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Preface

Our Contribution

The widespread proliferation of portable hand held computing de-
vices in the form of mobile phones, rivaling 6 year old desktop com-
puters in raw computational power and outclassing them in terms of
communication interfaces and interoperability, gave rise to a plethora
of new geospatial applications and services. One of the many roles
a modern mobile phone can provide, is the complete substitution
of printed maps with added functionality as navigation aid, for self
localization, or – with more semantic back-end information – com-
plex routing queries all around the world.
With the computer-based compilation of the majority of the worlds’
road networks, which are freely available to everyone in the form of
OpenStreetMap, vast geospatial databases are to our disposal today.
One of the most fundamental questions in such a network is to com-
pute a shortest (or quickest) path between two designated points.
This problem was solved by Dijkstra in 1959 in a provably optimal
way, but his algorithm, although very elegant and simple in design,
does not scale well on continent sized road graphs. Therefore a mul-
titude of alternative approaches for the single-source-single-target
shortest path problem and more complicated flavors were devised
in the last decade. The motivation for highly efficient algorithms
in this field is twofold. On the one hand they enable a real time
user experience on a mobile phone, even for complex tasks, on the
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other hand these approaches scale well when a server back-end is
employed, whose task is to server a large number of mobile agents.
If used in combination these techniques enable us to compute dif-
ferent shortest path related problems in the order of ten milliseconds
on the complete road network of Europe. This constitutes a speedup
of more than three magnitudes compared to Dijkstra’s approach.
This work consists of three main parts, each addressing an exem-
plary problem in the field of geospatial application which are out-
lined in the following sections.

Transit Node Constructions Revisited

In the first part we reconsider the concept of transit nodes as intro-
duced by Bast et al. [BFM06]. Transit nodes are an offline speed up
technique which enables very fast point to point shortest path dis-
tance computations and are based on a precomputed point to point
distance table of a small subsets of nodes – the transit nodes.
For the first time we construct instance based lower bounds on the
size of transit node sets by interpreting a LP formulation of the prob-
lem and its dual and, as a side product, we achieve considerably
smaller access node sets which directly improve the query time for
non-local queries.
We devise an algorithm to construct transit node sets for this theo-
retic framework and verify their properties with a practical imple-
mentation.
This result was also published as “Transit Nodes - Lower Bounds
and Refined Construction” at the 14th Meeting on Algorithm Engi-
neering and Experiments (ALENEX) in 2012 [EF12b].
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Applications of speedup Techniques: Path Prediction

In the second chapter of this work we work on the path prediction
problem – given the path a mobile user has moved along in a road
network up to the current moment, predict where the user will move
along in the near future. In contrast to known solutions to this prob-
lem we will compute our prediction not only based on the geometry
of the known path (using extrapolation) or directional information
implied by the underlying road network but make explicit use of the
structure of the space of shortest paths in the network. Our proposed
path prediction algorithm is equally simple but yields extremely ac-
curate predictions at a very low computational cost.
This work was published as path of the paper “Algorithms for Match-
ing and Predicting Trajectories” in the 13th Meeting on Algorithm
Engineering and Experiments (ALENEX) at 2011 [EFH+11].

Applications of speedup Techniques: Sequenced Route Queries

The third and final chapter considers the problem of a sequenced
route query – the problem of planning an optimal route (quickest
or shortest) that visits facilities of the respective type (for example
a gas station or a super market) on the way home. The proposed
solution, based on the combination of a distance sensitive doubling
technique and contraction hierarchies, is orders of magnitudes faster
than either a naive approach or previous results. In addition it pro-
duces the answers in an instant for realistic queries without com-
promising guaranteed optimality. With such fast query times, this
type of route query becomes feasible even on mobile devices or for
high-throughput web-based route planners.
This work is published as “Sequenced Route Queries: Getting Things
Done on the Way Back Home” in the Proceedings of the 20th Inter-

3



Contents

national Conference on Advances in Geographic Information Sys-
tems (SIGSPATIAL) in 2012 [EF12a].
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Preliminaries
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1. Fundamentals

In this chapter we lay the foundation for this work with the intro-
duction of the fundamental definitions and relevant algorithms in
the application area of shortest path computation in road networks.

1.1. Graphs and Paths

A graph G is a tuple of a finite set of nodes (or vertices) V and
edges E as Cartesian power over V , connecting these nodes. We
denote the cardinality of these two sets as |V | = n and |E| = m.
The concept of graphs is fairly general so we define more special-
ized graph types with regard to our applications. Each edge shall
connect exactly two nodes, so E ⊆ V × V . Let there be an edge e
which connects the nodes a and b. If we are interested in the spe-
cific orientation of this connection we denote the edges as tuples, so
e = (a, b) and call G a directed or digraph. In this case we call a
the source and b the target of e. Otherwise the edges are just sets
itself and we denote them as e = {a, b}. We refer to the in-degree
inDeg(v) of an node v as the number of edges with v as target,
so inDeg(v) = |{e ∈ E : e = (s, v), s ∈ V }|. The out-degree
of a node is defined accordingly. The reverse graph G(V,E) of a
digraph G shares the exact same nodes as G but interchanges all
source and targets, so E = {(a, b) : (b, a) ∈ E}. We call a graph
simple if there are no two edges between the same two nodes and
also no self loops of the form e = (v, v) with v ∈ V .

7



1. Fundamentals

A path p = (e1, e2, . . . , ek) in G is a sequence of sequentially con-
nected edges e1≤i≤k = (si, ti) with ti = si+1 for all 1 ≤ i ≤ k. It is
called simple if all the nodes induced by p are unique. If s1 = tk the
path is called a cycle. A graph without any cycles is called acyclic.
Note that such a path p can also be unambiguously defined by nodes
instead of edges if the graph is simple.
For a subset V ′ ⊆ V we call the graph G′ = (V ′, E′) induced sub-
graph ofG = (V,E) ifE′ = {e ∈ E : e = (a, b), a ∈ V ′∧b ∈ V ′},
so G′ inherits all the edges of G that are connecting valid nodes in
V ′.
We can also extend G = (V,E, γ) by an cost function γ : E → R
which assigns a weight (length) to every edge. The overall length
of a path p = (e1, . . . , ek) is defined as the sum of its edge weights∑

e1≤i≤k
γ(ei). We denote this length as dγ(p) or in short d(p).

1.2. Road Networks

Directed graphs offer a natural way to model road networks with
the representation of intersections as nodes and road segments as di-
rected edges. It is also common to diverge from the pure structural
representation of the network itself in favour of additional spatial
information. Considering this agenda edges are often partitioned
in chains of degree two nodes and nodes are augmented by data of
their absolute spatial position. Moreover the weight function is cho-
sen to convey the modelled road segment type.
The graph representations of road networks exhibit some interest-
ing properties which will be heavily exploited in the more advanced
algorithms later on.
Road networks are generally very sparse with m ∈ O(n) further-
more the maximum degree of any node is low. They are nearly
planar and due to the underlying objective of a road network they

8



1.2. Road Networks

reveal a distinct hierarchy with small residential networks at the bot-
tom and highways spanning entire continents at the top. This char-
acteristic is one of the reasons that shortest paths in road networks
are most often unique once they exceed a certain length.

1.2.1. Distance Metrics

In the previous section we discussed the transformation of spatial
and structural features of road networks into digraphs which leaves
us with the choice of an appropriate weight function.
Two viable possibilities come to mind. The first one is a straight
mapping of euclidean edge length to weight. This approach con-
serves the spatial properties of the graph but equalizes all the dif-
ferent road types into one common class. On the other hand it will
enable us to compute absolute euclidean path lengths. Although eu-
clidean length conveys meaningful information, more often we are
not interested in the shortest but in the fastest s-t-path with minimal
travel time. In this regard the weight function should also convey
the type of the road segment in addition to its length as the aver-
age travel speed on a highway is much higher compared to passing
along a small rural driveway.
This observation further places emphasis on the hierarchical nature
of the network as city connecting expressways are channeling travel
time optimal routes of certain length which is their exact point in
the first place.

With the OpenStreetMap database [OSM] as our main source for
real world road networks, we use the meta information for each
road segment to define its maximum travel speed and therefore the
time needed to traverse it. OSM provides a fine grained categoriza-
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1. Fundamentals

tion1 for the typically encountered pathway types. Figure 1.1 lists
the types we considered as passable by car and the top speeds and
therefore travel time we assigned to them.
The OSM guidelines try to map these road types to the local road
types in each country in a consistent way, such that continent wide
road networks are internally consistent in this regard. For Germany
“motorway“ would denote an Autobahn, ”primary“ a Bundestraße
and finally ”secondary“ a Landstraße.

road type speed limit road type speed limit
in km/h in km/h

living street 30 secondary link 80
motorway 130 service 30
motorway link 130 tertiary 70
primary 120 tertiary link 70
primary link 120 trunk 130
residential 45 trunk link 130
road 50 turning circle 50
secondary 80 unclassified 50

Figure 1.1.: A selection of the different road segment types in the OSM
metadata as described in and their assigned top speed.
These top speeds allow us to deduce a travel time for each
segment.

1.3. Computing Shortest Paths

Shortest path computation is the most fundamental building block
for both path prediction and transit node computation. The formal

1http://wiki.openstreetmap.org/wiki/Map_Features#
Highway
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1.3. Computing Shortest Paths

definition of the classic shortest path problem can be formulated as
follows: Given a graph G = (V,E, γ) and two nodes s, t ∈ V ,
compute the path p = (s, . . . , t) starting in s and ending in t which
minimizes d(p). We will refer to this path as π(s, t).
As both start and endpoint of p are fixed and we are only interested
in exactly one optimal path this problem is also called single-source
single-target shortest path problem. A straightforward extension is
the omission of t as fixed source which results in the problem formu-
lation of given a node s ∈ V , compute the shortest paths π(s, . . . , v)
for all v ∈ V . Without even fixing the source we get the problem of
conducting an all pairs shortest path computation, or more formal:
find the shortest paths π(v, . . . , w) for all pairs v, w ∈ V .

s

t

(2,10)

(3,10)

(1,2)

(3,4)

(3,10)

(4,12)(1,2)

(1,2)

(3,3)

(2,12)

(6,8)

(2,8)

Figure 1.2.: A graph G = (V,E, γ) with two different distance met-
rics (γ-functions). The (a, b) weight vector for every
edge denotes the respective assigned weight of each edge.
While the red path is a shortest s-t-path under γ1, γ2 im-
plies a different, blue shortest path.
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1. Fundamentals

In general we assume that the shortest path between two nodes is
unique. This is not so much a necessary constraint for the correct-
ness of the following algorithms but often simplifies the reasoning
about the ground truth of our models.

1.3.1. Dijkstra’s Algorithm

Dijkstra’s algorithm [Dij59] is designed to answer single-source
shortest path queries in graphs with non-negative edge weights. Given
a graph G = (V,E) and a source node s ∈ V it returns a shortest
path tree rooted in s as union of all shortest paths π(s, ·) in G.
In order to accomplish this task the algorithm maintains two pieces
of information for every node v in V which are a distance value as
length of a possibly non-optimal s-v-path and the predecessor of v
in this path. The algorithm partitions the set of nodes V in three
subsets V = A ∪ B ∪ C. In set A are all the nodes where the
distance and predecessor label are final and the algorithm is certain
about the correctness of these values. These nodes are called settled
nodes. In the set B are nodes with adjacent neighbors in A where
the algorithm has assigned a distance and predecessor label but the
resulting paths are not yet confirmed to be optimal. So B could be
imagined as small zone around A which has to be extended once A
grows. Finally in set C are nodes the algorithm has not yet discov-
ered.
The high level idea is now to start with A = {s}, as we know that
π(s, s) = ∅ with length 0 is optimal. After creating B accordingly
the algorithm moves node after node from B to A once it has ver-
ified the the correctness of its specific labels. As A contains more
and more nodes new nodes are discovered on its border and with
the assignment of temporary labels to this border nodes they are mi-
grated from set C to B. The algorithm finishes once the set B runs

12



1.3. Computing Shortest Paths

empty and it is unable to explore new nodes around A. Afterwards
we have nodes in A with some finite distance and a predecessor
implicitly realizing this distance and possibly also nodes in C with
a distance label of infinity. The nodes in C are exactly the nodes
where no path p(s, . . . , v ∈ C) exists and therefore no shortest path
can be found.
Now the main essence of Dijkstra’s algorithm is the order in which
nodes are explored and in this regard the ability to argue about the
correctness of a certain distance label such that the changeover from
nodes in B to A is justified.
To this regard the algorithm employs a priority queueQwhich holds
all nodes inB sorted by their distance labels. Q is initialized as only
containing s with distance 0. The following series of operations is
repeated until Q runs empty: Extract the node c with minimum dis-
tance from Q. Let c have a certain distance dist(c) and a prede-
cessor pred(c). Consider all outgoing edges of c and for each of
these edges e = (c, vi) ∈ E compare dist(vi) with dist(c)+γ(e).If
it holds that dist(vi) > dist(c) + γ(e) update dist(vi) to the later
value, set pred(vi) to c and add vi with its new distance label into
Q. This operation is also called edge relaxation. After the inspec-
tion of all those edges the algorithm extracts the next node from Q.
Note that the extraction of the node with minimal distance corre-
sponds to the action of settling this node and implicitly adding it to
A. If an edge e = (c, vi) is relaxed because dist(vi) =∞ the node
vi is explored the first time and implicitly moved from C to B.
As long as all edge weights are non-negative Dijkstra’s algorithm
observes the following properties: Each node c ∈ V is either ex-
tracted exactly once from Q with its final distance and predeces-
sor label, or never added into Q iff there is no s-c-path. For ev-
ery extracted node c its outgoing edges e = (c, ·) ∈ E are con-
sidered exactly once, each of them may or may not result in an

13



1. Fundamentals

relaxation. Therefore the the runtime of Dijkstra’s algorithm is
O(n · TextractMin + m · TdecreaseKey) and strongly dependent on the
particular implementation ofQ. Employing a Fibonacci heap which
supports the extractMin operation in amortizedO(log n) and the de-
creaseKey operation in amortized O(1) time, Dijkstra’s algorithm
therefore observes an overall runtime of O(m+ n log n).

If we are only interested in a single shortest s-t-path it may seem
wasteful to compute the complete single-source shortest path prob-
lem. To address this concern two modifications may be employed.
The first one is to simply stop the algorithm once t was settled. We
know that both distance and predecessor label of t are correct at this
point so we can reconstruct π(s, t). The second one is to start two
Dijkstra computations in a bidirectional search. The first one DJ1
on G, starting in s and the second one DJ2 on the reverse graph G,
starting in t. If we interleave their computation in such a way that
the succession of settled nodes distances is an increasing sequence,
i.e. the one DJ with the smaller potential distance to settle is allowed
to do so, there will be a point in time when a node c ∈ v got settled
by both computations. For this node both π(s, c) and π(c, t) are
known and therefore L = Len(π(s, c)) + Len(π(c, t)) is an upper
bound for the length of π(s, t). Also all nodes vi ∈ V without any
label from DJ1 are more distant than c from s and the same holds for
the nodes without a label from DJ2 and their distance to t. Once we
know L we can prune the search space of both DJ computations as
we do not need to explore any nodes without a label from the other
Dijkstra computation if both of them have settled all nodes up to
distance R and 2R > D. Also every node settled by both Dijkstra
computations may tighten the bound L. Overall this results roughly
in a speed-up of factor two over the unidirectional version.

14



2. Implementation

In this section we describe the most important design decisions for
the basic algorithms described so far.

