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Abstract

Runtime reconfigurable architectures accelerate the operation of a standard processor core
by hardware accelerators implemented in Field Programmable Gate Arrays (FPGAs). Par-
tial runtime reconfiguration allows the hardware accelerators to efficiently adapt to different
computational tasks dynamically. Nowadays, the FPGAs from major vendors, such as Xilinx
and Altera, support this feature, including the Xilinx Virtex-5 FPGA family which is the
implementation platform of this work.

Manufactured at 28 nm scaled technological node or lower, concerns rise about the impact of
aging-related failure mechanisms on the modern generations of FPGAs. To detect degradation
in the reconfigurable gate arrays, dedicated on- and offline test methods must be employed in
the field. Design for dependability requires that the degradation is detected and localized, so
that the degraded logic elements will not be used as a first choice in the reconfiguration.

This thesis presents the development and the evaluation of a delay characterization method
for FPGA CLBs which comprise most of the FPGA logic elements. The purpose of FPGA
delay characterization method in this work is to detect and localize the delay variance. This
delay variance information may be used for achieving a speed optimized reconfiguration for a
FPGA-based runtime system. Different delay characterization methods have been studied in
this thesis for determining a suitable method to be implemented in the partial reconfigurable
system. The delay characterization is performed in a part of area in the FPGA before a module
is placed in this area to avoid the degraded portion. This thesis uses low level hardware
description language to generate the fine-grained measurement units which can cover the
target area. VHDL is used to generate the test wrapper, control circuit, and the circuit for
communicating between the FPGA and the workstation. Several measurement techniques are
used to evaluate the accuracy of the delay characterization method. Additionally, this thesis
evaluates the temperature influence on the delay characterization.

The results show that this delay characterization method can compare the speed of logic
elements in the partial runtime reconfiguration area with high accuracy. The degradation can
be detected and localized. The results also show that this method can be adapted to different
size and location, fitting in the partial runtime reconfigurable design. Twelve configurations
are required to have a full coverage of all the CLBs in the area under test.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal and Objectives of this work . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

Reconfigurable systems have been developed and studied in the past two decades. The
configuration-ability after fabrication permits the reconfigurable system to adapt to differ-
ent requirements of the applications by programming the logic elements and the connection
among them. Reconfigurable systems require reconfigurable hardware platforms, such as Field
Programmable Gate Arrays (FPGAs). An FPGA has pre-fabricated integrated circuits that
can be programmed by the designer. To date, the modern FPGAs from the major FPGA
vendors have the ability to be partially reconfigured at runtime while the remaining parts
continue operating without any data loss or interruption [1, 2]. This feature is called Par-
tial Runtime Reconfiguration and it helps to reduce the power consumption or improve the
performance [3]. For example, some applications use this feature of FPGAs to implement
hardware application specific accelerators to accelerate the operation of a standard proces-
sor core by dynamically replacing the hardware modules to handle the different application
tasks requested by the operating system [4]. Due to the flexibility, high performance and
power saving, runtime reconfigurable systems are becoming attractive for a wide range of
applications.

When FPGAs are manufactured at 28 nm scaled technological node or lower, concerns rise
about the impact of aging mechanism like Hot Carrier Effect [5], Time Dependent Dielectric
Breakdown (TDDB) [6], Electromigration [7], and Negative Bias Thermal Instability (NBTI)
[8]. These degradation mechanisms will slow down the speed of the FPGA fabric, or in the
worst case can affect the FPGA lifetime and dependability [9]. For example, electromigration
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1 Introduction

will cause a wear-out failure of interconnect by generating voids or shorts in the metal lines
due to the high current density.

The speed of aging in the FPGA depends on different factors including switching activity.
The aging effect due to switching activity is presented in [10]. The authors introduced an
aging model that shows the proportional relation between aging and the switching rate of
the circuit. Because every design on the FPGA is different, the workload of each component
inside the FPGA is not the same. Different components of the FPGA have various switching
currents and leakage currents. If a design is implemented on the FPGA for a long period of
time and certain logic components are configured to have more computational activities than
others, the impact of aging on these component is more significant so that different parts of
the FPGA will have different aging speed.

To prevent the FPGA from the reliability threat caused by these aging mechanism, many test
strategies have been discussed [11, 12]. These online test strategies can be applied to check that
the reconfigurable fabric is fault free before the module reconfiguration is performed on the
FPGA. The test just provides the pass/fail results, but it does not consider timing explicitly.
When the transition on a certain path is too slow, it means the path is faulty. However, when
the circuit under test passes the test, the delay of the circuit remains unknown. It is necessary
to find out that if the degradation caused by the aging effect affects the reconfigurable fabric
and localize it.

If we can find out the delay variation in the FPGA, then with the ability of reconfiguration,
different placement and routing methods can be instantiated to avoid the aged area. Con-
sequently, with Partial Runtime Reconfiguration, the delay variation in the FPGA chip can
be considered before the circuit is mapped in the FPGA to utilize the actual speed of the
available hardware resource and to increase the device reliability with delay-aware placement
and routing methods [13, 14, 15].

To detect the degradation and provide the delay information in the FPGA, a method that
can characterize the delay of the logic elements in a specific area on the FPGA is needed.

1.2 Goal and Objectives of this work

The goal of this thesis is to develop a delay characterization method for the reconfigurable
logic element in the runtime reconfigurable system. The purpose of this FPGA delay charac-
terization method is to detect and localize the degradation of the reconfigurable logic element
so that with the spatial delay variation information the runtime reconfigurable systems can
select the elements with relatively low delay to implement the design for better performance
and reliability.

A delay characterization is performed in the partial runtime reconfigurable area of the FPGA
before a module is placed as shown in Figure 1.1. The method has to provide the delay of
each partition in this area. By comparing the delay characterization results, the system can
select the area with appropriate performance to implement the module which has a specific
demand for speed.
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FPGA
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Figure 1.1: The delay characterization method applied on a runtime reconfigurable system

To achieve the goal of this thesis, different delay characterization methods from the literatures
have been studied for determining a suitable method in the partial reconfigurable system. A
simulation model is required to evaluate the method before the implementation of infrastruc-
ture on the FPGA board. The result analysis will be performed on the workstation and the
effectiveness of the technique will be evaluated.

1.3 Thesis Organization

After the introduction, the remainder of the thesis is structured as follows. Chapter 2 briefly
introduces the background information. Then, the state of art of delay characterization meth-
ods is reviewed in Chapter 3. The architecture of the delay characterization method and
implementation details are stated in Chapter 4 and 5. Chapter 6 shows the results and the
analysis. Finally, the conclusion is given in Chapter 7 with a summary and possible future
tasks.
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Chapter 2

Background

Contents
2.1 Reconfigurable Architecture . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Partial Runtime Reconfiguration . . . . . . . . . . . . . . . . . . . . 6
2.2 FPGA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 FPGA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Configurable Logic Block . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 CLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Programmable Switch Matrix and Interconnect . . . . . . . . . . . . 14

In this chapter, the concept of reconfigurable system and partial runtime reconfiguration is
introduced. Then the general overview of SRAM-based FPGA architecture is given. Finally
the implemented platform in this thesis is presented.

2.1 Reconfigurable Architecture

Reconfigurable architectures are devices with programmable logic blocks and programmable
interconnects among them. Reconfigurable architectures compute with logic blocks instead
of fixed instruction sets, which avoids multiple stages of fetch, decode, and finally execute of
instructions.

Reconfigurable architecture can be seen as a choice to balance the performance, flexibility
and power. It has a shorter time-to-market than an application specific architecture. The
reconfigurable device is prefabricated and tested. The designer can implement the design in the
reconfigurable device by using hardware description language (HDL) and CAD tools provided
by the vendor in a relative short time, because when it compares to the application specific
architecture, the design doesn’t have to be sent to the foundry to go through the manufacture
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2 Background

process, including lithographic, etching, testing, packaging. However, application specific
architecture gives high performance due to the optimization for a particular application. For
a small quantity of products that do not have particular requirements on area or power
consumption, a reconfigurable architecture is a better choice. Rapid prototyping is one of the
advantages of a reconfigurable architecture compared to application specific architectures.

In reconfigurable architectures, the function of the structure can be modified for adapting
to different applications. A feature called Partial Runtime Reconfiguration allows all or part
of the hardware function to be changed partially or completely during compile time or run
time. This feature has been study in academia during the past decade and now supported by
reconfigurable devices and it is discussed in the following subsection.

2.1.1 Partial Runtime Reconfiguration

Partial runtime reconfiguration or dynamic partial reconfiguration, allows reconfiguration of
a part of the system while other parts typically keep on running without any loss of data or
interruption. The partial runtime reconfiguration helps in several ways [3]:

1. Reduce the area and power consumption. With partial runtime reconfiguration, the
device resources can be better utilized. By dynamically configuring an area of a system,
different functionalities are implemented for different operational demands. Even though
more switching activity in the circuit will increase the dynamic power consumption, the
static power consumption will reduce because of the reduced logic resource. As the static
power dominates the total power consumption in modern CMOS process technology, the
total power consumption will reduce (the power consumption problem will be discussed
later in section 3.1.1). An example is the partial runtime reconfiguration in software-
defined radio application. The applicability has been evaluated and shows that it has
benefits using partial runtime reconfiguration [16, 17].

2. Improve the performance. For example, an array of partial runtime reconfiguration
processing and memory cell is proposed. The performance of 18 times higher throughput
than a traditional DSP solution shows the partial runtime reconfiguration is feasible for
device acceleration [18].

3. Fast start up. For some modern automotive applications there are strict timing require-
ments for the start up time. Those applications require the device to answer the system
request within 100 ms after the system is booted [19]. Meanwhile, coming along with
the process technology progress, the number of the logic resource in the reconfigurable
system growth, so that the configuration data for the complex design is becoming lager
and it takes more time to configure the device. Consequently, even using fast configu-
ration method, only the smaller size device can meet the timing specification [3]. Hence
the authors purposed the two steps method to achieve the fast start up requirement.
In the first step the critical part are configured in the system when it is booted using
the priority configuration data. The remaining part of the system which is not timing
critical will be configured in the second partial reconfiguration step. The experiment
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2.2 FPGA Overview

results show that the fast start up approach can be up to four times faster than the
traditional configuration method.

In some dynamically reconfigurable systems, a reconfigurable region is spared for the par-
tial runtime reconfiguration and the region is divided into several slots for practical reason
[4]. These slots are called containers, each of which can implement specific hardware for a
particular application. When the containers are not needed, they are shut-down to reduce
the power consumption. When one or some of the containers is needed for some applications
as accelerator, delay characterization of this work can be used to select the one with better
performance/without aging effect.

2.2 FPGA Overview

The Field-programmable gate arrays (FPGAs) is a type of reconfigurable architectures. The
programmable logic components provide FPGA the reconfigurability. Unlike the Application
Specific Integrated Circuits (ASICs), where the device is customized for particular appli-
cation, FPGAs can be configured to any desired application or functionality when there is
enough logic resource. Currently, most commercial FPGAs are SRAM-based because of its
re-programmability and the use of standard CMOS processing technology.

2.2.1 FPGA Architecture

FPGA commonly consists of the Configurable Logic Blocks (CLBs) which implement the logic
functions; the Programmable Switch Matrices (PSMs) and interconnect wires that connect
these logic functions; the I/O blocks (IOBs) connect the logic blocks to the external connec-
tions. Additionally, modern FPGA is also integrated with some application specific blocks
including memory blocks, Digital Signal Processor (DSP) block and the clock management
blocks. A general circuit schematic of an FPGA is shown in Figure 2.1.

