
Institute of Architecture of Application Systems
University of Stuttgart
Universittsstrae 38
D–70569 Stuttgart

Studienarbeit Nr. 2446

Improving and updating the
Nefolog system

Na Chen

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dr. Vasilios Andrikopoulos

Commenced: December.12, 2013

Completed: June.13, 2014

CR-Classification: D.2.1, D.2.9, H.3.3, H.5.2

Abstract

An increasing number of companies are offering nowadays Cloud Computing services.
For example, they offer different services like doing calculations on virtual machines with
different CPU cores and RAM sizes. A growing number of enterprises take advantage of
these services for efficient data processing. The Nefolog system helps users to identify the
most cost efficient cloud provider for their needs. However, the existing system provides
RESTful services and does not offer a graphical interface for direct interaction with the
users. This work designs and implements such an interface as a Web application, so that
users can get information out of the Nefolog system in an easy to use manner.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition and Goal . 2
1.3 Outline . 2

2 Background 5
2.1 Fundamentals . 5
2.2 Cloud Types . 5
2.3 Migration to the Cloud . 9

2.3.1 Migration Type . 9
2.3.2 Decision Support Systems . 9

2.4 The Nefolog Decision Support System . 10
2.4.1 Database of Nefolog system . 10
2.4.2 Decision Support Services . 13
2.4.3 Basic knowledge for the web technology 13

2.5 Summary . 14

3 Specification & Design 15
3.1 Project overview . 15
3.2 Requirements . 15

3.2.1 Non-Functional Requirements . 15
3.2.2 Functional Requirements . 15

3.3 System Specification . 17
3.3.1 Use Case Diagram . 17
3.3.2 The graphical user interface . 17

3.4 Summary . 22

4 Implementation 23
4.1 Communication to Nefolog . 23
4.2 The graphical user interface . 23

4.2.1 Building trees . 25
4.2.2 Candidate search view . 32
4.2.3 Implementation of the graphical user interface 33

5 Evaluation 41
5.1 Nefolog Validation . 41
5.2 Comparison with MiDSuS . 43

6 Conclusions 47
6.1 Summary . 47

v

6.2 Future Work . 48

Bibliography 49

vi

List of Figures

1.1 Structure of Thesis . 3

2.1 Cloud Deployment Models [3] . 6
2.2 Software as a Serice (SaaS) [4] . 7
2.3 Platform as a Service (PaaS) [3] . 8
2.4 Infrastructure as a service(IaaS) [3] . 8
2.5 Conceptual Model of Decision Support System for Cloud Migration[10] . . 11
2.6 Nefolog system . 11
2.7 Entity-Relation Diagram of Nefolog System[11] 12

3.1 The Use Case Diagram . 17
3.2 Mockup - Provider View . 18
3.3 Mockup - Service Type View . 19
3.4 Mockup - Offering View . 20
3.5 Mockup - Cost Calculation View . 21
3.6 Mockup - Offering Matcher View . 22

4.1 Restful Communication . 24
4.2 Tree starting from providers . 28
4.3 screenshot starting point from provider . 34
4.4 screenshot starting point from provider with configuration selected 34
4.5 screenshot starting point from service type 35
4.6 screenshot showing performance view . 36
4.7 screenshot of costcalculator function . 36
4.8 screenshot of costcalculator result . 37
4.9 screenshot of costcalculator result2 . 37
4.10 screenshot of candidate search . 38
4.11 screenshot of candidate search 2 . 39
4.12 screenshot of tooltip for cost calculator . 40

5.1 Evaluation - Cost calculation screen 1 - Search and select offering 42
5.2 Evaluation - Cost calculation screen 2 - Entering of details 42
5.3 Evaluation - Cost calculation screen 3 - Results of calculation 43
5.4 screenshot of MiDSuS . 44
5.5 Screenshot of MiDSuS . 45
5.6 Evaluation - Candidate search view . 46

vii

List of Tables

3.1 Non functional requirements . 16
3.2 Functional requirements . 16

4.1 URL Table . 24

5.1 Cost calculation service . 43
5.2 Candidate search comparison . 44

ix

Listings

4.1 Function getRestDataFromURL . 25
4.2 http://localhost:8080/nefolog/providers 26
4.3 http://localhost:8080/nefolog/providers/Google 27
4.4 http://localhost:8080/nefolog/offerings/AppEngine 27
4.5 http://localhost:8080/nefolog/offerings/AppEngine/configuration 33 . . . 27
4.6 source code the tree from provider . 28
4.7 Code block to fill the performance block 29
4.8 Code block to get necessary parameters for cost calculator 30
4.9 css structure . 30
4.10 Dynamical building of the input form for the calculator 31
4.11 Build URL to Calculator and get the result 31
4.12 Query for getting variables for offering matcher 32
4.13 Function getUnitFromFieldname . 38

xi

1 Introduction

Cloud computing develops quickly from day to day. For many companies, this brings
advantages like resource conservation and reduction of costs because it is not necessary
to run an own computer center. Another benefit is that the use of cloud computing
normalizes the IT-System and gets it safely without having to do run redundant hardware
or doing backups by the company itself. This chapter introduces the motivation, the
specific problems, as well the outline of this thesis.

1.1 Motivation

Nowadays, almost all companies need IT-support independent of if the size of the com-
pany is large, medium, or small. IT-support is also needed forall kinds of business, both
in the IT domain, but also in other domains, e.g. chemical companies etc. IT-technical
support plays an important role for the company infrastructure. A successful IT-support
can also bring profit for the company However, building the IT-department it costs the
company relatively much investment, employees, equipment, and space. For large size
companies using cloud services or having own equipment is possible. Such companies
anyway have a large computing department with professional IT-engineers and advanced
equipment. However, for a small size of companies, they don’t have a professional team
for the IT-system. Here cloud computing could be a good solution for them, so they
don’t need to employ people for the IT-service by themselves, also they don’t need a
large server for storing the data. Another advantage is that the hardware needed for
processing can be scaled with demand. If the company at peak times needs more per-
formance than usually this can be easily handled using clould services. Secondary but
very important services like doing backups of the data are included in the service.

For example, if small company uses Google Apps and Google Docs, not just for data
processing, like to creating tables or powerpoint, the data are also always saved in the
same place and can be accessed wherever you are. The advantage of giving the data to
the provider is that the provider takes care about that the resources in the computing
center are fit for the need as well as data protection is taken care about. Small or Mid-
size companies may not have the time to pay attention on such details. Instead of that
such companies can concentrate on their main business safely end efficiently.

Because of that Mid-size companies are the main users for cloud computing. First
those companies have own IT technical personal but they do not pay attention on how
to build the basic technical infrastructure. They are challanged on how to integrate the
IT into the business processes to maximize the benefit for the company. Secendly mid
sized companies are often in the state of expansion. In this process the focus is mostly

1

1 Introduction

on the own business and not on the IT-Department.

These days, more and more cloud computing providers are bringing lots of different
offerings, main like data processing and data storage. The cloud market is very seg-
mented with many kinds of configurations, performance and location offerings. At dif-
ferent providers all of those might be called differently. The user wants to find the best
solution for the problem with the lowest costs. As the market for Cloud computation is
growing rapidly the prices of the services are changing fast. In addition, new offerings are
coming up with higer performances. Because of this rapid changes the knowledge base
of any decision support system for application migration needs to be kept up-to-date by
steadily updating the database with new information from the different providers. In
this way the user can find the exact solution in the database.

For the purposes of this work, we assume that the users are searching for their solu-
tions in the Nefolog system database.[1] An interface that the users can directly use is
necessary for this purpose. For getting a user friendly interface it is planed to create
a dynamic web page where the user can easily find database entries. This should be
possible without the user manually having to query the database for offerings.

1.2 Problem Definition and Goal

The user can give a request with it’s needs to the system. The visualization system then
takes the request and summarizes all the information from the providers. The system
should then give an overview so that the user can find the best offering. In the end the
system should calculate the costs resulting about using a solution. The Nefolog database
which is used by the visualization contains the web services defined by providers and
offerings. The offerings are segmented into service type and configuration.

