information retrieval, treating MWUs as single units can help return

documents more relevant to a query. For example, the query buy red

tape should not return documents about bureaucracy but about tape

of red color and the query reduce red tape should not return documents

10This feature is unimplemented.
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about tape of red color but about initiatives to eliminate bureaucracy.

• Machine translation would benefit from correct MWU tokenization be-

cause simple word-to-word translation fails when MWUs are involved

(Melamed, 1997; Callison-Burch et al., 2006), e.g. in German, the literal

translation of red tape is unrelated to bureaucracy.

• The knowledge that multiple words form a semantic unit can be a

valuable source of information for prosody generation in text-to-speech

synthesis, e.g. “...[i]n normal adjective noun patterns (e.g. large site)

the stress normally goes on the second word, but in cases such as web

site it goes on the first, as would be the case in single words such as

parasite.” (Taylor, 2009, pp. 62, 137).

• Lexical resources for sentiment analysis are usually based on unigrams

(Pang and Lee, 2008). This approach fails when a negative sentiment

item is part of an MWU which in turn has neutral polarity. For exam-

ple, if a movie review uses the MWU bad blood to describe the relation

between two characters, a sentiment analysis system that uses SWT

picks up the negative item bad.

• Green et al. (2011) have shown that merging MWUs into single tokens

improves performance for a variety of NLP tasks, e.g. syntactic parsing

and language generation.

Generally, MWT is of use for those NLP tasks that process information

represented as noun phrases, e.g. information extraction, semantic role label-

ing or coreference resolution. In addition, MWT increases the accuracy of

word space models, an important building block in NLP.

To a certain extent, MWT could be achieved with static MWU lists. If

we had an all-encompassing list of MWUs, we could simply look up each

candidate and mark it as an MWU if it is on the list. Kulkarni and Fin-

layson (2011) presented jMWE, a toolkit that marks known MWUs in text.

The toolkit relies solely on an external list of MWUs. Such a resource is
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expensive to create and maintain, even more so for specialized domains. An-

other shortcoming of MWU lists is currentness of data. The lists have to be

constantly expanded to keep up with new vocabulary.11

In contrast, the goal of MWT is to recognize MWUs dynamically by

exploiting MWU properties for classification. From a textual resource, we

can extract candidates and features whose values encode the candidate’s

behavior. If we work on current data, new vocabulary will naturally be

among the candidates. MWT classifies candidates automatically and does

not rely on human judges making every single MWU decision by hand, as is

the case with MWU lists. To our knowledge, there is currently no off-the-

shelf system devoted to the problem of automatic multi-word tokenization.

The ultimate goal of MWT is to fill this gap.

The decision whether a unit is an MWU or not is often hard to make, in

large part because it can be context-dependent. For example, black box is an

MWU in the context of aviation but not in the context of storage. Similarly,

red tape can refer to actual tape that has the color red. The approach to

MWT that we propose in this thesis makes one global MWU decision for each

candidate. The decision is independent of the context in which the MWU

appears. This means our approach will overgenerate (e.g. when black box is

used in the storage setting) or undergenerate, e.g. if it was trained to prefer

the compositional reading of red tape.

Consequently, when used in applications, the system will misclassify can-

didates even if carefully tuned to the domain in question. The same problem

holds for SWT, which is an approach that operates on the assumption that

all word combinations are compositional.12 In the long run, with MWT we

are striving for a solution that combines SWT with conservative, application-

dependent recognition of the MWUs that are missed by SWT.

11For example, the MWU web site is common today but does not appear in the BNC,
which was compiled in the 1990s.

12As we will describe in Chapter 2 and Chapter 4, our approach is distributional, i.e.
ultimately, the MWU decision is influenced by the choice of the training corpus. Each
distributional approach has the drawback that it learns from usage patterns of words and
phrases typical for the training data. The learned patterns can be appropriate for one
scenario but not for another.
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1.6 Thesis Contributions and Structure

In this thesis, we make two contributions to the field of MWU research.

First, we investigate a new theoretical property in MWUs, asymmetric as-

sociation. Second, we address a practical issue with MWUs by proposing

multi-word tokenization, a new approach to tokenization that automatically

detects MWUs.

Asymmetric association in MWUs We conducted a study that investi-

gates asymmetric association in both corpora and human production

and created novel asymmetric association measures. Our contribution

in this area is fundamental research with potential use for MWT. Our

investigation of asymmetry in MWUs covers three aspects:

(i) asymmetry in corpus data: We created corpus-based measures of

asymmetric lexical association. These asymmetric association mea-

sures quantify lexical association in word pairs in two directions un-

like classic association measures that quantify lexical association as a

whole. (ii) asymmetry in human production: We captured asymmetric,

syntagmatic association in human production in an experiment. We de-

signed a novel experiment setup because existing experiments and the

resulting data sets predominantly cover paradigmatic and symmetric

relations. (iii) We showed that the corpus-based measures can predict

asymmetry in human production with high accuracy.

Multi-word tokenization We propose MWT, an approach to the detec-

tion of multi-word units in tokenization for NLP. We highlighted the

problems that state-of-the-art tokenization faces with respect to MWUs.

We argue that MWT will benefit a wide range of NLP tasks and ap-

plications. We see MWT as a classification problem where features are

engineered to capture idiosyncratic MWU properties. In particular, we

present:

(i) an implementation of MWT, (ii) an intrinsic evaluation of its per-

formance and (iii) an extrinsic evaluation that incorporates MWU in-

formation into an information retrieval experiment. Our MWT imple-
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mentation includes different feature types that address different MWU

properties, e.g. non-compositionality. Furthermore, we propose a cas-

caded classification approach for the MWU decision step that handles

candidates of arbitrary length.

The remainder of this thesis is structured as follows. In Chapter 2, we give

the theoretical background necessary for the following chapters. We explain

the backgrounds of association measures, measures of semantic similarity

and supervised machine learning. Chapter 3 covers our study on asymmetric

association in MWUs. Chapter 4 presents our MWT implementation and its

two-fold evaluation. In Chapter 5, we summarize this thesis and present our

conclusions.
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Chapter 2

Theoretical Background

In this chapter, we introduce the theoretical background necessary for the

research on asymmetric association measures and MWT. The chapter is di-

vided into three sections. In Section 2.1, we explain statistical association

measures and introduce the ones used in this thesis. Association measures

are fundamental for the definition of asymmetric association measures and

they are the basis for the basic features for MWT. In MWT, we need features

to detect non-compositionality which requires some form of computational

meaning representation. In Section 2.2, we present an approach to mean-

ing representation based on distributional semantics. Finally, we provide

the background in supervised machine learning. Machine learning is cen-

tral to the MWU decision step as part of MWT. We present the necessary

background in Section 2.3.

2.1 Association Measures

In an influential study on collocation extraction, Choueka (1988) writes about

his search for a “measure of the degree with which the different words [in

a collocation] ’attract each other’.” His idea captures association measures

(AMs) in a nutshell. In this section, we introduce a range of such measures

and the theoretic considerations behind them. We have already sketched as-

sociation measures as functions that quantify lexical association by assigning
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association scores to word pairs; now we detail this process. We provide the

mathematical foundations of AMs and describe how frequency counts are

collected from corpora and stored in contingency tables, the basis for com-

putation of all measures. We introduce and discuss the concrete measures

used in this thesis and how AMs fit into NLP.

2.1.1 Lexical Association and Independence

Intuitively, speakers and researchers have long been aware of the fact that,

in natural language, words are not combined randomly into phrases and

sentences. Consider the following example. Based on the frequencies of the

word red an the word tape in the British National Corpus, the expected

number of occurrences of the phrase red tape throughout the corpus is two.

In reality, red tape occurs 129 times in this sample. This means that red

tape appears far more often than what we would expect under complete

randomness.

The concept of lexical association captures this notion that there is more

to the co-occurrence of words than pure chance. Informally, lexical associa-

tion can be thought of as the “glue” in word combinations. Formally, lexical

association can be defined with the aid of statistical independence. In prob-

ability theory, two events x and y are independent if P (x ∩ y) = P (x)P (y),

or if the probability of the two events occurring together is the product of

the probabilities of the individual events. In the example, x and y are the

occurrences of red and tape and the joint event x∩ y is the occurrence of the

phrase red tape. This means that the less independent the co-occurrence of

two words is the more lexical association there is between them. The basic

assumption of most corpus-based studies is that collocations exhibit a higher

degree of lexical association than random word combinations.

With the concept of independence, we can define association measures

more precisely. They are essentially formulas that, given co-occurrence data,

return an association score, a real number which is used as an indicator of

how much evidence there is against independence. The more evidence, the

higher the lexical association.
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All association measures have a common goal, namely, to quantify the

amount of lexical association between the two words in question. Although

there are different families of measures whose underlying theories come from

very different backgrounds, they all share one property: their score is com-

puted based on frequency counts. These counts are collected in contingency

tables which we describe in the next section.

2.1.2 Frequency Counts and Contingency Tables

We have seen that we can draw conclusions about the amount of lexical

association in a word pair by analyzing co-occurrence patterns in text sam-

ples. In this section, we are going to detail the process of obtaining frequency

counts from corpora and how association scores are computed from frequency

counts. Once the counts have been obtained they are stored in contingency

tables of observed and expected frequencies. Observed frequencies represent

the actual frequency counts in the sample data while expected frequencies

represent the counts we would expect under statistical independence. The

extraction of frequency counts consists of annotation of linguistic information

on the token-level, the specification of a co-occurrence relation and a filter

step.

During linguistic preprocessing, tokens are annotated with basic linguis-

tic information (see Figure 1.4 on page 33). During this stage, (single-word)

tokens are enriched or annotated with different layers of basic linguistic in-

formation. Typically, there at least two layers, lemmata and part-of-speech

information. Both are important sources of information for collecting fre-

quency counts.

During lemmatization each word is annotated with its lemma, or canon-

ical form, which is used to represent all realizations of the same lexeme (e.g.

does, did and done are lemmatized to do andmouse andmice are lemmatized

to mouse1). This step abstracts over surface forms, reducing the number of

1A similar normalization step is stemming where words are truncated and mapped to
the same root. The Porter stemmer (Porter, 1980), for example, normalizes weakness
and weakly to the same root weak. Stemming is the standard approach in information
retrieval. However, it ignores parts of speech which makes it less suitable for linguistically
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pairs for which frequencies will be counted.

Part-of-speech annotation adds to each token its part of speech, e.g. noun,

adjective or verb. For English, the most commonly used tag set is the Penn

Treebank tag set (Marcus et al., 1993) which we use in our experiments.

An important detail is that in the process, surface tokens are mapped to

types. For the rest of the computation, only types are considered. Typically,

lemmata serve as types.2

An important decision for the collection of frequency counts is the defi-

nition of a co-occurrence relation. The co-occurrence relation dictates which

kind of collocation ends up being counted. An appropriate relation for MWU

extraction is “noun modified by adjective or noun”. Part-of-speech filters are

an effective way of selecting co-occurrence relations for collocation extraction,

in particular for MWUs (Justeson and Katz, 1995; Daille, 1996). MWUs con-

sist of groups of adjacent tokens and are easily captured by straightforward

morpho-syntactic patterns.

The compilation of corpora includes non-linguistic preprocessing, i.e. the

acquisition and preparation of texts from different sources such as web pages.

These steps introduce errors and noise into the data, for example, left-over

markup code and other formatting errors. To reduce noise in the final data

set, heuristic filters such as frequency thresholds and word-shape filters (e.g.

only extract tokens that consist of letters) are commonly applied.

The remaining word pairs are the final data set and frequency counting

is performed on this set. The set represents a normalized and cleaned up

version of the underlying language sample in the corpus. Its elements are

tuples (u, v) where u and v are realizations of the random variables U and V

which represent the pair’s first and second component.

The frequency data are collected in contingency tables. In the tables, we

not only collect the frequency of the pair in question but also the frequency

of the individual components with other words. Altogether, we populate

the contingency table of observed frequencies with four counts, O11, O12,

motivated tasks. For collocation extraction and the majority of NLP task, lemmatization
is the preferred approach.

2Throughout this thesis, we use the term word to refer to surface tokens as well as
types. The distinction should be clear from the context.
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observed frequencies

O11 = |{(u, v) | U = u ∧ V = v}| O12 = |{(u, v) | U = u ∧ V 6= v}|
O21 = |{(u, v) | U 6= u ∧ V = v}| O22 = |{(u, v) | U 6= u ∧ V 6= v}|

marginal frequencies

R1 = |{(u, v) | U = u}| R2 = |{(u, v) | U 6= u}|
C1 = |{(u, v) | V = v}| C2 = |{(u, v) | V 6= v}|

Table 2.1: Computation of observed and marginal frequencies

O21 and O22. Marginal frequencies R1, R2, C1 and C2 are required for the

computation of expected frequencies. The quantities are counted as shown

in Table 2.1 and the final tables are shown in Table 2.2.

The input for the computation of association scores is data from the con-

tingency tables of observed and expected frequencies. The measures differ in

which information from the tables they incorporate and how this informa-

tion is put in relation. Note that in NLP, association measures are commonly

applied to combinations consisting of exactly two words.

V = v V 6= v

U = u O11 O12 = R1

U 6= u O21 O22 = R2

= C1 = C2 = N

(a) observed frequencies

V = v V 6= v

U = u E11 =
R1C1

N
E12 =

R1C2

N

U 6= u E21 =
R2C1

N
E22 =

R2C2

N

(b) expected frequencies

Table 2.2: Contingency tables
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2.1.3 Hypothesis Testing

An important question in statistics is if some observed data came about co-

incidentally or if they are the (expected) manifestation of the properties of

an underlying distribution. Hypothesis test are functions that take observed

data as input and tell us if the observations are compatible with a hypothe-

sis that we proposed about the underlying distribution. The following para-

graphs give an example of hypothesis testing and relate the procedure to

association measures. The example was adapted from Bücker (1999, p.208).

A company that makes light bulbs has changed its production process and

wants to know if the change resulted in an increase of the light bulbs’ average

lifetime. Translated into the language of hypothesis testing, the question is

if the mean µ of the random variable X that represents the lifetime of a light

bulb has increased. The company knows that their old production process

yielded light bulbs with an average lifetime of 1000 hours with a standard

deviation σ of 100 hours.

We begin with the formulation of the null hypothesis H0 and the alter-

native hypothesis H1:

H0: µ = 1000 (lifetime did not increase)

H1: µ > 1000 (lifetime did increase)

Next, they draw a random sample of n = 100 light bulbs from the new

production line and test the lifetime of these bulbs. The sample bulbs show

an average lifetime of x̄ = 1020 hours. We want to know if this sample was

drawn from a population with mean 1000 hours (H0) or with a greater mean

(H1). A suitable test for this scenario is the Gauß test. It is used to check if a

sample was drawn from a population with a certain mean when the standard

deviation is known. Its test statistic T is shown in Equation 2.1.

T =
√
n
x̄− µ0

σ
(2.1)

To summarize, the following information is available:

µ0 = 1000 σ = 100 x̄ = 1020 n = 100
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With Equation 2.1, we get

T = 10
1020− 1000

100
= 2

The question remains whether the observed data provide enough evi-

dence to reject H0 and assume that lifetime has increased. This question is

answered by checking if the value of T is greater than some critical value

c. This value can be looked up in statistical tables. The test statistic is

normally distributed which means that we can look up the critical value in a

standard normal distribution table. The particular critical value depends on

the parameter α which specifies the risk of falsely rejecting H0 even though

it is true. A typical value is α = .05, i.e. a 5% chance of falsely rejecting

H0. The value c.05 is 1.65 which is smaller than 2. The end result is that the

company can be 95% (1 − α) sure that their new process has increased the

average lifetime of their light bulbs.

Hypothesis testing has been applied to co-occurrence data for collocation

extraction (e.g. Giuliano, 1965). In the context of collocation extraction, the

null hypothesis is that a combination is not a collocation. In other words,

with association measures, we try to disprove the hypothesis that two words

occur together independently of each other, i.e. the two of them occurring

together is mere chance.

For finding collocations, we use hypothesis testing with these hypotheses:

H0: P (u ∩ v) = P (u)P (v) (u and v are independent)

H1: P (u ∩ v) 6= P (u)P (v) (u and v are not independent)

The idea is that for collocations there is enough evidence in the corpus

to reject H0.

More precisely, when we speak of lexical association, we have to dis-

tinguish positive and negative association. If a word pair exhibits positive

association, it occurs more often than chance; it exhibits negative associa-

tion, it occurs less often than chance. In NLP, we are traditionally interested

in discriminating between positive association or not – the latter could be no

association or negative association.
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Statistical tests are subdivided into different groups. Parametric tests

check a certain parameter of a population, goodness-of-fit tests check if a

certain distribution fits a set of observations and independence test check if

events are independent of each other. However, they are all united by the

concept of the null hypothesis against which empirical evidence is collected.

For association measures in NLP, we use hypothesis tests as a means of

quantifying evidence against the co-occurrence of certain word pairs being

random events. This is what we do when we use co-occurrence data to detect

high lexical association. Our primary concern is not the study of hypothesis

tests but their application to language data.

2.1.4 Association Measures Used in this Thesis

We use eight different association measures in this thesis. We give the theo-

retical background of the measures when necessary and provide the simplest

formula to compute the respective association score in terms of observed and

expected frequencies.

The first four measures, t-score, z-score, chi-square and log-likelihood

are based on hypothesis tests. They measure the amount of evidence there is

against the null hypothesis of independence. The remaining four measures are

the Dice coefficient, pointwise mutual information, symmetrical conditional

probability and raw frequency. These measures cannot be subsumed under a

common idea like measures based on hypothesis tests and their background

will be explained in the corresponding subsections.

By convention, we define high association scores to indicate high (pos-

itive) lexical association. Not all measures are defined in such a way by

default. We follow Evert’s (2004) definition of the measures in order to en-

sure this property.

t-score

Student’s t-test is used for the same purpose as the Gauß test in the example

above. It compares the observed and expected mean to determine if a sample

was drawn from a population with a certain mean. The difference is that
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for the t-test we use the sample standard deviation s instead that of the

population σ. It has the following test statistic, known as the t-score which

has a Student’s t-distribution:

t =
√
n
x̄− µ0

s

We have to extend the t-test for use with co-occurrence data. We think

of the corpus as a sequence of bigrams and an indicator variable that takes

the value 1 each time the bigram is (u, v) and 0 each time it is a different

bigram.

The occurrence probabilities of u and v are the maximum likelihood esti-

mates P (u) = C1

N
and P (v) = R1

N
, respectively. Now the sequence of bigrams

is a Bernoulli trial with success probability p = P (u)P (v). In a large enough

corpus p will be very small. This means that for the distribution µ = p and

s ≈ p.

Usually, the standard deviation is approximated by
√
O11 yielding the

following formula for the t-score association measure:

t-score =
O11 − E11√

O11

Essentially, the t-score specifies how far (positively or negatively) the

observed frequency deviates from the expected frequency. The deviation is

expressed in multiples of the sample variance.

z-score

The z-score measure is closely related to the t-score measure. The difference

lies in the way the sample variance is approximated. For z-scores, expected

frequencies are used as the scaling factor:

z-score =
O11 −E11√

E11

The z-score measure is used in Smadja’s (1993) Xtract system.
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chi-square

In mathematical statistics, Pearson’s χ2 test is the standard test for indepen-

dence of two random variables. It is a hypothesis test with the test statistic

X2 =
N((O11O22 − O12O21)

2)

R1R2C1C2

which is asymptotically χ2 distributed with one degree of freedom.

We use an equivalent form that is expressed in terms of observed and

expected frequencies:

chi-square =
∑

i,j

(Oij −Eij)
2

Eij

Church and Gale (1991) applied a slight variation of the χ2-test to the

problem of extracting translation pairs from parallel text. Their version,

called Φ2, is used for ranking and differs only in that the test statistic is

multiplied by N .

The X2 test statistic is known to give a bad approximation of the limit-

ing distribution when the contingency table contains small numbers. Conse-

quently, the test tends to overestimate of rare events (Manning and Schütze,

1999).

log-likelihood (G2)

Likelihood ratio tests belong to an entirely different family of hypothesis

tests. With a likelihood ratio test we try to find out which of two hypothesis

better explains the observed data or, to be more exact, how much more likely

one hypothesis is than the other. Applied to co-occurrence data, the observed

data are the contingency tables for a certain pair (u, v) and the hypotheses

refer to the underlying model that generated them.

The first hypothesis

H0 : P ((u, v)) = P ((u, v′)) = p; v′ 6= v

represents independence as the explanation of the observed data, i.e. the
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probability of u occurring is the same regardless whether the next word is v

or not.

The second hypothesis

H1 : P ((u, v)) = p1 6= p2 = P ((u, v′)); v′ 6= v

represents dependence as the explanation of the observed data, i.e. that the

probability of u occurring when it is followed by v is different from when it

is followed by a word other than v.

Formally, a hypothesis can be thought of as a subspace of the of space

of unknown parameters of the underlying statistical model. Here, p1 and p2

form the parameter space. Under the null hypothesis this space is restricted

to a one-element space where p = p1 = p2.

At the core of the test is the likelihood ratio

λ =
maxL(H0)

maxL(H1)

where the likelihood function L gives the likelihood of the observed data

under one of the hypotheses. We define L as follows:

L(k, n, p) = pk(1− p)n−k

with maximum likelihood estimates

p =
R1

N
, p1 =

O11

C1
, p2 =

O12

C2

for the parameters.

With this, we get

λ =
L(O11, C1, p) L(O12, C2, p)

L(O11, C1, p1) L(O12, C2, p2)

Finally, the actual likelihood ratio test is carried out using

−2 log λ

The likelihood ratio has the property that −2 log λ is asymptotically χ2

49



distributed and that convergence is approached very quickly.

Dunning (1993) proposed the log-likelihood measure as an alternative

to measures that assume co-occurrence data to be normally distributed. In

particular, he criticizes pointwise mutual information (Section 2.1.4), z-scores

and Pearson’s χ2 test for yielding inaccurate results for rare words. He pro-

poses a likelihood ratio test for the statistical analysis of text because these

tests do not make normality assumptions and should thus be more suitable

for both rare and common phenomenon. Dunning casts the counting of words

as Bernoulli trials with a binomial distribution3 and very low positive out-

come probability and argues that in these cases approximation with a normal

distribution is inaccurate. His claim is supported by the Zipfian nature of

language data – in their totality, rare words make up a large proportion

of language. For example, words with a frequency of 1 in 50,000 make up

20-30% of English newswire text. Additionally, content-bearing words and

technical vocabulary are often rare words (Dunning, 1993).

There is a form of the log-likelihood measure that is easy to express in

terms of observed and expected frequencies.

log-likelihood = 2
∑

i,j

Oij log
Oij

Eij

It is also referred to as the G2 statistic.

Dice coefficient

The Dice coefficient was introduced by Dice (1945). It can be thought of as a

similarity measures for sets. For two sets A and B, the coefficient is defined

as

2|A ∩B|
|A|+ |B|

For example, the similarity of the two documents A and B measured with

the Dice coefficient is the ratio of the amount of words that appear in both

3Hence the resemblance of the likelihood function L to the probability mass function
of the binomial distribution.
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documents (times two) to the total number of words in both documents.

For co-occurrence data, the Dice measure is defined as

Dice =
2O11

R1 + C1

In contrast to measuring the amount of evidence against independence

like the measures based on hypothesis tests, the Dice coefficient focuses on

the magnitude of association. It is therefore suited to identify pairs with a

very high degree of lexical association (Smadja et al., 1996).

Pointwise Mutual Information

The background for the association measure known as pointwise mutual in-

formation is the concept of mutual information (MI) from information theory

(Shannon, 1948). The idea is to measure for two random variables X and

Y how much information about Y is contained in X or in other words the

reduction in uncertainty about Y when knowing X . Shannon and Weaver

(1949) define mutual information, denoted I(X ; Y ), as

I(X ; Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

Mutual information incorporates a ratio of the true probability of the

joint event and the expected joint probability under independence. If the

variables are independent, I(X ; Y ) is 0, i.e. knowing one variable tells us

nothing about the other.

In NLP, pointwise mutual information (PMI), a derived concept, is com-

monly used. Fano (1961) proposed PMI, denoted I(x, y), as mutual infor-

mation between particular points x ∈ X and y ∈ Y :

I(x, y) =
p(x, y)

p(x)p(y)

This concept was adapted for language data by Church and Hanks (1990)

with words serving as points.4 They used maximum likelihood estimates for

4They called the measure association ratio. Nowadays, the term PMI is preferred over

51



the probabilities p(x) and p(y). In terms of observed and expected frequen-

cies, the computation translates to the following formula which is equivalent

to Fano’s:

PMI =
O11

E11

The PMI measure has a major shortcoming as Manning and Schütze

(1999) demonstrate. For pairs that almost exclusively occur together, mu-

tual information increases the rarer the pair becomes. This behavior overesti-

mates low-frequency events and ignores the intuition that frequent occurrence

should be a good indicator of high lexical association (see also e.g. Evert and

Krenn, 2001). The measure is, however, a good indicator for independence.

Symmetrical conditional probability

The conditional probability of an event A under the condition that B has

already occurred is defined as

P (A|B) =
P (A ∩B)

P (B)
, P (B) > 0

Statistical independence can be expressed in terms of conditional proba-

bility as follows:

P (A|B) = P (A)

Silva and Lopes (1999) proposed the symmetrical conditional probability

measure for the correlation between u and v. The measure is the “mirrored”

product of the conditional probability of u given v and vice versa.

P (u|v)P (v|u) = P ((u, v))2

P (u)P (v)

In terms of observed and expected frequencies this translates to

scp =
O11

2

R1C1

association ratio in NLP (e.g. Turney, 2001).
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Schone and Jurafsky (2001) selected this measure as one of the statistical

measures in their re-ranking experiment with multi-word units.

