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Abstract

In recent years an increasing interest in functional materials such as ferroelectric poly-
mers and ceramics has been shown. For those materials, viscous effects or electric polar-
izations cause hysteresis phenomena accompanied with possibly large remanent strains
and rotations. In this work aspects of the formulation and numerical implementation of
dissipative electro-mechanics at large strains are outlined. In particular continuous and
discrete variational formulations for the treatment of the non-linear dissipative response
of electro-mechanical solids are developed and these formulations are adapted to the mod-
eling of the hysteretic material response of piezoceramics and ferroelectric polymers under
electrical loading. The point of departure is a general internal variable formulation that
determines the hysteretic response of the material as a generalized standard medium in
terms of an energy storage and a rate-dependent dissipation function. Consistent with
this type of standard dissipative continua, an incremental variational formulation of the
coupled electro-mechanical boundary-value-problem is developed. The variational formu-
lation for a setting based on a smooth rate-dependent dissipation function which governs
the hysteretic response is specified. Further, the geometric nature of dissipative electro-
mechanics is underlined. An important aspect is the numerical implementation of the
coupled problem. The discretization of the two-field problem appears, as a consequence
of the proposed incremental variational principle, in a symmetric and very compact for-
mat. Further, constitutive assumptions which account for specific problems arising in the
geometric nonlinear setting are discussed. With regard to the choice of the internal vari-
ables entering the constitutive functions, a critical point are the kinematic assumptions.
Here, the multiplicative decomposition of the local deformation gradient into reversible
and remanent parts as well as the introduction of a remanent metric are discussed. Such
a formulation allows us to reproduce the dielectric and butterfly hysteresis responses
characteristic of the ferroelectric materials together with their rate-dependency and to
account for macroscopically non-uniform distribution of the polarization in the specimen
together with large attained deformations. The performance of the proposed methods
is demonstrated by means of a spectrum of benchmark problems which eventually show
large deformations.





Zusammenfassung

Im Laufe der letzten Jahre ist ein zunehmendes Interesse an Funktionsmaterialien wie
ferroelektischen Polymeren und Keramiken aufgetreten. Viskose Effekte oder elektrische
Polarisierung verursachen bei diesen Materialien Hysteresephänomene, die oft mit großen
und remenenten Verzerrungen und Rotationen verbunden sind. Die vorliegende Arbeit
beschäftigt sich in diesem Kontext mit Aspekten der Formulierung und numerischen
Implementierung dissipativer Elektromechanik bei finiten Deformationen. Dazu wird
eine kontinuierliche und diskrete Variationsformulierung für das nichtlineare dissipative
Verhalten elektromechanischer Festkörper entwickelt und an das Hystereseverhalten von
Piezokeramiken und Ferroelektrischen Polymeren unter elektrischer Belastung angepasst.
Ausgangspunkt ist dabei eine allgemeinen Formulierung mit internen Variablen, die die
Hystereseantwort als generalisiertes standard-dissipatives Kontinuum mittels Energiespe-
icherung und ratenabhängiger Dissipation beschreibt. Konsistent dazu wird eine inkre-
mentelle Variationsformulierung des gekoppelten elektromechanischen Randwertproblems
entwickelt. Diese Variationsformulierung wird für den Fall der Beschreibung der Hys-
terese durch eine glatte, ratenabhängige Dissipationsfunktion spezifiziert, wobei die ge-
ometrischen Aspekte der dissipativen Elektromechanik besonders hervorgehoben werden.
Ein wichtiger Gesichtspunkt ist die numerische Umsetzung des gekoppelten Zweifeld-
Problems, dessen Diskretisierung aufgrund des vorgestellten inkrementellen Variation-
sprinzips auf eine symmetrische und kompakte Form führt. Weiterhin werden konstitutive
Annahmen für die speziell im geometrisch nichtlinearen Rahmen auftretenden Probleme
diskutiert. Bei der Wahl der internen Variablen in den konstitutiven Funktionen sind kine-
matische Annahmen entscheidend. In der vorliegenden Arbeit untersuchen wir die multip-
likative Zerlegung des lokalen Deformationsgradienten in einen reversiblen und einen rema-
nenten Anteil sowie die Einführung einer remanenten Metrik. Eine solche Formulierung
ermöglicht die Vorhersage von dielektrischen Hysteresen und Schmetterlingshysteresen,
die für ferroelektrische Materialien zusammen mit der Ratenabhängigkeit charakteristisch
sind. Ausserdem kann die makroskopisch ungleichmäßige Verteilung der Polarisation im
Probekörper im Rahmen großer Deformationen reproduziert werden. Die Effizienz der
vorgestellten Methoden wird anhand einer Auswahl an Benchmark-Problemen aufgezeigt,
die auch grosse Deformationen beinhalten.
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1

1. Introduction

Increased demands for high performance control design in combination with recent ad-
vances in material science have produced a class of systems termed smart, intelligent, or
adaptive systems, Smith [138]. Smart systems trace their origin to a field of research
that envisioned devices and materials which could mimic human muscular and nervous
systems. The essential idea is to produce non-biological systems that will achieve the
optimum functionality observed in biological systems through emulation of their adaptive
capabilities and integrated design. By definition smart systems consist of ensembles of
sensors and actuators that are embedded or attached to the system to form an integral
part of it. The system and its related components form an entity that will act and react
in a predicted manner, and ultimately behave in a pattern that emulates a biological
function. The human body is the ideal or ultimate system.

For aeronautical and aerospace systems, control transducers must be lightweight and
should typically have minimal effect on the passive system dynamics. Furthermore, actu-
ator must provide the required strain or force inputs using the available power supplies.
Restriction on size and weight also dictate that transducers in some regimes must be
capable of multiple roles. The limitations on the mass and size of transducers are often
relaxed in industrial applications but output requirements may be more stringent.

Actuators and sensors comprised of smart or active materials can meet many of these
criteria. Smart or intelligent materials are materials that have the intrinsic or extrinsic
capabilities, first, to respond to stimuli and environmental changes and, second, to achieve
their functions according to these changes. The stimuli could originate internally or
externally. Thus, we define actuator materials as those which convert electrical, magnetic
or thermal energy to mechanical energy whereas sensor effects are provided by the opposite
conversion of energy.

The most popular smart materials are piezoelectric materials, magnetostrictive materi-
als, shape-memory alloys, electro rheological fluids, electrostrictive materials, and optical
fibers. Magnetostrictives, electrostrictives, shape-memory alloys, and electro rheological
fluids are used as actuators; optical fibers are used primarily as sensors.

Among these active materials, piezoelectric materials are most widely used because of
their bandwidth, fast electro-mechanical response, relatively low power requirements, and
high generative forces. A classical definition of piezoelectricity, a Greek term for “pressure
electricity”, is the generation of electrical polarization in a material in response to mechan-
ical stress. This phenomenon is known as the direct effect. Piezoelectric materials also
display the converse effect: mechanical deformation upon the application of an electrical
charge or signal. Piezoelectricity is the property of many non-centrosymmetric ceram-
ics, polymers, and other biological systems. Pyroelectricity is a subset of piezoelectricity,
whereby the polarization is a function of the temperature. Some pyroelectric materials
are also ferroelectric, although not all ferroelectrics are pyroelectric. Ferroelectricity is the
property of certain dielectrics that exhibit spontaneous electric polarization (separation
of the center of positive and negative electric charges that makes one side of the crystal
positive and the opposite side negative) that can be reversed in direction by applying an
appropriate electric field. Traditionally, ferroelectricity is defined for crystalline materi-
als, or at least in the crystalline region of semicrystalline materials. In the last couple of
years, however, a number of researchers have explored the possibility of ferroelectricity in
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Figure 1.1: Bosch piezo inline injector (www.bosch.com).

amorphous polymers, that is, ferroelectricity without a crystal structure.

The design of smart systems which are based on smart materials requires both the char-
acterization of their constitutive properties and the development of coupled structural
models in order to give an accurate prediction of the system dynamics and response.
Thus the development of linear, non-linear and hysteretic constitutive relations and their
incorporation in coupled structural models which should eventually be able to account
for large strains and rotations is of primary importance.

Piezoceramics belong to the group of materials which are most commonly used for electro-
mechanical coupling applications. They are exploited in industrial application as sensors
and actuators. Detection of pressure in the form of sound is one of the most common
sensor application. In a piezoelectric microphone sound waves bend the material creating a
changing voltage. They are especially used with high frequencies in ultrasonic transducers
for medical imaging. Further, they can be used in acoustic-electrical applications as noise
analysis or acoustic emission spectroscopes. In addition, they are well known in mechanic-
electrical application as igniters or acceleratometers. The inverse piezoelectric effect is
used in actuators, or piezoelectric motors for micro- and nano-positioning, laser tuning,
active vibration damping et cetera. Everyday life applications are ink jet printers where
piezoelectric crystals are used to control the flow of ink from the ink jet head to the paper.
In automotive engineering, for instance, piezoceramics are utilized in new generation of
common-rail piezo inline injectors in recent years. This system reduces not just exhaust
emission from the diesel engine but also its operating noise and fuel consumption. Figure
1.1 shows the inline piezo injector used in Bosch’s Common Rail System. In comparison
with solenoidal valves, piezo injectors can be controlled much more precisely so they can
inject fuel during an engine cycle with much more accuracy.

Concerning precise micro- and nano-deformation of sensors and actuators piezoceramic
materials are particularly suitable. However, these rigid and fragile piezoelectric ceramics
are not suited for applications where large deformations are required. For several decades,
it has been known that certain types of polymers can change shape in response to elec-
trical stimulation. Polymers have many attractive characteristics: they are generally
lightweight, inexpensive, fracture tolerant, and pliable. Further they can be configured
into almost any conceivable shape and their properties can be tailored to suit a broad
range of requirements. Since the beginning of the 1990s, a series of new electroactive poly-
mer (EAP in the following) materials has been developed that can induce large strains.
Since these polymers behave very similarly to biological muscles, EAPs have acquired
the byname “artificial muscles”. In 1999 the worldwide research and engineering com-
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a) b)

Figure 1.2: a) armwrestling match between an EAP actuated robotic arm
and a human (http://jpl.nasa.gov); b) Robotic arm with 4-finger EAP gripper
(http://ndeaa.jpl.nasa.gov).

munity was challenged to develop a robotic arm that is actuated by artificial muscles
to win a wrestling match against a human opponent (Figure 1.2a). On Figure 1.2b a
further application of EAP is shown, i.e. a robotic arm with 4-finger EAP gripper. The
strain performances of these materials demand a material models which consider the large
deformations, especially in terms of bending motions.

1.1. State of the Art

We are concerned with aspects of the formulation and numerical implementation of dissi-
pative electromechanics at large strains. We would like to focus in particular on the geo-
metric nature of dissipative electro-mechanics, the constitutive updates as well as the finite
element formulation, both on the basis of compact variational principles. Furthermore,
we would like to concentrate on the constitutive assumptions to model time-dependent
hysteretic phenomena for piezoceramics and ferroelectric polymers.

The theoretical foundations for the analysis of electro-mechanical interactions in solids
were developed in part during the 1950s and 1960s, and a detailed summary may be
found, for example, in Truesdell & Toupin [144], Landau & Lifschitz [89], in the
lecture notes by Pao [122], Hutter, van de Ven and Urescu [67] (enlarged version
of lecture notes appeared in 1978). The more recent books by Maugin [99] and Erin-
gen & Maugin [48, 49] provide a more comprehensive overview of the electrodynamics
of solids. The book by Kovetz [87] has a nice account of the merging of the mechan-
ics, thermomechanics and electromagnetics of continua. Other recent developments in
this area are described in the publications by James & Kinderlehrer [72], DeSi-
mone & Podio-Guidugli [36], DeSimone & James [35] James [71], Brigadnov &
Dorfmann [13, 14], Dorfmann & Ogden [37, 39, 38, 40, 41], Dorfmann, Ogden,
and Saccomandi [42, 43], Bustamante, Dorfmann and Ogden [17, 18, 20, 19],
Bustamante & Ogden [21], Steigmann [139], and Kankanala and Triantafyl-
lidis [78]. In particular in Brigadnov & Dorfmann [13, 14], Dorfmann & Ogden
[37, 39, 38, 40, 41], Dorfmann, Ogden, and Saccomandi [42, 43], Bustamante,
Dorfmann and Ogden [17, 18, 20, 19], Bustamante & Ogden [21], the authors
have the main intent to set up universal relations for the electro-magneto-mechanical ma-
terial response. A universal relation for a particular deformation or class of deformations
is an equation relating the stress and strain components that holds independently of the
specific choice of constitutive law for the considered class of materials. They have devel-
oped forms of the quasi-static theories for nonlinear magnetoelasticity and electroelasticity
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that are applicable to magneto-sensitive and electro-sensitive elastomers, respectively. In
each of the theories developed is made up use of a total stress tensor and an associated
total energy density function. These theories have relatively simple mathematical struc-
tures and do not require the notion of Maxwell stress within the material. Between the
recent developments we need also to mention the papers of McMeeking & Landis [103]
and McMeeking, Landis and Jimenez [104]. In [103] an isothermal energy balance
is formulated for a system consisting of deformable dielectric bodies, electrodes, and the
surrounding space. The formulation is obtained in the electrostatic limit but with the
possibility of arbitrarily large deformations of polarizable material. In [104] the equations
governing mechanics and electrostatics are formulated for a system in which the material
deformations and electrostatic polarizations are arbitrary. A mechanical-electrostatic en-
ergy balance is formulated for this situation in terms of the electric enthalpy, in which
the electric potential and the electric field are the independent variables, and charge and
electric displacement are the conjugate thermodynamic forces. This energy statement
is presented in the form of a principle of virtual work and is the basis for a rigorous
formulation of a finite element method.

Although the basic equations and some analytic analysis of non-linear electroelasticity
were established in the above cited works, very few numerical studies are known in this
field. Recent studies in this respect can be found in Vu & Steinmann [147, 148],
Vu, and Steinmann and Possart [149], Butz & Klinkel [23], Klinkel [84] and
Klinkel [86]. In Vu & Steinmann [147, 148] and Vu, and Steinmann and Possart
[149] a variational formulation is built and the finite element method is employed to
solve the non-linear electro-mechanical and magneto-mechanical coupling problem. In
[23] a finite element formulation for a three-dimensional piezoelectric beam which includes
geometrical and material nonlinearities is presented while in [86] a piezoelectric solid shell
finite element formulation within a geometrically nonlinear based on a variational principle
of the Hu-Washizu type is proposed.

On the other hand the numerical studies for the geometrically linear electroelasticity are
well established. Typical electro-mechanical finite element models use displacements and
the electric potential as nodal degrees of freedom, see Gaudenzi & Bathe [55], Ben-
jeddou [11] and Klinkel & Wagner [85] and the references therein. Accordingly
the electric field and the strains are calculated from the gradients of the nodal degrees
of freedom. Ghandi & Hagood [81], suggested a hybrid finite element formulation,
which incorporates electric displacement degrees of freedom as well as the conventional
displacement and electric potential degrees of freedom. In Kamlah & Böhle [74] the
finite element analysis is carried out in a two-step scheme. In the first step a purely
dielectric boundary problem is solved to obtain the electric potential. Secondly, the
electro-mechanical problem for the mechanical boundary conditions is analyzed with the
prescribed electric potential. In Landis [90] a new finite-element formulation for the
solution of electro-mechanical boundary value problems is presented. As opposed to the
standard formulation that uses scalar electric potential as nodal variables, this new for-
mulation implements a vector potential from which components of electric displacement
are derived. For linear piezoelectric materials with positive definite material moduli, the
resulting finite-element stiffness matrix from the vector potential formulation is also pos-
itive definite. In Semenov et al. [136] a vector potential for the electric induction is
applied to static three-dimensional fully coupled electro-mechanical problems. A Coulomb
gauge condition imposed on the electric vector potential improves the convergence behav-
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ior of nonlinear problems. The work of Miehe [109] gives an overview and an overall
understanding of these different approaches.

As we mentioned above, in this work we will propose a model able to reproduce the
macroscopic dissipative response of a ferroelectric ceramic and polymer. The existing
models are geometrically linear models and could be divided into two main categories:
microscopically motivated and phenomenological models. A review in this regard is given
by the papers of Kamlah [73], Landis [92] and Huber [65].

Microscopically motivated material models are presented by e.g. Chen & Lynch [30],
Huber et al. [66] and Huber & Fleck [64]. These models are concerned with
the constitutive behavior of single crystals and employ an energy argument as switching
criterion. An other type of microscopically motivated models are the one based on a phase
field type of modeling, see Zhang & Bhattacharya [154, 155], Su & Landis [141],
Schrade, Müller, and Gross [133], Xu et al. [152] and references therein.

The over all material behavior of a ceramic polycrystal is obtained by averaging over a
large number of oriented crystallites. The consideration of switching for each crystal leads
to a large number of internal variables.

The reduction of the number of internal variables motivates phenomenological macro-
scopical models. Typically the phenomenological constitutive models are used for the
analysis of the inhomogeneous electro-mechanical fields occurring in devices and struc-
tures fabricated from ferroelectric ceramics and polymers. A very simple model to capture
arbitrary hysteresis effects is the so-called Preisach-model, introduced in Preisach [128].
It requires only a few material parameters and was originally developed to describe ef-
fects arising in magnetization processes. In recent years the model is being successfully
adopted to model ferroelectric ceramics, see e.g. Hwang et al. [68]. Hwang et al.
[68] employed the Preisach model to predict the remanent polarization and the remanent
strain from an imposed electric field and stress. They introduced a simple fully coupled
one-dimensional model with uni-axial loading. Another approach for a phenomenologi-
cal model based on a macroscopic theory is suggested in Chen & Montgomery [28],
Chen [27] and Chen & Tucker [29]. The key idea is that the remanent polarization
is a function of aligned dipoles. The number of the aligned dipoles is used as an internal
state variable. The model is able to represent the uni-axial dielectric and the butterfly
hysteresis. Similarly to Preisach this model is not thermodynamically motivated.

Based on the analogies existing between non-linear ferroelectric response and metal plas-
ticity, the phenomenological models are usually akin to J2 flow plasticity theory and thus
are rate-independent models. In Bassiouny et al. [6, 7] and Bassiouny & Maugin
[8, 9] we find a thermodynamically consistent formulation of the electro-mechanical hys-
teresis. There the concepts of the phenomenological plasticity theory are used. A free
energy function per unit volume depending on temperature, strain and the polarization is
introduced. The polarization is additively decomposed into a reversible and an irreversible
part, which serves as internal state variable. According to thermodynamic arguments the
constitutive relations are derived within the Clausius-Duhem-Inequality. For rate inde-
pendent effects an electric loading function (switching criterion) is suggested to determine
the evolution of the internal state variable. On the basis of this concept several models
for domain switching effects have been developed. One of the first applications of these
notions into an algorithmic model can be found in Cocks & McMeeking [31] where a
phenomenological constitutive law for piezoceramics is formulated in analogy to incremen-
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tal plasticity. The model is based on an additive decomposition of polarization and strain.
A convex yield surface (commonly referred as switching surface) is introduced and the
evolution equations for the remanent polarization and strain are derived from this yield
function by the normality rule and consistency condition. Another one dimensional model
can be found in Kamlah & Tsakmakis [76] and Kamlah [73]. Here the irreversible
strain is additively decomposed into two parts. One irreversible strain appears due to
the alignment of the domains in a certain direction by applying an electrical loading. For
this strain a one-to-one relationship to the irreversible polarization is assumed. The other
irreversible strain arises due to mechanical stresses and is determined by an evolution
equation. Here yield surfaces for the ferroelectric and ferroelastic switching surfaces are
introduced together with saturation surfaces. The flow rules for the remanent polarization
and strain are specified in terms of them. This model is extended to the three dimensional
case in Kamlah & Böhle [74], and is capable to simulate all hysteresis and butterfly
loops including mechanical depolarization effects, which arise in ferroelectric ceramics. In
Kamlah & Wang [77] a constitutive model based on microscopically internal variables
is sketched. A multiaxial thermodynamically consistent description is given by Landis
[91]. The author’s consideration of switching surfaces and associated flow rules guarantee
a positive dissipation during switching. In this paper as well as in Huber & Fleck [64]
a cross–coupling into the switching function is introduced in order to account for the gen-
eration of remanent strain by the application of electric field, and remanent polarization
by stress. This model is simplified in McMeeking & Landis [102] where the remanent
strain is obtained in terms of the remanent polarization and thus the number of internal
variables is reduced. A model which makes use of only one switching criterium is sug-
gested by Schröder & Romanowski [135]. The co-ordinate invariant thermodynamic
consistent model is based on the work of Schröder & Gross [134] and accounts for two
hysteresis effects: the ferroelectric hysteresis and the butterfly hysteresis. In the uni-axial
model the polarization direction is assumed to be constant. Furthermore, the model makes
use of the simplifying one-to-one relation discussed above. The uni-axial model of El-
hadrouz et al. [46, 45] considers the additive split of the irreversible strains proposed
by Kamlah & Tsakmakis [76]. For one part the discussed one-to-one relationship is as-
sumed. Furthermore, Elhadrouz et al. [46, 45] introduced an additive decomposition
of the irreversible depolarization, where it is distinguished between a polarization caused
by an electric field and a polarization caused by stress. Two switching criteria are used
to control the different ferroelastic and ferroelectric hysteresis and butterfly loops. The
model is also able to predict mechanical depolarization. Mielke & Timofte [112, 111]
show that the phenomenological models mentioned above can be formulated in an ener-
getic framework which is based on the elastic and the electric displacements as reversible
variables and irreversible variables like the remanent polarization. Instead of splitting the
electric displacement into a reversible and irreversible part Klinkel [83] introduces an
irreversible electric field, which serves, instead of the remanent polarization, as internal
variable. The irreversible electric field has only theoretical meaning, but makes the for-
mulation very suitable for a finite element implementation, where displacements and the
electric potential are the nodal degrees of freedom. Butz [22] is one of the few works
were a geometrically non-linear approach is combined with a dissipative material response
which results to be based on simple additive kinematic assumptions. All the other works
cited above deal with a geometrically linear type of dissipative material response.

The above phenomenological models are rate-independent models. On the other hand, it
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is experimentally observed (see Zhou, Kamlah and Munz [156], Viehland & Chen
[145]) that the dissipative ferroelectric response is rate-dependent as illustrated in Fig-
ure 2.5. Based on this observation, we would like to model the ferroelectric material
response by using a smooth rate-dependent viscous approach within the framework of an
incremental variational formulation (Miehe [108], Miehe et al. [110]) which ensures
a canonical symmetrical structure. In contrast to the rate–independent type of models,
only few proposed rate–dependent types of models exist. Among the others we would like
to cite Belov & Kreher [10] where non-linear hysteretic phenomena in polycrystalline
ferroelectric ceramics are simulated using viscoplastic (rate-dependent) models without a
switching condition within a microscopical framework, and Arockiarajan et al. [4]
which focuses on modeling of rate-dependent behavior of piezoelectric materials within a
three-dimensional finite element setting and uses the reduction in free energy of a grain as
a criterion for the onset of the domain switching process. Rosato & Miehe [131] pro-
posed continuous and discrete variational formulations for the treatment of the non-linear
response of piezoceramics under electrical loading and specified the variational formula-
tion for a setting based on a smooth rate-dependent dissipation function governing the
hysteretic response.

The set up of a general incremental variational formulation of inelasticity has been devel-
oped in the recent works Miehe [108], Miehe, Schotte and Labrecht [110] which
were conceptually in line with the papers of Ortiz & Repetto [120], Ortiz & Stainier
[121], Carstensens, Hackl and Mielke [24]. The key idea can be described as fol-
lows: the general internal variable formulation of inelasticity for generalized standard
media is governed by two scalar functions: the energy storage function and the dissipa-
tion function. The general set up of this generic type of material model can be related
to the works Biot [12], Ziegler & Wehrli [157], Germain [56], Halpen & Nguyen
[59], see also the recent tratments by Maugin [100] and Nguyen [117]. All the differ-
ent variational formualtion which can be considered for the electro-mechanical coupled
problem are describe in the recent work of Miehe [109]. See also Rosato & Miehe
[131].

1.2. Objectives and Overview

In recent years an increasing interest in functional materials such as ferroelectric polymers
and ceramics has been shown. For those materials, viscous effects or electric polarizations
cause hysteresis phenomena accompanied with possibly large remanent strains and rota-
tions. Our final goal is to outline aspects of the formulation and numerical implementation
of dissipative electro-mechanics at large strains. In particular we would like to develop
continuous and discrete variational formulations for the treatment of the non-linear dissi-
pative response of electro-mechanical solids and adapt these formulations to the modeling
of the hysteretic material response of piezoceramics and ferroelectric polymers under elec-
trical loading. The point of departure will be a general internal variable formulation that
determines the hysteretic response of the material as a generalized standard medium in
terms of an energy storage and a rate-dependent dissipation function. Consistent with
this type of standard dissipative continua, we will develop an incremental variational
formulation of the coupled electro-mechanical boundary-value-problem. We would like to
specify the variational formulation for a setting based on a smooth rate-dependent dissipa-
tion function which governs the hysteretic response. Further, we underline the geometric
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nature of dissipative electro-mechanics. An important aspect is the numerical implemen-
tation of the coupled problem. The discretization of the two-field problem will appear,
as a consequence of the proposed incremental variational principle, in a symmetric and
very compact format. Further, we would like to discuss constitutive assumptions which
account for specific problems arising in the geometric nonlinear setting. With regard to
the choice of the internal variables entering the constitutive functions, a critical point are
the kinematic assumptions. Here, we will investigate the multiplicative decomposition of
the local deformation gradient into reversible and remanent parts as well as the introduc-
tion of a remanent metric. Such a formulation allows us to reproduce the dielectric and
butterfly hysteresis responses characteristic of the ferroelectric materials together with
their rate-dependency and to account for macroscopically non-uniform distribution of the
polarization in the specimen together with large attained deformations.

This work is organized as follows.

In Chapter 2 we describe the micromechanical behavior of two classes of ferroelectric
materials, i.e. piezoceramics and ferroelectric polymers, that are taken under considera-
tion in this work as cases of study for the electro-mechanical dissipative response. The
constitutive material response of these two classes of materials is based on two fundamen-
tal elements: first, the non-centrosymmetric molecular constitution, which yields to the
appearance of elementary micro-dipoles characterized by a certain spontaneous polariza-
tion in the microstructure and additionally is responsible for the piezoelectric behavior of
the unit cells; second the capability of aligning those elementary unit cells under a certain
electro-mechanical loading and the ability of retaining this alignment after unloading.
The first factor is responsible for the reversible part of the material response, while the
second characteristic is the fundamental reason for the dissipative behavior of this class
of materials.

Chapter 3 outlines the principal equations of non-linear continuum mechanics that de-
scribe the fundamental geometric mappings, basic stress measures, balance equations of a
solid body undergoing finite mechanical deformations. In the Chapter 5 those equations
will be modified in order to describe an electro-mechanically coupled problem.

The aim of Chapter 4 is to construct the global and local equilibrium equations together
with the constitutive equations of electrostatics by using an approach similar to the one
used in Chapter 3 for the continuum mechanics. Those equations are written in the phys-
ical Eulerian configuration and later on the transformations to the current configuration
are considered. The geometric nature of the electric objects is underlined.

The ultimate goal of Chapter 5 is to derive the balance equations for the coupled electro-
mechanical problem. The solution of those equations in combination with the constitu-
tive equations gives us the independent electro-mechanical fields within the region under
consideration. Since relativistic effects are considered the most general framework of
balance laws for continua consists of a combination of Maxwell’s equations of classical
electro-statics and the classical balance equations of the thermomechanics. The latter are
modified assuming that body force, body couple and energy supply can be decomposed
into two parts: one due to the electric field and the other is supposed to be externally
applied and known from the outset. The electric body force, body couple and energy sup-
ply are evaluated using the two-dipole model in the Chu formulation. Consequently the
balance equations are modified through the introduction of a total stress and an amended
energy functional accounting for the energy stored in the body and in the underlying free
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space. No attempt to distinguish between mechanical and Maxwell stress is pursued in
the proposed formulation.

The goal of Chapter 6 is the discussion of a variational formulation for a generic dissi-
pative electro-mechanical response. At first we concentrate on a purely local constitutive
modeling for the constitutive dissipative material response and afterwards we focus on
the global treatment of a multifield boundary-value-problem. Our considerations will be
directed to the formalization of the coupled electro-mechanical boundary-value-problem
through an energetic description. We focus first on local volume element of the solid
which undergoes an electro-mechanical loading. The choice of the independent variables
characterizing the local material response of an electro-mechanically coupled solid can be
based on two different approaches: a physically-based approach which differentiates be-
tween actions and reactions and a geometry-based approach which considers dual objects
in the geometric setting. The first type of approach yields in general to a minimization
structure of the electro-mechanical boundary-value-problem, while the geometry-based
approach delivers normally a saddle-point structure. In this work, we consider a formu-
lation of the local constitutive material response based on a set of independent variables
which have a geometric character. Thereafter, we deal with the formulation of the field
equations in the form of variational principles and methods. The variational approach
in various forms is often taken as the cornerstone for the development of discretization
techniques such as the well established finite element methodology. Variational principles
are particularly powerful and belong to the fundamental principles in mathematics and
mechanics. It is important to note that the finite element method needs not necessarily
to depend upon the existence of a variational principle. However, good approximate so-
lutions are often related to weak forms of field equations, which are consequences of the
stationarity condition of a functional.

In Chapter 7 a phenomenological model for the ferroelectric material response at small
strains is presented. The first objective of this chapter is the construction of energy
and dissipation functionals which take into account the basic micro-effects characterizing
ferroelectric materials. We construct simple functions which include in an elementary
format all basic effects of electro-mechanical coupling suitable for the description of the
piezoelectric non-dissipative material response. These functions contain a minimum num-
ber of material parameters, each of them related to an elementary experiment. These
functions are later on modified in order to take the polarization dissipative mechanisms
into account, which characterize ferroelectric materials. Based on the polarization mech-
anisms dissipation functionals are also constructed. A material model based on theses
two functionals is developed and tested by means of a spectrum of benchmark problems.

In Chapter 8 first we construct a simple model for a piezoelectric material response at
large strains which contains the essential electro-mechanical coupling phenomena. This
serves as basis for the construction of a model describing the dissipative response of
ferroelectric materials at large strains. To this purpose we assume that the electric dis-
placement can be additively decomposed into a reversible and irreversible contributions
and we investigate the multiplicative decomposition of the local deformation gradient into
reversible and remanent parts. Based on these kinematic assumptions we consider an en-
ergy storage functional derived from the piezoelectric one by replacing the independent
variables with their reversible counterpart and by rendering the coupling dependent on the
polarization process. An additional hardening term is added to such a functional. Based
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on the polarization mechanisms dissipation functional are constructed. Finally the mate-
rial model constructed on the energy storage and dissipation functional is tested by means
of a spectrum of benchmark problems which eventually also show large deformations.
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2. Micromechanical Motivation

Before starting with the modeling of electro-mechanically coupled materials and of the
dissipative ferroelectric response, we would like to describe the micromechanical behavior
of two classes of ferroelectric materials, i.e. piezoceramics and ferroelectric polymers,
which will be taken under consideration in this work as cases of study for the electro-
mechanical dissipative response. The constitutive material response of these two classes of
materials is based on two fundamental elements: first the non-centrosymmetric molecular
constitution, which yields to the appearance of elementary micro-dipoles characterized by
a certain spontaneous polarization in the microstructure and additionally is responsible
for the piezoelectric behavior of the unit cells; second, the capability of alignment of
those elementary unit cells under a certain electro-mechanical loading and the ability of
retaining this alignment after unloading. The first factor is responsible for the reversible
part of the material response, while the second characteristic is the fundamental reason
for the dissipative behavior of this class of materials. We will start by giving a description
of the piezoelectric effect and we will focus later on the dissipative mechanisms which
contradistinguish piezoceramics and ferroelectric polymers.

2.1. Piezoelectricity

Piezoelectricity is a linear coupling phenomenon possessing a direct and an inverse effect.
Lets start the discussion with the inverse piezoelectric effect because it resembles the
polarization mechanism. If a certain electric field e is applied to a mechanically unloaded
piezoelectric specimen, one observes the strain ε

ε = c e, (2.1)

which is proportional to the electric field e. The proportionality constant c is called piezo-
electric constant. The electrically induced strain may be an elongation or a shortening,
depending on the direction of the applied electric field and consequently on the sign ofe. To visualize this behavior, consider a unit cell of an unloaded polar material with
a spontaneous polarization pspon, resulting from the different locations of the centers of
positive and negative charges of a unit cell. Figure 2.1a displays a plane view of such a
unit cell. Application of a constant voltage to the cell will result in a shifting of centers of
the positive and negative ions with respect to each other. An electric field with the same
direction as the spontaneous polarization will move the centers further apart from each
other, while an electric field with the opposite direction will bring them closer together.
The electro-mechanical coupling effect is caused by the fact that the shifting of the centers
of the charges is accompanied by a corresponding elongation or shortening of the unit cell.
In case the spontaneous polarization is oriented in the reverse direction with respect to
a fixed frame of reference, the constant c has the same magnitude, but a different sign.
As a consequence, the orientation of the electric field is an important ingredient of the
effect. An exposure of the unit cell to mechanical loads will, of course, bring rise to a
deformation in the structure of the cell and, accordingly, to a displacement in the relative
positions of the centers of the charges. This displacement causes a transient current in
the unit cell and, in turn, a change of polarization. This mechanically induced change
of polarization is called direct piezoelectric effect. As a result of direct piezoelectric ef-
fect, application of even very small mechanical loads may lead to high electric voltages.
This behavior suits to sensor applications. Besides, the inverse piezoelectric effect may
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Figure 2.1: a) Plane view of a unit cell with different locations of the centers of positive
and negative charges. The arrow indicates the corresponding spontaneous polarization pspon

which will be present even though the crystal lattice possesses no resultant electric charge.
b) Plane view of a unit cell possessing a center of symmetry. In the unloaded state, both
the centers of positive and negative charges will be in the center of the unit cell.

be employed in the actuator applications. The property of piezoelectricity is related to
the polarity of the unit cell of a material. However, a spontaneous polarization is only
possible in certain systems of crystal symmetry. Obviously, the unit cell must not possess
a center of symmetry.

2.2. Piezoceramics

The common structure of the typical materials with piezoelectric properties, like BaTiO3

and PZT , is polycrystalline as a result of ceramic processing techniques (for a more de-
tailed description concerning the material science of ferroelectric piezoceramics see Jaffe
et al. [70], Lines and Glass [93], and Moulson and Herbert [113]). The poly-
crystalline structure comprises grains of differently oriented crystal lattices. The unit
cell consists of a structure of positively and negatively charged ions typical for a specific
material. In this structure, the centers of the positive and negative charges of the unit
cell have a certain location within the cell. If the centers of positive and negative charges
are at different positions within the unit cell in the absence of any load giving rise to a
permanent dipole, we say that the cell possesses spontaneous polarization. Although the
direction of the lattice axes is fixed within a grain, it does not mean that the orientation
of the spontaneous polarization is fixed as well. In fact, each grain may consist of sub-
structures, domains, which are regions of unit cells with equal spontaneous polarization.
A micrograph of a ferroelectric crystal is given in Figure 2.2, Arlt [3].

Let us consider BaTiO3 or PZT . The crystal lattice of these materials has perovskite
structure below material dependent Curie temperature θc. (BaTiO3 : θc = 120 − 130 ◦C,
PZT : θc = 250−350 ◦C). As in the Figure 2.3a, the unit cell is cubic in shape with a side
length a0 and +4 charged ion in the center. Since the centers of the positive and negative
charges are at the same place, the material shows no instantaneous polarization and is in
the paraelectric phase. Below the Curie temperature θc, the cubic configuration becomes
unstable because of the shifting of the centers parallel to the one of the lattice axes leading
to a tetragonal shape with the dimensions a × a × c. In this ferroelectric phase, as the
centers no longer coexist, the unit cell has spontaneous polarization, and accordingly
piezoelectric properties. Besides tetragonal, one may find additional ferroelectric phases
too, Jaffe et al. [70]. For the sake of simplicity, tetragonal structure is considered
here.
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Figure 2.2: Micrograph of a ferroelectric ceramic crystal, Arlt [3]. The typical subdivision
in grains and domains can be observed.

During the cooling period following the sintering process, held well above the Curie tem-
perature, the ferroelectric materials experience a phase transition from the paraelectric
phase to the ferroelectric one. There exist six possible directions in each unit cell for
the rearrangement of the central ion, which are located along the axes of the original
cube. This means, simultaneously, six different directions for the spontaneous polariza-
tion. That is the reason why there exists no unique spontaneous polarization direction
for all unit cells of a grain upon cooling. In fact, the spontaneous polarization will be
distributed with random orientations in a grain, and with uniform orientation only in the
domains of a grain (see Moulson and Herbert [113] for further details).