1.3 Outline

This thesis consists of six chapters, the first chapter is introducing the main idea of this
work. Chapter two introduces the technology background. Like the Figure1.1 shows,
Chapter three to Chapter five present the specification of the system, the design and
the details of the , as well as the evaluation of this work. The thesis ends with some
conclusions and future work.

2 Improving and Updating the Nefolog system

1 Introduction

Figure 1.1: Structure of Thesis

Improving and updating the Nefolog system 3

2 Background

In this chapter will introduce some background about cloud computing, like what is
cloud, the different types of cloud, three kinds of Cloud Service Models.

2.1 Fundamentals

Cloud computing portends a major change in how store information and run applications,
instead of running programms and data on an individual desktop computer, everything
is hosted in a nebulous assemblage of computers and servers accessed via the internet. [2]
That is the integration of the development of Grid Computing, Distributed Computing,
Parallel Computing, Network Storage Technologies. The core idea is to run a program
on many connected computers at the same time. The user may be using a different own
computing system. The user does not need to understand how the infrastructure is built
like. The cloud offers the possibility to call programs or applications or to store data or
doing other computing tasks through the internet.

The idea of cloud computing went through four phases at first the Power Plant model
[2]:The idea of cloud computing was to have a cheap replacement for an uninterruptible
power supply (UPS). The second phase was the Utility Computing: in the 1960s the
computing devices were very expensive, not every company could afford them, the idea of
utility computing should solve the problem. The server, storage system and application
were integrated from different locations to share them to the users. The user could then
pay dependent on usage. The idea of Grid Computing is to distribute a big computing
prolem to small segments. These segments can then be calculated in parallel on devices
with low compution capabilities.

2.2 Cloud Types

Currently Cloud-based applications provide a wide range of solutions to the user. The
National Insitute of Standards and Technology (NIST) describes the cloud solutions
based on the system’s Deployment Models and the Cloud Service Models, as shown in
Figure 2.1.

• Community Cloud: Two or more organizations or companies from the same branch
share the private cloud of each other which only can be accessed by the members
of the community.

• Hybrid Cloud: A Cloud that consists of two or more public, private or community
clouds.

5

2 Background

Figure 2.1: Cloud Deployment Models [3]

• Public Cloud: Makes resources, such as applications and storage available to the
general public over the internet. Using a public cloud is least intensive, even could
be free, but that is less secure.

• Private Cloud: Owned by a specific entity and normally used only by that entity
or one of its customers. A private cloud offers increased security at a greater cost.
[3]

There are three kinds of Cloud Service Models available: Software as a Service (SaaS),
the application for the user is web-based. Platform as a Service (PaaS) which provides
a computing platform and a solution as service. A PaaS solution includes hardware,
operating systems, development tools and administrative tools. Infrastructure as a ser-
vice(IaaS) is the most basic cloud service model, the provider offers computers or virtual
machines or storage. Those three models are independent, but also have some depen-
dency relationships.

• Software as a Serice (SaaS): As the Figure 2.2 shows, SaaS is the most common
and most earliest cloud computing service. Through the internet browser the user
can directly connect with application on cloud. The provider offers to maintain
the hardware and software of cloud. The cost is depend on the way the service is
used and the amount of the users. For example like Google Apps, that included
Gmail, Google Calendar, Google Docment, and other online-based office tools.
The advantages of the SaaS solution for the user is that it is easy to use. When
there is an internet connection available the user can access the Saas service at
any time. The user does not need to care about the technology behind the service.
Another advantage of this is safety of the storage and security of data transfers can
be granted. This solution uses the basic web technologies like HTML, JavaScript
and CSS.

• Platform as a Service (PaaS): The user creates the software, uses the tools and
libraries from the cloud provider. The user also cares about controlling the soft-
ware developing and configuration settings, but doesn’t care the maintrainance

6 Improving and Updating the Nefolog system

2 Background

Figure 2.2: Software as a Serice (SaaS) [4]

of the servers, storage, and operating systems, like the Figure 2.3 shows. Exam-
ples for this are the Google App Engine, Windows Azure Plattform and Heroku.
The Windows Azure Plattform is the PaaS resolution product from Microsoft, it
provides a cloud services operating system and a set of services to support easy
development and operation of applications for the platform. The platform provides
the functionality to build and manage applications that span from consumer Web
to enterprise scenarios. The solution under this are usally technologies like REST
(Representational State Transfer), parallel processing and distributed cache.

• Infrastructure as a service(IaaS): In this case the user gets infrastructure as ser-
vice. The provider offers a datacenter where the client gets one or more physical
or virtual machines with storage and network connectivity. The user is then still
responsible for installing and maintaining the software on the system. Dependent
on the technology used this can be also a virtual machine, so that the acquisition
cost will be reduced. The advantage of using this technology is that the IT in-
fratructure can scale with the need of the customer. If the customer for instance
needs more CPUs this can be simply realized by changing the configuration of the
virtual machine. The same applies for the needed memory or mass data storage,
like the Figure 2.4 shows. Examples for this are: Amazon EC2, IBM Blue Cloud,
Cisco UCS and Joyent. Distributed storage system like Google BigTable can be
used for mass data storage.

Improving and updating the Nefolog system 7

2 Background

Figure 2.3: Platform as a Service (PaaS) [3]

Figure 2.4: Infrastructure as a service(IaaS) [3]

8 Improving and Updating the Nefolog system

2 Background

2.3 Migration to the Cloud

2.3.1 Migration Type

As the research by Andrikopoulos et al. discusses[5], there are four types of migration:

• Type I: Replace component(s) with cloud offering: One or more components are
replaced by cloud services, that is the least invasive type of migration. When
switching to a cloud offering istead of a local component it is possibly necessary to
rewrite some interfaces or doing other adaptations. For example when people use
the Google App Engine Datastore instead of the local MySQL database.

• Type II: Partially migrate some of the application functionality to the Cloud:
Those components are from one or more application layers and have an interconnection-
relationship. For example instances to host data and business logic for HIC use
Amazon SimpleDB and EC2.

• Type III: Whole software stack migration of the application to the cloud: that
means to encapsulate the application of a whole software stack in the VMs on the
cloud. That is also the most common type migration to the cloud.

• Type IV: Cloudify the application: The application is completely migrationed: The
application is re-engineered as a composition of cloud services and runs exclusively
in the cloud.

Besides to this also other decision systems like the CloudGenius and the Cloud Adoption
Toolkit do exist. The CloudGenius decision system was developed by by Menzel et al.
[6]. Regarding to Xiu [1] this is a continual evolutionary migration process. The Cloud
Adoption Toolkit is another approach created by Khajeh-Hosseini et al. [7]. This toolkit
includes a collection of tools which focus on both cost calculation and socio-technique.
It is based on a checklist of questions.

2.3.2 Decision Support Systems

A DSS is an interactive, flexible and adaptable computer based information system that
utilises decision rules, models, and model base coupled with a comprehensive database
and the decision maker’s own insights, leading to specific, implementable decisions in
solving problems that would not be amenable to management science models per se.
Thus, a DSS supports complex decision making and increases its effectiveness. [8]

The following five categories of DSS, there the Driven is the tool or component, that
provide the domiant functionality in the Decision Support System.[9]

• Data-Driven DSS are the most common of those five category of the DSS. They
are used for analysis of large amounts of structured data. The system provides
operation with use the internal company data and some external data, like for
example the data warehousing, analytical systems.

Improving and updating the Nefolog system 9

2 Background

• Model-Driven DSS. A system that is using some kind of model like a financial
model, an optimization model or a representational model. Model-Driven DSS
emphasize access and manipulation of the model.

• Knowledge-Diven DSS, can suggest or recommend actions to the managers, and
are person-computer systems with specialized problem-solving expertise. There
the expertise like kind of to understand the problem from a particular domain and
to solve the problem.