It shows one traditional FPGA routing architecture, island style architecture. Each of the
blue box in the two dimensional grids is representing one CLB. The interconnect wires are
around the CLBs. They are connected to the CLBs via the PSM in grey and the IOBs at the
periphery.

2.2.2 Configurable Logic Block

A Configurable Logic Block (CLB) is the main logic component of an FPGA that makes the
FPGA a reprogrammable device. It comprises of the Lookup tables (LUTs), interconnection
multiplexers and storage element like flip-flops. Each of these elements is introduced in the
following subsection.

A LUT, a storage element and multiplexers form a basic logic block. The CLB consists of one
or a cluster of intra-connected basic logic blocks as it is shown in Figure 2.2.
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Figure 2.1: Overview of FPGA Architecture
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Figure 2.2: Simplified Configurable Logic Block

2.2.2.1 Lookup Table

The Lookup Table (LUT) is the basic logic element that calculates a function in a FPGA.
A n-input LUT can calculate an arbitrary n-input Boolean function. It can be implemented
as a tree of multiplexers that select an entry of the functions truth table which is stored
in a memory element with the length of 2n bits. In the SRAM-based FPGA, these entries
are represented by configuration bits stored in SRAM cells. For example, Figure 2.3 shows
a general 3-input LUT. It uses 8 SRAM bits to set the truth table value for any 3-input
Boolean function. The input pins control the multiplexers which can be implemented with
pass transistors or transmission gates to pass the value to the output [20].

2.2.2.2 Configurable Logic Block internal interconnect

The interconnect multiplexers are used to select the signal connections inside the CLBs for
different signal forwarding strategies. The multiplexer selection is controlled by dedicated
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0

1
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Figure 2.3: A 3-input LUT

configuration bits and does not depend on the input signals. The signal connection is config-
ured after the configuration bits are downloaded. By configuring the multiplexer, the output
signal of the CLB can be connected to either the output of the storage elements, or directly
to the LUT output, see Figure 2.2.

2.2.2.3 Storage Element

To allow implementation of sequential circuits in the FPGAs, it is essential for the CLB to
contain storage elements. The storage elements store the output values of corresponding LUTs
every clock cycle. The generic storage element can be configured as an edge sensitive D-type
flip-flop or a level sensitive D-type latch.

2.2.3 Interconnect

Figure 2.1 shows that the CLBs are surrounded by the programmable interconnect consisting
of switch boxes and interconnect wires. The programmable interconnect routes the signal
between the CLBs, to and from the I/O blocks. Routing is conducted by the switch box by
connecting or disconnecting the fixed interconnect wires in vertical or horizontal direction.
And the input and output pins of the CLB can be connected to the interconnect wire or the
connection box depending on different routing architectures [21].

A possible implementation of the switch box is shown in Figure 2.4. There are six pass
transistors per switch box interconnect point. The pass transistors act as the programmable
switches to control the interconnect wires connection. The pass transistors are controlled by
configuration bits.

The interconnect wires can have different lengths, such as direct, double and hex line. The
direct line can connect the CLB directly to the neighbour CLB. The double line can connect
the CLB to the first and the second neighbour CLBs. And the hex line can connect the CLB
to the third and the sixth neighbour CLBs. The longer the interconnect wires are, the fewer
programmable switches are needed. As a result, the routing area and delay are reduced [22].
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Figure 2.4: Switch box and interconnect wires

However, the long interconnect wires may cause routing flexibility problem, the probability of
successfully routing the circuit may decrease. By combining different lengths of interconnect
wires in the FPGA, it reaches a better balance among the routing flexibility, area and delay.

2.3 Implementation Platform

Modern FPGAs from different vendors, including Xilinx and Altera, support the partial re-
configuration feature. They also provide the development software to support this function.
Xilinx Virtex-5 is one of these FPGAs and it is the implementation platform of this work.

Besides the common components mentioned in Section 2.2, Xilinx Virtex-5 also contains many
advanced components including [1]:

• The Embedded Block RAM memory that is for on chip memory in the design;

• The Digital Clock Management (DCM) and Phase-locked Loop (PLL) that provide
precise clock signals manipulation;

• The Digital Signal Processor (DSP) slices for digital signal processing like processing
multiplication;

• The System Monitor that measures the on-chip physical operating parameters of the
FPGA.

This work focus its attention on the CLB logic elements and CLB internal interconnections,
and uses carry chain logic. This section introduces the Xilinx Virtex-5 architecture.

10



2.3 Implementation Platform

SwitchMatrix

Logic 
Block
Logic 
Block
Logic 
Block
Logic 
Block

CLB

Cin

Logic 
Block
Logic 
Block
Logic 
Block
Logic 
Block

Cin

Interconnect 
wires

CoutCout

Programmable Interconnect 
Points

Slices

Figure 2.5: Switch matrix and slices within CLB

2.3.1 CLB

In Virtex-5, each CLB is connected to a Programmable Switch Matrix (PSM) to access the
global interconnect as shown in Figure 2.5. There are two types of CLB in Virtex-5, CLBLM
and CLBLL. Both of them contain two slices. CLBLL has two SLICELs while CLBLM has
one SLICEL and one SLICEM. These two types of CLB occur every other column. The two
slices in each CLB have no direct connection between each other so the PSM need to be used.
Each of the slice belongs to an independent carry chain. For each CLB, Xilinx labels the slice
on the left SLICE(0) and the one on the right SLICE(1). So the carry out of the SLICE(0)
can be passed to the carry in of the SLICE(0) in the upper row. As the same, SLICE(1) can
propagate the carry to SLICE(1).

A SLICEL has four logic blocks which mentioned in Section 2.2.2. Each of the logic block
is comprised of a 6-input LUT, multiplexers for path selection, and a storage element that
can be configured as a flip-flop or a latch. Additionally, the slice has a carry chain which can
perform fast lookahead addition and subtraction, see Figure 2.6.

The SLICEM adds more functionality to the SLICEL. The LUT inside SLICEM can be
configured not only as a LUT, but so be configured as random-access memory (RAM) or shift
register, see Figure 2.6.
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This work considers both SLICEL and SLICEM, but only focus on logic elements and internal
interconnections. As a result, we ignore the memory structure of SLICEM.
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Figure 2.6: Diagram of SliceL [1]

2.3.1.1 Lookup Table

The Lookup Table (LUT) in Virtex-5 has six independent inputs and two outputs. The LUT
can be configured as one 6-input LUT or two 5-input LUTs as long as the two implemented
Boolean functions share the same inputs. By configuring the multiplexers, up to four LUTs
can be combined to implement an arbitrary seven or eight input Boolean function in one
slice.

The output signals of the LUT can directly exit the slice, enter a XOR gate or multiplexer
of the carry chain, control the multiplexer of the carry chain, or go into the D input of the
storage elements as shown in Figure 2.6 and Figure 2.7.
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Figure 2.7: Diagram of SliceM [1]

2.3.1.2 Carry Logic

The carry logic allows an area-efficient implementation of addition and subtraction in a slice.
Each slice can compute four result bits plus a carry bit. As mentioned earlier in this section,
each CLB has two separated carry chains that can pass on the carry bit from the bottom
CLB row to the upper CLB row for the add and subtraction operation which is more than
four bits. An example implementation with the carry logic is Ripple-carry Adder.
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The carry chain is constructed with carry multiplexers and dedicated XOR gates for calcu-
lating the operand. The XOR gate at the bottom of SLICE(0) in the carry chain is used in
the ring oscillator design of this work.

2.3.2 Programmable Switch Matrix and Interconnect

Xilinx FPGAs use an island-style routing architecture, CLBs are on the “islands” surrounded
by the programmable routing network. The switch box is called Programmable Switch Matrix
(PSM) and it is adjacent to the CLB. The PSM is formed of wires and the programmable
interconnections called the programmable interconnect points (PIPs) represented by the small
circles in Figure 2.5. A PIP is implemented as a multiplexer which is controlled by the
configuration bits for selecting the wire segment to connect the next PIP or interconnect
wires.

The interconnect wires in Virtex-5 have different lengths. Even though the detail information
is not documented in the official user guide, the interconnect details can be seen from the Xilinx
FPGA Editor. The Virtex-5 wire types can be found in the tool are: Bounceacross, Double,
Pent, Long and Global line. Bounceacross and Double are Direct and Double lines mentioned
in Section 2.2.3. While the Pent line connects the CLB to the second and the fifth neighbour
CLBs, the Long line connects the CLB to sixth, thirteenth, and the twentieth neighbour CLBs.
Finally, the Global connects the CLB from the first to the twentieth neighbour CLBs.
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Chapter 3

Delay Measurement in FPGAs

Contents
3.1 Temperature Influence on Delay . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Overall Power Consumption in CMOS Logic Circuit . . . . . . . . . 16
3.2 Delay Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Transition Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Path-Delay Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Delay Characterization using Delay Test . . . . . . . . . . . . . . . 18
3.3.1 Delay Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Delay Test for Delay Characterization . . . . . . . . . . . . . . . . . 19

3.4 Delay Characterization using Ring Oscillator . . . . . . . . . . . . . 20
3.4.1 Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Temperature Dependency of Ring Oscillator . . . . . . . . . . . . . . 21
3.4.3 Ring Oscillators-Based Delay Characterization in ASIC . . . . . . . 22
3.4.4 Ring Oscillators-Based Delay Characterization in FPGA . . . . . . . 22

3.5 Delay Measurement Method Comparison . . . . . . . . . . . . . . . 24

Delay measurement methods have been widely used on both ASIC and FPGA platforms.
The main delay measurement methods can be grouped in at-speed delay test method and ring
oscillator based method. This chapter first introduces the temperature influence on the circuit
delay briefly, then discusses the fault models which are related to the delay measurement, and
finally reviews and compares the state of the art in the literature.

3.1 Temperature Influence on Delay

The temperature affects the speed performance, power, and reliability of the system. With
higher temperature, the integrated circuits become slower due to reduced carrier mobility
and higher interconnect resistivity. In this section, the overall power consumption theory is
introduced.
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3.1.1 Overall Power Consumption in CMOS Logic Circuit

The power consumption of CMOS logic circuit consists of two parts: dynamic power and static
power. Dynamic power consumption has two parts. The first part is the power dissipation
that is caused by the charging and discharging activities of the CMOS capacitance load: the
power consumption due to the switching current. The second part is the power dissipation
that is caused by the short circuit generated during switching: the power consumption due to
the short circuit current. The static power consumption is always dissipated even when the
CMOS does not perform any activity.

Dynamic power consumption:

Pdynamic = Pswitching + Psc (3.1.1)

where Pswitching and Psc are the power consumptions due to the switching current and short
circuit current.

Power consumption due to the switching current:

Pswitching = ACLV 2
ddf (3.1.2)

where A is the factor of the gates switching activities, CL is the total effective load capacitance
of all the gates, Vdd is the supply voltage, and f is the clock frequency.

Power consumption due to the short circuit current:

Psc = IscVdd (3.1.3)

where Isc is the short circuit current generates during signal transaction when both the NMOS
and PMOS are active and directly conducts the Vdd to the ground.

Static power consumption:
Pstatic = IleakageVdd (3.1.4)

where Ileakage is the leakage current including reverse biased p-n junction current, sub-
threshold leakage and some other components which would not be discussed here.

The above equations define the overall power consumption:

P = Pdynamic + Pstatic = Pswitching + Psc + Pstatic = ACLV 2
ddf + IscVdd + IleakageVdd (3.1.5)

The activities in the FPGA will not influence the static power dissipation as it always occurs.
However, when the switching activities increase, the dynamic power consumption rises as both
of the switching current and short circuit current will increase.
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3.2 Delay Fault Model

Delay faults affect the propagation delay of the circuit and cause the delay to exceed the clock
period. If the circuit is operating at high frequency, it is more likely to fail due to the delay
faults. Two specific delay faults are introduced in detail this section: transition faults and
path-delay faults [23].

