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Abstract
Ever since its inception, sentiment analysis has relied heavily on methods that
use words as their basic unit. Even today, such methods deliver top performance.
This way of representing data for sentiment analysis is known as the clue model.
It offers practical advantages over more sophisticated approaches: It is easy to
implement and statistical models can be trained efficiently even on large datasets.
However, the clue model also has notable shortcomings. First, clues are highly
redundant across examples, and thus training based on annotated data is poten-
tially inefficient. Second, clues are treated context-insensitively, i.e., the sentiment
expressed by a clue is assumed to be the same regardless of context. In this thesis,
we address these shortcomings.
We propose two approaches to reduce redundancy: First, we use active learning,

a method for automatic data selection guided by the statistical model to be trained.
We show that active learning can speed up the training process for document
classification significantly, reducing clue redundancy. Second, we present a graph-
based approach that uses annotated clue types rather than annotated documents
which contain clue instances. We show that using a random-walk model, we can
train a highly accurate document classifier.
We next investigate the context-dependency of clues. We first introduce senti-

ment relevance, a novel concept that aims at identifying content that contributes
to the overall sentiment of the review. We show that even when we have no an-
notated sentiment relevance data available, a high-accuracy sentiment relevance
classifier can be trained using transfer learning and distant supervision. Second,
we perform linguistically motivated analysis and simplification of a compositional
sentiment analysis. We find that the model captures linguistic structures poorly.
Further, it can be simplified without any loss of accuracy.
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Deutsche Zusammenfassung
Eine der frühesten Methoden zur automatischen Sentimentanalyse nutzt Merkmal-
srepräsentationen, die auf Wortvorkommen beruhen. Dieser Ansatz zur Daten-
repräsentation ist der unter dem Namen Clue-Modell bekannt, da die Terme in
einer größeren Spracheinheit Schlüsselwörter (Clues) für deren Sentiment sind.
Das Clue-Modell ist noch immer einer der beliebtesten und erfolgreichsten Ansätze,
da es einige praktische Vorteile gegenüber anderen Verfahren bietet: Es ist einfach
zu implementieren und statistische Modelle sind mit einer solchen Repräsentation
auch auf großen Datensätzen effizient trainierbar. Allerdings hat das Modell auch
Nachteile. Erstens treten Schlüsselwörter redundant auf und kommen in vielen
Trainingsbeispielen vor, so dass überwachtes Lernen ineffizient sein kann. Zweit-
ens werden Schlüsselwörter kontextunabhängig behandelt, d.h., das durch einen
Begriff ausgedrückte Sentiment ist unabhängig vom Kontext immer gleich. In
dieser Dissertation stellen wir Lösungsansätze für diese beiden Nachteile vor.
Um Redundanz zu vermeiden, verwenden wir zunächst Active Learning, eine

Methode des maschinellen Lernens, bei der das statistische Modell die Auswahl
der Trainingsbeispiele vornimmt. Unsere Ergebnisse zeigen, dass wir durch Ac-
tive Learning gleiche Klassifikationsgenauigkeit bei reduzierten Kosten erreichen,
indem wir Redundanz zwischen Dokumenten vermeiden. Ein weiterer Ansatz
zur Vermeidung von Redundanz beruht darauf, die Schlüsselwörter direkt zu an-
notieren. Annotierte Schlüsselwörter werden dann in einem graphbasierten Modell
zur Dokumentenklassifikation verwendet. Wir zeigen, dass ein Random-Walk-
Modell Dokumente mit hoher Genauigkeit klassifizieren kann.
Um die Kontextabhängigkeit von Inhalten zu bestimmen, führen wir die Idee

der Sentiment-Relevanz ein. Als sentiment-relevant bezeichnen wir Inhalt, der
zum Gesamtsentiment eines Dokuments beiträgt. Wir zeigen, dass wir selbst ohne
annotierte Sentiment-Relevanz-Daten mit hoher Genauigkeit sentiment-relevanten
Inhalt erkennen können. Dazu nutzen wir zwei Techniken des maschinellen Ler-
nens: Transfer Learning und Distant Supervision. Zum Schluss untersuchen wir
ein kompositionelles Modell zur Sentimentanalyse auf seine linguistischen Eigen-
schaften. Wir zeigen, dass das Modell nur schlecht linguistische Struktur erkennt.
Zudem kann das Modell ohne Genauigkeitsverlust stark vereinfacht werden.

8
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1 Introduction

The open exchange of opinions is becoming increasingly important The world wide
web, for example, is an endless resource of opinions. People frequently express their
opinions using online platforms designed for reviewing, or publish their thoughts
on the social web. With the availability of information in large quantities comes the
need for browsing it efficiently. For example, a popular product on the online retail
site Amazon.com can have several thousand reviews; the Playstation 4 video game
system had already been reviewed over 3,000 times a week after its release.1 For
a reader, it is impossible to read all reviews to find out about commonly pointed
out up- or downsides of a product. Examples like this motivate sentiment analysis,
the automatic analysis of opinions expressed through natural language.
The concept of sentiment analysis covers a wide range of interesting problems

that are related to the way humans express emotions and opinions about various
entities. Sentiment has been in the focus of natural language processing (NLP)
research for a long time. Early computational efforts were made on the automatic
recognition of the sentiment on the word-level, on rule-based analysis of sentiment
on the web, as well as on the detection of subjective expressions. The classical
sentiment experiment that arguably had the most impact in both the NLP and
machine learning communities was the automatic prediction of the overall senti-
ment expressed in reviews with simple statistical machine learning models. These
results paved the way for many approaches to automatic sentiment classification
on user-generated data.
In this thesis, we will follow the latter line of work. The general task that we

address is sentiment classification, the prediction of the polarity (i.e., the degree
of positivity or negativity) of a complete linguistic unit. We tackle this problem
through statistical natural language processing, where a statistical model is trained
to automatically make predictions about unseen examples. The linguistic units that
we analyze are either sentences or documents containing expressions of sentiment.
In statistical natural language processing, the way data is formally represented is

1http://www.amazon.com/dp/B00BGA9WK2
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1 Introduction

crucial. In sentiment analysis, this question is particularly important as sentiment
is highly compositional and can be expressed through arbitrarily complex linguistic
structures. The overall sentiment expressed by a phrase depends on the basic
expressions it contains and the way they interact. There are cases where individual
words or phrases act as clues (e.g., awesome) that are sufficient to detect sentiment,
but in others, the overall sentiment will be determined by composition of meaning
(e.g., not awesome at all). This view has been formally captured by two models:
the clue model, which is the underlying method of the approaches mentioned above,
where the words in a larger linguistic unit are viewed as clues that give away the
overall polarity of the unit; and the polarity shifter model where the polarities of
clues are (recursively) changed by modifying expressions. We will describe these
models in more detail in Chapter 2.
The clue model is a popular choice for many sentiment analysis tasks. It is

straightforward to implement and keeps the required learning effort low. If enough
data is supplied to the model, it also works very well, leading, for example, to high
classification accuracies for the detection the overall sentiment in a document.
In contrast, the polarity shifter model is difficult to learn as the set of possible
modifiers (and modifying construction types) is open. For this reason, work on
sentiment classification often resorts to the clue model exclusively. Thus, research-
ing this model is of high interest in both theory and practice. While, as mentioned
above, the clue model achieves reasonable results, there are also several drawbacks
to it. We will point out two major issues of the model which we will address in
this thesis.

Redundancy Clues will be highly redundant across examples. This observation
is related to the well-known power-law distribution of words, as described for
example by Zipf (1935). As a consequence, there will be a small number of clues
that appear in many examples, as well as a large number of rare clues. For example,
words like good or bad will be frequent, and thus will also be sufficient indicators for
many examples. Words like delightful or marvelous are rarer. However, to improve
the results any further – particularly by covering short examples – we require
information about rare clues. We pursue two possible approaches that address this
problem. Both aim at efficiently extending the set of clues about which we have

16



knowledge. In the following, we imagine a supervised statistical modeling scenario
where we have training data annotated by humans. As human labor is expensive,
annotations cause costs.
As a first attempt to increase coverage, we could obtain more training examples

(e.g., documents or sentences). In this case, the way we select new examples is
crucial. If we employ manual annotation, any redundancy will lead to unnecessary
additional costs. Thus, we want new examples to be as informative as possible.
As we will later show, this process can be addressed through active learning, a
machine learning technique where the learner decides which examples are selected
for annotation.
Annotating whole examples to improve the clue model is in a sense backwards.

Unlike other natural language representations, clues can easily be annotated di-
rectly by humans. For this reason, we are interested in a statistical model that
enables us to use knowledge about clue polarity. However, including clue knowl-
edge into a document model is not straightforward. We propose an approach where
clues and documents are jointly represented in a graph.

Context Insensitivity By design, the clue model works by assigning a polarity
to each word independently of its context. As mentioned before, this assumption
is convenient as it drastically simplifies statistical clue models. However, in reality,
the polarity of a word can change, depending on the context in which it occurs.
For example, the adjective light can have different polarities depending on the
object it describes. In theory, the distinction between prior polarity, i.e., the
polarity that a word has without any context, and contextual polarity has been
proposed. Recognizing contextual polarity is difficult as context effects can arise
from different domains, topics, and objects being described. This implies that a
large amount of supervision is needed to make contextual polarity universal. Thus,
to keep matters simple, in many applications, each clue is taken to always indicate
the same polarity, regardless of its context. Naturally, this approach may lead to
the misinterpretation of clues, which could potentially hurt the model’s prediction
accuracy.
One way to address the problem of contextuality is to view its recognition as a

pre-processing step. In this thesis, we introduce the concept of sentiment relevance
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to address topic effects. The goal is to distinguish contexts that are important for
sentiment detection from unimportant ones.
As mentioned previously, it has also been proposed to address the problem of

contextuality through polarity shifters. As shifters are difficult to learn automat-
ically, fully compositional approaches have been proposed. These models promise
a holistic approach to sentiment analysis as we do not have to worry about mod-
eling the detection of modifiers. However, their properties are poorly understood.
We will provide detailed analysis of a compositional neural network model with
respect to its linguistic interpretability and to the contribution of the structures it
produces.
Finally, we are interested in efficient solutions. As one of the main motivations

of the clue model is its simplicity, we would like this property reflected in our
approaches. Thus we aim for methods that improve the clue model while keeping
both computation and utility costs low.

1.1 Contributions in this Thesis

In this thesis, we make the following contributions concerning the two challenges
discussed above.

Redundancy

• We show that we achieve high-accuracy polarity prediction through active
learning even with noisy annotations. We perform document classification
experiments on Amazon Mechanical Turk in which active learning outper-
forms random example selection significantly. Using active learning, the cost
for achieving a certain level of accuracy can be lowered significantly. Quali-
tative analysis of the feature weights of the classifiers over time shows that
useful features are identified faster using active learning than with random
selection (Laws et al., 2011).

• We introduce a graph framework for joint classification of words and docu-
ments. We show that using a random walk algorithm, polarity information
for words can be exploited to classify documents more accurately than with
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a baseline averaging method. To this end, we adopt Personalized PageRank,
calling the resulting algorithm Polarity PageRank. Finally, we show that a
maximum entropy classifier trained in a subsequent bootstrapping step im-
proves the results further (Scheible and Schütze, 2012).

Context Insensitivity

• We introduce the concept of sentiment relevance. It aims at identifying con-
tent that does not contribute to the overall sentiment in a document. We
first contrast sentiment relevance to subjectivity, a related concept, through
annotation and classification experiments. We next introduce two methods
for automatic sentiment relevance prediction, distant supervision and trans-
fer learning. Distant supervision makes use of a domain-specific database to
create an initial annotation for unlabeled examples. Transfer learning learns
from a related concept, subjectivity, for which labeled data is available and
uses adaptation techniques to apply this knowledge to sentiment relevance.
These approaches are supported by a graph-based unsupervised sequence
model. We show that both significantly outperform the respective baseline
methods (Scheible and Schütze, 2013b).

• We present an analysis of the Semi-Supervised Recursive Autoencoder (RAE),
a compositional neural network model. The RAE takes a sentence as its in-
put and constructs a tree where each node has a feature vector. The vectors
of the tree are used to predict the sentiment of the sentence, which can in-
fluence the vectors further. As these structures are generated automatically
and semi-supervisedly, their interpretation is unclear. We perform two ex-
periments to analyze them. First, we have humans check the structures for
syntactic and semantic coherence. We find that neither of these properties
are reflected well in the RAE trees. Second, we introduce methods for auto-
matic tree simplification. We show that only part of the RAE trees actually
contribute to high-accuracy sentiment classification (Scheible and Schütze,
2013a).
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Efficiency

• In all our approaches, we use efficient methods for computation. Most of our
experiments build on either maximum entropy models with fast optimiza-
tion or efficient graph algorithms. In case of the costly compositional neural
network model, we show that it can be simplified structurally, which speeds
up computation.

1.2 Structure of this Thesis

The remainder of this thesis is structured as follows.
We first introduce the background that we make use of in this thesis. In Chap-

ter 2, we give an overview of statistical natural language processing. We focus
on the general ideas as well as the different models that we apply throughout
the thesis. Chapter 3 introduces concepts relevant to sentiment analysis that are
important to the understanding of this thesis.
We then turn to the four empirical studies introduced above. Chapter 4 is

concerned with active learning. We first describe our annotation setup on Amazon
Mechanical Turk. We then run experiments and discuss the results, including an
analysis of the features learned by the classifier.
In Chapter 5, we present our work on graph-based sentiment classification

with Polarity PageRank. First, we describe the Polarity PageRank method. Sec-
ond, we conduct experiments using graphs constructed with data from Wikipedia
and Amazon.com. We perform error analysis taking into account the structural
properties of the graph.
Chapter 6 is centered around the concept of sentiment relevance. We introduce

a sentiment-relevance annotated dataset and describe the annotation process. We
next show experimentally that the concept differs from related notions. We then
present experiments on two approaches to automatic sentiment relevance classifi-
cation.
Chapter 7 contains experiments on compositional sentiment analysis with the

RAE model. We first describe the model, pointing out important implementation
details. We introduce several ways of simplifying the tree structures the model
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induces. Finally, we present the results of two experiments: human analysis of
RAE trees and automatic tree simplification.
Chapter 8 concludes the thesis and provides an outlook on future work.
In Appendix A, we describe the tools and datasets used in the thesis in more

detail.
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2 Statistical Natural Language
Processing

Over the years, statistical modeling has become the dominant approach to natural
language processing. It has lead to broad-coverage applications capable of handling
vast amounts of data and is responsible for substantial improvements in various
NLP tasks such as part-of-speech tagging, syntactic parsing, and word sense dis-
ambiguation (Norvig, 2011). As an example for a successful practical application
of statistical NLP, IBM recently demonstrated how large-scale combination of sta-
tistical systems can outperform humans in question answering.2 We will now give
a brief overview of the general ideas behind statistical modeling and how it relates
to NLP.
Hastie et al. (2001) define a statistical model as a mathematical model, i.e. a

function f : x 7→ y that predicts an output y for a given x. If y is categorial, we call
f a classification function. The function f can be found for example by learning
from some given input data for which the true output is known. Norvig (2011)
provides a more general view. He proposes to distinguish the following properties
of statistical models:

• A mathematical model, defined through a mathematical function f : x 7→
y.

• A probabilistic model, where a probability involving properties of x and y
is estimated.

• A trained model, which is selected or improved by using a collection of
examples. This selection may be performed through the adjustment of pa-
rameters within the model.

A model qualifies as statistical if any of these properties apply. Although current
research is dominated by models that are at mathematical and trained (and often

2http://www.ibm.com/watson
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2 Statistical Natural Language Processing

probabilistic), we can see that the term “statistical model” covers a large variety
of different types of models.
The application of such models to linguistic problems has a longstanding history.

The origins of statistical models of language go back to the mathematical theory
of communication of Shannon (1948). Many of the ideas expressed in Shannon’s
work, such as n-gram models of language, are still popular today. They inspired
the development of powerful language models and lead to many efforts for for-
mally representing natural language through features to make them accessible to
statistical models. The process of finding good feature representations for a task
is called feature engineering.
Mitchell (1997) provides a well-known formal definition for the learning aspect

of statistical models, the machine learning problem:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E.

This abstract formulation of machine learning raises an important question. How
can we use data to improve the quality of a statistical model? One answer to this
question comes in the form of supervised, semi-supervised, and unsupervised learn-
ing, which we will look at in more detail in Section 2.1. In Section 2.2, we will take
a look at how language can be represented formally as input to a statistical model.
Section 2.3 describes several learning strategies that can be used to improve or sim-
plify the model learning. We next introduce the statistical modeling approaches we
use, focusing on discriminative models (Section 2.4) and graph-based approaches
(Section 2.5). In Section 2.6 we describe the evaluation measures, hypothesis tests,
and agreement measures that we apply in this thesis.

Notation During this thesis, we will use the following notation. Row vectors
will be typeset as lowercase bold letters (e.g., v = (v1, . . . , vn) with elements vi),
matrices as capitalized bold letters (e.g., M with elements mij). 1 is an all-ones
vector, and 0 an all-zeros vector. vᵀ, a column vector, denotes the transpose of
v. [u,v] denotes the horizontal concatenation of two vectors u and v, [u; v] their
vertical concatenation (a matrix with two rows). Horizontal concatenation can also
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2.1 Supervised, Unsupervised, and Semi-Supervised Models

be expressed with the operator ⊕. Sets will be written as calligraphic symbols, e.g.,
s ∈ S. We will refer to the set of classes c assigned by a model as C. Sometimes,
we need to distinguish instances of variables for different types t, which we express
through a superscript index, e.g., w(t).
We write the set of n examples as xk ∈ X and the corresponding outputs as

yk ∈ Y . The set of observed examples is denoted by X̂ , the set of target outputs
by Ŷ . The (labeled) data D = [〈x̂i, ŷi〉|1 ≤ i ≤ n] is ordered, consisting of pairs
of examples and their targets. Examples and labels can be converted into a vec-
torized representation where examples are be represented by the vector xk and
the corresponding target outputs by yk, which is a |C|-dimensional vector where
each dimension corresponds to a c ∈ C. A collection of n examples together can be
viewed as a matrix X = [x1; . . . ; xn] where each row contains a vector representing
an example, and the target outputs as Y = [y1; . . . ; yn].
The goal of a statistical model is to learn a function fW : x 7→ y, where W is a

matrix which determines the behavior of f . In cases where f outputs a probability,
we can write it as pw or simply p.

2.1 Supervised, Unsupervised, and
Semi-Supervised Models

Machine learning is the problem of finding the function f . There are two major
paradigms for learning f inductively: supervised and unsupervised learning.
In supervised learning, we assume that we have observed data, the training data

or labeled data D, consisting of some examples X̂ with (correct) corresponding
outputs Ŷ . We can then learn f as a trained model, applying the machine learn-
ing principle. In most cases, this means that we minimize some measurement of
the error the model makes on this data. For mathematical models, this can be
accomplished for example by numerically optimizing the model parameters.
In unsupervised learning, we are not given any information about Ŷ . This means

that we not only do not know the correct outputs for some given examples X̂ (com-
monly referred to as unlabeled data), but in some cases, we may have incomplete or
no knowledge about the set of possible labels C. Instead, f will map an example to
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a set of anonymous classes, whose cardinality we may have to determine by some
other means. The anonymous classes are usually referred to as clusters. Since we
cannot measure the error of f in terms of prediction, we have to resort to other
means of determining its quality. For example, we can maximize the likelihood of
the data under the model.
Semi-supervised learning combines elements of supervised and unsupervised

learning. As the name implies, we are given some information about Ŷ , while
some other part may be missing. Among other possible scenarios, this may mean
that we have correct outputs for some but not all of the data. We can then try
to leverage additional information from the unlabeled data in combination with
supervised learning on the labeled data. While this is probably the most prominent
setup in semi-supervised learning, it is not the only one. Others include missing
information, such as incomplete sequence order, and noisy or mismatched input
data.

2.2 Representing Language for Statistical
Modeling

In many applications of machine learning it is necessary to pre-process data to
make it accessible to the model. In natural language processing, the data is usu-
ally a piece of text, i.e., a string of symbols from a fixed alphabet (e.g., all char-
acters defined in unicode). Human readers can interpret these sequences as words,
which may be marked as such through spaces in the text in some languages. It has
been assumed that readers then interpret a sequence of words through hierarchi-
cal composition, constructing the meaning of phrases and sentences incrementally
(Chomsky, 1965).
Conversely, many popular statistical models work with vector inputs, i.e., data

consisting of distinct dimensions, called features, which are each associated with a
quantity. Features are often assumed to be conditionally independent, i.e., the co-
occurrence of two features does not change their interpretation. This contradicts
the aforementioned process of how humans understand language. For this reason,
the way in which language is converted into a feature representation is crucial
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2.2 Representing Language for Statistical Modeling

to the success of any machine learning approach. This process is called feature
extraction.
Formally, φi(x) is a feature function which quantifies a specific property (indexed

by i ∈ F , the set of possible features) of an example x:

φi(x) = the number of times example x has feature i

If we represent the featurized data as a vector x, we can populate this vector with
the feature function by mapping each f to a dimension of x. For some models such
as the maximum entropy model which we introduce in Section 2.4, the function
has to be strictly binary-valued to encode the presence or absence of the feature.
A simple and popular approach to feature extraction for representing texts is to

assume that word order does not matter. We interpret a text x as a set of its words
w ∈ x and ignore the order in which they occurred. This approach is known as
the bag-of-words model, since we can view the process as taking all words from the
text and throwing them in a bag, losing sequence information in the process. We
obtain the (binary) bag-of-words model through the following feature function:

φi(x) =

1 if x contains word wi

0 else

The bag-of-words representation assumes that it is sufficient to use individual
words as indicators. The model can easily be extended to extract arbitrary symbolic
parts from the text. For example, one could define a feature function that extracts
all word sequences of length n, i.e., all n-grams:

φ〈w1,...,wn〉(x) =

1 if x contains the word sequence w1 . . . wn

0 else

Feature extraction is a crucial step in natural language processing, so it is not
surprising that it has been the focus of many publications. Linguistically motivated
approaches have been proposed, employing a rich pre-processing pipeline including
part-of-speech tagging and syntactic parsing among other steps. Feature functions
are then defined manually to heuristically extract information from the resulting
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structural analysis.
Ultimately, the feature extraction paradigm might not be sufficient to cover

all complex phenomena that occur in natural language. For this reason, many
improvements have been proposed on the model side, with the goal of handling
language structure within the model.
One popular approach uses kernel methods in order to enable existing models

to handle structured data whose explicit enumeration would be intractable. For
example, tree kernels (Moschitti, 2006) for support vector machines are capable of
performing efficient pairwise comparisons of syntactic structures.
More recently, models combining vector space semantics and supervised machine

learning have emerged. The basic idea behind these models is that the meaning of
words and phrases are encoded in some vector space which serves as the domain
of a supervised classifier. Embeddings of words into this space are learned auto-
matically, taking the subsequent prediction task into account. Thus, this area of
research is also known as representation learning. There, neural network models
of language have enjoyed much success, such as neural language models which we
introduce in Section 2.4.2.

2.3 Learning Strategies

In machine learning, the way the learner approaches the problem can play a de-
cisive role. The data used for training a model is particularly important as it
directly influences what the model learns. We will first introduce two strategies to
iteratively improve a statistical model, active learning and self training. We then
present two strategies for semi-supervised learning that circumvent the need for
customly produced manually annotated training data.

Active Learning

Active learning (AL) is a machine learning technique for joint data annotation and
training of a supervised classifier. The general active learning process is viewed as a
cycle of interaction between the annotator and the classifier. First, the classifier is
trained on an already labeled data-set. It can then then request specific additional
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input from the annotator. With this new information, the system is re-trained and
the active learning cycle starts again. Active learning potentially lowers the overall
cost of annotation since the system can ask for specific information it requires to
improve itself. We will introduce the basic active learning concepts that we apply
based on the survey by Settles (2009).
Uncertainty selection with pool-based sampling (Lewis and Gale, 1994) is a sim-

ple implementation of the AL idea. Here, the cycle is designed as follows: First, we
annotate a small set of examples as the initial training set. In addition, we collect
a large pool of unannotated examples. We then train a supervised classifier on the
training set. This classifier is applied to the examples in pool. For each example
in the pool, the classifier calculates how uncertain it is about its prediction. We
then take strongly uncertain examples, have them annotated, and add them to the
training set. Finally, the classifier is re-trained. The intuition behind this process is
that the most uncertain examples will be maximally informative for the classifier.
In order to perform uncertainty selection, we need to define a way of measuring
uncertainty. and a selection criterion based on this uncertainty measure.
We assume that our classifier can estimate a probability p(c|x) for a class c

given a example x. Ranking the classes by decreasing probability p(ci|x), where
(c1, . . . , cn) is the ranked list of classes, we obtain the margin metric (Scheffer et al.,
2001)

M(x) = p(c1|x)− p(c2|x)

which calculates the difference in probability between the two most probable
classes. The simplest way of making use of this metric is to select the most un-
certain example, i.e., the example with the smallest margin, x = arg minx M(x),
annotate it and re-train. However, re-training might be an expensive process in
some applications, so we would like to avoid it if possible. Batch annotation ad-
dresses this problem by selecting the n most uncertain examples for annotation in
one AL iteration. Batch selection might however yield a subset of redundant exam-
ples (Brinker, 2003). It is thus important that new labels are incorporated quickly
as otherwise, available information is not used and we might annotate redundant
examples. Staleness (Haertel et al., 2010) quantifies this effect as the number of
new annotations we have obtained since the classifier was retrained.
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Self-Training and Bootstrapping

Self-training (also referred to as bootstrapping) is a machine learning technique for
increasing the amount of training data for a classifier through automatic annota-
tion of unlabeled data. In a typical setting, a small set of labeled data and a large
set of unlabeled data are available, which is commonly referred to as the pool. A
classifier is trained on the labeled data and applied to the unlabeled data. We can
then take a subset of the automatically classified examples for which the classifier
has the highest confidence and add them to the training set. If the confidence
measure is reliable, these examples should likely be correct and after re-training,
the quality of the classifier should increase.
In its basic setup, this technique is similar to the previously introduced active

learning – the classifier guides the selection of examples from a pool. In contrast,
however, self-training selects the most confidently classified examples rather than
the most uncertain ones since we will use the predicted label directly instead of
consulting a human annotator.
Self-training can be applied iteratively. After selecting examples from the pool,

adding them to the training set and re-training the classifier, we can again classify
the remaining examples of the pool to improve the labeling. Note that it is possible
too keep examples in the pool even after we added them to the training set. This
is sometimes referred to as sampling with replacement. The intuition is that if a
selected example has been misclassified previously, we might be able to correct
this mistake later on with a better classifier.
The self-training process may be initialized in several ways. A straightforward

idea is to start with a small set of labeled examples to produce an initial classifier
to automatically label the pool. This classifier is typically a statistical model and
it is the one that will be improved through self-training.
Another approach is to provide an initial classifier, which we will refer to as the

base classifier, instead of an initial labeled dataset. This version of self-training
works without having to label any data in order to start the self-training process.
Thus, an arbitrary classifier can be used to perform the initial labeling, such as a
rule-based classifier. Note, however, that the base classifier needs to be capable of
estimating confidence in order to select an initial set of training examples.
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Distant Supervision

Distant supervision (DS, Mintz et al., 2009) is a machine learning technique that
makes use of weak indicators in order to learn to classify examples. A weak indica-
tor can be any source of information that is annotated with the same set of labels
as the examples for which we want to make predictions.
The typical distant supervision setting uses a database of indicators for train-

ing. In addition, a pool of unlabeled examples is required. First, the database of
indicators is used to annotate the examples in the pool. The way this annotation
is accomplished is open. For example, the database could contain labeled features
that match the examples. If multiple database entries match an example, a deci-
sion scheme is needed to select a label; occurrence counts or probability estimates
are frequently used (e.g., Go et al., 2009; Surdeanu et al., 2010).
Based on these annotated examples, we can train a supervised classifier as pro-

posed in the original paper. This constitutes a bootstrapping step. Through this
step, we are able to make use of the complete set of features that we can extract
from the classifier, promising further improvements over the distantly annotated
results.

Transfer Learning

Transfer learning (TL, Thrun, 1996) is concerned with making use of knowledge
gained from learning a model for a certain task when faced with another task that
is related but different. Most of the time, we will not be able to straightforwardly
apply a learned model for one task to another task without encountering significant
problems. To make knowledge transfer between tasks easier, Thrun proposes the
following possible techniques:

Memory-based learning Transductive classification functions that work directly
on the input examples rather than on an abstract representation of their
properties in a learned model are thought to be beneficial for transfer learn-
ing. This is motivated by the fact that in these approaches, examples can be
weighted against each other dynamically, e.g., by using a distance measure
that relates examples from the two tasks.
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Better distance measurements Directly related to this, Thrun argues that im-
proving the distance measure may lead to improved transfer. He suggests that
a distance function could be learned automatically.