• Document-Driven DSS, these DSS is focused on helping managers to retrieve and
manipulate unstructured information or documents from different electronic for-
mats. Those DSS can be divided in oral, video and written.

• Communications-Driven and Group DSS, pays attention on communication get
collaboration and coordination between groups of people, enables share the infor-
mation and support the decision tasks from the group. For example the audio
conferencing is supported from the group.

When the user wants to find the appropriate offering from the system, there will be
some kinds of decisions, that they should be made. Between the different decisions,
the user also need take care about the relationships and the influences. The research
by Andrikopoulos et al [10] introduced the basic decisions that need to be made when
migrating an application to the cloud. Like the Figure 2.5 shows, there is a model of de-
cision support system, desision and task with different actions, the decisions (distribute
application, select service provider/offering, defne multi-tenancy requirements and defne
elasticity strategy). Those decisions are supported by seven different tasks (work load
profling, compliance assurance, identifcation of security concerns, identifcation of ac-
ceptable QoS levels, performance prediction, cost analysis and effort estimation). The
transparent arrows show the influences between them. For example in this figure that
the performance prediction can descide the select service provider/offering, and effort
estimation can also send feedbacks to the select service provider/offering.

2.4 The Nefolog Decision Support System

Like the Figure 2.6 shows, there are two parts, one is the web application and other
is the Nefolog system which developed by Mingzhu Xiu in 2014 [1]. She built the web
services and the database, implemented the offerings matcher, and costs calculator. The
aim of the system is to help the customer to move components of applications to the
cloud. It helps to identify a suitable cloud provider service. In the end the Nefolog
system retrieves the values for the candidate offerings search service and offerings cost
calculation service from the database which is connected to the Nefolog system.

2.4.1 Database of Nefolog system

All of the functions and database in the Nefolog system are designed based on the
system MDSS [11], like this Entity-Relation Figure 2.7 shows. The Nefolog database

10 Improving and Updating the Nefolog system

2 Background

Figure 2.5: Conceptual Model of Decision Support System for Cloud Migration[10]

Figure 2.6: Nefolog system

Improving and updating the Nefolog system 11

2 Background

Figure 2.7: Entity-Relation Diagram of Nefolog System[11]

contains the data of six providers: Windows Azure, Amazon Web Services, Goolge,
Hp Cloud, Flexiscale and Rackspace. All of those providers offer multiple kinds of
offerings, which can be classifed in different 25 service types. One offering from one
provider can have multiple configurations, which are sorted by kinds of performance. For
example the Hp Cloud has offerings like HP Cloud Compute (Standard Instance Type),
with different configurations like for standard extra small, standard small, standard
medium and so on. The performace of the extra small cloud compute is with 1 HP
computation unit, one virtual core, 1GB RAM, and 20GB of disk space. The customer
can according to the self demand choose the configuration with compatible performance.
The cost of configuration is calculated by each calculation formula, different location,
and data transfer. The Nefolog database has a total 68 offerings, 547 performances, 656
configurations, 15 locations, 4890 different calculation methods (coefficient).

12 Improving and Updating the Nefolog system

2 Background

2.4.2 Decision Support Services

The advantage of the Web services is that they are platfom and program language-
independent, the user doesn’t need to worry about which kind of the platform or program
language was used, either Windows or Linux, either C or Java. All of the resources from
the database will be indentified by the URIs. The client side sends their request through
the query with URI to the server side. The server side does for instance a calculation
and sends the result back in standard representations like XML or JSON. In the Nefolog
system there are two important services: The candidate search service and the cost
calcultor service. Furthermore there are commands allowing to request the database
content like the available providers etc.

• Candidate Search Service The candidate search service is like a function of the
offering matcher. There are nonumerical performance characteristics and numerical
performance characteristics. Non numerical performance characteristics are used
for the operating system, the software license and IO. The other performance
characteristics are stored as numerical performance characteristics. Before the user
continues to the cost calculation service the information retrieved by the function
can be evaluated by the user. [1]

• Cost Calculator Service The cost calculations service consists of two parts. There
is a static calculator and a dynamic calculator available. The difference between
the static calculator and the dynamic calculator is that the dynamic calculator
needs additional logic. The total costs include the usage amout of costs, the data
transfer costs and the upfront costs. It also needs to be checked whether they are
served by the same data center, if not there could be a difference in the calculation.
[1]

2.4.3 Basic knowledge for the web technology

The following list of web technologies are nowadays very commonly used for the devel-
opment of interactive web pages. This is why they are also used for the implementation
of this project:

• JavaScript JavaScript is a programming language built into the web browser, that
is one of the best ways to add interactivity to website, because it’s the only cross-
browser language that works directly with web browsers[12].

• JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate
[13].

• Cascading style sheets CSS is a modern standard for the website presentation,
it can combined with a structural markup language like HTML, and XML. The
cascading style sheets provide Internet browsers with the specified visual structure
format [14].

Improving and updating the Nefolog system 13

2 Background

2.5 Summary

This chapter introduced some basic knowledge for the rest of this work like some cloud
types, migration types and also the Nefolog system. This background information of the
Nefolog system is the basic knowledge for this new work, because this new system will be
implemented as a web application based on Nefolog. In order to work it needs connection
to the web services of the Nefolog system, which does the calculation and accesses the
data from the database. The next chapter will explain the new web application with
requirements and specifications.

14 Improving and Updating the Nefolog system

3 Specification & Design

This chapter identifies the requirements for a decision support system extending the
Nefolog system to a requirements specification and design specification document.

3.1 Project overview

The Nefolog system consists of a database as well as a java server page offering web
services to access the data. It contains cloud computing providers with their offered ser-
vices and prices. The Nefolog system also contains a cost calculator which can compare
the price dependent on the services needed and which provider is used. The existing
Nefolog system is the base for a decision support system whose graphical user interface
which shall be described here in this document. It shall offer a user friedly access to the
existing providers, the available services and the resulting prices.

3.2 Requirements

To realize this project the following requirements should be used. It is didived into
functional and non functional requirements. The functional requirements shall describe
what functionalities should be offered by the system. The non- functional requirements
should describe the environmental requirements for the project e.g. the target operating
system.

3.2.1 Non-Functional Requirements

The non-functional requirements shown in Table 3.1 have been defined for this project.
HTML, javascript and CSS sheets should be used for the design of web application.
The user can access the Nefolog database dynamically. The web presentation of the
information is user-friendly.

3.2.2 Functional Requirements

Table 3.2 shows the functional requirements for the project. The visual Navigation of
the database will go through the available providers or service types. The access should
use the available RESTful API of the Nefolog system. A human oriented interaction
with the offerings matcher and a cost calculator shall be built, so that the user can get
the offering or price of offering efficiently.

15

3 Specification & Design

Table 3.1: Non functional requirements

Requirement ID Title Description

NFR1 Web based implementa-
tion

The implementation of the sys-
tem shall be done using Javascript,
HTML and CSS sheets.

NFR2 User interface The user interface should be imple-
mented allowing the user to dynam-
ically access date entries in the Ne-
folog database. This should be pos-
sible by using a web browser.

NFR3 Necessary user environ-
ment

In order to run the user interface for
the user a browser needs to be avail-
able as well as a network connection
to the server, or can be installed lo-
cally.

NFR4 User friendly presenta-
tion

The web based presentation of the
information retrieved by the Nefolog
shall be provided in a user-friendly
representation.

Table 3.2: Functional requirements

Requirement ID Title Description

FR1 A Web GUI shall
be available which
provides dynamic inter-
action with the Nefolog
system

Navigation through the available
providers, service types etc. shall be
possible. The access should build on
the RESTful API provided by Ne-
folog.

FR2 Interaction with offer-
ings matcher and cost
calculator

Human oriented interaction with
the the offerings matcher and cost
calculator services shall be possible.

