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Abstract

System properties are usually classified into functional (behavioral) and non-functional prop-

erties (NFPs). While functional properties refer to system behavior, NFPs are attributes, or

constraints of a system. Power dissipation, temperature distribution on the chip, vulnerability

to soft and intermittent errors, reliability and robustness are all examples of NFPs.

The exponential increase of system complexity and the transistor’s smaller feature sizes pose

new challenges to functional as well as non-functional properties of the system. Therefore, it

becomes more important to understand and model their impact at early design phases.

This work targets dynamic, quantifiable NFPs and aims at providing a basis for the accurate

analysis of this class of NFPs at early design phases. It proposes an accurate and efficient

NFP characterization and analysis method for complex embedded systems. An efficient NFP

prediction method helps designers understand how the devices behave over time, identify NFP

bottlenecks within circuits and make design trade-offs between performance and different NFPs

in the product design stage. It assists manufacturers build their circuits such that no performance

degradation due to specific NFPs dominate over the life of an operating device.

The developed methodology is based on an efficient multi-level system-wide simulation

that considers the target system application. High NFP evaluation speed is achieved using a

novel piecewise evaluation technique which splits the simulation time into evaluation windows

and efficiently evaluates NFP models once per window by partial linearization. The piecewise

evaluation method is a fast, yet accurate replacement for a cycle-accurate NFP evaluation. To

consider the mutual impact of different NFPs on each other, all NFP models are integrated into

a common evaluation framework. The effect of some positive or negative feedback between
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different NFPs is dynamically considered during simulation. Evaluations are based on target

applications instead of corner case analysis to provide a realistic prediction.

The contributions of this work can be summarized as follows:

• Generality: This work proposes a holistic, scalable NFP prediction methodology for mul-

tiple, interdependent NFPs. The NFP simulation and evaluation method is independent

of a specific NFP, a particular model or a specific system or core. In addition, the method

allows for multiple designs under analysis and multiple NFPs. As soon as the system is

available at transaction level, it can be used for NFP estimation.

• Speed up: The NFP-aware simulation is performed on a multi-level platform while low

level simulation is accelerated using parallelism. The complete system simulation is al-

ways kept at transaction level. All the NFPs under analysis can be estimated with a single

simulation run. In addition, the evaluation speed can be increased by increasing the size

of the evaluation window.

• Accuracy: The accuracy is a function of the accuracy of the selected model and the

evaluation methodology. This work provides a method for integrating arbitrary low-level

models into the system analysis. The right choice of low-level models may depend on the

requirements for accuracy and efficiency. To preserve the low level evaluation accuracy,

the required observables for piecewise evaluation are obtained at low level. The evalua-

tion accuracy for the piecewise approach can be adjusted by calibrating the window size.

Besides, rather than using statistical or worst-case analysis techniques (which may be too

pessimistic in case of embedded systems with well defined applications), the complete

system is simulated with the target applications and actual workloads to obtain higher

accuracy for specific applications.



Zusammenfassung

Systemeigenschaften werden üblicherweise in funktionale und nicht-funktionale Eigenschaften

(NFPs) unterschieden. Während funktionale Eigenschaften sich auf das Verhalten eines Systems

beziehen, entsprechen NFPs Attributen oder Einschränkungen des Systems. Die Verlustleistung,

Temperaturverteilung auf dem Chip, die Anfälligkeit für transiente und intermittierender Fehler

sowie Zuverlässigkeit und Robustheit sind Beispiele für NFPs.

Die exponentielle Zunahme der Systemkomplexität und immer kleineren Strukturgrößen der

Transistoren stellen neue Herausforderungen sowohl an die funktionalen als auch an die nicht-

funktionalen Eigenschaften des Systems. Daher wird es immer wichtiger, bereits in frühen Ent-

wurfsphasen die Auswirkung dieser Eigenschaften auf kritische Design-Parameter zu verstehen

und diese in einem Modell abzubilden.

Das Ziel dieser Arbeit ist es, eine Basis für eine genaue Analyse dynamischer, quantifi-

zierbarer NFPs für frühe Entwurfsphasen zur Verfügung zu stellen. Das Ergebnis dieser Arbeit

ist ein Verfahren zur genauen und effizienten NFP Charakterisierung sowie eine dazugehörige

Analyse-Methode für komplexe Eingebettete Systeme. Eine effiziente Methode zur Analyse

von NFPs hilft dem Designer, das Verhalten eines Systems über die Zeit zu verstehen, NFP

Engpässe zu identifizieren und Abwägungen zwischen Performanz und NFPs in der Produkt-

entwicklungsphase zu treffen. Sie unterstützt Hersteller ihre Schaltungen so zu entwerfen, dass

kein Leistungsverlust aufgrund spezifischer NFPs während der Lebensdauer eines Geräts im

Betrieb auftritt.

xix
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Die vorgestellte Methode basiert auf einer leistungsfähigen mehrstufigen Simulation des Ge-

samtsystems, welche die Anwendung des Zielsystems berücksichtigt. Eine hohe Geschwindig-

keit bei der Auswertung von NFPs wird durch die Verwendung einer neuartigen, abschnittswei-

sen Auswertetechnik erreicht, welche die Simulationszeit in Evaluierungsfenster (oder Auswer-

tungsfenster) unterteilt und NFP Modelle einmal pro Fenster mittels partieller Linearisierung

bewertet. Dieses abschnittsweise Bewertungsverfahren ist ein schneller und dennoch genauer

Ersatz für die bisherige zyklengenaue NFP Auswertung. Um die gegenseitige Beeinflussung

unterschiedlicher NFPs betrachten zu können, werden die NFP Modelle in einem gemeinsamen

Evaluierungsframework integriert. Der Einfluss von positiven oder negativen Rückkopplungen

zwischen verschiedenen NFPs wird dynamisch während der Simulationen berücksichtigt. Um

eine realistische NFP Vorhersage zu treffen, basiert die Evaluierung statt auf der Analyse von

Extremfällen auf dem Einsatz der Zielanwendung.

Die Beiträge dieser Arbeit können wie folgt zusammengefasst werden:

• Allgemeingültigkeit: Diese Arbeit schlägt eine ganzheitliche, skalierbare NFP Vorher-

sagemethode für mehrere, voneinander abhängiger NFPs vor. Simulation und Bewer-

tung sind unabhängig von spezifischen NFPs und Modellen oder bestimmten Systemen.

Darüber hinaus ermöglicht die vorgestellte Methode die Analyse mehrerer Designs und

NFPs gleichzeitig. Sobald das System auf Transaktionsebene verfügbar ist, kann es für

die NFP Abschätzung verwendet werden.

• Performanzgewinn: Die NFP berücksichtigende Simulation wird auf einer ebenenüber-

greifenden Plattform durchgeführt. Während Simulationen auf unterer Ebene zur Be-

schleunigung parallel ausgeführt werden, wird das Gesamtsystem stets auf der Transakti-

onsebene simuliert. Die komplette Systemsimulation wird immer auf Transaktionsebene

dürchgeführt. Alle zu analysierenden NFPs können mit einem einzigen Simulationslauf

abgeschätzt werden. Darüber hinaus kann die Auswertungsgeschwindigkeit durch das

Vergrößern des Auswertungsfensters erhöht werden.

• Genauigkeit: Die Genauigkeit hängt von der Exaktheit des ausgewählten Modells und

der Bewertungsmethode ab. Diese Arbeit stellt eine Methode für die Integration beliebi-

ger Modelle auf niedriger Ebene in der Systemanalyse vor. Die geeignete Wahl eines
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Modells hängt von den Anforderungen an die Genauigkeit und Effizienz ab. Um die

Auswertungsgenauigkeit von niedrigen Ebenen zu gewährleisten, werden die erforder-

lichen Messgrößen für eine abschnittsweise Bewertung ermittelt und durch Kalibrierung

der Fenstergröße angepasst. Statistische oder Worst-Case Analysetechniken können im

Fall von Eingebetteten Systemen mit festgelegten Applikationen pessimistische Ergeb-

nisse liefern. Aus diesem Grund wird das Gesamtsystem zusammen mit der Zielapplika-

tion und der entsprechenden Arbeitslast simuliert, um eine genauere Analyse spezifischer

Applikationen zu erhalten.





Chapter 1

Introduction

Hardware design and production in today’s semiconductor industry is a time-consuming, error-

prone, and highly competitive task [Rigo11]. Introducing new generation of hardware chips

in a better quality and a larger quantity in a short time is a challenge every semiconductor

company has to face. To compensate the high investment necessary to become a pioneer and

produce more complex hardware components in newer technologies, a company must be able to

develop and produce new products with the fastest rate, minimum cost, and the highest quality

[Doer07]. However, product quality and yield starts at the design stage and is not simply a

manufacturing responsibility. Any potential problem should be discovered and eliminated as

close to the beginning of the product cycle as possible [Chia07].

The advancements in manufacturing technology has fulfilled Moor’s Law [Moor69] for

more than 40 years by constantly reducing the transistors feature sizes [ITR12]. With shrinking

geometries, the performance of very large scale integrated (VLSI) systems increases everyday.

However, the impact of environmental variations on performance has also been increasing with

each semiconductor technology generation. New technologies increase the number of transis-

tors per silicon chip, while reduce the strength of the transistor facing operational and envi-

ronmental variations [Baha07, Shan06, Kawa06]: Circuits will encounter dynamic variations

of supply voltage and temperature; new nano-scale transistors are more prone to faults and fre-

quent, intermittent soft errors; transistors slowly age and degrade over time, deteriorating circuit

performance [McPh06, Bork04, Sriv05].

1



2 1. Introduction

System properties are usually divided to functional (behavioral) and non-functional prop-

erties (NFPs). While functional properties refer to behavior of a system, NFPs are attributes,

or constraints on a system [Glin07]. Power dissipation, temperature distribution on the chip,

vulnerability to soft and intermittent errors, reliability and robustness are all examples of NFPs.

Beside the exponential increase of complexity which poses problems to functional behavior

of silicon chips, smaller feature sizes introduce new challenges to non-functional properties:

Checking NFPs such as on-chip temperature as well as the impact of environment on the sys-

tem, that were ignored or only considered in rare application areas in the past, are getting more

focused on during system design because of nanoelectronic effects [Vieh09]; new nano-scale

transistors are more prone to variability which manifest as a violation of NFPs such as com-

ponents’ reliability and performance [Bork05]. On the other hand, rapid moves to new tech-

nologies leave older technologies immature and prevent the development of novel approaches

to deal with the emerging challenges [De99].

As the dimensions of the above mentioned NFPs increase, it becomes more important to

understand and model their impact on the most sensitive design parameters at early design

phases [Chia07]. Proper design strategies can reduce the negative impact of scaling on NFPs

[Bork05]. However, more accurate analysis is required to assure the reliability and performance

of the new products which is the final goal of the production.

Traditional design methods, in which the system is designed directly at low hardware levels,

are unable to characterize the whole complexity of NFPs [Segu04]. In addition, they are almost

infeasible for today’s complex systems [Gajs09]. Electronic system level (ESL) design fills

the productivity gap generated by the disparity between the design productivity and design

complexity by introducing high abstraction design methodologies. However, efficient methods

for analyzing NFP fluctuations at these levels are not yet developed.

Current approaches for estimating NFPs are either based on corner, model-based analy-

sis or analytical NFP model evaluation techniques. Traditional corner, model-based analysis

approaches are limited to verifying the functional correctness by simulating the design at the

number of process corners. The simulation results are used to provide guardbands for NFPs
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based on the worst operational and environmental conditions. However, the worst case condi-

tions in a circuit may not always occur with all parameters at their worst or best process con-

ditions. Such pessimism can lead to increased design effort and longer time to market, which

ultimately may result in lost revenue. On the other hand, analytical models are unable to study

the impact of dynamic variations on NFPs which should be simultaneously captured in a single

comprehensive analysis, allowing correlations and impact on yield to be properly understood.

An efficient NFP prediction method helps designers to understand how the devices behave

over time, identify the NFP bottlenecks within the circuits and make design trade-offs between

performance and different NFPs in the product design stage. It assists manufacturers build their

circuits such that no performance degradation due to specific NFPs dominate over the life of

an operating device. An accurate NFP prediction considering dynamic variations and model

interdependencies assures adequate performance and reliability for the product. Early NFP

prediction in the design flow enables NFP-aware, system level design decisions and leads to

more reliable architectures.

Available models for various NFPs use low level parameters for accurate NFP analysis.

Nevertheless, low level analysis is hardly feasible for new, complex system on chips (SoCs).

Heterogeneous multiprocessor platforms are increasingly being used in system design to deal

with the growing complexity and performance demands of modern applications. Choosing

an optimal platform for a given application and an optimal mapping of the application to the

platform is crucial [Hwan08]. Such system level decisions require early and accurate estimation

of NFPs such as power, temperature and reliability for a given design choice. Cycle-accurate

models do provide accuracy, but may not be available for the whole platform. Furthermore,

cycle accurate instruction set simulation models for processors and register transfer level (RTL)

models for custom hardware are too slow for efficient design space exploration. The cost of

wrong design decisions increases as we move through design steps. New generations of ULSI

(Ultra Large Scale Integrated) circuits require architecture exploration and validation at early

design phases to prevent the need for redesign [Gajs09].

Some sparse works in literature address analysis of particular NFPs and try to propose

methodologies to realize early estimation of specific NFPs. Most of these works fall in the

area of performance estimation [Vieh09, Liao05], temperature [Shan06, Pedr06, Paci06], power
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[Burc93, Najm94, Reth11] or aging analysis [Obor12, Han11]. However, there is not enough

research on defining and evaluating an arbitrary NFP. Timing constraints for reaching the market

demand an integrated design methodology for hardware simulation and NFP prediction at early

design stages. Furthermore, the need to increase yield and performance requires this methodol-

ogy to be as accurate as possible to guarantee the reliability of the fabricated hardware.

This research targets dynamic, quantifiable NFPs and aims at providing basis for accurate

analysis of this class of NFPs at early design phases. We propose a holistic, scalable NFP

prediction methodology for multiple, interdependent NFPs. Evaluations are based on target

application instead of corner case analysis to provide a realistic prediction of NFPs. The main

steps considered to reach this goal are:

• NFP modeling: The first step in predicting an NFP is to study its nature and characteris-

tics. Several NFPs have a strong dependence on system structure. For other NFPs, the en-

vironmental and operational variables play an important role. The first group can be well

characterized via NFP-aware simulation. The latter requires that the NFP characteristics

are collected in a general analytical model. The operational parameters (observables) and

inter-related NFPs are extracted from the model.

• NFP-aware simulation: This work proposes a fast, yet accurate multi-level NFP-aware

simulation methodology. The presented methodology is flexible in terms of NFP model-

ing. If the NFP is modeled as an structure-dependent parameter (such as vulnerability), it

provides a comprehensive NFP prediction for the complete system at early design phases.

For more complex NFPs with an analytical model, it obtains the operational parameters

required for accurate NFP evaluation.

• NFP evaluation: Finally, the proposed piecewise evaluation method allows an accurate,

long-term NFP evaluation which captures and applies temporal environmental and oper-

ational changes on NFP parameters at discrete timesteps during the evaluation.

In the following, a brief introduction to each step is presented.
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NFP Modeling

The parameters which affect an arbitrary NFP are divided to three groups of process (λ ’s),

operational (α’s) and environmental (γ’s) parameters. A general model for an arbitrary NFP is

then expressed as:

y(t) = f (λ1,λ2, . . . ,λp,

α1(.),α2(.), . . . ,αq(.),

γ1(.),γ2(.), . . . ,γr(.), t)

f ,αi,γi : R→ R, p,q,r ∈ N, λi ∈ R

where t ∈ R+ is the time. λ ’s are process dependent constants. α’s, called observables in this

text, heavily depend on system workload and can be obtained either by simulation or by the

probabilistic methods. For instance, existing models for power consumption and heat distribu-

tion rely on the proportional relation of the transistor switching activity [Ghos92, Huan04]. γ’s

are NFPs which affect the NFP under analysis. The general NFP model is the building block

for the proposed piecewise evaluation approach.

NFP-Aware Simulation

Time-dependent, quantifiable NFPs can be studied either via simulation or analytical evaluation,

depending on how the NFP is defined and modeled. If the NFP is very structure dependent,

such as random pattern testability or vulnerability to soft errors, simulation-based approaches

may be applied. Otherwise, if it is a function of several various parameters and other NFPs,

analytical models are the best solution. In this case, simulation can still be used to acquire low

level observables. The proposed multi-level NFP prediction approach provides a simulation-

based methodology for NFP prediction and observable acquirement acquirement at early design

phases.
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Most available NFP models utilize low level observables which cannot be estimated accu-

rately at high abstraction levels. Typically, observables (α’s) are obtained by modeling system

workload with input signal probabilities or by a set of “typical workload patterns” that reflect

the average application [Lore09, Wang10, Wang07c]. As the technology scales, the ampli-

tude of NFP fluctuations under various workloads (e.g., the worst vs. average case) is growing

[Srin04a]. This necessitates either a pessimistic worst-case analysis, or an extensive simulation

of the target application.

To estimate α’s, the proposed multi-level, NFP-aware simulation analyzes the design under

analysis (DUA) with high accuracy within the target system and for the target application. To

overcome the computational complexity, the system is simulated at multiple abstraction levels,

from gate- up to transaction level.

Use of transaction level models makes NFP-aware architecture exploration achievable while

the low level, parallel simulation provides the accuracy of cycle-accurate analysis at high speed.

A block view of the proposed approach is shown in Fig. 1.1. The observables of the DUA are

collected during gate level simulation to maintain accuracy, while the rest of the system is sim-

ulated behaviorally at high level. High level simulation speeds up the simulation by abstracting

the unnecessary details. High level models are easy to extract from system specifications early

in the design flow for evaluating the design alternatives with respect to NFPs. To this end, high

level system models from design space exploration can be reused. The intermediate simulation

provides the logic simulator with the system state. Therefore, logic simulation is performed in

parallel to speed up the low level DUA simulation.

For NFPs which require an analytical evaluation, the window-based simulation methodology

is proposed which is synchronized with the piecewise evaluation as explained in the next section.

NFP Evaluation

To manage complex dependencies between different NFPs, the piecewise evaluation first builds

an equivalent piecewise model from the original NFP model. The piecewise model allows

iterative evaluation at discrete timesteps. During the evaluation, the operation time of the DUA
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FIGURE 1.1: Multi-level parallel simulation approach

is split into evaluation windows. Within an evaluation window, the piecewise NFP model is

partially linearized with respect to the observables and the interdependent NFPs.

Having the initial value of NFP y at time t0, y(t0), the piecewise evaluation approach converts

the general NFP model to the form:

y(t0) = g(t0, .)

y(tn) = f (λ1,λ2, . . . ,λp,

α
(tn)
1 (.), . . . ,α(tn)

q (.),

γ
(tn)
1 (.),γ(tn)

2 (.), . . . ,γ(tn)
r−1(.),y

(tn−W ), tn)

f ,αi,γi : R→ R, p,q,r ∈ N

(1.1)

At the end of each window at time t, the NFP under analysis as well as the interdepen-

dent NFPs (γ1, . . . ,γr−1) are fed with proper process parameters and observables evaluated for

the current window. The window-based simulation methodology splits the simulation time to

windows with the same length as in the evaluation approach. In this case, NFP acquisition is

performed at the end of each window. The simulation output is the NFP progression over time.
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The NFP under analysis is also fed with its previous value, i.e., the value at time t−W , where

W is the size of the window.

The piecewise evaluation speeds up the predictions by avoiding cycle-by-cycle evaluation.

An efficient NFP prediction methodology improves the final product and reduce the time to

market by enabling NFP-aware design decisions at early design phases and preventing redesign

due to wrong design choices.

Research Scope and Contributions

The proposed NFP prediction approach considers the accuracy and speed as the deciding factors

for the final result. It enables early NFP-aware architecture exploration by providing accurate

prediction at high design abstraction level. It contributes to solving the previously mentioned

challenges in the following ways:

• Generality: The methodology is not limited to a specific system or core and allows for

multiple DUAs and multiple NFPs. Similarly, the NFP simulation and evaluation are

independent of a particular NFP or model. As soon as the system is available at trans-

action level, it can be used to estimate NFPs during system operation. To this end, the

designer is free to select NFP models according to the design requirements. The accuracy

of predictions is a function of the accuracy of the model.

• Speed up: The method performs the simulation on a multi-level platform and carries out

the NFP-aware simulation on different abstraction levels. Multi-level simulation enables

parallelism which speeds up the low level simulation. The complete system simulation

is always kept at transaction level. All the under analysis NFPs can be estimated with a

single simulation run to bring even more speed up. In addition, the evaluation speed can

be increased by increasing the size of the evaluation window.

• Accuracy: The accuracy is a function of the accuracy of the selected model and the

evaluation methodology. This work provides a method for integrating arbitrary low-level

models into the system analysis. The right choice of low-level models may depend on the
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requirements for accuracy and efficiency. To consider the mutual impact of different NFPs

on each other, all NFP models are integrated into a common evaluation framework. The

effect of positive or negative feedback between different NFPs is dynamically considered

during simulation. To preserve the accuracy of low level evaluation, the NFP properties of

the DUA is predicted at low level. The required observables for piecewise evaluation are

also obtained by low level DUA simulation. The evaluation accuracy for the piecewise

approach can be adjusted by calibrating the window size. Besides, rather than using statis-

tical or worst-case analysis techniques (which may be too pessimistic in case of embedded

systems with well defined applications), the complete system is simulated with the target

application and actual workloads to obtain higher accuracy for specific applications.

The remainder of this dissertation discusses the contributions of this work in detail and is

organized as follows:

Part I, Basics, discusses the concepts and tools which are used in this research. Chapter

2, Non-Functional Properties, gives a clear definition of NFPs considering the state-of-the-art.

It classifies system properties into two groups of functional and non-functional properties and

discusses the effect of each class on system characteristics. Finally, variations and their effect

on NFPs are discussed in detail.

NFP models and the mechanisms which affect them have a key role in accurate NFP pre-

diction. Chapter 3, NFP Models, presents NFP modeling concepts used in the sequel of this

work. Aging models as an important environmental variation which affects the new hardware

technologies are also discussed in this chapter. Different mechanisms are introduced and the

mutual effect of the mentioned mechanisms on NFPs are presented.

Chapter 4, NFP Simulation, gives a brief background on the materials and concepts which

are used in this research. An introduction to different hardware abstraction levels is provided

in this chapter. Later, we discuss multi-level and parallel simulation as efficient tools which are

utilized in this work to increase the NFP-aware simulation performance.

Part II, NFP Prediction Methodologies, focuses on the proposed approach to predict NFPs

early in the design paradigm. It considers two different aspects of accurate NFP prediction:
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Multi-level, NFP-aware simulation and NFP Evaluation. These two perspectives are discussed

in chapters 5 and 6, respectively.

Chapter 5, Window-Based NFP-Aware Simulation, presents the multi-level NFP-aware sim-

ulation methodology for efficient NFP prediction. Compared to previous multi-level simulation

techniques, this approach enables simulation of the complete system at transaction level while

the gate level model is required only for the DUA. The simulation methodology enables the

NFP-aware architecture exploration and validation by predicting the NFP changes within sys-

tem lifetime with a single simulation run. The system is simulated with real application to

provide more accuracy.

Chapter 6, Piecewise NFP Evaluation, proposes the piecewise evaluation approach for an-

alytical NFP prediction. The piecewise evaluation applies temporal changes of dynamic varia-

tions to NFP estimations by evaluating the NFP models at discrete timesteps. First, a general

analytical modeling for dynamic, quantifiable NFPs is proposed and the available models in

literature are classified. Thereupon, methods for piecewise evaluation of each category are dis-

cussed.

Part III, Applications, shows the sample application of the proposed techniques to predict

two different NFPs. Chapter 7, Architectural Vulnerability Analysis, uses the multi-level sim-

ulation for vulnerability analysis while chapter 8, Application on Aging Prediction, uses the

piecewise evaluation to analyze the effect of two dominant aging mechanisms, NBTI and HCI,

on the system performance.

Part IV, Final Notes, is dedicated to discussions on the presented research and the future di-

rections. Chapter 9, Concluding Remarks, summarizes the work and discusses possible research

directions it may enable in the future.
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Chapter 2

Non-Functional Properties

2.1 Introduction

As the technology scales and the complexity of system-on-chips (SoCs) increases, non-functional

aspects become as important as functionality [Glin07, Vieh09, Tayl09]. Non-functional proper-

ties (NFPs) refer to how the system performs its prespecified function and have a broad domain:

Testability, system performance, reliability, vulnerability, soft error rate, power budget, heat

distribution on the chip, etc. are all examples of NFPs. They are affected by several different

parameters and are sometimes interrelated: Reliability is affected by static and dynamic physi-

cal effects. It is influenced permanently by process variations and modeling inefficiencies while

physical phenomena such as aging effects and soft and intermittent errors violate reliability

dynamically and during system lifetime. Several aging effects are exacerbated at high temper-

atures. Temperature profile of the chip changes by dynamic and static power consumption of

each transistor on the chip.

The market pressure forces corporations to produce hardware with certain functionality in

a short time, but the success of the product in the market certainly depends on the quality of

NFPs [Tayl09]. A successful product considers NFPs in the complete design paradigm to avoid

designs which either fail much earlier than expected or deviate from prespecified characteristics

[Vieh09]. For example, power consumption and heat dissipation—the most prominent NFPs of

a chip—enforced power-aware methodologies for design and verification. Scaling makes the

13
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fabricated chips more vulnerable to static and dynamic variations, such as soft errors and aging

effects. Therefore, reliability prediction methods are utilized at different design levels.

NFP consideration for hardware design demands prior knowledge of the property’s essence

and the physical phenomena behind it. NFPs must be clearly defined and modeled at each

design abstraction level [Agt11, Vieh09]. This facilitates malfunction and/or failure prediction

of the system, before the chip is actually fabricated. For instance, the soft error rate of a chip or

its components can be measured via accelerated (and somewhat expensive) neutron beam tests

in cyclotrons or alpha particle tests; but these techniques require a functioning chip. At such a

stage, it is expensive and possibly too late to correct any reliability problem [Mukh05].

NFPs are different in nature: Properties such as system performance change during hardware

lifetime. Testability and fault tolerance can be improved at design level and are considered and

evaluated before manufacturing. Reliability is usually improved by fault tolerance techniques,

however, it can be violated by dynamic variations, such as soft errors and aging effects, during

system operation. Modeling and evaluation of NFPs such as vulnerability to soft errors at design

phase can fix this problem, however, various nature of NFPs and inconsistency of definitions

have prevented the researchers from proposing a general solution for predicting a desired NFP

early during design phase.

This work concentrates on dynamic (time-dependent), quantifiable non-functional proper-

ties. Unless otherwise noted in the text, in the sequel of this work, the term NFP is used for

time-dependent NFPs that can be formally presented, modeled, and quantified. Section 2.2 pro-

poses a general, well-defined definition for this class of non-functional properties. Section 2.3

presents hardware variations as an important dimension in investigating NFPs. Section 2.4 dis-

cusses the effect of variations on these properties. Finally, section 2.5 gives a brief summary of

the presented chapter.

2.2 Definition of Non-Functional Properties

Requirement engineering and system properties have been points of interest for few decades.

System properties define what the system does and the circumstance under which it operates
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[Koto98, Wieg09]. System’s utility is determined by its functional as well as its non-functional

characteristics.

Fig. 2.1 visualizes system properties’ classification. Functional properties are defined as

properties that specify the inputs (stimuli) to the system, the outputs (responses) from the sys-

tem, and behavioral relationships between them [Davi93]. The type of inputs, outputs and the

relationship between them varies from one hardware abstraction level to the other. For example,

at electrical level, the inputs and outputs are in the form of electrical signals while at gate level,

they are abstracted to the form of logic values.