On macroscopic scale, after cooling below the Curie point, the randomly distributed
spontaneous polarizations and the contributions of the corresponding microscopic piezo-
electricities of the unit cells cancel each other. Thus, there is no residual macroscopic
polarization and, accordingly, no macroscopic piezoelectricity in this virgin state of the
material, also called thermally depoled state. Although the anisotropy of the individual
unit cell is a fact, the random distribution of the spontaneous polarization in the thermally
depoled state leads to a macroscopically isotropic state of a polycrystal.
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a
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Figure 2.3: a) Unit cell of BaT iO3 in the paraelectric phase. The symmetry of cubic shape
does not allow for a spontaneous polarization. b) Unit cell of BaT iO3 in the ferroelectric
phase. The vector of spontaneous polarization pspon is oriented in the direction of the
displaced titanium ion.



14 Micromechanical Motivation

e
e

a)

b)

Figure 2.4: a) 180 ◦ and b) 90 ◦ switching of spontaneous polarization of a tetragonal unit
cell under an electric field of magnitude above coercive electric field ec.

The macroscopic electrical and mechanical response is the outcome of the domain struc-
ture. The domain state of a ferroelectric material can be modified under the loadings with
sufficient magnitude by domain switching. For example, application of an electric field of
magnitude above the coercive field ec will switch the directions of spontaneous polariza-
tion by 90 ◦ or 180 ◦ to a direction more closely aligned with the applied electric field, as
illustrated in Figure 2.4. In the 180 ◦ switching, the tetragonality of the unit cell remains
unchanged while the 90 ◦ switching goes with the reorientation of the tetragonality.

After removal of the loading, the switched configuration retains. In the completely un-
loaded state, i.e. zero electric field, the material will have a non-zero residual macroscopic
polarization, which is called irreversible or remanent polarization. The process to reach
this ordered microscopic polarization state is named poling. The remanent polarization is
the average of the spontaneous polarization of the unit cells over all of the corresponding
crystals. In the ideal perfect crystals, the remanent polarization can achieve the value of
spontaneous polarization as a maximum. However, in real ceramic structure the crystal-
lographic axes are random from grain to grain within the polycrystal and thus there are
mismatches of spontaneous polarization and strain from grain to grain, Huber et al.
[66]. Because of this kind of defects, i.e. dislocations and impurities, a maximum possible
value reachable for the remanent polarization, saturation polarization, is defined, Jaffe
et al. [70] and Moulson and Herbert [113].

Arrangement of the formerly random orientation state of the unit cell by the poling process
in the direction of the applied electric field causes a transversely isotropic material, whose
anisotropy axis coincides with the remanent polarization vector, Jaffe et al. [70]. For
the reason that the microscopic piezoelectric contribution of the individual unit cells do
not cancel each other in this ordered state, a macroscopic piezoelectricity exists. Here,
it should be emphasized that even in a fully poled state there is no ideal single domain
grain in a real ferroelectric ceramic.

The reorientation of the unit cells in the direction of poling field also leads to a deformation
of the polycrystal. Resulting macroscopic average of the spontaneous strains of the unit
cells is called irreversible or remanent strain. As for the remanent polarization, there
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Figure 2.5: a) Electric hysteresis and b) butterfly curves in commercial soft PZT piezo-
ceramic PIC151 for the loading rates of 0.01 (line with crosses), 0.1 (triangles) and 1 Hz
(continuous line) according to Zhou, Kamlah and Munz [156].

is also a maximum value for the remanent strain, called saturation strain, which cannot
be greater than spontaneous strain. In the Figure 2.5 the typical macroscopic responses
of a piezoceramic under a periodic electrical loading are shown. In Figure 2.5a we find
the dielectric displacement vs. the electric field hysteresis, i.e. the dielectric hysteresis,
while in Figure 2.5b the butterfly hysteresis is reported, i.e the strain vs. the electric field
hysteresis. These hysteresis curves were already observed in the pioneering work of Lynch
[97] and are here extracted from the measurements in the work of Zhou, Kamlah and
Munz [156]. In these measurements the typical frequency dependence of the hysteresis
curves is also put into evidence.

Mechanical stress with adequate magnitude, above coercive stress can trigger domain
switching as well, Lines and Glass [93]. A mechanical stress can not give a unique
switching direction of spontaneous polarization of a unit cell. Therefore, c-axes of the
domains are oriented randomly in the plane perpendicular to the compression loading,
accompanied by an irreversible deformation. Spontaneous polarization of a unit cell may
take an orientation from alternatives shown in Figure 2.6. The resulting domain state is
transversely isotropic and no macroscopic polarization is observed. Although the induced
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Figure 2.6: A mechanical stress σ of sufficient magnitude can switch a unit cell by 90 ◦.
No specific orientation is given to spontaneous polarization vector. a) As consequence of
a compression parallel to the spontaneous polarization we could have four possible 90 ◦

switching directions. b) Under a traction orthogonal to the spontaneous polarization two
90 ◦ switching directions are available.

deformations seem to be similar to those in metal plasticity, the saturation limit for
the strains in domain switching mechanism makes the crucial difference between plastic
strains caused by dislocation movement and strains due to domain switching. For a
more detailed description of the microstructural and macrostructural material response
of the ferroelectric ceramics see the review articles of Kamlah [73] and Landis [92] and
references therein.

Ferroelectric ceramics are presently being used in a broad range of applications including
sonar, MEMS devices, fuel injectors for high efficiency-low emission diesel engines, actu-
ators for active control of helicopter rotor blades and underwater vehicle control surfaces,
and ultrasonic rotary inchworm motors with high power and torque densities. Accurate
modeling tools are required for the reliable design and optimized performance of these
devices.

One of the most important characteristics of piezoceramics are the observed macroscopic
hysteresis under purely electric loading. The macroscopic hysteresis phenomena will be
discussed in the following in a qualitative manner disregarding the domain wall effects
although their contribution to the performance of piezoceramics is significant, see Huber
& Fleck [64], Weber, Kamlah & Munz [151], Kamlah, Liskowsky, McMeeking
& Balke [75].

Let us consider a mechanically unclamped ferroelectric specimen which is loaded by a
uniaxial cyclic electric field in a fixed direction, and for which polarization and strains in
the same direction are recorded. The specimen is assumed to be initially in a thermally
depoled state, in which it is isotropic due to the random distribution of the domain
orientation by cooling below Curie temperature after sintering. In Figure 2.5a are the so
called dielectric hystereses, the plots of polarization (or electric displacement) vs. applied
electric field representing the dielectric behavior of the ferroelectric ceramic. To discuss
these curves, consider the schematic sketch of Figure 2.7a. In the initial state ➀, the
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Figure 2.7: Schematic sketch of a) dielctric hysteresis b) butterfly hysteresis for a cyclic
electric loading. The dashed lines belongs to the first polarization process of the unpoled
material.

orientation of the polarization of the domains is randomly distributed and consequently
there is no macroscopic polarization in this state. Application of electric fields with small
magnitude causes only perturbation of the ions in the neighborhood of their equilibrium
positions and no change in the domain structure is observed. The dielectric behavior of the
material is reversible and approximately linear. As the electric field exceeds the coercive
field strength ec, the domain switching is initiated. This process is irreversible since
certain ions within unit cells take new equilibrium positions. Microscopic polarization of
all domains is oriented in the closest direction to the electric field. The increase of the
polarization is much faster till the point ➁, where reservoir of the switchable domains
is exhausted. Further changes in the polarization state can only result from the shifting
of the ions in the neighborhood of their new equilibrium positions. Such changes are
essentially linear and reversible. Reversibility is clearly demonstrated during unloading
part of the loading history. While reducing the electric field, the ions keep their new
equilibrium positions and the switched domain state is preserved. Therefore, even in the
absence of any electric field, at point ➂, there exists a remanent i.e. residual polarization.
In this example, it assumes the maximum possible value, saturation polarization due to
complete alignment of the domains under the electric field of sufficient strength. This
poled state is important for the technical application since it shows an approximately
linear piezoelectric behavior under small electric fields. If the electric field in the opposite
direction is increased beyond the coercive field strength, switching processes are again
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initiated. The formerly fully oriented domain state is destructed such that the remanent
polarization decreases till the point ➃, where the material is in a more or less depoled
state. Although at point ➀, ➃ and ➆ in Figure 2.7a the resultant polarization is zero,
the domain configurations for each point are different. Further loading will bring rise
to a domain state oriented in the new direction of th electric field at point ➄. After
reversing the electric field again, the same mechanism applies for the points ➅, ➆ and
➁. Summarizing, the material response is composed of three different ranges. In the
initial state, a reversible behavior for small loads occurs, in a second state an initiation
of irreversible process for the loading above a certain threshold value is recognized and at
last a reversible character after the saturation of the irreversible process is observed.

The switching process also affects the deformation state of the material. In Figure 2.5b the
butterfly hystereses are recorded for the normal strain in the direction of the electric field
together with the dielectric hystereses in the Figure 2.5a. For a better understanding of
this complex curves, consider the schematic representation of Figure 2.7b. The material is
initially in a thermally depoled and macroscopically isotropic state at point ➀ as state of
zero strain. For electric fields below the coercive field strength e < ec, the polarization in
the domains are distributed randomly and individual piezoelectric contributions of the do-
mains will cancel each other. Therefore, there will be no electrically induced macroscopic
strain. As one can see from Figure 2.7b, the curve is exactly horizontal until the elec-
tric field approaches the coercive field. As the coercive field is passed, switching occurs.
Simultaneously, strain significantly increases by two contributions: at first the number
of the domains with their long c-axes (cf. Figure 2.3) oriented along directions closest
to the one of the electric field increases. Secondly, as we have seen before, a resultant
macroscopic remanent polarization now occurs. This is accompanied by a macroscopic
piezoelectric effect causing a reversible part of strain. After a fully switched domain state
is reached with the completion of switching process, further changes in the strain state
are only generated by macroscopic piezoelectricity, which is reflected by a reduced slope
of the curve as point ➁ is approached. Switching strain and the strain due to piezo-
electricity can be separated easily after unloading at zero electric field since macroscopic
piezoelectric strain vanishes at point ➂ and only strain due to the switching of domains
remains. In the case of complete alignment of domains, this switching strain assumes
the value of saturation strain as a maximum value. The poled state of the ceramic is
the one employed in technical applications. In the neighborhood of point ➂, there occur
approximately linear changes in strain state under small electric fields due to macroscopic
remanent polarization. The switching of domains in the microstructure during the poling
process are of shape changing nature leading to volume preserving strain changes. Upon
the reversal of electric field beyond the coercive field strength, back switching process will
be initiated. The degree of order of domains is reduced and the distribution of the c-axes
becomes more random. Here, an electric depolarization is recognized leading to a loss of
piezoelectric properties. At the same time, the resultant switching strain is also reduced
and at point ➃ the strain goes through a sharp minimum. Notice that the electrically
depoled state will be generally different from the thermally depoled initial state. How-
ever, based on the fact that the strain is close to zero at the point ➃ in Figure 2.7, the
domain structures will be similar up to some level for this material. From this minimum
on, the alignment of the domains as well as switching strain and the piezoelectric strain
start to increase again. At point ➄, a fully oriented domain state in the new direction
of the electric field is reached. The only difference to point ➁ is the direction of the
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Figure 2.8: Schematic drawing of a chain folded polymer crystal (Figure redrawn from
Wang, Herbert and Glass [150].

alignment, which is opposite. The most significant feature of the butterfly hysteresis is
its symmetry with respect to the strain axis at e = 0, resulting from the properties of the
switching strain and the piezoelectric strain. For the switching strains only the degree of
alignment of c-axes counts and not the orientation of the spontaneous polarization vector.
Particularly, two opposite polarization states will lead to the same remanent strain state.
During poling by both a positive and a negative electric field, the induced piezoelectric
strain will be positive, since it is caused by a corresponding positive or negative remanent
polarization, respectively. The piezoelectric constants in the poled states ➁ and ➄ have
the same absolute magnitude, but opposite signs.

Figure 2.5 shows the time-dependent hysteretic behavior of piezoceramics, Zhou, Kam-
lah & Munz [156]. The dielectric hysteresis and the butterfly curve clearly demonstrate
a strong frequency dependence. At slow rates very similar polarization and butterfly
curves were observed at 0.01 Hz and 0.1 Hz, and the coercive field at 0.01 Hz is about
1 kV/mm. Note that the coercive field ec increases with increasing measuring frequency.
For higher loading frequencies, i.e. of 1Hz, polarization and strain were not saturated at
the maximum electric field amplitude.

2.3. Ferroelectric Polymers

A ferroelectric polymer is a polymer possessing unit cells in the microstructure with a
certain spontaneous polarization that can be reoriented between possible equilibrium di-
rections by a realizable electric field which goes beyond a coercive value. A ferroelectric
polymer can be in a single crystal form or, as in most of the cases encountered, a semicrys-
talline form in which the ferroelectric crystallites are embedded in an amorphous matrix.
Crystal fields serve to keep the elementary dipoles aligned upon removal of the electric
field. Examples of ferroelectric polymers include polyvinylfluoride (PVF) (Fukada &
Nishiyama [51], Phelan, Mahler, and Cook [126]), polyvinylidene Fluoride (PVDF)
(Kawai [79], Fukada & Sakurai [52], Murayama et al. [116]), copolymers of PVDF
with trifluorethylene (TrFE) (Higashihata, Sako and Yagi [61]) or tetrafluorethylene
(TFE) (Broadhurst et al. [16]), and odd-numbered nylons (Kawai [79]). We will
discuss PVDF and P(VDF-TrFE) in more detail.

As a poled piezoceramic, a poled ferroelectric polymer shows a piezoelectric-type behav-
ior. The properties of polymers are very different from those of inorganics. They are much
better sensors then ceramics. Piezoelectric polymeric sensors and actuators offer the ad-
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a) b)

Figure 2.9: a) Photomicrograph of a rapidly coled melt of commercial unoriented PVDF
between crossed polaroids; b) A schematic diagram of a spherulite and a detail of a section
emphasizing the lamellar structure of the radiating branches.

vantage of processing flexibility because they are lightweight, tough, readily manufactured
in large areas, and can be cut and formed into complex shapes. Polymers exhibit high
strength and high impact resistance Davis [34]. Other notable features of polymers are
low dielectric constant, low elastic stiffness, and low density, which result in high voltage
sensitivity, and low acoustic and mechanical impedance. Polymers also typically possess
high dielectric breakdown and high operating field strength, which means that they can
withstand much higher driving field than piezoceramics. Polymers offer the ability to
pattern electrodes on the film surface and pole only selected regions. Based on these fea-
tures, piezoelectric polymers posses their own established area for technical applications
and useful device configurations.

In order to understand the ferroelectric and piezoelectric properties of semicrystalline
polymers, it is important to know something about their structure and morphology. Al-
though many polymers with a regularly repeated structure can crystallize, the crystals
are microscopic in size and usually comprise only 50 to 90% of the total volume. When
crystalline polymers crystallize, the polymer molecules typically form lamellae of the or-
der of 10 nm thick. The polymer molecules are oriented perpendicular to the surface of
the lamellae and are folded in such a way that they have to penetrate the lamellae many
times, Kepler & Anderson [80]. A schematic representation of a lamella is reported
in figure 2.8.

When crystallized from the melt, polymers usually exhibits spherulites. These spherical
aggregates consist of radiating array of lamellae. Figure 2.9a is a photomicrograph of
a spherulite in a melt-crystallized PVDF film. The volume fraction of crystalline mate-
rial is typically 50% depending on the thermal history, see Broadhurst et al. [15]
and references therein. Most of the uncrystallized molecules are in a metastable liq-
uid phase. The glass transition temperature of this liquid phase is around −50◦C. The
structure of polymer spherulites is summarized in the schematic drawing in Figure 2.9b.
Highly elongated chain folded lamellar crystals emanate radially from the center with
the chain axis approximately tangential and a crystallographic axis frequently parallel to
the radius. The diagram shows a lamellar twist which occurs in some cases. The non
crystalline component between the lamellar crystals is presumed to consist of portions of
molecules caught between participations in neighboring crystallites (tie molecules), por-
tion of molecules which comprise “loose folds”, dangling ends of molecules (cilia), tight
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a) b)

Figure 2.10: SEM images of P(VDF-TrFE) films; a) the upper is the surface and the lower
the cross-section of a 60 µm-thick film, and b) the surface of a 0.1 µm-thick film. (From
Kimura & Ohigashi [82])

folds, and non-crystallizable components such as branch points, bulky comonomer units,
and low molecular weight polymer. As mentioned earlier the non-crystalline component
can often occupy 50% or more of the total volume.

It is naturally presumed that the growth of large crystalline lamellae is suppressed by
the thickness in very thin films, Furukawa [53]. This has been proved to be true by
the images of scanning electron microscope (SEM) for 60µm and 0.1µm thick copolymer
samples (cf. Figure 2.10). First of all, we may notice that surprisingly well grown crys-
talline lamellae are filling the space in both of the samples. The thinner sample consists
of smaller lamellae. As the size of the lamellae decreases, a larger amounts of defects may
be introduced and might have hindered full reversal of the polarization at low fields in
thinner copolymer samples.

Thus, we can conclude that the morphology of such polymers consists of crystallites dis-
persed within amorphous regions, as shown in Figure 2.11a. The amorphous region has a
glass transition temperature that dictates the mechanical properties of the polymer, and
the melting temperature of the crystallites dictates the upper limit of the use tempera-
ture. Almost all polymers used in fibers or films are purposely oriented to improve physical
properties such modulus, stiffness, and recovery. Orientation is achieved by stretching or
rolling to several times the original length at temperatures below the crystallization tem-
perature, cf. Figure 2.11b. During the process, the spherulites referred above are first
deformed to an elliptical shape followed by disruption of the spherulite structure, par-
ticularly in a band corresponding to an equator normal to the direction of elongation.
At large deformations (4 to 10 times), the morphology becomes fibrillar in appearance
and the molecular chains become oriented preferentially parallel to the direction of the
deformation. Depending on whether the stretch is uniaxial or biaxial, the electrical and
mechanical properties are either highly anisotropic or isotropic in the plane of the polymer
sheet. Electrical poling is accomplished by applying an electric field across the thickness,
as depicted in Figure 2.11c. An electric field of the order of 50 MV/m is typically suffi-
cient to effect crystalline orientation. The amorphous phase of semicrystalline polymers
supports the crystal orientation, and polarization is stable up to the Curie temperature.

A brief discussion on the chain conformation and crystal structure is appropriate because
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Figure 2.11: Schematic illustration of random stacks of amorphous and crystal lamellae
in PVDF polymer: a) the morphology after the film is melt cast with schematization of the
crystalline region (Cr) and the amorphous region (Am); b) after the reorientation of the film
by mechanichally stretching several times its original length; and c) after depositing metal
electrodes and poling through the film thickness.

of its importance in understanding piezoelectricity and ferroelectricity in crystalline poly-
mers. Conformation of a molecule refers to the spatial arrangements of atoms which can
be changed by rotations about chemical bonds. Figure 2.12 has been redrawn from Al-
lock & Lampe [2] to show estimated variations in the potential energy as a function
of the torsion angle between the two central carbon atoms of a four carbon segment in
a polyethylene chain. The bond between the carbons being considered is perpendicular
to the plane of the page. The solid lines represent tetrahedral bonds to the front carbon
and the dotted lines represent tetrahedral bonds to the back carbon. The torsion angle
is taken as 0◦ when the four carbons lie in the same plane. As the front carbon is twisted
clockwise, the potential energy increase to a maximum as the atoms bonded to the front
and back carbon reach an “eclipsed” position of maximum repulsion at 60◦. Continued
rotation results in a minimum when the atoms are furthest apart at 120◦. The energy is
not as low as at 0◦ when the carbons are further removed from overlap. Energy changes
with continued rotations as shown in the Figure 2.12 with the position at 120◦ and 240◦

being equivalent. The lowest energy form is referred to as trans (T) and the two higher
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Figure 2.12: Potential energy of interaction between substituents on adjacent carbon atoms
of polymer chain versus angle of rotation from planar zigzag conformation. Trans-gauche,
and gauche prime positions are indicated by arrows, see Wang, Herbert and Glass [150].
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Figure 2.13: A schematic view of β-phase: a) polymer chain in the planar zigzag confor-
mation with repeated crystal unit having lattice dimension c = 2.56 Å b) view parallel to
the chain axis with spatial distribution of the charges inducing polarization.
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Figure 2.14: Crystal structure of β-phase containing two chains forming a crystal unit and
having lattice dimensions a = 8.58 Å and b = 4.90 Å. Several chains alinged in the same
direction form a crystallite in an amorph matrix (cf. Figure 2.11).

energy minima as gauche (G) and gauche prime (Ḡ). Gauche energies are equivalent, but
correspond to bond rotations of 120◦ in opposite directions.

As we already mentioned above, PVDF (molecular formula: CH2F2) and its copolymers
exhibit the largest piezoelectric activity. PVDF is polymorphic and has at least four
major crystalline phases Lovinger [95]. Two of them, the form I (β-phase) and form
II (α-phase), are the most relevant phases for practical ferroelectric and piezoelectric
applications. In form I, which is also known as β-phase, two chains in all-trans planar
zigzag conformation are packed into individual orthorhombic unit cells having lattice
dimension a = 8.58 Å, b = 4.90 Å, and the chain direction or fiber axis c = 2.56 Å (Figure
2.13 and Figure 2.14). It is noted from Figure 2.13 that in the all-transconformation, the
fluorine atoms are positioned on one side of the unit cell, resulting in a net dipole moment.
As the structure of the unit cell of the form I crystal satisfies the symmetry requirement
of a piezoelectric crystal, i.e. it is non-centrosymmetric, this is the form of PVDF that is
responsible for its piezoelectric properties.

In form II, or α-phase, the chain conformations are represented as a sequence of alternating
trans and gauche sequences, or TGTḠ, Figure 2.15 and Figure 2.16. Each unit cell
containing two chains is orthorhombic with lattice parameters a = 4.96 Å, b = 9.64 Å,
and c = 4.62 Å. In the α-phase, adjacent chains are packed such that dipole moments of
individual carbon-fluorine bonds are aligned perpendicular to chain direction, canceling
one other out. The directions of the chains consist of a statistical average of up-up and
up-down orientations.

When prepared using the melt crystallization or solution cast, in most cases PVDF will
form α-phase which is not a polar phase. Mechanical stretching is often used in order to
convert the α-phase to the ferroelectric β-phase. On the other hand, for P(VDF-TrFE)
copolymers (TrFE, molecular formula: CF2CFH) with VDF content less than approx-
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Figure 2.15: A schematic view of α-phase: a) single sequence with repeated crystal unit
having lattice dimension c = 4.62 Å b) view parallel to the chain axis of a chain consisting
of two sequences with spatial distribution of charges contributes to the polarization.
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Figure 2.16: Crystal structure of α-phase. A crystal unit is composed of two chains,
aligned such that dipole moments cancel out. Such a crystal unit has lattice dimensions
a = 4.96 Å and b = 9.64 Å. Chains aligned in the same direction form a crystallite in an
amorph matrix (cf. Figure 2.11).

imately 85 mol%, the β-phase will be formed directly. In the β-phase crystallites there
are ferroelectric domains, which are polar, but oriented in all crystallographically allowed
directions. Furthermore, in the semicrystalline polymer, these crystallites are randomly
oriented within the sample. This accounts for the absence of any piezoelectric activity un-
less the sample is poled. Poling can be accomplished by electroding the polymer surfaces
with metal, followed by application of a strong electric field to orient the crystallites.

The phase diagram of PVDF and P(VDF-TrFE) polymers (cf. Figure 2.17) shows a
ferroelectric-paraelectric transition that signals a change from a ferroelectric (polar) phase
to a paraelectric (nonpolar) phase. The ferroelectric-paraelectric (F-P) transition temper-
ature increase with vinylidene fluoride mole fraction content. Below the F-P transition,
the crystal is best represented as an ordered form I structure with ion sequences of all-
trans bonds. As the temperature of the crystals rises and goes through the F-P transition,
an increasing number of gauche bonds are introduced into the ordered all-trans structure.
As a result, the polarization in the crystal regions tends toward disorder, leading to the
formation of the paraelectric phase, cf. Lovinger [94]. One should note that PVDF as
well as P(VDF-TrFE) copolymers with high VDF concentration do not appear to posses
distinct F-P transitions. Rather melting takes place before F-P transition. However, it
must be mentioned that even in the ferroelectric phase conformational defects can be
introduced as the temperature of the polymers is raised.

As ferroelectric materials, PVDF and its copolymers with TrFE exhibit well-defined po-
larization hysteresis loops. For sinusoidal electric fields high enough to induce ferroelectric
switching, the strain in the thickness direction draws a hysteresis loop of butterfly shape
while the electric displacement draws a conventional square d-e hysteresis loop. As al-
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Figure 2.17: Phase diagram of PVDF and P(VDF-TrFE) copolymer. Where θm and θc are
the melting temperature and the F-P phase transition temperatures, respectively (cf. Cheng
et al. [26]).

ready suggested, the hysteretic behavior is due to switching mechanisms of the unit cells
taking place through domain wall motions. Early x-ray studies demonstrated that the
switching is primarily through successive 60◦ wall motions consistent with the pseudo
hexagonal structure of the β-phase. It is retained that a kink of rotation propagates
like a solitary wave along a PVDF molecule. We may, therefore, assume that each chain
molecule instantaneously rotates like a rigid rod in a crystalline lamella (see Furukawa
[53], Bar-Cohen [5]). According to the broad variety of material compositions and pre-
treatments the shape of the hysteresis loops differs a lot. As an example, the butterfly
hysteresis and the polarization hysteresis measured on a uniaxially drawn (PVDF) poly-
mer are shown in Figure 2.18a. The polymer performs a conventional but rather rounded
dielectric hysteresis loop compared to the hysteresis of undrawn (VDF-TrFE) copolymers
illustrated in Figure 2.18b. The coercive field ec, which marks the point where the hys-
teresis intersects the horizontal axis, is about 50 MV/m at room temperature for many
ferroelectric polymers. The remanent polarization pr corresponds to the point where the
loop intersects the vertical axis. As one can see from the figures this material parameter
can vary a lot. In spite of the difference in the shape of hysteresis loops, all polymers
and copolymers of (VDF) become thickest when their polarization reverses and thinnest
when the absolute value of the electric displacement is maximum. This behavior is in-
verse in comparison to ceramic ferroelectric material response, where the ceramic becomes
thinnest when its polarization reverses, see Figure 2.7 (cf. Furukawa & Seo [54]). This
behavior can be attributed to the geometry of the crystal unit cell, cf. Figure 2.13-2.16.

Most of the electro-mechanical applications that use PVDF and its copolymers exploit
their piezoelectric properties. For ferroelectric PVDF and its copolymers, the sample as
prepared usually have negligible piezoelectric responses due to the fact that the polar-
ization at each domain orientates randomly, implying that the net sample polarization is
zero. In order to establish the piezoelectric state, the polymers can be poled under a field
several times higher than the coercive field to induce a stable remanent polarization.

In many polymeric materials, it is well known that there are large strain changes associated
with transformation from one phase to another. For P(VDF-TrFE) copolymers, large
lattice strains have been detected when the copolymer goes from the low-temperature
(LT) ferroelectric phase to the high-temperature (HT) paraelectric phase. As revealed by
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a) b)

Figure 2.18: a) Butterfly hysteresis and dielectric hysteresis of uniaxially drawn (PVDF);
b) butterfly hysteresis and dielectric hysteresis of undrawn (VDF-TrFE) copolymer with
65/35 mol% ratio, cf. Furukawa & Seo [54].

experimental data there is a lattice strain of -10% and 7% in the crystalline phase along
and perpendicular to the polymer chain, respectively, as the copolymer goes through the
(F-P) phase transition. Therefore, for a highly aligned copolymer with a high crystallinity
(> 50% crystallinity), these strains can be translated to large macroscopic strains. In
addition, for a ferroelectric polymer, the phase transformation can be controlled by an
external field (both electric and mechanical), and hence, it is expected that a high field
induced strain can be achieved in P(VDF-TrFE) copolymer by exploiting the lattice strain
at F-P transformation. The temperature range in which the electric field can induce the
phase transition from non-polar to polar phases depends strongly on the material. For
most of the inorganic ferroelectrics, this temperature range is relatively narrow. For
instance, the range is about 8◦C for BaTiO3. For P(VDF-TrFE) copolymers, it has been
found that this temperature range is relatively large.

All these results indicate that one may be able to improve the electro-mechanical response
of P(VDF-TrFE) copolymer significantly by operating the polymer near the F-P transi-
tion. However, there are several issues associated with the F-P transition in P(VDF-TrFE)
copolymer that have to be addressed. As has been shown in the phase diagram (Figure
2.17), F-P transition in all P(VDF-TrFE) compositions occurs at temperatures higher
than room temperature and the transition is relatively sharp (over a relatively narrow
temperature range). In addition, large hystereses have been observed for the copolymers
at the F-P transition, which is a basic feature for this type of transition. A large hysteresis
is not desirable for practical applications. Therefore, to make use of the unique opportu-
nities near the F-P transition in P(VDF-TrFE) copolymer systems, the copolymer should
be modified as to broaden the phase transition region, move it to room temperature, and
minimize the hysteresis.

In polymeric materials, high energy electron irradiation has been widely used to modify
polymer properties. In P(VDF-TrFE) copolymers, Lovinger [96] found that by using
high energy electron irradiation, the ferroelectric phase at room temperature can be con-
verted into a macroscopically paraelectric-like phase. Subsequent studies also found that
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Figure 2.19: Polarization hysteresis for (VDF-TrFE) copolymer with 50/50 mol% ratio:
a) before irradiation and b) after irradiation. c) Butterfly hysteresis after irradiation, cf.
Zhang, Bharti & Zhao [153].

a sharp dielectric constant peak from the F-P transition can be broadened markedly and
moved to near room temperature, Cheng et al. [26] and references therein.

The irradiation effect is to introduce defect structures in the polymer to move the trans-
formation process to near room temperature, reduce the hysteresis in the polarization
response to the applied field, and broaden the transformation temperature region so that
high electrostriction can be obtained over relatively broad temperature range. Extensive
structural investigations indicate that electron irradiation disrupts the coherence of po-
larization domains (all-trans chains) and forms localized polar regions (nanometer-sized,
all-trans chains interrupted by trans and gauche bonds). After irradiation, the material
exhibits behavior analogous to that of relaxor ferroelectric systems in inorganic materials.
The resulting material is no longer piezoelectric but rather exhibits a large electric field-
induced strain (5% strain) due to electrostriction. The basis for such large electrostriction
is the large change in the lattice strain as the polymer traverses the ferroelectric to para-
electric phase transition and the expansion and contraction of the polar regions.

Figure 2.19 (cf. Zhang, Bharti & Zhao [153]) presents polarization loops measured
at room temperature for unstreched (VDF-TrFE) copolymer film with 50/50 mol% ratio.
For the unirradiated film, a typical polarization hysteresis loop was observed due to the
high nucleation barrier when switching polarization from the coherent macroscopic polar
domain. After irradiation, the polarization hysteresis is significantly reduced and the
loop becomes quite slim due to the breaking up of macroscopic coherent polar domains to
microscopic polar regions. In addition, the strain response is very high and exhibits only
little butterfly hysteresis. The results indicate that the high energy irradiation is quite
effective in eliminating the polarization hystereses in these polymers.

Of special interest is the discovery that in P(VDF-TrFE) copolymers, large anisotropy in
the strain response exists along and perpendicular to the chain direction, as can be de-
duced from the change in the lattice parameters between the polar and non-polar phases.
Therefore the tranverse strain can be tuned over a large range by varying the film process-
ing conditions. For unstreched films, the transverse strain is relatively small (∼ +1%). On
the other hand, for stretched films, a large transverse strain along the stretching direction
can be achieved (∼ 4-5%).

Although high energy irradiation can be used to convert the normal ferroelectric P(VDF-
TrFE) into a relaxor ferroelectric with high electrostriction, the irradiation also introduces
many undesiderable defects to the copolymer, such as the formation of crosslinkings, rad-
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icals and chain scissions. From the basic ferroelectric response point of view, the defects
modifications of the ferroelectric properties can also be realized by introducing randomly
in the polymer chain a third monomer, which is bulkier than VDF and TrFE. Further-
more, by a proper molecular design which enhances the degree of molecular level confor-
mational changes in the polymer, the terpolymer can exhibit a higher electro-mechanical
response than the high energy electron irradiated copolymer, as for terpolymer contain-
ing chlorofluoroethylene (CFE, -CH2-CFCl-) as the monomer. This will be indicated with
VDFx-TrFE1−x-CFEy, where the mole ratio of VDF/TrFE is x/(1−x) and y is the mol%
of CFE in the terpolymer. Under a field of 130 MV/m, a thickness strain of -4.5% can be
achieved, which is comparable to that observed in the irradiated copolymers.

By increasing the ratio of VDF/TrFE in the terpolymer, the field induced strain level can
be raised due to the fact that the lattice strain between the polar conformation and non
polar conformations increases with the VDF/TrFE ratio. A thickness strain of 7% can
be reached. This demonstrates the potential of the terpolymers in achieving very high
electro-mechanical responses through optimized composition.
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3. Fundamentals of Continuum Mechanics

This chapter outlines the principal equations of non-linear continuum mechanics that de-
scribe the fundamental geometric mappings, basic stress measures, and balance equations
of a solid body undergoing finite deformations. In the following chapters those equations
will be modified in order to describe an electro-mechanically coupled problem. Most of
the material treated here is based on the lecture notes of Miehe [107, 108] and also well
documented in the literature. For more comprehensive treatments the reader is referred
to the monographs and books, for example, by Eringen [47], Truesdell & Noll
[143], Chadwick [25], Marsden & Hughes [98], Ogden [119], Haupt [60], Miehe
[105, 106] among others.

3.1. The Motion, Geometric Maps and Deformation Measures

A material body B is a physical object equipped with different kinds of properties and
occupies regions of the Euclidian space R3. Formally the body B is defined as an open set
of material points P ∈ B. The configuration of the body B ⊂ R3 at time t is described
by a one-to-one relation

χt :

{
B → Bt ⊂ R3

P 7→ xt = χt(P )
. (3.1)

The configuration defined by χt, in equation (3.1), uniquely maps the material point P
to the coordinate triple xt ∈ R3 with respect to the global Cartesian basis {Ei}i=1,2,3.
While describing the motion of a solid body, it is common practice to name its placement
at time t0 as the reference configuration that generally possesses an undistorted stress-free
state and is denoted as B = χt0(B). On the other hand, the configuration of the body
at current time t is denoted as S = χt(B). Commonly, the reference configuration is
also denoted as material or Lagrangian configuration while the actual configuration of
the body is also denoted as spacial or Eulerian. The reference and the spatial positions
occupied by a material point P within the Euclidean space R3 are labeled by the reference
coordinates X = χt0(P) ∈ B and the spatial coordinates x = χt(P) ∈ S, respectively.
In order to describe the motion of the solid body in the Euclidean space, we introduce a
non-linear deformation map ϕt(X) between χt0(P) and χt(P)

ϕt :

{ B → S
X 7→ x = ϕt(X) := χt ◦ χ−1

t0 (X)
(3.2)

that maps the material points X ∈ B onto their deformed spatial positions x = ϕt(X) ∈
S at time t ∈ R+, see Figure 3.1. Having the motion (3.2) defined, we are now in a
position to introduce the material velocity

V t(X) := ∂tϕ(X, t) =
d

dt
ϕX(t) , (3.3)

and the material acceleration of the motion

At(X) := ∂tV (X, t) =
d

dt
V X(t) . (3.4)

The spatial velocity is then expressed in terms of the material velocity

vt(x, t) := V t(X) ◦ ϕ−1
t (x) , (3.5)



30 Fundamentals of Continuum Mechanics

B S

B

P

X x

ϕX(t)

v(x, t)ϕt(X)

χt(P )χt0(P )

R3

Figure 3.1: Mathematical description of the motion of a solid body in R3.

and the spatial acceleration is defined as the material time derivative of the spatial velocity

at(x, t) := At(X) ◦ ϕ−1
t (x) = ∂tv + ∇xv · v , (3.6)

where ∇xv := l stands for the spatial velocity gradient. The path ϕX(t) is then called
the integral curve of v as shown in Figure 3.1.