3.2.1 Transition Fault

In a fault-free circuit, all the gates have some delays. Assuming all the gates in the fault-
free circuit have delays, when one of the gates becomes faulty and the delay increase is large
enough, then transitions on all the paths through this gate can not reach any observable
output within the clock period, even for the shortest path. For each gate, the transition is
either from 0 to 1 or from 1 to 0, correspondingly there are two types of transition faults for
each gate, slow-to-rise (StR) and slow-to-fall (StF).

Here is a simple example of the transition fault with a NAND gate (Figure 3.1)

StF
1

1
0

0
1/0

Clock Period

Figure 3.1: Slow-to-fall transition fault

Assume that the initial value of the upper signal is 1, when a 1 to 0 transition happens, the
output should rise from 0 to 1 within the clock period if this gate is not faulty. However, if
the gate is affected by a transition fault, the effect will be observed as a 0 at the primary
output instead of the expected value 1.

3.2.2 Path-Delay Fault

The path-delay fault causes the sum of the propagation delays on a combinational path to
exceed a specified clock interval as depicted in Figure 3.2. The combinational path consists
of a chain of connected gates and interconnections from a primary input to a primary output.
Propagation delay is the time that a signal transition takes to pass though the path and it
consists of switching delays of devices and transport delays of interconnects on the path [23].

The number of the paths in the circuit may be exponential in number of the gates. It is not
practical to test all of the path-delay faults in the circuit. Primarily, a set of longest paths are
selected for testing as the sum of delay on shorter paths may not be large enough to prevent
a passing transition from reaching an output within the clock interval.
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For each combinational path, there are two path-delay faults considering the rising and falling
transitions. Therefore, the total number of path-delay faults is twice the number of paths in
the circuit

1

1
0

0
1/0

Clock Period

Figure 3.2: Sum of propagation delays exceeds clock period

3.3 Delay Characterization using Delay Test

Most of the existing at-speed delay fault tests are used to make the pass/fail decision of a
specific integrated circuit design at a specific frequency, i.e. to find out if a circuit operates
without timing failure at a target frequency. However, they can also be adopted to obtain
the precise propagation delay information of a combinational path in the design [24]. This
section will firstly introduce the basic idea of delay test, and then how this test methodology
can be employed to get the propagation delay information of the combinational path.

3.3.1 Delay Test

Depending on the type of Circuit Under Test (CUT), different delay test methodologies can
be used. Here in this work, only a simple delay test methodology is introduced, which is later
used for the delay characterization.

The test architecture in Figure 3.3 is suitable for combinational circuits or for sequential
circuits with registers only at primary inputs and primary outputs [24, 25].

Combinational 
Circuit

Clock 1

Clock 2

S D Q

E

Input Register Output Register

Capture Register

C

Figure 3.3: Test architecture for delay fault

The input register and the error capture register are clocked by the test clock 1 and the
output register is clocked by the test clock 2 which is of the same frequency but skewed by a
predefined time period. The input register stores the stimuli S from the test stimuli generator
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and pass it to the CUT. Then the circuit will have the transient signals and the output signal
D toggles after the propagation delay in the CUT. This output signal D will be compared
with the value sampled by the output register with an XOR gate and the compared result
C will be captured by a register at the rising edge of the test clock 1 to generate the error
detection signal E. Figure 3.4 illustrates the test operation.

Clock 1

Clock 2

S

D

Q

Test clock period Skewed clock 
period

Error Detected

Delay 1

Delay 2

C

E

Figure 3.4: Timing diagram of the test circuit

Delay 1 is the propagation delay for the 0 to 1 transition in the CUT which is within the
predefined time period, so there is no delay fault. In contrast, Delay 2 is a propagation
delay larger than the predefined time period so that it is observed as a slow-to-fall fault.
The predefined time period can be changed by the clock source, therefore the delay test can
be set to specific frequencies according to the design requirement. When the phased-shift
between test clock 1 and test clock 2 is smaller, the predefined time period is shorter and,
as a consequence, the delay test becomes more strict. Hence, controlling the phase offset
or changing the clock frequency allows to determine the propagation delay in the design.
Examples of delay measurement methods using delay test are introduced in the following
subsection.

3.3.2 Delay Test for Delay Characterization

The at-speed delay test is adopted for delay characterization in FPGAs [24, 25]. They all use
a same idea of changing the time between the clock edges of input and output registers to
measure the propagation delay using the on-chip clock generation resources like Digital Clock
Manager (DCM) on the Xilinx FPGA.
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A double sampling delay characterization method is introduced in [25]. Different from the
test architecture in Figure 3.3, another register which is clocked by the test clock 1 is added
between the CUT and the XOR gate so that its output value is compared with the output
register which is clocked by test clock 2. The test clock 1 remains constant so that the CUT
is not interrupted by the delay characterization testing. The phase shift of test clock 2 is
increased with a small step to reduce the predefined time period after a certain number of
cycles. For each paths in the CUT, the predefined time period is recorded when the error is first
time captured. The test process is repeated until all the paths in the CUT are characterized.
This method is suitable for charactering combinational path delay in a specific design.

In [24], the test clock 2 is inverted from the test clock 1, so the predefined time period is
always half of the test clock period. As the test clock steps from the lower frequency to a
higher frequency, the CUT is observed from working correctly to working with delay error. A
counter is used to count the total number of the timing errors during a predefined test cycle
for each test clock frequency and then calculate the so called failure rate to estimate the delay
of the CUT. It claims that all the LUTs on the Altera FPGA can be precisely characterized
at a high resolution.

3.4 Delay Characterization using Ring Oscillator

Ring oscillators are widely used for thermal sensing, measuring the effects of manufacturing
process variation and delay characterization in ASICs and FPGAs. In this section, the basic
concept of a ring oscillator, different ring oscillators in circuit design and the ring oscillator-
based delay characterization method will be presented.

3.4.1 Ring Oscillator

A Ring Oscillator (RO) consists of an odd number of inverting elements. These inverting
elements are chained in a loop and the output toggles between the low voltage level and the
high voltage level, as depicted in Figure 3.5.

Unit0

Enable

Unit1 Unit2 UnitN

N-Stage Ring Oscillator

OUT

UnitN-1

Figure 3.5: N-stage ring oscillator with enable signal

The period T of the ring oscillator equals to twice of the propagation delay of the loop.
T = 2 × (Delay of the inverters + Delay of the interconnect). Hence the delay on the
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loop can be translated to the frequency f = 1/T = 1/(2 × (Delay of the inverters +
Delay of the interconnect)).

3.4.2 Temperature Dependency of Ring Oscillator

As mentioned in Section 3.1, the switching activity in the FPGA will consume power and the
resulting heat dissipation will heat up the FPGA. In contrast, the increased temperature will
slow down the switching speed in the FPGA. In this section the methods that study and make
use of the relation between ring oscillator frequency and temperature are presented. They are
classified into two groups.

• Ring oscillator as a heater: study how the ring oscillator frequency influences the tem-
perature in the FPGA.

• Ring oscillator as a thermal sensor: study how the temperature influences the oscillation
frequency which is then used to measure the temperature in the circuit.

3.4.2.1 Ring Oscillator as a Heater

From Equation 3.1.1, assume that in FPGA the total effective load capacitance of all the gates
and the supply voltage are constant: the dynamic power consumption will increase when
the gate switching activity and the clock frequency increase. In the FPGAs, temperature
can be increased significantly by maximizing the dynamic power consumption using different
resources [26]. For example, a large number of 1-stage ring oscillators can heat the FPGA to
134 ℃ on Virtex-5 LX110t FPGA which is also the used device in this work. In [26], every
1-stage ring oscillator is implemented with a single LUT with its output directly fed back to
its input.

3.4.2.2 Ring Oscillator as a Temperature Sensor

In an FPGA, thermal sensors can be implemented as a lookup table (LUT) based ring oscil-
lator style design. The LUTs are configured as separate signal inversion elements similar to
individual inverters in a normal ring oscillator with hardware description language (HDL) or
other design method [27]. The frequency of ring oscillator is related to the total delay of the
logic elements and interconnects in the loop so that the way of designing the ring oscillator,
using different FPGA resources, affects the sensitivity of frequency change due to temperature
change.

It is demonstrated that the ring oscillator design that includes latches is more sensitive to
temperature than the one without latches. That is possibly because the temperature effect
is more significant on transistor delay than on wire delay [28]. In [29] the authors also claim
for the similar result that the ring oscillator comprising 23 inverters and 24 latches gives the
best overall sensitivity to temperature.
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These works all showed that the correlation between the temperature and the ring oscillator
frequency is linear. A ring oscillator combined with timer counter and capture counter is used
as temperature sensor.

The sensor designed in [29] was synthesized from a VHDL specification using vendor tools
to route the design automatically, hence resulted in differently routed sensors. As a result,
the authors placed more sensors on the FPGA and took the average value of the results to
decrease the impacts of routing variations. This implementation method is not suitable for
using ring oscillators to characterize delay on FPGA, as the frequency differences are not
caused by the speed difference of the logic elements, but the routings.

3.4.3 Ring Oscillators-Based Delay Characterization in ASIC

Ring Oscillators have been used for delay measurement and process variation measurements
in ASICs. ASICs are normally not tuned after manufacture, the aforementioned methods
are used to monitor the process variation, fabrication parameter and to estimate the maxi-
mum speed of system [30, 31, 32, 33, 34]. The on-chip test structures in [30] provide path
delay prediction for chip performance evaluation. And the ring oscillators are placed in vari-
ous locations across the chip to provide information on process variations within-die [31, 32].
Moreover, the ring oscillators are used to identify and localize power-related failures [33]. In
[34], the measurement method can characterize the gate delay for early process character-
ization in manufacturing. Hence, the use of ring oscillators is a standard and well known
technique for delay measurement for ASICs.

3.4.4 Ring Oscillators-Based Delay Characterization in FPGA

On FPGA platforms, the main approaches for ring oscillators-based delay characterization
are:

1. Delay variation comparison that compares the spatial delay variation [24, 25].

2. Differential delay measurement that directly measures the delay of the path under test
[35, 36].

This subsection will introduce the two types of method in detail.

3.4.4.1 Delay Variation Comparison

The idea of delay variation comparison is a delay characterization method that compares
the frequency of the ring oscillators at different locations on the FPGA. Due to the process
variation and the impact of aging mechanism, the delay of the logic elements and interconnect
wires at different locations on the FPGA are not identical. When the ring oscillators are
implemented with these logic elements and interconnect wires, the delay variation between
these resources result in the variation of ring oscillator frequencies. For example, an array of
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ring oscillators which covers an area of an FPGA is used for the purpose of within-die delay
characterization [37, 38].

How the measurement is performed on FPGAs is described in [38]. The area under test
implements a two dimensional array of identical ring oscillators, which are activated one at a
time and measured by the counter under the control by a timer. However, the ring oscillators
are implemented with a part of the LUTs. Instead of measuring all the LUTs in the area
under test to obtain the delay variation of the whole area, the authors use an equation to
model and estimate the systematic and stochastic delay variation. And the accuracy of the
equation is calibrated by measuring different stages of ring oscillators at each location. In this
way, the characterization may not detect the degradation in a certain part of the FPGA due
to the low coverage of LUTs in the area under test.