Adapting representations Orthogonally to the distance function, the feature
representations of the two tasks may be addressed. Thrun proposes to modify
feature spaces in order to facilitate knowledge transfer. Although the original
proposal intends to automatically learn a feature space mapping – an idea
related to representation learning (cf. Bengio et al., 2013) – a well-selected
feature set may be sufficient.

In this thesis, we focus on improving feature representations for transfer learning.

2.4 Discriminative Models

Discriminative models work by modeling the posterior probability p(y|x) of an
output y given the example x directly (Bishop, 2006). This distinguishes them from
generative models which consist of a process of probabilistic steps, the generative
story, that together form the posterior (effectively modeling the joint probability
p(y, x)). Discriminative models enjoy popularity in NLP and other fields as they are
more flexible than purely generative models and often yield superior performance.
In the following sections, we will present two prominent classes of models, the
maximum entropy model and the Neural Network model.

2.4.1 Maximum Entropy Model

The maximum entropy model is particularly popular in NLP (Berger et al., 1996).
It is in part motivated through issues regarding feature extraction from which many
NLP tasks suffer. Most feature functions produce features that are not statistically
independent. For example, the extraction of both unigrams and bigrams leads to
dependent features as the occurrence of a word in a unigram implies that it is
also part of a bigram. More generally, the words in a text cannot be considered
statistically independent as they were produced in sequence with specific semantics
in mind. Therefore, word-based features extracted from a text will be correlated.
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It is important that this property is taken into consideration in a statistical
model. Some models, such as Naive Bayes, assume that all features are statisti-
cally independent. The maximum entropy (MaxEnt) model does not make this
assumption. It is based on the maximum entropy principle which states that one
should use the model which is closest to a uniform distribution unless contrary
information is available. This causes the so-called explaining away effect (Wellman
and Henrion, 1993), meaning that only those features which explain the training
data best receive high weights. We follow Nigam et al. (1999) and Mount (2011)
for the introduction of MaxEnt models.
Formally, the MaxEnt model maximizes the entropy H(p) of the distribution

p(c|x):
H(p) = −

∑
c∈C

∑
x∈X

p(c|x) log p(c|x)

Further, we add constraints that (i) p(c|x) needs to be maximal for the correct
label, and (ii) that p needs to be a probability distribution. Formulating the La-
grangian and finding an optimum, we obtain the following model:

p(c|x) =
exp(

∑
i∈F

w
(c)
f φi(x))

∑
c′∈C

exp(
∑
i∈F

w
(c′)
f φi(x))

This exponential model function called softmax in the context of neural networks.
We will discuss it in more detail in the following section. The feature weights w(c)

can be learned by maximizing the model’s log-likelihood LL(w|D),

LLw(D) = log
∏

x̂,ŷ∈D
p(ŷ|x̂),

for the data on a set of training examples through numerical optimization, applying
for example gradient-based or quasi-newton methods. The log-likelihood function
is related to the cross-entropy function which is used for neural network training.
Indeed, the MaxEnt model can itself be interpreted as a neural network.
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Figure 2.1: Artificial neuron

2.4.2 Neural Networks

Introduction

Neural networks (NN) are a class of mathematical model inspired by biology. The
basic unit of a neural network is the artificial neuron, which is a model of a natural
neuron that occurs in the brain.
The following introduction in part follows Bishop (2006). Formally, a neuron is a

function that takes a vector x of input variables and returns an output y = f(x),
where f is the output function whose result y is the activation of the neuron.
Neurons in neural networks are usually visualized as graphs. Figure 2.1 shows the
graph for a single neuron. The nodes in the network are called units. The input
units x1, . . . , x4 are shown at the bottom, the output unit y at the top. n edge
indicates that the value of the origin unit is used to compute the value of the
target unit. A neural network consists of a set of neurons that are combined in
some way, for example by composition of their output functions.
One of the most simple neural networks is the perceptron (Rosenblatt, 1958).

It consists of a single neuron, like the one shown in Figure 2.1, that makes a
classification decision based on a linear activation function of the inputs x, a
weight vector w, and a bias term b:

y = f(x) =

 1 if w · x + b > 0
0 else

The weights and the bias are parameters that can be optimized numerically based
on training data. The perceptron is still popular today in NLP, particularly for ap-
plications with complicated learning problems such as structured prediction where
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Figure 2.2: Multi-layer neural network. Hidden nodes are shaded in gray.

efficient training is key (Smith, 2011). The model led to the general form of a
neuron with the output function

f(x) = h(w · x + b),

where we first compute the linear combination of the inputs x with the weights w
and bias b and then apply an activation function h, which may be non-linear.
Logistic regression is an instance of this model, consisting of a single neuron with

the logistic sigmoid h(x) = sigmoid(x) = 1
1+e−x as its activation function. Logistic

regression is closely related to the previously introduced maximum entropy model
(cf. Mount, 2011).
As mentioned earlier, multiple neurons may be composed to form a complex

network structure. If multiple neurons work on the same input units, each yielding
a different outputs yi, we call this structure a layer. To make subsequent notation
easier, we can for each layer collect the weights W = [w1; . . . ; wn], the biases
b = (b1, . . . , bn), and the outputs y = (y1, . . . , yn) = f(x).
Multiple layers can be combined through the composition of their output func-

tions. For n layers with output functions f (1), . . . , f (n), the final network output
is

y = (f (n) ◦ . . . ◦ f (1))(x) = f (n)(f (n−1)(. . . (f (1)(x)))).

This type of network setup is called feedforward as we can pass information only
in the direction towards the output. There is no generally accepted convention
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y

x

fW

Figure 2.3: Compact neural network notation

for numbering layers. We adopt the convention where the input units are not
counted as a layer. This has the advantage that the number of layers is equal to
the number of parameter sets that need to be learned. An example graph for a
multi-layer NN is shown in Figure 2.2. The network has two layers: an output
layer (with three units y(2)

1 , y
(2)
2 , y

(2)
3 ) which makes a prediction; and a hidden layer

(with five units y(1)
1 , . . . , y

(1)
5 ) which consists of network-internal values that are not

specified in the training data and thus cannot optimized directly. In this model,
calculating derivatives in the hidden layers is not straightforward as we can measure
errors directly only at the output. Therefore, errors made at the output layer
must recursively influence the weights of preceding layers as well. Backpropagation
(Rummelhart et al., 1986) is an efficient algorithm for calculating the derivatives of
a multi-layer network, making use of the chain rule for derivatives efficiently. The
algorithm computes the derivatives iteratively, starting at the output layer, and
uses the errors of each layer to compute of the derivatives in the preceding layer.
For details of the algorithm, refer to (Bishop, 2006). The multi-layer perceptron is
an instance of this idea in which each of the activation functions h(1), . . . , h(n) is
again the logistic sigmoid.

Vector Graph Notation

To make graph notation more readable and compact, we will employ a vector-
based layout, which has been used previously for example by Bengio et al. (2003).
Each layer is represented as a single node representing a vector, and a connection
between the nodes indicates that the layers are fully connected. An example of this
notation is shown in Figure 2.3. The graph shows two vectors with unit values x
and y, respectively, that are connected through a NN layer with output function
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Name Function Range

identity identity(x) = x [−∞,∞]

hyperbolic tangent tanh(x) = ex + e−x

ex − e−x
[−1, 1]

logistic sigmoid sigmoid(x) = 1
1 + e−x

[0, 1]

softmax softmax(x, i) = exi∑
j e

xj
[0, 1]

Table 2.1: Examples of activation functions along with their ranges.

f which is parameterized with W . Sometimes, it is useful to split up layers into
several vector boxes to indicate that these vectors are being concatenated.

Activation Functions

The motivation for using an activation function is, among others, that the depen-
dency between the input and the expected output is not necessary linear. Further,
it may be desired that the outputs of the network are bounded, e.g., between [0, 1],
or even normalized (i.e., the sum over all output units is 1). Ideally, the activation
function should be differentiable to make numerical optimization easier.
We will briefly introduce the activation functions that are relevant in this thesis.

Their definitions are shown in Table 2.1. All of these functions are smooth, i.e.,
infinitely differentiable. We will next give some motivation for each of the functions.

Identity The most straightforward function is the identity function that simply
passes through the output of the linear equation.

Hyperbolic tangent The hyperbolic tangent, a function with an s-shaped graph,
ranges between -1 and 1. It is often considered when the outputs are expected
to be centered around zero, e.g., for normally distributed data with zero
mean.

Logistic sigmoid The logistic sigmoid function, which again has an s-shaped
graph, returns a value between zero and one for each output unit, which
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makes it suitable for predictions that are encoded as binary vectors, as they
are found for example in co-occurrence vectors in information retrieval.

softmax The softmax function returns a value between zero and one for each
unit; the sum over all units is 1. Thus, softmax is particularly useful when
the activations of all units are to be interpreted jointly as a probability
distribution. The computation of softmax differs markedly from the other
functions as it is the only one where the activation of one unit depends
directly on the activations of all other units through normalization. The
function that returns the a vector with softmax activations for all units in
a layer is simply written y = softmax(x). Thus, the result over all training
examples will be a matrix Y whose rows represent the examples and whose
columns represent the individual classes.

Loss functions

The optimization objective for supervised neural network training is based on a
loss function that measures how well the network performs on the training data.
As the name implied, the output of the loss function needs to be minimized to
receive the best-performing model (as opposed to maximization of the likelihood
of the data under the model as it is common for MaxEnt). There are multiple loss
functions which are common in the literature, and which are usually preferably
used with specific output activation functions. We will briefly introduce the two
most common functions. In the following, let ŷ be the target value and y the
predicted output. N denotes the number of examples,D the output dimensionality,
i.e., the number of units.

Mean squared error (MSE) The MSE function assumes that the errors are
normally distributed. It is defined as

MSE(ŷ,y) = 1
N

N∑
n=1

(ŷi − yi)2.

MSE assumes that the errors are normally distributed. It is frequently used
in combination with the tanh and linear activation functions.
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Cross-entropy error (CEE) The CEE function measures the cross-entropy of
the output and the target values. As a consequence, it is only applicable if the
predictions and targets are probabilities. It is a natural choice for sigmoid
and softmax activation functions. When used in combination with one of
these functions, the computation of the derivatives in backpropagation can
be simplified significantly. The CEE function for the multiclass case, i.e.,
when using softmax activation, is defined as follows:

CEE(Ŷ,Y) =
N∑

n=1

D∑
d=1

ŷnd ln ynd

Optimization

Although research on optimization is not within the scope of this thesis, we briefly
want to mention some points we consider important. Most importantly, neural
network objective functions are in general not guaranteed to be convex. Thus, if
we search for the minimum of such a function using convex optimization, we will
find only local optima. While local optima can still be good enough to do well on a
task, the result depends highly on initialization – which has consequentially been
the focus of much research. Often, convex optimization methods (such as quasi-
newton optimization (e.g., L-BFGS) or stochastic gradient descent) are applied to
non-convex objectives, with the hope that the local optimum is sufficient for good
performance.

Autoencoders

The autoencoder is a neural network model which has received much attention in
recent research. It takes an input and tries to reproduce it at the output. This is
accomplished by using an optimization objective that minimizes a loss function
measuring the difference between the input and the output. The typical autoen-
coder setup is shown in Figure 2.4. It consists of two layers, a hidden layer, called
the encoding layer (enc), and an output layer, called the decoding or reconstruction
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y

h

x
f (enc)

f (rec)

Figure 2.4: Autoencoder

layer (rec):

y = f (rec)(f (enc)(x)) = h(rec)(W(rec)h(enc)(W(enc)x + b(enc)) + b(rec))

The hope is that the hidden units learn to generalize from the input, identifying
interesting correlations between the input features. The values of the hidden layer
can be interpreted as a compressed representation of the input. In order to be
able to reproduce the input, the number of output units must equal the number
of input units. The number of hidden units is often chosen to be smaller than
the number of input units to avoid that the network simply copies the input, the
goal being to reduce the dimensionality of the data. Nonlinear activation functions
can help to prevent copying as well. Depending on the way the data is encoded,
certain combinations activation functions and loss functions are more beneficial
than others (e.g., sigmoid and CEE for binary input vectors).
The idea of finding a representation with reduced dimensionality is not unlike the

motivation for applying methods such as principal component analysis or singular
value decomposition. In fact, they are closely related to autoencoders. Bourlard
and Kamp (1988) for example show that singular value decomposition is equivalent
to a two-layer feedforward network with linear activation and a mean squared error
objective.
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Deep Neural Networks

Deep neural networks (DNNs), i.e., networks with a high number of layers, are
desirable from a learning point of view. It has been shown that neural networks are
universal approximators (McCulloch and Pitts, 1943; Hornik, 1991), i.e., roughly
spoken, they can approximate any continuous function. DNNs are advantageous to
this cause as they can reduce the learning effort required for good approximation
(Bengio, 2009).
For a long time, training arbitrarily deep neural networks has been considered

too difficult for most applications. Combining multiple layers with non-linear acti-
vation functions makes the resulting objective function non-convex, which greatly
complicates optimization. In some cases, for example on certain image processing
tasks (LeCun et al., 1998), convex optimization finds useful local optima for DNNs,
but generally, DNNs were unsuccessful.
Hinton and Salakhutdinov (2006) introduced a novel technique for learning deep

networks. The key idea is to first pre-train each layer in the DNN in an autoencoder
setup to initialize the weights for subsequent training of the full model. This effect
is said to be related to non-convexity. The authors argue that pre-training serves to
initialize the model weights beneficially so that convex optimization finds a better
local optimum. These results have lead to much subsequent research where DNNs
were shown to outperform state-of-the-art models in areas like speech recognition
(Dahl et al., 2012) and image processing (Krizhevsky et al., 2012). Note that these
are all cases where the data is easy to represent numerically. Transferring this
success to text-based NLP remains a challenge.

Continuous Vector Space Language Models

The structure of language makes the application of DNNs for NLP difficult. DNNs
originated in image processing where the neighborhood of two entities (pixels) has a
straightforward interpretation due to their spatial relation. In NLP, neighborhood
relations are not always interpretable easily and don’t necessarily translate into a
semantic relationship. Often, long distance dependencies hinder the use of locally
sensitive models. Further, the basic units in image processing are numerical, as
opposed to categorial word tokens found in text.
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This problem motivates the use of continuous vector space models. Here, words
are embedded in a continuous vector space, i.e., each word is represented by a
continuous vector that is automatically learned. Usually, these spaces are low-
dimensional compared to the high-dimensional sparse feature spaces that are usu-
ally used in NLP. One of the first models to learn word representations is the
neural language model (NLM, Bengio et al., 2003). We will briefly introduce this
model as it is the foundation on which the compositional models used in this thesis
build.
For notation purposes, we first assume that we represent each word type as an

integer w ∈ N. We let L be the representation matrix where each row contains the
vector for a certain word, and we define a lookup operation li on it that returns
the ith row of L.
In a sense, the idea behind the NLM is similar to that of the autoencoder: given

a set of context words, we want to be able to reconstruct the target word. In
contrast to the autoencoder, the NLM sets up the problem as making a context
prediction. The model takes a string of words as its input. Given a target word
wi, we take a windowed context of k words to the left and to the right of the
word: (wi−k, . . . , wi−1, wi+1, . . . , wi+k). The input to the network will be the con-
catenation of the words’ vectors, x = [lwi−k

, . . . , lwi+k
]. The network setup is shown

in Figure 2.5: a two-layer network architecture where the first layer uses a tanh
nonlinearity and the second layer uses softmax. All units except the output units
are hidden. The network output will be a prediction of the identity of the target
word wi (i.e., a probability distribution indicating it):

y = softmax(W(2) tanh(W(1)xᵀ + b(1)) + b(2))

The NLM is trained by learning both the usual weight parameters as well as the
matrix L, the input representations of the words. To improve the quality of the
resulting word representations, randomly constructed negative examples have been
shown to be helpful (Collobert and Weston, 2008). Sometimes, skip connections
are used to connect the input layer directly to the prediction layer (Bengio et al.,
2003).
The purpose of learning word representations is two-fold. First, the representa-
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2 Statistical Natural Language Processing

tions may be used in any task where vector representations of words are required,
e.g., in information retrieval. Second, the representations serve as pre-training for
subsequent hierarchical neural network models. We will present and analyze such
a model in Chapter 7.

2.4.3 Regularization

An important goal in supervised learning is to find a model that generalizes well,
meaning that it works well on both the test and training data. Models that capture
the training data well but not the test data are said to overfit the training data. It is
thus desirable to take measures to avoid overfitting. For this reason, it has become
best practice to regularize discriminative models. As we can freely manipulate
weights (as opposed to, e.g., probabilistic generative models where the parameters
are required to be probabilities), we can simply impose a constraint on them. A
common method for regularization restricts the growth of the model parameters w,
which prevents overfitting. To accomplish this, the original optimization objective
Ew(•) is modified to jointly minimize a norm of w, for example its L2 norm
‖w‖2 =

√∑
i |wi|2:

E(reg)
w (•) = Ew(•) + ‖w‖

2
2

2σ2

Here, σ is a parameter controlling the degree of regularization. This regularization
term corresponds to a Gaussian prior on the weight vector where σ2 is the variance.
All discriminative models used in this thesis are regularized.

2.5 Graph-Based Natural Language Processing

Recently, graph-based representations of natural language have emerged as a pow-
erful alternative to purely inductive learning methods (Mihalcea and Radev, 2011).
One idea which has strongly influenced graph-based approaches to NLP is trans-
duction, where knowledge from the training data is directly transferred to the test
data instead of training a mathematical model. This idea is naturally applica-
ble on graphs as they encode relations between objects. Often, properties such as
transitivity may be exploited.
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2.5 Graph-Based Natural Language Processing

We will next give a brief introduction to graph theory, based on the text by
Diestel (2000), focusing on the concepts that find application in this thesis. We then
discuss ways to represent natural language through graphs. Finally, we introduce
the graph algorithms that we apply.

2.5.1 Graph Theory

We formalize directed graphs as G = (V , E ,W), where V is the set of nodes v, E
the set of directed edges 〈u, v〉 between two nodes u and v, and W a matrix of
edge weights wuv between u and v. We next describe some basic concepts of graph
theory. Note that all definitions can easily be modified for undirected graphs by
assuming unordered pairs (u, v) as edges and a symmetric W.

Degree The out-degree gout(i) of a node i is the number of edges that start at i, i.e.,
g(i) = |{(i, j)|j ∈ V ∧ (i, j) ∈ E}|. The in-degree gin is defined analogously
for edges that end at i.

Distance The distance d(i, j) of two nodes i and j is the length of the shortest
path between them; d(i, i) = 0 and if there is no path between i and j,
d(i, j) =∞.

Subgraph H = (V ′, E ′,W′) is a subgraph of a graph G = (V , E ,W), written as
H ⊆ G, iff V ′ ⊆ V and E ′ ⊆ E and W′ is the appropriate submatrix of W.

Connected graph A graph (or subgraph) is called connected iff there is a path
between any pair of its nodes.

Component A subgraph H of G is a component of G iff there is no H ′, H ⊆
H ′ ⊆ G, which is also connected.

Neighborhood The k-neighborhood of a node i is the subgraph N = (V ′, E ′,W′)
of G = (V , E ,W) where V ′ = {j| d(i, j) ≤ k∧ j ∈ V} and E ′ = {〈i, j〉| 〈i, j〉 ∈
E} ∪ {〈j, i〉| 〈j, i〉 ∈ E} and W′ is the appropriate submatrix of W.
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2.5.2 Graph Representations of Natural Language

There are many ways of representing language in this formalism for different NLP
problems (based on Mihalcea and Radev, 2011, Chapter 4). We will briefly intro-
duce the setups that we apply in this thesis.
Co-occurrence graphs model co-occurrence relations between objects. In the most

basic setup, the word graph, each node represents a word type. Undirected edges
between words represent co-occurrence of the words in a text corpus. One moti-
vation behind this graph structure is that when choosing the right relations, the
graph might implicitly encode semantic information, such as semantic similarity
between two words. The graph is constructed based on some text by taking a win-
dow of n words to the left and right of a word wx and add an undirected edge
(wx, wx+i) to the graph for each −n ≤ i ≤ n|i 6= x. The edges are weighted by
the overall co-occurrence count of the word pair. If necessary be, this graph can
be made directed by splitting each edge into an ingoing edge 〈u, v〉 and outgoing
edge 〈v, u〉. This approach has several drawbacks. First, it is noisy as not all words
in the neighborhood have a strong relationship. Second, it leads to a large, dense
graph which may be hard to process.
To address these issues, a more conservative approach has been proposed, leading

to a syntactic dependency graph. Related words are extracted based on pre-defined
syntactic patterns, such as verb-object or conjunction relations. If two words are
found in such a relation in a corpus, they are assumed to be co-occurring and an
edge is added to the graph as described above.
A further extension to this framework is to include edges that do not strictly

model co-occurrence but rather occurrence. Due to a lack of a term in the literature
for this structure, we call it occurrence network analogously to the previously in-
troduced concepts. For example, we can introduce a node representing a document
d and create edges (d, w) between d and each word w ∈ d.
To model discourse phenomena in language, adjacency graphs have been pro-

posed. Adjacency graphs are a stricter form of co-occurrence graphs where the
edges between two nodes are weighted by how close the objects they represent
are to each other. This can be accomplished by defining a weight function based
on proximity or even a strict cutoff after a number of neighbors. This way, the
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resulting graph will have chain-like structures representing sequence information
about linguistic entities.
An interesting but frequently overlooked distinction is whether the nodes in the

graph represent types or tokens. Word graphs usually model word types in order
to achieve semantic generalization. Discourse graphs often use tokens to model ob-
jects in context, for example to identify informative sentences for summarization.
Sometimes, a hybrid approach may desired, for example for word sense disam-
biguation.

2.5.3 Graph Algorithms

Most popular graph-based machine learning algorithms are designed for transduc-
tive learning. This means that they do not perform parameter-based training of
mathematical models. Instead, they try to make use of the training information
directly, for example by propagation, segmentation, or the computation of node-
node relatedness. This also emphasizes the importance of choosing a suitable graph
structure. We will introduce two graph algorithms, PageRank and minimum cut.

PageRank

PageRank is an algorithm for measuring how well-connected each node in a graph
is (cf. Bianchini et al., 2005). It was introduced by Page et al. (1999) to rank web
pages by user preference in order to improve the results of their web search engine.
They accomplished this by viewing the web as a graph where web sites are nodes
and hyperlinks between the pages define edges between the nodes. The underlying
concept of PageRank is that of a random walk, which was described initially by
Pearson (1905). We formalize random walks based on the introduction by Abney
(2010). A Markov chain is a stochastic process that models the transition between
a set of states V . It is defined through the transition probabilities pij ∈ P for
all states i and j. States and transitions between them can be represented as a
directed graph G = (V , E ,P) with P as the row-normalized edge weight matrix,
where E = {(i, j)|pij 6= 0}.
An important property of a Markov chain is egodicty. A Markov chain is er-

godic iff it is irreducible and aperiodic. Irreducibility is given if there is a path
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with non-zero probability between any two states. Aperiodicity requires that there
is no periodic path between any two states. Any ergodic Markov chain has a
unique steady state probability distribution. This distribution is the dominant left
eigenvector of the transition probability matrix P. We refer to the dominant left
eigenvector as the rank vector r. It can be computed as the fixed point of the
following equation, e.g., by the power method:

r = r P (2.1)

Ergodicity is difficult to ensure in practical applications as we generally have
little influence on the structure of the graphs that arise. To avoid the issue on the
web graph, the transition matrix of the graph can be altered to pairwisely give all
nodes a non-zero transition probability through interpolation with another non-
zero probability matrix, a process known as teleportation (cf. Haveliwala, 2003).
For web data, teleportation could be interpreted as the surfer manually moving
to a different web site rather than following a link. Formally, teleportation can be
introduced into an existing Markov chain as follows. Assume that we are given
an N × N transition matrix A for a Markov chain, an N -dimensional vector of
target teleportation probabilities t, and an overall teleportation probability (1−α)
which specifies. We can then compute the ergodic probability matrix P through
interpolation as

P = αA + (1− α)1ᵀt. (2.2)

In standard PageRank, t is the uniform distribution: all nodes are equally likely
to be teleportation targets.

Personalized PageRank PageRank measures the overall connectedness of a
node in the graph. In many applications, however, it is of interest to measure the
connectedness with respect to a set of relevant nodes which we call seed nodes. One
algorithm that solves this problem is Personalized PageRank, also called Topic-
Specific PageRank. It was originally intended to compute the PageRank of web
pages with respect to a certain topic or focus of interest.
Personalized PageRank is computed with respect to a set of seed nodes S that

represent known instances of relevance. Based on this set, we will bias PageRank to
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give higher weight to nodes that are well-connected to these nodes and therefore
are good representatives of the topic that dominates S. We accomplish this by
setting the teleportation probabilities ti in t non-uniformly based on whether a
node ni is in S:

ti =


1
|S|

if ni ∈ S

0 else
(2.3)

Thus, teleportation will occur only to nodes in S. This causes r to have high values
for nodes that are well-connected to nodes in S.

Minimum Cut

The minimum cut (MinCut) problem is the problem of finding a segmentation of
a graph into two parts where the sum of the weights of the edges that have to be
removed is minimal. We will formalize the problem based on (Abney, 2010) and
briefly discuss algorithms for computing the MinCut.
We write the complement of a set of nodes S as S̄. Each set of nodes S has a

boundary ∂S which is the set of all edges that connect nodes in S to nodes in S̄.
The size of this boundary can be computed as the sum of the weights of ∂S, and
is also refereed to as a cut:

size(∂S) = cut(S, S̄) =
∑

〈a,b〉∈S×S̄

wab + wba

The problem of finding the cut with the smallest boundary size is the minimum
cut problem. size(∂S) is the value of the cut. The result is a partitioning of the
nodes of the graph into two sets S and S̄ with optimal similarity within each set
and optimal dissimilarity between the sets.
Much research covers the problem of finding the minimum cut. In this thesis,

we will make use of a special case of MinCut, the s-t-MinCut where two nodes,
s and t, are required to be on different sides of the cut, i.e. s ∈ S and t ∈
S̄. Many algorithms, such as push-relabel algorithms (Cherkassky and Goldberg,
1995), exploit the equivalence of the s-t-MinCut problem to the maximum flow
(MaxFlow) problem for flow networks. In this paradigm, the graph is viewed as a
flow network. Edge weights correspond to the capacity of flow between two nodes.
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Edges must be directed and there must be one node each representing the source,
where flow can enter the network, and the sink, where the flow leaves the network.
The goal of the MaxFlow problem is to find the maximum flow value from the
source s to the sink t, which is equal to the value of the cut. When using blocking
algorithms such as the push-relabel algorithm (Cherkassky and Goldberg, 1995),
the graph is partitioned by the “frontier” of blocked edges.

2.6 Evaluation

2.6.1 Evaluation Measures

For the evaluation of classification results, we resort to well-known measures from
information retrieval (Manning et al., 2008). All evaluation measures presented in
the following section rely on some basic counts on a test collection of data D.
The basic measurements are the counts of true positives (tp), true negatives

(tn), false positives (fp) and false negatives (fn) with respect to each class c of each
example. These depend on whether the class predicted by the classifier matches
the expected prediction, i.e. the true class, as shown in Table 2.2.

true

pr
ed
ic
te
d c ¬c

c tp(c) fp(c)

¬c fn(c) tn(c)

Table 2.2: Confusion matrix of true and predicted class

We define tp(c), tn(c), fp(c), and fn(c) to denote the number of times the respective
events occurred in the collection for a class c. Based on these count statistics, we
define our evaluation measures.
The most basic measure is accuracy (Acc). Here, we simply measure the ratio

of correctly classified examples on the collection:

Acc =
∑

c∈C tp(c)

|D|
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Accuracy is a good measure when classes are distributed uniformly in the collec-
tion. However, as class imbalances grow more pronounced, high accuracy might be
attained by a classifier that has a bias towards the majority class.
Precision and recall are often used as an alternative, providing a more detailed

analysis of the classifier’s behavior with respect to each class c. Precision (P (c))
measures the relative frequency of correctly classified examples that were predicted
to belong to c:

P (c) = tp(c)

tp(c) + fp(c)

Conversely, recall (R(c)) measures the relative frequency of correctly classified ex-
amples among the set of examples whose correct class is c:

R(c) = tp(c)

tp(c) + fn(c)

The harmonic mean of precision and recall is called the F measure. In this thesis,
we use the balanced F measure, or F1 measure, i.e. precision and recall are weighted
equally:

F
(c)
1 = 2P (c)R(c)

P (c) +R(c)

We use the macro-averaged F measure (abbreviated as F̄1) over all classes as a
measure for overall classifier performance:

F̄1 =
∑

c∈C F
(c)
1

|C|

The F measure of each class contributes equally to the macro average. This way,
class-imbalances in the data do not have an influence on the calculation of the
result.