Frequency

The frequency measure is the most straightforward association measure. It

consists of only the observed frequency of the pair. The idea behind this

measure is quite simply that a pair that occurs often must have some of the

properties that make a collocation. The measure produces a large number

of false positives, e.g. highly frequent co-occurrences such as last year 5. De-

pending on the application, however, it is not as bad as its simplicity would

suggest (e.g. Krenn and Evert, 2001).

frequency = O11

Previous work has shown that co-occurrence frequency performs surpris-

ingly well in collocation and terminology extraction tasks (e.g. Daille, 1996;

Krenn and Evert, 2001; Wermter and Hahn, 2006).

2.1.5 Applications of Association Measures

Association measures are the classic approach to corpus-based collocation ex-

traction (Choueka, 1988; Church and Hanks, 1990; Smadja, 1993; Dunning,

1993). Association scores are used to rank pairs by association strength and

do further processing based on these lists. With co-occurrence data extracted

from corpora, we can perform tests for thousands of word pairs automatically

and rank them association strength. This is the traditional approach of col-

location extraction where an n-best list of collocation candidates is created

based on association measures. Typically, the list will be given to lexicogra-

phers or other domain experts who will classify the list into true and false

positives one by one. Another approach is to set a threshold for association

5The combination last year does not exhibit the properties by which we define a col-
location. It is compositional, modifiable (over the last two years) and components can be
substitute with similar words, resulting in predictable changes of meaning, e.g. next year
or last week.
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scores above which pairs are considered to be collocations.

Other applications of association measures in NLP include sentence

boundary detection (Kiss and Strunk, 2006), resolving PP-attachment (Hin-

dle and Rooth, 1993), extract typical predicate-argument structures from cor-

pora (Church et al., 1989), dimensions weights in word space models (Rapp,

1999; Padó and Lapata, 2007), modeling human association norms (Church

and Hanks, 1990; Rapp, 2002) (cf. Chapter 3), natural language generation

(Edmonds, 1997), and feature selection for automatic document classification

(Manning et al., 2008).

2.1.6 Summary

Association measures are a means to quantify lexical association between

words. Lexical association is the “glue” between words, their tendency to

occur together more often than chance. Association measures compute asso-

ciation scores, indicators of association strength, based on frequency counts

collected from corpora. Association measures are the basis for asymmet-

ric association measures which we develop for our corpus-based analysis of

asymmetry in human association presented in Chapter 3. They are also im-

portant for MWT, because they are a universal tool for MWU detection.

The amount of lexical association that they capture is used as a feature in

the MWU decision step Chapter 4.

2.2 Distributional Models of Meaning

We have seen in the introduction that the processing of MWUs faces chal-

lenges because of their idiosyncratic properties. One nut that is particularly

hard to crack is the issue of semantic non-compositionality. In a composi-

tional world, the meaning of a complex phrase would simply be the trans-

parent composition of the meanings of its parts. Unfortunately, this is not

the case for non-compositional phrases for which the meaning of the whole

phrase is not a transparent composition of the meanings of its parts. For

such phrases, given the meanings of the parts, we are unable to predict the
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meaning of their combination.

As we have shown, association measures target lexical association, a gen-

eral quality of collocations. We need a measure of word similarity to address

the specific property of non-compositionality. As part of MWT, we want to

be able to address this problem automatically. To this end, we require a

computational model of meaning. The model should be both theoretically

justified and computationally feasible.

In this thesis, we build meaning representations within the framework

of distributional semantics. The theoretical foundation of distributional se-

mantics is given by the distributional hypothesis. Meaning representations

based on distributional semantics can be computed from text corpora auto-

matically.

In this section, we will introduce two variations of distributional seman-

tics: the geometric word space model and a graph-theoretic approach. Both

models are implementations based on the distributional hypothesis accord-

ing to which the meaning of a word is derived from the context in which it

appears. For both models, words and contexts are taken from corpora.

2.2.1 The Distributional Hypothesis

Imagine you are reading a text and you come across the unknown word

tezgüino6. Throughout the text, there are several mentions of the word as

shown in (2.2).

(2.2) A bottle of tezgüino is on the table.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Over the course of the text, more and more information about tezgüino

is revealed and you develop a clearer idea of its meaning. Considering how

tezgüino is used in the examples, there is good reason to believe that it is a

kind of alcoholic beverage produced from corn. What is the justification for

6The tezgüino example is taken from Lin (1998).
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this assumption? Based on the knowledge that we have about things that are

stored in bottles, make people drunk and are made out of corn we derive that

tezgüino must be a substance similar to the things fitting the aforementioned

categories, for example Whiskey.

This reasoning is captured in what has become known as the distribu-

tional hypothesis. The idea is usually attributed to Zellig Harris who wrote:

The fact that, for example, not every adjective occurs with every

noun can be used as a measure of meaning difference. More than

that: if we consider words [...] A and B to be more different in

meaning than A and C, then we will often find that the distri-

butions of A and B are more different than the distributions of

A and C. In other words, difference of meaning correlates with

difference of distribution. (Harris, 1954, p. 156)

Harris formulated the idea in terms of difference meaning deriving from

difference in contexts. Today, the distributional hypothesis is formulated in

terms of similarity (Miller and Charles, 1991). We define it as follows:

The distributional hypothesis: Words that occur in the same contexts

tend to have similar meanings.

2.2.2 The Word Space Model

In the word space model, the meaning of a word is a point in a high-

dimensional Euclidean vector space, the word space. In the word space,

the idea of similar meaning through similar contexts is expressed as spatial

proximity. Words that have similar meanings lie close to each other. Fig-

ure 2.1 shows a 2-dimensional word space illustrating this idea. Cat and dog

are closer to each other than they are to car because they appear in similar

(animal-related) contexts and less in car-related contexts. The rest of this

section describes how word spaces are created automatically from textual

resources.

The vector space model from information retrieval provides the mathe-

matical framework in which the distributional hypothesis is embedded. It
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cat

dog

car

Figure 2.1: Example of a 2-dimensional word space

was originally developed by Salton et al. (1975) for the SMART information

retrieval system. It is generally regarded as the first model of its kind (Man-

ning et al., 2008). In this model, documents and queries are represented

as vectors of words. The relevance of a document to a particular query is

determined by the similarity of the document vector and the query vector.

The vector space model is readily adapted for the computation of word

similarities. The initial step is the creation of a word-context matrix that

records for each word the words that appear in its context (Schütze, 1992,

1993). Consider the sample text in (2.3).

(2.3) My old car broke down.

I need a car to drive to work.

We are going to build the word-context matrix X for these two sentences.

We define context as occurring in the same sentence. X is populated by

entering the number of times word wj appears in the context of word wi at

position xij . Figure 2.2 shows the resulting word-context matrix.
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I My a broke car down drive need old to work

I 0 0 1 0 1 0 1 1 0 1 1
My 0 0 0 1 1 1 0 0 1 0 0
a 1 0 0 0 1 0 1 1 0 1 1
broke 0 1 0 1 1 1 0 0 0 0 0
car 1 1 1 1 0 1 1 1 1 1 1
down 0 1 0 1 1 1 0 0 0 0 0
drive 1 0 1 0 1 0 1 1 0 1 1
need 1 0 1 0 1 0 1 1 0 1 1
old 0 1 0 1 1 1 0 0 0 0 0
to 1 0 1 0 1 0 1 1 0 0 1
work 1 0 1 0 1 0 1 1 0 1 1

Figure 2.2: Word-context matrix for example (2.3)

The order of the rows is arbitrary as is the choice to represent words as

rows and contexts as columns. The i-th row vector ~xi represents the word

wi. The vector ~xi represents the entirety of contexts in which wi appears.

We call ~xi, which reflects the distribution of wi throughout the complete text

sample, the semantic vector of word wi. This is in the spirit of Harris who

wrote:

The distribution of an element will be understood as the sum of

all its environments. (Harris, 1970, p. 775)

The word’s semantic vector is its meaning because it determines its loca-

tion in the word space.

Word similarities are computed between semantic vectors. There are a

number of vector similarity measures that have been applied in the context

of word spaces. The Jaccard and Dice coefficients, two measures originating

in set theory, compute the overlap over all context words and can be straight-

forwardly be used for similarity computation. There are distance metrics like

the Manhattan distance and Euclidian distance7.

7Any distance measure D can trivially be used as a similarity measure by using its
reciprocal: sim(~x, ~y) = 1

D(~x,~y) .
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pet drive walk cute cheap old

~xcar = ( 1 76 7 2 66 53 )
~xcat = ( 31 1 10 38 3 43 )
~xdog = ( 22 2 33 27 3 44 )

Figure 2.3: Semantic vectors

The standard measure used for similarity in word spaces is cosine simi-

larity. It computes the cosine of the angle between two semantic vectors:

cos(~x, ~y) =
~x · ~y
|~x||~y|

where the norm, or length normalization, of a vector with length k is given

by

|~x| =

√

√

√

√

k
∑

i=1

x2
i

and the dot product of two vectors of length k is defined as

~x · ~y =

k
∑

i=1

xiyi

The cosine measure takes on values between 0 (minimum similarity) and

1 (maximum similarity).8

Figure 2.3 shows three example semantic vectors for the words car, cat

and dog for a small number of exemplary context words. The cosine similar-

ities between the vectors reflect the spatial metaphor: cat and dog are more

similar (closer) to each other than they are to dog (cf. Figure 2.1).

8The codomain of the cos function is of course [−1, 1] but the elements of semantic
vectors are non-negative restricting similarity scores to [0, 1].
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cos(~xcat, ~xdog) = .91

cos(~xcat, ~xcar) = .38

cos(~xdog, ~xcar) = .38

2.2.3 Aspects of Word Space Model Implementation

The introduction in the previous section showed one possible way of con-

structing a word space. There are, however, a variety of decisions to make

and several parameters to tweak in the course of getting from corpora to

word spaces. The choices greatly influence the characteristics of the word

space.

Above all, there is the definition of context. The distributional hypothesis

leaves this question open. Text structure is one source for context. We can

define co-occurrence as co-occurrence in the same document, paragraph or

sentence. Another widely-used approach is the co-occurrence window. Here,

the co-occurrences of a target word are defined as all the words that appear

around the target in an n-word window regardless of structural or other

linguistic boundaries. Generally, the larger the window, the broader the

scope of semantic similarity becomes. Models using this approach are called

bag-of-words models because they treat all context words equally and do not

capture relations (e.g. word order) between context words.

In contrast to contexts based on the text structure and co-occurrence

windows, deep linguistic relations are another basis for context definitions

(Padó and Lapata, 2007). With this approach, dimensions are enriched with

a linguistic relation between the target and the context word, e.g. adjectival

modification or a direct-object relation.

Another influential factor is the weighting scheme. Initially, semantic

vectors contain raw frequency counts. In order to dampen the impact of

highly frequent words, logarithmic functions can be applied to the counts.

Another direction in weighting schemes uses lexical association measures to

replace raw frequency counts with association scores of target and context

words. Log-likelihood and PMI and have been used for this purpose.

Two prominent issues of the word space model are data sparseness and
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scalability. Like all statistical approaches to natural language processing, the

word space model suffers from the problem that even huge amounts of sample

data do not provide reliable estimates for all reasonable events, i.e. some

positions in the word-context matrix will be zero although they potentially

represent plausible co-occurrence. With increasing number of dimensions,

similarity computation becomes more expensive. The dilemma is that the

solution to the former problem is more data (find evidence for more plausible

events by processing ever larger amounts of text) but the solution to the latter

problem is less data (reduce the number of dimensions of the word-context

matrix to speed up similarity computation).

The simplest way to reduce the number of dimensions is to remove pos-

sible context words. Successful filters include part-of-speech filters, filters

based on dimension weights or stop word lists. Filters of this kind are ap-

plied before the creation of the word-context matrix.

A more sophisticated dimensionality reduction technique is latent seman-

tic analysis9 (LSA) (Landauer and Dumais, 1997). The basic idea is to ap-

proximate the high-dimensional word-context matrix with a low-dimensional

matrix. We will see that apart from reducing dimensionality, LSA can be

seen to alleviate data sparseness and discover latent semantic structures in

the word space.

LSA takes advantage of singular value decomposition (SVD), a matrix

factorization technique. Factorization is the process of decomposing a ma-

trix into a set of matrices, called factors. The process is reversible; the

product of the factors is the original matrix. We will only go as deep into the

mathematical details of SVD as is needed to explain its effects on the word

space. In the case of SVD, one of the factors is a matrix that contains the

linearly independent dimensions (which are characterized by singular values)

of the original space sorted by variance (“importance”) in descending order.

The trick of LSA is to truncate the singular value matrix before restoring

the original word-context matrix. By leaving out dimensions with low vari-

ance, we force SVD to approximate the original matrix as good as possible

9The technique was first applied under the name of latent semantic indexing (LSI) in
information retrieval (Deerwester et al., 1990).
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using only the remaining important dimensions. The new matrix contains

the information stored in the original matrix in condensed form since less

dimensions are available to approximate the same information.

The procedure obviously results in a matrix with less dimensions achiev-

ing the desired simplification of similarity computation. However, the effects

of LSA can also be interpreted from different angles (Turney and Pantel,

2010). LSA can be said to discover latent, or hidden, relationships in the

data. A side-effect of SVD is that it reveals higher-order co-occurrences,

i.e. in the new word space, there is similarity not only between words that

appear in the same contexts but also in similar contexts. For example, the

original matrix might contain two dimensions for two overlapping contexts,

one dimension for the contexts of boat and one for the contexts of ship. LSA

discovers that a more compact representation using only one dimension is

possible without much loss of information. LSA can also be interpreted as a

smoothing technique. The new ship-boat dimension unifies all contexts the

two words appear in. This means that ship has access to the contexts that

boat appeared in even if ship did not appear in these contexts itself and vice

versa.

Dimensionality reduction techniques like LSA add complexity to stan-

dard word space models and they make word space creation more expensive.

Another drawback of LSA is that newly discovered dimensions can become

hard to interpret linguistically, e.g. when unrelated concepts are merged into

one dimension. For our experiments on non-compositionality we need clearly

interpretable word spaces for model introspection and error analysis. We

decided to use standard word space models without LSA in our experiments.

2.2.4 A Graph-Theoretic Implementation

An entirely different implementation of the distributional hypothesis is given

by a graph-based model. A graph consists of nodes and links. Nodes rep-

resent arbitrary objects and links between nodes represent relationships be-

tween objects. For example, a graph could be used to represent a social

network with users as nodes and the friendship relation as links. Graphs
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are a very flexible framework because they can be easily adapted to different

domains.

In a graph-theoretic implementation of distributional semantics, words

become nodes and contexts become links. For example, Figure 2.4 shows

a word graph with nouns and verbs as nodes and links representing the

linguistic context of the direct-object relation.

Constructing word graphs is similar to constructing word spaces. The

same information that underlies the word-context matrix underlies the word

graph. However, the way this information is represented is different. In

the graphs, there is no inherent representation of spatial distance as there

is in vector spaces. Consequently, word graphs have a different way to ex-

press word similarity. In the word space model, similarity computation relied

on the spatial metaphor and the angle between semantic vectors. In word

graphs, similarity computation rests on the graph’s link structure. The se-

mantic knowledge gathered from words and contexts is encoded in the way

the nodes are connected with each other.

A possible node-similarity for computing similarity in word graphs is the

recursive SimRank algorithm (Jeh and Widom, 2002). The basic idea is

that two nodes are similar if their neighbor nodes are similar. SimRank

straightforwardly uses the similarity between neighboring nodes to compute

node similarity. The definition of SimRank for the similarity Sij between two

nodes i and j with neighbors N(i) and N(j), is given by:

Sij =
c

|N(i)| |N(j)|
∑

k∈N(i),l∈N(j)

Skl

Initially, every node is only similar to itself (∀i Sii = 1). By iteration this

initial mass of similarity spreads over the whole graph. The dampening factor

c guarantees convergence. For our example, we get the following similarities

(among others). It shows that the more common neighbors (verbs) the nouns

have, the higher the similarity.
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house

magazine

book

thought

buy

read

paint

Figure 2.4: Word graph representing verb-object relations between nouns
(white nodes) and verbs (black nodes)

S(book,magazine) = .58

S(house,magazine) = .44

S(house, thought) = .29

Initially, the word space model and the graph-based model seem equally

suited for our purpose since they both implement the distributional hypothe-

sis and both work on the same input data. We compared the two approaches.

We manually evaluated the related words that each approach finds for a set

of test words and explore how filters and weighting strategies influence the

quality of the results. We came to the conclusion that the word-space model

is the better choice for our experiments. See Appendix A for the detailed

explanation of our decision.

2.2.5 Semantic Similarity Based on Structured Lexical

Resources

Text corpora are usually unstructured except for document boundaries or

section headings. There is no information about the relationships between
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the words in the corpus10. The word space model gives us semantic similar-

ity between words because it applies the distributional hypothesis to large

amounts of text.

A different approach is to use structured lexical resources instead of cor-

pora as the basis for similarity computation. Possible sources are dictio-

naries, thesauri or WordNet and other semantic networks. In this line of

work, lexical resources are interpreted as graphs and similarity is measured

based on properties of paths in the graph, e.g. the shorter the path from

one concept, the higher the similarity. See Budanitsky and Hirst (2006) for

an overview and Pedersen et al. (2004) for off-the-shelf implementations of

several WordNet-based measures. The advantage of these approaches is that

they are similarity computation on a relatively small data set is less costly

compared to building a word space model from corpora.

We ran experiments for MWT on the physics domain (Chapter 4) and

therefore needed a similarity function for physics terminology. Hand-made

lexical resources are expensive to build in particular for specialized domains.

Given corpora, word space models can easily be built for special domains

with existing tools.

2.2.6 Recent Developments in Distributional Seman-

tics

This section discusses recent developments in distributional semantics and

it is based on a survey that reviews word space models of word and phrase

meaning (Erk, 2012).

Distributional Memory Baroni and Lenci (2010) propose a generalized

framework of distributional semantics called distributional memory (DM). A

DM stores the entirety of distributional information in a corpus as a third-

order tensor. From this representation, semantic spaces (second-order ten-

sors, i.e. matrices) can be generated.

10At least not explicitly. Hearst (1992), for example, extracted hyponymy relations from
unstructured corpora using search patterns such as X is a Y or Y such as X.
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The third-order tensor stores arbitrary linguistic relations r between two

words w1 and w2 as weighted 〈w1, r, w2〉 tuples, covering dependency relations

(〈man, subj, sleep〉) or lexico-syntactic patterns (〈animal, such as, dog〉).
The motivation for DM derives from the observation that semantic spaces

are commonly created in an ad hoc manner to address a particular NLP task.

They argue in favor of a more general approach that extracts distributional

information into a repository and enables on-demand creation of adequate

semantic spaces from this repository via a matricization operation. In an

empirical evaluation on a range of semantic tasks, DM performs competitively

against state-of-the-art ad hoc solutions.

The appeal of DM lies in its flexibility. For example, models for computing

the similarities between single words or relational similarity between word

pairs are readily available from the DM thanks to a well-defined matricization

operation.

Polysemy In word space models, words are by default represented in a

prototype-based way: all occurrences of the word are conflated in the same

vector, obscuring the different senses the word might have. Several ap-

proaches have tried to deal with polysemy in word space models. In one

group of models the idea is to start out with the global word vector and

modify it according to the context in which it is used (e.g. Erk and Padó,

2008; Mitchell and Lapata, 2008). Modification here means to modify the

word vector in question incorporating the vectors of surrounding words. For

that purpose, vectors need to be composed to yield the modified vector. Dif-

ferent composition functions have been used, for example vector addition,

component-wise multiplication and tensor products.

Another approach to dealing with polysemy is clustering of a word’s in-

dividual co-occurrence vectors. Clustering of individual occurrences reveals

different word senses (Schütze, 1998; Reisinger and Mooney, 2010). In con-

trast to the prototype-based approach, the clustering approach uses exemplar

vectors where each exemplar represents a context (e.g. a sentence) in which

the target word occurred. Erk and Padó (2010) propose an exemplar-based

approach that computes clusters dynamically by activating only a subset of
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exemplars based on the context of the target word.

Representations for phrases and sentences Analogous to word sim-

ilarity, Mitchell and Lapata (2010) raised the question of how to compute

phrase similarity, for example the similarity between old man and elderly

lady.

One possibility is to represent phrases atomically treating it just like a

standard word vector. However, the longer the phrases, the more severe the

sparse data problem becomes. The solution is to look for ways to compose

complex structures from simple vectors representing individual words.

Mitchell and Lapata (2008) introduced a general framework for vector

composition which they use for two-word phrases. The composition func-

tions mentioned above are used to combine vectors to represent phrases. In

particular, the representation of noun phrases consisting of head noun and

modifier has received attention in this area (e.g. Baroni and Zamparelli, 2010;

Reddy et al., 2011; Hartung and Frank, 2011).

Going further, the ability to measure the similarity of larger constructs,

sentences in particular, would be a useful tool for NLP tasks, e.g. para-

phrase detection. For two-word noun phrases, a composition function that

takes two basic elements such as adjectives and nouns is sufficient. Moving

to sentences, the questions arise of how to represent and combine complex

syntactic structures; e.g a desirable quality of such a model is to be able to

distinguish John loves Mary from Mary loves John.

Several approaches deal with these questions. One group represents words

and predicates as tensors (e.g. a matrix representing an intransitive verb) and

applies tensor products to construct a meaning representation for a complete

sentence. Models differ in whether they encode syntactic structure explic-

itly (e.g. Clark and Pulman, 2007) or implicitly (e.g. Coecke et al., 2010;

Grefenstette and Sadrzadeh, 2011). In the former model, syntactic structure

is visible in the resulting tensor; in the latter, it is not. A major shortcoming

of these models is that they can only compute similarities of sentences that

have identical syntactic structure.

Socher et al. (2011) presented a model that does not have this restric-
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tion. In their model, each constituent is represented by a vector, resulting

in a tree of vectors for each sentence. Sentence similarity is then computed

by computing pairwise similarities between all nodes from both trees. The

resulting similarity matrix is the input to a classifier that decides whether

the second sentence is a paraphrase of the paraphrase of the first.

In a third kind of approach, the goal is to combine symbolic, logic-based

semantics (Montague, 1973) with distributional semantics (Garrette et al.,

2011; Clarke, 2012). In these works the basic idea is to use the best of both

worlds: the formal, symbolic machinery (which has no mechanism for word

or phrase similarity) for the composition of complex structures and the distri-

butional representation (which has no mechanism for sentence construction)

to model the meaning of the simple elements.

Work on distributional approaches to representing sentence meaning is a

new field. There are still problems with some approaches, e.g. computing

similarities of sentences of different structure. A fundamental problem of

compositional distributional semantics is that not all syntactic categories

have obvious representations, e.g. it is unclear how to represent prepositional

phrases (see paragraph Non-Compositionality below for a discussion of how

these new models relate to MWT.

Non-Compositionality Biemann and Giesbrecht (2011) launched a shared

task on compositionality grading where the (non-)compositionality of phrases

has to be graded on a fine-grained numerical and a coarse-grained categorical

scale.

The submitted systems consist mostly of traditional approaches based on

statistical association measures and basic word space models. Reddy et al.

(2011) submitted system that used prototype-based and an exemplar-based

word space models. The prototype-based system slightly outperformed the

exemplar-based one.

As we will show in Section 4.2.4, detection of semantic non-compositionality

is a key ingredient of MWT. In principle, each of the models that try to repre-

sent phrases and sentences could be used for non-compositionality detection.

The basic approach would be to detect meaning shifts between the compo-
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nents of a phrase and the phrase as a whole. Here, the meaning of the whole

phrase would be computed using a certain composition function. However,

the treatment of non-compositional semantics has not been a central ques-

tion in this rather new branch of models. In Michelbacher et al. (2013)11, we

experimented with a number of composition functions for compositionality

grading of adjective-noun combinations.

Non-Distributional Contexts There are models of word meaning that

are based on contexts which are not gathered from corpus co-occurrences. For

example, feature norms (e.g. McRae et al., 2005), i.e. data bases of objects

and the features ascribed to them by human subjects, or non-textual content

(e.g. images in Feng and Lapata (2010)). Both kinds of data can be used to

populate word vectors. In this thesis we are only concerned with word space

models built from corpus co-occurrences.

2.2.7 Summary

In this section, we introduced the word space model, a framework that en-

ables us to measure semantic similarity between words and phrases. We use

similarity computation in MWT for non-compositionality detection (see Sec-

tion 4.2.4). The word space model is a model of distributional semantics

which means that the meaning of a word is determined by the context in

which it appears. In the word space model, words are represented in a high-

dimensional vector space whose elements are words and dimensions represent

contexts; semantic similarity is understood as spatial proximity in the space.

We compared this implementation of distributional semantics with a graph-

based approach that uses the same underlying information but represents

contexts and computes similarity in a different way. In a comparison study

we found the word space model to achieve better results.

11The work focuses on adapting unsupervised features to a new domain and goes beyond
the scope of this thesis.
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2.3 Supervised machine learning

2.3.1 Machine Learning in NLP

The beginnings of natural language processing happened during the 1940s

and 1950s in connection with work on machine translation. For political

reasons, there was strong demand for automatic translation, especially from

Russian to English and vice versa. Many of the early approaches were of

a probabilistic nature. However, high expectations, the absence of a quick

breakthrough and the devastating verdict of the 1966 ALPAC report about

the prospects of machine translation lead to an abandonment of statistical

approaches.

The new direction of research was rule-based systems. Motivated by

Chomsky’s criticism of n-gram models (Chomsky, 1957) a lot of effort was

spent on describing language as a set of formal rules. These rules were

supposed to account for all language use.

