
Reconfigurable Scan Networks:
Formal Verification, Access Optimization, and Protection

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Rafał Baranowski

aus Gliwice / Polen

Hauptberichter: Prof. Dr. rer. nat. H.-J. Wunderlich

Mitberichter: Prof. Dr.-Ing. W. Kunz

Tag der mündlichen Prüfung: 7. Januar 2014

Institut für Technische Informatik der Universität Stuttgart

2014

Dedicated to my wife Ela and my parents.

Acknowledgements

This work would not have been possible without the professional support of my su-

pervisor and colleagues. I would like to thank Prof. Hans-Joachim Wunderlich for his

advice, ideas, and feedback that greatly contributed to this thesis. I am very grate-

ful to Michael Kochte who involved me in this project, was always willing to share

his experience, and provided me with continuous support and encouragement. Many

thanks also go to Christian Zöllin for sharing his enthusiasm and expertise in IEEE Std.

P1687, and to Alejandro Cook for proofreading this manuscript.

I was able to find the time to pursue this project thanks to competent colleagues with

whom I shared the teaching responsibilities at the University of Stuttgart. It was a

great pleasure and fun to work with Melanie Elm, Laura Rodríguez Gómez, Michael

Kochte, Stefan Holst, Christian Zöllin, and Alejandro Cook. Many thanks also go to

Mirjam Breitling, Helmut Häfner, Lothar Hellmeier, and Wolfgang Moser for their ex-

cellent administrative and technical assistance.

I thank my wife, Elżbieta Strachocińska, for her caring support and for joining me

in Stuttgart despite expected professional difficulties. I also thank my parents and

my mother-in-law for their continuous encouragement and faith in the success of this

undertaking. Thanks also go to Jakub Cichoszewski for his help during my early days

in Stuttgart.

Finally, I would like to thank all other colleagues and students with whom I had the

pleasure to cooperate with on various projects during my stay at the University of

Stuttgart, especially: Andrew Mofid Boktor, Claus Braun, Francesco Cervellera, Atefe

Dalirsani, Nadereh Hatami, Michael Imhof, Anusha Kakarala, Chang Liu, Abdullah

Mumtaz, Eric Schneider, Marcel Schaal, Alexander Schöll, Dominik Ull, and Marcus

Wagner.

Stuttgart, November 2013

Rafał Baranowski

iii

Contents

Acknowledgements iii

Abbreviations 1

Notation 3

Summary 5

Zusammenfassung 7

1 Introduction 9

1.1 VLSI Circuit Instrumentation . 10

1.2 Examples of On-Chip Instruments . 12

1.3 Cost-Effective Access to Embedded Instrumentation 14

1.4 Verification of Scan Infrastructure . 19

1.5 Access Security . 20

1.6 Overview and Contributions . 21

2 Formal Foundation 23

2.1 Circuit Models . 23

2.1.1 Combinational Circuits . 23

2.1.2 Sequential Circuits . 25

2.2 Model Checking and Formal Specification 28

2.2.1 Linear Temporal Logic . 28

2.3 Model Abstraction . 30

2.4 Boolean Satisfiability . 31

2.4.1 Incremental SAT Solving . 31

2.5 Pseudo-Boolean Satisfiability and Optimization 32

v

Contents

3 State of the Art 35

3.1 Validation and Verification of Scan Networks 35

3.2 Model Checking . 37

3.2.1 Bounded Model Checking . 38

3.2.2 Completeness . 40

3.3 Model Abstractions . 42

3.4 Access Scheduling . 44

3.5 Infrastructure Security . 46

3.6 Conclusions . 49

4 Scan Network Modeling 51

4.1 Specification Languages . 51

4.2 Structural Modeling . 53

4.3 Scan Network Operation . 56

4.4 Temporal Abstraction . 57

4.4.1 CSU-Accurate Model . 60

4.4.2 Valid Scan Configurations . 62

4.4.3 Transition Relation . 65

4.4.4 Implications of CSU-Accurate Modeling 66

5 Formal Verification 69

5.1 CSU-Accurate Bounded Model Checking 70

5.1.1 Application: Accessibility Proof 71

5.1.2 Completeness by Induction . 72

5.1.3 Implementation . 73

5.2 Verification of Robust Scan Networks . 74

5.2.1 Robustness Definition and Properties 75

5.2.2 Verification of Robustness . 77

5.2.3 Model Diameter . 78

5.2.4 Completeness Threshold . 82

5.3 Model Soundness and Completeness . 84

5.4 Experimental Evaluation . 85

5.5 Summary . 86

6 Access Optimization 91

6.1 Problem Formulation . 92

vi

Contents

6.2 Mapping to Pseudo-Boolean Optimization 94

6.3 Pattern Generation Procedure . 95

6.3.1 Implementation . 97

6.4 Experimental Evaluation . 98

6.5 Summary . 99

7 Access Port Protection 103

7.1 Access Management Overview . 103

7.2 Generation of Restricted Access Patterns 106

7.3 Synthesis of Sequence Filters . 108

7.3.1 State Diagram Construction . 109

7.3.2 State Merging and Sequence Collapsing 112

7.3.3 Sequence Filter Example . 114

7.4 Experimental Evaluation . 115

7.5 Summary . 116

8 Conclusions 119

8.1 Future Research Directions . 120

Bibliography 123

Appendices 139

A Benchmark Scan Networks 141

A.1 SIB-Based Architecture . 142

A.2 MUX-Based Architecture . 142

A.3 Flat Architecture . 143

B Results: Verification 147

B.1 Verification of Robustness . 147

B.2 Verification of Accessibility . 148

B.3 Performance Analysis . 151

C Results: Access Optimization 157

C.1 MUX-based Architecture . 157

C.2 SIB-based Architecture . 158

C.3 Flat Architecture . 159

vii

Contents

D Results: Access Protection 161

D.1 Individual Accesses . 161

D.2 Concurrent Accesses . 163

E Curriculum Vitae of the Author 167

Index 169

viii

Abbreviations

ATE Automated Test Equipment

ATPG Automatic Test Pattern Generator

BDD Binary Decision Diagram

BMC Bounded Model Checking

CAM CSU-Accurate Model

CSU Capture-Shift-Update

CTL Computational Tree Logic

DfT Design-for-Test

EDA Electronic Design Automation

FSM Finite State Machine

IJTAG Internal JTAG

IP Intellectual Property

JTAG Joint Test Action Group

LTL Linear Temporal Logic

MC Model Checking

PBSAT Pseudo-Boolean SATisfiability

QBF Quantified Boolean Formula

RSN Reconfigurable Scan Network

RTL Register-Transfer Level

SAT Boolean SATisfiability

SoC System-on-a-Chip

TAP Test Access Port

VLSI Very Large Scale Integration

1

Notation

• Sets:

∅ – empty set,

B – set of Boolean values,

N+ – set of positive natural numbers,

N – set of natural numbers with 0, N ≡ N+ ∪ {0},
Z – set of integer numbers,

| · | – cardinality of a set,

P(·) – power set.

• Set operators:

∪ – union,

∩ – intersection,

\ – difference,

≡ – equivalence.

• Boolean operators:

¬ – negation,

∧ – conjunction,

∨ – disjunction,

⊕ – exclusive disjunction,

⇒ – implication,

⇔ – equivalence.

• Boolean values, true and false, are denoted by 0 and 1, respectively. (B ≡ {0, 1}.)

• A Boolean function is a mapping f : Bn → B, where n ∈ N+.

• A vector of Boolean variables or Boolean functions is accented with an arrow,

e.g. ~a = [a0, a1, a2, . . . , an].

• A multi-output Boolean function ~f : Bn → Bm, where n,m ∈ N+, is a vector of

3

Notation

Boolean functions ~f = [f0, f1, f2, . . . , fm], such that fi : Bn → B for each i ∈ N,

i ≤ m.

• Characteristic functions of sets are denoted by the symbol Ω, e.g., ΩY : X → B
denotes a characteristic function of set Y such that Y ⊆ X.

4

Summary

To facilitate smooth VLSI development and improve chip dependability, VLSI designs

incorporate instrumentation for post-silicon validation and debug, volume test and

diagnosis, as well as in-field system maintenance. Examples of on-chip instruments

include embedded logic analyzers, trace buffers, test and debug controllers, assertion

checkers, and physical sensors, to name just a few. Since the amount of embedded

instrumentation in system-on-a-chip designs increases at an exponential rate, scalable

mechanisms for instrument access become indispensable.

Reconfigurable scan architectures emerge as a suitable mechanism for access to on-

chip instruments. Such structures integrate embedded instrumentation into a common

scan network together with configuration registers that determine how data are trans-

ported through the network. For test purposes, the design of regular reconfigurable

scan networks is covered by IEEE Std. 1149.1-2013 (Joint Test Action Group, JTAG)

and IEEE Std. 1500 (Standard for Embedded Core Test, SECT). For general-purpose in-

strumentation, the ongoing standardization effort IEEE P1687 (Internal JTAG, IJTAG)

allows user-defined scan architectures with arbitrary access control.

The flexibility of reconfigurable scan networks poses a serious challenge: The deep

sequential behavior, limited serial interface, and complex access dependencies are be-

yond the capabilities of state-of-the-art verification methods. This thesis contributes

a novel modeling method for formal verification of reconfigurable scan architectures.

The proposed model is based on a temporal abstraction which is both sound and com-
plete for a wide array of scan networks. Experimental results show that this abstraction

improves the scalability of model checking algorithms tremendously.

The access to instruments in complex reconfigurable scan networks requires special-

ized algorithms for pattern generation. This problem is addressed with formal tech-

niques that leverage the temporal abstraction to generate valid access patterns with

low access time. This work presents the first method applicable to pattern retargeting

5

Summary

and access merging in complex reconfigurable architectures compliant with IEEE Std.

P1687.

Embedded instrumentation is an integral system component that remains functional

throughout the lifetime of a chip. To prevent harmful activities, such as tampering with

safety-critical systems, and reduce the risk of intellectual property infringement, the

access to embedded instrumentation requires protection. This thesis provides a novel,

scalable protection for general reconfigurable scan networks. The proposed method

allows fine-grained control over the access to individual instruments at low hardware

cost and without the need to redesign the scan architecture.

6

Zusammenfassung

Um eine reibungslose Chipentwicklung zu ermöglichen und die Verlässlichkeit von

VLSI-Schaltkreisen zu steigern, werden Chipentwürfe um spezielle Instrumente für

Post-Silicon-Validierung und Debug, Produktionstest und Diagnose, sowie für System-

betrieb und Instandhaltung erweitert. Diese Chip-interne Infrastruktur umfasst unter

anderem eingebettete Logik-Analyser, Beobachtungsspeicher (trace buffers), Test- und

Debugsteuereinheiten, Assertion-Checkers und Sensoren. Da die Menge der Instru-

mente in modernen Chipentwürfen exponentiell steigt, sind skalierbare Zugriffsme-

chanismen für diese Infrastruktur unerlässlich.

Rekonfigurierbare Scan-Netze bilden einen geeigneten Zugriffsmechanismus für die

On-Chip-Infrastruktur. Sie integrieren die eingebetteten Instrumente und Konfigu-

rationsregister in ein gemeinsames Netz, in dem der Datenfluss von den Konfigura-

tionsregistern bestimmt wird. Für Testzwecke wird der Entwurf von regulären rekon-

figurierbaren Scan-Netzen im IEEE Std. 1149.1-2013 (Joint Test Action Group, JTAG)

sowie IEEE Std. 1500 (Standard for Embedded Core Test, SECT) festgelegt. Im

Hinblick auf allgemeine Instrumentalisierung, erlaubt die laufende Normierung IEEE

P1687 (Internal JTAG, IJTAG) benutzerdefinierte Scan-Architekturen mit beliebiger

Zugriffsansteuerung.

Die Flexibilität von rekonfigurierbaren Scan-Netzen stellt eine große Herausforderung

dar: Die erhebliche sequenzielle Tiefe, die begrenzte serielle Schnittstelle und die kom-

plexen sequenziellen und kombinatorischen Abhängigkeiten solcher Strukturen über-

steigen die Leistungsfähigkeit heutiger Algorithmen zur formalen Hardwareverifika-

tion. Diese Arbeit trägt eine neue Modellierungsmethode zur Lösung des Problems bei.

Die Modellierung basiert auf einer temporalen Abstraktion, die für ein breites Spek-

trum an Scan-Netzen sowohl korrekt (sound) als auch vollständig (complete) ist. Die

experimentellen Ergebnisse bestätigen, dass die Skalierbarkeit von Model-Checking-

Verfahren durch diese Abstraktion drastisch gesteigert wird.

7

Zusammenfassung

Effizienter Zugriff auf rekonfigurierbare Scan-Netze fordert spezielle Algorithmen zur

Zugriffsmustergenerierung. Dieses Problem wird durch einen formalen Ansatz gelöst,

der mittels der temporalen Abstraktion gültige Zugriffsmuster mit reduzierten Zu-

griffszeiten generiert. Diese Arbeit präsentiert erstmalig eine Methode, die sich zur

automatisierten Zugriffsmustergenerierung in komplexen rekonfigurierbaren Scan-

Netzen nach IEEE P1687 (pattern retargeting und access merging) eignet.

Die On-Chip-Instrumente sind wesentliche Systemkomponenten, welche die ganze

Systemlebensdauer hindurch funktionsfähig bleiben. Der Zugriff auf eingebettete In-

strumente muss z. B. zum Schutz geistigen Eigentums und zur Absicherung gegen Sa-

botage beschränkt werden. Diese Arbeit liefert eine kostengünstige Zugriffssicherung

für rekonfigurierbare Scan-Netze. Sie erlaubt eine detaillierte Kontrolle von Zugriffen

auf einzelne Instrumente, ohne dass der Netzentwurf angepasst werden muss.

8

1. Introduction

Since over 40 years, the complexity of integrated circuits has been increasing at an

exponential rate [ITRS12], fulfilling the prophecy of Gordon E. Moore [Moore65,

Moore75]. This unprecedented pace of development has given rise to a wide range

of new applications and markets, making electronic devices ubiquitous in nearly all

branches of industry and in everyday life. To facilitate this growth, design methodolo-

gies and verification techniques need to be constantly revised to deal with a plethora

of dependability issues that stem from the high integration density and system com-

plexity.

As the complexity of VLSI designs grows, it becomes extremely challenging to verify

and validate the design so as to eliminate or reduce the number of design errors that

reach the silicon [Kropf99]. Today’s System-on-a-Chip (SoC) projects need to allocate

as much as 75% of human resources to the verification process [ITRS12]. Due to the

extreme scaling of transistor sizes, VLSI chips become increasingly prone to manufac-

turing defects, process variations, and adverse effects that manifest themselves during

in-field operation, such as aging mechanisms and soft errors [Borkar05,Baumann05].

VLSI designs with reliability constraints must therefore deal with the decay of sili-

con reliability to guarantee that the specification is met throughout the lifetime of a

chip [Borkar05].

To facilitate smooth VLSI development and improve product dependability, VLSI de-

signs incorporate on-chip instrumentation that makes the process of production ramp-

up more tractable and facilitates in-field system maintenance. This embedded instru-

mentation includes, for instance, debug structures for post-silicon validation, as well as

components that enable on-line system monitoring, reconfiguration, diagnosis, and re-

pair [Abramovici08,Stollon11]. Scan networks, traditionally employed as a test access

mechanism and recently extended with configurability features, emerge as a scalable

and cost-effective access mechanism for such instrumentation [Rearick05,Stollon11].

9

1. Introduction

As any other design feature, the scan networks are themselves prone to design er-

rors which may compromise system reliability, security, or availability. Existing tools

for formal verification are not robust enough to deal with the high complexity of ad-

vanced scan architectures [Baranowski12]. Moreover, the improved accessibility of

on-chip instrumentation contradicts security and safety requirements for chip inter-

nals [Tehranipoor11, Baranowski13c]. This calls for efficient techniques for security

improvement, as well as robust verification techniques to prove relevant properties of

advanced scan networks, including functional correctness, safety and security.

This chapter reviews the purpose of on-chip instrumentation in the context of VLSI

product life-cycle. Then, a brief introduction to reconfigurable scan networks is given,

followed with a discussion of verification challenges and security issues. The chapter

is concluded with an overview of this thesis.

1.1. VLSI Circuit Instrumentation

The life-cycle of VLSI circuits comprises four stages [Wang10]: Circuit design (1) in-

volves design specification, implementation, verification, and pre-silicon validation.

Production ramp-up (2) deals with correcting design errors that were overlooked in

pre-silicon validation and targets yield improvement. It starts with the production of

the first silicon (initial tape-out) and may require several design revisions and silicon

re-spins. After the design is sufficiently validated and yield is acceptable, volume pro-
duction (3) begins. The defect-free chips that are sold and operate in the field are

subject to maintenance (4). On-chip instrumentation is used throughout the lifetime

of a chip, and is especially important in production ramp-up, as explained below.

Post-Silicon Validation and Debug

As soon as the first silicon is delivered, the prototype chips are subject to post-silicon

validation and debug. The chips are validated at-speed in scenarios that were too

hard or impossible to tackle in pre-silicon validation due to uncertainties and high

simulation cost. Very often, post-silicon validation identifies corner-case problems

which were missed in pre-silicon verification due to low activation probability, inher-

ent design indeterminism (multiple clock domains, asynchronous communication),

10

1.1. VLSI Circuit Instrumentation

signal integrity issues (cross-talk, power-droop, noise), process variations, or thermal

stress [Abramovici08].

On average, just one third of VLSI designs are fully functional in the first silicon, and

almost one third requires more than three re-spins [Foster11]. If the first silicon does

not meet its specification, the root cause must be accurately diagnosed to facilitate

rapid design revision. The diagnosis of complex silicon devices in advanced tech-

nology nodes is a hard task: Even if a chip fails in validation experiments (an error is

detected), it may produce a “no trouble found” outcome when tested on an Automated

Test Equipment (ATE) due to different operating conditions [Abramovici08]. The aim

of post-silicon debug is to make the observed error reproducible and quickly pinpoint

its root-cause, be it a logical design bug or a more sophisticated signal integrity issue.

To this end, the chip is equipped with a range of on-chip instruments that improve

signal observability and controllability. These include scan chains to control and cap-

ture the logic state of the system, observation scan chains for non-intrusive at-speed

state dump, embedded logic analyzers and trace buffers to track the events at internal

system nodes, and various controllers for signal masking and clock control [Wang10].

Sophisticated techniques make use of reconfigurable logic that is dynamically pro-

grammed to suit various debug tasks such as assertion checking, detection of events,

identification of transactions, or even circuit repair [Abramovici08]. Advanced mi-

croprocessor architectures are also equipped with specialized instruction recorders to

restore the microarchitectural state [Mitra10].

Volume Production and Test

After all detected design errors are fixed and the production yield is satisfactory, vol-

ume production begins. Each produced chip undergoes a series of ATE-based tests to

screen out defective devices: on the wafer (wafer test), after packaging (package test)
and at the customer’s site (acceptance tests) [Wang06]. The goal of the volume test is

to guarantee high product quality and prevent that defective chips be shipped to the

customer. To identify systematic defects and facilitate yield learning and yield ramp,

defective chips are subject to volume diagnosis [Holst09].

To support volume test and diagnosis, VLSI circuits are equipped with Design-for-Test

(DfT) instruments that improve design testability and reduce test cost [Bushnell00].

Scan chains are used to load test patterns to the sequential elements of a circuit and

11

1. Introduction

capture the test responses [Eichelberger77]. Individual components of a circuit are

enclosed in test wrappers that facilitate hierarchical testing of core-based designs [Zo-

rian98]. Structures for test pattern decompression and response compaction reduce

the test data volume and test time [Wang10]. For the test of analog and mixed-signal

components, multiplexed analog buses are used [Bushnell00].

Maintenance

Chips that pass the production tests are delivered to the customer. During operation in

the field, the devices are exposed to various stress factors, including high ambient tem-

perature, mechanical stress, electromagnetic interference, particle strikes, and aging

processes. Due to shrinking feature sizes, the devices become increasingly susceptible

to such stress factors, which may result in their temporary or permanent malfunc-

tion [Borkar05,Baumann05].

To guarantee reliability throughout the lifetime of a chip, various methods for in-

field monitoring, error correction, test, diagnosis and repair are adopted. Such tech-

niques are often supported with on-chip instrumentation. For instance, on-chip as-

sertion checkers are used to detect circuit malfunction during regular system opera-

tion [Abramovici08]. Aging-induced circuit degradation is monitored with specialized

sensors such as silicon odometers [Keane10], workload monitors [Baranowski13a],

or stability checkers [Agarwal07] that are distributed over the chip. In-field fault de-

tection is implemented with Built-in Self-Test (BIST) controllers that apply random

or deterministic test patterns to logic and memory components and evaluate the test

response [Wang06]. Defective memory cells are repaired in the field using so called

infrastructure IP cores [Zorian02]. On-chip infrastructure must also provide for sys-

tem maintenance, including in-field reprogramming and reconfiguration [Bonnett99],

as well as in-field error detection and fault management [Jutman11].

1.2. Examples of On-Chip Instruments

Embedded instrumentation is commonly used for the test and characterization of high

speed system components that are beyond the capabilities of Automated Test Equip-

ment (ATE). On-chip instruments circumvent the need for specialized and costly labo-

12

1.2. Examples of On-Chip Instruments

HSSIO

TX RX

Polynomial Reg.

(32 bit) Control Register

Bit Cnt.

(32 bit)

Error Reg.

(32 bit)

LFSR

Sel. Vref.Slope Delay

Comparator

output
input

Instrument interface

loop-back

Figure 1.1.: Embedded instrumentation for the test and characterization of High-
Speed Serial I/O (after [Rearick06])

ratory equipment and facilitate in-field test and calibration.

For example, an instrument for the test and characterization of High-Speed Serial I/O

(HSSIO) is given in Figure 1.1 after [Rearick06]. In the test/characterization mode,

the output of the HSSIO transmitter (TX) is fed to the receiver (RX). A Linear Feedback

Shift Register (LFSR) generates a pseudo-random sequence of bits which is fed to the

transmitter and compared at the output of the receiver. The configuration and status

of the instrument is stored in dedicated registers that form the instrument’s interface.

The configuration includes the settings for the loop-back mode, channel parameters

such as output slope of the transmitter, reference voltage and sample delay of the

receiver, and the primitive polynomial of the LFSR. The status includes the number of

transmitted bits and the number of detected errors.

Debug instrumentation has become an unquestionable necessity in modern micropro-

cessor designs [Stollon11]. They facilitate event detection, trace storage, configurable

breakpoints, and run-time access to embedded memories, among others. A simplified

version of the generic on-chip debug system presented in [Stollon11] is illustrated in

Figure 1.2: The debug instrumentation includes a set of registers that constitute the

debug interface. These registers store, for instance, the current debug status, provide

the current value of the instruction pointer, configure triggers and breakpoints, and

facilitate bidirectional access to the on-chip memories and caches.

13

1. Introduction

On-Chip Debug System

Debug Status

Reg.

I/O Addr.

Reg.

Microprocessor

Instrument interface

Instruction

Pointer Reg.

Trigger

Reg.

Data

Reg.

I/O Config.

Reg.
......

Memory and Cache Hierarchy

Figure 1.2.: Embedded instrumentation for microprocessor debug (after [Stollon11])

1.3. Cost-Effective Access to Embedded Instrumentation

The most widely used interface for accessing on-chip instrumentation is the 4-wire

Test Access Port (TAP) defined by IEEE Std. 1149.1 (Joint Test Action Group, JTAG).

Formally, JTAG targets the test of interconnects on printed circuit assemblies [JTA01].

Over the years, however, the TAP interface has become a de facto standard for efficient,

low-cost access to on-chip instrumentation widely used for structural logic test, system

monitoring, reprogramming, and debug [Rearick05, Ley09, Stollon11]. Recently, an

extension to JTAG in form of IEEE Std. 1149.7 has been proposed to reduce the TAP pin

count to two wires, improve its bandwidth and reduce power consumption [Ley09].

The IEEE 1149.1 circuitry consists of a TAP interface, a TAP controller, an Instruction

Register IR, a bypass register DR0, a set of optional user Data Registers DR1 . . . DRn,

and a scan multiplexer, as shown in Figure 1.3. The TAP comprises four mandatory

signals: Test Data Input (TDI), Test Data Output (TDO), Test Mode Select (TMS), and

Test Clock (TCK). Both IR and DRs are shift registers, the access to which is controlled

by the TMS signal and the TAP controller. The content of IR is called instruction: It

determines the addressing of the scan multiplexer and chooses one of the DRs. The TAP

controller implements a finite state machine which performs a Capture-Shift-Update

(CSU) operation on a chosen shift register: During the capture phase, the state of the

chosen shift register is loaded in parallel, e.g. from an attached instrument. During

the shift phase, the input data from TDI (scan data) are shifted through the chosen

shift register down to the TDO. During the update phase, the newly shifted scan data

14

1.3. Cost-Effective Access to Embedded Instrumentation

Instruction Register (IR)

Bypass Register (DR0)

DR1

TAP

Controller update

capture

shift

DR2

. . .
T A P

TDI

TCK

TMS

TDO

TRST

Figure 1.3.: IEEE 1149.1/JTAG circuitry (simplified)

are stored in the shadow registers (if any) of the chosen shift register.

The data registers (DR) in Figure 1.3 are either shift registers composed of boundary
scan cells that isolate the system logic from physical pins to facilitate interconnect test,

or user-defined shift registers of arbitrary purpose [JTA01]. The support for user-

defined data registers has been the enabling factor for the wide adoption of JTAG TAP

for structural logic test and access to on-chip instrumentation.

In structural logic test, the sequential elements of a circuit (flip-flops or latches) are

replaced with scan cells to improve testability [Eichelberger77]. In regular system

operation (system mode), the scan cells operate as regular sequential elements. In

test mode, the scan cells form a shift register called scan chain which is used to supply

test patterns to the sequential elements and capture the test response. Multiple scan

chains can be interfaced with the JTAG infrastructure as data registers (DRs).

Due to the support for user data registers, the JTAG TAP is often exploited for cost-

effective access to on-chip instrumentation [Rearick05]. To this end, the interface of

an instrument (cf. examples in Section 1.2, p. 12) is equipped with a shift register for

bidirectional, scan-based communication, as shown in Figure 1.4. This shift register is

connected to the JTAG circuitry as a DR.

Each DR in the JTAG circuitry is activated by a unique instruction that must be written

15

1. Introduction

Data Register (DR)

Shift register

Shadow register

Instrument

scan-in scan-out

capture shift update

Figure 1.4.: Interfacing an on-chip instrument as a JTAG data register

to the instruction register (IR) to properly set the address of the scan multiplexer. To

access a given DR, two capture-shift-update operations are performed: one to set the

corresponding instruction in the IR, and one more to access the DR itself.

Multiple scan chains or instruments can be connected to the JTAG circuitry as either:

• Single DR which integrates many scan chains or instruments into a single, long

shift register. This scheme is beneficial when instruments are often accessed

together (concurrently).

• Multiple DRs, requiring individual instructions (configurations of the IR) to ad-

dress them. This scheme works well when instruments are often accessed indi-

vidually, in a sequential manner.

In practice, depending on the application, a mixture of concurrent and individual ac-

cesses is required. The access time is proportional to the length of the shift register

that is addressed by the JTAG scan multiplexer (cf. Figure 1.3) and includes the over-

head of IR reconfiguration. To minimize the access time, only relevant instruments

should be accessed, which calls for custom instructions for each required combination

of accessed instruments. The number of such combinations can be exponential in the

number of instruments. This causes not only high area overhead for the decode logic,

scan multiplexers and control signal wiring, but also increases the access time due to

the IR access overhead.

The scalability of scan infrastructures becomes crucial for efficient access to on-chip

instrumentation in complex SoC designs. Scan architectures based exclusively on JTAG

16

1.3. Cost-Effective Access to Embedded Instrumentation

1

0

S2

scan

multiplexer

S1scan-in scan-outS3

bypass

control

Figure 1.5.: Bypassing principle in reconfigurable scan architectures: Segment S2 can
be excluded from the scan chain to improve the access time to S1 and S3.

do not scale well with the number of instruments [Larsson12, Ghani Zadegan12a].

To improve access flexibility and reduce the access time, various bypass-based scan

architectures have been proposed. In such architectures, chains of scan cells called

scan segments can be excluded from the scan chain if they need not be accessed. A

scan bypass is implemented with a multiplexer, as shown at an example in Figure 1.5.

The address input of the multiplexer is driven either by primary inputs, some bits of

the JTAG instruction register, or by the content of some scan cells in the scan chain

itself.

Various bypass-based scan architectures have been proposed in the past for the

reduction of test application time and test data volume [Narayanan93, Kapur99,

Samaranayake02, Samaranayake03, Arslan04, Quasem04, Xiang08, Chakraborty11],

test compression and power reduction [Bhattacharya03], improved core isola-

tion [Nadeau-Dostie09], and concurrent testing of SoC cores [Zorian98, Marinis-

sen98,Whetsel99,Koranne03,Larsson03,Sehgal04,Benabdenbi00]. In more advanced

architectures such as [Chakraborty11] or [Ghani Zadegan12a], the control of the by-

pass multiplexers is generated inside the scan network itself.

Reconfigurable Scan Networks (RSNs) are the most advanced scan architectures which

integrate on-chip instruments together with configuration registers into a common

scan network, as shown in Figure 1.6. Scan data are shifted from the primary scan-in,

through a subset of instruments and configuration registers, down to the primary scan-

out. The chosen scan path, i.e., the subset of accessible instruments and configuration

registers depends on the state of the configuration registers themselves. Such a struc-

ture can be regarded as a JTAG data register (DR) with variable length. This kind of

advanced RSNs emerge as a scalable option for the access to on-chip instrumentation,

17

1. Introduction

RSN

scan-in scan-out

instrument

config. register

Legend:

Figure 1.6.: Example of a Reconfigurable Scan Network (RSN) that integrates on-chip
instruments with configuration registers

1

0

S2

single- or multi-bit

shift registers

scan

multiplexer

internal

control

signal

chosen scan path

for S1=1 and S3=0

scan-in scan-outS1
1

0

S4
S3

Figure 1.7.: Detailed example of a Reconfigurable Scan Network (RSN)

offering a flexible, low-latency, and low-cost access [Rearick05, Abramovici06, Stol-

lon11,Ghani Zadegan12a].

Figure 1.7 presents a more detailed example of an RSN that integrates two instru-

ments S2 and S4 together with two configuration registers S1 and S3 using two scan

multiplexers. The shadow registers of S1 and S3 drive the address ports of the scan

multiplexers. The content of S1 (S3) specifies if S2 (S4) is connected to the scan chain

or bypassed.

The widespread use of bypass-based and reconfigurable scan networks resulted in mul-

tiple standardization efforts in this area. IEEE Std. 1500 (Standard for Embedded Core

Test, SECT) specifies configurable wrappers with a well defined, scan-based interface

for embedded core test [Zorian05]. The novel IEEE Std. 1149.1-2013 (JTAG-2013)

defines excludable and selectable scan cells for efficient access to systems with power-

18

1.4. Verification of Scan Infrastructure

gated components [JTA13]. Several standards have been ratified recently for scan-

based access to on-chip instrumentation, e.g. for configuring programmable devices

(IEEE Std. 1532) or access to debug instrumentation (IEEE Std. 5001, Nexus) [Ver-

meulen08]. The emerging IEEE Std. P1687 (Standard for Access and Control of Instru-
mentation Embedded within a Semiconductor Device), also known as IJTAG for internal
JTAG, targets advanced scan-based interfacing and reuse of arbitrary on-chip instru-

mentation [Rearick05,Eklow06,Stollon11,Ghani Zadegan12b]. Unlike existing archi-

tectures and standards for reconfigurable scan-based access such as JTAG or SECT,

IJTAG does not restrict the network architecture to regular structures and allows flex-

ible RSNs with arbitrary control signals and distributed configuration.

1.4. Verification of Scan Infrastructure

Scan infrastructure must provide reliable access to embedded instrumentation

throughout the life-cycle of a VLSI design, from production ramp-up to system mainte-

nance. The malfunction of post-silicon debug infrastructure, for instance, would make

the first silicon useless and could have a disastrous impact on the time to market. The

operability of on-chip instrumentation is also mandatory for in-field maintenance: The

instruments for system monitoring, built-in self test, system diagnosis, reconfiguration,

and repair must function correctly throughout the lifetime of the chip.

Today’s SoCs already take advantage of the flexibility offered by simple reconfigurable

scan networks [Rearick05]. For emerging scan architectures, scalable verification tech-

niques become mandatory to meet the requirements on system reliability, safety and

security, as well as to capture infrastructure bugs early and facilitate smooth produc-

tion ramp-up.

A recent industrial survey on VLSI circuit design and verification reveals that, for an

average project, the verification effort outweighs the design effort, while formal ver-

ification techniques are increasingly being adopted to cope with the growing design

complexity [Foster11]. Unlike simulation based methods which can verify design cor-

rectness only for a very limited subset of possible system executions, formal verifica-

tion is able to guarantee design correctness by proving that the implementation meets

the specification for all possible executions [Kropf99]. This characteristic of formal

methods is key to the verification of safety and security properties.

19

1. Introduction

While efficient formal verification techniques exist for combinational and some classes

of sequential circuits, reconfigurable scan networks pose a serious challenge. RSNs

have a very limited serial interface and exhibit deeply sequential behavior. Due to the

high sequential depth, existing formal verification methods are ineffective for proving

RSN properties, as indicated by the case study in Section B.3.

1.5. Access Security

Good observability and controllability of chip internals is requisite for low time to

market, high product quality, as well as system reliability and maintainability. In many

applications domains, however, the accessibility of the on-chip instrumentation clashes

with safety and security requirements [Tehranipoor11,Da Rolt12].

The security of scan-based access is crucial for prevention of criminal activities such

as sabotage, unlicensed usage, or intellectual property (IP) theft. An attacker may

exploit the scan infrastructure to gain access to protected data (secret key or IP), alter

the system state by fault injection, or perform illegal operations. Successful attacks on

the JTAG interface are reported for pirating satellite TV services or circumvent mech-

anisms for Data Rights Management (DRM) [Tehranipoor11]. On-chip instruments

may potentially expose sensitive data that are otherwise protected in the system. For

instance, even if the registers holding private data are not scannable, the scan infras-

tructure is still prone to side-channel attacks on cryptographic cores [Yang04].

Different levels of infrastructure accessibility are required during product develop-

ment, volume production, and in-field operation. In production ramp-up, volume test

and diagnosis, high observability and controllability is key to low time to market and

high product quality. However, during in-field operation and maintenance, the acces-

sibility of chip internals must be restricted due to security and safety reasons, e.g. to

prevent IP theft or tampering. Moreover, different accessibility levels may be required

depending on the eligibility of the user. In automotive applications, for instance, full

access is mandatory during manufacturing and assembly test, while only limited access

is allowed during operation and maintenance in a workshop to prevent unauthorized

chip tuning.

It is a well known fact that absolute security is impossible, and given enough time and

financial resources, any security mechanism can be broken [Tehranipoor11]. Practi-

20

1.6. Overview and Contributions

cal solutions for scan-based access strike a trade-off between security, flexibility, and

cost. Typical protection methods include access authorization, scan data encryption

with stream ciphers, and scan chain obfuscation [Rosenfeld10]. The goal of these ap-

proaches is to assure that only users who know a shared secret (e.g. encryption key, or

obfuscation principle) can access the scan infrastructure. If the shared secret is known

to the attacker, full access becomes possible which is unacceptable in safety critical

applications.

To guarantee inaccessibility of protected registers, the physical interface or parts of

scan infrastructure can be made permanently unusable after they are not needed any-

more. Such blocking schemes are implemented for instance using One Time Pro-

grammable (OTP) on-chip memory cells called fuses [Ebrard09]. Fuse-based protec-

tion prevents any access to protected structures at the cost of reduced flexibility and

accessibility: By blowing an on-chip fuse, some instructions of the JTAG TAP controller

or chosen scan chains can be permanently disabled [Sourgen92].

In flexible RSN architectures, the access to each on-chip instrument can be realized in

many ways, using different configurations of the network. Even if some configurations

are permanently blocked for security reasons, some other configurations may poten-

tially give access to sensitive instruments or allow side-channel attacks. The increasing

complexity of RSNs calls for efficient and scalable methods that guarantee the security

of on-chip instrumentation.

