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Kurzfassung

Auf Grund ihrer vielfältigen Anwendungsmöglichkeiten gewinnen autonome Systeme
zunehmend an Bedeutung. Entsprechend besteht großes Interesse an effizienten Verfahren
für das automatische Planen. Das Planen mit STRIPS-ähnlichen Operatoren ist ein kombi-
natorisches Problem. Die gemischt-ganzzahlige Optimierung kann effektiv zur Lösung von
Problemen dieser Art eingesetzt werden. In dieser Arbeit werden allgemeine, vom konkreten
Anwendungsfall unabhängige Formulierungen gemischt-ganzzahliger linearer Programme für
das temporale Planen nebenläufiger Aktionen und eine Verallgemeinerung des in Graphplan
verwendeten Planungsgraphen vorgestellt. Gemeinsam werden sie zur Bestimmung von Plä-
nen minimaler Dauer angewendet. Dabei darf die Dauer von Aktionen reellwertig sein. Ein
Vergleich mit Temporal Graphplan basierend auf experimentell ermittelten Perfomanzdaten
liefert erfolgversprechende Resultate.
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Abstract

Due to the wide range of applications, the relevance of autonomous systems is growing.
Hence, there is great interest in efficient automated planning methods. Planning of STRIPS-
like operators is a combinatorial problem. Mixed-Integer Programming is a powerful tool
for modeling and solving problems of this type. In this thesis domain-independent Mixed-
Integer Linear Programming formulations for temporal planning of concurrent actions and a
generalization of Graphplan’s planning graph are presented. In combination they are applied
to compute plans, that are optimal with respect to their duration. The method can handle
actions of real-valued duration. A comparison with Temporal Graphplan based on experimental
performance data yields promising results.
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1 Introduction

Planning is an important skill. In this world every higher animal has to plan activities at some
point in its live. Lions have to plan how to catch their prey and monkeys how to reach the
branch of a tree. But in particular human beings have to plan frequently. Whether it is simple
tasks like preparing your next meal or difficult ones such as planning a large construction
project or playing a game of chess against a strong opponent, it is required in many activities.
For this reason scientists realized in the last century that a good understanding of planning is
key to engineering powerful autonomous systems. In particular in the last few decades the
relevance of autonomous systems grew rapidly. The field of application is almost unlimited:
automated production, autonomous driving or spaceflight are just a few application examples.
Consequently the need for sophisticated planning methods was and is huge. Considerable
progress has already been made and different approaches to planning have been developed.
Regarding planning in STRIPS-domains Blum and Furst published a seminal paper on their
method Graphplan in 1995 [BF95]. It had immense influence on subsequent research in
this area. One reason for this is that Graphplan represents a given problem in a very handy
planning graph as an intermediate step. The planning graph encodes the knowledge about the
problem and can be analyzed in order to compute a plan. Compared to former methods the
idea to incorporate the planning graph yielded remarkable speedup. As Graphplan is related
to other planning methods such as planning as satisfiability (also called SATPLAN) [KS92]
and (Mixed-)Integer Programming applied to planning [VBS99] the planning graph can be
incorporated in these approaches as well. While Graphplan incorporates the parallel execution
of actions it is limited to the case in which all actions have unit duration. Therefore Smith and
Weld [SW99] generalized it to the temporal case in which the durations of actions can vary.
Analogously SATPLAN was generalized to the temporal case [ML06]. Regarding mathematical
programming Dimopoulos and Gerevini developed a Mixed-Integer Linear Program (MILP)
for approximate temporal planning [DG02]. That is their method can deal with temporal
problems but it does not guarantee that an optimal plan is found with respect to its duration.
In this thesis we apply Mixed-Integer Linear Programming to compute optimal plans for tem-
poral planning problems. That is the generated plans are of minimal duration. The durations
of actions may even be real-valued. For this purpose we introduce the reader to Graphplan
and the Branch-and-Bound method which is the most common solution method applied to
MILPs. After that we describe the temporal planning scenario we consider, generalize the
planning graph and present three different formulations. Finally we compare the formulations
presented, to each other and Temporal Graphplan experimentally. The author’s contribution
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1 Introduction

are in particular the generalization of the planning graph in this form and its algorithmic
construction, the three MILP-formulations, and the experimental evaluation.

Outline

This thesis is structured in the following way:

Chapter 2 – Graphplan: In this chapter the planning algorithm Graphplan is introduced. In
particular the STRIPS-like domain Graphplan can deal with, the planning graph it uses,
the two phases graph expansion and solution extraction as well as a termination test are
described.

Chapter 3 – Planning via Mixed-Integer Linear Programming: In this chapter the basics of
planning via Mixed-Integer Linear Programming are presented. First a definition for
Mixed-Integer Linear Programs (MILPs) is given and the Branch-and-Bound procedure
applied to solve them is explained. After that we show how non-temporal planning
problems can be solved applying these techniques.

Chapter 4 – Temporal Planning via Mixed-Integer Linear Programming: Here we explain
how Mixed-Integer Linear Programming can be applied to solve temporal planning
problems. First, we introduce the temporal planning scenario assuming integer durations
for actions. After that, we explain the structure of the generalized temporal planning
graph and how it is constructed. Finally, we introduce two SATPLAN-based formulations
that model the temporality of operators.

Chapter 5 – A State-change Approach to Temporal Planning: In this part of the thesis we
introduce a second type of MILP-formulation called the state-change formulation. More-
over we explain how the temporal planning graph has to be modified to be able to derive
efficient formulations of this kind.

Chapter 6 – Real-valued Durations and Dynamic Graph Expansion: In this chapter it is ex-
plained how we can plan with real-valued durations and further increase the efficiency
of our method.

Chapter 7 – Comparison: In this chapter we compare the MILP-formulations introduced in
this thesis with each other experimentally. Furthermore we compare the implementation
of our approach to an implementation of the Temporal Graphplan algorithm.

Chapter 8 – Summary: In this part we summarize the content of this thesis and give an
overview on possible improvements and potential future work.
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2 Graphplan

Graphplan is a planning method which had immense influence on subsequent research in
particular in the fields of planning and scheduling [BF95]. Graphplan builds a planning graph
and determines plans by analyzing it. The main reason for its success was the introduction of
this very handy planning graph that encodes a given problem in a practicable way. For instance
common algorithms can be applied on it in order to extract information from it and/or modify
it. Additionally the size of the graph is small compared to graphs modeling the state-space of a
problem directly. It can be constructed in polynomial time and hence requires only polynomial
space. Further neat properties of Graphplan are its speed compared to previously published
methods and the ability to terminate on unsolvable problems. For the latter a termination test
exists. Moreover it allows to transform planning problems into constraint satisfaction problems
and mixed integer programs as well as factor graphs. Thus it connects different approaches to
planning problems.
In the following sections we explain the basics of Graphplan. That is we first take a look at
the planning scenario we will be dealing with. Following this, we will see how the planning
graph looks like, how it is constructed and exploited to compute plans. This chapter’s content
is based on [BF95] but at some points our version differs slightly. Algorithm 2.2 is a result of
own work formalizing the explanations in the paper mentioned above.

2.1 The Planning Scenario

In the scenario we are going to consider a problem is given by its domain, that is a set of
predicates P and a set of STRIPS-operators Op, together with a set of objects C as well as
an initial condition I and a problem goal G. By grounding/instantiating the predicates, that
is replacing the variables of predicates with objects, we get a set of predicate instances P̂.
By further distinguishing the values true and false of the predicate instances we get a set of
literals L. Instead of the term literals we will refer to propositions from now on as common
in the planning community. As opposed to the common case we allow both negative and
positive literals/propositions as just described. Furthermore we introduce the notion of abstract
literals/propositions which are parametrized propositions. We denote the set of abstract
propositions by Lθ. The difference between predicates and abstract propositions is that the
latter correspond to a value true or false. The initial condition and the problem goal which we
are going to call goal from now on are sets of propositions, that is I ⊆ L and G ⊆ L. Initial
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2 Graphplan

condition and goal represent conjunctions of propositions that initially hold or have to old in
the end to succeed respectively. Each operator has a parametrized set of preconditions preop
and effects effop which represent conjunctions of propositions. We always assume that the set
of operators contains one so called no-op per abstract proposition. A no-op has exactly one
precondition and one effect which equal the proposition it corresponds to. Applying a no-op
means that the truth value of a predicate instance is simply propagated forward. We get the set
of actions, that is instantiated operators, A by replacing the parameters of STRIPS-operators
with objects. For now we assume that all operators and corresponding actions have the same
unit duration (duration = 1 without loss of generality).
An exemplary airplane domain is illustrated in listing 2.1. It was derived from a test domain
considered by Smith et al. [SW99]. The airplane domain models a logistics problem which
is a typical field of application for planners such as Graphplan. The predicates are given by
packet(c1), at(c1, c2) etc. where

packet(x) =

1 if x is a packet

0 else

and

in(x, y) =

1 if packet x is in airplane y

0 else

etc.. An example for a predicate instance of in(x, y) is în(P, F) where P is a packet and F is
an airplane. Usually there are many possible predicate instances per predicate. By relating the
truth values true and false to the mentioned predicate instance we get two propositions, namely
the positive proposition +in(P, F) and the negative proposition −in(P, F). If we do not
provide the sign of a proposition l ∈ L or an abstract proposition lθ ∈ Lθ it can denote either a
positive or a negative proposition. Moreover we denote the negation of a proposition l by ¬l.
Furthermore we have got three operators in the domain. One for loading a packet, one for
unloading a packet and one for flying from one airport to another. In order to get a concrete
problem for this domain we can introduce some airports, airplanes and packets as objects.
Which type(s) an object has is defined by the defining propositions in the initial condition. For
instance if we want object F to be an airplane we add the defining proposition +airplane(F)

to the initial condition. Moreover we have to place each object at an initial location which can
be achieved by adding the respective +at- and +in-propositions to the initial condition etc..
Similarly we can define the goal of the problem by appending the desired propositions. In the
logistics domain the goal is to transport the packets by airplane from certain starting locations
to their destinations. This can be achieved by sequencing instantiated load-, unload- and
fly-operators. An action can be started at a time t if and only if all of its preconditions hold at
this time. Moreover starting an action guarantees that all of its effects hold at time t + 1. We
will denote an action a’s precondition and effect by prea and effa. By this means a sequence of
states at times 1, 2, etc. given by the propositions holding at the respective times is generated.

12



2.1 The Planning Scenario

Listing 2.1 The airplane domain.
domain airplanes {

predicates { packet(c1), airplane(c1), airport(c1),

at(c1, c2), in(c1, c2), equal(c1, c2) }

operators {

load(c1, c2, c3)

precondition { +packet(c1), +airplane(c2), +airport(c3),

+at(c1, c3), +at(c2, c3) }

effect { -at(c1, c3), +in(c1, c2) }

unload(c1, c2, c3)

precondition { +packet(c1), +airplane(c2), +airport(c3),

+in(c1, c2), +at(c2, c3) }

effect { -in(c1, c2), +at(c1, c3) }

fly(c1, c2, c3)

precondition { +airplane(c1), +airport(c2), +airport(c3),

-equal(c2, c3), +at(c1, c2) }

effect { -at(c1, c2), +at(c1, c3) }

}

}

If we reach a state in which all goal propositions are present we have achieved the goal. If
an action a has a proposition l as an effect we say that a adds l and deletes ¬l. We remark at
this point that adding l implies deleting ¬l and vice versa. Regarding predicate instances we
say that a adds p̂ if a has +l(p̂) among its effects and that it deletes p̂ if −l(p̂) is an effect of
a. Thereby +l(p̂) and −l(p̂) denote the positive and negative propositions corresponding to
p̂. As opposed to classical planning scenarios it is allowed Graphplan computes parallel plans
that is at each time step may start several actions. Consequently the succeeding state is given
by the union of the effects of all the actions started at time t. Allowing parallel execution of
actions generally reduces the length of plans: For example we could fly packet P1 from airport
A1 to airport B1 in airplane F1 and packet P2 from airport A2 to airport B2 in airplane F2 at
once rather than in two subsequent steps. However, it is not possible to execute all actions in
parallel. For example it would not be possible to load packet P1 into both A1 and A2 since the
packet can only be in one place/airplane at a time. Hence we require a notion of independent
and interfering actions that cannot be applied in parallel. There exist different definitions of
independence. However, we apply the following definition.
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2 Graphplan

Definition 2.1.1 (Interference and Independence)
Two actions a1 and a2 are interfering if and only if either one of them deletes at least one
precondition or effect of the other and a1 ̸= a2 or they have preconditions which are negations of
each other. They are independent in the opposite case.

If two actions are interfering we also say that they are eternally mutually exclusive (emutex).
Generally a set of actions A = {a1, . . . , an} is emutex if at least one pair of actions (ai, aj), i ̸= j

is interfering and independent otherwise. As with actions propositions can also be eternally
mutex.

Definition 2.1.2 (Eternal Proposition-Proposition Mutual Exclusiveness)
Two propositions l1 and l2 are interfering if and only if l1 = ¬l2 holds.

2.2 The Planning Graph

The planning graph that Graphplan generates is organized in levels. A leveled graph is a
special kind of graph whose nodes can be partitioned into disjoint subsets S1, . . . , Sn such
that edges from nodes in Si are connected to nodes in Si−1 and Si+1 only. In the planning
graph the levels alternate between proposition levels and action levels containing proposition
and action nodes respectively. That is S1 = L1, S2 = A1, S3 = L2, S4 = A2, etc. where
Lt denotes a proposition level and At an action level. A proposition level Lt contains all
propositions that could potentially hold at time t. This means in particular that a proposition
l and its negation ¬l can be present in the same level. To be able to refer to propositions
which are present in different proposition levels Lt we introduce the time-indexed notation lt.
Moreover to denote the set of all time-indexed propositions or nodes in the planning graph
we introduce the notation L. A special proposition level is the first one. It represents the
initial condition and contains one node per proposition in the initial condition. Similarly
to the proposition levels an action level At consists of all actions that could potentially be
executed in period t if we consider only mutexes between pairs of preconditions. Analogously
to time-indexed propositions we introduce the notation at for time-indexed actions that can be
executed in period t and A for the set of time-indexed actions. There are two basic types of
edges connecting preconditions, actions and effects.

• Precondition edges: There is a precondition edge between a proposition node lt ∈ Lt

and an action node at ∈ At if and only if l is a precondition of a.

• Effect edges: There is an effect edge between action node at ∈ At and a proposition
node lt+1 ∈ Lt+1 if and only if l is an effect of a.