2.1. Static Graphs

Our graph implementation is optimized for static directed graphs
and based on the idea of an offset array. The graph holds two global
arrays, each holding all edges. The first of these arrays is sorted by
source whereas the second one is sorted by target. A third global
array holds all the nodes. Each node has indexes into the in- and
out-edge array to the first end behind the last of its incident edges.
This data structure is called ’adjacency array’ representation in the
literature [MS08]. The approach results in constant sized nodes and
edges and guarantees that all incident edges of a given node are in
one consecutive block of memory. The decision to hold each edge
twice and sorting them this way was made with regard to Dijkstra
like algorithms which greatly benefit from the resulting locality as
they heavily rely on enumerating the incident edges for possible
edge relaxations. The meta data added to both edges and nodes will
be based on the necessitates of the concrete application. Edges are
expanded by both euclidean length and travel time. Fig. 2.1 shows
the basic interfaces for both nodes and edges.
The precomputation step of a contraction hierarchy requires to add
edges to this graph structure. In this case we will manage a tempo-
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2. Implementation

rary set of these additional edges and rebuild the complete structure
once integration becomes necessary in a batched fashion. This ap-
proach avoids the linear time penalty for adding nodes or edges into
this structure without actually supporting constant time edge set op-
erations by means of a more complex data structure.
This is the only instance in our use case where we will have to ’dy-
namically’ add edges to our road graph.

1 template <typename metaNodeType>
2 struct node {
3 uint ID;
4 uint beginOutEdge, endOutEdge;
5 uint beginInEdge, endInEdge;
6 metaNodeType metaData;
7 };

1 template <typename metaEdgeType>
2 struct edge {
3 uint ID;
4 uint source, target;
5 metaEdgeType metaData;
6 };

Figure 2.1.: Basic node and edge structure.

Figure 2.1 lists the bare bone structure of nodes and edges in our
static graph structure. We prefer unsigned int offsets into the edge
and node arrays over pointers based on the fact that 232 addressable
features are sufficient. The complete network of Europe consists of
about 241M edges, if one counts all types of path ways. This way
we get away with 4 bytes per offset, compared to 8 for a pointer.
Overall a node requires 5× 4 bytes for the graph structure and typ-
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2.2. Miscellaneous Data Structures

ically 2× 8 bytes more for the longitude and latitude of each node,
totaling 36 bytes. Each edge requires 3×4 bytes for the graph struc-
ture and 4 more byte per weight of which we will typically hold two,
totaling 20 bytes per edge.

2.2. Miscellaneous Data Structures

2.2.1. Fast Dijkstra

In practice the two most critical aspects for a fast Dijkstra compu-
tation are the layout of the outgoing edges to be enumerated for
each settled node and the performance of the priority queue. As de-
scribed in section 2.1 we took great care in the optimization of the
edge layout and size to ensure cache locality. Regarding the later
point there exists research for very complicated multistage priority
queues which are finely tuned to the cache hierarchy of the specific
platform [San99]. In our work we decided to elude this engineering
heavy problem and use the standard libstdc++-v3 priority queue in-
stead. This queue is backed by a fairly well tuned implementation
of a single heap in form of a balanced binary tree in an array.
For our specific use case the standard queue is consistently 30%
slower compared to the one provided by [San99], but does not re-
quire parameter tuning for element size or cache sizes. The libstdc++-
v3 also provides several drop in replacement implementations1 for
the standard heap based queue which are all slower in our use case
according to our measurements.
The main quirk of the standard priority queue interface is the ab-
sence of an increase-key operation (the std::priority queue is
a max-queue) which is required in the relaxation step of Dijkstra’s

1http://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/
pq_design.html
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2. Implementation

algorithm. As listed in figure 2.2 and 2.4 we deal with this short-
coming in the following way: We do not decrease any distances and
instead insert the to node to be relaxed as a second copy with its
new distance into the priority queue. Therefore some nodes will
be multiple times in the queue, whereas only the instance with the
lowest distance is the ”real“ one. To cope with this problem we
introduce an additional check each time we pop the top element
from the queue, we check its distance label from the priority queue
against the value saved in the distance array for this particular node.
If both these value match, the current top element is the ”real“ copy
(although we do not know if there are copies with larger distances
in the queue at this point) and proceed as normal. If the distance is
larger than the value in the distance array, we do hold a copy and
just drop it. The number of copies of each node is limited by the in-
degree of a node. Each time we settle one of the nodes’ neighbors
we could decide to relax the node and set the respective neighbor
as predecessor. In contrast - based on our measurements, the space
and time overhead induced by copies in the priority queue is lower
than 10% on our typical road network instances at any given time.

1 struct Length {
2 uint operator()(const simpleEdge& E) const {
3 return E.metaData.length[0]; }
4 typedef uint costType;
5 }
6 };

Figure 2.2.: Example for an Cost class returning an weight for an edge
of the correct type. This is completely inlined by the com-
piler.

18



2.2. Miscellaneous Data Structures

1 struct dijkstra::pqType {
2 uint distance;
3 uint node;
4 bool operator<(const pqType& o) const {
5 return distance>=o.distance;
6 }; // the std::priority_queue<T> is a maxQueue
7 };
8

9 // some members of the dijkstra class
10 const graphType& Graph;
11 std::array<uint, N> Distances;
12 std::array<uint, N> Predecessors;
13 std::priority_queue<pqType> PQ;

Figure 2.3.: Basic version of the one-to-all or one-to-one shortest path
computation of our implementation of Dijkstra’s algo-
rithm. Part I – Continued Below in Fig 2.4.

Our real implementation of Dijkstra’s algorithm is more compli-
cated as compared to the version in figure 2.4 out of the necessity
for higher flexibility. We also need to to calculate one-to-many and
many-to-many shortest paths, as well as the ability to add additional
break criteria as number of pop operations or distance from the
source. We archive this flexibility by rigorous management of the
dijkstra class state.
One final important performance trade of, which we managed by
two separate implementations of the dijkstra class itself, is the
question whether one holds the complete distance, predecessor and
target etc. arrays for very fast access and is willing to pay the space
and time needed to initialize them, or alternatively implements them
as dynamic sets and maps. The later version requires minimal space
or word on initialization but pays extra for every lookup.
In practice we are able to perform about 5.3M pop operations per
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2. Implementation

second for the array version and 1.15M pop operations per second
for the map version on a Intel Core i5-2500K at 3.3Ghz and one
thread. These numbers are relatively unaffected by the size of the
road network.
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2.2. Miscellaneous Data Structures

14 template <typename graphType, class Cost>
15 void dijkstra::compute( const uint source,
16 const uint target =

dijkstra::noTarget) {
17 PQ.push(pqType({0, source}));
18 while (!PQ.empty()) {
19 const pqType currTop = PQ.top();
20 PQ.pop();
21 const uint currNodeId = currTop.node;
22 const uint currDistance = currTop.distance;
23 const typename graphType::nodeType& currNode =

graph.getNodes()[currNodeId];
24 if (currNodeId == target)
25 return;
26 if (Distances[currNodeId] == currDistance) {
27 for (uint e = currNode.beginOutEdges;
28 e < currNode.endOutEdges; e++) {
29 const typename graphType::edgeType& currEdge =

Graph.getOutEdges()[e];
30 const nodeId currTargetId = currEdge.target;
31 const uint newDist = currDistance +

Cost()(currEdge);
32

33 if (Distances[currTargetId] > newDist) {
34 Distances[currTargetId] = newDist;
35 Predecessors[currTargetId] = e;
36 PQ.push(pqType({newDist, currTargetId}));
37 } } } } }

Figure 2.4.: Basic version of the one-to-all or one-to-one shortest path
computation of our implementation of Dijkstra’s algo-
rithm. Part II – Continuation from fig. 2.3. The
cleanup and setup of the member variables Distances,
Predecessors and PQ is done externally in other mem-
ber functions of the dijkstra class. Note the special
handling of duplicate PQ elements in line 29. The Cost
class returns an uint weight for a given edge (by return-
ing one of the values of the edges’ metaEdgeType exten-
sion).
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Transit Node
Constructions Revisited
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1. Motivation

Dijkstra’s algorithm is still the baseline when it comes to comput-
ing the shortest path distance in a graph with non-negative edge
weights. For a given source node A and a target node B it com-
putes the shortest path in time O(n log n + m) which seems best
possible in the comparison model, if no preprocessing on the graph
is allowed. With preprocessing the experienced query times can be
drastically improved. On one hand there are techniques that allow
for a pruning of the Dijkstra search such as A∗ (here some poten-
tial function φ : V → R is precomputed (or chosen ’on the fly’) to
modify edge costs), ArcFlags [KMS06, GKW06] (edges are tagged
if they are relevant for a shortest path to some target region), Reach
[Gut04] (edges/nodes are classified according to their importance
and whether they can appear in the middle of a long shortest path),
and many more. The latest of these techniques allow for query times
in the order of milliseconds in contrast to plain Dijkstra which takes
in the order of seconds on a moderate size road network like the
US or Europe with about 20 million nodes and 50 million edges.
A completely different approach was introduced by Bast et al. in
[BFM06]. There, one considers the set P of all “long” shortest
paths (at this point we leave the term “long” imprecise on purpose,
but think of “longer than 90km”) in the graph G(V,E, γ). Each
π ∈ P can be represented as the sequence or set of its nodes. For
sake of a simpler exposition we focus on the case of an undirected
graph, mentioning important differences for the directed case along
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1. Motivation

the way.
Preprocessing: In a preprocessing step we want to compute a set of
transit nodes T ⊂ V such that ∀π ∈ P we have π ∩ T 6= ∅. What
is this set T good for, what other properties of T are desired?
Let us start with the following observation which seems natural
when thinking about it for a while:

If you are travelling “far” – let’s say further than
90km – you will leave your local neighborhood on one
of few arterial routes. Nearly all road networks exhibit
a hierarchy of more and more “important” routes which
are meant to channel large amounts of traffic. You
would use them as feeder road to a highway or ring-
road if your target isn’t in the imminent vicinity. With
Stuttgart and its periphery as example you would use
one of only four Bundesstraßen (10,285,14 or 27) and
ultimately one of two Autobahnen (8 or 81) to reach
any other large city in Germany – regardless of the tar-
get’s geographic location.

In reality, a handful of such routes suffice. So, looking at the paths
in P starting at some specific vertex v, on the first few kilometers
(leaving the local neighborhood) they all share one of let’s say 5
common prefixes. If we could make sure that all “long” paths leav-
ing from v are hit by T in the local neighborhood of v, we can
define as the set of access nodes ANv of v the first node from T on
each of these prefixes, so typically we expect |ANv| to be a small
constant. In the preprocessing stage – apart from determining T –
we compute and store

• for each pair (v, w) ∈ T × T the distance between v and w

• for each v ∈ V the distances to all p ∈ ANv
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Query: For a given distance query from s to t which are suffi-
ciently far apart — also called non-local –, we can determine their
exact distance by evaluating ∀v ∈ ANs,∀w ∈ ANt the expression
d(s, v) + d(v, w) + d(w, t) and taking the minimum. All terms of
this expression are known after the preprocessing stage and there
are essentially |ANs|× |ANt| expressions to evaluate. If s and t are
not “far apart” – or local –, we resort to some other strategy such as
contraction or highway hierarchies [GSSD08, SS05], which will be
very fast due to source and target being nearby.
Of course, this whole scheme relies on the hope that one can con-
struct a small enough set T (essential of size O(

√
|V |) such that

storing the |T | × |T | distance table does not require humongous ad-
ditional space) and still cover most shortest paths. The query time
for “far away” queries depends on the actual sizes of the access node
sets.

1.1. Related Work

In [BFM09] an algorithm was presented which showed that it is pos-
sible to construct a rather small set T such that storing the |T |×|T |-
sized distance table requires essentially O(|V |) space. At the same
time T can cover a very large fraction of all shortest paths, and the
access node sets were also rather small. More concretely, for the
road network of California consisting of 1.6 million nodes and 3.9
million undirected edges, in [BFM09] a transit node set T was con-
structed with |T | = 15087 covering more than 97.1% of all shortest
paths in the network and the average size of an ANv was around 9,
so a typical query required around 81 lookups in the precomputed
data structure1. Transit node sets of the same order of magnitude

1They also reported similar numbers for the larger US road network.
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1. Motivation

were reported for a refined construction by Sanders and Schultes
[SS09].

Up to this point, it was not clear, though, whether the same covering
rate was possible with – let’s say 700 transit nodes, or maybe even
just 300 transit nodes. In [ADF+11] and [AFGW10] Goldberg et al.
propose the notion of highway dimension to obtain theoretical ex-
planations for the great success of transit nodes and other accelera-
tion schemes. They are more concerned with upper bounds, though,
while our work is concerned with lower bounds.

1.2. Outline

In this chapter we derive instance based lower bounds on the size
of the transit node sets that can be constructed for several notions
of “far”. This is achieved by modelling the problem of computing a
transit node set T as a hitting set problem for which we set up an (in-
teger) linear programming formulation as well as its relaxation and
dual. By a dual fitting argument we can show that a simple greedy
algorithm in practice achieves very small approximation ratios im-
plying that it is not possible to compute transit node sets consider-
ably smaller than e.g. in [BFM09] or [SS09].
As a nice side effect, our algorithm produces access node sets which
are considerably smaller (≤ 4 on the average) resulting in query
times that are one magnitude faster than the results reported in
[BFM09]. Still, we do not consider our technique to be of practi-
cal importance, though, due to the humongous preprocessing time
and space, but rather as a computational proof and insight that the
transit node construction schemes developed so far are close to op-
timal for the considered network instances. As a small partial result
we also show a simple filter for deciding locality of shortest path
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queries based on the triangle inequality – this might be of actual use
in practical implementations of any transit node scheme.
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2. Integer Linear
Programming

The classic hitting set problem is defined as follows: Given a uni-
verse U and a family H of subsets from U , the goal is to choose
the smallest subset T ⊂ U such that ∀H ∈ H : H ∩ T 6= ∅. Its
formulation as the following primal integer linear program (ILP) is
rather straightforward:

min:
∑
u∈U

xu (2.1a)

s.t.:
∑
u∈H

xu ≥ 1, ∀H ∈ H (2.1b)

xu ∈ {0, 1}, ∀u ∈ U (2.1c)

where we have a variable xu for each element from U indicating
its presence in T . There is a constraint for each H ∈ H which
demands that at least one of the elements in H is in T . In the linear
programming (LP) relaxation the integrality constraint on the xu is
replaced by xu ≥ 0. In our concrete setting, we have U = V ,
i.e. the universe consists of all vertices of the road network and H
at this point consists of all “long” paths π ∈ P . Remark: Later
we will argue that H should not consist of all “long” paths but
prefixes thereof, partly because we want to make use of our ”local
neighborhood” observation.
The dual of this LP formulation is a fractional packing problem.
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Here we have a (the same) family H of subsets from the universe
U and aim at selecting as many fractionally disjoint sets from H as
possible. This can be formulated as the following dual LP:

max:
∑
H∈H

yH (2.2a)

s.t.:
∑
u∈H

yH ≤ 1, ∀u ∈ U (2.2b)

yH ≥ 0, ∀H ∈ H (2.2c)

where yH indicates to what (fractional) degree set H ∈ H is cho-
sen. Replacing yH ≥ 0 by the integrality constraint yH ∈ {0, 1} we
obtain an integral set packing problem where the goal is simply to
choose as many disjoint sets as possible.

Clearly, the objective function value of the optimal fractional solu-
tion to the primal LP is a lower bound to the optimal integral solu-
tion to the primal ILP. Analogously, the objective function value of
the optimal fractional solution to the dual LP is an upper bound to
the optimal integral solution to the dual ILP. By strong duality, the
objective function values of the optimal fractional solutions to the
primal and dual LP are the same.
Of what use is this formalism for our concrete problem of comput-
ing transit nodes? The approach in [BFM09] or the one proposed
in the following computes a feasible integral solution to the primal
problem formulation (typically not optimal, though). Let us assume
that this solution has objective function value zprim. If we exhibit
a possibly fractional but feasible solution to the dual problem with
objective function value zdual with zprim/zdual ≤ α for some α ≥ 1,
we know that zprim is at most an α-factor above the optimal integral
solution to the primal problem, since the optimal integral solution
to the primal problem is (in terms of the objective function value)
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sandwiched between any feasible primal integral solution and any
dual feasible solution.

As the hitting set problem is essentially the same as the set cover
problem, it seems very unlikely that any polynomial-time algorithm
can compute an integral solution which in general is always a o(log n)
factor away from the optimal integral solution [Vaz01]. It is impor-
tant to note, though, that for concrete problem instances it might
be well possible to derive dual feasible solutions which are only a
small constant factor away from the primal solution and hence prov-
ing close-to-optimality of the primal integral solution.