2.6.2 Hypothesis Tests

When developing and evaluating natural language processing systems, it is impor-
tant to know whether using one method instead of another improves the results.
For this reason, we perform the aforementioned evaluation steps. However, from a
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Algorithm 1 Approximate randomization test
Input: y1, y2, ŷ k
Ensure: |y1| = |y2|
1: m0 ← eval(y1, ŷ)− eval(y2, ŷ)
2: s← 0
3: for i = 1 to k do
4: y′1 ← y1, y′2 ← y2
5: for j = 1 to |y1| do
6: if Bernoulli(0.5) = 1 then
7: swap(y′1[j],y′2[j])
8: end if
9: end for
10: m← eval(y′1, ŷ)− eval(y′2, ŷ)
11: if m ≥ m0 then
12: s← s+ 1
13: end if
14: end for
15: return s/k

statistical point of view, it could still be possible that one method outperformed
the other by chance. To check this, we can make use of statistical hypothesis tests.
We briefly introduce the general problem based on Yeh (2000).
Assume that we have two systems which produced the outputs y1 and y2, which

we evaluate according to some evaluation function eval (such as accuracy or F1).
We make the null hypothesis that there is no difference between the outputs of
eval for y1 and y2. We then estimate the probability of the observed difference
between y1 and y2 given the null hypothesis. If this probability is lower than a
threshold – the confidence level – we reject the null hypothesis and say that the
difference between the results is statistically significant.
There is a large variety of hypothesis tests available for the previously introduced

evaluation measures. As noted by Yeh (2000), many of these tests assume statis-
tical independence between the two systems. This assumption is mostly wrong in
practice as many systems share components, for example by using the same core
feature sets. Such tests underestimate statistical significance and therefore tend to
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yield false negative results.
In this thesis, we adopt the approximate randomization test (Noreen, 1989; Yeh,

2000). The underlying idea is to test the null hypothesis through simulation. If
there is indeed no difference between the two systems, the results they produce
should be interchangeable. We can test this by permuting the predictions of the
systems between each other. In total, this would lead to 2n permutations for n
examples. For each permutation, we check whether the difference between the
systems according to our evaluation measure is as least as large as the one for
the unpermuted systems. The relative frequency of how often this occurs will tell
us how likely it is that we observed an improvement by chance. Since in practice
we deal with large datasets, we generally cannot perform 2n permutations. For
this reason, we approximate the result by generating a sufficiently large number
of permutations randomly.
The approximate randomization algorithm is shown in Algorithm 1. It has a free

parameter k which determines the number of random samples. In addition, we need
to specify an evaluation measure eval. Each sample is generated by randomly per-
muting the predictions for each test example between the tests. In each iteration,
we test whether the difference m between the two results is larger than the initial
difference m0. The probability of accepting the null hypothesis is p = s/k, where
s is the number of trials in which m ≥ m0.
This test has several advantages. First, it does not make the independence as-

sumption described above. Second, it is applicable to any evaluation measure and
does not need to be derived again if the measure is changed. On the other hand, as
the name implies, the test is not exact but instead iteratively tests permutations
of the results. The result becomes more reliable with increasing k. For this reason,
it is more expensive to compute than an exact test.
Unless stated otherwise, we run the test with 10,000 iterations and use a confi-

dence level of p = 0.05.

2.6.3 Agreement Measures

Annotation of linguistic properties by humans is an essential foundation of com-
putational linguistics. Both supervised training and evaluation of NLP methods
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require human annotations. Consequentially, assessing the quality of such annota-
tions received much attention. In order to check whether human annotators work
in a consistent and reproducible manner, one can directly compare the work of
two or more annotators using an agreement measure. The following introduction
is based on the surveys by Artstein and Poesio (2008) and Gwet (2008) .
Defining an agreement measure is not straightforward. For example, we could

simply measure the relative frequency of times the annotators agree. This measure
would, however, not take into account the fact that the distribution of answers
is usually skewed. This is why measures of pure observed agreement do not yield
a realistic estimate. To this end, it has been proposed to correct the observed
agreement probability for chance agreement, which lead to the kappa measure (κ):

κ = Pa − Pe

1− Pe

Pa is the probability of observed agreement, and Pe the probability agreement by
chance. There is no general consensus regarding how chance agreement should be
calculated, which is why there are many versions of κ. We measure agreement with
Fleiss’s κ. It has the advantage that it can be defined so that it is applicable to
an arbitrary number of annotators. Assume N examples which can be annotated
with K categories. Let A be the total number of annotators. Let ank be the num-
ber of annotators who annotated example n with category k. Then, the observed
agreement Pa can be computed as follows for an arbitrary number of annotators:

Pa = 1
N

N∑
n=1

1(
A
2

) k∑
k=1

(
ank

2

)

Essentially, we calculate the agreement for each example n as the number of pair-
wisely agreeing annotators

(
ank

2

)
normalized over all possible pairings. We then

take the mean over all examples. For Fleiss’s κ, chance agreement is defined based
on a single distribution over all annotators. The probability for each category k is
simply

pk = 1
AN

N∑
n=1

ank.
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Chance agreement Pe can then be calculated as

Pe =
K∑

k=1
p2

k.

2.7 Summary

In this chapter, we motivated and introduced statistical natural language pro-
cessing. We showed how language can be represented for statistical processing and
introduced a set of learning strategies. We presented several statistical models that
are frequently applied in NLP. Finally, we described the means of evaluation we
employ in this thesis.
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3 Sentiment Analysis

Sentiment Analysis is an area of natural language processing that is concerned
with capturing attitudes expressed in linguistic expressions. Sentiment describes an
opinion or attitude expressed by an individual, the opinion holder, about an entity,
the target. Attitudes – “relatively enduring, affectively colored beliefs, preferences,
and predispositions towards objects or persons” (Scherer, 2003) – are different from
emotions – “brief episodes of synchronized responses” (Scherer, 2003) as a reaction
to external influences. This distinguishes sentiment analysis from other problems
such as emotion analysis where the general emotional state (influenced by various
external factors) is of interest, and not the attitude towards a specific target. The
degree and direction of sentiment (i.e., how positive or negative it is) is called its
polarity.
Research on the emotional potential of linguistic expressions has a long history

in linguistics. An important related concept that has been introduced early is
connotation, the additional emotional or cultural meaning of an expression (cf.
Linke et al., 1994). Connotation is an important linguistic foundation for expressing
sentiment. Computational approaches to sentiment emerged in the 1990s. It has
been recognized early that identifying the author’s attitude towards a topic is
interesting, for example in information retrieval (Hearst, 1992). Research on fully
automatic sentiment analysis goes back to Spertus (1997) who identifies hostile
messages on the web with a combination of rules and a lexicon. The breakthrough
of statistical models for large-scale sentiment analysis was introduced by Pang
et al. (2002) who showed that user-supplied polarity ratings of product reviews can
be predicted automatically with high accuracy through supervised classification.
Following this research, numerous sentiment analysis approaches on a broad range
of linguistic levels have been presented. These range from low-level units like words
and phrases (Turney, 2002), to sentences (Pang and Lee, 2005) to fine-grained
document analysis (Hu and Liu, 2004). Often, sentiment analysis is supported by
large vocabulary lexical resources such as polarity lexicons (Wilson et al., 2005b).
Recently, contextual properties have become increasingly important, reflecting the
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fact that word senses (Wiebe and Mihalcea, 2006), domains (Mullen and Collier,
2004), and topics (Blitzer et al., 2007) influence the way sentiment is expressed.
An important research focus in sentiment analysis is subjectivity analysis (Wiebe,

1990), where the objective is to automatically determine whether a statement is
subjective (i.e., reflecting an individual’s inner state of mind) or objective (i.e.,
verifiable in reality).
Sentiment analysis also plays a role in practical applications and downstream

tasks. Sentiment analysis systems may be components of information retrieval
(Hearst, 1992) systems, or may be used to summarize the vast amount of opin-
ionated content that has become available (e.g., Hu and Liu, 2004). Amazon.com,
for example, recently started to present summarizing quotes from reviews, includ-
ing a quantitative estimation of how often similar statements were found in other
reviews. Sentiment analysis also has a longstanding history in automatic stock
market analysis (e.g., Baker and Wurgler, 2007; He et al., 2013), where the au-
tomatic analysis of investor and customer sentiment can be used to predict stock
price developments.
The rest of this chapter is structured as follows. We will first introduce basic

concepts of sentiment analysis such as polarity and subjectivity in Section 3.1.
In Section 3.2, we present approaches to the automatic classification and detec-
tion of sentiment on different linguistic levels. Finally, we discuss possible feature
representations for sentiment analysis in Section 3.3.

3.1 Concepts in Sentiment Analysis

3.1.1 Polarity

The direction and strength of sentiment is called polarity. The simplest and most
common polarity scheme assumes two categories, positive and negative. These two
categories constitute the extreme ends of a discrete or continuous scale. This defi-
nition covers most voting schemes used in practice, such as

• thumbs up/down (e.g., Facebook, YouTube),

• positive, neutral, negative (e.g., eBay), or
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• star ratings (e.g., Amazon, IMDb).

Often, polarity is mapped to the [−1, 1] interval, assuming that −1 is the most
negative polarity possible, and 1 the most positive one. There is some ambiguity
regarding the center of the scale (0), which is commonly described as neutral.
Note however that this can also mean a more or less balanced mix of positive and
negative content (Koppel and Schler, 2006). It has been recognized that this data
is difficult to assess even for humans (Kim and Hovy, 2004), which is why data
from this category is sometimes omitted from experiments to simplify the problem
(e.g., Blitzer et al., 2007).
Recently, more complex polarity problems, bordering emotion analysis, have

been investigated. Socher et al. (2011), for example, propose the use of the scheme
from the experience project3 which collects user-submitted stories. Here, readers
can vote for one of six tags – you rock, tehee, I understand, sorry, hugs, and wow,
just wow, which cover a broader emotional spectrum. The result of these votings is
a distribution over tags, which is significantly more difficult to model than previous
schemes that simply require the prediction of discrete classes.
In this thesis, we are concerned with binary polarity prediction problems, thus

focusing only on the two extreme points (positive and negative) of the polarity
scale.

Prior and Contextual Polarity

Naturally, clues may be ambiguous, leading to different polarities in different con-
texts. The polarity of a clue out of context is called the prior polarity, the polarity
in context is the contextual polarity (Wilson et al., 2005b). Contextual effects may
arise for different reasons. Some clues are perceived differently depending on the
target. For example, funny can express positive sentiment when used in the movie
domain (funny story) or negative sentiment when used to describe food (funny
taste). Sometimes, one can observe cultural effects as well, such as warm beer
which triggers different reactions in different communities. The automatic recog-
nition of contextual polarity has been attempted using various linguistic context
features (Wilson et al., 2005b). However, it remains a challenge as domain and

3http://www.experienceproject.com/, which has since abolished this voting scheme
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topic effects have a strong influence. Thus, in this thesis, we will investigate only
prior polarity.

Polarity Clues and Polarity Lexicons

The most frequently investigated basic unit in sentiment analysis are words. Com-
monly, each word or multi-word unit is viewed as having a polarity which con-
tributes to the sentiment of higher-order units. Interestingly, at the word level,
sentiment analysis touches related fields such as emotion analysis, because the no-
tion of expressing sentiment towards a target vanishes. This distinction is often
ignored if the target is known. In this case, words and phrases are treated as clues
for the expressed sentiment. We will refer to this approach as the clue model.
Polarity Lexicons are an important resource in sentiment analysis. A polarity

lexicon is a collection of clue words or phrases annotated with polarity. Often,
they contain additional information such as part of speech (e.g., Wilson et al.,
2005b), word senses (e.g., Su and Markert, 2008) or domain information (e.g.,
Choi and Cardie, 2009). There are not many polarity lexicons available that have
been fully manually annotated. Thus, much research has focused on automatically
generating or extending lexicons by exploiting the semantic relatedness of clues
(Scheible et al., 2010; Hassan and Radev, 2010).
Polarity lexicons may be used as a standalone resource or in combination with

a statistical classifier, which is, however, not a trivial task; this problem is one of
the main research questions addressed in this thesis.

3.1.2 Subjectivity

It has been recognized in philosophy that there is a distinction between subjective
impressions of an individual and objective reality (Solomon, 1977). This distinction
manifests itself in human communication as well, leading to subjective and objective
language (Banfield, 1982). Statements can be subjective or objective depending on
their verifiability (cf. Liu, 2012, Section 2.4):

Subjective A subjective statement expresses the inner state of mind of an indi-
vidual. It is not directly verifiable. An example for a subjective statement is
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the following sentence:4

(3.1) One of the greatest romantic comedies of the past decade.

This sentence expresses the viewer’s subjective view of the movie, particularly
due to the subjective expression greatest.

Objective An objective statement is factual. It describes observable reality and
it is directly verifiable by individuals other than the one who made the state-
ment. The following sentence is considered objective:

(3.2) The movie won a Golden Globe for best foreign film and an Oscar.

It is objectively verifiable that the movie in question has indeed won said
awards.

The automatic classification of expressions into these categories is called subjec-
tivity analysis.
It has been recognized that subjectivity is not an indicator for whether an expres-

sion bears sentiment or not (cf. Liu, 2010). Consider Example 3.3, which contains
a factual statement.

(3.3) I have to admit I walked out of Runteldat.

The truth of this statement can be verified in reality (e.g., by observers who saw
the author walk out), thus it is objective. Yet, the sentence expresses negative
sentiment towards the movie that it describes as the author walked out of the
movie because he did not enjoy it. This example illustrates that subjectivity and
polarity are orthogonal. This notion is reflected in several annotation studies (e.g.,
Wiebe et al., 2005; Su and Markert, 2008) where the two concepts were treated
accordingly
Nevertheless, subjectivity has been used as a criterion of how interesting an

expression is for sentiment analysis. Pang and Lee (2005) for example propose
subjectivity-based selection for summarizing reviews. Many researchers (e.g., Wil-
son et al., 2005a; Lin and He, 2009; Heerschop et al., 2011) use subjectivity analysis
as a pre-processing step to filtering data for sentiment classification.

4All following examples are taken from the Pang & Lee sentence dataset.
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Note also that the definition of subjectivity given above is not universally ac-
cepted. While we adopt the classical definition from philosophy as described above,
many related concepts are often presented under the guise of subjectivity. Most
notably, the approach by Pang and Lee (2005) uses proxy data in place of any for-
mal definition of subjectivity, showing that practical concerns are often of higher
importance than formal correctness.

3.2 Automatic Sentiment Analysis

Automatic sentiment analysis is concerned with predicting the polarity of unseen
data. The term covers a broad range of problems and approaches. In this section,
we will discuss three general types of sentiment analysis problems. There is a
highly diverse set of methods tackling these problems are which cannot easily be
summarized briefly. We will introduce the relevant methodology in more detail in
the respective sections. In general, they can be divided into two major classes:
rule-based and statistical approaches. In this thesis, we focus mainly on statistical
approaches.
In today’s research, many different views on automatic sentiment analysis ex-

ist, leading to different tasks. The most prominent difference between them is the
granularity of analysis. Sentiment analysis has been performed on multiple lin-
guistic levels. The dominant tasks are the prediction of polarity on the document,
sentence/clause, and entity/aspect level. In this section, we will introduce these
levels based on the overview by Liu (2010). In the experimental part of the thesis,
we work on either the document or the sentence level.

3.2.1 Document Level

The goal of document-level sentiment analysis is to predict the overall polarity
expressed in a document. Typically, the documents on which this type of analysis
is performed are ones in which the author evaluates only a single entity, such as
reviews of products, hotels, or movies.
Figure 3.1 shows three example documents. Figure 3.1a is a product review

from Amazon.com in which a user/customer reviews a book. In addition to the
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review text, the user supplies a rating on a categorial polarity scale, in this case
spanning 1–5 stars. Figure 3.1b shows a hotel review from TripAdvisor, a travel
website. Again, we see a user-supplied review as well as an overall rating which is
supplemented by several ratings of certain aspects regarding their stay, such as the
location of the hotel. The automatic prediction of aspects would in this case be a
document-level prediction task (as addressed for example by Titov and McDonald,
2008). It is also possible to view it as an entity-level task (cf. Section 3.2.3).
Figure 3.1c contains a movie review from the Internet Movie Database (IMDb).
Again, the reviewer can rate the movie on a pre-defined scale of 1–10 stars. In
comparison, we note that the this review is much longer than the other two. The
average document length may vary between domains (Blitzer et al., 2007).
The task of predicting document-level polarity can be cast as a standard text

classification problem. The problem can then be addressed using well-established
techniques, such as maximum entropy classification (Pang et al., 2002) using word-
based feature representations (cf. Section 3.3). There are several assumptions in-
volved in the text classification approach. First, it is assumed that the whole text
is concerned with a single target, namely the product that is the subject of the
review. Second, the author is assumed to be the opinion holder. Third, the clue
features are assumed to be noisy but overall predictive of the document-level po-
larity. These assumptions might not hold in general for arbitrary statements. In
news texts, for example, opinions by different holders about various targets can be
re-stated by the news reporter. There are also in exceptions seemingly unproblem-
atic genres such as product reviews. In the following example,5 the author makes a
comparison to a different product, which might be wrongly recognized as negative
sentiment towards the reviewed product:

(3.4) You can get very cheap ones (around $5) that look like EON’s, but they
usually say it lasts 5 years, with 1-hour of continuous use. That definitely
looks bad in comparison to this one, which claims a 168 hour use.

As documents are typically long enough, violations of the three assumptions above
may be disregarded as noise. Instead, we rely on the sufficient availability of un-
problematic clues. Thus, the approach often fails for short documents which might

5Taken from http://www.amazon.com/product-reviews/B000095RB7
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(a) Example review from Amazon.com
(http://www.amazon.com/review/R3HA8K97VUEYEW/)

(b) Example review from tripadvisor.com
(http://www.tripadvisor.com/ShowUserReviews-g187291-
d232577-r50749804-)

Figure 3.1: Example reviews from different web services
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(c) Example review from imdb.com
(http://www.imdb.com/title/tt0286716/reviews)
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be less rich in clues. For example, consider this (complete) document:6

(3.5) This thermometer lasted about a month before going in to permanent "Hi"
mode. What a ripoff!

The only direct clue in this document is ripoff which, in a supervised approach,
must occur in the training data in order to correctly classify the example.

Supervision through User-Supplied Ratings A strategy frequently employed
in document-level sentiment analysis is to use the user-supplied ratings for supervi-
sion. Often, the ratings are first mapped to a common simplified scale (e.g., 5 stars
to binary). Using the user’s rating as the label of a review is an appealing idea as
it makes annotated data available in vast amounts and thus eliminates any need
for manual annotation. It has been argued, however, that using product ratings
as labels for the accompanying texts constitutes a form of noisy labeling. Ganu
et al. (2009), for example, show that star ratings are far from being perfectly corre-
lated with sentiment annotated by readers, and that manually annotated reviews
produce better recommendations.
There are many possible causes to this effect. First, there are usually no stan-

dards to which users have to adhere. Some online reviewing systems associate star
ratings with verbal assessments (e.g., very good, very bad, great or disappointing),
but usually, there are no detailed guidelines that give specific instructions for the
rating process. Second, some readers see the review text as complementary to the
rating, and thus, the rating may be inconsistent with the views expressed in the
text. These results and observations show that although sentiment classification is
often described as supervised, caution must be taken with viewing star ratings as
a gold standard.
Overall, the document-level approach has been found to be too coarse for many

practical applications. Thus, finer-grained analysis levels have been proposed, which
we review next.

6Example taken from the Multi-Domain dataset, kitchen domain.
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3.2.2 Sentence/Clause Level

Documents often exhibit a clear overall polarity (likely to be expressed in the
concluding portion, cf. Pang and Lee, 2004). Smaller units such as sentences or
clauses are significantly harder to analyze. The task of predicting the polarity of
a sentence is again a problem of text classification, where the text, represented
through word-based features, is the input to a statistical model. Currently, the
most successful clue-based approach uses a combination of Naive Bayes with a
Support Vector Machine (Wang and Manning, 2012). As described previously, in
this setup, sentiment analysis relies on the availability of clue words. However, due
to the significantly shorter length of sentences, not every sentence may actually
contain a useful clue. Consider the negative sentence7

(3.6) Might best be enjoyed as a daytime soaper.

where the reader has to understand that the movie in question is similar to a
daytime soap, which is a somewhat derogatory term for TV show of low production
quality for casual entertainment. In addition, the sentence contains the word best,
which has potential to be mistaken as positive in the clue model. Many sentences
also require the resolution of hedges and conditionals, such as

(3.7) Fans of Plympton’s shorts may marginally enjoy the film.

(3.8) This book fills a much-needed gap.8

Sentences may also be ambiguous when read out of context, or may contain expres-
sions of mixed sentiment. An early formal model for coping with complex polarity
structure was introduced by Polanyi and Zaenen (2006). In their model, polarity-
bearing clues are modified through so-called polarity shifters, being intensified,
diminished, or reversed. For example, marginally in sentence 3.7 diminishes the
polarity of enjoy. Note that while the shifter model works well for sentence 3.7,
sentence 3.8 is more difficult as gap is an uncommon clue, and the shifters much-
needed and fills are highly specific to that clue (i.e., they would not be shifters in
other contexts).

7Example taken from the Pang & Lee sentence dataset.
8A quote attributed to Moses Hadas.
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not 0 a 0 bad - journey 0 at 0 all 0 . 0

 -  0

 -

 +

 +

 +

Figure 3.1: Compositional analysis of the sentence “Not a bad journey at all.”.
Each node in the tree has positive (+), neutral (0), or negative (-)
polarity. The polarity of leaf nodes may be lexical while higher-order
nodes receive they polarity by composition of their children. Thus,
“bad” has negative polarity, and the phrase “not a bad journey” has
positive polarity.
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To generalize this concept, it has been suggested that sentence sentiment fol-
lows a hierarchical compositional structure, formalized for example through con-
stituency (Fahrni and Klenner, 2008) or dependency trees (Nakagawa et al., 2010).
In the resulting tree, each node is assigned a polarity; the overall sentence polarity
can be read at the root node. Non-terminal polarities are the result of shifter-
like operations recursively carried out at each node. An example analysis in the
constituency framework can be found in Figure 3.1. Such structures may be gener-
ated with a manually defined grammar (e.g., Fahrni and Klenner, 2008) or learned
automatically, either unsupervisedly (e.g., Socher et al., 2011) or from annotated
example trees (Socher et al., 2013).

3.2.3 Entity/Aspect Level

Liu defines an entity as any object about which sentiment is expressed. An entity
thus constitutes a type of target which was introduced previously. An aspect is any
property or part of the target, for example the lens of a camera. An example for
aspects can be found in Figure 3.1b where the user rated various aspects of his
stay at the hotel, such as location and service. We discuss the notions of entities
and aspects only briefly as they are beyond the scope of this thesis.
Sentiment analysis of entities or aspects does not focus on a single linguistic

unit for analysis. Instead, all information about the entity is collected and used
for making a prediction. This task has been formalized as fine-grained sentiment
analysis (e.g., Yang and Cardie, 2013) where the relation between opinions, targets,
and sometimes opinion holders have to be recognized. In contrast to the problems
discussed above, this task involves structured prediction comparable to other NLP
problems such as semantic role labeling.
Liu argues that analysis on the entity level is superior to considering individ-

ual units (such as single phrases or sentences) as knowledge about the target is
necessary for resolving ambiguities. Conversely, entity-level sentiment analysis re-
quires holder and target detection which leads to a significantly more complicated
machine learning task.
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3.3 Feature Representations

Word-based clue representations are the most important features in sentiment
analysis. Despite the fact that sentiment exhibits complicated syntactic properties,
bag-of-word representations are sufficient for high-accuracy classification: For in-
domain classification of binary polarity, accuracies of up to approximately 90%
for documents and between 80 and 85% for sentences have been achieved using
only word features (Wang and Manning, 2012). Note that the results may vary
depending on the domain and the environment (e.g., news vs. web data).
Research are also appealing due to the fact that low-level linguistic entities

(e.g., words or phrases) can express sentiment and may thus be classified the
same way as higher-level entities (e.g., documents). This enables joint models of
sentiment on different levels. For example, when using a bag-of-words features,
we can exploit this fact by labeling the features with sentiment directly (e.g.,
through a polarity lexicon). This feature knowledge could then be incorporated
into a statistical model, for example as a prior in a Bayesian model (e.g, Melville
et al., 2009; Settles, 2011). Using clues to label larger example types constitutes a
form of distant supervision where the polarity lexicon is the supervision database.
While some investigations into linguistic features for document classification

have been conducted (Gamon, 2004; Ng et al., 2006), the common result so far
has been that most intuitively helpful linguistic features such as syntactic rela-
tions do not increase the quality of sentiment analysis in practice. In contrast,
syntactic kernels have yielded promising improvements for sentence classification
(Matsumoto et al., 2005). The intuition behind such models is that shifters can
be modeled with the syntactic structure. However, such approaches rely on clean
syntactic analysis which is not easy on web data (Foster et al., 2011).

3.4 Summary

In this chapter, we gave an introduction to sentiment analysis. We first described
concepts that relate to sentiment. Next, we introduced automatic sentiment anal-
ysis on the document, sentence, and entity levels. Finally, we discussed feature
representations for sentiment analysis.
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Active Learning

4.1 Introduction9

The predominant approach to document-level sentiment classification is supervised
learning, which depends on annotated training examples. Unfortunately, annotat-
ing data is an expensive and time-consuming process which traditionally involves
paid labor of domain experts – humans who (i) understand the task at hand, (ii)
speak the language in which the data is written, (iii) are capable of using an ap-
propriate user interface for annotation, and (iv) work according to some predefined
standards. In sentiment analysis, it is possible to exploit user-supplied ratings for
supervision. It has been argued, however, that is not always an advisable strategy
(Ganu et al., 2009), as criterion (iv) is usually violated in online reviewing systems
– there are simply no guidelines. Unfortunately, guidelines play an important tool
for achieving high annotation quality (Pustejovsky and Stubbs, 2012). Thus, an-
notating polarity for sentiment analysis in a more rigorous environment would be
generally desirable.
The way training data is selected has a strong influence on the performance of

a supervised system. Supervised, clue-based sentiment classifiers are often difficult
to improve after a certain point as the clues occurring in documents are highly
redundant. However, there are also many documents which contain only unseen
clues – for example very short documents – on which the classifier fails to make
correct predictions. To address this problem, it would be helpful to train the model
on a training set that offers high coverage of the test data. This motivates the use
of active learning, a technique where the classifier has a direct influence on the
process of selecting data for annotation.
As data annotation is expensive, we are interested in a cost-efficient solution.

9This chapter describes joint work on active learning with Florian Laws. The author of this
thesis carried out the sentiment analysis experiments.
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There are two parameters that influence the overall cost of a trained system. The
first is the individual cost of a training example, i.e., the amount of money we have
to spend to get one example annotated. The second is the number of examples we
need to annotate. Lowering any of these amounts will result in a lower overall cost.
Of course, we want to lower overall cost without negatively affecting the system’s
accuracy.
To lower the individual cost, we can resort to non-expert annotators. Recently,

various web services that serve as marketplaces for tasks have emerged. One such
service is Amazon Mechanical Turk (MTurk), a web platform for offering small
tasks on the web to workers. MTurk workers are usually willing to annotate at
very competitive price levels, going as low as $0.01 for an example. Regarding the
criteria for experts stated above, we find that on MTurk, (i) is less critical for
sentiment analysis of documents as humans are natural experts at understanding
sentiment, thus assessing document-level sentiment is a straightforward task. (ii)
may be a problem depending on the language in question as MTurk users are
mostly English-speaking. We will thus conduct experiments on English data. Note,
however, that we have little control over the actual skills of MTurk annotators.
(iii) depends on the task. We will focus on document annotation, where a simple
binary decision has to be made. Other tasks, particularly those involving relations
of entities (e.g., fine-grained sentiment analysis) may not be as easy to accomplish
on MTurk. (iv) may again be problematic for complex tasks, as long annotation
guidelines may potentially be ignored by workers.
Lowering the number of examples is not as straightforward. Simply using fewer

training examples will most likely lead to lower system accuracy. As mentioned
above, to get good coverage of clues, it would be an advantage to pick the most
informative examples from our data and eliminate all redundancies. In general,
however, finding a subset of the data that fits this criterion is difficult. Often,
researchers apply heuristics to select a minimal subset of interesting examples,
however this selection method could over-represent some phenomena and under-
represent others that the researcher missed. This is particularly problematic in
the clue model as it is hard for humans to guess which clues would be helpful to
the system. To eliminate direct human influence on the selection process, it has
been proposed to automate the selection process. We could let the system select
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informative examples for us by using some measure of confidence. We would then
get these examples annotated by humans and retrain the system on the new train-
ing set, after which new unlabeled examples could be re-rated by the classifier.
This process is an instance of active learning (AL). As the system suggests infor-
mative examples, we would expect a better performance level on fewer annotated
examples than if we selected examples randomly.
While both active learning and crowdsourcing are popular techniques in NLP,

there is little research on whether the two work in combination. Combining them,
however, is promising as we would expect large cost reduction since the two tech-
niques are orthogonal. Most crucially, annotators on MTurk are not domain experts
in general. Therefore, they produce noisy labels which can be a problem for ac-
tive learning. We believe, however, that they should be able to perform a review
annotation task with little difficulty. Nevertheless, we can never be sure that all
workers carry out their work responsibly, particularly with spam being a frequently
reported issue on MTurk. For this reason, we will evaluate annotation quality and
investigate ways to improve it.
We have another interest in document-level sentiment analysis besides obtaining

high-quality sentiment labels. Statistical sentiment classifiers using clue features
essentially learn the importance of each clue for a class during training. Active
learning influences the way these clues are learned since the classifier should pick
examples that help to disambiguate clues. We would like to analyze this behavior
and how the size and sample of this data influence it.
The rest of the chapter is structured as follows. First, we introduce the methods

used in our experiments in Section 4.2. In Section 4.3, we describe our experiments
and discuss the results. Finally, we give an overview of related work in Section 4.4.