Moreover, the ring oscillator sensor used in [39] can measure variations in delay, leakage, power
and temperature. The scattered sensors can also be arranged as an array. Compact shift
register counters are introduced and are attached to each ring oscillator. The consuming time
of the test is shorten because all the ring oscillators are measured simultaneously. However,
as mentioned in Section 2.3, only the LUTs in CLBLM can be configured as shift register. As
a result, the ring oscillator design with a compact counter is not possible to be implemented
in CLBLL on Virtex-5 FPGA platform.

3.4.4.2 Differential Delay Measurement

The basic idea of differential delay measurement is that if a logic element or an interconnect
wire is added to the ring oscillator loop, then the delay on the loop will increase and the
frequency will decrease. By comparing the frequency changes, the delay of the added logic
element or interconnect wire can be calculated.

In [35] a method which compares two Ring Oscillators to measure the propagation delay on
the interconnect wire is proposed. A reference RO is compared with the RO which with similar
structure but includes the path under test in the loop. The structure under test (SUT) can
be any arbitrary non-inverting path, including many different interconnect wire segments and
logic elements. The propagation delay of the SUT shown in Figure 3.6 is measured from the
frequency difference between the ring oscillator shown in figure and the same ring oscillator
with inverter Unit 2 directly driven by inverter Unit 1. However, this measurement method
has a problem, that this propagation delay also includes the delay difference between net n1
in Figure 3.6 and a net directly connecting inverters Unit 1 and 2.

Unit0

Enable

Unit1 Unit2 UnitN

OUT

UnitN-1

n1

SUT

Figure 3.6: Structure under test is added to ring oscillator
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3 Delay Measurement in FPGAs

The same structure is implemented in different locations to measure the delay variation and
also different wire types and length are measured and the results are compared with the
estimation from the vendor tool in [35]. The results are directly measured with oscilloscope.

Similar idea is used in [36] to characterize the delay of a single logic element. Their design
is based on Xilinx Spartan-3e FPGA. The CLB structure is different from Virtex-5 but it
contains eight LUTs as well. One of the LUTs is implemented as a NAND gate, the others
are implemented as buffer with identity function as shown in Figure 3.7. The delay of a
single 4-input LUT is measured by comparing the frequency of the 8-stage ring oscillator
and the 7-stage ring oscillator omitting one of the LUT. When it compares to the previous
direct measurement method in [35], this method also has the problem of delay changes in
the interconnect wires. The delay estimation information is extracted from the Xilinx timing
analysis tool and is used to calculate the delay of a single LUT. The estimation result is
pessimistic and it is 80% larger than the actual measurement result. As the interconnect
wire composition and the connection order of the LUTs are chosen based on the minimum
estimation delay, the input pins of the LUTs of the 8-stage ring oscillator and the 7-stage ring
oscillator would be different because of the limited direct connection between the LUTs. As
a result, this design is measuring the LUT delay under the assumption that all the inputs of
the LUTs have the same speed. This may not be the case when some of them degraded more
quickly due to the different aging and the switching rate. Nine test configurations are needed.
The CLB based ring oscillators cover all the LUTs in the area under test.

LUT

BufferNAND

LUTEnable LUT

Buffer

LUT

BufferOut

Omitted LUT

CLB

7-Stage 

`

Figure 3.7: Characterizing the delay of omitted LUT

3.5 Delay Measurement Method Comparison

Both of the delay characterization methods using delay test and using ring oscillators can be
adopted in the runtime reconfigurable system to test the container. The delay test method in
[24] can accurately measure the path delay, but the resolution of the measurement depends on
the size of frequency sweeping step and a Xilinx FPGA is used to provide the clock generation
to the Altera FPGA. Even though the newer FPGAs can provide on-chip test clock generation,
it still increases the design complexity of the system. In contrast, the method using ring
oscillator does not require complex clock control. Once the ring oscillator is activated, it
automatically oscillates at the maximum frequency depending on the speed of the FPGA
fabric. Moreover, the control and analysis of the circuit is simpler than the method using
delay test. Considering the complexity of extending the method to a runtime reconfigurable
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system application, the delay characterization method using ring oscillators is developed and
implemented in this work.

Although the ring oscillator method is well-known and has been studied for delay charac-
terization, the existing method is not perfect for detecting the degradation due to the aging
mechanism in the reconfigurable system. For example, only one fix routing of ring oscillator
is implemented in the design and the input pins of the LUTs are randomly chosen in [36], not
to mention that the method in [24] doesn’t cover all the LUTs in the area under test. The
characterization method in this work complements these approaches and is able to cover all
the input pins of the LUTs in the container.
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Chapter 4

Architecture for Delay Characteriza-
tion
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4.1 Overview

A ring oscillator array methodology is used for delay characterization in this work. A new
ring oscillator design that can cover all the path in the LUTs of a single CLB is proposed. In
this chapter, the idea and the advantages of this CLB based ring oscillator design are given.
Then the auxiliary circuit design of counter and control circuit are introduced. The system
monitor of Virtex-5 is also presented.

A ring oscillator array that fits in a container is shown in Figure 4.1. Each small block is
representing a CLB. Ideally, if we can place the ring oscillator design in every CLB within
the container, then we can reach the minimum number of test configurations. However, as
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Figure 4.1: Overview of the ring oscillator array design

low level design is not well supported by the CAD tools, a proxy must be attached to each
ring oscillator to fix a problem caused by the tool. Therefore, the test configurations have
to be doubled to cover all the CLBs in the whole container area. The proxy is explained in
Section 4.2.3.

One row of counters measure multiple rows of ring oscillators. For each measurement, one
row of ring oscillators are selected and the oscillations in a time period are measured by the
counters in parallel.

4.2 Ring Oscillator Design

This work is focusing on the delay variation on the chip of one FPGA device by comparing the
speed of ring oscillators in different locations. The reason of using a special design method
here is because the ring oscillator in this work is a low level design. Any factor that can
contribute to the differences in the speed of the ring oscillator must be avoided as they will
disturb the measurement of the speed difference caused by aging. Besides, specific pins are
used in the ring oscillator. Using VHDL or Verilog Hardware Description Language (HDL)
for the design can not satisfy the low level design requirement.

VHDL and Verilog HDL and the synthesis tool may be used to generate the ring oscillator
design. It is possible to place this kind of ring oscillators on different FPGA devices and
compare the frequency of the ring oscillators at the same location to measure the chip-to-chip
variation. However, it is not suitable for the delay variation measurement within a single chip
for the following reason. Even if the descriptions of ring oscillators are identical, for example
using the generic statement in VHDL, the LUTs inside the ring oscillators of different locations
may have different placements. Moreover, even if the LUTs are placed exactly the same for all
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4.2 Ring Oscillator Design

the ring oscillators, the interconnect routing may not be exactly the same [29]. The difference
of the interconnect routing may have more delay impact than the aging effect.

Using different LUT inputs may also influence the ring oscillator delay. In [21], it is stated
that the inputs of the LUT are logically equivalent. However, it is mentioned in Section 2.2
that the LUTs are implemented as tree of multiplexers, the delays through the multiplexers
are different. For example, in Figure 4.2 (a) the multiplexer in red is without aging and it is
switching as input value I0 is changing. Its delay is smaller than the one with aging effect in
Figure 4.2 (b). As a result, it is essential to characterize the delay of each multiplexers by
using different input value combinations and selecting different input pins to switch.
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I2

(a)

0

1

0/1
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0

0

0/1

Without 
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Figure 4.2: LUT inputs select multiplexer with/without aging in a 3-input LUT

The synthesis tool will choose the input of the LUT during place and route stage based on a
certain rule. And we could not control each LUT at the same position in the ring oscillators
to use a same input by using a high level HDL to generate the design. Hence, not only a new
design of ring oscillator is necessary, but also a special design method is needed.

4.2.1 Design to cover all Paths in the Lookup Table

In previous work of delay characterization methods using ring oscillators [35, 37, 38], it is
ambiguous how the path on the loop looks like, and which pins of the LUTs are used. In
[36] the authors choose the interconnect with minimum estimated delay and we can infer that
only one set of LUT pins are used in their work. In [38], the ring oscillators are implemented
using some of the LUTs in the logic array block, but not all the LUTs in the area under test
are covered.

These methods can have a good spatial evaluation of the process variation assuming the chip
is in a healthy condition without fault or aging impact. However, when a certain part of
the chip is suffering from the aging effect, a method which only characterizes the delay of
one path or some paths within a CLB is not comprehensive enough to give a complete delay
characterization of the area under test. For example, if in the worst case one of the LUT
inputs of a CLB was almost slow enough to be considered as faulty wasn’t on the path of the
loop, then the delay characterization result may show that the speed of the CLB was not slow
and that it’s not seriously affected by aging. As a result, the aforementioned method could
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not avoid using the CLBs which were actually suffering from aging and a more sophisticated
ring oscillator design for delay characterization is needed.

We decide to implement a ring oscillator per CLB for the following reasons:

1. Considering a Virtex-5, CLBs have two slices, four LUTs per slice, in total eight LUTs
(see Section 2.3.1). Thus, a CLB has enough logic elements to implement a ring oscillator
within a frequency range that can be robustly measured by a built-in counter.

2. One ring oscillator per CLB is a suitable granularity to cover all the paths in the LUTs
of all the CLBs in the containers. With the basic unit size, the ring oscillator can fit in
different sizes of containers.

The idea of covering all the paths and pass transistors in all the LUTs of a CLB is given:

1. All the input pins of the LUT should be at least once on the ring oscillator loop.

2. All the truth table values should be read out at least once per test configuration.

As a result, we search for a Boolean function that selects all the entries of the functions true
table. For Virtex-5, it is a 6-input Boolean function that uses all the inputs of a LUT. Besides,
we have to assure that, when enumerating the paths in the LUT, the ring oscillator has an
odd number of inversions so that it can oscillate.

Again a 3-input LUT is used as an example, see Figure 4.3:

0
1

I0 I1 I2

0
1
1
0

I0 I1 I2

(a)

0
1
1
0
1
0
0
1

I0 I1 I2

(b) (c)

Figure 4.3: Required Boolean function for the ring oscillator design based on a 3-input LUT

When I0 is toggling on the ring oscillator path, the truth table values should invert. So every
pair of the SRAM bits controlled by the same multiplexer should be either 01 or 10, as for
example in Figure 4.3 (a). When I1 is on the path, it inverts the value of first two bits. For
example, if I0 is set to 0, the first and the third bits should have inverted value while I0 is
1, the second and the fourth bits should have inverted values like in Figure 4.3 (b). The
situation is the same for I2, so the value of the fifth to the eighth bits are with the inverted
values of the first to the fourth bits, see Figure 4.3 (c). If we just consider I0 I1 and write
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4.2 Ring Oscillator Design

down the input values and SRAM bit value they will fetch, then we see that we are actually
implementing the XOR function for I0 and I1. The I1 and I2 are also implementing an XOR.
It’s a hierarchy of XORs. The Boolean function is O6 = A0 ⊕ A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕ A5.

The ring oscillator implemented with seven LUTs configured as inverter plus a LUT configured
as an AND gate is a practical design choice when it is not necessary to cover all the paths
and pass transistors of LUTs within a CLB. However, since we target full coverage here, the
test configurations have to be doubled since the pins which are used as enable pins disable
half of the paths in the LUT. For example, in Figure 4.4 I2 is chosen as enable pin. When I2
is set to 0, output is always 0 and the ring oscillator won’t oscillate. The delay of the three
multiplexers on the right can not be characterized. Another configuration which enables the
ring oscillator when I2 is set to 0 is needed to cover these three multiplexers.