System Properties

Non-functionalFunctional

Attribute Constraint

Specific QualityPerformance

· Timing*

· Area

· Power

· Temperature

· ...

· Reliability

· Vulnerability

· Robustness

· Availability

· ...

· Physical

· Environmental

· Design and 

Implementation

· ...

· Functions

· Data

· Stimuli

· Behavior

· ...

* “Timing” is non-functional, whenever it is a performance property. If a timing violation results in 

system failure, it is classified as a functional property. 

FIGURE 2.1: A concern-based taxonomy of system properties [Glin07]

Contrary to functional properties, non-functional (extra-functional in some sources [Agt11,

Saad12]) properties are defined as an attribute or a constraint on a system. An attribute is a

performance specification or a specific quality of a system. Attributes are divided into two

categories: Performance and quality properties [Glin07].

Similar to functional properties, NFPs may vary from one abstraction level to the other. The

increase in transistor’s threshold voltage at electrical level is translated to circuit delay at gate

and correspondingly to performance degradation at register transfer or system level.
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There are semantic differences that may arise for a certain NFP at different levels. For ex-

ample, timing properties such as delay may be viewed as functional at electrical level while

timing violation at this level results in system failure. However, at higher abstraction levels,

such as gate or register transfer level, timing may also be considered as non-functional when it

results in reduced frequency and therefore degraded performance. In this work, timing is con-

sidered non-functional whenever it is a performance property, else it is classified as a functional

property.

The terms “functional” and “non-functional” properties are mentioned and defined in sev-

eral works in literature. The existing definitions for functional properties follow two threads

that coincide to a large extent. In the first thread, the emphasis is on functions. For example,

the authors of [Robe06] believe that a functional property specifies what the product does. In

[vL01], it is stated that functional concerns associate with the service to be provided. The sec-

ond thread puts more emphasis on the behavior of the system and defines functional properties

as system characteristics that describe the behavioral aspects of a system according to its inputs

and outputs [Jaco99]. Davis in [Davi93] states that functional (or operational) properties are

“those properties that specify the inputs (stimuli) to the system, the outputs (responses) from

the system, and behavioral relationships between them. In [Wieg09], a functional property is

defined as a statement of a piece of required functionality or a behavior that a system exhibits

under specific conditions . Among the various definitions, the one from [Davi93] is widely

accepted for its clarity and is also used in this work as a reference.

There are several debates [Koto98, Glin07] in literature relating to the definition of NFPs.

Davis [Davi93] defines NFPs as the overall attributes of the system. In [Koto98], NFPs are

defined as properties which are not specifically concerned with the functionality of the system.

In [Robe06], NFPs are defined as properties, or qualities, that the product must have, such as an

appearance, speed, or accuracy. Wiegers [Wieg09] defines NFPs as a description of a property

or characteristic that a system must exhibit or a constraint that it must respect, other than an

observable system behavior. [Sieg12] denotes that a non-functional property does not relate to

the functionality of a variant, but to a quality or a behavioral attribute. The previously mentioned

definition from Glinz [Glin07] summarizes other definitions and therefore is referenced in this

text.
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Most NFPs are usually too abstract to be stated formally [Zhan06]. Several NFPs are multi-

dimensional properties which can be characterized in various dimensions [Vieh09]. For many

NFPs, it is not obvious how we can interpret and handle the measured values [Sieg11]. However,

effective NFPs such as power, heat distribution, reliability and vulnerability are modeled in

literature and several metrics are proposed to predict or measure them. As an example, we

discuss models for reliability and mean time to failure (MTTF) as one of the reliability metrics

in more detail.

• Reliability: Reliability is one of the well known NFPs and is defined as the probability

that a device will perform its intended function during a specified period of time under

stated conditions [Baue10]. Several parameters including environmental conditions can

affect reliability of a system during the operation time. Reliability is usually expressed

with the exponential failure law:

R(t) = exp(−λ t)

where t is time. λ is the constant failure rate and is usually expressed as the percentage

of failures per 1000 hours or as failures per hour. More on reliability modeling and the

proof of the above formula can be found in [Lala01].

• Mean time to failure (MTTF): Mean time to failure is the average time before a compo-

nent or system fails. Assume R(t) is the reliability of the system at time t. MTTF is given

by [Wang07a]:

MTTF =
∫

∞

0
R(t)d(t) (2.1)

In other words, MTTF is equal to the area under the reliability curve when plotted against

time. This holds for any failure distribution. The units used for MTTF are typically hours.

As it can be seen, reliability and MTTF are well-defined and modeled. Several other NFPs,

such as performance degradation due to several physical and environmental conditions [Stro06,

Sriv05], vulnerability to soft errors [Mukh11], availability [Prad96] and robustness [Manz11,
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Bark12] can also be explained using formal models. This work, as will be discussed in chapter

3, targets this class of NFPs and provides solutions to predict them during the system lifetime.

2.3 Variability

The behavior of manufactured chips may differ from expectations or simulation models. This

misbehavior is usually caused by different variations which affect chip characteristics directly

after production or during its lifetime [Orsh10]. The robustness and reliability of the final

hardware system depend on the sensitivity of each single transistor to variations.

The concrete understanding of variability and it’s impact on NFPs is one of the core activities

in design for manufacturing1. Predicting the degradation due to variations and the effect on

NFPs will result in higher yield and faster time-to-market which is crucial for any successful

hardware production [Chia07].

Variability sources in IC design and manufacturing processes are as many as the required

steps to design and manufacture. In addition, the operational environment of the finished IC

product changes the transistor parameters and system behavior in time. Fig. 2.2 shows a pos-

sible classification for variation mechanisms. Variations are divided into two main categories

based on their temporal occurrences [Alam11].

Static variations are the variations mostly caused by fabrication processes or modeling in-

accuracies. In static variations, the distribution of measurements takes no account of time or

sequence and the deviation from design specifications is permanent.

Runtime variations are variations which appear during the runtime of the system and are

time-dependent. They can cause permanent (such as oxide breakdown or electromigration) or

temporary malfunction (such as soft error effects or stress and recovery phases in some aging

mechanisms) in the hardware.

1Design for manufacturing (DFM) stands for the methodology of ensuring that a product can be manufactured
repeatedly, consistently, reliably, and cost effectively by taking all the measures needed for that goal. DFM starts at
the concept stage of a design and implements these measures throughout the design, manufacturing, and assembly
processes [Chia07].
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FIGURE 2.2: Mechanisms of variations

Accurate modeling and analysis of NFPs consider variation effects during system lifetime.

It is important to model the sources of variability with the correct balance of computation effort

and accuracy for NFP analysis [Nass04]. To this end, an understanding of variation mechanisms,

as will be discussed in the following, is required. These mechanisms will later be used to

perform NFP analysis at design level and before fabrication.

2.3.1 Static Variations

Static variations are a class of variations in which the distribution of measurements is indepen-

dent of the time or sequence. The effect of these variations and the resulted deviation from

design specifications is permanent. Static variations are usually divided into two groups of

process and modeling variations.

2.3.1.1 Process Variations

Process variations are fluctuations in the value of process parameters observed after fabrication

[Sriv05]. These variations result from a wide range of factors during the fabrication process.

They affect the transistor’s parameters and hence the hardware behavior in a permanent manner.
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Large variations in process parameters lead to designs that deviate strongly from their spec-

ifications. These variations affect the performance characteristics of devices and the intercon-

nects. The same variations in process parameters may influence two designs in very different

manners.

Process variations are caused by different sources such as lithography (optical proximity cor-

rection (OPC), phase shifting masks (PSM)), etching, chemical mechanical polishing (CMP),

doping process, etc. They can occur at different levels: Wafer level, inter-die level, and intra-die

level. Some of process variations are systematic2, i.e., those caused by the lithography process.

Some have a purely random nature, such as edge roughness, etching, and CMP. Process pa-

rameters are mostly described by statistical analysis models such as Monte-carlo techniques or

classical worst-case analysis [Sriv05, Shen12].

2.3.1.2 Modeling Variations

Design analysis and optimization models do not perfectly capture device characteristics and

therefore apply some intrinsic inaccuracy to the evaluations. These models, if conservative, will

make it harder to meet design specifications, whereas aggressive models will result in yield loss.

The design variations posed by modeling inaccuracies are classified as modeling variations. The

space of these variations is over design iterations, with different modeling errors at different

design points. The alternative is to use smaller margins to capture modeling variations, but this

may force post-fabrication tuning of particular paths or even a complete redesign [Sriv05].

Modeling variations affect all fabricated samples of the design and thus it is important to

model them accurately and conservatively.

2.3.2 Runtime Variations

Runtime variations are time-dependent effects which appear during the operation time of the

system. They include two main groups: Physical and environmental variations.

2A variation is systematic if a physical or environmental component of variability is known to be a function of
specific design characteristics [Orsh10].
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2.3.2.1 Physical Variations

Physical variations are physical effects that result in changes in process parameters with time.

The main members of this group are reliability-related mechanisms which change system re-

liability over time. Among them, failure or malfunction due to soft errors as well as aging

effects have a considerable consequence on nano-scale semiconductors [Wang07a]. Soft errors

are caused by ionizing radiation and have emerged as a major concern for current generation

of technologies [Mukh05]. Furthermore, aging mechanisms such as hot carrier injection (HCI),

negative bias temperature instability (NBTI), electromigration (EM), and oxide breakdown de-

grade the circuit performance in time [Sriv05, Shen12].

HCI and NBTI effects induce gradual device degradation by causing the threshold voltage of

the device to rise. Electromigration may cause increased propagation delay and wire resistance

due to a reduction in the width of a wire. In the worst case, it will result in wire opens and shorts

causing functional failure. Oxide breakdown is an irreversible local change of the dielectric

isolation property caused by increasing voltage and electric field on the oxide. A breakdown

happens after a certain amount of time during which the oxide is subjected to an electrical stress

at product operation or elevated conditions [Stro06].

The effect of physical variations on the system is particularly difficult to analyze, as it de-

pends strongly on process variations and environmental conditions and becomes visible after

certain time of operation, from few days to few years depending on the system and the type of

physical variation. Therefore, traditional accelerated test techniques, such as burn-in [McPh06],

are used. These testing techniques stress the design to operate under worst-case conditions.

However, they are expensive and have a large application time [Stro06]. If these effects are not

properly accounted during the design process, they may result in violation of non-functional

requirements such as timing errors that become visible during operation or burn-in [Stro06].

Physical variations have a direct influence on NFPs such as performance and reliability of

systems. For example, long-term performance modeling must consider the threshold voltage

shift due to aging effects. Chapter 3 provides a more comprehensive background on modeling

and origins of reliability related mechanisms.
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2.3.2.2 Environmental Variations

Like physical variations, environmental variations affect the system during its operation time.

An IC is composed of many individual circuits manufactured simultaneously and working con-

currently to perform the overall expected functions. This integration means that various compo-

nents and circuits share a common operating environment. This environment includes [Orsh10]

1. the silicon substrate on which various circuits are integrated; it is typically electrically

resistive and is an excellent thermal conductor;

2. the package in which the integrated circuit is sealed to be protected, and the connections

between the packaged circuit and the external environment through which the circuit is

supplied with power as well as input and output signals.

Sharing of the IC operating environment creates various types of coupling between the in-

dividual components and circuits, including [Orsh10]

1. coupling through the power supply network, where the distributed nature of the integrated

circuit leads to temporal variations in the power supply voltage;

2. coupling through the common thermal environment composed of the chip substrate and

package, where differences in power density lead to temporal variations in local temper-

ature;

3. coupling through electro-static (capacitive) or electro-magnetic (inductive) mechanisms

between neighboring wires or between the wires and the semiconducting (resistive) sub-

strate. This coupling may result in an electrical activity in one and in noise or interference

in another component.

Environmental variability is largely systematic since it depends predominantly on the details

of the circuit operation. Thus, the study of environmental variations focuses on the efficient

prediction and bounding of such variations [Orsh10]. A common method to deal with envi-

ronmental variations is to set worst-case margins for the design. However, worst-case margins



2. Non-Functional Properties 23

reduce the performance. Furthermore, identifying specific worst-case conditions for this type

of variations is extremely difficult [Sriv05, Shen12].

Beside the above mentioned environmental variables, structural level variables (e.g., the

switching activity defined by input vectors) rely on workload of the processor and are hence

time-dependent. Therefore, some sources [Sriv05] address them as environmental variables as

well. However, they are not considered as an environmental variation in this work as they are

not influenced by the environmental conditions.

2.4 Variations and Non-Functional Properties

variations change system parameters either in time or during fabrication. Changes in system pa-

rameters can affect both functional and non-functional properties of the design. Process varia-

tions can cause permanent faults in the structure of the design resulting in violated functionality.

Soft errors, on the other hand, can cause temporary or permanent system failures. Additionally,

the interaction between the design and process fabrication steps can affect the manufactured

component’s parameters. This introduces a new set of systematic variability that will affect not

only the process control, but also modeling, simulation, timing and chip integration [Berg09].

Fig. 2.3 shows the mutual effect of variations on NFPs. As stated in section 2.2, NFPs are

defined as characteristics that affect hardware quality or performance rather than the functional-

ity. Time is an inseparable element of dynamic NFP models. Section 2.3 explains that runtime

variations are considered as changes to hardware performance during the lifetime of a system. In

other words, runtime variations can be defined as temporal changes to hardware’s NFPs during

the lifetime of the chip. Performance degradation due to aging mechanisms, power consump-

tion, temperature variation, error rate, etc., are all properties which should be estimated and

analyzed in non-functional domain to predict hardware behavior during its operational lifetime.

Realistic system modeling demands a comprehensive study of variation effects on NFPs.

The NFP degradation due to variations should be accurately modeled during design stages

[Orsh02, Merr11]. An accurate model for NFPs should consider the effect of variations on

design parameters. For example, aging effects increase the threshold value of the transistor and
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therefore increase the transistor delay over time [Stro06]. The gradual increase in delay causes

performance degradation (non-functional misbehavior) and finally leads to system failure (func-

tional misbehavior). To study the effect of an aging mechanism, the process parameters which

are sensitive to that mechanism should be identified and modeled. Then, the performance degra-

dation based on the process parameter model is extracted. Using the performance model, we

can predict the time in which the NFP violation, i.e., performance degradation, will lead to the

functional misbehavior of the hardware.

As an example, Fig. 2.4, known as the bath-tub curve, illustrates how variations affect the

reliability of fabricated chips during the predicted lifetime. This curve is usually suggested as

a generic model of the system failure rate. Failures in early stages of the utilization period are

usually due to variation in the manufacturing process. Due to process variations, some units are

weaker than others and fail quite early. As time passes, these weaker units will disappear or be

restored to a much better condition and the failure rate curve levels out. In the middle period,

it is essentially only environmental high stresses that might sometimes be so severe that make a

unit fail. In addition, soft errors can happen any time during the lifetime of the system. Thus,

failures occur independently of the age of the unit, which explains the constant behavior of the

failure rate curve. At the end of the life of a surviving unit, accumulated environmental stresses

result in aged transistors which make the unit weaker and more prone to fail [Berg09].

2.5 Summary

This chapter defined and discussed non-functional properties in detail. A non-functional prop-

erty is an attribute or a constraint on a system. Variations, introduced in section 2.3, change
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non-functional properties either at production or during operation time of the system. Varia-

tions are either static or dynamic. Static variations are mostly caused by fabrication processes

or model inaccuracies and have a permanent effect on chips. Runtime variations appear during

the runtime of the system and cause permanent or temporary changes in its behavior. Accurate

NFP prediction must consider the effect of variations in modeling the NFP under analysis.





Chapter 3

NFP Models

3.1 Introduction

The first step in predicting the effect of non-functional properties on a system’s behavior is

to clearly model them based on their underlying physical phenomena. As stated in chapter

2, this work focuses on dynamic, quantifiable NFPs. Among available NFP models of this

category, this chapter discusses the architectural vulnerability to soft errors and performance

degradation due to aging effects. The mentioned NFPs pose emergent challenges to today’s

nano-scale transistors and hence, it is important to find solutions to predict them as soon as

possible in the design paradigm. In addition, they are well-defined and formally modeled in

literature. Architectural vulnerability can be predicted either analytically or by simulation while

performance degradation due to aging can well be predicted using analytical models. These

models are later used as a reference in the sequel of this work.

3.2 Architectural Vulnerability

Vulnerability factor is the fraction of faults in the hardware that shows-up as visible errors

[Mukh11]. Architectural vulnerability characterizes a system’s vulnerability to soft errors1.

1Energetic particles, such as neutrons from cosmic rays and alpha particles from packaging materials, generate
electron-hole pairs as they pass through a semiconductor device. Transistor source and diffusion nodes can collect

27
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The architectural vulnerability factor (AVF) is the probability of a fault in an SoC structure to

result in a visible error in the final output of the system [Mukh03].

Soft errors are classified [Mukh11] as shown in Fig. 3.1. Benign errors do not lead to a sys-

tem failure. Recoverable errors do not cause system failure, but may impact the performance.

Silent data corruption (SDC) is the most severe failure mode, where a fault induces the sys-

tem to generate erroneous outputs. To avoid SDC, designers often employ basic error detection

mechanisms, such as parity. With the ability to detect a fault but not correct it, we avoid gen-

erating incorrect outputs, but cannot recover when an error occurs. Errors in this category are

referred to as detected unrecoverable errors (DUE). Detecting an unrecoverable error allows

the system to reach a safe state upon failure.

A conservative system that signals all detected faults as failures will unnecessarily raise the

DUE rate by failing on false DUE events. Alternatively, if the system can identify false DUE

events (e.g., a fault that corrupts only the result of a wrong-path instruction in a processor), then

it can suppress the error signal.
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FIGURE 3.1: Classification of the possible outcomes of a faulty bit [Mukh11]

There are three known ways to compute the AVF of different hardware structures [Mukh11]:

Statistical fault injection, analytical models, and performance models (simulators).

these charges. A sufficient amount of accumulated charge may invert the state of a logic device, such as an SRAM
cell, a latch, or a gate, and introduce a logical fault into the circuit’s operation. Because this type of fault does not
reflect a permanent failure, it is termed soft or transient. [Mukh11]
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Statistical fault injection (SFI) is based on executing a program repeatedly for each injected

fault and detecting possible errors. An exhaustive search of this space is almost impossible as it

requires a massive number of experiments spanning the total state of a silicon chip (e.g., upward

of 200 million bits in a current microprocessor), potential space of benchmarks running on the

chip, and the cycles in which faults can be injected. Therefore, statistical sampling is used.

SFI introduces bit flips—randomized in both time and space—into a model of the structure

being studied, such as register transfer level (RTL) or a performance model. It then runs forward

and compares the architectural state of the model with the state of an error-free model. After

some number of simulation cycles, if the comparison does not result in a mismatch, the error

is either latent or has been masked. The AVF of the structure being studied is estimated as the

fraction of mismatches observed divided by the total number of bit flips introduced.

SFI is a very powerful technique and has the advantage of not requiring a prior understanding

of the hardware architecture being studied. Unfortunately, it makes sense only in a very detailed

model, such as RTL, which models all system state bits. RTL models are usually much slower

than performance models and can realistically be run for only tens of thousands of simulated

cycles per injected error. Hence, computing the AVF of an entire system would require an

enormous amount of compute power to cover a sufficiently large number of injected errors.

In selected cases, when bits flow unmodified and without duplication through a structure,

we can use Little’s law2 to compute the AVF. A bit is called an architecturally correct execution

(ACE) bit when it contains information that, if changed, will affect the final output. It is called

an un-ACE (unnecessary for ACE) bit otherwise. A mismatch between the models with and

without errors may not necessarily mean that there is an error, because the architectural state

may actually contain un-ACE bits, such as dynamically dead register values. Using Little’s law,

the AVF of an structure can be expressed as:

AVF =
Average number of ACE bits in a structure in a cycle

Total number of bits in a structure

2Little’s law states that for systems reaching steady state, the average number of customers in a system (L) is
equal to the product of the average arrival rate (λ ) and the average time spent in the system (W ): L = λ ·W [LG08].
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Letting Bace be the average bandwidth of ACE bits and Lace be the average residence cy-

cles of an ACE bit in a hardware structure, the above mentioned formula can be rewritten

as [Mukh03]

AVF =
Bace×Lace

bittotal
(3.1)

where bittotal is the total number of bits in the hardware structure.

Both the SDC and DUE AVFs of various systems can be computed using a performance

model. The basic idea is to distinguish the ACE and un-ACE bits. The fraction of time a bit

contains ACE state is, by definition, the AVF of the bit. We refer to this process as lifetime

analysis. The key challenge of lifetime analysis with a performance model is to identify the un-

ACE fraction of a bit’s lifetime. To provide a conservative upper bound on the AVF, we assume

a bit is ACE unless it can be shown to be un-ACE. In a processor, sample instructions that give

rise to an un-ACE state are dynamically dead, wrong path, and falsely predicated instructions.

Lifetime analysis requires an in-depth understanding of the architecture and microarchitec-

ture. Otherwise, we may end up with an AVF number that is artificially too high. Chapter 7

shows how the multi-level NFP-aware simulation can overcome the shortcomings of SFI and

provide an accurate AVF prediction with high simulation speed.

3.3 Wear-Out Mechanisms

All materials tend to degrade and will eventually wear out with time. Semiconductors are not

an exception. Scaling has a direct effect on hardware chips’ wear-out by speeding up aging

processes. The rate of degradation and eventual time to failure depends on electrical, thermal,

mechanical, and chemical environment to which the device is exposed. However, most systems

have a reasonably well-defined lifetime. Estimating the degradation due to wear-out mecha-

nisms during operational life of the system is crucial, to ensure that the catastrophic failure will

occur well past the expected lifetime.
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Wear-out mechanisms depend on several NFPs, the most significant of which are power and

temperature. Many wear-out related defects are caused by a design or a production problem

which accelerates physical processes. Estimating the degradation due to aging at early design

phases enables aging-aware design and ensures the reliability of the system during the predicted

lifetime. Studying the physics behind these mechanisms and the NFPs which affect or enforce

aging effects helps to find effective ways to predict the system behavior at early design phases.

This section gives a brief overview of the dominant wear-out mechanisms as important reli-

ability challenges of today’s semiconductors.

3.3.1 Negative Bias Temperature Instability

The instability of transistor parameters, e.g., Vth, under negative bias temperature instability

(NBTI) effect has been known since long ago, but the recent aggressive scaling of CMOS tech-

nology has made NBTI one of the foremost reliability concerns in today’s nanoscale design. The

NBTI effect manifests itself as an increase in the PMOS threshold voltage and hence degrades

the circuit performance [Stro06].

There is a significant discrepancy on the nature of NBTI damage [Cao11, Stro06], but it

is arguably believed that NBTI mechanism is caused by broken Si–H bonds. These bonds are

induced by positive holes from the channel and hydrogen, in a neutral molecular form (H2),

diffuse away from the interface. This process leaves positive interface traps (Nit) (i.e., from

Si+), which cause the increase of threshold voltage, Vth, in PMOS transistor (Vt p). The gradual

increase in the magnitude of Vt p results in circuit performance degradation over time [Cao11].

The negative threshold voltage shift and the degradation in device current, due to NBTI,

increase with exponential dependency on oxide thickness [Alam05, Chak04, Kris05]. At higher

frequencies (higher than 100 Hz), NBTI degradation is frequency independent [Alam03, Vatt06],

but increases with supply voltage (Vdd) and temperature. The affected PMOS transistor has

higher Vt p than a transistor in normal inversion. NBTI effect is accelerated by relatively low

negative voltages (Eox—electric field in the PMOS gate dielectric—< 6 to 8 MV/cm) and higher

temperatures [Mass04, Giel08]. If the NBTI stress voltage is removed (Vin = Vdd), a fraction of

NBTI degradation is recovered by annealing at high temperatures [Schr03, Stro06, Abad03].
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NBTI stress and recovery phases are best expressed by reaction-diffusion (R–D) models

[Turi52]. In the R–D formulation of NBTI degradation, it is assumed that NBTI arises due to

hole-assisted breaking of Si–H bonds at the Si/SiO2 interface. Based on this model, two critical

steps happen [Alam07, Cao11]:

• Stress: Some Si–H bonds at the substrate/gate dielectric interface are broken under the

electrical stress. Positive holes trigger this reaction. Consequently, interface charges are

induced, which cause the increase of Vt p. Given the initial number of the Si–H bonds at the

Si/SiO2 interface (No), and the concentration of the inversion carriers (P), the generation

rate of the interface traps (Nit) at time t due to NBTI stress is given by

dNit

dt
= kF(No−Nit)P− kRNHNit (3.2)

where kF and kR are the reaction rates of the forward and reverse reactions, respectively.

NH is the hydrogen concentration at the interface. P is expressed as

P = Cox(Vgs−Vth)

kF is proportional to the number of inversion layer holes that are captured by Si–H bonds.

The Si–H bond is weakened once a hole is captured and assisted by the electric field, it

is easily broken at relatively moderate temperatures. The broken Si bonds act as a donor

trap and contribute to the shift in the threshold voltage and reduction in transconductance.

The generation rate is an exponential function of the electrical field and temperature. It is

also proportional to the density of reaction species, namely holes or hot electrons.

Trap generation during the initial period of the stress phase is slow (dNit
dt ≈ 0 and Nit�N0),

therefore, equation 3.2 can be reduced to [Wang07b]:

NHNit ≈
kF

kR
P ·N0 (3.3)

With continued forward reaction, H is produced and two H atoms combine to generate a

hydrogen molecule. The concentration of H2, i.e., NH2 , is related to the concentration of

H, i.e., NH , using
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NH2 = kHN2
H (3.4)

The total hydrogen can be divided into two parts: (1) Hydrogen in the oxide and (2)

hydrogen in the poly-Si. Therefore, Nit can be calculated as [Wang07b]

Nit = 2
∫ tox

0
NH2(x)dx+2

∫ √DH2 t+tox

tox

NH2(x)dx (3.5)

where tox is the oxide thickness. DH2 is the H2 diffusion constant and NH2(x) is the con-

centration of H2 at the Si/SiO2 interface. Solving the above equation and substituting

equation 3.5 in ∆Vth = qNit/Cox, we obtain the general form of Vth degradation as

∆Vth(t) = (Kv(t− t0)1/2 + 2n
√

∆Vth(t0))2n (3.6)

where

Kv = (
qtox

εox
)3K2

1Cox(Vgs−Vth)
√

C exp(
2Eox

E0
) (3.7)

C has a temperature dependence as C = T−1
0 exp(Ea/kT ), k is the Boltzmann’s constant

and T0 is another constant. Although the aforementioned result was derived assuming H2

as the diffusing species, a similar dependence can be obtained if the diffusing species is

assumed to be H. For a H2 diffusion-based model, n is 1/6, and for a H-based model,

n = 1/4 [Wang07b].

• Recovery: This is where reaction generated species diffuse away from the interface toward

the gate, driven by the gradient of the density. This process influences the balance of the

reaction and is governed by

dNH

dt
= DH

d2NH

dx2 (3.8)
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where DH is the diffusion constant. The solution of equation 3.8 exhibits a power-law

dependence3 on the stress time [Alam07]. The exact value of the power-law index indi-

cates the type of diffusion species. The closed-form solutions to equation 3.8 shows this

dependence:

Nit =
√

K2 · t2n +N2
it0 (3.9)

where Nit0 is Nit at the starting point and n is the H2 diffusion constant. Considering the

reaction of breaking Si–H or Si–O bonds, the generation rate, K, is linearly proportional

to the hole or electron density and exponentially dependent on the temperature (T ) and

the electric field (Eox). Therefore,

K ∝

√
Cox(Vgs−Vth) · exp(Eox/E0) · exp(−Ea/kT ) (3.10)

where Eox = (Vgs−Vth)/tox. E0 and Ea are technology-independent characteristics of the

reaction.