4.2 Methods

4.2.1 Crowdsourcing with Amazon Mechanical Turk

Amazon Mechanical Turk (MTurk)10 is a web service for online work. Requesters
can post bulk tasks which are then offered to workers. It is required that the
10http://www.mturk.com/
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tasks can be broken down into small, repetitive instances, called HITs (Human
Intelligence Tasks). For example, part-of-speech annotation of a corpus can be
broken down into individual sentences, each of which constitutes a HIT. These are
then offered to workers, where the number of workers ai that each work on the
same HIT xi is a parameter the requester has to specify. Workers can decide for
each HIT whether or not they want to work on it. This process is often referred
to as crowdsourcing as the task at hand is outsourced to a crowd.
In practice, the set of workers may change quickly, with some workers annotating

only a few hits and others annotating large quantities. We will investigate this in
more detail in our experiments. Of course, this fluctuation may mean that we will
get many annotations by completely untrained workers who have no experience on
our task. For this reason, we will establish a way of quality control.
There are two different models of how requesters interface with MTurk. In batch

mode, the requester designs an HTML template with a number of variables which
are later instantiated by the individual HITs that the requester uploads to MTurk
as a table. This setup is straightforward to use, however it is also relatively static
as all aforementioned parameters have to be set before the experiment even begins.
Particularly, all ai must be equal. The template, and thus the number of variables,
is fixed and cannot be customized for each example. Further, we have no control
over the order in which MTurk offers the HITs to the workers. These points are
problematic for an active learning experiment as we want to avoid selecting data
beforehand.
External questions are the alternative to this setup. Here, the requester sets up

an HTTP server which is then registered with MTurk. After posting HITs, the
server returns a HTML page for a HIT once it is requested. MTurk includes both
a HIT ID and a worker ID in the request. The HTML page for each hit can thus
be created dynamically during the course of the experiment. In particular, the
requester does not have to specify a list of examples beforehand and instead has
control over which worker gets which example. This setup is much more flexible
but also involves significantly more work for the requester.
There are several parameters that determine the cost of an experiment on

MTurk:
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• The number of HITs n we post in total, i.e., the number of examples we
get annotated.

• The number of workers per HIT ai we require to work on a HIT xi, i.e.,
the number of annotations we get for each example.

• The reward r paid to each worker for a HIT.

The amount we pay for an experiment is the budget

B =
n∑

i=1
ai · r ·m, (4.1)

which can be simplified to B = n · a · r · m in the batch case. The parameter
m = 1 + c introduces c = 0.1, the commission paid to Amazon, into the equation.
For example, if we have n = 10 HITs for which we would like a = 3 workers each
at r = $0.01 per HIT, we would spend a total of B = 10 · 3 · $0.01 · 1.1 = $0.33 of
which $0.30 are paid to workers and $0.03 to Amazon.
Quality control is important when annotating data, and even more so if we out-

source this task to anonymous workers. MTurk offers basic capabilities for quality
control. Before the experiment begins, a requester may put in place several restric-
tions for his experiment. Each worker has an approval rate, which is the ratio of
HITs he got accepted (see below). Requesters can set a minimum approval rate
threshold on their hits to exclude bad workers. Additionally, it may be required
that the workers be from a specific country (e.g., only workers from the USA),
or that the workers have a set of qualifications which can be obtained by passing
tests set up by requesters. Naturally, these restrictions will reduce the number of
workers who approach a task. After the experiment, requesters can reject submis-
sions with inferior quality, influencing the workers’ approval rating. However, this
option must be used carefully as wrongfully rejecting many workers may result in
bad reputation for the requester. This system seems reliable at first, however due
to the anonymity of workers, it may be exploited by creating multiple accounts
or pushing one’s agreement rate by working on self-submitted HITs.11 Recently,
MTurk has introduced Masters, a subset of workers that Amazon considers highly
11http://www.behind-the-enemy-lines.com/2010/10/be-top-mechanical-turk-worker-

you-need.html
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qualified according to their accuracy on certain image and text processing tasks.
It is however controversial whether Masters perform better than the general set
of workers (Kandasamy et al., 2012; Difallah et al., 2013). At the time of our
experiments, Masters had not been introduced.
It has also been noted that spam is an increasing problem on Mechanical Turk

(Ipeirotis et al., 2010). Some spammers even use automated means or work in
groups to circumvent countermeasures by requesters. This emphasizes the need of
good quality-control measures on MTurk.
The optimal reward a requester should for a HIT is a difficult parameter to

determine on MTurk. If the reward is too low, workers might be unwilling to
participate. If it is too high, the cost advantage of using MTurk might disappear.
Fort et al. (2011) note that in several experiments, rewards were not correlated with
annotation quality. While better compensation may motivate workers to perform
better, HITs with high rewards also tend to attract spammers.

4.2.2 Annotation System

An important requirement for an active learning implementation is that it en-
ables fast annotation-re-training cycles to minimize wait times for annotators and
staleness. We employ the annotation system by Laws (2013) which is capable of
performing annotation and classification concurrently. The system is strictly sep-
arated into a front end and a back end.
The system’s front end interfaces with MTurk workers through external ques-

tions. If a worker requests a HIT, the system generates an HTML page based on
which annotation is required next and serves it through HTTP. The back end
of the system manages annotations and controls the classifier process. It offers a
choice of different AL strategies, including uncertainty selection from a pool which
we use for our experiments.
In the pool-based strategy, the back end keeps the unlabeled data in a queue

which is sorted decreasingly by the uncertainty of the examples. If an example is
needed for annotation, it is taken from the head of the queue and passed to the
front end for display. Once an example has been annotated, it is removed from the
queue and added to the training set. The classifier is re-trained as often as possible
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and necessary. Generally, there is no guarantee that the system is done with re-
training before the next example arrives. The queue can be reordered concurrently
by applying the classifier to the data and re-calculating uncertainties. After the re-
ordering of the examples in the queue, we have selected a new batch of examples.
The queue strategy can thus be viewed as a batch strategy where we intend to
keep batches as small as possible.

4.2.3 User Interface

We created a user interface for sentiment annotation, shown in Figure 4.1. The
top part of the form contains a brief task description, followed by the example
selected for annotation, and the input area. We present one document per HIT.
Underneath the input area are more detailed annotation guidelines. They contain
a short description for each label, along with examples. For our initial experi-
ment, we implemented the label selection with radio-buttons, which proved to be
a weak point that could easily be exploited by spammers. We therefore introduced
a modified user interface which we introduce next.

4.2.4 Quality Control

Bad workers and spammers are a massive issue on MTurk. There are many individ-
uals who try to game the system by submitting bad HITs, while others simply do
not understand the task or the language well enough. We are therefore interested
in taking measures to ensure high annotation quality.

Adaptive Voting

On MTurk, we are dealing with noisy labels from untrained annotators. In such
situations, it may be harmful to rely on the decision of a single annotator. In
cases where each annotator assigns a single label to an example, it is natural to
take a committee approach. This means that we would obtain multiple competing
labels for each example based on which the final label is selected through voting
(each annotator votes for a label). This method has two parameters: the number
of annotations we obtain, and the type of majority we require to accept a label
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(e.g., more than 50% of annotators choosing the label).
The system by Laws (2013) offers a generalization of this approach, called adap-

tive voting. Here, we iteratively request labels from different annotators until ac-
ceptance or rejection criteria are reached. These criteria depend on the following
parameters:

• α, the threshold of agreement

• m, the minimum number of votes

• d, the maximum number of votes

We obtain m ≤ ai ≤ d labels for each example xi, referring to this process as
d-voting. If the ratio of annotators voting for the most frequent label is greater
than or equal to α once ai ≥ m, we accept the label. We discard the example if
we have not reached agreement after d annotations.
When using adaptive voting, we have to wait until we reach agreement between

the annotators. As proposed by Laws (2013), we re-train the classifier using tenta-
tive labels with majority voting even before the voting criteria are fulfilled. When
the voted annotation is available, the tentative label is replaced.

Counter-Spam Measures

We carried out preliminary experiments (Section 4.3.2) and found that an interface
with radio buttons for the document label (positive or negative) leads to a high
number of spam submissions which hurts the classification results. In this setup,
we achieve a classification accuracy of only 55%, which is slightly above chance.
We re-designed our template to make automated submissions more difficult.

Annotators have to type out the label, and, in addition, a randomly selected word
from the document, as shown in Figure 4.1.
Additionally, we observed that spammers would often resort to submitting the

same answer over and over again to all HITs. As it is very unlikely that the system
actually selects examples with the same label repeatedly, we could perform a bino-
mial test to check whether the set of labels submitted by the worker deviates from
a uniform distribution. We first collect a sufficiently large number (k) of examples

79



4 Sentiment Classification with Active Learning

from an annotator. We then calculate the relative frequency r = c1/
∑

i ci of the
most frequent label c1 submitted by the worker. If, given a threshold tr, r > tr

over the first k HITs submitted by the worker, the worker is a suspected spammer
and will be blocked from working on further HITs. Assuming the true label distri-
bution is indeed uniform, this algorithm will make a false positive decision with a
probability of PBin(X ≥ ktr).12

With these two simple techniques in place, we were able to improve the average
individual worker-accuracy to around 75%, and the average voted label correctness
to around 90%.

4.3 Experiments

4.3.1 Experimental Setup

We chose a well-known document analysis setup for the sentiment classification
task of (Pang et al., 2002) on the movie corpus (described in more detail in Ap-
pendix A.2.1). This dataset contains 1000 positive and 1000 negative movie re-
views. The task is to predict binary document-level polarity.
We split this corpus randomly into an active learning pool consisting of 1500 re-

views and a test set containing 500 reviews. We use a maximum entropy (MaxEnt)
model for classification (Stanford Classifier implementation, cf. Appendix A.1.1).
We extract bag-of-words feature representations from the documents. As the dataset
is balanced, we evaluate classifier accuracy. We check statistical significance of ac-
curacy improvements with the randomized approximation test (Section 2.6.2), us-
ing a significance level of p < 0.05. To find out whether active learning is effective,
we compare it to random sampling where we just select documents randomly. We
use the same parameter settings for both experiments.
We set up experiments as follows. At the beginning, the system starts with a

set of two randomly sampled documents, one for each class, which are annotated
with gold labels. We put the remaining 1498 documents in the unlabeled pool.
These documents are then iteratively selected for annotation through uncertainty
selection and random sampling, respectively, and posted as HITs on MTurk. Each
12Using our setup of tr = 0.9 and k = 20, we implicitly conduct a binomial test at p ≤ 0.001.
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HIT contains a single document, and we pay a reward of $0.01 per hit. For adaptive
voting we use an agreement threshold of α = .75 and voting parameters m = 2 and
d = 4 (4-voting). In addition, we simulate the case where each example receives
only a single annotation by selecting the first annotation for each example. This
is to reduce the number of experiments we run on MTurk. Of course, the results
for this experiment will not be entirely accurate as selection was performed by a
classifier using voted labels. The threshold for automatically blocking spammers
from experiments is set to tr = 0.9 which is calculated after k = 20 examples.
This means that workers who submit the same label more than 90% of the time
are considered spammers. We also require all workers to have an approval rating
of 100%.
In total, we conducted two runs of each setup (uncertainty selection and random

sampling). The respective runs were started two days apart from each other in order
to avoid having too many workers participate in both experiments. We always
compare runs at equal budgets, i.e., the total reward we pay. As we always pay the
same reward for all HITs, we simplify the calculation of the budget to

B =
n∑

i=1
ai, (4.2)

i.e., the sum of the counts of annotations ai that we obtained for each example xi.

4.3.2 Results

Annotation Quality

Annotation quality is a critical point in NLP experiments – even more so when
using crowdsourcing, since annotation is carried out by non-experts. To evaluate
annotation quality, we first define measures for worker performance. Since we have
gold annotations available for our data, we can compare them to the workers’ anno-
tations directly. We define label accuracy (LA) as the relative frequency of correctly
annotated documents according to our gold standard. Worker accuracy (WA) is
the label accuracy for the subset of documents annotated by a certain worker.
Finally, we also look at classification accuracy (Acc), measuring the amount of
correctly classified documents we achieve with a classifier trained on this data.
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Figure 4.2: Active learning vs. Random sampling without counter-spam measures

Classification accuracy of course depends directly on the quality of the annotated
training material.
Note however, related to the argument from Section 3.2, that star ratings might

not be perfect gold annotations. Thus, reviews annotated by humans may actually
have higher quality than taking the star ratings as gold data which is the case with
this dataset. With this argument in mind, we would not expect perfect agreement
between annotated and gold labels.

Without counter-spam measures We first run an experiment without using
our counter-spam measures in place. Figure 4.2 shows the classification results we
achieve with this setup. Generally, classification accuracy is low, around 55% for
random selection and 50% for active learning.
This problem is caused by spam submissions. We encountered two types of spam-
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Figure 4.3: Worker accuracies of all workers from all runs. Each point represents a
single worker. Blue crosses: run 1, green points: run 2. Solid line: linear
regression, dashed line: locally weighted regression.

mers. One selects classes randomly, the other always selects the same class. Most
notably, one worker submitted around 600 positive labels (and only 50 negative),
around half of which were incorrect. One reason for why the active learning clas-
sifier performs even worse than random selection is that the selection process is
misled by wrongly labeled examples. Since active learning selects examples with
high uncertainty, a wrong label will have more impact on the classifier and thus
influence the uncertainty scores of all examples in the pool, causing further errors.
Spam also leads to high disagreement between the annotators. We had to discard

around 43% of the documents because they are below the agreement threshold.
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With counter-spammeasures After enabling counter-spammeasures, we check
annotation quality at a budget of 1130. Figure 4.3 shows worker accuracy jointly
for all workers from all runs. We plot worker accuracy in relation to the number of
examples the individual worker has annotated in total. We find that, in general,
there are many workers who submit only correct labels. However, we also note
that accuracy decreases somewhat for workers who submit many HITs. It is diffi-
cult to determine whether those workers are simply getting tired after annotating
many documents or whether they are intentionally submitting spam. We believe,
however, that the two points at the far right of the plot are spammers as they
submitted a high quantity of HITs, achieving only around 50% accuracy, which is
the expected performance when guessing.
Label accuracy for single annotations (shown in Table 4.1) is between 74.8%

and 76% at this point on average for the RS and AL runs, respectively. This shows
that it is indeed difficult to obtain high-quality annotations from single workers
on MTurk. We will later show that this level of label accuracy actually leads to
inferior classification accuracy. After applying 4-voting, we get an increase to 89%
label accuracy for both settings.
The relative frequency of discarded examples is much lower in this experiment,

around 28%. This means that there is much more agreement between the annota-
tors.

Random Sampling vs. Active Learning

For our first experiment on classification quality, we compare the results from the
active learning (AL) and random sampling (RS) setups. We compare random sam-
pling and active learning at equal budgets. We report numbers for three budgets,
1130, 1500 and 1756, in Table 4.1.
For the smaller budget of 1130 examples, we see a significantly improved perfor-

mance when using active (line 4) learning instead of random sampling (line 2). In
fact even the single voting active learning classifier (line 3) is significantly better
than the random sampling classifier using adaptive voting (line 2) by 3.6%. While
we still see a significant advantage of active learning over random sampling at a
budget of 1500, it is not significant anymore at 1756.
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(b) Means over both respective runs

Figure 4.4: Active learning vs. Random sampling
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Budget 1130 1500 1756

#train Acc cost/doc LA #train Acc #train Acc

RS 1 S 1130 70.4 1 74.8 – – – –
2 4-v 450 71.2 2.51 89.6 600 76.0 735 79.2

AL 3 S 1130 74.8†‡ 1 76.0 1500 73.2 – –
4 4-v 455 77.4† 2.48 89.0 604 81.0†‡ 715 81.8

Table 4.1: Results for sentiment classification on the movie corpus with different
experimental setups. #train = size of training set (documents), LA =
label accuracy. S = single, 4-v = 4-voting. Budgets 1130 and 1500 shown
for run 1; budget 1756 is an average over 2 runs. † indicates that the F1
result is a statistically significant improvement over the corresponding
RS result, ‡ over the previous line (approximate randomization test,
p < 0.05).

Figure 4.4 shows the overall performance of active learning compared with a
baseline of randomly selected documents. Active learning consistently performs
better than random sampling after annotating around 300 documents. The active
learning run 2 performs worse than run 1 because the annotation quality is lower
at the beginning of the experiment. We find that these results exhibit similar
behavior to simulated active learning (cf. Li et al., 2012). The curve rises steeply
at the beginning and flattens as more labeled examples are acquired. At around 600
documents, the active learning curve reaches a somewhat steady level as random
sampling catches up, and, as described above, the difference between the methods
is not statistically significant anymore.
The initial gains through active learning are small. There are several possible

reasons for this. First, we have a small set of labels compared to other tasks such
as Named Entity Recognition. Second, there is a set of common clues that covers
a high number of examples (cf. Wilson et al., 2005b). As they occur in many
examples, it is possible to find a sufficiently large set quickly through random
sampling. After some time, uncertainty selection will disprefer redundant examples
and thus, examples containing unseen clues are selected instead. We will come back
to this effect during error analysis.
We also measured the staleness of the examples in the queue. It turns out that
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Figure 4.5: Adaptive voting vs. single annotation on AL run 1

re-training the sentiment classifier is fast enough so that the re-ordering of the
queue finishes before the next example is requested most of the time. This means
that we have an average batch size close to 1.

Adaptive Voting vs. Single Annotation

Using a voting strategy with a fixed budget means making a trade-off between
the number of examples annotated and the number of annotations obtained per
example. Increasing the size of the training set by having more examples annotated
is useful because it would increase diversity in the training set. On the other hand,
having more labels for each training example might increase annotation quality,
making the training data less noisy, increasing the cost of each example. Thus,
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finding the right trade-off between quantity and certainty is difficult.
We carry out experiments comparing two voting settings, one with 4-voting

and one using a single annotation. We generate the single annotation data from
the voted data of run 1. This means that we have the same total number of
annotated documents for both experiments. However, the budget will be lower
for the single annotation experiment when using the same amount of data, so
we cannot compare the results for the full budget. Instead, we use two smaller
budgets. The first one, 1130, taken from the previously collected data for both
active learning and random sampling. We also extended the active learning run to
1500 single annotations, which we obtained from MTurk in a separate experiment.
Results are shown in Table 4.1. At 1130, we find that there is an improvement
of 2.6% when using 4-voting instead of single annotations for active learning, and
0.8% for random sampling. These improvements are not statistically significant.
At a budget of 1500, we obtain a significant difference of 7.8%. Note that the single
annotations still use 4-voting selection, which might have had a positive impact
on the results.
Figure 4.5 shows accuracy over cost for the two annotation strategies. The results

show that, initially, accuracy increases more rapidly for single annotations, possibly
due to the fact that the classifier simply is trained on much more data (around
2.5 times as much, as the cost per annotation in Table 4.1 shows). However, the
single annotation run plateaus much earlier than the 4-voting run. From Table 4.1
we can see that the voted label accuracy is significantly higher the one for single
annotations. In the long run, a small set of high-quality annotations seems to
produce a better classifier than a large set of noisy annotations. One possible
cause of this effect could be that active learning finds fewer informative examples
at late stages, so voting improves performance by getting the most informative
examples right. Additionally, single annotation is of course more susceptible to
spam submissions. We saw earlier that spam has a considerable impact of the
active learning process.
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Figure 4.6: Performance using gold annotations (run 1)

MTurk vs. Gold Labels

We showed that 4-voting works considerably better than using single annotations.
Conversely, we are also interested in what happens when we use gold annotations
instead. There are two possible setups: First, we keep the order of examples as they
were selected with MTurk labels (MTurk selection, gold labels). This will show us
whether the classification accuracy could be improved with better labels at any
point. Second, we run a complete active learning simulation with gold labels, i.e.,
we also select examples based on gold information (gold selection, gold labels).
The results for these experiments on MTurk run 1 are shown in Figure 4.6. The

curves show that the two experiments with gold data and the MTurk run differ
only slightly. This is not surprising as we have already seen that 4-voting produces
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high-quality annotations. As noted before, we do not expect perfect agreement
between human annotators and reviewer ratings.

Error Analysis

As noted earlier, we are interested in investigating the effect of active learning on
the lexical features. For this reason, we examine the weights the classifier assigns
to a selected set of features at different stages of the active learning process (Fig-
ure 4.7). We plot for different training set sizes the feature weights for the active
learning (Figure 4.7a) and random sampling (Figure 4.7b) classifiers as well as the
feature’s rank in the decreasingly ordered list of features sorted by the highest
absolute value of the weight for both experiments (Figures 4.7c and 4.7d).
We can see that while both methods are able to discover obvious features – such

as bad which is ranked high early in both active learning and random sampling –
we also observe that random sampling fails to discover the feature great which is
pushed up early in active learning. Conversely, random sampling seems to lead to
a fairly conservative assignment of weights while active learning has more high-
weighted features. This effect is expected as active learning aims to get labels
for documents close to the decision boundary, which leads to a disambiguation of
features.
Interestingly, we also observe an overfitting effect with a peak at around 400

documents for active learning. Here, features such as movies or even do are given
some importance by the classifier, possibly due to correlations of these features
with one of the classes in the training data. It is at this point in the experiment
when we see the highest improvements of active learning over random sampling.
Figure 4.4 shows deviation of the two methods starting at around 250 examples
which coincides with the point at which several features start to experience rapid
ranking changes.
In the final classifier (772 documents), active learning has reached a stable state

where features are ranked sensibly. While bad is traditionally considered an in-
formative indicator, good is not. While active learning briefly considers good a
helpful feature, it quickly drops it after the 100 document mark.
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Figure 4.7: Feature weights assigned by the AL classifier at different points of the
active learning process to some example features. We show both the
weight and rank of each feature. Ranks are plotted on a logarithmic
scale.
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4.4 Related Work

4.4.1 Crowdsourcing

Crowdsourcing has become increasingly popular in NLP due to its ease of use
and because it offers a reasonable trade-off between quality and efficiency. Quality
control has been an important issue for crowdsourced annotation.
Sentiment analysis was among the first tasks to be tackled through crowdsourc-

ing. This is not surprising as recognizing sentiment is natural to humans, which
reduces the required amount of annotator training, compared to more formalized
tasks such as syntactic annotation. For example, experiments on emotion labeling
were conducted by Snow et al. (2008). Akkaya et al. (2010) use MTurk to perform
subjectivity word sense disambiguation. They generally obtain high annotation
accuracy, which they further improve by imposing reputation restrictions on the
workers. This reduces spam significantly. Taboada et al. (2011) use MTurk to eval-
uate polarity lexicons. They use voting schemes and agreement checks to improve
the quality of the annotations.
While the work summarized above performs crowdsourcing for sentiment tasks,

it do not address active learning. It remains unclear from these publications whether
a combination of active learning and crowdsourcing is successful.

4.4.2 Active Learning for Sentiment Analysis

Brew et al. (2010) presented one of the first studies on crowdsourcing and active
learning for sentiment analysis. They perform sentiment detection in social media.
In their experiments, they use a small set of volunteer annotators they recruited
for the task. This differs significantly from the completely anonymous setting at
MTurk where requesters have little control over who carries out the annotations.
Dasgupta and Ng (2009) propose a combination of different machine learning

techniques to improve sentiment classification. They identify difficult examples
from the data using spectral clustering. These examples are then passed to humans
for annotation. This constitutes a form of active learning as the clustering step
performs example selection. The authors show that this process yields a better
performance on a small set of labeled documents than traditional, iterative active
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learning. The experiments are again simulated.
Li et al. (2012) introduce co-selection, a technique for improving active learning

for heavily skewed class-distributions in active learning. Class imbalances are a
typical phenomenon in sentiment analysis as often, the positive class is drastically
over-represented. The authors find that their method improves active learning in
simulated experiments.
There is little research on the role of features in active learning. Settles (2011)

presents an interesting approach to active learning where humans can label both
features and examples, which is particularly interesting for sentiment applications.
The approach combines the two types of information by adjusting the priors of a
Bayesian model.
To summarize, we note that there is little work on the combination of active

learning and crowdsourcing in general, and none on the performance of this com-
bination in a sentiment analysis task.

4.5 Summary

In this chapter, we presented an approach to sentiment classification using a combi-
nation of crowdsourcing and active learning. We used Amazon Mechanical Turk to
annotate reviews from the movie corpus. We showed that counter-spam measures
and voting strategies are effective for obtaining high-quality polarity annotations.
The selection of documents presented to the workers for annotation was guided

through active learning. We showed that with a pool-based uncertainty-sampling
strategy, it is possible to achieve significant improvements over random sampling
when measuring classification accuracy for equal annotation budgets.
We analyzed the behavior of the active learning process through several experi-

ments. First, we compared the crowdsourcing-based setup to a gold label setup and
found no significant difference between the two. Second, we analyzed the clues that
are promoted during the selection process. We found that active learning identifies
a larger set of interesting clues faster than random selection. However, we also
experience periods of overfitting which slow down the active learning process. This
shows that while active learning can help to expand the set of clues efficiently, it
can also produce misleading clues.
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5 Bootstrapping Sentiment
Classifiers from
WordDocument Graphs

5.1 Introduction

Clues can be annotated on the same polarity scale as documents. Thus, they can
be used directly to determine the polarity of a document. This constitutes a form
of distant supervision, as we perform supervision through a database of word-
level polarity – a polarity lexicon – in order to predict document-level polarity.
This type of approach was one among the first for automatic sentiment analysis
(e.g., Turney, 2002) and remains popular to date (cf. Taboada et al., 2011).
Turney (2002) employs a simple method that involves calculating the average
polarity over all clues in a document. A major drawback of this method is that
it does not model the interaction between the documents. It only makes use of
the information in a polarity lexicon rather than reasoning transitively when clues
shared by documents. We argue that the latter would be desirable as documents
that share many features are likely to have the same polarity.
We introduce a novel graph-based method for bootstrapping a sentiment classi-

fier from a polarity lexicon that addresses this shortcoming. Graphs offer a way of
representing words and documents in a joint formal structure. The structure we
introduce, henceforth referred to as word-document graphs, is capable of encoding
both word-document and word-word relations. In order to predict the polarity of
documents, we apply Personalized PageRank to the word-document graph, making
use of the steady-state distributions of PageRank.
As we have seen earlier, redundancies are a bottleneck in sentiment classification.

The distant supervision approach proposed above contributes towards our goal of
reducing redundancies among the learned clues. In a polarity lexicon, clues are
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annotated out of context, i.e., by type rather than by token. Thus, we annotate each
clue only once, which is intuitively more efficient than increasing coverage of clues
through active learning on the document level. Type-level annotation is motivated
by the same independence assumptions we already made on the document level:
Each word has the same polarity regardless of its context.
There are known issues related to lexicon-based distant supervision. First, re-

lated to the aforementioned independence assumption, prior polarity not correct
across all contexts/domains (Kanayama and Nasukawa, 2006). Second, not all clues
might be covered by either the lexicon or the word-document graph. Therefore, we
propose to perform an additional bootstrapping step in which we use the docu-
ment labels generated through distant supervision to train a supervised classifier.
This model will have access to all unigram features in the text. Thus, it can use
a larger feature space than the distant supervision model and can assign weights
the clues by indirectly making use of the polarity lexicon.
The rest of the chapter is structured as follows. We first introduce the necessary

background in Section 5.2. Next, we give an overview of novel methods, introduc-
ing word-document graphs and Polarity PageRank (PPR), a new semi-supervised
sentiment classifier that integrates lexicon induction with document classification
(Section 5.3). We then conduct experiments with PPR in Section 5.4. We show
that PPR yields improved polarity classification performance over average polarity
on an English reference review corpus. Classification accuracy on documents can
be further improved by bootstrapping a statistical classifier from the PPR output.