In the late 1970s, statistical methods made a comeback. With more com-

puting power and language resources available, researchers at IBM achieved

a breakthrough in automatic speech recognition using probabilistic methods.

Applying the noisy channel model from information theory to speech signals,

recognition accuracy skyrocketed (Jelinek, 2009). The same techniques, Hid-

den Markov models and n-gram language models, were successfully adapted

to part-of-speech tagging (DeRose, 1988; Church, 1988) and machine trans-

lation (Brown et al., 1990). The new methods proved very successful and

the statistical revolution in NLP (Lee, 2004) was underway. Nowadays, NLP

and statistical methods are inextricably linked. Standard approaches for

part-of-speech and named-entity tagging, parsing, machine translation, rela-

tion extraction, sentiment analysis to name but a few are based on machine

learning.

2.3.2 General concepts

This introduction is based on Friedman et al. (2001). Machine learning starts

with inputs and outputs which are measurable observations in the real world.
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Commonly, several input variables have influence on an output variable; we

think of the former predicting the latter. For example, the prefixes and

suffixes of a word predict its part of speech. The challenge of supervised

machine learning is to discover rules, or a model, that – when presented with

input variables, predict the correct output variables.

We denote input variables, or features, with X . We denote output vari-

ables with Y . We think of X as an input feature vector. We can access the

components of X by subscripts Xi. Uppercase letters are used to address the

input and output variables in general. For concrete observations lowercase

letters xi and yi are used.

X is a p-dimensional vector. The number p is the number of features

(parameters), of the model. If we use only the prefix and the suffix of a word

to determine its part of speech, p is 2. In supervised learning, we have a set

of training examples {(xi, yi)}, i = 1, . . . , N from which we learn the model.

Afterwards, given a new input vector X , we predict the output Y .

If the output variable is categorical, i.e. a finite number of distinct classes,

as in the part-of-speech example, the task is classification. The complemen-

tary task, where the output variable is continuous, is called regression. The

application of machine learning in this thesis is MWT, which is a classifica-

tion task. The classification method we use is logistic regression.

2.3.3 Logistic Regression

Logistic regression is a classification method. It models categorical outputs

predicted by continuous input variables. In addition, logistic regression re-

turns a probability for the predicted class. We will explain the ideas behind

logistic regression for the case of a binary output variable.

Logistic regression models P (Y |X). It is assumed that P (Y |X) follows

the form of the logistic function Y = 1
1+exp(−x)

. For a Boolean classification

problem with Y = {true, false} the probabilities for each class are given

by
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P (Y = true|X) =
1

1 + exp(β0 +
p
∑

j=1

Xj β̂j)

and

P (Y = false|X) =

exp(β0 +
p
∑

j=1

Xj β̂j)

1 + exp(β0 +
p
∑

j=1

Xjβ̂j)

The probabilities sum to 1.

For the input X we are interested in the Yi that maximizes P (Y = Yi|X).

This means that if

1 <
P (Y = true|X)

P (Y = false|X)

we assign label Y = true. If we substitute the class probabilities, we get

1 < exp(β0 +

p
∑

j=1

Xj β̂j)

Taking the natural logarithm on both sides, we can reduce the classifica-

tion rule to a linear model.

0 < β0 +

p
∑

j=1

Xjβ̂j

This linear equation cannot be fitted like a standard linear model because

the necessary assumptions are not met. For logistic regression, an iterative

method (e.g. Newton’s method) has to be used for parameter estimation.

In NLP, multinomial logistic regression models are sometimes referred to

as maximum entropy models (Manning and Klein, 2003).
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predicted class

true false

re
a
l
c
la
ss

t
r
u
e TP

(True Positive)

FN

(False Negative)
f
a
l
s
e FP

(False Positive)

TN

(True Negative)

Table 2.3: Confusion matrix of classification outcomes

2.3.4 Evaluation

The standard evaluation metrics for classification are precision and recall.

These metrics are easily defined in terms of possible classification outcomes.

The possible outcomes are summarized in Table 2.3. A true positive (TP) is

a classification decision that assigns true when the real class label is true.

If the label is true and the classifier does not recognize it, we have a false

negative (FN). The classifier predicting true even though the label is false

is called a false positive (FP). Finally, a true negative occurs when the label

is false and the classifier predicts false. We can now define precision and

recall.

Precision is the ratio of true positives to all classification decisions.

precision =
TP

TP + FP

Recall, on the other hand, is defined as the ratio of true positives of a

label to all instances of that label.

recall =
TP

TP + FN
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Precision is a measure for how “noisy” a classifier is, i.e. the proportion

of correct decisions when it claims to have found an instance of a particular

class. Recall tells us how “thorough” a classifier is, i.e. how many of the

instances of a class it identifies correctly. The two qualities of a classifier

measured by precision and recall compete with each other. Increasing the

one usually comes at the expense of decreasing the other. In practice, it is

often the goal to identify which quality is more desirable and then finding a

good trade-off.

A measure that evaluates the overall performance is accuracy. It measures

the proportion of correct classification decisions.

accuracy =
TP + TN

TP + FP + TN + FN

For our experiments, we use the accuracy measure as the primary evalu-

ation metric.

2.3.5 Annotator Agreement

For supervised learning, we would like to assess how reliable the labels cre-

ated by human annotators are. High reliability promises good models and

low reliability (meaning that not even humans can solve a task consistently)

could discourage the training of a model altogether. A common way in NLP

to assess the reliability of human annotations is to compute inter-annotator

agreement statistics (Artstein and Poesio, 2008). We discuss annotator agree-

ment in the chapters presenting our experiments (Chapter 3 and Chapter 4,

respectively).

2.3.6 Summary

In this chapter, we presented the principles of supervised machine learning.

We covered logistic regression, a learning algorithm for classification. We

explained how classifiers are commonly evaluated with precision, recall and

accuracy. See Chapter 4 for how we incorporate the classifier into the MWU

decision step.
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Chapter 3

Asymmetric Association in

Multi-Word Units

3.1 Introduction

In this chapter, we investigate asymmetric association in MWUs. The work

presented here is based on joint work with Stefan Evert (Michelbacher et al.,

2011a).

Apart from being relevant for MWT, asymmetric association is a linguis-

tic and cognitive phenomenon worth studying in its own right. We will show

that asymmetric association can be found in both human production and

corpus data. We describe an elicitation study with human subjects that we

conducted to measure asymmetry in syntagmatic word combinations. Ad-

ditionally, we designed asymmetric association measures that capture asym-

metry in corpus data. We show that these asymmetric measures can predict

asymmetry in human production with high accuracy.

The remainder of this chapter is structured as follows. Section 3.2 places

asymmetric association and the elicitation study into the broader context of

word associations and research using elicited data. Section 3.3 introduces

corpus-based measures of asymmetry based on classic association measures

and describes asymmetry effects in corpus data. Section 3.4 contains the

experimental design for measuring asymmetry in human associations. In
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paradigmatic + symmetric

good

bad

paradigmatic + asymmetric

bird

canary

syntagmatic + symmetric

epileptic seizure

syntagmatic + asymmetric

wishful thinking (RP), high fidelity (LP)

Figure 3.1: Four types of word associations

Section 3.5, we analyze the results obtained for a sample of adjective-noun

and noun-noun combinations. We show that the directedness of human as-

sociation is accurately predicted by the corpus data and that asymmetric

association can be regarded as a property of MWUs. In Section 3.6, we

summarize our findings.

3.2 Background

3.2.1 Four Types of Association

We place the notion of asymmetry in syntagmatic word combinations into

the broader context of different types of association between words. The

question of how closely two words are related to each other or how strong

the association between them is is relevant throughout NLP, for example

for smoothing language models. Notions of relatedness and association are

often defined as catch-all categories that mix together many different ways

in which two words can be related (see Section 3.2.3). Rather than taking

association as an atomic notion, we distinguish between four types of associ-

ation that can be classified along the dimensions syntagmatic-paradigmatic

and symmetric-asymmetric. Before we discuss the four types let us briefly

recapitulate syntagmatic and paradigmatic relations.

The ideas of syntagmatic and paradigmatic relations between words have

their origin in the work of Ferdinand de Saussure. Traditionally, the rela-

76



died

cried

boy

manthe old

sang

laughedgirl

young

syntagmatic axis

p
a
ra

d
ig
m
a
tic

a
x
is

Figure 3.2: Syntagmatic and paradigmatic relations

tionship between two words is called syntagmatic if they occur in sequence:

Combinations based on sequentiality may be called syntag-

mas. The syntagma invariably comprises two or more consecutive

units [...]. In its place in a syntagma, any unit acquires its value

simply in opposition to what precedes, or to what follows, or to

both.

(Saussure, 1966, 121)

We use the term syntagmatic in the sense of morphosyntactic relations,

specifically noun-noun compounds and prenominal adjectives.

In contrast, paradigmatic relations are orthogonal to the sequential syn-

tagmatic axis. Two words are said to be paradigmatically related if they

can be substituted for each other. Such words usually have the same part of

speech. Figure 3.2 illustrates the orthogonal relation of the syntagmatic and

the paradigmatic axis.

Many prototypical paradigmatic association pairs like good–bad or girl–

boy are symmetric, by which we mean that they prime each other with sim-

ilar strength in free association experiments. We will see that apart from

symmetric associations, there are paradigmatic as well as syntagmatic asso-

ciations that are asymmetric; they consist of two elements where one strongly

predicts the other, but not vice versa. We give examples for each of the four

possible types of association in Figure 3.1.
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The pairs good–bad and epileptic–seizure are both examples of symmetric

combinations, the former being paradigmatic and the latter syntagmatic.

Their elements prime each other with about the same strength. For example,

in the USF word association norms (see Section 3.2.3), 75% of subjects give

good as a response for bad, and 76% give bad as a response for good. In our

elicitation experiment, we found that epileptic–seizure received a forward

score of .541 and a backward score of .462 which supports our symmetry

claim (see Section 3.5.1 for a definition of these scores).

Moving on, we now turn to asymmetry. Kjellmer (1991) investigated

asymmetry in word combinations. He writes:

A large part of our mental lexicon consists of combinations of

words that customarily co-occur. The occurrence of one of the

words in such a combination can be said to predict the occurrence

of the other(s). (Kjellmer, 1991, 112)

The pairs bird–canary (paradigmatic), high–fidelity and wishful–thinking

(both syntagmatic) are examples of asymmetric combinations. In the first

pair, asymmetry is captured in the USF data set. 69% of subjects give bird

as a response for canary, but only 6% give canary as a response for bird.

In the context of syntagmatic combinations, asymmetry refers to the phe-

nomenon that lexical association between two words can be stronger in one

direction than in the other. With the inherent sequentiality of syntactic

combinations, there are two sub types of asymmetric syntagmatic combina-

tions which Kjellmer calls right-predictive (RP) and left-predictive (LP). In

right-predictive combinations such as wishful thinking, bonsai tree or welling-

ton boots, the first component suggests (or predicts) the second, but not the

other way around. For left-predictive combinations, the opposite is the case:

the second components of high fidelity, deadly nightshade, and arms akimbo

suggest the first components, but not vice versa. We found evidence backing

the asymmetry claim for both directions in our experiment. For example,

wishful–thinking receives a forward score of .952 and a backward score of

.006. Conversely, high–fidelity receives a forward score of 0.017 and a back-

ward score of 0.696.
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Sinclair (1991) introduced the notion of upward and downward colloca-

tion. In his terminology, a collocation – “the occurrence of two or more words

within a short space of each other in a text” (Sinclair, 1991, 170) – consists

of a base word and a collocate. In an upward collocation, the collocate is

more frequent than the base; in a downward collocation, the collocate is less

frequent than the base. Based on the assumption that new is more frequent

than tree, which is in turn more frequent than bonsai, new tree is an instance

of upward collocation and bonsai tree is an instance of downward collocation

with base tree and collocates new and bonsai, respectively. In relation to

Kjellmer’s notions, we expect stronger predictiveness from collocate to base

in the case of downward collocation, and vice versa for upward collocation.

Kjellmer and Sinclair recognize the existence of asymmetry in syntag-

matic association. However, they did not try to measure the effect systemat-

ically. This study picks up where Kjellmer and Sinclair left off by measuring

asymmetry in both human production and corpus data. We demonstrate

that, for adjective-noun and noun-noun combinations, these asymmetry ef-

fects are characteristic of human linguistic performance and can be accurately

predicted from corpus data asymmetric association measures. Most studies

in the literature are concerned with paradigmatic relations, either derived

from free association norms or from large corpora using measures of statis-

tical association and semantic relatedness. In contrast, we investigate the

syntagmatic relation between words.

3.2.2 Motivation for Studying Asymmetry

Tversky (1977) argued that similarity is an asymmetric relation, criticizing

the inherently symmetric aspect of metric-based models of similarity. He

backed his view with a number of rating experiments in which subjects had

to assess the similarity between different kinds of objects, for example figures,

letters and countries. North Korea, for example, is judged more similar to

China than vice versa. According to Tversky, the reason for this lies in the

subjects’ feature representation of the two words. A large number of features

are used to represent the concept China, only some of which are also included
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in the representation of North Korea. Conversely, a small number of features

are used for North Korea, many of which are part of China’s representation.

Tversky showed that asymmetry in similarity is a cognitive phenomenon,

but it can also be measured in corpus data. In the context of estimating co-

occurrence probabilities for unseen events in language models, several mea-

sures of distributional similarity were discussed (Dagan et al., 1999). While

most of the studied measures are symmetric, one asymmetric measure has

received further attention: the alpha skew divergence sα (Lee, 1999, 2001).

It is a weighted version of the asymmetric Kullback-Leibler divergence (Kull-

back and Leibler, 1951). Lee (1999) mentions the subject of asymmetry in

similarity, but does not investigate it further.

Weeds (2002) emphasizes the asymmetric aspect of the skew divergence

and its potential usefulness in capturing asymmetry in similarity. She links

asymmetric substitutability to the hypernymy relation and proposes that

fruit and apple are similar to each other but fruit is more similar to apple

than apple is to fruit. Applied to hypernymy, this would be reflected in

sα(hyper(x), x) being lower than sα(x, hyper(x)) (a lower score means higher

similarity). In an initial experiment, Weeds was able to predict hypernyms

and hyponyms in 156 preselected word pairs in over 90% of the cases using

the above formula.

Kotlerman et al. (2010) have investigated asymmetric similarity mea-

sures.1 Their focus is on lexical entailment, the task of deciding whether or

not u entails v in an entailment pair. An entailment pair u→ v is a relation

between a word u and a word v so that the meaning of v follows from the

meaning of u, for example, bread → food. The asymmetric element here is

that u → v can be a valid entailment while v → u is not: food 6→ bread (in

this case v is a hypernym of u). Their goal is a directional distributional

term-similarity measure. They formulate the properties of such a measure

and present a distributional measure for lexical inference based on feature

inclusion that meets these criteria. The underlying assumption is analog to

Tversky’s in that it is assumed that a term with a broader meaning contains

the features of a term with a narrower meaning, but not vice versa, and

1They refer to their measures as directional rather than asymmetric.
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that the narrower term entails the broader, but not vice versa. For the pro-

posed measure, feature vectors contain grammatical dependency relations.

The measure is evaluated directly on entailment pairs and in two tasks and

it outperforms symmetric measures. The main difference between our asym-

metric measure targeted at general word associations and that of Kotlerman

et al. is that their goal is a measure for finding relations between narrower

and broader terms.

In general, asymmetric measures of similarity are potentially an impor-

tant factor in all NLP tasks that benefit from better treatment of mutual

substitutability, for example reducing data sparseness in language models

(Dagan et al., 1999) or the automatic acquisition of selectional preferences

(Resnik, 1996).

For example, query expansion, a popular application of association mea-

sures in natural language processing, is an asymmetric task. It is appropriate

to rewrite the query fruit as fruit OR apple since documents about apples

are necessarily about fruit, but it is not appropriate to rewrite the query

apple as apple OR fruit. Clearly, corpus-based measures of association are

only useful in this context if they take such asymmetry into account.

3.2.3 Research with Elicited Data

This section contains a brief description of available data sets of human

word associations. Two kinds of experiments are prevalent: free association

and rating experiments. We describe the setups of the experiments, the

characteristics of the resulting data sets and why existing data sets are not

suitable for our experiment.

First, we describe free association experiments and the corresponding

data sets which are called (free) association norms. Free association ex-

periments are the standard way of eliciting word associations from human

subjects.

Free association norms The first two norms we look at are known as

The Minnesota norms, and Palermo and Jenkins norms. Both norms are
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closely related. The Minnesota norms were collected by presenting 100 stim-

ulus words2 to 1,008 college students of introductory psychology classes in

1952 (Wettler and Rapp, 1993). The well-known Palermo and Jenkins data

set was presented in Word association norms: Grade school through college

(Palermo and Jenkins, 1964). It is an extension of the previous experiment

including students of different age groups. In addition to the 100 original

words, another 100 words more suitable for young speakers were added. A

variety of parts-of-speech including nouns, adjectives, verbs, adverbs and

prepositions were used. In both studies, each stimulus word was presented

with a blank line to the right of it and subjects were asked to write what

first came to their mind on the line. 1,000 subjects ranging from 4th graders

to undergraduate students took part in the study.

The University of South Florida Word Association Rhyme and Word

Fragment Norms (USF) is a collection of word associations compiled by Nel-

son et al. at the University of South Florida. Data collection started in

1973 and went on for two decades. More stimulus words were added over the

course of time. The finished data set was published in 1998. On average,

each stimulus word was presented to around 150 subjects and each subject

had to complete a booklet of 100 to 200 words. In total, the database con-

tains 5,019 stimulus words. The elicitation procedure was almost identical to

the one used by Palermo and Jenkins (1964). More than 6,000 participants

produced nearly 750,000 responses.3

The Edinburgh Word Association Thesaurus (EAT) was created by Kiss

et al. (1973). It contains 8,400 stimulus words including the stimuli used by

Palermo and Jenkins (1964). Each stimulus was presented to 100 different

subjects. The elicitation procedure was, again, very similar to Palermo and

Jenkins, namely, that subjects were presented a list of stimuli without context

and were asked to write down the first word they could think of. Subjects

were urged to complete the task as quickly as possible.4

In psycholinguistics, researchers have been studying association norms for

2The same stimuli were previously used by Kent and Rosanoff (1910).
3The full database with detailed information about every stimulus-response pair is

available for download at http://web.usf.edu/FreeAssociation/.
4An interactive version of the data is available online at http://www.eat.rl.ac.uk/.
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over a century to explore the organization of the mental lexicon and how in-

formation is retrieved from it during language production and comprehension

(e.g. Clark, 1971). We refer the reader to Mollin (2009) for a more detailed

discussion of word association norms in psycholinguistics. Association norms

have also been used as benchmarks for models of human semantic knowledge

(Griffiths et al., 2007).

In the field of computational linguistics, association norms received in-

creased attention when Church and Hanks (1990) observed that corpus-based

statistical association measures can be used to model human responses given

in free association and rating tasks. A number of studies have confirmed

that human associations can be predicted from corpora (e.g. Spence and

Owens, 1990; Rapp, 2002; Sahlgren, 2006; Michelbacher et al., 2007). How-

ever, the data sets utilized in these studies (for example, USF or EAT – see

Section 3.2.3) do not distinguish between different types of semantic relat-

edness or association and they only contain a small portion of syntagmatic

combinations. Table 3.1 gives examples of the various relationships between

stimulus and response that occur in these data sets. The table was com-

piled by Hutchison (2003) who classified each stimulus and response pair

of Palermo and Jenkins’ norms. Almost all relations are paradigmatic, but

three comprise syntagmatic pairs: on the one hand, the groups that Hutchi-

son called forward and backward phrasal associates and that we refer to as

syntagmatic combinations in our terminology. On the other hand, the group

labeled associated properties can also be thought of as syntagmatic, for ex-

ample in adjective coordinations (a deep, dark hole). In total, only 16.7% of

the pairs were classified into these relations.5 Washtell and Markert (2009)

report higher numbers of syntagmatic relations in free associations. For two

data sets, Kent and Rosanoff (1910) and Russell and Jenkins (Jenkins, 1970),

they found 27% and 39%, respectively. Apart from the fact that they used

different data sets than Hutchison, a likely cause for the higher number lies

in Washtell and Markert’s definition of syntagmatic. It is more lax than ours

covering meronymy, holonymy and other “harder-to-classify topical or id-

iomatic relationships (family–Christmas, rock–roll)” (Washtell and Markert,

5Since many pairs fall into several categories, the total percentage exceeds 100%.
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Association Type (and Example) Percentage Rate
Synonyms (afraid–scared) 14.1
Antonyms (day–night) 24.3
Natural category (sheep–goat) 9.1
Artificial category (table–chair) 5.1
Perceptual only (pizza–saucer) 0.0
Supraordinate (dog–animal) 5.6
Perceptual property (canary–yellow) 11.1
Functional property (broom–sweep) 12.1
Script relation (orchard–apple) 6.1
Instrument (broom–floor) 6.1
Forward phrasal associate (baby–boy) 11.6
Backward phrasal associate (boy–baby) 4.1
Associated properties (deep–dark) 1.0
Unclassified (mouse–cheese) 5.1

Table 3.1: Common relationships between stimulus and response words in
Palermo and Jenkins’ association norms (classification by Hutchison (2003))

2009, 1).

Rating experiments Rating experiments use a different setup for collect-

ing human association judgements. In those experiments (e.g. Rubenstein

and Goodenough, 1965), the subjects are presented two words simultane-

ously. The task is two rate the relatedness between the two words with a

number from a fixed scale. The resulting data set is a set of word pairs

each associated with a corresponding relatedness score. There has been a

large body of work on evaluating corpus-derived measures of semantic relat-

edness (including Miller and Charles (1991); Resnik (1996); Finkelstein et al.

(2002); Gurevych (2005); Budanitsky and Hirst (2006); Strube and Ponzetto

(2006); Gabrilovich and Markovitch (2007); as well as Lapata et al. (2001)

and Keller and Lapata (2003) for syntagmatic combinations). These studies

often use the data set by Rubenstein and Goodenough or similar data. Their

methodology obscures any possible asymmetry effect because both words are

presented to the user simultaneously.
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In cognitive linguistics, there is a general consensus about the necessity

to support hypotheses about linguistic phenomena and theories with usage-

based evidence. It remains unclear, however, which methodological approach

to corpus data is most suitable for obtaining such evidence, and whether dif-

ferent techniques are needed for different phenomena and hypotheses. Some

recent studies use data elicited in psycholinguistic experiments in order to

evaluate different methods of analyzing corpus data. It has been found, for

example, that aspects of human language processing can be modeled with

association measures and that different association measures vary in their

ability to predict human intuitions (e.g. Wiechmann, 2008; Gries et al.,

2005).

We see our study as a further step in this direction. In accordance with

the approaches sketched above, we use a number of statistical measures and

compare their predictions with data obtained from human subjects. However,

we move our focus to a phenomenon that has not been considered in previous

studies, namely the asymmetry of word associations.

We have established that word association norms such as the USF or

EAT and rating experiments are not suitable for the purpose of studying

syntagmatic asymmetry because (i) only a low number of stimulus-response

pairs are suitable for such an investigation; (ii) they mix together different

types of associations and (iii) they do not measure asymmetry.

3.3 Asymmetric Association Measures

This section describes the measures we designed to detect left and right-

predictive combinations. The measures are based on classic association mea-

sures (see Section 2.1).

3.3.1 Corpus Data

For the investigation, we focus on two-word adjective-noun and noun-noun

combinations. These combinations occur in uninterrupted sequence, which

makes them suitable for elicitation experiments
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common noun followed by common noun:

[NN] [NN]

adjective or common noun followed by a proper noun:

([ADJ] ([COMMA | CONJ | ADJ | ADV]* [ADJ])? | [NN]) [NP]

adjective or proper noun followed by a common noun:

([ADJ] ([COMMA | CONJ | ADJ | ADV]* [ADJ])? | [NP]) [NN]

Figure 3.3: Part-of-speech patterns that capture the co-occurrence relation
of adjective-noun and noun-noun modification. Square brackets represent
tokens, e.g. [NN] is a noun token. Parentheses are used for grouping. A ’?’
marks optional matches, ’∗’ indicates zero or more matches and ’|’ is used
for disjunction.

The corpus associations used in this work are based on data extracted

from the British National Corpus (BNC) (Aston and Burnard, 1998). The

corpus consists of British English language samples from a variety of sources

(mostly written English with a small proportion of transcribed conversa-

tions). The sample size is about 100M words. Our co-occurrence relation

is adjective-noun and noun-noun modification. Proper nouns were only al-

lowed in conjunction with a preceding adjective or common noun. We did

not extract pairs consisting of two proper nouns because they introduced

too much noise (e.g. personal names or geographical entities). We use the

patterns shown in Figure 3.3 to capture the co-occurrence relation.

The noun-noun pattern for compounds is straightforward. The adjective-

noun patterns are slightly more complex because they are designed to match

adjacent as well as more distant adjective-noun modification. In addition,

they allow proper nouns as modifiers to account for combinations such as

Wellington boots.

Figure 3.4 shows the noun-noun pair soccer team and two adjective-noun

pairs, serious fever and fatal fever that were extracted. Note that in this
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The whole soccer team is afflicted with a serious and potentially fatal fever .
ADJ NN NN ADJ CONJ ADV ADJ NN

Figure 3.4: The bold phrases are three examples of adjective-noun-noun and
noun-noun pairs that match the co-occurrence relation. Only relevant POS
tags are shown.

example, the false positive match whole soccer would have been extracted.