In the remainder of this chapter we will develop a greedy algorithm
for the primal problem formulation and a strategy for obtaining a
feasible dual solution which for the problem instances of transit
node computation was always only a small constant factor away
from the primal greedy solution in terms of the objective function
value hence proving the close-to-optimality of the respective solu-
tion from our algorithm. This correlation is visualized in figure 2.1.
The instance based approximation guarantee is the ratio between the
greedy integral solution size of the set packing problem compared
to the dual greedy integral solution size of the hitting set instance.

As described above it would be very desirable to compute the op-
timal fractional solution of either the primal or dual formulation of
a given instance to obtain a tighter approximation bound. We will
discuss in section 4.1 that the resulting set cover instances, obtained
by ’moderately’ sized graphs are very large. It will be infeasible
to compute either the exact integral solutions or the exact fractional
solution for our setting in general.
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2. Integer Linear Programming

real apx

approximation factor bound

our integral Set Packing
solution

best integral Set Packing
solution

our integral Hitting Set
solution

best integral Hitting Set
solution

optimal fractional
solution

0 ∞
target function value

Figure 2.1.: Connection between primal and dual LP solutions. By the
strong duality theorem the objective function values of the
fractional set packing and hitting set problems are identi-
cal for an optimal solution. Around this common value is
an integer gap for both integral solutions. Finally the so-
lutions of our greedy algorithms are approximations for
the optimal integer solutions. The instance based approx-
imation bound is the distance between both greedy solu-
tions.
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3. Transit Node Computation
as Hitting Set Problem

The previous section should have made clear how the problem of
computing transit nodes fits into the LP framework of hitting set and
set packing. So, for some notion of “long” we could first compute
the set of all “long” shortest paths and consider them as a family of
subsets from V . Of course this seems hardly feasible for networks
with several million nodes since this family of subsets would con-
tain in the order of |V | · |V | ≈ 1012 many sets, each of which might
be pretty large, too. Here, the specific characteristics of our hitting
set problem comes as a rescue. When we consider some “long”
path π, then clearly all prefixes of this path which are also “long”
are contained in H – since they are also shortest paths. Each of
them has to be hit by our hitting set, too, so we can actually restrict
H to the set of minimal “long” shortest paths, i.e., all “long” short-
est paths for which no prefix is also “long”. Only this observation
reduces the size of H and each individual H ∈ H such that it gets
treatable in practice.
If we want to make use of our observation about traveling far and
local neighborhoods, we furthermore want to enforce that each min-
imal long path π emanating from v is hit locally, i.e. “close” to v.
We can achieve this by further truncating π to be an even shorter
prefix, so at the end, our sets H to be hit by our hitting set algo-
rithm are prefixes of minimal shortest “long“ paths. This constraint
might look artificial but has already been implicitly been imposed
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3. Transit Node Computation as Hitting Set Problem

by [BFM09] since there the local access nodes aka relevant transit
nodes were forced to be nearby by construction. So the problem we
consider for the rest of the chapter is following:

For some notion of ’long’ and ’nearby’, compute a
set of transit nodes T ⊂ U which hits all ’long’ paths
’nearby’ its starting point.

The framework of LP duality will allow us to come up with guaran-
tees about the quality of solutions to this problem.

3.1. Notions of “long” & Algorithmic
Details

There are different ways to define what a “long” path is or when two
nodes A and B are “far” apart. The following are natural choices:

1. a shortest path fromA toB is “long” if the Euclidean distance
along the path from A to B is more than some constant D

2. a shortest path from A to B is “long” if the Graph distance
(e.g. travel time) along the path from A to B is more than
some constant D

3. a shortest path from A to B is “long” if the Dijkstra rank of
B w.r.t. A and the Dijkstra rank1 ofA w.r.t. B in the reversed
graph is more than some constant D

Let m : V × V → R+
0 be the distance function which determines

what a “long” shortest path is. The choice of m determines how the

1The Dijkstra rank of a node v w.r.t. some other node s is k if in a Dijkstra
computation starting at s, v is pulled as k-th node from the priority queue.
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3.1. Notions of “long” & Algorithmic Details

C

outer

inner

Figure 3.1.: Transit Node Construction by Bast et al. [BFM09]. The
graph is partitioned into gridcells, all shortest paths start-
ing in C and crossing the outer perimeter are covered by
transit nodes.

family H is constructed for preprocessing how to decide at query
time whether a A-B-query can be answered using the transit node
scheme.
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3. Transit Node Computation as Hitting Set Problem

3.2. Comparison to Existing Transit Node
Constructions

In the original paper on Transit Node routing by Bast et al [BFM09],
the following transit node construction was used, see Figure 3.1:

1. a grid of – let’s say 128× 128 is put over the network

2. for each boundary node of a grid cell C, a Dijkstra is started
until the nodes of the outer boundary (as in Figure 3.1) are
settled

3. for each node in v ∈ C, its set of access nodes is determined
by the crossing points of all shortest paths to outer boundary
nodes from the boundary nodes of C

The shortest path from A to B is “long” if there are at least 4 grid-
cells betweenA andB vertically or horizontally. This is a simplified
version of the first notion of “long” via Euclidean distance. In this
case for example the function m(A,B) could return the the number
of grid-cells in between.

In [SS09], a second incarnation of Transit Node Routing was pre-
sented. Here, the authors use as transit node set the (core of) a cer-
tain level in their Highway Hierarchy (HH). Highway Hierarchies
are some sort of formal classification of a road network based on
Dijkstra ranks. Essentially, their approach uses our third notion of
“long”. The idea behind Highway Hierarchies is very similar to the
concept of Reach in section 2.1. For a given graph G = (V,E) the
authors define the concept of a ’highway network’ G1 = (V1, E1)
as the set of edges (u, v) ∈ E that are part of a shortest s-t-path
π = (s, . . . , u, v, . . . , t) with the property that neither v is in the
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neighborhood of s nor u is in the neighborhood of t. The ’neighbor-
hood’ of a node n is defined as the firstH nodes a Dijkstra computa-
tion would settle in an one-to-all shortest path computation rooted in
n. V1 is accordingly the maximal subset of V s.t. G1 is connected.
From the highway network the authors define a ’contracted high-
way network’ G′1. G′1 is obtained from G1 by partitioning G1 in its
’2-core’, which is the maximal vertex induced subgraph with mini-
mum degree two, and ’attached trees’, which are rooted in nodes of
the 2-core but otherwise consist of degree 1 nodes. The contraction
part consists of the replacement of all degree two chains in the 2-
core with single edges, thus G′1 consists of the contracted 2-core of
G1 and all the trees from G1 which were not in the 2-core. Finally
the ’highway hierarchy’ is the the union of all the contracted high-
way networks created by iterating the aforementioned process. So
G′2 is computed by the exact same process as described for G′1 but
with G′1 as base graph.

The second notion of “long” has not been used that frequently, prob-
ably because it inherits both main disadvantages of the other two no-
tions: namely, checking for locality – that is answering whether the
s, t shortest path is ’long enough’ to be covered by transit nodes at
all – appears similarly difficult as for the third notion and the adap-
tivity to varying network densities is similarly bad as for the first
notion. These issues are discussed in more detail in the following.

3.3. Preprocessing

3.3.1. Primal Algorithm

The primal algorithm follows a simple greedy strategy which in
each iteration adds one node to the hitting set – the one covering

39



3. Transit Node Computation as Hitting Set Problem

most so far “unhit” sets fromH. More formally, let Ti be the hitting
set after the i-th iteration, Hi := {H ∈ H : H ∩ Ti = ∅}, then we
choose in the (i + 1)st iteration the u ∈ U − Ti which maximizes
|{H ∈ Hi : H∩{u} 6= ∅}|. We iterate untilHi = ∅. This simple al-
gorithm computes a feasible integral solution to the primal problem
and achieves an approximation guarantee of O(log |V |) since there
is a generic way [Vaz01] to construct a dual feasible solution which
is at most a O(log n) factor away. In the following we will sketch a
simple dual algorithm which in practice yields dual solutions which
are very close to the primal solution of the greedy algorithm in terms
of the objective function.

Algorithm 3.3.1: Primal Greedy Algorithm for the compu-
tation of a hitting set.

1 HittingSet(U ,H) B U . . . universe (= V ), H . . . family of

sets over U

2 i← 0
3 H0 ← H
4 T0 ← ∅ B set of selected nodes from U

5 whileHi 6= ∅ do
6 choose u ∈ {U − Ti} s.t.

|{H ∈ Hi : H ∩ {u} 6= ∅}| is maximized
7 i← i+ 1
8 Ti ← Ti−1 ∪ u
9 Hi ← {H ∈ H : H ∩ Ti = ∅}

10 end
11 return Ti
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3.3.2. Dual Algorithm

The dual algorithm follows a similarly simple greedy strategy. Our
algorithm proceeds in iterations, picking it each iteration the set
with the smallest weight and which does not overlap the previously
picked sets. In this context the weight of a set H is defined as the
number of sets inH which have a non-empty overlap withH . More
formally let Pi be the set of (pairwise disjoint) sets picked after the
i-th iteration Hi := {H ∈ H : H ∩ H ′ = ∅ ∀H ′ ∈ Pi}, then we
pick in the i+ 1st iteration a set fromHi of minimum weight.

At this point we have set up our basic framework for computing
transit node sets with a guaranteed a posteriori approximation qual-
ity. In the remainder of the chapter we will fill in the (important) de-
tails, in particular: discuss several notions of “long” including their
relation to existing transit node computation schemes and evaluate
our algorithms in terms of approximation guarantee (of the transit
node sets), query times (size access node sets) and efficacy (queries
that can be answered).

3.3.3. Set Computation

Once the notion of “long” is fixed, the actual preprocessing step
to set up the primal and dual LPs (2.1), (2.2) is quite generic: For
each node A we run Dijkstra until ∀B in the priority queue we have
m(A,B) ≥ D. The result is a shortest path tree, rooted at A, con-
sisting of all nodes with distance smaller than D according to our
chosen notion for “long”. For each node B still present in the pri-
ority queue we trace back the shortest path to A, generating a set
which is a prefix of the path from A to B consisting of the nodes
closer than L := αD to A for some α < 1 to make use of the
travelling far and local neighborhoods observation. We expect the
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3. Transit Node Computation as Hitting Set Problem

Algorithm 3.3.2: Dual Greedy Algorithm for the computa-
tion of a set packing.

1 SetPacking(U ,H) B U . . . universe (= V ), H . . . family of

sets over U

2 i← 0
3 H0 ← H
4 P0 ← ∅ B set of selected sets from H
5 whileHi 6= ∅ do
6 choose u ∈ Hi s.t. |{H ∈ Hi : H ∩ u 6= ∅}| is

minimal
7 i← i+ 1
8 Pi ← Pi−1 ∪ u
9 Hi ← {H ∈ H : H ∩H ′ = ∅ ∀H ′ ∈ Pi}

10 end
11 return Pi

resulting sets to be the same for many B’s and ending up with few
sets per node A. Several tricks like restricting the sets to nodes of
degree larger 2 (since any degree 2 transit node can be replaced by
the next larger degree node) can be employed to make this approach
more efficient in regard to smaller sets and therefore less space con-
sumption. See Figure 3.2 for a depiction of the situation.

3.3.4. Computation of Access Nodes

Once we have computed our set T of transit nodes, it remains to
compute for each vi ∈ V its access nodes ANi ⊆ T (intuitively
these are the first transit nodes on the few routes leaving the lo-
cal neighborhood). This is a smaller hitting set problem HSi =
(Hj

i , (
⋃
j H

j
i ) ∩ T ), where we need to hit all sets Hj

i , but are only
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Figure 3.2.: A set is created for each distinct shortest path which
crosses L and D. Here we create 7 sets.

allowed to choose Elements of T . Even if these sub problems HSi
can be quite large, we are able to solve them optimally in an efficient
way, employing the special structure of the sets Hj

i . Because these
sets were constructed by the shortest path tree rooted in vi and were
sub sampled by throwing away all nodes which were not chosen to
be in T , we can sort their elements in increasing distance to vi and
starting with the closest mark them to be in the solution set ANi in a
greedy manner. It is easy to see that this yields the optimal solution
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to HSi as we are traversing the shortest path tree in increasing dis-
tance. This approach is similar to the one described in [SS09]. The
number of access nodes compared is considerably decreased com-
pared to the approach e.g. in [BFM09] and directly influences the
query times as we will see later on.

3.4. Query

For a query, we need to decide, whether vertices A and B are far
apart in the distance notion m, so we aim at computing a lower
bound for m(A,B) and checking this lower bound against the pa-
rameter D.
If m is the Euclidean metric, a straightforward strategy is to use the
beeline as a lower bound: m(A,B) ≥ |AB|.
By taking into account the maximum speed in a road network, we
could also turn this lower bound into a lower bound in case m is
the graph distance metric. Unfortunately this does not provide good
bounds as m(A,B) and |AB| are only loosely coupled for small
transit node sets where the access nodes of a node are relatively
distant, compared to the overall shortest path length. The follow-
ing yields a better bound (and is also applicable to the Euclidean
case). The crucial observation is that using the triangle inequal-
ity the following statement holds for each pair of access nodes:
m(AN i

A, AN
j
B) ≤ m(AN i

A, A) +m(A,B) +m(B,AN j
B). So

m(A,B) ≥ max
i,j

(
m(AN i

A, AN
j
B)−m(AN i

A, A)−m(B,AN j
B)
)
.

(3.1)
Note that for directed graphs m is not necessarily symmetric, so
while we use m(AN i

A, A) and m(B,AN j
B) for deriving the lower

bound on m(A,B), we use m(A,AN j
A) and m(AN j

B, B) for com-
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putation of the distance between A and B itself. Experiments show
that this lower bound is very close to the true value of m(A,B).
The case that m(x, y) is the Dijkstra rank of y w.r.t. x, things get
more complicated, as this distance function does not satisfy the tri-
angle inequality at all. We solve this by deriving individual con-
stants Dv for each node v which specifies that all paths outgoing
from v and longer thanDv (measured according Euclidean or graph
distance) are hit by a transit node. Dv can be computed by a lo-
cal Dijkstra computation during the set generation (similar to the
method in [SS09]). Note that we need to compute both Dv (for the
outgoing paths of the source nodes) as well as D̃v (for incoming
paths of the target nodes) in the reversed graph if we have directed
edges. We then employ the same mechanism for deriving the lower
bounds on the (Euclidean or graph) distance between A and B and
compare this value to max(DA, D̃B).
One might wonder, why we use the third notion of “long” (Dijkstra
rank) at all. One important advantage of Dijkstra rank based meth-
ods is their adaptivity to varying network densities (which can also
be observed when comparing Highway hierarchies vs. e.g. edge
reach, [Gut04, GKW06]). In particular, using the Dijkstra rank al-
lows to keep the number of targets t for any source node s that are
not far away constant throughout the network. The first two notions
of “long” typically result in more “non-far” targets in urban areas
and less in the countryside.
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3. Transit Node Computation as Hitting Set Problem

s tas0

as1

as2

as3

at0

at1
at2

at3

at4

(a) Computing d(s, t) requires fetching their respective access nodes As =
{as

0, . . . , a
s
3} and At = {at

0, . . . , a
t
4}.

s tas0

as1

as2

as3

at0

at1
at2

at3

at4

(b) Here the minimal distance is d(s, t) = d(s, as
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Figure 3.3.: The basic shortest path query process once all access node
sets are precomputed. If we found s and t to be far
enough apart, we fetch their respective access node sets
as shown in figure (a) and check all possible pairs of ac-
cess node combinations. From the 4 × 5 possible paths
we return the one realizing the smallest distance. As
shown in figure (b) we return the distance for combina-
tion (s, as

0),(at
3, t) in this case.
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4.1. Implementation

We have implemented our primal and dual greedy algorithms in
C++ and computed transit node sets with lower bounds for differ-
ent road networks. In the following presentation we will focus on
the road network of California (CA), which was also evaluated in
[BFM09] and is available at the DIMACS1 challenge website. It
has 1.613.303 nodes and 3.946.702 edges. We used two versions of
this graph, one bears the euclidean distances as edge costs, the other
bears travel times. For some tests we also used the US network with
24.266.702 nodes and 58.098.086 edges.
Our C++ code was evaluated (unless stated otherwise) on a 24 core
machine with 2 AMD Opteron 6172 cpus at 2.1GHz and 96GB of
ram. Timings are in terms of CPU time, so 5 minutes on two cores
are accounted as 10 minutes.