5.2 Background

5.2.1 Polarity Induction with Word Graphs

The induction of polarity on a word graph was first introduced by Hatzivassiloglou
and McKeown (1997). In their approach, the authors construct a syntactic depen-
dency graph (cf. Section 2.5) of conjunction relations between words. Formally, a
word graph is an undirected graph G = (V , E ,W) where the nodes V represent
words, the edges E represent an semantic relation between the words, and W repre-
sents the strength of the relation. Data for the word graph used by Hatzivassiloglou
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and McKeown (1997) is collected by counting conjunctions in a text corpus. The
edges in the graph are weighted by the frequencies of these occurrences. In the
original paper, words coordinated with and are assumed to share polarities while
words coordinated with but are expected to have opposing polarities. Consider the
following examples:

(5.1) nice and good

(5.2) *lovely and despicable

(5.3) awful but funny

(5.4) *lovely but entertaining

(5.5) ?good and bad

The phrases in 5.1 and 5.3 are examples of what we would expect to find in actual
data. In contrast, example 5.4 is implausible. Examples 5.2 and 5.5 are fringe
cases. It is of course possible to use and conjunctions for contrastive purposes,
and thus we have to expect cases with words of opposing polarities. However, this
phenomenon is expected to be rare and therefore treated as noise.
We intend to apply PageRank, a probabilistic Markov chain random walk ap-

proach, to the graph. The random walk is guided by transition probabilities, and
thus, we cannot make use of negative links easily. For this reason, we restrict our-
selves to and edges in the graph. An example for such a graph is provided in
Figure 5.1. The figure shows the neighborhood of distance 1 for the word warm.
This type of graph is an instance of a syntactic dependency graph. However, it

is not necessary to actually use syntactic parses for finding conjunctions. Indeed,
using parses may actually lead to increased errors because coordination relations
are commonly among the most difficult syntactic structures for parsers to analyze
correctly (McDonald, 2006). Alternatively, conjunction relations may be detected
based on part-of-speech patterns. We can specify such a pattern through a regular
expression for which we search matches in the sequence of part-of-speech tags in
a corpus. We use the following expression to extract adjective conjunctions from
the corpus:
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intimate, ADJ , EN

loving, ADJ , EN

moist, ADJ , EN

dry, ADJ , EN

warm, ADJ , EN

comfortable, ADJ , EN
cool, ADJ , EN

pleasant, ADJ , EN

humid, ADJ , EN

temperate, ADJ , EN

hot, ADJ , EN

caring, ADJ , EN

tropical, ADJ , EN
funny, ADJ , EN

subtropical, ADJ , EN

Figure 5.1: Word graph – 1-neighborhood of the word warm

[pos ="JJ"] ([pos = ","] [pos = "JJ"])*([pos = ","]?
"and" [pos ="JJ"])+

The pattern extracts conjunctions with and as well as possibly preceding words
that are enumerated by commas. It is of course applicable to any other part of
speech by replacing the adjective tag JJ by the respective tag. It is important that
all matched words have the same part of speech as otherwise, the pattern has a
tendency to overgenerate, for example by matching borders of larger coordinated
units such as coordinated verbal phrases (e.g., we would extract home and took
from he went home and took a nap).

5.2.2 Average Polarity

One of the earliest and most popular methods for using clues to determine the
polarity of a document is average polarity which we adopt as our baseline method.
It was applied first by Turney (2002). Given a polarity lexicon of clues, we simply
average the polarity values of all clues that occur in the document. The average
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polarity pol of all words w in a document d is

pol(d) =
∑
w∈d

poll(w)
|d|

,

where poll is the lexical polarity taken from the polarity lexicon. We assume that
the lexicon has polarity ratings in [−1, 1]. We can then classify the document d by
checking whether its score is positive or negative:

yd =

 positive if pol(d) ≥ 0
negative else

(5.6)

The classification confidence c of a document d is assessed through c(d) = |pol(d)|.
Note that we still assign a class to documents where pol(d) = 0. This classification
divides the set of documents into two partitions, i.e., each document is either
positive or negative. This decision follows related work (e.g, Hassan and Radev,
2010) and incorporates the majority baseline into the model. This way, nodes for
which PPR cannot make a prediction are assigned the majority class which is more
likely to be correct. The intuition behind this is similar to the one of class priors
in probabilistic models.
Average polarity has several drawbacks. First, it is very sensitive to incorrect

entries in the polarity dictionary. For example, the Wilson et al. (2005b) lexicon
lists need as a negative word. This might be appropriate in some contexts, but
it is arguably not the prior polarity of the word. Second, there is no interaction
between the documents, i.e., the occurrence of clues in several documents is not
taken into account in the classification decision. Third, it is not trivial to combine
this method with document-level supervision.

5.3 Methods

5.3.1 Polarity PageRank

To infer the polarity of unlabeled nodes in a graph of similarity relations between
words, we adopt a random-walk-based approach. For that, we make use of Per-
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sonalized PageRank for polarity, calling the resulting algorithm Polarity PageRank
(PPR). We assume that we know the polarities of some nodes, for example from an
existing polarity lexicon. These nodes make up the seed sets S+, the set of positive
nodes, and S−, the set of negative nodes. The idea behind PPR is to use these
seed sets for two independent runs (positive and negative) of Personalized PageR-
ank. In the positive (resp., negative) run, the teleportation vector t+ (resp., t−) is
set as defined in Equation 2.3 so as to give high weights to nodes whose polarity
is known to be positive (resp., negative). We apply PPR to a dependency graph,
so the final transition matrix will be computed from the adjacency matrix of the
dependency graph and the teleportation vector following Equation 2.2. Applying
PageRank yields a steady state vector for each class, i.e., r+ and r− in our case.
Each vector will contain high probabilities for those nodes that are well-connected
to the respective seed set, which signifies that they important to the respective
classes. From these vectors, we can calculate the polarity of a node i (similarly to
the previously defined Equation 5.6) as

yi =

 positive if r+
i ≥ r−i

negative else.
(5.7)

The assignment of a class for nodes where r+
i = r−i follows the same principle we

introduced for average polarity in Section 5.2.2.
PPR bears some resemblance to the method of Hassan and Radev (2010) (cf.

Section 5.5). However, it is simpler, using standard eigenvector computations that
are available in any numerical software library, and it is also more efficient, avoid-
ing the need for expensive Monte Carlo sampling. Computational simplicity and
efficiency are of particular importance as the graphs we will work with are large
due to the fact that they will represent both words and documents.
There are some theoretical concerns regarding the application of PageRank in

this particular type of setup. It has been recognized that applying Personalized
PageRank to undirected graphs can lead to close-to uniform stationary distri-
butions (Grolmusz, 2012). This is most problematic in cases where teleportation
vectors are dense and uniform. For sparse vectors where only a small number of
non-zero entries have uniform weights, as it is the case in our setup, the stationary
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distribution is expected to deviate from the uniform distribution, which is sufficient
for classifying nodes.

5.3.2 Document Classification with Polarity PageRank

The main focus in this chapter is to improve the integration of clues into a statis-
tical model for document classification. This approach can be viewed as a form of
distant supervision as we do not annotate documents directly but rather rely on
a database of clues. Common methods in this scenario are variations of average
polarity, use lexical scores as hard-coded features for a more sophisticated classifier
(e.g., Melville et al., 2009), or apply a mixture of both approaches (e.g., He, 2010).
We will discuss these approaches in more detail in Section 5.5.
The main drawback of these approaches is that they do not offer a principled

joint model of word and document polarity. To this end, we propose a graph frame-
work that integrates polarity induction and lexicon application into a unified step.
In this model, the occurrence of a word in a document is represented as an edge in
the graph, following the definition of an occurrence network in Section 2.5. This
way of formalizing the problem is not unlike many information retrieval methods
that also view words and documents as the same formal object (e.g., Turtle and
Croft, 1991). A similar framework has been used for sentiment aspect analysis by
Zhang et al. (2010).
We define a joint graph structure, extending the concept of word graphs (see

Section 5.2.1) to include documents. We introduce the word-document graph here,
an undirected graph which contains both word-word and word-document edges.
We adopt the word-word edges from the word graph. In addition, word-document
edges are introduced between each document node dj and all terms ti that occur
in it (i.e., (i, j) ∈ E for all ti ∈ dj). The degree of association between a term and
a document is given by their normalized term frequency tf (Salton and McGill,
1986),

tfij = nij∑
k nkj

,

where nij is the occurrence count of term ti in document dj.
In contrast to the standard setup of PageRank in document retrieval, the doc-

uments are not linked directly to each other. Instead, document nodes are linked
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other, ADJ , EN

book, ADJ , EN

social, ADJ , EN

no, ADJ , EN

performance, ADJ , EN

books/all.review:518, DOC, EN

books/all.review:313, DOC, EN

Figure 5.2: Word-document graph. Word nodes and word-word edges are shown
in blue, document nodes and word-document edges in magenta.

only to word nodes. As word nodes can be linked to each other, the relationships
between documents are defined through the relationships of their terms. The rela-
tions necessary for these links do not have to be obtained from the documents in the
graph but can be gathered from external sources as well, like in our case through
a word graph of conjunctions. Figure 5.2 contains an example of a word-document
graph, consisting of 5 word nodes (blue) and 2 document nodes (magenta). By
including documents as nodes in the graph, the documents themselves can be la-
beled with polarity using PPR. We simply use Equation 5.7 for the joint graph.
Confidence for a node i is assessed by the absolute log ratio of r+

i and r−i ,

conf(i) =
∣∣∣∣∣log r

+
i

r−i

∣∣∣∣∣ =
∣∣∣log r+

i − log r−i
∣∣∣ .

The word-document graph framework is flexible and can be easily extended.
As an example, word-document graphs could be made bilingual. Given word-
document graph in two languages, the graphs can be combined by adding links
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from a standard bilingual dictionary that translates between the languages (cf.
Scheible, 2010). A further possible modification is the introduction of multiple
edge types (cf. Scheible et al., 2010).

5.3.3 Bootstrapping

The word-document graph model with PPR offers the advantage of having a joint
model of words and documents. However, as PPR is transductive, we are not
making use of some of the elements of statistical learning. Most notably, the ability
to weight features based on their importance to a class is absent. This motivates
the use of bootstrapping (cf. Section 2.3) where we train a statistical classifier
using an automatically labeled pool of examples, exploiting confidence estimates
that have been made for each of the predictions.
We propose the following process. Given a set of unlabeled documents, along

with a polarity lexicon and a word graph, we first predict document labels using
PPR. We then use the confidence measure we defined for PPR to select the most
confidently labeled documents. Using these documents, we then self-train a statis-
tical classifier and apply it to the set of documents. The motivation behind this
approach is that we can produce a base classifier and label a small set of docu-
ments with the highest confidence using a polarity lexicon. These documents and
their annotations are training input for a supervised classifier that learns weights
for all clues in the data, not just those that are represented in the word graph. In
addition, this approach makes it possible to use more complex features, such as
n-grams.

5.4 Experiments

5.4.1 Experimental Setup

Experiments are carried out on the Multi-Domain Sentiment Dataset (MDS) Blitzer
et al. (2007). This dataset is described in more detail in Appendix A.2.1. Testing
the method on different domains is interesting domain effects can have a signifi-
cant influence on the performance of the method. For each category, all available
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reviews (positive, negative, and unlabeled) are merged into a joint collection. Since
we do not use the available document labels for classification, we can evaluate on
the complete dataset. We create an individual word-document graph for each do-
main, as we found that domain interaction effects can lead to significantly lower
accuracy.
We construct an English word graph by extracting adjectives that occurred in

conjunctions with and from the English Wikipedia as described in Section 5.2.1, us-
ing a Wikipedia dump downloaded on 2/1/2009. The edges for the resulting graph
are weighted by conjunction occurrence counts. We use Wilson et al. (2005b)’s En-
glish polarity lexicon. We can make use of only those entries that are represented
as (word) nodes in the graph, as not all words are covered by Wikipedia or the
MDS. Thus, we use only part of the lexicon, around 2000 words.
We run PPR until convergence on the dataset, taking around 70 iterations for

each run. We set the PPR teleportation parameter α = 0.85, a standard setting
in information retrieval. For bootstrapping, we use a maximum entropy (MaxEnt)
model (Stanford classifier implementation, see Appendix A.1.1) with bag-of-words
features. We perform a single self-training iteration based on the PPR output,
taking the 15% most confidently classified documents of the collection as training
data, using a class-balanced sample. We then iteratively select (without replace-
ment) the best 1% of the remaining documents. We use the pre-processed version
of the MDS, thus the features available to the classifier are the unigrams and
bigrams as extracted by the original creators of the dataset.
We try two variations of Polarity PageRank. In the first version, we label the

documents based on the teleportation vector constructed from the given polarity
lexicon with a single PageRank run for each class (referred to as PPR). The second
version first calculates the positive and negative eigenvector on the word graph in
a first PPR run and then uses them as teleportation vectors on the word-document
graph in a second PPR run (referred to as PPR+).

5.4.2 Experiments and Results

The top section of Table 7.1 shows the accuracy of the average polarity (AP)
and Polarity PageRank (PPR, PPR+) base classifiers before bootstrapping on
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Method Books DVD Electronics Kitchen Mean
AP (base) 51.2 58.5 57.1 56.6 55.9
PPR (base) 60.3† 63.4† 62.0† 62.0† 61.9
PPR+ (base) 68.7† 67.7† 67.1† 67.6† 67.8

AP (MaxEnt) 70.4 69.6 74.1 75.7 72.5
PPR (MaxEnt) 69.3 71.0 74.2 77.6 73.0
PPR+ (MaxEnt) 71.1 72.5† 76.7† 80.3† 75.2

Table 5.1: Classifier accuracies. † denotes a significant improvement with p < 0.05
over the AP result of the same section.

the different corpora splits for each domain. The overall accuracies in the last
column are means over the four domains. We apply the approximate randomization
significance test to the results and let † denote a significant improvement with
p < 0.05 over the AP result of the same section. We see significant improvements
over baseline for all domains using PPR instead of AP, and another significant
boost when using PPR+. The latter result comes as no surprise as the intermediary
PPR step serves to expand the lexicon, enabling PPR+ to use significantly more
input data.
Based on these results we apply bootstrapping and self-training as described

above. The accuracies of the resulting classifiers are listed in the bottom section of
Table 5.1. The improvements of PPR maximum entropy models over AP models is
smaller than the margin of the base models, which is due to the availability of more
features to the classifiers. We see significant improvements over the AP MaxEnt
baseline only when using PPR+, except for the books domain where neither PPR
nor PPR+ yield a significant improvement. This result can be explained by looking
at the average document length across domains (cf. Appendix A.2.1). Documents
are the longest on average for the books domain and the shortest for the kitchen
domain. This means that the AP classifier can make better confidence estimates as
the overall number of clues in a document is larger. If a decision is made with high
confidence, it is most likely correct. Therefore, the margin between AP and PPR is
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smaller for books than for kitchen documents. In our experiments, we found that
subsequent self-training iterations do not help to improve the results significantly.
One reason for that mirrors an effect we already observed in Chapter 4: It is
difficult to make improvements after learning a basic set of good lexical indicators.
The books domain is the most difficult domain overall, followed closely by the

DVD domain. One reason for this is that these domains contain confounding clues,
such as plot descriptions, which are wrongly recognized as polarity clues by the
classifier. A separate step detecting clues that are non-relevant to sentiment analy-
sis may be desirable. We will investigate such an approach in the following chapter.
Error analysis also shows that the bootstrapping step manages to correct the

polarity of some document nodes which are not well connected in the graph and
therefore are difficult or impossible to classify with PPR. This motivates a deeper
analysis of the graph, which we present in the following section.

5.4.3 Analysis of Word-Document Graphs

In this section, we provide some analysis of the graph’s properties by means of
visualization. First, we visualize the complete Wikipedia word graph with the
nodes organized through a force-directed layout.13 In Figure 5.3, we notice that the
graph consists of several disconnected subgraphs. There are many small connected
components and singleton nodes that are unreachable from the largest connected
component, shown at the edges of the figure. In the largest connected component,
the force-directed layout produces several clusters. To analyze them, we filter the
graph and look only at nodes with a degree of at least 25 (Figure 5.4). Using node
labels, we can identify the topics of three of the four large clusters. The top-left
cluster contains adjectives describing origin and nationality (e.g., French, Italian,
and European). Nationality terms are strongly connected among each other and
rarely occur in conjunction with other words. This cluster is connected to the
rest of the graph through certain hub nodes that are less specific, such as foreign
and international. The top-right cluster contains adjectives describing temporal or
spatial relations (e.g., first, final, and early). It is rather small as such expressions

13We use the implementation in Gephi, available at https://marketplace.gephi.org/plugin/
openord-layout/
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are either rare or not productive. The bottom-left cluster contains words related
to society and professions (e.g., political, cultural, and professional). The bottom-
right cluster contains the remainder of the adjectives, which are mostly qualitative
(e.g., long, powerful, popular, and new). Presumably, these adjectives are the most
interesting for sentiment classification. The two most obvious sentiment indicators
good and bad are both part of this cluster as well. The four clusters are intercon-
nected through hub nodes such as other and many. Direct connections are more
rare, as conjunctions of words that are less semantically related are implausible.
This supports the conjunction hypothesis of Section 5.2.1.
We next look at an example from the bottom-right cluster in more detail. We

show the neighborhood of distance 1 for the word powerful, a central word in
the cluster, in Figure 5.5. We can see that even this small neighborhood is well-
connected. Many of the words in this subgraph are positive according to the polar-
ity lexicon, such as successful or beautiful. The neighborhood graph also contains
words that could be considered ambiguous, such as expensive whose polarity de-
pends on the context in which it is used. There are also direct connections from
powerful to negative words such as evil and corrupt. This shows once more that
the assumptions made in Section 5.2.1 are not universally true.
Figure 5.6 shows the word-document graph for the books domain. We can see

that the majority of the nodes in the graph is part of a large connected component
with two obvious main clusters. In addition, we have many unreachable nodes and
connected components, some of which contain document nodes. These nodes are
difficult to label through PPR as they can only be classified if at least one of the
words they are connected to is in the seed set.
The two main clusters of the largest connected component are straightforward to

interpret: The cluster in the bottom part of the figure contains mostly word-word
relations, shown in blue. The cluster on top contains mostly word-document rela-
tions, shown in magenta. In the top cluster, we also find word nodes that share no
edge with the main word graph, i.e., words that occur in documents but not in any
conjunction. We also see that the two clusters are sparsely connected through di-
rect word-document edges (magenta edges between the clusters). Examining these
edges shows that the document nodes mostly connect to the cluster of qualitative
adjectives described above.
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largest
connected
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small
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components

Figure 5.3: Complete Wikipedia word graph. Color intensity and node size visual-
ize the degree of each node.
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Figure 5.4: Wikipedia word graph with word labels. We show all nodes with a
degree of at least 25. Manually identified coherent clusters circled.
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Figure 5.5: 1-neighborhood of powerful. Color intensity denotes connection
strength to powerful.

These observations suggest that further pre-processing of the graph, e.g., remov-
ing unnecessary or misleading content, could potentially help to improve sentiment
analysis.

5.5 Related Work

5.5.1 Lexical Knowledge in Document Classification

Leveraging lexical clue knowledge for review classification has been subject of
several related publications. Turney (2002) induces a polarity lexicon by measuring
the association of terms with a set of seed words whose polarity is known. The
resulting lexicon is used for classifying reviews by calculating the average polarity
of each document. Turney concludes that these averages are highly correlated to
the actual polarity of the documents.
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Figure 5.6: Complete word-document-graph for the books domain. Word nodes
and word-word edges are shown in blue, document nodes and word-
document edges in magenta. Major regions of the graph are circled.
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He (2010) presents a self-training approach for review classification. The im-
portance of each lexicon item is taken into account and is estimated from the
unlabeled texts. This leads to an increase of accuracy in review classification. The
focus of He’s work is on correctly estimating the importance of each feature for
sentiment classification.
Settles (2011) introduces a Bayesian model using Dirichlet priors for feature

labeling. The model aims at improving active learning for document classifica-
tion tasks, including sentiment analysis. Clue information can be introduced by
modifying the priors. The advantage of this model is that it is theoretically well-
motivated. In its current form, it limits the user to a Naive Bayes model which
might not be preferred for all applications (cf. for example Pang et al., 2002, who
show that MaxEnt performs better on movie review classification).

5.5.2 Random Walk Methods for Polarity Induction

Zhang et al. (2010) perform aspect extraction with the HITS algorithm, a random
walk method closely related to PageRank. Their graph setup is based on depen-
dency graphs of predicate-argument relations that encode the relation of aspects
and opinion words. They evaluate their approach on a 4-domain dataset which is
not publicly available.
Random walk methods have been applied successfully for polarity induction on

word graphs. Hassan and Radev (2010) induce a polarity lexicon by constructing
a graph where edges represent taxonomic relations from WordNet, such as hy-
pernymy. Polarity is propagated on this graph using a random walk model that
handles positive and negative words separately. Their approach outperforms the
previous state of the art method for polarity clue induction. In contrast, we adopt
document classification accuracy as our evaluation metric.

5.5.3 Bootstrapping

Bootstrapping was shown to be an effective tool in sentiment analysis previously.
Wiebe and Riloff (2005) introduce a bootstrapping approach for subjectivity clas-
sification that learns patterns of subjectivity clues from unannotated texts. These

112



5.6 Summary

clues serve as a source for a Naive Bayes classifier that produces additional high-
confidence input for the pattern learner. Initial rules need to be hand-crafted which
requires linguistic expert knowledge about a language.

5.5.4 Conclusion

In comparison to the related document classification approaches summarized above,
our method has two advantages. First, our initial classifier uses an efficient graph-
framework with PageRank which is well-researched. Second, the bootstrapping
step introduces supervised classification techniques, weighting clues in the process,
leveraging information from the entire feature space. Third, our approach requires
little knowledge about a language, therefore eliminating the need for linguistic
expert knowledge.

5.6 Summary

In this chapter, we introduced Polarity PageRank, a new semi-supervised senti-
ment classifier that integrates lexicon induction with document classification in one
unified graph-theoretic formalism. We were able to show that Polarity PageRank-
based document classification improved results over document classification with
average polarity. These accuracy improvements translate to increased performance
of subsequently trained maximum entropy classifiers across all domains. We showed
that through bootstrapping, we can take advantage of the entire feature space avail-
able. We also observed a well-known shortcoming of the clue model. All clues are
treated as equally relevant independently of context, which misleads the classifier.
We will further address this issue in Chapter 6.
Possible future work consists of including more sophisticated features in the

graph, e.g., negation-based features or bigrams. It is an open question if the PPR
would be as accurate as bootstrapping if the full feature set could be made available
to PPR. In addition, the approach can be extended to multilingual sources by using
multiple word-document graphs and a bilingual dictionary.
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6.1 Introduction

It is generally recognized in sentiment analysis that only a subset of the content
of a document contributes to the sentiment it conveys (cf. Liu, 2010). We made
this observation ourselves. In the previous chapter, we found the counter-intuitive
result that our classifier performs better for shorter documents. We attribute this
phenomenon to topic effects that introduce misleading clues. For this reason, we
believe that automatically identifying such distracting content could be beneficial
to downstream sentiment analysis tasks. We address the concept of sentiment
relevance in this chapter which formalizes this issue.
Filtering unwanted contexts is an established pre-processing step in sentiment

analysis (Liu, 2012). To identify such content, some authors make use of the distinc-
tion between the categories subjective and objective (see Section 3.1.2). Subjective
statements refer to the internal state of mind of a person, which cannot be ob-
served. In contrast, objective statements can be verified by observing and checking
reality. Some sentiment analysis systems filter out objective language and pre-
dict sentiment based on subjective language only because objective statements do
not directly reveal sentiment. Even though the categories subjective/objective are
well-established in philosophy, we argue that they are not optimal for context fil-
tering We instead introduce the notion of sentiment relevance (SR). A sentence
or linguistic expression is sentiment relevant if it contains information about the
sentiment the document conveys; it is sentiment nonrelevant (SNR) otherwise.
Although there is overlap between the two notions, they are different. Consider

the following examples for subjective and objective sentences:

(6.1) Bruce Banner, a genetics researcher with a tragic past, suffers a horrible
accident.

(6.2) The movie won a Golden Globe for best foreign film and an Oscar.
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Sentence 6.1 is subjective because assessments like tragic past and horrible acci-
dent are subjective to the reader and writer. Sentence 6.2 is objective since we can
check the truth of the statement, i.e., whether the movie did win the award. How-
ever, even though sentence 6.1 has negative subjective content, it is not sentiment
relevant because it is about the plot of the movie and can appear in a glowingly
positive review. Conversely, sentence 6.2 contributes to the positive opinion ex-
pressed by the author through a factual statement. Subjectivity and sentiment
relevance are two distinct concepts that do not imply each other: Generally, objec-
tive sentences can be sentiment relevant, and subjective sentences can be sentiment
nonrelevant. Below, we demonstrate empirically that subjectivity and sentiment
relevance differ.
Ideally, we would like to have at our disposal a large annotated training set for

our new concept of sentiment relevance. Unfortunately, this resource does not yet
exist. For this reason, we investigate two semi-supervised approaches to sentiment
relevance classification that do not require sentiment relevance -labeled data. The
first approach uses distant supervision (cf. Section 2.3). We create an initial set
of distantly labeled examples based on domain-specific metadata that we extract
from a public database and show that this improved performance by 5.8% F̄1

compared to a clue model baseline. The second approach uses transfer learning
(cf. Section 2.3). We show that transfer learning improves F̄1 by 12.6% for senti-
ment relevance classification when we use a feature representation based on lexical
taxonomies that supports knowledge transfer.
In the following, we analyze sentiment relevance on the sentence level. Our mo-

tivation is two-fold. On the one hand, sentences are a low-level linguistic structure
where sentiment relevance manifests itself in a relatively unambiguous manner. On
the other hand, it is easy to segment texts into sentences as opposed to other lin-
guistic structures such as phrases with identifiable sentiment relevance. However,
sentiment relevance is also a discourse phenomenon: authors tend to structure doc-
uments into sentiment relevant passages and sentiment nonrelevant passages. To
impose this discourse constraint, we employ a sequence model. We represent each
document as a graph of sentences and apply minimum cut.
The rest of the chapter is structured as follows. First, we describe the sentiment

relevance annotation process and show experimentally how sentiment relevance
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differs from subjectivity (Section 6.2). Section 6.3 introduces the methods applied
in this chapter and the features we extract. Then, we turn to the description
and results of our experiments on distant supervision (Section 6.4) and transfer
learning (Section 6.5). Finally, in Section 6.6, we review previous work and show
how sentiment relevance relates to it.

6.2 Exploring Sentiment Relevance

Since sentiment relevance is a novel concept, we first need to create an annotated
corpus in order to conduct computational experiments. In this section, we begin by
describing the annotation process including an agreement study. Then, we conduct
experiments to compare sentiment relevance to the most closely related concept,
subjectivity. We focus on sentiment relevance in the movie domain for several
reasons. First, it is a relatively closed domain with a fixed set of aspects that
has been the focus of much prior research. Second, we found the quality of movie
reviews to be generally higher than the one of product reviews. Third, non-relevant
content occurs frequently in movie reviews as they tend feature long descriptions
of plots. This leads to a less skewed class distribution.

6.2.1 Sentiment Relevance Corpus

To create a sentiment-relevance-annotated corpus, the SR corpus, we randomly
selected 125 documents from the movie corpus (cf. Appendix A.2.1), using the texts
from the raw HTML files since the processed version does not have capitalization.
Two human judges annotated the sentences for sentiment relevance, using the

labels SR and SNR. If no decision can be made because a sentence contains both
sentiment relevant and sentiment nonrelevant linguistic material, it is marked as
uncertain. We excluded 360 sentences that were labeled uncertain from the eval-
uation. Annotator agreement is discussed in Section 6.2.2. In total, the SR corpus
contains 2759 sentiment relevant and 728 sentiment nonrelevant sentences. Fig-
ure 6.1 shows an excerpt from the corpus.
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O SNR Braxton is a gambling addict in deep to Mook (Ellen Burstyn), a
local bookie.

S SNR Kennesaw is bitter about his marriage to a socialite (Rosanna Ar-
quette), believing his wife to be unfaithful.

S SR The plot is twisty and complex, with lots of lengthy flashbacks, and
plenty of surprises.

S SR However, there are times when it is needlessly complex, and at least
one instance the storytelling turns so muddled that the answers to
important plot points actually get lost.

s SR Take a look at L. A. Confidential, or the film’s more likely inspiration,
The Usual Suspects for how a complex plot can properly be handled.