0000

I0

I1

I2
0

Figure 4.4: Input I2 disable the ring oscillator

If we need to apply this work in a partial runtime reconfigurable system, we have to minimize of
the number of test configurations. The less test configurations, the smaller the required storage
size of configuration data, and the smaller the required time for delay characterization. A
nine stages ring oscillator is purposed in this work and it can reduce the test configurations.

We configured all the eight LUTs in a Virtex-5 CLB as inverters. However, an even number
of inverters on the loop will not oscillate, and another inverting element is required. So the
XOR gate from the carry chain in CLB can be used as the ninth inverter. One input of
the XOR gate is from the ring oscillator loop and another is from the enable signal. The
inequality function of the XOR gate determines that once the enable signal is set to 0, the
output signal of the XOR gate is identical to the input from the loop; in the other case, the
enable signal is set to 1, the output signal of the XOR gate is the inverted value of the input
from the loop. In the first case, the design will not oscillate because there is an even number
of inverting functions in the loop and in the later case, the design oscillates as a nine stages
ring oscillator.

The schematic of the ring oscillator within a CLB is shown in Figure 4.5. The LUTs are first
chained within a slice, pass through the first XOR gate of the carry chain and then to another
slice.

As the internal connects between the LUTs on ring oscillator loop are fixed after the configu-
ration bits are downloaded, the ring oscillator loop goes through only one set of LUT inputs
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Figure 4.5: One ring oscillator per CLB

and it is fixed before the next reconfiguration. In this design, for each configuration we choose
the input of the same pin number for every LUT in the CLB for the delay characterization
(Figure 4.6).

For the other five LUT input pins, the input pins with the same pin number are connected
to the same input net, for example, all the input pins A6 are connected together. These
five input pins nets together are defined as test cases control signal. The test cases control
signal has 25, i.e. 32 combinations. By changing this 5-bit signal for the six different input
pins combinations, all the paths and multiplexers inside the LUTs of a single CLB can be
covered.
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Figure 4.6: The control signals of the CLB ring oscillator
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The line in red in Figure 4.6 represents the path on the ring oscillator loop. The test case
control signal is five bits wide, each bit connecting to the LUT inputs with the same pin
number. In the best case, we will just need six test configurations. However, due to the
implementation problem which is explained in Section 4.2.3, additional test configurations
are required.

4.2.2 Hard Macro

The ring oscillator is implemented as a reusable physical module called hard macro. A design
can contain a hard macro many times. A hard macro is a logical function created from
components of a specific device family. It specifies the actual configuration of the contain
LUTs and their interconnect. As the ring oscillators in the array are using the same hard
macro, it is sure that they have an identical logic function and routing, so the delay of each
CLB can be compared.

However, a hard macro can not be instantiated in any location. The hard macro must be
placed at a location which has the same component type as the original location. For example,
when the ring oscillator hard macro is generated for a CLBLM, it can not be placed in the
CLBLL as SLICEL and SLICEM are components with a different type.

4.2.3 Proxy against the Pin swapping problem

We used a low level design specification to generate dedicated interconnection to characterize
the delay of a CLB using different inputs of LUTs. The pin to pin connection information can
be given in the design. However, the CAD tools provided by the FPGA manufacturers are
not prepared for such kind of low level application. Normally the routing details are hidden
and the users do not need to worry about that. The CAD tools will optimize the design for
different targets, for example using fewer resources or having lower delay. In our design, as
long as the routing, the LUTs functions, and the input pins of the LUTs are identical, the delay
comparison between the CLBs is reasonable, because, in that case, ideally the speed of the ring
oscillator should be the same. Any speed difference detected by this delay characterization
method can prove that some of the CLBs under test are suffering from more process variation
or aging effects. Hence, the design optimization is not desired and may in the worst case
influence routing and the LUT functions with adverse impact on measurement accuracy.

In [21], it is stated that the inputs of the LUT are logically equivalent. By rearranging the
bits in the truth table and the routing, the input pin of LUT to which a signal is connected
can be changed. Furthermore, the timing of the LUT only depends on the access time of
the SRAM cells and the multiplexers instead of the complexity of the functions. As a result,
the placement and routing (PAR) tools may swap the logically equivalent LUT input pins to
achieve a delay-optimized routing.

The ring oscillator design here configures the Boolean function of each LUT as a 6-input XOR
function. So logically the six inputs of a LUT are equivalent. This leads to a situation that
even though we use different LUT input pins and routing in different test configurations as
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mentioned in the previous subsection, the PAR tool considers they are logically equivalent
and swaps the used LUT pins for delay-optimized routing. As a result, all the six different
test configurations are modified to use identical LUT input pins and routing after PAR. This
completely changes our ring oscillator design, and it fails to cover all the multiplexers in the
LUTs.

Therefore we tried to stop the automation routing of the tools from modifying the routing of
the ring oscillator design by adding constraints in the User Constraints File (UCF). However,
it doesn’t work. As long as the a net is unrouted in our design, the tool will rearrange the
pins and update the routing. Because the net of the test case signal has no driver in the hard
macro design stage, the tool can not route the net. A proxy is introduced to fix this problem
as shown in Figure 4.7. A proxy is a CLB which is adjacent to the CLB ring oscillator and
it provides the unrouted nets with a driver so they can be routed. The LUTs in the proxy
are configured as identity functions. All the external pins are connected to the inputs of the
identity function, and the outputs of the identity function are connected to the net these
external pins drive.

ProxyRing 
Oscillator

Figure 4.7: CLB ring oscillator hard macro with proxy (screen-shot from FPGA editor)

The PAR tool will not swap the pins of the LUTs as all the nets in the ring oscillator design
hard macro are routed. The input pins of the LUTs are routed in a order as we designed. We
can generate six different test configurations with 32 test cases by using the proxy. However,
as the design uses two CLBs (see Figure 4.7), the CLB which is implemented as a proxy can
not be tested using these test configurations. Since we target full coverage of the container,
extra test configurations are needed.

4.3 Counter Design and Connection to Ring Oscillator

The counter is used to measure the frequency of the ring oscillator. The counter counts the
number of transactions of the ring oscillator during a known time period. This measurement
time is defined by another counter clocked with the reference clock. For example, if the fixed
reference clock frequency in this work is 100 Mhz, then the time period for 100 reference clock
cycles is 1 µs. Hence, two counters are needed. One counter is used as a timer that control
the measurement time. It counts the reference clock until it reaches the predefined cycles.
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Another counter is used for counting the oscillations of the unknown ring oscillator frequency
and it is controlled by the timer.

The equations to calculate the ring oscillator frequency are listed below.

tmeasurement = NRef ∗ TRef =
NRef

fRef
(4.3.1)

Measurement time, tmeasurement, is the known time period that we define for a single mea-
surement. It can be controlled by the number of reference cycles NRef and the reference clock
period TRef or frequency fRef . Here, we define NRef as the value that is set in the timer.

This measurement time will be also equal to:

tmeasurement = NOscillation ∗ TOscillation = NOscillation

fOscillation
(4.3.2)

NOscillation is the oscillation number of the ring oscillator measured by the counter, and
TOscillation and fOscillation are the ring oscillator period and frequency.

With Equation 4.3.1 and Equation 4.3.2 we have:

NRef

fRef
= NOscillation

fOscillation
(4.3.3)

So the equation of the ring oscillator frequency can be written as:

fOscillation = NOscillation

NRef
fRef (4.3.4)

Using Equation 4.3.4 we can compute the ring oscillator frequency by relating the number of
oscillations during the measurement time with NRef and NOscillation (Figure 4.8).
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Figure 4.8: Measuring ring oscillator frequency by counters
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On one hand, a longer period of measurement may increase the measurement precision. On the
other hand, as mentioned earlier in Section 3.1, the ring oscillator will heat up the substrate
and the delay will be changed around the loop, a shorter period of measurement is needed to
avoid the self-heating [38]. By setting different values in the timer, we can not only study how
the ring oscillator self-heating is influencing the temperature and delay, but also study the
relation between the measurement time and measurement precision and find out a suitable
duration of the measurement. The timer value is set by a dedicated register. With a 16-bit
counter, the measurement time can be up to 216 − 1, i.e. 65535 reference cycles. It’s a long
measurement time at reference clock considering the short measurement time of 2000 cycles
in [38]. So even if the ring oscillator has higher frequency than the reference clock, we can still
set a long measurement time at reference clock to conduct the aforementioned experiments
and prevent the counter from overflowing. For example, if the ring oscillator is at 300 Mhz, 3
times faster than the reference clock, the timer value can still be set to 20000 reference cycles
so that the timer counts until 20000 reference cycles and disable the counters.

As the output of the ring oscillator is connected to a input of the LUT which implements
an identity function, the load capacitance of the ring oscillator is fixed. With the decoupling
input and output, the measurement result neither depends on the capacitance of enable wire,
nor depends on the wire capacitance from the output of the proxy to the counter (Figure 4.9).
Hence, no matter where the counters are placed, or how long the interconnect wire between
the proxy and the counter is, the results are the same.

RO
Enable

OUT

CMOS gate
Decoupling Input

Proxy
Decoupling Output

Figure 4.9: Decoupling input and output of ring oscillator

4.4 Control Circuit Design

In this section the three main components (shown in Figure 4.10) of the control circuit will
be introduced:

• A serial communication component between FPGA and workstation for receiving/transmitting
the commands and collecting the data;

• A data control finite state machine to handle the received data from the workstation
and control the serial communication component to send the measurement result of the
ring oscillator array to the workstation;

• A ring oscillator array control finite state machine to handle the measurement procedure.
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Figure 4.10: Using UART serial communication to control the FPGA

4.4.1 Serial Communication

A Universal Asynchronous Receiver/Transmitter (UART) is used for the serial communication
between the FPGA and the workstation. The communication standard RS-232 is used in this
work because of easy connection to the workstation and easy software access. One male DB-9
RS-232 serial port is provided by the Virtex 5 ML505 platform [40]. On this platform, the
FPGA chip is only connected to the data transmission pin (TX) and data receive pin (RX)
on the serial port. Hence the hardware flow-control signals are not used. Therefore the flow
control is not used in the communication with the workstation. The configuration of UART
is set to odd parity, 9600 Baud rate.

Once the Receiver on the FPGA side notices that a data transmission is coming from the
workstation, it will translate a sequence of individual bits into a complete byte. Then it will
set the Read Data Available (RDA) signal to ’1’ to inform the data controller which will be
introduced in the following subsection that a data is received. Before the data controller has
a new request or the UART is reset, the received data will be stored in the read register and
the Receiver will not receive new data from the data transmission line.

The Transmitter on the other hand translates bytes of data and transmits the data bit by
bit. As long as the UART receives the write request from the data control, the data will be
stored in the shift register and shifted out along with the start bit, parity bit and stop bits.
Since transmitting a single byte takes a while, the UART will raise a Transmission Block
End (TBE) signal when the previous byte transmission has been finished to inform the data
controller and to request the next write.

4.4.2 Data Control Circuit

While the UART receives or transmits data between FPGA and workstation, the Data Control
Finite State Machine (FSM) in this work interprets the data from the workstation to command
and organise the result transmitting for the UART. The Data Control FSM has six different
states: Wait, Start Measurement, Set Measure Time, Set Test Case, Set Ring Oscillator (RO)
Select, and Send Results (Figure 4.11). The entry state is the Wait state. It waits for the
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commands from the workstation which are defined in Table 4.1, and enters different states
according to the commands.