The main challenge in the implementation is the handling of the
sets. In contrast to the other transit node construction schemes,
they have to be explicitly built and stored for derivation of the lower
bounds. To give you an idea, on the road network of California, for
the parameter setting which results in a 98.59% rate of non-local
queries, we had to generate 11 million sets with a 423 million nodes
in total. For the US road network, a similar setting required 158

1http://www.dis.uniroma1.it/challenge9/
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million sets with 27 billion nodes in total, pushing our server with
96GB of RAM to its limits.
Even for very small networks the (I)LP formulation becomes very
large, so employing standard linear programming techniques is in-
feasible. Neither glpk2 nor lp solve3 where able to find feasible
solutions for the LP case on instances consisting of only 5 ·105 sets.
Such a set of constraints is the result of a road network with about
104 nodes. Primal-dual techniques were also tried and reasonable
fast but consistently non-competitive with respect quality of the out-
come. With Gurobi4 we also used a state of the art commercial LP
solver, which is free for academic use. Gurobi is able to provide
some very tight approximation bounds for instances up to 107 sets
quickly (about 2% gap after a few minutes) but is not able to solve
these instances exactly.

4.1.1. Instance-based Approximation Guarantees

The main result of this work is the computational proof that for the
road networks encountered in practice, the transit node construction
schemes that have been developed so far are essentially optimal up
to a small constant factor. To that end, we have used different no-
tions of “long” in our experimental evaluation; we computed a set
of transit nodes (primal TN size), a feasible dual solution (dual TN
size), their ratio and the average number of access nodes.

4.1.2. Set Generation

We implemented two different approaches for the set generation
step. The first one is feasible if the amount of generated set data

2GNU Linear Programming Kit
3http://lpsolve.sourceforge.net/5.5/
4http://www.gurobi.com
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4.1. Implementation

is in the order of the available memory - in our case 96GB. In this
case we assemble all the sets, generated by the Dijkstra shortest path
tree in each node, in one huge set cover / set packing instance. The
only optimization is to sort each set to ensure its representation is
unique, sort all the sets to delete possible multiple occurrences of a
set and save away which sets were found for each shortest path tree.
We do this as external memory algorithms which maps all the sets
into the virtual memory and uses multiple passes to sort the data and
discard duplicates.
The second case is that the resulting set data is larger than the main
memory by a factor of more than 3, in which case the sorting and
especially solving of one giant set cover instance becomes infeasi-
ble. In this case we split up the graph in several subgraphs of equal
size, generate the resulting instances separately and take care that
we find a solution for each of the instances which is consistent with
each other.
The splitting in our original publication was done by a simple n×m
grid which divided the graph in n×m subgraphs and optimization
instances. A better approach is to use METIS5 which employs a
sophisticated multilevel recursive heuristic to create subgraphs of
similar size with minimal capacity between each other. Our goal is
to chose the number of subgraphs such that each sub-instance fits in
the fist category.
To create a valid overall solution from the sub-problems it suffices
to keep track of the selected nodes in in both formulations and mark
all the corresponding sets as hit in our current sub-problem in the
primal version or as forbidden in the dual formulation.

5http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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4.1.3. Memory Management

Due to our choice of a 64bit Linux system we chose to ’outsource’
the management of the large set data to the kernel. We use mmap
to map the large set data files direct into our memory space. In this
regard we only have to be able to de-/reserialize the sets, which are
kept as simple vectors. In general mmap is the fastest way to access
large files and read/write access is completely cached as long as the
file size plus resident memory usage of the algorithm ’itself’ is less
than the main memory of the system. Above this limit the perfor-
mance degrades as more and more cache misses occur. Each mmap
cache miss results in a disk access, so the performance drastically
degrades beyond a certain point.

4.2. Results

For example, the third row of the Dijkstra rank on travel metric
block in Table 4.1 means that we consider a graph which has travel
times as edge costs, the shortest path between some s and t is “long”
if the Dijkstra rank of s w.r.t. t is ≥ 16000 and vice versa. All
“long” paths emanating from some vertex v must be hit by transit
nodes of Dijkstra rank≤ 4000 w.r.t. v. Our primal greedy algorithm
computed a transit node set of size 8996, the dual feasible solution
and hence lower bound is 4886, that is, we are at most a factor of
1.85 of the optimum size for this notion of “long”. The average
number of access nodes for a node was 3.67. The other rows are
to be interpreted in the same manner. For any notion of “long”, the
proven approximation ratio was always below 2.2.
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D L primal TN dual TN APX avg.
size size TSnodes

Dijkstra rank on 4000 1000 29896 15876 1.88 4.45261
euclidean metric 8000 2000 18299 9028 2.02 4.84460

16000 4000 10888 5017 2.17 5.21792
Dijkstra rank on 4000 1000 27400 15464 1.77 3.66852
traveltime metric 8000 2000 16153 8822 1.83 3.67069

16000 4000 8996 4866 1.85 3.63877
traveltime 30000u 15000u 36031 25537 1.41 3.25567

60000u 30000u 12788 7819 1.64 3.36096
90000u 45000u 6619 3806 1.74 3.42776

euclidean path 15000m 7500m 32866 21074 1.56 4.87995
length 30000m 15000m 12894 6836 1.89 5.43762

45000m 22500m 7360 3492 2.10 5.59396

Table 4.1.: CA Primal and dual objective function values, approxima-
tion ratios, avg. number of access nodes for different no-
tions of “long”. D/L are the upper/lower distance bounds
for the respective search spaces. ’u’ is our chosen travel-
time metric unit, ’m’ are meters.

D L primal TN dual TN APX avg.
size size TSnodes

Dijkstra rank on 96000 24000 37344 21836 1.71 3.40624
euclidean metric 128000 32000 27843 16064 1.73 3.43464

Table 4.2.: Same as table 4.1 for US.

4.2.1. Comparison with Previous Constructions

How does this relate with the results, for example in [BFM09]? To
that end we first have to determine, what a concrete notion of “long”
means in terms of the fraction of paths that are indeed “long” ac-
cording to this notion. In Table 4.3 we see for example that for the
scheme just explained, for 98.06% of all queries, the distance lower
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bound equation (3.1) proves that we can employ the transit node
scheme. In fact, the result of the transit node scheme was correct
for 99.90% of the queries but we could not prove it; similar effects
were also reported in [SS09].

What results are most comparable to the results in [BFM09]? Ac-
cording to Table 5 of [BFM09], 15087 transit nodes were necessary
for a 128 × 128 grid on California (which equals a success rate of
97.16% – this is essentially determined by the grid dimensions) and
the travel time metric on the edges. 21230 transit nodes were neces-
sary for the euclidean metric. In terms of the construction scheme,
for the travel time metric our most similar results are the (non-
DijkstraRank-based) traveltime constructions withD value between
30000units and 60000 units. Unfortunately we cannot match ex-
actly the success rate of [BFM09] but we would estimate that for a
D value of around 40000 we would get upper and lower bounds of
around 20000 and 12000. In terms of efficiency, our DijkstraRank-
based construction for the travel time metric is far superior. With
fewer transit nodes (8996) we obtain a considerably higher success
rate (98.06%). Similar results can be observed for the euclidean
metric.
Looking at the US road network in Tables 4.2 and 4.4, we see for
example that for the euclidean metric we can provably hit 98.63%
of all paths using 27843 transit nodes (at most a factor 1.73 above
the lower bound). In [SS09], Table 3, the first layer of their tran-
sit node scheme for euclidean distance contains 15399 transit nodes
and provably decides 91.2% of all queries; the average number of
access nodes is 17 compared to ≈ 3.4 in our case.

Measuring the preprocessing time is difficult as our implementation
is tuned for very large instances and highly dependent on the amount
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cpu model query time in µs
AMD Phenom 9850, 2.5GHz 2.25
AMD Opteron 6172, 2.1GHz 1.20
Intel i3-2310M, 2.1GHz 0.79

Figure 4.1.: Average query times for the shortest path distance com-
putation on different processors. These timings were av-
eraged over 109 random “long” queries.

of I/O. In order to provide an estimate we measured the usertime for
30000/15000m path length case on the CA graph where the set gen-
eration step took 73min and resulted in 8.5 · 106 sets consisting of
226 · 106 elements overall. The greedy computation of the primal
solution took 16s, the dual one 18s. Finally the computation of the
all pair shortest path distances took 5m30s. The set computation
step scales linearly with the number of nodes in the graph as with
the choice of the upper and lower bound parameter and is the dom-
inating part of the precomputation. The greedy primal/dual compu-
tation on the US instances is mainly I/O bound as the generated sets
have to be retrieved from disk. The main primal/dual computation
running time is in the order of several minutes compared to the I/O
which requires up to one hour.

4.2.2. Query timing

As described in Section 3.4, the s, t distance calculation at this
point is reduced to some lookups of precomputed values. To be
more specific we need to compute minimum value of d(s, v) +
d(v, w) + d(w, t) over all v ∈ ANs and all w ∈ ANt. This results
in |ANs| × |ANt| lookups for d(s, ·) and d(·, t) in their respective
access node arrays and also in the same amount of lookups in the

53



4. Experimental Results

D L correct lower bound
distance ’far’

Dijkstra rank on 4000 1000 99.98% 99.62%
euclidean metric 8000 2000 99.94% 99.27%

16000 4000 99.87% 98.59%
Dijkstra rank on 4000 1000 99.97% 99.96%
traveltime metric 8000 2000 99.94% 98.97%

16000 4000 99.90% 98.06%
traveltime 30000u 15000u 99.99% 98.77%

60000u 30000u 99.69% 94.35%
90000u 45000u 99.19% 92.25%

euclidean path 15000m 7500m 99.90% 99.29%
length 30000m 15000m 99.58% 97.57%

45000m 22500m 99.31% 96.67%

Table 4.3.: CA Correct distance is the measured success rate where ap-
plying the transit node scheme results in the correct short-
est path distance. lower bound is the fraction of nodes
where we could actually prove correctness of the transit
node scheme using equation 3.1. D/L are the upper/lower
distance bounds for the respective search spaces.

D L correct lower bound
distance ’far’

Dijkstra rank on 96000 24000 99.998% 98.63%
euclidean metric 128000 32000 99.97% 98.57%

Table 4.4.: Same as table 4.3 for US.

all-pairs shortest path table of the access nodes for the respective
value of d(v, w). Hence the number of access nodes is the key fac-
tor which determines the query time.
In [BFM09], a (admittedly not very sophisticated) strategy for de-
termining access nodes resulted in 9 (16) access nodes per node on

54



4.2. Results

the average in the travel time (euclidean) metric graph. The last
column in Table 4.1 shows the avg. number of access nodes. We
obtain around 3.6 (5.2) access nodes on the average for the travel
time (euclidean) metric. This results in roughly 13 (27) lookups in-
stead of 81 (256) which, of course, is also reflected in the actual
query times.
The time needed for these lookups is dominated by the access of
the all-pairs shortest path array as the access pattern of the values
d(v, w) will most often result in cache misses. In contrast the dis-
tance values of d(s, ·) and d(·, t) are hold in one contiguous small
array for s and t respectively. So it is not surprising that the real
worlds query timings are highly dependent on the cache hierarchy
of the chosen processor, the timings in Table 4.1 were measured for
the CA graph with an average of 3.62 access nodes per node. In any
case, the results are considerably faster than the times reported in
[BFM09]; here for the travel time metric, average query times were
around 8.9µsecs on a 2.4 GHz Opteron processor, even though com-
parison of timings on different machines are doubtful. The size of
the access node sets (and hence the number of lookups) is a much
better, architecture-independent indicator. The access node sizes in
[SS09] were better (6.1 on the US for travel time, 17 on the US for
euclidean) but still above the numbers we have experienced in our
current construction scheme. Note that we sampled “long” queries
exclusively, as we don’t use any fallback mechanism if the chosen
path cannot be predicted by our transit node framework in this set-
ting.

In more recent work [ALS13] the authors review different transit
node contraction methodologies and also present a new approach
where the TN candidates are the k most important nodes of the con-
traction hierarchy. The authors analysis main emphasis is query
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wall time to which regard they optimize for memory access, local-
ity and cache misses. In all these categories the TN approach seems
to be an excellent contender as the CH computation and query en-
gineering approaches can easily be extended to the TN setting. As
the resulting transit node set size is a freely chosen parameter, the
authors just fix k to be comparable to other TN construction ap-
proaches and report 8.5 and 7 access nodes per node for the result-
ing TN sets on a DIMACS map of Western Europe with 18m nodes
and 22.4m edges. With transit node sets of 10k, 24k and 28k nodes
the authors report the fraction of local queries as 0.58%, 0.17% and
0.14%.
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5. Discussion and
Extensions

In this chapter we have presented computational proof that the known
transit node constructions like [BFM09] or [SS09] produce transit
node sets which are close to optimal in size. Such lower bounds
were not known before; we have proven computationally that for
the problem instances commonly considered, it is not possible to
construct transit node sets of – let’s say – 1/20th the size. We do
not recommend our preprocessing scheme for practical purposes as
it is very time and space consuming, but should rather be seen as a
computational proof that the known schemes are not that bad after
all. In future work we will try to optimize our implementation such
that approximation guarantees can be derived for even the largest
networks like the US or the whole of Europe, even though we do
not expect substantially different results there.
Some efficacy is lost in the case of splitting the problem in sub-
instances. It would be interesting to see whether the usage of a solid
state disc results in faster mmap accesses even under severe mem-
ory pressure. This would simplify our implementation significantly
and allows straightforward reasoning about the correctness of our
solutions. The limiting factor is the random read access on the sets
by the greedy solver and the resulting random disc reads with their
latency penalty.
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Part III.

Applications of speedup
Techniques: Path

Prediction
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1. Motivation

Imagine a setting in which an autonomous agent is traveling on a
road network and there is a need to synchronize the agents’ exact
location in the network with an external observer. As to illustrated
in Figure 1.1 the observer is informed about the starting point of the
agent and the route it took so far, but has no knowledge about the
agents intended destination or the actual route the agent will use on
its journey to get there. Since travel is bothersome and costs time
as well as resources, both agent an observer agree on using shortest
(or quickest) paths. If this is too much of a constraint the agent will
at least travel on piecewise shortest paths.
The need of the observer to be informed about the agents’ position
at all times requires communication between both parties. On the
other hand our model assumes that such kind of communication
may be slow or expensive and should be avoided at any cost. So our
optimization goal is to ensure a consistent world view for both of
them with a minimal amount of synchronization events where the
agent has to inform the observer about its changed course.
In order to render such kind of updates possible both of them will
have to follow the same model about the agents’ intentions which
empowers them to predict the agents’ movement at each and every
intersection on its path. The agent will then communicate to the
observer every time it violates their agreed upon model and both
will then draw the appropriate conclusions from this update. This
framework is also known as dead reckoning protocol.
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1. Motivation

This problem can be formalized as follows: Given a road network
G = (V,E, γ) and a path π = (v0, v1, . . . , vi) defined by nodes
in G we want to predict how π continues in G, that is we’d like
to compute π′ = (v0, v1, . . . , vi, vi+1, . . . , vk). For measuring the
performance of our proposed models or strategies we will choose
random paths R = (v0, v1, . . . , vk) and provide the partial Path
R′ = (v0, v1, . . . , vi) for all 0 ≤ i ≤ k as input for the respective
prediction of vi+1. A prediction error will result in a mismatch of
the node vi+1 inR and the proposed v′i+1 by the predictor. We will
always start with the assumption that the agent starting in v0 moves
in such a way that π is shortest path or at least exhibits piecewise
shortest path property where the agent does add some detours to its
destination.
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1.1. Related Work

Figure 1.1.: The Path Prediction Problem: We are given the route a
mobile user has travelled up to now and want to predict
its route in the near future.