Apart from the global Cartesian coordinate system {Ei}i=1,2,3, Eulerian curvilinear coor-
dinates θi are introduced oriented along the material lines which deform with the body
in the Eulerian configuration. The spatial position vectors then have the representations
x = xi(θ1, θ2, θ3)Ei. This results in the definition of two dual co- and contra-variant bases
{gi}i=1,2,3 and {gi}i=1,2,3 which are defined as follows

gi := ∂θix = ∂θixj(θ1, θ2, θ3)Ej and gi := ∂xθ
i = ∂xjθi(θ1, θ2, θ3)Ej (3.7)

where the covariant basis {gi}i=1,2,3 spans the so called tangent space TxS and the con-
travariant basis {gi}i=1,2,3 spans the cotangent space T ∗

xS with the property gi · gj = δi
j

for the basis. In connection with the tangent and cotangent spaces the associated co- and
contra-variant Eulerian metric tensors are defined as follows

g := gi · gjg
i ⊗ gj = gijg

i ⊗ gj and g−1 := gi · gjgi ⊗ gj = gijgi ⊗ gj (3.8)

A similar development gives, after the introduction of the Lagrangian curvilinear coor-
dinates ΘI , the counterparts in the reference configuration, namely the co- and contra-
variant Lagrangian bases {GI}I=1,2,3 and {GI}I=1,2,3 and furthermore the respective La-
grangian metric tensors G and G−1. The covariant basis {GI}I=1,2,3 spans the so called
tangent space TXB and the contravariant basis {GI}I=1,2,3 spans the cotangent space
T ∗

XB. The above explanations where presented for the general case of curvilinear coor-
dinates, however, the relations simplify significantly for the choice of Cartesian bases for
both the current and the reference configuration which results in

{GI} = {gi} = {Ei} (3.9)

For clarity a formal differentiation will be adopted in the following between the four
Lagrangian and Eulerian tangent and cotangent spaces spanned by the bases {EA}A=1,2,3,
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Figure 3.2: The deformation gradient F defined as a tangent map linearly transforming
the material vector T ∈ TXB tangent to the material curve C(Θ) at X onto the the spatial
vector t ∈ TxS tangent to the spatial curve c(Θ) at x.

{EA}A=1,2,3 and {ea}a=1,2,3, {ea}a=1,2,3 respectively. This gives the following specific form
of the metric tensors

G = δABEA ⊗ EB

G−1 = δABEA ⊗ EB

and
g = δabe

a ⊗ eb

g−1 = δabea ⊗ eb

. (3.10)

Probably the most fundamental deformation measure used in kinematics of finite defor-
mation is the deformation gradient. It can be considered as a linear map of the refer-
ential tangent vectors onto the spatial counterparts. To this end, let C(Θ) and c(Θ)
be the material and spatial curves parameterized by a common variable Θ ∈ R on B
and S, respectively. Furthermore, we consider that the spatial curve is related to the
reference curve by the non-linear deformation map c(Θ) = ϕt(C(Θ)) due to (3.2). Tan-
gents of the curves belonging to the respective tangent spaces defined as the derivatives
T := dC(Θ)/dΘ ∈ TXB and t := dc(Θ)/dΘ ∈ TxS are depicted in Figure 3.2. Through
the chain rule, the spatial tangent t can be expressed in terms of the material tangent T

t =
d

dΘ
c(Θ) = ∇Xϕt(X)

d

dΘ
C(Θ) = FT with taea = F a

AT
Aea . (3.11)

This already introduces the deformation gradient F = ∇Xϕt(X) with components
F a

A ga ⊗ GA = ∂ϕa/∂XAga ⊗ GA as the tangent map

F :

{
TXB → TxS

T 7→ t = FT
(3.12)

between the tangent spaces TXB and TxS of the manifolds B and S, respectively.

Once the deformation gradient has been defined, we can proceed with the other two
fundamental maps. For this purpose, let dV and dv denote the infinitesimal volumes of
parallelepipeds

dV := dX1 · (dX2 × dX3) and dv := dx1 · (dx2 × dx3) (3.13)

defined as the scalar triple product of vectors dXi=1,2,3 ∈ TXB and dxi=1,2,3 ∈ TxS,
respectively. Each spatial tangent vector dxi is defined as a tangential map of its material
counterpart, i.e. dxi = F dXi for i = 1, 2, 3. This then leads to the definition of the volume
map

dv := F dX1 · (F dX2 × F dX3) = det[F ]dV =: JdV (3.14)



32 Fundamentals of Continuum Mechanics

following the conventional coordinate-free definition of the determinant of a second order
tensor. The value of the Jacobian J is restricted to positive real numbers R+, i.e. J > 0,
in order to ensure the one-to-one relation between x and X and the impenetrability of a
material. Then, we say that the volume map, det[F ], maps the reference volume elements
onto their spatial counterparts

J = det[F ] :

{ R+ → R+

dV 7→ dv = det[F ]dV
. (3.15)

The co-factor of the deformation gradient cof[F ] is defined as the derivative of the volume
map J := det[F ] with respect to deformation gradient F

cof[F ] := ∂F det[F ] = det[F ]F−T . (3.16)

In order to make the geometrical meaning of cof[F ] more transparent, let us define the
reference and spatial area co-vectors NdA := dX2 × dX3 and nda := dx2 × dx3, respec-
tively. With these definitions at hand, we can recast (3.15) into the following from

dx1 · nda = JdX1 · NdA . (3.17)

If we incorporate the identity dx1 = F dX1 in (3.17) and solve this equality for nda for
an arbitrary tangent vector dX1, we end up with the interpretation of co-factor as the
area map

nda = JF−T NdA = cof[F ]NdA , (3.18)

transforming the co-vectors (one-forms) of the material surfaces onto the normal vectors
of spatial surfaces. Furthermore, we observe that the tensorial quantity carrying out
the mapping operation in (3.18) is none other than F−T . Thus, we consider F−T as
the normal map transforming the reference co-vectors N onto the spatial co-vectors n

belonging to the respective cotangent spaces T ∗
XB and T ∗

xS. The normal map is then
defined as

F−T :

{
T ∗

XB → T ∗
xS

N 7→ n = F−T N
. (3.19)

Having the tangent and the cotangent spaces defined, we can now better interpret the
covariant reference and the spatial metrics, G and g respectively,

G : TXB → T ∗
XB , g : TxS → T ∗

xS (3.20)

as the mappings from the tangent spaces TXB and TxS to the cotangent spaces T ∗
XB and

T ∗
xS, respectively. That is, G and g map tangents onto co-vectors by the index lowering

operation
T ∗ = GT , TAEA = GABT

BEA

t∗ = gt , tae
a = gabt

bea .
(3.21)

Analogously, we can further consider the inverse metrics G−1 and g−1

T = G−1T ∗ , TAEA = GABTBEA

t = g−1t∗ , taea = gabtbea ,
(3.22)
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Figure 3.3: The push-forward and pull-back of the reference G and spatial g metrics and
their contravariant inverse forms G−1 and spatial g−1 separately.

as the mappings from the cotangent spaces T ∗
XB and T ∗

xS to the tangent spaces TXB
and TxS through the index raising. With the definitions (3.20)-(3.22) at hand, we are
ready to construct the commutative diagrams, Figure 3.3, illustrating the pull-back and
the push-forward operations on G and g and their contravariant inverse metrics G−1 and
g−1, separately. As shown in Figure 3.3a, the push-forward of the inverse of the reference
metric b := ϕ∗(G

−1) and itself c := ϕ∗(G) are defined by

b := ϕ∗(G
−1) = FG−1F T , bab = F a

AG
ABF b

B

c = b−1 := ϕ∗(G) = F−T GF−1 , cab = (F−1)A
aGAB(F−1)B

b

(3.23)
and called the left Cauchy-Green tensor (Finger deformation tensor) and the inverse
left Cauchy-Green tensor, respectively. Similarly, based on the commutative diagram
depicted in Figure 3.3b, the pull-back of the spatial metric C := ϕ∗(g) and its inverse
C−1 := ϕ∗(g−1) are defined by

C := ϕ∗(g) = F T gF , CAB = F a
AgabF

b
B

C−1 := ϕ∗(g−1) = F−1g−1F−T , (C−1)AB = (F−1)A
ag

ab(F−1)B
b

(3.24)
and denoted as the right Cauchy-Green tensor (convected spatial metric) and the inverse
right Cauchy-Green tensor, respectively.

As mentioned above, the both metric tensors and their inverse tensors are symmetric and
positive definite and therefore so do their respective push-forwards (3.23) and pull-backs
(3.24). The above introduced deformation tensors play a fundamental role in measuring
the basic deformations. To illustrate this, let us consider tangent vectors T ∈ TXB and
t ∈ TxS, and define the stretch, λ̄, as the ratio of the length of the deformed tangent vector
t to the length of the reference tangent vector T , i.e. λ̄ := |t|g/|T |G =

√
t · gt/

√
T · GT >

0. Setting |T |G = 1 as the reference value, the stretch can be expressed as

λ̄ =
√

t · gt =
√

FT · gFT =

√
T · F T gFT =

√
T · CT =: |T |C (3.25)

in the so-called Lagrangian (material) description of the length deformation. This justifies
the name convected spatial metric coined to the right Cauchy-Green tensor C. On the
other hand, we can also set |t|g = 1 in the so-called Eulerian (spatial) description of the
deformation and express the inverse stretch

λ̄−1 =
√

T · GT =
√

F−1t · GF−1t =
√

t · F−TGF−1t =
√

t · ct =: |t|c (3.26)
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Figure 3.4: The material T̃ (X , t,N) ∈ TXB and spatial t(x, t,n) ∈ TxS traction (stress)
vectors representing the force action of the rest of the body at the vicinity, on the surfaces
of the cut parts ∂PB and ∂PS , respectively.

in terms of the inverse left Cauchy-Green tensor c = b−1. We observe that C and c

act as metric tensors in the respective Lagrangian and Eulerian description of the length
deformation. Analogous to the length stretch λ̄, we can also introduce the area stretch, ν̄,
as the ratio of the length of the deformed normal n = F−T N ∈ T ∗

xS to the length of the

reference normal N ∈ T ∗
XB that is, ν̄ := |n|g−1/|N |G−1 =

√
n · g−1n/

√
N · G−1N > 0.

Fixing the value |N |G−1 = 1, we obtain the Lagrangian description of the area stretch

ν̄ =
√

n · g−1n =

√
F−T N · g−1F−T N =

√
N · F−1g−1F−T N =: |N |C−1 (3.27)

as a norm of the material normal N with respect to the inverse right Cauchy-Green tensor
C−1. In the spatial description, we set |n|g−1 = 1 and express the inverse area stretch
ν̄−1 in terms of the Finger tensor

ν̄−1 =
√

N · G−1N =
√

F T n · G−1F T n =
√

n · FG−1F T n =
√

n · bn =: |n|b .
(3.28)

In order to have a local measure of the strains at a material point, the length of an
infinitesimal line element is compared in both its reference as well as its current state

δ := 1
2

{
|dx|2g − |dX|2G

}
= dX · EdX = dx · edx . (3.29)

This comparison can be carried out either in the Lagrangian or in the Eulerian setting
and yields to the definition of the Green-Lagrangian strain tensor E := 1

2
[C −G] and of

the Almansi strain tensor e := 1
2
[g − c], respectively.

The foregoing examples concerning the elongation and area changes give a clear geometri-
cal interpretation of the fundamental deformation tensors introduced by the pull-back and
push-forward operations of the metrics. These deformation measures enter the various
constitutive formulations of non-linear material theories.

3.2. Cauchy’s Stress Theorem and the Stress Measures

Consider a part PB ⊂ B cut off from the reference body B and its spatial counterpart
PS ⊂ S closed by the respective boundaries ∂PB and ∂PS as depicted in Figure 3.4. In the
deformed configuration, we introduce the stress vector t that acts on the surface element
da of ∂PS and represents the force action of the rest of the body at the vicinity PS\S on
∂PS . The Cauchy stress theorem states that the spatial traction vector t ∈ TxS linearly
depends on the spatial normal n ∈ T ∗

xS of the surface ∂PS , i.e.

t(x, t,n) := σ(x, t)n (3.30)
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through the Cauchy (true) stress tensor σ(x, t). The Cauchy’s stress theorem can be
proven based on the force equilibrium on a tetrahedron. In the geometrical framework
outlined so far, the Cauchy stress tensor can be understood as a contravariant mapping
transforming normals n ∈ T ∗

xS onto tangent vectors t ∈ TxS

σ :

{
T ∗

xS → TxS
n 7→ t = σn

. (3.31)

Another spatial stress measure, the Kirchhoff stress tensor which is also known as the
weighted Cauchy stress tensor, is defined as

τ := Jσ (3.32)

and widely used in the spatial description of stress power terms in the reference volume.
Owing to the scalar scaling by the Jacobian J , the Kirchhoff stresses retain the geometrical
transformation characteristics of the Cauchy stress, i.e. τ : T ∗

xS → TxS. Now let us
consider another spatial traction vector T ∈ TxS defined through the force equality
T dA := tda by scaling the spatial force term (tda) through the reference area element
dA. Based on this definition, we introduce the first Piola-Kirchhoff stress tensor by the
reference Cauchy theorem T := PN leading to PNdA = σnda. Using the area map
(3.18), we obtain the relation P = τF−T = JσF−T between the first Piola-Kirchhoff
stress tensor and the spatial stress measures introduced in (3.31) and (3.32). Notice that
P is a two-point tensor possessing the geometrical mapping properties

P :

{
T ∗

XB → TxS
N 7→ T = PN

. (3.33)

The transformation (◦) = J(•)F−T devised in obtaining the first Piola-Kirchhoff stress
tensor from the Cauchy stress tensor is called the Piola transformation. It is widely
employed in transforming the objects acting on a spatial surface onto their material coun-
terparts. The immediate outcome of the Piola transformation is the Piola-Identity

J div[•] = Div[◦] = Div[J(•)F−T ] (3.34)

that also implies the equality Div[JF−T ] = 0 . The Lagrangian stress vector T̃ ∈ TXB
may be defined through the pull-back of the spatial stress vector T ∈ TxS

T̃ = ϕ∗(t) = F−1T ∈ TXB , T̃A = (F−1)A
aT

a , (3.35)

as depicted in Figure 3.4. The third fundamental stress measure, the second Piola-
Kirchhoff stress tensor S, is then defined by T̃ := SN yielding

S :

{
T ∗

XB → TXB

N 7→ T̃ = SN
. (3.36)

Incorporating the definitions (3.31)-(3.33) in (3.36), we can express the second Piola-
Kirchhoff stress tensor in terms of the other stress tensors

S := ϕ∗(P ) = F−1P , SAB = (F−1)A
aP

aB,

S := ϕ∗(τ ) = F−1τF−T , SAB = (F−1)A
aτ

ab(F−1)B
b

(3.37)
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Figure 3.5: Commutative diagram illustrating the push-forward and pull-back operations
among the stress measures.

as the pull-back of the contravariant two-point and spatial objects. Apparently the con-
verse push-forward relations do also hold for the spatial stress tensors

τ = Jσ = ϕ∗(P ) = PF T and τ = ϕ∗(S) = FSF T (3.38)

as shown in the commutative diagram, Figure 3.5.

3.3. Balance Principles of Continuum Thermomechanics

The balance laws of continuum mechanics serve as a basic set of equations required to
solve an initial boundary-value-problem of thermomechanics for the primary variables.
This section is devoted to derivation of the fundamental balance laws of continuum ther-
momechanics. In what follows, we consider a certain spatial volume PS closed by the
boundary ∂PS as shown in Figure 3.4. For this part of the body, we write a balance equa-
tion where we will often have the volumetric source and the surface flux terms contributing
a temporal change of the quantity for which the balance principle is constructed. In order
to derive the local forms of the balance laws, we consider the following basic steps. First,
we carry the surface flux terms into the body through the Gauß integral theorem. Once
the balance equation is completely recast into a volume integral, the expression can be
localized to its local form by stating that the integrand must also fulfill the equality for
an infinitely small part PS provided that the continuity conditions are met. This spatial
balance equation is then recast into its reference form.

Balance of Mass. The total mass of a closed system, the part of a body PS under
consideration, remains constant; that is, the system is free of agencies that produce or
destroy mass within the volume PS or is not subjected to flux terms that transfer mass
over the surface ∂PS . To this end, we define the spatial mass density ρ(x, t) and its
material counterpart, the reference mass density ρ0(X), and require

d

dt
M :=

d

dt

∫

PS

ρ(x, t)dv =
d

dt

∫

PB

Jρ(x, t)dV =
d

dt

∫

PB

ρ0(X)dV = 0 . (3.39)

Making use of the identity J̇ := dJ/dt = cof F : Ḟ = J tr(l) = J div[v] in (3.39)3 and
equating the integrands of (3.39)2 and (3.39)3, we end up with the spatial and material
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forms of the local mass balance equations

ρ̇+ ρ div[v] = 0 and Jρ(x, t) = ρ0(X) . (3.40)

Balance of Linear Momentum. Being analogous to classical discrete mechanics, the
time rate of linear momentum of the volume PS is equal to the sum of the forces acting
on the body. Two types of forces are considered: the mass specific body forces γ(x, t) due
to the action of other bodies at a distance and the surface forces (stress vectors) t due to
the action at a vicinity. These can also be regarded as momentum source and momentum
flux terms, respectively. The balance of linear momentum then requires

d

dt
L :=

d

dt

∫

PS

ρv(x, t)dv =

∫

PS

ργ(x, t)dv +

∫

∂PS

t(x, t,n)da . (3.41)

Incorporating of the mass balance (3.40) in the time derivative, using the Cauchy stress
theorem (3.30), and transforming through the Gauß integral theorem the surface integral
into a volume integral, we obtain the local form of the spatial linear momentum balance

ρv̇ = ργ + div[σ] . (3.42)

Multiplication of the spatial form (3.42) with the Jacobian J , and incorporation of the
mass balance (3.40)1 and the Piola-Identity (3.34) yields the material form of the local
linear momentum balance

ρ0V̇ = ρ0Γ + Div[P ] (3.43)

where V (X, t) denotes the material velocity defined in (3.3) and Γ := γ(x, t) ◦ ϕt(X)
stands for the material body force defined per unit mass.

It is believed to be illustrative that the integration of the product of spatial linear mo-
mentum balance (3.42) with the spatial velocity co-vector v∗ = gv over the body PS

yields

d

dt

∫

PS

1

2
ρv · v∗dv =

∫

PS

ργ · v∗dv +

∫

PS

div[σ] · v∗dv . (3.44)

Insertion of the equality
∫
PS

div[σ] · v∗dv =
∫

∂PS
(σn) · v∗da −

∫
PS

σ : gldv for the last
term yields the so-called theorem of expended power

d

dt

∫

PS

1

2
ρv · v∗dv +

∫

PS

σ : gldv =

∫

PS

ργ · v∗dv +

∫

∂PS

t · v∗da (3.45)

stating that the total power P =
∫
PS

ργ · v∗dv +
∫

∂PS

t · v∗da due to the externally
applied forces is equal to the summation of the temporal change of the kinetic energy
K̇ = d

dt

∫
PS

1
2
ρv · v∗dv and the internal stress power Ẇ =

∫
PS

σ : gldv.

Balance of Angular Momentum. The time derivative of the moment of linear mo-
mentum of PS is required to be equal to the sum of the moments of the forces acting on
the body with respect to the same point. Without loss of generality, taking the moment
with respect to the origin yields

d

dt

∫

PS

x × ρvdv =

∫

PS

x × ργdv +

∫

∂PS

x × tda . (3.46)
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Exploiting the mass balance (3.40), the equality v × v = 0 in (3.46)1, using the Cauchy
stress theorem (3.30) and converting through the Gauß integral theorem the surface in-
tegral (3.46)3 into a volume integral, we obtain

∫

PS

x × (ρa − ργ − div[σ])dv =

∫

PS

idv (3.47)

where we demand ia := ǫabcσ
cb = 0. Since the permutation symbol ǫabc is skew symmetric

with respect to two indices, e.g. ǫabc = −ǫacb, the equality (3.47) is fulfilled only for the
symmetric Cauchy stresses. Thus, the balance of angular momentum results in

σ = σT , σab = σba . (3.48)

Owing to the push-forward and pull-back relations derived in Section 3.2, the other two
stress measures τ and S are required to satisfy the following symmetry relations

τ = τ T , PF T = FP T , S = ST (3.49)

as well. Observe that the first Piola-Kirchhoff stresses are generally non-symmetric.

Balance of Energy (The First Law of Thermodynamics). The first law of thermo-
dynamics states that temporal change of total energy is equal to the sum of the mechanical
and thermal power. The total energy is defined as a summation of the kinetic energy K,
see (3.45), and the internal energy E :=

∫
PS

ρe(x, t)dv where e(x, t) denotes the mass
specific internal energy density. The external mechanical power P has already been intro-
duced in (3.45). The thermal power Q :=

∫
PS
ρr(x, t)dv−

∫
∂PS

q ·nda is composed of the

specific heat source r(x, t) and the surface heat flux vector q(x, t), see Figure 3.6. The
balance of energy has then the following global form

d

dt
(K + E) = P + Q (3.50)

where we immediately observe that K̇−P = −Ẇ due to the theorem of power expended
introduced in (3.45). Incorporating this result in (3.50), we obtain Ė = Ẇ+Q, localization
of which through the integral theorem leads us to the spatial local form

ρė = σ : (gl) + ρr − div[q] (3.51)

Analogous to the definition of the first Piola-Kirchhoff stress tensor, we introduce the
reference heat flux vector Q that fulfills the equality q ·nda = Q ·NdA through the area
map Q := JqF−T = JF−1q as introduced in (3.18) and depicted in Figure 3.6. This
immediately implies that Q is none other than the Piola transform of the spatial heat
flux vector q and therefore the equality J div[q] = Div[Q] is satisfied identically. Having
defined the reference heat flux vector Q, the spatial energy balance equation (3.52) can
be recast into the reference local form by following the obvious steps

ρ0ė = τ : (gl) + ρ0R− Div[Q] (3.52)

with R(X, t) := r(x, t) ◦ ϕt(X).
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For the forthcoming developments, it is important to note that the volume specific stress
power term ρ0P := Jσ : (gl) = τ : (gl) appears as a scalar product the stress mea-
sures and their work conjugate variable the spatial velocity gradient gl. Since τ or
σ is symmetric, the stress power term ρ0P can be rewritten as ρ0P = τ : d with
d := sym(gl) = 1

2
(gl + lg) denoting the rate of deformation tensor, which is equivalent

to the half of the Lie derivative of the spatial metric g. The Lie derivative of a spatial
object is geometrically defined as the push-forward of the material time derivative of its
pull-back, that is,

£v(•) := ϕ∗(
d

dt
ϕ∗(•)) (3.53)

With this definition at hand, the rate of deformation gradient d can be obtained as

£v(g) = ϕ∗

(
d

dt
ϕ∗(g)

)
= ϕ∗

(
d

dt
C

)
= F−T ĊF−1 = (gl + lg) = 2d , (3.54)

where l := ∇xv = Ḟ F−1 denotes the spatial velocity gradient. Therefore, the analogous
representations of the stress power ρ0P can also be derived in terms of P

ρ0P := τ : (gl) = PF T : gḞF−1 = gP : Ḟ (3.55)

and also for S

ρ0P := τ : d = τ : 1
2
£v(g) = FSF T : 1

2
F−T ĊF−1 = S : 1

2
Ċ . (3.56)

The alternative representations of the stress power per unit of reference volume ρ0P :=
τ : d = gP : Ḟ = S : 1

2
Ċ manifest the distinct work conjugate couples

(τ ,d) , (gP , Ḟ ) and
(
S, 1

2
Ċ
)
. (3.57)

Balance of Entropy (The Second Law of Thermodynamics). The second law of
thermodynamics, which is in fact an inequality unlike the other balance principles, serves
as a major mathematical restriction on the constitutive equations governing, for instance,
heat conduction or evolution of internal variables describing an internal dissipative mech-
anism. For the part of the body PS under consideration, we define the total entropy by
integrating the specific entropy η over the volume, i.e.

∫
PS
ρηdv. The temporal change of

the entropy has two contributions, namely the reversible and the irreversible parts, see
e.g. de Groot & Mazur [57]. The reversible change of the entropy is due to external
heat sources. The irreversible part of the entropy change, however, stems from internal
dissipative mechanisms. The second law of thermodynamics states that the irreversible
part of the entropy rate is always positive. For this purpose, we introduce the specific rate
of entropy production γ(x, t) whose integration over the volume leads us to the total rate
of entropy production

∫
PS

ργ(x, t)dv ≥ 0. The balance of entropy can then be expressed
as

∫

PS

ργdv :=
d

dt

∫

PS

ρηdv −



∫

PS

ρr

θ
dv −

∫

∂PS

q · n
θ

da


 ≥ 0 (3.58)

where θ stands for the absolute temperature restricted to the positive values θ > 0.
Following the conventional steps, we end up with the local spatial entropy balance

ργ = ρη̇ − ρ
r

θ
+ div

[q
θ

]
= ρη̇ − ρ

r

θ
+

1

θ
div[q] − 1

θ2
q · ∇xθ ≥ 0 . (3.59)
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Figure 3.6: The material Q(X , t) ∈ TXB and spatial q(x, t) ∈ TxS heat flux vectors
representing the production of heat through the rest of the body over the surfaces of the cut
parts ∂PB and ∂PS , respectively.

The inequality (3.59)3 can also be written in the form commonly referred to as the
Clausius-Duhem inequality

ρη̇ ≥ ρ
r

θ
− 1

θ
div[q] +

1

θ2
q · ∇xθ . (3.60)

The material version of (3.59) then reads as

ρ0η̇ ≥ ρ0
R

θ
− 1

θ
Div[Q] +

1

θ2
Q · ∇Xθ . (3.61)

3.4. The Entropy Production Inequality

The spatial dissipation is defined as the product of the rate of entropy production in (3.59)
with the absolute temperature θ, i.e. ρD := ργθ ≥ 0. Owing to the nature of the terms
in (3.59), it is common practice to additively split the dissipation into the local (intrinsic)
Dloc and the conductive (thermal) Dcon parts, D = Dloc + Dloc. We then require a more
strict condition than (3.59) by demanding the positiveness of the both terms Dloc and
Dcon separately. To this end, we introduce the Clausius-Planck inequality

ρDloc := ρη̇θ − (ρr − div[q]) ≥ 0 , (3.62)

and the Fourier inequality

ρDcon := −1

θ
q · ∇xθ ≥ 0 , (3.63)

that can also be expressed in the following Lagrangian form

ρ0Dcon = JρDcon = −1

θ
Jq · ∇xθ = −1

θ
Q · ∇Xθ ≥ 0 . (3.64)

Incorporation of the spatial energy balance equation (3.52) in the first version of the
Clausius-Planck inequality (3.62) leads to the equation formulated in terms of the internal
energy density

ρDloc := ρη̇θ − ρė+ σ : (gl) ≥ 0. (3.65)

This form can be rewritten per unit reference volume by multiplying (3.66) with the
Jacobian J , i.e.

ρ0Dloc = JρDloc = ρ0η̇θ − ρ0ė+ gP : Ḟ ≥ 0 . (3.66)
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There are four basic thermomechanical potentials widely encountered in the thermome-
chanics literature. The choice of an appropriate potential is generally made according
to circumstances of experiments or properties of the material at hand. In the context of
continuum thermomechanics, these potentials generally depend on a set of variables which
is formed through a mutual combination between the sets {gP ,F } and {η, θ}. The first
set can, of course, be replaced with any of the work conjugate pairs given in (3.57). For
inelastic materials, these sets are supplemented by additional internal variables, say {Q},
employed for the description of inelastic dissipative processes. The concept of internal
variables has widely been used in the constitutive formulation of dissipative materials
through the initial value problems governing their temporal evolution. The set {Q} may
have scalar, tensorial or n-vector character. The internal variables may be observable
but generally cannot be externally controlled, see Maugin [101] for an excellent review.
The thermodynamical forces, say {M}, conjugate to the set {Q} on the bases of dissipa-
tion, generally are not externally defined. Thus, it should also be noted that the internal
variables do not explicitly appear up to the energy balance equation (3.52).

By looking at the time derivatives of the fields in the Clausius-Planck inequality (3.66) one
can readily conclude that the internal energy e can be considered as a thermodynamical
potential depending primarily upon the deformation F and the entropy η, i.e. e =
ê(F , η, . . .). We then define the Helmholtz free energy through the partial Legendre
transformation ψ := supη{e − θη} implying the functional dependency ψ = ψ̂(F , θ, . . .).
Similarly, we can also introduce the Gibbs free energy g = ĝ(gP , θ, . . .) := supF{ψ−gP :
F } and the enthalpy h = ĥ(gP , η, . . .) := supF{e−gP : F }. Commonly, in the modeling
of the material behavior we utilize the Helmholtz free energy. Hence, the version of the
Clausius-Planck inequality in terms of the Helmholtz free energy, or simply free energy,
is of interest. Inserting its definition ψ := supη{e− θη} into (3.66), we end up with

ρ0Dloc := gP : Ḟ − ρ0ψ̇ − ρ0ηθ̇ ≥ 0 . (3.67)

To fix the ideas, let us focus on a problem of thermoelasticity for a homogeneous material
where the free energy does not depend on the internal variables. Being consistent with
the principle of equipresence, we assume that the constitutive equations, the free energy
ψ and the heat flux vector Q, depend upon the same set of field variables

ψ = ψ̂(g,F , θ,G) and Q = Q̂(g,F , θ,G) (3.68)

where G := ∇Xθ denotes the material gradient of the temperature field and the spatial
metric g is needed to compute the deformation measures in the reference configuration.
Based on this assumption, we can include the time derivative of the free energy ψ̇ =
∂Fψ : Ḟ + ∂θψθ̇ + ∂Gψ · Ġ in the Clausius-Planck inequality given in (3.67). Gathering
the coefficients of the time rates of the common terms, we obtain

ρ0Dloc := [gP − ρ0∂Fψ] : Ḟ − ρ0[η + ∂θψ]θ̇ − ρ0∂Gψ · Ġ ≥ 0 (3.69)

Following the celebrated reasoning of Coleman & Noll [33] and Coleman & Gurtin
[32] within the framework of thermodynamics with internal variables, we contend that
the thermodynamic restriction should be fulfilled for an arbitrary rate of the deformation
gradient, temperature and temperature gradient. Therefore, (3.69) implies a particular
form of constitutive equations such that

gP := ρ0∂Fψ , η := −∂θψ and ∂Gψ = 0 . (3.70)
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The first two equations of (3.70) state that the free energy acts as a potential for the
stresses and the entropy while (3.70)3 implies that the free energy does not depend on the
temperature gradient G, i.e. ψ = ψ̂(g,F , θ). From the results (3.70), it is also clear that
the local dissipation Dloc vanishes identically for thermoelastic problems. In a general
problem of thermoinelasticity, however, the free energy is also a function of the internal
variables {Q}. With the results obtained in (3.70), the Clausius-Planck inequality can
be recast into its reduced form

ρ0Dloc := M : Q̇ ≥ 0 with M := −ρ0∂Qψ . (3.71)

The principle of material frame invariance requires the invariance of the energy stored
under rigid body rotations superimposed on the current spatial configuration. Therefore,
we locally demand ψ(g,F , θ) = ψ(g̃, F̃ , θ) where F̃ := Q∗(F ) := QF and g̃ := Q∗(g) :=
Q−T gQ−1 for all Q ∈ SO(3). Observe that the right Cauchy-Green tensor C = F T gF =

F̃
T
g̃F̃ automatically satisfies this condition. Therefore, the storage function ψ̂ in terms

of C = F T gF is a priori objective and the form ψ̂(C, θ) = ψ̂(F T gF , θ) represents its
reduced form. Based on this restriction, we can rewrite the term [gP − ρ0∂Fψ] : Ḟ in
(3.69) as [S − 2ρ0∂Cψ] : 1

2
Ċ due to the stress power equalities (3.60), (3.61). This yields

the functional definition of the second Piola-Kirchhoff stress tensor

S = 2ρ0∂Cψ. (3.72)

Starting from this equality, we can further continue to obtain

[S−2ρ0∂Cψ] : 1
2
Ċ = τ : 1

2
£vg−2ρ0∂Cψ : F T

£vgF = [τ−2ρ0F∂CψF T ] : 1
2
£vg. (3.73)

where it can be shown through the chain rule that 2ρ0F ∂CψF T = 2∂gψ see Marsden
& Hughes [98], p.197. This equality leads us to the Doyle-Ericksen formula

τ = 2∂gψ(g,F , θ) (3.74)

originally derived by Doyle & Ericksen [44].
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4. Electrostatics

The aim of this chapter is to construct the global and local equilibrium equations together
with the constitutive equations of electrostatics by using an approach similar to the one
used for the continuum mechanics. Those equations will be written in the physical Eu-
lerian configuration S and later on transformed to the current configuration B will be
considered. The material treated here is assembled by referring to different books and
lecture notes, see Landau & Lifschitz [88], Schelkunoff [132], Penfield & Haus
[125], Fleury & Mathieu [50], Pohl [127], Tonti [142], Stratton [140] among the
others.

4.1. The Electric field

Historically two kinds of electric charge, positive and negative, each conceived as some sort
of invisible fluid, were postulated to explain primitive experiments with wax and ebonite
rubbed with fur and with bodies brought in contact with them. Simple experiments
suffice to demonstrate that charges of the same sign repeal each other, those of opposite
signs attract, and that equal charges of opposite signs can neutralize each other as far as
external action is concerned. The Coulomb’s law of force between charged particles and
bodies is analogous to Newton’s law of gravitation

f e = ke q1q2
r2

(4.1)

where q1 and q2 are the electric charges on the particles, r is their distance and the force
acts along the line joining the particles. The entity of the constant ke will be specified in
the following subchapters.

The evidence that the charges attract or repel themselves suggests the institution of a
physical variable which measures the intensity of such an action. Thus we define a new
field, the electric field, and we say that an electric charge is surrounded by such a field and
is the source of the same. In order to define the electric field generated by an arbitrary
system of charges we observe that a test charge qe placed in such a field experiences a
force f e which depends on the position x, on the charge qe, and converges to zero for
qe → 0 (see Figure 4.1). The force f e could be expressed in polynomial form as

f e(x, qe) = e(x)qe + g(x) (qe)2 + s(x) (qe)3 +HOT (qe) (4.2)

being e, g, s vectorial coefficients and HOT (qe) higher order terms in qe. In particular,
if qe is small the following approximation holds

f e(x, qe) = e(x)qe with e(x) := lim
qe→0

f e(x, qe)

qe
. (4.3)

The vector e defined in equation (4.3)2 is called the electric field vector. The unit of the
electric field intensity is one newton per coulomb

[
N
C

]
or, as we will see in the following,

the volt per meter
[

V
m

]
.

From equation (4.1) and (4.3)2 we conclude that the intensity of the electric field generated
from a charged particle qe is given by

|e| (x, qe) = ke q
e

r2
(4.4)
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Figure 4.1: Measuring of the electric field with a test charge qe. The dashed lines represent
the electric field lines.

being r the distance from qe. We observe that the introduction of a test charge in an
electric field alters the position of the charges originally generating the field (Pohl [127]).
Thus the ratio f e/qe gives a measure of the field altered from the presence of the test
charge. This ratio is a measure of the pre-existing field in one of the three following
situation (see Schelkunoff [132]):

• The sources of the field are held fixed.

• The point x in which the test charge is placed is so far away from the sources that
the test charge does not affect their position.

• The test charge is so small that it does not affect the position of the sources.

Since the distortion gets smaller for a smaller value of the test charge one does the limit
of the ratio f e/qe as in (4.3)2. On the other hand, the smallest possible charge is the
charge of the electron and thus such a limit operation is in contrast with physics. For this
reason we have to be satisfied with a model of the electric field which ignores the discrete
nature of the electric charge.

From a spatial point of view we have two different types of charges: the contained charge
qec and the flowing charge qef . The contained charge is associated with a certain volume
S, i.e. qec = q̂ec(S). The flowing charge, whose rate is called electric current, has the
property of inducing a magnetic field. In the electrostatic case qef = 0, i.e. the charges
are not flowing.

4.2. The First Law of Electrostatics

The first law of electrostatic, known also under the name of Gauß-Law, involves two
physical variables which we are going to define in the next subchapters. These variables
are the electric flux or electric surface charge he and the electric induction vector or electric
displacement vector d.