1.6. Overview and Contributions

This chapter introduced two design automation challenges posed by reconfigurable

scan networks: the difficulties of formal design verification and the need for secure

access to on-chip instrumentation. While mature techniques exist for regular scan

architectures with no or limited configurability, the high complexity and deep sequen-

tial nature of RSNs call for novel modeling methods and algorithms that can handle

current and future RSN designs in a scalable way.

The content of this thesis is structured as follows:

Chapter 2 – Formal Foundation – introduces the basics of formal methods and notation

used in this thesis. A discussion of circuit models and abstractions is followed by formal

21

1. Introduction

design specification methods. The problems of model checking, Boolean satisfiability

(SAT) solving, and pseudo-Boolean optimization are introduced.

Chapter 3 – State of the Art – discusses the existing verification methods for scan

infrastructures as well as techniques for optimal and secure access. State-of-the-art

formal verification algorithms for sequential circuits are reviewed. The scalability and

limits of existing methods is discussed in the context of reconfigurable scan networks.

Chapter 4 – Scan Network Modeling – presents an efficient method for RSN modeling

that exploits temporal abstraction to reduce modeling complexity. This novel model-

ing method greatly reduces the effort of algorithms for formal verification and secure

access generation, as discussed in the following chapters.

Chapter 5 – Formal Verification – describes an application of the abstract model to

verification of safety properties in RSNs, including accessibility and security. State-of-

the-art SAT-based model checking techniques are extended to handle the verification

of RSNs. Experimental results show that the proposed method can efficiently han-

dle large and complex RSNs, and is far more scalable than state-of-the-art, general-

purpose model checking tools.

Chapter 6 – Access Optimization – addresses an efficient pattern generation method for

access to on-chip instrumentation. The problem of access time reduction is mapped to

a pseudo-Boolean optimization problem leveraging the model from Chapter 4.

Chapter 7 – Access Port Protection – presents a novel method for RSN protection. To

prohibit the access to protected instruments, the access port of the RSN is equipped

with a sequence filter. The algorithm for sequence filter construction guarantees that

all input sequences that could expose the content of protected instruments are rejected

before any change to RSN’s configuration is made.

Chapter 8 – Conclusions – recapitulates the contributions of this thesis and indicates

future research directions that may benefit from this work.

22

2. Formal Foundation

This chapter provides the basic definitions and concepts that this thesis builds upon.

After introduction of the formal notation and modeling of combinational and sequen-

tial circuits, fundamental concepts of formal verification and formal specification are

discussed. This chapter also introduces the problems of Boolean satisfiability and

pseudo-Boolean optimization, which constitute the foundation of the algorithms pre-

sented in Chapter 5 and 6.

2.1. Circuit Models

Digital designs can be divided into combinational and sequential circuits, depend-

ing on the existence of state-holding elements such as feedback loops, flip-flops, and

latches. Combinational circuits are memory-less: The output of a combinational cir-

cuit depends exclusively on the current input pattern. In contrast, sequential circuits

contain state-holding elements, and their output depends on the history of input pat-

terns.

This section reviews the basic modeling techniques for combinational and sequential

circuits. It distinguishes the structural and behavioral view, and introduces the basic

models that are used throughout this thesis.

2.1.1. Combinational Circuits

From a structural point of view, combinational circuits are composed of building blocks

that implement certain Boolean or arithmetic functions. At high abstraction levels,

the building blocks realize complex Boolean or arithmetic functions, e.g. addition,

multiplication, code-word generation, etc. The high-level description is refined in a

23

2. Formal Foundation

manual or automated synthesis process into a lower-level representation that is closer

to the actual hardware implementation.

In this thesis, combinational circuits are modeled structurally at gate-level. A gate-level

circuit representation is a composition of primitive components called logic gates that

realize basic Boolean functions such as conjunction (AND), disjunction (OR), negation

(NOT), and the like. Unless otherwise noted, a zero-delay model is assumed, i.e. the

timing of the actual hardware implementation is neglected.

Functional Representation

From a functional point of view, a combinational circuit C with n ∈ N+ inputs and

m ∈ N+ outputs implements a multi-output Boolean function ~fC : Bn → Bm. The

Boolean function ~fC constitutes the behavioral model of the circuit C: For each in-

put assignment ~i = [i1, i2, . . . , in], the function ~fC provides the output assignment

~o = [o1, o2, . . . , om] = ~fC(~i).

The function ~fC must be represented in a way suitable for design automation algo-

rithms: High-level representations are beneficial for high performance simulation. In

logic synthesis and equivalence checking, And-Inverter Graphs (AIG) are often used to

represent combinational circuits [Mishchenko06]. In formal verification, various kinds

of decision diagrams are applied [Kropf99].

Relational Representation

In formal verification, combinational circuits are often modeled in a relational way:

Definition 1. (Defining Relation) Let C be a combinational circuit with n ∈ N+ in-

puts and m ∈ N+ outputs that realizes a Boolean function ~fC : Bn → Bm. The defining

relation of C is a set:

RC := {(~i, ~o) |~i ∈ Bn ∧ ~fC(~i) = ~o }. (2.1)

Remark 1. The defining relation RC includes all pairs of input and output assign-

ments that are “allowed” in the circuit. Defining relations are often represented with

characteristic functions. A general definition of characteristic functions is given below:

24

2.1. Circuit Models

Definition 2. (Characteristic Function) Given a set X and its subset Y ⊆ X, the char-

acteristic function of the subset Y , denoted as ΩY : X → B, is defined as follows:

ΩY (x) :=

1 if x ∈ Y,

0 otherwise.
(2.2)

Remark 2. The characteristic function ΩY (·) evaluates to true for all elements of Y ,

and to false for all elements inX \ Y . Given a combinational circuit C with the defining

relation RC , the characteristic function of RC , denoted as ΩR : Bn × Bm → B, evalu-

ates to true only for pairs of input and output assignments that are allowed in the

circuit.

Characteristic functions of defining relations for combinational designs are directly

derived from the circuit structure by Tseitin transformation [Tseitin83, Biere09]. The

Tseitin transformation leads to a representation in Conjunctive Normal Form (CNF).

The size of the resulting CNF formula, i.e. the number of variables and clauses, scales

linearly with the circuit size. This representation is favorable for various algorithm

based on satisfiability solving (see Section 2.4).

2.1.2. Sequential Circuits

In contrast to combinational circuits, sequential circuits contain state-holding elements

such as feedback loops, latches or flip-flops. In this thesis, the state-holding elements

of a sequential circuits are assumed to be triggered simultaneously by the rising or

falling transition of a single clock signal. Arbitrary sequential circuits with complex

clocking schemes can be mapped to this single-clock, single-transition representa-

tion [Kropf99].

Sequential circuits that fulfill the single-clock, single-transition property can be repre-

sented structurally with the Huffman model [McCluskey86]. The Huffman model is

composed of an array of memory elements and two combinational circuits that imple-

ment a state transition function ~δ and an output function ~λ, as shown in Figure 2.1.

The input, output, and the memory elements are represented with signal vectors:

~x = [x0, x1, . . . , xn], ~y = [y0, y1, . . . , ym], ~s = [s0, s1, . . . , sk], respectively.

25

2. Formal Foundation

output

function

λ

next state

function

δ

memory

elements

s’

s

y

x
n

m

k k

Figure 2.1.: Huffman model of a sequential circuit

Finite State Machine Model

A sequential circuit that follows the Huffman model can be modeled functionally as a

Finite State Machine (FSM). In the FSM abstraction, the inputs, outputs, and memory

elements of a sequential circuit are modeled as Boolean variables, while the state of

the circuit is modeled as an assignment to these variables. The two combinational

logic blocks of the Huffman model are represented by Boolean functions.

Definition 3. (Finite State Machine) A finite, deterministic state machine M (Mealy

automaton) is a 6-tuple M = (Bk,Bn,Bm, ~δ, ~λ, ~s0), where k, n,m ∈ N+, Bk is the in-

ternal state space of the FSM, Bn is the input pattern space, and Bm is the output

pattern space. ~s0 ∈ Bk is the initial state, while ~δ : Bk × Bn → Bk is the state transition

function that maps the current internal state ~s ∈ Bk and the input assignment ~i ∈ Bn

into the next state denoted by ~δ(~s,~i). ~λ : Bk × Bn → Bm is the output function that

maps the current internal state ~s ∈ Bk and the input assignment~i ∈ Bn into the output

assignment denoted by ~λ(~s,~i).

Remark 3. The FSM abstraction applies directly to the structural Huffman model of

a sequential circuit with k memory elements, n inputs, and m outputs, as shown in

Figure 2.1. In every clock cycle, the state of the FSM changes according to the formula

~s := ~δ(~s, ~x). The FSM output is defined by the output function: ~y := ~λ(~s, ~x).

26

2.1. Circuit Models

Kripke Structure

In formal verification, sequential circuits are often modeled as Kripke struc-
tures [Kripke63, Clarke99]. A Kripke structure is a graph with nodes representing the

circuit states, and edges representing state transitions. Compared to the FSM model,

a Kripke structure does not explicitly model the input assignment nor the output func-

tion of the circuit.

Definition 4. (Kripke Structure) Let A be a set of atomic propositions. A Kripke struc-

ture K over A is a 4-tuple K := (S, I, T, L), where S is a finite set of states, I ⊆ S is

a set of initial states, T ⊆ S × S is a transition relation, and L : S → P(A) is a state

labeling function. The transition relation T is total, i.e. ∀s∈S ∃s′∈S (s, s′) ∈ T . The

labeling function L maps each state s ∈ S to the set of atomic propositions that hold

in this state, denoted by L(s). T (s, s′) denotes that (s, s′) ∈ T , and I(s) denotes that

s ∈ I.

The temporal behavior of a Kripke structure is described with execution paths (or sim-

ply paths), as defined below:

Definition 5. (Execution Path) A path π in a Kripke structure K = (S, I, T, L) is de-

fined as a sequence of states π =< s0, s1, s2, . . . > such that ∀i≥0 (si, si+1) ∈ T . The i-th

element of the path π is denoted by π(i) := si. The suffix of the path π that starts with

the i-th element is denoted by πi :=< si, si+1, si+2, . . . >. The path π is initialized if and

only if it satisfies π(0) ∈ I. For a bounded path πb =< s0, s1, s2, . . . , sn >, path length

is defined as |πb| := n.

The computational complexity of formal verification algorithms depends on various

characteristics of the Kripke structure, such as the total number of states, the diameter,
or the recurrence diameter, as defined below (after [Biere09]).

Definition 6. (Diameter) The diameter d(K) of a Kripke structure K = (S, I, T, L) with

the set of initialized paths Π is defined as the length of the longest path among all

shortest paths between pairs of reachable states in K:

d(K) := max
{
k | a, b ∈ S, k = min { l | π ∈ Π, π(0) = a, π(l) = b}

}
. (2.3)

The diameter of a Kripke structure is also called state graph eccentricity.

27

2. Formal Foundation

Definition 7. (Recurrence Diameter) The recurrence diameter dr(K) of a Kripke struc-

ture K = (S, I, T, L) with the set of initialized paths Π is defined as the length of the

longest simple path in K (i.e., longest path with unique states, or equivalently, longest

loop-free path):

dr(K) := max
{
k | π ∈ Π, ∀

0<i≤k, 0<j≤k, i6=j
π(i) 6= π(j)

}
. (2.4)

2.2. Model Checking and Formal Specification

Model checking is an automated formal verification technique for proving properties

of finite state concurrent systems. Unlike simulation, model checking is able to ex-

haustively cover the state space of the system and hence guarantee its correctness with

respect to given specification [Clarke99].

Model checking requires an adequate model of the system implementation and its

formal specification. The implementation is usually given as an FSM model or a Kripke

structure [Clarke99]. Depending on the form of formal specification, model checking

techniques can be classified into:

• Equivalence checking, where the formal specification constitutes a golden model

of the system and its equivalence with the implementation is analyzed.

• Property checking, where the formal specification is a (possibly incomplete) set

of properties, the validity of which is checked in the implementation.

2.2.1. Linear Temporal Logic

The most common formalisms for property specification are Linear Temporal Logic

(LTL) and Computational Tree Logic (CTL) [Kropf99]. This thesis uses a subset of LTL

which is developed in [Pnueli77]. In the following, the simplified semantics of LTL is

presented after [Clarke99].

Let A be a set of atomic propositions. The syntax of LTL formulas over A is defined as

follows:

• If p ∈ A, then p is an LTL formula,

28

2.2. Model Checking and Formal Specification

• If g and h are LTL formulas, then ¬g, g ∧ h, and g ∨ h are LTL formulas.

• If g is an LTL formula, then X g, G g, and F g are LTL formulas.

The characters X, G, and F denote temporal operators which are read as “next”,

“always”, and “eventually”, respectively. The semantics of an LTL formula f is defined

over a Kripke structure K = (S, I, T, L) with the set of initialized execution paths Π.

Given a path π ∈ Π, the notation π |= f means that f holds along the path π. Assuming

that p ∈ A and g, h are LTL formulas, the satisfaction operator |= is defined recursively

as follows:

π |= p ⇔ p ∈ L (π (0)) (2.5)

π |= ¬g ⇔ π 6|= g (2.6)

π |= g ∧ h ⇔ π |= g ∧ π |= h (2.7)

π |= g ∨ h ⇔ π |= g ∨ π |= h (2.8)

π |= X g ⇔ π1 |= g (2.9)

π |= G g ⇔ ∀
i≥0

π(i) |= g (2.10)

π |= F g ⇔ ∃
i≥0

π(i) |= g (2.11)

An LTL formula f is satisfied by the Kripke model K, denoted as K |= f , if and only

if all paths π ∈ Π satisfy f . The task of LTL model checking is to determine whether

K |= f . If the property does not hold, the model checker produces a counterexample,

i.e. an execution path allowed in K that contradicts the LTL formula. State-of-the-art

model checking algorithms are reviewed in Section 3.2.

This thesis focuses on model checking of simple reachability properties (also called

safety properties) of the form G p (or equivalently, ¬F ¬p), where p is an atomic

proposition, e.g. a Boolean function defined over the state of the model. More complex

specifications, including liveness and fairness properties, can be efficiently transformed

into reachability properties and handled with algorithms for reachability checking, as

shown in [Biere02].

29

2. Formal Foundation

2.3. Model Abstraction

To improve the tractability and performance of model checking algorithms, irrelevant

details of the circuit implementation should be removed from the circuit model. This

technique is known as model abstraction. Two types of abstraction techniques are

distinguished in this thesis:

• Structural abstraction reduces the level of modeling detail or removes those

model elements that are irrelevant to a certain property. Examples of structural

abstraction techniques include cone of influence reduction and data abstraction,

as defined in [Clarke99].

• Temporal abstraction aims to reduce the model complexity by a simplification of

its temporal behavior. The RSN modeling technique developed in Section 4.4 is

an example of such an abstraction.

Abstraction techniques are used to prove properties that would be computationally

too expensive to prove in the concrete model. Ideally, model checking should lead to

the same results in the concrete model and its abstraction. In practice, however, the

applicability of an abstraction is usually restricted to a certain class of properties, for

which the abstraction is sound and complete, as defined below.

Definition 8. (Abstraction Soundness) An abstractionM′ of a modelM is sound with

respect to a set of properties P if and only if every property p ∈ P that holds in the

abstract modelM′ also holds inM.

Definition 9. (Abstraction Completeness) An abstraction M′ of a model M is com-

plete with respect to a set of properties P if and only if every property p ∈ P that holds

in the concrete modelM also holds inM′.

If M′ is an incomplete abstraction of M, model checking of M′ may result in spuri-
ous counterexamples. A spurious counterexample is an execution path that refutes the

given property inM′ but is inconsistent withM, and hence is not a valid counterex-

ample to the property.

30

2.4. Boolean Satisfiability

2.4. Boolean Satisfiability

Boolean SATisfiability (SAT) is a decision problem that asks whether a given Boolean

formula can be satisfied. Formally, the SAT problem for a given formula representing a

Boolean function f : Bn → B consists in searching for an assignment a ∈ Bn, such that

f(a) = 1. The Boolean formula subject to satisfiability analysis is called SAT instance.

The assignment that satisfies the SAT instance is called satisfying assignment. A formula

(SAT instance) for which there exists a satisfying assignment is called satisfiable. If no

such assignment exists, the formula is called unsatisfiable.

The majority of SAT solving algorithms are developed for instances in Conjunctive

Normal Form (CNF). A CNF formula has the following form:

(l1,1 ∨ l1,2 ∨ l1,3 ∨ . . .) ∧ (l2,1 ∨ l2,2 ∨ l2,3 ∨ . . .) ∧ (l3,1 ∨ l3,2 ∨ l3,3 ∨ . . .) ∧ . . . (2.12)

where each li,j is a literal, i.e. a Boolean variable v or its negation ¬v, while disjunc-

tions of literals are called clauses.

The SAT problem for instances in CNF is NP-complete, hence, unless P = NP, there ex-

ists no algorithm that efficiently handles arbitrary instances in CNF [Garey79]. The re-

cent developments in SAT technology, however, have paved the way for wide adoption

of SAT solvers in various design automation, test generation, and verification tasks.

The state-of-the-art SAT solvers most often rely on a search-based procedure known as

the DPLL algorithm [Davis62]. An overview of state-of-the-art SAT algorithms is found

in [Biere09].

2.4.1. Incremental SAT Solving

State-of-the-art SAT solvers leverage learning techniques to speedup the search for

satisfying assignments. During the search process, sets of assignments that do not

satisfy the formula are identified, enlarged, and stored in form of learned clauses. The

learned clauses are added to the SAT instance to prune the search space [Biere09].

In many applications including formal verification, satisfiability solving is used in an

iterative manner: The SAT solver is invoked multiple times with slightly modified SAT

instances. Ideally, the SAT instance should be reused in consecutive iterations to avoid

the costly process of instance parsing, reduction, and clause learning. However, the

31

2. Formal Foundation

modification of a SAT instance in a learning-based SAT solver is hard: Every invocation

of the SAT solver extends the instance with learned clauses which hold only for the

actual instance. To avoid the effort of book-keeping and removal of out-of-date learned

clauses, a technique known as incremental SAT solving is employed [Eén03].

An incremental SAT solver checks the satisfiability of a formula of the form F ∧ A,

where:

• F is a formula in CNF,

• A = a0 ∧ a1 ∧ a2 ∧ . . . is a conjunction of assumptions, where ai are unit clauses

(literals).

To iteratively check the satisfiability of F for distinct assumptions in A, the incremental

SAT solver can be restarted multiple times without any performance loss due to clause

removal [Eén03].

Incremental SAT solving is often used to iteratively check the satisfiability of an in-

stance with and without a subset of its clauses. For example, assume that the satisfia-

bility of two formulas is checked: F and F ∧ (x ∨ y ∨ z). To this end, the satisfiability

of another formula F ′ := F ∧ (a ∨ x ∨ y ∨ z) may be checked, where a is a selector vari-
able which is used as an assumption. The formula F is satisfiable if and only if F ′ ∧ (a)

is satisfiable. Similarly, the formula F ∧ (x ∨ y ∨ z) is satisfiable if and only if F ′ ∧ (¬a)

is satisfiable. As an incremental SAT solver can reuse the instance F ′ together with the

learned clauses, the check for the satisfiability of F ′ ∧ (a) and F ′ ∧ (¬a) is performed

efficiently by two consecutive invocations of the solver.

2.5. Pseudo-Boolean Satisfiability and Optimization

Pseudo-Boolean Satisfiability (PBSAT) is an extension of the SAT problem: While a

SAT instance is a propositional logic formula in CNF, the instance of a PBSAT problem

is a conjunction of pseudo-Boolean constraints, as defined below:

Definition 10. (Pseudo-Boolean Constraint) A pseudo-Boolean constraint (PB-

constraint) is an inequality of the form C0l0 + C1l1 + C2l2 + . . .+ Cn−1ln−1 ≥ Cn,

where Ci ∈ Z are integer coefficients and li are literals. A coefficients Ci is weighted

with value 1 if the corresponding literal li is true, and with 0 otherwise. The PB-

constraint is satisfied if and only if the weighted sum of coefficients C0 . . . Cn−1 is

32

2.5. Pseudo-Boolean Satisfiability and Optimization

larger than or equal to Cn. If all integer coefficients are set to 1, the PB-constraint

becomes a standard clause.

The PBSAT problem asks whether a conjunction of PB-constraints is satisfiable.

Formally, given a conjunction of PB-constraints representing a Boolean function

f : Bn → B, the PBSAT problem consists in searching for an assignment a ∈ Bn, such

that f(a) = 1. The PBSAT problem can be solved using a SAT solver by PB-constraint

translation to Boolean clauses [Eén06].

Pseudo-Boolean Optimization (PBO) is an extension of the PBSAT problem, where

the solution must both satisfy a set of PB-constraints and minimize a given cost func-

tion. Formally, given a conjunction of PB-constraints representing a Boolean function

f : Bn → B and a cost function h : Bn → Z defined over the set of assignments to f ,

the PBO problem consists in searching for an optimal assignment a ∈ Bn, such that

f(a) = 1 and ∀a′∈Bn

[
[f(a′) = 1]⇒ [h(a′) ≥ h(a)]

]
. Pseudo-Boolean optimization can

be performed, for instance, by iterative SAT solving with PB-constraints translated

to clauses [Eén06], or with methods based on speculative model enumeration [Geb-

ser11].

33

3. State of the Art

This chapter discusses the state of the art in verification, access scheduling, and access

protection for scan infrastructures. Existing verification methods are introduced and

their applicability to reconfigurable scan networks is discussed. For scalable formal

verification, abstraction techniques are reviewed. Finally, recent techniques for access

pattern generation and infrastructure protection are presented.

3.1. Validation and Verification of Scan Networks

Since on-chip instrumentation is key to rapid production ramp-up and high product

quality, its access mechanism must be thoroughly verified to avoid costly design bugs

and prevent in-field dependability issues. In the following, the state-of-the-art tech-

niques for the validation and verification of scan infrastructures are reviewed.

Scan networks are essentially sequential circuits and hence may suffer from timing

violations [Wu98]. As the critical paths in scan networks are short compared to system

logic, the most common timing issue is hold-time violation. Setup-time violation may

still occur due to long signal propagation between distant scan registers. To verify the

timing closure of shift and capture operations in a JTAG circuitry, Static Timing Analysis

(STA) is used [Remmers04]. Timing analysis for deep-submicron technologies requires

consideration of statistical delay models [Blaauw08].

Design rules, either imposed by a standard or recommended as good design prac-

tice, are usually verified by structural analysis: Multiple drivers, broken scan chains,

and loop-backs can be found by structural traversal of the network [Fisher02]. The

structure of the IEEE 1149.1 (JTAG) circuitry, including the TAP controller and the

connectivity of data registers, can be verified by logic tracing [Melocco03].

The functionality of JTAG circuitry including the TAP controller can be validated by

35

3. State of the Art

simulation using automatically generated stimuli [Bruce Jr96]. Similarly, the function-

ality of IEEE 1500 wrappers can be validated by coverage-driven, constrained-random

simulation [Diamantidis05]. The stimuli are chosen in such a way as to maximize

coverage of the behavioral rules [Benso08]. Such simulation based techniques can

verify that the scan infrastructure works correctly in predefined scenarios, but cannot

guarantee the absence of design errors in general.

Accessibility of scan registers requires that a primary input sensitizing condition (called

scan state) exists, such that the scan network functions as a shift register [Eichel-

berger77]. The accessibility and connectivity of Level Sensitive Scan Design (LSSD)

can be verified with expert systems [Horstmann84,Papaspyridis88]. Certain properties

of scan infrastructures, such as the functionality of a reset signal or the equivalence

of two scan network models, can be verified by a reduction to combinational equiva-

lence checking [Kamepalli06]. The functionality of the JTAG circuitry can be verified

by symbolic simulation [Bryant90,Singh97] or four-valued logic simulation using pre-

conditioning and checking sequences [Dahbura89,Melocco03].

While the existing verification techniques efficiently handle simple scan chains, the

verification of reconfigurable scan networks poses a much more difficult problem. Con-

trol signals for scan registers may be generated by combinational logic driven by other

scan registers in the same or different hierarchy levels. In core-based design, scan

networks may be composed of third-party modules, the behavior of which may not

be fully disclosed. As a consequence, certain configurations may be illegal or contra-

dictory, causing integration issues, such as exclusive or limited access to certain scan

registers. An exhaustive search may be required to find a valid access sequence or to

prove inaccessibility [Baranowski12].

An example is given in Figure 3.1, where the access to scan segment 2 is controlled by

bits a and b of scan segment 1. Such a structure is compliant with IEEE Std. P1687 and

can result e.g. from erroneous integration of design modules. Clearly, there exists no

assignment to bits a and b such that segment 2 is part of the chosen scan path—there

exists a combinational dependency that cannot be satisfied. Combinational Automatic

Test Pattern Generation (ATPG) [Bushnell00] can be used to prove segment 2 inacces-

sible because the dependency is of combinational nature. However, such dependencies

can also be sequential: Even if there exists an assignment that puts the target segment

on the chosen scan path, this assignment may be not reachable from the initial state of

the network. Due to such sequential dependencies, both the verification of and access

36

3.2. Model Checking

primary

scan-out

primary

scan-in Segment 2

0

1...

0

1

&

&

...
Segment 1

a b

Figure 3.1.: Example of a reconfigurable scan network with conflicting access condi-
tions

pattern generation for RSNs is an NP-hard decision problem which is similar to sequen-

tial stuck-at fault ATPG. While state-of-the-art sequential ATPG algorithms can handle

sequential depths of several dozens of clock cycles, an access to a reconfigurable scan

network may require justification over hundreds of thousands cycles. Moreover, for

verification of more complex properties, e.g. unreachability of illegal scan configu-

rations or safety and security related requirements, a dedicated formal verification

technique is required. The first scalable method for formal verification of RSNs is

developed in [Baranowski12] and discussed in Chapter 5.

3.2. Model Checking

As reconfigurable scan networks are essentially sequential circuits, existing model

checking methods can potentially be used to verify them. This section discusses the

most promising model checking techniques and analyzes their scalability for complex

RSNs.

Given an FSM model and a temporal logic formula expressing its desired property,

model checking consists in an exhaustive search over the set of reachable states to

check if the property always holds in the model [Clarke99]. If the property does not

hold, model checking returns a counterexample, i.e., an execution path that refutes

the property.

The early CTL model checking method by Clarke et al. [Clarke86] traverses an explicit

representation of the state space of an FSM (Kripke structure) and labels each state

with the satisfied temporal formulas until a fixed point is reached. This algorithm has

37

3. State of the Art

polynomial complexity in the size of the Kripke structure, which can be exponential in

the number of sequential elements [Clarke99]. For this reason, explicit model checkers

suffer from scalability issues in hardware verification and are primarily used to verify

process interactions and communication protocols, as in [Holzmann97].

As an FSM with a hundred of state elements has potentially 2100 ≈ 1030 reachable

states, designs with a few dozens of sequential elements may be already too complex to

handle with explicit model checking techniques. McMillan et al. in [McMillan93] pro-

pose a method for symbolic representation of states and symbolic state space traversal,

called symbolic model checking. Instead of the explicit state graph representation such

as Kripke structure, symbolic model checking uses characteristic functions to repre-

sent state sets and the FSM’s transition relation. Symbolic traversal of the state space

consists in manipulating the characteristic functions: The set of reachable states is

found by calculating the fixed point of the transitive image for the set of initial states.

To speed-up the process of quantification and fixed point calculation, the characteristic

functions are represented with canonical Binary Decision Diagrams (BDD) [Bryant86].

Both the calculation of the set of reachable states (symbolic reachability) and LTL

model checking in general are PSPACE complete problems [Sistla85,Prasad05]. While

symbolic model checking has significantly improved scalability over explicit model

checking techniques, it still faces scalability issues when the number of sequential ele-

ments exceeds a few hundred [Biere09]. This is mainly due to quantifier elimination

required for the image calculation, which often leads to BDD blow-up.

Recent research in model checking concentrates on scalability improvement by using

efficient heuristics to solve partial problems, e.g. property falsification. Most promising

techniques map such problems to Boolean satisfiability in order to leverage the recent

progress in SAT technology [Prasad05]. Such SAT-based model checking techniques

are summarized in the following sections.

3.2.1. Bounded Model Checking

Bounded model checking (BMC) is a successful formal verification technique based

on SAT procedures. The goal of BMC is to check whether a given temporal logic

property holds in all initialized, bounded execution paths of an FSM [Biere99]. BMC

is very efficient at early detection of design bugs. In this application, it significantly

38

3.2. Model Checking

outperforms BDD-based symbolic model checkers [Biere03]. However, the maximal

bound that can be examined is limited by the memory and runtime capacity of the

SAT solver. As only bounded execution paths are considered, BMC cannot prove LTL

properties such as G p (p always holds) or F p (p eventually holds).

Formally, given a property expressed with an LTL formula f , a finite state machineM,

and a bound k ∈ N, bounded model checking consists in proving that every initialized

execution path π inM, such that |π| ≤ k, satisfies f , written as π |= f . The property

is disproved if there exists a path πc of length n ≤ k such that πc 6|= f . If such a path

exists, it constitutes a counterexample to the property.

A BMC instance is encoded as a SAT instance by unrolling the transition relation of

M for consecutive time steps (clock cycles). In each time step, the state elements and

input/output ports of M are modeled with a distinct set of Boolean variables. For

simple LTL properties of the form G p, where p is a Boolean function defined over the

state elements and input/output ports, the SAT instance is formed as follows:

ϕ(k) := ΩI(V0) ∧

[
k−1∧
n=0

ΩT (Vn, Vn+1)

]
∧

[
k∨

n=0

¬p(Vn)

]
, (3.1)

where Vi is the set of state and input/output variables in the i-th time step, while ΩI

and ΩT are the characteristic functions of the set of initial states and the transition

relation ofM, respectively. Note that function ΩI is applied to the set of variables of

the initial time step, while ΩT and p are applied to the variable sets of the consecutive

time steps.

The formula ϕ(k) is satisfiable if and only if there exists a counterexample to property

G p of length k or less. ϕ(k) is typically transformed to conjunctive normal form (CNF)

and its satisfiability is checked using a conventional SAT solver. Such SAT instances

can also be constructed for more complex LTL formulas, including liveness properties,

as shown in [Biere99, Biere03]. SAT encodings that are linear in the bound of BMC

are developed for LTL properties in [Biere06].

BMC techniques are well established and enjoy wide adoption in the indus-

try [Prasad05, Biere09]. However, the size of SAT instances grows linearly with the

bound of BMC. To find realistic design bugs in RSNs, prohibitively high bounds may

be required due long scan paths and complex sequential dependencies. To deal with

the high sequential depth of RSNs, a novel temporal abstraction is developed in Chap-

39

3. State of the Art

ter 4 and used for bounded model checking in Chapter 5.

3.2.2. Completeness

A complete verification method always terminates with a definite verification response,

i.e. either proves or refutes a property. BMC is not complete for LTL as it can only

examine execution paths of bounded lengths. However, if the bound is sufficiently

high—for instance, if it equals the total number of FSM states and the property has the

form G p—BMC can exhaustively cover all possible execution paths and hence either

guarantee that the property always holds or provide a counterexample [Biere09].

The bound that allows to verify properties in the unbounded sense is called complete-
ness threshold. Biere et al. in [Biere03] show that the completeness threshold for

unnested LTL properties like G p can be no higher than the model diameter (Defini-

tion 6, p. 27). As the calculation of the exact diameter requires satisfiability solving

of Quantified Boolean Formulas (QBF), it is not easier than symbolic model checking

itself, since both are PSPACE-complete problems [Biere09].

Several methods for calculating an overapproximation of the model diameter have

been proposed. Clarke et al. use Büchi automata constructed for a specific prop-

erty [Clarke04]. Biere et al. develop SAT procedures that calculate the recurrence

diameter (Definition 7, p. 28) [Biere03]. However, the recurrence diameter can be ar-
bitrarily larger than the model diameter itself [Biere09]. Baumgartner et al. develop a

diameter approximation method based on structural circuit analysis [Baumgartner02].

They show, for instance, that a memory with n rows has a diameter of n since any

state is reachable within n clock cycles required for n write operations, regardless of

the memory word length.

Completeness by Induction

To prove a property of the form G p, where p is a Boolean formula defined over the

state and input/output assignment of an FSM, it is necessary to show that p holds for

all reachable states in the FSM. A sufficient but not necessary condition is that p holds

in the initial state and is preserved by the FSM’s transition relation. This condition is

40

3.2. Model Checking

encoded as two separate SAT instances (after [Sheeran00]):

ϕinitial := ΩI(Vi) ∧ ¬p(Vi), (3.2)

ϕinduction := p(Vi) ∧ ΩT (Vi, Vj) ∧ ¬p(Vj), (3.3)

where Vi, Vj are two sets of state variables, while ΩI and ΩT are the characteristic

functions of the set of initial states and the transition relation of the FSM, respectively.

The formula ϕinitial is unsatisfiable if and only if p holds in the initial state. The formula

ϕinduction is unsatisfiable if and only if p is preserved by the transition relation. If both

formulas are unsatisfiable, p is an inductive invariant of the transition relation, and

hence G p holds.

This simple verification technique is not complete since G p may hold even if p is not

an inductive invariant of the transition relation. Completeness can be achieved with k-

induction proposed in [Sheeran00] and later improved with incremental SAT solving

techniques in [Eén03]. In this technique, the transition relation is unrolled several

times for consecutive time frames, and the SAT instance is extended with constraints

to force that the states in all time frames are unique (i.e., the execution path is loop-

free). The size of SAT instances required to achieve completeness of k-induction is

polynomial in the recurrence diameter [Biere09]. As the recurrence diameter may be

as large as the size of the state space (which is the case e.g. for a memory element),

k-induction is often ineffective for practical verification tasks.

An extension of the inductive verification technique for the class of interval properties
is presented in [Nguyen08, Nguyen11]. Interval properties form a subset of LTL that

most often occurs in practical formal specifications. Such properties have the form

G (a⇒ c), where the antecedent a and consequent c are LTL formulas which may in-

clude nested next operators (X) but no other temporal operators (G, F , and U) are

allowed. This subset of LTL is subject to Interval Property Checking (IPC) which is

similar to bounded model checking with two exceptions:

• The transition relation is unrolled for the length of the interval property, i.e., for

the maximal number of nested X operators in a and c.

• The initial state is constrained only by the antecedent a, i.e., the set of reachable

states is overapproximated by a.

To avoid spurious counterexamples due to the overapproximation of reachable states,

41

3. State of the Art

the antecedent a is strengthened with reachability invariants that are generated in an

automated or manual way [Nguyen08].

Completeness by Interpolation

Interval property checking overapproximates the set of reachable states implicitly with

the property’s antecedent, while k-induction implicitly tightens the set of reachable

states by unrolling the transition relation. In contrast, interpolation-based techniques

calculate an overapproximation of the set of reachable states explicitly and reduce it

iteratively.

The first interpolation-based model checking method was proposed by McMillan

in [McMillan03a]. The core of the method is similar to bounded model checking:

A SAT-solver is used to check if a property holds within a certain bound. If it does

hold, i.e., if the SAT instance is unsatisfiable, a proof of unsatisfiability is derived from

the SAT instance. This proof is used to overapproximate the set of reachable states

using Craig interpolation [Craig57]. Intuitively, a property of the form G p holds if

and only if the following SAT instance is unsatisfiable:

ΩR(Vi) ∧ ΩT (Vi, Vj) ∧ ¬p(Vj), (3.4)

where ΩR is the characteristic function of the overapproximation of reachable states.

The algorithm iteratively checks if the property holds within an increasing bound:

In each iteration, a tighter overapproximation of reachable states is calculated. This

technique is complete for LTL properties of the form G p and the size of SAT instances

is linear in the model diameter [McMillan03a]. Interpolation-based techniques are

currently one of the most efficient model checking approaches [Biere09].

3.3. Model Abstractions

Model abstraction is a widely applied technique for verification of large and com-

plex hardware designs. Abstraction-based verification strives to remove all model con-

straints that are irrelevant w.r.t. the verified property. Model abstractions for hardware

verification are formalized in [Melham87,Giunchiglia92].