In order to guarantee Graphplan’s correctness we also have to encode eternal mutexes in the
planning graph. However, besides eternal mutexes there exists also the notion of conditional
mutexes (cmutexes). Cmutexes describe the fact that two actions/propositions can be mutex
for some time but the exclusivity ends at some point in time.

14



2.2 The Planning Graph

Definition 2.2.1 (Conditional Action-Action Mutual Exclusiveness)
Two actions at

1 ∈ At and at
2 ∈ At are conditionally mutual exclusive if and only if they have

competing needs, that is there exists a precondition lt1 ∈ Lt of at
1 and a precondition lt2 ∈ Lt of at

2
that are eternally or conditionally mutually exclusive.

This means that conditional mutexes between actions result from emutexes or cmutexes
between two of its preconditions. In turn cmutexes and emutexes between actions can cause
cmutexes between two of their effects.

Definition 2.2.2 (Conditional Proposition-Proposition Mutual Exclusiveness)
Two propositions lt1 ∈ Lt and lt2 ∈ Lt are conditionally mutual exclusive if they are competing
effects, that is all actions that have lt1 as one of their effects are eternally or conditionally mutual
exclusive with all actions having lt2 as one of their effects.

Although cmutexes are not necessary to ensure the correctness of Graphplan they further
reduce the number of propositions and actions in the planning graph because they allow to
exclude propositions and actions that cannot be present/started in the respective graph level.
Furthermore they can speed up the backward-chaining search significantly as we will explain
later on in this chapter. In the future we will not distinguish between cmutexes and emutexes
any longer because their effect on the planning problem is equivalent. In the graph mutexes are
represented by edges. Therefore we introduce two new types of edges, namely mutex-edges
between two propositions and two actions.

• Proposition-proposition edges: There is a mutex-edge between two propositions lt1 ∈ Lt

and lt2 ∈ Lt if and only if lt1 and lt2 are mutually exclusive.

• Action-action edges: There is a mutex-edge between two actions at
1 ∈ At and at

2 ∈ At if
and only if they are mutually exclusive.

Figure 2.1 illustrates an example for a planning graph. In the example we have one packet
P, one airplane F and two airports A and B. Initially the packet and the airplane are at airport
A. The goal is to bring the packet to airport B. Circle shaped nodes represent propositions
and rectangular ones represent actions. However, only a subset of the possible propositions
and actions are shown for reasons of clarity. Straight lines represent precondition and effect
relations. For example the action fly(F, A, B) has (among others that are not illustrated)
the precondition +at(F, A). Furthermore it has the effects -at(F, A) and +at(F, B). Dashed
lines represent mutexes. Once again only a subset of the actually present mutexes is illustrated
in the figure. For instance there is an emutex between +at(F, A) and -at(F, A). Moreover
we can see that there exists a cmutex between +in(P, F) and +at(F, B) in the second
proposition level. They are cmutex in this proposition level since it takes two time steps
(load(P, F, A), fly(F, A, B)) to load the packet and fly to B. The goal proposition +at(P,

B) appears for the first time in the fourth proposition level. Finally let us fix some important
properties of the planning graph. Firstly it is easy to recognize that if a proposition is present at
some level it will also be present at all subsequent levels due to the no-ops. The same holds for
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+ in(P , F)

+at (F , B )

+at (F , A )

−at (F , A )
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−at (F , B)

+at (P , B)
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fly (F , A , B)

load (P ,F , A)
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fly (F , A , B)
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−in(P , F)

−at (P , A )+at (F , A )
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fly (F , A , B)
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Precondition/effect

Mutex

no-op+at (P , A) +at (P , A) +at (P , A) +at (P , A)

−at (P , A ) −at (P , A )
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+ in(P , F) + in(P , F)

−in(P , F)

+at (F , B )

−at (F , B)

no-op no-op

Figure 2.1: Exemplary planning graph.
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2.3 The Algorithm

actions. Regarding mutexes the planning graph behaves differently. If two actions/propositions
are not mutex at some level they will not be mutex in any subsequent level. This is also because
of the no-ops.

2.3 The Algorithm

The aim of Graphplan is to find a sequence of independent action sets A1 ⊆ At, . . . , AT ⊆ AT

that achieves the given goal in minimal time T . In other words the plan has to transform the
initial condition into the goal by applying actions. In order to determine such a valid plan
Graphplan alternates between two phases starting with a planning graph that contains only
one proposition level representing the initial condition. In the graph expansion phase the
planning graph is extended by one action level and one proposition level. In the subsequent
solution extraction phase a backward-chaining search is performed on it. If a valid plan is
found the procedure terminates otherwise the graph is expanded once again and another
solution extraction is performed. This is repeated iteratively until either a plan is found or
Graphplan proves the problem to be unsolvable. Instead of the term iteration we will also use
the term stage to denote a pair of graph expansion and solution extraction executed in the
same iteration. Thereby Graphplan follows a principle which is very common for planning
algorithms: In the expansion phase we compute and optimistic guess on the plan duration T

by incorporating only mutexes between pairs of propositions or actions and during solution
extraction it is verified or falsified.
In the following subsections the method is presented in detail. First we take a look at how the
planning graph is constructed. Afterwards it is shown how a plan can be extracted from it.
Finally we describe how Graphplan identifies unsolvable problems.

2.3.1 Graph Expansion

Initially the graph contains one proposition level containing the propositions in the initial
condition. Now every operator defined in the domain including the no-ops is instantiated in all
possible ways. Then Graphplan checks for each action whether (1) all its preconditions are
present in the initial condition and (2) no pair of preconditions is mutex in the first proposition
level. If both conditions are satisfied a node representing the action is added to the new
action level, the node is linked to all preconditions, nodes for its effects are added to the
new propositions level if not already present, and the action node is connected to its effects.
Finally the mutex relations are added. Therefore it is checked for each pair of actions in the
newly added action level whether they have competing needs or are interfering. Afterwards
for each pair of propositions in the newly added proposition level it is checked if they are
competing effects or not. In the second graph expansion the recently added proposition level
is taken as the precondition level and so on. A pseudo code for graph expansion is given in
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2 Graphplan

algorithm 2.1. PG denotes the planning graph and coveredActions is a function returning the
set of actions that can be executed given the propositions Lt as preconditions and the mutexes
among them. Blum et al. demonstrate that the number of nodes in a proposition level is in

Algorithm 2.1 Graph Expansion
function EXPAND(PG, Op, C, t)
At ← coveredActions(Op, C, Lt)
Connect preconditions in Lt with actions in At via an edge
Add mutex-edges between actions in At

Lt+1 = Lt ∪
⋃

a∈At effa
Connect actions in At with effects in Lt+1 via an edge
Add mutex-edges between propositions in Lt+1

return PG

end function

O(|I|+ |Op|snk) and the number of actions in an action level is in O(|Op|nk) where |I| is the
number propositions/literals in the initial condition, |Op| the number of operators, s and k the
size of the longest effect-list and the maximum number of parameters of operators in Op and n

the number of objects [BF95]. Consequently the size of the planning graph is polynomial in
|I|, |Op|, s and n. Furthermore they argue that the time complexity of one graph expansion is
polynomial in the number of nodes in the current graph level because one graph expansion
can be broken down into the computation of covered actions and the computation of both
action-action and proposition-proposition mutexes.

2.3.2 Solution Extraction

The solution extraction function is called after each graph expansion step. It starts in the
most recently added proposition level T + 1. At first it checks whether all goal propositions
are present in the last proposition level and if any two of them are mutex. If either a goal
proposition is missing or at least one pair of goal propositions is mutex the function returns
failure. Otherwise it tries to find a non-mutex set of actions which has the goal propositions
as effects. For this purpose bundles of actions AT are computed by recursively adding single
actions to it at a time that are not mutex with any of the actions already in the bundle. If no
such action set exists the algorithm returns failure otherwise these actions’ preconditions form
a set of sub-goals at the penultimate proposition level T . This means that if the sub-goals can
be achieved at the penultimate proposition level we know that the complete problem can be
solved by appending the current temporary action bundle AT . Having computed the subgoals
of an action bundle for proposition level T the procedure is started over recursively for the
precedent graph level. That is Graphplan recursively tries to find action sets AT −1 now that
have the sub-goals as effects and form another set of sub-goals for proposition level T − 2 etc..
If all recursive calls are successful, that is the recursion continues until the first proposition
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level, the initial condition, is reached and the current sub-goals are contained in the initial
condition, we are finished. Algorithm 2.2 illustrates the whole procedure. In order to start the
solution extraction we hand over the current planning graph PG, the goal G and the index
T of the most recently added action level. PG contains the initial condition I since L1 = I.
Moreover mutex(A, a) is a function determining if a is mutex with any of the actions in bundle
A. In section 2.2 it was mentioned that cmutexes can speed up the solution extraction process.
Having the algorithm in front of us this becomes clear quickly. The reason is just that a cmutex
between actions or their preconditions will reduce the size of the recursion tree because they
allow to detect dead ends at many points at which the recursion would proceed if we had not
computed them. This is due to the mutex check performed in the function PickAction. In other
words cmutexes encode knowledge about infeasible plans computed during graph expansion.
The information is propagated through the planning graph via competing needs and effects.

2.3.3 Terminating on Unsolvable Problems

As already mentioned Graphplan also terminates on unsolvable problems. Termination can be
guaranteed by applying a termination test after each unsuccessful solution extraction. Before
we come to the test itself we have to clarify what a leveled off planning graph and nogoods
are.

Level Off

As already explained a proposition which is present at some planning graph level is also going
to be present at all subsequent levels due to the no-ops. Additionally actions cannot create
new objects and the maximum number of propositions is finite. Thus the graph will reach a
level after that proposition levels are not going to change anymore. Furthermore if there is no
mutex between two propositions at some level there will not be a mutex between them at any
subsequent level. This is also a consequence of the no-ops’ presence. Since there cannot exist
less than zero mutexes they will also reach a level after which they will not change anymore.

Definition 2.3.1 (Level Off)
We say that a graph has leveled off at level n if and only if all proposition levels n + 1, n + 2, etc.
contain the same propositions and mutexes as level n.

It is easy to see that in case the proposition levels n and n + 1 are equal with respect to both
propositions and mutexes proposition level n + 2 will also contain the same propositions and
mutexes as level n + 1 and consequently level n. That is from n on all proposition levels will
be equal regarding these two properties. Thus we can test for a level off by comparing the last
two planning graph levels after each graph expansion.
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2 Graphplan

Algorithm 2.2 Solution Extraction
function SOLUTIONEXTRACTION(G, PG, T )

if G ⊆
[
LT +1

]
and

[
∀l1, l2 ∈ LT +1 ∩G : not mutex(l1, l2)

]
then

return BACKWARDCHAINING(G, PG, T + 1)
else

return failure // failure
end if

end function
function BACKWARDCHAINING(G, PG, t)

if t = 1 then
if G ⊆ L1 then // L1 = I

return empty list // success
else

return failure // failure
end if

else
return PICKACTION(∅, At−1, G, ∅, PG, t− 1)

end if
end function
function PICKACTION(A, B, G, P , PG, t)

B′ ← B

while B′ ̸= ∅ do
a← action b ∈ B′ with effb ∩G ̸= ∅
B′ ← B′ \ {a}
if not mutex(A, a) then // Mutex check

A′ ← A ∪ {a}, G′ ← G \ effa, P ′ ← P ∪ prea

Plan← empty list
if G′ = ∅ then

Plan← BACKWARDCHAINING(P ′, PG, t)
else

Plan← PICKACTION(A′, B′, G′, P ′, PG, t)
end if
if Plan ̸= failure then

Plan.append(A′)
return Plan // success

end if
end if

end while
return failure // failure

end function
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Nogoods

Nogoods are proposition sets that are proven to be unachievable at certain proposition levels.
In the standard algorithm 2.2 nogoods are ignored. However, they can speed up the solution
extraction phase significantly similarly as mutexes. To store nogoods an empty set of nogoods is
initialized for each planning graph level when it is added. And in case the backward recursion
detects a failure at some graph level the currently considered set of subgoals is stored in the
respective nogood set (memoization). The next time the solution extraction algorithm ends up
at the same level with the same set of subgoals it can directly return failure after comparison
with the memoized nogoods. Apart from the speedup nogoods provide they are also required
for the termination test.

The Termination Test

If the planning graph has not leveled off yet Graphplan checks for it after each unsuccessful
solution extraction. In case no level off was detected the algorithm proceeds with another
expansion step. In the case that a level off is detected it can happen that a goal proposition
is missing or two present goal propositions are mutex. If this is the case Graphplan can
obviously return that the problem is unsolvable. However, this criterion is not sufficient. To
illustrate this let us consider a problem from the blocks world (see also listing B.2) men-
tioned in the Graphplan paper [BF95]. If we have three blocks A, B and C and the goal is
{On(A, B), On(B, C), On(C, A)} it is possible to make every pair of these propositions true in
one proposition level. That is at some proposition level there will not be a mutex between any
pair of propositions in the goal. But it is impossible that all three propositions hold at the same
time. Consequently we need a different criterion.

Theorem 2.3.2 (Termination)
Let Su

i be the set of nogoods for proposition level i after stage u and n be the level at which the
planning graph leveled off. Moreover assume that Graphplan passed an unsuccessful stage t > n.
Then if

|St
n| = |St−1

n |

the problem is unsolvable.

A proof for this theorem is given in [BF95]. It yields a simple termination test. All Graphplan
has to do is check for each pair of subsequent leveled off proposition levels whether or not the
number of nogoods changes any longer.
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3 Planning via Mixed-Integer Linear
Programming

In the last chapter we already mentioned that Graphplan is strongly related to planning as
satisfaction, planning as inference and Mixed-Integer Programming which are in turn related
to each other. In this thesis we are going to deal with the latter approach. Hence we define
Mixed-Integer Programs (MILPs) in this chapter and show how they can be solved generally.
Moreover we explain how Mixed-Integer Programming is related to non-temporal planning of
concurrent actions and how we can exploit the knowledge encoded in the planning graph that
was introduced in the last chapter.
The content of this chapter is based on fundamental literature [Kru06], [CSCT07], [BGR12]
and a diploma thesis [Ber06] regarding the general description of MILPs and the part about
Branch-and-Bound. The content of the last two chapters describing how Mixed-Integer Linear
Programming can be applied to planning of concurrent actions is based on work by Vossen et
al. [VBS99].

3.1 Mixed-Integer Linear Programs

Mixed-Integer Linear Programs have a linear objective function. We will always consider the
case in which the aim is to minimize the objective value. Moreover as the name implies MILPs
are a mixture of Linear Programs (LPs) and Integer Linear Programs (ILPs). That is the set of
variables can be partitioned into two subsets where the first subset contains variables with
integer-valued domain and the variables in the second subset have a real-valued domain.