In the recovery phase, due to the absence of holes, there is no net generation of interface

traps. The hydrogen species that were generated during the stress phase continue to dif-

fuse away from the interface toward the poly-Si. At the same time, some of the hydrogen

species that are closer to the interface diffuse back and repassivate the broken Si+ bonds.

This results in the reduction of the H2 density, NA
H2

. This is because the H/H2 diffusion

is faster in the oxide, and very quickly anneals the broken Si–H bonds.

The H/H2 density is much higher in the poly-Si than in the oxide. Let t1 be the time for

the recovery to be applied after stress and Nit(t1) be the number of interface charges at

the end of the stress cycle. Let NA
it (t) be the number of charges annealed at time t. Due

to the widely different diffusivity of H2 in the oxide and poly-Si, the recovery becomes a

two-step process, with fast recovery driven by H2 in the oxide, followed by slow recovery

of H2 by back-diffusion from the poly-Si. The number of annealed traps can be due to two

parts: (1) Recombination of H2 in the oxide and (2) back-diffusion of H2 in the poly-Si.

Thus [Wang07b]

3A power-law is a type of probability distribution. If the frequency (with which an event occurs) varies as a
power of some attribute of that event (e.g., its size), the frequency is said to have a power-law dependence [Clau09].
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NA
it (t) = 2NH2(0)(ξ1te +

1
2

√
ξ2C(t− t1)) (3.11)

where ξ1 and ξ2 are the back-diffusion constants. Depending on the duration t− t1 of the

recovery, the effective oxide thickness te is either equal to tox or to the diffusion distance of

hydrogen in the initial stage of recovery. Here, we define the time when all the hydrogen

species in the oxide are recombined with the interface traps as t ′. This corresponds to the

time taken by the diffusing species to diffuse to a distance of tox. If t− t1 ≥ t ′, te is equal

to tox; otherwise, te equals the diffusion distance of hydrogen in the oxide. From equation

3.11, we obtain

NA
it (t) = Nit(t)(

2ξ1te +
√

ξ2C(t− t1)
(1+δ )tox +

√
Ct

) (3.12)

where δ is the correction factor. Using ∆Vth = qNit/Cox, we obtain the recovery equation

as

∆Vth(t) = ∆Vth(t1)(1−
2ξ1te +

√
ξ2C(t− t1)

(1+δ )tox +
√

Ct
) (3.13)

In practice, the change in the threshold voltage (∆Vth) due to NBTI is predicted by simulating

the stress and recovery cycles for m = t/Tclk cycles to obtain the long term degradation, where

Tclk is the clock period and t is the duration of the simulation, i.e., the life time of the system.

However, for high performance circuits, m can be very large, even for t = 1 month. Thus, it

becomes impractical to perform cycle-to-cycle simulation in order to predict ∆Vth. A closed

form for the upper bound on the long term ∆Vth as a function of the duty cycle α , clock period

Tclk and time t can be expressed as [Cao11]

∆Vth =

√
K2

v αTclk

1−β
1
2n

t

(3.14)

where n is a constant equal to 1
6 for H2 diffusion. Kv is the one from equation 3.7. βt is expressed

as
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βt = 1−
2K1 +

√
K2C(1−α)Tclk

(1+δ )tox +
√

Ct
(3.15)

where K1 and K2 are constants on the effective oxide thickness and oxide capacitance, respec-

tively.

3.3.2 Hot Carrier Injection

Hot carrier injection (HCI) is a major oxide failure mechanism. It occurs when the transistor’s

electric field at the drain-to-channel depletion region is too high. HCI degradation is mainly

due to interface-state generation caused by “hot carriers”. Hot carriers are particles acceler-

ated by high electric fields and obtained very high kinetic energies through scattering and/or

impact ionization. These particles are injected into the gate oxide causing interface-state gen-

eration. As the design of MOSFET transistors allows large electric fields at operating condi-

tions, HCI degradation is a critical reliability concern. HCI leads to threshold voltage shifts

and transconductance degradation of MOS devices. It alters circuit timing and high-frequency

performance [Stro06, Fang98].

NMOS HCI degradation is mainly due to interface state generation, when the transistor

is stressed at the peak substrate current bias condition. PMOS degradation is mainly due to

electron trapping in the gate oxide when stressed at peak gate current conditions.

Fig. 3.2 sketches an NMOS transistor cross section showing the drain depletion field. The

horizontal electric field in the channel, ξch, gives kinetic energy to the free electrons mov-

ing from the inverted portion of the channel to the drain. When the kinetic energy is high

enough, electrons strike Si atoms around the drain-substrate interface causing impact ioniza-

tion. Electron-hole pairs are produced in the drain region and scattered. Some carriers go into

the substrate, causing an increase in substrate current, Isub, and a small fraction have enough

energy to cross the oxide barrier and cause damage.

The energy follows Boltzmann distribution in which the particle’s thermal energy is

Et = kT/q
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FIGURE 3.2: Saturated state NMOS transistor and its internal electric fields ξch and ξox

[Segu04]

where k is the Boltzmann constant, T is the degree kelvin, and q is the electron charge. Carrier

mobility increases as the temperature decreases. Carriers with higher mobility create hot holes

and electrons more efficiently, so that HCI increases as temperature is lowered. Once the hot

carrier enters the oxide, the vertical oxide field ξox determines how deeply the charge will go. If

the drain voltage is positive with respect to the gate voltage, then holes entering the oxide near

the drain are accelerated deeper into the oxide, and electrons in the same region will retard from

leaving the oxide interface. ξch restricts the damage to oxide over the drain-substrate depletion

region, with only a small amount of damage just outside the depletion region.

HCI is a dynamic effect and depends strongly on circuit design, fanout, and input waveforms

[Fang98]. The typical parameters affected by HCI are IDsat , transistor transconductance (gm),

threshold voltage (Vth), weak inversion subthreshold slope (S), and increased gate-induced drain

leakage (GIDL). IDsat is a function of Vth and most closely approximates the impact on circuit

speed, since it influences the charge and discharge of load capacitors.

Similar to NBTI, HCI can also be expressed by the reaction-diffusion model. In the reac-

tion phase, hot electrons broke some Si−H or Si−O bonds at the transistor’s substrate/gate.

Consequently, interface charges are induced, which cause an increase in Vth. Akin to other re-

actions, the generation rate is an exponential function of the electrical field and temperature. In

the diffusion phase, the reaction-generated species diffuse away from the interface toward the

gate, driven by gradient of the density. HCI impacts primarily the drain. This process influences

the balance of the reaction as is governed by equation 3.8 which exhibits a power-law depen-

dence on time. However, the recovery phase in HCI is negligible [Wang07b]. Based on the

reaction-diffusion model, the threshold voltage degradation is usually expressed as [Wang07b]
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∆Vth =
q

Cox
K2
√

Qi exp(
Eox

Eo2
)exp(− φit

qλEm
)tn′ (3.16)

where q is the electrical charge. Cox is the oxide capacitance and λ , K2, φit and Eo2 are tech-

nology dependent constants. n′ is the time exponential constant for HCI. Eox is defined as in

section 3.3.1. Qi is the inversion charge.

3.3.3 Dielectric Breakdown of Gate Oxides

Scaling has a profound effect on gate oxide reliability. With ultra thin oxides, gate tunneling

current is also increasing. This gate leakage current increases power consumption and imposes a

practical bound on oxide thickness which accelerates wear-out due to time-dependent dielectric

breakdown (TDDB).

TDDB (also known as oxide breakdown) is an irreversible local change of the dielectric

isolation property. Each time a transistor has a voltage put across its gate oxide, a small amount

of charge is injected into the oxide. The oxide wear-out time decreases as the oxide stress

increases. The voltage and electric field of thin oxide will cause premature oxide wear-out.

Oxide field strength accelerates electrons across the oxide. Significant tunneling of electrons

through the gate oxide can occur when the oxide thickness becomes less than about 40 Å. A

breakdown happens after a certain amount of time during which the oxide is subjected to an

electrical stress at product operation or elevated conditions [Segu04, Stro06].

Due to the explained physical process, the complete oxide breakdown procedure is divided

into three levels [Segu04]:

• a slow trap generation within the oxide (aging) until a defect path links the gate terminal

to the substrate;

• a soft breakdown (SBD) at low voltages that permanently increases gate current and gate

noise;

• the appearance of a hard breakdown (HBD), showing continuous exponential increase in

gate current.
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Trap generation is the key factor that determines the oxide degradation and breakdown.

Three general models are discussed in the literature for trap generation: The “anode hole injec-

tion” (AHI), the “thermo-chemical”, and the “anode hydrogen release” (AHR) models [Bern06].

In the AHI model, electrons injected from the gate metal cathode into the oxide undergo

impact ionization events, which generate holes in the process. Some of these holes tunnel back

into the cathode and create electron traps in the oxide [Bern06].

The thermo-chemical model states that defect generation is a field-driven process and the

current flowing through the oxide plays a secondary role at most. The interaction of the applied

electric field with the dipole moments associated with oxygen vacancies leads to a conduction

sub-band formation and to severe Joule heating4 at the stage of oxide breakdown [Bern06].

In the AHR model, the energy release of the incoming electrons at the anode may activate

hydrogen release at the anode, beside creating holes. The released hydrogen diffuses through

the oxide and can generate electron traps.

There have been contradicting opinions on the exact field acceleration law of time-to-breakdown,

tBD. According to the AHI model, the field dependence of the tBD takes the form:

tBD(t)∼ τ0 exp(
G

Eox
) (3.17)

where Eox is the electric field across the dielectric and τ0 and G are constants.

According to the thermo-chemical model, the field dependence of the tBD is of the form:

tBD(t)∼ t0 exp(−γEox) (3.18)

where t0 and γ are constants.

4Joule heating is the process by which the passage of an electric current through a conductor releases
heat [vM06].
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For ultra-thin oxides, gate voltage (Vg) is the primary driver of the breakdown process. Ad-

ditionally, temperature dependence of ultra-thin oxides is non-Arrhenius5, but the temperature

acceleration factor is rather larger at higher temperatures. Considering these dependencies, the

tBD for ultra-thin oxides (Tox < 32Å) can be presented as [Mons01]

tBD = t0 exp(γ(αTox +
Ea

kTj
−Vg)) (3.19)

where γ is the acceleration factor, Ea is the activation energy, α is the oxide thickness accel-

eration factor, T0 is a technology related constant, k is the Boltzmann constant, and Tj is the

average junction temperature.

3.3.4 Electromigration

Under the influence of electron flow and temperature, metal atoms become thermally active and

force out of their lattice sites. The atoms move under diffusion in the same direction as the

electrons. When a metal atom is knocked from its lattice site while downstream, a small tensile

stress is created. The displaced metal atom creates compressive forces and possible extrusions.

A metal line will fail if sufficient current density and high temperature are applied. This effect

is called electromigration (EM) [Stro06, Segu04].

Several variables affect EM. The flux J is the number of particles (atoms in this case) cross-

ing a unit area per unit time. Atomic flux, Jem is expressed as

Jem = νN (3.20)

where ν is the mean velocity of metal atoms and N is the concentration of moving metal atoms.

ν is a function of its mobility, µ and electric field, ξ , and is calculated as ν = µξ where µ is

5Arrhenius equation is a simple, yet accurate formula that shows the influence of temperature on the rate of
chemical reactions. According to Arrhenius equation, a rate constant k is the product of a frequency factor A and
an exponential term: k = Aexp(−Ea

kBT ) where Ea is the activation energy, kB is the Boltzmann constant and T is the
temperature [Laid84].
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µ =
Q D
k T

(3.21)

Q is the effective charge and is calculated as Q = Zq where Z is the electron-to-atom ratio

and q is the electron charge. D is the self-diffusion coefficient:

D = D0 exp(
−Ea

kT
) (3.22)

where k is the Boltzmann constant, T is the absolute temperature and Ea is the activation energy.

Using equations 3.20, 3.21 and 3.22, the final flux expression can be expressed as

Jem =
D
kT

(Zq)ρ jeN (3.23)

In reality, Jem will not be the same throughout the metallization because of structural in-

homogeneity. That constitutes a divergence of flux in the metallization which is more obvious

under high density conditions. As this divergence becomes more significant, the original isen-

tropic self-diffusion6 is perturbed and the ions moving along the current flow will have the

greatest probability of exchanging positions with the vacancies. The original random process

changes to a directional process in which the metallic ions move downstream opposite to the

electron wind direction while the vacancies move in the opposite direction. The metallic ions

condense to form whiskers, whereas the vacancies condense to form voids. This process results

in change in the density of the metal with respect to time. The formation of voids causes some

of the metallization lines to fail. The failed lines force the current to go through the rest of the

lines resulting in an increase in the current density and the Joule heat. The produced Joule heat

increases the local temperature and causes more lines to fail. The increase of current density

will also cause more lines to fail. Besides, as the whiskers and hill-locks form at the other end,

a concentration gradient is produced which may create a stress-related force, thus enhancing the

mass transport process and causing more lines to fail [Goel89]. The time to failure due to EM

6An isentropic process is one in which the process takes place from initiation to completion without an increase
or decrease in the entropy of the system, i.e., the entropy of the system remains constant [VW86].
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is usually calculated by the empirical equation known as “Black law” [Blac67] and is expressed

as [Segu04, Goel89]

tF =
A0

J2
em

exp(Ea)
kT

(3.24)

where tF denotes the time to failure. A0 is a technology constant based on the cross-sectional

area of the interconnect, while k is the Boltzmann constant. T is the temperature, je is the

electron current density and Ea is the activation energy (eV) for EM failure. It is clear that Jem

and the temperature are deciding factors in the design process that affect EM.

3.4 Summary

Accurate estimation of non-functional properties demands a comprehensive knowledge of the

physics behind them. This chapter presented the modeling of two sample NFPs, architectural

vulnerability and performance degradation due to wear-out mechanisms. Architectural vulner-

ability is becoming more important as the transistors shrink. Vulnerability prediction at early

design phases can provide useful hits for fault-tolerant design before manufacturing. Wear-out

mechanisms are exacerbated by technology scaling. They deteriorate system performance and

have a destructive effect on several NFPs, including reliability. Aging effects and their impact

on NFPs can partially be avoided by proper design and production strategy.



Chapter 4

NFP Simulation

4.1 Introduction

Simulation is the most widely used technique for predicting the functional as well as non-

functional behavior of hardware at different abstraction levels [Cham95]. NFPs with high

dependency to circuit structure and workload, such as power consumption [Bona04, Zhan09,

Boli97], testability [Koch10, Bara11, Hsia95] and heat distribution on the chip [Brya10], can

be best studied by simulation.

System simulation starts early in the design’s life-cycle. It is usually customized to capture

not only the system functionality, but also all relevant system observables (as will be described

later in chapter 6). However, over long simulation periods, a system-wide analysis with fine

grain NFP models is computationally expensive (if feasible at all).

Hardware design representation has been raised in different dimensions through electrical,

switch, gate, register transfer, and transaction levels. Design methodology selects the proper

level of abstraction at different design phases to assure the design quality: If the level of ab-

straction is not sufficiently high, it may be difficult to vary the ultimate design implementation

to evaluate different alternatives. In addition, the analysis of alternative design solutions with

respect to different NFPs at a given abstraction level reduces the probability of not fulfilling cer-

tain requirements after refinement through lower levels, leading to redesign [Gajs09, Rajs00].

43
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Non-functional properties are usually modeled at low design abstraction levels. The prop-

erties such as leakage power, temperature, interconnect delays, yield, and cost can best be an-

alyzed at electrical or switch level [Nico12]. Widely used fault models to analyze the design

testability are mostly defined at electrical, switch or gate level [Wang06]. Simulation at these

levels provides accurate results for NFP prediction, but it is not applicable for complex SoCs

and long simulation runs. This implies that the gap with low level effects inherent to very deep

sub-micron technologies is widening: High level NFP models are usually either not available,

due to the nature of the NFP, or do not provide the required accuracy. Conversely, low level

simulation requires the complete description of the system at that level which is usually not

available at early design phases. A trade-off between the abstraction level and the NFP-aware

simulation accuracy is required to preserve the accuracy of obtained observables in a reasonable

simulation time.

This chapter discusses multi-level simulation as an efficient tool for NFP analysis. Multi-

level simulation can switch between abstraction levels to benefit from accuracy of low and

simulation speed of high level models. It can be used effectively for early design exploration

where the complete system is not available at a certain lower level. We first address the design

paradigm by discussing the main abstraction levels for hardware design in section 4.2. In section

4.3, multi-level simulation is discussed in detail and the state-of-the-art for available multi-

level simulation approaches for NFP prediction are presented. Section 4.4 discusses parallel

simulation which speeds up traditional simulation. Section 4.5 concludes the chapter with a

brief summary.

4.2 Design Abstraction Levels

The primary driving factor behind the exponential increase of IC functionality over the past 40

years has been the ability to continually scale MOS devices to smaller dimensions [Doer07]. To

manage the emerged complexity, the key method is to describe the system resorting to several

levels of abstraction [Gajs09, Chu06]. An abstraction is a simplified model of the system,

showing only the selected features and ignoring the associated details [Chu06]. The purpose

is to reduce the amount of data to a manageable level, so that only the critical information is
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presented. The history of electronic hardware design has followed a path of increasing levels

of abstraction much like many other technologies. As the lower levels of the technology are

understood, they become the building blocks of higher levels, allowing designers to abstract

details at that level and devote the design effort to more global and presumably important issues

[Sang12, Chu06].

A high level abstraction contains only the most vital data. A low level abstraction is more

detailed and takes account of previously ignored information. Despite complexity, the low level

abstraction model is more accurate and is closer to the real circuit [Chu06].

In the following, the hardware abstraction levels which are widely used in this work are

briefly discussed. More information on hardware abstraction levels and design dimensions can

be found in [Gers09].

4.2.1 Electrical Level

Electrical level refers to modeling hardware at its lowest conceptual level [Russ89]. The circuit

is modeled with several physical details describing transistors, wires, capacitors and resistors

and their respective interconnectivity. The fundamental step of electrical level modeling is

the sizing of each transistor to achieve the required specifications. A good electrical model

is based on physical behavior covering significant physical effects such as non-uniform dop-

ing effects, mobility effects, velocity saturation, short/narrow channel effects, substrate cur-

rent, thermal/flicker noise, and temperature effects. Beside the correct I−V characteristics,

the electrical-level model should also consider the correct current derivatives, i.e., transcon-

ductances. In addition, the correct best/worst case modeling must be guaranteed for design

robustness [Stef08].

Physical phenomena that change NFPs by affecting transistor parameters during the life-

time of the system, e.g., aging effects, can be best modeled at this level. Process variation

effects on device characteristics can also be studied at this level [Sriv05]. Transistor fault mod-

els (stuck-open and stuck-short) can be applied and evaluated accurately, while transmission

gate and tri-state buffer faults can also be tested at this level. A defect-based test methodology
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is more effective with an electrical level model of the circuit as it contains more detailed struc-

tural information than higher abstraction levels and will yield a more accurate defect coverage

analysis [Wang06].

Electrical level models can predict NFP observables with high accuracy, however, the slow

simulation speed and complexity of these models make them inefficient for complex hardware

systems. On the other hand, electrical level modeling is possible only when all the technology

parameters are decided. Therefore, early NFP prediction at this level is unfeasible.

4.2.2 Switch Level

Switch level modeling provides a level of abstraction between gate and electrical level. The

primitives here include MOS, resistive, bidirectional and resistive bidirectional switches, pull-

ups, pull-downs and power and ground nets. A switch level model describes the interconnection

of transmission gates which are abstractions of individual MOS and CMOS transistors. While

electrical models deal with analog input and output signal values, the switch level transistors

are modeled as being either on or off, conducting or not conducting. Further, the values carried

by the interconnections are abstracted from the whole range of analog voltages or currents to a

small number of discrete values. These values are referred to as signal strengths [Thom08].

Although switch level models are an abstraction of electrical level models, they still include

enough information to provide an accurate NFP analysis for several NFPs. However, as for

electrical level models, unavailability of the models or technology parameters at early design

phases and their slow simulation speed prevents early NFP prediction at this level.

4.2.3 Gate Level

At gate level, the circuit is defined as a netlist with logic gates and their interconnections. Typ-

ical building blocks include simple logic gates, such as and, or, xor, 1-bit 2-to-1 multiplexer,

and basic memory elements. The timing information is also simplified at this level. A single

discrete number, known as the propagation delay, which is defined as the time interval for a

system to obtain a stable output response, is used to specify the timing of a gate [Chu06].
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Structure-dependent NFPs such as timing behavior of the circuit, power and random-pattern

testability are well modeled and analyzed using available gate level tools [Kell08]. In the area

of testability, the stuck-at fault model is usually employed to evaluate the effectiveness of the

input stimuli used for simulation-based design verification. In addition, delay fault models and

delay testing have been traditionally based on the gate level description [Wang06].

However, lifetime NFP prediction at gate level is not practical for several NFPs in deep

submicron technologies. In spite of high accuracy, increasing complexity makes design ex-

ploration and analysis of the complete system at gate level error prone, time consuming, and

inefficient [Wang06].

4.2.4 Register Transfer Level

At register transfer level (RTL), the basic building blocks are modules constructed from simple

gates. They include functional units such as adders and comparators, storage components such

as registers, and data routing components such as multiplexers [Chu06]. RTL models a syn-

chronous digital circuit in terms of the flow of digital signals (data) between hardware registers

and the logical operations performed on those signals [Gers09].

An RTL model uses a common clock signal in the storage components. The clock signal

functions as a sampling and synchronizing pulse, putting data into the storage component at a

particular time, normally the rising or falling edge of the clock signal. In a properly designed

system, the clock period is long enough so that all data signals are stabilized within the clock

period [Chu06].

The data representation at RTL becomes more abstract than gate or switch level. Signals

are frequently grouped together and interpreted as a special kind of data type, such as an un-

signed integer or system state. The RTL description in behavioral domain uses an extended

finite state machine (FSM) and general expressions to specify the functional operation and data

routing [Chu06].

Some works in literature tried to lift various NFP models to RT or higher abstraction levels.

Traditional NFP evaluation methods cannot effectively (if not at all) handle designs employing
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blocks for which implementation details are either unknown or subject to change. However,

approaches for dominant NFPs such as power [Maci04, Ravi03, Jian98, Wang03], temperature

[Sadr12, Engl08, Velu05] and testability [Sant03, Makr98, Yin01] at RT or higher levels have

been proposed. These methods provide faster NFP evaluation using high level simulation speed

with the cost of accuracy.

4.2.5 Transaction Level

Electronic System Level (ESL) is a set of design methodologies that enable embedded sys-

tem design, verification, and debugging through the hardware and software implementation of

SoCs [Mart07]. ESL design methodologies elevate design and verification to higher abstraction

levels to overcome complexity. At high levels, many engineering tasks and design optimizations

are successfully accomplished quicker and cheaper than at lower levels such as RTL.

Transaction Level Modeling (TLM) is an ESL design methodology to facilitate simulation-

driven design space exploration and design verification [Ghen05, Gajs09]. It also allows early

software development to reduce the time-to-market. After identifying a suitable (optimized)

system architecture, the initial TLM can be refined by adding details about computation com-

ponents and communications, leading to more precise models in terms of behavior and timing,

and ultimately to a cycle-accurate description of the system [Donl04].

In TLM, the communication details among the computation components are separated from

the components’ implementation details, while the implementation details of both are abstracted.

Communication is modeled as channels. Transaction requests take place by calling interface

functions of channel models. Unnecessary details of communication and computation are hid-

den and may be worked out later [Ghen05].

TLM allows flexibility in temporal modeling [Ghen05], while the accuracy can be dynami-

cally adapted during simulation [Rade08]. Fig. 4.1 shows the range of temporal flexibility that

TLM offers [Blac10, Cai03]. The x-axis represents the abstraction level of the communication

while the y-axis is the abstraction level of model’s functionality. In loosely-timed transaction-

level models, the temporal behavior is managed at the level of transactions. In the more accurate

approximately-timed TLM, the time is managed at sub-transaction level, i.e., it is updated for
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each transaction phase, such as request, transfer, and acknowledgment. This implies that the

functionality can be refined independent of the model or logical block interface or communica-

tion [Blac10, Cai03].

SAM

TLM
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TLM RTL
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TLM

TLMTLM

TLM

TLM
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TLM

SAM: System Architectural Model
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FIGURE 4.1: TLM model mapping [Blac10]

The modularity and separation of communication and functionality in TLM allow quick

exploration of different architecture alternatives early before the implementation details of the

design are explored [Gajs09, Ghen05]. It enables the user to change system components and

communication models, to modify their interconnection patterns, and to change the mapping of

application tasks to system components without much effort [Cai03].

TLM abstracts signal level communications and models complex communication operations

as atomic transactions. Therefore, the number of events to be processed by event-driven simula-

tors and the number of context switches between simulation processes are reduced. This event

reduction enables system level design and simulation of large hardware/software systems and

provides significant improvement in simulation performance by orders of magnitude [Cai03].

TLM can be exploited not only for architecture exploration and validation, but also for test

exploration [Koch09], and reliability analysis [Hata12] for which traditional simulation is too

slow. Such NFPs demand a significant amount of infrastructure to be integrated together with

the system implementation. TLM provides enough details to help with important design deci-

sions considering NFPs such as performance, die area and power [Hwan08, Chee06], although
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the accuracy should be carefully measured to prevent wrong design choices [Gers09]. Low level

observables which are mandatory for accurate prediction of several NFPs can not be obtained

at this level of abstraction.

4.3 Multi-Level Simulation

The simulation process is carried out at several abstraction levels. Each level entails a different

trade-off between simulation accuracy and computing requirements [Wang09, Russ89]. High

level simulation is used to check the behavioral (functional) aspects of the design, whereas the

lower level simulation relates to design aspects associated with the physical implementation.

As one descends through the abstraction levels, signal representation changes from character

representation to discrete logic-level and then to quasi-continuous voltage levels. In a similar

way, events, i.e., an instantaneous occurrence that may change the state of the system, are

described as number of clock cycles at the high and as sub-multiples of seconds at the lower

levels [Russ89].

Complex digital systems require sophisticated simulation environment for performance pre-

diction and correctness validation [Baga08]. As we move through abstraction levels, the sim-

ulation speed increases while several unnecessary details are abstracted. Consequently, the

simulation accuracy decreases. Multi-level simulation is a method of integrating two or more

independent simulations at different abstraction levels. It is used when a trade-off between the

simulation accuracy and the speed up is required. Multi-level simulation permits simulation at

more than one level in the same environment [Ghos86]. It accelerates the simulation by moving

some parts of the system to higher abstraction levels while keeping the necessary cores at lower

levels.

Fig. 4.2 shows the multi-level simulation concept. The system is modeled at high level while

the design under analysis (DUA) is modeled at low level. A protocol adapter connects the two

abstraction levels and facilitates the communication. The simulation procedure begins with the

high level model. When an interesting region of the simulation is reached, the high level model

is switched to the detailed, low level model. The detailed model can be switched back to a less

detailed, high level model to quickly simulate unimportant portions of the workload. Switching
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back and forth may take place repeatedly and can involve multiple abstraction levels with dif-

ferent speed-detail characteristics. The simulator outputs the state of the simulated object at one

or more predefined time points. Interaction between different abstraction levels results in an in-

tegrated simulation output without affecting the individual simulation states [Dewe90, Baga08].
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FIGURE 4.2: Multi-level simulation concept

The concept of multi-level modeling has found widespread use for design validation [Paul02,

Zurc68], fault simulation [Bara11, Belt09, Leve03, Meye93], as well as NFP prediction (e.g.,

reliability [Suta12], power [Broo00, Shim99] and performance degradation due to aging effects

[Sidd10]).