42

3.3. Model Abstractions

Melham in [Melham87] distinguishes structural, behavioral, data, and temporal ab-

stractions. Structural abstractions simplify the structure of a concrete model but pre-

serve its full behavioral characteristics. For instance, a gate-level representation of a

combinational circuit can be modeled as an abstract logic unit that performs the same

function. Behavioral abstractions neglect irrelevant behavioral characteristics of the

concrete model. Data abstractions map the data types of a concrete model (e.g. real-

valued analog signals) to more abstract types (e.g. Boolean variables). In this thesis,

these three abstraction types are collectively referred to as structural abstractions. In

contrast, temporal abstractions reduce the temporal granularity of the model, e.g. by

using a cycle-accurate timing model for combinational logic instead of a more accurate

gate-delay model.

Structural abstractions are often realized as state space abstractions. A state space

abstraction consists in a mapping of states of the concrete model to compound states

in the abstract model. Clarke et al. in [Clarke94] show a method for automatic gener-

ation of state space abstractions and describe a technique for symbolic execution over

the abstract state space. Alternatively, the concrete state space can be mapped to an

abstract state space using property preserving transformations [Loiseaux95]. Bruns

et al. in [Bruns99] formalize incomplete state spaces using partial Kripke structures

with 3-valued atomic propositions, where the third value is used to express uncer-

tainty whether the proposition holds in a given state or not. This work also defines

a completeness preorder on partial Kripke structures and develops a model checking

algorithm for them.

Many techniques for abstraction-based formal verification start with a coarse abstrac-

tion which is sound but not necessarily complete, and refine it iteratively in an au-

tomated way until it is strong enough to prove or refute a given property. An early

technique for such automatic abstraction refinement was based on replacing complex

predicates with auxiliary Boolean variables [Saïdi99]. Clarke et al. in [Clarke03] pro-

pose a counterexample-guided abstraction refinement: They simulate each counterex-

ample obtained with an abstract model in the concrete model to verify its consistency.

If a counterexample is spurious (inconsistent with the concrete model), the abstract

model is refined by splitting compound (abstract) states that caused the inconsistency.

An alternative solution called proof-based abstraction is proposed by McMillan and

Amla in [McMillan03b]. In this technique, model abstractions are constructed from

proofs of unsatisfiability derived by a SAT solver.

43

3. State of the Art

The techniques discussed above are generally structural abstractions, as they do not

explicitly reduce the temporal granularity of the concrete model. The majority of tem-

poral abstractions found in the literature simplify the timing of combinational logic, for

instance, by reducing gate-level timing to cycle-accurate timing, as in [Jain95]. The

cycle-accurate timing is often abstracted further, e.g. for the verification of high-level

models or communication protocols, as in [Urdahl12] for efficient handling of compo-

nent interactions in complex SoC designs. An interesting example of a dedicated tem-

poral abstraction for microprocessor verification is developed in [Windley95] within

a theorem proving system: The cycle-accurate timing at microarchitectural level is re-

duced to instruction-accurate timing at architectural level. For scan infrastructures,

the first domain-specific temporal abstraction is developed in [Baranowski12] and dis-

cussed in Chapter 4.

3.4. Access Scheduling

In scan networks, access pattern generation or access scheduling is the process of calcu-

lating a scan-in sequence (scan data) that implements an access to a specified target
scan register (instrument) by writing and/or reading its content. The usual objective

is to optimize the access time, i.e., minimize the total number of scan operations in-

cluding capture, shift, and update cycles (see Section 1.3, p. 14). As scan infrastructure

has been traditionally used for test pattern delivery and transfer of test responses, the

majority of access generation algorithms targets optimal test scheduling. This section

reviews state-of-the-art techniques for test scheduling, followed with a discussion of

the first attempts at general purpose access generation for reconfigurable scan net-

works.

In scan networks compliant with IEEE Std. 1149.1 and 1500, the generation of scan

sequences is straightforward: To connect the required data register (DR) to the scan

chain, the instruction register (IR in IEEE 1149.1 or WIR in IEEE 1500) is loaded with a

predefined instruction word [JTA01, Zorian05]. The access scheduling for concurrent

testing of system components (cores) poses a challenge only due to resource con-

flicts and power constraints. Various access scheduling methods that target test time

minimization under resource and power constraints have been proposed over the last

two decades. Chou et al. in [Chou97] model structural dependencies with resource

graphs and map the problem of test time optimization to covering table minimization.

44

3.4. Access Scheduling

SIB

scan-out
CR

1

0

Lower-level segment

scan-in SI
SO

TO FROM

Figure 3.2.: Segment Insertion Bit (SIB)

Other researchers find the optimal test schedule using techniques based on mixed-

integer linear programming [Chakrabarty00], simulated annealing [Zou03], genetic

algorithms [Chattopadhyay03], or rectangle packing algorithms [Iyengar03], among

others. More recent methods are based on co-optimization of the access schedule with

the scan network architecture [Koranne03,Larsson06,Ghani Zadegan11a].

Recently, the access to on-chip instruments in reconfigurable scan networks gained

attention. Zadegan et al. in [Ghani Zadegan11b] presents an algorithm inspired by

Huffman encoding for optimal construction of RSNs. This method results in optimal

access time under the assumption that the access frequencies to individual instruments

are constant and known at design time. A method for calculating the average access

time for concurrent and sequential schedules is given in [Ghani Zadegan12a, Lars-

son12].

The work in [Ghani Zadegan11b,Ghani Zadegan12a,Larsson12] is limited to regular,

hierarchical RSNs constructed using Segment Insertion Bits (SIB). An SIB is composed

of a 2-input multiplexer and a 1-bit configuration register (CR), as shown in Figure 3.2.

The address of the multiplexer is driven by the shadow register of CR. When the

content of CR is 1, the lower-level scan segment (e.g. a chain of instruments and other

SIBs) is attached to the scan path (the SIB is open). Otherwise, when CR is set to

0, the scan path comprises only the 1-bit configuration register while the lower-level

segment is bypassed (SIB is closed).

Figure 3.3 shows an exemplary SIB-based reconfigurable scan network with a 3-level

hierarchy. For such regular RSNs, access sequence generation is a straightforward

task: The scan sequence required to access any scan register is found by examining

the current state of SIBs. SIBs above the target scan register in the hierarchy must be

opened (set to 1 by performing a CSU operation), and all remaining SIBs should be

45

3. State of the Art

SIB
SI SO

TO FROM

Segment 1

SIB
SI SO

TO FROM

SIB
SI SO

TO FROM

Segment 3

SIB
SI SO

TO FROM

Segment 2

scan-outscan-in
Level 1

Level 2

Level 3

Figure 3.3.: An example of a SIB-based reconfigurable scan network

closed (set to 0) to reduce the access time. While this trivial access scheduling algo-

rithm can provide minimal access time in SIB-based architectures, it cannot be applied

to arbitrary RSNs, where the multiplexer control may be generated by arbitrary com-

binational logic blocks driven by multiple scan registers distributed over the network

(cf. Figure 3.1, p. 37). The first algorithm that performs access time optimization

and can handle more general RSNs is developed in [Baranowski13b] and discussed

in Chapter 6.

3.5. Infrastructure Security

The accessibility of on-chip infrastructure contradicts security and safety requirements

for chip internals [Tehranipoor11]. An attacker may exploit the scan infrastructure to

gain access to protected data (secret key or IP), alter the system state to perform ille-

gal operations, or conduct side-channel attacks, e.g. on cryptographic cores [Yang04].

In the following, state-of-the-art techniques for scan access authorization and scan

sequence encryption are briefly introduced, followed with a discussion of access re-

striction methods.

Authentication and Authorization

The majority of existing techniques for securing scan infrastructure is based on authen-

tication: The user (e.g. a tester or a service person) gains permission to access the scan

46

3.5. Infrastructure Security

network only after proving its identity, e.g. by presenting a key. The simplest autho-

rization schemes assume a static key that is known only to entitled users. To gain ac-

cess, the key must be either applied to dedicated primary inputs [Hely04], embedded

at constant [Lee06,Agarwal11] or variable [Dworak13] positions in scan data (scan-in

sequence), or written to a dedicated data register in a JTAG circuitry [Lee07,Pierce13]

or an IEEE 1500 wrapper [Chiu12]. If a wrong key is used, the protected instruments

are inaccessible [Dworak13], the scan-in and scan-out sequences are internally re-

placed with constant or pseudo-random values [Lee06,Agarwal11,Chiu12], the order

of scan registers is dynamically changed in an unpredictable fashion [Hely04,Lee07],

or the JTAG update operation is blocked [Pierce13] to disrupt any unauthorized access.

Stronger authorization schemes are based on challenge-response protocols [Buskey06,

Clark10, Rosenfeld10, Park12, Das13, Pierce13]: The chip generates a random or

pseudo-random challenge value and expects the user to provide the expected re-
sponse value based on a shared secret. This shared secret is never transferred in

plaintext (unencrypted) during the authorization process. The response is calculated

from the challenge using various cryptographic algorithms, e.g. elliptic curve arith-

metic [Buskey06, Das13] or hash functions [Clark10, Rosenfeld10]. More advanced

scheme require mutual authentication based on three-entity protocols that require

certification authorities and authentication servers [Park10,Park12,Das13].

Scan Sequence Encryption

To prevent that sensitive data are revealed by scan infrastructure, the scan sequences

can be protected by encryption. On-chip stream ciphers are used to decrypt the scan-in

sequence and encrypt the scan-out sequence at the JTAG TAP interface [Rosenfeld10].

This encryption scheme effectively prevents sniffing and spoofing of secret data at the

TAP level. However, inside the chip, data are still shifted in plaintext. This can be

exploited by an attacker to expose the unencrypted scan sequence using side-channel

attacks, e.g. through mission logic [Rosenfeld10]. To prevent this type of attacks, the

encryption circuitry can be distributed over the chip to locally decrypt scan inputs and

encrypt scan outputs of individual scan network components [Rosenfeld11]. However,

if many components require protection, this scheme becomes unwieldy and incurs high

hardware overhead.

47

3. State of the Art

Access Restriction

The majority of approaches discussed so far assure that only authenticated users can

access the scan infrastructure. However, if the authentication key or shared secret is

leaked, full access becomes possible which is unacceptable in safety critical applica-

tions.

To prevent that sensitive data stored in scan registers be leaked via scan infrastructure,

mirror registers can be used. Once sensitive data are written to a scan register, a mir-

ror register replaces the original register in the scan network until the infrastructure

is reset. This specialized approach is applied to key registers of cryptographic cores

in [Yang06].

To avoid the need for authentication, the physical interface or parts of scan infrastruc-

ture are permanently deactivated using One Time Programmable (OTP) memory cells

called fuses [Ebrard09]. By blowing an on-chip fuse, some instructions of a JTAG TAP

controller or chosen scan chains can be permanently disabled [Sourgen92]. Most of-

ten, the fuses are blown after manufacturing test to prevent that scan chains are used

for side-channel attacks on cryptographic cores or theft of intellectual property [Tehra-

nipoor11]. Such fuse-based protection is widely adopted in microprocessors, e.g. in

i.MX31 (Freescale) [Tehranipoor11] or MPS430 (Texas Instruments) [Clark10]. Alter-

natively, to guarantee inaccessibility of the entire scan infrastructure, the JTAG TAP can

be completely removed after manufacturing test with a wafer saw [Kömmerling99].

This radical approach results in high security but makes the scan infrastructure com-

pletely unusable.

The existing techniques for access restriction enable only coarse-grained access man-

agement: The partial or full deactivation of scan infrastructure after manufacturing

test is not acceptable in modern SoC designs, as the access to instrumentation must be

provided throughout the lifetime of a chip (cf. Section 1.1, p. 10). Moreover, existing

techniques require thorough consideration early in the design process and are there-

fore difficult or impossible to apply in core-based design flows. The first method for

fine-grained access management of reconfigurable scan networks applicable to core-

based designs is developed in [Baranowski13c] and discussed in Chapter 7.

48

3.6. Conclusions

3.6. Conclusions

Reconfigurable scan networks, as proposed by IEEE Std. 1149.1-2013 and the upcom-

ing IEEE Std. P1687, emerge as an effective means to access the instrumentation of

complex SoCs. The high performance and flexibility offered by RSNs, however, comes

at a price: To assure high dependability and rapid development, novel methods are

required to deal with the numerous challenges posed by RSNs.

The existing methods for the verification of regular scan infrastructures cannot be

directly applied to arbitrary RSNs. Meanwhile, general-purpose formal verification

methods such as model checking face scalability issues in deeply sequential circuits

such as RSNs. To improve the scalability of existing verification techniques, a novel

RSN modeling method based on temporal abstraction is developed in Chapter 4 and

applied to model checking in Chapter 5.

While specialized algorithms exist for access scheduling in bypass-based scan net-

works, these methods are restricted to regular architectures with simple access de-

pendencies. Irregular scan architectures with complex control signals require novel

algorithms for the generation of access patterns and access time optimization. This

goal is approached with a method based on pseudo-Boolean SAT solving developed in

Chapter 6 that leverages the formal RSN model from Chapter 4.

The existing techniques for securing on-chip scan infrastructures focus on protecting

individual scan chains or the entire access port. While such techniques can be directly

applied to secure RSNs as a whole, restricting the access to individual instruments is

costly due to high area overhead and may be impossible in core-based designs. A novel

method for fine-grained access management in RSNs is developed in Chapter 7.

49

4. Scan Network Modeling

This chapter defines the terminology and structure of reconfigurable scan networks

and introduces a novel RSN modeling method. The functional behavior of RSNs is

explained using a cycle-accurate representation at Register-Transfer Level (RTL). Next,

a method for constructing a temporal RSN abstraction is presented, followed with a

discussion of its applications and limitations. The temporal abstraction defined in this

chapter is the basis of formal verification methods in Chapter 5 and access pattern

generation in Chapter 6 and 7.

4.1. Specification Languages

Structural and functional models of scan infrastructure serve various purposes in the

chip development process. Scan network models are used:

• in verification and validation,

• during synthesis—to generate the actual (low-level) hardware implementation

of the scan network using automated synthesis tools,

• in the integration step—to merge multiple scan networks into a global, chip-level

network and connect them with system components and physical pins,

• for test and maintenance—to generate access patterns, i.e. scan-in sequences

that implement the access to target scan chains or instruments.

Scan networks are usually described using dedicated, high-level specification lan-

guages which are standardized to enable design reuse and assure compatibility with

commercial design automation tools. The following standards define common descrip-

tion languages for scan infrastructure:

• IEEE Std. 1149.1 [JTA01] defines a simple scan architecture and the Boundary

51

4. Scan Network Modeling

Scan Description Language (BSDL) for describing its implementation details. A

specification in BSDL provides the count and lengths of data registers, the length

of the instruction register, the encoding of instructions, as well as the type and

mapping of boundary scan cells.

• IEEE Std. 1500 [SEC05] establishes a wrapper-based scan architecture and de-

fines the Core Test Language (CTL). CTL is used to specify, among other param-

eters, the connectivity of wrappers, the number of scan chains, and user defined

instructions.

• IEEE Std. P1687 [Stollon11, Ghani Zadegan12b] allows flexible, user-defined

scan architectures and proposes an Instrument Connectivity Language (ICL) to

describe them.

Languages such as BSDL and CTL are dedicated for specific scan architectures defined

in their respective standards. In contrast, ICL is an expressive language that facilitates

the design of almost arbitrary, user-defined scan networks. An ICL design is a netlist

of scan registers, data latches, multiplexers, and combinational logic blocks.

A scan network specification in BSDL, CTL, or ICL is translated in a straightforward

way to a structural, cycle-accurate hardware model. For the sake of generality, the fol-

lowing section describes RSNs as usual hardware structures at Register-Transfer Level

(RTL). The scan architectures considered in this thesis and defined in the following

section comprise a superset of RSNs allowed by IEEE 1149.1 and IEEE P1687: In

addition to excludable and selectable scan registers defined in 1149.1-2013 [JTA13],

arbitrary signals generated internally to the scan network are allowed to control the

capture, shift, and update operations of individual scan registers. The presented def-

inition of RSNs is also a superset of structures defined in P1687. A recent revision of

this standard proposal enforces structural constraints which ensure that, for instance,

scan multiplexers cannot disconnect their controlling registers from the scan chain.

In contrast, the RSN model presented below imposes no such structural constraints:

Control signals can be generated by combinational logic blocks that take their inputs

from arbitrary registers distributed over the RSN and its primary inputs.

52

4.2. Structural Modeling

1

0

S2

select(S2)

single- or multi-bit

scan segments

scan

multiplexer

internal control signal

active scan path

for S1=1 and S3=0

primary

scan-in
primary

scan-out
S1

1

0

S4

select(S4)

S3

RSN

update

shift

capture
 &

int. control signal

clock

...

primary data/control inputs

...

primary

data

outputs

Figure 4.1.: Example of a reconfigurable scan network and its terminology

4.2. Structural Modeling

Reconfigurable scan networks are sequential circuits composed of scan registers,

latches, multiplexers, and combinational logic. An RSN has a global clock input port, a

primary scan-input and -output, as well as three global control inputs that activate the

three scan operations: capture, shift, and update, as defined by IEEE 1149.1 [JTA01].

Optionally, an RSN may have primary data input and output ports for communication

with instrumentation, as well as primary control input ports for network configuration.

Figure 4.1 presents an RSN example and explains the basic terminology.

Scan Segments and Scan Paths

The basic building block of an RSN is a scan segment with a scan-in and a scan-out
port. Scan segments are used to communicate with on-chip instrumentation or drive

internal control signals. A scan segment is essentially a shift register (scan chain)

composed of one or more scan cells sharing a set of control signals. A scan segment

is optionally equipped with a shadow register that is loaded in parallel from the shift

register. Figure 4.2 presents a block diagram of a scan segment with optional elements

marked by a dashed line.

A scan segment supports up to three scan operations which are activated by the global
control signals—capture, shift, and update (cf. Figure 4.1 and 4.2):

53

4. Scan Network Modeling

Scan Segment

Shift register

Shadow register

scan-in scan-out

update

shift

capture

control signals

in
te

rn
a

lselect

updis

capdis

g
lo

b
a

l
clock

data-in data-out

Figure 4.2.: Scan segment block diagram

• During a capture operation, the shift register is loaded with data from the data-in
port.

• During a shift operation, data are shifted from the segment’s scan-input, through

its register bits, down to the scan-output of the segment.

• During an update operation, the optional shadow register is loaded with data

from the shift register. Note that the shadow register is stable during the shift

operation.

To inhibit the scan operations, a scan segment may possess up to three optional control

ports:

• Select port (select) specifies if the scan segment is enabled for capture, shift, and

update operation.

• Capture disable port (capdis) invalidates the capture operation on the scan seg-

ment, regardless of the select port state.

• Update disable port (updis) invalidates the update operation, regardless of the

select port state.

The functionality of the capdis and updis ports of a scan segment may be implemented

by gating the global control signals capture and update, respectively, at the segment’s

boundary. The select port may be implemented by local clock gating.

54

4.2. Structural Modeling

Data Segment

Data latch

update

control signals

in
te

rn
a

l

updis

g
lo

b
a

l
clock

data-in data-out

Figure 4.3.: Data segment block diagram

Scan segments are chained via scan-out and scan-in ports. A scan path is a non-circular

sequence of scan segments starting at a primary scan-input and ending at a primary

scan-output. The consecutive scan segments forming a scan path are connected either

directly, via buffers or inverters, or through scan multiplexers. A scan multiplexer

controls the path through which data are shifted in an RSN. For instance, the two scan

multiplexers in Figure 4.1 allow to bypass scan segments S2 and S4. The control signal

of a scan multiplexer is called address and specifies the selected scan input.

Data Segments

Apart from scan segments, an RSN may contain data segments for auxiliary data stor-

age, communication with on-chip instruments, and generation of internal control sig-

nals. A data segment consists of a single- or multi-bit data latch which loads data from

the data-in port, as shown in Figure 4.3. The data latch is transparent during an update
operation unless the optional control signal updis is active.

Control and Data Signals

The control ports of scan segments (select, capdis, updis), data segments (updis), and

multiplexers (address) are driven by signals that are collectively referred to as internal
control signals. Internal control signals can be driven by arbitrary combinational logic

blocks that take their inputs from any shadow registers (cf. Figure 4.2) and data

55

4. Scan Network Modeling

latches (cf. Figure 4.3) distributed over an RSN, as well as from any primary control

inputs. For instance, the select port of scan segment S2 in Figure 4.1 is driven directly

by the shadow register of S1, while the select of S4 is generated by a logic gate driven by

the shadow registers of S1 and S3. All internal control signals must be stable whenever

the global update signal is active and the clock signal is low. This requirement is

satisfied using latches.

The data-in ports of both scan and data segments may also be driven by arbitrary

combinational logic blocks driven by shadow registers, data latches, and primary data

inputs. The data-out ports of scan and data segments may drive the primary data
outputs of an RSN, either directly or through arbitrary combinational logic.

4.3. Scan Network Operation

Scan data are shifted in an RSN from the primary scan-input, through an active scan

path, down to the primary scan-output. The flow of the active scan path depends on

the logic state of the RSN itself: The select signals of all scan segments on the active

scan path are asserted, and all on-path multiplexers select the on-path inputs. For

instance, in Figure 4.1 (p. 53), if S1 = 1 and S3 = 0, the active scan path goes through

S1, S2, and S3, while S4 is bypassed.

A scan configuration of an RSN is the logic state of its sequential elements and primary

data/control inputs. The scan configuration determines which scan segments in the

network are currently accessible. A scan configuration is valid if and only if: (i) an

active scan path exists and (ii) scan segments that do not belong to the active scan

path are deselected. This ensures that the scan data are delivered to the target scan

segments, the captured data are shifted towards the primary scan-output, and all scan

segments that do not take part in the access (i.e., do not belong to the active scan

path) are stable.

The operation of an RSN is synchronized with the global clock signal. The basic ac-

cess to the scan network is an atomic (inseparable) operation that consists of three

phases: Capture, Shift, and Update (CSU). Each phase is activated by its respective

global control signal, as shown in Figure 4.4. During the capture phase at the rising

clock edge, the scan segments on the active scan path are loaded with data from their

data-in ports. This data are shifted out of the network during the shift phase at each

56

4.4. Temporal Abstraction

capture

shift

update

S

clock ...

...

...

...

C U

Data latches are transparent,

internal control signals are stable.

Figure 4.4.: Capture, Shift, Update (CSU) operation

rising clock edge, while new data are shifted in. Finally, during the update phase at

the falling clock edge, the shifted-in data are latched in the shadow registers of scan

segments on the active scan path. While the clock signal is low and the update signal is

asserted, the latches of enabled data segments are transparent and all internal control

signals are stable. Note that the capture and update phases of a CSU operation require

a constant number of clock cycles to complete. In contrast, the shift phase may take

any number of cycles (zero or more) and usually lasts as long as is necessary to shift

through the full active scan path.

A read or write access to a scan register in the network requires that the accessed

register is part of an active scan path (cf. Figure 4.1, p. 53). A scan access is a sequence

of CSU operations required to reconfigure the scan network and access the target

registers. Access time is the number of clock cycles that are required to perform the

scan access, including the update and capture cycles of each CSU.

4.4. Temporal Abstraction

A cycle-accurate behavioral representation of a reconfigurable scan network is easily

derived from a structural RSN model. A scan network can be modeled as an FSM,

as shown in Figure 4.5: On the input side, the FSM has a single scan-input, three

global control inputs (capture, shift, and update), and optional primary data/control
inputs. On the output side, the FSM has a single scan-output and optional primary
data outputs. The primary data inputs and outputs are used for communication with

on-chip instrumentation which is not part of the RSN itself. The primary data outputs

may expose the state of shadow registers of scan segments, latches of data segments,

57

4. Scan Network Modeling

cycle-accurate

FSM

clock

scan-input

update

shift

capture

...

...

 scan-output

primary data/control inputs

primary

data

outputs

Figure 4.5.: Cycle-accurate FSM representation of a reconfigurable scan network

and any internal data or control signals.

The operation of an FSM representing a reconfigurable scan networks is constrained

in the following way:

1. The three global control signals—capture, shift, and update—always follow the

pattern of a CSU operation, as defined by the IEEE Std. 1149.1 and shown in Fig-

ure 4.4 (p. 57): Initially, capture is active for exactly one clock cycle. Next, shift
is active for zero or more cycles, followed with an update operation of exactly

one cycle.

2. The shadow registers and data latches internal to the RSN may load new data

only during the update phase. In consequence, since the primary data outputs of

the RSN are generated by combinational logic blocks driven only by those two

types of sequential elements, their state is stable in the capture and shift phase.

As the global control inputs are constrained to a predefined pattern and the primary

data outputs may change only when the update signal is active, the FSM model can

be simplified by applying the following temporal abstraction: Instead of modeling the

effect of each capture, shift, and update cycle individually, the full CSU operation is

treated as an atomic operation that changes the state of shadow registers and data

latches. This modeling technique is called CSU-accurate abstraction, and the resulting

model is a CSU-Accurate Model (CAM).

Intuitively, a CSU-accurate model can be viewed as an FSM with an abstract clock. One

state transition (cycle of the abstract clock) in the CSU-accurate FSM corresponds to

58

4.4. Temporal Abstraction

s0
CSU operation

sk

s0 s1
C

s2
S S

sk-1
S

sk
U...(a)

(b)

Figure 4.6.: State transitions during one CSU operation in (a) a cycle-accurate RSN
model and (b) a CSU-accurate model (CAM)

CSU-accurate

FSM

abstract clock

...

...

primary data/control inputs

...

parallel

scan data

input

primary

data

outputs

Figure 4.7.: CSU-accurate FSM representation of a reconfigurable scan network

a full CSU operation, i.e., multiple clock cycles in the cycle-accurate RSN model. An

example is given in Figure 4.6 where k cycles of a CSU operation are combined into a

single transition in the CAM.

The block diagram of a CSU-accurate FSM is depicted in Figure 4.7. Compared with

the cycle-accurate FSM model from Figure 4.5, the CSU-accurate FSM has no inputs

that control the three phases of a CSU operation, and neither a scan-input nor a scan-
output. Instead of representing the scan data as a sequence of bits at the scan-input,
the scan data of a CSU operation are modeled as a bit vector. Scan data for each scan

segment are provided to the CSU-accurate FSM via the parallel scan data input. In

each state transition (cycle of the abstract clock that models a CSU operation), the

parallel scan data are transferred to the corresponding scan segment if and only if this

scan segment is selected and belongs to the active scan path.

59

4. Scan Network Modeling

4.4.1. CSU-Accurate Model

In the following, the CSU-accurate model is defined formally. The state of sequential

elements and control signals is modeled in 3-valued logic with three symbols {0, 1, X}
that represent logic value 0, logic value 1, and an unknown value, respectively. The

unknown value (X) is used to model partially specified initial scan configurations (the

state of uninitialized registers), and the high-impedance state of tri-state logic gates.

The interpretation of logic operators over 3-valued variables follows Kleene’s strongest

regular 3-valued logic [Kleene50].

Definition 11. (CSU-Accurate Model, CAM) The CSU-accurate model of an RSN is

a tuple M = {S,H,D, I, V, C, c0, Select, Updis, Capdis, DataIn, Active} that consists

of:

• S: the set of scan segments in the RSN.

• H: the set of 1-bit shadow registers that form scan segments in S. The correspon-

dence between scan segments and shadow registers is captured by a surjective

function S : H → S that maps each shadow register h ∈ H to its corresponding

scan segment s ∈ S denoted as S(h).

• D: the set of 1-bit data latches that form data segments in the RSN.

• I: the set of primary data/control inputs of the RSN.

• V : the set of 3-valued variables corresponding to the elements from H ∪D ∪ I
with a mapping defined by a bijective function V : H ∪D ∪ I → V .

• C := {0, 1, X}|H∪D∪I|: the set of scan configurations. Each scan configuration

c ∈ C defines the state of shadow registers, data latches, and primary data/con-

trol inputs. Each scan configuration c ∈ C is a valuation of variables in V which

is also treated as a function c : H ∪D ∪ I → {0, 1, X} that assigns each element

e ∈ H ∪D ∪ I a 3-valued state denoted as c(e).

• c0 ∈ C: the initial scan configuration (reset state).

• Select : C×S → {0, 1, X}: the function that defines the state of the select control

port of each scan segment s ∈ S in each scan configuration c ∈ C, denoted as

Select(c, s).

• Updis : C × (S ∪ D) → {0, 1, X}: the function that defines the state of the

60

4.4. Temporal Abstraction

updis control port of each element e ∈ (S ∪D) in each scan configuration c ∈ C,

denoted as Updis(c, e).

• Capdis : C × S → {0, 1, X}: the function that defines the state of the capdis con-

trol port of each scan segment s ∈ S in each scan configuration c ∈ C, denoted

as Capdis(c, s).

• DataIn : C × D → {0, 1, X}: the function that defines the state of the data-
in port of each data latch d ∈ D in each scan configuration c ∈ C, denoted as

DataIn(c, d).

• Active : C × S → {0, 1, X}: the function that determines the active scan path.

For each scan segment s ∈ S and each scan configuration c ∈ C this function is

defined as follows:

Active(c, s) :=


0 if s does not belong to the active scan path in c,

1 if s belongs to the active scan path in c,

X if it is not known whether s is on the active scan path in c.

A CSU-accurate model can be easily derived from any structural description of an

RSN: either from a gate- or RT-level netlist, or from a high-level representation, e.g. in

Instrument Connectivity Language (ICL) defined by IEEE P1687:

• The sets S, H, D, I are found by inspecting the netlist components and ports.

• The initial scan configuration c0 is defined by the reset state of the RSN. The

state of uninitialized sequential elements is assumed unknown (X) and the state

of primary data/control inputs is unconstrained in c0.

• The functions Select, Updis, Capdis, and DataIn are obtained by traversing the

input cones of the corresponding control/data ports of scan segments and data

segments in the netlist.

The followings two sections describe the construction of the Active function and de-

fine the transition relation of the CSU-accurate model.

61

4. Scan Network Modeling

p s n

select(s) select(n)select(p)

Figure 4.8.: Chained scan structure

4.4.2. Valid Scan Configurations

The function Active determines if a scan segment belongs to the active scan path and

is constructed as follows:

Active(c, s) :=


0 if Select(c, s) = 0,

1 if (Select(c, s) = 1) ∧ Valid(c),

X otherwise.

(4.1)

where s ∈ S, c ∈ C, and Valid : C → B is a validity predicate that evaluates to 1 if and

only if a scan configuration is valid, i.e., when there exists a well formed scan path

and all off-path scan segments are deselected (cf. Section 4.3, p. 56). The validity

predicate is constructed piecewise as a conjunction of the form:

Valid(c) =
∧
s∈S

v(c, s), (4.2)

where v : C × S → B is a local validity predicate that evaluates to true if and only if the

local scan configuration of a scan segment is valid, as explained below.

Validity of Chained Scan Structures

Given a scan segment s ∈ S, let pred(s) and succ(s) denote the set of its predecessor

and successor scan segments, respectively, connected either directly, through buffers

or inverters, or via scan multiplexers. For a scan segment s with a single predecessor

p ∈ pred(s) and a single successor n ∈ succ(s) (cf. Figure 4.8), it is required that both

p and n be selected if s is selected, such that scan data are not lost. Thus:

v(c, s) := (Select(c, s) = 1)⇒ [(Select(c, p) = 1) ∧ (Select(c, n) = 1)] (4.3)

62

4.4. Temporal Abstraction

p s

n1

n2

...

select(p) select(s)

select(n1)

select(n2)

Figure 4.9.: Branching scan structure (fanout)

Validity of Branching Scan Structures

For a scan segment s with a single predecessor p and multiple successors (cf. Fig-

ure 4.9), a valid scan configuration requires that exactly one successor of s is selected

if s is selected. Formula (4.4) specifies that at least one successor of s is selected if s is

selected:

(Select(c, s) = 1)⇒
∨

n∈succ(s)

(Select(c, n) = 1) (4.4)

Formula (4.5) ensures that at most one successor of s is selected at any time:

∀
nk,nl∈succ(s),nk 6=nl

[(Select(c, nk) = 1)⇒ (Select(c, nl) 6= 1)] (4.5)

The following formula states the requirement for a valid scan configuration for a seg-

ment s with one predecessor p and multiple successors using (4.4) and (4.5):

v(c, s) := [(Select(c, s) = 1)⇒ (Select(c, p) = 1)] ∧ (4.4) ∧ (4.5) (4.6)

This assures that in case of a branching scan path (fanout>1) only one branch is active,

i.e., there exists at most one selected successor.

Validity of Multiplexed Scan Structures

For a scan segment s with a single successor n and multiple predecessors selected by

a multiplexer (cf. Figure 4.10), a valid scan configuration requires that if s is selected,

then exactly one predecessor of s is selected and the addressing is correct. Formula

63

4. Scan Network Modeling

p1

p2
...

select(p1)

select(p2) s

select(s)

addresss

addr1

addr2

n

select(n)

Figure 4.10.: Multiplexed scan structure (scan path convergence)

(4.7) below states that at least one predecessor must be selected if s is selected:

(Select(c, s) = 1)⇒
∨

p∈pred(s)

(Select(c, p) = 1) (4.7)

If a predecessor of s is selected, the address of the multiplexer must be correctly set:

∀
p∈pred(s)

[(Select(c, p) = 1)⇒ (addresss(c) = addrp)] (4.8)

where addresss(c) denotes the state of the address port in scan configuration c, and

addrp is a constant that denotes the address of the multiplexer input connected to

segment p. Note that (4.8) implicitly assures that at most one predecessor of s is

active. The requirement for a valid scan configuration of segment s with one successor

n and multiple predecessors is given below using (4.7) and (4.8):

v(c, s) := [(Select(c, s) = 1)⇒ (Select(c, n) = 1)] ∧ (4.7) ∧ (4.8) (4.9)

This assures that in case of a multiplexed scan path, the active path is correctly routed.

In case of a node s with multiple predecessors and multiple successors, the following

formula captures the condition for a valid scan configuration:

v(c, s) := (4.4) ∧ (4.5) ∧ (4.7) ∧ (4.8). (4.10)

64

4.4. Temporal Abstraction

4.4.3. Transition Relation

CSU operations are considered atomic in a CSU-accurate model. A CSU operation

loads data segments with new values from their respective data-in ports, and it may

arbitrarily change the state of all scan segments on the active scan path since any

data may be shifted into those segments from the primary scan-input. This behavior is

captured with the transition relation, as defined below.

Definition 12. (CSU-accurate transition relation) The transition relation of a CAM

M = {S,H,D, I, V, C, c0, Select, Updis, Capdis, DataIn, Active} is defined as a set

T ⊆ C × C that includes all pairs of scan configurations (c1, c2) such that c2 ∈ C can

be reached from c1 ∈ C within one CSU operation. The characteristic function of the

transition relation is defined as follows:

T (c1, c2) :=
∧
h∈H

[
Stable(c1,S(h))⇒

(
c2(h) = c1(h)

)]
∧∧

h∈H

[
Unknown(c1,S(h))⇒

(
c2(h) = X

)]
∧∧

d∈D

[
(Updis(c1, d) = 0)⇒

(
c2(d) = DataIn∗(c1, c2, d)

)]
∧∧

d∈D

[
(Updis(c1, d) = 1)⇒

(
c2(d) = c1(d)

)]
∧∧

d∈D

[
(Updis(c1, d) = X)⇒

(
c2(d) = X

)]
, (4.11)

where predicate Stable : C × S → B is defined as:

Stable(c, s) :=
[
(Active(c, s) = 0) ∨ (Updis(c, s) = 1)

]
, (4.12)

predicate Unknown : C × S → B is defined as:

Unknown(c, s) :=
[
(Active(c, s) = X) ∧ (Updis(c, s) 6= 1)

]
∨[

(Active(c, s) = 1) ∧ (Updis(c, s) = X)
]
,

(4.13)

and function DataIn∗(ci, cj, d) is derived from DataIn(c, d) by substituting variables in

c with:

• variables from ci for primary data/control inputs from I,

• variables from cj for shadow registers from H and data latches from D.

65

4. Scan Network Modeling

The characteristic function of a transition relation defines the requirements for state

changes: If a scan segment s in scan configuration c1 does not belong to the active scan

path or its updis signal is active, the state of all shadow registers of s must not differ

in the consecutive scan configuration c2. Additionally, if the scan configuration c1 is

invalid or the activation condition of s is unknown, the state of all shadow registers of

s is assumed unknown in c2. As a consequence, the state of a shadow register h may

change freely only when S(h) is selected in a valid scan configuration c1, i.e., when

Active(c1,S(h)) = 1 and Updis(c1,S(h)) = 0.