16 Improving and Updating the Nefolog system

3 Specification & Design

Figure 3.1: The Use Case Diagram

3.3 System Specification

3.3.1 Use Case Diagram

Figure 3.1 shows the use case diagram of the project. The right side of the diagram shows
the Nefolog system which accesses the database. The Nefolog system itself is accessed
via restful communication. Because this project does not focus on the functionality of
the Nefolog system the right side of the figure is intentionally pictured without details.
The left side of the diagram shows the interaction of the system with the user. The user
can use the following features:

• Select a startpoint for browsing the Nefolog database

• Visualize the information in the shape of a tree, dependent on the startpoint

• Show the candidates matching the selected features

• Calculate the costs resulting on chosen specific provider with defined features

3.3.2 The graphical user interface

The graphical user interface is the main feature for this project. Therefore a user-friedly
representation of the system is essential. It should enable to user to use the system
without having to read a manual before. The user interface for this project shall be
implemented as a lightweight web interface. This means that the calculation intensive
operations should be running on the server. The communication to the client is based on
TCP/IP as low level transport layer. Therefore the client can run on the same machine
as as server but it can easily also run on another machine which has a network connection

Improving and updating the Nefolog system 17

3 Specification & Design

Figure 3.2: Mockup - Provider View

to the server. The protocol above is HTML, therefore no special application needs to
be installed on the client computer. The advantage of this is also that this enables a
cross platform usage. You can also use a client running any operation system as long as
it offers a web browser supporting HTML5 and Java script. It would also be possible
to render everything at the server and don’t use a script language at the client but
this would enhance the developlent effort of the system and would also lead to a higher
latency in case of a slow network connection. The latency describes the reaction time
between a user input and the response of the system. If this time is too long this has a
negative effect on the user experience.

Provider View

The intention of the main screen is to provide an interface for the user which allows to
easily search the database for providers. Afterwards it should be possible to trigger a
cost calculation.

The start point for browsing for providers is shown in Figure 3.2. The user first can
choose the startpoint for the intended search. This can be a provider an offering or a
search type. Depending on the choice a tree is built. The advantage of a tree is that it
gives a good top down overview. The user only can see the information based on the

18 Improving and Updating the Nefolog system

3 Specification & Design

Figure 3.3: Mockup - Service Type View

choice which was done before. From the performance point of perspective it offers the
possibility that the database query is done step by step as the user refines his choice.
Alternativerly to that it is also possible to do a general database query and give the java
script tree already all information.

In this screen the user firstly selected to start browsing from the providers. There-
for a tree spans with all providers listed in the database. Then the user can click on a
provider. If different price models are available the user can choose one. From there it
is then possible to calculate the price for the desired services.

Service Type View

The main screen in Figure 3.3 offers the selection of the start point for queries. This
screen is active if ”Service Type” was selected as a start point.

The service type start point is useful if a user already knows what service type is needed
e.g. Application server, web server... etc. The user can choose one and then further refine
the decision by choosing an offering. The result of the query is then a list of providers
offering what is needed. When this choice is done it is possible again to calculate the
costs.

Improving and updating the Nefolog system 19

3 Specification & Design

Figure 3.4: Mockup - Offering View

Offering View

The screen in Figure 3.4 is active if ”Offering” was selected as a start point.

This view should be chosen if the needed offering is the base of the request. Offering
means a specific cloud service, web site, sql database etc offered by a cloud provider, e.g.
Amazon Web Services’ Elastic Cloud Computing (EC2) solution. In the next step the
query can be refined and then the calculation of the costs can be triggered.

Cost Calculation View

Choosing a provider from the main screen is possible in the different view modes men-
tioned above. Independent from which screen a provider was chosen it is possible to
calculate the costs with the cost calculator screen (See Figure 3.5).

In order to make possible to calculate the costs it is necessary to enter more details in
this screen. These are information like the number of CPU cores, the CPU speed, etc.
From the implementation aspect it would be the easiest way to offer text fields where
the user should enter the details. From the user point of view entering information in
a text box is uncomfortable. This is the case even more because there are more and
more computers in usage which don’t have a keyboard any more like tablets and smart
phones. Another disadvantage of a text box is that the user could enter anything there
which might not be intendet. In this case a message needs to be shown to the user telling
what has to be entered into the text box.

20 Improving and Updating the Nefolog system

3 Specification & Design

Figure 3.5: Mockup - Cost Calculation View

To make the entering of information as easy to use as possible one solution would be a
drop down menu.

Offerings Matcher View

As Figure 3.6 shows, the user should give some parameters about the required perfor-
mance, like CPU cores, memory, bandwidth and so on. Through the candidate search
service in the Nefolg system the inappropriate configurations will be filtered out and the
configuration IDs of the appropiate providers will be returned. There are parameters
with numerical parameters and non-numerical parameters. Both searches for parame-
ters will be built with the drop down boxes, because for the selection of non-numerical
parameters can be more difficult, if the user writes the parameters different like it is
called in the database. For instance if a user is searching for the string ”Linux” but
the String ”Ubuntu” is stored in the database this could not be found with a query. In
opposite to that it works if the user is choosing from a drop down box with the entries
of the database.

Improving and updating the Nefolog system 21

3 Specification & Design

Figure 3.6: Mockup - Offering Matcher View

3.4 Summary

In this chapter we designed the functional and non functional requirements. The func-
tional requirement describe for example a web GUI shall be available which provides
dynamic interaction with the Nefolog system. The non functional requirements describe
which kind of technology will be used for implementation. In addition, a design of the
system was discussed through mockups.

22 Improving and Updating the Nefolog system

4 Implementation

This chapter describes the implementation and design of the graphical user interface.
The chapter consists of three parts: one is the graphical user interface, based on Nefolog.
The other two are the candidate search view and cost calculator, which use the RESTful
APIs offered by Nefolog system.

4.1 Communication to Nefolog

As the requirements on chapter 3 Table 3.2 defined the communication to the Nefolog
System shall be done using Restful web technology. This means that the communication
to the server is done like the communication from a web browser to a web server. The
client sends a HTTP request to the server and the server then returns the requested
data in a representation format that is understood by the client. This could be XML or
JSON for example. The Nefolog system returns the results as XML code. The advantage
of this is that the communication is completely platform independent. The client does
not need to know what operating system the server is running. Even the programing
language used for writing the web service can be different from the one which is used at
the client side.

The Nefolog system offers web services (See Table 4.1) for requesting information. These
were used to build the GUI servlet.

4.2 The graphical user interface

It is the aim of a graphical user interface to build an easy to user interface between
the user and the system. For this project a web based user interface was chosen using
HTML, Javascript and CSS. Javascript is only used for smooth user interactions. Most
logic is kept at a Java server page. The idea of this is to only have a low dependency of
the used browser version and features. The Restful communication is going on between
the gui-servlet and the Nefolog system. The reason for this is that the gui-servlet and
Nefolog system are most probably running on the same server or at least having a high
bandwith connection between each other. The connection speed to the browser is then
not so significant for the reaction time of the system.

23

4 Implementation

Figure 4.1: Restful Communication

Table 4.1: URL Table

URL Description

/nefolog/providers Returns the list of
providers which are
stored in the database.

/nefolog/providers/{Provider} Returns the list of of-
ferings and service types
which are supported by
a specific provider

/nefolog/offerings/{Offering} Returns the list of
configurations which do
support the requested
offering

/nefolog/offerings/{Offering}/{Configuration_XYZ} Returns the supported
performances covered
by a given configuration
like the number of
available CPUs etc.

/nefolog/costCalculator?configid={ConfigID} Returns the possible pa-
rameters for the se-
lected configuration

../costCalculator?configid={ConfigID}?{parN}=x&... Returns the calculated
costs for the selected
configuration

24 Improving and Updating the Nefolog system

/nefolog/providers
/nefolog/providers/{Provider}
/nefolog/offerings/{Offering}
/nefolog/offerings/{Offering}/{Configuration_XYZ}
/nefolog/costCalculator?configid={ConfigID}
../costCalculator?configid={ConfigID}?{parN}=x&...