In [Paul02], the authors simulate both the hardware and the software cores and the network-

on-chip (NoC) based communication using multi-level simulation to perform system-level de-

sign exploration for network processors. Wrappers translate high level signals to low level and

the other way round wherever necessary. The range of abstraction levels the method supports is

restricted to the ability of the adopted hardware description language (HDL).

In [Ghos87] approach, hardware simulation and verification is initiated at the behavioral

RTL. When detailed results are required for one or more high level components or for tracing

the source of an error to any of the low level devices, the appropriate components are expanded

into their low level implementation and the simulation or verification initiates at that level.

Upon completion of the execution, the control returns to the high level model. Consequently,

only sub-parts that are dynamically warranted by the high level simulation results are selected

for expansion and detailed simulation.
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A multi-level simulation methodology at switch/RT level for system verification is proposed

in [Tham84]. The full chip is modeled at pure RTL. A mixed RTL-schematics model is rep-

resented as transistors. RTL modules correspond to the schematics sheet being verified. The

verification is done by comparing the output of the circuit under analysis at two abstraction lev-

els. If a discrepancy is found, the models at both switch and RT level would be debugged and

re-simulated.

In the area of fault simulation, numerous approaches for the different abstraction levels have

been proposed. In [Leve03], a multi-level fault injection method is introduced. The method

uses two functionally equivalent models at architecture and RT level. The fault is injected at

both levels and its effect on signals (at RTL) and system states (at architectural level) is studied.

Later in [Leve04], the authors perform serial fault injection at RTL with error propagation at

system level. Injection of structural faults into mixed gate/high level SystemC models is pre-

sented in [Mise08]. Beltrame et al. [Belt09] perform the mutator-based fault injection at RT and

transaction level.

Structural fault simulation at gate/architecture level is discussed in [Hsia95, Sina01]. More-

over, Meyer et al. [Meye95] represent a multi-level, hierarchical fault simulation methodology

which switches between switch, gate, and RT level while the goal is to achieve highest fault

coverage at switch level. The fault simulation starts at RTL. As soon as a faulty component is

recognized, the simulation continues at gate level. The faulty gates at gate level are simulated

at switch level, likewise. The presented tool switches between the three abstraction levels to

force simulation at higher levels without losing the switch level accuracy. Similarly, the authors

in [Saab90] present a hierarchical multi-level fault simulation methodology. Fault injection is

done at switch level while the simulation is carried out at RTL.

Serial simulation of structural faults in gate/RT level models with event-based simulators is

discussed in [Sant99, Nava04]. Mixed-level fault simulation of gate/RT level using concurrent

simulation is presented in [Gai88, Lent00]. In [Lent99], the authors propose a multi-level con-

current fault simulation approach allowing multi-level simulation of gate, RT and behavioral

level models.

Some works have employed multi-level simulation approach to predict NFPs. In [Shim99],

the authors propose a multi-level power modeling at architecture and switch level. “Wattch”
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[Broo00] is an architectural level power estimator which uses RTL to obtain cycle count re-

quired for power analysis. In [Shan02], a two-level modeling approach is proposed to predict

component’s surface temperature. The system level model is meant to incorporate all signifi-

cant flow obstruction mechanisms and heat source distribution on the boards. Since the exact

component temperature itself is not the quantity of interest at this level, component and heat

sink details may be simplified. The behavioral switch level model incorporates the details of the

heat sinks and models each of the components separately.

The authors in [Suta12] use multi-level simulation to estimate system reliability. The simu-

lation method starts from a compact reliability model at switch level. The degradation of device

parameters such as transistors’ threshold voltage is propagated to gate and system level mod-

els for reliability analysis. In the area of aging mechanisms, the authors in [Sidd10] propose

a microarchitecture/gate level approach to reduce the impact of NBTI on functional units of

processors.

The goal of this work is not to compete with the aforementioned approaches, but to take ad-

vantage of multi-level simulation as a practical and beneficial tool for NFP prediction. Chapter

5 explains how multi-level simulation is used to predict the NFP observables.

4.4 Parallel Logic Simulation

Multi-level simulation speeds up the simulation by moving most parts of the system to high

level. However, the low level simulation of the DUA can still be a bottleneck. Parallelism, i.e.,

discrete event-driven simulation (DES), is an efficient way to accelerate the traditional logic

simulation.

DES concerns the modeling of a system as it evolves over time by a representation in which

the state variables change instantaneously at separate (countable) points in time. These points

are the ones at which an event occurs [Law07].

DES models share three common components [Fuji99a]:
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• System state: The collection of state variables necessary to describe the system at a par-

ticular time;

• Simulation clock: A variable giving the current value of simulated time;

• Event list: A list containing the next time in which the next event will occur.

This implies that DES is sequential in nature. Each event contains a timestamp, and usually

denotes changes in the state of the system being simulated. If an event e is the next to occur,

the simulation clock is advanced to time te in which e will occur. After simulation of the event,

the system state is updated to the new state and the occurrence time of the future events are

generated. This information is added to the event list. The simulator repeatedly removes the

event with the smallest timestamp from the event list, and processes it to obtain the new system

state. Choosing the smallest time-stamped event is crucial, because if an event with larger

timestamp is selected, it would be possible that it modifies state variables used by the event with

smaller timestamp. This is a challenge parallel DES algorithms must overcome. [Fuji99a]

Parallel distributed event-driven simulation (PDES) and time-parallel simulation (TPS) are

the most well known techniques to parallelize DES [Fuji99b].

PDES [Nico94, Fuji99a, Cham95, Bagr95] refers to the execution of a single DES program

on a parallel computer. These mechanisms usually assume that the simulation consists of a

collection of logical processes (LPs) communicating by exchanging the time-stamped messages

or events. Each LP can be viewed as a sequential DES with some local state and a list of time-

stamped events that are scheduled for it. The LP’s event list must also include events received

from other LPs. The events are simulated sequentially at each LP while LPs run in parallel.

Each LP maintains a simulation time clock that indicates the timestamp of the most recent event

processed by the LP.

Much of the work concerning PDES on multiprocessor computers deals with synchroniza-

tion of LPs. The goal of the synchronization mechanism is to ensure that each LP processes

the events in the timestamp order. For this purpose, conservative [Chan81, Misr86, Baue98,

Nico96] and optimistic [Jeff85, Gafn88, Zhu05] synchronization mechanisms are proposed in

literature [Xueh09, Fuji99b, Cham95]. A complete discussion on PDES and synchronization

algorithms can be found in [Fuji99a].
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TPS methods partition the entire simulation into a set of shorter simulation runs (slices)

in the temporal domain [Fuji99b]. The challenge here is the state matching at the boundaries

of the time intervals. Specifically, it is clear that the state computed at the end of the interval

[Ti−1,Ti] must match the state at the beginning of the interval [Ti,Ti+1]. This approach relies on

the ability to perform the simulation corresponding to the ith interval without first completing

the simulations of the preceding intervals.

One approach to solve the state matching problem is to have each processor guess the initial

state of its simulation and simulate the system based on the guessed initial state [Lin91, Heid90].

When interval simulations are completed, a “fix-up” computation is performed to account for

the fact that the wrong initial state was used. This might be performed, for instance, by simply

repeating the simulation, using the final state computed in the previous interval as the new initial

state. The fix-up process is repeated until the initial state of each interval matches the final state

of the previous interval. In the worst case, N such iterations are required when there are N

simulators. However, if the final state of each interval simulator is seldom dependent on the

initial state, far fewer iterations will be needed.

The proposed method in [Kies04] allows state deviation at the interval boundary according

to the predefined rules. Therefore, the cost of achieving state consistency between time intervals

is reduced. The obvious drawback of this approach is the error introduced by the approximate

state matching. It must be considered that this error might even invalidate simulation results.

However, for many simulation models (e.g., queuing networks), small errors in state changes

occurring infrequently do not significantly influence the simulation results.

To overcome the problem of inaccuracy, Kim et al. [Kim11] propose an accurate state pre-

diction approach. The technique consists of two major steps:

• Fast reference simulation, performed at high level model (higher than gate level) of the

design to store essential state information at selected checkpoints. This simulation is done

on single processor.

• Detailed, fine-grain target simulation, performed at low level (gate level) model. It is

applied in parallel to each simulation slice, distributed among individual simulators.
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In this approach, as shown in Fig. 4.3, the initial design state for each slice of the target

simulation must be first captured and saved during the fast reference run. This is accomplished

at predetermined checkpoints, decided by the number of processors available for parallel sim-

ulation. The design state consists of the state of all integral registers and memory print of the

design. By restoring the design states, each slice can be made independent of the other. As a

result, target simulation runs concurrently and independently for each slice.

Fast reference 

simulation

Slow target 

simulation

Slice 0

Slice n-1

Slice n-2

Slice 2

Slice 1

...

FIGURE 4.3: Concept of TPS approach proposed in [Kim11]

The performance of this method measured in total simulation time is estimated as [Kim11]:

T = Σ
n
i=1TSs(i)+TRsim +max[TT sim(i)+TSr(i)], 1≤ i≤ n (4.1)

where TSs(i) is the state saving time for slice i. TRsim is the conventional simulation time for the

reference model. TT sim is the conventional simulation time and TSr is the state restoring time for

one simulation slice.

Since the overhead of the state saving, TSs(i), and restoring, TSr(i), is considerably small,

the efficiency of the method depends on TRsim. For gate level simulation, an RTL model reduces

TRsim to a great extent and is the natural candidate for the reference simulation. RTL simulation

is more than 100 times faster than corresponding gate level timing simulation, yet it is still cycle-

accurate and the state correspondence between the two abstraction levels is applicable [Kim11].

Chapter 5 shows how the presented TPS method is used as the basis for our parallel, NFP-

aware simulation approach.
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4.5 Summary

This chapter built the required background on hardware simulation and optimization. Hardware

design starts from higher abstraction levels. During the design process, the hardware is refined

through different levels. High abstraction levels are faster to simulate, but include less detail.

Low level models are accurate, as they include several details about the design, but slower. Sec-

tion 4.3 introduces multi-level simulation as a powerful method to verify hardware’s functional

and non-functional properties. Multi-level simulation methodologies move through more than

one abstraction level to provide a trade-off between simulation accuracy and speed. The low

level simulation of the design under analysis can be accelerated using parallelism, as explained

in section 4.4.
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Chapter 5

Window-Based NFP-Aware Simulation

5.1 Introduction

Several non-functional parameters have a strong dependency to system structure and work-

load. Operational parameters (called observables in this text) are workload dependent param-

eters that depend on functional properties of the design. The workload dependency can be

defined at different abstraction levels concerning the NFP under analysis. However, most ob-

servables can be best evaluated at lower levels where system structure is available. As the

technology scales, the amplitude of NFP fluctuations under various workloads (e.g., worst vs.

average case) grows [Srin04a], which necessitates either a pessimistic worst-case analysis, or

an extensive simulation of the target application. For instance, existing models for power con-

sumption and heat distribution rely on the proportional relation of transistor switching activity

[Ghos92, Huan04], models for aging mechanisms such as NBTI and HCI are governed by

switch level workloads [Wang07e, Wang07c], and for vulnerability models, the gate level input

patterns are required [Mukh05].

Observables are time-dependent functions of the system workload. In general, they can be

formally defined as:

α
(ti)
i = g(workload)

where α is an observable under analysis and ti is the time1.
1 f (ti)(...) := f (..., ti) where ti denotes the time.
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Observables play an important role in NFP prediction. Different approaches in literature

propose methods to predict observables. These approaches are mainly based on average appli-

cations [Wang10, Wang07c], probabilistic methods [Lore12], specification of worst-case values

or logic simulation [Lore09].

An average application is reflected by modeling the system workload as a set of typical

workload patterns. Probabilistic approaches consider signal probability of the inputs and prop-

agate them through the circuit to obtain observables. Worst-case based analysis considers the

most pessimistic conditions for observable prediction. Non of these methods provide the re-

quired accuracy for NFP analysis. Furthermore, they are not applicable for all the NFPs, spe-

cially the ones with high input pattern dependence, e.g., power [Najm94]. Inaccuracy in observ-

able prediction may cause performance degradation and unpredicted failure during the lifetime

of the system.

Simulation-based approaches are often used to predict various NFPs, most common of

which are power consumption [Kang86, Yaco89, Huiz90] and temperature distribution on the

chip [Liao03, Szek97, Dige97]. The advantages of these approaches are mainly accuracy and

generality. They can be used to estimate a particular NFP of any circuit, regardless of technol-

ogy, design style, functionality, architecture, etc. However, complete and specific information

about the system structure and input signals is required. Therefore, it can not be applied at early

design phases. Moreover, operational parameters change not only during active simulation time,

when the core is busy processing transaction requests, but also when the core is autonomous,

or idle. During this time, the DUA may perform internal operations, but it does not receive any

incoming transaction. A transistor may age also when the system is in standby mode or the

leakage power may increase the chip temperature even when the system is not receiving any

particular workload. To preserve the accuracy, the DUA should be simulated not only during

the active mode, but also during the autonomous periods. Hence, an extensive system-wide

simulation at low level is required, which is computationally expensive, if feasible at all.

This chapter proposes a simulation-based methodology to facilitates observable acquisitions

early in the deign phase. The presented approach is based on multi-level simulation at trans-

action/gate level to deal with the intensive simulation of complex SoCs. It is able to estimate

different observables required by various NFP models with a single simulation run. The gate
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level simulation speed is accelerated using parallelism. Simulation during autonomous periods

is optimized by the proposed fast-forwarding method (cf. section 5.4.1.3). The method can also

be used to evaluate design alternatives regarding NFPs. To this end, high level system models

from design space exploration can be reused.

The next section gives an overview of the proposed approach while sections 5.3 and 5.4

discuss the details. Section 5.5 introduces window-based simulation for long-term NFP predic-

tions. This technique splits the simulation time into several timesteps, called windows, and ac-

quires the observables periodically at the end of each window. Therefore, the temporal changes

of observables during the simulation are captured. This feature is desirable for analytical NFP

prediction, as it will be discussed in chapter 6. Section 5.6 concludes this chapter with a short

summary.

5.2 NFP-Aware Simulation Overview

The NFP-aware simulation approach consists of two main parts, as shown in Fig. 5.1. The

system level workload generation comprises the complete system modeled at a high abstraction

level. The low level NFP-aware simulation contains two main components: An intermediate

DUA simulation with RTL model of the DUA and a low level DUA simulation with the gate

level description of the DUA. The simulation procedure simulates the gate level DUA with an

actual input patterns received from the system level workload generation (section 5.3).

The complete system simulation is performed at transaction level (cf. section 5.3) while the

DUA is also available at gate level. The NFP-aware simulation methodology simulates the gate

level DUA with the workload received from the transaction level model. Observable acquisition

is performed at gate level based on the gate model presented in section 5.4.2. During the low

level DUA simulation, the internal nodes of the gate level DUA are observed and changes in

observables are monitored. The output of the simulation is the predicted observables.

The simulation at gate level is performed in parallel using state prediction. This is enabled

by functional decoupling of gate level simulations by the intermediate level state prediction.

The intermediate level should preserve the correspondence of sequential elements between the
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FIGURE 5.1: Multi-level, parallel simulation approach

intermediate and low level models while providing an as fast as possible simulation (else, it

would be a bottleneck for the gate level simulation and compensates the speed up gained by

parallel gate level simulation). RTL fulfills the aforementioned requirements and is used as an

intermediate level. Section 5.4.1 describes the intermediate simulation process in detail.

In addition to state prediction, RTL DUA simulation predicts the length of the stimuli, i.e.,

the number of cycles required by the simulator to acknowledge the stimuli. This helps the simu-

lation control at gate level to efficiently schedule the received packets. Furthermore, optimizing

the simulation of autonomous cycles can significantly speed up the low level simulation as they

are a big fraction of the system lifetime. Therefore, autonomous simulation optimization is per-

formed at RTL: If RTL detects a phase of periodic operations, just one period is simulated at

gate level and the effect on observables is weighted by the number of skipped iterations.

During RTL simulation, low level simulation jobs start intermittently. Gate level simulations

begin with initial states provided by the RTL simulation and cover a limited simulation time

span, as in [Kim11]. Fig. 5.2 shows an example of parallel simulation using an intermediate

level state prediction. When a new stimuli from intermediate level is received, the initial state

in low level simulation is updated and scheduled in a simulation slot. The system state and
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input stimuli provided by the RTL simulation enables parallel NFP evaluations for consecutive

transactions.
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FIGURE 5.2: An example of multi-level parallel simulation

The rest of this chapter discusses different parts of the NFP-aware simulation approach in

detail.

5.3 System Level Workload Generation

High level system simulation is used to generate the actual workload for the DUA based on

the real application running on the system. To enable high-speed simulation, the temporal and

functional behavior of the system’s hardware and software modules are modeled at transaction

level.
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The communication-centric view of TLM provides an abstraction that is well-suited to NFP

evaluation. Furthermore, performance modeling in TLM tries to accurately capture the concur-

rency in a system [Koch09], which can easily be adapted to fit other NFPs as well. For accurate

NFP analysis, approximately-timed transaction level modeling is preferred as it provides a fine

grain estimation of the system timing [Ghen05].

During high level system simulation, the workload of the transaction level DUA is con-

tinuously monitored. Whenever the DUA receives a transaction request, the payload of the

transaction and its timestamp are captured as a high level DUA workload. The high level DUA

workload is sent to the low level NFP-aware simulation to trigger the low level simulation.

If the subject of the simulation is to study the effect of one or more NFPs on the complete

system—such as the effect of soft or intermittent errors in the DUA on the complete system,

the transaction model sends the workload to the low level NFP-aware simulation and waits for

the feedback. Just after receiving the response from the low level DUA, the system resumes the

simulation. If the simulation targets NFP prediction, such as performance degradation due to

aging effects, the system level simulation is carried out independent of the low level NFP-aware

simulation. Thereby, the simulation speed of the low level model would not block the high level

simulation procedure.

5.4 Low Level NFP-Aware Simulation

To start the parallel distributed event-driven simulation at gate level, the initial DUA state upon

receiving the transaction as well as the waveforms at primary inputs are required [Fuji90]. The

former is obtained by the intermediate level simulation while the latter is generated by the sys-

tem level workload generation. The low level NFP-aware simulation includes the intermediate

DUA simulation to predict hardware state and the gate level DUA simulation for observable

acquisition. The Hardware state at time t is defined as the content of hardware’s constituent

registers at this time.
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5.4.1 Intermediate DUA Simulation

The intermediate DUA simulation consists of three main parts:

• The pattern generation maps the high level workload to the low level stimuli.

• The simulation control provides the required control signals to the RTL simulation.

• The RTL simulation performs the RTL DUA simulation and collects the required data for

the low level simulation.

In the following, the intermediate DUA simulation components are explained in detail.

5.4.1.1 Pattern Generation

The pattern generation translates high level workloads to pin- and cycle-accurate input patterns.

Assuming the received workload as a two-tuple consisting in the transaction observed on the

communication interface of the high level DUA and the time t at which the transaction is issued,

i.e., the timestamp, the pattern generation performs the following conversion:

pg(t) : (Tt , t)→ (et , t)

where Tt is the issued transaction at time t and et is the generated event list for the intermedi-

ate/low level simulation. pg is the conversion function.

The pattern generation has an extensive knowledge of TLM packet structure. We take ad-

vantage of TLM 2.02 standard [Open08] and use TLM generic payload [Ayns08] as a standard

TLM transaction. A typical transaction in TLM 2.0 is usually expressed resorting to the follow-

ing parameters [Ayns08]:

2TLM-2.0 consists of a set of core interfaces, initiator and target sockets for sending and receiving transactions,
i.e., the generic payload instances. The TLM-2.0 core interfaces consist of the blocking and non-blocking transport
interfaces, the direct memory interface (DMI), and the debug transport interface. The TLM generic payload is the
standard packet format for TLM 2.0 which supports the abstract modeling of memory-mapped buses, together
with an extension mechanism to support the modeling of specific bus protocols whilst maximizing interoperabil-
ity [Ayns08].
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• m command: Denotes the type of the transaction. Three values are supported:

– TLM WRITE COMMAND

– TLM READ COMMAND

– TLM IGNORE COMMAND

• m address: Identifies the transaction’s base address (byte-addressing).

• m data: When m command = TLM WRITE COMMAND, it contains a pointer to the data

to be written in the target, also when m command = TLM READ COMMAND, it contains

a pointer where to copy the data read from the target.

• m length: Shows the total number of bytes of the transaction.

• m response status: This attribute indicates whether an error has occurred during the

transaction. The supported values are:

– TLM OK RESP

– TLM INCOMPLETE RESP

– TLM GENERIC ERROR RESP

– TLM ADDRESS ERROR RESP

– TLM COMMAND ERROR RESP

– TLM BURST ERROR RESP

– TLM BYTE ENABLE ERROR RESP

• m byte enable: It can be used to create burst transfers where the address increment be-

tween each beat is greater than the word length of each beat. It can also be used to place

words in selected byte lanes of a bus.

• m byte enable length: For a read or a write command, the byte enable length attribute

interprets the number of elements in the bytes enable array.

• m streaming width: This attribute is used in the streaming mode and specifies the width

of the streamed data.
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FIGURE 5.3: TLM to low (cycle-accurate) level signal mapping

At low level, the pattern generation classifies the signals to three main classes:

• control signals

• data signals

• address signals

TLM payload parameters are translated to the relevant low level signal classes, as shown in

Fig. 5.3. At this point, each field would be mapped to relevant bits at DUA primary inputs. The

low level input stimuli is generated automatically based on this mapping.

5.4.1.2 Simulation Control

The simulation control receives the low level stimuli from the pattern generation and initiates

RTL simulation with two types of jobs:
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• Autonomous cycles simulation (AC-SIM): The simulation control calculates the number

of autonomous cycles passed since the last transaction has finished processing. This num-

ber is sent to the RTL simulation within an AC-SIM request. Upon receiving the request,

the RTL simulation is run for the number of received cycles. The primary inputs are kept

constant.

• Input stimuli simulation (IS-SIM): After simulating the autonomous cycles, the simula-

tion control initiates the transaction simulation at the RTL by requesting the IS-SIM job.

An IS-SIM request includes the input stimuli generated by the pattern generation.

Another function of the simulation control is to deal with the window-based simulation

procedure, as will later be explained in section 5.5.

5.4.1.3 RTL Simulation

RTL Simulation includes the RTL DUA model and a loop monitoring module. As described

before, AC-SIM and IS-SIM requests are two types of jobs received from the simulation control.

If the requested job is AC-SIM, the RTL simulation initiates the loop monitoring module and

starts the simulation. The loop monitoring procedure observes the internal states during the

simulation, as will be described in detail in the following. If the requested job is IS-SIM, the

RTL DUA simulation captures the actual DUA state and simulates the transaction. After the

RTL simulation of the transaction is complete, the captured DUA state and the length of the

transaction are sent to the simulation control.

Accelerated Autonomous Simulation The sequential state of the DUA during autonomous

simulation is either stable or follows a loop pattern, as shown in Fig. 5.4. During AC-SIM jobs,

if a sequential loop is detected, the simulation is skipped (fast-forwarded). The RTL simulation

procedure with loop fast-forwarding is shown in Fig. 5.5. Upon reception of an input stimuli at

time t0, the simulation advances as follows:

Let tRT L be the actual simulation time of the RTL model, and let S be a sequence of states,

which is initialized with the current DUA state at tRT L. The DUA state is determined by the

content of all registers within the RTL DUA model.
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FIGURE 5.4: Autonomous sequential loop schema
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FIGURE 5.5: Simulation fast-forwarding procedure at RTL

The autonomous period of length t0− tRT L is simulated first, with DUA primary inputs kept

constant. In each simulation cycle, the current DUA state is checked against S. If a match is

found, an autonomous loop is detected. If there is no match, the current DUA state is appended

to S and the next autonomous cycle is simulated.

If an autonomous loop of length TL has been found, the simulation does not proceed cycle-

accurately. Instead, the simulation time is fast-forwarded up to time [tRT L + b(t0− tRT L)/TL)c ·

TL], effectively skipping the simulation of b(t0− tRT L)/TL)c identical autonomous loop itera-

tions.
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After the RTL simulation time has reached the current transaction time (t0 = tRT L), the input

stimuli is simulated. The RTL simulation is stopped as soon as the input stimuli is acknowl-

edged, and it remains on hold until the next request comes.

The proposed procedure requires that in each autonomous simulation cycle, the DUA state

is captured and compared to all the states that have previously been stored. The autonomous

loop detection is conducted in parallel to the RTL simulation.

Algorithm 5.4.1: LOOPDETECT(limit, initialState, totalCycles)

comment: detects the loop within the limit limit

l := 0
S := {}
state:= initialState
remainingCycles := totalCycles
while (remainingCycles≥ 0)

while (l ≤ limit)

simulate(state);
for each si ∈ S

do
if (state == si)

then{
isloop← true;
exit;

S := S∪ state
l ++;

remove the first element of S
remainingCycles−−;

Both the computational effort and the required storage space are confined by setting a limit

for the autonomous loop depth. Algorithm 5.4.1 describes how loop detection within a specified

limit is performed. The algorithm receives the limit, the initial state of the DUA and the total

number of autonomous cycles as input. At each cycle, the current state is compared with the

previous states to find a match. If no match is found, the current state is added to the end of the

state sequence. If the limit is reached and no loop is detected, the first state in the state sequence

is removed and the algorithm starts again until all the autonomous cycles are simulated or a loop

is detected. The variable RemainingCycles keeps track of the cycles to be simulated.
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As a loop is detected, the information corresponding the loop, i.e., the depth and the length

of the loop, are captured. This information is used for simulating the autonomous cycles at gate

level and performing loop fast-forwarding without the time demanding task of loop detection.

5.4.2 Low Level DUA Simulation

The low level DUA simulation is the final step to predict NFP observables. A simulation control

schedules the received jobs for parallel logic simulation. To perform the NFP-aware gate level

simulation, low level gates should be characterized with proper parameters to address the de-

sirable observables. The gate characterization is performed by defining a gate model for every

gate inside the low level NFP-aware simulator. Finally, the NFP monitoring observes all the

DUA nodes and tracks the changes in the observables during the simulation. In the following,

each component of the low level DUA simulation is discussed in detail.

5.4.2.1 Simulation Control

The low level simulation control receives the same two types of jobs from the intermediate DUA

simulation:

• Autonomous cycles simulation (AC-SIM): An AC-SIM request at this level includes

– the actual simulation time,

– the initial state,

– number of autonomous cycles,

– depth of the autonomous loop (if any),

– length of the autonomous loop (if any).

• Input stimuli simulation (IS-SIM): An IS-SIM request contains

– the actual simulation time (the arrival time of the transaction),

– the initial state,

– number of the cycles to be simulated.
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Based on the type of the received request, the low level simulation control issues the required

signals for parallel logic simulation and schedules the stimuli on the proper simulation slot. If

no free slot is found, the intermediate DUA simulation would be informed. At this point, the

RTL can start another server to simulate the remaining jobs.

5.4.2.2 Parallel Logic Simulation

Parallel logic simulation consists of several instances of the gate level DUA model. A gate

level DUA model is a post-synthesis gate level netlist, consisting of the primitive gates and

the registers. For the sake of brevity, we assume that the gate level model is cycle-accurate.

If models with post-synthesis timing annotation are available, the proposed approach can be

extended with accurate gate level timing simulation.