The state of a data segment is constrained by the state of its corresponding data-in
port. The latch of an enabled data segment is transparent at the end of the update
phase—after scan segments on the active scan path have already registered new val-

ues, and when other enabled data segments are also transparent (cf. Figure 4.4, p. 57).

Therefore, a data segment receives values from both the current scan configuration c1
(from primary inputs) and the next scan configuration c2 (from shadow registers and

other data latches).

Remark 4. By construction, the transition relation of a CSU-accurate model includes a

transition between two valid scan configurations if an only if this transition is possible

in the cycle-accurate RSN model. Therefore, for transitions to valid scan configura-

tions, the CSU-accurate abstraction is exact. However, for transitions to invalid scan

configurations, this model pessimistically assumes unknown values (X) for all scan

and data segments that potentially become enabled.

4.4.4. Implications of CSU-Accurate Modeling

The CSU-accurate modeling is based on the following assumptions:

1. A CSU operation is an atomic operation that consists of exactly one capture cycle

at the beginning, optional shift cycles in between, and exactly one update cycle

at the end.

2. The impact of individual scan operations is neglected and only state transitions

caused by full CSU operations are considered. Therefore, the state of primary

scan-inputs, primary scan-outputs, and shift registers is not modeled.

3. Primary data/control inputs of the RSN are stable throughout a CSU operation.

66

4.4. Temporal Abstraction

4. Internal control signals are driven by combinational logic blocks that may take

their inputs only from external control inputs, data latches, and shadow registers

distributed over the network. These signals are stable during the capture and shift
phase, and they are also equipped with latches that assure their stability during

the update phase (cf. Section 4.2, p. 55).

5. An active scan path may only pass through scan segments, buffers, inverters, and

scan multiplexers.

6. In invalid scan configurations, the state of shadow registers in selected scan seg-

ments is assumed unknown (X).

Assumption 1 is justified in reconfigurable scan networks accessed through a JTAG

TAP, since the IEEE 1149.1-compliant TAP controller requires that scan operations be

performed in the defined order. This assumption can be relaxed and CSU-accurate

modeling can be easily extended to support user-defined access mechanisms with any

order of capture, shift, and update phases. However, such extensions are application

specific and hence are beyond the scope of this thesis.

As the CAM does not explicitly represent individual shift cycles and only models state

transitions caused by full CSU operations, it does not allow to reason about the state

of shift registers, primary scan-inputs and primary scan-outputs (Assumption 2).

Assumption 3 states that the primary data/control inputs of the RSN are stable during

a CSU as the temporal granularity of the CAM allows to model signal states only

before and after a CSU operation. Assumption 4 defines which elements drive internal

control signals and effectively states that these signals are also stable throughout a

CSU. Without these two assumptions—for instance by allowing that internal control

signals are driven by shift registers—the active scan path could dynamically change

during the shift phase. This situation is best avoided, as such RSN designs are highly

unpredictable and difficult to verify. Note that Assumption 4 is actually a requirement

imposed on RSNs by IEEE P1687.

Assumption 5 states that the active scan path cannot pass through any logic compo-

nents that could change the scan data, except for inverting it. Consequently, CSU-

accurate modeling cannot be applied to generate access to test compression logic on

the scan path. Such structures must be excluded from the RSN model or treated as

black-boxes that should never belong to the active scan path. Note that IEEE P1687

allows scan paths composed of scan segments, scan multiplexers, and inverters only.

67

4. Scan Network Modeling

Due to Assumption 6, CSU-accurate modeling is pessimistic: Recall that in an invalid

scan configuration c ∈ C, it holds that ∀s∈SActive(c, s) = X. Therefore, according

to the CAM transition relation (cf. Definition 12), the content of all potentially se-

lected shadow registers is assumed undefined in invalid scan configurations although

it may be well defined in the cycle-accurate model. For applications in access pattern

generation, as discussed in Chapter 6, this pessimism is irrelevant since invalid scan

configurations should be avoided to assure reliable access. For applications in formal

verification, it may compromise abstraction completeness and lead to spurious coun-

terexamples. Completeness of the CSU-accurate modeling is discussed in more detail

in Section 5.3.

68

5. Formal Verification

In simple reconfigurable scan networks, the verification of properties such as acces-

sibility may not be required if appropriate design rules are observed. For instance,

the SIB-based RSNs proposed in [Ghani Zadegan11b] are very regular: They consist

of hierarchically connected SIBs and scan segments, and their internal control signals

are driven directly by 1-bit shadow registers (cf. Figure 3.3, p. 46). In this type of scan

architectures, the accessibility of a scan chain—i.e., a single scan segment or a chain

of scan segments and SIBs—requires that the following recursive condition is fulfilled:

1. The parent SIB of the scan chain (the SIB to which the chain is connected to)

works correctly.

2. The parent SIB is properly connected to its higher level scan chain.

3. The higher level scan chain is also accessible, i.e., it fulfills conditions 1, 2 and 3.

While the first condition is easily checked by exhaustive simulation of the SIB, the

second condition can be enforced with a simple structural design rule. In contrast, the

verification of irregular RSNs with control signals driven by arbitrary combinational

logic blocks poses a much more difficult problem. Due to the high sequential depth of

RSNs, existing model checking algorithms are often ineffective in proving even simple

properties such as accessibility, as is shown in Section 5.4 (p. 85).

This chapter discusses the applicability of the CSU-accurate model defined in Chap-

ter 4 to formal verification of complex RSNs. Section 5.1 presents a CSU-accurate

bounded model checking technique and its application to the verification of accessibil-

ity. Section 5.2 defines a class of robust RSNs, discusses their properties, and presents

complete methods to verify them. The soundness and completeness of CSU-accurate

modeling for both robust and non-robust RSNs is discussed in Section 5.3. Experi-

mental results for verification of large RSN designs are summarized in Section 5.4 and

presented in detail in Appendix B.

69

5. Formal Verification

5.1. CSU-Accurate Bounded Model Checking

Bounded model checking (BMC) is a successful formal verification technique based

on propositional decision procedures (SAT). The goal of BMC is to check whether a

given temporal logic formula holds in an FSM for all initialized executions paths with

a given (bounded) length. The basics of bounded model checking and state-of-the-art

BMC methods are discussed in Section 3.2.1. These methods are directly applied to

the verification of RSNs represented with CSU-accurate models, as explained below.

Bounded model checking is mapped to a satisfiability problem by un-

rolling the model’s transition relation (see Section 3.2.1, p. 38). Let

M = {S,H,D, I, V, C, c0, Select, Updis, Capdis, DataIn, Active} be the CSU-accurate

model of an RSN, and let T be the transition relation of M. Given an LTL property

P defined over variables in V , a SAT instance is composed by unrolling the transition

relation T and the property P . Each unrolled instance of T corresponds to a CSU op-

eration, and each time step corresponds to a scan configuration. If the SAT instance

is satisfiable, the satisfying assignment constitutes a counterexample to P and pro-

vides the valuation of variables in V for each time step. The scan data that cause the

violation of P can be easily derived from the counterexample (see Section 6.2, p. 94).

For instance, for a simple LTL property of the form G p, where p is a Boolean function

defined over V , the SAT instance is formed as follows:

ϕ(k) := ΩI(V0) ∧

[
k−1∧
n=0

ΩT (Vn, Vn+1)

]
∧

[
k∨

n=0

¬p(Vn)

]
, (5.1)

where Vi is the set of variables in the i-th time step, such that each element in Vi

corresponds to exactly one element in V (∀0≤i≤k |Vi| = |V |), while ΩI and ΩT are the

characteristic functions of the initial scan configuration c0 and the transition relation

T , respectively. ϕ(k) is satisfiable if and only if there exists a counterexample to the

property G p with k or less CSU operations.

In the following, the application of bounded model checking to proving RSN acces-

sibility is shown. For the details on BMC for general LTL properties please refer

to [Biere03].

70

5.1. CSU-Accurate Bounded Model Checking

sreset

x

(a) Scan segment s is accessible

sreset

x

(b) Scan segment s is inaccessible

Figure 5.1.: Examples of CSU-accurate state diagrams (scan segment s is accessible in
scan configurations annotated with s)

5.1.1. Application: Accessibility Proof

To assure that a scan segment is accessible, it is necessary to prove that it is observable

and controllable. A necessary requirement is that there exists a scan path that goes

from the primary scan-input, through the segment, down to the primary scan-output

of the network. To determine if such a scan path exists, a static connectivity check can

be used [Remmers04]. For complex scan architectures with arbitrary control signals,

the necessary and sufficient requirement is a justification of control signals over one or

multiple CSU operations to put the target scan segment on the active scan path. In the

following, the search for such a justification is mapped to bounded model checking.

A scan segment is defined accessible in a given initial scan configuration (or a set of

initial scan configurations) if and only if there exists an access pattern that puts the

scan segment on the active scan path while the corresponding updis and capdis ports

of the segment are inactive.

Figure 5.1 presents two CSU-accurate state diagrams of an exemplary RSN with a

scan segment s. The scan segment s belongs to the active scan path and is enabled

for access in scan configurations annotated with s. Clearly, the scan configuration s

is reachable and hence the target segment is accessible in the RSN of Figure 5.1a. In

contrast, this scan configuration is unreachable and therefore the target is inaccessible

in Figure 5.1b. Note that the definition of accessibility refers to a certain (possibly

partially specified) initial scan configuration. This definition does not require that

scan segments are accessible from all reachable scan configurations (e.g. from state x

in Figure 5.1a).

Given the CSU-accurate model of an RSN, proving the accessibility of a scan segment

71

5. Formal Verification

s ∈ S is equivalent to refuting the following LTL formula in the CAM:

As := G ¬[(Active(s) = 1) ∧ (Updis(s) = 0) ∧ (Capdis(s) = 0)] =

¬F [(Active(s) = 1) ∧ (Updis(s) = 0) ∧ (Capdis(s) = 0)].
(5.2)

The LTL formula As states that for all execution paths (sequences of scan configura-

tions) in the CAM, the scan segment s does not belong to the active scan path or the

access to it is disabled by the corresponding updis and capdis signals.

To check the accessibility of scan segment s, the LTL formula As is subject to bounded

model checking. To this end, As is translated into a propositional formula by unrolling

over k CSU operations together with the transition relation T of the CSU-accurate RSN

model:

Accessible(s, c0, k) := ΩI(V0) ∧

[
k−1∧
n=0

ΩT (Vn, Vn+1)

]
∧[

k∨
n=0

[(Active(Vn, s) = 1) ∧ (Updis(Vn, s) = 0) ∧ (Capdis(Vn, s) = 0)]

]
.

(5.3)

The formula Accessible(s, c0, k) is satisfiable if and only if the scan segment s is ac-

cessible within k CSU operations. The accessibility proof is an iterative procedure that

checks the satisfiability of formula (5.3) for an increasing number of CSU operation

(k = 1, 2, . . .) until the formula is satisfiable, or until a user-defined bound for the

number of CSU operations is reached. The truth of As is proven by BMC if the SAT

instance is unsatisfiable for a sufficiently high bound, as is discussed in Section 5.2.4.

5.1.2. Completeness by Induction

Since bounded model checking can only check execution paths of bounded length, it

cannot be used to prove LTL properties of the form G p, where p is a Boolean formula

defined over V . To prove such formulas, it is necessary to show that p holds in all

reachable scan configurations ofM.

A sufficient but not necessary condition is that p holds in the initial scan configura-

tion and is an inductive invariant of the CAM transition relation, as discussed in Sec-

72

5.1. CSU-Accurate Bounded Model Checking

tion 3.2.2 (p. 40). This condition holds if the following SAT instances are unsatisfiable:

ϕinit := ΩI(Vi) ∧ ¬p(Vi), (5.4)

ϕinduct := p(Vi) ∧ ΩT (Vi, Vj) ∧ ¬p(Vj), (5.5)

where Vi and Vj are two sets of variables, such that each element in Vi and Vj cor-

responds to exactly one element in V and |Vi| = |Vj| = |V |. ΩI and ΩT are the char-

acteristic functions of the initial scan configuration c0 and the transition relation T ,

respectively.

Formula ϕinit is unsatisfiable if and only if p holds in the initial scan configuration.

Formula ϕinduct is unsatisfiable if and only if p is preserved by the transition relation. If

both formulas are unsatisfiable, it follows that G p holds.

This simple induction method is sufficient to prove many properties of practical in-

terest, including the robustness property discussed in Section 5.2. However, this tech-

nique is incomplete: If ϕinduct is satisfiable and ϕinit is not, the verification result is

unknown. Completeness can be achieved with k-induction [Sheeran00] by unrolling

the transition relation, but this technique may result in complex SAT instances of poly-

nomial size in the recurrence diameter (see Section 3.2.2, p. 40). In CSU-accurate

models, the recurrence diameter—i.e., the longest execution path without repeated

scan configurations—grows exponentially in the length of scan segments: If M con-

tains a scan segment with n shadow registers, an execution path with 2n distinct scan

configurations is possible, which makes k-induction unwieldy for RSNs.

Alternatively, the CSU-accurate BMC can be extended in a straightforward way for the

verification of interval properties, as in [Nguyen08]. Completeness of CSU-accurate

BMC can be also achieved by interpolation techniques, as in [McMillan03a, Biere09].

For the class of robust RSNs, BMC completeness threshold can be found by structural

analysis of the network, as is discussed in Section 5.2.4.

5.1.3. Implementation

CSU-accurate bounded model checking consists in testing the satisfiability of formulas

over 3-valued variables (e.g. instance (5.3), p. 72). To check the satisfiability of such

formulas using a conventional SAT solver, they are translated to propositional formulas

in conjunctive normal form (CNF), as explained below.

73

5. Formal Verification

Each 3-valued variable v ∈ V of the CAM is represented in the SAT instance by a pair

of Boolean variables (v0, v1), as in [Eggersglüss07]. The encoding is as follows:

• [(v0, v1) = (0, 0)]⇔ [v = X] ,

• [(v0, v1) = (0, 1)]⇔ [v = 0] ,

• [(v0, v1) = (1, 0)]⇔ [v = 1] .

Note that the state (1, 1) has no 3-valued interpretation and hence is forbidden. To

prevent solutions with forbidden assignments, the clause (¬v0 ∨ ¬v1) is added to the

SAT instance for each variable v ∈ V .

The 3-valued functions defined in the CAM such as Select or Active are derived from

the circuit structure (see Section 4.4.1, p. 60) and transformed into CNF by applying

the Tseitin transformation [Tseitin83, Biere09]. The interpretation of logic operators

follows the Kleene’s strongest regular 3-valued logic [Kleene50]. After encoding, a

negation of a 3-valued variable x represented by a pair of Boolean variables (x0, x1)

corresponds to swapping the variables in the pair, i.e., ¬x is represented by a pair

(x1, x0). A conjunction of 3-valued variables x ∧ y is represented by a pair of Boolean

variables (z0, z1) such that z0 := x0 ∧ y0 and z1 := x1 ∨ y1. The encoding of any other

3-valued logic operator is easily derived from the encoding of ∧ and ¬.

To improve performance of the iterative BMC procedure, incremental SAT solving tech-

niques are employed: The SAT instance for the k-th iteration (i.e., for k CSU opera-

tions) is reused in iteration k + 1 together with learned clauses from the previous

iterations. In iteration k + 1, the SAT instance from the k-th iteration is extended by

unrolling the transition relation for one more time step, and by addition of clauses that

specify property violation in one of the k + 1 time steps. The old clauses that describe

property violation in k time steps are deactivated using selector variables, as discussed

in Section 2.4.1 (p. 31).

5.2. Verification of Robust Scan Networks

This section defines the class of robust reconfigurable scan networks, discusses their

properties, and develops efficient verification techniques for this type of structures.

Robustness is defined formally in Section 5.2.1. Section 5.2.2 presents an efficient

method for the verification of RSN robustness using the CSU-accurate model. Sec-

74

5.2. Verification of Robust Scan Networks

tion 5.2.3 introduces a structural method for diameter approximation in robust RSNs.

In Section 5.2.4, the RSN diameter is used to find a tight completeness threshold for

bounded model checking.

5.2.1. Robustness Definition and Properties

Two robustness properties are distinguished in this thesis: weak robustness and strong

robustness. Below, these properties are defined formally and explained at an example.

Let M be the CSU-accurate model of an RSN, c0 ∈ C the initial scan configuration

ofM, T the transition relation ofM, and Valid the validity predicate, as defined in

Section 4.4.2 (p. 62).

Definition 13. (Weak Robustness) The RSN represented byM is weakly robust if the

initial scan configuration c0 is valid (Valid(c0) = 1) and the predicate Valid is globally

true in all initialized execution paths of M (i.e., the LTL property G Valid holds in

M).

Definition 14. (Strong Robustness) The RSN represented by M is strongly robust if

the initial scan configuration c0 is valid (Valid(c0) = 1) and the predicate Valid is an

inductive invariant of the transition relation T , i.e., the following condition holds:

∀
(c1,c2)∈T

Valid(c1)⇒ Valid(c2). (5.6)

Intuitively, an RSN is weakly robust if and only if all reachable scan configurations are

valid. An RSN is strongly robust if and only if no invalid scan configuration can be

reached from a valid scan configuration.

Examples of CSU-accurate state diagrams for each type of RSNs are given in Fig-

ure 5.2. Invalid scan configurations are annotated with ¬V . The RSN represented by

Figure 5.2a is not robust since there exists an invalid scan configuration that is reach-

able from the initial state. This invalid scan configuration is absent in Figure 5.2b

and hence this RSN is weakly robust. The RSN from Figure 5.2c is both weakly and

strongly robust since no invalid scan configuration is reachable from the set of valid

scan configurations.

Remark 5. The definition of weak robustness allows that for some unreachable scan

75

5. Formal Verification

V ¬V

V

¬V

V

reset

(a) Non-robust RSN

V

V

V

reset

V ¬V

(b) Weakly robust RSN

V

V

V

reset

V ¬V

(c) Strongly robust RSN

Figure 5.2.: Examples of CSU-accurate state diagrams (invalid scan configurations are
annotated with ¬V)

configuration cv ∈ C such that Valid(cv) = 1, there exists cnv ∈ C such that (cv, cnv) ∈ T
and Valid(cnv) = 0. Thus, a weakly robust RSN is not necessarily strongly robust.

Lemma 1. The class of weakly robust RSNs includes the class of strongly robust RSNs.

Proof. For every initialized execution path π =< c0, c1, c2, . . . > of a strongly robustM
the following statement holds according to Definition 14: If the initial scan configura-

tion c0 is valid (Valid(c0) = 1) then the validity of consecutive scan configurations is

preserved by each transition, i.e., ∀i≥0 Valid(ci). Therefore, the LTL property G Valid

holds in the strongly robustM and henceM is also weakly robust.

Weakly robust RSNs (and hence also strongly robust RSNs according to Lemma 1)

have the following properties:

1. The selected scan segments always form an active scan path regardless of the

scan data applied at the primary scan-input. Therefore, erroneous scan data can

never break the active scan path of a robust RSN. This property is beneficial, for

instance, for observability in post-silicon debug: An internal fault that alters scan

data is less likely to affect the integrity of the scan path.

2. The CSU-accurate model of a weakly robust RSN does not produce spurious

counterexamples as stated by the following theorem:

76

5.2. Verification of Robust Scan Networks

Theorem 1. (Completeness of a Weakly Robust CAM) The CSU-accurate model

M of a weakly robust RSN is complete with respect to the class of LTL properties

that can be expressed in terms of variables inM (cf. Definition 9, p. 30).

Proof. According to Definition 13 (p. 75), the LTL property G Valid holds in a

weakly robust RSN and hence only transitions between valid scan configurations

are possible. For such transitions, the CSU-accurate abstraction exactly models

CSU-accurate behavior, as stated by Remark 4 (p. 66). Thus, the CAM of a weakly

robust RSN does not cause spurious counterexamples and hence is complete.

3. As all reachable scan configurations are valid, the CAM of a weakly ro-

bust RSN can be simplified by removing the predicate Valid from the

definition of the Active function: For all c ∈ C and s ∈ S it holds that

Active(c, s) = Select(c, s). This simplification of the CAM improves perfor-

mance of CSU-accurate formal verification, as well as access pattern generation

discussed in Chapter 6.

5.2.2. Verification of Robustness

Weak robustness can be verified using any unbounded LTL model checking method

which can prove the property G Valid of the CAM. However, as LTL model checking is

PSPACE-complete in general [Sistla85], such methods are computationally expensive

and may fail to verify robustness of large RSN designs. In contrast, the verification of

strong robustness is an NP-complete problem that can be mapped to SAT-based induc-

tion, as discussed in Section 5.1.2 (p. 72), and solved using efficient SAT solvers.

Let M be the CSU-accurate model of an RSN, c0 ∈ C the initial scan configuration

of M, T the transition relation, V the set of variables in M, and Valid the validity

predicate. According to Definition 14 (p. 75), strong robustness requires that the initial

scan configuration c0 be valid and that Valid be an inductive invariant of T . These

two conditions are encoded as separate SAT instances:

ϕinit := ΩI(Vi) ∧ ¬Valid(Vi), (5.7)

ϕinduct := Valid(Vi) ∧ ΩT (Vi, Vj) ∧ ¬Valid(Vj), (5.8)

where Vi and Vj are two sets of variables, such that each element in Vi and Vj cor-

responds to exactly one element in V and |Vi| = |Vj| = |V |. ΩI and ΩT are the char-

77

5. Formal Verification

acteristic functions of the initial scan configuration c0 and the transition relation T ,

respectively.

An RSN is strongly robust if and only if both ϕinit and ϕinduct are unsatisfiable. Oth-

erwise, the satisfying assignment to ϕinduct describes a transition from a valid scan

configuration into an invalid one, and hence constitutes a counterexample to strong

robustness.

5.2.3. Model Diameter

Bounded model checking becomes complete if the bound of examined execution paths

is sufficiently high (cf. Section 3.2.2, p. 40). For LTL properties of the form G p,

the BMC completeness threshold is often approximated with the model diameter (cf.

Definition 6, p. 27). For a circuit with n sequential elements, the upper bound of

the diameter is 2n. In practice, this overapproximation is much too high to achieve

completeness of BMC. As discussed below, for weakly robust reconfigurable scan net-

works without circular dependencies, a much tighter approximation is easily found by

structural analysis of the RSN.

Dependency Graph

In the following, the structural dependencies of a robust RSN are captured in form of a

dependency graph. The dependency graph is later used to derive an overapproximation

of the model diameter. For the sake of brevity, it is assumed that the RSN contains no

data segments. The dependency graph can handle data segments in the same way as

scan segments and hence the extension is straightforward.

Definition 15. (Dependency Graph) Let M be a CSU-accurate model of a weakly

robust RSN with the set of scan segments S and the functions Select, Updis, and

Capdis (cf. Definition 11, p. 60). The dependency graph of M is a directed graph

G = (S,E) with a set of nodes S equivalent to the set of scan segments in M, and a

set of edges E ⊆ S × S that represents the dependencies: An edge between two scan

segments s1, s2 ∈ S exists in G, written (s1, s2) ∈ E, if and only if any shadow register

of s1 resides in the combinational input cone of any control signal of s2, i.e., if function

Select(s2), Updis(s2) or Capdis(s2) depends on any shadow register of s1.

78

5.2. Verification of Robust Scan Networks

For acyclic dependency graphs, levelization is defined as follows:

Definition 16. (Levelization of a Dependency Graph) Let G = (S,E) be the depen-

dency graph of a CSU-accurate model M. If G is acyclic, the levelization of G is a

function lG : S → N that maps each scan segment to its corresponding level. For a scan

segment s ∈ S, lG(s) is defined recursively as follows:

lG(s) :=

0 if ∀(si,sj)∈E sj 6= s,

1 + max
{
lG(si) | (si, s) ∈ E

}
otherwise.

(5.9)

The set of scan segments at the n-th level of graph G is denoted by Gn:

G n :=
{
s ∈ S | lG(s) = n

}
. (5.10)

Diameter Calculation

For a weakly robust RSN with an acyclic dependency graph, a tight overapproximation

of the CSU-accurate model diameter is derived directly from the dependency graph.

Note that the diameter of a CAM is expressed in terms of the number of CSU operations

instead of clock cycles.

Theorem 2. (CSU-Accurate Model Diameter) Let M be a CSU-accurate model of a

weakly robust RSN with an acyclic dependency graph G and levelization lG with

k ∈ N+ levels. The diameter of M, written d(M), fulfills the following inequality:

d(M) ≤ |G 0| ·
k−1∏
i=1

(
|G i|+ 1

)
. (5.11)

Proof. This theorem is proven by induction on the number of levels. The diameter

of a CSU-accurate model is understood as the maximal number of CSU operations

that are required to reach an arbitrary scan configuration from any reachable scan

configuration. If G has just one level (k = 1), all scan segments in the network are

independent of each other. In this case, a scan segment is put on the active scan path

by justification of the primary data/control inputs of the RSN. Therefore, just one CSU

operation is required to access each scan segment, and hence the diameter is at most

the number of scan segments, i.e. |G 0|. It follows that (5.11) holds for k = 1.

79

5. Formal Verification

For k > 1 and 0 ≤ i < k, let d i(M) denote the diameter of a partial dependency graph

containing only scan segments at levels 0 . . . i. The partial diameter d i(M) is under-

stood as the maximal number of CSU operations that are required to reach an arbitrary

reachable state of scan segments at levels 0 . . . i from any reachable state. Note that

d k−1(M) is the diameter ofM, i.e., d k−1(M) = d(M). To reach an arbitrary state of

the scan segments at the i-th level, each scan segment at this level must be accessed

at most once. A distinct state of scan segments at levels 0 . . . (i− 1) may be needed

to justify the access to each scan segment at the i-th level, requiring at most d i−1(M)

CSU operations per access to each scan segment in G i. Thus, in the worst case, a total

of |G i| · d i−1(M) CSU operations is required to access all scan segments at the i-th

level, and another d i−1(M) CSU operations to reach an arbitrary state at lower levels.

Therefore, for 0 < i < k:

d i(M) ≤
(
|G i|+ 1

)
· d i−1(M). (5.12)

According to the proof for k = 1, it also holds that:

d 0(M) ≤ |G 0|. (5.13)

From (5.12) and (5.13) it follows that |G 0| ·
k−1∏
i=1

(
|G i|+ 1

)
is an overapproximation of

d k−1(M) = d(M).

Corollary 1. If all scan segments in G 0 are always accessible (i.e., their select and

capdis/updis signals are independent from primary control/data inputs), it follows

that:

d(M) ≤
k−1∏
i=1

(
|G i|+ 1

)
. (5.14)

(Note that for k = 1 the empty product yields 1.)

Example

Figure 5.3 presents the structure of an exemplary reconfigurable scan network. The

lines connecting scan segments and multiplexers denote scan paths. Scan segments

that drive internal control signals, i.e. S1, S3, S4 and S7, are assumed 1-bit long.

(The length of scan segments, however, has no impact on the CAM diameter.) The

select ports of scan segments, as well as the address ports of multiplexers are driven

80

5.2. Verification of Robust Scan Networks

0

1

S4

S2

1

1

0

S6

¬S1ᴧS3

1

0

S8

¬S1ᴧS4ᴧS7

S3

S1

S7

¬S1ᴧS4

S5

S4

S1

S1

1

S7

S3

1

0

S1

¬S1

Figure 5.3.: Example of a strongly robust reconfigurable scan network

by combinational logic blocks that take inputs from the shadow registers of S1, S3, S4

and S7. For the sake of readability, the combinational logic is omitted in Figure 5.3.

Instead, internal control signals for select and address ports are annotated with their

corresponding logic functions.

The RSN from Figure 5.3 is strongly robust since there exists no invalid scan configu-

ration: Each scan segment belongs to the active scan path (is accessible) if and only if

the scan segment is selected (its select signal is 1). This is assured by the structure of

the network and can be verified with the approach from Section 5.2.2.

The dependency graph of the exemplary RSN is presented in Figure 5.4. According to

Definition 15, an edge from node a to b exists in the dependency graph if and only if

any control signal of the scan segment corresponding to b depends on the content of

any shadow register of scan segment a. The dependency graph is acyclic and has four

levels which are indicated at the top of Figure 5.4.

The scan segments on the lowest level (S1 and S2) always belong to the active scan

path as their select ports are tied to logic 1 and the RSN is robust. Hence, according

to Corollary 1 (p. 80), the overapproximation of the CAM diameter is calculated by

multiplying the incremented cardinalities of levels 1, 2, and 3, which yields: 4·3·2 = 24.

This diameter overapproximation can be used as a BMC completeness threshold: If

CSU-accurate BMC does not produce any counterexample to an LTL property of the

form G p within a bound of 24 CSU operations (i.e., if the SAT instance with 25 time

steps is unsatisfiable), the property is guaranteed to hold in the RSN.

81

5. Formal Verification

S1

S2

S3

S4

S5

S6

S7 S8

level 0 level 1 level 2 level 3

d0=1 d1=4·d0=4 d2=3·d1=12 d3=2·d2=24

Figure 5.4.: Dependency graph for the RSN from Figure 5.3

5.2.4. Completeness Threshold

As discussed in Section 3.2.2 (p. 40), an overapproximation of the model diameter is

a completeness threshold for bounded model checking of LTL properties of the form

G p, where p is a proposition over the model’s variables. For a specific property, this

threshold can be further tightened by examining the property’s cone of influence.

Definition 17. (Cone of Influence) Let M be a CSU-accurate model of an RSN with

the set of scan segments S and dependency graph G = (S,E), and let P := G p be an

LTL property where p is a Boolean function that depends on a subset of scan segments

S ′ ⊆ S. The cone of influence of P is a dependency graph GP := (SP ⊆ S,EP ⊆ E),

such that:

SP :=cone(S ′), (5.15)

EP :=
{

(si, sj) ∈ E | si, sj ∈ SP
}

, (5.16)

where for any A ⊆ S, cone(A) is defined inductively as follows:

cone0(A) := A, (5.17)

conei(A) :=
{
s ∈ S | ∃sj∈A (s, sj) ∈ E

}
∪ conei−1(A), (5.18)

cone(A) := cone∞(A). (5.19)

82

5.2. Verification of Robust Scan Networks

Theorem 3. (CSU-Accurate Completeness Threshold for G p) Let M be a CSU-

accurate model of a weakly robust RSN, P := G p be an LTL property with an acyclic

cone of influence GP and levelization lP with k ∈ N+ levels. The completeness thresh-

old of bounded model checking for property P inM, written ct(M, P), fulfills:

ct(M, P) ≤ |G 0
P | ·

k−1∏
i=1

(
|G i

P |+ 1
)
. (5.20)

Proof. This theorem is proven by leveraging Theorem 2 (p. 79). Due to the defini-

tion of the cone of influence GP , the scan segments in SP can be set to an arbitrary

reachable state regardless of the content of scan segments in S \ SP . According to The-

orem 2, the diameter of GP , denoted by dP , fulfills dP ≤ |G 0
P | ·

∏k−1
i=1

(
|G i

P |+ 1
)

= d̂P .

The overapproximation of the diameter denoted by d̂P gives the maximal num-

ber of CSU operations that are required to reach an arbitrary state of scan seg-

ments in SP from any reachable scan configuration. Therefore, if P does not hold,

the shortest counterexample can have at most d̂P CSU operations. It follows that

d̂P is an overapproximation of the completeness threshold for the property P , i.e.,

ct(M, P) ≤ d̂P .

Corollary 2. As in Corollary 1 (p. 80), if all scan segments inG 0
P are always accessible,

it follows that:

ct(M, P) ≤
k−1∏
i=1

(
|G i

P |+ 1
)
. (5.21)

Example

In the following, an LTL property P := G (Select(S8) = 0) is checked for the RSN

from Figure 5.3 (p. 81) using the CSU-accurate BMC approach and leveraging the

completeness threshold. The property P states that scan segment S8 never belongs to

the active scan path and hence is inaccessible. The cone of influence of P , as shown in

Figure 5.5, is a subset of the dependency graph from Figure 5.4 which includes only

scan segments that the property refers to (i.e., S8), and their transitive input cone (S7,

S4, and S1).

The cone of influence of P has four levels with exactly one scan segment per level.

According to Corollary 2, the completeness threshold for property P is hence at most

83

5. Formal Verification

S1 S4 S7 S8

level 0 level 1 level 2 level 3

d0=1 d1=2·d0=2 d2=2·d1=4 d3=2·d2=8

Figure 5.5.: Cone of influence for proving inaccessibility of scan segment S8 in the RSN
from Figure 5.3 (p. 81)

2 · 2 · 2 = 8. Therefore, S8 is guaranteed to be inaccessible if CSU-accurate BMC does

not find any counterexample to P within a bound of 8 CSU operations (i.e., the SAT

instance with 9 time steps is unsatisfiable).

5.3. Model Soundness and Completeness

An abstraction is sound if and only if every property that holds in the abstract model

also holds in the concrete model (cf. Definition 8, p. 30). The CSU-accurate model

abstracts the temporal behavior of an RSN but still exactly models state transitions

between valid scan configurations (under the assumption of stable internal control

signals which is discussed below; cf. Remark 4, p. 66). For state transitions to in-

valid scan configurations, CAM pessimistically assumes that the state of potentially

selected scan and data segments becomes unknown/X (cf. Assumption 6, page 67).

In Kleene’s strongest regular 3-valued logic, well-formed formulas are monotonic: If

the input to a formula becomes less specified (i.e., some of its input variables are set

to X), the output of the formula is either stable or also becomes less specified (some

of its outputs become unknown/X) [Kleene50]. Therefore, a 3-valued formula that is

satisfied for all reachable states of the CAM (i.e., an invariant property of the CAM)

is also guaranteed to hold of all reachable states of the concrete RSN model. Thus,

the pessimism of the CSU-accurate model does not compromise the soundness of this

abstraction.

As cycle-accurate execution of a CSU operation is abstracted in the CAM into a sin-

gle state transition, the CAM implicitly assumes that all internal control signals are

stable throughout the CSU operation (cf. Assumption 3 and 4, page 66). This as-

84

5.4. Experimental Evaluation

sumption holds trivially for all control signals generated internally to the RSN since

these signals change only after the update phase. For primary data/control signals,

however, this assumption may not hold. In this case, for instance, if an address port of

a scan multiplexer is driven by a primary control input which is unstable during the

shift phase, scan data may be lost, which is not modeled by the CAM. Thus, the CAM

is sound only if primary data/control inputs are guaranteed stable during the capture
and shift phases. Otherwise, the CAM is not sound, i.e., a property may be false in

the RSN although it holds in the CAM. To guarantee CAM soundness, the stability of

primary data/control inputs can be either ensured by design or must be proven in the

cycle-accurate RSN/system model.

As mentioned above and discussed in Section 4.4.4 (p. 66), the CAM is pessimistic:

According to the CAM transition relation, the content of potentially selected scan seg-

ments is assumed undefined in invalid scan configuration although it may be well

defined in the cycle-accurate model. Thus, the CAM is not complete in general and

may produce spurious counterexamples to a property even if the property holds in the

cycle-accurate model. However, if invalid scan configurations are unreachable, the

CAM is complete (this is the case for all robust RSNs, cf. Theorem 1, p. 77).

5.4. Experimental Evaluation

The proposed CSU-accurate verification approach is evaluated on SIB-based, MUX-

based and flat scan architectures described in detail in Appendix A (p. 141). The

experimental setup and detailed results are covered in Appendix B (p. 147). This

section presents a brief summary.

Figure 5.6 presents the verification effort for the three types of scan architectures.

For all considered benchmarks, the strong robustness property is successfully proven

using the technique presented in Section 5.2.2 (p. 77). For the SIB- and MUX-based

architectures, the verification of robustness takes up to 100 s in the worst case. For

flat scan architectures, robustness verification effort is below 1 s.

The accessibility of the benchmarks is verified with the approach discussed in Sec-

tion 5.1.1 (p. 71). It is formally proven that all scan segments of considered benchmark

are both controllable and observable. For a majority of the RSNs, the total verification

time is below 10 s, and it raises up to 200 s for the largest MUX-based benchmark.

85

5. Formal Verification

Figure 5.7 presents the average and maximal number of CSU operations required to

access a scan segment in SIB- and MUX-based architectures. Due to more complex

sequential dependencies, the MUX-based architecture requires on average about one

CSU operation more than the SIB-based architecture, and up to three more CSUs

in the worst case. As the number of required CSU operations corresponds to the

number of time steps in bounded model checking, this result explains the slightly

higher verification effort required for MUX-based RSNs.