4.2.1. Charge Distribution in Conductors

Conducting bodies are normally electrically neutral. They contain equal numbers of
protons and electrons so distributed that their forces on an external charge cancel such
that no external field as well as no internal field are produced. If a quantity of electrons
is removed from a body, the body becomes positively charged. It is negatively charged
when there is an excess of electrons. If electrons are introduced into a conductor, the
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ee
a) b)

Figure 4.2: The displacement of charge under the influence of an electric field: a) on
a neutral metallic sphere in an isotropic medium, b) on a neutral metallic sphere in an
anisotropic medium.

forces of repulsion will disperse them. They will keep moving as long as there is an
electric intensity inside the conductor and a tangential component of e on the surface.
The normal component of e will try to pull them out unless the opposite pushing force
is extremely strong. A static state is reached when the field inside the conductor and its
tangential component on the surface vanish. Thus, in a static state the electric field is
normal to the surface of any conductor.

The above argument was based on an excess of electrons. The same argument applies
when there is an electron deficiency. The protons will pull the electrons until the positive
field inside the conductor disappears so that the deficiency of electrons will exist only on
the surface, and there the final distribution will be such that the tangential component
of e is zero.

If a neutral conductor is introduced in an electric field, the free electrons are displaced,
Figure 4.2a, in such a way that the electric intensity due to their displacement within
the conducting body is equal and opposite to the external field. Thus, the tangential
component of the electric field due to the displaced charge is equal and opposite to the
impressed tangential component. This phenomenon is known as electrostatic induction.

If the medium outside a metal sphere is crystalline, the electrons are usually displaced in
some directions other than that of e (Figure 4.2b), except when e is along a “principal”
axis of the medium.

4.2.2. Farady’s Law of Electrostatic Induction

Faraday discovered that if a charge qe is enclosed by a neutral metal sphere, an equal
charge of the same sign appears on the external surface of the sphere. He found that the
external field is symmetric weather the sphere is placed concentric within the enclosed
charge or not (cf. Figure 4.3). Also, if the charge on the external surface is removed from
the sphere by momentarily grounding it, a charge equal and opposite to the enclosed
charge will be left on the inner part of the sphere. This is true regardless of the noncon-
ducting medium surrounding the charge qe. The induced charge is also independent of
the shape of the metallic closed conducting shell and of its dimension.

Faraday’s observations are explained in view of the present-day knowledge about free
electrons in conductors. The enclosed charge will either repel or attract the electrons,
depending on its sign. Hence the same charge will always be on the external surface and
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Figure 4.3: The charge induced on the external surface of the metallic spherical shell is
equal to the enclosed charge.

the opposite charge on the internal surface. When the displacement of charge has taken
place, there will be no field in the metallic shell. Hence the charge on the external surface
is free to distribute itself according to its own forces.

The law of the electric induction represents the experimental point of departure of the so
called Gauß-Law: “the electric charge which appears on the external surface of a conduct-
ing closed shell is equal to the total enclosed charge”.

4.2.3. Electric Displacement or Induction

If we approach with a charge qe a metallic shell of arbitrary shape, closed or opened,
because of the electric induction two charges of opposite sign will raise on his two surfaces.
We consider an infinitesimal oriented conducting shell ds = dsn of area ds and normal
n. We assume as positive side ds+ of ds the one from which the normal n is outgoing.
We define the charge raising on ds+ as the electric flux or electric surface charge he.
Obviously the charge induced on the negative side ds− of ds is equal to −he, i.e.

he(ds+) = −he(ds−) or he(ds) = −he(−ds) . (4.5)

In (4.5)2 we identified ds with its positive side. Experimental evidences show that (cf. Fig-
ure 4.4):

1. The displaced or induced charge he depends on the relative orientation of the plate
with respect to the electric field orientation e.

2. he is proportional to the area ds of the test plate.
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Figure 4.4: The measure of the electric flux on an oriented surface element in an electric
field e depending on the surface normal n.
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Figure 4.5: The electric flux φe can be measured by using a probe made up of two identical
metallic shells with two isolating handles. In an electric field a concentration of opposite
charges will raise on the external faces of the two shells.

3. When the orientation n of the plate is parallel to a certain direction n0, the displaced
charge he is a maximum.

4. The charge displaced in any other orientation equals the maximum displaced charge
multiplied by the cosine of the angle between n and n0.

5. The displaced charge depends not only on the electric field e but also on the medium
surrounding the plate.

For small discs the charge he (in Coulomb) is proportional to the area. The quantity

σe := lim
ds→0

he

ds
(4.6)

is defined as electric surface density charge. The flux he can be measured with a probe
made up of two identical metallic discs provided with two isolating handles as in Figure
4.5. If the two parts are in contact and are immerged in an electric field, because of the
electric induction a concentration of opposite charges will raise on the external faces of the
two shells. If we now detouch the two metallic surfaces the induced charges will remain
on the two shells and could be measured. If we fix one of the two shells as positive, we
define the electric charge on it as electric flux he. The fact that the induced charge is
independent of the material of the conducting disc is of primary importance: this allows
us to link the electric flux directly to the geometrical surface.

The surface density σe is a variable depending on the position x and on the orientation
n. We would like to define a vector d(x) depending only on the position x, such that we
could write

σe(x,n) = d(x) · n (4.7)

We consider first of all the direction n0 in correspondence of which the surface density σe

reaches its maximal value σe
0. Experimental evidences show that for a generic orientation

n the following relationship holds

σe(x,n) = σe
0(x)cos(α) = σe

0(x)(n0 · n) , (4.8)

with α angle between n and n0. It becomes natural at this point to define the vectord := σe
0(x)n0 (4.9)
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which is called electric induction vector or displacement density or electric displacement
vector and is necessary for a complete quantitative description of the electric field. This
vector depends only on the position x. We can now write equation (4.8) in the desired
form (4.7). It is then obvious that the electric flux on the positive surface ∂S could be
written in the form

he[∂S] =

∫

∂S

d(x) · ds . (4.10)

with ds = dsn and n normal to ∂S . Equation (4.10) has to be interpreted as the definition
of the electric induction vector d since the flux he is the quantity which can be measured.
Finally we could express Farady’s electrostatic induction law as follow:

First Law of Electrostatics: The electric flux he relative to the boundary ∂S of the
closed region S is equal to the electric charge qe enclosed in the volume S, i.e.

he[∂S] = qe[S] . (4.11)

4.2.4. The Gauß Theorem

Using equation (4.10) we could rewrite Farady’s law of electrostatic induction (4.11) in
the form ∫

∂S

d(x) · ds = qe[S] . (4.12)

If the charge qe[S] is distributed in S with a volume density ρ̄e(x) we can write qe[S] =∫
S
ρ̄e(x)dv and thus equation (4.12) reads

∫

∂S

d(x) · ds =

∫

S

ρ̄e(x)dv , (4.13)

representing the global or integral form of the Gauß-Law. Using successively the diver-
gence theorem and the localization theorem, we could derive the local or differential form
of the first law of electrostatics

div[d(x)] = ρ̄e(x) in S . (4.14)

Equation (4.14) becomes on the boundary ∂S of Sd(x) · n = σe(x) on ∂S . (4.15)

4.3. The Second Law of Electrostatics

The second law of electrostatics involves together with the electric field e defined in the
previous sections, the electric tension Ue and the electric potential φe which are going to
be defined in the next subchapters.

4.3.1. Constitutive Equations

In order to study the electric field we have introduced two vectors: the electric displace-
ment vector d which describes the charge distribution on a surface and the electric field
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vector e which describes the forces acting on charges. It is obvious to expect a relationship
between these two vectors. We could write a constitutive equation of the general formd = d̂(e,q) (4.16)

which will depend on the medium on which the electric field acts. q is a set of parameters
describing eventual dissipative phenomena. Equation (4.16) could be approximated in
the non-dissipative case in terms of a linearization in the formd = ǫe (4.17)

with second order tensor ǫ referred as dielectric permittivity tensor. In vacuum the tensor
ǫ reduces to a constant d = ǫ0e (4.18)

with ǫ0 as the dielectric permittivity constant in vacuum. Equation (4.18) is experimen-
tally verified, see Halliday, Resnick and Krane [58]. We can observe indeed that in
vacuum the vectors e and d have the same direction.

4.3.2. The Polarization Vector

Different from vacuum, in a generic material e and d could have different directions
and their relationship could either be linear or non-linear. Although the two vectors e
and d are sufficient to characterize completely an electrostatic field in any medium, it is
convenient to introduce a third vector p, the polarization vector, defined as the difference
between e and d or, more precisely, as the difference between the electric displacement
vector in matter and the electric displacement vector in vacuum, i.e.p(e,q) := d(e,q) − ǫ0e , (4.19)

see Stratton [140]. Materials in which p can assume a value different from zero are
called dielectric materials. The polarization vector p vanishes in the free space and
therefore is associated with the constitution of the dielectric. Insertion of (4.19) in the
form d = p+ ǫ0e into the local form of the Gauß-Law (4.14) reads

div[e(x)] =
1

ǫ0
{ρ̄e(x) − div[p(x)]} (4.20)

from which we can conclude that the effect of a dielectric on the field may be accounted
for by an equivalent charge distribution whose volume density is

ρp(x) = − div[p(x)] (4.21)

called the volume density of the polarization charge. The concept will be more clear in
Section 4.6 where we will give a micro-mechanical motivation of (4.21). In some dielectrics
the relationship between p and e is of linear type and we writep(e) = ǫ0χ

ee (4.22)

with χe as the dielectric susceptibility tensor. Insertion of (4.22) into (4.19) gives the
following constitutive relationship for the non-dissipative dielectric materialsd(e) = ǫ01e+ ǫ0χ

ee = ǫ0(1 + χe)e = ǫ0ǫre = ǫe (4.23)
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x1

x2

e
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cx1x2

Figure 4.6: An illustration of equation (4.26) which defines the electromotive force (the
“voltage”) between the two points x1 and x2 along a given curve cx1x2

.

with ǫr = 1 + χe and ǫ = ǫ0ǫr, being ǫr the relative dielectric permittivity tensor. For
dissipative dielectrics, we could additively split the polarization p in a reversible partpe(e) depending on the electric field e and an irreversible part prp(e,pr) = pe(e) + pr (4.24)

which inserted into (4.19) yieldsd(e,pr) = pe(e) + ǫ0e+ pr = de(e) + pr (4.25)

with de(e) = pe(e) + ǫ0e reversible part of the electric displacement.

4.3.3. The Electromotive Force

The electromotive force or the voltage along a given path cx1x2
between the point x1 and

x2 (cf. Figure 4.6) is the line integral of the tangential component of the electric field

Ue[cx1x2
] =

∫

c

e · dl . (4.26)

It is clear that Ue[cx1x2
] = −Ue[cx2x1

]. Suppose that a charged particle qe is carried along
cx1x2

. Multiplying equation (4.26) by qe, we have

qeUe[cx1x2
] =

∫

cx1x2

qee · dl . (4.27)

Here qee is the force f e acting on qe and the line integral is the work w[cx1x2
, qe] done by

this force, i.e.

w[cx1x2
, qe] =

∫

cx1x2

f e · dl =

∫

cx1x2

qee · dl = qeUe[cx1x2
] . (4.28)

Hence, if e does not vary with time, the voltage Ue[cx1x2
] is the work done by the field

per unit charge carried along the path cx1x2
. If e varies with time but the transit time of

the particle is so short that e has not changed appreciably in this time, Ue[cx1x2
] is still

substantially the work done by the field per unit charge carried along cx1x2
. Otherwise

Ue[cx1x2
] is just the line integral of e which plays an important role in electromagnetic

theory.
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∂S

a) b)

∂S1 ∂S2

Figure 4.7: The electric tension along a closed line crossing different materials is equal to
zero.

In the remaining part of this subsection we will prove that in the case of electrostatic fields
it is permissible to speak of voltage between two points because the voltage is independent
of the path joining the two points. Furthermore, this is often approximately true even for
time-varying fields.

Since qeUe[cx1x2
] is in the nature of work or energy, its unit is the joule ([J ]). Therefore,

the unit of electromotive force is one joule per coulomb ([J/C]), which is called the volt
([V ]). From equation (4.26) is clear that the unit of the electric field may be called
volt/meter ([V/m]) as well as newton/coulomb ([N/C]).

It is easy to prove that in a Coulombian field generated by one charge, the electric tension
along a generic closed line c is equal to zero since the force between two charges is
conservative:

Ue[c] = 0 with c closed . (4.29)

Let us consider an homogeneous and isotropic medium and in it the electric field produced
from several charges. Assuming the superposition property to be valid we conclude that
the electric field in each point is the sum of the electric fields ek generated by the single
charges, i.e.

Ue[c] =

∫

c

e · dl =

∫

c

n∑

k=1

ek · dl =

n∑

k=1

∫

c

ek · dl =

n∑

k=1

Ue
k [c] = 0 . (4.30)

Since each of the fields ek is a Coulombian field and thus the property (4.29) holds we
conclude that also for the resulting field the property (4.29) holds. In the case of an
anisotropic medium the property (4.29) is still valid. The anisotropy in fact affects only
the relationship between d and e, but the electric tension is defined using the vector e
only and thus the anisotropy has no consequence on (4.29).

Let us consider now two homogeneous media as in Figure 4.7a. Let the closed line c

be the border of a surface ∂S which crosses the two media. This closed path can be
decomposed in two paths each of which lays in just one medium. Let us label with ∂S1

and ∂S2 the two surfaces into which ∂S is decomposed, as in Figure 4.7b. For each of
these two surfaces the property (4.29) holds, i.e.

Ue[c1] = 0 and Ue[c2] = 0 . (4.31)

being c1 and c2 the closed curves surrounding ∂S1 and ∂S2. Since the common piece of
the two closed lines c1 and c2 is covered twice in different directions we conclude that

Ue[c] = Ue[c1] + Ue[c2] = 0 . (4.32)
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and thus also along a closed line crossing two different materials the electric tension is equal
to zero. This property is also valid if the closed line crosses several different materials.
In particular, a material whose homogeneity varies continuously can be approximated by
a series of infinitesimal portions having different physical properties. As consequence the
property (4.29) is also valid for materials generically not homogeneous and thus we come
to the

Second Law of Electrostatics: The electric tension along any reducible closed line c

is equal to zero, i.e.

Ue[c] =

∫

c

e · dl = 0 . (4.33)

Because of (4.28) we could state the second law of electrostatics also by saying that the
work done to move the unit charge along a generic closed path is equal to zero.

From (4.33) we can also conclude that the electrostatic field is conservative, i.e. the work
done to move a unit charge from a point x0 to a point x is independent of the path. In fact,
if we decompose the closed path c passing through the points x0 and x as c = c1

x0x∪c2
xx0

(cf. Figure 4.8) we could write using (4.33)

∫

c1
x0x

e · dl = −
∫

c2
xx0

e · dl =

∫

c2
x0x

e · dl . (4.34)

The integral in (4.33) is nothing but the circulation of the electric field e around the closed
path c surrounding the surface ∂S of area S. Using Stokes’ theorem we could write

∫

c

e · dl =

∫

∂S

curl [e] · n ds = 0 (4.35)

with n unit normal to ∂S. The equation (4.35) represents the global form of the second
law of electrostatics. An immediate consequence of (4.35) in conjunction with (4.33) is
the fact that the electric field is irrotational. We have in fact

curl [e] · n = lim
S→0

1

S

∫

c

e · dl = 0 (4.36)

from which we deduce the local form of the second law of electrostatics as

curl [e] = 0 . (4.37)

4.3.4. The Electric Potential

The second law of electrostatics (4.33) implies that the electromotive force from any point
x to another point x0 (cf. Figure 4.8) is independent from the path along which it is taken.
Hence, we can choose a fixed point x0 and define for any other point x a unique quantity
φe(x) equal to the electromotive force from x to the reference point

φe(x) =

x0∫

x

e · dl = −
x∫

x0

e · dl . (4.38)
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Figure 4.8: The electromotive force is independent of the path on which is taken.

The function φe(x), defined unless an arbitrary constant, is called electric potential of the
point x. The reference point is often chosen at infinity.

The lines and surfaces of equal potential are called equipotential lines and equipotential
surfaces. They have the property that the electric field is always orthogonal to them.
In the case of a static charge distribution, the potential on the surface of any conductor
must be constant because if it were not constant, there would be a tangential component
of e and a flow of charge would take place. In electrostatics conducting surfaces are
equipotential surfaces. Any equipotential surface may be replaced by a conducting surface
without disturbing the field.

Reciprocally, we can obtain the electric field in any point x from the potential distribution
φe(x) as its gradient e(x) = −∇xφ

e(x) . (4.39)

It is important to remember that the concept of potential is based on equation (4.33) and
does not apply in all its generality to time variable fields. However, if strong magnetic
fields are confined to certain regions, the equation (4.33) is approximately true outside
these regions. Also in certain regions we may have an electric field varying strongly
with the time and relatively weak magnetic fields. In such regions equation (4.33) is
approximately true and we can introduce the concept of a local potential.

4.4. The Boundary-Value-Problem of Electrostatics

The equation governing the boundary-value-problem for the electrostatic case in a given
region S ∈ R3 of boundary ∂S occupied by a dielectric material and surrounded by free
space could be summarized as in Table 4.1 where the boundary ∂S has been decomposed
in a portion ∂Sd, where the free surface charges are placed, and a portion ∂Se

φ, where the
electric potential can be assigned, as follows

∂S = ∂Sφe ∪ ∂Sd with ∂Sφe ∩ ∂Sd = ∅ . (4.40)

4.4.1. Remark on the Boundary Conditions

We should notice that the electric field e and the electric displacement d are not only
confined to the region S, but they “live” also in the free space surrounding it. The electric
property of the dielectricum is in general different from the property of the medium (free
space in the considered case) surrounding it. Thus the surface ∂S has to be seen as a
surface of discontinuity. The local equation (4.14) and (4.37) should be satisfied in each
point x of S and in each point x of the surrounding free space R3\S and the fields e(x)
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Table 4.1: Boundary-Value-Problem of Electrostatics

1. Kinematic equations e(x) = − ∇xφ
e(x) (curl[e(x)] = 0 )

2. Equilibrium equation div[d(x)] = ρ̄e(x)

3. Constitutive law d(x) = d̂(e)
4. Boundary conditions d(x) · n = − σ̄e(x,n) on ∂Sd

φe(x) = φ̄e(x) on ∂Se
φ

and d(x) should continuously change. However, across ∂S we may expect a discontinuity
of the fields e(x) and d(x) which could be specified by writing the global form of the
electrostatic laws across the boundary ∂S.

Let n be the outgoing normal of S on ∂S and let us contradistinguish with the subscript
“S” the properties and fields of the dielectricum occupying the region S and with the
subscript “free” the properties and fields of the surrounding free space R3\S.

We draw through the boundary ∂S a right cylinder as indicated in Figure 4.9a occupying
the region P ∈ R3 with boundary ∂P. The walls of the cylinder are normal to ∂S and its
bases of area ∆a lie in the two different media and are separated by a height ∆l. Fixing
our attention on the field of the vector d(x) we have

∫

∂P

d(x) · ds =

∫

P

ρ̄e(x)dv (4.41)

when integrated over the walls and basis ∂P of the cylinder P. If the base is made
sufficiently small, it may be assumed that d has a constant value over it. Further if ∆l is
small enough, the volume charge density ρ̄e may be considered constant within the region
P. Neglecting differentials of higher order we may approximate (4.41) by

[dfree · (n) + dS · (−n)] ∆a+ LL = ρ̄e∆a∆l (4.42)

were LL represents the contribution of the walls to the surface integral which is directly
proportional to ∆l. In the limit ∆l → 0, the bases of the cylinder lie just on either side
of ∂S and the walls’ contribution becomes vanishingly small. qe = ρ̄e∆a∆l is the charge
contained in P distributed with a volume density ρ̄e. As ∆l → 0, the total charge qe

remains constant, for it cannot be destroyed, and the volume density ρ̄e becomes infinity.
It is convenient to replace ρ̄e∆l by a surface density σ̄e, defined as the charge per unit
area. Then as ∆l → 0 and ∆a→ 0 we have

(dfree − dS) · n = σ̄e . (4.43)

The presence of a density charge on ∂S results in an abrupt change in the normal com-
ponent of the electric displacement d, the amount of the discontinuity being equal to the
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Figure 4.9: a) Bondary conditions on the electric displacement d. b) Bondary conditions
on the electric field e

surface charge density σe. If the medium surrounding the dielectricum S is, as in the case
under consideration, the free space, it follows that

|dS| ≫ |dfree| , (4.44)

i.e. dfree is negligible with respect to dS since the permittivity of the free space is much
smaller then the permittivity of the dielectricum (normally 100-1000 smaller), so that
(4.43) can be written as dS · n = −σ̄e . (4.45)

Let us consider now a rectangular path c0 across the surface ∂S. The sides of the rectangle
of length ∆s lie in either the dielectric material in the region S or in the free space while
the other two edges of length ∆l cross ∂S. About the rectangle c0 we have

∫

c0

e · dl = 0 . (4.46)

Let tfree and tS be the vectors in the circulation direction along the lower and the upper
sides of the rectangle as shown in the Figure 4.9b. Neglecting differentials of higher order,
one may approximate (4.46) by

[e · tfree + e · tS ]∆s + ll = 0 , (4.47)

being ll the contribution of ∆l to the line integral. If n0 is the normal to the rectangular
surface, we may write

tfree = −tS = n0 × n . (4.48)

In the limit ∆l → 0 and ∆s→ 0 we have

n0 · [n × (efree − eS)] = 0 . (4.49)

Since n0 is arbitrary, we finally obtain

n × (efree − eS) = 0 . (4.50)

The transition of the tangential components of the vector e through a surface of discon-
tinuity is continuous. If e = −∇xφ

e and t is the unit vector tangent to the surface ∂S,
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Figure 4.10: Geometrical representation of the electric objects.

∂tφ
e represent the rate of change of the electric potential φe in the tangential direction.

Then the boundary condition (4.50) can be expressed in terms of the electric potential by

(∂tφ
e)free − (∂tφ

e)S = 0 . (4.51)

From the conservative nature of the field it follows also that the electric potential itself
must be continuous across ∂S, for the work required to carry a small charge from infinity
to either two adjacent points located on opposite sides of ∂S must be the same

φe
free = φe

S . (4.52)

4.5. Geometrical Transformations of Electric Objects

In the Section 4.3.4 we have defined the electric potential φe(x) in terms of the electric
field in the current configuration. By using the transformation of line elements (3.11) we
can transform the integration on the actual configuration in (4.38) in an integration on
the reference configuration and define a Lagrangian electric field E as follows

φe(X) = −
X∫

X0

e · F dL = −
X∫

X0

F Te · dL = −
X∫

X0

E · dL (4.53)

yielding the transformation e = F−TE . (4.54)

As F−T being the normal map, we identify e as a geometric object of the Eulerian cotan-
gent space T ∗

xS and E as an object of the Lagrangian cotangent space T ∗
XB (cf. Figure

4.10).

The formal definition of the electric displacement was given in Section 4.2.3, equation
(4.10). By using the area transformation given in (3.18), we can define an electric dis-
placement D in the reference configuration as follows

he[∂S ] =

∫

∂S

d(x) · ds =

∫

∂B

d · JF−TdS =

∫

∂B

JF−1d · dS =

∫

∂B

D · dS = he[∂B] . (4.55)
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e0

a) b)

Figure 4.11: Orientation of polar molecules when a) e0 = 0 and b) e0 6= 0 .

Thus, the transformation of the material to the spatial electric displacement vector readsd = J−1FD , (4.56)

which is a typical Piola-transformation and allows us to identify Jd as a geometric object
of the Eulerian tangent space TxS and D as an object of the Lagrangian tangent space
TXB (cf. Figure 4.10). The polarization vector transforms analogously to the electric
displacement vector p = J−1FP (4.57)

with P polarization in the Lagrangian configuration. To take into account the different
geometric nature of the electric field e, the electric displacement d, and the polarizationp, we need to modify (4.19) as followsp := d− ǫ0g

−1e . (4.58)

Insertion of (4.54), (4.56) and (4.57) into (4.58) gives the relationship between the La-
grangian quantities E, D and P P = D− ǫ0JC−1E . (4.59)

with C−1 = F−1g−1F−T . Jp is a geometric object of the Eulerian tangent space TxS
and P an object of the Lagrangian tangent space TXB (cf. Figure 4.10).

4.6. Dielectrics

The dielectrics are insulating material and can be of two types. The first type are polar
dielectrics, which are dielectrics that have permanent electric dipole moments pd. An
example of this type of dielectric is water. With dipole moment pd we intend the vector
pointing from the barycenter of the negative charges q− in a molecule to the barycenter
of the positive charges q+, i.e. pd = q+d with d unit vector pointing from q− to q+ and
assuming q− = −q+.

As depicted in Figure 4.11, the orientation of polar molecules is random in the absence
of an external field. When an external electric field e0 is present, a torque is set up and
causes the molecules to align with e0. However, the alignment is not complete due to
random thermal motion. The aligned molecules then generate an electric field that is
opposite to the applied field but smaller in magnitude.

The second type of dielectrics are the non-polar dielectrics, which are dielectrics that do
not possess permanent electric dipole moments. Electric dipole moments can be induced
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e0a) b)

Figure 4.12: Orientation of non-polar molecules when a) e0 = 0 and b) e0 6= 0 .

by placing the materials in an externally applied electric field. Figure 4.12 illustrates the
orientation of non-polar molecules with and without an external field e0. The induced
surface charges on the faces produce an electric field eP in the direction opposite to e0,
leading to e = e0 + eP , with |e| < |e0|. Below we show how the induced electric field is
calculated.

4.6.1. Polarization

We have shown that dielectric materials consist of many permanent or induced electric
dipoles. One of the concepts crucial to the understanding of dielectric materials is the av-
erage electric field produced by many little electric dipoles which are all aligned. Suppose
we have a piece of material in the form of a cylinder with area A and height h, as shown in
Figure 4.13, and that it consists of N electric dipoles, each with electric dipole moment pd

spread uniformly throughout the volume of the cylinder. We furthermore assume for the
moment that all the electric dipole moments pd are aligned with the axis of the cylinder.
Since each electric dipole has its own electric field associated with it, in the absence of any
external electric field, if we average over all the individual fields produced by the dipole,
we will have an average electric field just due to the presence of the aligned dipoles.

To determine such a field, let us consider an infinitesimal volume dv and define the
polarization vector p to be the net electric dipole moment vector per unit volume:p =

1

dv

N∑

i=1

pi
d (4.60)

with N number of dipoles pi
d contained in the volume dv. In the case of our cylinder,

where all the dipoles are perfectly aligned, the magnitude of p is equal to

|p| =
N |pd|
Ah

(4.61)

and the direction of p is parallel to the aligned dipoles. The key to figuring out the
average electric field these dipoles produce is realizing that the situation shown in Figure
4.13a is equivalent to that shown in Figure 4.13b, where all the little ± charges associated
with the electric dipoles in the interior of the cylinder are replaced with two equivalent
charges, ±qp, on the top and bottom of the cylinder, respectively. The equivalence can
be seen by noting that in the interior of the cylinder, positive charge at the top of any
one of the electric dipoles is canceled on average by the negative charge of the dipole just
above it. The only place where cancellation does not take place is for electric dipoles at
the top of the cylinder, since there are no adjacent dipoles further up. Thus, the interior
of the cylinder appears uncharged in an average sense (averaging over many dipoles),
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Figure 4.13: a) A cylinder with uniform dipole distribution. b) Equivalent charge distri-
bution.

whereas the top surface of the cylinder appears to carry a net positive charge. Similarly,
the bottom surface of the cylinder will appear to carry a net negative charge.

To find an expression for the equivalent charge qp in terms of quantities we require that the
electric dipole moment qph that qp produces is equal to the total electric dipole moment
of all the little electric dipoles. This gives qph = N |pd|, or

qp =
N |pd|
h

. (4.62)

To compute the electric field produced by qp, we note that the equivalent charge dis-
tribution resembles that of a parallel-plate capacitors, with an equivalent surface charge
density σP that is equal to the magnitude of the polarization:

σp =
qp

A
=
N |pd|
Ah

= |p| . (4.63)

The case of non-uniformly distributed p may be introduced as follows. A volume of PS

with boundary ∂PS in a dielectric medium is considered. If equation (4.63) is generalized,
the polarization density on ∂PS may be written as

σp = p · n (4.64)

in terms of n as the outward normal to ∂PS . In contrast to the previous case, now, there
is a volume charge density because of the non-uniform displacement of the charges in PS .
If the charge in PS is represented by qp, as a result of the electro-neutrality, it may be
written as

qp = −
∫

∂PS

p · nda . (4.65)

If qp is related to a volume charge density ρp in PS , one may write

qp =

∫

PS

ρpdv = −
∫

∂PS

p · nda . (4.66)
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Employing Gauß Theorem one gets

div[p(x)] = −ρp(x) . (4.67)

Equation (4.67) gives the general relationship between the polarization vector and the
polarization charge. Thus, our equivalent charge system will produce an average electric
field of magnitude |eP | = |p|/ǫ0. Since the direction of this electric field is opposite to
the direction of p, in vector notation, we haveeP = −p

ǫ0
. (4.68)

Thus, the average electric field of all these dipoles is opposite to the direction of the
dipoles themselves. It is important to realize that this is just the average field due to all
the dipoles. If we go close to any individual dipole, we will see a very different field. We
have assumed here that all our electric dipoles are aligned. In general, if these dipoles
are randomly oriented, then the polarization p given in equation (4.60) will be zero, and
there will be no average field due to their presence. If the dipoles have some tendency
toward a preferred orientation, then p 6= 0 , leading to a non-vanishing average field eP .

Let us now examine the effects of introducing dielectric material into a system. We
shall first assume that the atoms or molecules comprising the dielectric material have a
permanent electric dipole moment. If left to themselves, these permanent electric dipoles
in a dielectric material never line up spontaneously, so that in the absence of any applied
external electric field p = 0 due to the random alignment of dipoles and the average
electric field eP is zero as well. However, when we place the dielectric material in an
external field e0, the dipoles will tend to align in a direction close to e0. The effect is a
net polarization p parallel to e0, and therefore an average electric field of the dipoles eP

anti-parallel to e0, i.e. that will tend to reduce the total electric field strength below e0.
The total electric field e is the sum of these two fieldse = e0 + eP . (4.69)

In the case of a dielectric material where there are no permanent electric dipoles, a similar
effect is observed due to the presence of an external field e0 which induces electric dipole
moments in the atoms or molecules. These induced electric dipoles are parallel to e0,
again leading to a polarization p parallel to e0, and a reduction of the total electric field
strength.
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5. Balance Equations for the Electro-Mechanics

The ultimate goal of this chapter is to derive the balance equations for the coupled electro-
mechanical problem. The solution of those equations in combination with the constitutive
equations gives us the independent electro-mechanical fields within the region under con-
sideration. For more comprehensive treatments the reader is referred to Landau & Lif-
schitz [88], Penfield & Haus [125], Hutter, Van De Ven and Urescu [67], Pao
[122], Maugin [99], Eringen and Maugin [48], Kovetz [87], Dorfman and Ogden
[40], Bustamante and Ogden [21]. Right at the beginning of our considerations we in-
troduce a first simplification: any relativistic effects are neglected. Thus the most general
framework of balance laws for continua consists of a combination of Maxwell’s equations
of classical electro-statics and the classical balance equations of the thermomechanics.

5.1. The Balance Laws of Mechanics

We start with the modified balance laws of mechanics. The integral expressions of the
laws of conservation of mass, balance of momentum, moment of momentum and energy
in the spatial and material description were derived in Section 3. Considering a generic
part PS of the domain S ⊂ R3 they read in the actual configuration:

conservation of mass

d

dt

∫

Ps

ρdv = 0 (5.1)

conservation of linear momentum

d

dt

∫

Ps

ρvdv =

∫

Ps

ργdv +

∫

∂Ps

σnda (5.2)

conservation of angular momentum

d

dt

∫

Ps

x × ρvdv =

∫

Ps

(x × ργ + ρm)dv +

∫

∂Ps

x × σnda (5.3)

conservation of energy

d

dt

∫

Ps

(
1

2
ρv · v∗ + ρe)dv =

∫

Ps

(ργ · v∗ + ρr)dv +

∫

∂Ps

(σn · v∗ − q · n)da . (5.4)

Here, ρ is the mass density per unit volume, σ is the Cauchy stress tensor, γ is the
total body force due to electric fields and external actions, m is the body couple, e is
the internal energy per unit mass, q is the heat flux, r the total energy supply due to
electromagnetic fields and to heat, and n the outward unit normal to ∂Ps. It is assumed
that body force, body couple and energy supply can be decomposed into two parts: one
is due to the electric field and indicated with the superscript “e”, the other is supposed
to be externally applied and known from the outset and contradistinguished with a bar.
Hence

ργ = ργe + ργ̄ , ρm = ρme , ρr = ρre + ρr̄ . (5.5)
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Here ργe, ρme, and ρre are thought to be expressed in terms of electric field quantities
while ργ̄ and ρr̄ are known. We have assumed that there are no externally applied body
couples. If the considered fields are sufficiently smooth, the global balance equations (5.1)
- (5.4) assume the local forms:

conservation of mass
ρ̇+ ρ div[v] = 0 in S (5.6)

conservation of linear momentum

ρv̇ = div[σ] + ργ̄ + ργe in S (5.7)

conservation of angular momentum

skew[σ] = ρm̂e in S (5.8)

conservation of energy

ρė = σ : gl − div[q] + ρr̄ + ρre in S . (5.9)

where use of (5.5) has been made. The second order tensor m̂e is the dual of the electric
body couple me or me is the axial vector of m̂e, i.e. for a generic vector a, m̂ea =
me×a. As follows from (5.6), the present density is related to the density in the reference
configuration ρ0 by Jρ = ρ0, with J := det[F ].

5.2. Reduced Maxwell’s Equations

Before we get into equations, let us make a second assumption which means no loss
of generality with respect to the problem that we are going to treat here: the partial
derivative of the magnetic induction and the magnetic induction itself can be neglected,
i.e.

∂b
∂t

≈ 0 and b = 0 in S . (5.10)

Here, the first relation is the usual “electro-quasi-static” assumption. Additionally, static
magnetic induction is disregarded for convenience by the second relation, as it allows
to eliminate a magnetic dependence of the quantities ργe, ρme and ρre in the balance
equations. In our case the assumption (5.10) is justified since the treated materials are
really bad conductors. Thus, for weak electric currents the magnetic fields are taken to
be negligible.

On the other hand, the idealization as perfect insulator is not necessarily adequate for
actuator applications with a quasi-static rate of change of loading. In this case, there may
be enough time for the migration of free charges due to external or depolarization electric
fields to modify the electro-mechanical state of the body under consideration. Further
the conduction current is assumed to vanishj = 0 in S . (5.11)

As the main simplification, this assumption makes the conservation of the charge trivial.
The balance equations for the electrostatic case, under the hypothesis of neglecting the
magnetic field, are described by two equations which were described in Section 4
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Gauß-Law
∫

Ps

ρ̄edv =

∫

∂Ps

d · nda (5.12)

Faraday-Law
∫

c

e · dl = 0 (5.13)

with ρ̄e volume free-charge density, d electric displacement vector, e electric field vector
and c closed curve in S. Again, assuming sufficient smoothness of the fields, the balance
laws (5.12) and (5.13) may be brought into the following local forms

Gauß-Law
div[d] = ρ̄e in S (5.14)

Faraday-Law
curl [e] = 0 in S . (5.15)

5.3. Material Description

The balance laws listed in the previous two subsections are written in the spatial or Eu-
lerian formulation. Corresponding to these equations, there is a material or Lagrangian
description. The following well known identities, introduced in Section 3, hold for trans-
formations on infinitesimal volume, area, and line elements:

dv = JdV , da = JF−TdA , dl = F dL . (5.16)

With (5.16) at hand, we can transform the balance laws (5.1)-(5.4) into the following
forms:

conservation of mass

d

dt

∫

PB

ρ0dV = 0 (5.17)

conservation of linear momentum

d

dt

∫

PB

ρ0V dV =

∫

∂PB

PNdA+

∫

PB

ρ0ΓdV (5.18)

conservation of angular momentum

d

dt

∫

PB

ρ0x × V dV =

∫

∂PB

x × PNdA+

∫

PB

ρ0(M + x × Γ)dV (5.19)

conservation of energy

d

dt

∫

PB

(
1

2
ρ0V ·V ∗ + ρ0e)dV =

∫

PB

(V ∗ · ρ0Γ + ρ0R)dV +

∫

∂PB

(PN ·V ∗−Q ·N)dA . (5.20)
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Here, the integrations are performed over the reference volume PB ⊂ B having surface
∂PB and outward normal N . Further, P is the first Piola-Kirchhoff stress tensor, Q is the
material energy flux vector, Γ is the material body force, M the material body couple,
R the heat source in the reference configuration which are related to σ, q, γ, m, and r
according to

P = JσF−T , Q = JF−1q ,

Γ(X, t) = γ(x, t) ◦ ϕt(X) , M(X, t) = m(x, t) ◦ ϕt(X) ,

R(X, t) = r(x, t) ◦ ϕt(X)

(5.21)

and ρ0 is the density of mass in the reference configuration. Assuming for the exter-
nal source terms decompositions similar to those listed in (5.5) and supposing sufficient
smoothness of the fields involved, we find the following local forms of (5.18)-(5.20):

conservation of linear momentum

ρ0V̇ = Div [P ] + ρ0Γ̄ + ρ0Γ
e in B (5.22)

conservation of angular momentum

skew[PF T ] = ρ0M̂
e in B (5.23)

conservation of energy

ρ0ė = gP : Ḟ − Div [Q] + ρ0R̄ + ρ0R
e in B . (5.24)

M̂
e
is the dual tensor of the electric body couple M e in the reference configuration. Using

(5.16) we can also transform the Gauß-Law (5.12) and Faraday-Law (5.13) obtaining

Gauß-Law
∫

∂PB

D · NdA =

∫

PB

ρe
0dV (5.25)

Faraday-Law
∫

c

E · dL = 0 . (5.26)

Here D, E and ρe
0 are the material counterparts of d, e and ρ̄e and are related as follows:

Jd = FD , e = F−TE , Jρ̄e = ρ̄e
0 . (5.27)

Again, assuming sufficient smoothness of the fields, the balance laws (5.25) and (5.26)
may be brought into the following local forms

Gauß-Law
Div[D] = ρe

0 in B (5.28)

Faraday-Law

Curl [E] = 0 in B . (5.29)



5.4 Force, Couple, and Energy Supply 65

F

ϕt(X)

X

δX x
δx

v
v + δẋ
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Figure 5.1: Moving body at the reference (material) configuration and the current (spatial)
configuration and the dipoles within a volume element PS .