An instance of the gate level simulator is an n-slot pattern-parallel logic simulator [Kwon99]

which is extended for NFP-aware simulation. When a new transaction is received, one of the

free pattern-slots is initialized with the initial state obtained from the RTL model and the simu-

lation is run (Fig. 5.6).

RTL 

Simulation

Parallel

Gate-Level 

Simulations

W3Idle1 W1 Idle2 W2 Idle3 ... Wn

W3

Wn

...

W1

Idle1

Idle2

W2

Idle3

FIGURE 5.6: Parallel simulation procedure

If no pattern-slot is free, no more job requests would be accepted and the intermediate DUA

simulation would be informed to start a new gate level simulation server on the same or different

machine. This concept is shown in Fig. 5.7. This way, the performance of the parallel simulator

depends on the number of the available machines.
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FIGURE 5.7: Parallel simulation architecture

To improve simulation performance, only a subset of observables that are relevant for NFP

analysis is acquired during functional simulation. For some NFP models, it is possible to find

a set of representative observables or NFPs that can be used for NFP prediction: For instance,

to predict the delay degradation of the critical path due to NBTI and HCI aging, it may be

possible to evaluate the delay degradation of only a subset of representative gates selected with

the approach proposed in [Wang07c, Chen12].

5.4.2.3 NFP Monitoring

Relying on the NFP under analysis, observables are defined and modeled at different abstraction

levels. To maintain the consistency between gate level simulation and observables at various

levels, a gate model is proposed. The gate model uses the information about the internal gate

structure to model the observables within the gate. For instance, Fig. 5.8 shows an inverter

model and the relevant equations to estimate the NBTI stress factor. GAT E(T,ci) is the input

value of the transistor T at the ith cycle. SF(INV,0) is the initial state. SF(INV,ci) is the stress

factor for the gate INV at the ith cycle while SF(INV,(ci,c j]) is the stress factor for the gate

INV in the time interval (ci,c j].

The proposed gate model can include the definition of several observables at different levels.

For instance, the inverter gate model in Fig. 5.8 can also include the equations for switching

activity required for power estimation:
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FIGURE 5.8: An inverter model for NBTI analysis

SA(INV,0) = 0;

SA(INV,ci) = GAT E(Tp1,ci)⊕GAT E(Tp1,ci−1)

SA(INV,(c1,cn]) =
1
n

n

∑
i=1

SA(INV,ci)

(5.1)

The gate model provides flexibility in evaluations. With a proper gate model, several ob-

servables can be estimated with a single simulation run.

5.5 Window-Based Multi-Level Simulation Procedure

As discussed in chapter 2, several NFPs require long-term prediction for the complete system

lifetime. In this case, analytical NFP prediction is required. Analytical models include the

parameters which affect the NFP behavior during its lifetime, including operational parameters

and their dependence to the NFP under analysis. The operational parameters are dynamic,

therefore, evaluating them at the end of simulation causes inaccurate NFP prediction, as will be

discussed in chapter 6. Window-based simulation is the solution for efficient acquirement of

operational parameters for analytical NFP prediction.

In this approach, the simulation time is split into several time frames, called windows. NFP

observables are collected at the end of each window. The presented NFP evaluation approach,

as described in chapter 6, is based on periodic evaluation of NFP models with the acquired
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observables and can well be synchronized with the window-based simulation. In the following,

we show how the proposed multi-level NFP-aware simulation methodology can be used for the

window-based simulation.

The window-based simulation proceeds as follows: Anytime a transaction appears on the

bus interface of the TLM DUA, the system level workload generator sends it to the intermediate

DUA simulation to see if it fits in the current window. The simulation continues as usual if

the finishing time of the received transaction does not exceed the window size. Otherwise,

the transaction is split. Fig. 5.9 depicts an example of the window-based simulation where

horizontal dashed lines represent the window limit at different abstraction levels. As it can be

seen in the figure, Req4 at transaction level is split at RTL to fit W2.
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FIGURE 5.9: Window-based simulation example

Fig. 5.10 shows the window-based simulation procedure at RTL. As soon as a new trans-

action is received at time ti, the simulation control calculates the number of autonomous cycles

passed from the time the previous transaction is completed (ti−1 + LT (i−1) where LT (i−1) is the

length of the previous transaction). The lighter box in the figure refers to this part. The simu-

lation control checks if the number of autonomous cycles to be simulated exceeds the current
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window. W denotes the window size. W ′ is the number of cycles which are already simulated

within the window. If the number of autonomous cycles fits in the current window, an AC-SIM

job is initiated and sent to the RTL simulation and the variables are updated. Otherwise, the

autonomous cycles are split. This procedure is repeated until all the autonomous cycles are sim-

ulated. At this point, the transaction is simulated (the darker box in Fig. 5.10). The transaction

length (the number of cycles required to acknowledge the transaction) is not known in advance.

Therefore, if the transaction exceeds the window at the middle of the simulation, it would be

split. The simulation continues until the transaction is acknowledged.

Transction at ti
Cycles := ti – ti-1 + LT(i-1)

Is cycles + W’ > W?

W’+ cycles < W?

Send data to gate level 

DUA

No

No

Simulate W-W’ cycles;

cycles := cycles - W + W’;

W’ := 0;

Send data to gate level 

DUA

W’+= cycles;

No

Simulate 1 cycle

Cycles ++

Simulate cycles

W’ = (W’ + cycles) mod W;

Cycles = 0;

Ack?

Yes

Yes

Yes

Send data to gate level 

DUA

Done!

FIGURE 5.10: Simulation control at RTL

At the low level DUA simulation, the low level simulation control keeps track of the simu-

lated cycles. If the window limit is reached, the intermediate DUA simulation is signaled and

the low level DUA refuses to accept more jobs. As soon as the window is fully covered with the

gate level simulations and cumulative observables are available for the full window, the observ-

ables acquired from all the simulation jobs are accumulated. At this point, the NFP monitoring

module collects the observables for each gate. Just after that, the low level simulation control

resumes the simulation.
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The size of the window is determined according to accuracy requirements. The non-linear

behavior of observables creates a compromise between the size of the window and accuracy of

the NFP evaluation. NFP models are partially linearized respecting the observables collected

during an evaluation window. The models are fed with accumulated observables up to the end

of the current window.

5.6 Summary

This chapter discussed the multi-level NFP-aware simulation methodology to predict NFP ob-

servables during lifetime of a system. Observable acquisition is performed at discrete time

intervals, called windows. At the end of each window, the acquired observables are sent to the

evaluation model and the simulation would reset. To increase the simulation performance, an

optimization technique is introduced to fast-forward the simulation in presence of the simula-

tion loops. Beside the proposed technique, the performance and speed can be further improved

with parallel simulations at gate level. Parallel simulation requires the state of the system upon

receiving any transaction. To fulfill this requirement, an intermediate, i.e., RTL, simulation is

used to predict the state of the system as it receives the transaction. The stimuli is sent along

with the state of the system to the gate level model to perform parallel NFP-aware simulation.





Chapter 6

Piecewise NFP Evaluation

6.1 Introduction

With the increasing importance of NFPs, it is necessary to consider them in the design process

as early as possible [Vieh09]. The earlier the NFPs are analyzed and their effects on system be-

havior are studied, the more efficient the design process continues and many redesign efforts are

avoided. The obstacle here is that non-functional properties are frequently multi-dimensional,

still only partially understood in many domains. NFP prediction demands a comprehensive

study of the property under analysis in several domains. This study results in a model which

includes the behavior of the NFP and the parameters which affect it in those domains.

An accurate NFP modeling requires the current state of the system, all the dependencies

and technological and environmental conditions to be included in the model. NFP changes are

dynamic and must be considered not once, but continuously during the system operation. The

models must be evaluated progressively throughout the system lifetime to achieve high accuracy.

The highest accuracy is obtained by cycle-accurate evaluation. However, model inefficiencies

may prohibit the accurate or continuous NFP evaluations [Sidd11], e.g., several models do not

allow partial evaluation at desired time points.

To overcome model’s shortcomings, several works in literature aim at improving NFP mod-

els by including more details. This work, instead, proposes a method to evaluate the available

models in a more efficient and accurate way.

81
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The majority of NFPs result from relatively slow, long-term physical processes. For ex-

ample, measurable delay degradation due to aging effects can be observed after hours, days,

or months of transistor operation. The changes in chip temperature are not instantaneous, but

can be observed after several hundreds of micro or milliseconds upon a change in power con-

sumption or cooling conditions. This implies that a cycle-accurate NFP evaluation is not only

computationally expensive, but also unnecessary for many applications.

The piecewise evaluation methodology presented in this chapter splits the operation time of

the system into equal timesteps, called windows. The accuracy of NFP evaluation depends on

the window size. The NFP models are evaluated once per window, considering average system

conditions within that window. This stays in contrast to traditional approaches, which evaluate

NFPs based on average system conditions [Lore09, Wang10, Wang07c]. An evaluation window

may span from several hundreds to several hundred thousands clock cycles, depending on the

NFP model response and the required evaluation accuracy. Larger evaluation windows may

result in reduced accuracy, but higher evaluation speed. The window size may be subject to

dynamic runtime adaptation to adjust the accuracy.

This chapter focuses on evaluating NFP models. Section 6.2 proposes a general formal

modeling approach for non-functional properties. The piecewise evaluation technique proposed

in section 6.3 partially linearizes NFP models to overcome the model’s inefficiency, considering

the effect of runtime variations on the NFPs under analysis. Section 6.4 discusses the sources

of error and solutions to optimize the window size for a given NFP model. Finally, section 6.5

gives a summary of the method and possible improvements.

6.2 Modeling Non-Functional Properties

Several parameters affect the behavior of an NFP. Chapter 3 discussed models for architectural

vulnerability and performance degradation due to different aging mechanisms. The presented

models show the variety of parameters which should be included in an NFP model. For accurate

NFP modeling, the sources and characteristics of these parameters should be well known and

studied. This section provides a general, formal notation for NFP models. The general model

facilitates NFP evaluation as comes in the following sections.
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Let y be a dynamic, quantifiable NFP under analysis. The general function for evaluating

y(t), y ∈ R at time t is expressed as

y(t) = f (λ1,λ2, . . . ,λp,

α1(.),α2(.), . . . ,αq(.),

γ1(.),γ2(.), . . . ,γr(.), t)

f ,αi,γi : R→ R, p,q,r ∈ N, λi ∈ R

(6.1)

where t ∈ R+ is the time. λi’s (1 ≤ i ≤ p, i ∈ N) are set of process parameters. Process

parameters include all the process-dependent constants defined by the technology. Transistor’s

gate length (l), supply voltage (Vdd), oxide thickness (Tox), clock frequency (T ), etc. are all

examples of λ . λ ’s can be obtained after the design is mapped to a particular technology. For

simplicity, they are noted as Λ from now on in this text.

αi’s (1 ≤ i ≤ q, i ∈ N), called observables in this text, are workload dependent parameters

and depend on the functional properties of the design, as described in chapter 5.

γi’s (1 ≤ i ≤ r, i ∈ N) are set of NFPs posed by the operating environment and follow the

general form of NFP models as described in equation 6.1. γi’s can also include the y’s previous

state.

An accurate NFP evaluation requires all these parameters to be considered in the model. To

efficiently evaluate NFP models during the system lifetime, we cluster the models into three

classes of recursive, differential, and memoryless forms. In the following, these three classes

are discussed in detail.

6.2.1 Differential NFP Models

Several NFPs are modeled by ordinary or partial differential equations. An NFP model in the

form of first order ordinary differential equation is usually expressed as
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dy
dt

= f (t) f : R→ R (6.2)

where t is the time and is involved as an independent variable as in most dynamic NFPs.

A partial differential equation may appear in different orders and dimensions. A second

order partial differential equation in two dimensions has the general form of [Anti02]

a
∂ 2 f
∂x2 +b

∂ 2 f
∂x∂y

+ c
∂ 2 f
∂y2 = 0

where a, b and c are constants.

6.2.1.1 Example: Interconnect Thermal Modeling

Heat is generated in the substrate as well as the interconnections. The major source of heat gen-

eration is the power dissipation of devices that are embedded in the substrate. Power dissipation

increases by Joule heating (or self-heating) caused by the flow of current in the interconnect net-

work. Although interconnect Joule heating constitutes only a small fraction of the total power

dissipation in the chip, the temperature rise in the interconnections can be significant. This is

due to the fact that interconnects are located away from the silicon substrate and the heat sink

by several layers of insulating materials which have lower thermal conductivities than that of

silicon.

The one-dimensional heat diffusion equation in metal interconnection under the steady state

can be written as [Pedr06]

∂ 2Tmetal(x)
∂x2 =

1
km

((
kins

tmtins
− ρiβ I2

rms
w2t2

m
)Tmetal(x)−

kins

tmtins
Tchip(x)−

ρiI2
rms

w2t2
m

) (6.3)

This differential equation is the basis of the interconnect temperature calculations.
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6.2.2 Recursive NFP Models

A recurrence (difference) relation is an equation that recursively defines a sequence. Once

one or more initial terms are given, each further term of the sequence is defined as a function

of the preceding terms. Recurrence equations are frequently used to refer to any recurrence

relation. They usually appear in dynamic systems and involve an integer function f (n) in a

form like [Chen03]:

f (n)− f (n−1) = g(n)

where g(n) is some integer function. The above equation is the discrete analog of the first order

ordinary differential equation:

f ′(x) = g(x)

A recursive NFP model is an NFP model in the form of a recurrence equation. It relies on

the NFP’s previous state and have the following form:

y(t0) = g(t0, .)

y(tn) = f (Λ,α
(tn)
1 (.), . . . ,α(tn)

q (.),

γ
(tn)
1 (.),γ(tn)

1 (.), . . . ,γ(tn)
r−1(.),y

(tn−1), tn)

f ,α(tk)
i ,γ

(tk)
i : R→ R, q,r ∈ N

(6.4)

where t0 is the initial time. y is the NFP under analysis. y(t0) is the initial condition for the NFP,

i.e., the NFP value at time t0. α
(tn)
i ’s are observables at time tn, i.e., the nth timestep. The NFP

value at time tn is calculated from its previous value evaluated at time tn−1 and average system

conditions in the time interval (tn−1, tn]. Here, tn−1 corresponds simply to the time interval in

which we wish to do the evaluation.
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6.2.2.1 Example: Dynamic Energy

Dynamic energy for a transistor corresponds to the power dissipated by the transistor during

the time interval [t1, t2]. This power is spent in charging the capacitances associated with the

transistors and wires.

Dynamic energy is a function of time (t), supply voltage (VDD), operating frequency ( f ),

load capacitance of the node (Cload), and the switching activity (β ). It is computed as [West85]

Edyn(∆tn) = V 2
DD · f ·Cload ·β (∆tn) ·∆tn (6.5)

where, in general, ∆tk = tk−tk−1. Using equation 6.5, the total energy at time tn can be expressed

as

Edyn(tn) = Edyn(tn−1)+V 2
DD · f ·Cload ·β (∆tn) ·∆tn (6.6)

where tn−1 is the energy at the previous time point and β (∆tn) is the switching activity of the

transistor in the time interval [tn−1, tn].

Here, we have neglected the short-circuit component of the dynamic energy, which is due

to the current that flows from the power supply to the ground when the devices are switching

and both the pull-up and the pull-down network of the gate are conducting. This component of

energy is generally small and can be safely neglected. However, it is important to note that if a

design is not sufficiently optimized and has large transition times, then the short-circuit power

dissipation and hence the energy can form a significant fraction of the total energy [Sriv05].

6.2.3 Memoryless NFP Models

Memoryless NFP models describe a single interval of NFP evaluation ([0, t]). The formula is

evaluated with the average system conditions at the end of system operation, i.e., in the time

interval [0, t].



6. Piecewise NFP Evaluation 87

Memoryless NFP models cannot capture the changes in system’s conditions, therefore, they

may not provide enough accuracy for NFP prediction. The proposed piecewise evaluation

method is used to express these models recursively to facilitate their accurate evaluation during

the system lifetime.

6.2.3.1 Example: Delay Degradation Due to NBTI

The delay degradation of a PMOS transistor due to the NBTI effect (cf. section 3.3.1) in the

time interval (0, t] can be approximated with the following equation [Noda10]:

∆d(t,α) = Aα
ntnd0 (6.7)

where α is the probability that VGS =−VDD (stress factor), d0 is the initial transistor delay, and

A and n are the technology parameters.

6.2.3.2 Example: Failure Rate Modeling

The failure rate determination for a collection of ULSI (Ultra Large Scale Integrated) chips is

of primary reliability importance. The failure rate λ is usually given by [Doer07]

λ (t) =
f (t)

1−F(t)
(6.8)

where f (t) is the failure probability density function. F(t) is the cumulative failure probability.

FIT (Failure In Time) is the accepted unit for failure rate. One FIT specifies one failure in a

billion hours.

6.3 Piecewise Evaluation of General NFP Models

The main idea behind the piecewise evaluation approach is to evaluate NFP models periodically

and at the end of each evaluation window. To reach this goal, the NFP model should allow
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continuous evaluation at different time steps. Piecewise evaluation provides a method to change

an NFP model to its equivalent recursive form. At the end of each window ti, the equivalent NFP

model is fed with proper parameters calculated for that window, namely the average observables

and interdependent NFPs in the time interval (ti−W, ti], where W is the length of the window.

The accuracy of the evaluated NFP corresponds to the accuracy of the model, the accuracy of

the provided parameters, and the frequency of evaluation, i.e., the size of the evaluation window.

The accuracy of predictions is adapted by adjusting the window size.

In the following, we describe the piecewise evaluation method for typical types of NFP

models.

6.3.1 Recursive NFP Models

Recursive NFP models are most suitable for piecewise evaluation, as they predict the NFP based

on its previous value. To evaluate a recursive model in a piecewise manner, the simulation time

is split into windows of size W . The NFP value at time ti is calculated from its previous value

evaluated at time ti−W and the average system observables in the time interval (ti−W, ti]. ti is

equal to t0 + kW where k is a constant. The recursive NFP can be rewritten as

y(t0) = g(t0, .)

y(tn) = f (Λ,α
(tn)
1 (.), . . . ,α(tn)

q (.),

γ
(tn)
1 (.),γ(tn)

2 (.), . . . ,γ(tn)
r−1(.),y

(tn−W ), tn)

f ,αi,γi : R→ R, q,r ∈ N

(6.9)

Fig. 6.1 shows how a recursive NFP model is evaluated using the piecewise evaluation

method. At the end of each window at time tn, the models for the NFP under analysis (y) as well

as interdependent NFPs (γ1, . . . ,γr−1) are fed with proper process parameters and observables

evaluated for the current window. The NFP model is also fed with its previous value at time

tn−W , where W is the size of the window.
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tn

α1[tn-W,tn], 

α2[tn-W,tn],

...,

αq[tn-W,tn]

Λ

γr(tn-W)

γr(tn)
γ1

γr-1γ3

γ2 γr

FIGURE 6.1: Piecewise evaluation of recursive NFP models

6.3.2 Differential NFP Models

NFP models in the form of differential equations are evaluated using partial linearization. Sev-

eral linearization methods can be found in literature (e.g., [Anti02, Poly03]) among which the

so-called numerical integration methods are the most straightforward numerical solutions. In

these methods, the spacing h j at different steps is assumed to be constant and hence t j = t0 + jh.

Further, the computed value of the solutions at the new point depends only on a fixed number

of the previous values. This implies that the piecewise evaluation technique can well be used to

evaluate NFP models using numerical integration methods.

As an example, we discuss a simple numerical integration method, called Explicit Euler

method [Anti02], for piecewise evaluation of ordinary differential equations. Explicit methods

essentially extrapolate the value of the solution at the next point using previous points. There are

more elaborate methods which may provide higher accuracy at the cost of increased evaluation

time, namely Heun and Runge-Kutta methods. More information about numerical integration

methods can be found in [Anti02].

Problems arising in ordinary differential equations can be usually reduced to a system of

first-order differential equations [Anti02]. For example, a differential equation of order m

dmy
dtm = f (t,y,

dy
dt

, . . . ,
dm−1y
dtm−1 )) (6.10)
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can be reduced to a system of m first-order equations by defining new variables y1 = y, and

y j+1 = d jy
dt j for j = 1, . . . ,m−1, to get

dy j

dt
= y j+1,( j = 1,2, . . . ,m−1),

dym

dt
= f (t,y1,y2, . . . ,ym).

(6.11)

Accordingly, we only consider solutions of a system of the latter form:

dy j

dt
= f j(t,y1,y2, . . . ,yn), ( j = 1,2, . . . ,n)

To estimate a first order differential equation, we should first specify the initial values:

gi(y1(t0),y2(t0), . . . ,yn(t0)) = 0 ( j = 1,2, . . . ,n)

where t0 is the starting point in which the initial values are defined. Explicit Euler method

transforms the ordinary differential equation to a recurrence equation. In this method, the NFP

model is discretized as follows:

y(t0) = g(t0, .)

y′ = f (y, t)

y(tn) = y(tn−W ) +W f (y(tn−W ), t)

(6.12)

where W is the window size. Fig. 6.2 shows an example of linearization using Euler method.

Since the explicit Euler method approximates a continuous function at discrete points, it

is bound to have some truncation error. If the value of the NFP function at the end of the

previous window is known, then the truncation error is simply the error in integration over
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FIGURE 6.2: Linearization example using Euler method

the last step (the local truncation error1) and it can be easily estimated. Using Tailor series

expansion [Abra64], the local truncation error is expected to be in the form 1
2W 2y”(ξ ) [Anti02].

6.3.2.1 Example

For the sake of simplicity, we apply the Euler method for piecewise evaluation of a sample

model. Assume the first order problem

 dx
dt =−2 tx+3 y2

dy j
dt =−3 x2 (1− y)

represent the NFP y with the initial value of (−1,2) at t0 = 0. The value of y at the end of each

window with the size of W is calculated as

ti = ti−1 +W

xi = xi−1 +W x′(ti−1) = W (−2 ti−1xi +3 y2
i−1)

yi = yi−1 +W y′(ti−1) = W (−3 x2
i−1 (1− yi−1))

1Local truncation error is defined as the error introduced in the ith step, assuming that the previous values of
yi−k are exact.
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6.3.3 Memoryless NFP Models

A memoryless NFP model evaluates the NFP under analysis with the average system conditions

in a single time interval, i.e., [0, t]. As the evaluation is performed once at the end of the

system lifetime, iterative capturing of the system conditions during this time is prohibited. To

overcome this challenge, the static NFP model is transformed to a piecewise form as follows:

To evaluate the NFP y at the end of each window of size W , first the initial values at the time t0

are specified. Afterward, at the end of each window, the equivalent time, t ′, is found such that

for the observables and the interrelated NFPs at time t0 +Wk, the NFP value is the same as for

the previous window, t0 +W (k−1),k ∈ N+:

y(t0) = g(t0, .)

y(tn) = f (Λ,α
(tn)
1 (.),α(tn)

2 (.), . . . ,α(tn)
q (.),

γ
(tn)
1 (.),γ(tn)

2 (.), . . . ,γ(tn)
r (.), t ′+W )

f ,αi,γi : R→ R, q,r ∈ N

(6.13)

where t ′ satisfies

y(tn−W ) = f (Λ,α
(tn)
1 (.),α(tn)

2 (.), . . . ,α(tn)
q (.),

γ
(tn)
1 (.),γ(tn)

2 (.), . . . ,γ(tn)
r (.), t ′)

f ,αi,γi : R→ R, q,r ∈ N

(6.14)

y(tn−W ) is the NFP value calculated in the previous evaluation window. Solving equation

6.14 for t ′ and substituting it in equation 6.13 evaluates the NFP under analysis at time tn.

Fig. 6.3 shows an example of the piecewise evaluation for an arbitrary memoryless model.

For the sake of simplicity, we assume that y is affected only by the time-dependent parameter,

α . At the time t0, y(t0) is initiated with 0. At the time t1, α = k2 and the memoryless model is

evaluated with the actual α . At the time t2, α changes to k1. As the model is memoryless, we
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can not simply evaluate it with the new α . Therefore, the time t ′1 is found, such that y = y(t1) and

α = k1. The value for y(t2) is obtained by evaluating the model at the time t ′1 +W with α = k1.

t0 t1 t2 t3 t

y

t’1 t’1+W

y
(t1)

Exact

Pieceweise

α=k1

α=k2

α=k1α=k2

y
(t2)

FIGURE 6.3: An example for piecewise evaluation of a memoryless NFP model

6.3.3.1 Example: NBTI Aging

As shown in section 6.2.3, the delay degradation of a PMOS transistor due to the NBTI effect

is described by the memoryless equation [Noda10]:

∆d(t,α) = Aα
ntnd0 (6.15)

where α is the low-level observable, d0 is the initial delay, and A and n are technology parame-

ters.

The equation is evaluated piecewise at the time ti as follows:

∆d(ti,αi) = ∆d(t ′i−1 +W,αi) (6.16)

where αi is the stress factor in [0, ti] and t ′i−1 satisfies:
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∆d(t ′i−1,αi) = ∆d(ti−W,αi−1)

where ∆d(ti−W,αi−1) is the delay degradation calculated in the previous evaluation window.

According to equation 6.15, t ′i−1 is calculated as

A ·αn
i · (t ′i)n ·T0 = ∆d(ti−W,αi−1)

Thus:

t ′i−1 = n

√
∆d(ti−W,αi−1)

A ·T0
· 1

αi
(6.17)

From equation 6.16, we obtain the recursive function for delay degradation at time ti:

∆d(ti,αi) = A ·αn
i ·T0 · ( n

√
∆d(ti−W )

A ·T0
· 1

αi
+W )n (6.18)

6.4 Optimal Window Size

The piecewise NFP evaluation methodology predicts the NFP at the end of each window based

on the value of the previous window. There are two sources of truncation error using this ap-

proach. Assuming that y(ti+1) stands for the value of NFP y at (i + 1)th window. First, there is

some truncation error introduced in the (i + 1)th window (the local truncation error). Second,

the computed value of y(ti) itself can not be exact, thus introduces an additional error while com-

puting y(ti+1). In most cases, it is comparatively easy to estimate this local truncation error. The

second error source is essentially the propagation of the local truncation error. This contribution

is rather difficult to estimate [Anti02].
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Truncation error depends on the size of the window. Most methods don’t yield a meaningful

solution for extremely large windows (depending on the NFP). However, small windows de-

mand intensive calculations. Knowing the tolerated error for the calculations, the window size

should be chosen in a way not to exceed the error bound.

The general error ε for one window with the size W can be calculated as

ε =
W

∑
i=1

f (Λ,α
(i)
1 (.), . . . ,α(i)

q (.),γ(i)
1 (.), . . . ,γ(i)

r (.), i)−

f (Λ,
∑

W
i=1 α

(i)
1 (.)

W
, . . . ,

∑
W
i=1 α

(i)
q (.)

W
,
∑

W
i=1 γ

(i)
1 (.)

W
, . . . ,

∑
W
i=1 γ

(i)
r (.)