1.1. Related Work

In [LNR02] the authors note that in general road intersections are
designed with the intention to admit unhindered travel on lanes with
higher density travel. To that end the more important road is straight
and only changing to the smaller road requires a right or left turn or
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1. Motivation

the use of an exit lane. So they propose to inspect the bearing of the
road segment (vi−1, vi) and predict the node v′i+1 which realizes the
smallest change of absolute bearing if the agent would take the seg-
ment (vi, v

′
i+1).

Intuitively this assumption makes sense for long segments of non-
urban travel where highways or expressways most often realize the
shortest path but breaks down completely in dense urban road net-
works with large numbers of equidistant similar alternative routes.
We will use this strategy as baseline and categorize it later on in sec-
tion 3. In addition we will also adapt two of the authors prediction
quality metrics, as will be discussed in section 2.2.

1.2. Outline

In the following sections we will first present the concept of reach
which represents an important graph metric and will help us to quan-
tify the importance of an edge in our setting. We will present an
approximation algorithm for the computation of lower bounds for
edge reach values. This enables us to compute this metric even on
continent sized road networks.
We will discuss the different quality metrics we devised to compare
our prediction strategies.
Finally we will outline the prediction strategies themselves and mo-
tivate the decision to consider two different settings in the form of
online and offline strategies and their applications.
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2. Basic Concepts

2.1. Reach

For our more advanced strategies in section 3 we will need the con-
cept of reach which was first formalized by [Gut04]. Intuitively
reach is a quantity which assigns an importance to each node vi ∈ V
in a graph G = (V,E, γ). To be more precise the reach of vi con-
siders all shortest paths in G of the form π = (v0, . . . , vi, . . . , vk),
containing vi and reflects the largest value of minπ(d((v0, . . . , vi)),
d((vi, . . . , vk))). That is the reach of a node vi is large iff there ex-
ists a shortest path π, containing vi near its midpoint, thus far away
from its source and target. The reach of vi is small if there exists
no such long path or vi is near the end of all such paths. This is the
case if vi is close to a dead end for example.
The authors suggest that this value also conveys a metric for the
importance of each node. A high reach value implies that there
are many shortest paths in the network which contain the respective
node so this node would be highly frequented by traffic in the net-
work. This concept is of importance for our prediction models later
on. Under this assumptions it comes natural to predict a node with
high reach as most probable successor.

From the definition of reach we can directly induce an algorithm to
compute all reach values for a given graph G = (V,E, γ). For each
node vi ∈ V we have to generate all shortest paths with vi as source.
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For each of these paths we follow its course updating the reach for
every visited node. For every node on a given path we keep track
of the distance to vi and to the path’s target. If the minimum of
these two distances is larger than the old reach value we update the
respective node. The pseudo code for this computation is given in
algorithm 2.1.1.
The simplicity of this algorithm comes at a cost. In particular its
runtime. Under the reasonable assumption to compute a single
one to all shortest path trees with Dijkstra’s algorithm in O(n ·
log n + m) time and to traverse it, such that we can update all the
reach values in O(n) for this tree, the complete algorithm will take
n · (O(n · log n+m) +O(n)) = O(n2 log n + n ·m) time. The
algorithm actually computes the all pair shortest paths in G which
is infeasible even for moderately sized road networks.

Algorithm 2.1.1: Naive Reach computation.

1 NaiveReachComputation(G = (V,E, γ))
2 foreach vi ∈ V do
3 reach(vi)← 0

4 foreach vi ∈ V do
5 foreach shortest path π starting in vi do
6 s← vi
7 t← target of π
8 foreach vk ∈ π do
9 reach(vk)← max(reach(vk),

10 min(d((s, . . . , vi)),
11 d((vi, . . . , t))))

12 return reach(v0, . . . , vN )
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In order to cope with the problem of excessive runtime we relax
our previous demand for exact reach values for all the nodes and
compute lower bounds instead. If we cannot argue about the exact
reach or implied importance of a node we may at least certify that
a node is more important than a threshold. To this extend [Gut04]
developed an approximation algorithm of which an modified and
simplified version is described below.

The most important difference to the authors original work is that
we compute the reach for edges instead of nodes. This transfer is
straight forward as the reach of an edge can be naturally defined
as the smaller one of its two incident node reach values. For a
given shortest path π(s, t) = (s, v1, . . . , vh, t), when we compute
the distances from s, we call a node vi ∆-far iff v is settled and
d(v1, v) ≥ ∆. For given values 0 ≤ α ≤ 0.5, ∆ we say an
edge e = (p, q) is (α,∆)-important iff (p, q) lies on a shortest
path from some node s to some other node t with d(s, t) ≥ ∆
and d(s, q), d(p, t) ≥ α∆. We now want to compute all (α,∆)-
important edges and show that this metric is actually an approxima-
tion for the true reach value of each edge. You may also refer to
figure 2.1 or 2.2 for some examples of this concept.

Algorithm 2.1.2 computes an shortest path tree with an radius slightly
larger than ∆ around every node in the Graph and uses the resulting
shortest paths as witnesses for the (α,∆)-importance of all edges
which lie α∆ far away from both ends of such an path. It can be
shown that this is correct as long as α < 0.5 holds as in this case
the algorithm always finds a long enough prefix of an (s, t) shortest
path which witnesses the importance of a given edge.
This sub procedure is now used to iteratively grow larger and larger
shortest path trees for every node in the graph, very much as in the
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2. Basic Concepts

Algorithm 2.1.2: Edge Lift helper Function.

1 LiftEdges(G = (V,E, γ), α, ∆)
2 foreach vi ∈ V do
3 grow a shortest path tree rooted in vi until the

predecessors of all active nodes are ∆-far
4 foreach edge (p, q) on a shortest path from vi to tome

∆-far node z do
5 if d(vi, q) ≥ ∆α ∧ d(p, z) ≥ ∆α then
6 mark edge (p, q)

7 foreach ei ∈ E do
8 mark ei as (α,∆)-important if it was marked above at

least once

naive version but with the notable improvement that we can prune
away edges which are not important enough without affecting the
correctness of the result.

Algorithm 2.1.3: Compute edge levels.

1 ComputeEdgeLevels(G = (V,E, γ))
2 H0 ← G for i = 1 to log2(M/δ) do
3 LiftEdges(Hi−1, α, ∆βi−1)
4 Hi ← subgraph of Hi−1 induced by all lifted edges

from previous call

Algorithm 2.1.3 now uses the former one to compute all (α,∆βi−1)-
important edges in round i. It can be shown that it suffices to only
consider edges which were lifted in the last round to compute the
next one. This has the profound effect that although the radii in
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2.1. Reach

each round grow larger and larger we are able to mask out most of
the edges of whom we already know that they are not part of an
longer shortest path. We chose β = 2 and α = 0.25 for our reach
computations so each lower bound is actually a 2APX of the real
reach value.
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Figure 2.1.: A small example Graph with the respective reach val-
ues for each edge. The edges on the outer “ring” have
a weight of 2, all other edges have a weight of 1. The edge
(b, q) has the highest reach, which is realized by the path
(r, t, g, b, q, s, p, i).
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Figure 2.2.: A real example with edge reach coded as color. The color
grades are separated by a factor two, that is red corre-
sponds to a reach value of [0, 100]m, orange to the inter-
val (100, 200]m and so on. The reach was computed with
our methodology - as an edge property.

2.2. Quality Metrics

As described in section 1 with a piecewise shortest path π = (v0, v1, . . . , vk)
and a given prefix π′ = (v0, v1, . . . , vi) a prediction error occurs ev-
ery time our model predicts a v′i+1 which is not the actual predeces-
sor of vi in π. As it turns out, the probability for these mismatches
and therefore the error rate of any model is not only dependent on
the power of the model itself but even more in the relative position
on π, that is the ratio of i to k. This is natural, since near the end of a
path, the final destination could be essentially around ’any’ corner.
On the other hand, very short prefixes do not convey much informa-
tion. To this extend all our measurements do have in common that
a large number of random paths π, which may obey further limita-
tions, are drawn with the intention of evaluating each strategy on an
’average’ path in G.
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2.2. Quality Metrics

The expected distance between failure metric uses paths of the same
length and maps the quantized relative position on a path in percent
( ik · 100) to the expected distance of the next prediction error along
with its standard deviation. So if you know your relative position
on a concrete path and use a specific prediction strategy, this metric
will tell you how long a correctly predicted path fragment you can
expect at that position. A superior strategy naturally exhibits larger
distances, in fact the optimum value is the remaining path length.
Therefore this value converges to zero at the end of a path.
The absolute number of errors metric uses the same quantized rela-
tive path position and maps the absolute number of prediction errors
which occurred at this relative path point. A superior strategy will
not only exhibit a smaller overall sum of this values but different
strategies also result in different profiles along the path.
Note that all strategies implicitly assume the ground truth to be a
path of infinite length, so the error rate in the second half is likely
to be higher. π diverges drastically from its infinite modes as one
get closer to the real destination. As mentioned before, though, it is
natural that it is hard/impossible to make any educated guess about
the future path when being close to the final destination as this could
be around any corner.
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Figure 2.3.: An example shortest path from s to t with possible mis-
predictions in orange. The expected distance between
failure metric would average over the length of the three
middle segments between prediction errors. They have a
length of 294, 711 and 259 meter in this case. The ab-
solute number of error metric would just count the four
prediction errors.
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We categorize our proposed strategies into two main classes, ac-
cording to the limitations they have to obey at query time.
Offline strategies may employ extensive precomputation but the stored
precomputation data is restricted by a linear space bound with re-
gard to the size of the graph. At query time, an offline strategy is
allowed to spend time proportional to the maximum degree of the
graph. In particular, offline strategies are not allowed to start com-
plex graph explorations.
Online strategies on the other hand have to obey the same pre-
computation and storage limitations as offline strategies but are al-
lowed to perform extensive computations at query time, in par-
ticular (partial) Dijkstra computations are allowed. We make this
distinction to differentiate between algorithms that can potentially
be employed on the simplest mobile devices and such that require
at least some computing power at query time. For the descrip-
tion of the employed strategies assume that we choose a path π =
(v0, . . . , vi−1, vi, vi+1, . . . , vk) with the intention of predicting v′i+1,
so a prediction strategy is given π′ = (v0, . . . , vi−1, vi) as input (an
offline strategy is given a constant-sized suffix thereof). Observe
that the prediction of degree 2 nodes is trivial in this context. Nodes
of degree 2 are therefore ignored.
At this point the task of predicting a path trajectory breaks down to
the question of estimating the one outgoing edge of vi we think of
being the most likely one to continue the path.
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3.1. Offline Strategies

In [LNR02], a very straightforward strategy – which we refer to as
baseline strategy (OF b) – was proposed. When coming from ver-
tex vi−1 and being at vi we pick as next edge/vertex the outgoing
edge from vi,

−−−→
viv
′
i+1 with minimal change of direction compared to

−−−→vi−1vi. Clearly, this is an offline strategy according to our catego-
rization. The intuition behind this strategy is that shortest/quickest
paths tend to be rather straight.
A slightly more involved strategy which we refer to as simple Dijk-
stra (OF sD) works as follows: In a precomputation step we com-
pute a full Dijkstra from each vertex v in the network and remember
for each outgoing edge of v how large a subtree (in terms of # of
nodes) is hanging below this edge. Clearly this is very time con-
suming but requires only linear space. At query time, when being
at node vi we choose the outgoing edge not leading to vi−1 which
bears the largest subtree in the shortest path tree from v. Concep-
tually this is close to choosing the edge where most likely a target
chosen uniformly at random in its shortest path subtree resides.
To reduce the enormous computational cost (even though this can
be easily parallelized and computed in a few days on a small cluster
also for large networks like the US or the whole of Europe), we can
slightly modify the precomputation step and start an unidirectional
reach-[Gut04]-based Dijkstra at every v ∈ V and order the outgo-
ing edges of v according to the longest path discovered during these
searches. This reduces the precomputation time by orders of mag-
nitudes without really affecting the quality of the prediction as we
will see.
As we employed a reach-based search, we refer to this strategy as
simple reach based Dijkstra (OF rbD). As this strategy turned out
to be essentially equal to OF sD, we have omitted the latter in our
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experiments. For the precomputation time, we are in the range of
a few milliseconds per vertex (on a standard PC, not including the
precomputation time for the reach or HH information itself), so even
large networks can be preprocessed in a few hours.
Having introduced the reach concept, another obvious strategy is to
simply return the edge with highest reach (see Section 2.1) which
does not lead back to vi−1. This we call the reach based strategy
(OF rb). Intuitively, high reach means important edge whereas low
reach means unimportant edge.

3.2. Online Strategies

Under the assumption that the ground truth path π is a shortest path
from s to some random t, the arguably optimal strategy constructs
a shortest path tree (by Dijkstra) starting in s. At any point in time,
the known path segment v0, . . . , vi is part of this shortest path tree,
and as t is randomly chosen, picking the outgoing edge of vi which
contains the most nodes in its subtree is the optimal prediction strat-
egy. We call this the full Dijkstra (ON fD) strategy. Apart from
being quite demanding computationally at query time (a full Dijk-
stra computation), this strategy breaks down if the path π is not a
shortest path but consists of piecewise shortest paths only – think of
stopping by the bakery, the grocery, and the butcher on your way
home from work.
To cope with this problem, we need to detect when the path (v0, . . . , vi)
leaves the shortest path tree rooted at s = v0. If this happens at vi,
we start a Dijkstra1 at vi exhibiting the longest suffix of (v0, . . . , vi)
that is (in reverse order) a subpath in the shortest path tree rooted

1If the graph has asymmetric edge costs, we run this Dijkstra on the reversed
graph.
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at vi. Let (vk, vk+1, . . . , vi) be this suffix (note that we can abort
Dijkstra if we have settled vk−1 in a different subtree of the short-
est path tree). We then start a (full) Dijkstra in vk and use this for
prediction. We call this strategy lazy full Dijkstra (ON lfD). Due
to space restrictions and the still somewhat high computational de-
mand at query time, we will not report results on that but on the
following variant thereof.
Similar to our heuristic offline strategy we simply replace the full
Dijkstra computation by a reach-based Dijkstra computation which
prunes out the edges with increasing distance from the source. So
as long as we move on a path of the shortest-path tree of the reach-
based Dijkstra started in v0, we always pick the edge leading to
the ’furthest’ node. If we leave the shortest path-tree at vi we start
a backward reach-based Dijkstra starting in vi to exhibit a suffix
(vk, . . . , vi) as before and use a reach-based Dijkstra rooted at vk for
the further prediction. The next time we leave this shortest path tree,
we again start a search for such a suffix. This strategy – which we
call lazy reach-based Dijkstra (ON lrbD) – allows both for adaptiv-
ity in case of piecewise shortest paths as well as good running times
due to the heavy pruning of edges in the Dijkstra computation.
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Our two test graphs are based on OpenStreetMap1 [OSM] data which
was stripped of all features impassable by car. For the two resulting
graphs with 321k and 18.57M vertices respectively, we computed
the reach of all edges based on a travel time metric as proposed
in [Gut04]. From the extensive meta data of the OSM dataset we
picked the street type to derive a speeds for individual edges. The
larger graph [GER] represents a street map of Germany, the smaller
one [MV] of its federal state Mecklenburg-Vorpommern. Due to
the fact that part of the OSM data is generated by GPS plots, each
road segment is composed of a larger amount of degree two nodes.
The average chain length is ≈10.7 segments on [MV] and ≈10.2
on [GER] which corresponds to an average length of less than one
kilometer. As direct result≈80% of both graphs nodes are of degree
2.