5.4. Force, Couple, and Energy Supply

The body force γe, couple me, and energy supply re must be determined in terms of the
electric field variables that satisfy a particular formulation of the Maxwell equations. In
order to concentrate on the physical meaning of γe, me, and re, the different geometric
nature of of the electric field e, the electric displacement d, and the polarization p is here
neglected. There exist several formulations expressing those quantities. In this work, we
follow the approach of postulating a model for the effect of polarization in moving matter.
In particular we adopt the two-dipole model in the Chu formulation to evaluate the electric
forces. We follow all the assumptions leading to the global laws for electromagnetism in
moving matter step up from Chu based on the two-dipole model, see Pao & Hutter
[123, 124]. In addition, we assume that the forces acting on the charges of the electric
dipoles are

f qe = qee+ qev × (µ0h) (5.30)

where qe is the electric charge, e and h are the electric and magnetic fields inside a moving
body, and v is the velocity of the material particle. The assumption of the force f qe has
its origin in the Lorenz theory of electrons. The Lorentz force f l is generally stated as

f l = qee+ j× (b) , (5.31)

valid for an electron with charge qe moving with velocity v in free space (j = qev).
Macroscopically, the first term in (5.31) is the definition of an electrostatic field e and the
second term is the interaction force between the charge qe moving with velocity v and
the magnetic induction b in free space. Only in free space b and µ0h coincide. Thus the
adoption of the Lorentz’s formula for macroscopic charges inside a continuum as in (5.30)
is a postulate. Based on this two assumptions the body force γe, body couple me, and
energy supply re can be calculated by an averaging and a limiting process.

5.4.1. Body Force

Let us consider the electric dipoles and let the negative charge qe
− be at x, the actual

position of a material particle, while the positive charge qe
+ is at x + δx (cf. Figure 5.1).

The respective velocities of the moving charges are

ve
− = v , ve

+ = v + δẋ . (5.32)

Using (5.30) by means of a Taylor series expansion the force on the charge can be expressed
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as
f qe

−
= − qee(x) − qev × µ0h(x)

f qe
+

= qee(x + δx) + qe[v + δẋ] × µ0h(x + δx)

= qee(x) + qeδx · ∇xe(x) + qev × µ0h(x)
+ qev × µ0∇xh(x) · δx + qeδẋ × µ0h(x) + . . . .

(5.33)

We consider a unit material volume element which contains N e electric dipoles. No broken
dipoles are taken under consideration. Since the force on each dipole is f qe

+
+ f qe

−
the

total force on the volume element due to the polarization only is

ργp = lim
|δx|→0

N e(f qe
+

+ f qe
−
) = [∇xe]p+ µ0v × [∇xh]p+ µ0ρ

d

dt

(p
ρ

)
× h (5.34)

with p polarization vector defined asp = lim
|δx|→0

N eqeδx . (5.35)

In addition to the force due to polarization, there is a force due to the free charge ρ̄e.
Thus, the total force on an element of unit volume is

ργe = ρ̄ee+ ργp . (5.36)

For the quasi-static case (v ≈ 0 ) under consideration equation (5.36) reduces to

ργe = ρ̄ee+ [∇xe]p . (5.37)

5.4.2. Body Couple

In an analogous manner the body couple me is determined. Since the position of the
negative charge of an electric dipole is assumed to coincide with that of the material
particle, the couple acting upon the particle may be determined by evaluating the torque
exerted on the positive charges. From (5.33) follows that the torque on a unit volume
with N e electric dipoles for the quasi-static case is

ρme = lim
|δx|→0

N e(δx × f qe
+
) = p× e or ρm̂e = skew[p⊗ e] . (5.38)

5.4.3. Energy Supply

The energy supply re is determined by evaluating the rate of work done on an electric
dipole by the forces f qe

−
and f qe

+
in (5.33) for the N e electric dipoles in the unit volume

ρre = lim
|δx|→0

N e
(
f qe

+
· ve

+ + f qe
−
· ve

−

)
= ρe · d

dt

(p
ρ

)
+ [∇xe]p · v . (5.39)

For the quasi-static case equation (5.39) reads

ρre = ρe · d
dt

(p
ρ

)
. (5.40)
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5.5. Balance of Momentum Equations in Terms of Maxwell’s

Stress Tensor

It is often convenient to define the Maxwell stress tensor σM such that

div[σM ] = ργe and skew[σM ] = ρm̂e . (5.41)

With the introduction of σM , the conservation of linear momentum, equation (5.7), can
be rewritten as

div[σtot] + ργ̄ = ρv̇ with σtot = σ + σM . (5.42)

The total stress σtot has the advantage of being symmetric, i.e. the balance of angular
momentum, equation (5.8), takes the form

skew[σtot] = 0 . (5.43)

For the two-dipole model in the Chu formulation considered here the following form of
the Maxwell stress tensor is formulated

σM = ǫ0 e⊗ e+ e⊗ p− 1

2
ǫ0|e|21 = e⊗ d− 1

2
ǫ0|e|21 . (5.44)

It can be shown that by using the Gauß-Law div[d] = ρ̄e and the definition of the polar-
ization vector d = ǫ0e+ p one indeed obtains

div[σM ] = div[d] e+ (∇x e)d− (∇x e)T ǫ0 e
= ρ̄ee+ (∇x e)T (d− ǫ0 e)
= ρ̄ee+ (∇x e)Tp . (5.45)

In (5.45), the Faraday-Law curl[e] = 0 was used in the sense

curl [e] × a = (∇e−∇eT )a = 0 . (5.46)

It can be also confirmed that the above definition of the Maxwell stress tensor leads to
a symmetric total stress, or by using the relation derived from (5.8) in combination with
(5.38)2

σ − σT = p⊗ e− e⊗ p (5.47)

or
σ + e⊗ p symmetric . (5.48)

We have indeed

σtot = σ + e⊗ p+ ǫ0 e⊗ e− 1

2
ǫ0|e|21 (5.49)

with ǫ0 e ⊗ e − 1
2
ǫ0|e|21 symmetric. σtot has to be considered as total Cauchy stress

tensor and obviously the modified balance equations (5.42) and (5.43) are written in the
deformed configuration. In an analogous way, we can define a total first Piola stress

P tot = P +P M with P M = F−TE⊗D−1

2
Jǫ0(C

−1 : E⊗E)F−T := J σMF−T (5.50)

and we can modify the balance of linear momentum and the balance of angular momentum
in the reference configuration:
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balance of linear momentum

Div [P tot] + ρ0Γ̄ = ρ0V̇ in B (5.51)

balance of angular momentum

skew[P totF T ] = 0 in B . (5.52)

Notice that as consequence of neglecting the different geometric nature of the electric fielde, the electric displacement d, and the polarization p as in Section 5.4, we automatically
extended this assumption in giving the definition of the Maxwell stress tensors σM and
P M . Since we intend to underline the geometrical aspects of the electro-mechanical
formulation, the proper definition of the Maxwell stress tensors reads

σM = (g−1e) ⊗ d− 1
2
ǫ0|e|2g−1g

−1 and

P M = g−1F−TE⊗D− 1
2
Jǫ0(C

−1 : E⊗E)g−1F−T
(5.53)

with |e|2
g−1 = (e⊗ e) : g−1 and C−1 = F−1g−1F−T .

5.6. Jump Conditions

Across a surface of discontinuity within the boundary or across the boundary ∂S, the
fields e and d have to satisfy certain continuity conditions. They are derived from the
global Maxwell equations (5.28) and (5.29) considering limit of vanishing volume PS or
surface enclosed by c across those discontinuity surfaces as in Section 4. Here, we do not
consider internal surfaces of discontinuity and therefore the continuity conditions refer
only to ∂S. Then the continuity conditions satisfied by the electric field e and electric
displacement d are

[[e]] × n = 0 and [[d]] · n = σ̄e on ∂S (5.54)

with σ̄e surface charge density. [[Φ]] = Φ+ −Φ− denotes the jump of the quantity Φ across
∂S. The positive side of the surface ∂S is defined by the direction of its outward normal
n. The jump conditions (5.54) could be simplified by following the assumptions of Section
4.

The boundary conditions associated to the equilibrium of linear momentum (5.42) is

[[
σtot

]]
n = 0 on ∂S . (5.55)

If t̄ is the applied traction per unit area on ∂S, then the stress σtot calculated inside the
material must satisfy

σtotn = t̄ on ∂S . (5.56)

In general, t̄ may be prescribed on only part of ∂S indicated with ∂St. On the remanent
part ∂Sϕ of ∂S the deformation path is prescribed.

The conditions (5.54)-(5.56) were written in the actual configuration. The counterpart of
the jump condition (5.54) in the reference configuration are

[[E]] × N = 0 and [[D]] · N = Σ̄e on ∂B (5.57)
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where N is the outward normal on ∂B and Σ̄e = σ̄e ◦ ϕt(X) is the prescribed surface
charge density in the reference configuration. The traction boundary conditions associated
with (5.51) and analogous to (5.55) are

[[
P tot

]]
N = 0 on ∂BT (5.58)

and equation (5.56) can be recast as

P totN = T̄ on ∂BT (5.59)

where we used the Nanson’s formula nda = JF−T NdA relating area elements to define
T̄ by T̄ dA = t̄da as the traction per unit of reference area.

5.7. The Entropy Production Inequality

It is a fact of experience that real physical processes are irreversible. This means that
processes cannot, in general, be traversed back in time. This fact is called the second law
of thermodynamics and its mathematical realization is the entropy production inequality.
It is based on the assumption that there exists an additive quantity η, the entropy, which
satisfy the balance

∫

PS

ργdv =
d

dt

∫

PS

ρηdv −




∫

PS

ρ
r̄

θ
dv −

∫

∂PS

q · n
θ

da



 . (5.60)

Here PS ⊂ S is part of the body S in the reference configuration, γ is the rate of entropy
production, r̄/θ the entropy supply, (q · n)/θ the entropy flux coinciding with the heat
flux q ·n over the absolute temperature θ. The second law of thermodynamics states that
the irreversible part of the entropy rate γ is always positive. Thus for sufficiently smooth
fields (5.60) implies the Clausius-Duhem-Inequality

ργ = ρη̇ − ρ
r̄

θ
+

1

θ
div[q] − 1

θ2
q · ∇xθ ≥ 0 . (5.61)

The spatial dissipation is defined as the product of the rate of entropy production in (5.61)
with the absolute temperature θ, i.e. ρD = ργθ ≥ 0. Owing to the nature of terms in
(5.61), it is common practice to additively split the dissipation into the local Dloc and Dcon

parts, D = Dloc + Dcon. We then require a stricter condition than (5.61) by demanding
the positiveness of both terms Dloc and Dcon separately. To this end, we introduce the
Clausius-Planck-Inequality (CPI in the following),

ρDloc := ρη̇θ − (ρr̄ − div[q]) ≥ 0 , (5.62)

and the Fourier inequality (FI in the following)

ρDcon = −1

θ
q · ∇xθ ≥ 0 . (5.63)

Incorporating the spatial energy balance equation (5.9) in the CPI (5.62) we get a formu-
lation of this inequality in terms of the internal energy

ρDloc := σ : (gl) + ρη̇θ + ρre − ρė ≥ 0 . (5.64)
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The FI (5.63) and CPI (5.64) could be also written in the reference configuration

ρ0Dcon = −1

θ
Q · ∇Xθ ≥ 0,

ρ0Dloc = gP : Ḟ + ρ0η̇θ + ρ0R
e − ρ0ė ≥ 0 .

(5.65)

By choosing the two-dipole model for the description of the electric body force, body
couple and energy supply, it follows that

ρ0R
e = ρ0e · [ d

dt

(p
ρ

)]
= ρ0F

−TE ·
(

˙FP
Jρ

)

= ρ0F
−TE · 1

ρ0
( ˙FP) = E · Ṗ+ F−T (E⊗P) : Ḟ

(5.66)

which inserted into (5.65)2 gives

ρ0Dloc = [gP + F−T (E⊗P)] : Ḟ +E · Ṗ+ ρ0η̇θ − ρ0ė ≥ 0 . (5.67)

By considering the rates appearing in the CPI (5.67), we can conclude that the internal
energy is a thermodynamical potential depending primarily upon the deformation gradient
F , the entropy η, and the polarization P, i.e. e = ê(F ,P, η, ...). Since the entropy η is
not a measurable quantity, the internal energy is replaced usually by the Helmholtz free
energy ψ and related to the former through a Legendre transformation

ψ = sup
η
{e− θη} , (5.68)

implying the functional dependence ψ = ψ̂(F ,P, θ, ...). Similarly other thermodynamical
potentials could be considered. The version of the CPI in terms of Helmholtz free energy
is obtained by inserting the partial Legendre transformation (5.68) into (5.67)

ρ0Dloc = [gP + F−T (E⊗P)] : Ḟ +E · Ṗ− ρ0ηθ̇ − ρ0ψ̇ ≥ 0 . (5.69)

From now on we will confine our consideration to isothermal processes (θ̇ = 0). For those
processes the constitutive material response will be thermodynamically consistent if only
the CPI (5.69) with θ = 0 is verified, i.e.

ρ0Dloc = [gP + F−T (E⊗P)] : Ḟ +E · Ṗ− ρ0ψ̇ ≥ 0 . (5.70)

We would like to use the last form of the CPI (5.70) to derive a thermodynamically consis-
tent formulation of the constitutive equations based on the argumentation of Coleman
& Noll [33] and Coleman & Gurtin [32]. Being consistent with the principle of
equipresence, we assume that the constitutive equations depend upon the same set of
variables

ψ = ψ̂(g,F ,P,Q) (5.71)

with Q set of Lagrangian internal variables, employed for the description of inelastic dissi-
pative processes. The spatial metric g is needed to compute the deformation measures in
the reference configurations. Based on this assumption, we can include the time derivative
of the free energy function ψ, i.e. ψ̇ = ∂Fψ : Ḟ + ∂Pψ · Ṗ+ ∂Qψ · Q̇, in the CPI (5.70)

ρ0Dloc = [gP + F−T (E⊗P) − ρ0∂Fψ] : Ḟ + [E− ρ0∂Pψ] · Ṗ− ρ0∂Qψ · Q̇ ≥ 0 . (5.72)
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Contending that the thermodynamic restriction should be fulfilled for an arbitrary rate
of the deformation gradient F and of the polarization P we obtain the particular form of
the constitutive equations

gP = ρ0∂F ψ̂(g,F ,P,Q) − F−T (E⊗P) ,E = ρ0∂Pψ̂(g,F ,P,Q)
(5.73)

which inserted into (5.72) gives the reduced form of local dissipation together with the
definition of Lagrangian thermodynamical forces {M}, conjugated to the set {Q} on the
basis of the local dissipation, i.e.

ρ0D
red
loc := M · Q̇ ≥ 0 with M = −ρ0∂Qψ̂(g,F ,P,Q) . (5.74)

We observe that the CPI (5.70) could be expressed in terms of the electro-mechanical
power per unit volume ρ0P as

ρ0Dloc := ρ0P − ρ0ψ̇ ≥ 0 with ρ0P =
[
gP + F−T (E⊗P)

]
: Ḟ +E · Ṗ . (5.75)

(5.75) states that the difference between the electro-mechanical power ρ0P and the rate
of the energy stored into the material is the rate of dissipated energy. The energy stored
into the material could be expressed in terms of the mixed energy-enthalpy function ψ′,
related to the free energy function ψ through a partial Legendre transformation

ψ′ = infP {ψ −E ·P} (5.76)

which inserted into (5.75) gives

ρ0Dloc := ρ0P
′ − ρ0ψ̇′ ≥ 0

ρ0P
′ := ρ0P − d

dt
(E ·P) = [gP + F−T (E⊗P)] : Ḟ −P · Ė . (5.77)

Exploiting (5.77)1 with the Coleman-Noll-Gurtin arguments we get the set of thermody-
namically consistent constitutive equations

gP = ρ0∂F ψ̂
′(g,F ,E,Q) − F−T (E⊗P) ,P = −ρ0∂Eψ̂′(g,F ,E,Q) ,

M = −ρ0∂Qψ̂
′(g,F ,E,Q) .

(5.78)

We would now like to consider an amended energy balance (5.77)1 which takes also the
electrostatic energy stored in the free space underlying the domain under consideration.
To this purpose, we consider the modified thermodynamical potential

ρ0ψ
′
amnd = ρ0ψ

′ + ρ0u
e (5.79)

with ρ0u
e electrostatic energy in the reference configuration in the form of a mixed energy-

enthalpy functional, derived from the true expression in the actual configuration ρue

ρue = −1

2
ǫ0g

−1 : (e⊗ e),
ρ0u

e = Jρue = −1

2
Jǫ0C

−1 : (E⊗E) .
(5.80)
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The rate of the electrostatic energy ρ0u
e

ρu̇e =

[
−1

2
ǫ0J(C−1 : E⊗E)F−T + ǫ0JF−T (E⊗ C−1E)

]
: Ḟ − (ǫ0JC−1E) · Ė , (5.81)

should be entirely compensated by a counterpart in the extend electro-mechanical power
ρ0P

′
amnd derived from ρ0P

′ as

ρ0P
′
amnd = ρ0P

′ + ρu̇e = gP tot : Ḟ −D · Ė . (5.82)

Recalling the definition of the polarization vector and of the Maxwell stress tensor in the
reference configurationD = P+ ǫ0JC−1E,

gP M = F−T (E⊗D) − 1

2
ǫ0J(C−1 : E⊗E)F−T ,

(5.83)

we can indeed write the amended electro-mechanical power in terms of the total first Piola
stress tensor P tot = P + P M and of the electric displacement D. The CPI in terms of
the amended quantities then will read

ρ0Dloc = ρ0P
′
amnd − ρ0ψ̇

′
amnd = gP tot : Ḟ −D · Ė− ρ0ψ̇

′
amnd ≥ 0 . (5.84)

From (5.84) we can conclude that the amended mixed energy-enthalpy ψ′
amnd depends

upon the deformation gradient F , the electric field E and the set of internal variables
{Q} and its derivatives with respect to those arguments give the thermodynamically
consistent constitutive equations for the total first Piola stress tensor P tot, the electric
displacement D, and the internal forces, {M} respectively

gP tot = ρ0∂Fψ
′
amnd(g,F ,E,Q) ,D = −ρ0∂Eψ′
amnd(g,F ,E,Q) ,

M = −ρ0∂Qψ
′
amnd(g,F ,E,Q) .

(5.85)

By considering a partial Legendre transformation of ψ′
amnd with respect to the electric

slot, we obtain an amended free energy

ψamnd = supE {ψ′
amnd +D ·E} with ψamnd = ψ̂(g,F ,D,Q) . (5.86)

In terms of the amended free energy ψamnd the CPI would be written as

ρ0Dloc = ρ0Pamnd − ρ0ψ̇amnd ≥ 0 with ρ0Pamnd = gP tot : Ḟ +E · Ḋ . (5.87)

Exploitation of (5.87) with the usage of Coleman-Noll-Gurtin’s arguments yields the fol-
lowing set of thermodynamically consistent constitutive equations

gP tot = ρ0∂Fψamnd(g,F ,D,Q),E = ρ0∂Dψamnd(g,F ,D,Q),

M = −ρ0∂Qψamnd(g,F ,D,Q) .

(5.88)

The forms (5.84) and (5.87) represent the starting point for our successive formulation
which will take into account only the total stresses and the electric displacement. Once
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the field equations are solved, the Maxwell stress tensor and the polarization vector can
be determined as post processing by using the proper definition. For the sake of clarity
we will not use anymore in the following the subscript “amnd” and the superscript “tot”.

The electro-mechanical stress power per unit of reference volume ρ0P and ρ0P
′ could be

written alternatively in terms of the second Piola-Kirchhoff stress S and the rate of the
Cauchy-Green strain tensor C. We have in fact

ρ0P = gP : Ḟ +E · Ḋ = S :
1

2
Ċ +E · Ḋ

ρ0P
′ = gP : Ḟ −D · Ė = S :

1

2
Ċ −D · Ė . (5.89)

Thus, we could define the set of constitutive equations in terms of a free energy ψ =
ψ̃(C,D,Q) as

S := 2ρ0∂Cψ̃(C,D,Q), E := ρ0∂Dψ̃(C,D,Q), M := −ρ0∂Qψ̃(C,D,Q) , (5.90)

or in terms of the mixed energy-enthalpy ψ′ = ψ̃′(C,E,Q)

S := 2ρ0∂Cψ̃
′(C,E,Q), D := −ρ0∂Eψ̃′(C,E,Q), M := −ρ0∂Qψ̃

′(C,E,Q) .
(5.91)

An alternative representation of the stress power ρ0P and ρ0P
′ would be in terms of

the Kirchhoff stresses τ , the rate of the geometric mapping g, the electric field e in the
current configuration, and the rate of the current electric displacement d or vice versa in
terms of d and the rate of e. We have indeed

ρ0P = S : 1
2
Ċ +E · Ḋ = FSF T : 1

2
F−T ĊF−1 + F−TE · F Ḋ

= τ : 1
2
£v(g) + e ·£v(d̃)

ρ0P
′ = S : 1

2
Ċ −D · Ė = FSF T : 1

2
F−T ĊF−1 − FD · F−T Ė

= τ : 1
2
£v(g) − d̃ ·£v(e) (5.92)

with d̃ = Jd being a Kirchhoff-type electric displacement. The Lie derivative of a spatial
object is geometrically defined as the push-forward of the material time derivative of its
pull-back, that is

£v(•) := ϕ ∗

(
d

dt
ϕ ∗(•)

)
. (5.93)

With this definition at hand, the rate of deformation tensor d, the rate of the electric
displacement £v(d̃), and the rate of the electric field £v(e) can be computed as follows

£v(g) = ϕ ∗

(
d

dt
ϕ ∗(g)

)
= ϕ ∗

(
d

dt
C

)
= (gl + lT g) = 2d

£v(d̃) = ϕ ∗

(
d

dt
ϕ ∗(d̃)

)
= ϕ ∗

(
d

dt
D) = F Ḋ

£v(e) = ϕ ∗

(
d

dt
ϕ ∗(e)) = ϕ ∗

(
d

dt
E) = F−T Ė . (5.94)
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According to the expressions (5.92), we could define the set of constitutive equations
in terms of the free energy ψ = ψ̄(g; F , d̃,q) or in terms of the mixed energy-enthalpy
ψ′ = ψ̄′(g; F , e,q)

τ := 2ρ0∂gψ̄(g; F , d̃,q), e := ρ0∂dψ̄(g; F , d̃,q), m := −ρ0∂qψ̄(g; F , d̃,q) , (5.95)

or

τ := 2ρ0∂gψ̄
′(g; F , e,q), d̃ := −ρ0∂eψ̄′(g; F , e,q), m := −ρ0∂qψ̄

′(g; F , e,q) . (5.96)

with {q} set of Eulerian internal variables and {m} dual Eulerian set of internal forces.
The alternative expressions of the electro-mechanical power manifest the distinct work
conjugate couples

(
{gP ,E}; {Ḟ , Ḋ}

)
,
(
{S,E}; { 1

2
Ċ, Ḋ}

)
,
(
{τ , e}; { 1

2
£v(g),£v(d̃)}

)
, (5.97)

or
(
{gP ,D}; {Ḟ , Ė}) , (

{S,D}; { 1
2
Ċ, Ė}) , (

{τ , d̃}; { 1
2
£v(g),£v(e)}) , (5.98)

with respect to the representation in terms of P or P ′, respectively. As we will under-
stand in the following, (5.97) are the “physical” work conjugate couples, while (5.98) are
the “geometrical” work conjugate couples.

5.8. Small Deformations

While dealing with materials like piezoceramics we are usually confronted with electrically
and mechanically induced strains which do not exceed the order of magnitude of one
percent. Thus if we consider the polar decomposition of the deformation gradient F =
RU , the right stretch tensor U will be approximatively equal to the unit tensor, U ≈
1 , and this implies that the deformation gradient nearly coincides with the rotation
tensor F ≈ R. This assumption would result already in a simplification of the above
derived balance and constitutive equations. However, we can employ the classical small
deformation assumption leading to a geometrically linear theory

F = RU ≈ 1 , R ≈ 1 , U ≈ 1 . (5.99)

It must be noted that the exclusion of the finite rotations may be not appropriate for the
case of bending devices, where finite rotations may occur even though stretches are small.

The small deformation assumptions (5.99) imply an approximate coincidence of the refer-
ence and actual configurations, x ≈ X and consequently a constant mass density, ρ̇ ≈ 0
and div[v] ≪ 1. Thus, material and spatial space and time derivatives are no longer dis-
tinguished. Further, there is no need to geometrically distinguish between strain measures
and stress tensors. The strain measures are replaced by the small strain tensor

ε := 1
2
(∇u + ∇T u) (5.100)

with u = ϕt(X) − X displacement vector and consequently the nonlinear terms are
dropped to yield a linear geometrical setting. The stresses are represented through the
true Cauchy stress tensor σ. Additionally we describe the electric balance and constitutive
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equations in terms of the physically existent electric field in the actual configuration e
and the Eulerian electric displacement d.

The relevant equations in the local form for the geometrically linear setting are summa-
rized as follows:

Gauß -Law
div[d] = ρ̄e (5.101)

Farady-Law
curl[e] = 0 (5.102)

balance of linear momentum
div[σ] + ργ̄ = ρv̇ (5.103)

balance of angular momentum

σ = σT (5.104)

balance of energy

ρė = σ : ε̇ + e · ḋ− div[q] + ρr̄ (5.105)

Clausius-Plank-Inequality (CPI)

ρDloc = σ : ε̇ + e · ḋ+ ρθη̇ − ρė ≥ 0 (5.106)

Fourier-Inequality (FI)

ρDcon = −1

θ
q · ∇θ ≥ 0 . (5.107)

Observe that the considered stress is the total stress σtot which is the sum of the purely
mechanical stress σ and of the Maxwell stress σM

σtot = σ + σM with σM = e⊗ d− 1

2
ǫ0|e|21 . (5.108)

Further, the considered internal energy is the amended one, sum of the energy stored
in the body and the electrostatic energy stored in the free space. By restricting our
considerations to the isothermal case, we can formulate the CPI in terms of the free
energy ψ = ψ̂(ε,d,q)

ρDloc = ρP − ρψ̇ ≥ 0 with ρP = σ : ε̇ + e · ḋ (5.109)

with ρP rate of the electro-mechanical work. Exploitation of (5.109) using the Coleman-
Noll-Gurtin’s arguments yields to the set of thermodynamically consistent constitutive
equations

σ := ρ∂εψ̂(ε,d,q), e := ρ∂dψ̂(ε,d,q), m := −ρ∂qψ̂(ε,d,q) . (5.110)

By considering a partial Legendre transformation of the free energy function ψ with
respect to the electric slot we obtain the mixed energy-enthalpy function ψ′ = supd{ψ −d · e} in terms of which the CPI reads

ρDloc = ρP ′ − ρψ̇′ ≥ 0 with ρP ′ = σ : ε̇ − d · ė (5.111)

which exploited with the Coleman-Noll-Gurtin procedure yields to a modified set of ther-
modynamically consistent constitutive equations

σ := ρ∂εψ̂
′(ε, e,q), d := −ρ∂eψ̂′(ε, e,q), m := −ρ∂qψ̂

′(ε, e,q) , (5.112)

which will be taken under consideration in the following.
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6. Variational Formulation in Electro-Mechanics

The goal of this chapter is the discussion of a variational formulation for a generic dissipa-
tive electro-mechanical response. At first we will concentrate on a purely local constitutive
modeling and afterwards focus on the global treatment of a multifield boundary-value-
problem. Our considerations will be directed to the formalization of the coupled electro-
mechanical boundary-value-problem through an energetical description. The arguments
derived here are mainly based on the concepts found in Miehe [109]. See also Nowaki
[118], Miehe [108], Miehe, Schotte and Lambrecht [110], McMeeking & Landis
[103], McMeeking, Landis and Jimenez [104], Mielke & Timofte [111, 112].

6.1. Local Constitutive Variational Principle

We focus first on a local volume element of the solid which undergoes an electro-mechanical
loading. The choice of the independent variables characterizing the local material response
of an electro-mechanically coupled solid can be based on two different approaches: a
physically-based approach which differentiate between actions and reactions and a geometry-
based approach which considers dual objects in the geometric setting. The first type of
approach yields in general to a minimization structure of the electro-mechanical boundary-
value-problem, while the geometry-based approach delivers normally a saddle-point struc-
ture, see Miehe [109].

We consider in this work a formulation of the local constitutive material response based
on a set of independent variables which have a geometric character. In particular we con-
sider a description in terms of generalized vectors and generalized covectors. Generalized
vectors are the variables for which a Cauchy-type theorem is applicable, and thus those
contravariant objects having basis in the tangent spaces and which can be contracted
without any metric with normals, which are elements of the cotangent spaces. We know
indeed that the stresses applied linearly to a normal give the traction vector acting on
the surface having that normal, see (3.30). Further, we know also that the scalar prod-
uct between the negative electric displacement and the normal of a surface element gives
the charge induced on that surface, see (4.7). Thus, the stresses and the negative elec-
tric displacement represent the generalized vectors. The dual quantities produced by the
tractions and charges are deformations and electric field which can be then considered as
the generalized covectors.

It is important to underline that those dual geometric objects do not coincide with the
dual physical objects. The latter are actions or generalized forces caused by reactions
or generalized deformations. We know that a force applied on a point-mass causes a
displacement of the same. In a similar way stresses on a local volume element of a solid
produces deformations while an electric field gives raise to a movement of charges or
electric displacement. Based on this argumentation we define the stresses and electric
field as actions and the deformation and electric displacement as reactions.

In particular, we may consider three types of generalized vectors and three correspondent
types of generalized covectors which refers to a two-point formulation, Lagrangian formu-
lation and Eulerian formulation, respectively. For the sake of clarity we will consider only
the first and third type of sets. We will indicate the generalized vector for a two-point
formulation with S′ and the one in the Eulerian configuration with s′, i.e.

S′ := [gP ,−D]T and s′ := [τ ,−d̃]T . (6.1)
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The correspondent generalized covectors will be contradistinguished with F′ and f′ mean-
ing the sets

F′ := [F ,E]T and f′ := [ 1
2
g, e]T . (6.2)

The third possible description in terms of the Lagrangian vector [S,−D]T and covector
[ 1

2
C,E]T can be easily determined starting from the formulation in terms of S′ and F′.

With the definition of generalized vectors and covectors at hand, the electro-mechanical
power per unit of the reference volume ρ0P

′ expressed in the equations (5.89)2 and (5.92)2

can be written in a more compact fashion as

ρ0P
′ = S′ ⋆ Ḟ′ , ρ0P

′ = s′ ⋆£v(f′) . (6.3)

Here the star indicates a generalized inner product that produces a scalar according to
(5.89)2 and (5.92)2. Thus, the electro-mechanical power is the inner product between the
generalized vectors and the rate of the generalized covectors. Notice that

ρ0P
′ = ρ0P − d

dt
(E ·D) and ρ0P

′ = ρP −£v(e · d̃) . (6.4)

The prime for the generalized vectors and covectors is used in order to be consistent with
the different formulations of the electro-mechanical power given in Section 5.7.

6.1.1. Formulation of Non-Dissipative Response

Consider the time interval [0, t] ∈ R+ in which a certain electro-mechanical loading process
takes place. Let

W t
0 :=

t∫

0

ρ0P
′dτ (6.5)

be the work per unit of reference volume done to the material element within this process.
Let us first focus on a non-dissipative electro-mechanical response which implies a path-
independency of the work done to the material element defined in (6.5) and which could
be expressed with a potential character of the electro-mechanical power P ′, i.e.

W t
0 := ρ0ψ̂

′(t) − ρ0ψ̂
′(0) or W t

0 := ρ0ψ̃
′(t) − ρ0ψ̃

′(0) (6.6)

with ρ0ψ̂
′(t) and ρ0ψ̃

′(t) mixed energy-enthalpy for the two-point and Eulerian represen-
tation, respectively, which is stored in the material element at time t. We assume that
the mixed energy-enthalpy for a non-dissipative material response depend exclusively on
generalized covectors

ρ0ψ̂
′(t) = ρ0ψ

′(F′(t)) and ρ0ψ̃
′(t) = ρ0ψ

′(f′(t)) . (6.7)

The above expressions simply state that the work done to the material element in the
time interval [0, t] is fully stored in the material and the free space in background. The
property (6.7) implies

ρ0P
′ =

d

dt
ρ0ψ

′(F′(t)) and ρ0P
′ =

d

dt
ρ0ψ

′(f′(t)) . (6.8)

Combination of (6.3) and (6.8) gives the identities

S′ ⋆ Ḟ′ = ρ0∂F′ψ′ ⋆ Ḟ′ and s′ ⋆£v(f′) = ρ0∂f′ψ
′ ⋆£v(f′) , (6.9)
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that must be satisfied for all possible rates of the generalized covectors, yielding the
potential constitutive equations

S′ = ρ0∂F′ψ′(F′(t)) and s′ = ρ0∂f′ψ
′(f′(t)) , (6.10)

which define the generalized vectors in terms of the generalized covectors. Equations
(6.10) are the compact versions of equations (5.85)1 and (5.85)2, and (5.96)1 and (5.96)2,
respectively.

The mixed energy-enthalpy function ψ′ is related to the free energy function ψ through a
partial Legendre transformation with respect to the electric slot, i.e.

ρ0ψ
′(F ,E) := infD {ρ0ψ(F ,D) −E ·D} and ρ0ψ

′(g, e) := infd̃ {ρ0ψ(g, d̃) − e · d̃} .

(6.11)
The free energy is in general a convex function and consequently the mixed energy-
enthalpy results to be a convex-concave function, see Rockafellar [129]. Thus a
formulation in terms of actions and reactions can yield to a minimization structure of
the electro-mechanical boundary-value-problem while on the other hand a formulation in
terms of vectors and covectors is generally combined to a saddle-point character of the
electro-mechanical boundary-value-problem. Similar considerations are also valid for the
dissipative response.