Definition 3.1.1 (Mixed-Integer Linear Program)
Let R− = R ∪ −∞, R+ = R ∪ +∞, k, m, n ∈ N, x ∈ Rk, y ∈ Zm, κ ∈ Rk+m, C ∈ Rn×(k+m),
b ∈ Rn, c ∈ Rk+m

− , d ∈ Rk+m
+ and u = (x y)T then

min κT u
such that Cu ≤ b

c ≤u ≤ d

is a Mixed-Integer Linear Program.
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In the following we will denote real-valued variables with the letter x and integer-valued
ones with y if not explicitly defined differently. Depending on the ratio of the number of
integer variables to the number of real-valued variables MILPs can be as easy to solve as
LPs or as difficult as an ILP (NP-hard). Usually their difficulty lies somewhere in between.
MILP-formulations for planning problems are often designed in way that the integrality of the
integer-valued variables implies the integrality of the real-valued variables.

3.2 Branch-and-Bound

Branch-and-Bound is a general purpose solution method Mixed-Integer Programs. If the
programs are linear as in our case Branch-and-Bound solves a series of LPs in order to
determine the solution of the MILP. To compute solutions for the LPs any appropriate LP-solver
such as a penalty method [SC97] or the simplex method [NM65] can be applied. However, the
latter is the most frequently used algorithm. The Branch-and-Bound method starts by deriving
the LP-relaxation of the MILP given as an input and attaching it to a node. Afterwards an
LP-solver is applied to solve the relaxed problem. If no solution is found Branch-and-Bound
can return that the given MILP is unsolvable because not even the relaxed problem could be
solved. Otherwise there are two cases. Either the LP-solution satisfies the removed integrality
restrictions or not. In the first case we say that an integer-feasible solution was found. Finding
an integer-feasible solution means that we also found a solution to the original MILP. In this
case the algorithm terminates and outputs the solution which is guaranteed to be the best
possible one. In the second case we choose an integer variable ci ≤ yi ≤ di and a branching
value yi ∈ {ci, . . . , di − 1}. Given yi we get two new LPs by inheriting the original problem’s
constraints and adding either of the two constraints yi ≤ yi and yi ≥ yi + 1. Once again each
of the two nodes is attached to a node and each node is linked to its parent which is the
root in this special case. Now one of the new LPs is chosen and solved applying the LP-solver.
Depending on the result there are three cases.

• The solution is LP-feasible but not integer-feasible, that is it satisfies the LP-relaxation’s
constraints but not the integrality constraints of the original MILP.

• The solution is LP-infeasible, that is it does not even satisfy the LP-relaxation’s constraints.

• The solution is integer-feasible, that is it is LP-feasible and additionally satisfies the
integrality constraints.

In the first case we choose a branching-variable and -value once again and create two new LPs.
After that we can either decide to solve one of the LPs attached to the two new child nodes or
continue with the root’s second child. In the third case it does not make sense to branch further
on this node since any of its children will either yield an integer-infeasible solution or a worse
objective value. If the only goal is to find any feasible solution we are finished at this point.
Otherwise we may continue the search for better solutions at the root’s second child node as in
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root

y4≤2 y4≥3

y7≤−9 y7≥−8 y1≤0 y1≥−1

y8≤3 y8≥4 y7≤−7 y7≥−6

y1≤1 y1≥2

Figure 3.1: Exemplary tree of LPs produced by the Branch-and-Bound method.

the first case. In the second case branching on this node would also be worthless since none of
its children is going to give a feasible solution. So in this case we are forced to continue the
search at the root’s second child node which is the only remaining active node. Active nodes
are nodes which have not been visited yet. All others are inactive nodes. In the second case
the node is declared to be an infeasible fathomed node additionally to making it inactive. In
the first and the third case the node can be declared feasible fathomed if its objective value is
greater than the objective value of the current incumbent node. The incumbent is the node with
the currently lowest objective value. Feasible and infeasible nodes share the property that it is
not necessary to branch further on them. Repeating the described process yields a tree of LPs
as illustrated in figure 3.1. Thereby the Branch-and-Bound method produces both a lower
and an upper bound on the best possible objective value. Initially the lower bound is −∞ and
the upper bound +∞. Later on the lower bound is given as the minimum of the value +∞,
the objective values of the incumbent and all nodes with at least one active child. The upper
bound takes on the value +∞ until a first feasible solution is found. After that the upper bound
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is given as the objective value of the current incumbent. If Branch-and-Bound reaches a state
where the lower bound equals the upper bound it can terminate. This condition is equivalent
with the condition that the number of active nodes equals zero. In the special case that the
bounds equal +∞ the problem is unsolvable. Algorithm 3.1 formalizes the Branch-and-Bound
method. It is based on the description by Cole-Smith et al. [CSCT07].

Algorithm 3.1 Branch-and-Bound

0. Set the lower bound λ− = −∞, the upper bound λ+ = +∞ and the number of active
nodes k = 1. Go to step 1.

1. If k = 0 or λ− = λ+ then stop and either output No solution (λ+ = +∞) or the solution
(λ+ < +∞) else go to step 2.

2. Choose an active node, solve the corresponding LP and declare it as inactive. If the
solution is LP-infeasible go to step 3. Else if the solution is integer-feasible go to step 4.
Else if the node is LP-feasible, not integer-feasible and has a greater objective value than
the incumbent go to step 5. Else go to step 6.

3. Declare the node as infeasible fathomed. Update the lower bound. Set k = k − 1. Go to
step 1.

4. Declare the node as feasible fathomed. Update the lower bound. If there is no incumbent
yet or the objective value is lower than the incumbent’s set λ+ = λ0 where λ0 is the
current node’s objective value and declare the current node as the incumbent. Set
k = k − 1. Go to step 1.

5. Declare the node as feasible fathomed. Update the lower bound. Set k = k − 1. Go to
step 1.

6. Select a fractional variable yi and a branching value yi. Create two new child nodes.
As constraints for the child nodes take the constraints of the current node and add the
constraint yi ≤ yi for the left child and the constraint yi ≥ yi + 1 for the right child.
Update the lower bound. Set k = k + 1. Go to step 1.

3.2.1 Components of Branch-and-Bound

In each iteration of the Branch-and-Bound procedure three decisions have to be taken. (1)
The decision which node in the tree to consider next, (2) which variable to branch on and (3)
which value to branch on. Since there is no method for either decision that can predict exactly
which decision is the best one there exist a lot of general but also problem dependent heuristics.
The decision rule of choice can significantly influence the performance of Branch-and-Bound.
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Other interesting points in the branch and bound procedure are preprocessing and presolve as
well as dynamically introducing constraints (cutting planes in the case of Linear Programming)
and applying heuristic search. In the following we give a brief introduction into all of these
topics.

Choosing the Next Node

There exist several rules for taking the next node to explore depending on the aim of the user.
The most well known techniques are Depth-First Search (DFS) and Breadth-First Search (BFS).
DFS always chooses the node deepest in the tree. It tends to yield integer-feasible solutions
quickly but performs poor if the goal is to find an optimal solution. BFS always chooses the
node which was added to the tree first among the unexplored ones. Usually it takes a lot of
time until BFS finds the first feasible solution but if it finds one this solution tends to have a
good objective value. Moreover BFS usually yields good lower bounds quickly. Another natural
choice is to always pick the node with the smallest lower bound in the tree. This approach
tends to produce big trees but tends to terminate quickly after the first integer-feasible solution
was found.
Mixtures of these strategies are possible. For instance initially a DFS can be performed in order
to find a first feasible solution quickly. Afterwards a BFS can be applied to try to find better
ones.

Choosing the Branching-variable and -value

Given the branching-variable yi the standard strategy for choosing the branching-value is
yi = ⌊yi⌋. Regarding the selection of the branching-variable there exist many strategies once
again. The most simple branching-variable selection strategy is to randomly choose an integer
variable with a fractional solution with respect to the LP-solution of the current node. Further
strategies are to pick the variable whose fractional value is closest to .5 or to perform so
called Strong Branching. That is to solve the LP-relaxation for each possible branching-variable
and -value and then to choose the combination yielding the best objective value. Since this
method can be very time consuming usually only a subset of the fractional integer variables is
considered. Moreover pseudo cost approaches exist that record the influence on the objective
value of branching on certain variables and compute a prediction on it. Then it is branched on
the variable promising the smallest objective value.

Preprocessing and Presolve

Preprocessing techniques are applied once before the initial LP is solved. They can reduce the
size of a MILP significantly. For instance preprocessing removes redundant constraints and
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substitutes variables where possible. But preprocessing also includes more elaborate operations
such as clique detection. As an example consider the following set of exemplary constraints

(3.1)

y1 + y2 ≤ 1
y2 + y3 ≤ 1
y1 + y3 ≤ 1

where y1, y2, y3 ∈ {0, 1}. In this case clique detection would find the clique {y1, y2, y3} and the
three constraints could be replaced by one stronger constraint

(3.2) y1 + y2 + y3 ≤ 1 .

Stronger in this case means that the first formulation 3.1 allows the fractional solution y1 =
y2 = y3 = 1

2 . But this fractional solution would not satisfy the constraint in the second
formulation 3.2. However, for integer values in {0, 1} which we need to find in the end both
formulations are equivalent. In other words strong formulations have the property that the
derived LP-relaxations approximate the constraints of the original MILP well. The strength of
formulations is an important property of good formulations since they guide the search for
good feasible solutions over the course of Branch-and-Bound and allow to find integer-feasible
solutions quickly. Additionally the second formulation reduces both the number of constraints
and elements in the constraint matrix A from six to three. This in turn tends to reduce the
complexity of Simplex iterations speeding up the search.
Beyond preprocessing presolve can be applied at each node in the Branch-and-Bound tree to
reduce the complexity of LPs. This makes sense since each branching step further restricts the
LP-feasible region. For instance consider the following constraint set

y1 + y2 ≥ 3
−1 ≤ y1 ≤ 1

1 ≤ y2 ≤ 5

with two integer variables y1, y2. This extract of a potentially bigger problem has many
solutions such as y1 = 1 and y2 = 2, y1 = −1 and y2 = 4 or y1 = 1 and y2 = 3. If we now
branch on y2 and choose the branching value two then one of the two LPs will contain the
extract

y1 + y2 ≥ 3
−1 ≤ y1 ≤ 1
1 ≤ y2 ≤ 2 .

Now the only possible solution is y1 = 1 and y2 = 2. Presolve can recognize such behavior and
replace all values of y1 by one and y2 by two and adapt the constraint matrix A respectively.
Although preprocessing and presolve are very powerful the operations performed can also be
computationally difficult. Hence MILP-formulations should be designed in a way so that as few
preprocessing steps are necessary as possible.
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Cutting Planes

A Branch-and-Bound algorithm that dynamically introduces constraints is commonly called
Branch-and-Cut method. Dynamically adding constraints, that is reducing the volume of the
polyhedron containing all LP-feasible solutions by introducing a new cutting plane, tightens
the MILP-formulation without adding new nodes to the tree. Therefore they can significantly
improve the performance of Branch-and-Bound methods. Consider the following example

3y1 + 2y2 + 2y3 ≤ 5

where y1, y2, y3 ∈ {0, 1}. Since evaluating the left hand side of this constraint for y1 = y2 =
y3 = 1 would yield a value of 7 we can add the constraint

y1 + y2 + y3 ≤ 1

that prohibits the case of all three variables taking on value one. However, adding constraints
tends to increase the computational effort required in each simplex iteration. Thus this
technique has to be applied carefully.

3.2.2 Heuristics

There are two types of heuristics: Start heuristics and improvement heuristics. Heuristics of
the first kind are designed to find feasible solutions quickly. Heuristics of the second kind can
be applied to find better solutions given an integer feasible solution. They can be applied at
each node and build a separate temporary tree that results from heuristic node selection- and
branching-strategies. Start heuristics often apply elaborate rounding techniques and perform a
DFS-like node selection. Examples are Relaxation Enforced Neighborhood Search (RENS) and
the Feasibility Pump [Ber06]. Improvement heuristics exploit the knowledge about known
integer-feasible solutions in order to produce a new solution with a better objective value.
Examples are Local Branching and Relaxation Induced Neighborhood Search (RINS) [DRL05].
RINS, for example, fixes each variable which has the same value in the current node and the
incumbent. Then a sub-MILP is solved for the remaining variables. For a good overview on
heuristics we refer to the diploma thesis by Timo Berthold [Ber06].

3.3 Solving Planning Problems via Mixed-Integer Linear
Programming

As with Graphplan solving planning problems via MILP is performed iteratively. Each iteration
consists of three phases. In the first phase the planning graph is extended exactly as in
Graphplan. In the second phase a MILP-formulation is derived from the planning graph. Finally
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a Branch-and-Bound method is applied to the MILP in the third phase. If a feasible solution is
found the procedure terminates. Otherwise the algorithm continues by performing another
iteration.

3.4 A Formulation for Non-temporal Planning of Concurrent Actions

Before we introduce novel MILP-formulations for temporal planning we present a formulation
for non-temporal planning of concurrent actions based on existing work [VBS99]. However, the
formulation presented in the following differs slightly from the one by Vossen et al. because we
allow both positive and negative propositions rather than positive ones only. The formulation
which we call a SATPLAN-based formulation directly model states by a set of propositions
holding at a certain time. Its name stems from the closely related planning as satisfiability
method SATPLAN. The constraints of the SATPLAN-based formulation can be derived from
the boolean formulas that SATPLAN incorporates. In the next section we describe how these
formulas can be translated into ILP-constraints. Afterwards we present the MILP-formulation
for planning. The MILP-formulation consists of different types of constraints whose derivation
we will illustrate. The final form of a constraint type is always surrounded by a box.

3.4.1 Transforming Boolean Formulas to Constraints

The constraints of the SATPLAN-based formulation can be translated from boolean formulas in
the following way. First each formula is transformed into the Conjunctive Normal Form (CNF).
For positive and negative literals y+

i , y−
i ∈ {0, 1} each clause

(3.3)
M∨

i=1
y+

i ∨
N∨

i=1
y−

i

in the boolean formula can be transformed into an equivalent constraint

(3.4)
M∑

i=1
y+

i +
N∑

i=1
1− y−

i ≥ 1 .