Table 4.1: Definition of Control Command

Received Data Command Action
0 Reset Set the Instruction signal that tells the ring oscillator array

controller to “RESET”; Stay in the Wait state.
1 Start Set the Instruction signal that tells the ring oscillator array

controller to “START”; Enter the Start Measurement State.
2 Set Timer Enter the Set Measure Time State.
3 Set Test Case Enter the Set Test Case State.
4 Set RO Select Enter the Set ring oscillator (RO) Select State.
5 Send Result Enter the Send Results State.

Others None Stay in the Wait state.

As it is shown in Figure 4.11, the Data Control FSM drives three different signals. The signal
INT ST R is the instruction signal that starts or resets the ring oscillator control FSM. Signal
READ and signal W RIT E are the control signals of the UART for receiving and transmitting
data to the workstation, respectively.

In the Start Measurement state, it waits until the WR signal from the ring oscillator array
controller changes to 1. The WR signal tells that the measurement is finished and the FSM
enters the Send Results state to control the UART to send the data of the counters and
the temperature sensor to the workstation. After all the results of a single measurement are
transmitted, the FSM will go back to the Wait state and wait for the next command.

The Send Results state can be entered in one of two ways. The first way is entered from
the Start Measurement state and the second way is entered directly from the Wait state
when the “Send Result” command is received. By taking the second way, we can resend the
measurement results.

The “Set Timer” command drives the FSM to the Set Measure Time Sate. To configure the
16-bit timer, two bytes of data are needed. So the following two bytes of received data will
be stored in the timer control register of 16-bit width. After receiving the two bytes, it will
again return to the Wait state and inform the UART to take a new command by setting the
READ signal to 1.

The Set Test Case and Set RO Select states are similar to the Set Measure time state. But
instead of reading two bytes of data, they only read one byte of data. The data is stored in
the test case control register and the ring oscillator select control register respectively.
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Figure 4.11: The Finite State Machine of the Ring Oscillator Data Control

4.4.3 Ring Oscillator Control Circuit

The ring oscillator control circuit is a FSM, that is used to control the measurement process
as is shown in Figure 4.12. It has six different states: Idle, Pre Run, Timer Reset, Measure,
Send out and Measure End. The entry state is IDLE, after a start signal from the data control
FSM is received, it will enter the Pre Run state. After the ring oscillator is oscillating at a
stable frequency, it will reset the timer in the Timer Reset state and then enter the Measure
state to record the number of oscillations during a measurement time set by the work station.
When the measurement is finished, it will enter the Send Out state to notify the data control
FSM to send out the results in the counters and the temperature sensor. Finally it waits in
the Measure End state and keeps the results in the counters to be read by the data control
FSM to read until it is reset.

As it is shown in Figure 4.12, the FSM drives six different signals. The signals rst_t, en_t are
the reset and enable signals of the timer, while rst_c, en_c are the reset and enable signals
of the counter. Signal en_r is the enable signal for the ring oscillator and signal W R is the
write signal for informing the Data Control FSM to send of the measurement results.

The Idle state is the initial state after reset that waits for the measurement “START” signal
to trigger the measurement. In this state, the timer and the counters are reset and the ring
oscillator is disabled.

The Pre Run state enables the ring oscillator and the timer. When the ring oscillator is
enabled, the signal passes through each inverter to be inverted and amplified. Due to the

39



4 Architecture for Delay Characterization

Idle

rst_t = 1
rst_c = 1
en_t = 0
en_c = 0
en_r = 0
WR = 0

Pre Run

rst_t = 0 
rst_c = 0 
en_t = 1
en_c = 0
en_r = 1
WR = 0 

Timer Reset

rst_t = 1
rst_c = 0
en_t = 0
en_c = 0
en_r = 1
WR = 0

Measure

rst_t = 0
rst_c = 0
en_t = 1
en_c = 1
en_r = 1
WR = 0

Send Out

rst_t = 0
rst_c = 0
en_t = 0
en_c = 0
en_r = 0
WR = 1

Measure End

rst_t = 0
rst_c = 0
en_t = 0
en_c = 0
en_r = 0
WR = 0

START : 1

START := 1

TIMER : Pre_Run

TIMER := Pre_Run
TIMER : Set_Time

TIMER := Set_Time

RESET : 1

RESET := 1

Figure 4.12: The Finite State Machine of the Ring Oscillator Control

delay in the loop, the oscillator needs a start up time to gain a constant frequency. Here
in this work, the timer counts for 212 reference clock cycles, following the technique in [29].
However, no Pre Run state is mentioned in [38]. In the next stateTimer Reset state, the timer
is reset while the ring oscillator is kept oscillating.

In the Measure state, the timer and counters are enable simultaneously. The timer counts the
reference clock until it reaches the number stored in the timer register which is received from
the workstation and then the FSM will enter the Send Out state which disables the timer and
counters and informs the data control FSM that the results are ready. All the components are
disabled in the Measure End state but they are not reset. Therefore, the data control FSM
can send out the measurement results when it’s requested by the workstation.

4.4.4 Selection wrapper

The container under test comprises a two dimensional array of CLBs configured as identical
ring oscillators, which are enabled one row at a time using the row enable signal. A row of
counters measure the selected row of ring oscillators simultaneously. Each counter is dedicated
for a column and its input is connected to the output of the multiplexer which selects the ring
oscillators in the same column depends on the row select signal.
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The selection wrapper is designed with VHDL and is implemented in the container. It’s also
the interface between the static part and the runtime reconfigurable partition of the system.
The identical ring oscillator hard macros are instantiated as black-boxes in the selection
wrapper.

4.5 System Monitor

The Virtex 5 FPGA contains a System Monitor which is located in the center of the FPGA
chip [41]. The on-chip sensors can measure the FPGA physical operating parameters on real
time, for examples the on-chip power supply voltages and temperature. The measurement
data can be accessed via the JTAG port using ChipScope Pro Tool or be instantiated as a
hardware blocks and directly accessed as a module whose maximum measurement error range
is ±4 ℃. The resolution of the temperature sensor depends on the LSB of the AD converter,
and each LSB approximately makes a difference of 0.49 ℃.

In this work we need to study the correlation between the temperature and the ring oscillator
activities so we rely on the System Monitor temperature sensor. The System Monitor block
is instantiated with the LogiCORE IP System Monitor Wizard.
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Implementation

Contents
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The ring oscillator in this work is a low level design, therefore a suitable implementation
platform is needed. This chapter describes the design tools used in this work and the imple-
mentation flow in details.

5.1 Design Tools

5.1.1 Xilinx Design Language

As shown in Figure 5.1, the conventional Xilinx Design flow is:

1. Describe the design with high level Hardware Description Language(HDL), for example
VHDL or Verilog;

2. Synthesize the design;

3. Implement the design (Map, Place and Route);

4. Generate the bit file.
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.ngc .ngd.vhdl, .v .ncd .ncd .nmc

.xdl

XST NGD
Build MAP PAR BitGen

-ncd2xdl
-xdl2ncd

Figure 5.1: Xilinx Design flow with XDL

A Native Circuit Description (NCD) format file is generated when the design is mapped. The
Xilinx Description Language (XDL) is human readable format and equivalent to the NCD
format. It can be used to manipulate the design, either before or after the design is full or
partially placed or routed. Meanwhile, Xilinx provides the command line tool “xdl” for the
conversion between these formats: xdl − ncd2xdl and xdl − xdl2ncd.

Even though XDL is not well documented, it gives the researcher or designer an opportunity
to study all the features of the Xilinx device, to constraint the system or to directly manipulate
the internal routing and logic elements to create a hard macro. In Section 4.2.2, the hard macro
is already introduced as a pre-placed and pre-routed module for a specific device family.

Because it can directly manipulate the tiles in Xilinx FPGAs that represent the CLB, inter-
connect, clock, block RAM and I/O block, XDL is a suitable language for low level design.
It also has the advantage to reduce the design time because the synthesis and mapping steps
can be skipped. However, to use this powerful language, a compatible tool is needed. One
possible tool is called RapidSmith and it is introduced in the next section.

5.1.2 RapidSmith

RapidSmith is an open source project that is based on XDL. It is a framework that is written
as a collection of Java packages for reading, writing, and manipulating Xilinx designs in XDL
format. The detailed FPGA device information is in the XDLRC FPGA resource description
which has been parsed by RapidSmith. With the RapidSmith library, it’s possible to manip-
ulate logic function in the CLB tile and connect the components in the tile to a specific pin
or port. Hence the low level design of ring oscillator can be directly generated with the help
of RapidSmith as a XDL file which can be later converted to the NMC hard macro format
file.

5.1.3 Xilinx ISE Design Suit

The ISE design suite is the Xilinx FPGA design environment that includes exclusive tools
which are used in this work including: ISE, FPGA editor, PlanAhead and iMPACT.
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ISE Except for the ring oscillator design, the control circuit including the UART communi-
cation control unit, data control unit, ring oscillator control unit, the selection wrapper
and the system monitor are all synthesized in ISE to generate the NGC file, which is
later used as the static part in PlanAhead.

FPGA editor is used to route the ring oscillator design with the proxy with a script which is
generated along with the XDL file of the ring oscillator.

PlanAhead PlanAhead is used to combine the static part and the reconfigurable part of the
design. It can generate the whole bit stream for the complete design and the partial
bit streams for the different configurations. As the ring oscillator hard macros are used
in the implementation flow, their placement has to be specified in the user constraints
file (ucf). In the ucf file the placement has to be individually set for each macro with a
reference point.

iMPACT iMPACT is used to program the FPGA.

5.1.4 Python Backend

In section 4.4.1, it is mentioned that the FPGA communicates with the workstation using
UART serial communication. The Python pySerial package can access the serial port. With
the help of python, we can easily control the measurement process and record the data in a
local file in workstation.

5.2 Implementation Flow

The implementation flow of the delay characterization method in this work is shown in Fig-
ure 5.2. Firstly, the ring oscillator hard macro with proxy is generated by RapidSmith and
converted to the NMC file. Then this hard macro is routed using a script in FPGA Editor.
The static part of the design is synthesized in ISE and combined with the ring oscillator array
partial reconfigurable partition in PlanAhead which instantiates the routed hard macro in the
black box (container) of the static part. The design combined the static and partial reconfig-
urable partition will be completely placed and routed in PlanAhead. Finally the generated
bitstream is downloaded to the FPGA via iMPACT.
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Figure 5.2: Implementation flow of the delay characterization method
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In this chapter, the validation of the delay characterization method and the obtained results
are presented. Firstly, a case study of a single ring oscillator shows the low level implementa-
tion flow. Then the arrays of ring oscillators are validated and used to characterize the delay
in the FPGA. The validation considers the measurement precision, accuracy, and proves the
absence of systematic problems. The measurement results are also discussed with respect to
delay variation and temperature dependency.
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6.1 Case Study: Single Ring Oscillator

In the first experiment, a single ring oscillator is used to prove the methodology using the de-
sign flow with low level HDL can be performed. The ring oscillator is designed and simulated,
then implemented on the FPGA hardware.

A 31-stage and a 63-stage ring oscillators are designed. The design is controlled by a very
simple FSM, once the enable button is pushed, the measurement starts, and timer, counter
and the ring oscillator are enabled. The timer counts for 100 cycles of the reference clock at
100 MHz and then disables the counter. The result is stored in the counter. And the ring
oscillator is kept oscillating until it is reset.

6.1.1 Simulation Result

The design generated with XDL has to be verified before it’s implemented in the FPGA
with simulation. Xilinx design tool is used to convert the implemented design into a VHDL
simulation model using the SIMPRIM library. The SIMPRIM library is used for structural
simulation netlists produced after implementation including timing simulation. The simula-
tion model is generated along with a Standard Delay Format (SDF) file which annotates the
delays for the design.