The verification of robustness and accessibility in MUX-based benchmarks with ran-

dom design bugs is covered in Appendix B (Section B.1, p. 147, and Section B.2,

p. 148). Interestingly, while the accessibility of all scan segments is preserved for

some random design errors, the verification of robustness discovers all the injected

bugs. On average, robustness verification requires slightly less effort in the erroneous

designs compared with fault-free benchmarks, while the maximal verification effort is

below two minutes.

As shown in Section B.2 (p. 148), the worst case BMC completeness threshold for ac-

cessibility verification in MUX-based architectures is 64. This threshold is low enough

to prove inaccessibility of scan segments, e.g. for security verification. In the faulty de-

signs, the verification with a threshold of 64 CSU operations requires up to two hours

in the worst case.

Figure 5.8 compares the performance of the proposed CSU-accurate bounded model

checking method with a cycle-accurate model checking tool. In each experiment, the

accessibility of a random scan segment in the largest MUX-based benchmark (p93791)

is proven. The cycle-accurate model checker exceeds a time limit of one hour in two

experiments, and the solving time changes by over an order of magnitude in different

experiments. In contrast, the proposed approach is successful in all the experiments,

exhibits much more stable run-times, and is faster by at least two orders of magnitude.

This result clearly shows that the proposed CSU-accurate abstraction provides a great

performance improvement over cycle-accurate models.

5.5. Summary

CSU-accurate modeling is directly applicable to formal verification of complex recon-

figurable scan networks. This temporal abstraction significantly improves the perfor-

86

5.5. Summary

mance of model checking algorithms which otherwise face scalability issues in cycle-

accurate RSN models. Under minor assumptions about the stability of primary data/-

control inputs of an RSN, the CSU-accurate model is sound. Moreover, for the class of

robust scan networks, CSU-accurate models are complete.

While the diameter of cycle-accurate scan network models may be very large, the di-

ameter of CSU-accurate abstractions is significantly lower and does not depend on the

length of scan segments. For the class of robust scan networks with acyclic dependency

graphs, a tight overapproximation of the diameter is easily found by structural analysis

of the RSN. This diameter overapproximation is used as a completeness threshold in

bounded model checking experiments to prove properties in the unbounded sense. To

further improve verification performance, the completeness threshold is tightened by

a structural analysis of the cone of influence of a given property.

Experiments show that the CSU-accurate BMC technique efficiently handles even large

and complex scan networks. The completeness threshold is small enough to prove in-

accessibility of scan segments even in the largest benchmarks. The robustness property

is very beneficial both due to the possibility of calculating a tight completeness thresh-

old, and also due to the high probability of catching design bugs just by checking

robustness.

87

5. Formal Verification

(a)

u
2

2
6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

 0.05
 0.10

 0.50
 1.00

 5.00
 10.00

 50.00
100.00

V
e

ri
fi
c
a

ti
o

n
 e

ff
o

rt
 [

s
] Robustness Accessibility

(b)

u
2

2
6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

 0.05
 0.10

 0.50
 1.00

 5.00
 10.00

 50.00
100.00

V
e

ri
fi
c
a

ti
o

n
 e

ff
o

rt
 [

s
] Robustness Accessibility

(c)

c
1

7

c
4

3
2

c
4

9
9

c
8

8
0

c
1

3
5

5

c
1

9
0

8

c
2

6
7

0

c
3

5
4

0

c
5

3
1

5

c
6

2
8

8

c
7

5
5

2

 0.05

 0.10

 0.20

 0.50

 1.00

 2.00

 5.00

10.00

V
e

ri
fi
c
a

ti
o

n
 e

ff
o

rt
 [

s
] Robustness Accessibility

Figure 5.6.: Robustness and accessibility verification effort in (a) SIB-based, (b) MUX-
based, and (c) flat scan architecture

88

5.5. Summary

(a)

u
2

2
6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

#
 C

S
U

 o
p

e
ra

ti
o

n
s

1.5

2.0

2.5

3.0

3.5

4.0

Avg. Max.

(b)

u
2

2
6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

#
 C

S
U

 o
p

e
ra

ti
o

n
s

3

4

5

6

7

Avg. Max.

Figure 5.7.: Average and maximal number of CSU operations required to access a scan
segment in (a) SIB-based and (b) MUX-based scan architecture

1 2 3 4 5 6 7 8 9 10

 0.1

 1.0

 10.0

 100.0

1000.0

V
e

ri
fi
c
a

ti
o

n
 e

ff
o

rt
 [

s
]

Experiment no.

Cycle−accurate MC
CSU−accurate BMC

Figure 5.8.: Performance comparison of a cycle-accurate model checking tool and the
proposed CSU-accurate BMC algorithm

89

6. Access Optimization

An access to a reconfigurable scan network may require several CSU operations to put

the target segment on the active scan path. The process of computing the required

scan-in sequence (scan data) is called access pattern generation, or pattern retargeting
in IEEE Std. P1687.

Figure 6.1 shows an example of a simple RSN. The shadow registers of the 1-bit scan

segments S1 and S3 control the access to two multi-bit scan segments S2 and S4,

respectively. Segment S2 (S4) belongs to the active scan path only if S1 (S3) is set to 1.

In the initial scan configuration, it is assumed that S1 = 1 and S3 = 0, hence S4 is

bypassed.

Table 6.1 shows two examples of access patterns for the scan segment S4: In access

A1, the first CSU operation sets S3 to 1 to put the target S4 on the active scan path,

and the second CSU operation accesses S4. The access time in clock cycles amounts to

the number of bits that need to be shifted (length of the active scan path) plus 2 cycles

per CSU operation required for the capture and update phases. Thus, the total access

time of A1 with two CSU operations amounts to 8 + 2 · |S2|+ |S4|.

In reconfigurable scan networks, an access to a scan segment may be realized in many

ways, using different access patterns. Possible solutions may greatly differ in the access

time. For instance, the access time of A1 in Table 6.1 can be reduced by bypassing S2

in the second CSU operation, as shown for access A2.

Access pattern generation for SIB-based architectures as in [Ghani Zadegan11b] is

straightforward: All SIBs that enclose the target scan segment must be opened, and

all remaining SIBs must be closed to optimize the access time. While this trivial ac-

cess generation algorithm provides minimal access time in SIB-based architectures, it

cannot be applied to general RSNs, where internal control signals may be generated

by arbitrary combinational logic blocks driven by multiple scan segments distributed

over the network.

91

6. Access Optimization

1

0

S2

select(S2)

primary

scan-in

primary

scan-out
S1

1

0

S4

select(S4)

S3

Figure 6.1.: Example of a reconfigurable scan network

initial state

CSU no. 1

CSU no. 2

2+|S2|+2

2+|S2|+|S4|+2

access timeS1 S2 S3

1 X 0

W1 ACCESS W1 BYPASS

W1 ACCESS W0 ACCESS

X

S4

CSU no. 1

CSU no. 2

2+|S2|+2
2+|S4|+2

W0 ACCESS W1 BYPASS

W1 BYPASS W0 ACCESS

initial state 1 X 0 X

A1

A2

Table 6.1.: Access patterns to scan segment S4 in the RSN from Figure 6.1

In general reconfigurable scan networks, the search for an access pattern can be

mapped to bounded model checking (cf. Section 5.1.1, p. 71) and solved with a SAT

solver. This approach, however, does not allow for access time optimization, which

poses a much harder problem and requires a dedicated algorithm.

The problem of access time optimization is formulated formally in Section 6.1 and

mapped to pseudo-Boolean optimization in Section 6.2 leveraging the CSU-accurate

model from Chapter 4 (p. 51). Based on this mapping, an efficient access optimization

procedure is developed in Section 6.3. The performance of the proposed algorithm is

studied in Section 6.4 and Appendix C.

6.1. Problem Formulation

Optimal access pattern generation (or optimal pattern retargeting) is a search for the

shortest sequence of bits that need to be shifted into the RSN during one or multiple

CSU operations to reach a certain target scan configuration with minimal access time.

LetM be the CAM of an RSN with the set of scan segments S, the Active and Capdis

92

6.1. Problem Formulation

functions, and the transition relation T and let (c0, ct) specify an access with initial

scan configuration c0 ∈ C and target scan configuration ct ∈ C. Optimal access pattern

generation is the computation of an execution path π with length |π| ∈ N, such that

the following condition holds:

(
π(0) = c0

)
∧
(∀
i=1...|π|

(
π(i− 1), π(i)

)
∈ T

)
∧
(
π(|π|) = ct

)
(6.1)

and the path π minimizes the access time (number of required clock cycles) expressed

with the following pseudo-Boolean cost function:

Cycles(π) := D · |π|+
|π|−1∑
i=0

∑
s∈S

[
|s| ·

[
Active

(
π(i), s

)
= 1
]]

, (6.2)

where D ∈ N is a constant that amounts to the number of cycles required to perform

the capture and update phase of a CSU operation, and |s| denotes the length of a scan

segment s ∈ S. If the RSN is accessed through a JTAG TAP, the constant D amounts to

at least 4 cycles due to the overhead of the TAP controller [JTA13], or more if pause

cycles are required.

Condition (6.1) is satisfied if and only if the first element of π equals the initial scan

configuration c0, π is a valid execution path inM, and the last element of π equals the

target scan configuration ct. The access time given by formula (6.2) amounts to the

total number of clock cycles for the capture and update phases (D · n) plus the total

number of shift cycles. Since the Active function for a scan segment s ∈ S evaluates

to 1 if s is part of the active scan path (cf. Definition 11, p. 60), the number of required

shift cycles (scan-in sequence length) equals the number of Active functions that are

1 weighted with the length of the corresponding scan segments. Note that the length

of the execution path that minimizes the cost function (the number of CSU operations

|π| required for the optimal solution) is a priori unknown.

Access Merging

Access merging is the generation of access patterns for concurrent read and write

operations on multiple target scan segments. The challenge of access merging is to

find the optimal access order which results in minimal access time.

93

6. Access Optimization

For multiple write operations, it is sufficient to specify the values for target scan seg-

ments by constraining the target scan configuration ct. This form of access specifica-

tion does not restrict the access order and gives room for access time optimization.

However, specifying read accesses in this way restricts them to the last CSU operation,

although the individual read operations may occur in any intermediate scan config-

uration between c0 and ct. To enable access order optimization for concurrent read

operations, condition (6.1) is extended as follows:

(
π(0) = c0

)
∧
(∀
i=1...|π|

(
π(i− 1), π(i)

)
∈ T

)
∧
(
π(|π|) = ct

)
∧(∀

s∈SR

∃
i=0...|π|−1

[
[Active

(
π(i), s

)
= 1] ∧ [Capdis

(
π(i), s

)
= 0]

])
,

(6.3)

where SR ⊆ S is the set of read scan segments. This condition requires that each read

scan segment is accessible in at least one intermediate scan configuration, and the

target scan configuration ct is finally reached.

6.2. Mapping to Pseudo-Boolean Optimization

This section presents a mapping of access time minimization to pseudo-Boolean op-

timization for a given (fixed) number of CSU operations. The pseudo-Boolean opti-

mization problem is defined in Section 2.5 (p. 32). The search for the optimal number

of CSU operations is addressed in the next section.

Let M be the CSU-accurate model of an RSN with the set of variables V , set of scan

configurations C, and transition relation T . According to condition (6.1), an access

(c0 ∈ C, ct ∈ C) can be implemented within n CSU operations if and only if the follow-

ing Boolean formula is satisfiable:

Access(c0, ct, n) := Ω0(V0) ∧

[∧
i=1...n

ΩT (Vi−1, Vi)

]
∧ Ωt(Vn), (6.4)

where for 0 ≤ i ≤ n, Vi denotes the set of variables for the i-th time step (scan con-

figuration), such that each element in Vi corresponds to exactly one element in V

(∀0≤i≤n |Vi| = |V |), Ω0 and Ωt are the characteristic functions of scan configurations c0
and ct, respectively, and ΩT is the characteristic function of the transition relation T .

94

6.3. Pattern Generation Procedure

Formula (6.4) is subject to pseudo-Boolean optimization with the following pseudo-

Boolean cost function derived from (6.2):

Cycles(n) := D · n+
n−1∑
i=0

∑
s∈S

|s| ·
[
Active(Vi, s) = 1

]
. (6.5)

The optimal assignment that satisfies (6.4) and minimizes the cost function (6.5) is

found with a pseudo-Boolean SAT solver. The assignment to variables in each set

Vi defines the i-th scan configuration and is denoted by ci. The consecutive scan

configurations fully specify the scan-in sequence that implements the access (c0, ct).

The length of this sequence is guaranteed to be minimal among all solutions with n

CSU operations.

For the i-th CSU operation, the required scan-in sequence is derived from scan config-

urations ci−1 and ci as follows:

• Configuration ci−1 specifies the active scan path: The order of scan segments on

the active scan path is found by traversing the structural RSN model from the

primary scan-input, through the selected scan segments, down to the primary

scan-output. Scan segment s ∈ S belongs to the active scan path during the i-th

CSU operation if Active(ci−1, s) = 1.

• Configuration ci specifies the content of scan segments: The scan-in sequence

for the i-th CSU operation is constructed by concatenating the data held by scan

segments in configuration ci in the order of the active scan path. For each inverter

on the active scan path, all bits following the inverter’s position are inverted in

the scan-in sequence.

6.3. Pattern Generation Procedure

The challenge of access pattern generation consists in finding the optimal number of

CSU operations required to perform an access with minimal access time. Let nmin be

the minimal number of CSU operations required to satisfy formula (6.4) and minimize

(6.5). Often, the access time can be reduced by allowing additional CSU operations,

as depicted in Figure 6.2.

95

6. Access Optimization

Cycles

CSUs
nmin

N
o

 a
c
c
e

s
s

p
o

s
s
ib

le

local global
minimum

CSU overhead

nbound

Figure 6.2.: Example of a minimal access time curve

Theorem 4. (Minimal Access Time) Let D ∈ N+ be the number of cycles required

for the capture and update phases of a CSU operation (CSU overhead), and let Cyclesi
denote the access time with i CSU operations. A solution with n ∈ N CSU operations is

the global minimum if the access time of all solutions with up to nbound CSU operations

is not less than Cyclesn, where:

nbound := dCyclesn/De. (6.6)

Proof. Due to the overhead of D cycles, a solution with i CSU operations requires at

least D · i cycles (cf. formula (6.5) and curve “CSU overhead” in Figure 6.2). Thus,

for every solution with n CSU operations, there exists an access pattern with nbound

CSU operations, for which the CSU overhead equals or exceeds Cyclesn, i.e.:

nbound ·D ≥ Cyclesn. (6.7)

For all solutions with more than nbound CSU operations, the access time is higher than

Cyclesn. Therefore, it is sufficient to check the solutions with up to nbound CSUs to

decide whether the solution with n CSUs is the global minimum. According to (6.7),

the minimal nbound equals dCyclesn/De.

According to Theorem 4, the global minimum can be found with an iterative proce-

dure: Compute the shortest access patterns with n = 1, 2, 3 . . . CSU operations. For

every pattern with n CSU operations, calculate nbound. Terminate when an access pat-

tern with n CSU operations is the shortest among all solutions with up to nbound CSUs.

In practice, due to limited computational resources, the search for shortest solutions

with up to nbound CSU operations is often impossible. In contrast, the search for the

96

6.3. Pattern Generation Procedure

first local minimum (cf. Figure 6.2) is more tractable. Below, an iterative pattern gen-

eration procedure is described that increases the number of allowed CSU operations

as long as it leads to access time reduction.

Let Cyclesn be the value of the cost function (6.5) after optimization with n CSU

operations. Potentially, a solution with lower access time can be found if more CSU

operations are allowed. The SAT instance is extended to n+ 1 CSU operations to find

the value of the cost function Cyclesn+1. If the cost of the new solution is higher than

the previous one, i.e. when Cyclesn+1 > Cyclesn, a local minimum is found for n CSU

operations and the pattern generation procedure terminates. Otherwise, the number

of CSU operations is increased and the procedure is repeated until a local minimum is

found or a user specified bound is reached.

Let nt be the number of CSU operations for which the pattern generation procedure

terminates at a local minimum. The procedure guarantees that the final solution has

the minimal access time among all solutions with n ≤ nt + 1 CSU operations. Although

there may exist a global minimum with lower access time that requires nopt > nt + 1

CSU operations, experimental results show that increasing the number of CSU opera-

tions beyond nt + 1 rarely provides better results and leads to high solve times.

6.3.1. Implementation

As satisfiability solving is generally faster than pseudo-Boolean optimization, a SAT

solver is used to find the minimal number of CSU operations that is required to per-

form the access (nmin). The iterative search for nmin leverages incremental SAT solving

techniques and follows the implementation of bounded model checking presented in

Section 5.1.3 (p. 73).

After nmin is found, pseudo-Boolean optimization for n ≥ nmin CSU operations is per-

formed in parallel: A parent process is responsible for the generation of SAT instances

with growing number of CSU operations. The optimization of each instance is per-

formed in a parallel child process. For retrieval of optimal assignments, inter-process

communication is implemented using POSIX pipes. Figure 6.3 illustrates the parallel

execution of the pattern generation procedure.

97

6. Access Optimization

C
H

IL
D

P
R
O
C
’S

P
A

R
E

N
T

P
R

O
C

E
S

S

PB-OPTIMIZE

RESULT EVAL.

SAT SOLVE

INST. CREATE
n=1

UNSAT

n=2

UNSAT

nmin

SAT

nmin+1 nmin+2

Cycles0

Cycles1

Cycles2

Cyclesmin

Figure 6.3.: Parallel execution of the pattern generation procedure

6.4. Experimental Evaluation

The proposed access optimization technique is evaluated in one thousand random

experiments per benchmark circuit. In each experiment, the shortest pattern that

merges read and write accesses to 10 randomly chosen scan segments is searched for.

This section provides a brief summary of the achieved access time reduction. The

benchmark circuits are discussed in Appendix A (p. 141). The experimental setup and

detailed optimization results are found in Appendix C (p. 157).

Two series of experiments are performed: with the optimization effort limited to 2 and

20 s per access. Figure 6.4 presents the optimized average access time w.r.t. a pure

SAT-based solution. Within 2 s of optimization effort, the average access time is nearly

halved for most of the MUX-based RSNs. The access to SIB-based architectures can be

optimized with a much simpler algorithm (cf. discussion on page 91). Nevertheless,

compared with the SAT-based solution, the proposed optimization procedure reduces

the access time to about 75% for the majority of SIB-based RSNs. In the flat scan

architecture, the access time is halved in the best case. If the optimization procedure

is allowed 20 s of time, the access time is reduced further by up to 7% for larger

benchmarks.

Figure 6.5 presents the optimized access time for outliers, i.e., for access patterns with

highest optimization potential. The access optimization procedure is allowed 2 s of

time. The access time of outliers is reduced down to 50% in the SIB-based architecture,

and to 30% in the flat scan architecture. For the majority of MUX-based benchmarks,

the access time of outliers is reduced to 10%, and for the t512505 benchmark the

optimized access time is below 1%. This shows that access optimization is crucial to

prevent solutions with prohibitive access time and scan data volume.

98

6.5. Summary

6.5. Summary

Reconfigurable scan networks allow flexible and scalable access to on-chip infrastruc-

ture. However, the high complexity of RSNs arising from IP reuse and deep hierarchies

necessitates the development of novel EDA tools for access scheduling and access time

reduction.

This chapter maps the access time optimization problem to pseudo-Boolean optimiza-

tion and solves it with efficient pseudo-Boolean SAT solvers. This novel method is

applicable to a wide range of reconfigurable architectures and to merging of multiple

concurrent scan accesses. For a given bound on the number of CSU operations, the

proposed technique guarantees that the generated patterns have the minimal length.

The experiments demonstrate that even for complex reconfigurable scan architectures

the proposed method leads to significant reduction of access time by over 100x with

low computational effort. The reduction of access time leads to a proportional reduc-

tion in scan data volume.

99

6. Access Optimization

(a)

u
2

2
6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

O
p

ti
m

iz
e

d
 a

v
g

.
a

c
c
e

s
s
 t

im
e

 [
%

]

40

50

60

70

80
Effort 2 s Effort 20 s

(b)

u
2

2
6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

O
p

ti
m

iz
e

d
 a

v
g

.
a

c
c
e

s
s
 t

im
e

 [
%

]

70

75

80

85

90

95 Effort 2 s Effort 20 s

(c)

c
1

7

c
4

3
2

c
4

9
9

c
8

8
0

c
1

3
5

5

c
1

9
0

8

c
2

6
7

0

c
3

5
4

0

c
5

3
1

5

c
6

2
8

8

c
7

5
5

2

O
p

ti
m

iz
e

d
 a

v
g

.
a

c
c
e

s
s
 t

im
e

 [
%

]

50

60

70

80

90

100

Effort 2 s Effort 20 s

Figure 6.4.: Optimized average access time in (a) MUX-based, (b) SIB-based, and
(c) flat scan architecture

100

6.5. Summary

(a)
u

2
2

6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

O
p

ti
m

iz
e

d
 a

c
c
e

s
s
 t

im
e

 [
%

]

0

5

10

15

20

(b)

u
2

2
6

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

O
p

ti
m

iz
e

d
 a

c
c
e

s
s
 t

im
e

 [
%

]

0

20

40

60

80

(c)

c
1

7

c
4

3
2

c
4

9
9

c
8

8
0

c
1

3
5

5

c
1

9
0

8

c
2

6
7

0

c
3

5
4

0

c
5

3
1

5

c
6

2
8

8

c
7

5
5

2

O
p

ti
m

iz
e

d
 a

c
c
e

s
s
 t

im
e

 [
%

]

0

10

20

30

40

50

60

70

Figure 6.5.: Optimization of outliers in (a) MUX-based, (b) SIB-based, and (c) flat scan
architecture

101

7. Access Port Protection

The accessibility of embedded instrumentation offered by reconfigurable scan net-

works poses a serious security threat. Protection against unauthorized access is crucial

to security and safety of chip internals (see discussion in Section 1.5, p. 20).

The IEEE 1149.1 Test Access Port (TAP) can be protected using authorization mecha-

nisms, scan data encryption, and access restriction techniques (see Section 3.5, p. 46).

Such techniques can be directly applied to protect RSNs which are integrated as JTAG

data registers (cf. Section 1.3, p. 14). With this approach, however, an RSN is pro-

tected as a whole, and fine-grained security control over individual scan segments is

impossible.

State-of-the-art authorization mechanisms and access restriction techniques can be

extended in a straightforward way to protect chosen RSN components. For instance,

the select signals of protected segments can be gated by an authorization controller

or an on-chip fuse. This solution, however, requires modification of the RSN design,

needs additional global wires for security control, and requires consideration at early

design stages.

This chapter presents a novel protection method that offers scalable, multi-level access

management for RSNs. This protection technique is based on sequence filters that re-

quire no modification of the RSN and need no global wiring. The next section presents

an example of access management in RSNs and provides an overview of the proposed

protection method.

7.1. Access Management Overview

Figure 7.1 presents an example of a simple RSN. The one-bit scan segments S1 and S3

control the access to two multi-bit scan segments S2 and S4, respectively. In the initial

103

7. Access Port Protection

1

0

S2

select(S2)

1-bit configuration

scan segments

primary

scan-in

primary

scan-out
S1

1

0

S4

select(S4)

S3

protected scan

segment

Figure 7.1.: Example of a reconfigurable scan network with a protected scan segment
S4

scan configuration, it is assumed that S1 = S3 = 0, hence both S2 and S4 are initially

bypassed. The access to scan segment S2 is allowed, while S4 is protected, i.e., S4 must

not be accessible from the primary scan-input.

An access to the RSN is called restricted if it does not put any protected scan segment

on the active scan path (formal definition is given in Section 7.2). For instance in

Figure 7.1, restricted access to the target scan segment S2 must ensure that S4 is

bypassed at all times. To this end, S3 must always be loaded with 0.

The aim of the proposed security management method is to prevent access to pro-

tected scan segments by allowing restricted accesses only. This goal is achieved with

a sequence filter that is placed between the TAP and the scan network, as shown in

Figure 7.2. The filter observes the sequence of scan operations (capture, shift, update)

and the scan data at the TDI port to decide whether the access pattern is allowed or

forbidden. If the scan operations do not expose any protected scan segment, the filter

does not interfere with the access. Otherwise, the filter inhibits the update operation

and so prevents all RSN registers from latching any data that could expose or give

access to any protected scan segment.

Figure 7.3 presents an example for multi-level access management in a System-on-a-

Chip (SoC) design using two sequence filters, F1 and F2. Filter F1 restricts the external

accessibility of debug instrumentation, e.g. for IP protection. F2 blocks the internal

accessibility of embedded test instruments at the TAP of “Core 1”, e.g. due to safety

requirements for in-field operation. Still, full internal accessibility is preserved for

debugging purposes via the internal TAP of “Core 2”.

The proposed protection method requires only a minor extension of the TAP, which

104

7.1. Access Management Overview

Instruction Register (IR)

Bypass Register (DR0)

Reconfigurable Scan Network

TAP

Controller update

capture

shift

 Filter

FSM
allowT A P

TDI

TCK

TMS

TDO

TRST

Figure 7.2.: Access protection using a sequence filter at the Test Access Port (TAP)

changes neither the internal nor the external TAP interface. In particular, sequence

filters require no modification of the RSN architecture and no global signals for security

control. This makes this approach well-suited for 3D integrated circuits and core-based

designs with hard macro IPs.

A sequence filter can be activated by a single fuse, e.g. after manufacturing test.

Moreover, this approach can be combined with authorization mechanisms such

as [Buskey06,Clark10] to provide logical security of individual scan segments without

the need to redesign the scan network. Sequence filters can also be used to allow

individual (exclusive) access to a set of instruments, and still block simultaneous (con-

current) access to them, e.g. to prevent that sensitive data are shifted through exposed

or untrusted instruments.

An overview of the proposed method is presented in Figure 7.4. The restricted access

patterns are generated in an automated way for a given set of target and protected

scan segments, which is discussed in Section 7.2. The restricted patterns are fed to

the filter construction algorithm presented in Section 7.3. The area overhead of the

proposed filter-based protection is evaluated in Section 7.4 and Appendix D.

105

7. Access Port Protection

Test Control

Debug

Instruments

Performance

Monitors

Reconfigurable

Scan NetworkCore 1 TAP

TAP

F2

F1

unrestricted internal access

restricted

external

access

...
...

restricted internal access

TAP

Core 2

Figure 7.3.: Example of a multi-level access protection based on sequence filters (F1,
F2)

7.2. Generation of Restricted Access Patterns

In the following, the restricted access patterns are defined formally based on the CSU-

accurate model from Section 4.4.1 (p. 60).

Definition 18. (Restricted Access Pattern) Let M be the CSU-accurate model of an

RSN with the set of scan segments S, set of scan configurations C, and initial (reset)

scan configuration c0 ∈ C. Given a set of protected segments SP ⊂ S and a set of initial

scan configurations I ⊆ C such that c0 ∈ I, an access pattern for target scan segments

in S \ SP is restricted if it fulfills all of the following conditions:

• The target segments are properly accessed for all initial scan configurations in I.

• During the access, no protected scan segment from SP belongs to the active scan

path (the scan data do not pass through any protected scan segment).

• For all initial scan configurations in I, the scan configuration after the access

belongs to set I.

Remark 6. Since the final scan configuration after a restricted access belongs to the set

of initial scan configurations I, it follows that any concatenation of restricted accesses

is also a restricted access.

Restricted access patterns with minimal access time are generated in an automated

way using the procedure presented in Section 6.3 with a modified SAT instance: For

106

7.2. Generation of Restricted Access Patterns

RSN Model

&

Initial States

Generation of restricted access patterns

Synthesis of sequence filters

Restricted

Access Patterns

Protected

Segments

Target

Segments

Figure 7.4.: Overview of the proposed method

n CSU operations, the SAT instance representing a restricted access is constructed as

follows:

Access(n) := ΩI(V0) ∧

[∧
i=1...n

ΩT (Vi−1, Vi)

]
∧ ΩI(Vn)∧[∧

i=0...n

∧
s∈SP

[Active(Vi, s) = 0]

]
∧ ΩR(V0, V1, . . . , Vn),

(7.1)

where for 0 ≤ i ≤ n, Vi denotes the set of variables for the i-th scan configuration, ΩR

represents access constraints for the target scan segments in the final and/or interme-

diate scan configurations, while ΩI and ΩT are the characteristic functions of the set

of initial scan configurations I and the transition relation ofM, respectively. This in-

stance is satisfiable if and only if there exists a restricted access with n CSU operations

such that target scan segments are properly accessed (ΩR is satisfied), protected scan

segments in SP never belong to the active scan path (their content is never altered nor

exposed), and the initial scan configuration I is restored.

The restricted access generation method poses two requirements on the RSN: In the

initial (reset) scan configuration, no protected scan segment may belong to the active

scan path, and there must exist a way to bypass all protected scan segments while

107

7. Access Port Protection

accessing target scan segments. If the access to a target segment requires that any

protected scan segment be modified or exposed, the protected segment needs to be

extended with a configurable bypass that is initially active, e.g. a Segment Insertion

Bit (SIB) [Stollon11].

Restricted Access Example

In the RSN from Figure 7.1 (p. 104), the access to scan segment S2 is allowed, while

segment S4 is protected. Assume that I is defined as the set of all scan configura-

tions in which S1 = S3 = 0. According to Definition 18, a restricted access to S2 must

guarantee that:

• S2 is accessed for all initial scan configuration satisfying S1 = S3 = 0 (regardless

of the content of S2 and S4).

• S4 is never part of the active scan path.

• After the access, the initial scan configuration is restored, i.e. S1 = S3 = 0.

A possible restricted access pattern for segment S2 consists of two CSU operations with

the following scan data (leftmost bit is shifted first): 01 and 0X0, where X stands for

the target value of S2. The first CSU operation puts segment S2 on the active scan

path by setting S1 to 1. In the second CSU, S2 is accessed and the initial state of S1 is

restored. During the two CSU operations, the protected segment S4 is bypassed. After

the access, the final scan configuration satisfies S1 = S3 = 0.

7.3. Synthesis of Sequence Filters

A sequence filter consists of a Finite State Machine (FSM) that receives the scan data

input (TDI) of the TAP, as well as the capture, shift, and update control signals driven

by the TAP controller (cf. Figure 7.2, p. 105). The state diagram of the filter’s FSM is

constructed directly from a set of user-defined restricted access patterns, as described

in the later part of this section. The FSM tracks scan operations at the TAP and gen-

erates a single output allow which controls the update operation in the RSN: As long

as the sequence of scan operations matches any allowed restricted access, the allow
signal is active and the access is applied to the RSN without any delay. Otherwise,

108

7.3. Synthesis of Sequence Filters

allow is deactivated and the FSM enters a trap state. In the trap state, no further re-

configuration of the RSN is allowed, and hence no access to protected scan segments

is possible.

The state of the filter’s FSM must be synchronized with the scan configuration of the

protected RSN: The reset signal must reliably put both the RSN and the sequence filter

to their initial states. If the RSN is accessed through another TAP (e.g. via an internal

interface), the sequence filter is put into the trap state. This assures that no forbidden

access can take place when the sequence filter is not synchronized.

To guarantee security in presence of soft errors and hardware defects, the FSM can be

designed fail-safe [Nicolaidis89]: In presence of faults, the FSM’s output allow must be

either correct or inactive (0). For instance, to protect against single faults, the FSM is

duplicated and the allow outputs are used as a dual-rail encoded signal, or conjoined

with an AND gate.

7.3.1. State Diagram Construction

Procedure 1 presents the state diagram construction algorithm for sequence filters.

The input to the procedure is a set of sequences (strings) representing restricted ac-

cesses patterns that the filter should allow (sequenceSet). The input sequences are

composed of five scan operations denoted as follows:

• 0: shift of bit 0,

• 1: shift of bit 1,

• X: shift of an unconstrained (don’t care) bit,

• C: capture,

• U: update.

For instance, a restricted access consisting of two CSU operations with scan data 01
and 0X0 is represented by the following sequence: C01UC0X0U. Note that a single

sequence represents 2k restricted access patterns, where k is the number of uncon-

strained data bits (X) in the sequence.

The diagram construction algorithm starts with the creation of an “initial” state

(initialState) that corresponds to the set of initial scan configurations, and a “trap”

109

7. Access Port Protection

Algorithm 1 Sequence filter construction
Input: sequenceSet

Output: state diagram
1: Create initialState, trapState.
2: Annotate initialState with all sequences from sequenceSet.
3: currentStateSet← {initialState}
4: n← 0
5: while currentStateSet 6= ∅ do
6: nextStateSet← ∅
7: for all state ∈ currentStateSet do
8: for all sequence ∈ annotations of state do
9: transition← sequence[n]

10: if transition = U and length(sequence) = n+ 1 then
11: Add transition from state to initialState.
12: else
13: Create newState and annotate it with sequence.
14: Add transition from state to newState.
15: Add newState to nextStateSet.
16: end if
17: end for
18: end for
19: Replace overlapping transitions from states in currentStateSet.
20: Add escape transitions from states in currentStateSet to trapState.
21: Merge equivalent states in nextStateSet.
22: currentStateSet← nextStateSet

23: n← n+ 1
24: end while
25: Collapse state sequences with equivalent outbound transitions.

110

7.3. Synthesis of Sequence Filters

α,β

βα

0 X
α,β

β

0 1

α,β

replace overlapping

shift transitions

Figure 7.5.: Example of a state diagram before and after replacement of overlapping
shift transitions. Annotations α and β denote two sequences.

state (trapState) that is reached upon detection of any forbidden scan operation (line

1 in Procedure 1). Each state in the state diagram is annotated with the sequences that

put the FSM into this state. State transitions are conditioned either by a single scan

operation (i.e. an element from the set {0, 1, X, C, U}), or a disjunction of scan oper-

ations (e.g. C or U, denoted as C,U). All states are stable as long as no scan operation

takes place.

The construction algorithm is a stepwise procedure (lines 5 to 24): In the first step,

the first scan operation of each sequence is processed (i.e., the capture operations). In

the n-th step, another level of states is added to the state diagram based on the n-th

scan operations of the the provided sequences (lines 13 to 15). The current scan oper-

ation in each sequence is assigned a new successor state (newState) with an incoming

transition from the respective state in currentStateSet. Since any concatenation of

restricted accesses is also a restricted access (cf. Remark 6, p. 106), the last update
operation in each sequence corresponds to a transition to the initial state (line 11).

The procedure terminates when all sequences are completely processed.

In each step, after the successor states are found, overlapping shift transitions of each

current state are replaced (line 19): If a state has both an outbound X transition and

an outbound 0 (1) transition, the X transition is replaced with a 1 (0) transition, and

the annotations of both successors are updated accordingly. An example is given in

Figure 7.5.

After execution of line 19, if all scan operations are allowed in a state from

currentStateSet, this state has either 3 or 4 outbound transitions, conditioned by

either C, U, and X or C, U, 0, and 1. If some operations are forbidden (not allowed

by any provided sequence), the sequence filter must detect them and prevent any fur-

ther reconfiguration of the network. To this end, an escape transition pointing to the

trapState is added for the forbidden operations (line 20). Once a forbidden operation

is encountered, the filter is stuck in the trapState. In this state, the update operation

111

7. Access Port Protection

is inhibited until the sequence filter and the scan network are reset.

7.3.2. State Merging and Sequence Collapsing

To reduce the size of the state diagram, redundancies are removed by merging equiva-

lent states (line 21 in Procedure 1) and collapsing sequences of states with equivalent

outbound transitions (line 25), as described below.

Each pair of successor states in nextStateSet is merged into a single state if it fulfills

one of the following conditions:

• The two states have identical annotations (belong to the same sequences).

• The inbound transitions of the two states have the same condition, and their

predecessors have the same annotations.

A state that results from merging of two states receives all annotations of its con-

stituent states.

The resulting state diagram often includes long sequences of consecutive shift opera-

tions with constant or unconstrained (X) bits (see example in Figure 7.7a). Typically,

long sequences of X operations represent unconstrained data for scan segments that

do not control the active scan path. Such sequences are collapsed into a single state,

and a counter is used to keep track of their length, as shown in Figure 7.6. During

a transition to a collapsed state, the counter is set to the number of states that were

removed due to collapsing (via the value signal; by asserting the load signal). The

counter is decremented upon detection of every shift transition (via the decrement in-

put) and asserts its wait output as long as its value is larger than zero. The FSM leaves

the collapsed state as soon as the wait signal is deasserted or a forbidden operation (C
or U) is detected. Just a single counter is required regardless of how many sequences

are collapsed.