The boolean formula 3.3 is satisfied if at least one positive variable takes on the value one
or at least one negative variables takes on the value 0. In this case the constraint 3.4 is
satisfied as well. Otherwise both are not satisfied. It remains to answer the question why
this principle can also be applied to generate MILP-formulations rather than ILP-formulations
although the former can contain real-valued variables. The reason for this is that the constraints
of the MILP-formulations for planning presented in the following are designed in a way so
that the integrality of the relevant real-valued variables is implied by the integrality of the
integer-valued ones. Relevant means in this case that the computed plan depends on their
value.
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3.4.2 The SATPLAN-based Formulation

We come to the description of the SATPLAN-based formulation now. In order to express it
comprehensively we introduce a couple of auxiliary sets in the following. Let T be the number
of action levels in the planning graph, lt ∈ L be the instance of proposition l in proposition
level t ∈ {1, . . . , T +1} and at ∈ A be the instance of action a in action level t for t ∈ {1, . . . , T}
as already defined in the last chapter. For 1 ≤ t ≤ T + 1 we define the following auxiliary
sets.

• pret
a ⊆ Lt: Represents propositions in level Lt that at has got as preconditions.

• addt
l ⊆ At: Represents actions in level At that add lt.

• mutext
a ⊆ At: Represents actions in level At that are exclusive with action at.

We remark at this point that these sets contain the no-ops. Furthermore we remark that they
are represented as sub-graphs in the previously computed planning graph and hence can be
derived from it efficiently. pret

l can be constructed by iterating over all precondition-edges that
connect lt with actions from action level t in the planning graph. The sets preT +1

l are empty.
addt

l can be determined by iterating over all effect-edges that connect the node corresponding
to lt with actions from action level t + 1. The set add1

l is empty as well. Finally mutext
a can be

computed by investigating all mutex-edges that connect at with actions from the same action
level.

The Variables

There are two kinds of variables in the SATPLAN-based formulation. The variables of the first
kind are the proposition variables. For each proposition lt we have one variable

xl,t =

1 if l holds in proposition level t

0 otherwise

in the MILP-formulation. Furthermore we have one action variable for each action at.

ya,t =

1 if a is executed in action level t

0 otherwise.

The action variables are binary and the proposition variables are real-valued.
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Initial Condition and Goal Constraints

The initial- and goal-state constraints ensure that propositions specified in the initial condition
and goal have to hold at the beginning or end of plan execution respectively:

x1
l = 1 if l ∈ I

xT +1
l = 1 if l ∈ G .

Precondition Constraints

The precondition constraints ensure that started actions imply their preconditions. For all at

and lt ∈ pret
a they are given by

yt
a ≤ xt

l .

The precondition constraints can be represented in a stronger way by aggregating all precondi-
tions in a single sum. For every at the precondition constraints can be expressed equivalently
as

|pret
a|yt

a ≤
∑

lt∈pret
a

xt
l .

Backward-Chaining Constraints

Backward-chaining constraints express that propositions which hold have to be added by some
action. For all lt they are given by

xt+1
l ≤

∑
a∈addt

l

yt
a .

3.4.3 Proposition Exclusiveness Constraints

The proposition exclusiveness constraints ensure that a proposition and its negation cannot
hold at the same time. Hence we add the constraint

xt
l + xt

¬l ≤ 1

for every predicate instance corresponding to lt.
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Action Exclusiveness Constraints

The action exclusiveness constraints express that two mutually exclusive actions cannot be
executed in parallel. For each at and bt ∈ mutext

a we have

yt
a + yt

b ≤ 1 .

As the precondition constraints this type can also be strengthened by aggregating all mutually
exclusive actions in a single sum. This means that we can express mutual exclusiveness of
actions by adding a constraint

|mutext
a|yt

a +
∑

bt∈mutext
a

yt
b ≤ |mutext

a|

for every at.

Objective Function

In principle there are many possible choices for reasonable objective functions. Vossen et al.
suggest

(3.5)
∑

at∈A
yt

a

[VBS99]. This means that the number of actions in the plan is minimized. We remark that the
objective function of choice can have significant influence on the computation time required to
solve a planning problem since it can serve as a guide suggesting good branching variables to
the Branch-and-Bound procedure.

The Principle

The goal constraints ensure that all variables corresponding to goal propositions take on the
value one in the final proposition level. The backward-chaining constraints ensure that at least
one action that has the respective goal proposition as an effect is started. An activated action
in turn requires all its preconditions to hold. By this means the truth values of propositions are
propagated backwards until the first proposition level. Consequently a valid solution exists
if and only if the preconditions of the actions in the first action level are among the initial
conditions. Thereby the exclusiveness constraints enforce that no mutually exclusive action
bundles are executed and that it is impossible that propositions that are negations of each
other hold in the same proposition level. Moreover we can see that the integrality of relevant
proposition variables is indeed guaranteed by the precondition constraints.
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Programming

In the following we are going to deal with the more general temporal case of planning of
concurrent actions. As opposed to the scenario described in section 2.1 we are going to allow
from now on that actions can have different durations. The relevance of temporal planning
problems becomes clear by considering the airplane domain specified in listing 2.1 once again.
In this domain the only means of transportation is the airplane. But in real-world logistics
domains we normally have various additional means of transportation such as trains and
trucks. However, different vehicles require different amounts of time to get to their destination.
For instance transporting goods in an airplane is typically faster than transporting them in
a truck. Therefore we introduce the temporal planning scenario in this chapter. That is, in
particular we will explain the transition model that is applied and generalize the notion of
mutual exclusiveness. After that, we introduce two generalizations of the SATPLAN-based
formulations for temporal planning. Additionally we present a test to determine a level off of
the temporal planning graph in the last section.

4.1 The Temporal Planning Scenario

To be able to express that actions can have different durations we have to adapt the STRIPS-
operators. Therefore we add a field duration to them. We call this version of STRIPS-operators
a Temporal STRIPS-operator (TSTRIPS-operator). An example is given in listing 4.1. In this
case the duration of each instance of the fly-operator is three. In this chapter we assume that
the durations are integers. In chapter 6 we will explain how we can implement real-valued
durations. Furthermore we assume that all operators have at least one effect and there is
no operator having both an abstract proposition and its negation as effects. Moreover it is

Listing 4.1 Exemplary TSTRIPS-operator.
fly(c1, c2, c3)

precondition { +airplane(c1), +airport(c2), +airport(c3),

-equal(c2, c3), +at(c1, c2) }

effect { -at(c1, c2), +at(c1, c3) }

duration 3
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4 Temporal Planning via Mixed-Integer Linear Programming

Listing 4.2 Actions affecting proposition l and the corresponding predicate instance.
preAdd(c1)

precondition { +l(c1) }

effect { +l(c1) }

duration 3

preDel(c1)

precondition { +l(c1) }

effect { -l(c1) }

duraction 1

del(c1)

precondition { }

effect { -l(c1) }

duraction 1

add(c1)

precondition { }

effect { +l(c1) }

duration 5

important to specify a detailed transition model for temporal actions since they can overlap in
arbitrary ways now. In the following we are going to denote starting times of actions by the
Greek letter α ∈ N, time points when they stop by β ∈ N and their duration by δ = β −α. Now
the transition model is based on the following two definitions.

Definition 4.1.1 (Execution Time)
The execution time of an action is defined as the interval Iexec = {α + 1, . . . , β − 1}.

Definition 4.1.2 (Affected Propositions and Predicate Instances)
A proposition l is affected by an action a if and only if a either adds or deletes the proposition. A
predicate instance p̂ is affected by an action a if and only if +l(p̂) or −l(p̂) are affected.

In order to specify that a starting/stopping time, duration or execution time corresponds to a
certain action a we write αa, βa, δa and Iexec

a . From this definition we can conclude that if an
action affects a proposition l it also affects its negation ¬l. In order to make things clear we
emphasize that all actions illustrated in figure 4.2 affect proposition l and its negation. Finally
we can define the temporal transition model which is applied in this thesis.

Definition 4.1.3 (Temporal Transition Model)
The transition model complies with the following rules.

1. A predicate instance that is affected by an action is undefined during execution time. That is
neither +l(p̂) nor −l(p̂) may hold.

2. A precondition of an action a which is affected by a must hold when the action is started,
that is at t = αa.
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3. A precondition of an action a which is not affected by a must hold at the start and throughout
execution, that is during {αa} ∪ Iexec

a = {αa, . . . , βa − 1}.

4. An effect of an action a is guaranteed to hold when the action terminates, that is at t = βa.

Moreover we have do discuss the role of mutexes in the temporal planning scenario. Whereas
there were only two types of mutexes, that is proposition-proposition and action-action mutexes
in the non-temporal case, we require an additional third type, namely proposition-action
mutexes, now. Proposition-action mutexes are motivated by the first rule of the transition
model because affected propositions may not hold while an action is executed, that is during
Iexec.

Definition 4.1.4 (Temporal Proposition-Action Emutex)
A proposition l and an action a are temporally emutex if and only if a affects l (and consequently
¬l) or ¬l is a precondition of a.

Proposition-proposition emutexes are defined as in the non-temporal case.

Definition 4.1.5 (Temporal Proposition-Proposition Emutex)
Two propositions l1, l2 ∈ L are temporally emutex if and only if l1 is the negation of l2.

Furthermore we adopt the definition of interference.

Definition 4.1.6 (Temporal Action-Action Emutex)
Two different actions are temporally emutex if and only if at least one of them deletes the
precondition or effect of the other or they have temporally emutex preconditions.

Both the transition model and the temporal emutexes (temutexes) are defined as in the paper
on Temporal Graphplan by Smith et al. [SW99]. From the transition model we can conclude
another type of emutex between two actions.

Corollary 4.1.7 (Effective Temporal Action-Action Emutex)
Two different actions a and a′ are effectively temporally emutex if one of the following conditions
holds.

1. Both a and a′ add l, Iexec
a ∩ Iexec

a′ ̸= ∅ and βa ̸= βa′ .

2. a has precondition l, a does not add l but a′ does or vice versa. Furthermore Iexec
a ∩ Iexec

a′ ̸= ∅.

Proof 4.1.8 (Effective Temporal Action-Action Emutex)
1. Since βa ̸= βa′ holds, one of the two actions has to terminate first. Without loss of generality

let a be this action. As Iexec
a ∩ Iexec

a′ ̸= ∅ holds, we can conclude βa ∈ Iexec
a′ . According to the

fourth rule of the transition model l has to hold at t = βa because a adds it. Furthermore,
according to the first rule l is undefined during the execution time of a′. Hence there is a
conflict.
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2. a has precondition l but does not add it. Thus the precondition must hold during a’s
execution time according to the third rule of the transition model. As a′ adds l, it may not
hold during the execution time of a′. Since Iexec

a ∩ Iexec
a′ ̸= ∅ there is a conflict. The same

holds if we switch the roles of a and a′. □

We will use the abbreviation etemutex for effective mutexes. This knowledge will enable us to
add further mutex-edges to the planning graph. In turn, the information about the mutexes
can be exploited when we derive MILP-formulations based on the planning graph. The aim
of temporal planning is the same as in the non-temporal case, that is we try to find actions
with attached start times that transform the initial condition into the goal. However, the plans
are generally less symmetric than in the non-temporal case because actions can overlap in
arbitrary ways. This also implies that actions cannot be aggregated to bundles any longer.

4.2 The Temporal Planning Graph

In order to derive efficient temporal MILP-formulations we will have to build a generalized
planning graph. Therefore we have to discuss a couple of issues. Firstly since the operators’
durations can be arbitrary integers now actions can overlap in arbitrary ways. That is the graph
will lose its leveled structure. Furthermore temporal planning is a problem that is continuous in
time rather than discrete as in the non-temporal case. Hence there is an uncountable number
of time points where we could start actions. Thus the answer arises whether we can find a
countable set of time points at which we take decisions without losing optimality. Furthermore
the generalized planning graph has to incorporate the novel transition model 4.1.3 as well as
the mutexes 4.1.4, 4.1.5 and 4.1.6.

4.2.1 Proposition Levels as Samples on the Time Line

So far we thought of planning as a discrete problem in principle: We start in some state L1

given by the set of propositions in the initial condition. Then we transition from one state
Lt to another Lt+1 by applying actions until we reach the goal state. Thereby the value of a
proposition l at time step t denoted by lt changes from one state to the other. However, in
the temporal case the problem becomes continuous in time and we can interpret the value
of a proposition lt as a function of time. Still, for our type of operators and integer-valued
durations the continuous problem can be reduced to a discrete one. In order to explain how to
do this we require the following definition by Mausam et al. [MW06].

Definition 4.2.1 (Decision Epochs and Pivots)
Firstly a time point when a new action may be started is called a decision epoch. Secondly a time
point is called a pivot if it is either zero or a time when an action might terminate.
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In the same paper one can find a sketch of a proof showing that for TSTRIPS-operators as
defined in this thesis we only have to consider pivots as decision epochs. That this holds indeed
becomes plausible if one considers the following argument. There is two reasons why an action
cannot be executed. Either its precondition does not hold or it is mutex with another action
that is currently executed. Since effects do not hold until an action has terminated in our
model and mutexes can end only when actions terminate it does not make sense to consider
time points when no action could terminate.
Since we have to decide at each pivot whether or not to start an action and this decision
depends on the current value lt of the propositions we will have to add a proposition level
corresponding to each pivot. That is in a sense the proposition levels are samples of the
proposition value functions lt in time. It remains the question if we can find a structure
describing the set of pivots. And indeed it is easy to recognize that it suffices to consider
the time point at t = 0 and all integral multiples of the greatest common divisor of the
TSTRIPS-operators’ durations since they cover the pivots.

4.2.2 The Structure of the Planning Graph

Bearing in mind this observation the non-temporal planning graph can be generalized straight-
forwardly. Once again we have proposition levels L1, . . . ,LT +1 containing a proposition node
for each proposition that could hold. Every proposition level corresponds to a time point. The
first proposition level L1 containing the initial condition should correspond to time point t = 0,
L2 to time point t = GCD, L3 to time point t = 2GCD etc., where GCD denotes the greatest
common divisor. Furthermore we have action nodes for actions which could be executed if we
consider only the temutexes defined in defintions 4.1.4, 4.1.5 and 4.1.6. As the graph loses its
leveled structure actions cannot be assigned to action levels any longer. However, actions can
still be assigned to action sets At according to the proposition level in which they are started.
Now proposition and action nodes are connected via the following edges.

• Precondition edges: There is a precondition edge between a proposition node lt ∈ Lt

and an action node at ∈ At if and only if l is a precondition of a.

• Effect edges: There is an effect edge from action node as ∈ As to a proposition node
lt ∈ Lt if and only if l is an effect of a and t = s + δa.

Furthermore there are three types of mutex-edges implementing the transition model 4.1.3.
We remark at this point that we only incorporate temutexes in the graph and no temporal
cmutexes. Hence our method could be improved at this point.

• Proposition-proposition mutex-edges: There is a mutex-edge between two propositions
lt1 ∈ Lt and lt2 ∈ Lt if and only if lt1 and lt2 are temutex.