Figure 6.1: Example passage from a document from the SR corpus with subjectiv-
ity (S/O) and sentiment relevance (SR/SNR) annotations

6.2.2 Sentiment Relevance vs. Subjectivity

We will next contrast sentiment relevance against two different notions of subjec-
tivity. While there is a formal definition of subjectivity (cf. Section 3.1.2), in recent
research, the term “subjectivity” has also been used to label approaches that are
conceptually related but different from the traditional definition. Pang and Lee
(2004) use a practical definition of subjectivity that suits their needs for training
a machine learning system. They create their subjectivity corpus (henceforth P&L
corpus, described in more detail in Appendix A.2.1) by gathering content from se-
lected resources. As a rule, they extract subjective examples from quote snippets
from Rotten Tomatoes,14 a review aggregation website, each of which summa-
rizes a review and is therefore highly subjective. Objective content is collected by
sampling sentences from IMDb plot descriptions. These would in reality contain
a mix of subjective and objective. We compare sentiment relevance to both the
theoretical and empirical definition of subjectivity in the following experiments.

14http://www.rottentomatoes.com/
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Annotation Experiment

First, we study agreement between human annotators, comparing manual senti-
ment relevance and subjectivity annotations. We had 762 sentences annotated for
sentiment relevance by both annotators. We calculate inter-annotator agreement
with Fleiss’ κ and find an agreement of κ = 0.69. In addition, we obtained sub-
jectivity annotations for the same data on Amazon Mechanical Turk, deciding
each label through a vote of three, with an agreement of κ = 0.61. However, the
agreement of the subjectivity and relevance annotations after voting, assuming
that subjectivity equals relevance, is only at κ = 0.48. This suggests that there
is indeed a measurable difference between subjectivity and relevance. We asked
an independent annotator to examine the 225 examples where the annotations
disagree who found that 83.5% of these cases are correctly identified as different.
The feedback we received from our annotators provided valuable insights into

the difficulties of the sentiment relevance prediction problem. Both annotators
found it difficult to annotate reviews of movies whose plot they were not familiar
with. Thus, they often had to consult external sources like Wikipedia to read up on
the movie before starting the annotation. They reported that they found the dis-
tinction between actor and character names particularly difficult and claimed that
there are many ambiguous cases that could only be resolved with the knowledge
of whether a person mentioned in the text was fictitious or not. This feedback
in part inspired some of our later feature extraction methods. In addition, the
annotators sometimes missed subtle expressions of sentiment, possibly due to in-
sufficient second-language knowledge. This issue is to be expected when annotating
in a second language, however in sentiment analysis, these issues are difficult to
fix through the usual countermeasures such as improving annotation guidelines as
the set of such expressions is too diverse.

Classification Experiment

We now show that although the P&L selection criteria (quote snippets vs. plot
descriptions) bear resemblance to the definition of sentiment relevance, the two
concepts are different. To show this, we assume that the subjective data is senti-
ment relevant and the objective data is sentiment nonrelevant. We divide both the
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test
P&L SR

tra
in P&L 89.7 68.5

SR 67.4 76.4

Table 6.1: TL/in-task F̄1 for P&L and SR corpora

vocabulary fpSR fpSNR

{actor, director, story} 0 7.5
{good, bad, great} 11.5 4.8

Table 6.2: Percentage of false positive sentences for sentiment relevant (fpSR) and
nonrelevant (fpSNR) containing specific words. Training on P&L, evalu-
ation on SR.

SR and P&L corpora into training and test set at a ratio of 50:50 and train the
Stanford maximum entropy (MaxEnt) classifier with bag-of-word features.
Macro-averaged F̄1 for the four possible training-test combinations is shown in

Table 6.1. The results indicate that the classes defined by the two labeled sets are
different. A classifier trained on P&L performs worse by around 8% on SR than a
classifier trained on SR (68.5 vs. 76.4). A classifier trained on SR performs worse
by more than 20% on P&L than a classifier trained on P&L (67.4 vs. 89.7).
Note that the classes are not balanced in the sentiment relevance data while

they are balanced in the subjectivity data. This can cause a misestimation of class
probabilities and lead to the experienced performance drops. Indeed, if we either
balance the sentiment relevance data or introduce an imbalance in the subjectivity
data by undersampling in the P&L training set the minority class of the test set
(SNR), we can significantly increase F̄1 to 74.8% and 77.9%, respectively, in the
noisy label transfer setting. Note however that this step is difficult in practical
applications if the actual label distribution is unknown. Also, in a realistic setting
the distribution of the data is what it is – it cannot be adjusted to the training
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set. We will conduct further experiments on balancing in Section 6.5 which show
that an unsupervised sequence model is superior to artificial manipulation of class-
imbalances.
Error analysis for the classifier trained on P&L shows that many sentences mis-

classified as sentiment relevant (fpSR) contain polar words; e.g.,

(6.3) Then, the situation turns bad.

In contrast, sentences misclassified as sentiment nonrelevant (fpSNR) contain named
entities or plot and movie business vocabulary; e.g.,

(6.4) Tim Roth delivers the most impressive acting job by getting the body
language right.

The word count statistics in Table 6.2 show this for three polar words and for
three plot/movie business words. The P&L-trained classifier seems to have a strong
bias to classify sentences with polar words as sentiment relevant even if they are
not, perhaps because most training instances for the category quote are highly
subjective, so that there is insufficient representation of less emphatic sentiment
relevant sentences. These snippets rarely contain plot/movie-business words, so
that the P&L-trained classifier assigns almost all sentences with such words to the
category sentiment nonrelevant.

6.3 Methods

6.3.1 Discourse Constraints with Minimum Cut

It has been recognized that sentiment relevance, just like related phenomena such
as subjectivity, has sequential properties (cf. Taboada et al., 2009). This means
that sentences with the same property are likely to occur in sequence.
For this reason, it makes sense to impose the discourse constraint that a senti-

ment relevant (resp. sentiment nonrelevant) sentence tends to follow a sentiment
relevant (resp. sentiment nonrelevant) sentence. This means that we need to op-
timize a trade-off between supervised and unsupervised information sources. This
problem can be solved through graph segmentation using minimum cut (MinCut).
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Following Pang and Lee (2004), we formalize the constraint by representing each
document as a graph, encoding the strength of the constraint in the edges, and
using MinCut to find the optimal solution.
For each document, consisting of N sentences, we create a discourse network,

which is a directed graph G = (V , E ,W) with N + 2 nodes: N sentence nodes
(i ∈ V for i ∈ {1, . . . , N}, where i represents the document’s ith sentence) and a
source (s ∈ V) and a sink node (t ∈ V). We define source and sink to represent
the classes sentiment relevance and sentiment nonrelevance, respectively. Thus, we
also refer to the source as SR and the sink as SNR.
We will now introduce two types of edges, individual edges and association edges.

Individual edges connect sentence nodes to source or sink nodes. Each sentence
node i has a directed edge 〈s, i〉 ∈ E from the source to it and a directed edge 〈i, t〉 ∈
E to the sink. The individual weights between a sentence i and the source/sink
node (ind(i, s) = wsi and ind(i, t) = wit, respectively) are set according to some
confidence measure for assigning it to the corresponding class. Association edges
connect pairs of sentences. Each pair of sentence nodes i and j are connected
through a directed edge 〈i, j〉 ∈ E if i < j. Pang and Lee (2004) propose several
ways of weighting association edges. We use squared decay, where the weight wij

on the association edge is set to

wij = c

(j − i)2 .

c is a free parameter that controls the scaling of the association weights in relation
to the individual weights. In practice, we did not find significant differences between
the proposed measures. Pang and Lee (2004) also propose a threshold t on the
sentence distance (j − i) ≤ t above which wij is set to zero. We found that this
threshold does not affect our results significantly either, so we do not apply it
(which can be formally expressed as t =∞).
The resulting graph is a directed acyclic flow network from source to sink. On

this graph, we compute the minimum cut. It solves the problem of trading-off
the confidence of the classification decisions for “discourse coherence” Pang and
Lee (2004). The discourse constraint has the effect that high-confidence labels
are propagated over the sequence. As a result, outliers with low confidence are
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eliminated and we get a “smoother” label sequence. To compute minimum cuts,
we use the push-relabel maximum flow method (Cherkassky and Goldberg, 1995).

Unsupervised Parameter Optimization

We need to find values for multiple free parameters related to the sequence model.
Unfortunately, we cannot perform supervised optimization on held-out data as we
do not have any labeled data that includes sequence information. We therefore
resort to a proxy measure. We first define a run as a sequence of sentences with
the same label. The run count is the number of runs that occur within a docu-
ment. For example, the excerpt shown in Figure 6.1 contains two runs, a sentiment
nonrelevant and a sentiment relevant one. With this definition, we can compute
the median and mean number of runs counts in the corpus, referring to them as
the median run count and mean run count, respectively.
We set each parameter p to the value that produces a median run count for the

predicted labels that is closest to the median run count in the corpus. In case of
a tie, we also look at the proximity of the mean run count. We assume that the
optimal median run count is known. In practice, it can be estimated from a small
number of documents.15 The median run count is non-differentiable. We do not we
do not expect it to vary strongly under small changes of p, so we use grid search
to find its optimal value.

6.3.2 Feature Extraction

Choosing features is crucial in situations where no high-quality training data is
available, as it is the case in both distant supervision and transfer learning. We
therefore introduce features which are more likely to support knowledge transfer.
We are primarily interested in features that are robust and support generalization.
We propose two linguistically motivated feature types for sentiment relevance clas-
sification that meet these requirements.

15Later experiments show that the estimate does not need to be too exact and can be “eyeballed”.
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Generalization through Semantic Features

To generalize over concepts, we make use of lexical taxonomies. A set of general-
izations can be found by making a cut in the taxonomy hierarchy and defining the
concepts there as base classes. For nouns, the taxonomy is WordNet (Miller, 1995)
for which CoreLex (CX, Buitelaar, 1998) gives a set of basic types and classes.
For verbs, we use VerbNet (VN, Kipper et al., 2008) which already contains base
classes. These resources are described in more detail in Appendix A.2.2.
In order to generalize over verbs and nouns, it is necessary to have the corpus

annotated with parts of speech. We use the automatic part-of-speech tagger by
Bohnet (2010) to perform part-of-speech tagging as well as lemmatization (see
Appendix A.1.3 for a description of the tool). The tagger returns Penn Treebank
tags (Marcus et al., 1993), so nouns in the corpus will have a tag matching the
pattern NN.*, and verbs will match VB.*.
We extend the existing feature representation by adding the base classes from

the taxonomies as follows. For each noun, we look up the class in CoreLex and
add it as a feature. For example, the noun teacher has the base class human, so
we add human as a separate feature, which we write as CX:human. For each verb,
we look up the base class in VerbNet and add it as a feature. For example, the
verb suggest occurs in the VerbNet base class say, so we add a feature VN:say to
the feature representation.
We refer to these feature sets as CoreLex (CX) and VerbNet (VN ) features and

to their combination as semantic features (SEM ).

Named Entities

It has been recognized that in the movie domain, certain named entities correlate
with either plot description or review content (Zhuang et al., 2006). Thus, using
named entities as features in a sentiment relevance classifier is promising. However,
as standard NER systems do not capture named entity types that are specialized
to the movie domain, we cannot apply an out-of-the-box NER system. Instead,
we opt for a lexicon-based approach similar to (Zhuang et al., 2006). We use the
IMDb movie metadata database (Appendix A.2.3) from which we extract three
different types of named entities:
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• actors (<ACTOR>)

• directors, screenwriters, and composers (<PERSONNEL>)

• characters from movies (<CHARACTER>)

Many entries are unsuitable for NER, e.g., dog and man are frequently listed as a
character. We address this problem by filtering out all entries in the database that
also appear in lower case in a list of English words extracted from the dict.cc
dictionary (Appendix A.2.3).
A name can be ambiguous between the types. For example, John Williams is a

frequent name that occurs in all three categories. We disambiguate by calculating
the maximum likelihood estimate of

p(t|n) = f(n, t)∑
t′ f(n, t′)

over all entries in the database, where n is a name, t is one of the three types, and
f(n, t) is the number of times n occurs in the database as type t. This estimate
helps to disambiguate many examples for which a humanly salient choice exists.
For our example, we learn that John Williams has the highest likelihood to be
of the <PERSONNEL> type, corresponding with the association that the name John
Williams in the movie business refers most likely to the composer. We also calculate
these probabilities for all tokens that make up a name. While this may cause
errors, it can also help in many cases where the name obviously belongs to a type.
Skywalker (as in Luke Skywalker), for example, is very likely a character reference.
In addition, we use a set of simple co-reference rules to propagate annotations to

related terms. If a capitalized word occurs, we check whether it is part of an already
recognized named entity. For example, if we encounter Robin and we previously
encountered Robin Hood, we assume that the two entities match. This rule has
precedence over NER, so if a name matches a labeled entity, we do not attempt to
label it through NER. Personal pronouns will match the most recently encountered
named entity.
Data analysis reveals that apposition plays an important role in the structure

of reviews. Many mentions of actors in parentheses are actually additional infor-
mation for character mentions. As an example, in the sentence
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(6.5) Tracy Flick (Reese Witherspoon) is an over-achiever [. . . ].

the actor name Reese Witherspoon is only mentioned to say who the character was
played by. Thus, we always interpret a name preceding an actor in parentheses as
a character mention. This serves two purposes. First, we avoid adding unhelpful
<ACTOR> features. Second, we can recognize character mentions for which IMDb
provides insufficient information. This feature is written as <ACTOR_P>. The set of
all features described above is referred to as named entities (NE).

Sequential Features

Following previous sequence classification work with maximum entropy models
(e.g., Ratnaparkhi, 1996), we use selected features of adjacent sentences. If a sen-
tence contains a feature F, we add the feature to the following sentence, indicat-
ing that it was inherited from the previous sentence. We write this new feature
as F+1. For example, if a <CHARACTER> feature occurs in a sentence, the feature
<CHARACTER+1> is added to the following sentence. For sentiment relevance classi-
fication, we perform this operation only for NE features as they are restricted to
a few classes and thus will not enlarge the feature space notably. We refer to this
feature set as sequential features (SQ).

6.4 Distant Supervision

Since a large labeled resource for sentiment relevance classification is not yet avail-
able, we investigate semi-supervised methods for creating sentiment relevance clas-
sifiers. In this section, we show how to bootstrap a sentiment relevance classifier
by distant supervision (DS) .
Even though we do not have sentiment relevance annotations, there are sources

of metadata for the movie domain that we can leverage for distant supervision.
Specifically, movie databases like IMDb contain both metadata about the plot,
in particular the characters of a movie, and metadata about the “creators” who
were involved in the production of the movie: actors, writers, directors, and com-
posers. We will now make the following assumptions: Statements about characters
usually describe the plot and are not sentiment relevant. Statements about the
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creators tend to be evaluations of their contributions – positive or negative – to
the movie. Based on these assumptions, we formulate a classification rule: Count
occurrences of NE features and label sentences that contain a majority of cre-
ators, i.e. <ACTOR> and <PERSONNEL> features, as SR and sentences that contain
a majority of <CHARACTER> features as SNR. Ties are labeled with the majority
class, SR. This is a form of distant supervision in that we use the IMDb metadata
database as described in Section 6.3.2 to automatically label sentences based on
which feature from the database they contain.

6.4.1 Initial Distant Supervision Experiment

The simple labeling rule described above covers 1583 sentences with an F̄1 score of
67.2%. We call these labels inferred from NE metadata distant supervision (DS)
labels. To increase coverage, we train a MaxEnt classifier (Stanford classifier, cf.
Appendix A.1.1) on the labeled examples. This model achieves an F̄1 of 61.2% on
the SR corpus (Table 6.3, line 2). As this classifier uses training data that is biased
towards a specialized case (sentences containing the named entity types actors
and characters), it does not generalize well to other sentiment relevance problems
and thus yields lower performance on the full dataset. This distant supervision
setup suffers from two issues. First, the classifier only sees a subset of examples
that contain named entities, making generalization to other types of expressions
difficult. Second, there is no way to control the quality of the input to the classifier,
as we have no confidence measure for our distant supervision labeling rule.
We will address these two issues by introducing an intermediate step, the unsu-

pervised sequence model introduced in Section 6.3.1. We thus first apply MinCut as
described in the following paragraphs and then select the most confident examples
as training material to bootstrap the supervised classifier.

6.4.2 Further Experimental Setup

MinCut Setup

We follow the general MinCut setup described in Section 6.3.1. Each document
is represented as a graph of sentence nodes and special source/sink nodes which
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represent SR/SNR. As explained above, we next assume that actors and directors
indicate relevance and characters indicate nonrelevance. Accordingly, we define fSR

to be the number of <ACTOR> and <PERSONNEL> features occurring in a sentence,
and fSNR the frequency of <CHARACTER> features. We then set the individual weight
between a sentence node i and the source/sink nodes to ind(i, x) = fx where
x ∈ {SR, SNR}.
The MinCut parameter c is set to 1; we wish to give the association scores high

weights as (i) the individual scores are unreliable due to sparseness of the named
entity features, and (ii) there might be long spans that have individual weights
with zero values. Figure 6.2 shows an example graph created with this method.
We will discuss this example in more detail during error analysis.

Confidence-Based Data Selection

We use the output of the base classifier to train supervised models. Since the
MinCut model is based on a weak assumption, it will make many false decisions.
To eliminate them, we use only those documents as training data where the base
classifier has confidence. As the confidence measure for a document, we use the
maximum flow value v – the maximal “amount of fluid” flowing through the docu-
ment. The max-flow min-cut theorem (Ford and Fulkerson, 1956) states that if the
flow value is low, then the cut was found by cutting edges with a lower weight sum.
Thus, we assume that it was easier to calculate. This means that the document is
more likely to have been segmented correctly. Following this assumption, we train
a MaxEnt classifier on the k% of documents that have the lowest maximum flow
values v, where k is a parameter which we optimize using the run count method
introduced in Section 6.3.1.16

6.4.3 Experiments and Results

Table 6.3 shows sentiment relevant (F (SR)
1 ), sentiment nonrelevant (F (SNR)

1 ) and
macro average (F̄1) F1 values for different setups with this parameter. We compare
the following basic setups:

16Grid search on [0, 100] with a step size of 10 yields an optimum for k = 40% corresponding to
a maximum flow value v ≤ 4000.
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David Schwimmer (from the television series ”Friends”)
stars as a sensitive (and slightly neurotic) single guy who
gets more than he expected from the grieving mother
(Barbara Hershey) of a classmate he can’t remember.

Hello Mrs. Robinson!

Though quite cute as a romantic comedy, THE PALLBEARER
is paced like a funeral march.

The characters act, react, and interact at half-speed,
making for one *excruciatingly* long sit.

(And what’s with the dreary lighting?)

Co-writer/director Matt Reeves brings some snap to the
story’s midsection; the film briefly comes to life when
our hero attempts to resolve his feelings for *another*
classmate (a very appealing Gwyneth Paltrow).

By this time, though, most viewers will have either fled
or fallen asleep.

Those tough souls who stay with it can marvel at the
sleepy-eyed Schwimmer, a hound dog with a head cold, who can
go for over an hour without ever changing his expression.

Figure 6.2: Example distant supervision graph for the negative document #671
from the Pang & Lee movie corpus showing edge weights from the
IMDb database. Individual edges are shown in blue, association edges
in green. Character NE’s are shown in purple, personnel NE’s in orange.
Phrases in parentheses containing an NE type change the label and are
marked accordingly.
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Model Features F
(SR)
1 F

(SNR)
1 F̄1

1 Majority BL – 88.3 0.0 44.2
2 MaxEnt (DSlabels) NE 79.8 42.6 61.21

3 DSMinCut NE 79.6 48.2 63.912

4 DSMinCut + MaxEnt NE 84.8 46.4 65.612

5 DSMinCut + MaxEnt NE+SEM 85.2 48.0 66.6124

6 DSMinCut + MaxEnt NE+SQ 84.8 49.2 67.01234

7 DSMinCut + MaxEnt NE+SQ+SEM 84.5 49.1 66.81234

Table 6.3: Distant supervision classification results: F (SR)
1 , F (SNR)

1 and F̄1. Super-
script numbers indicate a significant improvement over the correspond-
ing line.

1. The majority baseline (BL) when choosing the most frequent label (SR).

2. A MaxEnt baseline trained on DS labels without application of MinCut.

3. The base classifier using MinCut as described above (referred to as DSMin-
Cut).

Further, we train supervised MaxEnt classifiers (lines 4–7) based on the labels
from DSMinCut (line 3), using the named entity (NE), semantic (SEM), and se-
quential (SEQ) features introduced in Section 6.3.2.
We test statistical significance using the approximate randomization test with

document permutations at p < .05. We achieve classification results above base-
line using the DSMinCut base classifier (line 3) and a considerable improvement
through distant supervision. We found that all classifiers using DS labels and Min-
cut are significantly better than MaxEnt trained on purely rule-based DS labels
(line 2). Also, the MaxEnt models using SQ features (lines 6 and 7) are significantly
better than the MinCut base classifier (line 3). For comparison to a chain-based
sequence model, we train a 2nd order Conditional Random Field classifier (CRF,
McCallum, 2002). However, the improvements over the corresponding MaxEnt
models are small (≤ 1%) and not statistically significant.
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Figure 6.3: Base classifier results by document: F̄1 measure vs. flow. Green line:
linear regression, red line: locally weighted regression.

We found that both semantic (lines 5,7) and sequential (lines 6,7) features help
to improve the classifier. The best model (line 6) performs better than MinCut (3)
by 3.1% and better than training on purely rule-generated DS labels (line 2) by
5.8%. However, we did not find a cumulative effect (line 7) of the two feature sets.
We will examine minimum cut and the semantic features in more detail next.

Minimum Cut

To verify that our parameter optimization method selected a reasonable flow value
threshold, we investigate the correlation of F̄1 and flow. Figure 6.3 shows F̄1 and
the flow value for each document as a point in the plot. Fitting a linear regression
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model (green line) to the data reveals that lower flow values are correlated with
slightly higher F̄1. As the relation between the variables does not appear to be
strictly linear, we apply locally weighted regression (red curve, Cleveland and
Devlin, 1988). It shows two peaks around flow values of 2500 and 12000. This
suggests that the maximum flow value threshold of 4000 is a reasonable choice –
F̄1 tends to decrease rapidly after this point and only recovers much later.
Looking at the sentence graphs in more detail, we can identify several reasons

for why the model fails in some cases. Take the graph shown in Figure 6.2 as an
example. First, ambiguous examples are difficult to handle, such as the 1st 6th

sentences, which contain both sentiment relevant and nonrelevant content. One
possibility to address this issue would be a better segmentation of the data –
possibly supported by an sentiment relevance classifier – at the sub-sentence level.
Alternatives may include machine learning extensions such as hierarchical models.
A second problem is that in cases like the example, there are large gaps between
nodes with correct seed information. In the example, only the first, second, and last
node actually contribute a non-zero individual score, which makes the prediction
of the correct labels for nodes in the middle more difficult. This problem arises
due to our choice of named entities as the source of distant supervision, which,
while being helpful indicators, occur only sparsely in reviews. Third, the distant
supervision rules are noisy, as it is evident in the 1st sentence which contains an
actor mention despite being sentiment nonrelevant.

Semantic Features

We will next analyze the structure of the bootstrapped classifiers. Examining the
highest-weighted features of the best model using DS labels (line 6) shows that
NE features are dominant (Table 6.4). This correlation is not surprising as the
seed labels were induced based on NE features. Thus, it may as well be a sign of
overfitting. The top weighted feature shown in the table is the actor apposition
feature <ACTOR_P> resulting from our parentheses rule. As expected, this feature
and its sequential counterpart <ACTOR_P+1> is a good indicator for non-relevant
content.
Words like see and theater that are commonly used to describe a movie theater
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feature wSR

<ACTOR_P> 1.83
<CHARACTER> 1.27
<ACTOR> -1.15
<CHARACTER+1> 1.01
<ACTOR+1> -0.86
<ACTOR_P+1> 0.85
<PERSONNEL+1> -0.81
see 0.80
remember 0.78
theater 0.72
bad 0.70
well -0.70
kilgore 0.61
previews 0.60
tame 0.57
debate 0.54
delightful 0.53
dangerous 0.53
thrown 0.53
things 0.53
<PERSONNEL> 0.42

Table 6.4: 20 highest weighted features and NE & SQ features in the best-
performing model. wSR is the weight in the sentiment relevant class.
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visit are considered highly relevant. Also relevant are subjective words, e.g., bad,
tame, and delightful. Interestingly, some subjective features have high weights for
sentiment nonrelevance, such as horrible with wSNR = 0.32. These words could be
thematically fitting for non-relevant content, however this could also indicate that
the classifier is overfitting to the training data.
Generally, the quality of NER is crucial in this task. While IMDb is in general a

thoroughly compiled database, it is not perfect. For example, all main characters
in Groundhog Day are listed with their first name only even though the full names
are given in the movie, which poses a difficulty for our pattern matching NER
approach. Some entries are even left incomplete intentionally to avoid spoiling the
plot. The data also contains ambiguities between characters and titles (e.g., Forrest
Gump) that are impossible to resolve with our maximum likelihood method. In
some types of movies, e.g., documentaries, the distinction between characters and
actors makes little sense. Furthermore, ambiguities like occurrences of common
names such as John are impossible to resolve if there is no earlier full referring
expression.

6.4.4 Conclusion

The results of our experiments using distant supervision show that a sentiment rel-
evance classifier can be trained successfully by labeling data with a couple of sim-
ple feature rules, with MinCut-based input significantly outperforming the base-
line. Named entity recognition, accomplished with data extracted from a domain-
specific database, plays a significant rule in creating an initial labeling.

6.5 Transfer Learning

One reason for the low performance of the distant supervision approach is that
it uses only a small amount of training data. Less than 50% of the corpus are
selected for training. To address this problem, we now investigate a second semi-
supervised method for sentiment relevance classification, transfer learning (TL). In
our transfer learning setting, we will train a classifier on a related but different task,
and use it for sentiment relevance prediction. This way, we can exploit external
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labeled data which might be available in significantly larger quantities.
In transfer learning, the key to success is to find a generalized feature representa-

tion that supports knowledge transfer. We use our semantic feature generalization
method to introduce such features. We again use MinCut to impose discourse con-
straints. This time, we first classify the data using a supervised classifier and then
use MinCut to smooth the sequences.

6.5.1 Experimental Setup

Data, Feature Extraction, and Classification Setup

For training our supervised base classifier, we use the P&L movie subjectivity
corpus (Pang and Lee, 2004, cf. Appendix A.2.1). For evaluation, we use the SR
corpus.
The P&L corpus consists of 5000 highly subjective quote review snippets from

Rotten Tomatoes and 5000 plot sentences from IMDb plot descriptions which
the authors use as objective data. As the data was collected automatically using
heuristics, the resulting labels can be either viewed as noisy sentiment relevance
labels or noisy subjectivity labels. Compared to distant supervision on a database,
the advantage of training on P&L is that the training set is much larger, containing
around 7 times as much data as compared to the amount selected for supervised
training in the distant supervision experiment.
We assume that the quote examples are sentiment relevant and the plot exam-

ples are sentiment nonrelevant, which constitutes a transfer learning setup from
subjectivity to sentiment relevance.
A drawback of the published version of the P&L corpus is that capitalization

was removed, which makes the extraction of NE features difficult. For this reason,
we extract only the semantic features (SEM).
The baseline (BL) uses a simple bag-of-words representation of sentences for

classification which we then extend with semantic features. We train a MaxEnt
classifier for each of the feature sets.
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Figure 6.4: Example transfer learning graph for the negative document #671 from
the Pang & Lee movie corpus showing edge weights from the best-
performing model. Individual edges are shown in blue, association
edges in green.
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Model base classifier MinCut

F
(SR)
1 F

(SNR)
1 F̄1 F

(SR)
1 F

(SNR)
1 F̄1

1 BL 81.1 58.6 69.9 87.2 67.8 77.5B
2 CX 82.9 60.1 71.5B 89.0 70.3 79.7BM
3 VN 85.6 62.1 73.9B 91.4 73.6 82.5BM
4 CX+VN 88.3 62.9 75.6B 92.7 72.2 82.5BM

Table 6.5: Transfer learning classification results: F (SR)
1 , F (SNR)

1 and F̄1. B indicates a
significant improvement over the BL base classifier, M over BL MinCut.

MinCut Setup

We again implement the basic MinCut setup from Section 6.3, constructing a graph
for each document. We set the individual weight ind(i, x) on the edge between
sentence node i and source or sink node x ∈ {SR, SNR} to the estimate p(x|i)
returned by the MaxEnt base classifier. Figure 6.4 shows an example of a graph
constructed in this setup. The parameter c of the MinCut model is tuned using
the run count method described in Section 6.3.1.17

6.5.2 Experiments and Results

Table 6.5 shows the performance of the MaxEnt base classifiers and MinCut clas-
sifiers for different feature sets. As we would expect, the baseline performance
of the supervised classifier evaluated on the SR corpus is low: 69.9% (Table 6.5,
line 1). MinCut significantly boosts the performance by 7.9% to 77.5% (line 1),
a result similar to (Pang and Lee, 2004). Adding semantic features improves su-
pervised classification significantly by 5.7% (75.6% on line 4). When MinCut and
both types of semantic features are used together, these improvements are partially
cumulative: an improvement over the baseline by 12.6% to 82.5% (line 4). In the
following sections, we investigate the influence of both aspects in more detail.