4 Implementation

4.2.1 Building trees

In order to give a good overview of the available content of the Nefolog system a tree
scheme was chosen. The user can first select where to start (Providers or Service Types),
then a tree is built out of the data retrieved by the Nefolog system. The implementa-
tion of this is built on the XML scheme which always contains a link to following nodes
as well as on a function written by me which does an HTTP request and returns the
retrieved XML file as a list of nodes. The network communication and parsing is done
centrally at this globally used function. The function is named getRestDataFromURL
(See Listing 4.1). It expects one parameter which delivers the URL needed to request
and a XML tag which is used to parse the XML data returned by the service.

Listing 4.1: Function getRestDataFromURL

1 NodeList getRestDataFromURL(String url , String tag)

2 {

3 CloseableHttpClient inst = null;

4 CloseableHttpResponse resp = null;

5 String result = "";

6 NodeList nList = null;

7

8 try {

9 inst = HttpClientBuilder.create ().build ();

10 resp = inst.execute(new HttpGet(url));

11 } catch (IOException ie) {

12 ie.printStackTrace ();

13 }

14

15 if (resp == null) {

16 //out.write ("Error connecting to url");

17 return null;

18 }

19

20 try {

21 final HttpEntity entity = resp.getEntity ();

22 if (entity != null) {

23 result = EntityUtils.toString(entity);

24 }

25

26 resp.close();

27 }

28 catch (IOException ie) {

29 ie.printStackTrace ();

30 }

31

32 // Parse

33 try {

34 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.

newInstance ();

35 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder ();

36

37 Document doc = dBuilder.parse(new ByteArrayInputStream(result.

getBytes(StandardCharsets.UTF_8)));

38

39 doc.getDocumentElement ().normalize ();

Improving and updating the Nefolog system 25

4 Implementation

40 nList = doc.getElementsByTagName(tag);

41 }

42 catch (Exception ie) {

43 ie.printStackTrace ();

44 }

45

46 return nList;

47 }

From line 3 to line 40 of the code an HTML connection to the server is being established
and the resulting XML data from the server is stored in a buffer. Line 33 to 44 are using
the integrated DOM based XML parsing capabilities of JAVA. Using DOM parsing a
XML document is nearly done with one function call. The information is then already
available as a tree and can be easily processed further on. Another approach for parsing
the XML files would have been SAX. In opposite to DOM it is not parsing the whole
XML file as a block but it is calling functions while the XML data is beeing parsed. This
also allows parsing of big amounts of data but makes the processing more complicated.
The disadvantage of using DOM is that the complete XML data is processed and stored
in the memory at once. Therefore it is not optimal to be used with huge amout of data.
For the size of the single XML data blocks which have to be processed in this project it
is a suitable solution.

Technical details

To build the tree starting from providers the first step is to do a REST request to the
Nefolog system asking for the available providers. This is done by sending an HTTP
GET request:
http://localhost:8080/nefolog/providers The Nefolog system is then answering
with the following block of XML data:

Listing 4.2: http://localhost:8080/nefolog/providers

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>

2 <resource >

3 <name >providers </name >

4 <content >

5 <provider >

6 <name >Google </name >

7 <uri >/ providers/Google </uri >

8 </provider >

9 ...

10 ...

11 </content >

12 </resource >

The providers are specified with a name and an URI. This URI then leads to offerings
that the chosen provider can do. In order to jump to the offerings this link has to be
called and the provided content has to be parsed again:

26 Improving and Updating the Nefolog system

http://localhost:8080/nefolog/providers

4 Implementation

Listing 4.3: http://localhost:8080/nefolog/providers/Google

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>

2 <provider >

3 <name >Google </name >

4 <content >

5 <offering >

6 <name >AppEngine </name >

7 <uri >/ offerings/AppEngine </uri >

8 <servicetype >

9 <name >application </name >

10 <uri >/ serviceTypes/applications </uri >

11 </servicetype >

12 ...

13 ...

14 </content >

15 </provider >

To get the available configurations starting from the previous point it is necessary to
follow the URI specified in the <offering>section:

Listing 4.4: http://localhost:8080/nefolog/offerings/AppEngine

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>

2 <offering >

3 <name >AppEngine </name >

4 <content >

5 <configuration >

6 <name >free </name >

7 <uri >/ offerings/AppEngine/configuration_32 </uri >

8 </configuration >

9 ...

10 ...

11 </content >

12 </offering >

To be able to render the content in the performance section of the window the URL given
in the <configuration>section can be called and parsed. Here one can find parameters
like the number of available CPUs etc.

Listing 4.5: http://localhost:8080/nefolog/offerings/AppEngine/configuration 33

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>

2 <resource >

3 <name >paid </name >

4 <configid >33</ configid >

5 <content >

6 <performance >

7 <name >sla </name >

8 <value >0.99950000000000006 </ value >

9 </performance >

10 </content >

11 </resource >

In order to present the user a tree on the screen a the freely available Javascript package
dtree was used. With this code a tree gets built by doing some initialization and then

Improving and updating the Nefolog system 27

4 Implementation

Figure 4.2: Tree starting from providers

calling [add.(Unique ID, Subnode of)]. When the tree is built it can be drawn. Therefore
the JSP page goes recursably threw the whole tree in order to read the text fields and
the links necessary for building the tree. Figure 4.2 shows a fraction of the links needed
to build a visualisation tree.

Listing 4.6 shows the source code of the java server page building the tree starting
from providers. This code implements the communication flow described earlier in this
section. As is can be seen the code contains three nested for loops. Dependent on the
number of database entries this takes processing time. The advantage of this is that this
is only done once when the page is called. Then everything is available as Javascript code
in the browser which leads to quick response times even with a slow network connection.

Listing 4.6: source code the tree from provider

1 if (startpoint == 0) // Provider as startpoint

2 {

3 // Get providers via Rest

4 NodeList pList = getRestDataFromURL(PROVIDER_URL , "provider");

5

6 for (int i = 0; i < pList.getLength (); i++) {

7 Node pNode = pList.item(i);

8 if (pNode.getNodeType () == Node.ELEMENT_NODE) {

9 Element pElement = (Element) pNode;

10

11 lastpNode = listID;

12 out.println("d.add("+(listID)+",0,’"+pElement.

getElementsByTagName("name").item (0).getTextContent ()+"

’,’’);");

13 // Increase ID for next tree entry

14 listID ++;

15

16 NodeList oList = getRestDataFromURL(BASE_URL+pElement.

getElementsByTagName("uri").item (0).getTextContent (), "

28 Improving and Updating the Nefolog system

4 Implementation

offering");

17 for (int i2 = 0; i2 < oList.getLength (); i2++) {

18 Node oNode = oList.item(i2);

19 if (oNode.getNodeType () == Node.ELEMENT_NODE) {

20 Element oElement = (Element) oNode;

21 lastcNode = listID;

22 out.println("d.add("+(listID)+","+(lastpNode)+",’"+

oElement.getElementsByTagName("name").item (0).

getTextContent ()+" ’,’’);");

23 // Increase ID for next tree entry

24 listID ++;

25

26 NodeList cList = getRestDataFromURL(BASE_URL+oElement

.getElementsByTagName("uri").item (0).

getTextContent (), "configuration");

27 for (int i3 = 0; i3 < cList.getLength (); i3++) {

28 Node cNode = cList.item(i3);

29 if (cNode.getNodeType () == Node.ELEMENT_NODE) {

30 Element cElement = (Element) cNode;

31 out.println("d.add("+(listID)+","+(lastcNode)

+",’"+cElement.getElementsByTagName("name

").item (0).getTextContent ()+"’,’"+

GET_PERFORMANCE_URL+BASE_URL+cElement.

getElementsByTagName("uri").item (0).

getTextContent ()+" ’);");

32 // Increase ID for next tree entry

33 listID ++;

34 }

35 }

36

37 }

38 }

39 }

40 }

41 }

Listing 4.7: Code block to fill the performance block

1 // Get performance from URL

2 String performanceURL = request.getParameter("perfID");

3 if (performanceURL != null)

4 {

5 NodeList nList = getRestDataFromURL(performanceURL , "performance");

6 for (int temp = 0; temp < nList.getLength (); temp ++) {

7 Node nNode = nList.item(temp);

8 if (nNode.getNodeType () == Node.ELEMENT_NODE) {

9 Element eElement = (Element) nNode;

10 out.println("name : " + eElement.getElementsByTagName("name")

.item (0).getTextContent ());

11 out.write("
");

12 out.println("value : " + eElement.getElementsByTagName("value

").item (0).getTextContent ());

13 out.write("

");

14 }

15 }

16 }

Improving and updating the Nefolog system 29

4 Implementation

After having parsed the tree up to to configuration nodes it is possible to read the
supported functions out of the Nefolog system. These are then shown in the HTML
block displaying the performances of the selected configuration.