6.1.2. Formulation of Dissipative Response

We now extend the previous treatment in order to account for a dissipative electro-
mechanical material response which appears for example in ferroelectric materials. The
difference with respect to the case of non-dissipative materials is the fact that the work
done to the material element defined in (6.5) is now not fully stored, but it is in part
dissipated. Thus equation (6.6) must be reformulated as follows

W t
0 = ρ0ψ̂

′(t) − ρ0ψ̂
′(0) +Dt

0 and W t
0 = ρ0ψ̃

′(t) − ρ0ψ̃
′(0) +Dt

0 , (6.12)

where

Dt
0 =

t∫

0

ρ0Dlocdτ ≥ 0 (6.13)

is the part of the electro-mechanical work which dissipates into heat while ρ0ψ̂
′(t)−ρ0ψ̂

′(0)
or ρ0ψ̃

′(t)−ρ0ψ̃
′(0) constitutes the stored one. Recall that ρ0Dloc is the dissipation per unit

of reference volume. The statement (6.13) expresses the second law of thermodynamics
which was already introduced in Section 5 and states a positive dissipation for arbitrary
processes. Considering (6.12) we may extend (6.8) to

ρ0P
′ =

d

dt
ρ0ψ

′(F′(t)) + ρ0Dloc and ρ0P
′ =

d

dt
ρ0ψ

′(f′(t)) + ρ0Dloc , (6.14)

from which it becomes clear that the energy storage function ψ′ cannot be only a function
of the generalized covectors F′ or f′, but has to depend additionally on a set of internal
variables Q ∈ Rm for the two-point formulation or q ∈ Rm for the Eulerian formulation.
Thus we may write

ρ0ψ
′(t) = ρ0ψ̂

′(F′(t),Q(t)) and ρ0ψ
′(t) = ρ0ψ̃

′(f′(t),q(t)) . (6.15)
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Following the Coleman-Noll-Gurtin’s arguments recalled in Section 5, we identify the
generalized vectors and the internal forces M and m dual to Q and q by

S′ = ρ0∂F′ψ′(F′,Q)

M = − ρ0∂Q′ψ′(F′,Q)
and

s′ = ρ0∂f′ψ
′(f′,q)

m = − ρ0∂q′ψ′(f′,q)
. (6.16)

Usage of (6.16) gives the reduced dissipation

ρ0Dloc = M ⋆ Q̇ ≥ 0 and ρ0Dloc = m ⋆£v(q) ≥ 0 (6.17)

as an inner product of the internal forces, driving the evolution of the internal variables,
and the time rate of the internal variables.

6.1.3. Evolution Equations

The constitutive setting for dissipative materials is completed by the evolution equations
for the internal variables. Those equations can be formulated by postulating the existence
of a dissipation potential φ : Rm → R. This function is assumed to depend on the flux
Q̇ or £v(q) of the internal variables and determine the evolution of Q or q in terms of
the constitutive differential equations

ρ0∂Qψ
′(F′,Q) + ρ0∂Q̇

φ(Q̇) = 0

ρ0∂qψ
′(f′,q) + ρ0∂£v (q)φ(£v(q)) = 0

with

Q(0) = Q0

q(0) = q0

, (6.18)

often referred to as Biot’s equation of standard dissipative systems. The constitutive
equations (6.16) and (6.18) determine the generalized vector response of a smooth normal
electro-mechanically coupled material in a generalized-covector driven process where the
generalized covector is prescribed. The insertion of the evolution equation (6.18) into the
reduced dissipation inequality (6.17) gives the form

ρ0∂Q̇
φ(Q̇) ⋆ Q̇ ≥ 0 and ρ0∂£v (q)φ(£v(q)) ⋆£v(q) ≥ 0 , (6.19)

which serves as fundamental physically-based constraint on the dissipation function φ.
The thermodynamic constraint (6.19) is a priori satisfied by assuming the dissipation
function to be normalized and positive

φ(0 ) = 0 and φ(A) ≥ 0 , (6.20)

and additionally convex

αφ(A1) + (1 − α)φ(A2) > φ(αA1 + (1 − α)A2) , (6.21)

for α ∈ [0, 1]. Depending on particular applications, the dissipation function may be
assumed to be homogeneous of degree p

φ(αA) = αpφ(A) for α > 0 . (6.22)

An important case is p = 1 which characterizes a rate-independent response. Then,
differentiation of (6.22) with respect to α gives ∂Aφ(A) ⋆A = φ(A), which identifies for
the rate-independent case the dissipation Dloc with the dissipation function φ, i.e. Dloc =
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φ(Q̇) ≥ 0 or Dloc = φ(£v(q)) ≥ 0. Such a function has a cone-like graph and is not
differentiable at the point A = 0 . A generalization of the above formulation needs a
generalization of the differential operator ∂

Q̇
or ∂

£v (q) for smooth functions to the notion
of sub-differential operator representing a set. For smooth dissipation functions ∂

Q̇
or

∂
£v (q) is the standard derivative. Using the definition of sub-differential operator, in what

follows we formally understand the Biot-type equation (6.18) to be generalized to

0 ∈ ρ0∂qψ
′(F′,Q) + ρ0∂Q̇

φ(Q̇)

0 ∈ ρ0∂qψ
′(f′,q) + ρ0£v(q)φ(£v(q))

or

M ∈ ∂
Q̇
ρ0φ(Q̇)

m ∈ ∂
£v (q)ρ0φ(£v(q))

. (6.23)

Based on the definition (6.16)3 and (6.16)4, we may introduce a dual dissipation func-
tion φ∗ : Rm → R depending on the internal forces M or m by the Legendre-Fenchel
transformation

ρ0φ
∗(M) := sup

Q̇

{
M ⋆ Q̇ − ρ0φ(Q̇)

}
,

ρ0φ
∗(m) := sup

£v (q)

{m ⋆£v(q) − ρ0φ(£v(q))} .
(6.24)

The dual dissipation function defines directly the evolution of the internal variables by

Q̇ ∈ ρ0∂Mφ∗(M) or £v(q) ∈ ρ0∂mφ
∗(m) , (6.25)

dual to (6.23)3 and (6.23)4, degenerating for a smooth response to Q̇ = ρ0∂Mφ∗(M) and
£v(q) = ρ∂mφ

∗(m).

6.1.4. Rate-Independent Dissipation Functions

Rate-independent dissipation functions are often derived by invoking the so-called prin-
ciple of maximum dissipation by extension of the arguments used to model the case of
rate independent plasticity. Here, the dissipation function is defined by the constraint
maximum problems

ρ0φ(Q̇) = sup
M∈A

{M ⋆ Q̇} and ρ0φ(q̇) = sup
m∈a

{m ⋆£v(q)} , (6.26)

where A and a model reversible domains in the space of the driving forces M and m,

A := {M ∈ Rm|f(M) ≤ C} and a := {m ∈ Rm|f(m) ≤ c} , (6.27)

in terms of a set-level function f : Rm → R, which is positive f(M) , f(m) ≥ 0, normal-
ized f(0 ) = 0, convex and homogeneous of order one f(αA) = αf(A) for α > 0. The
threshold values C > 0 and c > 0 bound the driving forces M and m. The constrained
maximum problems (6.26) can be solved by a Lagrange method

ρ0φ(q̇) = sup
M,λ≥0

{
M ⋆ Q̇ − λ(f(M) − C)

}
,

ρ0φ(£v(q)) = sup
m,λ≥0

{m ⋆£v(q) − λ(f(m) − c)} .
(6.28)

By exploitation of the necessary conditions for the maximum problem (6.28) we obtain
the evolution equation for the internal variables

Q̇ = λ∂Mf(M) and £v(q) = λ∂mf(m) , (6.29)
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along with the loading-unloading conditions

λ ≥ 0 , f(M) ≤ C , λ(f(M) − C) = 0 , (6.30)

for (6.29)1 and
λ ≥ 0 , f(m) ≤ c , λ(f(m) − c) = 0 , (6.31)

for (6.29)2. The latter determine the non-smooth dissipative response by the set-level
function f . Note that the insertion of (6.29) into (6.28) gives the simple expression for
the dissipation function ρ0Dloc = ρ0φ(Q̇) = λC ≥ 0 and ρ0Dloc = ρ0φ(£v(q)) = λc ≥ 0.
The combination of (6.29) and (6.30) or (6.31) is a specific form of (6.25) for a rate-
independent response governed by a switching function f .

6.1.5. Rate-Dependent Dissipation Functions

A rate-dependent class of dissipation functions with reversible range A or a governed
by the set-level function f is obtained by an approximate penalty-type solution of the
maximum problem (6.26)

ρ0φ(Q̇) = sup
M

{
M ⋆ Q̇ − C

η(m+ 1)
〈f(M)/C − 1〉m+1

}
,

ρ0φ(£v(q)) = sup
m

{
m ⋆£v(q) − c

η(m+ 1)
〈f(m)/c− 1〉m+1

}
,

(6.32)

where the constants η > 0 and m > 0 are interpreted as material parameters associated
with the viscosity of the electro-mechanical process. 〈x〉 = 1

2
(x+|x|) is the ramp function,

expressed by the McAuley brackets. The necessary conditions of (6.32) provides the non-
linear evolution equations

Q̇ =
1

η
〈f(M)/C − 1〉m∂Mf(M) ,

£v(q) =
1

η
〈f(m)/c− 1〉m∂mf(m) .

(6.33)

This evolution equations may be directly obtained from (6.25) based on the dual dissipa-
tion function

ρ0φ
∗(M) =

C

η(m+ 1)
〈f(M)/C − 1〉m+1 ,

ρ0φ
∗(m) =

c

η(m+ 1)
〈f(m)/c− 1〉m+1 ,

(6.34)

which follows from (6.32), if the penalty-type variational principle is eventually inter-
preted as Legendre-Fenchel transformation. For η → 0 we obtain in the limit the rate-
independent form (6.29) combined with (6.30) or (6.31).

6.1.6. Incremental Variational Principle for Dissipative Response

Incremental Potential for Generalized Vectors. We consider now an incremental
electro-mechanical loading process in the time interval [tn, tn+1]. We assume that the state
of the material at the time tn is known and in particular the internal state, characterized
by the value Qn or qn of the internal variables at the time tn is assumed to be known.
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Our aim is to determine the new generalized vector state at tn+1 when advancing the
generalized covector from F′

n or f′n at time tn to F′
n+1 or f′n+1 at time tn+1. To this purpose

we define an incremental potential W depending only on the current generalized covector
F′

n+1 or f′n+1 that determines the current generalized vector by the quasi-hyperelastic
function evaluation

S′
n+1 = ∂F′

n+1
W (F′

n+1) and s′
n+1 = ∂f′n+1

W (f′n+1) . (6.35)

We will omit from now on the subscript “n+1” indicating the variables at the current time
step tn+1 with an exception for tn+1 itself. Further derivations of the potential W , and
thus of the generalized vectors S′ and s′ give the coupled electro-mechanical consistent
tangent moduli

C′ := ∂F′S′ = ∂2
F′F′W (F′) and c′ := ∂f′s

′ = ∂2
f′f′w(f′) . (6.36)

The incremental potential W (F′) or W (f′) represents the incremental electro-mechanical
work done on the infinitesimal material volume element in the time window [tn, tn+1]
which accounts not only for the energy stored in the material, but also for the dissipated
energy. Equations (6.35) and (6.36) suggests that the incremental potential W can be
considered as an extension of the mixed energy-enthalpy function ψ′ used to characterized
a non-dissipative material response.

Clearly, this functional must cover characteristics of the storage function ψ′ and the
dissipation function φ introduced above. To this end we propose a definition of the
incremental functional W through the following variational problems

W (F′) = inf
Q̇






tn+1∫

tn

[
d

dt
ρ0ψ

′(F′,Q) + ρ0φ(Q̇)

]
dτ




 with Q(tn) = Qn ,

W (f′) = inf
£v (q)





tn+1∫

tn

[
d

dt
ρ0ψ

′(f′,q) + ρ0φ(£v(q))

]
dτ



 with q(tn) = qn .

(6.37)

For prescribed generalized covectors, these problems define the incremental potential func-

tion W as a minimum of the generalized work
∫ tn+1

tn

[
ρ0ψ̇′ + ρ0φ

]
dτ done on the mate-

rial in the time increment under consideration. Starting with the given initial condition
Q(tn) = Qn or q(tn) = qn, the minimum problem defines an optimum path of the internal
variables Q(t) or q(t) for t ∈ [tn, tn+1] including the right boundary value Q = Q(tn+1)
or q = q(tn+1).

Equations (6.35) and (6.37) provide an approximate variational counterpart of the con-
tinuous setting (6.16) and (6.18) of the constitutive equations in the discrete time step
[tn, tn+1] under consideration. In order to show the consistency, we at first recast (6.37)
into the form

W (F′) = inf
Q̇




[ρ0ψ
′(F′,Q)]tn+1

tn
+

tn+1∫

tn

ρ0φ(Q̇)dτ




 ,

W (f′) = inf
£v (q)



[ρ0ψ

′(f′,q)]tn+1

tn
+

tn+1∫

tn

ρ0φ(£v(q))dτ



 .

(6.38)
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The necessary condition for the minimum problem is that the variation with respect to
the internal variables of the term in curly brackets vanishes, i.e.

[ρ0∂Qψ
′ ⋆ δQ]tn+1

tn
+

tn+1∫

tn

[
∂

Q̇
ρ0φ ⋆ δQ̇

]
dτ = 0 ,

[
ρ0∂qψ

′ ⋆ δq
]tn+1

tn
+

tn+1∫

tn

[
ρ0∂£v (q)φ ⋆ δ£v(q)

]
dτ = 0 .

(6.39)

For smooth functions, integration by parts of the integrals appearing in (6.39) yields the
expressions

[
(ρ0∂Qψ

′ + ρ0∂Q̇
φ) ⋆ δQ

]tn+1

tn
+

tn+1∫

tn

[
− d

dt
(ρ0∂Q̇

φ)

]
⋆ δQ dτ = 0 ,

[
(ρ0∂qψ

′ + ρ0∂£v (q)φ) ⋆ δq
]tn+1

tn
+

tn+1∫

tn

[
− d

dt
(ρ0∂£v (q)φ)

]
⋆ δq dτ = 0 ,

(6.40)

which have to be verified for arbitrary increments δQ and δq. Thus the variational
problem (6.37) yields the Biot’s equation (6.23)

ρ0∂Qψ
′ + ρ0∂Q̇

φ = 0 and ρ0∂qψ
′ + ρ0∂£v (q)φ = 0 for t = tn+1 (6.41)

at the discrete right boundary of the interval [tn, tn+1]. The minimizing path of the internal
variables inside the interval is determined by the Euler equations

− d

dt
(ρ0∂Q̇

φ) = 0 and − d

dt
(ρ0∂£v (q)φ) = 0 for t ∈ [tn, tn+1] . (6.42)

For the limit tn+1 → tn, the form of the minimization path becomes irrelevant, because
the time increment degenerates to a discrete time t. Because (6.41) still holds in this
case, it is shown that the variational formulation (6.37) represents a consistent point–
wise approximation of Biot’s normal–dissipative evolution equation (6.23). Furthermore,
taking the derivative of the incremental potential function with respect to the generalized
covectors F′ or f′, we have

∂F′W (F′) = ρ0∂F′ψ′(F′,Q) , ∂f′W (f′) = ρ0∂f′ψ
′(f′,q) . (6.43)

where Q or q is assumed to be given by the minimization problem (6.37). Comparison
with (5.85) and (5.96) then shows the consistency of the potential equations (6.35) with
the continuous setting.

For finite time increments ∆t, the minimization problem (6.37) is understood to have the
algorithmic form

W h(F′) = inf
Q
W̃ (F′,Q) and W h(f′) = inf

q
Ŵ (f′,q) (6.44)

in terms of the algorithmic expression for the (generalized) incremental electro-mechanical
work

W̃ (F′,Q) = ρ0ψ
′(F′,Q) − ρ0ψ

′(F′
n,Qn) + ∆t ρ0φ

(
Q−Qn

∆t

)
,

Ŵ (f′,q) = ρ0ψ
′(f′,q) − ρ0ψ

′(f′n,qn) + ∆t ρ0φ
(

q−qn

∆t

)
.

(6.45)
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Note that the algorithmic expression in (6.45) is based on an approximation of the integrals∫ tn+1

tn
ρ0φ(Q̇)dτ ≈ ∆tρ0φ

(
Q−Qn

∆t

)
and

∫ tn+1

tn
ρ0φ(q̇)dτ ≈ ∆tρ0φ

(
q−qn

∆t

)
in (6.37) through

the algorithmic simplification of the rates Q̇ of Q and £v(q) of q with the constant
values Q̇ = [Q − Qn]/∆t and £v(q) = [q − qn]/∆t in the interval [tn, tn+1]. Note
further that the last approximation should be performed in an objective manner, see
Simo & Hughes [137]. The exploitation of the necessary condition for the algorithmic
minimization problem (6.44) provides the algorithmic forms

0 ∈ ρ0∂Qψ
′(F′,Q) + ∆tρ0∂Qφ(Q−Qn

∆t
) ,

0 ∈ ρ0∂qψ
′(f′,q) + ∆tρ0∂qφ(q−qn

∆t
) ,

(6.46)

of the Biot’s equation (6.23). In other words, the algorithmic minimization problem (6.44)
determines the update of the internal variables.

A Two-Point Formulation for Rate-Independent Response. For rate independent
dissipative processes characterized by a reversible range A defined in (6.27)1 in terms of
the switching function f , we may modify the variational problem (6.37)1 by inserting the
specific dissipation function (6.28)1

W (F′) = inf
Q̇

sup
M,λ≥0





tn+1∫

tn

[
d

dt
ρ0ψ

′ + M ⋆ Q̇ − λ(f(M) − C)

]
dτ



 . (6.47)

For finite time increments, this principle has the algorithmic form

W h(F′) = inf
Q

sup
M,γ≥0

W̃ (F′,Q,M, γ) , (6.48)

in terms of the approximated expression for the incremental electro-mechanical work

W̃ = ρ0ψ
′(F′,Q) − ρ0ψ

′(F′
n,Qn) + M ⋆ [Q − Qn] − γ(f(M) − C) . (6.49)

Here, γ := λ∆t is the Lagrange parameter associated with the increment [tn, tn+1]. For
the loading case γ > 0, the necessary conditions of the constitutive variational problem
(6.48) give the non-linear system of equations

r̃ :=



∂QW̃

∂MW̃

∂γW̃


 =




ρ0∂Qψ
′ + M

Q − Qn − γ∂Mf
−f + C


 = 0 (6.50)

along with the discrete version of the loading-unloading conditions (6.30)

γ ≥ 0 , f(M) ≤ C , γ(f(M) − C) = 0 . (6.51)

The first equation of the system (6.50) represents the algorithmic definition of the con-
jugate internal force M. The second equation of (6.50) is the discrete counterpart of
the evolution equation (6.18)1. The above non-linear system (6.50) can be solved at
given generalized covector F′ by a local Newton-type algorithm for the current variables
ṽ := {Q,M, γ}

ṽ ⇐ ṽ − ã−1r̃ (6.52)
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until convergence is achieved in the sense |r̃| < tol. The tangent matrix of the Newton
iteration has the form

ã :=




∂2
QQW̃ ∂2

QMW̃ ∂2
QγW̃

∂2
MQW̃ ∂2

MMW̃ ∂2
MγW̃

∂2
γQW̃ ∂2

γMW̃ ∂2
γγW̃




=




ρ0∂
2
QQψ

′ 1 0

1 −γ∂2
MMf −∂Mf

0 −∂Mf 0



. (6.53)

Using the implicit function theorem, we may derive a closed-form solution of the coupled
electro-mechanical tangent moduli operators defined in (6.36)1

C′ := ∂2
F′F′W = ρ0∂

2
F′F′ψ′ − s



ρ0∂

2
F′Qψ

′

0

0


 · (ã)−1 ·



ρ0∂

2
QF′ψ′

0

0


 (6.54)

in terms of a dissipative loading flag

s :=

{
1 for γ > 0 ,
0 otherwise .

(6.55)

Note that the second part of (6.54) characterizes the softening of the fully coupled electro-
mechanical tangent moduli due to the evolution of the internal variables. Note also that
due to the variational structure the moduli are symmetric.

An Eulerian Formulation for a Rate-Independent Response. For rate indepen-
dent dissipative processes characterized by a reversible range a defined in (6.27)2 in terms
of the switching function f , we may modify the variational problem (6.37)2 by inserting
the specific dissipation function (6.28)2

W (f′) = inf
£v (q)

sup
m,λ≥0






tn+1∫

tn

[
d

dt
ρ0ψ

′ + m ⋆£v(q) − λ(f(m) − c)

]
dτ




 . (6.56)

For finite time increments, this principle has the algorithmic form

W h(f′) = inf
q

sup
m,γ≥0

Ŵ (f′,q,m, γ) (6.57)

in terms of the approximated expression for the incremental electro-mechanical work

Ŵ = ρ0ψ
′(f′,q) − ρ0ψ

′(f′n,qn) + m ⋆ [q − ϕ∗ (Qn)] − γ(f(m) − c) . (6.58)

Here, γ := λ∆t is the Lagrange parameter associated with the increment [tn, tn+1]. Ob-
serve that in order to get an objective approximation of the Lie derivative, we need to
first pull-back, then make the approximation of the time derivative and finally to push
forward the obtained quantity as follows

£v(q) ≈ ϕ∗

(
[ϕ∗(q)]t=tn+1

− [ϕ∗(q)]t=tn

∆t

)
=

ϕ∗ (Q − Qn)

∆t
=

q − ϕ∗(Qn)

∆t
. (6.59)
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with ϕ∗(•) and ϕ∗(•) pull-back and push-forward operators, respectively. For the loading
case γ > 0, the necessary conditions of the constitutive variational problem (6.57) give
the non-linear system of equations

r̂ :=



∂qŴ

∂mŴ

∂γŴ


 =




ρ0∂qψ
′ + m

q − ϕ∗(Qn) − γ∂mf
−f + c


 = 0 (6.60)

along with the discrete version of the loading-unloading conditions (6.31)

γ ≥ 0 , f(m) ≤ c , γ(f(m) − c) = 0 . (6.61)

The first equation of the system (6.60) represents the algorithmic definition of the con-
jugate internal force m. The second equation of (6.60) is the discrete counterpart of
the evolution equation (6.18)2. The above non-linear system (6.60) can be solved at
given generalized covector f′ by a local Newton-type algorithm for the current variables
v̂ := {q,m, γ}

v̂ ⇐ v̂ − â−1r̂ (6.62)

until convergence is achieved in the sense |r̂| < tol. The tangent matrix of the Newton
iteration has the form

â :=




∂2
qqŴ ∂2

qmŴ ∂2
qγŴ

∂2
mqŴ ∂2

mmŴ ∂2
mγŴ

∂2
γqŴ ∂2

γmŴ ∂2
γγŴ




=




ρ0∂
2
qqψ

′ 1 0

1 −γ∂2
mmf −∂mf

0 −∂mf 0



. (6.63)

Using the implicit function theorem, we may derive a closed-form solution of the coupled
electro-mechanical tangent moduli operators defined in (6.36)2

c′ := ∂2
f′f′W = ρ0∂

2
f′f′ψ

′ − s




ρ0∂

2
f′qψ

′

0

0



 · (â)−1 ·




ρ0∂

2
qf′ψ

′

0

0



 (6.64)

in terms of a dissipative loading flag

s :=

{
1 for γ > 0 ,
0 otherwise .

(6.65)

Note that the second part of (6.64) characterizes the softening of the fully coupled electro-
mechanical tangent moduli due to the evolution of the internal variables. Note also that
due to the variational structure the moduli are symmetric.

A Two-Point Formulation for Rate-Dependent Response. For rate dependent
dissipative processes characterized by a reversible range A defined in (6.27)1 in terms of
the switching function f , we may modify the variational problem (6.37)1 by inserting the
specific dissipation function (6.32)1

W (F′) = inf
Q̇

sup
M





tn+1∫

tn

[
d

dt
ρ0ψ

′ + M ⋆ Q̇ − C

η(m+ 1)
〈f(M)/C − 1〉m+1

]
dτ



 . (6.66)
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For finite time increments, this principle has the algorithmic form

W h(F′) = inf
Q

sup
M

W̄ (F′,Q,M) (6.67)

in terms of the approximated expression for the incremental electro-mechanical work

W̄ = ρ0ψ
′(F′,Q)−ρ0ψ

′(F′
n,Qn)+M⋆ [Q−Qn]− C∆t

η(m+ 1)
〈f(M)/C−1〉m+1 . (6.68)

The necessary conditions of the constitutive variational problem (6.67) give the non-linear
system of equations

r̄ :=

[
∂QW̄

∂MW̄

]
=




ρ0∂Qψ
′ + M

Q − Qn − ∆t
η
〈f/C − 1〉m∂Mf


 = 0 . (6.69)

The first equation of the system (6.69) represents the algorithmic definition of the con-
jugate internal force M. The second equation of (6.69) is the discrete counterpart of
the evolution equation (6.33)1. The above non-linear system (6.69) can be solved at
given generalized covector F′ by a local Newton-type algorithm for the current variables
v̄ := {Q,M}

v̄ ⇐ v̄ − ā−1r̄ (6.70)

until convergence is achieved in the sense |r̄| < tol. The tangent matrix of the Newton
iteration has the form

ā :=



∂2

QQW̄ ∂2
QMW̄

∂2
MQW̄ ∂2

MMW̄


 =




ρ0∂
2
QQψ

′ 1

1
−m∆t

ηC
〈f/C − 1〉m−1∂Mf ⊗ ∂Mf

−∆t
η
〈f/C − 1〉m∂2

MMf


 . (6.71)

Using the implicit function theorem, we may derive a closed-form solution of the coupled
electro-mechanical tangent moduli operators defined in (6.36)1

C′ := ∂2
F′F′W = ρ0∂

2
F′F′ψ′ −

[
ρ0∂

2
F′Qψ

′

0

]
· (ā)−1 ·

[
ρ0∂

2
QF′ψ′

0

]
. (6.72)

Note that the second part of (6.72) characterizes the softening of the fully coupled electro-
mechanical tangent moduli due to the evolution of the internal variables. Note also that
due to the variational structure the moduli are symmetric.

An Eulerian Formulation for Rate-Dependent Response. For rate dependent
dissipative processes characterized by a reversible range a defined in (6.27)2 in terms of
the switching function f , we may modify the variational problem (6.37)2 by inserting the
specific dissipation function (6.32)2

W (f′) = inf
£v (q)

sup
m






tn+1∫

tn

[
d

dt
ρψ′ + m ⋆£v(q) − c

η(m+ 1)
〈f(m)/c− 1〉m+1

]
dτ




 . (6.73)

For finite time increments, this principle has the algorithmic form

W h(f′) = inf
q

sup
m

W̌ (f′,q,m) (6.74)
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in terms of the approximated expression for the incremental electro-mechanical work

W̌ = ρψ′(f′,q) − ρψ′(f′n,qn) + m ⋆ [q − ϕ∗(Qn)] − c∆t

η(m+ 1)
〈f(m)/c− 1〉m+1 , (6.75)

where we made use of the approximation (6.59). The necessary conditions of the consti-
tutive variational problem (6.74) give the non-linear system of equations

ř :=




∂qW̌

∂mW̌



 =




ρ∂qψ

′ + m

q − ϕ∗(Qn) − ∆t
η
〈f/c− 1〉m∂mf



 = 0 . (6.76)

The first equation of the system (6.76) represents the algorithmic definition of the con-
jugate internal force m. The second equation of (6.76) is the discrete counterpart of
the evolution equation (6.33)2. The above non-linear system (6.76) can be solved at
given generalized covector f′ by a local Newton-type algorithm for the current variables
v̌ := {q,m}

v̌ ⇐ v̌ − ǎ−1ř (6.77)

until convergence is achieved in the sense |ř| < tol. The tangent matrix of the Newton
iteration has the form

ǎ :=




∂2

qqW̌ ∂2
qmW̌

∂2
mqW̌ ∂2

mmW̌



 =




ρ∂2
qqψ

′ 1

1
−m∆t

ηc
〈f/c− 1〉m−1∂mf ⊗ ∂mf

−∆t
η
〈f/c− 1〉m∂2

mmf


 . (6.78)

Using the implicit function theorem, we may derive a closed-form solution of the coupled
electro-mechanical tangent moduli operators defined in (6.36)2

c′ := ∂2
f′f′w = ρ∂2

f′f′ψ
′ −
[
ρ∂2

f′qψ
′

0

]
· (ǎ)−1 ·

[
ρ∂2

qf′ψ
′

0

]
. (6.79)

Note that the second part of (6.79) characterizes the softening of the fully coupled electro-
mechanical tangent moduli due to the evolution of the internal variables. Note also that
due to the variational structure the moduli are symmetric.

6.2. Global Variational Principles

This chapter deals with the formulation of the field equations in the form of variational
principles and methods. The variational approach in various forms is often taken as the
cornerstone for the development of discretization techniques such as the well established
finite element methodology. Variational principles are particularly powerful and belong to
the fundamental principles in mathematics and mechanics. It is important to note that the
finite element method needs not necessarily to depend upon the existence of a variational
principle. However, good approximate solutions are often related to weak forms of field
equations which are consequences of the stationarity condition of a functional.

6.2.1. Compact Form of the Electro-Mechanical Boundary-Value-Problem

A Two-Point Formulation. We start by giving a short summary of the equations
describing the quasi-static electro-mechanical boundary-value-problem using a compact
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notation compatible with the one introduced in the previous chapter. Here, we consider
a two-point formulation. The coupled boundary-value-problem is a two field problem. It
is described by choosing as primary variables the deformation map ϕ(X, t)

ϕ :

{ B × [0, t] → S ⊂ R3

(X, t) 7→ x = ϕ(X, t)
(6.80)

and the electric potential φe(X, t)

φe :

{ B × [0, t] → R
(X, t) 7→ φe(X, t)

. (6.81)

In order to express the governing equations by using a compact notation, we introduce
the generalized deformation map U′ defined as

U′ := [ϕ(X, t),−φe(X, t)]T . (6.82)

As we already saw in Section 3, the Fréchet derivative of the deformation map is the
deformation gradient

F := ∇Xϕ(X, t) . (6.83)

Further in Section 4 we established that in the quasi static case the electric field has to
be a curl-free field (see equation (4.37)). This property is automatically satisfied if the
electric field E is chosen to be the gradient of the electric potentialE := −∇Xφ

e(X, t) . (6.84)

The kinematic equations (6.83) and (6.84) can be expressed in terms of the generalized
deformation map U′ and a generalized material gradient operator GGG as

F′ := GGG [U′] , (6.85)

with F′ generalized covector for the two-point formulation introduced in (6.2)1. The key
equations for the solution of the boundary-value-problem are the equilibrium equations.
These are the balance of linear momentum

Div[P ] + ρ0Γ̄ = 0 (6.86)

and the Gauß-Law
Div[D] − ρ̄e

0 = 0 , (6.87)

respectively. By using the definition of the two-point generalized vector given in (6.1)1

and the definition of a generalized divergence operator Dv, we can recast (6.86) and (6.87)
in the compact format

Dv[S
′] + B̄′ = 0 , (6.88)

with B̄′ array of generalized body forces

B̄′ = [ρ0Γ̄, ρ̄
e
0]

T . (6.89)

Recall that the generalized vector S′ can be determined in terms of an incremental
function W as

S′ = ∂F′W (F′; X) , (6.90)
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with W defined in the Section 6.1.6. The last equation is valid for both the dissipative
and non-dissipative material response. In the last case we have indeed the identification of
W with the mixed energy-enthalpy function ρ0ψ

′, i.e. W (F′; X) = ρ0ψ
′(F′; X). Insertion

of (6.85) and (6.90) into (6.88) finally yields the coupled system of quasi-static electro-
mechanics

Dv[∂F′W (GGG [U′]; X)] + B̄′ = 0 (6.91)

providing twelve coupled scalar differential equations for the determination of the general-
ized deformation map U′ in the reference domain B under consideration. Those equations
are in general non-linear. In order to be able to solve the system (6.91) we have to impose
the boundary conditions. For the two-point formulation they read for the mechanical
problem

ϕ = ϕ̄(X, t) on ∂Bϕ and PN = T̄ (X, t) on ∂BT , (6.92)

and for the electrical problem

φe = φ̄e(X, t) on ∂Bφ and D · N = −Σ̄e(X, t) on ∂BΣ . (6.93)

Consistent with the above compact notation, we may write the boundary conditions as

U′ = Ū′(X, t) on ∂BU′ and S′ · N = T̄′(X, t) on ∂BT′ . (6.94)

In equation (6.94) Ū′ := [ϕ̄(X, t),−φ̄e(X, t)]T assembles the prescribed primary variables
on the Dirichlet boundary ∂BU′ := {∂Bϕ, ∂Bφ}. Furthermore T̄′ := [T̄ (X, t), Σ̄e(X, t)]T

assembles the prescribed variables on the Neumann boundaries ∂BT′ := {∂BT , ∂BΣ}. The
generalized normal vector N := [N ,N ]T provides the outward surface normals for each
partial field of the coupled problem.

6.2.2. Variational Principle. A Two-Point Formulation

Continuous Formulation. Let us assume the existence of an incremental energy func-
tional I ′(U′) for both generalized vectors and loads. This assumption is common in many
fields of solid mechanics. A formulation based on energy functionals is very useful, for ex-
ample, for the development of robust numerical algorithms that are based on optimization
techniques.

From now on we assume that the loads do not depend on the motion of the body. It means
that the directions of the loads remain parallel and their values unchanged throughout
the deformation process. We say such loads are “dead”.

We consider a body in static equilibrium under the action of specific “dead” loadings and
boundary conditions specified in (6.94). Then the total generalized incremental energy
functional I ′(U′) of the system is the difference between the internal energy I ′int(U

′) stored
in the body and the underlying free space in the time interval [tn, tn+1] and the incremental
work done by the external loads I ′ext(U

′), i.e.

I ′(U′) = I ′int(U
′) − I ′ext(U

′) , (6.95)

with

I ′int(U
′) =

∫

B

W (GGG [U′]; X)dV

I ′ext(U
′) =

∫

B

B̄′ ⋆ (Û′ − Û′
n)dV +

∫

∂BT

T̄′ ⋆ (Û′ − Û′
n)dA

(6.96)
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in terms of the generalized deformation map vector defined in (6.82) and of the generalized
quantities introduced in Section 6.1. In (6.96) the quantity Û′ is defined as Û′ = U′ −
[X, 0]T . The energy functional I ′(U′) has to be stationary with respect to generalized
deformation map U′ satisfying the Dirichlet boundary conditions given in (6.94)1. Thus,
our main objective is to find the state of equilibrium for which the potential I ′(U′) is
stationary, i.e.

U′ = Arg

{
stat
U′∈W

I ′(U′)

}
= Arg

{
inf
ϕ

sup
−φe

I ′(ϕ,−φe)

}
(6.97)

for admissible generalized deformation map

U′ ∈ W :=
{
U′ | U′ = Ū′(X, t) on ∂BU′

}
. (6.98)

Note that I ′(U′) has to be minimized with respect to the mechanical primary variable ϕ

and maximized with respect to the electrical primary variable −φe. This confers to the
problem a saddle-point character. The stationarity position of the functional I ′(U′) is ob-
tained by requiring the directional derivative with respect to the generalized deformation
map U′ to vanish in all directions δU′, i.e.