17Grid search on [0.1, 1] yields values of c ∈ {0.8, 0.9}, depending on the experiment (cf. Fig-
ure 6.5).
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(d) CX+VN

Figure 6.5: F̄1 measure for different values of c. Horizontal line: optimal median
run count. Circle: selected point.
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Minimum Cut

To illustrate the run-based parameter optimization criterion, we show F̄1 and me-
dian/mean run lengths for different values of c for the four setups from Table 6.5
in Figure 6.5. Due to differences in the base classifier, the optimum of c varies be-
tween the experiments. The optimization criterion does not always correlate per-
fectly with F̄1. However, we found no statistically significant difference between
the selected result and the highest F̄1 value.
We also experiment with a training set where an artificial class imbalance is

introduced, matching the 80:20 imbalance of SR:SNR in the sentiment relevance
corpus. The result of this experiment is shown in Table 6.6. The BL and CX
base classifiers perform significantly better than their balanced counterparts (cf.
Table 6.5). However, with the introduction of VN, results drop markedly. This
may be attributed to a bias towards the majority class that is amplified when
using the VN feature set. After applying MinCut, we found that while the results
for BL with and without imbalances does not differ significantly. However, models
using CX and VN features and imbalances are actually significantly inferior to the
respective balanced versions. While the artificially imbalanced models have the
potential to perform better in the base classifier setup, the balanced models seem
to work better in combination with MinCut, producing the best overall model.
This result suggests that MinCut is more effective at coping with class imbalances
than artificial adjustments to the class distribution.
This experiment shows why MinCut is successful for transfer learning. It can ex-

ploit test set information without supervision as the MinCut graph is built directly
on each test set review. If high-confidence information is “seeded” within a doc-
ument and then spread to neighbors, mistakes with low confidence are corrected.
This way, MinCut also leads to a compensation of differences in class distribution.
Once again, we conduct some error analysis of the graphs produced by the model.

Looking at Figure 6.4, we see that as expected, not all classification decisions made
by the base classifier were correct, such as 5th sentence (. . . dreary lighting . . . )
which received a SNR label. However, since the sentence occurs in the neighborhood
of nodes that are mostly predicted to be SR with high confidence, this mistake
can be corrected through MinCut. In turn, the MinCut model may be misled by
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Model base classifier MinCut

F
(SR)
1 F

(SNR)
1 F̄1 F

(SR)
1 F

(SNR)
1 F̄1

1 BL 89.3 60.4 74.8† 92.6 65.9 79.3
2 CX 90.0 62.2 76.1† 92.4 64.2 78.3
3 VN 90.3 57.9 74.1 91.6 54.6 73.1†
4 CX+VN 90.3 58.6 74.5 90.3 58.6 74.5†

Table 6.6: Transfer learning results after introducing an imbalance to the train-
ing set: F (SR)

1 , F (SNR)
1 and F̄1. † indicates a significant difference to the

respective cell in Table 6.5.

confident decisions for ambiguous nodes like the one representing the 6th sentence.

Semantic Features

The results presented above are evidence that semantic features are robust to the
differences between the classification tasks subjectivity and sentiment relevance
that we documented in Table 6.1. We will now take a look at the highest-weighted
features of the best-performing model (Table 6.7).
Meaningful semantic feature classes receive high weights. We will briefly review

some of them. A table explaining the relevant CoreLex class abbreviations can
be found in Appendix A.2.2. As an example, for nouns, the human groups class
(CX:hum) from CoreLex which among other entries contains professions that are
frequently associated with non-relevant plot descriptions. CX:gsl contains nation-
ality nouns. High-weighted VerbNet base classes include VN:murder and VN:cope,
containing verbs relevant to plot descriptions (e.g., kill and manage) which are
highly nonrelevant. The base class VN:light_emission contains verbs such as shine
which also have a subjective meaning, which is why the classifier selects it as a
good feature for sentiment relevance. This result may be a sign of the metaphor-
ical nature of sentiment (e.g., bright is good, dark is bad, as described by Lakoff
and Johnson, 1980). Interestingly, pronouns are recognized as strong features. I is
a good feature for sentiment relevant content as self-reference indicates that the
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6.5 Transfer Learning

feature wSR

– 1.56
its 1.17
director 1.01
he -1.00
book -0.99
material 0.99
interesting 0.98
screen 0.98
she -0.97
here 0.96
my 0.94
performance 0.93
they -0.93
him -0.92
- -0.91
evil -0.90
film’s 0.88
i 0.88
characters 0.87
kung-fu -0.86

feature wSR

CX:agh -0.70
CX:pas -0.70
VN:tape 0.66
VN:occurrence -0.65
VN:cope -0.60
CX:gsl -0.59
CX:lor -0.57
VN:battle -0.56
CX:ara 0.54
VN:coil 0.54
VN:light_emission 0.51
VN:begin -0.48
CX:atp 0.47
CX:hum -0.47
VN:turn -0.46
VN:engender -0.45
CX:atr 0.45
VN:appeal 0.44
VN:establish -0.44
VN:murder -0.43

Table 6.7: 20 highest-weighted features in the best-performing model. Left: all fea-
tures, right: CX and VN features. wSR is the weight in the sentiment
relevant class.
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6 Sentiment Relevance

reviewer is stating their opinion. Third-person pronouns (he, she, and they) occur
more frequently in sentiment non-relevant examples, mostly in long passages with
plot descriptions.

6.5.3 Conclusion

These experiments demonstrate that sentiment relevance classification improves
considerably through transfer learning if semantic feature generalization and un-
supervised sequence classification through MinCut are applied. We found that our
unsupervised selection criterion performs well and provided further analysis of the
relation of MinCut to class distribution balancing. We showed that our feature
sets provide useful generalization over semantic concepts.

6.6 Related Work

6.6.1 Related Concepts

Conceptually, our work is most closely related to (Taboada et al., 2009) who define
a fine-grained classification that is similar to sentiment relevance on the highest
level. However, unlike our study, they do not experimentally compare their clas-
sification scheme to prior work in their experiments to show that this scheme is
different. In addition, they work on the paragraph level. However, paragraphs of-
ten contain a mix of sentiment relevant and sentiment nonrelevant sentences. We
use the minimum cut method and are therefore able to incorporate discourse-level
constraints in a more flexible fashion, giving preference to “relevance-uniform”
paragraphs without mandating them.
Täckström and McDonald (2011) develop a fine-grained annotation scheme that

includes sentiment nonrelevance as one of five categories. However, they do not
use the category sentiment nonrelevance directly in their experiments and do not
evaluate classification accuracy for it. We do not use their dataset as we target the
movie domain for the aforementioned quality reasons. Changing both the domain
(movies to products) and the task (subjectivity to sentiment relevance) would give
rise to interactions that we wanted to avoid in our study.
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The notion of annotator rationales (Zaidan et al., 2007) has some overlap with
our notion of sentiment relevance. Yessenalina et al. (2010) use rationales in a
multi-level model to integrate sentence-level information into a document classi-
fier. Neither paper presents a direct gold standard evaluation of the accuracy of
rationale detection.
Sentiment relevance is also related to review mining (e.g., Ding et al., 2008) and

similar sentiment retrieval techniques (e.g., Eguchi and Lavrenko, 2006) in that
they aim to find phrases, sentences or snippets that are sentiment relevant for
sentiment, either with respect to certain features or with a focus on high-precision
retrieval (cf. Liu, 2010). However, finding a few sentiment relevant items with high
precision is much easier than the task we address: exhaustive classification of all
sentences.
In the past, subjectivity has been used to detect nonrelevant content, so we view

it as a related concept as well. Many publications have addressed subjectivity in
sentiment analysis. Two important papers that are based on the original philosoph-
ical definition of the term (internal state of mind vs. external reality) are (Wilson
and Wiebe, 2003) and (Riloff and Wiebe, 2003). As we argue above, if the goal is
to identify parts of a document that are useful/non-useful for sentiment analysis,
then sentiment relevance is a better notion to use.
Researchers have implicitly deviated from the philosophical definition because

they were primarily interested in satisfying the needs of a particular task. For
example, Pang and Lee (2004) use a minimum cut graph model for review sum-
marization. Because they do not directly evaluate the results of subjectivity classi-
fication, it is not clear to what extent their method is able to identify subjectivity
correctly.

6.6.2 Distant Supervision and Transfer Learning

Täckström and McDonald (2011) solve a similar sequence problem by applying a
distantly supervised classifier with an unsupervised hidden sequence component.
Their setup differs from ours as our focus lies on pattern-based distant supervision
instead of distant supervision using documents for sentence classification. They
also work on a different task, polarity prediction. Transfer learning has been ap-
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plied previously in sentiment analysis (Tan and Cheng, 2009), targeting polarity
detection.

6.6.3 Feature Extraction

Named-entity features in movie reviews were first used by Zhuang et al. (2006),
in the form of feature-opinion pairs (e.g., a positive opinion about the acting).
They show that recognizing plot elements (e.g., script) and classes of people (e.g.,
actor) benefits review summarization. We follow their approach by using IMDb to
define named entity features. We extend their work by introducing methods for
labeling partial uses of names and pronominal references and taking into account
the maximum likelihood estimate for disambiguation. We address a different prob-
lem (sentiment relevance vs. opinions) and use different methods (graph-based and
statistical vs. rule-based).

6.6.4 Conclusion

In summary, no direct evaluation of sentiment relevance has been performed pre-
viously. One of our contributions is that we provide a single-domain gold standard
for sentiment relevance, created based on clear annotation guidelines, and use it
for direct evaluation.
Another contribution is that we show that generalization based on semantic

classes improves sentiment relevance classification. While previous work has shown
the utility of other types of feature generalization for sentiment and subjectivity
analysis (e.g., syntax and part-of-speech, Riloff and Wiebe, 2003), semantic classes
have so far not been exploited.

6.7 Summary

A number of different notions, including subjectivity, have been proposed for dis-
tinguishing parts of documents that convey sentiment from those that do not.
We introduced sentiment relevance to make this distinction and argued that it
better reflects the requirements of sentiment analysis systems. Our experiments
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6.7 Summary

demonstrated that sentiment relevance and subjectivity are related but different.
Since a large labeled sentiment relevance resource does not yet exist, we investi-

gate semi-supervised approaches to sentiment relevance classification that do not
require sentiment relevance labeled data. We show that a combination of different
techniques gives us the best results: semantic generalization features, imposing
discourse constraints implemented as the minimum cut graph-theoretic method,
automatic “distant” labeling based on a domain-specific metadata database and
transfer learning to exploit existing labels for a related classification problem.
There are several possible directions for future work on the sentiment relevance

classification problem. First, the obvious combination of transfer learning and dis-
tant supervision has not been explored yet. Using both approaches jointly could
potentially yield further improvements. In addition, distant supervision from the
paragraph-labeled data by Taboada et al. (2009) is possible. Another research di-
rection is domain adaptation. As mentioned above, a similar dataset exists for dif-
ferent product review domains. Using further feature-space modifying techniques
that have been promising in polarity classification (e.g., Glorot et al., 2011), do-
main adaptation could be attempted for sentiment relevance.
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7 Compositionality of Recursive
Autoencoders

7.1 Introduction

In the previous chapters, we have addressed sentiment analysis exclusively with the
clue model. We have experienced both upsides and downsides of the model. It works
well even when faced with a small set of indicators, however, it becomes difficult to
improve beyond that point. Most crucially, the model is very sensitive to domain
(cf. Chapter 5) and topic effects (cf. Chapter 6). Further, sentiment may in general
be expressed through statements of arbitrary complexity. Interestingly, we often
find a clue at the core of such statements which is then modified throughout the
structure. This has been recognized previously, for example by Polanyi and Zaenen
(2006) who formalize these mechanisms of modification as “polarity shifters” (cf.
Section 3.2).
There have been efforts to automatically learn polarity shifters (e.g., Choi and

Cardie, 2008; Wiegand et al., 2010), however, most of them focus on specific syn-
tactic constructions and thus have very limited coverage. Recent research on fully
compositional models for sentiment analysis (e.g., Yessenalina and Cardie, 2011)
promises holistic approach that addresses these limitations. In this chapter, we
will provide a more in-depth analysis of a compositional model that makes use of
neural networks.
Deep neural networks (DNNs) have been gaining increasing attention in Natural

Language Processing. Many of the traditional NLP tasks have been addressed, such
as syntactic parsing (Socher et al., 2010), semantic role labeling (Collobert et al.,
2011), machine translation (Deselaers et al., 2009), and document classification
(Glorot et al., 2011).
A frequently cited DNN model for NLP tasks was introduced by (Socher et al.,

2011), the Semi-Supervised Recursive Autoencoder (RAE). This model pursues
a pairwise word composition strategy, representing each word as a vector and
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recursively applying an autoencoder function to unify pairs of nodes, yielding a
binary tree. One appealing property of RAEs is that the resulting structure lends
itself to a syntactic or even semantic interpretation. However, so far, no in-depth
analysis of RAEs in terms of these structures has been performed.
Our main interest in this chapter is to analyze the behavior of RAEs as a com-

positional model. We will investigate the following key questions: (i) Are the struc-
tures produced by RAEs interpretable syntactically or semantically? (ii) Can the
structures be simplified? Addressing these questions will show whether the RAE
is compositional both from a linguistic and a machine learning point of view.
We will analyze these points empirically in a sentiment classification task for

which the RAE has been applied previously (Socher et al., 2011). We introduce
two methods for analysis. First, we let humans rate the structures according to
syntactic and semantic criteria. Second, we try to simplify the RAE structures
automatically and evaluate the resulting models on a classification task.
The rest of the chapter is structured as follows. In Section 7.2, we describe

RAEs, particularly highlighting some details regarding implementation. We then
introduce different ways of structural simplification in Section 7.3. We present two
types of experiments in Section 7.4. Section 7.4.2 contains error analysis of RAEs
conducted by human annotators. In Section 7.4.3 we carry out the experiments on
structural simplifications.

7.2 Semi-Supervised Recursive Autoencoders

The central model in this chapter is the Semi-Supervised Recursive Autoencoder
(RAE, Socher et al., 2011). This section describes this model and discusses some
important implementation details.18

The RAE is a structural model for sequences. It recursively applies an autoen-
coder to construct a tree structure over the words in a sentence. Each word, i.e.,
each leaf of the tree, is represented by vector which is independent of the context
in which the word occurs. Each non-leaf node represents a feature vector which
is the encoding yielded by an autoencoder of the feature vectors of its children.
18Some of these details can be found in the RAE implementation available at http://www.

socher.org/.
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xw1 xw2 xw3 xw4

Figure 7.1: Encoding steps of the recursive autoencoder model. Note that all nodes
are hidden as the input representations can be changed during training.

The model is semi-supervised as the target task can influence the representations.
In addition to the usual autoencoder optimization objective of minimizing the re-
construction error, the model is also jointly trained to minimize the classification
error made at each node in an external task.
Compared to models of compositionality in sentiment analysis, the RAE re-

flects both aspects of the clue model and the polarity shifter model. Each node in
the tree has a polarity through the classification model (i.e., it serves as a clue).
The representation, and thus the polarity, of non-terminal nodes is influenced by
pairwise composition, which can be viewed as a shifter operation.
The basic representation of each word wi is a randomly initialized vector rwi

of dimensionality D.19 The vectors are stored in a matrix R where every row
represents one word. This representation is enhanced using an embedding matrix
L of the same structure which is optimized during training. The final representation
of a word w is obtained as the sum of its entries in R and L,

xw = rw + lw. (7.1)

19In the original publication, initialization with pre-trained NLM vectors resulted in a slight
improvement.
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The word vectors xw make up the leaf nodes of the tree. Trees are then constructed
by iteratively joining two adjacent nodes using an autoencoder with the usual two-
layer architecture. Figure 7.1 illustrates the forward pass of the encoding layers.
The encoding layer takes the feature vectors of two nodes, n1 and n2, and outputs
a combined representation r:

f (enc)([n1,n2]) = h(enc)([n1,n2]W(enc) + b(enc))

r = f (enc)([n1,n2])
‖f (enc)([n1,n2])‖2

Socher et al. (2011) argue that normalization of the representation vector serves
to compensate for n-gram length. Subsequently, the reconstruction layer tries to
reproduce the original inputs after normalization of the outputs:20

f (rec)(r) = h(rec)(rW(rec) + b(rec))

[n′1,n′2] = f (rec)(r)
‖f (rec)(r)‖2

h(enc) and h(rec) are the (non-linear) activation functions of the respective layers.
Socher et al. (2011) use h(enc) = h(rec) = tanh.21 W(enc) and W(rec) are the weight
matrices, b(enc) and b(rec) the bias vectors of the respective layers. Note that D, the
dimensionality of r, needs to be the same as of n1 and n2 so that the autoencoder
can be applied recursively.
The resulting output of the autoencoder serves as the representation of a new

node that has the two encoded nodes as its children. The combination operation
is carried out greedily by autoencoding the pair of nodes first that has minimal
reconstruction error E(rec). Reconstruction errors are calculated with an adaptation
of squared error that penalizes errors at higher-level nodes less than lower-level
nodes, which is controlled with a factor β.
Each node output is then used to predict the sentence label individually using

20Note that as shown in the source code, the output vectors n1 and n2 are normalized indepen-
dently.

21Note that while the paper suggests a linear activation function for reconstruction in Equation 3,
the code shows that tanh is being used for reconstruction as well.

150



7.2 Semi-Supervised Recursive Autoencoders

a softmax layer
c = f (cl)(r) = softmax(rW(cl) + b(cl)), (7.2)

where W(cl) is the classification weight matrix, b(cl) the classification bias vector,
and r the representation of a node. c is the prediction, a probability distribution
over all possible classes. The error function E(cl) on this classification task is cross-
entropy.
There is a trade-off between two objectives that are minimized: the reconstruc-

tion error E(rec) that specifies how well the resulting node represents the two chil-
dren, and the classification error E(cl) that measures how well the correct label of
the sentence can be predicted from the information at the node. The two objectives
are interpolated linearly with a coefficient α. Note that the embedding matrix L
is optimized with both objectives as well, so the basic word representations can
also be changed depending on their contribution to the supervised classification
output.
The derivatives of the model are calculated with backpropagation through struc-

ture (Goller and Küchler, 1996). For batch optimization, arithmetic means of the
errors Ē(rec) and Ē(cl) and the corresponding gradients are calculated over all nodes
and all examples. Locally optimal weights are then found numerically through op-
timization with L-BFGS (Nocedal, 1980).
The way the model is applied to predict classes for unseen data differs from way

used in training. Although a (node) classifier has been trained before, Socher et al.
(2011) first perform a “feature extraction” step and then train a sentence classifier.
In contrast to RAE training where the errors of the individual node predictions
are averaged, they first calculate the arithmetic mean of all node features to get a
single feature for the tree. Let n1, . . . ,nk be the features of the k nodes in a tree.
Feature extraction returns

n̄ =
∑

i ni

k

as the combined vector representation of the tree. In the original implementation,
the overall representation used for classification is the concatenation of the mean
representation and the vector at the top node of the tree, ntop:

n = [n̄; ntop]
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We found that using the top feature did not improve the results significantly, so
we will leave this feature out in our experiments. Finally, a single-layer softmax
neural network is trained on this representation on the training data:

f (cl2)(n) = softmax(nW(cl2) + b(cl2)) (7.3)

The model is of the same type as the softmax model used during training, but
the input representations are different – node averages instead of individual nodes.
Taking the mean of all nodes is a pooling operation. Similar operations have been
applied successfully in NLP previously, for example by Collobert et al. (2011)
who calculate the maximum over the dimensions of their representation vectors.
In preliminary experiments, we found that replacing the mean operation by a
maximum operation is a possible alternative but hurts the results slightly.
The RAE has several hyperparameters that need to be set. First, the interpo-

lation weight of reconstruction and classification error α. Second, the penalty of
higher-level node errors versus leaf errors β. In addition, the weight matrices of
each autoencoder layer and the softmax classifier are regularized with the L2 norm,
giving rise to the regularization parameters σ(enc), σ(rec), and σ(cl).

7.3 Methods for Automatic Structural
Simplification

In a complex model like the RAE it is difficult to see which parts are responsible for
the results it achieves. In order to analyze the contributions of the automatically
generated structures, we try to simplify them automatically. We will measure the
performance of each model by evaluating it on a task. The result will then show
whether the omission of the structure has an influence. We introduce four ways to
structurally simplify RAE trees.

Tree Level Cuts

Our approach aims at determining the influence of higher level nodes in the tree.
One straightforward operation that achieves this is a level cut where we remove
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(a) Tree level cuts (b) Subtree selection

(c) Window selection (d) Random embeddings

Figure 7.2: Four methods for RAE simplification. Square nodes are random em-
beddings, first circled layers are embeddings. Green color indicates se-
lection, color indicates omission.

nodes above a certain level.
We count levels starting at the leaves, the basic units for the RAE. All terminal

nodes t are defined to have level `(t) = 1, and each non-terminal n with children
〈c1, c2〉 has the level `(n) = max(`(c1), `(c2)) + 1. We implement level cuts by
first computing the full tree and then pruning away all nodes that have a level
`n > `max. This process is sketched in Figure 7.2a which shows a cut at `max = 2.

Subtree Selection

Another approach to simplification follows from the idea that not every word
is important for sentiment classification, but rather that there is a region in the
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sentence, centered around a clue, that is sufficient to recognize sentiment (Tu et al.,
2012). A good example is the tree in Figure 7.3b. In order to predict the correct
sentiment of the sentence, it is sufficient to analyze the second clause (“it never
took off and always seemed static”). This way of simplification is orthogonal to
level cuts. Level cuts reduce the amount of structure induced by the autoencoder
but keep the complete input. Subtree selection reduces the input, but it makes use
of a well-defined subtree instead of the full representation.
In order to select a region, we greedily select a central word (indicated in green

in Figure 7.2b): We apply the softmax prediction function of the autoencoder
(Equation 7.2) to each word in the sequence and pick the one with the lowest E(cl)

as the central word. For training examples, we compute the error for the gold class.
For testing examples, we compute the score over all classes and select the word
with the overall minimal error.
Starting from the central node, we traverse the tree towards the top node and

select the largest subtree produced by the RAE whose top node n has a level of
`n ≤ `max (e.g., `max = 3 in Figure 7.2b).

Window Selection

The window approach is based on a similar motivation. Here, we again identify a
central word as described above and take the representations of all words within
a window of size w to either side as input to the classifier. All other words are
ignored. We include the central word in the count. For example, w = 3 means that
we take the two words to the left and to the right of the central word and drop
everything else; and w = 1 only uses the central word and no context. Figure 7.2c
shows an example for w = 2. In this approach, only the leaves (i.e., the random
initializations plus the embeddings) of the trees are used. The rest of the tree is
ignored.

Random Embeddings

To analyze the role of the learned embeddings, we also conduct an experiment
where we train an RAE in the standard setup but do not add the embeddings
during feature extraction. This means that Equation 7.1 simplifies to xw = rw.
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This is illustrated in Figure 7.2d. This experiment will show (i) whether sufficient
information can be encoded in the higher-level nodes of the tree to make useful
predictions, and (ii) whether the RAE is robust to the loss of information.

7.4 Experiments

Error analysis proves to be difficult for automatically generated representations.
In general, the dimensions produced by autoencoding in NLP applications cannot
be interpreted easily. Therefore, we resort to empirical evaluation in the context
of sentiment analysis.
The following experiments are designed to analyze the learned word and phrase

representations, particularly with respect to the compositional effects of the model.
We will conduct two types of experiments that will shed light on the composition-
ality of the RAE model. First, we let human annotators analyze the tree structures
manually. Second, we run classification experiments with the automatic structural
simplification methods introduced above.

7.4.1 Experimental Setup

In order to reproduce the original setup as closely as possible, we address the same
task with dataset as (Socher et al., 2011): sentiment classification for the sentence
polarity dataset by Pang and Lee (2005) which is described in Appendix A.2.1.
It contains 10,662 sentences from movie reviews that were manually labeled as
expressing positive or negative sentiment towards the movie.
We use the RAE implementation provided at http://www.socher.org. We set

the hidden layer dimensionality to D = 50, the default setup in the code. All
experiments are carried out on the predefined 90:10 training-testing split. We use
accuracy as the evaluation measure as the class distribution in the dataset is
balanced. We set the model parameters described in Section 7.2 as suggested by
the authors.
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(a) Sentence 1: not a bad journey at all .

Figure 7.3: Example RAE trees (cont. on the following pages). Leaf nodes contain
the word that is encoded by them. All nodes contain the sentiment
predicted using softmax, 1 being positive and 0 negative sentiment. We
follow (Socher et al., 2011) and replace words for which no embedding
is available by “*UNKNOWN*”.

7.4.2 Human Evaluation

Linguists are used to tree structures representing syntactic properties of language.
Naturally, it is tempting to adapt this view to RAE tree structures. In this sec-
tion, we will provide manual analyses of their syntactic and semantic coherence
conducted by human annotators.

Syntactic Coherence

First, we will show that there is a large divergence between traditional syntactic
trees as most theories of grammar would posit and the trees produced by RAE. We
analyze two phenomena: coordinating conjunction and negation. We selected these
particular phenomena as they are considered particularly important for sentiment
analysis. Negation plays a key role as a polarity reverser. Conjunction is thought
to be mostly sentiment-preserving.
Our annotation task is set up as follows. We randomly select 10 example sen-

tences for each grammatical phenomenon, conjunction and negation, from the
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dataset. Candidates for random selection were identified through keyword search
(not for negation, and and or for conjunction). We compute a tree representation
for each sentence with the trained RAE. We then ask two human annotators to
judge whether the parse of each examples was correct with respect to the phe-
nomenon.
The human judges found unanimously that out of the 20 examples, none were

correctly analyzed by the RAE. This result shows that it is unlikely that the RAE
captures these syntactic structures. Of course, it may be argued that these phe-
nomena could be particularly difficult to analyze automatically. While conjunctions
are notoriously difficult even for supervised syntactic analysis models, negations
are considered less problematic (McDonald, 2006; Collins, 1999). We also recog-
nize that the RAE trained on sentiment data does not have the objective to learn
syntactic structures, but to classify sentences. It may not be necessary to get the
syntactic structure right in order to achieve this goal. However, we find that this
result is important to understand the behavior of the model.

Error Analysis The example trees in Figure 7.3 illustrate these results. We
will first take a look at examples for negation. In sentence 7.3a, the autoencoder
used not at a low level in the tree, constituting a modification of a. Their joint
representation is itself joined with bad. The correct analysis would use not as a
modifier to a joint structure a bad journey where bad and journey are combined
directly. Sentences 7.3b and 7.2c represent cases where the autoencoder wrongly
introduced long distances between the negating and the negated phrase (never to
took off and not to describe).
We now turn to conjunction. In sentence 7.3b, we find an instance of a coordina-

tion of two clauses. The clause always seemed static should receive a joint analysis
and should then be modified by and. Instead, and is put in a subtree containing
two words from each of the coordinated clauses.
One explanation for the resulting structures could be the greedy construction

process. As RAEs are trained by joining the least error-prone combinations first,
pairings of frequent words are common. For example, in sentence 7.3a, frequent
words are joined first (not to a, and all to .). The most uncommon words are added
last (bad and journey). In around 75% of all occurrences, periods are adjoined
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directly to their neighbors, which is not desirable from a syntactic or semantic
point of view (instead, punctuation is commonly attached to the top node).

Semantic Coherence

We will now analyze the behavior of RAEs from a semantic point of view. As we
have seen earlier, sentiment analysis, particularly in a sparse data situation such
as a sentence classification task, is thought to be able to benefit from a model
capable of semantic composition.
In the clue model, sentiment is thought to be carried by a set of polarity-

indicating expressions, for example adjectives like great or awful in combination
with their close syntactic environment. In the polarity shifter model, the sentiment
of a clue can then be modified by applying an intensifying or reversing construc-
tion. A simple check for whether RAEs are able to learn compositionality is to
check the produced trees for instances of these modifiers – shifters and reversers –
and see whether they behave as expected.
Shifters such as very or little are difficult to analyze as there is no straightfor-

wardly quantifiable result that one would expect to occur in a binary classification
setup. We would simply be unable to see a change in the label if the polarity is not
changed. Therefore, we consider only reversers in this analysis. There is no consen-
sus as to which words constitute the set of reversers. Often, reversing properties
of a word are context-dependent (Polanyi and Zaenen, 2006; Kessler and Schütze,
2012). For this reason, we picked a small set of reversers with general applicability:
not/n’t, no, and never.
To check whether reversal occurs in a tree, we first calculate the classification

decision by evaluating the softmax decision function at each node. We search the
trees for occurrences of any reverser and check whether its sibling and its parent
node are assigned opposite classes, which should be the case if the reverser was
correctly applied. We find that reversal happens in only around 31% of all reverser
occurrences.
We already noted that reversing is context-dependent, so we need human input

to verify this result. From all trees containing reversers, we randomly selected 3
trees in which the reverser reverses sentiment and 7 trees in which the reverser
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does not reverse sentiment (the goal being to mimic the 31% rate of reversals). We
asked two human judges to check the examples for correct reversal. The judges
unanimously found that only 3 out of 10 candidates are behaving correctly, con-
firming that reversal is very likely not a property captured correctly by the RAE
model.