Listing 4.8: Code block to get necessary parameters for cost calculator

1 List <String > parameters = new ArrayList <String >();

2

3 NodeList pList = getRestDataFromURL(COST_CALC_URL+configID , "content");

4 for (int i = 0; i < pList.getLength (); i++) {

5 Node pNode = pList.item(i);

6 if (pNode.getNodeType () == Node.ELEMENT_NODE) {

7 Element pElement = (Element) pNode;

8

9 int i2=0;

10 String result = null;

11 while(pElement.getElementsByTagName("variable").item(i2) !=

null)

12 {

13 String parameter=pElement.getElementsByTagName("variable").item(

i2).getTextContent ();

14

15 // Store value in array list for building the request to the

calculator

16 parameters.add(parameter);

17 i2++;

18 }

19 }

20 }

The visualization created in this work is based on Java Server Pages creating and using
HTML, Javascript and CSS code. CSS was used for changing the appearance of the
Javascript tree as well as for dividing the screen into different view. Listing 4.9 shows
one CSS file that was used. For instance of the thinkness of the borders needs to be
adapted this can be done easily by changing the value in the CSS file. As it can be
seen absolut coordinates have been used for implementing the user interface. In order
to support a wider range of screen resolutions it would also make sense to dynamically
divide the screen into sections.

Listing 4.9: css structure

1 \label{listing_visu_css}

2 /* --|

3 | Nefolog visualization |

4 |--|

5 | Copyright (c) 2014 Chen |

6 |--*/

7

8 #Performance {

9 position:absolute;

10 top :130px;

11 left :800px;

12 width :420px;

13 padding :10px;

30 Improving and Updating the Nefolog system

4 Implementation

14 margin :0px;

15 border :7px solid #0000 EE;

16 }

In order to do calculations different parameters are necessary for different configurations.
To know these parameters it takes one request to the Nefolog system with the configu-
ration ID as parameter. The Nefolog system is then returning the possible parameters
for this configuration. Since later this parameter list is also needed for other purposes
the result of the query is stored in a list called parameters.

Listing 4.10: Dynamical building of the input form for the calculator

1 <form action "" method="get">

2

3 configID: <input type "text" name="configID" value=" <%out.print(configID

);%>" readonly >

4 <%

5 for (String current: parameters) {

6 out.println(current+": "+"<input type =\" text\" name =\""+current+"\"><

br >");

7 }

8 %>

9 <button type="submit" value="Submit">Submit </button >

10 </form >

Since the name of parameters as well as the number of parameters can be different in
each configuration it is necessary to build the HTML user interface dynamically. The
code in Listing 4.10 shows how this was done. Like all of the code of the visualization
one can see here JSP code building HTML / Javascript code.

Listing 4.11: Build URL to Calculator and get the result

1

2 String calcURL = COST_CALC_URL;

3 String paramN = "";

4

5 calcURL += request.getParameter("configID");

6

7 for (String current: parameters) {

8 if(current != null)

9 {

10 paramN = request.getParameter(current);

11 if(paramN != null)

12 {

13 if ((paramN.contains("null") == false) && (paramN != ""))

14 {

15 calcURL += ("&"+current+"="+paramN);

16 }

17 }

18 }

19 }

20

21 //out.print(calcURL);

22

23 NodeList rList = getRestDataFromURL(calcURL , "result");

24

25 for (int i = 0; i < rList.getLength (); i++) {

Improving and updating the Nefolog system 31

4 Implementation

26 Node rNode = rList.item(i);

27

28 if (rNode.getNodeType () == Node.ELEMENT_NODE) {

29 Element rElement = (Element) rNode;

30 out.print(rElement.getTextContent ());

31 }

32 }

To be able to call the Nefolog cost calculation service is is helpful to use again the
previously stored list of parameters specific to this function. This function is building
dynamically a request URL dependent on the parameter values entered in the browser.
If a field is empty this parameter is not included in the URL. This enables the user for
instance to let the Nefolog system calculate the costs also when the user does not already
know for what region. The Nefolog system then simply returns the costs for all regions.
With this information the user can then do a query using more field in order to get less
results.

4.2.2 Candidate search view

The candidate search view view works similar as the calculation view. The main chal-
lenge of the implementation of the candidate search view is the fact that the parameters
which are used for the calculation can differ dependent on what services are included
in the database. Therefore it is necessary to query the Nefolog system for the existing
parameters for dynamically building a HTML and Javascript based input screen for the
web browser. To accomplish this task the following http request is sent to the Nefolog
system http://localhost:8080/nefolog/candidateSearch. The Nefolog system then
returns the following result generated out of database entries(See Listing 4.12).

Listing 4.12: Query for getting variables for offering matcher

1 <?xml version="1.0" encoding="UTF -8"?>

2 -<resource >

3 <name >inputParameters </name >

4 -<content >

5 <param >servicetype </param >

6 <param >provider </param >

7 <param >offering </param >

8 <param >cpuCores </param >

9 <param >cpuSpeed </param >

10 <param >memory </param >

11 <param >io </param >

12 <param >platform </param >

13 <param >bandwidth </param >

14 <param >storage </param >

15 <param >sla </param >

16 <param >sites </param >

17 <param >licence </param >

18 <param >os </param >

19 <param >caching </param >

20 <param >transactions </param >

21 <param >datatransfer </param >

22 <param >concurrentConnection </param >

23 <param >included_IO </param >

32 Improving and Updating the Nefolog system

http://localhost:8080/nefolog/candidateSearch

4 Implementation

24 </content >

25 </resource >

The visualisation system is then parsing the resturned XML data and building HTML
/ Javascript code out of it. Like for the cost calculator only field which are filled by
the user are used to build a query for the Nefolog system asking for fiting offerings. If
this would not be done the query string whould also contain entries like storage=null
which would lead to an empty result list. This is because most probably there will be
no service included int the database which contains the String null for storage.
When the user entered the desired combination of parameter the submit button can be
pressed. This then generates an URL containing the names of the entered parameters
as well as their value. This query is then sent to the Nefolog system, for instance
(http://localhost:8080/nefolog/candidateSearch?os=linux&cpuCores=16). This
searches in the database for configurations running the linux operating system with 16
or more cores available. The system is then responding again with XML data. This data
is then parsed and displayed as the result of the candidate search.

4.2.3 Implementation of the graphical user interface

Result of visualization - navigation view starting from providers

Figure 4.3 and Figure 4.4 shows that this page consists of two parts. One is the tree
constructure, the tree shows the visualization of the database. Another is the perfor-
mance view, that shows the performance of offerings. At first the user chooses one of
the starting points. From providers or service types, according the starting point, our
system is building the tree structure. If the user chooses the starting point with provider,
then they can click the document to find the offering details that are offered from the
provider. For example there are six different providers. If the user chooses the provider
Google the user then can find the offering of google, like AppEngine, cloudSqlPackage,
BigQuery and so on. At the next step, if the user chooses the offering AppEngine the
user then can find the different pay models (or called configuration) like free, paid or
premier. For example when the user clicks Provider-Google-AppEngine-paid, at the end
the right side shows the parameters of performance of this configuration.