W
,W )

f ,αi,γi : R→ R, q,r ∈ N

(6.19)

As the error function highly depends on the model, there is no known, general way to calcu-

late the error of an arbitrary NFP model. However, some methods from numerical analysis can

be reused to find the optimal window size which produces a tolerated error. As an example, we

discuss how to obtain an optimal window size in the explicit Euler method described in section

6.3.2. Other techniques can be found in [Atki08].

Using the explicit Euler method, we know that the error function is in the form of

1
2

h2y”(ξ )+O(h3)

However, the value of y”(ξ ), even approximately, is not known to us. To obtain the correct

window size, we consider that one step of Euler method with the window size of h consists of

doing two steps of Euler of size h
2 . Using the window size of h, we calculate the NFP function

at point tn +h [Atki08]:

A1 = y(n) +h f (tn,yn)

So, A1 can be written as
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A1 = φ(tn +h)+
1
2

h2 f ”(ξ )+O(h3)

where φ(tn +h) is the exact value of NFP function at tn +h. Instead, evaluating the NFP function

with the window size of h
2 at the points tn + h

2 and tn +h, we have

A2 = y(n) +
h
2

f (tn,y(n))+
h
2

f (tn +
h
2
,y(n) +

h
2

f (tn,y(n)))

The first step took us from y(n) to y(mid) = y(n) + h
2 f (tn,y(n)) and the second step took us

from y(mid) to y(mid) + h
2 f (tn + h

2 ,y(mid)). The local truncation error introduced in the first and

second half window is 1
2(h

2)2y”(ξ )+O(h3) where O(h3) is different for each half. All together,

we can say that

A2 = φ(tn +h)+
1
2

h2y”(ξ )+O(h3)

The difference is

A2−A1 =
1
2

h2 f ”(ξ )+O(h3)

The error 1
2h2 f ”(ξ ) can be estimated using A2−A1 + O(h3). In other words, the current

error rate is about

r =
|A2−A1|

h
≈ 1

2
h f ”(ξ )

per unit increase of t. If r > ε , we reject A2 and repeat the current step with a new trial window

size h′ chosen so that 1
2 | f ”(ξ )|h′ ≈ r

hh′ < ε .
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6.5 Summary

This chapter presented the piecewise evaluation method for long-term NFP analysis. The tech-

nique overcomes the NFP model inefficiencies by finding the equivalent iterative form of a

given NFP model. NFP models are classified to recursive, differential, and memoryless forms.

The method evaluates the piecewise equivalent of the given NFP model periodically by dividing

the system lifetime to windows and performing the evaluation at the end of each window. The

accuracy of evaluations is adjusted by choosing the correct size for the window.
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Chapter 7

Architectural Vulnerability Analysis

7.1 Introduction

Radiation-induced soft errors have emerged as a key challenge in computer system design. The

variability and defect mechanisms in nano-scale CMOS are complex [Roy06] and require the

soft error effects on the circuit to be considered also during the functional operation [Bork05].

Only a subset of the errors observed at logic level leads to failures at system level [Leve04],

but those that do must be accurately analyzed. The analysis of these interactions at early design

stages gives an important feedback for reliable [Leve03, Jhum05] and secure systems [Roth04].

The impact of faults also depends on application scenarios [Watt04, Cano06]. Each scenario

occupies and utilizes the hardware components differently. A complete SoC simulation models

the effect of errors on a system considering the application. However, it is usually not feasible

to run the gate level simulation of a complex design either for its size or model availability. In-

stead, the multi-level simulation techniques are used. These techniques use models at different

abstraction levels: Models with high accuracy for the fault injection and highly abstract models

for the evaluation of the consequences [Leve04]. Only errors observable at component bound-

aries are propagated at the high abstraction level without loss of accuracy. This allows to retain

the advantages of structural modeling at much higher simulation speed.

101
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This chapter uses the proposed NFP-aware simulation approach to efficiently implement

concurrent multi-level fault simulation across gate and transaction level in an integrated simu-

lation environment. The work is based on a structural fault model with an efficient concurrent

fault simulator at gate level. The fault effects observable at gate level boundaries are propa-

gated concurrently at transaction level, allowing a realistic fault evaluation at this level. The

employed rollback mechanism is simple to use with the existing models and the transaction

level simulators.

The following section presents the terminology used for multi-level vulnerability analysis.

Section 7.3 presents the proposed methodology and the integration of the gate level sequen-

tial fault simulator within the TLMs. Section 7.4 explains the fault lifting approach from the

gate to transaction level. Section 7.5 describes the low level DUA simulation in detail. Section

7.6 discusses the concurrent transaction level fault propagation approach and its implementa-

tion. Finally, section 7.8 presents the experimental results for the case studies and discusses the

consequences of the system level reliability evaluation with the presented method.

7.2 Terminology

A fault is an abstraction of one or more physical defects affecting a circuit. A fault model is

the formal abstraction of a class of defects. Fault models are essential to the tractability and

automation of design for testability and design for reliability. An error is the consequence of a

fault that has manifested in the circuit state captured in the memory elements. A failure is the

inability of the system to accomplish its target mission when subject to a fault.

Fault simulation of a gate level model determines which faults cause errors at the outputs

of that model. Fault lifting is the mapping of gate level errors due to the structural faults

to a transaction level fault model. A mutation is an instrumentation for fault injection that

becomes part of a (high level) model and modifies its behavior according to a fault model

[Belt09]. Mutation-based testing is a common approach in the functional verification of high

level hardware-software systems. In the approach presented here, the mutation is chosen to map

well to structural faults and not to design bugs. The instrumentation is a part of the gate level

simulation control (cf. section 7.5.2).
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7.3 Multi-Level Vulnerability Analysis Overview

Fig. 7.1 presents an overview of the proposed multi-level vulnerability analysis approach. The

system is simulated at transaction level. The workload on the input bus of the DUA is sent

to the low level DUA simulation. As discussed in chapter 5, the pattern generation fills the

abstraction gap between gate and transaction level by translating the transactions into the pin-

and cycle-accurate protocol of the gate level component. It is also extended to lift faults from

gate to transaction level, which will be explained in the next section.

Pattern Generation (PG)

High-Level System 

Simulation

transaction

TLM 

DUA

Gate-Level 

DUA Model

Concurrent Fault Simulation

Gate-Level 

DUA Model
Gate-Level 

DUA Model
Gate-Level 

DUA Model
Gate-Level 

DUA 
...

Low-Level DUA Simulation

Simulation Control (SC)

FIGURE 7.1: Overview of the multi-level vulnerability analysis approach

As we target soft errors, a concurrent fault simulation is used instead of the original parallel

logic simulation with state prediction. The generated gate level input stimuli is sent to the

simulation control to be injected to the gate level DUA model. The simulation results of the

input stimuli are sent to the pattern generation to create the high level transaction and send it to

the high level system simulation to proceed.

Fig. 7.2 depicts the principle of the proposed approach. The system and the target appli-

cation are modeled at transaction level. For the hardware blocks and cores to be investigated,

the gate level fault simulator instances are created using gate level models. The system is sim-

ulated at transaction level until a transaction with the component subject to fault simulation is

requested. Upon the request, the fault simulation proceeds at gate level. If a fault causes an
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observable error, this error is lifted and the functional error propagation is performed at the

transaction level. The result of the error propagation is then evaluated at high level and it is

determined whether the fault eventually results in a system failure. For fault classification, the

model from chapter 3.2 is used.
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FIGURE 7.2: The fault simulation sequence

7.4 Fault Lifting to TLM

For the fault simulation with high accuracy, the mapping, binding and timing of the TLM must

be taken into account. Mapping is the process of selecting an actual implementation for the

functional system model. It determines what the hardware components require to implement the

system’s functionality. Binding involves scheduling the steps required to provide the system’s

functionality and assigning them to the hardware components selected during mapping. Since

TLMs are often used for design exploration, it is obvious that in early design steps, not all the

system components may be mapped. However, error masking often exists, even in the function

provided by the system itself or in the application running on the system. This inherent masking

of operations in a data-flow graph is called transparency [Hill04]. The method presented here

takes full advantage of the transparency in the behavior.



7. Architectural Vulnerability Analysis 105

In the multi-level approach, only the component subject to fault injection is required to have

a gate level model. Hence, only a partial mapping of the entire system is required and binding

may be limited to the components subject to fault injection. As a result, the approach can

be used early to evaluate mapping and binding decisions and explore design alternatives with

respect to reliability.

The timing accuracy of the transaction level models can range across several orders of mag-

nitude and the designer has a great freedom in modeling the timing aspects. On the other hand,

the RT and gate level models are usually at least cycle-accurate. Obviously, there may be struc-

tural faults that can impact the temporal behavior of a sequential component and for example

lead to longer completion times of certain operations. System failures due to such faults may

be masked in a loosely timed TLM. In order to increase the accuracy for this type of failures,

adaptive timing accuracy [Rade08] is used in the direct surrounding of the component subject

to fault injection.

The presented vulnerability analysis approach uses the TLM fault model [Belt09] to lift the

gate level errors to the TLM. Instead of random mutations, it accurately reflects the effects of

transient faults on transactions issued to and from the component subject to fault injection. The

following mutations are used:

• corruption of a parameter such as address, payload, transaction state or delay;

• transactions falsely issued by the fault-simulated component.

For this purpose, there must be a correspondence between the errors at the gate level and a

mutation at the behavioral model. A structural fault within a gate level module can be observable

at the module’s outputs. These errors can be classified into errors affecting the data, address or

control outputs of the gate level module. As discussed before (cf. Fig. 5.3), an error at the gate

level can correspondingly affect one of the parameters at TLM level. For example, using TLM

2.0, an error in the “read request” signal of the memory at gate level can result in the corruption

of the TLM READ COMMAND attribute of a transaction being issued. On the other hand, a

fault in the datapath that results in an erroneous data output may affect the m data parameter of

the TLM payload.
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In order to deal with the faults that affect the time behavior (e.g., the transaction delay), the

TLM model must be timing aware. Differences in transaction duration caused by faults can

impact the system performance or cause timeouts to be triggered. For blocking TLM calls with

b transport, the delay is passed along with the transaction. Errors on the control lines that affect

the delay are translated to the TLM delay parameter. Timeouts are reported to the originator

through the TLM INCOMPLETE RESPONSE. For non-blocking calls with nb transport, the

actual simulator time is advanced before the response is communicated.

7.5 Low Level DUA Simulation

This section describes the individual components of the low level DUA simulation in detail.

7.5.1 Pattern Generation

Pattern generation is responsible for protocol translation between transaction and gate level. An

accurate protocol translation from the transaction to the pin- and cycle-accurate protocol of the

gate level model is achieved by decomposing each transaction. The complex values are mapped

to the binary values, and additional control signals are provided at gate level which are not

explicitly represented at transaction level (e.g., the reset or write-enable signals) as explained in

section 5.4.1.1.

The pin- and cycle-accurate values are processed by synchronous fault simulation of the

gate level model, where in each simulation cycle, a new data vector is passed to the simulator.

The simulation results for each cycle is evaluated. If the error is observable at the gate level

model boundary, it is propagated at transaction level as detailed in section 7.6.

7.5.2 Simulation Control

Simulation control is responsible for fault lifting. Faults can lead to transaction properties that

are not part of the fault-free specification of the communication protocol. For example, faults
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can cause transaction types such as burst transfers that are not part of the fault-free commu-

nication. Hence, the simulation control must model more communication aspects for the fault

simulation case than for the fault-free case.

The unknown values cannot easily be represented in a regular TLM. Therefore, the simula-

tion control replaces them by random values or by values for the worst or best case. It depends

on whether a pessimistic or optimistic bound of system reliability is to be evaluated. The exact

strategy depends on the function of the given component. Beside detected and undetected, low

level simulators introduce a third fault class called possibly detected. A similar probabilistic

consideration of the unknowns must be done by the simulation control. In case of the worst

case analysis, if unknown values appear at the gate level boundary, they are propagated at the

transaction level several times: By replacing them with zeroes, ones, random values, and values

that are the inverse of the good value simulation. If any propagation results in failure of the

application, the fault that resulted in the unknowns is classified as possibly detected.

A special consideration in the simulation control is the timing deviation and uncertainty.

The simulation control must keep track of the fault simulation time, at which errors occur. To

detect faults that cause the gate level module to exceed the response time of the good simula-

tion, it must advance the fault simulator time beyond the fault-free simulator time. The upper

bound for this is the timeout specified by the bus model. Again, the simulation control must

model details that go beyond the specification of the DUA and model the allowed specification

of the communication mechanism and its correspondence to errors. For example, transaction

ordering errors can occur subject to faults, even if the good simulation assumes some specific

ordering. Furthermore, since faults can lead to unknowns on control signals, the exact duration

of a transaction can even become undetermined.

7.5.3 Concurrent Fault Simulation

During the gate level fault simulation, a large degree of parallelism can be exploited by efficient

evaluation of faults, patterns and gates in parallel [Koch10]. Here, the concurrent fault simula-

tion algorithm [Ulri73] is used to achieve high efficiency. It simulates several faults in parallel,

such that gains are obtained by common sensitization criteria amongst faults.



108 7. Architectural Vulnerability Analysis

The precision of gate level designs allows to model multiple aspects of a system that are usu-

ally not considered at transaction level, for example multi-valued logic, multiple clock phases

and reset signals. In a fault-free system, the multi-valued logic is easily translated (e.g., for a

well-behaved bus). Multiple clock phases are deterministic if their relationship is known. Reset

signals flush any unknown values from the gate level model.

In a gate level component that is subject to structural fault injection, these modeling aspects

may be visible at the component boundary: Some faults affect buses and cause conflicts that

should be considered at transaction level. Multiple clock phases that were previously in a known

relationship become undetermined and lead to race conditions. Any strike on reset signals, due

to their high fan-out, result in any combination of uninitialized latches or flip-flops that show up

as unknowns at the gate/transaction level boundary.

7.6 Optimizations at Abstraction Boundaries and in TLM

The gate level fault simulation determines the observability of fault effects at the primary out-

puts of the gate level model. It can take full advantage of a plethora of techniques that signifi-

cantly improve the computational efficiency such as concurrent simulation of faults, special data

structures and algorithmic optimizations [Lee92]. To determine if a fault has any undesirable

impact on the system functionality, its effect (error) is propagated in the system and evaluated

within the application context. This section introduces an efficient, parallel error propagation

and evaluation method at transaction level.

7.6.1 Error Injection Mechanism

An observable error at the boundary between the gate and the transaction level is injected in

an atomic transaction and further propagated and evaluated in transaction level simulation. The

specific mutation of a transaction is determined by the simulation control whenever the gate

level simulator requests fault propagation. The simulation control determines mutations based

on the information provided by the gate level fault simulator.
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In order to keep the simulation effort low and classify faults quickly, initially just a subset

of the outputs at gate level is evaluated to determine the type of the mutation. For instance, if at

a given time, an output specifying data validity of the corresponding port is deasserted in both

the fault-free and the faulty machines, the data provided by the port does not need to be verified.

In this case, no fault propagation at transaction level follows. Fault propagation is also given up

if the error is certain to be masked by the bus protocol. For example, error propagation is not

requested if a fault affects only the bus address bits that are masked out by the bus masking bits.

Such faults are classified as benign already in the simulation control to avoid superfluous error

propagation.

7.6.2 Evaluation of System Failure Conditions

A system failure is defined as a deviation of the system behavior from its specification. The

expected behavior included in the test scenarios from functional verification is reused in our

fault simulation approach to construct the simulation control and to evaluate the overall system

behavior. In a holistic model including the environment (e.g., a stability controller within a

vehicle), certain system properties can be verified under faults.

If the component subject to fault simulation is self-testing or self-checking [Lala01], this

mechanism is used for error detection and fault classification by checking the output for the

non-codewords. Such errors are communicated with an appropriate transaction response and

lead to an early abort of error propagation. Similarly, assertions from functional verification,

which usually compose built-in model instrumentation, are also reused. Assertions implement

sanity checks to find faulty states and control flow violations. At system level, they check for

the “instance out-of-bounds” exceptions.

To speed up the fault simulation, the transaction level fault propagation is halted as soon as

there is enough information for fault classification. In case of signal processing applications,

a checksum is calculated from the output data stream. The checksum is then evaluated and

compared at the intermediate checkpoints. Assertions used for functional verification are reused

to detect invalid behavior earlier than the checksum mechanism.
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7.6.3 Concurrent Error Propagation

To efficiently propagate a large number of errors, it is important to have an effective means of

reverting to the good machine state and undoing the changes made by the propagation. In gate

level fault simulators, this is achieved by keeping track of the changes on a stack or by using

tags or group IDs to identify data that differs from the good machine state. However, this is not

feasible in TLM simulations, since the models consist mostly of functional abstractions in the

form of host-compiled codes. Beside code modification, the existing error injection approaches

for TLM work with instrumentation of the compiled simulation binary [dSF09] or directly with

the TLM simulation kernel [Na13]. However, with all these methods, one simulator session can

only be used for a single injection.

The proposed error injection method is based on the concept of concurrent fault simulation

with one fault-free machine and several faulty machines evaluated in parallel. The fault-free

machine is running as the main process. Faulty machines are created quickly as sub-processes

using operating system facilities. Since processes are protected from each other, the cost of a

rollback amounts to terminating the child process that executes the faulty machine. Beside its

low cost, the approach is truly concurrent on host computers with multiple cores.

This approach is easily implemented on top of any existing transaction level model. No

changes to the simulation kernel are necessary and intellectual properties can be used as is. The

evaluation of system failure or success can be done entirely in the faulty machine. Only for the

fault classification mentioned before, communication between the good and the faulty machine

processes must be established. However, the classification is easily enumerated and it can be

communicated cheaply using the process return value upon termination of the faulty machine

process.

7.7 Implementation

The multi-level fault simulation algorithm has been implemented based on the sequential gate

level fault simulator Hope [Lee92] and the OSCI SystemC 2.2 and TLM 2.0 libraries. A C++

wrapper is implemented for the Hope fault simulator to integrate it with the object oriented
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FIGURE 7.3: Steps in multi-level fault simulation

SystemC simulation environment. In the Hope wrapper, relevant data structures and methods

were exposed to obtain fault detection information. In addition, methods were added to initiate

error propagation for faults visible at the gate level boundary. The pattern generation and sim-

ulation control are both implemented inside the wrapper. Separate instances of the Hope fault

simulator are dynamically created for the considered gate level models. While the algorithmic

optimizations in Hope target the stuck-at fault model, they can be extended to other structural

fault models using the concept of conditional stuck-at faults [Wund09].

Fig. 7.3 shows the interaction between the core wrapper, the Hope fault simulator instance

and the faulty machine at transaction level. The gate level fault simulator is a part of the good

machine. Faulty TLM machines are created as necessary using the POSIX f ork() command.

This allows to quickly create a faulty machine since Unix implements process forks with copy

on write. Consequently, the fault-free and the faulty machines share the same memory regions

until a memory page is modified in the faulty machine. Overall, the mechanism is transparent

for many system models, but some care must be taken for file handles opened for writing in the

simulation environment. The file handles should be closed in faulty machines.
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7.8 Evaluation

The proposed multi-level fault simulation approach is evaluated concerning the fault classifi-

cation accuracy and performance. We target the higher bound of fault detectability, and thus

follow the approach of multiple propagation for unknown values (cf. section 7.5). The exper-

iments are performed on three classes of applications executed on an AMBA based SoC with

a LEON3 processor. The SoC, as shown in Fig. 7.4, contains hardware accelerator cores for

Triple-DES (Data Encryption Standard), AES (Advanced Encryption Standard), as well as for

2D-DCT (two-dimensional discrete cosine transformation). The AES core is equipped with the

built-in self-test (BIST) facilities.

AHB ControllerCPU (Leon3)

Memory 

Controller

SRAMROM
3DES 2D-DCT

AHB-APB Bridge

AES

BIST

AMBA AHB

AMBA APB

FIGURE 7.4: SoC with Triple-DES, AES and DCT accelerators

Except for the validation, the experiments were run on a multiprocessor system with 8 Intel

Xeon CPUs (2.8 GHz). The memory usage did not exceed 250 MB in any of the experiments.

7.8.1 Validation

The proposed approach is validated in a traditional fault injection environment based on a state-

of-the-art commercial simulator. The SoC is modeled at RTL, except for the core subject to

fault injection which is modeled at gate level.

In each simulation run, a single transient fault is evaluated. The simulation is run until the

result of the application is produced. A time-out is set in order to detect faults that lead to

deadlocks and unacceptable delays. The simulation outcome is evaluated by the fault injec-

tion environment and the fault is classified accordingly. Due to the high computational cost,
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a random sample of 3000 faults per core is investigated this way, so that the per-application

validation effort doesn’t exceed two weeks.

Each fault is classified according to the categories from section 3.2. In the validation exper-

iments, the following cases are discerned:

• Covered: The classification from the proposed method agrees with the validation experi-

ment.

• False corrupt: The fault causes a silent data corruption (SDC) in the proposed method, but

is benign or causes a detected, unrecoverable error (DUE) in the validation experiment.

• False benign: The fault is benign in the proposed method, but causes an SDC or DUE in

the validation experiment.

• False detected: The fault results in a DUE in the proposed method, but is benign or causes

an SDC in the validation experiment.

Validation experiments of the proposed method and the reference simulator were conducted

on a farm of workstations equipped with AMD Athlon 64 Dual Core Processors (2.4 GHz) and

4 GB of RAM.

7.8.2 Triple-DES Encryption Application

The first case study is based on an encryption application utilizing the Triple-DES core in the

SoC from Fig. 7.4. It encrypts a string of 64-bit words using a 64-bit key. The software part of

the application is responsible of the block-wise transfer of data to the core and the read-back of

results. This application is chosen as an example that exhibits almost no inherent masking.

The Triple-DES dedicated core has been obtained from OpenCores1 and synthesized for

the LSI10k generic library. It contains 19,917 logic cells and 53,010 stuck-at faults. In the

following, we present the results for the system level effects of faults in the Triple-DES core

obtained by the proposed multi-level approach and discuss its performance and accuracy.

1http://www.opencores.org
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Table 7.1 presents the system level fault masking in four scenarios. The first column spec-

ifies the type and the length of the input data set that is encrypted. The encryption keys were

chosen randomly for each scenario. In the second column, we give the number of sensitized

faults, i.e., faults that produce an observable change on the core boundaries but do not necessar-

ily lead to errors at system level. The third and fourth column provide the number of SDCs and

benign errors, respectively. As there is no error detection mechanism, DUEs would not occur

(cf. section 7.6.2). In all scenarios, more than 99% of the faults that were sensitized led to an

SDC at system level. This is explained by the fact that the results from the core are directly

transferred to the system output, so, no data error masking takes place. The remaining 193

faults cause errors only during inactivity of the “data ready” signal and hence they are benign.

TABLE 7.1: Validation results for Triple-DES application (random sample of 3,000 faults)

Scenario Faults sensitized SDC Benign errors
(1) (2) (3) (4)

English 3.5 KB 32916 32723 193
Italian 21 KB 33247 33054 193
Latin 20 KB 32901 32708 193

Random 8 KB 32953 32760 193

Table 7.2 gives an insight into the performance of the presented approach on the 8-core

machine. Column “Num. sim. contexts” gives the number of fault propagations performed

using fork. The third and fourth column provide the CPU-time spent for the concurrent fault

simulator and for the execution of the TLM model, respectively. The time needed for the child

process creation and termination is included in the latter. The last column provides the overall

run-time of our approach. The Hope CPU-time proved to be one fifth to one half of the total

execution time.

TABLE 7.2: Validation results for Triple-DES application (random sample of 3,000 faults)

Scenario Num. sim. Gate level TLM+Sys Overall
contexts Hope CPU-time CPU-time run-time

(1) (2) (3) (4) (5)

English 3.5 KB 37983 1m 16s 4m 18s 5m 34s
Italian 21 KB 37396 5m 56s 5m 10s 11m 6s
Latin 20 KB 37809 5m 41s 5m 20s 11m 1s

Random 8 KB 37777 2m 21s 4m 23s 6m 44s

The validation was performed on a random sample of 3000 faults from the full set of 53,010

faults. A string of 3,576 ASCII characters was encoded using various keys. According to the
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classification from section 3.2, all the sampled faults were categorized as “covered” by the

proposed multi-level method, i.e., no fault was mispredicted. The run-times are summarized

in table 7.3. The first column lists the type of the key used for encryption, and the subsequent

columns provide the comparison between the CPU time of the validation experiments (RT/gate

level) and the proposed approach (TLM/Hope), both performed on the same Athlon machine.

We achieved a perfect match under an average speed up of about 13,200x.

TABLE 7.3: Validation results for Triple-DES application (random sample of 3,000 faults)

Scenario CPU-time

RTL/gate TLM/Hope

All “0” 233h 67.1s
All “1” 243h 88.6s

Sequence 234h 51.4s
Random 242h 53.0s

7.8.3 AES Encryption Application

The second case study is based on the self-testable AES core within the SoC from Fig. 7.4.

The core is able to encrypt a string of 64-bit words using a 64-bit key. The BIST functionality

provides a 64-bit signature that is unique for the core—any deviation in the signature indicates

that the core is faulty. The software part of the application is responsible for the block-wise

transfer of data to the core and the read-back of results. Similar to the Triple-DES application,

AES exhibits little inherent masking.

The self-testable AES core has been obtained from the authors of [DN10]. It has been

synthesized for LSI10k library and contains 22,985 logic cells and 53,850 stuck-at faults.

Tables 7.4 and 7.5 present the system level fault masking and are analogous to tables 7.1 and

7.2, respectively. The first four applications are equivalent to those discussed in the previous

case study. The following four applications are similar to the first four, except that they begin

with a BIST run. If a fault is detected by the BIST, it is classified as DUE. If a fault is not

classified as a DUE and results in failure of the application, it is considered as an SDC. If a

fault is not detected by BIST and does not influence the application, the fault is benign. In

each scenario, more than 96% of the faults that were sensitized were either detected by BIST
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(DUE), or resulted in SDC. BIST was proven to detect 95% of the faults from the full set of

53,850 stuck-ats. It failed to detect at least 1411 faults (2.6%) that led to a failure in the sixth

application. The undetected faults were found to reside either at the primary inputs or at the

gates in the direct neighborhood thereof. As the BIST runs with a constant seed that is applied

internally, the faults at the data and key inputs do not propagate and thus are not detected.

TABLE 7.4: Fault masking results for AES application

Scenario Faults sensitized SDC DUE Benign errors
(1) (2) (3) (4) (5)

English 3.5 KB 45836 44274 - 1562
Italian 21 KB 46213 44601 - 1612
Latin 20 KB 46057 44478 - 1579

Random 8 KB 46071 44487 - 1584

BIST, Eng. 3.5 KB 52973 1334 51146 493
BIST, Ita. 21 KB 53076 1411 51146 519
BIST, Lat. 20 KB 52986 1328 51146 512
BIST, Rnd. 8 KB 53053 1398 51146 509

Table 7.5 provides performance details for the previously discussed scenarios. As a single

BIST-run takes 512 cycles and faults can be dropped only after the run is complete, the last four

scenarios require a considerable effort at the low level, which approaches half of the overall

run-time. However, as a BIST run results in massive fault dropping, the overall run-time is little

affected by the length of the application itself. For this reason, even though the applications

differ in the length of the text subject to encryption, they exhibit similar run-times.

TABLE 7.5: Run-time results for AES application

Scenario Num. sim. Gate level TLM+Sys Overall
contexts Hope CPU-time CPU-time run-time

(1) (2) (3) (4) (5)

English 3.5 KB 45670 24s 1m 59s 2m 23s
Italian 21 KB 45676 48s 2m 7s 2m 55s
Latin 20 KB 45646 47s 2m 8s 2m 55s

Random 8 KB 45562 31s 2m 0s 2m 31s

BIST, Eng. 3.5 KB 54639 10m 12s 10m 3s 20m 15s
BIST, Ita. 21 KB 54716 10m 18s 9m 4s 19m 22s
BIST, Lat. 20 KB 54633 10m 13s 8m 30s 18m 43s
BIST, Rnd. 8 KB 54703 10m 13s 8m 40s 18m 53s

Like in the previous case study, validation is performed by encoding a string of 3,576 ASCII

characters with various keys. A random sample of 3000 faults was chosen from the full set of

53,850 faults. For all the sampled faults, our approach provided the correct classification and
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all faults were categorized as “covered” with respect to section 7.8.1. The execution times for

the validation experiments are summarized in table 7.6, which is analogous to the previously

discussed table 7.3. We achieved a perfect match under an average speed up of about 6,400x.