The simulation is performed in Modelsim and shows that the ring oscillator design is oscillating
and the counter is counting the oscillations. Once the test starts, the counter is enabled until
it is disabled by the timer after 1000 ns, 50 transactions are recorded so that the 31-stage ring
oscillator runs at a frequency of 50 MHz in simulation.

6.1.2 Implementation Result

Design is now loaded onto a FPGA and the frequency of the implementation is measured in
two ways:

• External measurement using oscilloscope. The output of the ring oscillator is connected
to the expansion I/O connectors which are connected to an oscilloscope.

• Internal measurement using built-in counter.

In this experiment, the used oscilloscope has a measurement range of up to 100 MHz, hence
frequency divider which reduces the ring oscillator frequency to 1/2 and 1/4 of the original
frequency is used to improve the measurement precision. First, several expansion I/O con-
nectors on the FPGA board are used, one of them is connected to the output of the ring
oscillator directly and the others are connected to the output of the frequency divider. The
oscilloscope is connected to the expansion I/O pin and the ground pin on the FPGA board
to measure the frequencies. Figure 6.1 shows the frequency of the 31-stage ring oscillator is
76.9 MHz.
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(a) (b)

Figure 6.1: Measurement result with oscilloscope via the expansion I/O pin

As the communication circuit between the FPGA and the workstation was not designed before
this case study, the 8-bit LEDs on the FPGA board are used to display the counter value.
The LEDs read from the MSB to LSB is 01001100, which is equal to 76 MHz.

The case study shows that both the oscilloscope and the built-in counter can be used to
measure the ring oscillator frequency. The results from the oscilloscope and the built-in
counter are mutually confirming the correctness of each other. As a comparison, the frequency
of the 63-stage ring oscillator was also measured and the result is 38.4 MHz, approximately
half the frequency of the 31-stage ring oscillator.

However, the oscilloscope in this experiment has a limited frequency measure range and it’s
difficult to record the results. By contrast, the built-in counters will work at frequencies
higher than 500 Mhz according to the timing report and the test results can be stored in an
automated way. Besides, in the real design, it may not be possible to spare a pin for the
oscilloscope measurement. Hence, the oscilloscope is used here as a reference.

6.1.3 Comparison of Simulation and Implementation

The simulation result (50 MHz) is pessimistic when it is compared to the implementation
result (76.9 MHz) . One explanation could be that the manufacturers have taken the process
variation and aging effects into account, and thereby pessimistically estimate the speed of the
fabric. Similar results can be seen in [36] where the measured delay is 55.9% of the maximum
simulation delay.

The first experiment setup shows that the ring oscillator can be implemented on the FPGA
properly. The read out from the oscilloscope proves that the built-in counter measures the
oscillations correctly. However, the accuracy has to be improved as the measurement time, 100
cycles, is too short. When an 8-bit counter is used the maximum frequency can be measured
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is 28 = 256 Mhz for a the reference clock of 100 Mhz and 100 measurement cycles is set to
100.

6.2 Validating the measurement of Ring Oscillator Arrays

The delay characterization method in this work is physical measurement that is not possible to
be completely accurate. In order to reliably interpret measurement data, different experiments
are proposed in this section to validate the measurement. The feasibility of the method has
been proved by the case study of single ring oscillator. In the following experiment, the ring
oscillator design mentioned in Chapter 4 are validated and it is instantiated in different size
of arrays.

Each time the one row of ring oscillators in the array is enabled and a row of counters
measured the enabled row of ring oscillators simultaneously. One of the six test configurations
using different ring oscillator paths is shown. As each ring oscillator path consists of the
input pins with the same pin number of LUTs, the five remaining LUT input pins are with
different assignments to evaluate all paths in the LUTs. The presented results show that the
measurement method is precise and accurate.

6.2.1 Delay Estimation

The delay estimation is based on the information from FPGA Editor and the SIMPRIM model
of the ring oscillator. The Xilinx timing analysis tool can estimate the delay for the route and
this delay estimation result is used to compare with the measurement result.

For example, the test configuration which use input Pin 6 on the loop, the total path delay
including the delay of the LUTs and the intra CLB path is calculated. Estimation of the
LUTs delay is 8 × 0.086 ns = 0.688 ns, the intra CLB path delay is 2.545 ns, the XOR gate
delay is 0.117 ns, total delay is 3.351 ns so that the frequency is calculated with the formula
f = 1/T = 1/(2×(Delay of the inverters+Delay of theinterconnect)) = 1/(2×3.351 ns) =
149 MHz.

The interconnect resources mentioned in Section 2.2.3 connect the LUTs within a CLB. How-
ever, some of the LUTs are directly connected, while others need to use more PIPs as shown
in Figure 2.4. The delay of a connection passing through more PIPs is larger than that of
a direct connection. In this work, the pin to pin connections between LUTs are particularly
specified, for example, in the configuration that all input pins 1 are used in the oscillation
loop, the output of one LUT is always connected to the input pin 1 of the next LUT. However
not all the connections are direct connections and this specified connections may have large
delay due to the structure of the programmable switch matrix. Since the connections are
not optimized for delay, the path delay of some test configurations are larger than the other.
Table 6.1 lists the path delay estimation for different test configurations.
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Table 6.1: Estimated delays for six test configurations

Test Configuration Intra CLB path delay (ns)
Pin 1 7.825
Pin 2 6.838
Pin 3 4.737
Pin 4 4.737
Pin 5 2.963
Pin 6 2.545

6.2.2 Measurement Precision

Before using the proposed method to characterize the delay of the CLB, it is required to find
out the precision of the built-in counters. As it is mentioned in Section 4.3 Counter Design,
the effect of the measurement period on the measurement precision will be examined.

The measurement precision is reviewed for different measurements period, varying from 1000
to 25000 reference clock cycles. For each measurement period, the experiment is conducted
at the room temperature and the Virtex-5 FPGA device is first put in the idle mode until
it reaches the temperature equilibrium. An array of 5 × 20 ring oscillators is measured.
The experiment uses one test configuration and one test case. Ten consecutive measurements
for each measurement period were taken. The standard deviation of each ring oscillator is
calculated and the maximum standard deviation in the array in each case is listed in the table
6.2.

Table 6.2: The standard deviations (Mhz) for different measurement cycles

Measurement Cycles Max. Standard Dev.
1000 0.485
2000 0.255
3000 0.098
4000 0.136
5000 0.119
6000 0.137
7000 0.105
8000 0.120
9000 0.138
10000 0.141
15000 0.153
20000 0.112
25000 0.108
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The maximum standard deviation among the results is 0.485 Mhz, considering the mean
frequency of the ring oscillator array is 232 Mhz, it is a 0.2% measurement error.

Figure 6.2: The correlation between reference clock cycles and measurement precision

We can see from Figure 6.2 that the maximum standard deviation declines as the measurement
time increases from 1000, and it reaches a minimum value at 3000 cycles. After that the longer
measurement cycles can not reduce the maximum standard deviation as the self-heating of
the ring oscillator may decrease its frequency during the measurement. Considering the trend
of the maximum standard deviation and the fact that longer measurement takes more time
and increases the temperature by self-heating, 3000 cycles is a suitable measurement time.

6.2.3 Measurement Accuracy

All the measurements are prone to systematic error, if the measurement contains a systematic
error, then increasing the sample size only increases the measurement precision but does
not improve accuracy. The result would be a consistent inaccurate results from the flawed
measurement method. Eliminating systematic errors, if present, improves accuracy. The
following experiments aim to investigate systematic errors in the measurement setup/design.

6.2.3.1 Measurement with different Counter Placement

The following experiments aim to investigate the influence of counter position to the measure-
ment results. In Section 4.3 we discussed the decoupling at the input and output of the ring
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oscillator design that provides a static load capacitance of the ring oscillator. The load capac-
itance of the interconnect between the ring oscillator output and the counter input should,
thereby not influence the ring oscillator frequency.

The experiments are conducted at room temperature. An array of 5 × 20 ring oscillators is
placed at the location X48Y94. And the counters are placed in five different locations including
center and the four corners of the FPGA chip. To increase the measurement precision, each
ring oscillator is measured ten times and the average value is used for the comparison. We
name the five configurations Center, Upper Left, Upper Right, Lower Left and Lower Right,
representing the location of the counters. The measurement results of the ring oscillators in
the array in Center case are used as reference results and are compared with other cases. The
maximum difference in the array of each comparison is listed in the table 6.3 with the average
value of the array of each case. The temperature is at 38.39 ℃.

Table 6.3: Results comparison for the ring oscillator array of different counter locations

Case Average Feq. (MHz) Average Diff. (MHz) Max. Diff. (MHz)
Center 232.48 NaN NaN

Upper Left 232.47 0.01 0.79
Upper Right 232.52 0.04 0.57
Lower Left 232.52 0.04 0.74

Lower Right 232.68 0.20 0.56

The maximum measurement difference due to the changed counter locations is 0.79 MHz and
minimum frequency of the ring oscillator in the measured array is 227.94 MHz. As a result,
the maximum influence of the counter location is only 0.35%. As a consequence, we can
conclude that the measurement of ring oscillator frequency doesn’t depend on the placement
of the counters.

6.2.3.2 Measurement of Random Area

The intention of this experiment is to show that the purposed delay characterization method
can measure delay variation patterns in different locations of the FPGA and thereby prove
absence of the systematic problem. An array of 5 × 5 ring oscillators is randomly placed at
different locations in the FPGA. Detailed experiment results of one test configuration and one
test case are listed in Table 6.4.

The Table 6.4 shows that the maximum frequencies in different locations are not the same.
The highest maximum frequency is 236.53 MHz in the array at X8Y154, while the lowest
maximum frequency is 230.22 MHz in the array at X72Y74. The difference between the them
is 2.7%. Moreover, the highest minimum frequency is 231.14 MHz in the array at X48Y94
and the lowest minimum frequency is 223.00 Mhz in the array at X8Y84 with a difference of
3.6%. And within the arrays, the difference between the maximum and minimum frequency
is from 1.8% to 5%.
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Table 6.4: Results comparison for the ring oscillator array at random locations

Location Maximum Minimum Max. − Min. Average Std. Dev. Temp.
Feq. (MHz) Feq. (MHz) Feq. (MHz) Feq. (MHz) (MHz) (℃)

X8Y4 234.82 227.07 7.75 231.66 2.09 40.85
X8Y84 230.75 223.00 7.75 228.17 2.21 39.37
X8Y90 231.80 224.11 7.69 229.15 2.17 40.85
X8Y94 232.59 224.64 7.95 229.37 1.97 40.36
X8Y154 236.53 224.90 11.63 231.22 3.03 40.85
X48Y90 236.07 230.49 5.58 232.72 1.57 40.36
X48Y94 236.33 231.14 5.19 232.80 1.41 40.85
X72Y4 232.39 226.28 6.11 229.01 1.61 41.83
X72Y70 230.95 225.62 5.33 228.85 1.52 39.87
X72Y74 230.22 226.15 4.07 228.84 1.11 40.85
X72Y154 235.02 226.68 8.34 231.07 2.41 40.85

The experiment results show that the setup/design can actually characterize the delay of the
CLBs and in a certain degree prove that there is no systematic problem.

6.2.3.3 Measurement of Overlapping Area

The purpose of this experiment is to show that the measured frequency of the ring oscillator
at any location does not depend on the placement of the ring oscillator to prove that there is
no systematic problem in this work.

One of the experiments is shifting the 5×5 ring oscillator array by one row or/and one column
to measure an area which is an intersection of four ring oscillator arrays (Figure 6.3). The
measurements are taken for one identical configuration and test case. The system monitor
reports the temperature from 41.83 to 42.33 ℃.