• Proposition-action mutex-edges: There is a mutex-edge between a proposition lt ∈ Lt

and an action as ∈ As if and only if they are temutex.
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• Action-action mutex-edges: There is a mutex-edge between two actions at
1 ∈ At and

at
2 ∈ At if and only if they are temutex or etemutex.

We remark at this point that temporally shifted instances of the same action cannot overlap
in the non-temporal case as they all have duration one. However, in the temporal case the
execution times of actions of duration greater than one do overlap. Thus there are also mutex-
edges between temporally shifted actions in the graph which is ensured by the second condition
for action-action mutex-edges. We denote the execution time of a time-indexed action by It,exec

a .
Figure 4.1 illustrates an exemplary temporal planning graph for a temporal version of the
airplane domain from listing 2.1 assuming duration three for the fly-operator and duration
one for the load- and unload-operators. Precondition and effect edges are denoted by straight
lines whereas mutexes are represented as dashed lines. Only a subset of propositions, actions
and edges is shown. For instance there is a proposition-action mutex between the proposition
+at(F, A) and the action fly(F, A, B) because this operator forces +at(F, A) to be undefined
during its execution time. Furthermore there is an action-action mutex between the actions
load(P, F, A) and fly(F, A, B) because the latter deletes the precondition +at(F, A) of the
former.

4.2.3 Temporal Graph Expansion

An algorithmic description of the temporal graph expansion procedure is given in algorithm
4.1. coveredActions is a function returning the set of actions that can be executed given the
propositions Lt as preconditions and the temutexes among them. Moreover B is a global set of
all actions that were returned by the function coveredActions at some proposition level but
could not be added to the graph yet because the planning graph was not expanded to the point
in time when they terminate.

4.3 Temporal SATPLAN-based Formulations

According to the transition model from definition 4.1.3 the value of predicate instances can
be undefined in the temporal planning scenario. Hence we must incorporate this notion in
the temporal MILP-formulations. In the following we are going to present two possibilities
how to achieve this. The first formulation uses one binary variable per proposition. That is
in case both the positive and the negative proposition are present at a time this formulation
contains two binary variables per predicate instance. For the second formulation we use a
tri-state approach, that is we incorporate a single three-valued variable per predicate instance.
We remark that the information about whether or not a predicate instance has to be undefined
is encoded by the mutex-edges between actions and propositions in the planning graph. It is
important to note that the following constraints are designed in a way so that it is not required
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+ in(P , F)

+at (F , A )

+at (F , B )

−in(P , F)

load (P ,F , A)

fly (F , A , B)

load (P ,F , A)

unload (P , F , A )

−in(P , F)

−at (F , A )

+at (F , A )

+at (F , B )

fly (F , A , B)

Proposition node

Action node

Precondition/effect

Mutex

no-op+at (P , A) +at (P , A) +at (P , A) +at (P , A)

−at (P , A ) −at (P , A ) −at (P , A )

+at (F , A ) +at (F , A )

+ in(P , F)

+ in(P , F)

no-op no-op

Figure 4.1: Exemplary temporal planning graph for a temporal version of the airplane domain.
The fly-operator has duration three, the others duration one.
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Algorithm 4.1 Temporal Graph Expansion
function EXPAND(PG, B, Op, C, t)
Bnew = coveredActions(Op, C, Lt)
B = B ∪ Bnew

Badd = {b ∈ B|b terminates at (t + 1) * GCD}
B = B \ Badd

Lt+1 ← Lt, attach time point (t + 1) * GCD to Lt+1

for all b ∈ Badd do
t0 ← time index of the proposition level in which b is started
Add b to At0

Connect b to its preconditions in Lt0 via an edge
Add mutex-edges between b and propositions in PG

Add mutex-edges between b and actions in PG

Lt+1 ← Lt+1 ∪ effb
Connect b with its effects in Lt+1 via an edge
Add mutex-edges between effects of b and propositions in PG

end for
return PG, B

end function

to incorporate no-ops any longer which reduces the size of the action set A and consequently
the amount of integer variables substantially.

4.3.1 The Binary SATPLAN-based Formulation

In the following let T be the number of action levels in the planning graph, lt ∈ Lt be the
instance of proposition l in proposition level t ∈ {1, . . . , T + 1} and at ∈ At be the instance of
action a that can be started in proposition level t where t ∈ {1, . . . , T}. Before we come to the
actual formulation we introduce a few auxiliary sets.

• pret
a ⊆ Lt: Represents propositions that at has as a precondition. We distinguish between

self-affected preconditions affta ⊆ pret
a and unaffected preconditions unaffta ⊆ pret

a.

• addt
l ⊆ A: Represents actions as that add lt, that is t = s + δa.

• deltl ⊆ A: Represents actions as that delete lt, that is t = s + δa.

• transt
l ⊆ A: Represents actions as that are temutex with lt.

• transt
a ⊆ L: Represents propositions ls that temutex with at.

• mutext
a ⊆ A: Represents actions that are temutex or etemutex with action at.
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We remark that these sets can be extracted efficiently from the planning graph by iterating over
the outgoing edges of the respective proposition lt regarding addt

l , deltl and transt
l or action at

regarding pret
a, transt

a and mutext
a.

The Variables

The proposition variables are defined as in the non-temporal case. For every lt there is a
variable

xl,t =

1 if l holds in proposition level t

0 otherwise.

The value of a predicate instance p̂ corresponding to a literal l takes on the value true if and
only if x+l(p̂),t = 1 holds. Furthermore p̂ takes on the value false if and only if x−l(p̂),t = 1 holds.
Now the notion of undefinedness is modeled by the case in which x+l(p̂),t = x−l(p̂),t = 0, that is
p̂ is neither true nor false.
The action variables are defined slightly different than in the non-temporal case:

ya,t =

1 if a is executed is started at proposition level t

0 otherwise.

Since actions can be active across proposition levels now they are defined with respect to the
level in which they are started.

Initial Condition and Goal constraints

The initial and goal constraints are given just as in the non-temporal case:

x1
l = 1 if l ∈ I

xT +1
l = 1 if l ∈ G .

Precondition Constraints

According to the transition model from definition 4.1.3 the precondition constraints differ
depending on whether a precondition is affected or not by an action. For all at ∈ A and their
affected preconditions lt ∈ affta we have a constraint

yt
a ≤ xt

l .
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Moreover there are constraints

yt
a ≤ xs

l

for every at ∈ A and propositions ls ∈ unaffta. The latter constraints can be aggregated in a
sum over the execution time of at

|unaffta|yt
a ≤ xt

l +
∑

s∈It,exec
a

xs
l

in order to strengthen the formulation. Finally we can even aggregate the constraints for
affected and unaffected preconditions in a single sum:

|pret
a|yt

a ≤
∑

ls∈pret
a

xs
l .

The constraints of this type can be expressed independently of the sets of affected and unaf-
fected propositions since affta ⊎ unaffta = pret

a.

Backward-chaining Constraints

If lt shall hold we require that it has already held in the last proposition level or an action
as ∈ addt

l is started that adds lt:

xt
l ≤ xt

l +
∑

as∈addt
l

ys
a .

Analogously we can derive constraints expressing that an action has to delete l if it does not
hold in level t. Furthermore, in order to model that actions deleting a proposition lt are
prevented to be started if l holds in level t we add constraints

ys
a ≤ (1− xt

l) .

for every lt and ys
a ∈ deltl which can be equivalently but stronger expressed by a single

constraint∑
as∈deltl

ys
a ≤ |deltl |(1− xt

l)
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for each lt. Analogously we require constraints expressing that no action adding l may be
executed if it does hold in level t. Putting all these constraints together backward-chaining is
modeled by the constraints

xt
l ≤ xt−1

l +
∑

as∈addt
l

ys
a

1− xt
l ≤ 1− xt−1

l +
∑

as∈deltl

ys
a +

∑
at−1∈transt

l

yt−1
a

|deltl |(1− xt
l) ≥

∑
as∈deltl

ys
a

|addt
l |xt

l ≥
∑

as∈addt
l

ys
a

for every lt. The second and the fourth constraint type correspond to the case in which l does
not hold in level t. As we can see the right hand side of the second constraint incorporates a
second sum as opposed to the first constraint type corresponding to the case in which l does
hold. This sum is necessary because a proposition’s value can toggle from true to false if there
is an action started at proposition level t− 1 affecting l, that is if there is a proposition-action
mutex between the affecting action and the proposition.

Proposition Exclusiveness Constraints

Proposition exclusiveness constraints guarantee that if a proposition lt holds its negation takes
on the value false and vice versa:

xt
l + xt

¬l ≤ 1 .

However, since actions can be active across proposition levels we have to ensure that all
affecting actions as ∈ transt

l are inactive:

xt
l + ys

a ≤ 1 .

Once again we can represent these constraints in a single one consisting of two parts, namely
one part implementing proposition-proposition mutexes and one part for proposition-action
mutexes. That is for all lt ∈ L we have one constraint

(1 + |transt
l |)xt

l +

proposition-proposition︷︸︸︷
xt

¬l +

proposition-action︷ ︸︸ ︷∑
as∈transt

l

ys
a ≤ 1 + |transt

l | .
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Action Exclusiveness Constraints

As the proposition exclusiveness constraints, the action exclusiveness constraints can also be
split up into two parts. The first one models proposition-action mutexes, that is for every
at ∈ A and every proposition ls ∈ transt

a there are constraints

yt
a + xs

l ≤ 1 .

The second part models action-action mutexes. For every at ∈ A and all bs ∈ mutext
a there is a

constraint

yt
a + ys

b ≤ 1 .

In order to strengthen the formulation we aggregate these constraints in one constraint per
at ∈ A:

(|mutext
a|+ |transt

a|)yt
a +

action-action︷ ︸︸ ︷∑
bs∈mutext

a

ys
b +

proposition-action︷ ︸︸ ︷∑
ls∈transt

a

xs
l ≤ |mutext

a|+ |transt
a| .

Objective Function

We can use a straightforward generalization of the cost function applied in the non-temporal
case (compare equation 3.5) as the objective:

(4.1)
∑

at∈A
δayt

a .

An alternative is to reward goal propositions that are true early:

(4.2) −
T +1∑
t=2

γt−2 ∑
l∈G

xt
l ,

where 0 < γ < 1 is the discount factor.

4.3.2 The Tri-state SATPLAN-based Formulation

In the tri-state formulation we are guaranteed to have only one variable with domain
{−1, 0, +1} per predicate instance representing both the positive and negative version of
a proposition. However, as the planning graph contains proposition nodes rather than nodes
representing predicate instances we have to clarify how to extract predicate instances and the
corresponding auxiliary sets from it. Therefore we introduce the following definition.
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Definition 4.3.1 (Induced Predicate Instance Sets)
Let L be a set of propositions. Then we get a corresponding set of predicate instances as

P̂ = {p̂ ∈ P̂|+ l(p̂) ∈ L ∨ −l(p̂) ∈ L} .

Consequently we introduce the notation P̂t for predicate instances corresponding to a propo-
sition level Lt and P̂ for the set of all time-indexed predicate instances. Furthermore since
relations between actions and propositions are encoded as edges between action and proposi-
tion nodes rather than predicate instance nodes we have to distinguish between positive and
negative propositions regarding these relations. Hence we introduce the notation

L+ = {p̂ ∈ P̂|+ l(p̂) ∈ L}
L− = {p̂ ∈ P̂| − l(p̂) ∈ L} .

for an arbitrary set of propositions L. This notation can be applied to express for instance
precondition relations and proposition-actions mutexes. In the following let T be the number
of action levels in the planning graph, lt ∈ Lt and pt ∈ Pt be the time-indexed proposition l

and predicate instance p̂ in level t ∈ {1, . . . , T + 1}. Moreover let at ∈ At be the instance of
action a that can be started in proposition level t ∈ {1, . . . , T}. We come to the definition of
the auxiliary sets now.

• pret,±
a ⊆ P̂ t: Represents predicate instances corresponding to positive/negative proposi-

tions that at has as a precondition. We distinguish between self-affected preconditions
afft,±a ⊆ pret,±

a and unaffected preconditions unafft,±a ⊆ pret,±
a .

• addt
p̂ ⊆ A: Represents actions as that add p̂t, that is t = s + δa (compare chapter 2).

• deltp̂ ⊆ A: Represents actions as that delete p̂t, that is t = s + δa (compare chapter 2).

• transt,±
p̂ ⊆ A: Represents actions as that are temutex with +l(p̂t) or −l(p̂t).

• transt,±
a ⊆ P̂: Represents predicate instances p̂s for which +l(p̂s)/−l(p̂s) are temutex

with at.

• mutext
a ⊆ A: Represents actions that are temutex or etemutex with action at.

These auxiliary sets can be determined once again by iterating over the outgoing edges of the
respective proposition and action nodes. Finally we remark that the constraints of the tri-state
formulation cannot be expressed directly as boolean formulas any longer in general since the
proposition variables can take on three different values.
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The Variables

There is a predicate instance variable for each predicate instance p̂t defined as

xt
p̂ =


1 if + l(p̂) holds in proposition level t

0 if neither + l(p̂) nor − l(p̂) holds in proposition level t

−1 if − l(p̂) holds in proposition level t .

xt
p̂ = 1 and xt

p̂ = 0 correspond to the cases of p̂ being true or false. The case in which p̂ is
undefined is modeled by xt

p̂ = 0. Furthermore we have one action variable for each action at

yt
a =

1 if a is started at proposition level t

0 otherwise

as in the binary formulation.

Initial Condition and Goal Constraints

The initial condition and goal constraints are given by

x1
p̂ =

+1 if + l(p̂) ∈ I
−1 if − l(p̂) ∈ I

xT +1
p̂ =

+1 if + l(p̂) ∈ G
−1 if − l(p̂) ∈ G .

These constraints are well-defined because for each predicate instance either the corresponding
positive or negative proposition can be in the initial condition and goal respectively but not
both.

Precondition Constraints

In the tri-state formulation we have to take into account the sign of the predicate instance
variables. Hence we get constraints

2yt
a ≤ +xt

p̂ + 1

for every at and p̂t ∈ pret,+
a as well as constraints

2yt
a ≤ −xt

p̂ + 1
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for every at and p̂t ∈ pret,−
a . The precondition relations for unaffected predicate instances in

unafft,±a can be aggregated in sums

2|unafft,±a |yt
a ≤ ±xt

p̂ +±
∑

s∈It,exec
a

xs
p̂ + |unafft,±a |

in order to get a stronger version. Since all preconditions of an action have to hold to be able
to execute it we can express the precondition relations by a single constraint per action at

containing both affected and unaffected preconditions:

2(|pret,+
a |+ |pret,−

a |)yt
a ≤

∑
p̂s∈pret,+

a

xs
p̂ −

∑
p̂s∈pret,−

a

xs
p̂ + |pret,+

a |+ |pret,−
a | .