TABLE 7.6: Validation results for AES application (random sample of 3,000 faults)

Scenario CPU-time CPU-time
RTL/gate TLM/Hope

All “0” 278h 21.9s
All “1” 281h 22.2s

Sequence 288h 22.1s
Random 278h 22.2s

BIST, All “0” 298h 4m 59s
BIST, All “1” 306h 4m 58s

BIST, Sequence 290h 5m 6s
BIST, Random 295h 5m 9s

7.8.4 JPEG Encoder Application

In case of the JPEG encoding application, we study the strong impact of error masking. The

baseline JPEG encoding algorithm can be decomposed into four steps:

1. color transformation

2. two-dimensional discrete cosine transform (2D-DCT)

3. quantization

4. lossless compression

JPEG encoding is performed by the SoC architecture from Fig. 7.4. As the 2D-DCT is the

most computationally expensive operation, it is accelerated by the hardware core. All other

operations are performed by the LEON3 processor. The 2D-DCT core has been obtained from

OpenCores and synthesized for the LSI10K library. It contains 28,001 logic cells and 78,914

stuck-at faults. In the following, we study the performance and accuracy of our approach for

several case studies with various images.

Table 7.7 describes the effect of the faults in the 2D-DCT core. The first column specifies

the type and pixel dimensions of the image that is encoded in each scenario. The subsequent
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columns are analogous to the previously discussed table 7.1. Compared to the Triple-DES and

AES applications, there is a much larger proportion of sensitized faults that lead to benign

errors, i.e., faults that are masked by the application, although their effect is observable on the

core boundaries. Among the sensitized faults, from 16% up to 36% of the faults are benign.

This is due to the error masking property of the quantization step.

TABLE 7.7: Fault masking results for JPEG application

Scenario Faults sensitized SDC Benign errors
(1) (2) (3) (4)

White 8x8 25297 16295 9002
Black 8x8 22729 14420 8309
Noise 8x8 48794 34064 14730

Fruits 64x48 64797 54141 10656

The run-time results for the approach running on the previously mentioned 8 core machine

are gathered in table 7.8. The number of simulation contexts clearly depends on the image size,

as for each 8x8 pixel block, the effects of all the sensitized faults that were not yet classified

as SDC have to be analyzed. Due to the masking property of the JPEG application, a large

number of error propagations occurs before the associated fault is classified as SDC and can be

dropped. Due to the fault dropping, the run-time is not linear with the image size. For the image

composed of 48 pixel blocks, the run-time increases just 7 times compared to the scenario with

a single block.

TABLE 7.8: Run-time results for JPEG application

Scenario Num. sim. Gate level TLM Overall
contexts Hope CPU-time CPU-time run-time

(1) (2) (3) (4) (5)

White 8x8 25927 56s 1m 15s 2m 11s
Black 8x8 25399 57s 1m 16s 2m 13s
Noise 8x8 47892 1m 14s 3m 48s 5m 02s

Fruits 64x48 279563 9m 11s 21m 5s 30m 15s

The validation experiments were conducted in a setting identical to the one used for Triple-

DES. Due to the high computational effort, the validation was run for the scenarios with a

single 8x8 pixel image. The results are summarized in table 7.9. It is analogous to table 7.3

except for the two additional columns that give the number of “benign faults” and the number

of faults categorized as “false corrupt” (cf. section 7.8.1) among the 3,000 faults in the sample.

From 52% up to 82% of the sampled faults were found benign, which is attributed to the error
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masking property of the JPEG quantization step. The effects of 2 to 7 faults per scenario were

mispredicted and classified as “false corrupt”, which is pessimistic. They were found to either

result in a period of an unknown value on the “data ready” signal while the signal should have

been inactive, or generate additional active pulses on this signal after the data becomes invalid.

TABLE 7.9: Validation results for JPEG application (random sample of 3,000 faults)

Scenario Faults False CPU-time CPU-time
benign corrupt RTL/gate TLM/Hope

White 8x8 2377 6 115h 29.9s
Black 8x8 2463 7 117h 31.3s

Sequence 8x8 2067 2 119h 36.9s
Noise 8x8 1580 2 148h 42.8s

In the validation experiments, these faults were classified as benign only due to the short

length of the application and favorable synchronization. Under unfavorable circumstances, they

could in fact cause SDCs. However, even if we assume the validation experiments to be the

golden reference, we achieve a match for 99.8% of the faults under an average speed up of

12,700x.

7.9 Summary

This chapter used the multi-level NFP-aware simulation approach to present a fault simulation

methodology for vulnerability analysis. The method allows consideration of the structural faults

in a multi-level simulation environment at gate and transaction level. The simulation time is im-

proved by four orders of magnitude using an efficient concurrent fault simulator at gate level

and concurrent error propagation at transaction level. The methodology and the error propaga-

tion mechanism allow reusing the TLM models from design space exploration. The accuracy

of the precise gate level simulation is achieved.





Chapter 8

Application on Aging Prediction

8.1 Introduction

As the technology nodes scale further, aging processes arise as another non-functional bottle-

neck that requires consideration in early design phases [Kim08, Alam05, Kean10]. Several ap-

proaches at different abstraction levels propose solutions to ensure reliability and performance

in the presence of circuit aging.

Traditionally, guardbanding is used to overcome delay degradation due to aging [Chan11,

Agar08]. In this approach, operating frequency is reduced or supply voltage is increased based

on the worst degradation that may occur due to the worst combination of temperature, voltage

and workload over the specified lifetime of the system. If the guardbands are too pessimistic,

throughput and power cost of the design are incurred, and the product is less competitive. If

circuit degradation is underestimated, the circuit may fail before expected and force expensive

redesigns [Agar08, Chan11, Lore10]. Another method is to use on-line circuit failure prediction

using on-board aging monitors. However, the correct placement of monitors is crucial for on-

time failure prediction [Agar08]. Apart from the selected aging mitigation approach, an advance

knowledge of critical paths and the aging-related performance degradation is required to realize

an efficient, aging-aware hardware design.

Early aging analysis enables an accurate estimation of the aged circuit performance before

manufacturing. If no information about the workload is available, the worst case aged circuit

121
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characteristics can be obtained. With the workload information, the degradation can be esti-

mated more accurately, as it strongly depends on the input signal over time [Lore10].

Among aging mechanisms, NBTI and HCI have gained more weight in the nanoscale era

[Giel08]. They cause systematic reduction in transistor parameters (e.g., drain current, threshold

voltage, capacitance, etc.) and have been a persistent reliability concern for CMOS technology

generations below 130 nm node [Alam07].

This chapter uses the window-based simulation with the piecewise evaluation approach to

develop a flexible, numerical simulation engine for aging prediction early in the design phase.

The aging-related observables are acquired using the window-based, NFP-aware simulation (cf.

chapter 5), while the piecewise evaluation approach estimates aging degradation (cf. chapter 6).

Environmental changes are also considered dynamically during aging prediction. The proposed

approach can be used to evaluate the impact of aging mitigation techniques under various op-

erating conditions, including different voltage scaling, power gating, and activity management

scenarios. It can also be used to provide complementary information for low level approaches,

as well as online techniques.

The rest of this chapter is organized as follows: Section 8.2 presents the state of the art

for aging prediction techniques. Piecewise aging evaluation approach for NBTI and HCI aging

mechanisms and power and temperature as interdependent NFPs are discussed in section 8.3. It

also explains how the interrelation between these parameters are modeled. Observable collec-

tion is discussed in section 8.4. Section 8.5 discusses a case-study and shows the experimental

results. At the end, section 8.6 concludes the chapter with a short summary.

8.2 State of the Art

Most of the state-of-the-art reliability simulation methods try to emulate the degradation process

of aged devices in a repetitive scheme. They are based on physical failure mechanisms and

contain major wear-out models mostly for HCI and NBTI mechanisms. A set of parameters

for each of these failure mechanisms are identified and algorithms for extracting them in a

given technology are developed using accelerated tests. A circuit simulator, such as SPICE, is
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employed to calculate the electrical parameters of fresh and degraded devices to predict their

degradation or failure [Bern06].

A fundamental model and methodology for reliability simulation were first proposed and

implemented in the Berkeley reliability tools (BERT) [Tu93]. It predicts the degradation due

to HCI. The circuit is simulated to capture the relevant current and voltage waveforms at tran-

sistor terminals. The waveforms are applied to generate the degraded transistor model for each

transistor. The degraded circuit performance is obtained by a second simulation with the aged

transistors. The main advantage of BERT is accuracy and SPICE modeling technology com-

patibility. However, the design parameters have to be correctly extracted. Once the degraded

circuit is produced, the behavior under a new application or a set of other operating parameters

cannot anymore be analyzed [Bern06].

The authors in [Wang07b, Paul05] propose an NBTI prediction approach at transistor level.

Additionally, the authors in [Chak04] use a numerical framework to model NBTI at this level.

Bernstein et al. [Bern06] propose a failure-rate based simulation methodology for NBTI, EM,

HCI and TDDB together at transistor level (SPICE).

Transistor level techniques require the circuit model at this level and can simulate up to

several thousand transistors. Furthermore, realistic input vectors are needed which might not be

available [Lore10]. This implies that these methods are not proper solutions for complex digital

circuits and cannot efficiently be used early in the design flow. However, they can be used to

characterize gate models [Lore12].

Gate level aging simulation methods, such as [Wu00, Wang07d, Wang10], are mostly look-

up table (LUT)-based approaches. An LUT containing the aged gate delays is built using tran-

sistor level tools such as SPICE for a certain use profile. A use profile consists of a set of

environmental conditions (temperature, supply voltage, duty cycle of the input signals, process

conditions, etc.) over the lifetime. Whenever the use profile changes, the entire cell library

must be re-characterized. Furthermore, if the workload of a cell should be considered, a lot of

different aged LUTs must be generated for each cell.

The LUT is modeled as a function of the input signals, the output load capacitances and the

transistors’ threshold voltages. The delay values are usually estimated for a short simulation
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run and extrapolated for the lifetime. For example in [Wang07d, Wang10], the gate delays are

extrapolated from SPICE simulation with the Chebyshev polynomial series.

Some works such as [Noda10] use the stress factor, α , to estimate NBTI degradation at gate

level. α is obtained for each transistor using random pattern simulation. However, dynamic

changes of α during system operation are ignored. Moreover, the effect of temperature variation

on NBTI is not considered in these works.

Beside the above mentioned approaches, a gate model is proposed in [Lore12, Lore09] to

perform an aging-aware static timing analysis (STA) at gate level. NBTI and HCI are considered

as target aging mechanisms and either the worst-case values or the probabilistic methods can be

used to obtain the observables. The presented approaches are flexible in terms of degradation

equations and consider that the transistors of a gate degrade individually. Lorenz et al. [Lore10]

use the same approach at the macro-cell level and obtain a considerable speed up (average 27X

for ISCAS’85 benchmark) in comparison to the gate level STA, but with the same accuracy.

However, the gate profile in any of the approaches does not consider environmental variations

during the simulation.

At microarchitectural level, the authors in [Abel07] introduce techniques to reduce the NBTI

effect on microprocessors. Oboril et al. [Obor12] propose an aging framework that integrates

a performance analysis tool with temperature and power estimation tools for accurate aging

prediction. To deal with the lack of structural data at microarchitectural level, it is assumed that

all the transistors have the same stress factor.

Some works tried to offer high level, accurate predictions using multi-level approaches. A

switch/gate level approach to predict NBTI degradation is proposed in [Salu08]. A SPICE level

simulation is used to identify the stress on PMOS devices under varying input conditions for

various gate types. The degradation is expressed using the power law:

∆Vth(t) = αtn



8. Application on Aging Prediction 125

The parameters α and n are statistically determined using gate level simulation of a small

fraction of circuit lifetime. The effect of environmental variations on NBTI are not considered

in the predictions.

New-Age [DeBo09] is an NBTI framework for microarchitectural components. It uses an

RTL model of the system to perform NBTI-aware timing analysis. The switching activity and

delay of each gate is estimated using the average system simulation. The switching activity is

used for power estimation and in turn temperature analysis. The best- and worst-case analysis

is performed to predict the degradation. Power and temperature analysis are done outside the

framework; therefore, adapting them to different designs may require an additional effort. The

framework cannot be used at early design phases while a holistic system simulation is required

for the timing analysis phase.

8.3 Piecewise Aging Evaluation

To study the performance degradation due to aging, the first step is to find proper models.

The models must describe respective aging mechanisms accurately by including the technology

parameters and interdependent NFPs.

In the following, models for NBTI and HCI degradation are discussed and the relevant pa-

rameters and interrelated NFPs are extracted. NBTI and HCI are affected by temperature, while

temperature and power have a mutual effect on each other. Therefore, models for temperature

and power are also presented and the relevant observables are discussed in this section.

8.3.1 Piecewise Aging Models

The performance degradation due to aging is usually studied by changes in the threshold volt-

age (Vth) of the transistors. NBTI and HCI increase the Vth by time which causes delay in

the critical paths of the circuit. Chapter 3 discussed models for Vth increase under NBTI and

HCI mechanisms. In the following, we present the piecewise equivalent of the aforementioned

models.
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8.3.1.1 Piecewise NBTI Model

The NBTI effect (cf. section 3.3.1) causes a gradual positive shift in PMOS Vth when the transis-

tor is stressed, i.e., when negative voltage is applied to the PMOS gate. Removal of the stress can

partially anneal the interface traps resulting in partial recovery [Wang07e, Rang03, Alam03].

Due to the Vth degradation, NBTI results in poor drive current and lower noise margin which

shortens the device lifetime and degrades the overall circuit performance [Bhar06, Wang07b,

Alam03]. NBTI is exacerbated by temperature escalation [Alam05, Chak04]. Temperature lin-

early changes with the total power dissipated by the chip [Pedr06]. Thereby, an accurate NBTI

prediction should allow for temperature variations and power consumption.

For NBTI modeling, equation 3.14 (cf. section 3.3.1) is rewritten in the piecewise form to

give an upper bound of Vth at the ith window with the size of W cycles (or at time ti where

ti = W × i):

∆Vth(i) =

√
Kv(i)2 ·α(i) ·Tclk

1−β (i)
1

2n

Kv = (
q · tox

εox
)3 ·K2

1 ·Cox · (Vgs−Vth) ·
√

C(i) · exp(
2Eox

E0
)

(8.1)

α(i) is the transistor stress factor during the last evaluation window. α shows the fraction of

time in which the transistor is stressed and is identified as a low level observable. α acquisition

is discussed in section 8.4. C(i) is the diffusion constant expressed with the following equation:

C(i) = T−1
0 · exp(

−Ea

k ·T (i)
)

where T (i) is the temperature at time ti. Temperature variation depends on several parameters

including the ambient temperature, the material and the cooling system of the chip. There-

fore, it is identified as an independent NFP and is modeled separately in the aging prediction

methodology.

The missing parameter β (i) is calculated in a piecewise manner as
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β (i) = 1−
2K1 ·

√
K2 ·C(i) · (1−α(i)) ·Tclk

(1+δ ) · tox +
√

Ci · (t ′i +W )

where K1 and K2 are technology constants, and t ′i is

t ′i =
2K1 ·

√
K2 ·Ci(1−αi) ·Tclk

(1−β ′(i)) ·C(i)2 − (1+δ ) · tox

C(i)2

where

β
′(i) =

(
1−

√
Kv(i)2 ·α ·Tclk

∆Vth(ti−W )

)2n

.

8.3.1.2 Piecewise HCI Model

In MOS transistors, carriers are accelerated (become hot) due to the lateral electric field near the

drain junction. A small part of these hot carriers may become energetic enough to be injected

into the gate oxide and cause a damage [Bern06, Obor12]. The rate of hot carrier injection is di-

rectly related to the channel length, oxide thickness, operating voltage, and transistor switching

activity.

Like NBTI, HCI effect is usually modeled as Vth degradation (cf. section 3.3.2). The degra-

dation model presented in equation 3.16 is simplified as in [Obor12] and is evaluated piecewise

for the ith window (or at time ti where ti = W × i and W is the window size) using the following

equation:

∆Vth(i) = A · exp(
−Ea

k ·T (i)
) ·
√

θ(i) · f · (t ′i +W ) (8.2)

where

t ′i =

(
∆Vth(ti−W )
A · exp( −Ea

k·T (i))

)2

· 1
θ(i) · f
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Here, A is a technology constant, Ea is the activation energy, k is the Boltzmann constant, T

denotes the temperature, f is the operating frequency, and θi is the transistor stress factor. Akin

to NBTI, temperature dependence is considered in HCI evaluation. θ is an structural observable

and is obtained through simulation.

8.3.2 Modeling Aging Interrelations

As discussed in section 8.3.1, temperature fluctuations on a die surface affect NBTI and HCI

mechanisms. Accordingly, the temperature profile changes by the power dissipated by transis-

tors. Fig. 8.1 shows the effect of different observables and NFPs on NBTI and HCI. As it can

be seen, power affects temperature which in turn influences NBTI and HCI effects. To model

these interrelations, several observables need to be estimated during the aging-aware simula-

tion. The switching activity of the nodes are required for power estimation and HCI prediction

while the signal probabilities are needed for NBTI prediction. Ambient temperature affects the

die temperature. The interdependency of these parameters are modeled to accurately predict

the amount of Vth degradation due to NBTI and HCI effects. Observables are acquired from

aging-aware simulation discussed in section 8.4.

Energy 

Consumption

NBTI HCI

Temperature

Ambient 

Temperature

Signal 

Probability

Switching 

Activity

FIGURE 8.1: An example of NFP interrelation

The rest of this section discusses models for temperature and power and their interrelation

with NBTI and HCI. Finally, we propose the structure of the evaluation server.



8. Application on Aging Prediction 129

8.3.2.1 Temperature Profile

NBTI is highly susceptible to temperature variations. HCI is highly voltage dependent and

is also affected by temperature. As the temperature increases, the leakage currents increase

as well, thus more power is dissipated [Paci06]. Several works in literature address thermal

modeling of VLSI circuits [Pedr06, Sing06, Huan04]. These models receive parameters such

as dissipated energy, area, thermal resistance and material of the chip as input, and output the

temperature of the chip.

A simple model to describe temperature can be formulated as [Pedr06]:

Tchip = Ta +Rθ ×
Ptot

A
(8.3)

where Ta represents the ambient temperature. Rθ is the equivalent thermal resistance of the

substrate layer plus the package and the heat sink. Ptot is the total power consumption of the

chip and A is the area. As it can be seen from equation 8.3, temperature has a linear relation

with total power dissipation of the circuit which enforces accurate prediction of power.

This model forms the basis for more elaborate, block-based models, such as [Engl08, Paci06].

These models can be used to reflect the fluctuations of the temperature distribution across the

die.

8.3.2.2 Power

Power dissipation in the substrate of a CMOS VLSI circuit is the sum of dynamic power dissi-

pation, short-circuit power dissipation and leakage current [Pedr06]. For piecewise evaluation

of aging models, we require the power dissipation in time units, i.e., energy. Energy is modeled

recursively as in section 6.2.2.1. The parameter β in the model stands for the switching activity

at the output of the gate. It is acquired by including the proper function for the switching activity

in the gate model.

As the temperature distribution on the DUA cannot be considered without power dissipation

of the complete SoC, architectural solutions for power—as discussed in section 8.5—should be
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combined with circuit level models to cover the total power dissipation of the multi-level SoC

model.

8.3.2.3 Modeling interrelations

Fig. 8.2 shows the components of the aging evaluation server. It receives the current time ti,

the switching activity and the stress factor for NBTI and HCI at ti. It also receives the degraded

threshold voltages due to NBTI and HCI at time ti−1, i.e., the last Vth estimation. The size of

the window is provided by the designer. At the end of each window, the piecewise model for

NBTI and HCI are evaluated based on the estimated temperature and dissipated power. The

observables are evaluated using the window-based aging-aware simulation as discussed in the

next section.

Temperature NBTI

Power

Aging Evaluation
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I
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FIGURE 8.2: Aging evaluation components

8.4 Window-Based Aging-Aware Simulation

The aging-aware simulation acquires the NBTI and HCI observables. The high level simulation

is carried out independent of the low level NFP-aware simulation. Thereby, the simulation

speed of the low level model would not block the high level simulation procedure. To this end,

gate models for the relevant observables are required. In the following, first the observable

acquirement is discussed in detail. Afterward, the window-based aging-aware simulation is

explained.
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8.4.1 Modeling Observables

In this section, the modeling approach for the observables required for aging analysis are dis-

cussed and applied on a sample NOR gate.

8.4.1.1 NBTI Stress Factor

For a transistor c in gate g, we define the NBTI stress factor α[ti,t j] as the cumulative time

the transistor has been exposed to inversion in the time interval (ti, t j]. As the NBTI effect is

ignorable for NMOS transistors [Stro06], α[ti,t j] is defined only for PMOS transistors. c degrades

when the gate terminal of the PMOS transistors are negatively biased with respect to their source

or drain terminals. Two conditions must be fulfilled [Lore12]:

• logic “0” applied to c’s gate terminal

• logic “1” applied to c’s source or drain

To fulfill the conditions, each gate g is associated with a stress table Sg with 2i integer entries,

where i is the number of inputs to g. The entries in Sg correspond to the possible input patterns,

e.g., Sg(0) stores the number of times the pattern 00 has been observed at gate g with two inputs.

Based on the mentioned conditions, the α function for each transistor is derived.

8.4.1.2 HCI Stress Factor

Both PMOS and NMOS transistors degrade due to HCI when carriers are accelerated and in-

jected into the gate oxide. This is expressed by two stress conditions for transistor c [Lore12]:

• transition from off- to on-state at c

• conducting path from supply voltage/ground to c’s output load
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For each gate g, a transition counter array (TCA) is associated to each transistor. This array

counts all the transition events (0→ 1, 1→ 0) during each run of the gate level simulation. The

number of transitions for each node is monitored and added to the relevant TCA for that node.

For a transistor c, we define the switching activity θ[ti,t j] as the cumulative time the input

of the transistor switches from 0→ 1 or 1→ 0 and there is a conducting path from supply

voltage/ground to c’s output load in the time interval (ti, t j].

8.4.1.3 Gate Switching Activity

The switching activity β[ti,t j] of the gate g is defined as the fraction of time in which the output

of the gate switches from 0→ 1 or 1→ 0 in the time interval (ti, t j].

In the following, we show a two-input NOR gate model including the previously discussed

observables. The same approach would apply to other gates as well.

8.4.1.4 Example: NOR Gate Model

Fig. 8.3 shows the structure of a 2-input NOR gate and the relevant stress table for NBTI degra-

dation.

Tp1

Tp2

a

a

b

b

out 0 0 S S

0

1

1

1 S R

0 R R

1 R R

a b Tp1 Tp2

Tn1 Tn2

NBTI Stress Table

Vdd

FIGURE 8.3: 2-Input NOR gate model

Based on the stress table, αci in one cycle, ci, is modeled as
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αTp1,ci =!GAT E(Tp1,ci)

αTp2,ci =!GAT E(Tp2,ci) & !GAT E(Tp1,ci)
(8.4)

where GAT E(T,ci) is the input value of the transistor T at the ith cycle. The value of αTp,(c1,ck],

the NBTI stress factor of the transistor Tp in time interval (c1,ck], is obtained by:

αTp1,(c1,ck] =
∑

k
i=1 αTp1,ci

ck− c1
. (8.5)

αTp2,(c1,ck] is calculated likewise.

To calculate the stress factor for HCI, the equations should capture the switching activity on

the transistor’s gate:

GAT E(Tp1,0) = x, GAT E(Tp2,0) = x,

GAT E(Tn1,0) = x, GAT E(Tn2,0) = x

θTp1,ci = [GAT E(Tp1,ci)⊕GAT E(Tp1,ci−1)] & !GAT E(Tp2,ci)

θTp2,ci = GAT E(Tp2,ci)⊕GAT E(Tp2,ci−1)

θTn1,ci = GAT E(Tn1,ci)⊕GAT E(Tn1,ci−1)

θTn2,ci = GAT E(Tn2,ci)⊕GAT E(Tn2,ci−1)

(8.6)

The value of θTp,(c1,ck] in time interval (c1,ck] is obtained by

θTp1,(c1,ck] =
∑

k
i=1 θTp1,ci

ck− c1
.

The accumulated value for other transistors is calculated similarly.

The switching activity to estimate the energy depends on the output of the NOR gate:
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βnor,ci = [(GAT E(Tp1,ci−1)⊕GAT E(Tp2,ci−1))‖

(GAT E(Tp1,ci−1)&GAT E(Tp2,ci−1))&

(!GAT E(Tp1,ci)&!GAT E(Tp2,ci))]‖

[(!GAT E(Tp1,ci−1)&!GAT E(Tp2,ci−1))&

(GAT E(Tp1,ci)⊕GAT E(Tp2,ci))‖

(GAT E(Tp1,ci)&GAT E(Tp2,ci))]

(8.7)

Based on equation 8.7, the value of βTp,(c1,ck] in time interval (c1,ck] is obtained by

βnor,(c1,ck] =
∑

k
i=1 βnor,ci

ck− c1
.

The gate model strongly depends on the internal structure of the gate. Therefore, this ap-

proach facilitates the study of the gate structure effect on aging degradation and pattern reorder-

ing methods [Butz10] provided to mitigate aging effects.

8.4.2 Window-Based, Aging-Aware Simulation Procedure

The window-based aging-aware simulation procedure proceeds as described in section 5.5. Sim-

ulation as well as evaluation time is divided to windows. The observables are acquired by means

of the proposed gate model. As the gate model integrates all the observables, they can be col-

lected by a single simulation run. At the end of each window, the acquired observables are

applied to the piecewise evaluation to predict the amount of degradation in that window.

8.5 Evaluation

The proposed method is applied to the case study of an SoC platform based on an OpenRISC-

1200 processor1. As depicted in Fig. 8.4, the system is equipped with two display controllers

1OpenRISC Project, http://opencores.org/or1k

http://opencores.org/or1k
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(VGA and LCD), an Inverse Discrete Cosine Transform accelerator (IDCT), and a Floating

Point Unit (FPU). The processor communicates with the peripheral devices through Wishbone

bus using single 32-bit read/write bus cycles.

Wishbone Bus

OR1200

Processor

RAMI Cache D Cache LCD

VGA 

Controller

IDCT 

Accelerator
FPU

FIGURE 8.4: System architecture

The multi-level NFP-aware simulation is used to predict the NBTI and HCI stress factors

with the actual system workload. The piecewise evaluation predicts circuit degradation of the

IDCT accelerator and the FPU due to NBTI and HCI effects. Temperature variations of the

die are also considered during the evaluations. For aging estimation, we assume the predictive

technology model2 (PTM) for the 45 nm technology:

Vdd = 1.0 [V ]

Vth = 0.2 [V ]

tox = 1.75 [nm]

The goal of the experiments is to evaluate the performance and the accuracy of the multi-

level simulation at the gate/transaction level. In addition, the performance and the accuracy of

the piecewise evaluation approach is compared to an extensive, cycle-accurate aging analysis at

gate level.

2http://ptm.asu.edu

http://ptm.asu.edu
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8.5.1 Experimental Setup

The system is modeled functionally at transaction level using OSCI SystemC 2.2 and TLM 2.0

modeling libraries. Each functional unit is modeled as a set of concurrent, behavioral processes.

The units are approximately-timed and communicate via TLM sockets.