The 4×4 area selected by the black rectangle shows the overlapped CLBs which are measured
by ring oscillator arrays at four adjacent locations. For example, the location in Figure 6.3
(b) is equal to the one in Figure 6.3 (a) shifted one column to the right and the one in Figure
6.3 (d) shifted to an upper row. The delay variations which are measured in these four cases
of this overlapped area have identical spatial distribution which is also seen in the patterns
in Figure 6.3. The standard deviation of these four cases is less than 0.5 Mhz.

6.2.4 Summary

The experiment results in this section show that the delay characterization method in this
work has high precision and accuracy, and does not have serious systematic errors. The
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Figure 6.3: Shifting the ring oscillator array in four positions

measurement results of the delay values at the same location are repeatable and it is not
depending on the placement of the ring oscillator array or the counter.

6.3 Delay Variation

The purpose of FPGA delay characterization method is to detect and localize the degradation
of the basic reconfigurable logic element, LUT. The following experiment aim to demonstrate
that the method can be adapted to different size of the container and characterize the delay.
Here in this experiment, we assume the container size is 10 × 20 CLB.

As mentioned in Chapter 4, because of an implementation problem, a proxy is introduced to
the ring oscillator design. As a result, the ring oscillator array can only measure half of the
CLBs in the area it covers. To characterize the delay of the whole target area, at least two
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configurations of ring oscillator array are needed. The characterization result of a 10 × 20
CLB area measured by two 5 × 20 ring oscillator arrays is shown in Figure 6.4.
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Figure 6.4: A 10 × 20 CLB area measured by two ring oscillator arrays

In this case, the temperature is at 40 ℃, the Input pins 6 of the LUTs are on the oscillation
loop and the test case control signal is set to 31. The average frequency of this measured
area is 243.82 Mhz. The standard deviation of it is 1.79 Mhz (Figure 6.5). The maximum
frequency is 247.80 Mhz while the minimum is 238.72. The frequency difference between the
maximum and minimum is 9.08 Mhz, which is 3.7% of the average frequency in this area. The
result also shows that the delay estimation by the timing analysis tool is pessimistic, as the
estimated frequency of the ring oscillator is 149 MHz, 61% of the average frequency in this
case.

The slowest rows of CLBs are close to the global interconnect routing channels in the FPGA,
hence it is highly possible that they are more frequently used than the one which has a
longer distance to the global interconnect, and for that reason, may have already aged during
previous operation, for example the CLBs in row 19 and row 20 in Figure 6.4.

6.3.1 Test Cases

In this work the ring oscillator is designed with the feature to cover all the paths in the LUTs
based on the assumption that the LUTs are with the structure mentioned in Section 2.2.2.1.
In the following experiment, we enumerate the 32 different test cases by changing the 5-bit
test case control signal for one of the six test configurations each time. We assume that
for each test cases, the delay on the ring oscillator loop would be different because different
multiplexers in the LUT and thereby different paths are elected. A 5 × 20 CLB array is
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Figure 6.5: Frequency distribution of 10 × 20 CLB area

placed at coordinate X48Y94, and Figure 6.6 shows the test results of the CLB at coordinate
X48Y114 as an example.

The experimental result differs from the assumption. The result shows that the ring oscillator
frequencies can be grouped into two groups, where the first group is the high frequency
group for the test cases with a frequency at around 247 Mhz, and the second group is the
low frequency group for the test cases with a frequency at around 235 Mhz. The difference
between the average frequency of these two group is 11.64 MHz, which is about 5% of the
average frequency. The standard deviations of the fast and slow group are 0.193 and 0.192
respectively. These results also show that this observation is not only true for a single CLB
but all the CLB ring oscillators. When we observe the frequency distribution of these 32 test
cases, we can see that actually it is of some pattern, as seen in Figure 6.6. The observation
result for the first nine test cases is shown in Table 6.5.

The frequency change seems to depend on the parity of the 5-bit test case control signal.
When the parity of the test case is even, this test case belonged to the low frequency group.
In contrast, the odd parity test cases have a high frequency. This can not be explained by the
LUT structure which we assumed, as the change of the test cases is only choosing a different
path in the LUTs. The path lengths are the same when the test configuration is not changed.
Considering the test cases 0 and 1, the paths are very slightly changed. These kinds of the
small difference may not cause such a significant change in ring oscillator frequency up to 5%.
The current understanding of the LUT structure seems to be inaccurate. But still, as the
LUTs are implemented with the 6-input XOR functions and all the input combinations are
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Figure 6.6: Frequency comparison of 32 different test cases for a single CLB ring oscillator in
one test configuration

Table 6.5: Parity dependence of the frequency

Test Case Binary Frequency
0 0000 low
1 0001 high
2 0010 high
3 0011 low
4 0100 high
5 0101 low
6 0110 low
7 0111 high
8 1000 high

covered, every path that accesses the SRAM bit entries is tested and characterized.

No matter what the hidden LUT structure is, the function and the input pins of the LUTs
are identical for all the ring oscillators in a same test configuration and test case. As the ring
oscillators in the array are using the same hard macro, it is ensured that they have an identical
logic function and routing, so the delays of each CLB in different test cases are compared.
Hence, the ring oscillator frequencies reflect the delay variation from CLB to CLB.
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6.4 Temperature Dependency of Delay

The following experiments investigate the temperature influence on the ring oscillator fre-
quency and the measurement operations influence on the temperature. Two types of experi-
ments are presented in this section, one is using an external heating equipment to control the
temperature, the other is measuring the self-heating in the FPGA caused by the proposed
delay characterization method.

6.4.1 External Heating

The setup of the external heating experiment is shown in Figure 6.7. The heating equipment
is refitted from a hot air gun which is normally used for desolering. The fan of the FPGA
board is removed and the muzzle of the hot air gun is attached to the heat sink of the FPGA
board. We can adjust the heating speed by controlling the temperature and the air pressure
of the hot air gun.

Figure 6.7: The experiment setup for external heating

In the external heat up experiment using the hot air gun, two rows of the ring oscillators
in the array mentioned in Section 6.3 are chosen. In both of these two cases, hot air gun
temperature is set to 100 ℃, used the same heating air pressure. After each experiment, the
hot air gun is turned off, the FPGA is put in the idle mode until it cools down and reaches
the temperature equilibrium and then we start another experiment. The heating experiment
lasts for ten minutes and results are sampled every second.

As we would expect when the FPGA is heated up, the temperature raises and the ring
oscillator frequency drops down, shown in Figure 6.9 (a). From Figure 6.9 (b) we can observe
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that the temperature and frequency have an approximately linear correlation. Moreover, as
the lines which depict the frequency decline of the ring oscillators are parallel, it shows that
the frequency-temperature correlation is not depending on the ring oscillator speed. That
means in a reasonable operating temperature range (below 100 ℃), the frequency differences
between every two ring oscillators are constant. Even though the absolute path delay will
increase as temperature rise, the delay variation among the CLBs can be well measured by
the ring oscillator array.

(a) (b)

Figure 6.8: Temperature and frequency correlation of CLB row 5 for array at coordinate
X48Y94

(a) (b)

Figure 6.9: Temperature and frequency correlation of CLB row 9 for array at coordinate
X48Y94

Linear regression analysis is run for the two rows of ring oscillators. The correlation coefficient
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is -0.996, and the slope is from -0.14 to -0.16 Mhz/Kelvin, which means the frequency will
drop 140 to 160 Khz when the temperature increases by 1 K.

6.4.2 Self-Heating

This experiment is performed on a Virtex-5 FPGA with heat sink and a disabled fan. An array
of 5 × 20 ring oscillators is placed closely to the System Monitor Sensor in the middle of the
FPGA chip. The FPGA device is first put in the idle mode until it reaches the temperature
equilibrium and then whole CLB array is measured continuously for 600 seconds.

The temperature raised by 3 ℃ during the 600 seconds and reaches a temperature equilibrium
as shown in Figure 6.10. The chart looks discrete due to the minimum temperature resolution
provided by the System Monitor temperature sensor is 0.49 ℃. Continuous measurement
keeps the ring oscillator in the CLB oscillating and the temperature change is not significant
when compared to the [26] as fewer resources are used and the toggle rate is lower in this
experiment.

Figure 6.10: Heat up due to continuous measurement

In a complete measurement for all the 32 test cases for each configuration, the maximum
temperature changes is 0.49 ℃, which results in a frequency decrease between -0.07 and -
0.08 MHz according to the aforementioned experiment result. This factor contributes to the
measurement inaccuracy.
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6.4.3 Summary

In this section, the external heating experiment shows that the frequency-temperature cor-
relation is not depending on the ring oscillator speed. The delay variation among the CLBs
can be measured by the ring oscillator array at different temperatures. Moreover, in the self-
heating experiment, the switching activity of the measurement does not have big impact on
the temperature, and thereby the influence to the measurement accuracy is small.
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Chapter 7

Conclusion and Future Work
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7.1 Conclusion

In this work, a delay characterization method for FPGA was developed and studied. This
method can be used in runtime reconfigurable system. In a runtime reconfigurable system, a
part of the FPGA can be used as hardware accelerator dynamically. To avoid using degraded
logic elements, a delay characterization can be performed to characterize the target area before
configuration and use as accelerator.

Literature about delay measurement was reviewed. Different methods were studied, analysed
and compared to determine a suitable delay characterization method that provide fine granu-
larity and high accuracy. The delay characterization using ring oscillator was chosen because
the ring oscillator can be running at its maximum speed which is determined by the FPGA
fabric itself. Comparing to the at-speed delay characterization, the ring oscillator charac-
terization method does not require extra clock control and can reduce the implementation
complexity.

The ring oscillator mentioned in the literature was extended by using specific input pins of
the LUTs and by configuring the LUTs with XOR functions. Instead of only testing one path
in the LUT, all the paths in the LUTs were tested with the proposed method. The ring oscil-
lator design was generated with XDL language using the open-source tool RapidSmith. The
implementation was done using the Xilinx tool flow. The characterization and measurement
experiment was controlled by the workstation via a UART interface. Data was processed and
analysed on the workstation side.
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A series of experiments were proposed to ensure the precision and accuracy of the method. The
implementation results on Virtex-5 show that this delay characterization method assesses the
speed of CLBs in the area under test at a high accuracy. It allows to detect and localize slow
elements in the FPGA fabric. The method can be applied to reconfigurable area of different
sizes, as required by the reconfigurable system. Only 6×2 configurations are required to have
a full overage of all the CLBs in area under test.

The temperature dependency of the delay characterization method was also considered. The
FPGA was heated up with the external heating equipment. The delay characterization was
conducted at different temperatures. While the ring oscillator frequency decreased approx-
imately linearly with increased temperature, the spatial delay variation between different
FPGA elements was constant. Besides, the self-heating of the method did not have a signifi-
cant influence on the temperature.

7.2 Future Work

Due to the implementation problem mentioned in Chapter 4, a proxy is introduced. Hence the
number of the test configurations is doubled to 6×2. To fix the problem and reach a minimum
test configurations, the PIPs should be coded using XDL to generate a completely routed ring
oscillator in each CLB. In that case the whole ring oscillator array can be generated as a large
hard macro instead of instantiating independent ring oscillator hard macros in the selection
wrapper.

The method can also be extended for characterizing latches in CLBs by a small modification.
Also, adapting the ring oscillator design for the advanced Xilinx 7 series FPGA and applying
the delay characterization method for online measurement would be an interesting topic for
future work.

Finally, the runtime system of the reconfigurable system needs to be extended so that the delay
information is exploited during instantiation of hardware accelerators for optimal performance
and reliability.
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