Error Analysis We again turn to Figure 7.3 for examples of errors. In sen-
tence 7.3a, not does not reverse the polarity of a – which is correct reverser behav-
ior. However, modifying bad with the resulting structure still does not reverse. The
polarity of the whole sentence seems to be determined by the polarity of journey
which gets reversed at the top node, leading to misclassification. In sentence 7.3b,
never should reverse took off, yielding a negative sentiment overall. However at
the point where the two phrases are joined, the topmost node depicted, positive
sentiment is predicted.
We conclude that reverser behavior is not modeled well by the RAE. We reiterate

that the effect of reversers is quite complex and in many contexts – e.g., “not
awesome, but pretty good” – they do not simply reverse sentiment. However, the
results indicate that the syntactic and semantic role of reversers is not modeled
well in those cases where they act as simple reversers.

7.4.3 Automatic Structural Simplification

In the previous experiments, we showed that the structures generated by RAEs
cannot be interpreted easily in terms of traditional linguistic insight from syntax
and semantics. As mentioned above, this does not imply that the structures do
not help in the classification task.22 We will now turn to the empirical evaluation
of the contributions of these structures in a sentence polarity prediction task. We
apply the four simplification methods we introduced above.

Level Cuts during Feature Extraction

In the first experiment, we train the RAE to produce full trees and apply level
cuts only in the feature extraction stage. We report accuracies in Table 7.1, column
22A well-known insight which is captured by a popular quote: “Airplanes don’t flap their wings.”
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`max/w extract
train+

extract
rand-
embed subtree window

1 77.30 77.67 58.07 25.33 25.33
2 75.98 68.95 62.89 25.33 30.96
3 75.61 54.60 66.98 26.17 73.55
5 74.86 52.60 69.14 27.67 74.20
7 76.08 54.04 72.20 55.25 74.86
10 76.17 62.02 74.11 71.58 75.61
15 76.75 63.23 77.39 77.02 77.20
20 76.75 63.60 77.49 76.74 77.20
∞ 76.75 77.24 77.49 77.20 77.21

Table 7.1: Accuracy using different structure simplification techniques

extract, for different values of `max. For reference, the trees produced by the RAE
on the whole dataset have a mean height of 10 and a maximum height of 23.
First note that the best accuracy is achieved by cutting directly above the

leaves, i.e. using no trees at all. Increasing the maximum level lowers accuracy
significantly; when using `max = 5, for example, we lose over 2 percentage points
compared to `max = 0. Only when `max is increased further, accuracy recovers.
This result suggests that the leaf representations – the embeddings – carry great
weight in classification. It also suggests that the nodes close to the top of the tree
contribute some stability.
Of course, one could argue that the level nodes are still being trained as a part

of a larger structure and that this structure has a positive effect on the resulting
representations. The following experiments will however show that this is not the
case.

Level Cuts during Training

One could argue that using a fully-trained RAE to extract pruned trees is unfair
since the model is still able to use the full information induced during training. In
addition, most of the computation time is spent during RAE training as learning
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such complex structures is very costly. In the following experiment, we perform
level cuts during both training and feature extraction, using the same maximum
level `max.
The column train+extract in Table 7.1 shows the results for this experiment.

First, we observe that we get a well-performing model for `max = 1 in both RAE
training and feature extraction. This result shows that the embeddings of the RAE
are not affected by the structure since at this point, no structure is generated at all.
Next, we can see that accuracy drops quickly as we introduce more levels and only
recovers after raising the threshold to ∞, using full trees. A possible explanation
for this phenomenon is that when enforcing low levels, there are also fewer training
instances for the RAE and thus the resulting models are worse. Another possibility
is that when full trees are constructed, all applications of the RAE depend on
each other since errors are propagated through the structure. Thus, inconsistencies
should be optimized away. However, there are fewer inconsistencies in lower-level
cuts since the resulting subtrees are likely to be disconnected. This is further
supported by the fact that mid-level nodes hurt the result even in the case where
the trees are fully trained, which we demonstrated above.
These experiments show again that the best accuracy is achieved by a model

that does not use the tree structures. Our conclusion from this evidence is that
the strength of the RAE lies in the embeddings, not in the induced tree structure.

Random Embeddings

In order to demonstrate the significance of the embeddings, we again train full
RAE trees but use the random representations as leaves for constructing trees
during feature extraction. The results of this run are shown in Table 7.1, column
rand-embed.
Naturally, using only the random representations (at level `max = 1) we achieve

low accuracy. Note that the results are still over chance level, an effect which may
be caused by the randomly generated representations being equivalent to low-
dimensional random indexing (Kanerva et al., 2000). Nevertheless, using higher-
level tree representations successively increases accuracy to a similar level as ob-
served in the previous experiment.
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Our interpretation of this experiment is that while the trees seem to be able
to create useful representations of the underlying words, these representations
are redundant with respect to the embeddings. Combining both does not lead
to improved classification accuracy. This property may however be helpful in cases
where noisy input representations are expected.

Subtree Selection

We now turn to subtree selection. As stated previously, recent results suggest that
sentiment mostly uses locally compositional structures, so it might be sufficient to
use part of a sentence to classify the data. We perform subtree selection on trees
from the fully trained RAE model.
Table 7.1, column subtree shows the results for this experiment. We observe

low accuracies for low `max. Only when using large contexts (recall that the max-
imum number of levels is around 23), the results become competitive. From this
experiment, it is not clear whether the height of the trees or the size of the contexts
– which grows with the height – is responsible for the gain. We will investigate
this issue in the following experiment.
Error analysis shows that there are cases where an unsuitable central word is

selected. For example, in sentence 7.3b, the selected central word is might, which
occurs in the first part of the sentence that should actually be disregarded. In
some cases, overfitting of the classifier will select a word that would commonly be
considered to be non-polar, e.g., and, which is selected in sentence 7.2c.
A list of the most confidently classified words by the softmax node classifier is

shown in Table 7.2. We find that this list of features mirrors in part the ones found
early by active learning in Chapter 4. Overfitting still seems to be a problem (e.g.,
jokes), although some of the possible candidates for overfitting could in fact be
considered clues (movies made for cinema are usually of superior quality compared
to movies for video or tv).
Intuitively, there should be cases where sentiment is reversed, and thus the

central word should have the opposite polarity of the sentence. However, we found
that selecting based on the gold label during training improves the results slightly
(probably because these cases are in the majority).
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feature sigmoid(n)
moving 0.9970
culture 0.9956
powerful 0.9954
enjoyable 0.9945
touching 0.9922
portrait 0.9920
warm 0.9918
solid 0.9916
cinema 0.9913
engrossing 0.9906
provides 0.9899
captures 0.9878
thoughtful 0.9876
wonderful 0.9875
rare 0.9849
beauty 0.9845
inventive 0.9831
heart 0.9802
journey 0.9802
human 0.9793
always 0.9788
heartwarming 0.9763
riveting 0.9742
lively 0.9738
masterpiece 0.9717

feature sigmoid(n)
bad 0
dull 0
boring 0.0019
fails 0.0047
worst 0.0066
jokes 0.0067
flat 0.0077
too 0.0102
problem 0.0108
mediocre 0.0116
title 0.0121
tv 0.0123
stupid 0.0130
routine 0.0132
lack 0.0137
badly 0.0152
mess 0.0152
video 0.0153
neither 0.0160
waste 0.0188
supposed 0.0202
generic 0.0205
pointless 0.0207
loud 0.0216
silly 0.0228

Table 7.2: 25 most positive and most negative words determined by their softmax
outputs (shown: positive probability) of the fully-trained RAE
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Window Selection

As a last experiment, we concentrate on the word embeddings as they seem to
be sufficient to achieve high accuracies on this task. This will also show whether
subtrees or embedded words were responsible for the improvements with increasing
tree height in the previous section.
We vary the window size w starting from 1, which is only the word itself, to ∞

(the maximum number of words any sentence has). The data has a mean sentence
length of around 21 words and a maximum sentence length of 63 words.
Results are shown in Table 7.1, column window. While a small window size (1

or 2) produces bad results. This might be an effect of choosing the wrong central
word, an issue we already examined more closely in the subtree selection case.
Increasing window size, accuracy rises rapidly starting at w = 3. This means that
we lose less than 4 percentage points compared to the best result when using
only 5 words from each sentence. Taking a window of 15 words (in each direction,
including the center, i.e., a total of 31 words) is necessary to match the best
classifier. There are around 16% of the data that have more than 31 words, so it
seems that for sentences of that length, there is sufficient material in the window
that the model can exploit.

7.4.4 Discussion

We presented multiple experiments in which we simplified the RAE tree struc-
tures. All of these experiments point towards the embedding having the strongest
influence on the end result. If embeddings are not used, accuracy drops almost
to chance level. Using full trees and no embeddings seem to have the same effect
as using only embeddings. However, using both representations together does not
yield any improvement. This suggests that there is a large overlap between what
the trees model and what the embeddings model – pointing towards a feature
selection effect. Further, we saw evidence that the RAE trees produce robust rep-
resentations. Even when using random inputs, the trees are able to extract useful
information.
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7.5 Summary

In this chapter, we presented linguistically-oriented analyses of a compositional
sentiment model, the Semi-Supervised Recursive Autoencoder. We conducted two
different experiments concerning the structures learned and generated by RAEs.
In a human annotation experiment, we showed that there is no simple way to

interpret the structures produced by RAEs in terms of traditional linguistic theo-
ries of syntax and semantics. We then automatically reduced the tree structure in
different ways and showed that for sentence-level sentiment analysis, the embed-
ded words were sufficient to achieve state-of-the-art accuracy. Our experiments on
window selection suggest that a structure as simple as a well-chosen subset of the
words in a sentence produces a good model.
Overall, we conclude that structural simplifications are feasible for sentence-

level sentiment prediction. Unfortunately, this result is disappointing regarding
the compositionality of the model. It confirms the observations we also made in
previous experiments in this thesis: We can achieve high sentiment classification
performance when resorting to an instance of the clue model: averaging word
representations.
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8 Conclusions and Future Work

8.1 Contributions

In this thesis, we made several contributions to sentiment analysis. We will discuss
them individually for each approach and then give an overall conclusion.

Redundancy of Clues In Chapter 4, we showed that active learning of doc-
ument polarity in a noisy environment can be accomplished successfully. In our
experiments using Amazon Mechanical Turk, active learning significantly outper-
formed a random selection baseline. Active learning leads to an overall cost reduc-
tion while achieving the same classification result. We found that the quality of
annotations can be ensured by simple counter-spam measures. We analyzed the
classifiers during the active learning process to shed some light on how features
are learned. We showed that active learning can identify interesting features faster,
reducing redundancies in the data.
In Chapter 5, we presented a novel approach to sentiment classification that al-

lows for a seamless integration of word and document knowledge in a joint model.
This approach addresses redundancy by directly labeling clues instead of docu-
ments. We proposed a unified graph representation of words and documents with
a subsequent label propagation step through random walks. This model is efficient,
using well-known eigenvector calculations. We showed that polarity induction with
Personalized PageRank performs significantly better than the baseline using aver-
age polarity. We further bootstrap a supervised statistical classifier to fully exploit
the word feature space from which we gain additional improvements. In these ex-
periments, we identified the insensitivity of clues to topical contexts as one of the
major drawbacks of the clue model.

Contextuality of Clues In Chapter 6, we addressed the problem of topical
context through sentiment relevance, a novel concept for identifying useful content
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for sentiment analysis. We created a new dataset that has sentiment relevance la-
bels on the sentence level. We then presented two approaches to semi-supervised
sentiment classification. The first approach, distant supervision, uses a database
with domain information. The second, transfer learning, makes use of a conceptu-
ally related but different dataset of a larger size. We found that both approaches
benefit from using features that offer some way of semantic generalization (lexical
taxonomies and domain-specific named entity types). Both approaches apply a
minimum cut graph model to introduce a sequence constraint that compensates
for low-confidence misclassifications and class imbalance effects.
Chapter 7 presented research on the compositionality of sentiment. While com-

positional sentiment models are emerging, linguistic analysis of such models is
lacking. We present experiments with the Semi-Supervised Recursive Autoencoder
(RAE), a compositional neural network model that jointly learns to represent lan-
guage and to make predictions. We show that the structures produced by the mod-
els are difficult to interpret linguistically for humans. We found that the structures
can also be simplified greatly without any loss of accuracy, and that the automat-
ically learned vector representations of words carry most of the weight. This leads
to a more efficient and less complicated model.

General Remarks The first major underlying theme of our work was the role of
clues and their interaction in sentiment prediction. We showed both the strengths
and the weaknesses of the clue model. It performs well even in sparse data situ-
ations, but it can easily be distracted through topic effects. Therefore, it is both
difficult to improve and difficult to beat. The clue model lends itself to approaches
where clues and larger linguistic units are mixed, like a graph-based approach.
Going beyond clues by modeling compositionality is a desired goal to that end.
However, achieving composition without extensive supervision is not an easy task.
The second theme was efficiency. We showed that sentiment classification can

be addressed with simple and efficient models, and that annotation cost efficiency
can be improved by clever example selection. In addition, we were able to simplify
an established neural network model for sentiment classification and showed that
only some of its substructures are needed for high performance.
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8.2 Future Work

Active Learning In Chapter 4, we applied only the most basic active learning
techniques. It has however been shown (Settles, 2011) that active learning of fea-
ture labels can improve annotation speeds drastically. We could adapt this idea to
different classifier types, such as joint models of words and documents as the one
presented in Chapter 5, or even the compositional model in Chapter 7. The latter
approach would be very appealing as the annotations of structural data for full
supervision is particularly costly.

Feature Knowledge The experiments in Chapter 5, focused on in-domain clas-
sification in a single language. The graph framework is easily extensible to multiple
languages. While multilingual sentiment classification has been addressed in the
past, no work on multilingual feature knowledge integration exists. Domain adap-
tation is a challenge for this approach as words can have different polarities in
different contexts. A possible approach to this problem would be unsupervised
node splitting which has been applied successfully in syntactic parsing (Petrov
and Klein, 2007), where multiple latent nodes could represent a word’s polarity in
different contexts.

Sentiment Relevance So far, we have explored sentiment relevance in a rel-
atively limited scope. The experiments presented in Chapter 6 use movie review
data. While this makes for a simple setup, there are phenomena that do not occur
in this text genre. For example, one type of particularly non-relevant content are
complaints about shipping and handling in product reviews. For this reason, sen-
timent relevance should be explored in the future with a more general perspective.
This includes covering different domains which may give rise to a need for domain
adaptation.
Our sentiment relevance classification approaches are based on two different

semi-supervised learning approaches. The first obvious improvement is a combina-
tion of both approaches which might lead to a cumulative improvement. Further
research could also explore different types of feature generalization. Currently, we
perform generalization with external hand-crafted databases. This step could be
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augmented by or replaced with an automatic representation learning approach, for
example using state-of-the-art neural network models.

Compositional Sentiment Analysis In Chapter 7, we analyzed the Recursive
Autoencoder for compositionality. This model was among the first to model sen-
timent through automatically learned task-specific hierarchical structures. In the
meantime, various improvements have been suggested. As such research is often
motivated from a machine learning perspective, it would be valuable to conduct
similar linguistic analyses for the successors of the RAE.

General Remarks While we found that the clue model can be improved modu-
larly through the approaches we proposed, a compositional approach is ultimately
desired. However, we also showed that modeling compositionality in sentiment
analysis is still a challenging task. Although various models have been proposed
as alternatives to the ones presented in this thesis (e.g., Socher et al., 2013), these
require a vast amount of supervision. Such approaches do not yet address com-
plications like domain and topic changes. Linguistic phenomena such as irony,
metaphors, and idiomatic expressions are further challenges. After all, sentiment
is grounded in the mind of humans who, to express it, can employ all means of
language.
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A.1 Tools

A.1.1 Stanford Classifier

The Stanford Classifier (Manning and Klein, 2003) implements a maximum en-
tropy model (cf. Section 2.4.1). The model weights are learned using a Quasi-
Newton optimizer. The input and output format for the classifier is one example
per line. The tool is tailored for NLP, so it has some linguistic feature extraction
capabilities, supporting string manipulation such as lowercasing as well as feature
extraction through simple tokenization and n-gram extraction. Thus, it is possible
to input raw texts. These and other options can be specified in a configuration file.
Unless specified otherwise, we use the following extraction settings:

1.useSplitWords=true
1.splitWordsRegexp=\\s
useClassFeature=true

In this setup, we apply unigram extraction to the first column in the input file.
Further, we use the class feature to model class distributions. We use the standard
MaxEnt hyperparameter settings.
The ColumnDataClassifer class offers a command line tool for standalone use.

The Stanford Classifier is implemented in Java and is freely available.23

A.1.2 HIPR

HIPR is a tool for finding the minimum cut of a graph. HIPR implements the push-
relabel method of Cherkassky and Goldberg (1995). HIPR uses the DIMACS graph

23http://nlp.stanford.edu/software/classifier.shtml
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format24 for inputs and outputs. The tool is implemented in C and is available
online.25

A.1.3 Mate Tagger and Parser

The Mate parser or Bohnet parser (Bohnet, 2010) is a graph-based dependency
parser. The parser expects tokenized and sentence segmented inputs. It returns
dependency trees in the CoNLL 2012 format.26 It is available for multiple languages
and comes with a part-of-speech tagger that has been cross-trained with the parsing
model. The underlying statistical model of both the tagger and the parser is a
perceptron trained with MIRA (Crammer et al., 2006). The tool is implemented in
Java and freely available.27 For our experiments, we used the development version
available at the IMS.

A.2 Data

A.2.1 Text Corpora

Movie Corpus

The movie corpus (Pang et al., 2002) is a collection of 2000 movie reviews from the
Internet Movie Database (IMDb). The corpus consists of 1000 positive and 1000
negative reviews. The data was collected at a time when IMDb had no consistent
rating system, and so various star- and grade based systems had to be consolidated.
The corpus is supplied by the authors in a pre-processed form, in particular,

tokenization and global lowercasing has been performed. Alternatively, the raw
HTML files are supplied from which the full texts can be extracted. We opted for
the latter form of the data as many NLP systems such as part-of-speech taggers,
syntactic parsers, and named entity recognizers rely on capitalization features and
some have special tokenization requirements. We extract the text from the HTML
files with the goal of reproducing the structure of the published data as closely as
24http://dimacs.rutgers.edu/Challenges/
25http://www.igsystems.com/hipr/
26http://conll.cemantix.org/2012/data.html
27http://code.google.com/p/mate-tools/
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labeled unlabeled
Domain # docs # features # docs # features
books 2,000 481,173 4,465 1,022,277
DVD 2,000 470,995 3,586 847,556
electronics 2,000 309,629 5,681 868,336
kitchen 2,000 265,469 5,945 785,861

Table A.1: MDS statistics. Counts of documents and features in the labeled and
unlabeled part of the dataset.

possible. We apply the same sentence splitting tool, MXTERMINATOR (Reynar
and Ratnaparkhi, 1997).28

Sentence Polarity Dataset

Pang and Lee (2005) introduced the sentence polarity dataset. It consists of 10,662
sentences from movie reviews, each sentence being manually labeled as positive or
negative. The dataset is balanced, consisting of 5,331 examples for each class. The
data was collected automatically from Rotten Tomatoes,29 a film review aggre-
gation website that collects reviews from online sources such as newspapers and
automatically calculates an overall score and verdict (rotten for negative, fresh for
positive). For each source, Rotten Tomatoes lists a quote snippet that summarizes
the review. The negative part of the dataset contains random snippets from rotten
reviews, the positive part from fresh reviews.

Multi-Domain Sentiment Dataset

The Multi-Domain Sentiment Dataset Blitzer et al. (2007) contains product re-
views from amazon.com. The dataset covers four different domains: books, DVDs,
electronics, and kitchen. For each domain, a labeled set of 2000 reviews (1000 pos-
itive and 1000 negative) and an unlabeled set of varying size (between 3500 and
6000 reviews) is provided (Table A.1).
28ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz
29http://www.rottentomatoes.com/
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The publicly available version of the dataset is the result of heavy pre-processing
as the data provided consists only of extracted features (unigram and bigram).
Thus, we went back to the HTML versions as well and extracted the full text of
the reviews.
The dataset was originally used for domain adaptation. However, the different

domains provide interesting challenges themselves even in an in-domain setting,
such as heavy variation in average document length (comparing for example books
and kitchen).

Subjectivity Dataset

The subjectivity dataset (P&L, Pang and Lee, 2004) contains 10,000 sentences or
snippets that were automatically gathered to reflect the authors’ concept of sub-
jectivity. The subjective data (quote) consists of summarizing quote snippets from
Rotten Tomatoes. These quotes are usually highly subjective as they summarize
the opinion expressed in a single review. There is a high overlap between the quote
part and the sentence polarity dataset described above. Objective sentences (plot)
are taken from IMDb plot summaries. The data contains a mixture of subjective
and objective material. This issue is further discussed in Chapter 6. The authors
supply 5,000 examples for each class.
The main version of the dataset has been preprocessed with the same techniques

as the previous datasets by the same authors, however the raw HTML files for this
dataset are incomplete. For this reason, we were unable to recover an unprocessed
version.

A.2.2 Lexical Resources

Wilson Subjectivity and Polarity Clues

The subjectivity clues (Wilson et al., 2005b) are a lexical resource providing both
subjectivity and polarity for English words and phrases. Each entry consists of a
word (word1, which may be a stemmed form, indicated by stemmed1), the part of
speech for each word (pos1), and the degree of subjectivity (type) and polarity of
the entry (priorpolarity). The following listing contains some example entries.
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type=strongsubj len=1 word1=sad pos1=adj stemmed1=n priorpolarity=negative
type=strongsubj len=1 word1=sad pos1=anypos stemmed1=y priorpolarity=negative
type=strongsubj len=1 word1=sadden pos1=verb stemmed1=y priorpolarity=negative
type=strongsubj len=1 word1=sadly pos1=anypos stemmed1=n priorpolarity=negative
type=strongsubj len=1 word1=sadness pos1=noun stemmed1=n priorpolarity=negative
type=weaksubj len=1 word1=safe pos1=adj stemmed1=n priorpolarity=positive

The way the lexicon was created is somewhat opaque as the authors state that
it was “collected from a number of resources”, including both manually and auto-
matically labeled resources. The authors claim that a majority of the clues were
collected using the extraction pattern technique from (Riloff and Wiebe, 2003).
However, this technique is aimed at subjectivity detection, thus the origin of the
polarity labels are still unclear

WordNet

WordNet (Miller, 1995) is a lexical semantic resource for English. Multiple words
can form a synset, a set of words that may be used synonymously within a word
sense. For example, the words ignition, firing, lighting, kindling, and inflamma-
tion form the synset with the ID 00378479, which is described by the gloss the
act of setting something on fire. Additionally, hyponymy relations are defined be-
tween synsets, leading to a taxonomy structure. These relations may be used for
generalization over objects (e.g., both bread and cheese are a type of food). We
use WordNet 3.0 in this thesis. This version lists 117,798 nouns in 82,115 synsets.
WordNet also contains words of other part-of-speech, such as adjectives and verbs,
however they have much lower coverage and their taxonomies are relatively flat.
Although WordNet contains more verbs than VerbNet, we cannot use it for our
purposes as we require a pre-defined set of base classes. CoreLex, which we describe
next, defines such classes for WordNet nouns but not for verbs.

CoreLex

CoreLex (Buitelaar, 1998) defines base classes (basic types) with respect to poly-
semy on WordNet. Each basic type is itself a node in WordNet. The author then
defines CoreLex classes which are combinations of these types. In total, there are
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type synset id polysemous class

abs 00012670 abstraction
act 00016649 act, human_action, human_activity
agt 00004473 causal_agent, cause, causal_agency
anm 00008030 animal, animate_being, beast, brute, creature, fauna
art 00011607 artifact, artefact
atr 00017586 attribute
cel 00003711 cell
chm 08907331 compound, chemical_compound
chm 08805286 chemical_element, element
com 00018599 communication
con 06465491 consequence, effect, outcome, result, upshot
ent 00002403 entity
evt 00016459 event
fod 00011263 food, nutrient
frm 00014558 shape, form
grb 05115837 biological_group
grp 00017008 group, grouping
grs 05119847 social_group
grs 05116476 people
hum 00004865 person, individual, someone, mortal, human, soul
lfr 00002728 life_form, organism, being, living_thing
lme 08322690 linear_measure, long_measure
loc 00014314 location
log 05450515 region
mea 00018966 measure, quantity, amount, quantum
mic 00740781 microorganism
nat 00009919 natural_object
nat 05715416 body_of_water, water
nat 05720524 land, dry_land, earth, ground, solid_ground, terra_firma
plt 00008894 plant, flora, plant_life
phm 00019295 phenomenon
pho 00009469 object, inanimate_object, physical_object
pos 00017394 possession
pro 08239006 process
prt 05650477 part, piece
psy 00012517 psychological_feature
qud 08310215 definite_quantity
qui 08310433 indefinite_quantity
rel 00017862 relation
spc 00015245 space
sta 00015437 state
sub 00010368 substance, matter
tme 09065837 time_period, period, period_of_time, amount_of_time
tme 09092294 time_unit, unit_of_time
tme 00014882 time

Table A.2: CoreLex basic types
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class basic types

agh agt hum
pas act atr pos
pas atr pos
pas atr pos rel
pas atr pos sta
gsl grs log
lor log rel
ara act art atr psy
ara art atr
ara art atr psy
ara art atr sta
atp atr psy
atp atr psy sta
hum grp hum
hum grp hum nat
hum grs hum
hum hum
atr atr
atr atr pro
atr atr pro sta
atr atr sta

Table A.3: Selected CoreLex classes
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44 basic types and 371 classes. The list of basic types is shown in Table A.2. The
complete list of base class definitions is too long to reproduce here, so we selected
the ones that are mentioned in the thesis (Table A.3). The complete list can be
found online.30

VerbNet

VerbNet (Kipper et al., 2008) is a semantic lexicon of English verbs. VerbNet
categorizes 5,726 verbs into 273 base classes. Each base class features a set of
thematic roles, selectional restrictions on arguments and frames. We will not list
all base classes here, as we find that the names are self-explanatory compared to
the CoreLex classes. Instead we refer to the online reference.31

A.2.3 Other Datasets

IMDb Cast Database

The IMDb cast database32 contains the complete cast listings of IMDb. We use
the snapshot from 08/19/2011. The database is organized in several parts. The
actors and actresses parts list for each actor/actress the characters they played in
a movie. The file is organized by actor. Each line contains a single role. Character
names are listed in brackets. In case the actor appeared as himself, the entry
is marked accordingly. In addition, some entries contain extra information, for
example Gordy Jr. (10 Years) in the listing below. The following is an excerpt
of the listing for the actor Michael Cera.

Cera, Michael 2010 MTV Movie Awards (2010) (TV) [Himself]
Arrested Development (2012) [George-Michael Bluth]
Comic-Con 2007 Live (2007) (TV) [Himself]
Darling Darling (2005) [Harold] <1>
Exit 9 (2003) (TV) [Charles]
Extreme Movie (2008) [Fred] <4>
Frequency (2000) [Gordy Jr. (10 Years)] <13>

30http://www.cs.brandeis.edu/~paulb/CoreLex/corelex.html
31http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
32http://www.imdb.com/interfaces/
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The director, screenwriter, and composer databases follows a similar structure,
listing the films they participated in for each person. The following listing is taken
from the entry for the director Christopher Nolan.

Nolan, Christopher (I) Batman Begins (2005)
Doodlebug (1997) (as Chris Nolan)
Following (1998)
Inception (2010)
Insomnia (2002/I)
Memento (2000)
The Dark Knight (2008)
The Dark Knight Rises (2012)
The Prestige (2006)

Dict.cc Bilingual Lexicon

The dict.cc dictionary33 is a user-edited online dictionary. We use the German-
English version dated 05/05/2008. In this version, not all entries are tagged with
part of speech. Generally, verbs are untagged, so we heuristically assume that all
entries whose English forms begin with to are verbs. This pattern will however
overgenerate, for example by matching idioms that start with to. Counting the
tags, we get a total of 50,748 adjectives, 230,674 nouns, 11,984 adverbs, 48,634
verbs and a remainder of 75,458 uncategorized entries. The following listing con-
tains some example entries.

abdrehen [z.B. Thermostat] :: to turn down
Abdrehen {n} :: turning
Abdrehen {n} [Bearbeiten] :: lathe machining
ab dreizehn Jahre :: thirteen years of age and over [Br.]
abdriften :: to make leeway
abdriften :: to space out [mentally]
Abdriftkorrektur {f} :: drift correction

33http://www.dict.cc/
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