We extracted 2,014,116 word pairs (types). In order to remove noise,

we applied a frequency filter of f ≥ 3. For the remaining 391,454 pairs,

we calculated association scores for the measures t-score, log-likelihood, chi-

square and frequency. In addition, we computed the conditional probabilities

p(w1|w2) and p(w2|w1) for each word pair.

3.3.2 Asymmetric Measures

We need measures that can capture asymmetry in lexical association. The as-

sociation measures defined in Section 2.1 are symmetric in the sense that they

do not capture the left-predictiveness or right-predictiveness that Kjellmer

observed in many word combinations. All measures are invariant under trans-

position of the contingency table, i.e. the association score remains the same

if the rows and columns are exchanged. In preliminary experiments we have

shown the principal feasibility of corpus-based asymmetric association mea-

sures (Michelbacher et al., 2007). To capture paradigmatic asymmetric rela-

tions of the apple-fruit kind, we defined asymmetric rank measures based on

the chi-square association measure and conditional probabilities. We gath-

ered asymmetric association data from the BNC and evaluated the results

against data computed from the USF Free Association Norms. The measures

were able to predict asymmetry in associations; however, the error rate was

relatively high.

We now generalize the notion of a rank measure to arbitrary symmet-
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w1 w2 t-score w1 w2 R→t (w1, w2)
rich man 16.563 rich man 1
rich peasant 12.919 rich peasant 2
rich country 12.756 rich country 3
rich people 8.386 rich people 4
rich variety 7.423 → rich variety 5
rich source 7.861 rich source 6
rich color 7.568 rich color 7
rich soil 6.018 rich soil 8
rich nation 6.766 rich nation 9
rich world 5.714 rich world 10

Table 3.2: Determining the forward rank of rich man

ric association measures and evaluate the ability of these rank measures to

capture the asymmetry of syntagmatic associations.

In order to transform a standard symmetric association measure into a

rank measure that computes separate scores for the left- and right-predictiveness

of a word pair, we implement the following procedure. For example, for a

left-to-right rank measure based on t-score:

1. Compute symmetric t-scores for all word pairs (w1, w2).

2. For each word w1, create an association list of all components w2 that

co-occur with w1 in the corpus and sort the list by association strength

in descending order.

3. Starting at the top, replace the association scores by ranks 1, 2, 3, . . .6

Right-to-left rank measures are computed accordingly, exchanging w1 and w2

in the ranking procedure.

Table 3.2 shows the ten nouns (w2) that are most strongly associated with

the adjective rich (w1), together with the association scores computed by the

6Ties are handled as in a typical “sports” ranking: if n consecutive items have the
same score, they are all assigned the lowest free rank r; the next item will be assigned
rank r + n.
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w1 w2 t-score w1 w2 R←t (w1, w2)
young man 62.492 young man 1
old man 51.602 old man 2
tall man 19.270 tall man 3
dead man 18.661 dead man 4
rich man 16.563 → rich man 5
poor man 15.986 poor man 6
white man 14.279 white man 7
married man 14.620 married man 8
gay man 14.487 gay man 9
big man 14.456 big man 10

Table 3.3: Determining the backward rank of rich man

t-score measure (t). We write the left-to-right rank measure based on the

t-score measure as R→t (w1, w2) and call it the forward rank of (w1, w2). Note

that a small forward rank indicates a high degree of right-predictiveness.

For example, R→t (rich,man) = 1 means that man is the noun most strongly

predicted by the adjective rich according to the t-score measure.

Analogously, we denote the backward rank of a word pair (w1, w2) ac-

cording to the t-score measure by R←t (w1, w2). As can be seen from Ta-

ble 3.3, the backward rank of rich man is R←t (rich,man) = 5. In this case,

the forward rank (1) is lower than the backward rank (5), indicating higher

right-predictiveness than left-predictiveness.

Note that the association score of the pair rich man is 16.536 in both

association lists. This score was computed from a single contingency table of

observed frequencies, which is all the information that a standard association

measure has access to. By contrast, the corresponding left-to-right rank

measure R→t looks at the distribution of the association scores for all word

pairs (w1, ·); and the right-to-left measure R←t looks at the distribution for

all word pairs (·, w2). This way, we can calculate different degrees of right-

and left-predictiveness.

Rank measures are a general and flexible tool for capturing asymmetry

effects in word combinations. They can be applied to any symmetric asso-
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abbr. base AM

Rf based on frequency
RG2 based on log-likelihood (G2)
Rt based on t-score
Rχ2 based on chi-square (χ2)

Table 3.4: Abbreviations of rank measures

w1 w2 R→f R←f R→
G2 R←

G2 R→t R←t R→
χ2 R←

χ2

heavy smoker 17 1 9 1 15 1 5 4
bonsai tree 1 64 1 37 1 53 1 25

Table 3.5: Different association measures give rise to different rank measures.

ciation measure and transform it into an asymmetric measure of right- and

left-predictiveness. Each association measure gives rise to a different asym-

metric rank measure. The four different rank measures that we used in our

experiments are defined in Table 3.4. Table 3.5 illustrates the differences

between rank measures by showing left-to-right and right-to-left rank scores

for the word pairs heavy smoker and bonsai tree, according to four differ-

ent rank measures based on the standard association measures introduced in

Section 2.1.

According to the first three rank measures, heavy smoker is a strongly

left-predictive combination. The backward rank is 1 in all three cases whereas

the forward rank is considerably higher. The rank measure based on χ2 does

not agree with the other measures, suggesting an almost symmetric pair

with equal right- and left-predictiveness (although the backward rank is still

slightly lower). The pair bonsai tree is strongly right-predictive according to

all four measures. The forward and backward ranks are in accordance with

the assessment of Kjellmer who used bonsai tree as an example for a clearly

right-predictive combination.

The ranks do not take the frequency of the words into account and are
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therefore independent of association strength. For our purpose, this is not a

problem. First, we want to examine asymmetry for each word pair individ-

ually without comparing ranks of different pairs. Second, in an elicitation

experiment, low-frequency words will still trigger responses and the best re-

sponses will receive low ranks. The ranks tell us how good the associations

are relative to the stimulus.

In accordance with Michelbacher et al. (2007), we also measure right- and

left-predictiveness with conditional probabilities.

P→(w2|w1) =
P (w1, w2)

P (w1)
P←(w1|w2) =

P (w1, w2)

P (w2)

We added arrows to emphasize right-predictiveness (P→) and left-predictiveness

(P←). For example, P←(w1|w2) denotes the probability that w1 appears as

the first component in a pair when ( , w2) is already given. The probabilities

are maximum-likelihood estimates.

Note that because

P (w2, w1)

P (w1)
=

O11

N
O11+O12

N

=
O11

O11 +O12

,

the rank measure based on conditional probabilities is identical to Rf . It is

therefore not included separately in our evaluation. P→(w2|w1) and P→(w1|w2)

are effectively forward and backward 2-gram language models.

3.3.3 Analysis of the Distribution of Ranks

Corpus-based measures of asymmetry are only interesting if such asymmetry

is a frequent phenomenon. As we have argued earlier, we expect that syn-

tagmatic associations are often asymmetric and can only be characterized

adequately by a measure that allows for large differences in ranks. In order

to explore this property of rank measures, we cross-tabulated the forward

and backward ranks for the 391,454 word pairs with f ≥ 3 extracted from

the BNC . Rank values were collected into logarithmically scaled bins (ranks

1–2, 3–5, 6–10, 11–20, 21–35, 36–60, 61–100, 101–160, 161–250, 251–500,

501+), such that all bins contain a similar number of items.
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Figure 3.5: Cross-tabulation of forward and backward ranks for the log-
likelihood measure.
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Figure 3.6: Association plots of forward and backward ranks for the log-
likelihood-based rank measure RG2 (left panel) and the frequency-based rank
measure Rf (right panel).
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Figure 3.5 shows a bar plot of the cross-tabulation of forward and back-

ward ranks obtained for RG2 , the rank measure based on log-likelihood. Bars

along the main diagonal of the histogram – running from bottom to top in

the printout – correspond to symmetric word pairs with nearly equal for-

ward and backward ranks. The greater the distance of a bar from this main

diagonal, the more asymmetric the corresponding word pairs are.

It is obvious that there is a considerable number of asymmetric word pairs

with low forward and high backward rank (bars along the back left of the

plot), and also vice versa (bars along the back right). On the other hand,

very low forward ranks (ranks 1–2) correlate strongly with very low backward

ranks, and very high forward ranks correlate with very high backward ranks

(tall bars at both ends of the main diagonal). This is hardly surprising, since

forward and backward ranks are based on the same symmetric association

score: a highly associated word pair is more likely to achieve a low rank both

in the “forward” and the “backward” list. Likewise, a word pair where w1

and w2 are close to statistical independence is more likely to be assigned high

ranks in both lists.

Interestingly, the plot shows many word pairs with forward ranks 1 or 2,

but much higher backward rank (roughly between 10 and 100, along the back

left side of the histogram). According to RG2 , these word pairs are strongly

right-predictive. In comparison, the number of strongly left-predictive pairs is

much smaller – there are no equally high bars along the back right side of the

chart (corresponding to backward ranks of 1 or 2 and forward ranks between

10 and 100). This suggests that right-predictiveness is more common in En-

glish than left-predictiveness, at least for adjective-noun and noun-noun com-

binations. This observation is supported by our elicitation experiments, in

which more word pairs were found to be right-predictive than left-predictive

(see Section 3.5). The prevalence of right-predictive combinations is proba-

bly related to the fact that the preceding word is an important factor when

deciding which word to produce next. This causal relationship along the time

axis promotes the formation of right-predictive combinations. There exists

no equally strong mechanism for producing left-predictive combinations.

The association plot in the left panel of Figure 3.6 shows more clearly to
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what extent forward and backward ranks are correlated. Black bars above

the midlines indicate that a given combination of forward and backward rank

appears for more word pairs than expected if the rankings were independent

(i.e., a positive correlation between forward and backward rank). Grey bars

below the lines indicate a smaller number of word pairs than expected (i.e., a

negative correlation). It is obvious from the plot that very low forward ranks

correlate strongly with very low backward ranks, and similarly for very high

ranks. Again, this shows that very strongly and very weakly associated word

pairs tend to be symmetric according to the rank measure. By contrast,

the almost vanishing bars near the center of the plot show that forward

and backward ranks are practically independent in a middle range (roughly

ranks 10–100). Here, the rank measure is able to make a distinction between

symmetric and asymmetric pairs.

A second important question is whether different symmetric association

measures lead to different rank distributions. The right panel of Figure 3.6

shows an association plot for Rf (the rank measure based on co-occurrence

frequency). The distribution of ranks is strikingly different from that of

RG2 , with forward and backward ranks almost independent for ranks below

about 250. There is a considerable number of highly asymmetric word pairs,

characterized by a very high rank (above 500) in one direction and a low rank

(below 35) in the other direction (black bars along the top and right edges

of the plot). This observation may be surprising at first, but it is easily

explained for the left-predictive case by combinations of a high-frequency

word w2 (e.g. disease) with a low-frequency word w1 (e.g. adiposogenital)

that almost always occurs with w2 (and analogously for the right-predictive

case).

Association plots for the other two measures are qualitatively similar to

the log-likelihood (G2) pattern, with a somewhat stronger correlation for

chi-square (χ2) and a slightly larger region of near-independence for t-score

(t). This is perhaps not surprising since all three measures are based on

statistical hypothesis tests. The observed differences between the rank dis-

tributions agree with the known tendencies of χ2 to overestimate and of t to

underestimate the significance of association (Evert, 2004, 111).
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wishful thinking

thinkingwishful

Figure 3.7: Forward and backward stimuli for the pair wishful thinking

3.4 Elicitation Experiment

This section describes our experimental design and the results of the elicita-

tion experiment.

Free association experiments have frequently been conducted to gather

data about spontaneous human associations. In these experiments, a stim-

ulus is presented and the subject is asked to produce one or more related

words, e.g. those words that first come to mind when thinking about the

stimulus.

In this type of experiment, there are no restrictions on what type of re-

sponse the subject can give (cf. Table 3.1). When humans associate freely,

they produce mostly paradigmatic combinations. While there are some syn-

tagmatic associations in the norms produced from such experiments – e.g.

blue → sky or big → deal – they are always right-predictive, making these

norms unsuitable for our purpose.

Nevertheless, as noted in Section 3.2.3, word association norms do con-

tain a portion of syntagmatic responses. Furthermore, it has been shown

that grammatical stimulus-response pairs can be collected systematically in

elicitation experiments when subjects are explicitly asked to produce them

(McGee, 2009). With these findings in mind, we decided to base our experi-

mental design on classical free associations experiments but with a restriction

to syntagmatic responses.

We instructed subjects to produce responses that result in a well-formed

phrase when combined with the stimulus.7 This way, stimulus and response

form a combination that could occur in production. The key problem is how

to present stimuli in a way that elicits the desired data without biasing the
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subjects’ responses.

The experimental design we decided on splits each word pair (w1, w2) into

two separate stimuli: a forward stimulus [w1 ] and a backward stimulus [ w2].

That is, either the first or the second component of the pair is replaced by the

blank to indicate to participants that a word has been removed and needs

to be provided. This design allows for testing both directions of association,

from w1 to w2 and from w2 to w1. An example is shown in Figure 3.7.

Subjects were instructed to fill the blank in a way that created a well-

formed phrase. We imposed no other restrictions on admissible responses to

avoid any type of bias. In particular, no context was provided that might have

disambiguated ambiguous stimuli or suggested a response from a particular

domain.

Because of this unrestricted nature of the experiment, subjects often pro-

duced part-of-speech combinations that were not compatible with our data.

Such unusable responses included determiners, pronouns and cases where

subjects interpreted a stimulus word as a verb or adverb rather than as an

adjective or noun. For example, [cut ] was often extended to cut down or cut

off instead of a noun-noun or adjective-noun phrase such as cut glass. We

discarded part-of-speech mismatches in order to be able to perform a clean

analysis of adjective-noun and noun-noun associations.

3.4.1 Pair Selection

We used a hybrid selection method to sample stimuli, adapting the method-

ology of Krenn and Evert (2005). We started with a pool P of candidates

and took a random sample M from P . We then created a subset Q from M

by removing extraction noise and domain-specific terminology. Finally, we

took a further random sample S from Q to get the desired number of stimuli.

This procedure was applied to three different pools:

• P1: all pair types (w1, w2)

7The complete instructions are shown in Appendix B.
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Figure 3.8: Sampling procedure for stimuli (illustrated for a sample S2 of
right-predictive word pairs from the pool P2)

• P2: pair types with strong right-predictiveness (according to at least

one of the association measures)

• P3: pair types with strong left-predictiveness (according to at least one

of the association measures)

The process is illustrated in Figure 3.8 for strongly right-predictive word

pairs (i.e., candidate sets P2/M2/Q2/S2).

The first pool, P1, contains all 2,014,116 pair types that we extracted from

the BNC.8 The pools P2 and P3 are motivated by two constraints that any

experiment designed to elicit syntagmatic responses must satisfy. First, we

can only present a limited number of stimuli to each subject. This means the

8Note that no frequency threshold is applied at this stage, resulting in a very large
number of pair types.
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overall number of stimuli must be relatively small. Second, we must ensure

that the elicited data are useful for our evaluation. Since a random sample

would mostly contain weakly associated pairs, it was necessary to bias the

selection of stimuli.

To this end, we created a set P2 of strongly right-predictive pairs and a set

P3 of strongly left-predictive pairs, where strong predictiveness was defined

as R→(w1, w2) = 1 (for P2) and R←(w1, w2) = 1 (for P3) for at least one

measure. For example, for 30,664 pairs R→f is 1. We chose this criterion to

obtain good candidates for asymmetric word combinations.

To create P2, the rank criterion R→(w1, w2) = 1 was applied to all pairs

and for all four association measures. The four resulting sets (represented

by rectangles in Figure 3.8) were merged. Multiple occurrences of the same

pair were removed, resulting in a pool P2 of 40,821 candidates. The same

procedure was carried out to obtain P3 with a size of 26,600 candidates.

In the next step, random samples of fixed sizes were drawn from each of

the Pi. The three resulting samples were Q1 (336 pairs), Q2 (240 pairs) and

Q3 (240 pairs). The sample sizes were chosen to be low enough to allow for

manual review of all pairs. Pairs with frequency f ≤ 5 were removed. We

then reviewed each of the remaining pairs and removed extraction noise, rare

technical terms and rare proper nouns. Specifically, domain-specific terminol-

ogy from fields like mathematics, biology, computing, and medicine were re-

moved. Examples include ileocolonic resection, configurational entropy, Unix

file and non-zero element – terms which are unlikely to be familiar to the

general population.

The resulting pools Q1, Q2 and Q3 were the basis for three final random

samples: S1 (16 pairs from Q1), S2 (24 pairs from Q2) and S3 (24 pairs

from Q3). These 64 pairs were then replaced by their most frequent sur-

face realizations in the BNC, in order to ensure that subjects would not be

distracted by the use of uncommon base forms from the automatic lemma-

tization. For example, wellington boot was turned into wellington boots and

christmas decoration into Christmas decorations.

98



3.4.2 Conducting the Experiment

Test subjects were randomly split into two groups, group I and group II.

When group I was presented a pair with the first component missing, group II

saw the same pair with the second component missing and vice versa. This

procedure ensured that subjects were not biased by a previous stimulus (e.g.

seeing [ tree] after [bonsai ]). Stimuli of types [w1 ] and [ w2] were split

equally between the two groups.

Subjects were given detailed instructions to ensure they would not mis-

take the experiment for a free association task. They were encouraged to take

some time to think of the stimulus word in different contexts and scenarios.

They were also permitted to give multiple answers, or no answer at all.

The experiment was carried out online at the Portal for Psychological

Experiments on Language.9 The subjects were informed that only native

speakers of English were allowed to participate. 168 subjects took part in

the experiment, 74 for group I and 94 for group II. The discrepancy between

the two groups is due to the fact that some subjects did not complete the

experiment. We collected a total of 43,101 responses. This means that on

average, a subject provided 4 responses per stimulus.

We only included data from completed experiments in our analysis. We

removed 3 pairs – common destiny, independent charts, and old self – because

they were never successfully elicited in either direction. For example, common

was never elicited as w1 for the stimulus [ destiny ] and destiny was never

elicited as w2 for the stimulus [common ]. The analysis described in the

next section was performed for the remaining 61 pairs.

We lemmatized the subjects’ input for our analysis. Spelling variants were

unified to British English to facilitate the comparison with the corpus data.

Manual spelling correction and normalization was applied when necessary,

e.g. Xmas was normalized to Christmas.

For each subject and stimulus, we kept track of the order in which re-

sponses were given. We assume that the order of elicitation directly corre-

sponds to association strength in that the first answer given has the highest

9http://language-experiments.org/.
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association to the stimulus word and so on.

In elicitation experiments like free association norms or our experiment,

agreement is usually not reported. Standard agreement measures such as the

ones discussed in Artstein and Poesio (2008) are not applicable here because

there is no predefined set of possible answers.

3.5 Experimental Results and Analysis

In this section, we define the direction scores used to evaluate subjects’ re-

sponses and perform both a qualitative and a quantitative evaluation of the

experimental results.

3.5.1 Direction Scores

We scored the subjects’ responses using a mean reciprocal rank measure

(cf. Voorhees, 1999). Two direction scores were defined – a forward score

f(w1, w2) and a backward score b(w1, w2), as given by the following equations:

f(w1, w2) =
1

C([w1 ])

C([w1 ])
∑

i=1

1

ri(w2)

b(w1, w2) =
1

C([ w2])

C([ w2])
∑

i=1

1

ri(w1)

Here, C([w1 ]) is the total number of subjects that were presented with stim-

ulus [w1 ] and ri(w2) is the rank of w2 in the list of responses to [w1 ] given

by subject i. C([ w2]) is the number of subjects presented with stimulus

[ w2] and ri(w1) the rank of w1 in the list of responses to [ w2] by subject

i. If a subject did not produce the response in question, we assigned rank

r = 1000. The highest possible direction score in this scheme is 1.0.

3.5.2 Qualitative Evaluation

The composition of responses given in our study differs considerably from

previous association norms. As an example, Table 3.6 shows the 10 highest-

100



syntagmatic paradigmatic syntagmatic paradigmatic
stimulus [white ] white [water ] water
No. EAT USF EAT USF
1 wash black black bottle wet drink
2 Christmas red pure works drink cool
3 house snow clean fall tap wet
4 out sheet snow fountain sea swim
5 board ice light slide cold thirsty
7 wedding beach color cooler h2o faucet
6 water nothing paper jug hot pool
8 dress blank red pipe rain thirst
9 man block — park river ice
10 noise blue — balloon thirst cold

Table 3.6: Comparison of our results with free association norms

scoring responses for white and water in our syntagmatic experiment and in

two free association experiments.10 For this comparison we did not filter out

responses like white out that do not constitute adjective-noun or noun-noun

combinations. For the stimulus white, half of the responses in the EAT norms

are of a paradigmatic nature except for sheet, beach, block, snow and ice. The

same holds for the USF norms; syntagmatic responses are snow, light, color

and paper. For the stimulus water, there are no syntagmatic responses at all

in either of the data sets.

The responses in the new experiment, however, exclusively consist of

syntagmatic associations, that is, they all produce well-formed phrases when

the response is inserted into the empty slot of the stimulus.

A qualitative analysis of the 61 pairs revealed four major groups. Group A

contains all pairs where the rank measures conform with human responses

in that they agree on which direction of association is stronger. The bulk

of the pairs (48) belong to group A. Group B is a small group consisting

of 4 cases where corpus data and human elicitations contradict each other.

We also found borderline cases where the rank measures provide evidence for

10The USF data set lists only eight responses for the stimulus white.
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both right-predictiveness and left-predictiveness, but could not be aligned

with human elicitations (group C, 4 elements). We regard pairs where the

rank measures suggest very strong association (rank ≤ 2) in both directions

as a special case and put these pairs in a separate group of high mutual

predictiveness (group D, 5 elements).

Table 3.7 shows word pairs from the four groups with detailed information

on corpus ranks and scores from the elicitation experiment.

For most pairs in groups A and B, the four measures agree on the direction

of predictiveness. There were 15 pairs where the four measures did not agree,

marked with ‘*’ in Table 3.7. In most cases, it is the χ2 measure that disagrees

with the other measures.

For about 80% of the pairs – those in group A – the statistical measures

indicate the correct direction of association. This demonstrates that the rank

measures are able to model human behavior in the elicitation experiment for

most pairs. Group B, which contains pairs where the rank measures failed

to make correct predictions is reassuringly small, with only 4 pairs. There

are various possible explanations for the failure of the rank measures in these

cases. For example, the pair missile silos exhibits almost equally strong

predictiveness in both directions according to the subjects. This view is only

partly reflected by the rank measures. The χ2 measure comes close with a low

forward and backward rank. However, the other measures only have a low

backward rank, but not a low forward rank for this pair. They rank other

words (e.g. crisis, launcher or technology) more highly. This discrepancy

between human judgements and corpus data could be due to the fact that

missile silos were a more dominant topic during the cold war – at the time

when the BNC data were collected – and that subjects today are less familiar

with them.

Group D contains word pairs where the rank measures indicate the strongest

possible predictiveness in both directions, regardless of which status the hu-

man data suggest. The five phrases in this category are MWUs with strong

lexical association in both directions.

We do not give a deeper discussion of the five pairs in D and the four

pairs in B but we suspect that corpus data fail to provide a good predic-
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tion of human behavior in these cases because of differences between spo-

ken and written language. For example, wishful thinking is not very left-

predictive according to the human subjects – subjects gave responses like

quick (b = 0.175), good (0.165), clear (0.114) and critical (0.108) more often

than wishful (0.006). But in the BNC, wishful is by far the most common

adjective preceding thinking (147 instances vs. 65 for new thinking and 43 for

critical thinking). Other reasons for the discrepancy between corpus-derived

and human associations for groups B and D could be part-of-speech ambigu-

ity (thinking is predominantly a present participle, not a noun) and dialectal

differences – bloody hell and unleaded petrol are British English expressions

that American English speakers may not be familiar with.

One important difference between the rank measures and raw conditional

probabilities can be found in all pairs of group D except for bloody hell.

We will illustrate the phenomenon for wishful thinking. Human judgement

for this pair is overwhelmingly right-predictive (f = .952, b = .006). The

word wishful only occurs with two different nouns in the corpus and almost

all its occurrences are with thinking which in turn occurs with about 100

other adjectives. This is naturally reflected in the conditional probabilities:

P→(thinking|wishful) = .924 and P←(wishful|thinking) = .089. However,

the association score of the two words in the combination wishful thinking is

high enough to outrank all other adjectives that appear with thinking result-

ing in rank 1 in both directions. This can simply be interpreted as the rank

measures suggesting likely completions to a stimulus (based on the distribu-

tion in the corpus) whereas conditional probabilities are suited to measure

absolute association strength. The other two pairs where conditional proba-

bilities perform better than the rank measures are South East and laboratory

experiments from group C. Here, the rank measures are ambivalent but the

conditional probabilities capture the correct direction of predictiveness.