Result of visualization - navigation view starting from service types

It could happen that the user does not want to depend on the provider to find the final
configuration. Because of this it was also designed that the user can choose services as
starting point. If service types is selected the user can get all of the offerings, classified
by service types in the database. For example service type Application has offerings like
ApplicationPaas from provider HpCloud, AppEngine from provider Google, CloudSer-
vice from WindowsAzure. In this way the user can also get the information to choose
another provider. At the next step the user can find the details of several different
configurations. For example the user can choose the offering cloudService from provider
WindowsAzure with a1, then the user can get the performance of this offering on the

Improving and updating the Nefolog system 33

http://localhost:8080/nefolog/candidateSearch?os=linux&cpuCores=16

4 Implementation

Figure 4.3: screenshot starting point from provider

Figure 4.4: screenshot starting point from provider with configuration selected

34 Improving and Updating the Nefolog system

4 Implementation

Figure 4.5: screenshot starting point from service type

right side of the page containing information like cpu speed, cpu cores, sla, io, memory,
storage, and bandwidth.

Result of visualization - costcalculator function view

The performance view shows the performance information, the user clicks the costcal-
culator button then goes to other page. In this page shows the dynamically parameters,
that the user needs to calculate the price. Like Figure 4.7 shows, for example for calcu-
late CloudService from WindowsAzure with small pakage, we need the parameter how
many hour and month, how many GB enxternal netzwork egress, which location the
users desire, and also usage pattern. The first parameter with configID is read only,
show theID of the this configration in Nefolog.

Result of visualization - costcalculator result view

Figure 4.7 shows the calculation result. That means that when the user finished to
fill the parameters for the cost calculator and the Submit button is clicked that the
calculation result view gets populated. Figure 4.8 and Figure 4.9 show the result from
same configuration with different parameters. If the user knows which location to use,

Improving and updating the Nefolog system 35

4 Implementation

Figure 4.6: screenshot showing performance view

Figure 4.7: screenshot of costcalculator function

36 Improving and Updating the Nefolog system

4 Implementation

Figure 4.8: screenshot of costcalculator result

Figure 4.9: screenshot of costcalculator result2

for example like North America, it will only show the cost of this location, like Figure
4.8 shows. But if the user doesn’t know the location, then it will look like Figure 4.9,
that all of the locations with this offering will be calculated.

Result of visualization - Candidate search view

The intention of the candidate search view is to to search the Nefolog database for suit-
able providers dependent on the selected offering parameters. Like in the cost calculator
view only fields where a value was entered are transmitted to the search algorithm. This
means that the more precise the input is the less results are shown to the user. As Figure
4.10 shows the candidate search view can be called from the main window by clicking
on the lens icon. It is independent of if the service provider or service type was selected
as start point.
Figure 4.11 shows the candidate search view populated with results. The results are
implemented with HTML links leading to the cost calculator concatinated with the con-

Improving and updating the Nefolog system 37

4 Implementation

Figure 4.10: screenshot of candidate search

figuration id. In this way the cost calculation view is called also by clicking on a link in
the candidate search view.

Unit names and descriptions for fieldnames

The cost calculation view as well as the candidate search view depend on that the user
enters values into fields. Unfortunately the Nefolog database currently only offers short
names of the field names and no description to what it is. For instance the field cpuSpeed.
The user doesn’t know what unit is used, is it MHz or GHz? Another example for this
is the platform field. It expects the values 32 or 64. Since this is not self explaining a
hint needs to be shown to the user.

In order to realize this two approaches are possible. One is to adapt the database
layout, add the contents to the database and to add Rest server functions to Nefolog
system. Then it is possible to use the same approach to access the fields names as well
also on the descriptions to the field names. Because of time constraints another solu-
tions was chosen for the implementation. It is a local function using a map returning the
suitable description for a given field name. See function refgetUnitFromFieldname. The
advantage of this solution is that this solution can be easily replaced by a Rest function
as soon as the Nefolog system also supports descriptions.

Listing 4.13: Function getUnitFromFieldname

1 String getUnitFromFieldname(String fieldname)

2 {

3 String retval = null;

4 Map candidate_units = new HashMap ();

5

38 Improving and Updating the Nefolog system

4 Implementation

Figure 4.11: screenshot of candidate search 2

6 // Since units are not stored in database

7 ...

8 candidate_units.put("cpuSpeed", "GHz");

9 candidate_units.put("license", "MySQL; Oracle; SQLServer; SQLWeb;

SQLStandard");

10 ...

11 // Get unitname from map

12 retval = (String) candidate_units.get(fieldname);

13

14 return retval;

15 }

To display the descriptions to the user it was chosen to display them to the user when
a mouse over event over the field is detected. For displaying the tooltips the public
available package wz tooltip.js was bound into the project. The result of these steps
looks like this (See Figure 4.12).

Improving and updating the Nefolog system 39

4 Implementation

Figure 4.12: screenshot of tooltip for cost calculator

40 Improving and Updating the Nefolog system

5 Evaluation

In this chapter, we first validate our work using the same example as in Xiu’s thesis[1].
The validation process is straightforward: Compare the result from this system and
MiDSuS should get the same result. In order to do the comparison there would be at
least two possible approaches. One is to downgrade the database to the initial contents
without updates and compare the results of the visualization described in this document
with the results out of Xiu’s thesis.

Another approach is to use the latest database and rerun the tests on MiDSuS and
compare then the results to the system described in this documentation. Since both
systems are accessing the same database and both are using Nefolog services to access
the database the results should be the same. For this section it was chosen to take the
second approach because in this way it is also indirectly tested if the updates of the
database are working well. We then demonstrate the user-friendliness of the developed
system by comparing it with the equivalent functionality in the MiDSuS system.

5.1 Nefolog Validation

In the Nefolog system, there have two decision support services, candidate search ser-
vice and cost calculator service. In Xiu’s thesis, to test the cost calculator service with
Provider Amazon Web Service, they take the offering RDS (relationalDatabaseService),
and configuration is Large Medium Utilization Reserved Instances Multi AZ Deploy-
ment. In this configuration, the dynamiclly generated parameter have been enterned
with the following example values: 100 hours, 2 months, io operation 10000, 1000GB
storage and 1000GB external network egress.

Figure 5.1 shows the main screen starting from providers. The user was started at
the provider AmazonWebServices and then expanded the tree at the position relational-
DatabaseService in order to then select the defined test configuration. After clicking on
the configuration the Detail view section of the screen gets updated with the technical
details of the configuration like the number of available CPU cores etc.

The user can then check the details view section of the configuration offers and necessary
features. If this is the case the user can click on the calculator button. This causes the
calculator.jsp servlet to be called. The URL in the call includes the selected configuration
so it there does not need to be selected again.

Figure 5.2 shows the calculator view where the test values have been entered. Since the
submit button was not yet pressed the calculation result view is still empty.

41

5 Evaluation

Figure 5.1: Evaluation - Cost calculation screen 1 - Search and select offering

Figure 5.2: Evaluation - Cost calculation screen 2 - Entering of details

42 Improving and Updating the Nefolog system

5 Evaluation

Figure 5.3: Evaluation - Cost calculation screen 3 - Results of calculation

Table 5.1: Cost calculation service

Parameter name Value of Xiu’s sytem Value of own system

Total Cost $ 2648,80 $ 2649,8002

Upfront $ 2150,00 $ 2150,00

Service Cost $ 498,80 $ 498,8002

Figure 5.2 shows the calculation servlet after pressing the submit button. Therefore the
calculation result view now contains the costs resulting of the provided input parameters.
The red rectangle marks the costs for Oregon which will later be compared to the result
of MiDSuS.

Figure 5.1 shows a screenshot of the output of MiDSuS. Table 5.1 shows the results of
both systems:

As it can be seen the results do nearly equal. The only difference is that the values
for total costs and service costs have been rounded at MiDSuS. Therefore the test is
passed.