4.1. Quality

For the expected distance between failure metric the random short-
est paths π were sampled with their length being limited to the in-
terval of 100 km ± 2.5% in the case of [MV] and 500 km ± 2.5%
in the case [GER]. For the other metric a lower bound of 150 nodes
resulted in minimal path lengths of ≈15 km, being only limited up-
wards by the respective graphs diameter of ≈331 km for [MV] and

1http://download.geofabrik.de/osm/
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≈1044 km for [GER].
In Figure 4.1 the absolute number of errors metric was employed for
25k random shortest paths on [MV] and 10k random shortest paths
on [GER]. Common to all strategies – be it on- or offline – is the
fact that close to the start and the end, the prediction quality is pretty
bad, which was to be expected. Furthermore – no surprise! – online
strategies are far more accurate than offline strategies. Amongst
the offline strategies, the baseline predictor (OF b)fares worst on
the first half, leading to a total prediction failure rate of 6.25% on
[GER], that is, on 6.25% of all nodes on the path with degree larger
than 3 a prediction error has occurred. Employing the reach-based
Dijkstra strategy (OF rbD) we obtain much better results at the be-
ginning of the paths but getting worse towards the end, resulting in
a 5.98% failure rate overall. The purely reach based strategy OF rb
uniformly exhibits better performance than the baseline strategy and
except for the beginning also than OF rbD, its total failure rate is
4.03%. It is natural to combine the purely reach-based strategy with
the reach-based Dijkstra strategy for the best offline prediction rate.
Unfortunately, it is not so clear a priori when one gets better than
the other; in case of [MV] this point was at around 22% of the path
length, in [GER] it was around 15%. With some tuning we were
able to find mixing parameters such that the prediction failure rate
of such a mixed offline strategy became 3.21%.

Our online prediction strategies perform much better. Given that we
are working with single shortest paths only, the full Dijkstra strategy
(ON fD) yields an almost perfect result with a total failure rate of
0.95% only. The more practical lazy reach-based Dijkstra strategy
is not much worse with a total failure rate of 1.59%. In general, the
results for [MV] and [GER] are comparable.
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Finally we consider the expected distance between failure metric,
which is arguably the most intuitive one, in Figure 4.2. For each
strategy we have depicted the expected length of a correctly pre-
dicted path chunk when being at a certain relative position, compar-
ing our two online strategies with the baseline strategy and the sim-
ple reach-based Dijkstra offline strategy. It is clear that our online
strategies are far superior to the baseline strategy. In this metric the
choice of the underlying road network makes a bigger difference.
Both online strategies are gaining a significant amount of accuracy
on the [GER] graph, to the point that the average distance to the
next prediction error is always more than ≈80% of the remaining
path length, compared to ≈60% on the [MV] graph. In contrast to
that, the baseline strategy’s average prediction distance is always
below 50 km or 10% on the [GER] graph compared to 20 km or
20% on the [MV] graph. The other reach-based offline strategy per-
forms slightly better but is still way below our online strategies.

In real-world scenarios, the trajectories of mobile users are often
not exact shortest s-t-paths but they tend to be composed of sev-
eral shortest-path segments (from work to the bakery, then to the
butcher, then to the florist before driving home). In Figure 4.3 we
present results for such problem instances constructing a series of
50+90+30+100+70 km shortest path pieces resulting in an overall
length of 340 km. Both lazy reach-based Dijkstra approaches and
the baseline approach are producing characteristic profiles along
each shortest path piece being limited by the distance of the actual
piece ending, while again the latter approach is far inferior in abso-
lute performance. The full Dijkstra approach on the contrary com-
pletely fails to produce reliable predictions behind the first shortest
path piece as the available shortest path information at v0 is mean-
ingless from there on.
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(a) Absolute amount of prediction errors by the respective relative
position on the path for MV, sampled on 25K paths
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(b) Absolute amount of prediction errors by the respective relative
position on the path for GER, sampled on 10K paths

Figure 4.1.: Absolute number of errors metric. For fig. (a) 25k ran-
dom paths on [MV] graph were sampled. Accordingly
10k paths on the [GER] graph for fig. (b).
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(a) 25k sampled paths of 100km length on [MV]
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Figure 4.2.: The expected distance between failure metric is limited
by the remaining path length. The full Dijkstra strategy
shows nearly optimal results.
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Figure 4.3.: Expected distance between failure metric for series of
piecewise shortest paths with a length of 50 + 90 + 30 +
100 + 70 = 340 km. The “limit” line plots the remaining
length of the actual shortest path.
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4.2. Cost

Let us briefly review the cost for predicting trajectories at runtime;
we focus on the number of Dijkstra operations as this is determin-
ing the real-time applicability of our algorithms. We count the total
number of Dijkstra operations that were performed while running
our prediction strategies on a shortest path of 500km length.

strategy # Dijkstra polls
all Offline strategies 0

ON fD ≈ 18.5× 106

ON lrbD ≈ 6.32× 105

Table 4.1.: Computational cost per path for different strategies in
terms of Dijkstra polls on the [GER] graph at prediction
time. Offline strategies only spend constant time and no
Dijkstra poll at runtime, our most competitive online strat-
egy is ON lrbD. Average over 10k random shortest paths
of length ≈ 500km.

The good performance of ON lrbD in Table 4.1 is due to two rea-
sons: first, a single reach-based Dijkstra visits only a small fraction
of the nodes compared to a full Dijkstra, furthermore, only few pre-
diction requests trigger a reach-based Dijkstra computation. More
concretely, 99.25% of all prediction requests in our experiment can
be answered using the already existent shortest path tree. Only for
the remaining 0.75%, a reach-based Dijkstra has to be started, re-
sulting in the total number of polls as shown in Table 4.1.

Strategy ON lrbD in total for the whole path uses less than one
tenth of the Dijkstra polls that are necessary for a full Dijkstra on
the network (which equals the strategy ON fD which is much worse
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for only piecewise-shortest paths, though). Again, if we assume the
car to drive at about 100 km/h (so the trip takes ≈ 5 hours), a single
core can perform predictions for more than ten thousand vehicles at
the same time. Hence with a not too expensive compute server with
let’s say 100 cores, we can easily predict trajectories for one Million
vehicles in real-time.
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Extensions

One immediate application for path prediction methods is in the
context of dead-reckoning protocols. Here a mobile user is to peri-
odically send its position to a server. When the required bandwidth
for transmission is an issue, predicting the motion of a user both on
the client/user side as well as the server side can result in consid-
erable savings by only transmitting deviations from the prediction
as was shown in [LNR02]. With our improved prediction method,
these savings can be even further increased. Navigation systems,
in particular the ones built-in by car manufacturers, have become
’always-on’ devices, so even if no target has been given by the user
and no route planning takes place, they acquire the current position.
Accurate path prediction routines allow the device to call attention
to points of interest that lie on the predicted route. Examples are gas
stations, restaurants, shopping malls, parking lots but also areas of
difficult road conditions or traffic jams.

The combination of Map Matching, which was also part of the orig-
inal publication in [EFH+11], and Path Prediction also makes a
lot of sense, in particular when the mobile device is not equipped
with GPS: for a given sequence of location measurements our map
matching routine identifies an initial path, which is then continued
via path prediction routines. As map matching under very imprecise
location information tends to be inaccurate for the first few and the
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last few measurements, one would discard those parts and employ
our path prediction routines on the remaining path fragment. This
could be the basis for a rudimentary navigation system that works
only based on GSM location data.

So far we have only considered the problem of predicting the path.
A natural extension is to compute a mapping Time→ R2, that is,
predict at what time one expects the mobile user to be at what posi-
tion. This has to take into account both existing speed-limits on the
road segments of the predicted route as well as the observed driv-
ing speed within the known trajectory. This extension seems to be
natural as the protocol of ’synchronization points’ could be used to
synchronize a model of travel speed – in addition to position – in
the exact same fashion as discussed so far.
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Part IV.

Applications of speedup
Techniques: Sequenced

Route Queries
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1. Motivation

When heading back home from work there are often things to do
on the way like grocery shopping, getting cash from an ATM, re-
fueling at a gas station, or dropping off a parcel at a post-office.
We consider the problem of planning an optimal route (quickest or
shortest) that visits facilities of the respective type on the way home.
The proposed solution based on the combination of a distance sen-
sitive doubling technique and contraction hierarchies is orders of
magnitudes faster than either a naive approach or previous results
and produces the answers in an instant for realistic queries without
compromising guaranteed optimality. With such fast query times,
this type of route query becomes feasible even on mobile devices or
for high-throughput web-based route planners.

We are given a graph G(V,E, γ) with edge costs γ :→ R and a
collection C = {C1, C2, . . . , Ck} of facilities with Ci ⊂ V . For ex-
ample, G could be the road network of Germany, w the travel times
on the road segments, C1 the locations of all gas stations in the net-
work, C2 the locations of all ATMs, etc.
A query is specified by a source s and a target t as well as a sequence
of facility classes (p1, p2, . . . , pl). We are interested in finding the
shortest path from s to t in G visiting a facility in Cp1 followed
by a facility in Cp2 . . ., followed by a facility in Cp3 . This type of
query is referred to as sequenced route query in the literature. An-
swering such a query allows us to find for example the fastest route
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home from work visiting an ATM, a gas station and a post-office.
Note that we primarily consider the variant where the order in which
the facilities have to be visited is fixed. Dropping the restriction on
the order essentially turns this problem (for non-constant l) into the
NP-hard travelling salesperson problem. On the other hand, in most
practical scenarios, l is rather small, and as our query procedure for
fixed order turns out to be very efficient, a brute force exploration
of all possible orders is actually possible.

For the remainder of this chapter we consider the following setting:
the graph G is the road network of Germany derived from data of
the OpenStreetMap (OSM) project [OSM] consisting of about 15
Million nodes and 30 Million edges. Edge costs are travel times
calculated based on the Euclidean distance and the road type. The
facilities C are also derived from OSM data, for example we ex-
tracted 15.9k gas stations, 18.5k bakeries and 21.4k grocery stores.
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Figure 1.1.: Finding the way home - a shortest route from the office
(blue) frequenting a bakery (red) and a gas station (green)
to our home (yellow).

1.1. Related Work

Sequenced route queries have appeared in several contexts in the lit-
erature. In [SKS05]1, the authors consider sequenced route queries
in Euclidean space and describe an approach called the EDJ algo-
rithm which creates for a sequenced route query (s, t, p1, . . . , pl) a
directed, acyclic layered graph consisting of l+2 layers 0, 1, . . . , l+
1. Layer 0 and l+1 consist only of the source and the target respec-
tively. The nodes of layer i correspond to all facilities of type pi.
Between layers i and i + 1, we have a complete bipartite graph,

1In fact, the authors address a slightly different version of the problem in a sense
that they do not require the trip to end in a target t. Instead, their query consists
only of a source s and the sequence (p1, p2, . . . , pl) of facilities to visit. But
the two variants are closely related and the authors also mention the variant
considered in our work.
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where the (directed) edge from node v(i) in layer i to node w(i+1) in
layer 1 has cost of and corresponds to the shortest path from v to w
in G (in [SKS05] this is simply the Euclidean distance). In Figure
1.2 and 1.3 we see such a layered graph for a query (s, t, p1, p2, p3)
(the nodes in layer 1 could correspond to locations of ATMs, layer 2
nodes to gas stations, and layer 3 nodes to grocery stores). Once this
layered graph has been constructed, running Dijkstra from s or even
simpler, relaxing the edges from top to bottom yields the desired op-
timal route. In practice however, the construction of such a layered
graph is prohibitive, both in terms of running time as well as of
space consumption. Remember that we are dealing with thousands
of facilities in one single class. So in [SKS05] the authors propose a
new algorithm – LORD – which avoids the explicit construction of
the complete layered graph by an adaptive thresholding technique.
LORD is refined to R-LORD using a range query data structure for
nearest neighbor queries to more efficiently prune the search space.
The case where where the underlying space is not the Euclidean
space but a road network is discussed briefly and no experimental
results are reported in the paper – probably because computing the
(now shortest path) distances between nodes of consecutive layers
is very costly, even though the pruning by (R-)LORD reduces the
number of such costly computations.

Further results in the context of euclidean nearest neighbor explo-
ration with spatial databases can be found in [HS99, JKPT03]. In
[CKSZ11], the authors consider explicitly the case where the under-
lying space is a road network and solve sequenced route queries and
even generalizations thereof where precedence constraints between
the facilities are given (for example, we might have to visit an ATM
before going to a restaurant if we are short on cash, but it does not
matter whether we drop the letter before or after the ATM or restau-
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rant visit in a mailbox). They propose several heuristics which do
not guarantee optimality, though. The reported experimental results
also suggest that their approach is only practicable for rather small
road networks – their showcase road network (California) has only
about 21k nodes and their reported query times are already above
1/100th of a second for this small network.
Sequenced route queries (though not under this name) are instru-
mented for example in [LZZ+09] to solve the so-called map match-
ing problem. Here, the goal is to match (possibly imprecise) lo-
cation measurements by GPS to actual routes in a road network.
By computing the shortest path visiting the nodes contained in the
respective measurement circles in the order in which the measure-
ments were taken, faithful routes could be determined.
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1.2. Our Contribution

We propose two speed-up techniques for answering sequenced route
queries. The first is based on a general preprocessing technique for
ordinary shortest path queries called contraction hierarchy [GSSD08]
which can be extended to deal with sequenced route queries. The
second technique makes use of the fact that likely most sequenced
route queries are more of a local kind (doing things on the way
back home from work rather than on a cross-country trip), and re-
sults in a certain distance sensitivity. Our algorithms – in contrast to
[CKSZ11] always compute the optimum solution and do so faster
by orders of magnitudes being able to deal with network sizes that
could not be processed before. Our fast query times for sequenced
route queries also allow us to answer queries without fixed order as
long as the number of facilities to be visited remains moderate (as
seems to be the case in many real-world scenarios).
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2.1. Contraction Hierarchies

As the computation of s-t shortest paths is of essential importance
for our work, we gain much by employing time efficient algorithms
to this regard. Although Dijkstra’s algorithm is very fast from a
theoretical standpoint, a single s-t query on a Germany sized road
network will take in the order of several seconds with a fairly opti-
mized implementation. This can be attributed to two facts: first of
all, for a single s-t query Dijkstra’s algorithm will compute all s-v
shortest paths for d(π(s, v)) < d(π(s, t)) although we might not be
interested in this information at all. And more important, Dijkstra’s
algorithm is an online computation. Although we can consider all
road networks as static for our applications the algorithm does not
employ any a priori knowledge to gain advantage of this fact.
So we are more interested in an algorithm which may perform of-
fline precomputation but runs in sublinear time at query time.
Contraction hierarchies provide the means to archive this goal. In-
troduced by [GSSD08] a contraction hierarchy (CH) is two-part al-
gorithm consisting of a precomputation step to compute the epony-
mous hierarchy by the elementary operation of node contractions
and a modification of Dijkstra’s algorithm which exploits this newly
gained structure at query time. In the following we will describe
both steps in more detail.
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The hierarchy of the nodes for a graph G = (V,E, γ) is a partial
order H over the the set of nodes V which conveys a concept of
importance for each of them. If the node v ∈ V is above an other
node w ∈ V in our hierarchy we denote this as v �H w. The the
concrete meaning of “importance” and therefore the hierarchy as
objective criteria will only become clear later on with the modified
query time algorithm but the underlying idea is that an unimpor-
tant node could be removed from the graph without impairing ‘too
many’ shortest paths. For now we just assign a unique value to each
node and contract them ascending in the order of their importance.
The operation of contraction of a given node v ∈ V in the case
of directed edges is defined as follows: Consider all pairs of dis-
tinct incident nodes of v. Let u,w such a pair of nodes with e1 =
(u, v), e2 = (v, w) ∈ E. Check if π(u,w) = (e1, e2), that is check
if v is visited by the shortest path from u to w. If this is the case add
an shortcut (u,w) to E and set its length to the combined length
of e1 and e2. Otherwise if π(u,w) 6= (e1, e2) we call this path a
witness path and do not add the additional edge. In the case of undi-
rected edges, the same procedure is simplified by the fact that we
do not need to differentiate between in- and out edges. Repeat this
witness search for all u,w pairs, potentially add some shortcuts and
delete v from G afterwards.
After we contracted all nodes in G we end up with an empty graph,
so the last step is to take the original graph and augment it with
all the shortcuts we found to be necessary during the contraction
phase. After this precomputation step we end up with a graphGH =
(V,E ∪ Shortcuts).
To answer a shortest path query we now can exploit the fact that
each s-t shortest path in GH breaks down in an upward part and a
downward part. Let (v1, . . . , vk, . . . , vm) with v1 = s and vm = t
be the sequence of nodes visited by πGH(s, t) and without loss of
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2.1. Contraction Hierarchies

generality vk shall be the linking node between the upward and
downward part. Then it holds that for i ∈ (1, k] : vi �H vi−1
and for i ∈ (k,m] : vi ≺H vi−1.
This is now used by the query time algorithm, which consists of a
bidirectional Dijkstra search, starting in s and t as before with the
crucial modification that the both of them only consider adjacent
nodes with strictly increasing importance according to H. As with
the bidirectional version before they will meet up in several nodes
of which one will realize the shortest overall distance. This is the
exact node we called vk. Consider Figure 2.2 for a visualization of
this process.