Figure 7.7 presents an example for collapsing the sequence XXX1. The states b, c, d in

Figure 7.7a are collapsed into a single state m in Figure 7.7b. During the transition to

the collapsed state m, the counter is set to 2. The counter is decremented upon every

shift operation (X). The final state e is reached as soon as the wait signal is deasserted

and the final scan operation is correct (1). Otherwise, the trap state is reached.

The final state diagram can be further optimized to allow repeated accesses to a set

112

7.3. Synthesis of Sequence Filters

allow

TCK

load

decrement

wait

value
Filter

FSM
Counter

TRST

Figure 7.6.: Sequence filter augmented with a counter for collapsed states

a b c d e

a m e

Trap

X X X 1

C,U C,U C,U C,U,0

Trap

C,U

X / load, value := 2

C,U,(0 ᴧ ¬wait)

(1 ᴧ ¬wait)

(X ᴧ wait) / decrement if X

3 consecutive shifts collapsed into m

(a)

(b)

Figure 7.7.: Example for sequence collapsing with (a) a state diagram and (b) its col-
lapsed equivalent

of target scan segments with little or no hardware overhead. This is crucial to apply

many patterns to a set of scan segments with no access time penalty for scan path

reconfiguration. To this end, just two repeated accesses must be reflected in the input

sequence, such that the first access does not modify the active scan path. The resulting

state diagram is then extended with a loop transition for the first access, which enables

an unlimited number of repeated accesses. This is explained at an example in the

following section.

113

7. Access Port Protection

α,β α,β
C

α,β

1

α,β

0U / allow

α,βTrap

U,X C,U,0

C,U,1

α,β

C

β

0
ββ

β

X

0

β

1

α

Initial

U / allow

α,β α,β
X 0

0

U / allow

β

C
U / allow 1

Figure 7.8.: The state diagram of a sequence filter allowing two sequences:
α: C01UC0X0U, and β: C01UC0X1UC0X0U

7.3.3. Sequence Filter Example

In the following, sequence filter construction is illustrated at an example of the RSN

from Figure 7.1 (p. 104). The filter is constructed for two restricted accesses patterns

characterized by the following sequences α and β:

• α: C01UC0X0U, which accesses S2 once (as in Section 7.2, p. 106),

• β: C01UC0X1UC0X0U, which accesses S2 twice.

Such sequences are found in an automated way using the approach presented in Sec-

tion 7.2 (p. 106).

Figure 7.8 presents the state diagram produced for the sequences α and β by Proce-

dure 1 (p. 110). The annotations of states are denoted inside the state symbols (α and

β). For the sake of clarity, the escape transitions to the trap state are shown only for

the first three states.

The filter tracks the scan operations and the scan data at the TAP. As long as the

sequence matches either α or β, the update operations are allowed. Otherwise, the

trap state is reached, in which no further reconfiguration of the network is possible,

and hence the protected segment S4 is inaccessible.

The filter can be extended with a single loop transition to allow repeated accesses to

S2 without the need to reconfigure S1. This transition is dashed in Figure 7.8.

114

7.4. Experimental Evaluation

7.4. Experimental Evaluation

The proposed protection method is evaluated on SIB- and MUX-based scan architec-

tures presented in Appendix A (p. 141). Restricted accesses are generated for random

samples of target scan segments. Except for scan segments that configure the active

scan path, all remaining scan segments of a benchmark RSN are considered protected.

This section provides a brief summary of the area overhead required for the protection

w.r.t. RSN area without system logic. The experimental setup and detailed results are

found in Appendix D (p. 161).

Figure 7.9 presents the area overhead of sequence filters constructed for 10, 20, and

100 restricted accesses patterns. Each pattern implements the shortest restricted ac-

cess to a single target scan segment. The area overhead is below 2.7% for 10 patterns,

4.3% for 20 patterns, and rises up to 10.6% for 100 patterns. Note that some of the

RSNs, e.g. f2126, q12710, and a586710, include less than a hundred scan segments

(see Appendix A). For these benchmarks, even if access to a high fraction or all of their

scan segments is allowed, the area overhead is below 1.7%.

The size of a sequence filter is proportional to the number of states in the filter’s state

diagram. State merging and sequence collapsing (see Section 7.3.2, p. 112) consid-

erably reduce the area overhead. Figure 7.10 shows the cumulative length of 100

restricted access patterns (“sequence bits”) and the corresponding number of filter’s

states after state merging and sequence collapsing (“FSM states”). These techniques

reduce the size of the state diagram by a factor of 2 at least, and by over 2 orders of

magnitude for two benchmarks: q12710 and a586710.

In the second series of experiments, sequence filters are constructed for the concurrent

access to 100 random scan segments realized by 1, 5, 10 and 20 restricted access

patterns. Figure 7.11 shows area overhead of the resulting filters. For 20 accesses à

5 segments (“20 à 5”), area overhead of the resulting filters is close to the area for

individual accesses (“100 à 1”). However, if the access to all 100 segments is realized

with a single access pattern (“1 à 100”), the cost is reduced by a factor of 3 to 16

compared with the cost of individual accesses. If the segments are often accessed

together, concurrent access has two benefits: The access times are lower, and the

resulting sequence filters are smaller.

115

7. Access Port Protection

(a)

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

 0.2

 0.5

 1.0

 2.0

 5.0

10.0

20.0

A
re

a
 o

ve
rh

e
a

d
 [

%
] 10 accesses 20 accesses 100 accesses

(b)

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

 0.2

 0.5

 1.0

 2.0

 5.0

10.0

20.0

A
re

a
 o

ve
rh

e
a

d
 [

%
] 10 accesses 20 accesses 100 accesses

Figure 7.9.: Area overhead of sequence filters w.r.t. RSN area for (a) SIB-based and
(b) MUX-based scan architecture

7.5. Summary

To guarantee secure chip development and safe in-field system operation, embedded

instrumentation requires protection against unauthorized access. While state-of-the-

art techniques provide effective protection for JTAG circuitry, reconfigurable scan net-

works call for dedicated access management methods with fine-grained control over

the security of their constituent scan segments.

The proposed access management technique secures reconfigurable scan networks at

the Test Access Port (TAP) and facilitates fine-grained control over the access to indi-

vidual scan segments. The TAP is extended with a sequence filter that permits only

a set of access patterns that are defined at design time. If required, the filter can be

enabled by a single fuse, e.g. after manufacturing test, or disabled by an authorization

controller. This approach is directly applicable to scan networks compliant with IEEE

Std. 1149.1-2013 (JTAG) and P1687 (IJTAG).

116

7.5. Summary

(a)

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

 500

 1000

 2000

 5000

 10000

 20000

 50000

100000
T
o

ta
l
c
o

u
n

t

Sequence bits FSM states

(b)

d
2

8
1

d
6

9
5

h
9

5
3

g
1

0
2

3

f2
1

2
6

q
1

2
7

1
0

p
2

2
8

1
0

p
3

4
3

9
2

p
9

3
7

9
1

t5
1

2
5

0
5

a
5

8
6

7
1

0

 500

 1000

 2000

 5000

 10000

 20000

 50000

100000

T
o

ta
l
c
o

u
n

t

Sequence bits FSM states

Figure 7.10.: Comparison of the total sequence length (in bits) and the number of
FSM states after state merging and sequence collapsing for 100 restricted
access patterns in (a) SIB-based and (b) MUX-based scan architecture

The sequence filters do not affect the access time and do not require any modification

of the RSN design. Since no additional global wiring is required, this protection tech-

nique is well-suited for core-based designs and 3D integrated circuits. Experimental

results show that on average, to assure security of designs with over 10,000 scan cells

and retain the accessibility of 100 scan segments, the proposed approach increases the

area of scan infrastructure by less than 5%, which is marginal with respect to the total

chip area.

117

7. Access Port Protection

(a)

l
l

l

l

l
l

l
l l

l 0

 2

 4

 6

 8

10

100 à 1 20 à 5 10 à 10 5 à 20 1 à 100

A
re

a
 o

ve
rh

e
a

d
 [

%
]

Number of merged accesses

l

l

d281
d695
h953
g1023
f2126
q12710
p22810
p34392
p93791
t512505
a586710

(b)

l

l

l

l

ll
l

l
l

l 0

 2

 4

 6

 8

10

12

100 à 1 20 à 5 10 à 10 5 à 20 1 à 100

A
re

a
 o

ve
rh

e
a

d
 [

%
]

Number of merged accesses

l

l

d281
d695
h953
g1023
f2126
q12710
p22810
p34392
p93791
t512505
a586710

Figure 7.11.: Reduction of sequence filter overhead by merging the access to 100 scan
segments in (a) SIB-based, and (b) MUX-based scan architecture

118

8. Conclusions

The amount of embedded instrumentation in system-on-a-chip designs increases at an

exponential rate. Such structures serve various purposes throughout the life-cycle of

VLSI circuits, e.g. in post-silicon validation and debug, production test and diagnosis,

as well as during in-field test and maintenance. Reliable access mechanisms for em-

bedded instruments are therefore key to rapid chip development and secure system

maintenance.

Reconfigurable scan networks defined by IEEE Std. P1687 emerge as a scalable and

cost-effective access medium for on-chip instrumentation. However, due to complex

combinational and sequential dependencies, such reconfigurable architectures are be-

yond the capabilities of state-of-the-art algorithms for formal verification and access

scheduling.

This thesis contributes a novel CSU-accurate modeling method based on temporal

abstraction. The proposed abstraction improves the scalability of model checking al-

gorithms in verification of complex reconfigurable scan networks. A time step in the

abstract model corresponds to a full CSU operation that spans multiple clock cycles

required for capturing, shifting, and updating scan data. Under minor assumptions

on the stability of external signals, the CSU-accurate abstraction is sound, i.e., the

properties of the abstraction are guaranteed to hold in the concrete RSN implemen-

tation. Experimental results show that the CSU-accurate model reduces the formal

verification effort tremendously.

The investigation of robust scan architectures shows that this class of RSNs has many

advantageous properties, such as improved verifiability and reduced vulnerability to

defects. Robust scan networks can be verified using bounded model checking tech-

niques with a tractable completeness threshold. Moreover, the CSU-accurate model is

proven complete in the class of robust RSNs, i.e., it does not produce spurious coun-

terexamples. The verification of the robustness property itself uncovers design bugs

119

8. Conclusions

with high probability and is efficiently mapped to Boolean satisfiability.

For the generation of low-latency access patterns (pattern retargeting in the termi-

nology of IEEE Std. P1687), this thesis develops the first automated algorithm that

can handle complex reconfigurable scan networks. This method leverages existing

techniques for pseudo-Boolean optimization to perform access time minimization and

merging of concurrent accesses to multiple instruments. Experimental results show

that this method effectively reduces the reconfiguration overhead and prevents solu-

tions with prohibitive access time.

The accessibility offered by reconfigurable scan networks contradicts security and

safety requirements for embedded instrumentation. Since RSNs have distributed con-

figuration and integrate a high number of instruments, state-of-the-art techniques for

scan access protection are either ineffective or offer only coarse-grained security con-

trol. This thesis presents a novel access protection method which requires only a local
extension of the access port. The protected access port allows a user-defined set of

access patterns and prevents the access to protected instrumentation. This approach

provides fine-grained access management with low area overhead and can be com-

bined with existing fuse- and authorization-based protection schemes.

8.1. Future Research Directions

While scan networks support system test and diagnosis, they are themselves vulnera-

ble to defects. The test and diagnosis of complex reconfigurable scan networks seem

to be the most important direction for future research. Test of RSNs is challenging due

to high sequential depth, complex access dependencies, and the interdependence be-

tween the RSN, on-chip instrumentation, and mission logic. Faults in the scan network

can affect the configuration of the active scan path, leading to diagnostic difficulties

which are further exacerbated by limited observability.

The CSU-accurate abstraction can be extended to facilitate test pattern generation

for accurate fault models, e.g. at gate-level. While low-level fault activation and

propagation conditions must be modeled at a cycle-accurate level, pattern delivery

and response readout can be handled efficiently with the CSU-accurate abstraction.

Therefore, the challenge consists in combining models at different abstraction levels

into a single SAT instance.

120

8.1. Future Research Directions

For post-silicon debug and production ramp-up, the accessibility of the scan infras-

tructure is crucial to locate design bugs and defects. A single bug or defect may affect

the access to a large fraction of on-chip instruments, making system debug and diag-

nosis difficult or impossible. Nevertheless, even if the scan infrastructure is partially

defective, the remaining accessibility can still be utilized for chip diagnosis. Diagnos-

tic algorithms that narrow down the faulty RSN region or determine the remaining

functionality constitute a challenging yet interesting research field. The CSU-accurate

access generation methods can potentially be extended for the generation of robust

access patterns that bypass an identified faulty region.

The CSU-accurate modeling can be also extended to support the verification of inter-

actions between system logic and the RSN. In particular, to formally prove security of

the protection method developed in this thesis, sequence filters can be modeled in a

CSU-accurate way.

121

Bibliography

[Abramovici06] M. Abramovici, P. Bradley, K. N. Dwarakanath, P. Levin,

G. Memmi, and D. Miller. A Reconfigurable Design-for-Debug

Infrastructure for SoCs. In Proc. Design Automation Conference
(DAC), pages 7–12. 2006.

[Abramovici08] M. Abramovici. In-System Silicon Validation and Debug. IEEE
Design & Test of Computers, 25(3):216–223, 2008.

[Agarwal07] M. Agarwal, B. Paul, M. Zhang, and S. Mitra. Circuit Failure

Prediction and Its Application to Transistor Aging. In Proc. IEEE
VLSI Test Symposium (VTS), pages 277–286. 2007.

[Agarwal11] K. Agarwal. Secure Scan Design, June 2011. US Patent

App. 7,966,535.

[Arslan04] B. Arslan and A. Orailoglu. Test Cost Reduction Through A Re-

configurable Scan Architecture. In Proc. IEEE International Test
Conference (ITC), pages 945–952. 2004.

[Baranowski12] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich. Modeling,

Verification and Pattern Generation for Reconfigurable Scan Net-

works. In Proc. IEEE International Test Conference (ITC). 2012.

Paper 8.2.

[Baranowski13a] R. Baranowski, A. Cook, M. E. Imhof, C. Liu, and H.-J. Wunder-

lich. Synthesis of Workload Monitors for On-Line Stress Predic-

tion. In Proc. IEEE Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFTS), pages 137–142. 2013.

[Baranowski13b] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich. Scan Pat-

tern Retargeting and Merging with Reduced Access Time. In

Proc. IEEE European Test Symposium (ETS), pages 39–45. 2013.

123

BIBLIOGRAPHY

[Baranowski13c] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich. Securing

Access to Reconfigurable Scan Networks. In Proc. IEEE Asian
Test Symposium (ATS). 2013.

[Baumann05] R. C. Baumann. Radiation-Induced Soft Errors in Advanced

Semiconductor Technologies. IEEE Trans. on Device and Mate-
rials Reliability, 5(3):305–316, 2005.

[Baumgartner02] J. Baumgartner, A. Kuehlmann, and J. Abraham. Property

Checking via Structural Analysis. In E. Brinksma and K. Larsen,

editors, Computer Aided Verification (CAV), volume 2404 of Lec-
ture Notes in Computer Science (LNCS), pages 151–165. Springer,

2002. ISBN 978-3-540-43997-4.

[Benabdenbi00] M. Benabdenbi and W. Maroufi. CAS-BUS: A Scalable and Re-

configurable Test Access Mechanisms for Systems on a Chip. In

Proc. Design, Automation and Test in Europe (DATE), pages 141–

145. 2000.

[Benso08] A. Benso, S. Di Carlo, P. Prinetto, and Y. Zorian. IEEE Standard

1500 Compliance Verification for Embedded Cores. IEEE Trans.
on Very Large Scale Integration (VLSI) Systems, 16(4):397–407,

2008.

[Bhattacharya03] B. B. Bhattacharya, S. C. Seth, and S. Zhang. Double-Tree Scan:

A Novel Low-Power Scan-Path Architecture. In Proc. IEEE Inter-
national Test Conference (ITC), pages 470–479. 2003.

[Biere99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model

Checking without BDDs. In W. R. Cleaveland, editor, Tools and
Algorithms for the Construction and Analysis of Systems, volume

1579 of Lecture Notes in Computer Science (LNCS), pages 193–

207. Springer, 1999. ISBN 978-3-540-65703-3.

[Biere02] A. Biere, C. Artho, and V. Schuppan. Liveness Checking as

Safety Checking. Electronic Notes in Theoretical Computer Sci-
ence, 66(2):160–177, 2002.

[Biere03] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu.

Bounded Model Checking. Advances in Computers, 58:117–148,

124

BIBLIOGRAPHY

2003.

[Biere06] A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and V. Schup-

pan. Linear Encodings of Bounded LTL Model Checking. Logical
Methods in Computer Science, 2:1–64, 2006.

[Biere09] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, Feb. 2009. ISBN 978-1-58603-929-5.

[Blaauw08] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statisti-

cal Timing Analysis: From Basic Principles to State of the Art.

IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 27(4):589–607, 2008.

[Bonnett99] D. Bonnett. Design for In-System Programming. In Proc. IEEE
International Test Conference (ITC), pages 252–259. 1999.

[Borkar05] S. Borkar. Designing Reliable Systems from Unreliable Compo-

nents: The Challenges of Transistor Variability and Degradation.

IEEE Micro, 25(6):10–16, 2005.

[Brglez85] F. Brglez. A Neutral Netlist of 10 Combinational Benchmark

Circuits. In IEEE Proc. International Symposium on Circuits and
Systems (ISCAS), pages 695–698. 1985.

[Bruce Jr96] W. C. Bruce Jr, J. E. Drufke Jr, C. O. Eluwa, and J. M. Hud-

son. Method for Testing a Test Architecture within a Circuit,

May 1996. US Patent App. 5,517,637.

[Bruns99] G. Bruns and P. Godefroid. Model Checking Partial State Spaces

with 3-Valued Temporal Logics. In N. Halbwachs and D. Peled,

editors, Computer Aided Verification (CAV), volume 1633 of Lec-
ture Notes in Computer Science (LNCS), pages 274–287. Springer,

1999.

[Bryant86] R. Bryant. Graph-Based Algorithms for Boolean Function Ma-

nipulation. IEEE Trans. on Computers, C-35(8):677–691, 1986.

[Bryant90] R. E. Bryant. Symbolic Simulation – Techniques and Applica-

tions. In Proc. ACM/IEEE Design Automation Conference (DAC),

125

BIBLIOGRAPHY

pages 517–521. 1990.

[Bushnell00] M. Bushnell and V. D. Agrawal. Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits. Springer, 2000.

ISBN 978-0-7923-7991-1.

[Buskey06] R. Buskey and B. Frosik. Protected JTAG. In Proc. IEEE Inter-
national Conference on Parallel Processing Workshops (ICCPW),

pages 405–414. 2006.

[Chakrabarty00] K. Chakrabarty. Test Scheduling for Core-Based Systems Using

Mixed-Integer Linear Programming. IEEE Trans on. Computer-
Aided Design of Integrated Circuits and Systems (TCAD),

19(10):1163–1174, 2000.

[Chakraborty11] T. Chakraborty, C.-H. Chiang, S. Goyal, M. Portolan, and

B. G. Van Treuren. Apparatus and Method for Controlling

Dynamic Modification of a Scan Path, May 2011. US Patent

App. 7,954,022.

[Chattopadhyay03] S. Chattopadhyay and K. Reddy. Genetic Algorithm based Test

Scheduling and Test Access Mechanism Design for System-on-

Chips. In Proc. IEEE International Conference on VLSI Design
(VLSI), pages 341–346. 2003.

[Chiu12] G.-M. Chiu and J.-M. Li. A Secure Test Wrapper Design

Against Internal and Boundary Scan Attacks for Embedded

Cores. IEEE Trans. on Very Large Scale Integration (VLSI) Sys-
tems, 20(1):126–134, Jan. 2012.

[Chou97] R. Chou, K. Saluja, and V. Agrawal. Scheduling Tests for VLSI

Systems under Power Constraints. IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, 5(2):175–185, 1997.

[Clark10] C. Clark. Anti-Tamper JTAG TAP Design Enables DRM to JTAG

Registers and P1687 On-Chip Instruments. In Proc. IEEE In-
ternational Symposium on Hardware-Oriented Security and Trust
(HOST), pages 19–24. 2010.

[Clarke86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verifi-

cation of Finite-State Concurrent Systems Using Temporal Logic

126

BIBLIOGRAPHY

Specifications. ACM Trans. on Programming Languages and Sys-
tems, 8(2):244–263, April 1986.

[Clarke94] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking

and Abstraction. ACM Trans. on Programming Languages and
Systems, 16(5):1512–1542, Sept. 1994.

[Clarke99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.

MIT press, 1999.

[Clarke03] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-Guided Abstraction Refinement for Symbolic

Model Checking. Journal of the ACM (JACM), 50(5):752–794,

September 2003.

[Clarke04] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Com-

pleteness and Complexity of Bounded Model Checking. In

B. Steffen and G. Levi, editors, Verification, Model Checking, and
Abstract Interpretation, volume 2937 of Lecture Notes in Com-
puter Science (LNCS), pages 85–96. Springer, 2004. ISBN 978-

3-540-20803-7.

[Craig57] W. Craig. Linear Reasoning. A New Form of the Herbrand-

Gentzen Theorem. The Journal of Symbolic Logic, 22(3):250–

268, 1957.

[Da Rolt12] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre. Are Ad-

vanced DfT Structures Sufficient for Preventing Scan-Attacks?

In Proc. IEEE VLSI Test Symposium (VTS), pages 246–251. 2012.

[Dahbura89] A. Dahbura, M. Uyar, and C. W.Yau. An Optimal Test Sequence

for the JTAG/IEEE P1149.1 Test Access Port Controller. In Proc.
IEEE International Test Conference (ITC), pages 55–62. 1989.

[Das13] A. Das, J. Rolt, S. Ghosh, S. Seys, S. Dupuis, G. Natale, M.-L.

Flottes, B. Rouzeyre, and I. Verbauwhede. Secure JTAG Imple-

mentation Using Schnorr Protocol. Journal of Electronic Testing
(JETTA), 29(2):193–209, 2013.

[Davis62] M. Davis, G. Logemann, and D. Loveland. A Machine Program

for Theorem-Proving. Communications of the ACM, 5(7):394–

127

BIBLIOGRAPHY

397, 1962.

[Diamantidis05] I. Diamantidis, T. Oikonomou, and S. Diamantidis. Towards an

IEEE P1500 Verification Infrastructure: A Comprehensive Ap-

proach. In Proc. IEEE International Workshop on Infrastructure
IP (IIP), pages 25–30. 2005.

[Dworak13] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thorn-

ton. Don’t Forget to Lock your SIB: Hiding Instruments using

P1687. In Proc. IEEE International Test Conference (ITC). 2013.

Paper 6.2.

[Ebrard09] E. Ebrard, B. Allard, P. Candelier, and P. Waltz. Review of Fuse

and Antifuse Solutions for Advanced Standard CMOS Technolo-

gies. Microelectronics Journal, 40(12):1755–1765, 2009.

[Eén03] N. Eén and N. Sörensson. Temporal Induction by Incremental

SAT Solving. Electronic Notes in Theoretical Computer Science,

89(4):543–560, 2003.

[Eén04] N. Eén and N. Sörensson. An Extensible SAT-solver. In

E. Giunchiglia and A. Tacchella, editors, Theory and Applications
of Satisfiability Testing (SAT), volume 2919 of Lecture Notes in
Computer Science (LNCS), pages 502–518. Springer, 2004. ISBN

978-3-540-20851-8.

[Eén06] N. Eén and N. Sörensson. Translating Pseudo-Boolean Con-

straints into SAT. Journal on Satisfiability, Boolean Modeling and
Computation, 2:1–26, 2006.

[Eggersglüss07] S. Eggersglüss, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and

J. Schloeffel. Combining Multi-Valued Logics in SAT-based ATPG

for Path Delay Faults. In Proc. IEEE/ACM International Confer-
ence on Formal Methods and Models for Codesign (MEMCODE),

pages 181–187. 2007.

[Eichelberger77] E. B. Eichelberger and T. W. Williams. A Logic Design Struc-

ture for LSI Testability. In Proc. ACM/IEEE Design Automation
Conference (DAC), pages 462–468. 1977.

[Eklow06] B. Eklow and B. Bennetts. New Techniques for Accessing Em-

128

BIBLIOGRAPHY

bedded Instrumentation: IEEE P1687 (IJTAG). In Proc. IEEE
European Test Symposium (ETS), pages 253–254. 2006.

[Fisher02] R. Fisher. Method and Apparatus to Check the Integrity of Scan

Chain Connectivity by Traversing the Test Logic of the Device,

Nov. 2002. US Patent App. 10/300,513.

[Foster11] H. Foster. Challenges of Design and Verification in the SoC Era.

In Design and Verification Conference and Exhibition. 2011.

[Garey79] M. Garey and D. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

ISBN 978-0716710455.

[Gebser11] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-

Criteria Optimization in Answer Set Programming. In Techni-
cal Communications of the International Conference on Logic Pro-
gramming (ICLP), volume 11 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 1–10. 2011.

[Ghani Zadegan11a] F. Ghani Zadegan, U. Ingelsson, G. Asani, G. Carlsson, and

E. Larsson. Test Scheduling in an IEEE P1687 Environment with

Resource and Power Constraints. In Proc IEEE Asian Test Sympo-
sium (ATS), pages 525–531. 2011.

[Ghani Zadegan11b] F. Ghani Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson.

Design Automation for IEEE P1687. In Proc. Design, Automation
Test in Europe Conference (DATE), pages 1412–1417. 2011.

[Ghani Zadegan12a] F. Ghani Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson.

Access Time Analysis for IEEE P1687. IEEE Trans. on Computers,
61(10):1459–1472, October 2012.

[Ghani Zadegan12b] F. Ghani Zadegan, U. Ingelsson, E. Larsson, and G. Carlsson.

Reusing and Retargeting On-Chip Instrument Access Procedures

in IEEE P1687. IEEE Design & Test of Computers, 29(2):79–88,

2012.

[Giunchiglia92] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Artificial
Intelligence, 57(2):323–389, 1992.

129

BIBLIOGRAPHY

[Hely04] D. Hely, M. L. Flottes, F. Bancel, B. Rouzeyre, N. Berard, and

M. Renovell. Scan Design and Secure Chip [Secure IC Testing].

In Proc. IEEE On-Line Testing Symposium (IOLTS), pages 219–

224. 2004.

[Holst09] S. Holst and H.-J. Wunderlich. Adaptive Debug and Diagnosis

without Fault Dictionaries. Journal of Electronic Testing (JETTA),

25(4-5):259–268, 2009.

[Holzmann97] G. Holzmann. The Model Checker SPIN. IEEE Trans. on Software
Engineering, 23(5):279–295, 1997.

[Horstmann84] P. Horstmann and E. Stabler. Computer Aided Design (CAD) Us-

ing Logic Programming. In Proc. Design Automation Conference
(DAC), pages 144–151. 1984.

[ITRS12] ITRS. International Technology Roadmap for Semiconductors,

2012. http://www.itrs.net/Links/2012ITRS/Home2012.htm.

[Iyengar03] V. Iyengar, K. Chakrabarty, and E. Marinissen. Test Access

Mechanism Optimization, Test Scheduling, and Tester Data Vol-

ume Reduction for System-on-Chip. IEEE Trans. on Computers,
52(12):1619–1632, 2003.

[Jain95] S. Jain, R. E. Bryant, and A. Jain. Automatic Clock Abstraction

from Sequential Circuits. In Proc. Design Automation Conference
(DAC), pages 707–711. 1995.

[JTA01] IEEE Standard Test Access Port and Boundary-Scan Architecture

1149.1-2001, 2001. Test Technology Technical Committee of

the IEEE Computer Society, USA.

[JTA13] IEEE Standard for Test Access Port and Boundary-Scan Architec-

ture 1149.1-2013, 2013. Test Technology Technical Committee

of the IEEE Computer Society, USA.

[Jutman11] A. Jutman, S. Devadze, and J. Aleksejev. Invited Paper: System-

wide Fault Management Based on IEEE P1687 IJTAG. In Proc.
IEEE International Workshop on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), pages 1–4. 2011.

130

BIBLIOGRAPHY

[Kamepalli06] H. B. Kamepalli, P. Sanjeevarao, and C.-J. Park. Scan Chain

Verification Using Symbolic Simulation, May 2006. US Patent

App. 7,055,118.

[Kapur99] R. Kapur, D. Martin, and T. W. Williams. Dynamic Scan Chains

and Test Pattern Generation Methodologies Therefor, Dec. 1999.

US Patent App. 09/469,729.

[Keane10] J. Keane, X. Wang, D. Persaud, and C. Kim. An All-In-One Silicon

Odometer for Separately Monitoring HCI, BTI, and TDDB. IEEE
Journal of Solid-State Circuits, 45(4):817–829, 2010.

[Kleene50] S. Kleene. Introduction to Metamathematics. D. Van Nostrand,

Princeton, NJ, 1950.

[Kömmerling99] O. Kömmerling and M. G. Kuhn. Design Principles for Tamper-

Resistant Smartcard Processors. In Proc. USENIX Workshop on
Smartcard Technology (WOST), pages 9–20. USENIX Associa-

tion, 1999.

[Koranne03] S. Koranne. Design of Reconfigurable Access Wrappers for Em-

bedded Core Based SoC Test. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 11(5):955–960, 2003.

[Kripke63] S. Kripke. Semantical Considerations on Modal Logic. Acta
Philosophica Fennica, 16:83–94, 1963.

[Kropf99] T. Kropf. Introduction to Formal Hardware Verification. Springer,

1999. ISBN 978-3-540-65445-2.

[Larsson03] E. Larsson and Z. Peng. A Reconfigurable Power-Conscious

Core Wrapper and its Application to SOC Test Scheduling. In

Proc. IEEE International Test Conference (ITC), pages 1135–1144.

2003.

[Larsson06] E. Larsson and H. Fujiwara. System-on-Chip Test Scheduling

with Reconfigurable Core Wrappers. IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, 14(3):305–309, 2006.

[Larsson12] E. Larsson and F. Ghani Zadegan. Accessing Embedded DfT In-

struments with IEEE P1687. In Proc. IEEE Asian Test Symposium

131

BIBLIOGRAPHY

(ATS), pages 71–76. 2012.

[Lee06] J. Lee, M. Tehranipoor, and J. Plusquellic. A Low-Cost Solution

for Protecting IPs Against Scan-Based Side-Channel Attacks. In

Proc. IEEE VLSI Test Symposium (VTS), pages 94–99. 2006.

[Lee07] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic. Securing

Designs against Scan-Based Side-Channel Attacks. IEEE Trans.
on Dependable and Secure Computing, 4(4):325–336, Oct.-Dec.

2007.

[Ley09] A. Ley. Doing More with Less—An IEEE 1149.7 Embedded Tuto-

rial: Standard for Reduced-Pin and Enhanced-Functionality Test

Access Port and Boundary-Scan Architecture. In Proc. IEEE In-
ternational Test Conference (ITC). 2009. Paper ET3.1.

[Loiseaux95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem, and

D. Probst. Property Preserving Abstractions for the Verifica-

tion of Concurrent Systems. Formal Methods in System Design,

6(1):11–44, 1995.

[Marinissen98] E. J. Marinissen, R. G. J. Arendsen, G. Bos, H. Dingemanse,

M. Lousberg, and C. Wouters. A Structured and Scalable Mecha-

nism for Test Access to Embedded Reusable Cores. In Proc. IEEE
International Test Conference (ITC), pages 284–293. 1998.

[Marinissen02] E. Marinissen, V. Iyengar, and K. Chakrabarty. A Set of Bench-

marks for Modular Testing of SOCs. In Proc. IEEE International
Test Conference (ITC), pages 519–528. 2002.

[McCluskey86] E. J. McCluskey. Logic Design Principles with Emphasis on Testable
Semicustom Circuits. Prentice-Hall, 1986. ISBN 0-13-539784-7.

[McMillan93] K. L. McMillan. Symbolic Model Checking. pages 25–60.

Springer US, 1993. ISBN 978-1-4613-6399-6.

[McMillan03a] K. McMillan. Interpolation and SAT-Based Model Checking. In

J. Hunt, Warren A. and F. Somenzi, editors, Computer Aided Veri-
fication (CAV), volume 2725 of Lecture Notes in Computer Science
(LNCS), pages 1–13. Springer, 2003. ISBN 978-3-540-40524-5.

132

BIBLIOGRAPHY

[McMillan03b] K. L. McMillan and N. Amla. Automatic Abstraction without

Counterexamples. In H. Garavel and J. Hatcliff, editors, Tools
and Algorithms for the Construction and Analysis of Systems, vol-

ume 2619 of Lecture Notes in Computer Science (LNCS), pages

2–17. Springer, 2003. ISBN 978-3-540-00898-9.

[Melham87] T. F. Melham. Abstraction Mechanisms for Hardware Verifica-

tion. In G. Birtwistle and P. Subrahmanyam, editors, VLSI Spec-
ification, Verification and Synthesis, volume 35 of The Kluwer
International Series in Engineering and Computer Science, pages

267–291. Springer US, 1987. ISBN 978-1-4612-9197-8.

[Melocco03] K. Melocco, H. Arora, P. Setlak, G. Kunselman, and S. Mard-

hani. A Comprehensive Approach to Assessing and Analyzing

1149.1 Test Logic. In Proc. IEEE International Test Conference
(ITC), pages 358–367. 2003.

[Mishchenko06] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-Aware AIG

Rewriting A Fresh Look at Combinational Logic Synthesis. In

Proc. ACM Design Automation Conference (DAC), pages 532–535.

2006.

[Mitra10] S. Mitra, S. Seshia, and N. Nicolici. Post-Silicon Valida-

tion Opportunities, Challenges and Recent Advances. In Proc.
ACM/IEEE Design Automation Conference (DAC), pages 12–17.

2010.

[Moore65] G. E. Moore. Cramming More Components onto Integrated Cir-

cuits. Electronics, 38(8), April 1965.

[Moore75] G. E. Moore. Progress in Digital Integrated Electronics. In Proc.
IEEE International Electron Devices Meeting, volume 21, pages

11–13. 1975.

[N45] Nangate 45nm Open Cell Library v1.3,

http://www.nangate.com. Accessed: Oct. 16, 2013.

[Nadeau-Dostie09] B. Nadeau-Dostie, S. Adham, and R. Abbott. Improved Core Iso-

lation and Access for Hierarchical Embedded Test. IEEE Design
& Test of Computers, 26(1):18 –25, 2009.

133

BIBLIOGRAPHY

[Narayanan93] S. Narayanan and M. A. Breuer. Reconfigurable Scan Chains:

A Novel Approach To Reduce Test Application Time. In Proc.
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 710–715. 1993.

[Nguyen08] M. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stof-

fel, and W. Kunz. Unbounded Protocol Compliance Verifica-

tion Using Interval Property Checking With Invariants. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD), 27(11):2068–2082, 2008.

[Nguyen11] M. Nguyen, M. Wedler, D. Stoffel, and W. Kunz. Formal Hard-

ware/Software Co-Verification by Interval Property Checking

with Abstraction. In Proc. ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 510–515. 2011.

[Nicolaidis89] M. Nicolaidis, S. Noraz, and B. Courtois. A Generalized The-

ory of Fail-Safe Systems. In International Symposium on Fault-
Tolerant Computing (FTCS), Digest of Papers, pages 398–406.

1989.

[Papaspyridis88] A. Papaspyridis. A PROLOG-based Connectivity Verification

Tool. In Proc. ACM/IEEE Design Automation Conference (DAC),

pages 523–527. 1988.

[Park10] K. Park, S. Yoo, T. Kim, and J. Kim. JTAG Security System Based

on Credentials. Journal of Electronic Testing (JETTA), 26:549–

557, 2010.

[Park12] K.-Y. Park, S.-G. Yoo, and J. Kim. Debug Port Protection Mech-

anism for Secure Embedded Devices. IEEE Journal of Semicon-
ductor Technology and Science, 12(2):240–253, 2012.