5.2 Comparison with MiDSuS

The Nefolog visualization system consists of a search tree starting from providers and
starting from offerings. Starting from this it is possible to calculate the costs like tested
in the section before. In this section the candidate search view shall be tested.

Figure 5.5 shows the steps for the candidate search in MiDSuS. First the needed re-
quirements have to be entered then the system can find the suitable configurations

Improving and updating the Nefolog system 43

5 Evaluation

Figure 5.4: screenshot of MiDSuS

Table 5.2: Candidate search comparison

Value of MiDSuS Value of own system

standard large standard large

standard medium standard medium

fitting to the requirements. For testing purposes the following requirements have been
selected: Servicetype = WebSite, Provider = WindowsAzure, cpuCores = 2, memory =
3.5, storage = 10, sites = 100 and license = MySQL. The advantage of specifying the
requirements with so many parameters is that this only leads to a short result list.

Figure 5.6 shows the same query entered into the system described in this document.
When the submit button is pressed the calculation of finding candidates is triggered
and the found configurations are displayed in the calculation result view. This is imple-
mented as links to the calculator, so if the user clicks on configuration the calculation
view containing the selected configuration is opened.

As Table 5.2 shows the systems do deliver the same candidates when having the same
parameters as input. Therefore the tests of the candidate search view is passed as well
as the test for the calculation view.

44 Improving and Updating the Nefolog system

5 Evaluation

Figure 5.5: Screenshot of MiDSuS

Improving and updating the Nefolog system 45

5 Evaluation

Figure 5.6: Evaluation - Candidate search view

46 Improving and Updating the Nefolog system

6 Conclusions

6.1 Summary

These days the clould market has many providers offering many different products.
Therefore Nefolog as a search engine to find the right provider is quite useful. Xiu [1]
built a RESTful interface for the Nefolog system that supports all features neccesary to
find providers and offerings. It was one aim of this work to further more improve the
usability of the system. It was another aim to update the database contents. This is a
very challenging task, because the market is always in movement. New offerings arise
and prices are changing regulary.

In order to enable to user to easily find the offering or provider which is searched the
graphical user interface was constructed in the following way:

• A tree starting from Providers

• A tree starting from Offerings

• An offering matcher which is searching dependent in required characteristics

If the user already knows from what provider to start the first view is a very good start-
ing point. It maps the whole content of the database to a tree. This enables the user to
have a good overview and to easily find the desired configuration. With a click on the
configuration the resulting costs can be calculated. With the same flow of operations
a configuration can be found starting from offerings. The third starting point is the
offering matcher. The user here has to enter the needed features and will then get a list
of fitting configurations. Theses configurations. The costs of these configurations then
can be calculated again with a click on the configuration.

All functions used for the visualzations are based on the Nefolog system. All com-
munication is only done between the Nefolog system and my visualization. This is done
using RESTful services. This means that all request are sent with of a HTTP request in
form of a specific URL. This URL then contains the commands what to do. The Nefolog
system is then responding using XML code. This code has then to be parsed in order
to get to the transmitted content.

47

6 Conclusions

6.2 Future Work

The existing implementation of the visualization works well and supports the envisioned
features. For future work on the project the performance on loading the webpage could
be enhanced. In the current implementation the whole tree is build using many queries
to the Nefolog system. Then the complete tree is available as Java script which allows a
very fast interaction with the user. The disadvantage of this is that it takes some time
before the web page is displayed. For future versions it would be a possibility to only
read the first level of the tree out of the Nefolog system. Only if a user then clicks on a
branch the next level of this branch is queried. This would then distribute the loading
time over the interaction.

Another point which could be enhanced is the offering matcher. In the current im-
plementation the user needs to type in the offerings in text fields. The disadvantage of
this is that the user maybe does not know what to type into the fields. Here it would
be possible to do a query to the Nefolog system in order to prepare drop down menues.
One more step could be to adapt the user interface also to mobile devices. Many websites
today offer different views dependent on what device is used. This could be because of
the different display resolutions but it could also be because of the different available
bandwiths which can be expected. The visualisation could provide a different user in-
terace to the client dependent on the client identification of the used web browser.
It would be another future option to make the user interface customizable, so that the
user can choose the used colors and layout of the visualization. This could be then
remembered by the client.

One big challenge of the system is the up-to-dateness of the database. This is a vi-
tal factor for the accuracy of the hits found by the system. In order to have a current
database it would help to create a user interface which alows to easily update the con-
tents without having knowledge about the structure of the SQL database. This user
interface could also be also implemented as web based so that the users themselves can
update the database. This could be organized similary to the Wikipedia project that
other users can check and rollback changes in order to avoid having users entering wrong
information into the system. Having a community updating the databse it is not a big
task any more.

48 Improving and Updating the Nefolog system

Bibliography

[1] M.Zhu, “A decision support system for application migration to the cloud,” diploma
thesis no. 3472, University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, 2013.

[2] M. Miller, Cloud Computing: Web-Based Applications That Change the Way You
Work. Que, 2008.

[3] K. Jamsa, Cloud Computing: SaaS, PaaS, IaaS, Virtualization, Business Models,
Mobile, Security. Jones Bartlett Pub, 2012.

[4] K. Shah, “Saas revolution in payroll applications.” http:

//www.enterprisecioforum.com/en/blogs/kaushalshah/

saas-revolution-payroll-applications, March 2013.

[5] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to adapt applications
for the cloud environment,” Computing, vol. 95, no. 6, pp. 493–535, 2013.

[6] M. Menzel and R. Ranjan, “Cloudgenius: decision support for web server cloud
migration,” in Proceedings of the 21st international conference on World Wide Web,
pp. 979–988, ACM, 2012.

[7] A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, and I. Sommerville, “The cloud
adoption toolkit: supporting cloud adoption decisions in the enterprise,” Software:
Practice and Experience, vol. 42, no. 4, pp. 447–465, 2012.

[8] Janakiraman, Decision support system. PHI Learning Pvt. Ltd, 2008.

[9] D. J. Power, Decision Support Systems: Concepts and Resources for Managers.
2002.

[10] V. Andrikopoulos, S. Strauch, and F. Leymann, “Decision support for application
migration to the cloud: Challenges and vision,” in Proceedings of the 3rd Interna-
tional Conference on Cloud Computing and Service Science, CLOSER 2013, 8-10
May 2013, Aachen, Germany, pp. 149–155, SciTePress, 2013.

[11] Z.Song, “A decision support system for application migration to the cloud,” diploma
thesis no. 3381, University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, 2013.

[12] D.Thau, The Book of JavaScript: A Practical Guide to Interactive Web Pages. No
Starch Press, 2006.

[13] JSON. http://json.org/index.html.

[14] R. York, Beginning CSS: Cascading Style Sheets for Web Design. Wiley, 2007.

49

http://www.enterprisecioforum.com/en/blogs/kaushalshah/saas-revolution-payroll-applications
http://www.enterprisecioforum.com/en/blogs/kaushalshah/saas-revolution-payroll-applications
http://www.enterprisecioforum.com/en/blogs/kaushalshah/saas-revolution-payroll-applications
http://json.org/index.html

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Ort, Datum, Unterschift

51

	Introduction
	Motivation
	Problem Definition and Goal
	Outline

	Background
	Fundamentals
	Cloud Types
	Migration to the Cloud
	Migration Type
	Decision Support Systems

	The Nefolog Decision Support System
	Database of Nefolog system
	Decision Support Services
	Basic knowledge for the web technology

	Summary

	Specification & Design
	Project overview
	Requirements
	Non-Functional Requirements
	Functional Requirements

	System Specification
	Use Case Diagram
	The graphical user interface

	Summary

	Implementation
	Communication to Nefolog
	The graphical user interface
	Building trees
	Candidate search view
	Implementation of the graphical user interface

	Evaluation
	Nefolog Validation
	Comparison with MiDSuS

	Conclusions
	Summary
	Future Work

	Bibliography