The described search space for each possible node v ∈ V is called
the upward-/downward graph induced by the node, depending on
v’s role as source or target and will be denoted asG↑H(v) andG↓H(v).
The sizes of these search trees are highly dependent on the choice
of H during the preprocessing step and the main contributor to the
query runtime. It was proven in [Mil12] that both the calculation
of an optimal H is APX-hard and the tightest bound on the num-
ber the number of necessary shortcuts is O(nh logD) with D, h
being the diameter and highway dimension of the graph. On the
contrary a road network is a very special kind of graph class where
we will be able to compute hierarchies with O(n) edges in general.
To this regard there is ongoing research to improve the heuristics
from [GSSD08].
On a country sized road network we will be able to gain a more
than two orders of magnitude faster runtime compared to a reason-
ably tuned bidirectional Dijkstra computation.
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S

N1
N2

N3

shortcut
(N3, N1)

shortcut
(N3, N2)

Figure 2.1.: During the contraction of node S we computed the short-
est paths π1(N1, N2), π2(N1, N3) and π3(N2, N3) and
found the later two to be of the form π1 = (N1, S,N3)
and π3 = (N2, S,N3), while the first one does not contain
S. From this knowledge we add shortcuts (N1, N3) and
(N2, N3) with a weight corresponding to the length of π1
and π3.

2.1.1. Implementation Details

As mentioned in section 2.1 the main contributing factor of the real
world usability and performance of a contraction hierarchy is the
number of added shortcuts during the preprocessing phase. The em-
ployed heuristics to compute a good contraction order have changed
quite significantly compared to the original proposals in [GSSD08].
In the more recent literature the priority function which dictates the
contraction order is an on-line heuristic. For example [DGNW11]
defines it as 2 ED(u) + CN(u) + H(u) + 5 L(u) for a node u ∈ V ,
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Figure 2.2.: For the computation of π(s, t) we explored G↑
H(s) and

G↓
H(t) and found d to be a common node of high rank.

(s, a, b, d, f, t) will yield the correct shortest path after un-
packing because we inserted the shortcuts (b, d) and (d, f)
exactly as needed during the contraction phase. Note that
e was contracted before its two neighbours d and f , and
so was c respectively.

where ED is the ‘edge difference’ as difference between shortcuts
added and edges deleted if u is contracted at this point, CN is
the number of previously contracted neighbors, H is the number
of edges which would have to be short-cutted and finally L is the
‘level’ of u which conveys a concept of height of the contraction so
far. L(u) is defined as L(v) + 1, where v is the highest-level neigh-
bor of u in the augmented graph at this point in the contraction.
Our heuristic is very similar to the one discussed so far and can
be described as round based greedy contraction. Let GiH be the
augmented graph where the first i nodes are already contracted, so
G0
H = G. Each round operates on GkH for some k, where the first

k nodes where contracted in former rounds and consists of the fol-
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lowing steps for round R:

(a) Compute a ‘simple metric’ SMk(u) = inDegk(u) ·outDegk(u)
for all nodes in GkH and sort the nodes ascending by this metric.

(b) Consider the nodes in this order and compute a maximum inde-
pendent set ISk.

(c) Compute the average weight of ISk as AVG(ISk) = | ISk |−1 ·∑
u∈ISk SMk(u) and omit any nodes with SMk(u) > AVG(ISk)·

1.1.
(d) Compute a ‘complex metric’ for all remaining nodes, which

consists of contracting the node itself and counting the num-
ber of necessary shortcuts SCk(u). This gives the edge differ-
ence for each of these nodes, to be more specific CMk(u) =
6 · SCk(u)− 2 · (inDegk(u) + outDegk(u)).

(e) Again order the nodes in ascending order ascending by CMk(u)
and throw away all nodes with CMk(u) larger than 1.1 times the
average weight of all remaining nodes.

(f) Finally contract all the surviving nodes in arbitrary order to get
the graph Gk+lH if we were able to contract l nodes. Set L(u) =
R

The crux of the matter is to employ the independent set which sep-
arates all contraction candidates. This enables us to compute step
(d) completely in parallel as none of the possible contractions in-
terfere with each other. As for the notation of the level L(v) of a
node, all the contracted nodes in round R can be set to L(v) = R,
so the ‘height’ of the hierarchy is equal to the number of required
rounds. In the first few rounds the algorithm will be able to find
large independent sets and accordingly contract many nodes of low
degree. As the contraction process progresses this average degree
increases as the ‘important’ nodes remain in a dense relatively small
subgraph. In general we will not be able to contract all the nodes as
in the last few rounds a small ‘core’ of important nodes in a clique
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2.1. Contraction Hierarchies

like graph remains. To contract this core we would need to add an
unreasonable large number of shortcuts, so we stop after contracting
99.5% of G and assign a height of infinity to all remaining nodes.
On the downside we will have to modify the query time search to
not only consider neighbors with strictly higher, but also equal im-
portance. That is, we will have to search through all the remaining
0.5% of nodes for each shortest path query.
Unfortunately the ’quality’ of the resulting hierarchy can not be
measured by a single metric. It is desirable to get away with a small
amount of rounds, the least possible amount of added shortcuts and
a preferably small size of the average upward graph G↑H(s). All of
these optimization goals are in conflict with each other. A smaller
number of rounds comes at the cost of more edges, but even with
more edges the average upward graph can be smaller.
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3. Speeding-Up Sequenced
Route Queries

In this section we develop our two main tools for speeding-up se-
quenced route queries. While both techniques can be employed in-
dependently, the combination of both yields the best speed-up com-
pared to the naive EDJ approach. The first speed-up technique –
iterative doubling – works well, if the actual result path is relatively
short – probably the most frequent type of query result in practice –,
avoiding the exploration of facilities that are far away from source
and target. The second technique – contraction hierarchies (CH) –
has been developed in the context of fast point-to-point shortest path
queries [GSSD08]. We extend CH in a natural way to speed-up the
computation of inter-layer distances. This technique applies equally
well for local and non-local queries. Both speed-up techniques do
not compromise optimality of the result.

3.1. Iterative Doubling

Let us first modify the EDJ algorithm such that no explicit construc-
tion of the layered graph is necessary:
a) Run Dijkstra from s to compute distances d0 to all nodes C1

b) Run a single Dijkstra starting at all nodes in C1 where each node
v ∈ C1 has initial distance value d0(v) until all nodes in C2 are
settled. This computes shortest path distances d1 from s via at
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3. Speeding-Up Sequenced Route Queries

least one node in C1.
c) Run a single Dijkstra starting at all nodes in C2 where each node
v ∈ C2 has initial distance value d1(v) until all nodes in C3 are
settled. This computes shortest path distances d2 from s via at
least one node in C1 and one node in C2.

d) . . .
e) Run a single Dijkstra starting at all nodes in Cl where each node
v ∈ Cl has initial distance value dl−1(v) until the target t is
settled. This actually computes the shortest path from s via at
least one node in C1, at least one node in C2, . . . , at least one
node in Cl to t.

Note that the (i + 1)’st Dijkstra computation (i = 1, . . . , l) starts
with a preinitialized priority queue containing all nodes of Ci with
initial distance as determined by the i-th Dijkstra computation. Clearly,
the running time of this approach is essentially that of performing
l Dijkstra runs on the graph — which is already a considerable im-
provement to EDJ which essentially required

∑
|Ci| many Dijkstra

computations to compute the weights of all inter-layer edges.

There is still an obvious source of inefficiency here. We expect
realistic sequenced route queries to be mostly local (typical com-
muter distances are 40km to 60km at most which translates to 60 to
90 minutes). It seems very inefficient to explore facilities that are
hundreds of kilometers (and hours of driving) away — but that is
exactly what the above approach does. What can we do about it?

Let us assume for now that we know the length (duration) of the
optimal path from s to t visiting facilities in the given order; let that
length be D. We could stop each (!) Dijkstra computation above
once we reach distance D and still guarantee that we find the opti-
mal path since no subpath of the optimal path can have length more

106



3.2. CH enhanced Iterative Layer Search

than D. Note that in case the optimal path is rather short – let’s say
it takes 70 to 100 minutes – this will drastically reduce the search
space of every single Dijkstra.

Unfortunately we do not know the optimal route’s exact length D
a priori, this is where the iterative doubling part comes into play.
We start with some estimation/lower bound D′ for D which can be
pretty small (let’s say 10 minutes). We use the above sequence of
computations except for one important difference: we abort each
Dijkstra run once we have settled all nodes at distance at most D′.
Two things can happen: a) the computation does not reach t – so
our estimation D′ was too small, we double D′ and repeat. b) the
computation does reach t – so we have a valid path from s to t
visiting facilities on the way in the right order on a path of distance
D′′. It is not hard to see that this solution is optimal.

3.2. CH enhanced Iterative Layer Search

As described in detail in section 2.1, we can make use of the CH
to answer a simple s − t shortest path query by performing two
interleaved Dijkstra computations, one starting in s, the other start-
ing in t. The former one only considers edges in G↑s, the latter
only edges in G↓t . When both Dijkstra computations settle a node
v ∈ (G↑s ∩ G↓t ), d(s, v) + d(v, t) is an upper bound for d(s, t) and
the shortest path is realized by argmin

v∈(G↑s∩G↓t )
(d(s, v) + d(v, t)).

This method can be extended to one to many shortest path compu-
tations where the task is to find all shortest paths from a node s ∈ V
to a set of nodes T ⊂ V . The conceptually easiest method is to
mark all edges in the downward graph for each t ∈ T and use and
Dijkstra computation from s which considers all edges in G↑s and
all marked edges.
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3. Speeding-Up Sequenced Route Queries

For our concrete problem of speeding-up an inter-layer Dijkstra,
we can extend the same methodology even further by the follow-
ing preprocessing step. For each facility/POI class we construct the
downward graph for this facility class by taking the union of the
downward graphs of all nodes in that facility class. These down-
ward graphs can be represented by a one bit marker for each edge
and facility/POI class indicating whether the edge belongs to the
respective downward graph. Then, during query processing, the or-
dinary inter-layer Dijkstra is replaced by a Dijkstra operating on the
union of the upward graphs of the settled nodes of the current fa-
cility class and the downward graph for the next facility class. This
speed-up technique does rely on locality of the queries but exhibits
a considerable speed-up in all cases.

3.3. Arbitrary Order Routes

Our speedup techniques put more advanced types of route queries
within reach. Let us reconsider our original notation of sequenced
queries with a start and endpoint (s, t) ∈ V 2 and its POI type vec-
tor c = (p1, p2, . . . , pn) ∈ Cn. As also discussed in [CKSZ11], a
very natural extension is to soften the total order requirement of the
different POI types in c. Maybe we insist on visiting a POI of type
c1 before one of type c2 but do not really care about the order of the
other elements in c. Under the reasonable assumption that |c| is typ-
ically quite small – let’s say |c| < 5 – the speedup obtained by our
new techniques allows us to to check all (|c|)! possible orderings.
For partial orderings it is a mere task of enumerating the subset of
all compatible permutations.
The computational costs of this approach will typically be less than
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the combined cost of testing all possible permutations of c inde-
pendently because each length d(s, t)π(c) of a shortest route for a
given permutation π(c) of c is an upper bound for the minimum
of all these routes and can therefore be carried over to the subse-
quent route computations. Another potential for a drastic reduction
of computational cost is that we are free to choose the order in which
we test these permutations. If we enumerate them in ascending lex-
icographic order we preserve the longest possible prefix between
consecutive permutations. This enables us to reuse all layers which
are managing the distances for the sets Ci in this prefix, in an one to
one fashion. Employing this strategy we do only need to generate
layers for the actually changed suffix of c and propagate our already
known distances into the “joint”-layer.
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4. Experimental Results

Experiments were performed on the road network of Germany with
15.015.877 nodes and 30.760.517 edges extracted from OpenStreetMap
[OSM], it has a diameter of about 1100 km. The CH preprocessing
step resulted in an augmented graph with 61.630.345 edges and a
preprocessing time of about 15 minutes on a single core of an Intel
i5-2500k. As performance metrics we use time as well as priority
queue pops (which is equivalent to the number of settled nodes) as
a more robust and platform independent indicator.
All timings are averaged over 250 random queries and performed
on a single core of the same i5-2500K.

We measured four algorithms: the naive algorithm which is essen-
tially the first version of the iterative doubling approach (without
the doubling) as explained in Section 3.1, the iterative doubling ap-
proach on its own, the CH-naive approach (without iterative dou-
bling), and the combined version CH-iterative which employs both
the iterative doubling as well as the CH. We refrained from bench-
marking the naive EDJ approach, since there is no hope to obtain
any acceptable running times as was already mentioned in [SKS05].
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type count type count

parking 65282 pub 13611
restaurant 53073 post office 4778
post box 40857 atm 4201

supermarket 21411 taxi 2571
bakery 18527 university 821
bank 18425 car sharing 605

pharmacy 16156 airport 79
gas station 15902 gambling hall 70

vending machine 14177

Table 4.1.: Different POI types and their frequencies out of the OSM
Dataset for Germany.

4.1. Query Locality

We first consider a fixed query type with c = (atm, gas station, post
box, supermarket) and examine the influence of locality on these
queries, where we call a query local if the s − t distance in the un-
derlying road network is between 40 and 50 km. A nonlocal query
shall be between 400 and 500 km long. As local queries typically
result in short resulting routes and low upper bounds we expect to
see significant speedups of the iterative doubling approach.
In Table 4.2 we measured 250 random s− t queries for all four ap-
proaches to examine the influence of locality. For the short queries
the iterative aspect results in a speedup of factor 30 while the CH
gains a speedup factor of 340. The iterative CH approach needs
43ms on average for these queries, compared to 23449ms for the
EDJ version. The non-local queries are significantly harder to solve,
the iterative gain over the full searches shrinks down to a factor of
1.22 an even the CH version only results in a speedup of about 17
and average query times of 1259ms for the iterative CH approach.
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query type naive iterative

local popcnt 61.49 · 106 (14.30 · 105) 19.60 · 105 (11.15 · 105)
non-local popcnt 71.36 · 106 (23.44 · 105) 57.67 · 106 (10.69 · 106)

local time 23449 (272) 650 (398)
non-local time 26855 (1043) 21365 (4206)

CH-naive CH-iterative
local popcnt 17.82 · 105 (6605) 59189 (38725)

non-local popcnt 20.12 · 105 (58069) 16.37 · 105 (31.27 · 104)
local time 1404 (14) 43 (28)

non-local time 1565 (52) 1259 (249)

Table 4.2.: PQ pop counts and timings in ms for local (40−50 km) and
non-local (400 − 500 km) route queries for c = (atm, gas
station, post box, supermarket), averaged over 250 ran-
dom queries. The values in brackets are the standard de-
viation.

The timings for the naive non-CH version matches, as expected, the
runtime of 5 independent one to all Dijkstra computations in this
road network.