As the IDCT accelerator is the most critical core in JPEG decoding, it has been chosen as

the core under aging analysis. The IDCT accelerator has been obtained from OpenCores3. It

is a sequential implementation of IDCT algorithm with integer precision. The core has been

extended with two FIFO memories for the input and output data buffers, and a slave interface to

Wishbone bus.

The FPU core has been extracted from MicroSparcII processor4 and equipped with a Wish-

bone slave interface. It is a multi-cycle implementation of double precision.

To obtain the structural gate level models, the two DUAs were synthesized for the LSI10k

generic library. The IDCT accelerator consists of 28,772 gates (113,686 transistors in CMOS

technology) and 3,775 registers. The FPU requires 17,113 gates (62,362 transistors) and 630

registers.

An RTL model of the FPU and IDCT cores are generated automatically from the corre-

sponding gate level model by Verilator5. RTL models are cycle-accurate descriptions of the

DUAs in SystemC.

8.5.2 Sample Applications

For the FPU core, the following signal processing applications are considered in the case study:

• FIR: High-pass finite impulse response filter of order 14

• IIR: Low-pass Butterworth filter of order 5

• FFT: Fast Fourier transform for vectors of length 64
3http://www.opencores.org
4Oracle, http://www.oracle.com/us/sun
5http://www.veripool.org/wiki/verilator

http://www.opencores.org
http://www.oracle.com/us/sun
http://www.veripool.org/wiki/verilator
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• IFFT: Inverse FFT (vector length 64)

• JPEG: Image decompression with a floating point IDC transformation for an 8x8 pixel

image

Floating point operations, such as addition, multiplication, and division are offloaded to the

FPU. Random data (noise) is used as applications’ inputs.

The IDCT accelerator has been evaluated in several applications with JPEG image decom-

pression [Wall92]. The processor periodically decodes and displays a color image. The process

of Huffman decoding, dequantization, and the final color conversion is performed purely in

software, while the IDCT transformation is offloaded to the IDCT accelerator. The IDCT core

performs the transformation on 8×8 pixel blocks. Four different image sizes are used for the

experiments: 8×8, 16×16, 64×64 and 256×256 pixels. The applications are run for about 200

million cycles. The progress of the evaluated aging mechanisms is extrapolated from the results

obtained for this interval.

8.5.3 Implementation

The NFP evaluation framework consists of four main components:

• the system level simulator (TLM 2.0)

• the RTL state prediction (SystemC)

• the parallel, gate level DUA simulator for observables acquisition (Java)

• the piecewise aging evaluator (Java)

The system level simulator executes the system model at transaction level. During simula-

tion, the high level DUA stimuli in form of time-annotated transaction payloads are captured

(cf. section 5.3). The high level workload is used as stimuli for DUA simulation at RTL. The

RTL simulator runs in parallel to the high level system simulator. The fast-forwarding is used

to improve the performance (cf. section 5.4.1). The RTL state prediction component generates
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the logic states of the DUA and the information about autonomous cycles (i.e., the length, the

depth and the number of idle loops). The generated stimuli is passed over to the gate level DUA

simulator for the acquisition of observables.

The gate level DUA simulator is implemented in Java. It contains a gate level model of the

DUA and performs parallel, gate level logic simulation. An instance of the gate level simulator

is a 64-slot pattern-parallel simulator. Each simulation job received from the RTL simulator is

allocated to one of the free slots. If all the slots are occupied, the simulation jobs are queued,

or the RTL model starts a new instance of the gate level simulator on the same or a different

machine and sends the remaining transactions to a new server (cf. section 5.4.2).

During the gate level DUA simulation, the NBTI and HCI observables are monitored cycle-

accurately (cf. section 8.4.1). At the end of each evaluation window, the simulator collects the

observables from all the simulation slots and sends them to the aging evaluator.

Fig. 8.5 shows the structure of the aging evaluator. It comprises models for temperature

distribution, power dissipation as well as NBTI and HCI aging.

HotSpot NBTI Model

McPat Power Model

Temperature

Switching 

Activity

time

Stress Factor

Technology 

Parameters

HCI Model

Vth
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(t)
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(t)

...

Vth
c2

(t)
Power

FIGURE 8.5: Block diagram of the NFP evaluator

Temperature profiles are generated with HotSpot6 [Huan06], which is an accurate, open

source tool for die temperature estimation. HotSpot is based on the model presented in 8.3.2.1.

It is built on an equivalent circuit of thermal resistances and capacitances that correspond to

microarchitecture blocks and essential aspects of the thermal package. It receives the dimen-

sions of the chip and the constituent blocks and also the power dissipation of each block at the

sampling point and outputs the temperature.

6http://lava.cs.virginia.edu/HotSpot/index.htm

http://lava.cs.virginia.edu/HotSpot/index.htm
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HotSpot provides two degrees of accuracy. In the first method known as block model, the

temperature can be calculated for each block, separately. The block model is fast, but less accu-

rate. Grid model offers the choice of another more accurate, but relatively slower temperature

estimation.

Using the both HotSpot models for the case study DUAs and comparing the results, we

found that the maximum temperature difference in both DUAs is at most 5◦C. This temperature

inaccuracy leads to total performance violation (in terms of transistor delay) of less than 1%,

which is negligible. Hence, to obtain more speed up, the block model is used here for aging

evaluation purposes. We assume that all transistors within a block have the same temperature

and hence temperature fluctuations within the DUAs are neglected.

The power dissipated by the SoC at the time interval (t1, t2] is considered as the sum of

the energy required by the DUA and the rest of the system, mostly the microprocessor in that

time interval. Power is inherently a structural property [Zhon06], so the DUA power dissipation

for each window is calculated using the fine-grain model from section 6.2.2.1. The power

dissipated by the microprocessor and other cores are calculated using McPat7 [Li09]—an open

source, architecture level power estimation tool.

McPat (Multicore Power, Area, and Timing) is an integrated power and area modeling

framework for multithreaded, multicore, and manycore architectures. It models dynamic, short-

circuit, and leakage power for the target architecture and supports comprehensive early stage

design space exploration for multicore and manycore processor configurations ranging from

90nm to 22nm and beyond. Beside power, McPat also estimates the chip area which is required

by HotSpot.

The NFP evaluator implements the HCI and NBTI aging models presented in Section 8.3.1.

At the end of each evaluation window, the total power estimated for that window along with the

area is sent to HotSpot to calculate the average temperature in that window. In the meanwhile,

the average observables (NBTI and HCI stress factors) are obtained from the gate level simula-

tor. Based on this data, for each transistor in the DUA, the aging evaluator calculates the change

in the threshold voltage over the evaluation window.

7http://www.hpl.hp.com/research/mcpat/

http://www.hpl.hp.com/research/mcpat/
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The framework supports concurrent aging evaluation of multiple DUAs: The RT and gate

level simulators for separate DUAs run in parallel and can be distributed across different ma-

chines. To accelerate the evaluation of the models, the aging evaluator can also be split into

multiple jobs handling different mechanisms and/or different DUAs.

The aging Evaluator communicates with the aging analyzer using TCP/IP protocol. The

mutual communication between the aging analyzer, the system level simulator and the RTL

state predictor is also done using TCP/IP protocol. The NFP Evaluator works as an indepen-

dent server, so, it can be run on a different machine. This feature facilitates the server-parallel

simulation strategy.

8.5.4 Validation Experiments

To verify the multi-level transaction/gate level modeling accuracy, the system is modeled at

RT/gate level and the simulation results are compared. The system model is simulated using a

commercial tool. The bus traffic at the interface to the IDCT accelerator and the FPU is captured

in form of a value change dump (VCD) file. The structural gate level model of the DUA (either

the IDCT accelerator or the FPU) is then simulated in the Java-based aging simulator using the

VCD file as stimulus.

The applications run in the validation experiments are equivalent to those analyzed with

the proposed method (the processor runs the very same software). In the proposed method,

the system is modeled at transaction level and the fast-forwarding method is used to improve

the gate level simulation performance. For the validation, a cycle-accurate RTL system model

is used, and the gate level simulation is run cycle-accurately without fast-forwarding. The

validation experiment’s output is the low level observables.

For transistor c, the reference observable, Oc(t), is acquired from the validation experiment

while its estimation, Ôc(t), is provided by the multi-level simulation approach. The absolute

estimation error is:

ec
O(t) = |Oc(t)− Ôc(t)|
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The accuracy of the proposed method is measured as a mean error over all constituent tran-

sistors c ∈ C at the end of simulation time t = T :

Error =
1

T · |C| ∑
c∈DUA

ec
O(T )

To verify the aging estimation accuracy, the system is simulated for hundreds of millions

cycles. We evaluate the aging-induced threshold voltage degradation for each transistor in the

DUA. The accuracy and performance of the proposed method is compared to the results from the

accurate, reference simulation. At the end of each evaluation window ti, the threshold voltage

degradation of each transistor c∈DUA obtained with the proposed method, denoted by ∆V̂ c
th(ti),

is compared to the value obtained in the reference simulation, denoted by ∆V c
th(ti). The absolute

estimation error for transistor c is defined as:

ec
Vth

(ti) = |∆V̂ c
th(ti)−∆V c

th(ti)|

The accuracy of the proposed method is measured as the mean square error (MSE) over the

threshold voltage degradation for all constituent transistors in the DUA:

MSE(ti) =
1

|DUA| ∑
c∈DUA

(ec
Vth

(ti))2 (8.8)

To compare the obtained accuracy with the state-of-the-art approaches based on random

stimuli, as in [Noda10], additional comparative experiments are conducted. In these exper-

iments, random stimuli are applied to the DUAs and the average observables are evaluated.

These approximated observables are fed to the aging models to calculate the threshold volt-

age degradation of each transistor in the design. The output is compared with the reference

simulation which considers the actual system workload (application).

Since a thorough, cycle-accurate NFP evaluation is very time consuming and requires huge

amounts of storage, we use the proposed method with the window size of 10 clock cycles

instead of cycle-accurate as reference. Our experiments show that the resulting error is below

0.5×10−5%/day wit respect to cycle-accurate evaluation.
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8.5.5 Experimental Results

This section verifies the performance of the piecewise aging evaluation by showing the experi-

mental results for a set of selected experiments. A complete collection of experimental results

can be found in Appendix A.

Section 8.5.5.1 presents the aging prediction performance and accuracy gained by the piece-

wise evaluation approach. It shows that the piecewise evaluation brings considerable speed

up with marginal loss of accuracy. Section 8.5.5.2 discusses the accuracy of the multi-level,

window-based simulation.

8.5.5.1 Evaluation Accuracy vs. Speed Up

Table 8.1 shows the efficiency and accuracy of the piecewise evaluation method for the JPEG

application running on the FPU core. Table 8.2 presents the results for the same application run-

ning on the IDCT core. The first column shows the window size while the next three columns

express the required time for the RTL simulation, the gate level (GL) simulation and the piece-

wise aging evaluation, respectively. The RTL simulation results in a small performance over-

head, but enables a huge simulation speed up due to the parallelization of the gate level sim-

ulations. The NFP evaluation time dominates the simulation time for small window sizes, but

it drops significantly as the window size grows. The presented speed up considers the time for

the gate level simulation and the piecewise evaluation. Columns 6 and 7 show the relative error

growth for NBTI and HCI mechanisms, respectively.

TABLE 8.1: FPU-based 8x8 pixel image JPEG decoding

Win. RTL GL Evaluation speed up Error [%/day]

size sim.[s] sim.[s] [s] [x] NBTI HCI

10 160.9 11430.8 75286.1 1 ≈ 0 ≈ 0
102 46.7 4471.1 2745.7 12.0 0.001 0.0001
103 35.5 1810.6 318.8 40.7 0.003 0.0003
104 35.1 1581.0 35.5 53.6 0.004 0.0008
105 34.8 1476.6 5.9 58.5 0.005 0.0017
106 34.3 1379.1 1.6 62.8 0.007 0.0017
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As the window size grows, the simulation time drops significantly while the resulting loss of

accuracy is marginal. The NFP evaluation time dominates the simulation time for small window

sizes, but it reduces dramatically as the window size grows.

For the IDCT-based JPEG application, as shown in table 8.2, the speed up increases re-

markably with the window size. The piecewise evaluation with window size of 100 cycles is

4.7x faster while the window size of 106 cycles is 185.6x faster than the reference simulation.

Moreover, the error grows only slightly as the window size increases.

TABLE 8.2: IDCT-based 8x8 pixel image JPEG decoding

Win. RTL GL Evaluation speed up Error [%/day]

size sim.[s] sim.[s] [s] [x] NBTI HCI

10 22.4 5545.9 14714.5 1 ≈ 0 ≈ 0
102 2.8 2711.8 1572.8 4.7 0.0003 0.0002
103 0.5 264.1 159.0 47.9 0.0011 0.0002
104 0.3 46.5 138.9 109.3 0.0011 0.0004
105 0.3 16.5 107.8 162.9 0.0012 0.0013
106 0.2 16.3 92.9 185.6 0.0065 0.0017

In the both experiments, the HCI as well as NBTI prediction error increase very slowly

with the window size growth while the evaluation speed up is significant. The error analysis

shows that the evaluation error does not exceed 0.007%/day for NBTI and 0.0017%/day for

HCI evaluation with 200 million simulation cycles in the worst case. The IDCT based JPEG

application gains more speed up compared to the FPU based JPEG application: FPU based

applications use the DUA more intensively, as the majority of CPU operations are offloaded

to the FPU. For this reason, the performance gain due to simulation fast forwarding is less,

compared to the IDCT core.

Fig. 8.6 and 8.7 show the overall speed up vs. the NBTI evaluation error for the FPU and

the IDCT core, respectively. The left y axis shows the speed up while the right y axis represents

the error growth in percent per day. The error lines are distinguished from speed up by point

symbols. As expected, the speed up increases as the window size grows, but it saturates for

large window sizes: As the window size gets larger, all slots of the gate level simulator become

occupied. For instance, for the window size of 100 cycles, the overall speed up ranges from

5x to 11x for the FPU, and from 5x to 8x for the IDCT core. For 104 cycles, the speed up is

from 63x to 487x for the FPU and from 109x to 312x for the IDCT core, depending on the
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application. Although the speed up for large window sizes is significant, the error rate is only

slightly increasing.
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In Fig. 8.8, the accuracy of the comparative experiments that neglect the application is

evaluated for 8x8 JPEG application running on the FPU and IDCT cores and compared against

the proposed approach. The piecewise NBTI evaluation error for the FPU core with the window

size of 106 cycles is 0.007%/day while the comparative experiment results in 0.037%/day. The

error of the proposed approach for the IDCT core ranges from 0.0003%/day for window size of

102 cycles to 0.0065%/day for 106 cycles. The comparative experiments result in 0.0435 %/day

error which is significantly higher.
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8.5.5.2 Modeling Accuracy

This section discusses the accuracy of the window-based, multi-level modeling in detail. To

this end, we run a set of experiments to verify the speed up gain vs. accuracy loss for the

transaction/gate level modeling. We show that the multi-level modeling is almost as accurate as

the cycle accurate models, but accelerates the simulations from 8x up to 431x.

To validate the accuracy of the multi-level modeling, two underlying assumptions are con-

sidered:

• The inputs to the DUA are stable, except when the DUA receives a transaction.

• The high level system model accurately predicts the temporal system behavior.

The first assumption holds for many point-to-point communication schemes, but is not valid

in general. In a bus-centric system, the DUA bus inputs are exposed to the switching activity

generated by other system components. This activity may affect the gates in the combinational

transitive fan-out of bus inputs. The incurred inaccuracy is marginal if all the interface inputs

are registered or gated, which is a standard design practice [Keat02].

The second assumption is justified as long as the temporal behavior of the high level DUA

model matches its actual hardware operation, i.e., the timestamps of the high level DUA work-

loads are accurate. In general, an exact match cannot be achieved due to the abstract nature of
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the system model. The window-based simulation approach remedies this effect by averaging

the observables in a defined time interval, i.e., the evaluation window.

Based on the following assumptions, the IDCT and FPU cores are evaluated with the afore-

mentioned applications. Table 8.3 shows the results for the IDCT core running several JPEG

decompression applications with images of size from 8×8 up to 256×256 pixels.

TABLE 8.3: JPEG decompression: Performance and accuracy

Image Application Prediction Validation time speed up Error

size length[cyc.] time [s] RTL [h] GL [h] [x] [%]

8×8 2.67 M 82 0.07 4.6 205 0.002
16×16 3.74 M 83 0.13 9.4 411 0.002
64×64 32.80 M 904 0.75 105.0 421 0.002

256×256 354.00 M 11145 12.20 1323.0 431 0.002

The application lengths in clock cycles are given in the second column. The third column,

“prediction time”, gives the time required by the proposed approach to calculate the stress fac-

tors. Column 4, “validation time”, gives the time required by the validation experiments for the

RTL system simulation, and the DUA gate level aging simulation. The speed up of the proposed

method is evaluated with respect to the total validation time at RT and gate level. The proposed

prediction method is faster than the validation experiments from 205 up to 431 times.

The mean error is stable at 0.002%. This error results mostly from the inaccuracy of tempo-

ral modeling at system level: The high abstraction level results in a slight mismatch of the total

application length (and the timing of DUA workload) in the transaction and RT level simulation.

However, in case of the examined applications, both the accuracy and performance gain of the

proposed method improve as the application length grows.

TABLE 8.4: FPU applications: Performance and accuracy

Image Application Prediction Validation time speed up Error

size length[cyc.] time [s] RTL [h] GL [h] [x] [%]

IIR 3.7 M 0.37 0.17 3.4 9.7 0.003
FIR 18.5 M 1.00 0.55 7.7 8.2 0.001
FFT 24.4 M 0.72 0.58 7.6 11.3 0.005
IFFT 217.0 M 5.59 4.59 103.0 19.3 0.006
JPEG 121.0 M 10.63 3.46 77.4 7.6 0.002
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The FPU core is evaluated in several signal processing applications, as shown in table 8.4.

As discussed before, in presence of the FPU, several CPU operations are turned over to it.

Therefore, compared with the previously discussed JPEG applications, the DUA is used more

intensively. For this reason, the performance gain due to the simulation fast forwarding is less,

compared to the previous results. Nevertheless, the proposed method considerably reduces the

effort of the gate level simulation, and achieves a minimal speed up of 7.6x with an average

error below 0.006%.

Fig. 8.9 shows a histogram of NBTI stress factor estimation error evaluated for the FPU

applications. In all the scenarios, more than 70% of the stress factors are estimated with an

error below 1%. The maximum estimation error is below 3%. This error is observed for the

transistors that constitute the gates of the transitive combinational fan-in of the Wishbone bus.

It results from the assumption that the primary DUA inputs are stable during the autonomous

simulation, as discussed before.
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FIGURE 8.9: FPU applications: Error histogram

8.6 Summary

This section applied the piecewise evaluation approach to estimate aging degradation due to

NBTI and HCI mechanisms for a typical SoC. The simulation time is split into evaluation win-

dows, during which the average system operating conditions are observed. NFP models are
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partially linearized with respect to their parameters and evaluated once per window. The accu-

racy of the NFP evaluation can be adjusted by changing the window size. Experimental results

for NBTI and HCI aging prediction show that with a window size of 1 million clock cycles,

the achieved speed up ranges from 25x to 35893x, while the average estimation error grows

from 0.0022%/day to 0.065%/day for NBTI and 0.0013%/day to 0.0018%/day for HCI aging

mechanism.
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Chapter 9

Concluding Remarks

The main challenge of every semiconductor company is to introduce a new generation of hard-

ware chips in a better quality and a larger quantity in a short time. To compensate the high

investment necessary to produce more complex hardware components in newer technologies,

a company must be able to develop and produce new products with the fastest rate and the

minimum cost [Doer07]. However, product quality and yield start at the design stage and are

not simply a manufacturing responsibility. Any potential problem should be discovered and

eliminated as close to the beginning of the product cycle as possible [Chia07].

Beside the exponential increase of complexity which poses problems to functional behavior

of silicon chips, smaller feature sizes introduce new challenges to non-functional properties:

Checking NFPs such as on-chip temperature as well as the impact of the environment on the

system, that were ignored or only considered in rare application areas in the past, are becoming

more and more focused on during system design because of nanoelectronic effects [Vieh09];

new nano-scale transistors are more prone to variability which manifest as violation of NFPs

such as components reliability and performance [Bork05]. On the other hand, rapid move to

new technologies leave older technologies immature and prevent the development of novel ap-

proaches to deal with the emerging challenges [De99]. As the dimensions of NFPs increase, it

becomes more important to understand their impact on the most sensitive design parameters at

early design phases. This results in optimized performance and yield which is the final goal of

the production.
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This work focuses on non-functional properties as an important factor in today’s semicon-

ductors. It proposes a fast evaluation approach with adjustable accuracy at early design phases.

An NFP is usually expressed with a model which describes the dependencies and effective

parameters. Several parameters change the NFP during the lifetime of the system. The effect of

these parameters should be considered during short- and long-term NFP evaluations for accurate

NFP prediction. The proposed multi-level simulation methodology is able to predict NFPs at

more than one abstraction level, thus providing fast, yet accurate evaluations. The proposed

“piecewise evaluation” approach for long-term NFP analysis allows dynamic changes on NFP

parameters during the evaluation and at discrete timesteps. Therefore, the effect of dynamic

variations on NFPs is reflected in the evaluations.

The accuracy heavily depends on the accuracy of the provided parameters. “Window-based,

multi-level simulation” methodology provides an efficient approach to estimate operational pa-

rameters accurately considering system workload.

The presented methodologies can be used at early design phases to study the effect of dy-

namic variations on deciding non-functional properties for different design choices. In addition,

they can be used to verify architectural level solutions to mechanisms such as aging.

The authors in [Chan11] show that just using switch level models to verify architecture

level aging mitigation techniques result in inaccurate estimations. The multi-level simulation

and the piecewise evaluation approaches can be used to verify architectural techniques such as

power gating [Cali09, Cali12], dynamic instruction scheduling [Sidd10, Abel07] and lifetime

awareness [Srin04b, Srin05] at early design phases using multi-level models.

9.1 Future Directions

The results of this work may provide the foundation for a couple of further research directions.

The piecewise evaluation evaluates NFP models at certain timesteps, called windows. The

size of the window is decided considering the required accuracy for the evaluations. However,

as the window size is decided, it would remain constant for the length of the simulation. The
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accuracy of the evaluations can be improved by using adaptable window sizes for the evalua-

tions. After certain timesteps, the accuracy of the evaluations can be verified, and the size of the

window can be adjusted to the new value.

The evaluation speed can be improved using GP-GPUs (General Purpose Graphics Process-

ing Units)—specialized manycore processors that provide considerable processing power for

delivering high-performance graphics. The piecewise evaluation approach can well be moved

to GPU architectures to provide more evaluation speed.

Several approaches in literature aim at proposing on-chip sensors to mitigate aging effects,

specially NBTI [Kean10] and HCI [Kim10]. The piecewise evaluation approach can be used

in conjunction to these approaches to place the monitor. As the gate model maps transistor

characteristics to gate level components, the piecewise evaluation can well find the transistors

which may fail due to aging.

Other research directions may include using the piecewise evaluation for aging-aware static

timing analysis to recognize critical paths. As the proposed approach is not limited to a particu-

lar NFP, it can be used to explore special architectures, such as low-power or high performance

architectures.
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Appendix A

Additional Result Tables

This appendix presents additional results for several applications running on the FPU and IDCT

cores.

TABLE A.1: FPU-based IIR application

Win. RTL GL Eval. speed-up [x] Error [%/day]

size sim.[s] sim.[s] [s] GL Eval. Overall NBTI HCI

10 208.3 7984.9 165793.6 1 1 1 ≈ 0 ≈ 0
102 58.5 2541.5 42926.2 3.1 3.9 3.8 0.0018 0.0017
103 10.4 834.0 6152.5 9.6 27.0 24.9 0.0027 0.0026
104 9.9 638.0 969.9 12.5 171.0 108.1 0.0031 0.0030
105 9.2 609.1 106.5 13.1 1557.2 242.9 0.0032 0.0030
106 8.6 577.7 16.9 13.8 9790.0 292.3 0.0390 0.0031

TABLE A.2: FPU-based FIR application

Win. RTL GL Eval. speed-up [x] Error [%/day]

size sim.[s] sim.[s] [s] GL Eval. Overall NBTI HCI

10 55.1 1922.6 9072.3 1 1 1 ≈ 0 ≈ 0
102 16.2 331.3 1113.0 5.8 8.1 7.6 0.0005 0.0004
103 14.0 185.0 70.8 10.4 128.1 43.0 0.0010 0.0006
104 13.5 124.0 12.3 15.5 737.1 80.7 0.0011 0.0008
105 12.0 110.5 7.4 17.4 1232.1 93.3 0.0046 0.0008
106 11.5 108.1 4.5 18.0 1994.8 97.5 0.0089 0.0009
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TABLE A.3: FPU-based IFFT application

Win. RTL GL Evaluation speed-up [x] Error [%/day]

size sim.[s] sim.[s] [s] GL Eval. Overall NBTI HCI

10 746.9 6998.0 15003.9 1 1 1 ≈ 0 ≈ 0
102 91.8 813.0 1770.5 7.5 8.5 8.2 0.0014 0.0009
103 21.5 487.2 192.5 12.5 78.0 31.0 0.0015 0.0012
104 10.8 393.1 24.4 15.5 614.3 50.5 0.0045 0.0013
105 8.3 320.7 5.2 19.0 2868.8 64.7 0.0063 0.0013
106 5.0 290.2 2.4 21.0 6262.1 72.1 0.0078 0.0014

TABLE A.4: FPU-based FFT application

Win. RTL GL Evaluation speed-up [x] Error [%/day]

size sim.[s] sim.[s] [s] GL Eval. Overall NBTI HCI

10 204.4 6861.1 12375.1 1 1 1 ≈ 0 ≈ 0
102 56.3 1940.0 1728.8 3.5 7.1 5.2 0.0004 0.0008
103 26.9 445.7 160.2 15.4 77.2 31.7 0.0005 0.0012
104 18.9 284.9 21.5 24.1 575.2 62.8 0.0010 0.0012
105 19.5 272.8 3.7 25.1 3381.2 69.6 0.0030 0.0014
106 19.3 215.3 1.1 31.9 11301.5 88.9 0.0035 0.0015

TABLE A.5: IDCT-based 16x16 pixel image JPEG decoding

Win. RTL GL Evaluation speed-up [x] Error [%/day]

size sim.[s] sim.[s] [s] GL Eval. Overall NBTI HCI

10 44.0 5234.7 27634.4 1 1 1 ≈ 0 ≈ 0
102 5.7 790.6 3551.0 6.6 7.8 7.6 0.0007 0.0009
103 1.0 193.4 435.8 27.0 63.4 52.2 0.0015 0.0012
104 0.5 54.0 57.8 96.9 477.7 293.9 0.0022 0.0012
105 0.5 18.4 9.7 284.7 2858.6 1171.5 0.0026 0.0013
106 0.4 13.8 3.4 379.5 7991.4 1905.4 0.0061 0.0017

TABLE A.6: FPU-based 64x64 pixel image JPEG decoding

Win. RTL GL Evaluation speed-up [x] Error [%/day]

size sim.[s] sim.[s] [s] GL Eval. Overall NBTI HCI

10 568.6 48450.6 136906.0 1 1 1 ≈ 0 ≈ 0
102 67.5 6530.7 39669.0 7.4 3.4 4.0 0.0010 0.0013
103 11.4 948.1 7093.6 51.1 19.3 23.0 0.0023 0.0016
104 7.1 282.1 386.7 171.8 354.0 277.1 0.0025 0.0021
105 6.6 196.5 49.5 246.5 2764.1 753.2 0.0051 0.0038
106 6.4 182.6 5.9 265.3 23338.9 983.5 0.0089 0.0064
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