Backward-chaining Constraints

In order to model the backward-chaining we require two constraints

xt
p̂ ≤ xt−1

p̂ + 2
∑

as∈addt
p̂

ys
a +

∑
at−1∈transt,+

p̂

yt−1
a

−xt
p̂ ≤ −xt−1

p̂ + 2
∑

as∈deltp̂

ys
a +

∑
at−1∈transt,−

p̂

yt−1
a

per predicate instance p̂t which are already in their strongest form. The first inequality ensures
that if a predicate instance is true the predicate instance has already been true in the last level
t− 1 or there has to be an action that adds it independently of its value in the previous level
or in the case in which p̂t is undefined an action at−1 ∈ transt,+

p̂ must have been started that
affects it. The second inequality implements the same semantics for the case that p̂t is false.
Moreover we have two types of constraints

(4.3)
−xt

p̂ + 1 ≥ 2ys
a for every as ∈ deltp̂

xt
p̂ + 1 ≥ 2ys

a for every as ∈ addt
p̂ .

The constraints of the first type in equation 4.3 express that if p̂t is true or undefined then no
action deleting it may be active. The constraints of the second kind implement the same for
the case in which p̂t is false. Notice that it is not possible to aggregate these constraints in a
sum as in the binary case. Putting all constraints together the backward-chaining is modeled
by the constraints

xt
p̂ ≤ xt−1

p̂ + 2
∑

as∈addt
p̂

ys
a +

∑
at−1∈transt,+

p̂

yt−1
a

−xt
p̂ ≤ −xt−1

p̂ + 2
∑

as∈deltp̂

ys
a +

∑
at−1∈transt,−

p̂

yt−1
a

−xt
p̂ + 1 ≥ 2ys

a for every as ∈ deltp̂
xt

p̂ + 1 ≥ 2ys
a for every as ∈ addt

p̂
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4 Temporal Planning via Mixed-Integer Linear Programming

for every p̂t.

Proposition Exclusiveness Constraints

Proposition exclusiveness constraints ensure that if a predicate instance p̂t is either true or false
all affecting actions are inactive. This can be expressed by constraints

xt
p̂ + ys

a ≤ 1
−xt

p̂ + ys
a ≤ 1

for every p̂t and as ∈ transt,+
p̂ or as ∈ transt,+

p̂ respectively. We can express these constraints in
a stronger way by expressing the proposition-action mutexes as sums

|transt,+
p̂ |x

t
p̂ +

∑
transt

p̂

ys
a ≤ |transt,+

p̂ |

−|transt,−
p̂ |x

t
p̂ +

∑
transt

p̂

ys
a ≤ |transt,−

p̂ |

for every p̂t. As opposed to the binary case these constraints only consist of the transition part
since the proposition-proposition mutexes are already given by the fact that each predicate
instance variable p̂t can take on either of the values value −1, 0 and +1 but not two at once.

Action Exclusiveness Constraints

The action exclusiveness constraints express that during an action at’s execution time (1) all
affected predicate instances must be undefined and (2) all other actions that are mutex with at

have to be inactive. The first part can be expressed by the two constraint types

yt
a + xs

p̂ ≤ 1
yt

a − xs
p̂ ≤ 1

for every at and p̂s ∈ transt,±
a . Notice that these constraints cannot be expressed using sums

over the predicate instance variables. The reason for this is that predicate instance variables
can take on positive and negative values and hence a sum over them can yield the result zero
although not all of them take on the value zero. The second part can be expressed as in the
binary case. For every at we add a constraint

|mutext
a|yt

a +

action-action︷ ︸︸ ︷∑
bs∈mutext

a

ys
b ≤ |mutext

a| ,
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4.4 Temporal Level Off

which is already in its strongest form. Putting all equations together action exclusiveness can
be expressed by the constraints

yt
a + xs

p̂ ≤ 1 for every p̂s ∈ transt,+
a

yt
a − xs

p̂ ≤ 1 for every p̂s ∈ transt,−
a

|mutext
a|yt

a +

action-action︷ ︸︸ ︷∑
bs∈mutext

a

ys
b ≤ |mutext

a| .

Objective Function

The cost objective function from equation 4.1 does not have to be modified for the tri-state
formulation because the action variables are defined equally. However, since the tri-state
formulation incorporates predicate instance variables rather than proposition variables the
rewarding objective function from equation 4.2 has to be adapted:

T +1∑
t=2

γt−2

 ∑
l∈G−

xt
l −

∑
l∈G+

xt
l

 ,

where 0 < γ < 1 is the discount factor.

4.4 Temporal Level Off

As in the non-temporal case the set of propositions in a proposition level and the set of mutexes
between pairs of them will reach a fixed point. That is from some level on neither will change
any longer. Since an action is added to the planning graph in level t if and only if all its
preconditions are present in Lt and no pair of them is temutex, we can conclude that in a
leveled off graph the set of actions which can be started At will also not change any longer.
This property of the planning graph allows us to stop expanding it in case a level off was
detected. In the non-temporal case we can identify a level off by finding two subsequent
proposition levels that have both the same propositions and mutexes. But this criterion does
not suffice for the temporal case as the counter example illustrated in listing 4.3 proves. The
temporal planning graph that is produced for this problem is illustrated in figure 4.2. The
actions are not shown for reasons of clarity. Beyond the proposition levels the figure also
indicates all mutexes between pairs of propositions depicted by dashed lines. We can see that
neither the set of propositions nor the set of binary mutexes changes from level three to four.
That is the old criterion would detect a level off at this point. However, since operators op1
and op2 have duration two the set of binary mutexes changes from level four to five hence the
planning graph has actually not leveled off. Instead we introduce the following criterion for
level offs in temporal planning graphs.
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4 Temporal Planning via Mixed-Integer Linear Programming

Listing 4.3 Counter example illustrating that the criterion for level offs has to be modified for
temporal planning.
domain counterExampleDomain {

predicates { p(c1), q(c1), r(c1) }

operators {

op1(c1, c2, c3)

precondition { }

effect { +p(c1), -v(c1) }

duration 2

op2(c1, c2, c3)

precondition { }

effect { +q(c1), +v(c1) }

duration 2

op3(c1, c2, c3)

precondition { }

effect { +r(c1) }

duration 1

}

}

problem counterExampleProblem {

Domain = counterExampleDomain

Objects { A }

Initial condition { }

Goal { p(A), q(A), r(A) }

}
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Figure 4.2: Temporal planning graph for the counter example from listing 4.3.

Lemma 4.4.1 (Temporal Level Off)
Let δmax = maxop{δop}. The temporal planning graph is leveled off in proposition level n if
and only if for δmax + 1 subsequent proposition levels n, n + 1, . . . , n + δmax neither the set of
propositions nor the set of binary mutexes changes.

Proof 4.4.2 (Temporal Level Off)
A) If the graph is leveled off the condition above will apply at some level n.
If the graph has leveled off at n then the proposition levels and the corresponding sets of mutexes
do not change from level n on. Thus they will in particular not change in the proposition levels
n, . . . , n + δmax.
B) If the condition given above holds then the graph is leveled off at n.
We remark that whether or not an action is added to the planning graph in a certain level Lt

depends only on the propositions in this level and the binary mutexes among them (function
coveredActions in algorithm 4.1). Now, if both the propositions and the set of binary mutexes do
not change in subsequent levels n, . . . , n + δmax, we know that no action was added starting in
proposition level n that appended a new proposition or forced a binary mutex to end. Furthermore,
since proposition levels n and n + 1 contain the same propositions and have the same set of binary
mutexes, it holds An = An+1. Hence, no action which adds propositions or terminates mutexes in
level n + δmax + 1 and starts in proposition level Ln+1 can be added to the graph. □
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5 A State-change Approach to Temporal
Planning

In this chapter we are going to take a different approach to modeling temporal planning
problems as MILPs than in the last chapter. Instead of directly modeling states and actions we
rather model state-changes. Vossen et al. already used this approach to model non-temporal
planning problems [VBS99]. In the following section we are going to introduce five types
of state-change variables (SCVs) representing different types of state-changes. Afterwards
we will show how the temporal planning graph has to be extended to be able to derive
efficient state-change MILP-formulations and how it is constructed. Finally we introduce the
MILP-formulation itself.

5.1 The Five Types of State-change Variables

Each type of SCV models a different state-change according to the transition model from
definition 4.1.3. For every SCV-type there are actions that trigger it. The first type are maintain-
variables vl,maintain. They model a transition in which the value of a proposition is simply
propagated from a proposition level to the level succeeding it. They are triggered by no-ops.
The second type are pre-variables vl,pre. Similarly to the maintain-variables they model the
propagation of a propositions value. However, they can propagate them over multiple time
steps. SCVs of this type are triggered by actions which have a proposition as a precondition
but do not affect it. Thirdly we have add-variables vl,add. They model a state-change in
which a proposition is added independently of whether it held before or not. Add-variables
correspond to actions adding a proposition that they do not have as a precondition. pre-add-
variables vl,pre-add also model state-changes in which propositions are added but differ from
add-variables since they imply that the proposition held when the state-change was initiated.
Hence they are triggered by actions having a proposition as both a precondition and an effect.
Similarly there are further pre-del-variables that model state-changes in which propositions
are deleted. If the type of an SCV is irrelevant we also write vl. The set of SCVs is denoted
by V. Moreover in order to denote which levels a maintain-variable corresponds to we use
the time-indexed notation vs,t

l,maintain meaning that proposition l is maintained from level s to
t, where t = s + 1 for maintain-variables. For the other state-change variables vs,t

l,type, where
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5 A State-change Approach to Temporal Planning

type ∈ {pre, add, pre-add, pre-del} t can take on an arbitrary values s < t ≤ T + 1. The set of
all time-indexed SCVs is denoted by V . Finally we have to define mutexes among SCVs.

Definition 5.1.1 (Temporal SCV-SCV Emutex)
Two SCVs vl and wl′ are temporally emutex if and only if the actions triggering vl are temutex
or etemutex with the actions triggering wl′ . Additionally we declare maintain-variables vs,s+1

l,maintain
artificially as mutex with all pre-variables vq,r

l,pre if {s, s + 1} ∩ {q, . . . , r} ≠ ∅.

Adding the artificial mutexes will allow us to formulate stronger MILP-formulations later on.
For the regular case we give the following examples: For example vs,t

l,pre-add and ws,t
l,add are

mutex since the actions triggering these state-changes both affect l and their execution times
overlap. Another example for two mutex SCVs are vs,t

l,pre-add and ws+1,t+2
¬l,pre-del. However, vs,t

l,pre-add

and ws−1,t
l′,pre-del for instance are not emutex if l′ ̸= l and l′ ̸= ¬l.

5.2 Including State-change Variables in the Temporal Planning
Graph

As a starting point we take the temporal planning graph described in the last chapter. For every
possible SCV vs,t

l,type, where 1 ≤ s < t ≤ T + 1 and l ∈ L we add a corresponding node to the
temporal planning graph if there is at least one action as with duration δa = t − s that can
trigger it. Furthermore we introduce the following edges.

• Trigger-edges: There is a trigger-edge between an SCV vs,t
l,type and an action as if and only

if as triggers a state-change of this type and terminates at time t.

• Mutex-edges: There is a mutex-edge between every two SCVs that are temutex according
to definition 5.1.1.

The new graph expansion procedure is illustrated in algorithm 5.1. SCVsFromAction is a
function that creates all SCVs triggered by an action.

5.3 The State-change Formulation

In the following let T be the number of action levels in the planning graph, lt ∈ Lt be the
instance of proposition l in proposition level t ∈ {1, . . . , T + 1} and at ∈ At be the instance of
action a that can be started in proposition level t, where t ∈ {1, . . . , T}. Moreover, let vs,t

l,type ∈ V
be an SCV of the respective type, where type ∈ {maintain, pre, add, pre-add, pre-del} and
1 ≤ s < t ≤ T + 1. Once again we define a couple of auxiliary sets to make the formulation
comprehensive.
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5.3 The State-change Formulation

Algorithm 5.1 Temporal Graph Expansion with State-change Variables
function EXPAND(PG, B, Op, C, t)
Bnew = coveredActions(Op, C, Lt)
B = B ∪ Bnew

Badd = {b ∈ B|b terminates at (t + 1) * GCD}
B = B \ Badd

Lt+1 ← Lt, attach time point (t + 1) * GCD to Lt+1

for all b ∈ Badd do
t0 ← time index of the proposition level in which b is started
Add b to At0

Connect preconditions of b in Lt0 with b via an edge
Add mutex-edges between b and propositions in PG

Add mutex-edges between b and actions in PG

Lt+1 ← Lt+1 ∪ effb
Connect b with its effects in Lt+1 via an edge
Add mutex-edges between effects of b and propositions in PG

Vadd ← SCVsFromAction(b)
for all scv ∈ Vadd do

if not exists scv then
Add scv to PG

Add mutex-edges between scv and other SCVs in PG

end if
Connect scv with b via a trigger-edge

end for
end for
return PG, B

end function

• pres,t
l ⊆ A: Represents actions as that terminate in proposition level t, have l as a

precondition but neither add nor delete it.

• adds,t
l ⊆ A: Represents actions as that terminate in proposition level t and have l as an

effect but not as a precondition.

• pre-adds,t
l ⊆ A: Represents actions as that terminate in proposition level t and have l

both as a precondition and an effect.

• pre-dels,t
l ⊆ A: Represents actions as that terminate in proposition level s and have l as

a precondition and ¬l as an effect.
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5 A State-change Approach to Temporal Planning

• The following sets represent SCVs of different types corresponding to transitions starting
at proposition level s

types,⋆
l = {vs,r

l,type ⊆ V |2 ≤ r ≤ T + 1} ,

where type ∈ {pre, add, pre-add, pre-del}.

• Similarly we introduce sets representing SCVs of different types corresponding to transi-
tions ending at proposition level t

type⋆,t
l = {vq,t

l,type ⊆ V |1 ≤ q ≤ T} ,

where type ∈ {pre, add, pre-add, pre-del}.

• mutexs,t
l,type ⊆ V: Represents SCVs that are mutex with vs,t

l,type, where type ∈
{pre, add, pre-add, pre-del}.

• Finally let

pret
l,× = {vq,r

l,pre ∈ V |q < t ≤ r}

denote the set of SCVs of type pre that cross proposition level t.

We remark that these sets can be efficiently extracted from the new planning graph. Moreover
it is not necessary to incorporate no-ops because they are irrelevant for the plan we want to
find. Hence it is unnecessary to introduce a set of actions triggering the maintain-variables.