δI ′(U′, δU′) =

[
d

dǫ
I ′(U′ + ǫδU′)

]

ǫ=0

= 0 , (6.99)

which could be regarded as an extension of the principle of minimum potential energy
of elastostatics to a stationarity principle for the fully coupled electro-mechanical prob-
lem. In particular for the non-dissipative case, the principle is in line with the variational
framework of Allik & Hughes [1] and Benjeddou [11] for piezoelectricity. Equation
(6.99) requires that the first variation of the functional I ′(U′) denoted with δI ′ vanishes.
This variation is clearly a function of both U′ and δU′. The arbitrary vector field δU′

has to be consistent with the conditions imposed on the continuum body and the under-
lying free space. Thus, δU′ = 0 over ∂BU′ , where the generalized deformation map is
prescribed. Taking this constraint into account, we can write (6.99) explicitely by using
the definition (6.95) and (6.96)

δI ′(U′, δU′) =

∫

B

{
∂F′W ⋆GGG [δU′] − B̄′ ⋆ δU′

}
dV −

∫

∂BT′

T′ ⋆ δU′dA = 0 . (6.100)

By using the Gauß theorem in terms of the generalized deformation map field, we get

δI ′ = −
∫

B

{
Dv[∂F′W ] + B̄′

}
⋆ δU′dV +

∫

∂BT′

{
∂F′W · N − T′

}
⋆ δU′dA = 0 . (6.101)

Since δU′ has to be arbitrary, we obtain from the necessary condition for the stationarity of
the energy functional I ′(U′), the Euler-Lagrange equations associated with the variational
principle (6.97)

Dv[∂F′W ] + B̄′ = 0 in B ,

∂F′WN = T′ on ∂BT′ .
(6.102)

By including the constitutive equations (6.90), we recognize that equation (6.102)1 rep-
resents the generalized balance equation (6.88) and equation (6.102)2 are the generalized
Neumann boundary conditions(6.94)2.
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Finite Element Discretization. The variational problem (6.97) is approximately solved
by a finite element method. To this end, the generalized deformation map and its gradient
are discretized within N finite element domains Be ⊂ Bh in which the discretized solid
Bh is decomposed, such that

U′h(X) = X′ + N′e(X)D′e and GGG [U′h] = I′ + B′e(X)D′e in Be . (6.103)

Here D′e is the element generalized displacement vector

D′e := [de,−φe]T (6.104)

which contains the element nodal displacements de and the negative electric nodal poten-
tial −φe at the current time tn+1. Further N′e(X) is the matrix of element interpolation
functions and B′e(X) the associated gradient matrix. The arrays X′ and I′ are defined
as follows

X′ =

[
X

0

]
and I′ =

[
1 0

0 0

]
. (6.105)

After assembling the element quantities in global arrays

D′ =
N

A
e=1

D′e , N′(X) =
N

A
e=1

N′e(X) , B′(X) =
N

A
e=1

B′e(X) , (6.106)

we may express the approximated generalized deformation map U′h and its generalized
gradient GGG [U′h] in the discretized domain Bh as follows

U′h(X) = X′ + N′(X)D′ and GGG [U′h] = I′ + B′(X)D′ in Bh . (6.107)

With the approximation (6.107) at hand, the energy functional (6.95) appears approxi-
mated in the form

I ′h(D′) =

∫

Bh

{
W (I′ + B′D′; X) − B̄′ ⋆N′∆D′

}
dV −

∫

∂Bh
T′

T̄′ ⋆N′∆D′dA (6.108)

with ∆D′ := (D′−D′
n). The discrete energy functional (6.108) has to be stationary with

respect to the global generalized nodal displacement D′ and thus we search for the global
generalized nodal displacement D′ which satisfy the variational principle

D′ = Arg

{
stat

D′∈Wh
I ′h(D′)

}
= Arg

{
inf
D

sup
−φ

I ′h(D,−φ)

}
, (6.109)

which results to be the discrete counterpart of (6.97). Here, D = A
N
e=1 de, φ = A

N
e=1 φe,

and Wh is the set of admissible nodal variables which satisfy the discrete Dirichlet bound-
ary conditions

W
h :=

{
D′ | D′ = D̄′ on ∂Bh

U′

}
. (6.110)

The necessary conditions for the solution of the discrete stationary problem (6.109) are
given by setting to zero the variation of I ′h(D′)

I ′h,D′(D′) = 0 . (6.111)
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The equations (6.111) provide a system of non-linear equations from which the discrete
generalized displacements, i.e. the mechanical nodal displacements and the electric nodal
potentials, are determined. The solution vector may be obtained through an iterative
method as the Newton-Raphson method, yielding the update equations

D′ = D′ −
[
I ′h,D′D′(D′)

]−1 [
I ′h,D′(D′)

]
(6.112)

performed by some solver of linear equations. Due to the variational structure of the
coupled electro-mechanical problem, the coupled tangent K′ = I ′h,D′D′ is symmetric. The
update (6.112) is performed till convergence is reached in the sense

∥∥I ′h,D′(D′)
∥∥ < tol , (6.113)

i.e. till the norm of the residuum R′ = I ′h,D′ is smaller than a certain predefined tolerance.
The first and second derivatives of the discrete variational functional (6.108) give all the
finite element arrays needed for the solution of the coupled electro-mechanical boundary-
value-problem by means of the finite element method. These arrays are the finite element
residual

R′ := I ′h,D′ =

∫

Bh

{
B′T S′h − N′T B̄′

}
dV −

∫

∂B′

T′

N′T T̄′dA (6.114)

and the finite element tangent matrix

K′ := I ′h,D′D′ =

∫

Bh

B′T C′hB′dV . (6.115)

These arrays are expressed in terms of the first and second derivatives of the incremental
functional W which give the generalized approximated vector S′h and moduli C′h

S′h := ∂F′hW (I′ + B′D′; X) and C′h := ∂2
F′hF′hW (I′ + B′D′; X) (6.116)

of the coupled problem. Clearly, due to the variational structure of the coupled constitu-
tive problem, the moduli C′h are symmetric. However, they are not positive definite due
to the saddle-point structure. As a consequence, also the finite element tangent matrix
K′ is not positive definite and this excludes the application of certain fast and efficient
solvers for the solution of the linear iterative update (6.112).

6.3. Small Strain Approximation

In this section, we adapt the above described variational formulation for large strain
to the case of small deformations and we will focus again on a formulation based on
generalized vectors and generalized covectors. We recall that the generalized vectors are
the stresses and the electric displacement while the generalized covectors are the strains
and the electric field. In this case we deal only with one type of generalized vectors and
covectors which will be indicated with s′ and f′, respectively, and are defined as follows

s′ := [σ,−d]T , f′ := [ε, e]T . (6.117)

In terms of the generalized vectors and covectors, the electro-mechanical power ρP ′ ex-
pressed in the equation (5.109) can be written in a more compact fashion as

ρP ′ = s′ ⋆ ḟ′ . (6.118)
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Here the star indicates a generalized inner product that produces a scalar according to
(5.109). Thus, the electro-mechanical power is the inner product between the generalized
vector and the rate of the generalized covector.

6.3.1. Dissipative Response

We directly consider a dissipative electro-mechanical material response which appears for
example in ferroelectric materials. The case of non-dissipative materials can be recovered
by dropping the dissipation contribution. Thus, we may write the work done to the
material element as sum of stored and dissipated contributions

wt
0 :=

t∫

0

ρP ′dτ = ρψ̂′(t) − ρψ̂′(0) + dt
0 , (6.119)

where

dt
0 :=

t∫

0

ρDlocdτ ≥ 0 , (6.120)

is the part of the electro-mechanical work which dissipates into heat while ρψ̂′(t)−ρψ̂′(0)
constitutes the stored one. The statement (6.120) expresses the second law of thermo-
dynamics which was already introduced in Section 5 and states a positive dissipation for
arbitrary processes. Considering (6.119) we may write

ρP ′ =
d

dt
ρψ̂′(f′(t)) + ρ0Dloc , (6.121)

from which it becomes clear that the energy storage function ψ′ cannot be only a function
of the generalized covector f′, but has to depend additionally on a set of internal variables
q ∈ Rm, i.e.

ρψ′(t) = ρψ̂′(f′(t),q(t)) . (6.122)

Following the Coleman-Noll-Gurtin’s arguments recalled in Section 5, we identify the
generalized vector and the internal forces m dual to q by

s′ = ρ∂f′ψ
′(f′,q) , m = −ρ∂q′ψ′(f′,q) . (6.123)

Usage of (6.123) gives the reduced dissipation

ρDloc = m ⋆ q̇ ≥ 0 (6.124)

as an inner product of the internal forces, driving the evolution of the internal variables,
and the time rate of the internal variables.

6.3.2. Evolution Equations

The constitutive setting for dissipative materials is completed by the evolution equations
for the internal variables. Those equations can be formulated by postulating the existence
of a dissipation potential φ : Rm → R. This function is assumed to depend on the flux
q̇ of the internal variables and determine the evolution of q in terms of the constitutive
differential equations

0 ∈ ρ∂qψ
′(f′,q) + ρ∂q̇φ(q̇) or m ∈ ρ∂q̇φ(q̇) with q(0) = q0 (6.125)
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often referred to as Biot’s equation of standard dissipative systems. The constitutive
equations (6.123) and (6.125) determine the generalized vector response of a smooth
normal electro-mechanically coupled material in a generalized-covector driven process
where the generalized covector is prescribed. The insertion of the evolution equation
(6.125) into the reduced dissipation inequality (6.124) gives the form

ρ∂q̇φ(q̇) ⋆ q̇ ≥ 0 , (6.126)

which serves as fundamental physically-based constraint on the dissipation function φ.

Based on the definition (6.123), we may introduce a dual dissipation function φ∗ : Rm → R
depending on the internal forces m by the Legendre-Fenchel transformation

ρφ∗(m) := sup
q̇

{m ⋆ q̇ − ρφ(q̇)} . (6.127)

The dual dissipation function defines directly the evolution of the internal variables by

q̇ ∈ ρ∂mφ
∗(m) , (6.128)

dual to (6.125)2, degenerating for a smooth response to q̇ = ρ∂mφ
∗(m).

6.3.3. Rate-Independent Dissipation Functions

Rate-independent dissipation functions are often derived by invoking the so-called prin-
ciple of maximum dissipation by extension of the arguments used to model the case of
rate independent plasticity. Here, the dissipation function is defined by the constraint
maximum problem

ρφ(q̇) = sup
m∈a

{m ⋆ q̇} , (6.129)

where a models a reversible domain in the space of the driving forces m,

a := {m ∈ Rm|f(m) ≤ c} (6.130)

in terms of a set-level function f : Rm → R, which is positive f(m) ≥ 0, normalized
f(0 ) = 0, convex and homogeneous of order one f(αA) = αf(A) for α > 0. The
threshold value c > 0 bounds the driving force m. The constrained maximum problems
(6.129) can be solved by a Lagrange method

ρφ(q̇) = sup
m,λ≥0

{m ⋆ q̇ − λ(f(m) − c)} . (6.131)

By exploitation of the necessary conditions for the maximum problem (6.131) we obtain
the evolution equation for the internal variables

q̇ = λ∂mf(m) (6.132)

along with the loading-unloading conditions

λ ≥ 0 , f(m) ≤ c , λ(f(m) − c) = 0 . (6.133)

The latter determine the non-smooth dissipative response by the set-level function f . Note
that the insertion of (6.132) into (6.131) gives the simple expression for the dissipation
function ρDloc = ρφ(q̇) = λc ≥ 0. The combination of (6.132) and (6.133) is a specific
form of (6.128) for a rate-independent response governed by a switching function f .
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6.3.4. Rate-Dependent Dissipation Functions

A rate-dependent class of dissipation functions with reversible range a governed by the
set-level function f is obtained by an approximate penalty-type solution of the maximum
problem (6.129)

ρφ(q̇) = sup
m

{
m ⋆ q̇ − c

η(m+ 1)
〈f(m)/c− 1〉m+1

}
, (6.134)

where the constants η > 0 and m > 0 are interpreted as material parameters associated
with the viscosity of the electro-mechanical process. The necessary conditions of (6.134)
provides the non-linear evolution equations

q̇ =
1

η
〈f(m)/c− 1〉m∂mf(m) . (6.135)

This evolution equations may be directly obtained from (6.129) based on the dual dissi-
pation function

ρφ∗(m) =
c

η(m+ 1)
〈f(m)/c− 1〉m+1 , (6.136)

which follows from (6.134), if the penalty-type variational principle is interpreted as
Legendre-Fenchel transformation. For η → 0 we obtain in the limit the rate-independent
form (6.132) combined with (6.133).

6.3.5. Variational Principle for Dissipative Response

Incremental Potential for Generalized Vectors. We consider now an incremental
electro-mechanical loading process in the time interval [tn, tn+1]. We assume that the state
of the material at the time tn is known and in particular the internal state, characterized
by the value qn of the internal variables at the time tn is assumed to be known. Our aim
is to determine the new generalized vector state at tn+1 when advancing the generalized
covector from f′n at time tn to f′n+1 at time tn+1. To this purpose we define an incremental
potential w depending only on the current generalized covector f′n+1 that determines the
current generalized vector by the quasi-hyperelastic function evaluation

s′
n+1 = ∂f′n+1

w(f′n+1) . (6.137)

We will omit from now on the subscript “n + 1” indicating the variables at the current
time step tn+1 with an exception for tn+1 itself. A further derivation of the potential
w, and thus of the generalized vector s′ gives the coupled electro-mechanical consistent
tangent moduli

c′ := ∂f′s
′ = ∂2

f′f′w(f′) . (6.138)

The incremental potential w(f′) represents the incremental electro-mechanical work done
on the infinitesimal material volume element in the time window [tn, tn+1] which accounts
not only for the energy stored in the material, but also for the dissipated energy. Equa-
tions (6.137) and (6.138) suggests that the incremental potential w can be considered
as an extension of the mixed energy-enthalpy function ψ′ used to characterized a non-
dissipative material response. Clearly, this functional must cover characteristics of the
storage function ψ′ and the dissipation function φ introduced above. To this end we
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propose a definition of the incremental functional w through the following variational
problem

w(f′) = inf
q̇





tn+1∫

tn

[
d

dt
ρψ′(f′,q) + ρφ(q̇)

]
dτ



 with q(tn) = qn . (6.139)

For the prescribed generalized covector, this problem defines the incremental potential

function w as a minimum of the generalized work
∫ tn+1

tn

[
ρψ̇′ + ρφ

]
dτ done on the material

in the time increment under consideration. Starting with the given initial condition
q(tn) = qn, the minimum problem defines an optimum path of the internal variables q(t)
for t ∈ [tn, tn+1] including the right boundary value q = q(tn+1).

Equations (6.137) and (6.139) provide an approximate variational counterpart of the con-
tinuous setting (6.123) and (6.125) of the constitutive equations in the discrete time step
[tn, tn+1] under consideration. For finite time increments ∆t, the minimization problem
(6.139) is understood to have the algorithmic form

wh(f′) = inf
q
w̃(f′,q) (6.140)

in terms of the algorithmic expression for the (generalized) incremental electro-mechanical
work

w̃(f′,q) = ρψ′(f′,q) − ρψ′(f′n,qn) + ∆t ρφ

(
q − qn

∆t

)
. (6.141)

Note that the algorithmic expression in (6.141) is based on an approximation of the
integrals

∫ tn+1

tn
ρφ(q̇)dτ ≈ ∆tρφ

(
q−qn

∆t

)
in (6.139) through the algorithmic simplification

of the rates q̇ of q with the constant value q̇ ≈ [q − qn]/∆t in the interval [tn, tn+1]. The
exploitation of the necessary condition for the algorithmic minimization problem (6.140)
provides the algorithmic form

0 ∈ ρ∂qψ
′(f′,q) + ∆tρ∂qφ

(
q − qn

∆t

)
(6.142)

of Biot’s equation (6.125). In other words, the algorithmic minimization problem (6.140)
determines the update of the internal variables.

A Variational Principle for Rate-Independent Response. For rate independent
dissipative processes characterized by a reversible range a defined in (6.130) in terms of
the switching function f , we may modify the variational problem (6.139) by inserting the
specific dissipation function (6.131)

w(f′) = inf
q̇

sup
m,λ≥0






tn+1∫

tn

[
d

dt
ρψ′ + m ⋆ q̇ − λ(f(m) − c)

]
dτ




 . (6.143)

For finite time increments, this principle has the algorithmic form

wh(f′) = inf
q

sup
m,γ≥0

w̃(f′,q,m, γ) (6.144)
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in terms of the approximated expression for the incremental electro-mechanical work

w̃ = ρψ′(f′,q) − ρψ′(f′n,qn) + m ⋆ [q − qn] − γ(f(m) − c) . (6.145)

Here, γ := λ∆t is the Lagrange parameter associated with the increment [tn, tn+1]. For
the loading case γ > 0, the necessary conditions of the constitutive variational problem
(6.144) give the non-linear system of equations

r̃ :=




∂qw̃
∂mw̃
∂γw̃



 =




ρ∂qψ

′ + m

q − qn − γ∂mf
−f + c



 = 0 (6.146)

along with the discrete version of the loading-unloading conditions (6.133)

γ ≥ 0 , f(m) ≤ c , γ(f(m) − c) = 0 . (6.147)

The first equation of the system (6.146) represents the algorithmic definition of the con-
jugate internal force m. The second equation of (6.146) is the discrete counterpart of
the evolution equation (6.125)1. The above non-linear system (6.146) can be solved at
given generalized covector f′ by a local Newton-type algorithm for the current variables
ṽ := {q,m, γ}

ṽ ⇐ ṽ − ã−1r̃ (6.148)

until convergence is achieved in the sense |r̃| < tol. The tangent matrix of the Newton
iteration has the form

ã :=




∂2
qqw̃ ∂2

qmw̃ ∂2
qγw̃

∂2
mqw̃ ∂2

mmw̃ ∂2
mγw̃

∂2
γqw̃ ∂2

γmw̃ ∂2
γγw̃




=




ρ0∂
2
qqψ

′ 1 0

1 −γ∂2
mmf −∂mf

0 −∂mf 0



. (6.149)

Using the implicit function theorem, we may derive a closed-form solution of the coupled
electro-mechanical tangent moduli operators defined in (6.138)1

c′ := ∂2
f′f′w = ρ∂2

f′f′ψ
′ − s



ρ∂2

f′qψ
′

0

0


 · (ã)−1 ·



ρ∂2

qf′ψ
′

0

0


 (6.150)

in terms of a dissipative loading flag

s :=

{
1 for γ > 0 ,
0 otherwise .

(6.151)

Note that the second part of (6.150) characterizes the softening of the fully coupled electro-
mechanical tangent moduli due to the evolution of the internal variables. Note also that
due to the variational structure the moduli are symmetric.
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A Variational Principle for Rate-Dependent Response. For rate dependent dissi-
pative processes characterized by a reversible range a defined in (6.130) in terms of the
switching function f , we may modify the variational problem (6.139) by inserting the
specific dissipation function (6.134)

w(f′) = inf
q̇

sup
m





tn+1∫

tn

[
d

dt
ρψ′ + m ⋆ q̇ − c

η(m+ 1)
〈f(m)/c− 1〉m+1

]
dτ



 . (6.152)

For finite time increments, this principle has the algorithmic form

wh(f′) = inf
q

sup
m

w̄(f′,q,m) (6.153)

in terms of the approximated expression for the incremental electro-mechanical work

w̄ = ρψ′(f′,q) − ρψ′(f′n,qn) + m ⋆ [q − qn] − c∆t

η(m+ 1)
〈f(m)/c− 1〉m+1 . (6.154)

The necessary conditions of the constitutive variational problem (6.153) give the non-
linear system of equations

r̄ :=

[
∂qw̄

∂mw̄

]
=




ρ∂qψ

′ + m

q − qn − ∆t
η
〈f/c− 1〉m∂mf



 = 0 . (6.155)

The first equation of the system (6.155) represents the algorithmic definition of the con-
jugate internal force m. The second equation of (6.155) is the discrete counterpart of
the evolution equation (6.135). The above non-linear system (6.155) can be solved at
given generalized covector f′ by a local Newton-type algorithm for the current variables
v̄ := {q,m}

v̄ ⇐ v̄ − ā−1r̄ (6.156)

until convergence is achieved in the sense |r̄| < tol. The tangent matrix of the Newton
iteration has the form

ā :=



∂2

qqw̄ ∂2
qmw̄

∂2
mqw̄ ∂2

mmw̄


 =




ρ∂2
qqψ

′ 1

1
−m∆t

ηc
〈f/c− 1〉m−1∂mf ⊗ ∂mf

−∆t
η
〈f/c− 1〉m∂2

mmf


 . (6.157)

Using the implicit function theorem, we may derive a closed-form solution of the coupled
electro-mechanical tangent moduli operators defined in (6.138)

c′ := ∂2
f′f′w = ρ∂2

f′f′ψ
′ −
[
ρ∂2

f′qψ
′

0

]
· (ā)−1 ·

[
ρ∂2

qf′ψ
′

0

]
. (6.158)

Note that the second part of (6.158) characterizes the softening of the fully coupled electro-
mechanical tangent moduli due to the evolution of the internal variables. Note also that
due to the variational structure the moduli are symmetric.
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6.3.6. Global Variational Principle.

We start by giving a short summary of the equations describing the quasi-static electro-
mechanical boundary-value-problem for small strains using a compact notation compat-
ible with the one introduced above. The coupled boundary-value-problem is a two field
problem. Usually it is described by choosing as primary variables the displacement field
u(X, t)

u :

{ B × [0, t] → R3

(x, t) 7→ u(x, t)
(6.159)

and the electric potential φe(X, t)

φe :

{ B × [0, t] → R
(x, t) 7→ φe(x, t)

. (6.160)

In order to express the governing equations by using a compact notation, we introduce
the generalized displacement u′ defined as

u′ := [u(x, t),−φe(x, t)]T . (6.161)

As we already saw in Section 5.8, the symmetric part of the displacement gradient repre-
sents the strains

ε := sym[∇u(x, t)] =
1

2

[
∇u(x, t) + ∇T u(x, t)

]
. (6.162)

Further in Section 4 we established that in the quasi static case the electric field has to
be a curl-free field. This property is automatically satisfied if the electric field e is chosen
to be the gradient of the electric potentiale := −∇φe(x, t) . (6.163)

The kinematic equations (6.162) and (6.163) can be expressed in terms of the generalized
displacement u′ and a generalized material gradient operator G as

f′ := G[u′] , (6.164)

with f′ generalized covector in (6.117)2.

The key equations for the solution of the boundary-value-problem are the equilibrium
equations. These are the balance of linear momentum

div[σ] + ργ̄ = 0 (6.165)

and the Gauß-Law

div[d] − ρ̄e = 0 , (6.166)

respectively. By using the definition of the generalized vector given in (6.117)1 and the
definition of a generalized divergence operator Dv, we can recast (6.165) and (6.166) in
the compact format

Dv[s
′] + b̄′ = 0 , (6.167)
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with b̄′ array of generalized body forces

b̄′ = [ργ̄, ρ̄e]T . (6.168)

Recall that the generalized vector s′ can be determined in terms of an incremental function
w as

s′ = ∂f′w(f′; x) , (6.169)

with w defined in the Section 6.3.5. The last equation is valid for both the dissipative and
non-dissipative material response. In the last case we have indeed the identification of w
with the increment of the mixed energy-enthalpy function ρψ′, i.e. w(f′; x) = (ρψ′(f′; x)−
ρψ′(f′n; x)). Insertion of (6.164) and (6.169) into (6.167) finally yields the coupled system
of quasi-static electro-mechanics

Dv[∂f′w(G[u′]; x)] + b̄′ = 0 (6.170)

providing nine coupled scalar differential equations for the determination of the general-
ized displacement u′ in the domain B under consideration. Those equations are in general
non-linear. In order to be able to solve the system (6.170) we have to impose the boundary
conditions. They read for the mechanical problem

u = ū(x, t) on ∂Bu and σn = t̄(x, t) on ∂Bt , (6.171)

and for the electrical problem

φe = φ̄e(x, t) on ∂Bφ and d · n = −σ̄e(x, t) on ∂Bd . (6.172)

Consistent with the above compact notation, we may write the boundary conditions as

u′ = ū′(x, t) on ∂Bu′ and s′ · n = t̄′(x, t) on ∂Bt′ . (6.173)

In equation (6.173) ū′ := [ū(x, t),−φ̄e(x, t)]T assembles the prescribed primary variables
on the Dirichlet boundary ∂Bu′ := {∂Bu, ∂Bφ}. Furthermore, t̄′ := [̄t(x, t), σ̄e(x, t)]T

assembles the prescribed variables on the Neumann boundaries ∂Bt′ := {∂Bt, ∂Bd}. The
generalized normal vector n := [n,n]T provides the outward surface normals for each
partial field of the coupled problem.

Continuous Formulation. Let us assume the existence of an incremental energy func-
tional I ′(u′) for both generalized vectors and loads. From now on we assume that the
loads do not depend on the motion of the body. It means that the directions of the loads
remain parallel and their values unchanged throughout the deformation process. We say
such loads are “dead”.

We consider a body in static equilibrium under the action of specific “dead” loadings and
boundary conditions specified in (6.173). Then the total generalized incremental energy
functional I ′(u′) of the system is the difference between the internal energy I ′int(u

′) stored
in the body and the underlying free space in the time window [tn, tn+1] and the incremental
work done by the external loads I ′ext(u

′), i.e.

I ′(u′) = I ′int(u
′) − I ′ext(u

′) , (6.174)
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with

I ′int(u
′) =

∫

B

w(G[u′]; x)dv

I ′ext(u
′) =

∫

B

b̄′ ⋆ (u′ − u′
n)dv +

∫

∂Bt

t̄′ ⋆ (u′ − u′
n)da .

(6.175)

in terms of the generalized displacement vector defined in (6.161) and of the generalized
quantities introduced above. The energy functional I ′(u′) has to be stationary with re-
spect to generalized displacement u′ satisfying the Dirichlet boundary conditions given
in (6.173)1. Thus, our main objective is to find the state of equilibrium for which the
potential I ′(u′) is stationary, i.e.

u′ = Arg

{
stat
u′∈W

I ′(u′)

}
= Arg

{
inf
u

sup
−φe

I ′(u,−φe)

}
(6.176)

for admissible generalized displacement

u′ ∈ W := {u′ | u′ = ū′(x, t) on ∂Bu′} . (6.177)

Note that I ′(u′) has to be minimized with respect to the mechanical primary variable u

and maximized with respect to the electrical primary variable −φe. This confers to the
problem a saddle-point character. The stationarity position of the functional I ′(u′) is ob-
tained by requiring the directional derivative with respect to the generalized displacement
u′ to vanish in all directions δu′, i.e.

δI ′(u′, δu′) =

[
d

dǫ
I ′(u′ + ǫδu′)

]

ǫ=0

= 0 , (6.178)

which could be regarded as an extension of the principle of minimum potential energy of
elastostatics to a stationarity principle for the fully coupled electro-mechanical problem.
Equation (6.178) requires that the first variation of the functional I ′(u′), denoted with
δI ′, vanishes. This variation is clearly a function of both u′ and δu′. The arbitrary vector
field δu′ has to be consistent with the conditions imposed on the continuum body and
the underlying free space. Thus, δu′ = 0 over ∂Bu′ where the generalized displacement is
prescribed. Taking this constraint into account, we can write (6.178) explicitely by using
the definition (6.174) and (6.175)

δI ′(u′, δu′) =

∫

B

{
∂f′w ⋆ G[δu′] − b̄′ ⋆ δu′

}
dv −

∫

∂Bt′

t′ ⋆ δu′da = 0 . (6.179)

By using the Gauß theorem in terms of the generalized displacement, we get

δI ′ = −
∫

B

{
Dv[∂f′w] + b̄′

}
⋆ δu′dv +

∫

∂Bt′

{
∂f′w · n − t′

}
⋆ δu′da = 0 . (6.180)

Since δu′ has to be arbitrary, we obtain from the necessary condition for the stationarity of
the energy functional I ′(u′), the Euler-Lagrange equations associated with the variational
principle (6.19)

Dv[∂f′w] + b̄′ = 0 in B ,

∂f′wn = t′ on ∂Bt′ .
(6.181)
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By including the constitutive equations (6.169), we recognize that equation (6.181)1 rep-
resents the generalized balance equation (6.167) and equation (6.181)2 are the generalized
Neumann boundary conditions(6.173)2.

Finite Element Discretization. The variational problem (6.176) is approximately
solved by a finite element method. To this end, the generalized displacement and its
gradients are discretized within N finite element domains Be ⊂ Bh in which the discretized
solid Bh is decomposed, such that

u′h(x) = N′e(x)D′e and G[u′h] = B′e(x)D′e in Be . (6.182)

Here, D′e is the element generalized displacement vector

D′e := [de,−φe]T (6.183)

which contains the element nodal displacements de and the negative electric nodal poten-
tial −φe at the current time tn+1. Further, N′e(x) is the matrix of element interpolation
functions and B′e(x) the associated gradient matrix. After assembling the element quan-
tities

D′ =
N

A
e=1

D′e , N′(x) =
N

A
e=1

N′e(x) , B′(x) =
N

A
e=1

B′e(x) , (6.184)

we may express the approximated generalized displacement u′h and its generalized gradi-
ent G[u′h] in the discretized domain Bh as follows

u′h(x) = N′(x)D′ and G[u′h] = B′(x)D′ in Bh . (6.185)

With the approximation (6.185) at hand, the energy functional (6.174) appears in the
approximated form

I ′h(D′) =

∫

Bh

{
w(B′D′; x) − b̄′ ⋆N′∆D′

}
dv −

∫

∂Bh
t′

t̄′ ⋆N′∆D′da , (6.186)

with ∆D′ = D′ − D′
n. The discrete energy functional (6.186) has to be stationary with

respect to the global generalized nodal displacement D′ and thus we search for the global
generalized nodal displacement D′ which satisfy the following variational principle

D′ = Arg

{
stat

D′∈Wh
I ′h(D′)

}
= Arg

{
inf
D

sup
−φ

I ′h(D,−φ)

}
(6.187)

which results to be the discrete counterpart of (6.176). Here D = A
N
e=1 de, φ = A

N
e=1 φe,

and Wh is the set of admissible nodal variables which satisfy the discrete Dirichlet bound-
ary conditions

W
h :=

{
D′ | D′ = D̄′ on ∂Bh

u′

}
. (6.188)

The necessary conditions for the solution of the discrete stationary problem (6.187) are
given by setting to zero the variation of I ′h(D′)

I ′h,D′(D′) = 0 . (6.189)
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They provide a system of non-linear equations from which the discrete generalized dis-
placements, i.e. the mechanical nodal displacements and the electric nodal potentials, are
determined. The solution vector may be obtained through an iterative method as the
Newton-Raphson method, yielding the update equations

D′ = D′ −
[
I ′h,D′D′(D′)

]−1 [
I ′h,D′(D′)

]
, (6.190)

performed by some solver of linear equations. Due to the variational structure of the
coupled electro-mechanical problem, the coupled tangent K′ = I ′h,D′D′ is symmetric. The
update (6.190) is performed till convergence is reached in the sense

∥∥I ′h,D′(D′)
∥∥ < tol , (6.191)

i.e. till the norm of the residuum R′ = I ′h,D′ is smaller then a certain predefined tolerance.
The first and second derivatives of the discrete variational functional (6.186) give all the
finite element arrays needed for the solution of the coupled electro-mechanical boundary-
value-problem by means of the finite element method. These arrays are the finite element
residual

R′ := I ′h,D′ =

∫

Bh

{
B′T s′h − N′T b̄′

}
dv −

∫

∂B′

t′

N′T t̄′da (6.192)

and the finite element tangent matrix

K′ := I ′h,D′D′ =

∫

Bh

B′T c′hB′dv . (6.193)

These arrays are expressed in terms of the first and second derivatives of the incremental
functional w which gives the generalized vector s′h and moduli c′h

s′h := ∂f′hw(B′D′; x) and c′h := ∂2
f′hf′hw(B′D′; x) (6.194)

of the coupled problem. Clearly, due to the variational structure of the coupled constitu-
tive problem, the moduli c′h are symmetric. However, they are not positive definite due
to the saddle-point structure of the problem. As a consequence, also the finite element
tangent matrix K′ is not positive definite and this excludes the application of certain fast
and efficient solvers for the solution of the linear iterative update (6.190).
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7. Ferroelectricity at Small Strains

The final goal of this chapter is to construct a model for the dissipative ferroelectric
material response at small strains. In particular we would like to build up the mixed
energy-enthalpy function ψ′ and the dissipation function φ which can be used within the
incremental variational formulation proposed in Section 6.3. The small strains model will
be extended in Chapter 8 to account for large deformations. The mixed energy-enthalpy
function ψ′ for a ferroelectric material response can be seen as a generalization of the
one used to model the piezoelectric material response, see Miehe [109] and Rosato &
Miehe [131]. That is the reason why we consider first a model for piezoelectricity.

7.1. Functions for Piezoelectricity

Piezoelectricity at small strains are well-established in the literature. We refer to the
fundamental work of Voigt [146] in his textbook on crystal physics and the more recent
comprehensive treatments Jaffe, Cook & Jaffe [70] and Ikeda [69]. A piezoelectric
material is an electrically poled material with a macroscopic polarization whose direction
remains constant in the range of the applied stress and electric field. Here, the polarization
vector pr describes the separation of the barycenters of negative and positive charges
associated with a typical volume element, see Figure 7.1 for a visualization. The constant
polarization director p := pr/|pr| enters the constitutive formulation as a structural
vector that characterizes a piezoelectric response typically to be transversely isotropic.

Piezoelectric materials are non-dissipative in nature and constitutively fully described
by properly chosen free enthalpy or Gibbs functions ψ∗

pie(σ, e). The goal of this section
is to construct simple functions which include in an elementary format all basic effects
of electro-mechanical coupling. These functions contain a minimum number of material
parameters, each of them related to an elementary experiment. The experiments are
force driven, i.e. kinematic quantities such as strain ε and electric displacement d are
considered to be measured in terms of prescribed forces, i.e. stresses σ and electric field e.
This viewpoint provides a straightforward understanding of basic coupling phenomena and
allows the identification of free enthalpy functions ψ∗

pie based on their potential properties

ε = ∂σψ
∗
pie(σ, e) and d = ∂eψ∗

pie(σ, e) . (7.1)

An assumed decomposition into decoupled stress-induced and electric-induced contribu-
tions

ε = εσ(σ) + εe(e) and d = de(e) + dσ(σ) , (7.2)

which is exact for linear constitutive response, provides a method for the construction of
simple free enthalpy functions. The constitutive formulation of εσ(σ) and εe(e) based on
kinematic observations is considered to be the most intuitive approach to the modeling of
the piezoelectric coupling. From the potential relationship (7.1) one gets the Maxwell-type
relationship

∂eεe(e) = (∂σdσ(σ))T . (7.3)

As a consequence, the formulation of εσ(σ), εe(e) and de(e) is sufficient for the con-
tribution of the free enthalpy function ψ∗

pie(σ, e) by integration. The alternative mixed
energy-enthalpy function ψ′

pie(ε, e) or the free energy function ψpie(ε,d) then follows by
standard Legendre-Fenchel transformations. In this context, we outline the necessary
approximations which provide the simple structure of constitutive functions.
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Figure 7.1: Piezoelectric effects. Consider electrically induced mechanical strain εe of
idealized unit cubes caused by the forces f = q e acting on the barycenters of positive and
negative charges. A piezoelectric material has an a priori given polarization characterized by
the polarization vector pr that separates the barycenters of positive and negative charges.
Then, the electric field causes a mechanical elongation or compression of the unit cube in
the direction of the polarization vector, depending on the sign of the electric field. Thus,
εe ∼ e is the (linear) piezoelectric coupling effect. This effect is transversely isotropic with
respect to the polarization pr.

7.1.1. Force-Driven Modeling of Piezoelectricity

Stress-Induced Strain. Recall the standard experimental procedure for the determi-
nation of the material parameters in elasticity. Linear-isotropic elastic response can be
based on two experimental observations associated with an arbritrary loading director a

with |a| = 1.

P1. A uniaxial stress state σ‖ = σ : a ⊗ a produces the axial strain

εσ
‖ := εσ : (a ⊗ a) =

1

E
σ‖ (7.4)

P2. and the lateral strain perpendicular to the tensile axis

εσ
⊥ := 1

2
εσ : (1 − a ⊗ a) = −νεσ

‖ . (7.5)

These two experiments determine the elasticity or Young’s modulus E > 0 and the lateral
contraction or Poisson ratio ν < 1/2. The above two elementary observations result in
the standard relationship

εσ(σ) =
1 + ν

E
σ − ν

E
tr σ1 (7.6)

of isotropic, linear elasticity. Recall that ν = 0 and ν = 1/2 describe mechanically fully
compressible and fully incompressible responses. The latter condition enforces the strain
to be deviatoric, i.e. εσ

ν=1/2 = 3
2

1
E

dev[σ]. The linear relationship (7.6) can be recast in
the form

εσ(σ) = C
∗ : σ with C

∗ :=
1 + ν

E
I − ν

E
1 ⊗ 1 (7.7)

in terms of the fourth-order isotropic elastic compliance tensor C
∗. Here I is the 4th order

symmetric identity tensor.

Electric-Induced Strain. A rational method for the constitutive formulation of the
electro-mechanical coupling is based on an assumption concerning the strain εe induced
by the electric field e, see Figure 7.2 for a schematic visualization. Assuming a given
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a)e‖ := (p ⊗ p) · e b)e⊥ := (1 − p ⊗ p) · e
Figure 7.2: Piezo-electric induced mechanical deformation may be explained by the action
of forces f = q e acting on the barycenters of positive and negative charges. The electric
field e = e‖ + e⊥ induces in an electrically poled material with poling direction pr =
|pr|p three deformation modes: a) axial elongation/compression ε‖ ∼ pr · e‖ and lateral
contraction/extension ε⊥ ∼ −pr · e‖, b) shearing γ ∼ e⊥.

electric polarization pr with unit director p := pr/|pr|, we identify in Figure 7.2 three
deformation modes in a mechanically isotropic material induced by the two componentse‖ := (p⊗ p) · e and e⊥ := (1 − p ⊗ p) · e of the electric field parallel and perpendicular
to the polarization direction pr.

P3. The first effect of electric forces acting on the material is an axial strain in the poling
direction, which is an elongation or a compression, depending on the sign of e · p.
This is modeled by the linear relationship

εe
‖ := εe : (p ⊗ p) = α∗

‖(e · p) (7.8)

in terms of the first piezoelectric coupling parameter α∗
‖, in the literature often

denoted as the “d33-parameter” assuming the polarization direction p to coincide
with the e3-director of a Cartesian frame {ei}i=1,2,3.