For the pair aching void, conditional probability makes the wrong pre-

diction and the rank measures are correct. Conditional probability suggests

near-symmetry (P→ = .038, P← = .037) whereas the ranks (except for Rχ2)

conform with the subjects’ judgements of left-predictiveness.
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f b (w1, w2) R→f R←f R→
G2 R←

G2 R→t R←t R→
χ2 R←

χ2

group A: rank measures and direction scores conform

.589 .254 Academy Award 1 9 1 2 1 7 1 2

.236 .001 alarming rate 1 56 1 44 1 45 2 55

.332 .001 ancestral home 1 25 1 13 1 19 1 11

.698 .043 bated breath 1 5 1 2 1 5 1 2

.555 .160 cable television 2 7 1 4 2 5 1 2

.229 .033 choux pastry 1 5 1 5 1 5 1 4

.012 .008 cut glass 1 75 1 46 1 58 1 40

.020 .001 disclosure letter 1 9 1 3 1 6 1 4

.676 .001 felled tree 1 54 1 33 1 45 1 17

.101 .001 gleaming teeth 3 42 4 36 3 35 6 42

.068 .002 hunched shoulders 1 16 1 7 1 14 1 2

.332 .238 irritable bowel 1 4 1 2 1 3 1 2

.087 .001 old-fashioned way 1 98 1 60 1 62 4 70

.204 .010 radiant smile 1 48 1 32 1 47 3 20

.166 .006 rightful place 1 26 1 6 1 15 2 4

.177 .055 rising tide 3 4 3 4 3 4 1 3

.150 .049 rope ladder 1 4 1 4 1 4 2 4

.728 .064 sedimentary rocks 1 6 1 4 1 5 3 5

.024 .001 shrewd idea 3 109 6 49 3 68 10 41

.002 .001 stunning effect 2 135 9 129 2 99 15 190

.171 .001 thick-set man 1 519 1 169 1 318 1 86

.220 .009 vivid memories 1 5 1 4 1 4 2 5

.064 .006 well-worn path 1 71 1 34 1 58 1 22

.475 .065 *wellington boots 1 5 1 3 1 5 1 1

.012 .012 *impending retirement 9 18 8 14 9 18 9 9

.243 .014 *blackout curtains 1 9 1 4 1 8 1 1

.060 .056 *speech recognition 1 2 1 1 1 2 2 4

.001 .009 annual rent 29 2 20 1 28 2 15 7

.086 .119 Christian religion 12 4 12 1 12 2 18 5

.026 .820 Christmas decorations 11 1 8 1 11 1 9 3

.001 .145 civil libertarians 47 1 26 1 38 1 10 1

.001 .010 female preferences 63 34 92 44 60 34 95 48

.001 .002 great delicacy 473 1 206 1 260 1 199 3

.001 .065 hard frost 39 1 21 1 35 1 10 1

.017 .696 high fidelity 352 2 164 1 215 2 137 3

The table is continued on the next page.
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f b (w1, w2) R→f R←f R→
G2 R←

G2 R→t R←t R→
χ2 R←

χ2

.001 .031 legal wrangling 151 1 58 1 110 1 25 1

.001 .012 major shake-up 248 1 74 2 136 1 42 4

.008 .132 smoked mackerel 5 1 3 1 5 1 3 1

.001 .066 social solidarity 161 1 94 1 118 1 74 4

.001 .003 southern bypass 21 1 15 1 20 1 10 1

.026 .203 water sports 21 2 25 2 20 1 47 18

.004 .042 welcome diversion 17 3 15 1 16 3 8 3

.003 .042 *bond issuance 10 1 7 1 10 1 2 2

.038 .632 *food poisoning 10 1 3 1 10 1 2 2

.054 .450 *deadly nightshade 7 1 3 1 7 1 1 1

.006 .010 *aching void 5 3 3 1 5 3 1 2

.047 .389 *white collar 11 1 6 1 9 1 5 6

.274 .840 treasure trove 4 1 1 1 4 1 1 1

group B: rank measures and direction scores do not conform

.095 .116 healthy food 6 19 6 20 5 15 13 53

.156 .154 missile silos 16 1 8 1 16 1 2 1

.001 .006 seasoned campaigners 1 9 1 6 1 9 1 6

.292 .530 *precious metals 1 2 1 2 1 2 1 1

group C: rank measures ambivalent

.541 .462 *epileptic seizure 2 3 2 1 2 3 2 1

.076 .033 *dedicated follower 7 3 2 3 4 3 3 6

.434 .023 *laboratory experiments 2 1 1 1 2 1 1 1

.068 .183 *South East 1 2 3 2 1 2 5 2

group D: high mutual predictiveness

.296 .133 bloody hell 1 1 1 1 1 1 1 1

.127 .283 *special needs 1 1 1 1 1 1 1 2

.681 .279 toxic waste 1 1 1 1 1 1 1 1

.261 .158 unleaded petrol 1 1 1 1 1 1 1 1

.952 .006 wishful thinking 1 1 1 1 1 1 1 1

Table 3.7: Forward and backward scores and rank measures for the word
pairs used in the elicitation experiment; ’*’ indicates disagreement of rank-
measures on direction of predictiveness.
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3.5.3 Asymmetry as an MWU Property

With the available dataset of elicited forward and backward scores for 61

word phrases, we want to investigate asymmetry as a property of MWUs.

We define a phrase as an MWU based on look-up in a lexical resource and a

world-knowledge resource (see below for details about the database look-up).

For this evaluation, we consider strong asymmetry which we define as either

forward or backward score being > 0.5. Table 3.8 shows the relation between

the asymmetry property and MWU status (if a phrase was found to be an

MWU, it has MWU status true). We found that there are 32 MWUs and

29 non-MWUs in the data. Roughly 40% (13 out of 32) MWUs have strong

asymmetry and 19 do not. None of the non-MWUs have strong asymmetry

and hence there are 29 phrases that are non-MWUs and do not have the

asymmetry property. To summarize, strong asymmetry is a phenomenon

that can be found in some MWUs but MWUs do not necessarily exhibit

this property. Furthermore, none of the phrases that were classified as non-

MWUs had strong asymmetry.

An MWU classifier with strong asymmetry as its only feature (the model

that predicts MWU status true if a candidate has strong asymmetry and

false otherwise) outperforms a baseline majority classifier (the model that

predicts MWU status true for every candidate) on our data. The baseline

classifier has 52% accuracy (32 out of 61 phrases are MWUs) whereas the

asymmetry-based model has 69% accuracy (13 phrases have strong asymme-

try and are MWUs; 29 do not have asymmetry and are non-MWUs). Thus,

it can be argued that strong asymmetry is a useful indicator for a phrase

being an MWU.

We base our analysis on the assumption that collocations and MWUs rep-

resent a “conventional way of saying things” (Manning and Schütze, 1999,

151). For this purpose, we need to decide if a phrase is an MWU. We consult

two freely accessible knowledge sources, Wikipedia as a resource for world

knowledge and Wiktionary as a lexical resource. Our decision criterion is

that a phrase is an MWU if it has an entry in either of the two databases.

Being listed in these resources means that a phrase is worth recording be-
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Table 3.8: Confusion matrix of asymmetry feature and MWU status

cause it refers to a real-world entity, e.g. Academy Award or cable television,

or because it is a habitual combination used to express an important re-

curring concept or sentiment, e.g. wishful thinking. It can be argued that

combinations that have an entry in these resources do in fact represent a

conventional way of saying things and can thus be classified as MWUs.11

3.5.4 Quantitative Evaluation

We have introduced three different approaches to predictiveness and asym-

metric association: (i) direction scores f and b computed from the elicitation

experiment; (ii) rank measures R→ and R← and (iii) conditional probabilities

P→ and P←. The latter two are based on corpus data. Scores, ranks and

conditional probabilities are capable of capturing asymmetries between the

two components of a word pair. In this section, we perform a quantitative

11Some of the phrases redirect to articles with a different name on Wikipedia (e.g. food
poisoning redirects to foodborne illness). We count a redirect as a match. We did not
count a match when the database entry consisted only of proper nouns (e.g. Rising Tide
is the name of a novel) because or strategy for pair extraction (Section 3.3.1), we did not
allow all-proper-noun combinations. Database look-ups were carried out on November
22nd, 2012 on http://www.en.wikipedia.org and http://www.en.wikitionary.org.
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evaluation of how well the predictions made by the corpus-based measures

agree with the human scores.

Our test case is the distinction between right-predictive and left-predictive

word pairs. We cast the task as a classification problem of right-predictive

pairs. We predict the class directly from the scores or respective measures.

The output variable Y takes on the values true if the prediction is right-

predictive and false otherwise.12

Y =







true if f ≥ b (right-predictive)

false if f < b (left-predictive)

Analogously, we transformed the conditional probabilities into a correspond-

ing input variable:13

X =







true if P→ ≥ P← (right-predictive)

false if P→ < P← (left-predictive)

We applied a similar procedure to each corpus-based rank measure. For

instance, the input variable for the t-score measure t is given by:

Xt =







true if R→t ≤ R←t (right-predictive)

false if R→t > R←t (left-predictive)

Recall that a lower rank indicates higher association. Therefore, a pair with

R→ > R← is left-predictive and is assigned an input value of X = false.

In the case of equal ranks, we also assigned X = true (right-predictive)

because the human subjects – as well as our corpus data, see Section 3.3.3

– showed a preference for right-predictiveness – the elicitation experiment

yielded 34 word pairs with f > b, compared to 27 with f < b. The first four

rows of Table 3.9 show the accuracy of predictions made by the four rank

measures.

The data set contains 34 RP and 27 LP pairs. Therefore, a baseline

12The case f = b did not occur in the human data.
13Again, the case P→ = P← did not occur.
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rank measure accuracy 95% confidence interval
Rf 88.5% 77.8% . . . 95.3%
RG2 90.2% 79.8% . . . 96.3%
Rt 88.5% 77.8% . . . 95.3%
Rχ2 82.0% 70.0% . . . 90.6%
cond. prob. 90.2% 79.8% . . . 96.3%
baseline 62.3% 49.0% . . . 74.4%

Table 3.9: Accuracy of predictions made by the corpus measures

classifier that assigns every pair to category RP (i.e., X = true) achieves

an accuracy of 55.7%. In our evaluation, we use a more optimistic cross-

validation baseline where the most frequent category is chosen separately

for each of the six data folds.14 The resulting baseline accuracy of 62.3%,

calculated over all 61 items, is reported in the last row of Table 3.9.

Because of the small sample size used for the evaluation, statistical sig-

nificance testing is essential. As an indication of the amount of random

variation, we calculated binomial 95% confidence intervals for the proportion

of correct predictions, shown in the rightmost column of Table 3.9.

All rank measures perform well, even compared to the optimistic baseline.

The best result is achieved by log-likelihood (RG2) with an accuracy of 90.2%.

The binomial confidence interval indicates that the RG2 rank measure will

achieve a prediction accuracy of at least 79.8% on larger data sets. Frequency

(Rf ) and t-score (Rt) are tied in second place, with a score of 88.5%. This is

no coincidence: the two measures happen to make identical predictions for

all items in our data set (i.e., Xf = Xt), although they are not equivalent in

general.15 Chi-square (Rχ2) performs considerably worse than the other rank

14The baseline is optimistic because the most frequent category is determined from the
test fold in each case, rather than from the training folds. For instance, if the first fold
contained 7 RP pairs and 3 LP pairs, the optimistic baseline classifier would assign all
pairs in this fold to category RP. If the third fold contained 4 RP and 6 LP pairs, the
optimistic baseline would assign all pairs in this fold to category LP.

15Note that the difference between these measures and log-likelihood corresponds to a
single word pair: RG2 makes 55 correct predictions vs. 54 for f and t. Our experiment
therefore provides no reliable evidence that any of the three measures is better than the
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measures, but is still much better than the baseline, with a 95% confidence

interval ranging from 70% to about 90% accuracy. Conditional probabilities

perform as well as the best rank measure (but with different predictions).

We used an exact version of McNemar’s test (Hollander and Wolfe, 1999,

468–470) to assess the significance of result differences. This test considers

only items for which the two models to be compared made different pre-

dictions. Due to the small sample size, there are no significant differences

between any of the models. In particular, we were not able to show that RG2

is significantly better than Rχ2 (exact McNemar, p = .063), even though

Table 3.9 shows a clear difference. However, all models except for χ2 are

significantly better than the optimistic baseline (with p-values ranging from

p = .001 for RG2 to p = .017 for Rχ2).

A simple ranking by co-occurrence frequency (Rf ) once again performs

astonishingly well, reaching the same accuracy as t-score (Rt). Both mea-

sures only take the first cell of the contingency table into account, but t-score

additionally considers the difference between observed and expected frequen-

cies. It is interesting to note that RG2 is the best of the five measures and

Rχ2 the worst, even though they are both independence tests using informa-

tion from the full contingency table. A possible explanation is the tendency

of Rχ2 to overestimate significance in highly skewed contingency tables (see

Dunning, 1993; Evert, 2004).

3.6 Summary

In this chapter we highlighted one important property of syntagmatic word

combinations: asymmetric association between their components. This prop-

erty has long been neglected due to a lack of appropriate techniques for corpus

data. Our rank-based asymmetric association measures provide, for the first

time, a suitable empirical operationalization of asymmetry in syntagmatic

word combinations. In addition, future theoretical discussions can draw on

the results of our syntagmatic association experiment as a complementary

other two.
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form of evidence.

We have discussed two important distinctions in this chapter, the dis-

tinction between syntagmatic and paradigmatic relations and the distinction

between symmetric and asymmetric relations. Asymmetry in paradigmatic

relations (e.g. asymmetric similarity) has received attention in the past in

psychological and corpus-based studies and it has been shown that asymmet-

ric similarity measures can be of use for a number of applications.

Previous research was often based on free association norms and rating

experiments which capture mostly paradigmatic relations and do not allow

for systematic investigation of asymmetry. We have investigated asymmetry

in syntagmatic relations. We designed a novel experiment setup to collect

human data on syntagmatic combinations. In our study, we compared syn-

tagmatic combinations in corpora and in human-subject experiments and

demonstrated that corpus-derived rank measures and conditional probabili-

ties can predict the asymmetry of human syntagmatic associations with high

accuracy. We found that conditional probabilities are suited to measure ab-

solute association strength, whereas rank measures are a good indicator for

which responses could be the best completion to a given stimulus. We have

shown asymmetry occurs in human production and that strong asymmetry is

characteristic of MWUs. We found that right-predictive asymmetry is more

prevalent than left-predictive asymmetry.
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Chapter 4

Multi-Word Tokenization

4.1 Introduction

The research presented in this chapter is joint work with Alok Kothari,

Christina Lioma and Martin Forst (Michelbacher et al., 2011b). We present

an implementation of MWT and evaluate its performance against a gold

standard of MWUs. Additionally, we measure its impact on an informa-

tion retrieval system. At the heart of our implementation is the notion

of the semantic head. The semantic head addresses the property of non-

compositionality in MWUs and captures the non-compositional core of a

phrase. Our hypothesis is that an MWU is a phrase that is identical to its

semantic head; in contrast, if a phrase is a compositional combination then

it is not an MWU and the semantic head is identical to the syntactic head.

In our implementation, the MWU decision step is realized as semantic head

recognition. We propose a supervised cascaded classification approach to

semantic head recognition. This approach can process phrases of arbitrary

length and leverages different feature types, namely statistical association

measures and features of contextual similarity. The latter feature type is

targeted at non-compositionality detection. We show that context features

significantly enhance a baseline semantic head recognizer. However, we also

identify a the challenges of using contextual similarity in high-confidence

semantic head recognition.
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We run experiments on a collection of documents from the physics do-

main. We focus on the physics domain because domain-specific terminology

is often encoded in MWUs. In the face of resource scarcity in specialized

domains, MWT for such domains is of particular importance; for many do-

mains, comprehensive and up-to-date lists of domain-specific terminology are

not available.

In this study, we focus on the property of non-compositionality to recog-

nize MWUs. In the context of information retrieval this is the most impor-

tant MWU property because satisfying an information need is primarily a

semantic question and less a question of, for example, subtle morphosyntactic

variations which fall under non-modifiability.1

The remainder of this chapter is structured as follows. Section 4.2 details

semantic heads and describes our implementation of MWT based on semantic

head recognition. In Section 4.3, we describe the evaluation setup consisting

of (i) the creation of the gold standard of MWUs (Section 4.3.1) and (ii) the

incorporation of MWU information into information retrieval (Section 4.3.2).

In Section 4.4 we present and discuss the results of the two experiments. In

Section 4.5 we give a summary of this chapter.

4.2 An Implementation of MWT

In this section, we describe an implementation of MWT. The main part of

MWT is the MWU decision step. In our implementation, the decision MWU

vs. non-MWU is made by recognizing the semantic head in MWU candidates.

For this purpose, we propose a cascaded classification approach to semantic

head recognition.

The cascaded model allows us to process MWU candidates of arbitrary

length. For classification, we use a number of previously proposed features

for recognizing non-compositionality based on association measures. In addi-

tion, we compare features that address non-compositionality with measures

of contextual similarity.

1For MWT in general this restriction does not hold.
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We first introduce the concept of semantic head and its relation to MWT.

Second, we describe the cascaded classification approach. Third, we define

and discuss the features that we use in classification.

4.2.1 Semantic Heads

The importance of syntactic heads for many NLP tasks is generally accepted.

For example, in coreference resolution, identity of syntactic heads is predic-

tive of coreference; in parse disambiguation, the syntactic head of a noun

phrase is a powerful feature for resolving attachment ambiguities. However,

in all of these cases, the syntactic head is only an approximation of the in-

formation that is really needed; the underlying assumption made when using

the syntactic head as a substitute for the entire phrase is that the syntactic

head is representative of the phrase. This is not the case when the phrase is

non-compositional.

We define the semantic head of an NP as the largest non-compositional

part of the phrase that contains the syntactic head. For example, dog is the

semantic head of new dog in (4.1) and hot dog is the semantic head of tasty

hot dog in (4.2). In the first case, syntactic and semantic heads coincide.

Semantic heads would serve most NLP tasks better than syntactic heads.

For example, a coreference resolution system is misled if it looks at syntac-

tic heads to determine possible coreference of the new dog . . . a tasty hot

dog. This is not the case for a system that makes the decision based on the

semantic heads hot dog of a tasty hot dog and dog of the new dog.

(4.1) I took the new dog to the vet.

(4.2) Then I had a tasty hot dog.

The semantic head is either a single noun or a non-compositional noun

phrase. In the latter case, the modifier(s) introduce(s) a non-compositional,

unpredictable shift of meaning; hot shifts the meaning of dog from live animal

to food. In contrast, the compositional meaning shift caused by small in small

dog is transparent. The semantic head always contains the syntactic head;

for compositional phrases, syntactic head and semantic head are identical.
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The connection between semantic heads and MWT is straightforward:

The goal of MWT is to process MWUs as a whole. In non-compositional

phrases the semantic head constitutes an MWU. This means that by recog-

nizing the semantic head in a candidate, we have all the information necessary

to process an MWU as a single token.

4.2.2 The Term Semantic Head in the Literature

In the literature, the term semantic head is sometimes used to refer to that

part of a noun phrase that carries its (main) meaning. We discuss two con-

crete works that use the term and that are related to MWT.

Korkontzelos and Manandhar (2009) use the term semantic head in a

study on detecting compositionality in MWUs. They use it to refer to the

head noun in NPs. Their compositionality detection strategy is similar to

ours in that it uses distributional semantics to measure semantic distance

between the semantic head and the whole phrase. Their method to identify

semantic heads relies on an arbitrary similarity threshold rather than statis-

tical classification. Furthermore, they do not mention semantic heads that

span multiple words.

Fillmore et al. (2002) draw the distinction between the syntactic and

semantic head of a phrase in the context of predicates and the semantic roles

of their arguments. They identify “case[s] in which there is a discrepancy

between the syntactic ‘head’ of the phrase and its semantic ‘head.’ ” This

phenomenon occurs with what the authors call transparent nouns. In the

noun phrase in (4.3), the syntactic head kind is a transparent noun whereas

the semantic head proposal, the part of the phrase that carries the meaning,

is embedded in prepositional phrase:

(4.3) I object to that kind of proposal.

Fillmore et al. (2002) suggest a list of common transparent constructions,

e.g.
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Parts part of the room

Measures liter of wine

Aggregates herd of wildebeest

Types kind of fish

Unitizers bout of the flu

Evaluatives her jerk of a husband

The above uses of the term semantic head are similar to ours although

in both cases, the term semantic head is used without proper introduction.

Korkontzelos and Manandhar (2009) have the same goal, namely MWU iden-

tification, but their scope is narrower (no multi-word semantic heads) and

their model is less powerful (arbitrary threshold instead of a learning algo-

rithm and only one comparison method). Fillmore et al. (2002) use semantic

heads in a different scenario, namely semantic roles and their goals are not

directly related to MWT. They do, however, touch on an important aspect

of the idea of semantic heads that our model does not currently cover: the

case where the syntactic and semantic head do not share any words. For

our purposes of MWT in this thesis, the focus is not on this aspect of se-

mantic heads but on investigating the feasibility of a particular classification

approach to MWT. To address this problem in a future implementation of

MWT, we suggest a stop list of transparent nouns to “forward” semantic

head recognition into the prepositional phrase.

For example, an MWT system that is aware of transparent nouns, e.g. by

including a stop list of common nouns of measurement, would label wine as

the semantic head in liter of wine. For most NLP applications, we are more

interested in the semantic content of phrases with transparent nouns (wine)

rather than the meaning of the transparent noun itself (liter).2

2In another scenario, an information extraction system might be designed to discover
the quantities of consumed substances and an appropriate MWT system should label liter
as the semantic head. For cases like these, the system could include a white list that
contains nouns of measurement.
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(1) neutron star
(2) unusual black hole
(3) bright optical afterglow
(4) small moment of inertia

Figure 4.1: Example phrases with modifiers. Peripheral elements are set in
italics, syntactic heads in bold.

4.2.3 Cascaded Model for MWU Decision

Semantic head recognition implements the MWU decision step that is at the

core of MWT. To recognize the semantic head of a phrase, we use a cascaded

classification approach. We need a cascade because we want to recognize the

semantic head in noun phrases of arbitrary length.

The starting point is a phrase of length n: p = w1 . . . wn. We distinguish

between the syntactic head of a phrase and the remaining words, the modi-

fiers. Figure 4.1 shows phrases of varying syntactic complexity. The phrases

are taken from the iSearch corpus (see Section 4.3). The syntactic head is

marked in bold. The model accommodates prenominal modifiers as in ex-

amples (1) through (3) and post-nominal modifiers like PPs in example (4).

Among the modifiers, there is a distinguished element, the peripheral

element u (italicized in the examples). The remaining words are called the

rest v. We can now represent any phrase p as p = uv.3 The element u is

always the outermost modifier. of -PPs are treated as a single modifier and

they take precedence over prenominal modification because this analysis is

dominant in our gold standard data. This means that in the phrase small

moment of inertia, small (and not of inertia) is the peripheral element u.

Cascaded classification then operates as shown in Figure 4.2. In each

iteration, the classifier decides whether the relation between the current pe-

ripheral element u and the rest v is compositional (C) or non-compositional

(NC).4 If the relation is NC, processing stops and uv is returned as the seman-

3We use the abstract representation p = uv even though u can appear after v in the
surface form of p.

4This “outside-in” approach was chosen to reflect our view of MWU decision which is
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function recognize semantic head(p)
u← peripheral(p)
v ← rest(p)
while decision(u, v) 6= NC do
u← peripheral(v)
if u = ∅ then
return v

v ← rest(v)
return uv

Figure 4.2: Cascaded classification of p

tic head of p. If the relation is compositional, u is discarded and classification

continues with v as the new input phrase, which again is represented in the

form u′v′. In case there is no more peripheral element u, i.e. the new v is a

single word, it is returned as the semantic head of p.

Table 4.1 shows two examples. For the fully compositional phrase bright

optical afterglow, the process runs all the way down to the syntactic head

afterglow which is also the semantic head. In the second case, the process

stops earlier, in step 2, because the classifier finds that the relation between

moment and of inertia is NC. This means that the semantic head of small

moment of inertia is moment of inertia. Cascaded classification provides

a framework for recognizing semantic heads that allows us to treat noun

phrases of arbitrary length.

4.2.4 Feature Definitions

MWT is a classification task with the MWU decision step at its core. For

this kind of problem, linear regression is not the optimal approach because it

is not a classification algorithm. The classification method of logistic regres-

sion is an appropriate tool for MWU decision because the output variable is

categorical (C vs. NC). For our experiments, we use the implementation of

to identify MWUs starting with the candidate rather than an “inside-out” approach where
we would add modifiers to syntactic heads until we reach an MWU.
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step u v decision

1 bright optical afterglow C
2 optical afterglow C
3 ∅ afterglow

1 small moment of inertia C
2 of inertia moment NC

Table 4.1: Cascaded decision processes

a logistic regression classifier provided by the Stanford classifier.5

The cascaded classifier introduced above has to decide if a meaning shift

occurs when removing a peripheral element. In this section we will show how

the classifier’s features are designed to achieve this goal. There are two types

of features; AM-based and based on contextual similarity. AM features are

the standard approach for MWU recognition and we expect those features

to provide good basic performance. Similarity-based features are designed

to recognize meaning shifts on the semantic level leveraging distributional

semantics.

Features Based on Association measures

Collocation extraction is not traditionally seen in connection with tokeniza-

tion. In many cases, it is carried out with lexicography in mind, i.e. assist-

ing lexicographers in compiling and extending dictionaries (Choueka, 1988;

Church and Hanks, 1990; Smadja, 1993; Schone and Jurafsky, 2001). Con-

sequently, the idea of fully automated extraction, which is necessary in the

context of tokenization, is not prevalent. The standard use case is to compile

lists of collocation candidates sorted by association strength and pass these

lists on to experts who do manual classification.

Our interest in MWT evolved from the study of MWUs and classic col-

5Version 2.0, available from http://nlp.stanford.edu/software/classifier.

shtml.
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feature name association measure

amt student’s t-score
amz z-score
amχ2 chi-square
amPMI pointwise mutual information
amD Dice coefficient
amf frequency
amG2 log-likelihood
amscp symmetric conditional probability

Table 4.2: Features based on association measures

location extraction. Statistical association measures are frequently used for

MWU detection and collocation extraction. We use association measures as

features for automatic candidate classification. This approach has been used

in recent studies in collocation extraction with encouraging results (Pecina,

2008; Ramisch et al., 2010).