4.2. Influence of the Order of POIs

Another interesting question is whether the order of the POIs in c is
important for the performance of our algorithm in particular when
choosing POI types with significant size differences.
We choose c as (atm, post box, bank) with set sizes of 40857, 4201
and 18425 (see Table 4.1) and compare all possible 6 permutations
for the CH naive and iterative approach.
In Table 4.3 we measured the resulting runtime for all these permu-
tations for local queries. As expected the runtime depends on the
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c vector CH naive CH iterative

atm, post box, bank 1031 (16) 33 (22)
atm, bank, post box 898 (17) 31 (21)
post box, atm, bank 1097 (19) 34 (23)
post box, bank, atm 1152 (23) 34 (22)
bank, atm, post box 957 (18) 32 (21)
bank, post box, atm 1143 (20) 35 (23)

Table 4.3.: Influence of different sized POI sets and their permutation
in the c vector. All values are runtime in ms, the values in
brackets are the standard deviation.

order in c but surprisingly the ratio between the slowest and fastest
route type is only about 1.28 where the slowest route is the one with
ascending POI set sizes while the fastest is the one with descending
sizes accordingly.

4.3. Influence of the Number of POI types

In Table 4.4 we measured the increase in runtime for growing c vec-
tors. Based on the results in section 4.2 we chose the worst case for
the different sizes of c i.e. starting with the largest set of “parking”
for |c| = 1 followed by “parking” and “restaurant” in this order,
and so on. Apparently adding more POI types to the end of c adds a
constant amount of additional computational cost which somewhat
scales with the size of the added POI type. Note that adding restau-
rants for |c| = 2 results in a 18ms increase to query timings whereas
the banks set for |c| = 6 has roughly one third the size and results
in a 10ms increase.
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c vector size CH naive CH iterative

1 491 (9) 19 (13)
2 1177 (28) 37 (23)
3 1769 (33) 52 (33)
4 2279 (24) 65 (42)
5 2636 (40) 75 (48)
6 2981 (52) 85 (55)

Table 4.4.: Influence of different sized POI sets and their permutation
in the c vector. All values are runtime in ms, the values in
brackets are the standard deviation.

Figure 4.1.: The search space of a sequenced route query with 2 dif-
ferent POIs sets, resulting in 3 path segments. The back-
ground nodes are colored by the responding layers. This
is the incremental CH version.

4.3.1. Arbitrary Order Routes

As described in section 3.3 we also used our CH approach in a
setting of permuted layer orderings with two different query types.
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Figure 4.2.: The search space of a sequenced route query with 2 dif-
ferent POIs sets, resulting in 3 path segments. The back-
ground nodes are colored by the responding layers. This
is the non-incremental CH version. Note that some nodes
are visited by more layers than before.

First we investigated the impact of the type vector length c on the
number of required Dijkstra queue pops with abundant POI types,
namely with c3 = (“parking“, “restaurant“, “gas station“), c4 =
c3+“bakery” and c5 = c4+“supermarket“. Then we swapped the
last to POIs of c5 with the two rarest one ”airport“ and ”gambling
hall“ yielding c′4 and c′5 with the intend to generate very long short-
est paths due to the sparseness of those two types. In both cases we
generated 500 random local s− t pairs with d(s, t) < 50 km. While
all solutions for the c{3,4,5} cases are well below 55 km the routes
for c′{4,5} partially passed 200 km in length. The pop counts can be
compared to the local pop counts in Table 4.2.

From table 4.5 we can gain two insights, first that holding the layers
in the common prefix does not result in a reduced amount of re-
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Figure 4.3.: The search space of a sequenced route query with 2 dif-
ferent POIs sets, resulting in 3 path segments. The back-
ground nodes are colored by the responding layers. This
is the incremental non-CH version where each layer has
to explore all nodes with a distance lower than the one of
the optimal path.

POI pop count CH pop count non-CH

c3 14.68 · 104 (14.79 · 104) 34.50 · 105 (33.35 · 105)
c4 52.62 · 104 (54.29 · 104) 12.88 · 106 (12.51 · 106)
c5 24.61 · 105 (26.10 · 105) 61.65 · 106 (60.92 · 106)

c′4 20.97 · 105 (20.92 · 105) 57.99 · 106 (57.25 · 106)
c′5 16.39 · 106 (12.28 · 106) 53.41 · 107 (42.34 · 107)

Table 4.5.: Pop counts for arbitrary order routes. The different POI
vectors are as described in section 4.3.1. Averaged over
500 random s − t queries with d(s, t) < 50Nitkm (only
100 queries for c′5 non-CH).

quired work. This is due to the fact that for most of the queries the
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Figure 4.4.: The search space of a sequenced route query with 2 dif-
ferent POIs sets, resulting in 3 path segments. The back-
ground nodes are colored by the responding layers. This
is the non-incremental non-CH version, here the graph is
so small compared to the query length that all layers ex-
plore the whole graph.

algorithm finds an nearly optimal upper path length bound during
the first two or three possible permutations. All following permuta-
tions need to explore this radius in the ”non-prefix“ layers but fail
to reach the target by a few kilometres. And more important that
the runtime is very sensitive regarding the sparseness of the used
POI types. Both c′4 and c′5 queries are expensive due to their final
length. The high standard derivation of all values are the result of
some very expensive queries which only gain optimality in the last
few of the tested permutations.
Nevertheless the Dijkstra implementation on our test machine is
able to process about 2.9 million pops per second, so all ”typical“
c{3,4,5} queries can be answered well beyond one second. Also for
nearly all the queries we observed, the gap between a random cho-
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sen permutation of c and the optimal one is typically < 1.5, this
becomes particularly evident for the c′ vectors where the optimal
route needs to visit the nearest airport and then just ”collects“ the
more common POIs on the way with some small detours.

Consider figures 4.1, 4.2, 4.3 and 4.4 at the end of this chapter as
comparison of the different search spaces for a the same query of
two POIs (so |c| = 2) of the four proposed techniques. Figure 4.1
and 4.2 offer a vastly smaller amounts of visited nodes due to the
usage of CH. Figure 4.3 and 4.4 show the effects if the incremental
search, although it only cuts off a small part of the graph due to the
relatively long query compared to the graphs diameter in this case.

119





5. Conclusion and Future
Work

In this chapter we have considered the problem of answering se-
quenced route queries and developed two very efficient speed-up
techniques that allow for the exact computation in few milliseconds
for realistic queries involving common tasks/points of interest. The
focus of this work has been the case where the order in which the
points of interests are to be visited is fixed. The very fast query times
for fixed order queries allows for a straightforward treatment of un-
ordered or only partially ordered queries by simply enumerating all
possible orderings. Another interesting topic for future research is
the transition from fixed edge costs to parameterized ones. This
extension seems natural under the assumption that the ”cost“ of an
edge could be the required travel time or the battery consumption
necessary to cross this road segment.
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Part V.

Epilogue
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Conclusion

In this thesis we have considered three challenges in the context of
shortest path computation and their applications for routing tech-
niques in large scale road networks.

In the first chapter we proposed a theoretical framework, based on
integer linear programming, to proove lower bounds on the optimal
size of transit node sets, which are computed in a certain way. We
used an intuitive definition for the property of being a ”long“ short-
est path and derived an efficient algorithm to generate all prefixes
of such paths. We then showed how to construct a set cover and
a set packing instance from this data – which are solved by a very
fast greedy approximation algorithm. The solutions of these two
instances gave us an approximation bound for the road network in-
stance and notation of ”long“ in question.
With this framework we devised several experiments to compare our
results to other construction techniques. While the resulting transit
node sets where of similar size on all tested graphs, our sets resulted
in a much smaller number of relevant access nodes per node. This
corresponds to fewer necessary lookups per shortest path distance
query and ultimately in faster lookups.

Path prediction is an application of several graph routing speed up
techniques and the main topic of the second chapter. We exploited
the remarkable hierarchical property of real world road networks to-
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gether with their static nature to derive a highly efficient path predic-
tion protocol. With the concept of reach – an edge property which
measures the length of the longest shortest path the edge is part of –
and some other ideas, as counting these shortest paths, we devised
several offline prediction strategies. In comparison to their online
counterparts they can be completely computed in advance and are
very cheap to use at query-time. In addition they result in a much
higher prediction quality as they are able to take advantage from
knowledge about more complex structural graph properties.
We compared these offline strategies with several other online fla-
vors and devised some mixed strategies which improve path predic-
tion by a tremendous amount under all quality metrics we measured.

The final chapter is about a second application of yet an other speed
up technique. We used a precomputed contraction hierarchy and
proposed a carefully constructed layer based iterative search algo-
rithm to answer sequenced route queries. The algorithm cuts down
the required search space by such a large margin, that we were able
to answer sequenced route queries with up to 6 segments in the order
of several tens of milliseconds. At the same time it retains optimal-
ity in terms of resulting path length and an approximation guarantee
in the number of explored point of interest nodes in the graph. We
used meta data from the OpenStreetMap project to test our approach
on large road networks.
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Zusammenfassung

In dieser Arbeit bearbeiten wir drei Problemstellungen aus dem Be-
reich der Routenplanung und deren Anwendung auf großen Stra-
ßennetzwerken.

Im ersten Kapitel haben wie eine Methode vorgestellt Transitkno-
tenmengen auf eine bestimmte Art und Weise zu berechnen, die
es uns ermöglicht instanzbasiert Aussagen über die Approximati-
onsgüte dieser Mengen zu treffen. Wir haben dafür eine Defini-
tion von ”langen“ kürzesten Wegen gewählt, welche entweder di-
rekt auf deren Länge oder aber dem Dijkstrarank ihrer Knoten ba-
siert, und einen Algorithmus entwickelt, der Präfixe aller dieser Pfa-
de effizient berechnet. Mit diesen Präfixen haben wir ein Mengen-
überdeckungsproblem und das duale Mengenpackungsproblem de-
finiert, mit denen wir aus den Resultaten der ganzzahligen linearen
Optimierung eine untere Schranke für die optimale Größe einer op-
timalen Transitknotenmenge herleiten können.
Wir haben diesen Ansatz mit anderen Konstruktionsverfahren ver-
glichen, um zu erfahren ob diese bei gleicher Definition von ”lang“
nicht wesentlich kleiner gewählt werden könnten. Dies ist nicht der
Fall. Allerdings konnten wir zeigen, dass die mit unserer Metho-
de generierten Transitknotenmengen in wesentlich weniger Transit-
knoten per Knoten im Graph resultieren und damit direkt schnellere
kürzeste Pfad Anfragen erlauben.

Im zweiten Kapitel ging es um Pfadvorhersage als Anwendung von
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schnellen Routenplanungsalgorithmen. Da Straßengraphen eine stark
ausgeprägte hierarchische Struktur aufweisen, konnten wir dies nut-
zen um gefahrene kürzeste Wege ab einer gewissen Länge mit sehr
hoher Präzision vorherzusagen. Wir haben dafür die ”Reach“ Me-
trik von Kanten benutzt, die für jede Kante die Länge des längsten
küzesten Pfades angibt, welcher durch diese Kante geht. Zusammen
mit anderen komplexen Metriken wie der Anzahl an kürzesten We-
gen welche in einem Knoten starten, haben wir mehrere komplett
auf Vorberechnung basierende Vorhersagestrategien entwickelt. Die-
se haben gegenüber ihren online Gegenstücken nicht nur den Vorteil
bei der eigentlichen Anfrage weniger Rechenschritte zu benötigen,
als auch wesentlich weniger Vorhersagefehler zu erzeugen.
Wir haben mehrere online sowie offline Strategien praktisch vergli-
chen und eine optimale Kombination vorgestellt, welche die Anzahl
von Vorhersagefehlern minimiert.

Das letzte Kapitel ist eine Anwendung von ”Contraction Hierar-
chies“. CHs ermöglichen sehr schnell kürzeste Wege zu berech-
nen. Dies nutzen wir um eine Modifizierte Variante des Problems
des Handlungsreisenden zu lösen, bei der zwar die Reihenfolge der
Städte fixiert ist aber für jede Stadt sehr viele Alternativen zur Ver-
fügung stehen. Wir haben dafür einen Suchalgorithmus entwickelt,
der für je zwei aufeinander folgende Zielmengen einen Suchraum
bildet und sich dann iterativ in größer werdenden Abständen vom
Startpunkt durch diese Suchräume arbeitet. Dies erlaubt uns Opti-
malität bei der Länge des Weges beizubehalten und nie mehr als
einen konstanten Faktor an möglichen Stadtknoten zu viel zu ex-
plorieren.
Wir zeigen, dass unsere Implementierung schnell genug ist, um je-
de realistische Anfrage in wenigen Millisekunden optimal zu beant-
worten.
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sen, and Igor Timko. Nearest neighbor queries in road
networks. In Proceedings of the 11th ACM interna-
tional symposium on Advances in geographic infor-
mation systems, GIS ’03, pages 1–8, New York, NY,
USA, 2003. ACM.

[KMS06] Ekkehard Khler, Rolf H. Mhring, and Heiko Schilling.
Fast point-to-point shortest path computations with
arc-flags. In IN: 9TH DIMACS IMPLEMENTATION
CHALLENGE [29], 2006.

131



Bibliography

[LNR02] Alexander Leonhardi, Christian Nicu, and Kurt
Rothermel. A map-based dead-reckoning protocol for
updating location information. In Proceedings of the
16th International Parallel and Distributed Processing
Symposium, IPDPS ’02, pages 15–, Washington, DC,
USA, 2002. IEEE Computer Society.

[LZZ+09] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate GPS
trajectories. In Proc. ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Infor-
mation Systems (ACM SIGSPATIAL GIS), pages 544–
545. ACM, 2009.

[Mil12] Nikola Milosavljevi. On optimal preprocessing for
contraction hierarchies. In The 5th ACM SIGSPATIAL
International Workshop on Computational Trans-
portation Science, IWCTS’12, 2012.

[MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and
Data Structures: The Basic Toolbox. Springer, Berlin,
2008.

[OSM] OpenStreetMap. http://www.
openstreetmap.com.

[San99] Peter Sanders. Fast priority queues for cached mem-
ory. ACM Journal of Experimental Algorithmics,
5:312–327, 1999.

[SKS05] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and
Cyrus Shahabi. The optimal sequenced route query.
Technical report, VLDB Journal, 2005.

132

http://www.openstreetmap.com
http://www.openstreetmap.com


Bibliography

[SS05] Peter Sanders and Dominik Schultes. Highway hierar-
chies hasten exact shortest path queries. In 13th Euro-
pean Symposium on Algorithms (ESA’05), pages 568–
579, 2005.

[SS09] Peter Sanders and Dominik Schultes. Robust, Al-
most Constant Time Shortest-Path Queries via Tran-
sit Nodes, volume 74 of DIMACS Series on Dis-
recte Mathematics and Theoretical Computer Science,
pages 193–218. AMS, Providence, RI, 2009.

[Vaz01] V.V. Vazirani. Approximation algorithms. Springer,
2001.

133


	Preliminaries
	Fundamentals
	Graphs and Paths
	Road Networks
	Distance Metrics

	Computing Shortest Paths
	Dijkstra's Algorithm


	Implementation
	Static Graphs
	Miscellaneous Data Structures
	Fast Dijkstra



	Transit Node Constructions Revisited
	Motivation
	Related Work
	Outline

	Integer Linear Programming
	Transit Node Computation as Hitting Set Problem
	Notions of ``long'' & Algorithmic Details
	Comparison to Existing Transit Node Constructions
	Preprocessing
	Primal Algorithm
	Dual Algorithm
	Set Computation
	Computation of Access Nodes

	Query

	Experimental Results
	Implementation
	Instance-based Approximation Guarantees
	Set Generation
	Memory Management

	Results
	Comparison with Previous Constructions
	Query timing


	Discussion and Extensions

	Applications of speedup Techniques: Path Prediction
	Motivation
	Related Work
	Outline

	Basic Concepts
	Reach
	Quality Metrics

	Path Prediction Strategies
	Offline Strategies
	Online Strategies

	Experimental Results
	Quality
	Cost

	Discussion and Extensions

	Applications of speedup Techniques: Sequenced Route Queries
	Motivation
	Related Work
	Our Contribution

	Basic Concepts
	Contraction Hierarchies
	Implementation Details


	Speeding-Up Sequenced Route Queries
	Iterative Doubling
	CH enhanced Iterative Layer Search
	Arbitrary Order Routes

	Experimental Results
	Query Locality
	Influence of the Order of POIs
	Influence of the Number of POI types
	Arbitrary Order Routes


	Conclusion and Future Work

	Epilogue
	Conclusion
	Zusammenfassung
	Bibliography