The Variables

We introduce five types of real-valued variables modeling the different types of state-changes.
We start with the maintain-variables:

xs,s+1
l,maintain =

1 if the value of l is propagated from level s to t

0 otherwise

for every ls. The other state-change variables are defined via the triggering actions. For every
SCV vs,t

l,type where type ∈ {pre, add, pre-add, pre-del} we incorporate a variable

(5.1)
xs,t

l,type =
∨

as∈types,t
l

ys
a .

Moreover we have integer-valued action variables

yt
a =

1 if a is started in proposition level t

0 otherwise

for all at as common.
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5.3 The State-change Formulation

The Variable Definition Constraints

The definitions from equation 5.1 have to be included in the MILP-formulation. This can be
done by replacing the logical or by a sum over the corresponding MILP-variables for all vs,t

l,type

and as ∈ types,t
l

xs,t
l,type ≤

∑
as∈types,t

l

ys
a

and adding constraints

xs,t
l,type ≥ ys

a ,

where type ∈ {pre, add, pre-add}. A special case are the pre-del variables whose definition
can be expressed by a single equation, since all actions triggering a pre-del state-change are
temutex with each other. Hence the definition constraints are given as

xs,t
l,type ≤

∑
as∈types,t

l

ys
a for every vs,t

l,type

xs,t
l,type ≥ ys

a for every vs,t
l,type and as ∈ types,t

l

xs,t
l,pre-del =

∑
as∈pre-dels,t

l

ys
a for every vs,t

l,pre-del ,

where type ∈ {pre, add, pre-add}. We remark that the variable definition constraints can be
improved heuristically as often only one action exists that triggers a state-change. In this case
the definition constraints for the state-change variables of a type other than pre-del can also be
expressed by a single equality.

Initial Condition and Goal Constraints

To define the initial condition in the MILP we add an artificial layer zero-to-one of state-change
variables and fix add-variables corresponding to the propositions in the initial condition I to
the value one. Adding a constraint

x0,1
l,add = 1

for every l ∈ I implements this behavior. To achieve that a goal proposition holds we require
that at least one state-change happens that propagates it or adds it to the last proposition level
LT +1. This can be modeled by constraints

xT,T +1
l,maintain +

∑
type

∑
vq,T +1

l,type ∈type⋆,T +1
l

xq,T +1
l,type ≥ 1

for every l ∈ G, where type ∈ {pre, add, pre-add}.
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5 A State-change Approach to Temporal Planning

Exclusiveness Constraints

For all vs,t
l,type1

exclusiveness is expressed by the constraints

|mutexs,t
l,type1|x

s,t
l,type1 +

∑
vq,r

l,type2∈mutexs,t
l,type2

xq,r
l,type2 ≤ |mutexs,t

l,type1| ,

where type1 ∈ {pre, add, pre-add, pre-del} and
type2 ∈ {maintain, pre, add, pre-add, pre-del}. Constraints for the case type1 = maintain
are not required. An explanation is given after the backward-chaining constraints were
introduced.

Backward-chaining Constraints

In order to implement backward-chaining we add one constraint per proposition ls expressing
that if a state-change with respect to proposition l starts in proposition level s (maintain, pre,
pre-add or pre-del) then another state-change adding l to level s (maintain, pre, add, pre-add,
pre-del) must have happened before:

xs,s+1
l,maintain +

∑
type1

∑
vs,r

l,type1∈type1s,⋆
l

xs,r
l,type1 ≤ xs−1,s

l,maintain +
∑

vq,r
l,pre∈pres

l,×

xq,r
l,pre

+
∑

vq,s
¬l,pre-del∈pre-delq,s

¬l

xq,s
¬l,pre-del

+
∑

type2

∑
vq,s

l,type2∈type2q,s
l

xq,s
l,type2 ,

where type1 ∈ {pre, pre-add, pre-del} and type2 ∈ {add, pre-add}. The pre-variables vq,r
l,pre add

l to every proposition level they cross because an active state-change of this type guarantees
that l holds throughout execution, that is in the interval {q + 1, . . . , r}. Moreover, the we have
to add the pre-del variables corresponding to l’s negation to the right hand side since deleting
l means adding ¬l. Notice that the correctness of the backward-chaining constraints is ensured
by the exclusiveness constraints. They guarantee that only one variable on the left hand side
can take on the value one. It remains to explain why no exclusiveness constraints for maintain
variables are necessary. Assume that we have a plan in which two maintain-variables are
active in parallel corresponding to a proposition l and its negation ¬l. Then the corresponding
backward-chaining constraints ensure that a state-change has to happen that adds both of
these propositions. Any state-changes other than maintains cannot achieve this since they
would be exclusive due to the exclusiveness constraints. Hence the only possibility is to activate
the maintain-transitions for the previous proposition level. This can go on backwards until the
first artificial layer implementing the initial condition is reached. However, here either the
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5.3 The State-change Formulation

add-variable corresponding to l or the add-variable corresponding to its negation can be active
but not both. Otherwise the initial condition would be ill-defined.

Objective function

Since proposition variables would have to be added in order to apply the reward objective on
the state-change formulation we suggest to apply the cost objective from equation 3.5. The
latter objective function can be adopted without any changes.
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6 Real-valued Durations and Dynamic Graph
Expansion

Up to now we assumed that actions have integer-valued durations. This assumption enables us
to compute the greatest common divisor (GCD) of the TSTRIPS-operators’ durations and to
add proposition levels to the graph corresponding to times which are integral multiples of the
GCD. Considering these proposition levels is correct because the pivots are integral multiples of
the GCD. And the pivots are the decision epochs in turn (see definition 4.2.1). In the following
we will show at which time points proposition levels must be sampled in the case of real-valued
durations. Furthermore we will introduce dynamic sampling of proposition levels in order to
further reduce the number of proposition levels.

6.0.1 Dealing with Real-valued Durations

In the case of real-valued durations there is no GCD and the pivots are not that regularly
ordered. That is in this case we have to consider all time points

(6.1) {t ∈ R|t = f(γ) =
|Op|∑
i=1

γiδopi
, γi ∈ N0} ,

where δopi
denotes the duration of TSTRIPS-operator i. For integer-valued durations holds

{t ∈ R|t = f(γ) =
|Op|∑
i=1

γiδopi
, γi ∈ N0}

={t ∈ R|t = f(γ) = GCD
|Op|∑
i=1

γikopi
, γi ∈ N0, kopi

∈ N}

⊆{t ∈ R|t = f(γ) = GCD · n, n ∈ N0} .

The fact that the set of time points we considered so far is a superset of the time points
we actually have to consider shows that we include more proposition levels than actually
necessary. For instance if we have two operators with durations five and seven the GCD is 1
and starting at t = 0 we incorporate proposition levels at time points t = 1, 2, 3, 4, 6, 8, 9, . . .

in the planning graph that are actually redundant because no action can terminate at these
times. However using the time points depicted in equation 6.1 to sample proposition levels
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6 Real-valued Durations and Dynamic Graph Expansion

instead of the integral multiples of the GCD introduces one issue: We have to distinguish
the actual continuous duration δa of an action a from its discrete duration δa. With discrete
duration we mean the number of periods between two proposition levels their execution time
overlaps with. For example an action’s execution time will overlap with the periods 0 → 1,
1 → 2, . . . , 4 → 5 (five periods in total) if it is an instance of the operator of duration five
and we use the integral multiples of the GCD to sample proposition levels. So their discrete
and real durations are equal. But if we drop the unnecessary proposition levels at t = 1, . . . , 4
its discrete duration will only be one. However, if the same action is started in the required
proposition level corresponding to t = 5 then its discrete duration will be two (necessary
time point t = 7 in between t = 5 and t = 10). Thus the two notions of duration will not be
equivalent any longer. This affects the MILP-formulations we presented in the last two chapters
since we supposed that

δa = δa and δ1
a = δ2

a = . . . = δT
a ,

where δt
a denotes the discrete duration of action a if it is started at proposition level t. Similarly,

we have to distinguish between an action’s real Iexec,t
a and discrete execution time Iexec,t

a , real
αa and discrete starting time αa, and real βa and discrete stopping time β

a
which become

level dependent as well. However, we can solve this problem for both integer and real-
valued operators by substituting the real values by the corresponding discrete level dependent
ones in the MILP-formulations. Furthermore, the test for a level off changes slightly. Let
δmax = maxop δop be the longest real duration and t be the real time attached to proposition
level Ln. To test whether a level off occurred in level n, we must check if all proposition levels
whose attached real time is in the interval [t, t + δmax] contain the same propositions and binary
temutexes.

6.0.2 Adding Proposition Levels Dynamically

Moreover even if we drop the proposition levels corresponding to GCD multiples at which no
action can possibly terminate we still add more levels than necessary because it can happen
that certain actions cannot be executed since their precondition does not hold. For instance
if an action of the operator of duration five mentioned in the last section cannot be started
in the first proposition level the levels corresponding to t = 5, 10, 15, . . . do not have to be
added. The same holds for real-valued durations. This leads to the idea of adding proposition
levels dynamically to the planning graph that is to check for each time point in the sets given
above if an action can terminate in fact. Since we want to add as few proposition levels as
possible this requires to sort the time points in equation 6.1. For this purpose we use a heap
that replaces the set B in algorithm 5.1. The heap will store all action instances not yet added
to the planning graph but whose preconditions are satisfied. Every time a new proposition
level is added new actions are added to the heap and sorted according to their stopping time.
Then we extract all actions from the heap with the minimal stopping time among all actions in
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it and add them to the planning graph. Algorithm 6.1 gives a formal description. H denotes
the heap and b.β denotes the real stopping time of action b.

Algorithm 6.1 Dynamic Graph Expansion
function EXPAND(PG, H, Op, C, t)
Bnew = coveredActions(Op, C, Lt)
Add all b ∈ Bnew to the heap H
b← H.extractMin(), t0 ← b.β, t1 ← t0
Badd ← {b}
while t1 = t0 do

b← H.extractMin(), t1 ← t0
Badd ← Badd ∪ {b}

end while
Lt+1 ← Lt, attach time point b.δ to Lt+1

for all b ∈ Badd do
t0 ← time index of the proposition level in which b is started
Add b to At0

Connect preconditions of b in Lt0 with b via an edge
Add mutex-edges between b and propositions in PG

Add mutex-edges between b and actions in PG

Lt+1 ← Lt+1 ∪ effb
Connect b with its effects in Lt+1 via an edge
Add mutex-edges between effects of b and propositions in PG

Vadd ← SCVsFromAction(b)
for all scv ∈ Vadd do

if not exists scv then
Add scv to PG

Add mutex edges between scv and other SCVs in PG

end if
Connect scv with b via a trigger-edge

end for
end for
return PG, B

end function

65





7 Comparison

As already mentioned in the introduction planning via MILP is closely related to other planning
techniques such as planning as satisfaction and planning as inference. Regarding the logical
structure the SATPLAN-based formulations presented in chapter 4 are similar to the planning as
satisfaction formulations presented in [ML06]. Broadly speaking we can generate a planning
as satisfaction formulation by transforming each MILP-constraint into a logical disjunction.
Connecting the individual disjunctions with conjunctions yields a big formula in conjunctive
normal from which a plan can be extracted by determining a satisfying assignment. The search
for such an assignment can be performed applying common SAT-solvers. Similarly we can
transform our MILP-formulation into factor graphs which yields formulations for planning as
inference. Once again this can be done by translating constraints into factors of the factor
graph principally. If planning as inference is performed in NID-rules domains it is distinguished
between actions and rules. Thereby the action defines a precondition and a number of possible
effects (rules) of which one happens with a given probability. Although NID-rules domains
are very different from the STRIPS-like domains considered in this thesis the logical structure
of the non-temporal SATPLAN-based formulation presented in chapter 3 is very similar to the
logical structure of the factor graphs that Hübner derived in the case of one deterministic
NID-rule per action [Hü13]. In this special case it is not necessary to distinguish between rules
and actions. Thus precondition-effect relations can be expressed by incorporating only nodes
in the factor graph that represent the notion of actions as instantiated operators.
As mentioned before another algorithm that is closely related to our method is the Temporal
Graphplan algorithm by Smith et. al [SW99] which is a generalization of Graphplan to the
temporal case. In this chapter we will compare our method empirically to this algorithm. But
beforehand we will describe roughly how we implemented our approach.

7.1 Implementation

A big part of this thesis was to implement the planning via MILP method presented in this
thesis. Therefore the graph expansion procedure illustrated in algorithm 6.1 and the solution
extraction which is performed by solving one of the MILPs presented in the previous chapters.
The language of choice was C/C++.
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7 Comparison

7.1.1 Implementing the Graph Construction

As a framework for relational planning we used libPRADA [LT10]. libPRADA is mainly a
framework for developing planning as inference methods for NID-rules domains. But as
already explained we can use NID-rules to express STRIPS-operators by allowing only one rule
that happens with probability one. In order to solve temporal planning problems we extended
the NID-rules by attaching a duration to them. libPRADA allows to automatically instantiate a
given set of operators. Furthermore by adapting libPRADA’s state transition functionality we
could implement the agglomerative computation of the proposition levels in a neat way. Based
on these modifications we implemented the construction of the temporal planning graph as
described in algorithm 6.1. Thereby our data structures for proposition, action and SCV-nodes
wrap around the corresponding literals and rules of libPRADA.

7.1.2 Implementing the Solution Extraction

To implement the solution extraction we used the COIN Branch-and-Cut Solver (CBC) [FLH05].
CBC is an open source solver for mathematical programming problems coded in C++ and
is a part of the COmputational INfrastructure for Operations Research project (COIN-OR or
simply COIN). It offers established techniques for all components of the Branch-and-Bound
method such as preprocessing, cut generation and heuristics as introduced in chapter 3. In
our implementation solution extraction is started for the first time when a proposition level is
reached in which all goal propositions are present and then after each graph expansion. Before
the solution extraction is started we derive a MILP-formulation based on the planning graph
as presented in chapters 4 and 5. This formulation is encoded in an MPS-file. The MPS-file
contains a description of the constraint matrix and the right hand side as well as the limits of the
incorporated variables (compare definition 3.1.1). After the optional preprocessing the Branch-
and-Bound method is applied to try to determine a solution for the current MILP-formulation.
If at least one solution is found it is written to an output file and decoded in order to determine
the actions that form a plan for the given problem. Otherwise if the MILP-formulation is proven
to be infeasible the method continues with another graph expansion.