Features based on association measures are defined as the respective as-

sociation scores. We use all association measures from Schone and Jurafsky

(2001) that can be derived from a phrase’s contingency table. These measures

are t-score, z-score, χ2, pointwise mutual information (PMI), Dice coefficient,

frequency, log-likelihood (G2) and symmetric conditional probability.

The measures are designed to deal with two random variables U and V

that traditionally represent single words. In our model, we use U to represent

peripheral elements u and V for rests v. See Table 4.2 for a summary of the

features we consider for MWU decision.

Features Based on Contextual Similarity

In recent years, a number of studies have investigated the relationship be-

tween distributional semantics and non-compositionality. These studies com-

pute the similarity between words and phrases represented as semantic vec-

tors in a word space model. The underlying idea is similar to the one pro-
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posed in Lin (1999). The gist of Lin’s idea is that the meaning of a non-

compositional phrase somehow deviates from what one would expect given

the semantic vectors of parts of the phrase. This is exactly the meaning shift

that we would like to detect.

The standard measure to compare semantic vectors is cosine similarity.

The questions that arise are (i) which vectors to compare, (ii) how to combine

the vectors of the parts and (iii) how to translate similarity values into non-

compositionality. There are no generally accepted answers to these questions.

Regarding (i), Schone and Jurafsky (2001) compare the semantic vec-

tor of a phrase p and the vectors of its component words in two ways: one

includes the contexts of p in the construction of the semantic vectors of

the parts and one does not. Regarding (ii), they suggest weighted or un-

weighted sums of the semantic vectors of the parts. Baldwin et al. (2003)

investigate semantic decomposability of noun-noun compounds and verb con-

structions. They address (i) by comparing the semantic vectors of phrases

with the vectors of their parts individually to detect meaning changes; e.g.

they compare vice president to vice and president. With respect to (iii), the

above-mentioned studies use ad hoc thresholds to separate compositional and

non-compositional phrases but do not offer a principled decision criterion.6

In contrast, we train a statistical classifier to learn a decision criterion.

We use three methods of comparing semantic vectors (Table 4.3): sj1

and sj2, both introduced by Schone and Jurafsky (2001). Additionally, we

propose a new comparison, which we call alt. Method alt compares the

semantic vector of a phrase with its alternative vector.

We build the alternative vector as follows. For a phrase p = uv with

peripheral element u and rest v, we call the phrase p′ = u′v an alternative

phrase if the rest v is the same and u′ 6= u. e.g. giant star is an alternative

phrase of neutron star and isolated neutron star is an alternative of young

neutron star. The alternative vector of p is then the semantic vector that is

computed from the contexts of all of p’s alternative phrases. The alternative

vector is a representation of the contexts of v except for those modified by u.

6Lin (1999) uses a well-defined criterion but his approach is not based on vector simi-
larity.
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feature name vector comparison (example)

simsj1 s(w(black hole), w(black) + w(hole))

simsj2 s(w(black hole), w∗black hole(black) + w∗black hole(hole))

simalt s(w(black hole),
∑

u

w(u hole)); u 6= black

Figure 4.3: Features based on vector similarity. Here, s represents vector
similarity, w a semantic vector and w∗p the semantic vector of a part of a
phrase p that does not include those occurrences that were part of p itself.
In this example, p = black hole.

This technique bears resemblance to the substitution approach of Lin (1999).

The difference is that he relies on a similarity thesaurus for substitution and

monitors the change in mutual information for each substitution individually

whereas we substitute with general alternative modifiers and combine the

alternative contexts into one vector for comparison.

We use the cosine similarities simsj1, simsj2 and simalt as features for

the classifier. We refer to these features as context features because (unlike

AM features) they take into account the similarity of the contexts in which

words and phrases occur. Our intuition is that cosine similarity should be

small if a phrase is non-compositional and large if it is compositional. In

other words, if the contexts of the candidate phrase are too dissimilar to the

contexts of the sum of its parts or to the alternative phrases, then we suspect

non-compositionality.

Previous work has compared the semantic vector of a phrase with the

vectors of its components. Our approach is more “head-centric” and only

compares phrases in the same syntactic configuration. Our question is: Is

the typical context of the head hole if it occurs with a modifier that is not

black different from when it occurs with the modifier black?

To create semantic vectors, we used a bag-of-words model with a co-

occurrence window of 10 words in each direction. We only kept the content

words in the window which we defined as words that are tagged as either
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noun, verb, adjective or adverb. To add information about the variability

of syntactic contexts in which phrases occur, we add the words immediately

before and after the phrase with positional markers (−1 and +1, respectively)

to the vector. These words were not subject to the content-word filter. The

dimensionality of the vectors is then 3V where V is the size of the vocabulary:

V dimensions each for bag-of-words, left and right syntactic contexts. We

did not include vectors for the stop word of for sj1 and sj2.

4.3 Evaluation Setup

The evaluation comprises two experiments, an intrinsic and an extrinsic eval-

uation of our MWT implementation. The intrinsic part evaluates the task

of semantic head recognition and focuses on the impact of different features

of contextual similarity on MWU decision performance. The extrinsic part

evaluates MWT in the context of an application, in this case, information

retrieval. In this section, we describe the experimental setups for both parts

of the evaluation. We present and discuss the results of both parts in Sec-

tion 4.4.

For both experiments we used the iSearch collection (Lykke et al., 2010).

This collection is a suitable resource for our purposes because it provides (i) a

domain-specific resource with a large repository of textual data which we need

for the computation of corpus statistics and semantic vectors; and (ii) a re-

source specifically designed for information retrieval research. The collection

is composed of documents and book records from the physics domain mainly

from high energy physics, condensed matter physics and astrophysics. There

are around 140,000 full articles and 290,000 abstracts in the collection. We

use the text contained in these documents as our corpus. The text in the

collection amounts to about 1 billion words. Our preprocessing steps were

SWT, part-of-speech annotation and lemmatization.
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[pos = "DT"]? #optional determiner

[pos = "CD|JJ.?"]* # adjectival modifier

[pos = "N(P|N).?"] # nominal modifier

[pos = "NN.?"] # head noun

([pos = "IN" & word = "of"] [pos = "NN"])? # of-PP (optional)

Table 4.3: Part-of-speech pattern for candidate extraction

4.3.1 Semantic Head Recognition

This section describes the experiment for the evaluation of the MWT imple-

mentation. The objective is semantic head recognition, i.e. recognizing the

semantic head of MWU candidates. We created a gold standard of MWU

candidates for the experiment. The candidates where extracted from the

corpus. We then asked human annotators to identify the semantic head of

each candidate. Based on the judgements, we separated the candidates into

MWUs and non-MWUs. The group of non-MWUs are the candidates whose

semantic head and syntactic head are the same.

In what follows, we describe how candidates were extracted from the cor-

pus, how we collected non-compositionality judgements from human experts

and the concrete evaluation tasks.

Candidate Phrases

Initially, we extracted all noun phrases from the corpus that consist of a

syntactic head with up to four modifiers. The prenominal modifiers can be

nouns, proper nouns, adjectives or cardinal numbers. Table 4.3 shows the

part-of-speech pattern we used. Almost all domain-specific terminology in

the corpus is captured by this pattern.

The baseline accuracy of a classifier that always chooses compositionality

is very high (> 90%) for phrases of the type [noun] of the/a [noun] (sg.)

(e.g. rest of the paper) and [noun] of [noun] (pl.) (e.g. series of papers). We

therefore restrict post-nominal modifiers to prepositional phrases with the

word of followed by a non-modified, indefinite, singular noun, e.g. speed of
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light or moment of inertia.

Out of all phrases extracted with part-of-speech patterns, we keep only

the ones that appear more often than 50 times because it is hard to compute

reliable features for less frequent phrases. All experiments were carried out

with lemmatized word forms. Finally, we drew a random sample of 1650

candidate phrases that form the basis of the gold standard.

Human Judgements

Since the domain of the corpus is physics, highly specialized vocabulary had

to be judged. We use three domain experts as raters (one engineering and

two physics graduate students). The gold standard was created based on se-

mantic head annotations for 1650 candidates.7 The candidates consisted of a

syntactic head with at least one and at most four modifiers (three prenominal

modifiers and one postnominal PP with of ).

See Figure 4.4 for possible candidates (light gray) and potential semantic

heads (dark gray). Given a phrase with several modifiers, the annotators

have a varying number of choices for the semantic head depending on the

length of the phrase. Depending on the modifiers, a phrase can have up to

8 different possible semantic heads. Of all 1650 phrases, we discarded the

ones that did not get valid responses from all raters. A response is valid if it

constitutes a potential semantic head. From this set we only kept the phrases

where at least two annotators agreed on the semantic head.8 The resulting

gold standard data has 1560 elements.

To calculate annotator agreement, we used the Fleiss’ κ measure (some-

times called multi-κ) which returns a single agreement number for multiple

annotators working on the same task. The value for our data set is κ = 0.58

which is classified as moderate (verging on substantial) according to a com-

monly used scale (Artstein and Poesio, 2008).

7We gave the domain experts a thorough introduction to semantic heads before the
annotation. See Appendix B for details.

8For example, the candidate tasty hot dog has three different possible semantic heads
which means that each annotator could pick a different semantic head.
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Evaluation Modes

The goal of this experiment is to evaluate the performance of semantic head

recognition in MWU candidates. Here, we test the cascaded classification

approach introduced in Section 4.2.3. We define three evaluation modes:

dec-1st, dec-all, and semh. Mode dec-1st only evaluates the first decision for

each phrase. In mode dec-all, we evaluate all decisions that were made in the

course of recognizing the semantic head. This mode emphasizes the correct

recognition of semantic heads in phrases where multiple correct decisions in

a row are necessary. We define the confidence value (class probability) for

multi-decision classification as the product of the confidence values of all

intermediate decisions. The mode semh evaluates how many semantic heads

were recognized correctly. This mode directly evaluates the task of semantic

head recognition.

We compare different models, a basic model that uses association mea-

sures as features and several models that additionally use combinations of

context features. We randomly split the gold standard data set into a training

set of 1300 items and a test set of 260 items.

We give technical details of the classification and describe the different

models. All feature values are binned into 5 bins. We applied a log trans-

formation to the four AMs with large values: amf , amG2 , amχ2 and amz .

For our application there is little difference between statistical significance

at p < .001 and p < .00001. The log transformation reduces the large gap

in magnitude between high significance and very high significance. If co-

tasty hot dog

tasty hot dog hot dog dog

speed of light

speed of light light

Figure 4.4: Potential semantic heads for the phrases tasty hot dog and speed
of light
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occurrence of u and v in uv is below chance, then we set the association

scores to 0 since this is an indication of compositionality (even if it is highly

significant).

Since AMs have been shown to be correlated (e.g. Pecina (2010)), we first

perform feature selection on the AM features. We tested accuracy of all 2r−1
non-empty combinations of the r = 8 AM features on the task of deciding

whether the first decision during the classification of a phrase was C or NC.

We then selected those AM features that were part of at least one top 10

result in each fold. These features were amt, amf and amscp and they form

the base-AM model. We trained models using the context features simsj1

simsj2 and simalt. Each of them uses the features of base-AM and one of

the 7 possible combinations of context features. Below, we give a summary

of the models:

base-AM: The basic model that uses the association measures amt, amf

and amscp as features (determined by feature selection).

base-AM + context features: The models that use the same features as

base-AM and all combinations of the three context features simsj1

simsj2 and simalt (7 models).

4.3.2 Application to Information Retrieval

The field of information retrieval (IR) deals with the task of satisfying an

information need by retrieving relevant information from a collection of in-

formation sources. For an in-depth introduction to information retrieval, see

Manning et al. (2008).

A typical example of information retrieval is a web search engine. Users

formulate their information need as query terms which they enter into a

search field. The retrieval system then returns information sources from its

collection (e.g. documents or images) ranked by their relevance to the query.

In our experiments with the iSearch collection, information sources are text

documents.
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Evaluation of IR systems requires a data set that contains use cases of in-

formation need paired with relevance assessments. For example, query terms

and documents that should be returned by the system for a particular query.

The iSearch collection provides such data. We measure retrieval performance

in terms of recall (REC), precision at 20 (P20) and mean average precision

(MAP). REC measures the proportion of relevant documents retrieved to

all relevant documents. P20 measures the proportion of relevant documents

among the top 20 documents deemed most relevant by the system. Mean

average precision (MAP) is the mean of precision at k for k ∈ 1 . . .N where

N is the number of retrieved documents.

Typically, IR systems do not process non-compositional MWUs as one

semantic entity, potentially missing out on important information encoded

in non-compositional combinations. In this experiment, we illustrate one way

of adjusting the retrieval process so that MWUs are processed as semantic

entities that may enhance retrieval performance. The underlying hypoth-

esis is that, given a query that contains an MWU, boosting the retrieval

weight of documents that contain this phrase will improve overall retrieval

performance.

We introduced MWT as a method that marks MWUs in the token stream

for further processing. This is one possible way of incorporating MWUs into

the pipeline. An alternative way is to use the identified MWUs directly if

a particular application is better suited for this approach. In IR, there are

several places to integrate MWUs. Applying MWT before indexing is one

possibility. That way, MWU information would be hard-coded into the sys-

tem. Another way is adjusting the weights of documents containing MWUs

that appear in the query. This approach moves the concrete handling of

MWU information to retrieval time. Here, we chose the approach of weight

adjustment over index manipulation because adjusting weights at retrieval

time is more efficient than re-indexing with different MWT models.
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Experimental Setup

We boost retrieval weights using Indri’s9 combination of the language model-

ing and inference network approaches (Metzler and Croft, 2004), which allows

assigning different degrees of belief to different parts of the query. This belief

can be drawn from any suitable external evidence of relevance. In our case,

this source of evidence is the knowledge that certain query terms constitute

an MWU. Under this approach, and using the #weight and #combine oper-

ators for combining beliefs, the relevance of a document D to a query Q is

computed as the probability that D generates Q, P (Q|D):

P (Q|D) =
∏

t∈Q

P (t|D)
wt
W (W =

∑

t∈Q

wt) (4.4)

where t is a term and wt is the belief weight assigned to t. The higher wt is, the

higher the rank of documents containing t. In this experiment, we distinguish

between two types of query terms: terms occurring in MWUs (Qnc), and the

remaining query terms (Qc). Terms t ∈ Qnc receive belief weight wnc and

terms t ∈ Qc belief weight wc, (wnc + wc = 1 and wnc, wc ∈ [0, 1]). To boost

the ranking of documents containing MWUs, we increase wnc at the expense

of wc. We estimate P (t|D) in Equation 4.4 using Dirichlet smoothing (Zhai

and Lafferty, 2002).

We use Indri for indexing and retrieval without removing stopwords or

stemming. This choice is motivated by two reasons: (i) We do not have

a domain-specific stopword list or stemmer. (ii) Baseline performance is

higher when keeping stopwords and without stemming, rather than without

stopwords and with stemming.

The collection includes a set of 65 queries with relevance assessments

created by physicists. To match documents to queries without any MWU

treatment (baseline run), we use the Kullback-Leibler language model with

Dirichlet smoothing (KL-Dir) (Zhai and Lafferty, 2002). We then identified

MWUs in the queries with the base-AM model (see Section 4.4.1 for why we

used this model).

9http://www.lemurproject.org/
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Our approach for boosting the weight of these MWUs uses the same re-

trieval model enhanced with belief weights as described in Equation 4.4 (real

NC run). In addition, we include five runs that boost the weight of pseudo

MWUs that were created randomly from the query text (pseudo MWU runs).

These pseudo MWUs have exactly the same length as the observed MWUs

for each query. For each evaluation measure, we separately tune the following

parameters and report the best performance: (i) the smoothing parameter µ

of the KL-Dir retrieval model (following Zhai and Lafferty (2002), we tested

µ ∈ {100, 500, 800, 1000, 2000, 3000, 4000, 5000, 8000, 10000}); (ii) the belief

weights wnc, wc ∈ {0.1, . . . , 0.9} in steps of 0.1 while preserving wnc+wc = 1

at all times.

4.4 Results and Discussion

4.4.1 Semantic Head Recognition

Table 4.4 shows 8 × 3 runs, corresponding to the three modes (see Sec-

tion 4.3.1) tested on the base-AM model and the seven context-feature mod-

els. The baseline for mode dec-1st is .554 since 55.4% of the first decisions are

C. There is no obvious baseline for dec-all because the number of decisions

depends on the classifier – a classifier whose first decision on a four-word

phrase is NC makes one decision, another one may make three. The baseline

for semh is the tokenizer that always returns the syntactic head; this baseline

is .488.

For all modes, the context-feature model that uses simalt achieves the

best result; the accuracies are .692, .703 and .680, respectively. The improve-

ments over the baselines (for dec-1st and semh) are statistically significant

at p < .01 (binomial test, n = 260). For semh, accuracy for base-AM model

is .603; this is significantly better than the .488 baseline (p < .01). Accuracy

for the base-AM model is significantly lower than the best context-feature

model (.680) at p < .01 and significantly lower than the worst context-feature

model (.653) at p < .1. However, the differences between the context-feature

models are not significant.
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mode base cont. feat. base-AM additional context feature subsets

simalt - • • • • - - -
simsj1 - - • – • • - •
simsj2 - - - • • - • •

dec-1st .554 .604 .692 .669 .685 .677 .654 .654 .662
dec-all - .615 .703 .681 .696 .688 .666 .669 .675
semh .488 .603 .680 .657 .673 .665 .653 .653 .661

Table 4.4: Accuracy for base-AM and context-feature models. A ’•’ indicates
the use of the corresponding context feature (cont. feat.).

type freq definition

rsemh 92 sem. head correct ( 6= synt. head)
rsynth 85 sem. head correct (= synt. head)
r+ 48 sem. head too long
r− 35 sem. head too short
all 260

Table 4.5: Distribution of result types

When the semantic head recognizer processes a phrase, there are four

possible results. Result rsemh: the semantic head is correctly recognized and

it is distinct from the syntactic head. Result rsynth: the semantic head is

correctly recognized and it is identical to the syntactic head. Result r+: the

semantic head is not correctly recognized because the cascade was stopped

too early, i.e., a compositional modifier that should have been removed was

kept. Result r−: the semantic head is not correctly recognized because the

cascade was stopped too late, i.e., a modifier causing a non-compositional

meaning shift was removed. Table 4.5 shows the distribution of result types.

It shows that r+ is the more common error: the classifier more often regards

compositional relations as non-compositional than vice versa.

Table 4.6 shows the top 20 classifications where the semantic head was

not the same as the syntactic head sorted by confidence in descending order.

In the third column “phrase . . . ” we list the candidates with semantic heads
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in bold. The columns to the right show the predicted semantic head and the

feature values. All five errors in the list are of type r+.

Two r+ phrases are schematic view and many others. The two phrases

are clearly compositional and the classifier failed even though the context

feature points in the direction of compositionality with a value greater than

.5. It can be argued that many others is a trivial example that does not

require complex machinery to be identified as compositional, e.g. by using a

stop list. We included it in the analysis since we want to be able to process

arbitrary phrases without additional hand-crafted resources.

Another incorrect classification occurs with the phrasemassive star birth10

for which star birth was annotated as the semantic head. Here we have a

case where the peripheral element massive does not modify the syntactic

head birth but massive star is itself a complex modifier. In the test set, 5%

of the phrases exhibit structural ambiguities of this type. Our system cannot

currently deal with this phenomenon.

The remaining r+ phrases are peculiar velocity and local group. However,

Wikipedia lists both phrases with an individual entry defining the former

as the true velocity of an object, relative to a rest frame11 and the latter as

the group of galaxies that includes Earth’s galaxy, the Milky Way12. Both

definitions provide evidence for non-compositionality since the velocity is not

peculiar (as in strange) and the scope of local is not clear without further

knowledge. Arguably, in these cases our method chose a justifiable semantic

head, but the raters disagreed.13

Against the background of MWT, it is acceptable to sacrifice recall and

only make high-confidence decisions on semantic heads. A tokenizer that

reliably detects a subset of MWUs is better than one that recognizes none.

However, our attempts to use the simalt recognizer (bold in Table 4.4) in

this way were not successful. Precision is .68 for confidence > .7 and does

10i.e. the birth of a massive star, a certain type of star with very high mass
11http://en.wikipedia.org/wiki/Peculiar_velocity (July 10th, 2012)
12http://en.wikipedia.org/wiki/Local_group (October 6th, 2012)
13Further evidence that local group is non-compositional is the fact that one of the

domain experts annotated the phrase as non-compositional but was overruled by the other
two.
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not exceed .77 for higher confidence values.

To understand this effect, we analyzed the distribution of simalt scores.

Surprisingly, moderate similarity between .4 and .6 is a more reliable in-

dicator for NC than low similarity < .3. Our intuition for using distri-

butional semantics in Section 4.2.4 was that low similarity indicates non-

compositionality. This does not seem to hold for the lowest similarity values

possibly because they are often extreme cases in terms of distribution and

frequency and then give rise to unreliable decisions. This means that the

context features enhance the overall performance of the classifier, but they

are unreliable and do not support the high-confidence decisions we need for

MWT.

For comparison, the base-AM model achieves 90% precision at 14% recall

with confidence > .7 – although it has lower overall accuracy than the simalt

recognizer. We decided to use the AM-only recognizer for the IR experiment

because it has more predictable performance.

In summary, the results show that, for the recognition of semantic heads,

basic AMs offer a significant improvement over the baseline. We have shown

that some wrong decisions are defensible even though the gold standard data

suggests otherwise. Context features further increase performance signifi-

cantly, but surprisingly, they are not of clear benefit for a high-confidence

classifier that is targeted towards recognizing a smaller subset of semantic

heads with high confidence.

4.4.2 Information Retrieval

Table 4.7 displays retrieval performance of our approach against the baseline

and five runs with pseudo MWU. We see a 9.61% improvement in recall

over the baseline. MAP and P20 also show improvements. Our approach is

better than any of the 5 random runs on all three metrics – the probability of

getting such a good result by chance is 1
25

< .05, and thus the improvements

are statistically significant. On doing a query-wise analysis of AP scores, we

find that large improvements over the baseline occur when an MWU aligns

with what the user is looking for. The system seems to retrieve more relevant
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run MAP REC P20

baseline 0.0663 0.2675 0.1385
real MWU 0.0718 0.2932 0.1538
pseudo MWU1 0.0664 0.2738 0.1385
pseudo MWU2 0.0658 0.2717 0.1462
pseudo MWU3 0.0671 0.2699 0.1477
pseudo MWU4 0.0681 0.2804 0.1462
pseudo MWU5 0.0670 0.2720 0.1423

Table 4.7: IR performance without considering MWUs (baseline), versus
boosting real and pseudo MWUs (real MWU, pseudo MWUi). All metrics
are averages over all queries.

documents in that case. e.g. the improvement in MAP is 0.0977 for a query

where the information need contains “articles . . . on making tunable vertical

cavity surface emitting laser diodes” and laser diodes was one of the MWUs

recognized by our system.

On the other hand, a decrease in MAP occurs when phrases unrelated

to the information need receive a higher weight. In a query where the user

is looking for “protein-protein interaction, the surface charge distribution of

these proteins and how this has been investigated with Electrostatic Force

Microscopy” our system falsely recognized Force Microscopy as an MWU

(see problem with complex modifiers in Section 4.3.1). Boosting this phrase

did not reflect the core information need which is specified as “The proteins

of interest are the Avidin-Biotin and IgG-anti-IgG systems.”

To summarize, we have shown that our recognition system can find MWUs

in queries and that boosting the importance of documents containing these

MWUs results in an overall increase of performance on all evaluation metrics.

Furthermore, our approach offers significant improvements because it yields

better results than boosting random phrases.
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4.5 Summary

In this chapter, we have presented and evaluated an implementation of MWT.

Central to our implementation is the idea of the semantic head which captures

the core of non-compositional MWUs. We have cast MWT as the problem

of semantic head recognition and created a cascaded classification approach

for this purpose. We experimented with different feature types namely as-

sociation measures and features of contextual similarity. We carried out an

intrinsic evaluation of semantic head recognition and an extrinsic evaluation

where we integrated semantic head recognition into an information retrieval

system.

In the task of semantic head recognition, the models using context fea-

tures outperformed a basic AM model which in turn outperformed a baseline

recognizer. However, the context-feature models gave rise to unpredictable

decisions and exhibited less precision than the basic AM model for high-

confidence decisions.

We integrated MWU information into an information retrieval experi-

ment by way of recognizing MWUs in queries and boosting the importance

of documents containing these MWUs. The impact of boosting MWUs is

positive, increasing retrieval performance on all metrics and beating a num-

ber of random baseline boosting approaches.

The MWT implementation we have presented in this thesis focuses on

non-compositionality and the semantic head. It does not explicitly consider

other properties that could also be helpful for identifying MWUs such as non-

substitutability, non-modifiability or asymmetry. For this experiment, we

chose this approach to explore the impact of different measures of contextual

similarity on non-compositionality detection. We see this approach and the

insights into non-compositionality detection we gained in the experiment as

a valuable building block for future MWT implementations that incorporate

more features addressing different properties of MWUs.
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Chapter 5

Conclusions and Future

Research

This chapter summarizes the main results of this thesis. Additionally, we

give starting points for future research.

5.1 Contributions

Communicating with computers in unrestricted natural language is still an

unfulfilled goal. In particular, handling of collocations in NLP is not a solved

problem. In this thesis, we presented research aimed at improving automatic

handling of collocations. Focusing on MWUs, our basic assumption was that

automatic processing has to approach the problem by addressing MWUs’

idiosyncratic properties. The main idea presented in this thesis is multi-word

tokenization (MWT) as part of preprocessing for NLP. MWT is a supervised

classification approach to recognizing MWUs whose features are targeted at

idiosyncratic properties of MWUs.