[Pierce13] L. Pierce and S. Tragoudas. Enhanced Secure Architecture for

Joint Action Test Group Systems. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 21(7):1342–1345, 2013.

[Pnueli77] A. Pnueli. The Temporal Logic of Programs. In Proc. IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 46–57.

1977.

134

BIBLIOGRAPHY

[Prasad05] M. R. Prasad, A. Biere, and A. Gupta. A Survey of Recent Ad-

vances in SAT-Based Formal Verification. International Journal
on Software Tools for Technology Transfer, 7(2):156–173, 2005.

[Quasem04] M. S. Quasem and S. K. Gupta. Designing Reconfigurable Mul-

tiple Scan Chains for Systems-on-Chip. In Proc. IEEE VLSI Test
Symposium (VTS), pages 367–376. 2004.

[Rearick05] J. Rearick, B. Eklow, K. Posse, A. Crouch, and B. Bennetts. IJTAG

(Internal JTAG): A Step Toward a DFT Standard. In Proc. IEEE
International Test Conference (ITC). 2005. Paper 32.4.

[Rearick06] J. Rearick and A. Volz. A Case Study of Using IEEE P1687 (IJ-

TAG) for High-Speed Serial I/O Characterization and Testing. In

Proc. IEEE International Test Conference (ITC). 2006. Paper 10.2.

[Remmers04] J. Remmers, M. Villalba, and R. Fisette. Hierarchical DFT

Methodology—A Case Study. In Proc. IEEE International Test
Conference (ITC), pages 847–856. 2004.

[Rosenfeld10] K. Rosenfeld and R. Karri. Attacks and Defenses for JTAG. IEEE
Design & Test of Computers, 27(1):36–47, 2010.

[Rosenfeld11] K. Rosenfeld and R. Karri. Security-Aware SoC Test Access Mech-

anisms. In Proc. IEEE VLSI Test Symposium (VTS), pages 100–

104. 2011.

[Saïdi99] H. Saïdi and N. Shankar. Abstract and Model Check while You

Prove. In N. Halbwachs and D. Peled, editors, Computer Aided
Verification (CAV), volume 1633 of Lecture Notes in Computer
Science (LNCS), pages 443–454. Springer, 1999. ISBN 978-3-

540-66202-0.

[Samaranayake02] S. Samaranayake, N. Sitchinava, R. Kapur, M. Amin, and

T. Williams. Dynamic Scan: Driving Down the Cost of Test. IEEE
Trans. on Computers, 35(10):63–68, 2002.

[Samaranayake03] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Ka-

pur, and T. W. Williams. A Reconfigurable Shared Scan-in Archi-

tecture. In Proc. IEEE VLSI Test Symposium (VTS), pages 9–14.

2003.

135

BIBLIOGRAPHY

[SEC05] IEEE Standard for Embedded Core Test 1500-2005, 2005. Test

Technology Technical Committee of the IEEE Computer Society,

USA.

[Sehgal04] A. Sehgal, S. K. Goel, E. J. Marinissen, and K. Chakrabarty. IEEE

P1500-Compliant Test Wrapper Design for Hierarchical Cores.

In Proc. IEEE International Test Conference (ITC), pages 1203–

1212. 2004.

[Sheeran00] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Prop-

erties Using Induction and a SAT-Solver. In J. Hunt, Warren A.

and S. D. Johnson, editors, Formal Methods in Computer-Aided
Design (FMCAD), volume 1954 of Lecture Notes in Computer Sci-
ence (LNCS), pages 127–144. Springer, 2000. ISBN 978-3-540-

41219-9.

[Singh97] H. Singh, G. Patankar, and J. Beausang. A Symbolic Simulation-

Based ANSI/IEEE Std 1149.1 Compliance Checker and BSDL

Generator. In Proc. IEEE International Test Conference (ITC),

pages 256–264. 1997.

[Sistla85] A. P. Sistla and E. M. Clarke. The Complexity of Propositional

Linear Temporal Logics. Journal of the ACM (JACM), 32(3):733–

749, July 1985.

[Sourgen92] L. Sourgen. Security Locks for Integrated Circuit, May 1992. US

Patent App. 5101121 A.

[Stollon11] N. Stollon. On-Chip Instrumentation: Design and Debug for Sys-
tems on Chip. Springer US, 2011. ISBN 978-1-4419-7563-8.

[Tehranipoor11] M. Tehranipoor and C. Wang. Introduction to Hardware Security
and Trust. Springer, 2011. ISBN 978-1-4419-8080-9.

[Tseitin83] G. S. Tseitin. On the Complexity of Derivation in Propositional

Calculus. In Automation of Reasoning, pages 466–483. Springer,

1983.

[Urdahl12] J. Urdahl, D. Stoffel, M. Wedler, and W. Kunz. System Verifi-

cation of Concurrent RTL Modules by Compositional Path Pred-

icate Abstraction. In Proc. ACM Design Automation Conference

136

BIBLIOGRAPHY

(DAC), pages 334–343. 2012.

[Vermeulen08] B. Vermeulen, N. Stollon, R. Kuhnis, G. Swoboda, and J. Rearick.

Overview of Debug Standardization Activities. IEEE Design &
Test of Computers, 25(3):258–267, 2008.

[Wang06] L.-T. Wang, C.-W. Wu, and X. Wen. VLSI Test Principles and
Architectures: Design for Testability. Elsevier, 2006. ISBN

9780080474793.

[Wang10] L.-T. Wang, C. E. Stroud, and N. A. Touba. System-on-Chip Test
Architectures: Nanometer Design for Testability. Morgan Kauf-

mann, 2010.

[Whetsel99] L. Whetsel. Addressable Test Ports An Approach to Testing Em-

bedded Cores. In Proc. IEEE International Test Conference (ITC),

pages 1055–1064. 1999.

[Windley95] P. Windley. Formal Modeling and Verification of Microproces-

sors. IEEE Trans. on Computers, 44(1):54–72, 1995.

[Wu98] Y. Wu. Diagnosis of Scan Chain Failures. In Proc. IEEE Defect and
Fault Tolerance in VLSI Systems (DFTS), pages 217–222. 1998.

[Xiang08] D. Xiang, Y. Zhao, K. Chakrabarty, and H. Fujiwara. A Recon-

figurable Scan Architecture With Weighted Scan-Enable Signals

for Deterministic BIST. IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems (TCAD), 27(6):999–1012, 2008.

[Yang04] B. Yang, K. Wu, and R. Karri. Scan Based Side Channel Attack on

Dedicated Hardware Implementations of Data Encryption Stan-

dard. In Proc. IEEE International Test Conference (ITC), pages

339–344. 2004.

[Yang06] B. Yang, K. Wu, and R. Karri. Secure Scan: A Design-for-Test

Architecture for Crypto Chips. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 25(10):2287–

2293, 2006.

[Zorian98] Y. Zorian, E. Marinissen, and S. Dey. Testing Embedded-Core

Based System Chips. In Proc. IEEE International Test Conference

137

BIBLIOGRAPHY

(ITC), pages 130–143. 1998.

[Zorian02] Y. Zorian. Embedded Memory Test and Repair: Infrastructure IP

for SOC Yield. In Proc. IEEE International Test Conference (ITC),

pages 340–349. 2002.

[Zorian05] Y. Zorian and A. Yessayan. IEEE 1500 Utilization in SOC Design

and Test. In Proc. IEEE International Test Conference (ITC). 2005.

Paper 23.2.

[Zou03] W. Zou, S. Reddy, I. Pomeranz, and Y. Huang. SOC Test Schedul-

ing Using Simulated Annealing. In Proc. IEEE VLSI Test Sympo-
sium (VTS), pages 325–330. 2003.

138

Appendices

A Benchmark Scan Networks 141

A.1 SIB-Based Architecture . 142

A.2 MUX-Based Architecture . 142

A.3 Flat Architecture . 143

B Results: Verification 147

B.1 Verification of Robustness . 147

B.2 Verification of Accessibility . 148

B.3 Performance Analysis . 151

C Results: Access Optimization 157

C.1 MUX-based Architecture . 157

C.2 SIB-based Architecture . 158

C.3 Flat Architecture . 159

D Results: Access Protection 161

D.1 Individual Accesses . 161

D.2 Concurrent Accesses . 163

E Curriculum Vitae of the Author 167

139

A. Benchmark Scan Networks

The reconfigurable scan networks considered in this thesis are derived from bench-

mark suites for test scheduling (ITC’02) and test pattern generation (ISCAS’85):

• The ITC’02 [Marinissen02] suite describes a set of hierarchical systems composed

of multiple modules (cores) with a defined number of inputs, outputs, internal

scan chains, and submodules (constituent cores). This suite is used to construct

hierarchical RSN architectures.

• The ISCAS’85 [Brglez85] suite is a set of combinational circuits with up to a few

thousand gates. Based on this suite, complex control signals are developed for

flat RSN architectures.

Three benchmark RSN architectures are developed:

• SIB-based architecture with hierarchies derived from ITC’02 benchmarks. Each

module of an ITC’02 benchmark is assigned a dedicated RSN with one scan input

and one scan output. The scan network for each module includes scan segments

for boundary and internal scan chains, as well as the scan networks of the con-

stituent submodules. The access to scan segments and submodules is controlled

by SIBs (cf. Section 3.4 and Figure 3.2, p. 45).

• MUX-based architecture constructed from ITC’02 benchmarks as above, with two

modes of operation for data and configuration access.

• Flat architecture with control signals derived from ISCAS’85 circuits. This ar-

chitecture has little practical significance, but it serves as a valuable benchmark

with complex combinational dependencies for scalability evaluation of verifica-

tion algorithms.

To the best knowledge of the author, this is the first benchmark suite for reconfigurable

scan architectures.

141

A. Benchmark Scan Networks

Module 0, Level 1

Module 2, Level 2

Module 1, Level 2

SIB
SI SO

TO FROM

OUTPUTS

SIB
SI SO

TO FROM

INPUTS

SIB
SI SO

TO FROM

SIB
SI SO

TO FROM

OUTPUTS

SIB
SI SO

TO FROM

INPUTS

SIB
SI SO

TO FROM

CHAIN 1

SIB
SI SO

TO FROM

…

…
SCAN

OUT

SCAN

IN

Figure A.1.: SIB-based scan architecture for the p34392 benchmark

A.1. SIB-Based Architecture

The SIB-based scan architecture follows the design from [Ghani Zadegan11b]. Seg-

ment insertion bits (cf. Figure 3.2, p. 45) are used as hierarchical gateways to the

ITC’02 cores, their submodules, as well as input and output boundary registers and

individual scan chains. Figure A.1 shows the SIB-based architecture for the top-level

part of the p34392 benchmark. The initial scan configuration is 0 for all SIBs (SIBs are

closed) and unknown (X) for all data scan segments (e.g. INPUTS, OUTPUTS).

Table A.1 shows the characteristics of the SIB-based benchmarks. Column “# Levels”

gives the number of hierarchy levels in the corresponding ITC’02 benchmark. The

number of scan segments (“# Scan segments”) includes the 1-bit scan segments that

comprise the SIBs. The last column gives the total benchmark area for the Nangate

45 nm library [N45].

A.2. MUX-Based Architecture

The MUX-based architecture supports two access modes: configuration access and data

access. The configuration access mode allows to reconfigure the active scan path by

attaching or detaching internal scan segments or submodules. The data access mode

provides access only to those scan segments that were chosen in the configuration

mode.

142

A.3. Flat Architecture

Scan # Scan Area
Design # Levels # SIBs segments cells [µm2]

u226 2 50 90 1 466 22 313
d281 2 59 109 3 872 58 747
d695 2 168 325 8 397 126 777
h953 2 55 101 5 641 85 133
g1023 2 80 145 5 386 81 396
f2126 2 41 77 15 830 239 902
q12710 2 25 47 26 183 397 483
p22810 3 283 537 30 111 453 537
p34392 3 123 226 23 242 352 290
p93791 3 621 1 209 98 605 1 486 289
t512505 2 160 288 77 006 1 167 569
a586710 3 40 72 41 675 634 087

Table A.1.: Characteristics of the SIB-based benchmark architectures

Figure A.2 shows the MUX-based architecture for the top-level part of the p34392

benchmark. The scan chain of each module starts with a 1-bit configuration scan

segment AM that sets either the configuration access mode (AM = 0), in which only the

configuration scan segments C can be accessed, or the data access mode (AM = 1). Once

configured, this architecture allows fast data access since the control scan segments C

are not present on the active scan path in the data access mode. The initial scan

configuration (after reset) is 0 for all control scan segments (C and AM) and unknown

(X) for all data scan segments (e.g. INPUTS and OUTPUTS).

Table A.2 presents the characteristics of the MUX-based benchmarks. Column “# Lev-

els” gives the number of hierarchy levels in the corresponding ITC’02 benchmark. The

number of multiplexers (“# Muxes”) is equivalent to the number of control scan seg-

ments (C and AM). The last column gives the total benchmark area for the Nangate

45 nm library [N45].

A.3. Flat Architecture

The flat scan architecture is a daisy-chain of 1-bit configuration scan segments, fol-

lowed with a chain of 32-bit data scan segments that can be individually bypassed by

scan multiplexers. Figure A.3 shows the flat architecture for the c17 benchmark from

143

A. Benchmark Scan Networks

Module 0, Level 1

Module 2, Level 2

Module 1, Level 2

INPUTS

SCAN

OUTSCAN

IN
OUTPUTSAM

C C

INPUTS OUTPUTSAM

C C

C C

CHAIN 1

C

…

…

…

…

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

Figure A.2.: MUX-based scan architecture for the p34392 benchmark

SCAN

OUTSCAN

IN

c17

D DC

0

1

0

1CCCCCC

& &

&

&

&

&

Figure A.3.: Flat scan architecture for the c17 benchmark

the ISCAS’85 suite. Each configuration scan segment C drives a primary input of c17,

and the access to each data scan segment D is controlled by a primary output of c17. A

data scan segment belongs to the active scan path if the corresponding output of c17

is 1 and is bypassed otherwise. The initial scan configuration is 0 for all control scan

segments C and unknown (X) for all data scan segments D.

Table A.3 presents the characteristics of the flat benchmarks. Column “# Logic gates”

gives the number of gates in the control logic block (corresponding ISCAS’85 bench-

mark). The number of multiplexers (“# Muxes”) is equivalent to the number of data

scan segments (D). The last Clim gives the total benchmark area for the Nangate 45

nm library [N45].

144

A.3. Flat Architecture

Scan # Scan Area
Design # Levels # Muxes segments cells [µm2]

u226 2 59 99 1 475 22 557
d281 2 67 117 3 880 58 979
d695 2 178 335 8 407 127 007
h953 2 63 109 5 649 85 349
g1023 2 94 159 5 400 81 727
f2126 2 45 81 15 834 240 021
q12710 2 30 51 26 188 397 592
p22810 3 311 565 30 139 454 107
p34392 3 142 245 23 261 352 699
p93791 3 653 1 241 98 637 1 486 772
t512505 2 191 319 77 037 1 168 310
a586710 3 47 79 41 682 634 258

Table A.2.: Characteristics of the MUX-based benchmark architectures

Logic # Scan # Scan Area
Design # Muxes gates segments cells [µm2]

c17 2 6 7 69 1 038
c432 7 160 43 260 3 950
c499 32 202 73 1 065 16 098
c880 26 383 86 892 13 473
c1355 32 546 73 1 065 16 097
c1908 25 880 58 833 12 633
c2670 140 1 269 373 4 713 70 720
c3540 22 1 669 72 754 11 731
c5315 123 2 307 301 4 114 62 276
c6288 32 2 416 64 1 056 17 313
c7552 108 3 513 315 3 663 55 774

Table A.3.: Characteristics of the flat benchmark architectures

145

B. Results: Verification

The CSU-accurate verification approach developed in Chapter 5 (p. 69) is evaluated

on RSN benchmarks from Appendix A (p. 141). Section B.1 presents the results for ro-

bustness verification of both fault-free and faulty benchmark circuits. The accessibility

of scan segments is verified in Section B.2. Section B.3 compares the performance of

the proposed verification method with a cycle-accurate model checking tool.

The experiments are run on an Intel Core2 CPU operating at 2.83 GHz. As a SAT

solver, MiniSat [Eén04] is used.

B.1. Verification of Robustness

The strong robustness property is verified using the technique presented in Sec-

tion 5.2.2 (p. 77). All considered benchmarks are successfully proven strongly robust.

Detailed SAT solver statistics for proving strong robustness are presented in Table B.1

for the SIB-based, MUX-based, and flat RSN architectures. Columns “Variables” and

“Clauses” give the number of variables and clauses contained in the inductive SAT

instance ϕinduct (cf. formula (5.8), p. 77). The average and maximal number of times

that the SAT solver backtracks while checking the satisfiability of ϕinduct is given under

“Conflicts”. Columns tinit
solve and tinduct

solve give the SAT solving time for proving ϕinit and

ϕinduct unsatisfiable, respectively. The total verification time amounts to tinit
solve + tinduct

solve .

For the SIB-based architecture, the verification of robustness takes from 50 ms

(q12710) up to 93 s for the largest benchmark (p93791). For MUX-based designs,

the worst case verification time is 72 s for p93791. Benchmarks with the flat scan

architecture have simpler sequential dependencies and, hence, the worst case verifica-

tion effort is below 1 s.

147

B. Results: Verification

Debugging Faulty Designs

In the following, the MUX-based benchmarks from Section A.2 (p. 142) are randomly

mutated to model possible design bugs. Three types of design bugs are considered:

• Path bug: The successors of two random scan elements (scan segments or scan

multiplexers) are swapped.

• Control bug: The address control signals of two random scan multiplexers are

swapped.

• Mux bug: The inputs of a random 2-input scan multiplexer are swapped.

For each benchmark and each bug type, a hundred random faulty RSNs is generated.

The CSU-accurate bounded model checking method from Section 5.1 (p. 70) proves

that none of the faulty RSNs is strongly robust. For each faulty RSN, the generated

counterexample shows the cause of robustness violation, and thus can be used to

locate the bug. Since all the random bugs are detected, it appears that design errors

are very likely to violate the robustness property.

Table B.2 presents the detailed verification results for the faulty MUX-based bench-

marks. Columns “Clauses” and “Conflicts” give the number of clauses in the BMC SAT

instances and the number of times that the solver backtracks. The length of coun-

terexamples (number of CSU operations required to refute the robustness property by

reaching an invalid scan configuration) is given in column “Depth”. Each column lists

the average and maximal values for the random faulty instances of each benchmark.

tavg
solve and tmax

solve give the average and maximal effort required to detect a bug.

The average verification effort for a faulty RSN is smaller than the verification time of

its fault-free counterpart (cf. Table B.1). The maximal verification effort is an order of

magnitude more than the average effort, and is below 2 minutes in the worst case. All

counterexamples are found within a depth of 2 CSU operations.

B.2. Verification of Accessibility

The observability and controllability of scan segments is verified using the technique

discussed in Section 5.1.1 (p. 71). For each scan segment s of an RSN, it is shown that

the property G [¬Active(s)] does not hold in the CAM, i.e., s is accessible. In addition,

148

B.2. Verification of Accessibility

it is also verified that the initial state of remaining scan segments can be restored after

accessing the target scan segment.

Table B.3 presents the detailed verification effort for SIB-based, MUX-based and flat

scan architectures. Column “Clauses” gives the number of clauses contained in the

SAT instance after a counterexample is found. The number of times the SAT solver

needs to backtrack is listed under “Conflicts”. Column “Depth” shows the number of

CSU operations that are required to access a target scan segment and restore the initial

state of the remaining scan segments. The average and maximal numbers refer to the

accessibility proofs for individual scan segments. tmax
solve is the maximal solve time for a

single scan segment, whereas ttotal
solve is the total verification time of a benchmark.

Although the size of SAT instances grows up to about 323,000 clauses, the maximal

solve time for accessibility verification of a single scan segment is 0.5 s in the worst

case, and just 0.16 s on average for the largest RSN (MUX-based p93791). This is

due to the fact that the majority of clauses describes signal propagation with just two

literals, which is efficiently handled by state-of-the-art SAT solvers. For the majority

of the RSNs, the total verification time is below 10 s, and it raises up to 200 s for the

largest RSN.

The verification of SIB-based architectures does not require the solver to backtrack

since a solution is found by direct implications as soon as a sufficient number of CSU

operations is allowed in the SAT instance. In contrast, the MUX-based architecture

may cause temporal conflicts and backtracking if the solver takes a wrong decision on

the access order to configuration registers. This also explains the increased effort for

the verification of the MUX-based RSNs, which is roughly doubled in comparison to

the verification time for SIB-based designs.

As already shown in the previous section, all considered benchmark circuits are robust.

Therefore, the benchmark CAMs can be simplified by removing the predicate Valid

from the definition of the Active function (cf. Section 5.2.1, p. 75). This simplification

leads to a slightly lower verification effort: Accessibility verification in the simplified

CAM leads to about 8% reduction in the number of clauses, and 4% reduction of the

SAT solver runtime on average.

149

B. Results: Verification

Debugging Faulty Designs

In the following, the accessibility verification method is applied to faulty MUX-based

RSNs with random design bugs. The faulty designs are generated as described in the

previous section.

A scan segment s is inaccessible if the LTL property As := G [¬Active(s)] holds in the

CSU-accurate model. Let ct(As) be the completeness threshold for As. The property

As is proven by showing that there exists no counterexample to As with length ct(As).

The completeness threshold ct(As) is calculated using the method from Section 5.2.4

(p. 82): In the MUX-based architecture, for any target scan segment s, the cone of

influence of As always includes only one node per level. Let n ∈ N+ be the hierarchy

level of the module that contains s in the ITC’02 benchmark (cf. Figure A.2, p. 144).

According to Corollary 2 (p. 83):

• If s is a configuration scan segment AM, then:

ct(As) := 22n−2 (B.1)

• If s is a configuration scan segment C, then:

ct(As) := 22n−1 (B.2)

• Otherwise, if s is not a configuration scan segment (e.g. INPUTS or OUTPUTS in

Figure A.2), then:

ct(As) := 22n (B.3)

Thus, as the deepest benchmark has 3 hierarchy levels, the maximal completeness

threshold for property As is 26 = 64.

The completeness threshold of 64 time steps is used as the BMC bound in all verifica-

tion experiments regardless of the actual hierarchy level of the target scan segment.

Table B.4 presents the verification results: Column “Found” gives the ratio of faulty

RSNs in which the bug is found, i.e., it is proven that at least one scan segment is

inaccessible. Column “Inaccessible” gives the average ratio of scan segments that are

found inaccessible in a faulty RSN. tavg
solve and tmax

solve give the average and maximal total

verification time per faulty RSN, respectively.

150

B.3. Performance Analysis

The average verification effort for a faulty RSN is a few times higher than the verifica-

tion time of its fault-free counterpart due to the higher bound (cf. Table B.3, p. 154).

The average verification time for the largest benchmark is below 400 s. The maximal

verification time is below 2 hours in the worst case. The path bugs and mux bus are

always found (each faulty RSN has at least one inaccessible scan segment), whereas

up to 98% of control bugs do not affect the accessibility of scan segments. This means

that it is often possible to find access sequences to all scan segments in the RSN, even

if control signals of two random scan multiplexers are swapped. Nevertheless, all the

random bugs are found by checking the robustness property, as shown in the previous

section.

B.3. Performance Analysis

In the following, the performance of the CSU-accurate BMC technique from Section 5.1

(p. 70) is compared to the performance of a general purpose, cycle-accurate model

checker.

A state-of-the-art, commercial model checker is applied to the verification of acces-

sibility in a cycle-accurate hardware model of the largest benchmark (p93791) with

MUX-based architecture. In each experiment, the following property is subject to ver-

ification: P := G [¬select(s)], where s is a random scan segment. Since this prop-

erty does not specify if the selected segment s belongs to an active scan path, P is

weaker than the property G [¬Active(s)] that can be checked in the CAM. (Function

Active(s) is not part of the cycle-accurate network model and is nontrivial to specify

in the general-purpose tool.)

Table B.5 shows the time that is required to find a counterexample to property P with

the cycle-accurate model checker (second column) and the proposed approach (third

column). The cycle-accurate model checker exceeds the time limit of 1 hour in two

experiments. In the remaining experiments, the solving time varies widely from 12 up

to 364 s. In contrast, the proposed approach is successful in all the experiments and

exhibits much more stable run-times below 0.21 s. This result clearly shows that the

proposed CSU-accurate abstraction provides a great performance improvement over

cycle-accurate models.

151

B. Results: Verification

Design Arch. Variables Clauses Conflicts tinit
solve [s] tinduct

solve [s]

u226 SIB 2600 5622 1289 0.00 0.19
d281 SIB 3121 6645 1877 0.00 0.35
d695 SIB 9191 19545 4554 0.01 3.29
h953 SIB 2897 6179 1576 0.00 0.26
g1023 SIB 4195 8950 2339 0.00 0.65
f2126 SIB 2181 4623 965 0.00 0.10
q12710 SIB 1341 2884 658 0.00 0.05
p22810 SIB 15325 32605 8884 0.05 11.40
p34392 SIB 6518 13902 3568 0.01 1.66
p93791 SIB 34185 72633 18955 0.22 92.70
t512505 SIB 8386 17931 4783 0.06 4.03
a586710 SIB 2074 4442 1084 0.00 0.11
u226 MUX 2756 5195 1352 0.02 0.16
d281 MUX 3220 6098 1734 0.04 0.30
d695 MUX 9023 17111 4502 0.18 3.30
h953 MUX 3008 5688 1585 0.03 0.24
g1023 MUX 4411 8370 2321 0.08 0.61
f2126 MUX 2214 4209 1018 0.01 0.09
q12710 MUX 1419 2682 768 0.00 0.04
p22810 MUX 15352 29054 8225 0.54 8.98
p34392 MUX 6755 12795 3497 0.01 1.51
p93791 MUX 33318 63006 17725 0.60 72.00
t512505 MUX 8872 16787 4662 0.26 2.94
a586710 MUX 2200 4177 1124 0.01 0.12
c17 FLAT 123 317 12 0.00 0.00
c432 FLAT 861 1446 40 0.01 0.00
c499 FLAT 2163 4206 383 0.01 0.02
c880 FLAT 2019 3368 335 0.02 0.02
c1355 FLAT 2435 4513 407 0.02 0.03
c1908 FLAT 2853 4790 213 0.02 0.01
c2670 FLAT 8715 11962 2144 0.53 0.61
c3540 FLAT 4405 6479 298 0.01 0.01
c5315 FLAT 9929 13898 1594 0.33 0.41
c6288 FLAT 6121 9821 786 0.02 0.04
c7552 FLAT 12037 15427 2001 0.29 0.35

Table B.1.: Robustness verification effort

152

B.3. Performance Analysis

Clauses Conflicts Depth tavg
solve tmax

solve
Design Bug type avg / max avg / max avg / max [s] [s]

u226 path 7808 / 10369 338 / 679 0.97 / 1 0.12 0.2
d281 path 9259 / 11914 259 / 457 1.00 / 1 0.13 0.2
d695 path 25482 / 32989 401 / 694 1.00 / 1 0.46 0.7
h953 path 8248 / 8533 285 / 575 0.96 / 1 0.12 0.2
g1023 path 13031 / 16458 543 / 889 0.99 / 1 0.24 0.4
f2126 path 6139 / 8003 146 / 291 0.99 / 1 0.07 0.1
q12710 path 3845 / 3948 93 / 251 1.00 / 1 0.04 0.1
p22810 path 42526 / 55032 955 / 9617 1.00 / 2 1.31 13.8
p34392 path 17335 / 27144 578 / 3516 1.15 / 2 0.43 1.8
p93791 path 91082 / 118357 1509 / 16579 1.05 / 2 6.11 78.7
t512505 path 25505 / 33359 904 / 1818 0.99 / 1 0.68 1.4
a586710 path 5836 / 9236 255 / 1186 1.06 / 2 0.09 0.2
u226 control 7501 / 10110 373 / 1708 0.94 / 2 0.14 0.4
d281 control 8923 / 11526 362 / 2042 1.01 / 2 0.16 0.4
d695 control 25732 / 33013 628 / 4816 1.01 / 2 0.66 3.3
h953 control 8352 / 10857 386 / 800 0.99 / 1 0.15 0.3
g1023 control 12344 / 16778 480 / 1031 0.97 / 1 0.26 0.5
f2126 control 6307 / 8183 203 / 2023 0.99 / 2 0.09 0.4
q12710 control 3817 / 5310 127 / 923 1.00 / 2 0.05 0.1
p22810 control 42901 / 59812 1743 / 10149 1.09 / 2 2.43 15.0
p34392 control 20170 / 27690 1685 / 4310 1.53 / 2 0.91 2.1
p93791 control 94212 / 134023 3690 / 18330 1.17 / 2 15.42 107.0
t512505 control 25105 / 33139 980 / 2243 0.94 / 1 0.84 2.6
a586710 control 6292 / 9557 622 / 1788 1.36 / 2 0.14 0.3
u226 mux 7013 / 9889 303 / 915 0.80 / 1 0.14 0.2
d281 mux 8401 / 11389 279 / 1110 0.87 / 1 0.17 0.4
d695 mux 23878 / 25214 621 / 1586 0.95 / 1 0.76 1.6
h953 mux 7844 / 11160 374 / 819 0.88 / 1 0.16 0.2
g1023 mux 10909 / 16557 454 / 1155 0.75 / 1 0.28 0.7
f2126 mux 5480 / 8121 169 / 530 0.83 / 1 0.10 0.2
q12710 mux 3405 / 5170 88 / 411 0.77 / 1 0.04 0.1
p22810 mux 40673 / 54955 1528 / 10092 0.98 / 2 2.32 13.3
p34392 mux 17349 / 28780 1183 / 4627 1.26 / 2 0.82 2.9
p93791 mux 89575 / 118381 2211 / 20957 1.03 / 2 10.21 97.4
t512505 mux 23002 / 33546 802 / 2329 0.81 / 1 0.93 3.1
a586710 mux 5226 / 8934 297 / 1483 0.93 / 2 0.11 0.3

Table B.2.: Robustness verification effort for MUX-based RSNs with random design
bugs

153

B. Results: Verification

Clauses Conflicts Depth tmax
solve ttotal

solve
Design Arch. avg / max avg / max avg / max [s] [s]

u226 SIB 8506 / 10431 0 / 0 2.30 / 3 0.01 0.46
d281 SIB 10459 / 12482 0 / 0 2.39 / 3 0.02 0.73
d695 SIB 31269 / 36574 0 / 0 2.45 / 3 0.04 6.63
h953 SIB 9565 / 11594 0 / 0 2.34 / 3 0.01 0.57
g1023 SIB 13822 / 16826 0 / 0 2.33 / 3 0.02 1.19
f2126 SIB 7240 / 8698 0 / 0 2.37 / 3 0.01 0.41
q12710 SIB 4471 / 5368 0 / 0 2.37 / 3 0.01 0.11
p22810 SIB 52553 / 77376 0 / 0 2.47 / 4 0.06 19.36
p34392 SIB 23954 / 33028 0 / 0 2.69 / 4 0.03 3.40
p93791 SIB 119056 / 172082 0 / 0 2.53 / 4 0.15 101.83
t512505 SIB 27653 / 33685 0 / 0 2.32 / 3 0.04 5.07
a586710 SIB 7231 / 10521 0 / 0 2.51 / 4 0.01 0.32
u226 MUX 15379 / 20617 1.6 / 8 3.53 / 5 0.02 0.97
d281 MUX 18467 / 23797 1.7 / 9 3.70 / 5 0.03 1.35
d695 MUX 52488 / 65189 1.9 / 10 3.87 / 5 0.06 12.90
h953 MUX 16934 / 22293 2.4 / 17 3.61 / 5 0.02 1.31
g1023 MUX 24855 / 32917 2.0 / 27 3.58 / 5 0.04 2.70
f2126 MUX 12484 / 16213 2.2 / 16 3.67 / 5 0.02 0.66
q12710 MUX 8072 / 10573 2.4 / 8 3.63 / 5 0.01 0.26
p22810 MUX 91012 / 150787 5.1 / 86 3.91 / 7 0.19 39.62
p34392 MUX 44745 / 67367 8.9 / 93 4.38 / 7 0.08 8.67
p93791 MUX 201127 / 322891 6.4 / 222 4.06 / 7 0.53 197.39
t512505 MUX 50169 / 66465 3.8 / 38 3.58 / 5 0.06 10.60
a586710 MUX 13506 / 22105 4.1 / 41 3.96 / 7 0.02 0.72
c17 FLAT 372 / 504 0 / 0 1.29 / 2 0.00 0.00
c432 FLAT 3811 / 5403 0.5 / 9 1.16 / 2 0.01 0.08
c499 FLAT 9740 / 12102 0 / 0 1.44 / 2 0.01 0.32
c880 FLAT 8216 / 11186 2.4 / 27 1.24 / 2 0.01 0.33
c1355 FLAT 11574 / 14358 1.1 / 4 1.44 / 2 0.02 0.41
c1908 FLAT 14337 / 18183 4.0 / 36 1.38 / 2 0.01 0.32
c2670 FLAT 31772 / 42480 21.2 / 159 1.29 / 2 0.04 6.36
c3540 FLAT 22913 / 31510 6.1 / 109 1.19 / 2 0.02 0.73
c5315 FLAT 43937 / 59037 22.4 / 203 1.26 / 2 0.08 7.76
c6288 FLAT 39725 / 47760 200.1 / 1670 1.50 / 2 0.12 1.90
c7552 FLAT 54705 / 76078 36.3 / 629 1.18 / 2 0.12 10.47

Table B.3.: Accessibility verification effort

154

B.3. Performance Analysis

Found Inaccessible tavg
solve tmax

solve
Design Bug type [%] [%] [s] [s]

u226 path 100% 36.6% 5.2 23
d281 path 100% 23.0% 4.4 8
d695 path 100% 16.5% 26.5 35
h953 path 100% 16.6% 3.1 26
g1023 path 100% 11.6% 4.8 59
f2126 path 100% 33.4% 3.0 12
q12710 path 100% 22.7% 0.8 1
p22810 path 100% 8.9% 65.5 1096
p34392 path 100% 28.1% 28.3 50
p93791 path 100% 7.5% 217.7 269
t512505 path 100% 10.0% 18.1 320
a586710 path 100% 34.8% 3.0 11
u226 control 9% 2.6% 1.2 25
d281 control 7% 1.8% 1.4 40
d695 control 2% 1.2% 11.0 389
h953 control 6% 0.7% 0.8 4
g1023 control 2% 1.0% 2.4 83
f2126 control 13% 5.7% 1.3 21
q12710 control 18% 8.8% 0.7 7
p22810 control 2% 0.1% 21.2 46
p34392 control 4% 0.7% 5.2 43
p93791 control 3% 2.0% 221.3 5829
t512505 control 4% 2.7% 17.2 378
a586710 control 12% 5.4% 1.3 18
u226 mux 100% 27.5% 5.7 28
d281 mux 100% 20.8% 5.8 37
d695 mux 100% 12.3% 43.3 298
h953 mux 100% 16.8% 4.5 33
g1023 mux 100% 25.9% 20.4 97
f2126 mux 100% 30.3% 4.9 19
q12710 mux 100% 30.7% 1.4 7
p22810 mux 100% 10.9% 124.9 1100
p34392 mux 100% 19.4% 38.2 187
p93791 mux 100% 6.0% 380.8 6956
t512505 mux 100% 19.5% 70.4 618
a586710 mux 100% 34.3% 4.5 16

Table B.4.: Accessibility verification effort for faulty MUX-based RSNs

155

B. Results: Verification

Exp. No. Cycle-Accurate MC CSU-Accurate BMC Speedup

1 79 s 0.19 s 415x
2 364 s 0.13 s 2,800x
3 12 s 0.12 s 100x
4 38 s 0.14 s 271x
5 45 s 0.12 s 375x
6 27 s 0.21 s 129x
7 28 s 0.20 s 140x
8 >1 h 0.21 s >17,000x
9 >1 h 0.14 s >25,000x

10 54 s 0.13 s 415x

Table B.5.: Performance comparison of a cycle-accurate model checker and the pro-
posed CSU-accurate BMC

156

C. Results: Access Optimization

The access optimization technique developed in Chapter 6 (p. 91) is evaluated on

MUX-based, SIB-based and flat scan architectures from Appendix A (p. 141). The im-

plementation of the pattern generation procedure is based on the clasp toolkit [Geb-

ser11] which includes a Boolean SAT solver and a pseudo-Boolean optimization en-

gine. The optimization of access time is allowed up to three additional CSU operations

over the minimal number of CSUs required for an access. The pattern generation pro-

cedure is executed in four parallel processes (cf. Figure 6.3, p. 98) on an Intel Core2

CPU with four cores operating at 2.83 GHz.