7.2 Empirical Comparison

In this section the performance of the three MILP-formulations presented in this thesis are
compared to each other and Temporal Graphplan (TGP) [SW99]. We run both procedures on
problems from three different domains which are listed and described in detail in the appendix
B. The first domain is a temporal logistics domain which is provided with the Common Lisp
implementation of TGP [SW02]. In this domain packages have to be delivered from certain
starting locations given in the initial condition to destinations given in the goal using various
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vehicles. The second domain is a blocks world. Given an initial configuration of the blocks
the goal is to build towers or exchange blocks. The third domain is the Box Assembly Domain.
Given a number of materials, for example walls and screws, the goal is to assemble parts of a
box.
In the experiments both methods start with an empty graph and solve all problems until a
solution is found or the time limit of one hour is reached. Our planning via MILP method
performs standard CBC-preprocessing before every solution extraction. For Branch-and-Bound
we apply the default CBC-parameters. The selection strategy is a mixture of depth-first and
breadth-first search. We perform strong branching for five possible node splits. We neither
make use of heuristics nor cutting plane generators. As the objective we apply the cost function
given in equation 4.1 and the optimization is stopped when the first feasible solution is found.
Regarding TGP we deactivate conditional mutex reasoning since it is not implemented in our
planning via MILP method but could be in the future. As TGP’s backward-chaining search we
apply the version that does subset memoization. The experiments are run on a notebook with
a 2.3 GHz quad core processor where we use only one core for the experiments because both
implementations are fully sequential. Furthermore the system has got 8 GB of main memory.

7.2.1 Results

Table 7.1 illustrates the results of the experiments performed. Each row corresponds to a
certain problem and each column to a MILP-formulation or method. In the cells of the table we
use the notation t/c/N where t denotes the time required to solve the problem, c the cost of
the solution that was found and N the number of LPs/nodes in the Branch-and-Bound tree
solved. The times are rounded up and in seconds. If a star is placed in a cell, this means that
the problem could not be solved within the time limit of one hour. We applied the methods to
three problems from each domain. The problems for one domain are ordered by their difficulty.

7.2.2 Evaluation

We can see that the state-change formulation is fastest among the MILP-formulations in all
domains. Moreover, the state-change formulation allowed to solve more problems within the
time limit than the other two formulations. In all but one case the solution of the state-change
formulation had equal cost compared to the other two formulations. However, the solution for
the problem blocks2 found by applying the SATPLAN-based formulations is better. The reason
for this could be that the Branch-and-Bound method applied to the state-change formulation
terminated already in the root. Applied to the SATPLAN-based formulations, the tree is
explored further until a feasible solution is found. The binary SATPLAN-based formulation
is the second fastest one. It solves the problems blocks2 and log2 in significantly less time.
Applied to the other problems the SATPLAN-based formulations perform very similarly with
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Problem Binary SATPLAN-based Tri-state SATPLAN-based State-change TGP

box1 1/10/8 1/10/5 1/10/1 1/10
box2 ⋆ ⋆ 1388/17/3431 ⋆

box3 ⋆ ⋆ ⋆ ⋆

blocks1 2/6/1 3/6/1 1/6/1 1/6
blocks2 79/12/26 192/13/19 22/13/1 11/15
blocks3 103/12/47 114/12/42 22/12/5 1/12

log1 2/8/19 2/8/1 1/8/4 1/8
log2 249/25/439 1629/23/5074 218/25/30 1/25
log3 ⋆ ⋆ 695/25/157 27/25

Table 7.1: Comparison of the three MILP-formulations and TGP. In the cells of the table we
use the notation t/c/N where t denotes the time required to solve the problem,
c the cost of the solution that was found and N the number of LPs/nodes in the
Branch-and-Bound tree solved. All times are rounded up and given in seconds. A
star denotes a problem which could not be solved within the time limit of one hour.

respect to both the required time. In case of the problems blocks2 and blocks3 the tri-state
formulation requires less nodes to be solved, but the total amount of time consumed is
higher. The reason for this is that the tri-state formulation tends to have more constraints
and non-zero elements in the constraint matrix, in particular before the preprocessing. This is
caused by the backward-chaining constraints of the third and fourth kind (compare backward-
chaining equations of the binary and the tri-state formulation) and the part of the action
exclusiveness constraints modeling exclusiveness with predicate instance variables (compare
action exclusiveness constraints of the binary and the tri-state formulation). For the tri-state
formulation constraints per pair of predicate instance variable and action are necessary as
opposed to the binary formulation where one constraint per proposition or action are necessary
respectively. Comparing the number of explored nodes, the superiority of the state-change
formulation becomes clear. The number of explored nodes is an indicator for the strength of a
formulation. If few nodes have to be solved, this means that the LP-relaxation approximates
the mixed-integer program effectively. The number of LPs solved is smaller by an order in case
of the more difficult problems.
Comparing the state-change formulation to TGP, we can see that our planning method performs
better in the box assembly domain, similarly in the blocks world domain and worse in the
logistics domain with respect to the required time. However, our method solves more problems
and the solution found for the problems blocks2 has less cost. Finally, we remark at this
point that the performance of our method depends on the MILP-solver of choice. An empirical
comparison of various commercial and non-commercial solvers revealed that the current
version of the CBC-solver is 17.1 to 19.8 times slower than the best solver CPLEX depending on
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the setup [Mit14]. In particular if we divide the times required to solve the problems by this
factor we can conclude that our method performs similarly if not even better than this version
of TGP not performing conditional mutex reasoning.
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8 Summary

This thesis started with an introduction to Graphplan. We explained how Graphplan can
determine plans, that are optimal with respect to their duration, in an iterative procedure. In
particular, the planning graph was presented and we described how it can be used to encode
knowledge about a planning problem effectively. Moreover, it was described how we can
extract valid plans from the graph. After that, we gave an introduction to Mixed-Integer
Linear Programming. That is, we defined the programs and described how they can be solved
applying the Branch-and-Bound method. It turned out that Branch-and-Bound is based on
several heuristic techniques. Besides, we explained the basic approach to solving planning
problems via Mixed-Integer Programming and described a formulation for non-temporal
planning. After that, the temporal planning scenario we considered was described and the
required definitions were given. In particular, the transition model was introduced. In order
to be able to derive efficient MILP-formulations a generalization of Graphplan’s planning
graph was presented, that contains one sample of propositions at each integral multiple of
the operators’ GCD. Next, we presented two SATPLAN-based MILP-formulations that can
exploit the knowledge encoded in the temporal planning graph. The first formulation uses
two binary variables per predicate instance to model the three values the predicate instance
can take on, namely true, undefined and false. The tri-state formulation uses one three-valued
variable per predicate instance to model these three cases. Furthermore, a test for a level
off was presented. After that, we introduced a state-change formulation which is expressed
in terms of five different state-change variables modeling all possible types of state-changes.
Afterwards it was explained how to deal with real-valued durations. Thereby it turned out
that considering all integral multiples of the GCD is not necessary. Moreover, it was explained
that we can reduce the size of the planning graph by adding proposition levels dynamically.
Finally, we compared the three MILP-formulations to each other. The results indicated that the
state-change formulation performs best in all three domains we considered. Furthermore, a
comparison of our method to Temporal Graphplan showed that the two algorithms perform
similarly in total but differently depending on the domain of the problems. As our method
depends heavily on the MILP-solver that is applied and significantly faster MILP-solvers exist we
can conclude that our method performs similarly as TGP with deactivated conditional mutex
reasoning, if not even better with respect to the time required to solve planning problems.
Moreover, the fact that Mixed-Integer Programming allows to incorporate an optimization
objective the solutions produced by our approach tend have less cost.
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8 Summary

Outlook

Smith and Weld compared Temporal Graphplan with and without conditional mutex reasoning
experimentally by applying their method to several temporal planning problems [SW99].
Thereby, they used a time limit of a hundred seconds. The results of the experiment show
that Temporal Graphplan exceeded the time limit in many cases if applied without conditional
mutex reasoning. However, considering conditional mutexes, many of these problems could be
solved in a couple of seconds. This indicates the strength of conditional mutexes. Thus we
suppose that incorporating them in our approach will improve its performance significantly as
well. To achieve this only the planning graph has to be modified.
To improve the performance of the formulations for certain domains it is also possible to
adapt them by incorporating domain-specific knowledge. Dimopoulos did exactly that for a
non-temporal state-change formulation [Dim01]. Van den Briel et al. developed non-temporal
MILP-formulations for multi-valued state variable descriptions [BVK05]. These descriptions can
be derived automatically from propositional representations [Hel06]. The multi-valued state
variables take on propositions as values and allow to particularly efficiently encode mutexes
between actions. According to the authors their novel formulations outperform the one for
propositional representations.
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A Notation

The following list enumerates symbols frequently used throughout this thesis and their meaning.
C Set of objects
P Set of predicates
P̂ Set of predicate instances
L Set of propositions
Lθ Set of abstract propositions
Op Set of operators
A,B Set of actions
V Set of state-change variables
I Initial condition
G Goal
p Predicate
p̂ Predicate instance
l Proposition
lθ Abstract proposition
op Operator
a, b Action
A, B Bundle of actions
v, w State-change variable
t Time or time index
T Number of proposition levels minus one
PG Planning graph
x Real-valued variable
y Integer-valued variable
c Lower bound of a variable
d Upper bound of a variable
αa Starting time of an action
βa Stopping time of an action
δop/a Duration of an operator/action
Iexec

a Execution time of an action
We use bold fonts for vectors, subscripts to denote vector components and superscripts to
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denote time-indexed mathematical objects. For example xt
i stands for the value of the i-th

vector component of x at time t.
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B Temporal Planning Domains

In the following the domains of the problems used for the empirical comparison are listed and
described. The first domain depicted in listing B.1 is the temporal box assembly domain. Here
we are given a number of materials, that is a ground object and an equal number of screws and
walls. The goal is to install the walls on the four sides of the ground object. The installation is
executed by three independent robotic hands that can grab either of the materials. In order
to install a wall a single screw is drilled through the wall and into the ground. Thereby one
hand has to hold the ground object and one hand the wall. The third hand attaches the screw.
The second domain is a temporal blocks world domain illustrated in listing B.2. There are

three types of blocks: light, normal and heavy blocks. For every block type there are three
operators for moving a block (1) from the table onto another block, (2) from one block to
another one and (3) from a block to the table. Light blocks take one time unit to move, normal
blocks two and heavy blocks three. In the listing we use the abbreviation light/normal/heavy
to denote the three versions of each operator. In the blocks world the goal is to build or take
apart towers or to exchange blocks of towers. Thereby a block can be moved only if no other
block is currently placed on top of it. In the last domain, the temporal logistics domain
illustrated in listing B.3, the goal is to deliver packets from certain starting locations to their
destinations. Starting locations and destinations of packets are always either offices, that is
a location in the propositional formulation, or airports, that is a location and an airport in
the propositional formulation. A problem can contain various cities and in each city there
can be arbitrary many offices and airports. Packets can be transported by trucks or airplanes.
Airplanes can only move from one airport to another. Trucks are more flexible since they can
get to every location. However, driving between cities is much slower than taking a flight.
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Listing B.1 The temporal box assembly domain.
domain temporalBoxAssembly {

predicates { isMaterial(c1), isGround(c1), isWall(c1),

isScrew(c1), isLocation(c1), inHand(c1),

empty(c1), fixed(c1), installed(c1),

in(c1, c2) }

operators {

grab(c1, c2)

precondition { +isHand(c1), +isMaterial(c2), +empty(c1),

-inHand(c2), -fixed(c2) }

effect { -empty(c1), +inHand(c2), +in(c2, c1) }

duration 2

release(c1, c2)

precondition { +isHand(c1), +isMaterial(c2), +in(c2, c1) }

effect { +empty(c1), -inHand(c2), -in(c2, c1) }

duration 1

action attachScrew(c1, c2, c3, c4, c5)

precondition { +isHand(c1), +isScrew(c2), +isWall(c3),

+isLocation(c4), +isGround(c5), -fixed(c2),

+in(c2, c1), -fixed(c3), +inHand(c3),

-installed(c4), +inHand(c5) }

effect { +fixed(c2), +fixed(c3), +installed(c4),

+fixed(c5) }

duration 1

}

}
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Listing B.2 The temporal blocks world domain.
domain temporalBlocksWorld {

predicates { block(c1), table(c1),

light(c1), normal(c1, c2), heavy(c1, c2),

on(c1, c2), clear(c1), equal(c1, c2) }

operators {

moveFromTableLight/Normal/Heavy(c1, c2, c3)

precondition { +light/normal/heavy(c1), +table(c2), +block(c3),

+on(c1, c2), +clear(c1), +clear(c3),

-equal(c1, c3) }

effect { +on(c1, c3), -on(c1, c2), -clear(c3) }

duration 1/2/3

moveLight/Normal/Heavy(c1, c2, c3)

precondition { +light/normal/heavy(c1), +block(c2), +block(c3),

+on(c1, c2), +clear(c1), +clear(c3),

-equal(c1, c3), -equal(c2, c3) }

effect { +on(c1, c3), +clear(c2), -on(c1, c2),

-clear(c3) }

duration 1/2/3

putOnTableLight/Normal/Heavy(c1, c2, c3)

precondition { +light/normal/heavy(c1), +block(c2), +table(c3),

+on(c1, c2), +clear(c1) }

effect { +on(c1, c3), +clear(c2), -on(c1, c2) }

duration 1/2/3

}

}
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Listing B.3 The temporal logistics domain.
domain temporalLogistics {

predicates { packet(c1), vehicle(c1), truck(c1),

airplane(c1), location(c1), airport(c1),

city(c1), locAt(c1 c2), at(c1, c2),

in(c1, c2), equal(c1, c2) }

operators {

load(c1, c2, c3)

precondition { +packet(c1), +vehicle(c2), +location(c3),

+at(c1, c3), +at(c2, c3) }

effect { -at(c1, c3), +in(c1, c2) }

duration 1

unload(c1, c2, c3)

precondition { +packet(c1), +vehicle(c2), +location(c3),

+in(c1, c2), +at(c2, c3) }

effect { -in(c1, c2), +at(c1, c3) }

duration 1

drive(c1, c2, c3, c4)

precondition { +truck(c1), +location(c2), +location(c3),

+city(c4), -equal(c2, c3), +locAt(c2, c4),

+locAt(c3, c4), +at(c1, c2) }

effect { -at(c1, c2), +at(c1, c3) }

duration 2

driveInterCity(c1, c2, c3)

precondition { +truck(c1), +location(c2), +location(c3),

-equal(c2, c3), +at(c1, c2) }

effect { -at(c1, c2), +at(c1, c3) }

duration 11

fly(c1, c2, c3)

precondition { +airplane(c1), +airport(c2), +airport(c3),

-equal(c2, c3), +at(c1, c2) }

effect { -at(c1, c2), +at(c1, c3) }

duration 3

}

}
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