In many NLP tasks, the current standard approach of single-word tok-

enization (which ignores MWUs) causes errors that propagate to higher-level

NLP tasks and reduce the overall quality of NLP applications. With MWT,

these errors could be avoided.

The contributions in this thesis approach MWT from two angles, covering
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one theoretical and one practical aspect.

5.1.1 Asymmetric Association

The theoretical contribution is the exploration of asymmetry in syntagmatic

word combinations and MWUs in particular. In NLP and psycholinguistics,

research into word associations and elicitation experiments are traditionally

focused on paradigmatic associations. Creating a novel experiment setup,

we collected human syntagmatic word associations. Based on the collected

data, we found asymmetry in human syntagmatic production and strong

asymmetry to be indicative of MWUs. Additionally, we created corpus-based

measures of asymmetry based on association measures. Classic association

measures are a mainstay of collocation research but they cannot capture

asymmetry in word combinations. We showed that with the new measures we

created, it is possible to predict the asymmetry found in human production

based on corpus-based data.

5.1.2 Multi-Word Tokenization

The practical part deals with an implementation of MWT. For this imple-

mentation, we cast the MWU decision problem as semantic head recogni-

tion. The semantic head of a candidate phrase is its non-compositional core

and recognizing the semantic head is equivalent to recognizing the MWU.

For the semantic head recognizer we experimented with two kinds of fea-

tures: association scores aimed at general lexical association serving as a

baseline and measures of contextual similarity specifically designed for non-

compositionality detection. We have shown that models using context fea-

tures significantly improve upon the baseline model. In an experiment that

incorporated an MWU recognizer into information retrieval system, we were

able to show that using MWU information at query time improves overall

retrieval performance.
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5.2 Future Avenues of Research

5.2.1 Asymmetric Association

We suggest two directions for work on asymmetric association measures.

First, we present possible improvements to the measures of syntagmatic

asymmetry we introduced in Section 3.3.2. Second, we propose large-scale

application of a paradigmatic measure of asymmetry for the purpose of hy-

pernymy mining.

Improved asymmetry prediction We present two improvements for

asymmetry prediction from corpus data. First, we suggest using ensemble

learning by taking advantage of multiple asymmetry models with different

underlying characteristics. Second, we suggest regression models for the pre-

diction of absolute forward and backward scores, emulating asymmetry scores

based on human judgements.

We have seen that different association measures give rise to different

rank measures. All rank measures included in our study are based on associ-

ation measures derived from statistical significance tests, which are known to

correlate strongly with co-occurrence frequency. Hence, some of the asym-

metric measures make similar decisions. Rankings obtained from measures

of effect size such as PMI, for example, may provide entirely new perspec-

tives on the right- and left-predictiveness of syntagmatic combinations. With

different rank measures reflecting different characteristics of the underlying

association measures, asymmetry prediction could be further improved and

made more reliable. Combining multiple perspectives for asymmetry pre-

diction can be achieved with ensemble methods (Friedman et al., 2001, Ch.

16). With ensemble methods, classification decisions of multiple models are

pooled and a final decision is made, e.g. by majority vote.

Our analysis of forward and backward scores computed from human

judgements has shown that strong asymmetry (defined as either forward or

backward score > .5) is an indicator for a phrase being an MWU. In Sec-

tion 5.2.2, we propose asymmetry scores as features for an improved MWT

system. In order to predict absolute association strength from corpus data,
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a regression model is required. The prediction of direction of asymmetry we

used for evaluation in Section 3.5.4 was based directly on ranks.

Unsupervised hypernymy mining In the context of MWUs, we have

focused on syntagmatic asymmetric association. We discussed how Weeds

(2002) linked asymmetric paradigmatic association to the hypernymy rela-

tion. (Hearst, 1992) proposed an automatic approach to hypernymy mining.

This approach relies on lexico-syntactic patterns for extraction. In a test

study, Weeds showed that the hypernymy relation between two words can

be automatically discovered using the asymmetric skew divergence measure.

Carried out on a larger scale, this approach could be used for automatic

hypernymy mining. The extracted relationships can be used to create or

enrich lexical resources such as ontologies and conceptual hierarchies. The

approach based on asymmetric measures could be run in an unsupervised

fashion, which means that it does not require any lexico-syntactic patterns

to discover new relationships.

5.2.2 Multi-Word Tokenization

In this section, we discuss improvements that could be incorporated into a

future implementation of MWT. We discuss context-dependent classification

and new feature types. Finally, we propose to integrate all improvements by

modeling MWT as a sequence labeling problem.

Context dependence One important aspect of MWT that we have not

addressed is context dependence. Traditionally, within the scope of colloca-

tion extraction, the focus is on creating a list of collocations or collocation

candidates that would typically be passed on to a lexicographer or domain

expert for further inspection. In this scenario there is a global decision about

the status of a phrase – it either is an MWU or it is not. This approach is

called type-based classification. In a different approach, the decision whether

or not a candidate should be labeled as an MWU is local and has to be made

for every instance of the candidate with potentially different outcomes. This
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approach is called token-based classification.

The MWT implementation presented in Chapter 4 is type-based. For

future work on MWT, we propose a token-based approach. For MWT as

part of an automated preprocessing pipeline, a token-based approach would

be more appropriate because there are phrases that have to be labeled as

MWUs in some contexts but not in others. The distinction is often motivated

by literal and non-literal uses of the same phrase. Consider the following uses

of red tape in the BNC.

(5.1) There are regulations, laws and red tape.

(5.2) Hugh Dalton was about to open a factory by snipping the red tape

with a pair of ornamental scissors.

In (5.1), we want red tape to be tokenized as a unit because it is used

non-literally, i.e. in this context the phrase exhibits non-compositionality.

The use in (5.2), however, is literal and we want to tokenize red and tape

separately.

There are previous works that deal with token-based collocation clas-

sification. These studies are concerned with MWEs that have literal and

non-literal uses such as get the sack or play with fire. Some of the features

these approaches used are based on distributional semantics (Katz and Gies-

brecht, 2006; Cook et al., 2007) and lexical cohesion (Sporleder and Li, 2009).

The features based on distributional semantics are comparable to the context

features we used in Section 4.2. Sporleder and Li (2009) created a cohesion

graph by representing the MWE and its context as nodes and connecting

them with weighted edges based on the semantic relatedness between the

nodes. They measure the drop of overall similarity in the cohesion graph

when removing the MWE nodes. For example, if play with fire appears in

the context of a barbecue with the words coal, grill and smoke, removing

play and fire from the graph results in less overall similarity, or cohesion, in

the graph. If the phrase appears in the context of, say, politics, removing

the same nodes will have less impact on overall similarity.

See below how we propose to use these methods of token-based MWE

classification for context-dependent MWT.
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MWT as sequence labeling The best-performing implementations for

common NLP tasks such as named-entity recognition1, POS tagging (Brill,

2000) and NP chunking2 rely on learning algorithms summarized under the

term of sequence labeling. Commonly applied in a supervised setting, sequence-

labeling methods are algorithms that assign class labels to a sequence of out-

puts. Such algorithms are suited for NLP problems because of the sequential

nature of language and the power of contexts for ambiguity resolution. In

POS tagging, for example, tags (labels) have to be assigned to a sequence

of words (outputs) and the label for the current word often depends on the

previous word (e.g. bank is a noun in the bank and a verb in to bank).

The basic workings of sequence labeling are as follows: we observe words

and try to discover the most likely sequence of labels that generated the

output. Sequence labeling models rely on the Markov property, which means

that the current label prediction depends only on (the properties of) the

current and the immediately preceding labels and words.

What makes sequence labeling methods attractive for NLP is that with

state-of-the-art algorithms we can encode any linguistic knowledge about the

current word as features for the classification decision and that context (i.e.

the previous word and label) is taken into account because of the Markov

property. Furthermore, in this kind of model, classification decisions are not

made in isolation for each word but alternative label sequences and their

probabilities are stored until the last word has been processed. The most

probable label sequence is then determined in the decoding step using dy-

namic programming.

The best known sequence-labeling method used in NLP is the Hidden

Markov model which has been popularized by its usefulness for POS tagging

(DeRose, 1988). Other well-known methods are Maximum-Entropy Markov-

Models which were used for POS tagging (Ratnaparkhi, 1996) and the current

state-of-the-art sequence labeling method conditional random fields (CRFs,

Lafferty et al., 2001) which were used, for example, for NER (Finkel et al.,

2005) and NP chunking (Sha and Pereira, 2003).

1See the CoNLL shared task on NER (Tjong Kim Sang and De Meulder, 2003).
2See the CoNLL shared task on NP chunking (Tjong Kim Sang and Buchholz, 2000).
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MWT is related to these NLP tasks but differs in certain aspects: it

differs from NER in that it does not try recognize named entities (e.g. places,

people, institutions) but generic noun phrases that are not named-entities.

Chunking finds constituents whereas MWT tries to find MWUs within an

NP constituent. For example, chunking marks the best hot dog ever as an

NP but MWT identifies the sub NP hot dog as a unit. The relation between

MWT and POS tagging is two-fold. On the one hand, MWT can use POS

information to identify candidates and for feature engineering. On the other

hand, POS tagging can be performed after MWT assigning POS tags to

MWUs. The choice depends on the available tools and requirements of a

particular application.

For future work, we propose an implementation of MWT as a sequence

labeling task.3 This way, we can integrate token-based classification and any

number of new types of features.

The general idea is that the sequence classifier labels a sequence of words

(e.g. a sentence) into three classes of words following the IOB labeling scheme

(Jurafsky and Martin, 2008, p.487): MWU-I, MWU-O and MWU-B. The

three labels represent words that are inside MWUs, outside of MWUs or

mark the beginning of an MWU, respectively.

Below, we present the features we envision for the sequence labeling ap-

proach to MWT. For each feature explanation, recall that we are looking at

the current and the previous word and that we have access to other linguis-

tic information such as the words in the current sentence or document. We

include features based on the features that were used in our MWT imple-

mentation presented in Chapter 4.

word features: These are features that encode information about the cur-

rent word, e.g. its most likely part of speech, prefixes, suffixes, word

shape, etc.

3Constant and Sigogne (2011) present similar ideas for French in the context of POS
tagging. Their approach extends a POS tagger with an MWU recognition module which
uses external resources such as MWU dictionaries. In contrast, we suggest an approach
that focuses on engineering features that address MWU properties for recognition instead
of relying on dictionaries.
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label feature: This feature encodes whether or not the previous word was

classified as belonging to an MWU.

contextual similarity: These features address non-compositionality and

non-modifiability. For example we try to detect a meaning shift when

removing words or replacing words with similar words.

lexical association: These features encode general lexical association by

means of association scores between the current and the previous word.

asymmetric association: These features encode asymmetric association

by means of forward and backward scores for the current and the pre-

vious words.

lexical fixedness: These features measure lexical fixedness to address non-

modifiability. Fazly et al. (2009) make use of an MWE’s canonical

form. An expression appearing in its canonical form is assumed to

be idiomatic (Riehemann, 2001, p. 34) and more frequent than other

forms. They identify the canonical form of an MWE with measures

of syntactic and lexical fixedness. For example, a lexical feature is

type of determiner : with an indefinite determiner (he got a sack), the

idiomatic phrase to get the sack becomes literal. Like MWEs, MWUs,

can have canonical forms. For example, the non-literal meaning of red

tape is always singular and does not appear with an indefinite article.

lexical cohesion: This feature address token-based classification. It ac-

cesses words in the context of the current word, e.g. the current sen-

tence or document.

Cohesion-based features from MWE classification could be adapted for

token-based MWU classification. For example, the words snipping and

scissors occurring in (5.2), are clues for a literal use of red tape.

heuristics: These are various features based on heuristics or formatting

clues such as quotation marks or italics. Additionally, we include or-

thographic clues, e.g. the frequent spellings website and web-site are an

indicator that web site is an MWU.
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Appendix A

Comparison of Distributional

Models

A.1 Introduction

In this chapter, we present a comparative study of two models of distribu-

tional semantics, namely graph-based similarity using the SimRank similarity

measure and cosine similarity in a word space model. The goal of this com-

parison is to decide which model to use for non-compositionality detection in

MWT. For MWU decision, it is important to detect meaning shifts between

words and phrases. For this purpose, we need a reliable tool for meaning

representation. We compare the similarity measures by evaluating them as

measures of semantic relatedness. We assess a measure’s performance by pre-

dicting for a test word the related words and manually sorting the predictions

into a set of predefined categories of semantic relations. We explore several

types of filters and weighting strategies that impact similarity computation.

In particular, the questions that interest us are: (i) which model performs

better? (ii) what influence do weight adjustments and filters have? (iii) what

are the advantages and disadvantages of each model?

The chapter is structured as follows. Section A.2 introduces the SimRank

computation we used in our experiments. The word space model is as defined

in Section 2.2.2. In Section A.3, we describe the data, filters and weighting
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strategies we used as well as the concrete experiments. In Section A.4, we

present and discuss the results. In Section A.5 we examine higher-order

similarity, a feature of SimRank, and its impact on similarity computation.

A.2 SimRank Modification

Recall that the similarity Sij between two nodes i and j with neighbors N(i)

and N(j) is given through the SimRank measure by:

Sij =
c

|N(i)| |N(j)|
∑

k∈N(i),l∈N(j)

Skl

Preliminary experiments have shown that SimRank favors nodes with

few neighbors which means that rare (low-degree) words are often assigned

the highest similarity values for a given test word. To counter this effect,

Laws et al. (2010) introduced a modified normalization step, square root

normalization (SQN). In the original SimRank equation, the number of a

node’s neighbors is used directly for scaling. The modified scaling aims at

lessening the influence of low-degree nodes. By incorporating the square root

of the number of neighbors, the punishment of high-degree is dampened. This

is reflected in the modified definition of SimRank:

Sij =
c

f(|N(i)|)f(|N(j)|)

∑

k∈N(i),l∈N(j)

Skl

with f(n) =
√
n∗

√

maxk(|N(k)|). The goal of the modified weighting scheme

is to favor words with more neighbors (i.e. frequent words). For rare words,

which have a small number of neighbors, f grows quickly, while returning

values close to the linear term for frequent words. This guarantees that rare

words have less influence on final similarity scores.
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A.3 Evaluation Setup

The evaluation method is to let both models find semantically related words

to a given test word. The discovered words will be manually classified into a

set of categories that represent certain semantic relations. The idea behind

this method is that a measure that finds words that are related or similar to

a test word consistently, is a reliable and robust measure to serve as a basis

for non-compositionality detection.

We explored the effects of different filters and weights on the quality of

word similarities. The following sections describe these filters and weights

and give an overview of the concrete experiment runs that we carried out.

Additionally, we briefly describe our data and the test set.

A.3.1 Data and Evaluation

We compare two distributional models which means that meaning will be

computed from the contexts of words in a corpus. For both models, we define

context as the grammatical relation of nouns appearing as direct objects of

verbs. The verb-object data were extracted from an English Wikipedia dump

of October 2008. We parsed all articles with BitPar (Schmid, 2004) which

resulted in 11.8M verb-object pairs. We used a lemmatizer to improve the

quality of the extracted relations.

We use a test set of 65 nouns taken from a 100-word test set previously

used for bilingual lexicon extraction (Rapp, 1999). We removed adjectives

and verbs from the set. In each experiment, we generated a list of the ten

most similar words (target words) for each test word. We carried out manual

evaluation. For every test word, the author decided if there is a semantic

relation between the test word and each corresponding target word.

Target words were manually classified into one of the following classes

of semantic relations to the test word: hypernym (R), hyponym (H), co-

hyponym (C), synonym (S) or other (O) where class (O) is the default class

for any related target word that is not covered by any of the other classes

(e.g. hand–finger or man–manhood). The remaining target words are labeled

unrelated (U). This classification follows Michelbacher et al. (2010).
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A.3.2 Weights and Filters

When considering co-occurrence data, the most basic information we have is

the frequency with which a pair occurred. It can be used for edge weights

(graph) and weighted dimensions (word space) directly. A common approach,

however, is to use statistical measures to compute an association score be-

tween the components of a word pair (see Section 2.1). The assumption

is that association measures such as the log-likelihood measure (Dunning,

1993) will assist in weeding out insignificant co-occurrences. Additionally,

we examine the effect of using the logarithms of edge weights instead of the

actual weight. This step is carried out in order to weaken the impact of very

frequent combinations.

Another intuitive filter method is to remove nodes with a degree d < n,

assuming that a node that has few neighbors is less important than one

with many neighbors. Considering the aforementioned tendency of SimRank

to favor low-degree nodes, degree-based filtering seems to be an attractive

approach. To summarize, we considered the following filters and weight

adjustments:

• log-likelihood scores instead of frequency as weights

• logarithm of weights instead of plain weights

• degree-based node filter

A.3.3 Experiments

Table A.1 shows an overview of the experiments that we carried out. The

name column contains a short identifier that summarizes an experiment’s

properties and which will be used to refer to the corresponding experiment

throughout the text. The similarity column shows which similarity method

was used. The degree column shows which nodes were removed because they

had too few neighbors or “–” if none were removed. Further, the weight

column contains the weighting strategy that was applied: frequency (f), log-
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name similarity degree weight SQN

sr-sqn-d02 SimRank d < 2 log(G2) •
sr-sqn-d05 SimRank d < 5 log(G2) •
sr-sqn-d10 SimRank d < 10 log(G2) •
sr-sqn-d15 SimRank d < 15 log(G2) •
sr-sqn-d20 SimRank d < 20 log(G2) •

cos-f cosine – f –
cos-logf cosine – log(f) –
cos-log-lik cosine – G2 –
cos-log-log cosine – log(G2) –
cos-log-log-d20 cosine d < 20 log(G2) –

sr-d15-f SimRank d < 15 f –
sr-d15-logf SimRank d < 15 log(f) –
sr-d15-log-lik SimRank d < 15 G2 –
sr-d15-log-log SimRank d < 15 log(G2) –

Table A.1: Experiment names and descriptions

likelihood (G2) or a logarithm thereof.1 Finally, a bullet symbol in the SQN

column means that square root normalization was turned on in graph-based

experiments.

We carried out five main experiments for each similarity method. The first

batch tests degree filters of 2, 5, 10, 15 and 20 in conjunction with SQN using

SimRank. Here, we try to study the effect that the degree filter has on quality

leaving all other settings untouched. The next five experiments deal with

cosine similarity. The first four focus on different weighting strategies. For

comparison, we ran a fifth cosine experiment with a degree filter of d < 20.2

Finally, the last group of SimRank experiments examines weighting strategies

in a graph-based setting without SQN. Here, we chose a degree filter of

d < 15, the value that proved best in the first group of experiments.

1Pairs with G2 scores ≤ 0 were discarded.
2The degree filter was defined with nodes and links in mind but the concept can be
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name (S) (R) (H) (C) (O) total (U) n/a total perc.

sr-d02sqn-log-log 9 4 71 95 49 228 422 0 35.07%
sr-d05sqn-log-log 9 6 75 137 85 312 338 0 48.0%
sr-d10sqn-log-log 10 8 71 155 94 338 312 2 52.0%
sr-d15sqn-log-log 11 12 74 156 107 360 290 2 55.38%
sr-d20sqn-log-log 12 16 65 145 107 345 305 5 53.07%

cos-f 6 17 47 95 75 240 410 0 36.92%
cos-logf 6 27 24 148 162 367 283 0 56.46%
cos-log-lik 4 14 48 80 47 193 457 0 29.69%
cos-log-log 9 22 63 175 136 405 245 0 62.30%
cos-log-log-d20 11 30 55 156 139 391 259 5 60.15%

sr-d15-f 3 2 9 18 24 56 594 2 8.61%
sr-d15-logf 9 4 29 79 44 165 485 2 25.38%
sr-d15-log-lik 4 6 12 34 47 103 547 2 15.84%
sr-d15-log-log 9 8 46 120 71 254 396 2 39.07%

Table A.2: Results with different weighting schemes and filters

A.4 Results and Discussion

See Figure A.1 for a graphical representation of the results which facilitates

interpretation. Table A.2 show the results in tabular, more detailed form.

The column n/a represents the number of test words that were missing in the

corresponding experiment. Missing test words occur due to node filtering.

The column total perc. specifies the total percentage of related words among

the target words (i.e. target words that were not classified as (U)).

The degree filter gradually improves performance from sr-d02sqn-log-log

over sr-d05sqn-log-log and sr-d10sqn-log-log to sr-d15sqn-log-log (first four

bars on the left). See Table A.3 for an example. Here, most of the target

words are co-hyponyms of thief with the common hypernym criminal. The

performance increase from sr-d02sqn-log-log to sr-d15sqn-log-log is statisti-

transferred to the word space model by simply regarding the number of unique verbs that
the noun appeared with as links.
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Figure A.1: Evaluation results according to each experiment
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test word thief

filter d < 2 d < 5 d < 10 d < 15 d < 20

robberC robberC robberC robberC robberC

thrall kidnapperC kidnapperC kidnapperC criminalR

kidnapperC burglarC burglarC burglarC murdererC

burglarC speeder murdererC murdererC killerC

illusionist murdererC crookC crookC kidnapper C

beautician sorcererC smugglerC smugglerC terroristC

savior killerC sorcererC sorcererC burglarC

vandalC crookC killerC killerC villainR

dervish smugglerC culpritR culpritR pirateC

hurdler rustlerH gunmanC gunmanC assassinC

# related 4 8 9 9 9

Table A.3: Effect of the degree filter for test word thief (semantic relations
to the target words displayed with superscripts)

cally significant3 (α = .01). At degree filter d < 20 (sr-d02sqn-log-log), loss

of coverage is starting to take effect manifested in five missing test words.

We explain the performance drop (non-significant, α = .05) from sr-d15sqn-

log-log to sr-d20sqn-log-log, the most aggressive degree filter we used, by this

loss of coverage.

With regard to the weighting strategies, there are three findings. First,

the application of the logarithm to the weights improves performance signif-

icantly (from cos-f to cos-logf, from cos-log-lik to cos-log-log, from sr-d15-f

to sr-d15-logf, from sr-d15-log-lik to sr-d15-log-log, α = .01). Second, the

combination of log-likelihood weights and logarithmic dampening yields the

best results (cos-log-log and sr-d15-log-log). Third, logarithmic frequency

weights perform significantly better than plain log-likelihood scores (cos-logf

vs cos-log-lik and sr-d15-logf vs sr-d15-log-lik, α = .01).

The most important finding, however, is that cosine similarity outper-

forms graph-based similarity for all different weighting strategies. The best

3All significance test in this section are binomial tests.
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overall result, cos-log-log with 62.3% related target words over the whole test

set, yields significantly better results than sr-d15sqn-log-log, the best graph-

based result with 55.38% (α = .01). Note that cos-log-log does not use any

word filter. We ran an experiment, cos-log-log-d20, which uses a degree filter

d < 20 and cosine similarity. There is a performance drop of 2.15 percentage

points (non-significant alpha = .05) which we, again, attribute to the loss of

coverage that comes with this filter. It seems that the computation of cosine

similarity is not influenced by the degree filter.

We also found that SQN has a positive effect on SimRank performance.

The improvement of sr-d15sqn-log-log (55.38% related word) which uses SQN

– over sr-d15-log-log (39.07%) which does not – is significant (α = .01).

Another effect of the degree filter is that with more aggressive filtering,

related words become more concrete. This can be explained by the fact that

with less filtering, more low-degree words are available which are in turn fa-

vored by SimRank. Consider Table A.4. Here, the annotator chose to only

annotate scorpion as a co-hyponym of spider (both are arachnids) and in-

sect as related in another way. The rest of the target words are almost all

animals or classes of animals. With a low filter (d < 2), the target words

are in fact almost all animals, but rather specific ones (shrew, warbler, par-

tridge and kingfisher) or animals of microscopic size (amphipod and rotifer).

Moving on to stricter filters, the target words are more familiar and feasible.

With d < 20, results include clear animal classes like (rodent, reptile, insect,

invertebrate) as well as familiar animals (frog, shark, etc.).

It shows that with increasing degree filter, the target words become more

familiar (i.e. more frequent). In contrast, cos-log-log achieves the same with-

out the use of any filtering which suggests that the computation of cosine

similarity is robust against low-degree (i.e. rare) words.

For some test words, none of the experiments produced any feasible re-

sults, e.g. bath shown in Table A.5. We only show sr-d15sqn-log-log and

cos-log-log to illustrate the problem. It is striking, that none of the target

words is even remotely related to bath. On closer examination, however, bath

and many of the target words do have something in common: they appear as

direct objects of the verb to take. Among these there are light verb construc-
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spider

d < 2 d < 5 d < 10 d < 15 d < 20 cos-log-log

shrew shrew rodent rodent rodent rodent
warbler earthworm crustacean lizard lizard lizard
earthworm crustacean squirrel crabs reptile crustacean
rotifer mackerel lizard reptile invertebrate shark
diatom rodent scorpionC crab frog reptile
equestrian jaguar crabs invertebrate moth crabs
gazelle otters squid toad shark shrew
partridge squirrel amphibian caterpillar crocodile scorpionC

kingfisher antelope rattlesnake eel boar frog
amphipod lizard fern frog insectO squirrel

0 0 1C 0 1O 1C

Table A.4: Effect of the degree filter for test word spider (semantic relations
to the target words displayed with superscripts)

tions (to take a stroll) or idioms (e.g. to take umbrage or to take a shine). In

cases like this, the abundance of constructions involving take as a light verb,

obscure other, possibly useful verb-object relations, e.g. to take a shower.