The efficiency of the pattern generation procedure is evaluated in 1000 experiments

per benchmark RSN. In each experiment, the shortest pattern that merges read or

write accesses to 10 randomly chosen scan segments is searched for. It is assumed

that the update and capture phases of a CSU operation take one cycle each (D := 2 in

formula (6.5), p. 95). The resulting access time improvement is analyzed w.r.t. a pure

SAT-based solution.

The generated access patterns are validated by cycle-accurate simulation. For this

purpose, the RSN models are automatically translated to hardware Verilog models.

The generated access patterns are used as stimuli for the network’s primary scan-input.

During simulation, assertions verify that the access is performed correctly.

C.1. MUX-based Architecture

Table C.1 presents the pattern generation statistics for the MUX-based scan architec-

ture: Column “No optimization” gives the results of SAT-based pattern generation for

the minimal number of CSU operations (without optimization). For the 1000 experi-

ments, column nmin gives the average and maximal number of CSUs that are required

to implement an access to 10 random scan segments. Column tavgsolve gives the average

157

C. Results: Access Optimization

pattern generation effort per access. The average unoptimized access time in clock

cycles is given in column cycles.

Access time reduction of the proposed pattern generation procedure is evaluated in

two series of experiments, limiting the optimization effort to 2 and 20 s per access. The

corresponding columns “Opt. effort” in Table C.1 give the average and maximal access
time reduction (column reduction) w.r.t. the unoptimized, SAT-based solution. The

average number of additional CSU operations (in addition to nmin) that are required

to obtain the local minimum is given in column depth.

For the majority of benchmarks, an access time reduction of over 10x is achieved for

at least one pattern. For the t512505 benchmark, the access time is reduced by up

to 121x. This shows that access optimization is crucial to prevent solutions with pro-

hibitive access time or data volume. The proposed method also reduces unnecessary

access overhead: For most of the RSNs, the average access time is nearly halved within

2 s of computational time. Note that the reduction of access time leads to a propor-

tional reduction in scan data volume.

The results presented in Table C.1 are obtained with the pattern generation procedure

that terminates as soon as a local access time minimum is found. Potentially, a shorter

access may be found if more CSU operations are allowed. Further experiments with up

to 6 additional CSU operations over nmin, however, do not result in any further access

time improvement.

C.2. SIB-based Architecture

Access time optimization in SIB-based architectures reduces to a simple decision prob-

lem, as discussed in the introduction to Chapter 6 (p. 91). Although the proposed

pattern generation procedure is not required in this case, it is evaluated for SIB-based

benchmarks for the sake of completeness.

The results of access pattern generation for SIB-based architectures are presented in

Table C.2 (contents are analogous to Table C.1). The proposed access optimization

procedure reduces the access time by a factor of up to 1.9 w.r.t. the unoptimized

solution obtained with the SAT solver. In contrast to MUX-based architectures, the

local minimum is always found for the minimal number of CSU operations that is

158

C.3. Flat Architecture

No optimization Opt. effort 2 s Opt. effort 20 s

nmin tavgsolve cycles depth reduction depth reduction

Design avg / max [s] [cycles] avg avg / max avg avg / max

u226 5.9 / 7 0.02 922 0.42 1.57 / 10.0x 0.46 1.57 / 10.0x
d281 5.8 / 7 0.02 2342 0.72 1.81 / 19.7x 0.81 1.82 / 19.7x
d695 5.9 / 7 0.07 2752 0.58 1.81 / 9.1x 0.68 1.89 / 9.1x
h953 5.8 / 7 0.02 3240 0.83 1.92 / 7.4x 0.93 1.93 / 7.4x
g1023 5.7 / 7 0.03 2293 0.60 1.93 / 7.1x 0.65 1.97 / 7.1x
f2126 5.7 / 7 0.01 9574 0.88 1.81 / 82.5x 0.92 1.82 / 82.5x
q12710 5.7 / 7 0.01 17134 0.86 1.74 / 11.8x 0.86 1.74 / 11.8x
p22810 6.0 / 9 0.14 8686 0.60 2.06 / 22.8x 0.66 2.30 / 34.7x
p34392 6.9 / 10 0.06 13368 0.62 1.78 / 61.3x 0.74 2.00 / 62.2x
p93791 6.7 / 10 0.51 41790 0.30 1.30 / 4.8x 0.35 1.45 / 10.1x
t512505 5.6 / 7 0.07 28422 0.49 2.11 / 121.3x 0.48 2.26 / 121.3x
a586710 6.5 / 10 0.02 28672 1.21 2.09 / 93.0x 1.28 2.15 / 93.0x

Table C.1.: Access time reduction (reduction) for the MUX-based scan architecture
w.r.t. unoptimized solution (cycles)

required to implement the access (depth is zero). The best solution is usually found

within 2 s of optimization time, and extending the effort to 20 s achieves only a minor

access time reduction for larger benchmarks.

C.3. Flat Architecture

Table C.3 presents the optimization results for the flat scan architecture (contents

are analogous to Table C.1). Up to 3 CSU operations are required to perform an

unoptimized access to 10 random scan segments. The optimal solution is always found

for the minimal number of CSU operations (depth is zero). Optimization with an

effort of 2 s improves the access time by a factor of up to 3.2x. With an effort of 20 s,

the average access time is slightly improved for largest benchmarks (c5315, c6288,

c7552).

159

C. Results: Access Optimization

No optimization Opt. effort 2 s Opt. effort 20 s

nmin tavgsolve cycles depth reduction depth reduction

Design avg / max [s] [cycles] avg avg / max avg avg / max

u226 2.6 / 3 0.01 1129 0 1.36 / 1.8x 0 1.36 / 1.8x
d281 2.6 / 3 0.01 2711 0 1.35 / 1.9x 0 1.35 / 1.9x
d695 2.6 / 3 0.02 5287 0 1.30 / 1.6x 0 1.32 / 1.6x
h953 2.7 / 3 0.01 3765 0 1.33 / 1.8x 0 1.33 / 1.8x
g1023 2.7 / 3 0.01 2825 0 1.36 / 1.7x 0 1.36 / 1.7x
f2126 2.6 / 3 0.01 11522 0 1.34 / 1.8x 0 1.34 / 1.8x
q12710 2.6 / 3 0.00 20293 0 1.29 / 1.7x 0 1.29 / 1.7x
p22810 2.8 / 4 0.04 14596 0 1.20 / 1.6x 0 1.31 / 1.7x
p34392 3.2 / 4 0.02 14706 0 1.33 / 1.8x 0 1.35 / 1.8x
p93791 2.9 / 4 0.12 37423 0 1.09 / 1.2x 0 1.19 / 1.5x
t512505 2.6 / 3 0.02 44779 0 1.29 / 1.7x 0 1.37 / 1.7x
a586710 2.8 / 4 0.01 30538 0 1.34 / 1.9x 0 1.35 / 1.9x

Table C.2.: Access time reduction (reduction) for the SIB-based scan architecture
w.r.t. unoptimized solution (cycles)

No optimization Opt. effort 2 s Opt. effort 20 s

nmin tavgsolve cycles depth reduction depth reduction

Design avg / max [s] [cycles] avg avg / max avg avg / max

c17 1.6 / 2 0.00 79 0 1.06 / 1.4x 0 1.06 / 1.4x
c432 1.5 / 2 0.00 270 0 1.25 / 2.2x 0 1.25 / 2.2x
c499 1.9 / 2 0.01 828 0 1.24 / 2.2x 0 1.24 / 2.2x
c880 1.8 / 2 0.01 752 0 1.26 / 2.1x 0 1.26 / 2.1x
c1355 1.9 / 2 0.01 779 0 1.17 / 1.6x 0 1.17 / 1.6x
c1908 1.9 / 2 0.01 1036 0 1.89 / 3.2x 0 1.89 / 3.2x
c2670 1.9 / 3 1.76 3602 0 1.23 / 1.4x 0 1.23 / 1.4x
c3540 1.9 / 3 0.01 710 0 1.41 / 2.2x 0 1.41 / 2.2x
c5315 1.9 / 3 0.03 3733 0 1.19 / 1.4x 0 1.21 / 1.7x
c6288 2.0 / 2 0.33 691 0 1.10 / 1.8x 0 1.12 / 2.4x
c7552 1.8 / 2 0.04 3860 0 1.11 / 1.5x 0 1.25 / 1.7x

Table C.3.: Access time reduction (reduction) for the flat scan architecture w.r.t. un-
optimized solution (cycles)

160

D. Results: Access Protection

The cost of the filter-based protection method from Chapter 7 (p. 103) is evaluated on

MUX-based, SIB-based and flat scan architectures presented in Appendix A (p. 141).

Optimal restricted accesses are generated with the approach presented in Chapter 6

(p. 91) extended with the required constraints, as explained in Section 7.2 (p. 106).

The sequence filters are constructed according to the algorithm from Section 7.3.1

(p. 109). The resulting state diagrams are transformed automatically into Verilog

hardware models and synthesized for the Nangate 45nm open cell library [N45] with

area optimization goal.

The area overhead is calculated w.r.t. the area of the scan network, which includes

no system logic. The actual area overhead w.r.t. the full chip is expected to be much

lower. The resulting operating frequency of all evaluated filters is above 300 MHz,

which is significantly more than the usual JTAG clock speed (10 to 100 MHz).

Restricted accesses are generated for random samples of target scan segments. Except

for scan segments that configure the active scan path, all remaining scan segments are

considered protected. The results discussed in the following sections, including the

area overhead and the number of FSM states, represent average values acquired from

the evaluation of 10 filters built for different random samples of target segments. The

standard deviation of the area overhead is below 3% in the experiments with SIB- and

MUX-based scan architectures, and below 7% for flat architectures.

D.1. Individual Accesses

For each benchmark RSN, sequence filters are constructed for 10, 20, and 100 re-

stricted accesses patterns. Each pattern realizes the shortest access to a single target

scan segment, and the remaining segments are considered protected. This is relevant

for low-latency access to individual segments.

161

D. Results: Access Protection

Table D.1 presents the properties of the sequence filters for individual accesses. The

design name, scan architecture type (SIB, MUX, or flat), and RSN area are given in

the first three columns. Columns 4-7 give the properties of sequence filters that allow

10 restricted accesses: the cumulative length of the sequences, the number of states

in the state diagram, and the filter’s area overhead w.r.t. the RSN area (column 3).

The properties of filters allowing 20 and 100 accesses are given in columns 8-11 and

12-15, respectively.

The filter size depends on the number of allowed accesses: In SIB- and MUX-based

architectures, the area overhead ranges from 0.2 to 2.7% for 10 individual accesses

(column 7). For 20 accesses, the area is 0.3 to 4.3% (column 11), and for 100 accesses

it rises up to 10.6% (column 15). In most cases, the increase in area overhead is less

than the increase in the number of allowed accesses. Note that twelve of the SIB- and

MUX-based RSNs include about a hundred or less scan segments (cf. Appendix A).

Even if access to a high fraction or all of their scan segments is allowed, the area

overhead is below 1.7% for f2126, q12710, and a586710 (column 15 in Table D.1).

The size of a sequence filter is proportional to the number of states in the filter’s state

diagram, which, in turn, is proportional to the length of allowed sequences. Thanks

to state merging and sequence collapsing (see Section 7.3.2, p. 112), the number of

states in the state diagram is significantly less than the cumulative sequence length:

Merging and collapsing reduces the number of states by a factor of 1.9 for 10 accesses

to d695-MUX, and by up to 312x for 100 accesses to q12710-SIB.

Since the flat scan architecture has little practical significance (cf. Appendix A), the

results for flat benchmarks are presented only for the sake of completeness. The ab-

solute area of sequence filters for the flat RSNs is close to the area required for other

benchmark types. However, the relative protection cost is high, with up to 25% for 10

restricted accesses already. This is caused primarily by the small size of the flat bench-

marks and the very high number of scan segments that configure the active scan path

(greater than the number of data scan segments, cf. Figure A.3, p. 144). Moreover,

the restricted accesses patterns often differ at early bit positions (bits that are shifted

first), which reduces the efficiency of state merging and collapsing (cf. Section 7.3.2,

p. 112).

162

D.2. Concurrent Accesses

D.2. Concurrent Accesses

In the second series of experiments, sequence filters are constructed for the concurrent

access to 100 random scan segments realized by 1, 5, 10 and 20 restricted access

patterns. The concurrent access is efficient if the target segments are usually accessed

together.

Table D.2 shows the properties of sequence filters for the concurrent access. In columns

3-5, the filters for a single concurrent access to 100 segments are described, including

the sequence length, the number of states in the filter’s state diagram, and the area

overhead. The properties of filters for 5 accesses à 20 segments, 10 accesses à 10

segments, and 20 accesses à 5 segments are given in the consecutive columns.

For 20 accesses à 5 segments, the area overhead (column 14) is close to the area for

individual accesses (cf. column 15 in Table D.1). However, if the access to all 100

segments is realized with a single access pattern, the cost (column 5) is reduced by a

factor of 3 to 16 compared with the cost of individual accesses. This is explained by

the lower length of the concurrent sequences compared with the cumulative length of

individual sequences. Thus, if the segments are often accessed together, concurrent

access has two benefits: The access time is lower, and the resulting sequence filter is

smaller.

163

D
.

R
esults:

A
ccess

Protection

Benchmark 10 Restricted Accesses 20 Restricted Accesses 100 Restricted Accesses

Area Length States Area Length States Area Length States Area

Design Arch. [µm2] [cycles] [#] [µm2] [+%] [cycles] [#] [µm2] [+%] [cycles] [#] [µm2] [+%]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

d281 SIB 58 747 1 265 394 1 196 +2.04% 2 603 667 2 238 +3.81% 12 969 1 641 5 187 +8.83%
d695 SIB 126 777 1 433 733 1 926 +1.52% 2 937 1 369 3 683 +2.91% 14 473 4 670 11 581 +9.14%
h953 SIB 85 133 1 790 368 1 139 +1.34% 3 565 587 2 019 +2.37% 17 317 1 303 4 177 +4.91%
g1023 SIB 81 396 1 520 495 1 584 +1.95% 2 956 849 2 460 +3.02% 15 103 2 177 6 782 +8.33%
f2126 SIB 239 902 5 521 342 1 037 +0.43% 10 060 570 1 880 +0.78% 49 192 1 095 3 635 +1.52%
q12710 SIB 397 483 12 068 178 726 +0.18% 26 087 265 1 055 +0.27% 125 892 404 1 379 +0.35%
p22810 SIB 453 537 2 436 1 009 2 718 +0.60% 4 993 1 800 4 876 +1.08% 24 096 6 491 18 361 +4.05%
p34392 SIB 352 290 3 699 711 2 002 +0.57% 7 069 1 307 3 526 +1.00% 32 747 4 541 12 527 +3.56%
p93791 SIB 1 486 289 3 104 1 336 3 199 +0.22% 6 109 2 537 6 279 +0.42% 31 582 10 339 25 004 +1.68%
t512505 SIB 1 167 569 8 063 1 058 2 629 +0.23% 16 295 1 884 4 798 +0.41% 71 239 5 877 15 672 +1.34%
a586710 SIB 634 087 14 723 319 1 111 +0.18% 28 189 533 1 964 +0.31% 132 255 988 3 333 +0.53%
d281 MUX 58 979 1 411 459 1 603 +2.72% 2 597 810 2 548 +4.32% 14 243 1 927 6 225 +10.56%
d695 MUX 127 007 1 434 760 2 131 +1.68% 2 875 1 358 3 700 +2.91% 14 384 5 016 13 253 +10.44%
h953 MUX 85 349 1 596 349 1 309 +1.53% 3 287 620 2 475 +2.90% 17 030 1 493 5 591 +6.55%
g1023 MUX 81 727 1 295 501 1 826 +2.23% 2 712 851 2 778 +3.40% 14 473 2 299 7 527 +9.21%
f2126 MUX 240 021 5 009 402 1 368 +0.57% 9 899 701 2 423 +1.01% 51 279 1 377 4 072 +1.70%
q12710 MUX 397 592 13 242 255 1 068 +0.27% 27 175 388 1 531 +0.39% 131 592 597 2 881 +0.72%
p22810 MUX 454 107 2 258 882 2 621 +0.58% 4 488 1 625 5 540 +1.22% 21 730 6 039 19 707 +4.34%
p34392 MUX 352 699 3 075 767 2 460 +0.70% 6 216 1 379 4 601 +1.30% 33 475 4 394 13 746 +3.90%
p93791 MUX 1 486 772 3 075 1 302 3 531 +0.24% 6 060 2 392 7 141 +0.48% 31 677 9 922 24 108 +1.62%
t512505 MUX 1 168 310 7 161 832 2 419 +0.21% 14 138 1 520 5 179 +0.44% 68 719 4 994 15 230 +1.30%
a586710 MUX 634 258 13 027 401 1 523 +0.24% 27 447 643 2 551 +0.40% 135 388 1 185 4 493 +0.71%
c432 FLAT 3 950 1 100 360 973 +24.64% 2 200 423 1 174 +29.73% 11 000 439 1 075 +27.22%
c499 FLAT 16 098 1 200 524 936 +5.82% 2 400 891 1 606 +9.98% 12 000 1 888 3 203 +19.90%
c880 FLAT 13 473 3 476 813 1 712 +12.71% 6 912 1 289 2 666 +19.79% 33 959 2 023 3 147 +23.36%
c1355 FLAT 16 097 1 200 666 1 179 +7.33% 2 400 1 144 2 080 +12.93% 12 000 2 437 3 769 +23.41%
c1908 FLAT 12 633 2 239 411 1 372 +10.86% 4 537 624 2 138 +16.93% 22 665 949 2 138 +16.93%
c2670 FLAT 70 720 16 527 3 286 5 179 +7.32% 32 757 6 003 9 098 +12.87% 163 896 20 287 34 936 +49.40%
c3540 FLAT 11 731 4 046 545 1 954 +16.66% 7 961 800 2 901 +24.74% 39 364 1 125 3 379 +28.80%
c5315 FLAT 62 276 23 375 1 891 3 400 +5.46% 47 515 3 369 5 962 +9.57% 235 185 7 753 11 820 +18.98%
c6288 FLAT 17 313 1 039 489 1 787 +10.33% 2 078 790 2 784 +16.08% 10 289 1 541 6 970 +40.26%
c7552 FLAT 55 774 25 840 2 029 4 891 +8.77% 50 892 3 326 7 484 +13.42% 258 776 10 259 16 836 +30.19%

Table D.1.: Hardware overhead of the sequence filters w.r.t. RSN area for individual accesses

164

D
.2.

C
oncurrent

A
ccesses

Benchmark 1 Access to 100 Segments 5 Accesses à 20 Segments 10 Accesses à 10 Segments 20 Accesses à 5 Segments

Length States Area Length States Area Length States Area Length States Area

Design Arch. [cycles] [#] [+%] [cycles] [#] [+%] [cycles] [#] [+%] [cycles] [#] [+%]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

d281 SIB 3 945 181 +1.23% 7 570 688 +4.40% 8 998 1 149 +7.29% 9 157 1 849 +10.60%
d695 SIB 5 618 447 +0.97% 6 868 1 685 +4.10% 8 295 2 857 +6.58% 9 762 4 406 +9.59%
h953 SIB 5 712 171 +0.83% 12 430 659 +2.88% 13 470 1 082 +4.81% 13 756 1 594 +6.54%
g1023 SIB 5 488 246 +1.13% 9 066 862 +3.68% 9 746 1 344 +5.70% 10 453 2 031 +8.99%
f2126 SIB 15 883 129 +0.22% 44 454 510 +0.84% 43 597 875 +1.28% 47 264 1 476 +2.27%
q12710 SIB 26 220 82 +0.11% 124 930 292 +0.29% 122 825 595 +0.61% 124 576 946 +0.96%
p22810 SIB 12 956 752 +0.52% 14 526 2 397 +1.57% 15 967 3 463 +2.17% 16 235 4 704 +2.98%
p34392 SIB 22 667 448 +0.30% 24 524 1 503 +1.37% 25 337 2 597 +2.40% 27 549 4 091 +3.53%
p93791 SIB 18 518 1 518 +0.28% 21 580 5 274 +0.83% 24 026 7 460 +1.14% 25 908 9 357 +1.34%
t512505 SIB 58 833 455 +0.11% 57 912 1 345 +0.38% 61 220 2 149 +0.57% 62 592 3 390 +0.87%
a586710 SIB 41 748 144 +0.11% 130 674 552 +0.37% 127 817 972 +0.58% 126 344 1 526 +0.87%
d281 MUX 3 970 164 +1.01% 7 932 722 +4.18% 9 272 1 272 +7.26% 9 882 2 023 +12.05%
d695 MUX 5 538 349 +0.63% 6 696 1 533 +3.21% 8 073 2 690 +6.05% 9 633 4 249 +8.64%
h953 MUX 5 748 170 +0.74% 12 819 746 +2.99% 13 549 1 267 +5.29% 14 565 1 879 +7.70%
g1023 MUX 5 542 250 +0.95% 9 445 983 +3.77% 9 977 1 504 +6.62% 10 254 2 222 +10.32%
f2126 MUX 15 907 122 +0.38% 45 334 543 +0.90% 44 997 985 +1.51% 46 573 1 696 +2.31%
q12710 MUX 26 237 82 +0.11% 125 138 296 +0.25% 122 744 703 +0.65% 126 538 1 204 +1.15%
p22810 MUX 15 721 688 +0.42% 15 769 2 282 +1.60% 14 651 3 250 +2.21% 16 345 4 421 +2.82%
p34392 MUX 24 240 449 +0.30% 22 881 1 678 +1.48% 25 716 2 835 +2.39% 26 145 4 324 +3.80%
p93791 MUX 31 630 1 502 +0.20% 25 471 4 812 +0.71% 24 889 6 872 +1.14% 25 344 8 730 +1.38%
t512505 MUX 59 633 480 +0.10% 62 409 1 423 +0.37% 62 376 2 131 +0.60% 63 729 3 234 +0.85%
a586710 MUX 77 856 156 +0.12% 133 801 722 +0.44% 129 003 1 266 +0.75% 133 670 1 955 +1.15%
c432 FLAT 302 78 +8.70% 1 510 78 +8.53% 3 020 78 +8.62% 4 760 781 +51.67%
c499 FLAT 1 112 88 +2.59% 3 640 384 +5.81% 4 080 745 +11.13% 4 960 1 445 +17.15%
c880 FLAT 990 127 +3.86% 4 319 604 +12.08% 6 408 1 169 +21.73% 9 790 2 223 +36.79%
c1355 FLAT 1 112 88 +2.57% 3 640 417 +6.28% 4 080 823 +11.41% 4 960 1 619 +21.33%
c1908 FLAT 936 73 +2.87% 3 838 310 +9.53% 4 787 612 +18.50% 6 816 1 183 +31.58%
c2670 FLAT 5 012 630 +1.88% 10 469 2 033 +5.75% 18 383 4 031 +9.32% 36 130 8 344 +13.95%
c3540 FLAT 919 160 +5.61% 4 366 592 +20.77% 6 235 1 078 +38.60% 10 281 1 833 +60.24%
c5315 FLAT 4 798 544 +2.61% 17 317 1 949 +6.78% 30 234 3 576 +11.25% 58 456 6 593 +20.77%
c6288 FLAT 1 160 105 +2.64% 3 803 329 +7.70% 4 191 640 +14.46% 4 945 1 244 +32.39%
c7552 FLAT 3 780 421 +1.68% 14 864 2 074 +9.94% 30 942 4 107 +16.23% 61 993 7 728 +29.92%

Table D.2.: Hardware overhead of the sequence filters w.r.t. RSN area for concurrent accesses

165

E. Curriculum Vitae of the Author

Rafał Baranowski received his MS degree in Electronics

and Telecommunications from the Silesian University of

Technology, Poland, in 2007. In 2008 he joined the Insti-

tute of Computer Architecture and Computer Engineer-

ing (Institut für Technische Informatik, ITI) at the Univer-

sity of Stuttgart, Germany.

The author has been working for the last six years as

a research and teaching assistant under the supervision

of Prof. Dr. rer. nat. habil. H.-J. Wunderlich. He

was involved in the research projects “RM-BIST: Reliabil-

ity Monitoring and Managing Built-In Self Test”, “OASIS:

Online Failure Prediction for Microelectronic Circuits Us-

ing Aging Signatures”, and “DFG Forschergruppe 460: Development of Concepts

and Methods for Reliability Evaluation of Mechatronic Systems in Early Development

Phases” supported by the German Research Foundation (DFG), as well as “VIGONI:

Combining Fault Tolerance and Offline Test Strategies for Nanoscaled Electronics” sup-

ported by the German Academic Exchange Service (DAAD).

The author supported several graduate courses including “Advanced Processor Archi-

tectures”, “Elements of High-Performance RISC Processors — Design and Synthesis

Lab”, “Design and Test of Systems-on-a-Chip”, “Hardware-based Fault Tolerance”, and

the undergraduate course “Hardware Lab”. He also supervised students in several

seminars, master’s theses, and undergraduate projects.

The author’s research interests include formal hardware verification and hardware

security.

167

Index

abbreviations, 1

abstraction, 30, 42

completeness, 30

CSU-accurate, 58

refinement, 43

soundness, 30

structural, 43

temporal, 43, 57

access, 14

authentication, 21, 46, 103

authorization, 21, 46, 103

concurrent, 163

encryption, 21, 47

individual, 161

management, 46, 48, 103

mapping to PBSAT, 94

merging, 93, 157

optimization, 44, 91, 96, 157

pattern, 44, 95

pattern generation, 44, 91, 92, 95,

157

port, see IEEE 1149.1 test access port

protection, 20, 46, 103, 161

restriction, 20, 48, 106, 161

scheduling, 44, 91, 157

security, 20, 46, 103, 161

time, 44–46, 91, 93

accessibility verification, 19, 71, 148

active scan path, 17, 56, 62

active, function, 61

address

port, 55

signal, 55

assumption, see incremental satisfiability

solving

atomic operation, 66

authentication, 21, 46, 103

authorization, 21, 46, 103

automatic abstraction refinement, 43

Büchi automaton, 40

BDD, see binary decision diagram

benchmark

flat, 143

ISCAS’85, 141

ITC’02, 141

MUX-based, 142

scan networks, 141

SIB-based, 142

binary decision diagram, 38

BMC, see bounded model checking

Boolean function, 3

boundary scan description language, 52

bounded model checking, 38, 70, 92

branching scan structure, 63

BSDL, see boundary scan description lan-

169

INDEX

guage

bypass, 17, 45

CAM, see CSU-accurate model

capdis

function, 61

port, 54

signal, 55

capture operation, 54

capture, shift, update operation, see CSU

operation

chained scan structure, 62

challenge-response protocol, 47

characteristic function, 4, 25

circuit model, see model

clause, 31

learned, 31

clock signal, 53

CNF, see conjunctive normal form

combinational circuit, 23

completeness, 30, 40, 68, 77, 84

threshold, 40, 78, 82, 83, 150

computational tree logic, 28

concurrent access, 163

cone of influence, 82

conjunctive normal form, 25, 31, 74

core test, 18

core test language, 52

counterexample, 29, 95

Craig interpolant, 42

CSU operation, 15, 44, 53, 56, 66

CSU-accurate

bounded model checking, 70

completeness, 68, 84

completeness threshold, 83, 150

diameter, 78, 79

implications, 66

induction, 72

model, 58, 60

soundness, 66, 84

transition relation, 65

CTL, see computational tree logic, see core

test language

data latch, 55, 60

data segment, 55, 60

data-in

function, 61

port, 54, 55

signal, 56

data-out

port, 56

signal, 56

debug instrument, 10, 13, 19

dependency graph, 78

levelization, 79

diameter, 27, 40, 42, 78, 79

embedded core test, 18

encryption, 21, 47

execution path, 27

fanout, 63

finite state machine, 26, 57

flat architecture, 143

formal specification, 28

formal verification, 28, 37, 69, 147

FSM, see finite state machine

functional representation, 24

fuse, 48, 103

global control signal, 15, 53

hold-time, 35

170

INDEX

Huffman model, 25

ICL, see instrument connectivity language

IEEE 1149.1, 14, 52, 53

access, 44

authorization, 47

encryption, 47

protection, 46, 103, 161

restriction, 48

test access port, 14, 36, 47, 67, 93,

103

verification, 35, 36

IEEE 1500, 18, 52

IEEE 1532, 19

IEEE 5001, 19

IEEE P1687, 19, 36, 52, 61, 67, 91

IJTAG, see IEEE P1687

implementation

3-valued logic, 73

benchmark circuits, 141

bounded model checking, 74

pattern generation procedure, 97

incremental satisfiability solving, 31, 74,

97

individual access, 161

induction, 40, 72

inductive invariant, 41, 72

initial scan configuration, 60

instrument connectivity language, 52, 61

instrumentation, 10

examples, 12

internal control signal, 55, 67

interpolation, 42, 73

interval property, 41

interval property checking, 41, 73

IPC, see interval property checking

JTAG, see IEEE 1149.1

k-induction, 41, 73

Kleene’s 3-valued logic, 60, 74, 84

Kripke structure, 27

learned clauses, 31

levelization, dependency graph, 79

linear temporal logic, 28, 38, 70

literal, 31

local validity predicate, 62

LTL, see linear temporal logic

maintenance, 12

model, 23

abstraction, 30, 42

checking, 28, 37, 72, 82

combinational circuit, 23

CSU-accurate, 60

cycle-accurate, 57

defining relation, 24

diameter, 27, 40, 42, 78, 79

execution path, 27

finite state machine, 26

functional representation, 24

Huffman, 25

Kripke structure, 27

recurrence diameter, 28, 40, 41, 73

register transfer level, 53

relational representation, 24

sequential circuit, 25

specification language, 51

structural, 53

multi-output Boolean function, 4

multiplexed scan structure, 63

MUX-based architecture, 142

171

INDEX

Nangate 45nm library, 142, 161

Nexus, see IEEE 5001

notation, 3

optimal assignment, 33, 95

pattern retargeting, 44, 91, 92, 95

PB-constraint, see pseudo-Boolean con-

straint

PBO, see pseudo-Boolean optimization

PBSAT, see pseudo-Boolean satisfiability

post-silicon debug, 10, 19, 76

primary

data/control inputs, 55

scan input/output, 53

proof of unsatisfiability, 42

protected scan segment, 20, 21, 46, 104

pseudo-Boolean

constraint, 32

optimization, 33, 94

satisfiability, 33

reachability invariant, 42

reconfigurable scan network, 17, 37, 46,

51

recurrence diameter, 28, 40, 41, 73

register transfer level, 53

relational representation, 24

restricted access, 48

restricted access pattern, 106

robustness, 74

definition, 75

verification, 77, 147

RSN, see reconfigurable scan network

RTL, see register transfer level

SAT, see satisfiability

satisfiability, 31

assumption, 32, 74

incremental solving, 31, 74, 97

instance, 31

problem, 31

pseudo-Boolean, 32

solving, 31

satisfiable formula, 31

satisfying assignment, 31

scan

access, 14, 44, 91

bypass, 17, 45

cell, 15, 53

chain, 15

configuration, 56, 60

data, 14, 44, 91, 95

multiplexer, 55

network modeling, 51

operation, see CSU operation

path, 17, 36, 55, 56, 62

protection, 46, 103, 161

segment, 17, 53, 60

valid configuration, 62

scan-in sequence, see scan data

SECT, see IEEE 1500

security, 20, 46, 103, 161

segment insertion bit, 45, 69, 91, 142

select

function, 60

port, 54

signal, 55

selector variable, 32, 74

sequence collapsing, 112

sequence filter, 103, 108, 161

sequence merging, 112

172

INDEX

sequential circuit, 25

setup-time, 35

shadow register, 53, 54, 60

shift operation, 54

shift register, 66

SIB, see segment insertion bit

SIB-based architecture, 142

SoC, see system-on-a-chip

soundness, 30, 84

spurious counterexample, 30, 68, 76, 85

STA, see static timing analysis

state of the art, 35

static timing analysis, 35

stream cipher, 47

strong robustness

definition, 75

verification, 77

structural abstraction, 43

symbolic model checking, 38

system-on-a-chip, 10, 104

TAP, see IEEE 1149.1 test access port

temporal abstraction, 43, 57

test access port, see IEEE 1149.1

timing violation, 35

transition relation, 27, 39, 41, 65

Tseitin transformation, 25, 74

update operation, 54

updis

function, 61

port, 54, 55

signal, 55

valid scan configuration, 56, 62, 75

validation, 35

validity predicate, 62

verification, 19, 35, 37, 69

completeness, 40, 72

Verilog, 157, 161

volume

diagnosis, 11

production, 11

test, 11

weak robustness

definition, 75

verification, 77

173

Declaration

All the work contained within this thesis,

except where otherwise acknowledged, was

solely the effort of the author. At no

stage was any collaboration entered into

with any other party.

Rafał Baranowski

	Cover
	Acknowledgements
	Contents
	Abbreviations
	Notation
	Summary
	Zusammenfassung
	1 Introduction
	1.1 VLSI Circuit Instrumentation
	1.2 Examples of On-Chip Instruments
	1.3 Cost-Effective Access to Embedded Instrumentation
	1.4 Verification of Scan Infrastructure
	1.5 Access Security
	1.6 Overview and Contributions

	2 Formal Foundation
	2.1 Circuit Models
	2.1.1 Combinational Circuits
	2.1.2 Sequential Circuits

	2.2 Model Checking and Formal Specification
	2.2.1 Linear Temporal Logic

	2.3 Model Abstraction
	2.4 Boolean Satisfiability
	2.4.1 Incremental SAT Solving

	2.5 Pseudo-Boolean Satisfiability and Optimization

	3 State of the Art
	3.1 Validation and Verification of Scan Networks
	3.2 Model Checking
	3.2.1 Bounded Model Checking
	3.2.2 Completeness

	3.3 Model Abstractions
	3.4 Access Scheduling
	3.5 Infrastructure Security
	3.6 Conclusions

	4 Scan Network Modeling
	4.1 Specification Languages
	4.2 Structural Modeling
	4.3 Scan Network Operation
	4.4 Temporal Abstraction
	4.4.1 CSU-Accurate Model
	4.4.2 Valid Scan Configurations
	4.4.3 Transition Relation
	4.4.4 Implications of CSU-Accurate Modeling

	5 Formal Verification
	5.1 CSU-Accurate Bounded Model Checking
	5.1.1 Application: Accessibility Proof
	5.1.2 Completeness by Induction
	5.1.3 Implementation

	5.2 Verification of Robust Scan Networks
	5.2.1 Robustness Definition and Properties
	5.2.2 Verification of Robustness
	5.2.3 Model Diameter
	5.2.4 Completeness Threshold

	5.3 Model Soundness and Completeness
	5.4 Experimental Evaluation
	5.5 Summary

	6 Access Optimization
	6.1 Problem Formulation
	6.2 Mapping to Pseudo-Boolean Optimization
	6.3 Pattern Generation Procedure
	6.3.1 Implementation

	6.4 Experimental Evaluation
	6.5 Summary

	7 Access Port Protection
	7.1 Access Management Overview
	7.2 Generation of Restricted Access Patterns
	7.3 Synthesis of Sequence Filters
	7.3.1 State Diagram Construction
	7.3.2 State Merging and Sequence Collapsing
	7.3.3 Sequence Filter Example

	7.4 Experimental Evaluation
	7.5 Summary

	8 Conclusions
	8.1 Future Research Directions

	Bibliography
	Appendices
	A Benchmark Scan Networks
	A.1 SIB-Based Architecture
	A.2 MUX-Based Architecture
	A.3 Flat Architecture

	B Results: Verification
	B.1 Verification of Robustness
	B.2 Verification of Accessibility
	B.3 Performance Analysis

	C Results: Access Optimization
	C.1 MUX-based Architecture
	C.2 SIB-based Architecture
	C.3 Flat Architecture

	D Results: Access Protection
	D.1 Individual Accesses
	D.2 Concurrent Accesses

	E Curriculum Vitae of the Author
	Index