See Table A.6 for the distribution of classes among the related words

for the sr-d20-sqn-log-log run (exemplary choice). It is striking that 42%

of the target words are co-hyponyms. We attribute this to the fact that

co-hyponymy is not as restrictive a relation as hyponymy, hypernymy and

synonymy which only constitute 19%, 5% and 3%, respectively. For the

latter three relations, there are simply less potential words in the data. We

observed no significant deviance of class distribution between SimRank and

cosine similarity or between SimRank with and without SQN.

A.5 Higher Order Similarity

An attractive characteristic of the graph-based model is that it enables

higher-order similarity. In this section, we investigate the impact this feature
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bath

sr-d15sqn-log-log cos-log-log

shine stroll
precedence umbrage
delight stead
shelter Changchun
vacation intoxicant
precaution conn
subway cognizance
helm pratfall
hermitage layover
oven pot-shot

Table A.5: Selected results for test word bath

synonym (S) 3%
hypernym (R) 5%
hyponym (H) 19%
co-hyponym (C) 42%
other (O) 31%

Table A.6: Distribution of classes among related words for the sr-d20-sqn-
log-log run.
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a

b

v1 . . . v6

n1 . . . n6

v7 . . . v12

Figure A.2: Hypothetical graph demonstrating higher-order similarity with
SimRank

has on similarity computations.

In case of vector similarity measures like cosine similarity, we compute the

similarity between two words based on their co-occurrence vectors. If the two

words do not share any first-order co-occurrences, i.e. two nouns are never

the direct object of the same verb, the cosine similarity of the two words is 0.

This is not the case with the SimRank measure. Here, two nodes whose sets

of neighbors are disjoint can have a similarity value greater than 0. This is a

consequence of SimRank’s recursive nature that spreads similarity with each

iteration. Figure A.2 depicts a hypothetical example of two nouns, a and b,

that are related in that sense that the verbs that occur with a (v1 . . . v6) and

the verbs that occur with b (v7 . . . v12) co-occur with a number of different

nouns (n1 . . . n6) but not with a or b.

Table A.7 shows the progression of the similarity values between a and the

rest of the nodes in the graph, where ni represents n1 . . . n6.
4 The similarity

4Due to symmetry, the similarity values between n1 . . . n6 and a (and b) are the same.
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similarity iteration

1 2 3 4 5 6

S(a, ni) .06 .13 .16 .19 .20 .22
S(a, b) – .06 .09 .12 .14 .16

Table A.7: Progression of higher order similarity values with SimRank (no
SQN)

similarity iteration

1 2 3 4 5 6

S(a, ni) .01 .003 .002 .001 .001 .001
S(a, b) – 1× 104 5.8× 10−5 4.9× 10−5 4.7× 10−5 4.7× 10−5

Table A.8: Progression of higher order similarity values with SimRank and
SQN

between a and ni starts growing from the very first iteration whereas the one

between a and b is still 0 at this point. Over time, the higher order similarity

climbs up to almost three quarters of the magnitude of the similarity based

on direct co-occurrence.

A.5.1 The effect of SQN on higher order similarity

The application of SQN has an effect on the magnitude of the similarity

scores and consequently on higher order similarity. Table A.8 shows the sim-

ilarities for the hypothetical graph with SQN turned on. Due to its modified

denominator, the scaling factor becomes smaller. This leads to smaller sim-

ilarity values in general and higher order similarities becoming vanishingly

small.

Table A.9 shows the test word eagle together with the top 10 target words

after the first two and last two iterations of the experiment sr-d15-log-log, an

experiment without SQN. It can be seen that here higher-order similarities

have no influence whatsoever. The top ten target words after 6 iterations
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eagle

iteration 1 iteration 2 iteration 5 iteration 6

crescent crescent crescent crescent
lily penguin penguin penguin
penguin lily lily lily
falcon falcon falcon falcon
owl owl owl owl
hawk hawk hawk hawk
leopard leopard leopard leopard
ornamentation mermaid mermaid mermaid
mermaid ornamentation dove dove
dove dove ornamentation ornamentation

Table A.9: Progression of rank order with sr-d15-log-log (no SQN)

are exactly the same top ten words that were found after the first iteration.

The only difference is a difference in the ordering of the words. We found the

same to be true for the rest of the test set. We conclude that theoretically,

SimRank does have the possibility to draw on higher order relationships but

this feature seems to have no impact on real world calculations.

A.6 Summary

We presented a study comparing the semantic relatedness of nouns on the

grounds of two different underlying similarity measures, the graph-based Sim-

Rank and the vector-based cosine similarity. To pick up on the questions

posed in the introduction:

Which model performs better? The best overall performance was achieved

with cosine similarity with a score of 62.30% related target words over

55.38% for the best SimRank result.

Do filters and weighting influence the quality of the results? The de-

gree filter turned out to be a decisive improvement for the graph-based
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model up to the point where loss of coverage sets in. In terms of

weighting strategies, the key to a huge performance increase in both

models is the combination of log-likelihood weights and logarithmic

weight dampening. Furthermore, square root normalization, a modifi-

cation of degree-based scaling for SimRank, proved to be essential in

making SimRank results feasible at all.

What are the advantages and disadvantages of each model? Cosine

similarity has the advantage that it seems less susceptible to the influ-

ence of rare words. The aforementioned top score is reached without

any frequency or degree filter. SimRank, on the other hand, struggles

with low-degree nodes, over-emphasizing their importance when run

with a small degree filter. SimRank offers the possibility to incorpo-

rate higher order relationships. While this feature proved effective in

a hypothetical setting, it had no impact in a real world experiment.

Furthermore, the influence of higher order neighbors is virtually neu-

tralized by square root normalization.

In the light of the results of the comparison, we decided to favor the word

space model over the graph-based implementation of distributional seman-

tics.
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Appendix B

Experiment Instructions

In the next two sections, we include the instructions that were given to (i) the

subjects participating in the asymmetric association study and (ii) the three

domain experts that marked semantic heads in phrases. The first section

contains the instructions for an online experiment, where spontaneous as-

sociation was required. These instructions are rather high-level because no

deeper linguistic understanding of asymmetry was required to complete the

experiment. The instructions for the domain experts, on the other hand, are

longer and more detailed. In that scenario, there was more work for indi-

vidual annotators. The subjects were domain experts but not familiar with

NLP and the phenomenon of non-compositionality. We included an intro-

duction to semantic heads and a number of examples because our goal was to

ensure that the domain experts understood the task and the linguistic back-

ground thoroughly. The example phrases and contexts are taken from the

iSearch corpus. Note that our annotation procedure collected graded non-

compositionality judgements. We collected judgements this way for possible

future experiments on compositionality grading but did not use the graded

data for the experiment in this thesis.1 For MWT, a binary decision between

MWU or non-MWU has to be made. For an introduction to the task of

compositionality grading, see Biemann and Giesbrecht (2011)

1Grade 1 was chosen to represent compositionality (C) and higher grades were chosen
for non-compositionality (NC).
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B.1 Asymmetric Association in Multi-Word

Units

Please read the instructions carefully. Since this is an experiment about

English it is vital that you only continue if you are a native speaker of

English. Thank you.

What you have to do for this experiment is to type in words. You’ll be

presented a word pair where either the first or the second word has been

blanked out. Your task is to fill in the blanks with as many words as you

can think of.

It is important that you only give words that would appear right after or

right before the displayed word in normal speech (depending on the position

of the blank line). The experiment is not a Free Association experiment. In

a Free Association experiment you are presented a cue word and the goal is

to give words that come to your mind after seeing the cue word. For example

boy→ girl or food→ drink. This is not what this experiment is about. There

may be overlaps between the two kinds of experiments but here the goal is to

give answers so that the blank line and the word that is already there make

up a fixed expression, for example, boy → scout or food → court.

Try to think of as many words as possible for each answer. It often helps

to imagine the words in several different contexts or to say it out loud. Let

your mind wander – as long as you are sure that the answers you give are

actually being used by English native speakers. Give all the words that you

can think of but try not to spend too much time on a single question. If you

can’t think of anything, press the ’next’ button.

B.2 Semantic Head Recognition

In natural language processing (NLP), noun phrases play a central role.

Noun phrases are groups of words like the dog, dogs, the small dog, that

hot dog or even the very old dog that never barks. Names, e.g. Albert

Einstein are also noun phrases. For successful NLP it is important to know
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which words of a noun phrase represent the main meaning of the phrase. For

more information on noun phrases, see http://en.wikipedia.org/wiki/

Noun_phrase.

Problem definition

The problem with noun phrases and meaning is how to tell which parts of

the noun phrase are important for determining its meaning. For example:

(B.1) My neighbors have a brown dog.

(B.2) I want a new dog.

(B.3) He invented the hot dog.

Here, all noun phrases have the same syntactic head: dog. The syntactic

head of a noun phrase is its most important word, all other words in the

phrase (brown, new, hot) modify the head. These modifiers give more

information about the syntactic head.

In sentences (B.1) and (B.2), the modifiers introduce a specification of the

head that does not affect the meaning of the whole noun phrase very much.

A brown dog is still a dog and a new dog is still a dog as well. That means

if we leave out the modifiers, the meaning of the phrase and the sentence do

not change very much.

In example (B.3), on the other hand, the modifier hot completely changes

the meaning of the whole phrase in an unexpected way. A hot dog is a kind of

food and not an animal. If we left the modifier out in this case, the meaning

of the phrase and the sentence change in an undesired way.

The meaning of hot dog is not a simple combination of the meaning of

the individual words hot and dog. The phrase is called non-compositional

because the meaning of the whole phrase cannot be composed from its parts.

The opposite is a compositional phrase where the meaning of the whole

phrase is the combination of its parts, e.g. small dog. In compositional

phrases, the modifier usually specifies the syntactic head but it does not

change its meaning.
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In the non-compositional case of hot dog, we say that the modifier hot is

crucial in this context, because leaving it out changes the meaning of the

phrase dramatically so the sentence makes no sense as in (B.4).

(B.4) He invented the hot dog.

There are also cases in which phrases are weakly compositional. These

phrases are located in the middle of a spectrum between compositional and

non-compositional phrases:

Example:

(B.5) He fell off a high wire.

High wire in (B.5) is an example for a weakly compositional phrase. Both

high and wire contribute their original meaning to the meaning of the whole

phrase. However, a high wire is a special kind of wire that acrobats balance

on and not just any string of metal that is high up in the air.

Often it helps to translate the phrase in question into another language.

If a literal, one-to-one translation is not possible without sounding

unnatural in the target language, then the phrase is weakly compositional.

(B.6) Er ist von einem hohen Draht gefallen.

(B.7) Er ist von einem Hochseil gefallen.

In sentence (B.6) high wire was translated literally into German and the

sentence sounds quite unnatural. With a bit of imagination, however, a

listener might still figure out what the intended meaning is.

In (B.7) the correct German translation Hochseil was used and the sen-

tence sounds fine. In the correct translation Draht (wire) became Seil (rope).

This is an unpredictable choice of translation and has to be learned

by the translator at some point in their life.
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Compositionality score

We have seen that there are weakly compositional phrases whose degree of

compositionality lies in the middle of the compositionality spectrum. For our

model we want to quantify the degree.

For this purpose, we introduce a numeric scale that corresponds to the

degrees of the spectrum:

• score(new dog) = 1 (fully compositional)

• score(hot dog) = 5 (fully non-compositional)

• score(high wire) = 3 (both meanings flow in but additional knowledge

is required to know what exactly a high wire is.)

When giving a score, consider the following questions:

• how much additional knowledge is required to understand the meaning?

• how natural would a literal translation sound to a native speaker?

N.B. The score always refers to the degree of compositionality between

the syntactic head and the last modifier that was tested (see estimated flux

density below).

Definition of semantic head

Summary: The semantic head of a noun phrase is the syntactic head and

all modifiers that are crucial in the context. It is the part of the phrase that

carries its main meaning. For example:

• SemHead(brown dog) = dog
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• SemHead(new dog) = dog

• SemHead(hot dog) = hot dog

• SemHead(high wire) = high wire

From now on, when we say crucial, we mean crucial in the context.

How to find the semantic head?

Step 1: Find the syntactic head

This is the rightmost word of the phrase or the last word before of.

little black dog

several thousand orders of magnitude

cosmic microwave background radiation

Step 2: Find the modifiers

These are all the others words that are not the syntactic head.

little1 black2 dog

several1 thousand2 orders of magnitude1

cosmic1 microwave2 background3 radiation

Step 3: Does the meaning of the phrase or sentence change

considerably when each modifier is left out?

When there is more than one modifier, start with the outer-

most one (index 1). If it is not crucial, continue with modifier

2 and so on. In the case of modifiers appearing to the left and

to the right of the syntactic head, you have to test them both

separately (i.e. first look at orders of magnitude and then at

several orders).

When you find a modifier that is crucial, this modifier and the

ones with higher indices belong to the semantic head. For ex-

ample, if cosmic was crucial then microwave and background

would be too.
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Step 4: Is a modifier crucial?

ask the following questions:

substep: Does the modifier turn the syntactic head into a more specific

kind in a transparent way? → strong indicator that it is not

a crucial modifier, indicates score 1

substep: Does the modifier change the meaning of the syntactic head

in an unexpected way? → strong indicator that it is a crucial

modifier, indicates score 5

substep: Is additional knowledge required to understand a modifica-

tion? Would a literal translation be possible and how natural

would it sound to a native speaker? (remember high wire)

→ strong indicator for a weakly compositional phrase, in-

dicates medium score 2, 3 or 4

another hint: Try a Physics/Mathematics dictionary and get an idea about

the phrase in question and to make a better decision.

Step 5: Are there modifiers that are crucial for the meaning

of the phrase?

substep: no? → The semantic head is the same as the syntactic head.

substep: yes? → The semantic head is the syntactic head + the crucial

modifiers.

Examples

Here are some examples phrases with examples usages, comments, correct

answers and scores.

most galaxies

• Inmost galaxies, neither atomic hydrogen nor molecular gas will obey

the equation.
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• One of the promising ways to investigate galaxy formation is to study

the ubiquitous globular star clusters that surround most galaxies.

comment: most does not change the meaning of galaxies, it is not crucial.

answer: SemHead(most galaxies) = galaxies

score: 1

black hole

• It is shown that instability of stringy matter near the horizon of a

black hole (the spreading effect) can be characterized by the Lyapunov

exponents.

• We shall thus consider a black hole of mass m1 M and a much smaller

object of mass m2.

comment: A black hole is an astronomic phenomenon but a hole is a

opening e.g. in the floor or the street.

answer: SemHead(black hole) = black hole

score: 5

degree of freedom

• This model of a black hole has one thermodynamic degree of freedom

• By taking into account all degrees of freedom of electromagnetic

fields and explicitly limiting the bandwidth of the pulses, our result

overcomes all the shortcomings.

comment: degree of freedom is a special term in Physics. The mean-

ing of the whole phrase cannot be seen from the meaning of

the components degree and freedom. However, the original

meaning of freedom is still in the phrase because the degree

of freedom describes how many parameters or dimensions can

be changed are in a system. So we give a score of 3.

answer: SemHead(degree of freedom) = degree of freedom

score: 3

estimated flux density
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• The error in the estimated flux density, both due to calibration and

systematic, is 5.

• This confusion causes an uncertainty of about 0.1 Jy in the estimated

flux density.

comment: Here we have two modifiers: estimated and flux. The modifier

estimated does not change the meaning of flux density in an

unpredictable way so it is not crucial. Then we look at flux

as a modifier of density. The modifier flux does not change

the meaning very much. But density is a very general term

and flux density is a well-known special kind of density so we

decide that in this context, flux is a crucial modifier but we

give a low score.

answer: SemHead(estimated flux density) = flux density

score: 2 (between flux and density)

above assumptions

• Under the above assumptions, the characterization of the stellar

sources requires only two free parameters.

• The above assumptions should be valid for the core of a forming

cluster or sub-cluster

comment: above is not crucial here because the modification is compo-

sitional.

answer: SemHead(above assumptions) = assumptions

score: 1

average surface brightness

• The galaxy contribution per pixel is computed as the azimuthal aver-

age surface brightness at the distance of the knot from the core of

the galaxy.

• In calculating this mean , the contribution of each disk is its average

surface brightness out to one exponential scale length.
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comment: the modifier average does not affect the meaning of surface

brightness strongly and is therefore not crucial. This leaves

us with surface brightness which is a term used in astronomy

to describe the brightness of large objects like galaxies. It

is still a kind of brightness but it is not obvious that we are

dealing with large astronomical objects. This justifies a score

of 3.

answer: SemHead(average surface brightness) = surface brightness

score: 3 (between surface and brightness)

red dwarf

• Our Sun is termed a yellow dwarf and there are many stars cooler than

the Sun called red dwarfs.

• Red dwarfs are too luminous, or they would have been detected di-

rectly in the Hubble Deep Field (HDF).

comment: A red dwarf is a kind of star but a dwarf is a small person.

answer: SemHead(red dwarf ) = red dwarf

score: 5

near future

• In the near future we plan further calculations using cylindrical ge-

ometry and ner resolution to study the mixing better.

• None of these galaxies is in danger of running out of gas in the very

near future.

comment: The modification by near is completely compositional and the

modifier is not crucial.

answer: SemHead(near future) = future

score: 1
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Padó, S. and Lapata, M. (2007). Dependency-based construction of semantic

space models. Computational Linguistics, 33(2):161–199.

Palermo, D. S. and Jenkins, J. J. (1964). Word association norms: Grade

school through college. Universtity of Minnesota Press, Minneapolis.

Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foun-

dations and Trends in Information Retrieval, 2(1-2):1–135.

Pecina, P. (2008). A machine learning approach to multiword expression

extraction. In Proceedings of the 2008 Workshop on Multiword Expressions,

page 54.

184



Pecina, P. (2010). Lexical association measures and collocation extraction.

Language Resources and Evaluation, 44(1-2):138–158.

Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). Wordnet::similarity:

measuring the relatedness of concepts. In Demonstration Papers at HLT-

NAACL 2004, pages 38–41. Association for Computational Linguistics.

Porter, M. F. (1980). An algorithm for suffix stripping. In van Rijsbergen,

C. K., Robertson, S., and Porter, M. F., editors, New models in probabilistic

information retrieval. MCB UP Ltd.

Ramisch, C., Villavicencio, A., and Boitet, C. (2010). mwetoolkit: a

framework for multiword expression identification. In Proceedings of the

Seventh conference on International Language Resources and Evaluation

(LREC’10), Valletta, Malta.

Rapp, R. (1999). Automatic identification of word translations from unre-

lated English and German corpora. In COLING 1999.

Rapp, R. (2002). The computation of word associations: Comparing syntag-

matic and paradigmatic approaches. In 19th International Conference on

Computational Linguistics, COLING, Taipei, Taiwan.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tag-

ging. In Proceedings of the conference on empirical methods in natural

language processing, volume 1, pages 133–142. Philadelphia, PA.

Reddy, S., McCarthy, D., Manandhar, S., and Gella, S. (2011). Exemplar-

based word-space model for compositionality detection: Shared task sys-

tem description. In Proceedings of the Workshop on Distributional Seman-

tics and Compositionality, pages 54–60, Portland, Oregon, USA. Associa-

tion for Computational Linguistics.

Reisinger, J. and Mooney, R. J. (2010). Multi-prototype vector-space mod-

els of word meaning. In Human Language Technologies: The 2010 Annual

185



Conference of the North American Chapter of the Association for Compu-

tational Linguistics, pages 109–117, Los Angeles, California. Association

for Computational Linguistics.

Resnik, P. (1996). Selectional constraints: an information-theoretic model

and its computational realization. Cognition, 61(1):127–159.

Riehemann, S. (2001). A Constructional Approach to Idioms and Word For-

mation. PhD thesis, Stanford University.

Rubenstein, H. and Goodenough, J. B. (1965). Contextual correlates of

synonymy. Communications of the ACM, 8(10):627–633.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A., and Flickinger, D. (2002).

Multiword expressions: A pain in the neck for nlp. In Proceedings of the

3rd International Conference on Intelligent Text Processing and Compu-

tational Linguistics, pages 1–15, Mexico City.

Sahlgren, M. (2006). The Word-Space Model: Using distributional analy-

sis to represent syntagmatic and paradigmatic relations between words in

high-dimensional vector spaces. PhD thesis, Department of Linguistics,

Stockholm University.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for

automatic indexing. Commununications of the ACM, 18:613–620.

Saussure, F. (1966). Course in general linguistics. McGraw-Hill, New York.

Schmid, H. (2004). Efficient parsing of highly ambiguous context-free gram-

mars with bit vectors. In COLING ’04, page 162.

Schone, P. and Jurafsky, D. (2001). Is knowledge-free induction of multiword

unit dictionary headwords a solved problem? In Proceedings of the 2001

Conference on Empirical Methods in Natural Language Processing, pages

100–108, Pittsburgh, Pennsylvania, USA. Association for Computational

Linguistics.

186



Schütze, H. (1992). Dimensions of meaning. In Proceedings of the 1992

ACM/IEEE Conference on Supercomputing, Supercomputing’92, pages

787–796. IEEE.

Schütze, H. (1993). Word space. In Advances in Neural Information Pro-

cessing Systems 5.

Schütze, H. (1998). Automatic word sense discrimination. Computational

Linguistics, 24(1):97–123.

Sha, F. and Pereira, F. (2003). Shallow parsing with conditional random

fields. In Proceedings of the 2003 Conference of the North American Chap-

ter of the Association for Computational Linguistics on Human Language

Technology - Volume 1, pages 134–141, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Shannon, C. E. (1948). A mathematical theory of communication. Bell

System Technical Journal, 27:379–423.

Shannon, C. E. and Weaver, W. (1949). The mathematical theory of infor-

mation.

Silva, J. and Lopes, G. P. (1999). A local maxima method and a fair disper-

sion normalization for extracting multi-word units from corpora. In Sixth

Meeting on Mathematics of Language, pages 369–381.

Sinclair, J. (1991). Corpus, Concordance, Collocation. Oxford Universtity

Press, Oxford.

Smadja, F. (1993). Retrieving collocations from text: Xtract. Computational

linguistics, 19(1):143–177.

Smadja, F., McKeown, K. R., and Hatzivassiloglou, V. (1996). Translating

collocations for bilingual lexicons: a statistical approach. Computational

Linguistics, 22:1–38.

187



Socher, R., Huang, E., Pennington, J., Ng, A., and Manning, C. (2011).

Dynamic pooling and unfolding recursive autoencoders for paraphrase de-

tection. Advances in Neural Information Processing Systems, 24:801–809.

Spence, D. P. and Owens, K. C. (1990). Lexical Co-Occurrence and Associ-

ation Strength. Journal of Psycholinguistic Research, 19(5):317–330.

Sporleder, C. and Li, L. (2009). Unsupervised recognition of literal and non-

literal use of idiomatic expressions. In Proceedings of the 12th Conference

of the European Chapter of the ACL (EACL 2009), pages 754–762, Athens,

Greece. Association for Computational Linguistics.

Strube, M. and Ponzetto, S. (2006). Wikirelate! Computing semantic relat-

edness using wikipedia. In Twenty-First National Conference on Artificial

Intelligence, AAAI, pages 1419–1424.

Tanaka, T. and Matsuo, Y. (1999). Extraction of translation equivalents

from non-parallel corpora. In Proc. of the 8th International Conference on

Theoretical and Methodological Issues in Machine Translation (TMI-99),

pages 109–19.

Taylor, P. (2009). Text-to-speech synthesis. Cambridge University Press.

Tjong Kim Sang, E. and Buchholz, S. (2000). Introduction to the conll-2000

shared task: Chunking. In Proceedings of the 2nd workshop on Learning

language in logic and the 4th conference on Computational natural lan-

guage learning-Volume 7, pages 127–132. Association for Computational

Linguistics.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the conll-

2003 shared task: Language-independent named entity recognition. In

Proceedings of the seventh conference on Natural language learning at HLT-

NAACL 2003-Volume 4, pages 142–147. Association for Computational

Linguistics.

188



Turney, P. (2001). Mining the web for synonyms: Pmi-ir versus lsa on toefl.

In De Raedt, L. and Flach, P., editors, Machine Learning: ECML 2001,

volume 2167, pages 491–502. Springer Berlin / Heidelberg.

Turney, P. and Pantel, P. (2010). From frequency to meaning: Vector space

models of semantics. Journal of Artificial Intelligence Research, 37(1):141–

188.

Tversky, A. N. (1977). Features of similarity. Psychological review, 84(4):327–

352.

Voorhees, E. M. (1999). The TREC-8 question answering track report. In

8th Text Retrieval Conference, TREC, pages 77–82.

Washtell, J. and Markert, K. (2009). A comparison of windowless and

window-based computational association measures as predictors of syntag-

matic human associations. In Conference on Empirical Methods in Natural

Language Processing, EMNLP, pages 628–637.

Weeds, J. (2002). Asymmetry in similarity between words. In Annual CLUK

Colloquium, pages 1–3, Leeds, UK.

Wermter, J. and Hahn, U. (2006). You can’t beat frequency (unless you use

linguistic knowledge). In 21st International Conference on Computational

Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics, COLING/ACL.

Wettler, M. and Rapp, R. (1993). Computation of word associations based

on the co-occurrences of words in large corpora. In 1st Workshop on Very

Large Corpora, pages 84–93.

Wiechmann, D. (2008). On the computation of collostruction strength: Test-

ing measures of association as expressions of lexical bias. Corpus Linguis-

tics and Linguistic Theory, 4(2):253–290.

Zhai, C. and Lafferty, J. D. (2002). Two-stage language models for informa-

tion retrieval. In Proceedings of the 25th Annual International ACM SIGIR

189



Conference on Research and Development in Information Retrieval, pages

49–56. ACM.

190