P4. The second effect is a lateral strain in the direction perpendicular to the poling
direction similar to Poisson’s effort for purely mechanical response. We expect a
lateral contraction or extension, depending on the sign of e · p. This is modeled by
the linear relationship

εe
⊥ := 1

2
εe : (1 − p ⊗ p) = α∗

⊥(e · p) (7.9)

with α∗
⊥ := −ν⊥α∗

‖, where ν⊥ ≤ 1/2 may be interpreted as a Poisson-type ratio for
the electric field action on the mechanically isotropic material. Hence, α∗

⊥ = 0 and
α∗
⊥ = − 1

2
α∗
‖ is associated with piezoelectrically fully compressible and incompress-

ible response, respectively. The second piezoelectric coupling parameter α∗
⊥ is in the

literature often denoted as the “d31-parameter”.

P5. The third effect is a shearing in the plane spanned by the poling direction p and
the component e⊥ of the electric field perpendicular to p, as indicated in the Figure
7.2. We assume the linear relationship

γe
= := 2εe : sym

[ e⊥
|e⊥| ⊗ p

]
= α∗

=|e⊥| (7.10)
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The symmetrization of the projection tensor eliminates the rigid-body rotation of
the simple shearing mode indicated in Figure 7.2. The third piezoelectric coupling
parameter α∗

= is often denoted as the “d15-parameter”.

Note that the polarization direction p plays the role of a given, constant structural director,
which characterizes the anisotropy of the electrically poled material. Observe furthermore
that the above material response functions seem to be independent of the magnitude |pr|
of electric polarization. However, the three parameters α∗

‖, α
∗
⊥ and α∗

= are understood to

be valid for a fixed amount |pr| = c. The three deformation modes outlined above induce
the representation

εe(e; p) = α∗
‖ (e · p)p ⊗ p

+ α∗
⊥ (e · p)(1 − p ⊗ p)

+ α∗
=

12
sym [{(1 − p ⊗ p) · e} ⊗ p]

(7.11)

of the electro-mechanical coupling. Here,
12

sym[·] denotes symmetrization of the tensor [·]
with respect to the first and second slot. For a piezoelectric fully incompressible response,
we obtain εe(e; p) = 3

2
α∗
‖(e ·p) dev[p⊗p]+α∗

= sym [{(1 − p ⊗ p) · e} ⊗ p]. For the linear

assumptions made above, we may recast (7.11) in the form

εe(e; p) = h∗(p) · e with h∗ :=
12

sym [α∗
0p ⊗ p ⊗ p + α∗

⊥1 ⊗ p + α∗
=p ⊗ 1 ] (7.12)

where we set α∗
0 := α∗

‖ − α∗
⊥ − α∗

=. We denote h∗ as the third-order transversely isotropic
piezoelectric coupling tensor, which depends on the polarization p.

Stress-Induced Electric Displacement. With the electrically induced strain εe de-
fined in (7.12), the stress-induced electric displacement follows from the Maxwell-type
relationship (7.3) to be dσ(σ; p) = σ : h∗(p) (7.13)

dual to (7.12). We get the representation of the so-called direct piezoelectric coupling
effect dσ = [ α∗

‖σ‖ + α∗
⊥(trσ − σ‖) ]p + α∗

=t⊥ (7.14)

with σ‖ := p · σ · p and t⊥ := σ · p − σ‖p. Note in particular the simplified form
for incompressible piezoelectric response dσ = 3

2
α∗
‖ {dev[σ] : p ⊗ p}p + α∗

=t⊥ or dσ =
3
2
α∗
‖(σ‖ + p)p+α∗

=t⊥, where a pressure p := −3
2
tr[σ] > 0 induces an electric displacement

in the direction p of polarization.

Electric-Induced Electric Displacement. Finally, on the pure electric side, we have
to model the electric displacement induced by the electric field. Linear-isotropic dielectric
response is be based on an

P6. Experimental observation that an electric field e induces the electric displacementde = ǫ e , (7.15)

where ǫ is the dielectric permittivity. We write this in the formde(e) = β∗ · e with β∗ := ǫ1 (7.16)

and denote β∗ as the second-order isotropic electric permittivity tensor.

The six material parameters for the simple piezoelectric response with an idealized electric
polarization embedded in an isotropic matrix are summarized in Table 7.1. They may be
identified independently by the above described experiments P1–P6.
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Table 7.1: Piezoelectric Material Parameters

No. Parameter Unit Name Eq.
1 E> 0 N/m2 elasticity modulus (7.4)
2 ν < 1

2
− lateral elastic contraction ratio (7.5)

3 α∗
‖ > 0 m/V axial piezoelectric expansion coefficient (7.8)

4 α∗
⊥ > − 1

2
α∗
‖ m/V lateral piezoelectric expansion coefficient (7.9)

5 α∗
= > 0 m/V piezoelectric shearing coefficient (7.10)

6 ǫ > 0 C/(V·m) electric permittivity (7.15)
7 p − unit director of electric polarization (7.8)

7.1.2. Enthalpy and Energy Function in Piezoelectricity

Free Enthalpy Function. The above outlined constitutive assumptions (7.7), (7.12)
and (7.16) characterize a simple linear piezoelectric material model in terms of the six
material parameters summarized in Table 7.1. Based on these expressions, we obtain an
explicit form of the free enthalpy function by integration of (7.7), (7.12), and (7.16)

ψ∗
pie(σ, e; p) =

∫ σ

0

[ εσ(σ̃) + εe(e; p) ] : dσ̃ +

∫ e
0

de(ẽ) · dẽ , (7.17)

yielding the quadratic form

ψ∗
pie(σ, e; p) = 1

2
σ : C

∗ : σ + σ : h∗(p) · e+ 1
2
e · β∗ · e (7.18)

in terms of the three fourth-, third- and second-order structural tensors

C∗ := 1+ν
E

I − ν
E
1 ⊗ 1 ,

h∗ :=
12

sym [α∗
0p ⊗ p ⊗ p + α∗

⊥1 ⊗ p + α∗
=p ⊗ 1 ] ,

β∗ := ǫ1

(7.19)

with α∗
0 := α∗

‖−α∗
⊥−α∗

=. Note carefully that ψ∗
pie is a convex function with respect to the

variables σ and e. The tensors C∗ and β∗ are positive definite. The free enthalpy can be
represented in terms of elementary trace-type invariants of the arguments σ, e and p in
the form

ψ∗
pie(σ, e; p) = 1+ν

2E
tr[σ2] − ν

2E
tr2[σ] + α∗

0tr[σ(p ⊗ p)]tr[p ⊗ e]
+ α∗

⊥tr[σ]tr[p ⊗ e] + α∗
=tr[σ(p ⊗ e)] + ǫ

2
tr[e⊗ e] . (7.20)

The function satisfies the symmetry condition of transversely isotropic response

ψ∗
pie(QσQT ,Qe; p) = ψ∗

pie(σ, e; p) for all Q ∈ G := {Q ⊂ O|Qp = p} , (7.21)

where O denotes the orthogonal group. Note again that the above model assumes the
purely mechanical and electric structural tensors C∗ and β∗ to be isotropic in order to
keep number of material parameters small.

Mixed Energy-Enthalpy Function. With regard to a standard representation of the
electro-mechanically coupled problem in terms of the strains ε and the electric field e as



112 Ferroelectricity at Small Strains

Box 1: Simple Constitutive Functions for Piezoelectricity.

1. Enthalpy Function with the six basic material parameters defined in Table 7.1 and
the definition α∗

0 := α∗
‖ − α∗

⊥ − α∗
=

ψ∗
pie(σ, e; p) = 1+ν

2E
tr[σ2] − ν

2E
tr2[σ] + α∗

0tr[σ(p ⊗ p)]tr[p ⊗ e]
+ α∗

⊥tr[σ]tr[p ⊗ e] + α∗
=tr[σ(p ⊗ e)] + ǫ

2
tr[e⊗ e] .

2. Mixed Energy–Enthalpy Function with the Lame parameters µ := E/2(1 + ν)
and λ := Eν/(1 + ν)(1 − 2ν) and the modified piezoelectric coupling parameters
α′

0 := 2µα∗
0, α

′
⊥ := 2µα∗

⊥ + λ(α∗
0 + 3α∗

⊥ + α∗
=) and α′

= := 2µα∗
=

ψ′
pie(ε, e; p) = µtr[ε2] + λ

2
tr2[ε] − α′

0tr[ε(p ⊗ p)]tr[p ⊗ e]
− α′

⊥tr[ε]tr[p ⊗ e] − α′
=tr[ε(p ⊗ e)] − ǫ

2
tr[e⊗ e]

3. Energy Function with the modified piezoelectric coupling parameters α0 := α′
0/ǫ,

α⊥ := α′
⊥/ǫ and α= := α′

=/ǫ

ψpie(ε,d; p) = µtr[ε2] + λ
2
tr2[ε] − α0tr[ε(p ⊗ p)]tr[p ⊗ d]

− α⊥tr[ε]tr[p ⊗ d] − α=tr[ε(p ⊗ d)] + 1
2ǫ

tr[d⊗ d]

independent variables, we get from (7.18) by a partial Legendre transformation a mixed
energy-enthalpy function (also called electric enthalpy function)

ψ′
pie(ε, e; p) := sup

σ

[
σ : ε − ψ∗

pie(σ, e; p)
]
. (7.22)

After some algebraic manipulations, this function attains the closed form

ψ′
pie(ε, e; p) = 1

2
ε : C

′ : ε − ε : h′(p) · e− 1
2
e · β′ · e (7.23)

in terms of the structural tensors

C
′ := C

∗−1 , h′ := C
∗−1 : h∗ , β′ := β∗ − h∗T : C

∗−1 : h∗ . (7.24)

Note the negative signs in (7.23). As a result of the partial Legendre transformation
only with respect to the first mechanical slot, the function ψ′

pie is convex-concave. The
structural tensors C′ and β′ are positive definite. Observe furthermore, that the electric
permittivity tensor β′ becomes anisotropic due to the second term in (7.24)3. However,
this term is negligible with respect to the first term for the estimate O(h∗T : C

∗−1 : h∗) =
E(α∗

‖)
2 ≪ ǫ = O(β∗). We then get the closed form

C
′ := 2µI + λ1 ⊗ 1

h′ :=
12

sym [α′
0p ⊗ p ⊗ p + α′

⊥1 ⊗ p + α′
=p ⊗ 1 ]

β′ := ǫ1

(7.25)

with the classical Lamé parameters µ := E/2(1 + ν) and λ := Eν/(1 + ν)(1 − 2ν)
of isotropic elasticity and the modified piezoelectric coupling parameters α′

0 := 2µα∗
0,
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α′
⊥ := 2µα∗

⊥ + λ(α∗
0 + 3α∗

⊥ + α∗
=), and α′

= := 2µα∗
=. The representation in terms of

elementary trace-type invariants reads

ψ′
pie(ε, e; p) = µtr[ε2] + λ

2
tr2[ε] − α′

0tr[ε(p ⊗ p)]tr[p ⊗ e]
− α′

⊥tr[ε]tr[p ⊗ e] − α′
=tr[ε(p ⊗ e)] − ǫ

2
tr[e⊗ e] (7.26)

which satisfies the symmetry condition

ψ′
pie(QεQT ,Qe; p) = ψ′

pie(ε, e; p) for all Q ∈ G := {Q ⊂ O|Qp = p} (7.27)

in analogy to (7.21). The mixed energy-enthalpy is a potential for the stresses and the
electric displacement. As a consequence, (7.1) is modified to

σ = ∂εψ
′
pie(ε, e) and d = −∂eψ′

pie(ε, e) , (7.28)

with the decompositions

σ = σε(ε) + σe(e) and d = de(e) + dε(ε) (7.29)

and their basic representation σε = C′ : ε, σe = −h′(p) · e and de = β′ · e. Note that σe

characterizes a stress relaxation due to the electric-field-induced strain mode.

Free Energy Function. A further Legendre transformation converts the mixed energy-
enthalpy function ψ′

pie defined in (7.23) to the free energy function

ψpie(ε,d; p) = infe [ ψ′
pie(ε, e; p) + d · e ] . (7.30)

After some algebraic manipulations, we obtain the closed form

ψpie(ε,d; p) = 1
2
ε : C : ε − ε : h(p) · d+ 1

2
d · β · d (7.31)

in terms of the structural tensors

C := C
′ + h′ · β′−1 · h′T , h := h′ · β′−1 , β := β′−1 . (7.32)

Observe first that ψpie is a convex function with respect to the variables ε and d, because
it is the full Legendre-Fenchel transformation of the function ψ∗

pie defined in (7.18). The
structural tensors C and β are positive definite. Observe furthermore that the elasticity
tensor C becomes anisotropic. However, this effect may again be neglected for the estimate
O(h′ · β′−1 · h′T ) = (Eα∗

‖)
2/ǫ≪ E = O(C). We then obtain the closed form expressions

C := 2µI + λ1 ⊗ 1

h :=
12

sym [α0p ⊗ p ⊗ p + α⊥1 ⊗ p + α=p ⊗ 1 ]

β := 1
ǫ
1

(7.33)

of the structural tensors with the modified piezoelectric coupling parameters α0 := α′
0/ǫ,

α⊥ := α′
⊥/ǫ and α= := α′

=/ǫ. The representation in terms of elementary trace-type
invariants reads

ψpie(ε,d; p) = µtr[ε2] + λ
2
tr2[ε] − α0tr[ε(p ⊗ p)]tr[p ⊗ d]

− α⊥tr[ε]tr[p ⊗ d] − α=tr[ε(p ⊗ d)] + 1
2ǫ

tr[d⊗ d]
(7.34)
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which satisfies the symmetry condition

ψpie(QεQT ,Qd; p) = ψpie(ε,d; p) for all Q ∈ G := {Q ⊂ O|Qp = p} (7.35)

in analogy to (7.21) and (7.27). The free energy function is a potential for the stresses
and the electric field. As a consequence of the Legendre transformation (7.1) and (7.2)
are modified to

σ = ∂εψpie(ε,d) and e = ∂dψpie(ε,d) , (7.36)

with the decompositions

σ = σε(ε) + σd(d) and e = ed(d) + eε(ε) (7.37)

and their basic representation σε = C : ε, σd = −h(p) · d and ed = β · d. Note that σd

is the stress relaxation due to an electric displacement.

A summary of the above introduced simple constitutive functions for piezoelectricity is
given in Box 1.

7.2. A Model of Ferroelectric Response

7.2.1. Basic Phenomenology of a Ferroelectric Poling Process

Basic Observations. A ferroelectric material has a polycrystalline structure as visual-
ized schematically in Figure 7.3. The polycrystalline mesostructure consists of a represen-
tative number of single crystal grains. These grains can be subdivided into domains with
equal microscopic polarization. When the polycrystalline microstructure is subjected to
a macroscopic electric field e of certain amount, the domain state changes such that the
microscopic polarizations switch and try to become aligned to e. Similar phenomena are
also observed in ferroelectric polymers, see Chapter 2. This process is denoted as electric
poling of the material. If the macroscopic electric field e is removed, the microscopic po-
larizations remain in their switched state and the overall polycrystalline aggregate has a
macroscopic polarization pr in a homogenized sense, as schematically visualized in Figure
7.3. The macroscopic behavior of an electrically poled ferroelectric material is then for a
certain range of the electric field e piezoelectric as discussed in Section 7.1.1.

From the above consideration it becomes clear that the electric poling governed by the
microscopic switching is essentially a dissipative process. The key dissipative feature is
the remaining macro-polarization pr, the so-called remanent polarization. The process of
switching needs a certain strength of the electric field e. Below a threshold value ec called
the coercive field strength, micro-switching is not observed and the domain state remains
unchanged. Above the coercive field strength, the domain state changes and the amount
of macroscopic polarization approaches a saturation for increasing field strength. The
saturation polarization ps would be identical with the micro-polarization pmicro if all the
domains were aligned to the macroscopic electric field. However, in real applications one
observes |pr| ≤ ps < pmicro. If a macroscopically poled ferroelectric material is subject to
an electric field oriented oppositely to the poling, it becomes poled in the opposite direction
if the field strength exceeds the threshold value ec. As a consequence, one observes for
cyclic electric loading processes in the d-e-diagram a typical hysteresis, called the dielectric
hysteresis. This underlines the dissipative character of the poling process. Furthermore,
recall that a micro-polarization is a switching of atomic positions in an ideal crystal,
accompanied by a deformation of the crystal. Thus, on the macro level a homogenized



7.2 A Model of Ferroelectric Response 115ee
prp

Figure 7.3: Ferroelectric effects. Ferroelectric materials are polycrystals with grains of
single crystals divided into domains of equal microscopic spontaneous polarization. The
domain state can be modified by a macroscopic electric field above a certain threshold
value ec such that the microscopic polarizations switch and become aligned to e, yielding
a homogenized remanent macro polarization pr that remains after electric unloading. The
amount of macro-polarization is limited by the spontaneous micro-polarization |pr| ≤ ps <
pmicro. Such a poled material then has a piezoelectric macroscopic response. The poling
process is considered to be fully dissipative.

deformation of the polycrystal which remains after unloading can be noticed. This so-
called remanent strain εr caused by the poling is an elongation of the polycrystalline
aggregate in the direction pr and a contraction in the direction perpendicular to pr, see
Figure 7.4. As a consequence, one observes for cyclic electric loading processes in the ε-e-
diagram another typical hysteresis, called the butterfly hysteresis. Due to the saturation
of the polarization |pr| ≤ ps, the remanent strain is also bounded by a saturation value
‖εr‖ < εs. Experiments show that the remanent strain is approximatively isochoric.

In summary, we have the following basic phenomenological effects in ferroelectric poly-
crystalline aggregate associated with the poling process:

• An electric field beyond the coercive field strength |e| ≥ ec causes a remanent macro-
polarization pr which remains after electric unloading.

• The amount |pr| ≤ ps of polarization is bounded by saturated micro-polarizations.

• The polarization process is accompanied by a remanent strain εr ∼ pr ⊗ pr/|pr|
with tr[εr] ≈ 0, which is proportional to the remanent polarization.

• In cyclic processes driven by alternating directions of the electric field e, typical

a) b) c)
εs

− 1
2 εs

Figure 7.4: Deformation due to polarization. a) Cubic phase above the Curie temperature,
b) random tetragonal phase below the Curie temperature, and c) aligned tetragonal phase
after poling. When all the domains are switched of 90◦ or 180◦ to the direction closer to
the electric field e, an expansion equal to the saturation strain εs is reached in the direction
parallel to e and due to the isochoric character of the deformation, a contraction of − 1

2
εs

is observed in the one orthogonal to e.
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Figure 7.5: Ideal dielectric hysteresis. a) Remanent polarization and b) remanent strain
induced by the polarization. Idealized process parts of poling: ➀ fully reversible virgin
loading for |e| < ec, ➁ full idealized switching at |e| = ec and ➂ reversible response after
saturated switching.

electric hystereses appear in the d-e-diagram and in the ε-e-diagram.

The macroscopic phenomenological modeling of the overall response of ferroelectric poly-
crystalline aggregates needs in addition to a piezoelectric state at a given polarization pr

the description of the dissipation process of the evolving polarization ṗr 6= 0. In what
follows, we focus first on an idealized modeling of this dissipative process and combine
the result later with the piezoelectric energetic response.

The Fully Idealized Dielectric Hysteresis. We start with the maximal idealized de-
scription of a dielectric hysteresis visualized in Figure 7.5, where we consider monotonous
and cyclic electric loading processes controlled by a prescribed electric field e. In a
monotonous electric loading process starting from a virgin, completely unpoled material,
the following three idealized steps are observed (cf. Figure 7.5):

➀ Initial Range. For a range |e| < ec below the coercive field strength ec, no macro-
polarization occurs, i.e. pr = 0. Consequently no remanent strain εr is observed.

➁ Domain Switching. In this highly idealized picture, the switching of all domains
takes place at the coercive field strength |e| = ec where the polarization pr fully
develops. This is accompanied by the development of a remanent strain εr.

➂ Saturated Range. The poling process stops if the polarization reaches its saturation
value |pr| = ps. The subsequent loading is non-dissipative.

In a cyclic electric loading process which alternates between fully poled states in positive
and negative direction, we observe the above rectangle-shaped electric hysteresis. Thus
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the idealized situation is characterized by the reversible range of the electric field

E :=
{e ∈ R3| f(e) := |e| − ec < 0

}
(7.38)

in which no dissipative effect occurs. Note carefully, that the electric field is not bounded
by E due to the arbitrarily large reversible post-critical range . In contrast, the polarization
is bounded by

P :=
{pr ∈ R3| g(pr) := |pr| − ps < 0

}
. (7.39)

These two ranges are the cornerstones for the modeling of the poling process. The evo-
lution of the polarization will takes place for an isotropic response in the direction of the
electric field, i.e. ṗr ∼ e (7.40)

and is governed by evolution laws constructed in the subsequent chapter based on stan-
dard thermodynamic arguments. Finally, the remanent strain which develops during the
poling is assumed to be fully deviatoric and linearly growing with increasing amount of
polarization

εr =
3

2
εs
|pr|
ps

dev

[ pr

|pr| ⊗
pr

|pr|

]
(7.41)

and thus phenomena of mechanical depolarization are here neglected. Equation (7.41)
will be motivated in the following subsections. The three material parameters ec, ps, and
εs govern the basic characteristic of the idealized fully dissipative poling process depicted
in Figure 7.5 (all the dissipative material parameters are summarized in Table 7.2).

The Regularized Dielectric Hysteresis. The above outlined modeling of the dissi-
pative poling effort is highly idealized in particular with respect to the assumption that
the domain switching takes place at the constant value |e| = ec of the electric field. Ex-
periments show that full polarization develops only for electric fields |e| > ec above the
coercive field strength ec. This effect is highly non-linear and approaches the saturated
polarization asymptotically as illustrated in Figure 7.6. As a consequence, the dissipative
polarization process for monotonous electric loading reduces to the two steps:

➀ Initial Range. For a range |e| < ec below the coercive field strength ec, no macro–
polarization occurs, i.e. pr = 0 .

➁ Domain Switching. The polarization occurs for |e| > ec in a nonlinear format such
that it approaches asymptotically its saturation value ps.

In a cyclic electric loading process, we then observe the hysteretic effects depicted in Figure
7.6, where the center of the elastic range is shifted by a so-called back electric field eb(pr)
that depends on the polarization pr. The modeling of this moving reversible range is
obtained by an extension of (7.38) to

E :=
{e ∈ R3| f(e,pr) := |e− eb(pr)| − ec < 0

}
. (7.42)

The back electric field eb(pr) may assumed to be aligned to the current polarization by
the functional representation eb(pr) = h(|pr|) pr

|pr| (7.43)

based on a scalar, monotonically increasing function h(x) with the properties

h(x) > 0 , h(0) = 0 , lim
x→ps

h(x) = ∞ , (7.44)
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Figure 7.6: Regularized dielectric hysteresis. a) Remanent polarization and b) remanent
strain induced by the polarization. Process parts of poling: ➀ fully reversible virgin load-
ing for e < ec and ➁ regularized switching at |e| > ec, approaching asymptotically the
saturation.

providing the non-linear saturation effect visualized in Figure 7.6. Note carefully that the
above made assumptions (7.42)-(7.44) ensure the bounding pr ∈ P of the polarization
defined in (7.39).

From a formal viewpoint of constitutive modeling, the polarization evolves by kinematic
hardening for cyclic electric fields e, governed by the non-linear back-field function eb.
Thus, (7.40), (7.41), (7.42), and (7.43) govern a regularization of the idealized model
(7.38)–(7.41), which is very close to the experimentally observed phenomena. This be-
comes clear in Figure 7.7, where we superimposed the reversible part de = ǫe of the
electric displacement onto the remanent polarization.

7.2.2. Construction of Energy and Enthalpy Functions

We now construct based on the above outlined phenomenological assumptions suitable
representations of the energy and enthalpy functions which represent the local storage
mechanisms in ferroelectricity.

The Free Energy Function. The construction of the free energy function is based on
the following particular assumptions which go beyond the one made in the points P1-P6
in Section 7.1.1 for the reversible piezoelectric response:

FE1. The polarization pr with direction p := pr/|pr| produces a remanent axial strain
which grows linearly with pr to the saturated value εs at saturated polarization
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Figure 7.7: Regularized dielectric hysteresis with piezo-electric contributions. a) Electric
displacement and b) normal strain in direction of the electric field. Process parts of poling: ➀

fully reversible virgin loading for |e| < ec and ➁ regularized switching at |e| > ec approaching
asymptotically the saturation.

|pr| = ps

εr
‖ := εr : (p ⊗ p) = εs

|pr|
ps

. (7.45)

FE2. The remanent strain is isochoric and fully isotropic in the lateral direction, i.e.

2εr
⊥ := εr : (1 − p ⊗ p) = −εr

‖ . (7.46)

These two assumptions define the remanent strain εr as a deviatoric function of the
polarization pr as already pointed out in equation (7.41), i.e. εr(pr) = 3

2
εs

|pr|
ps

dev[p⊗p].
With this definition of the remanent strain as a dependent tensor field, we proceed with
the introduction of independent variables which govern the energy storage:

FE3. The strain and the electric displacement decompose additively into stress-induced,
electric-field-induced and remanent contributions according to

ε = εσ + εe + εr(pr) and d = dσ + de + pr . (7.47)

FE4. The stored energy decomposes into a piezoelectric part and a polarization part
according to

ψ(ε,d,pr) = ψpie(ε − εr(pr),d− pr,pr) + ψpol(pr) , (7.48)
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where the polarization vector pr plays the role of an internal variable.

FE5. The piezoelectric part ψpie of the stored energy depends on the stress-induced
and electric-field-induced strains and electric displacements and is assumed of the
form (7.31) based on the assumptions P1–P6, however with a modified third-order
coupling tensor

hpol(pr) :=
|pr|
ps

h(p) (7.49)

which grows linearly with the polarization in order to model a coupling which
accompanies the polarization and is in particular absent for a zero macroscopic
polarization, and maximum when the polarization reaches its saturation value.
Thus, the parameter α0, α‖, and α= are assumed to be related to the saturated
polarization state at |pr| = ps.

FE6. The polarization part ψpol of the free energy is assumed to be defined by (7.43)
with the hardening function

h(|pr|) = h0|pr|/
(

1 − |pr|
ps

)
, (7.50)

satisfying the properties (7.44). Here h0 is a material parameter governing the
shape of the hysteresis curves.

With these assumptions the stored free energy of a ferroelectric material takes the form

ψ(ε,d,pr) = 1
2
[ε − εr(pr) ] : C : [ε − εr(pr) ] − [ε − εr(pr) ] :

|pr|
ps

h(p) · [d− pr]

+ 1
2
[d− pr] · β · [d− pr] − h0p

2
s

[
ln

(
1 − |pr|

ps

)
+

|pr|
ps

]

(7.51)
in terms of the structural tensors C, h(p), and β defined in (7.33) and the functional
dependence (7.41) for the remanent strain εr(pr) on the polarization. The free energy
ψ is a potential for the stresses σ, the electric field e and the driving force er of the
polarization, i.e.

σ = ∂εψ(ε,d,pr) , e = ∂dψ(ε,d,pr) , er = −∂prψ(ε,d,pr) . (7.52)

Note that the stresses and the electric field, due to the specific form (7.48) of the free
energy, are specified as follows

σ = ∂ε−εrψpie(ε−εr(pr),d−pr,pr) and e = ∂d−prψpie(ε−εr(pr),d−pr,pr) . (7.53)

Furthermore, the thermodynamic driving force for the poling can be written in the former = epie − epol (7.54)

with the following specific piezoenergetic contribution and energetic poling contributionepie := e+ σ : ∂prεr(pr) − ∂prψpie(ε − εr(pr),d− pr,pr)epol := ∂prψpol(pr) ,
(7.55)

where the last is nothing but the back electric field defined in (7.43). As a consequence
of the above fully coupled thermodynamic treatment, the piezoenergetic contribution epie

of the driving force er contains mechanical-based terms. These are the second and third
terms on the right hand side of (7.55)1, which come from the polarization-dependent
remanent strain and piezoelectric coupling term.
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The Mixed Energy-Enthalpy Function. From the above free energy function we ob-
tain by a Legendre transformation the mixed energy-enthalpy function of the ferroelectric
material

ψ′(ε, e,pr) = infd [ψ(ε,d,pr) − e · d] (7.56)

which, similarly to the free energy function ψ, decomposes additively according to

ψ′(ε, e,pr) = ψ′
pie(ε − εr(pr), e,pr) + ψ′

pol(e,pr), (7.57)

into a piezoelectric part ψ′
pie and a part due to the poling

ψ′
pol(e,pr) = ψpol(pr) − e · pr . (7.58)

Thus, the mixed energy-enthalpy function ψ′ assumes the closed form representation

ψ′(ε, e,pr) = 1
2
[ε − εr(pr)] : C

′ : [ε − εr(pr)] − [ε − εr(pr)] :
|pr|
ps

h′(p) · e
− 1

2
e · β′ · e− h0p

2
s

[
ln

(
1 − |pr|

ps

)
+

|pr|
ps

]
− e · pr

(7.59)

in terms of the constitutive tensors C′, h′(p) and β′ defined in (7.25). The mixed energy-
enthalpy function is a potential for the stresses σ, the electric displacement d, and the
driving force er of the polarization, i.e.

σ = ∂εψ
′(ε, e,pr) , d = −∂eψ′(ε, e,pr) , er = −∂prψ′(ε, e,pr) . (7.60)

Note that the stresses and the electric displacement appear due to the specified form
(7.57) of the mixed energy-enthalpy function as

σ = ∂ε−εrψ′
pie(ε − εr(pr), e,pr)d = −∂eψ′

pie(ε − εr(pr), e,pr) − ∂eψ′
pol(e,pr) .

(7.61)

Furthermore, the thermodynamic driving force er of the poling appears again in the form
(7.54) as the difference between the piezoenergetic contributionepie := e+ σ : ∂prε

r(pr) − ∂prψ′
pie(ε − εr(pr), e,pr) (7.62)

and a energetic poling contribution epol, which turns out to be identical to (7.55)2.

7.2.3. Construction of Dissipation Functions

What remains is the definition of a suitable dissipation function which governs the evolu-
tion of the polarization. This dissipation function is constructed starting from the above
thermodynamic arguments based on standard concepts for dissipative materials. We base
our subsequent formulations on the following two assumptions:

FE7. We define a reversible range in the space of the thermodynamic driving force er of
polarization defined in (7.54) by

E :=
{ er ∈ R3| f(er) := |er|/ec − 1 < 0

}
(7.63)

in terms of the the convex macroscopic switching function f : R3 → R for an
isotropic response. The material parameter ec > 0 which bounds the reversible
range is the already defined coercive field strength.
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FE8. A rate-dependent convex dissipation function can be defined in terms of the switch-
ing function f by the maximum principle

φη(ṗr) = super

{ er · ṗr − ec

η(1 +m)
〈f(er)〉1+m

}
(7.64)

where 〈x〉 := (x+ |x|)/2 denotes the ramp function. The two material parameters
η > 0 and m > 0 characterize the viscosity of polarization and the viscosity shape,
respectively.

Note that the above definition of the dissipation function φη is a viscous regularization of
a rate-independent dissipation function defined by the maximum principle

φ(ṗr) = super∈E

{er · ṗr} . (7.65)

The expression (7.64) may be interpreted as a penalty-type approximative solution of the
constraint maximum problem (7.65), where 1/η plays the role of a penalty parameter.
However, from the physical viewpoint η is interpreted as a viscosity of the polarization.
Note that the rate-independent limit is obtained for vanishing viscosity η → 0, when
the penalty parameter becomes infinitely large. Observe furthermore that the defini-
tion (7.64) of the rate-independent dissipation function can be interpreted as a Legendre
transformation of the dual dissipation function

φ∗
η(er) =

ec

η(1 +m)
〈f(er)〉1+m (7.66)

and the necessary condition of the maximum problem (7.64) defines the evolution of
polarization by ṗr = ∂erφ∗

η(er) (7.67)

in terms of the thermodynamic driving force er.1 The evolution equation takes the closed-
form ṗr =

1

η

〈 |er|
ec

− 1

〉m er

|er| . (7.70)

1Smooth Dissipation Functions. An alternative to the dissipation functions φη and φ∗η defined in
(7.64) and (7.66) are the smooth dual functions

φv(ṗr) =
ec

η(1 + 1/m)

(
η|ṗr|

)1+1/m
and φ∗v(er) =

ec

η(1 +m)
(|er|/ec)

1+m (7.68)

yielding the dual dissipative responseer = ec(η|ṗr|)1/m ṗr

|ṗr| and ṗr =
1

η

( |er |
ec

)m er

|er| (7.69)

without an explicit reversible range. Here, the meaning of the material parameters is quite different
form those in (7.64) and (7.66). 1/η can be considered as a reference rate for the amount of polarization.
Furthermore, the exponentm plays a much more critical role. Form = 1 the polarization process becomes
linearly viscous in the full range of the driving force er in a sense of a Newton-law. A rate-independent
response with the desired reversible range |er| ≤ ec is only approximatively approached for very large

values of m. The limit m→ ∞ recovers the rate-independent response. Though the setting is attractive
due to its smoothness, its numerical implementations suffers for high exponents m from bad numerical
conditioning. From the numerical point of view, the functions φη and φ∗η with reversible range defined
in (7.64) and (7.66) are the best choice if the effect of the reversible range becomes dominant and the
viscosity is restricted to a driving over-force.
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Table 7.2: Ferroelectric Dissipative Material Parameters

No. Parameter Unit Name Eq.
1 ec > 0 V/m coercive electric field (7.42)
2 ps > 0 C/m2 saturation polarization (7.41)
3 εs > 0 − saturation strain (7.39)
4 h0 > 0 (V·m)/C hysteresis slop parameter (7.50)
5 η > 0 m2/(C·s) viscosity of polarization (7.64)
6 m > 0 − viscosity shape exponent (7.64)

Observe first that the polarization pr evolves in the direction of the driving force er

characterizing an isotropic macroscopic response of the polycrystalline aggregate. The
amount |ṗr| of evolution is zero in the elastic range |er| ≤ ec and increases for |er| > ec

as a nonlinear function of the “dimensionless over-force” |er|/ec − 1 > 0 governed by
the material parameters η and m. Note that m = 1 characterizes a dashpot-like linear
Newton-law of viscosity. For m < 1, we have the phenomenological characteristic of a
nonlinear Norton-Bailey-type creep response. The relationship between the evolution ṗr

of polarization and the macroscopic electric field e becomes more clear if one inserts into
(7.70) the decomposition (7.54) of the driving force er into the piezoelectric contributionepie and the contribution epol due to the polarization, i.e.ṗr =

1

η

〈 |epie − epol|
ec

− 1

〉m epie − epol

|epie − epol|
. (7.71)

This evolution law models for epie ≈ e and the “back electric field ” epol = [h0|pr|/(1 −
|pr|/ps)](pr/|pr|) the dielectric hysteresis loops with saturation-type character such as
qualitatively visualized in Figures 7.6 and 7.7 including the viscous effects. This evolution
is in analogy to viscoplastic flow rules with nonlinear kinematic hardening in plasticity.
The dissipative ferroelectric material parameters are summarized in Table 7.2.

7.3. Numerical Examples

The response of the material is assumed to be governed by the potential w(ε, e) having
the form introduced in Section 6.3

w(ε, e) = infpr
super

w̄(ε, e,pr, er) . (7.72)

w̄(ε, e,pr, er) is the algorithmic expression of the incremental electro-mechanical work

w̄(ε, e,pr, er) = ψ′(ε, e,pr) − ψ′(εn, en,pr
n) + er · [pr − pr

n] − ∆tφ∗
η(er) . (7.73)

In (7.73) ψ′(ε, e,pr) is the mixed energy-enthalpy function defined in (7.59) and φ∗
η(er)

the conjugate dissipation potential introduced in equation (7.66).

The enforcement of the necessary condition of the constitutive variational principle (7.72)
yields the non-linear system of equations

r̄ :=

[
∂pr w̄
∂er w̄

]
=

[
∂prψ′ + erpr − pr

n − ∆t
η
〈 |er|

ec
− 1〉m n

]
= 0 , (7.74)
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with the definition of the flow direction n := er/|er|. The first equation in (7.74) repre-
sents the algorithmic definition of the conjugate internal force er. The second equation
of (7.74) gives the viscous evolution equation of the internal variable pr. The above
non-linear system can be solved at given deformation ε and electric field e by a local
Newton-type algorithm for the current variables v̄ := {pr, er}

v̄ ⇐ v̄ − ā−1r̄ (7.75)

until convergence is achieved in the sense |r̄| < tol. The tangent matrix of the Newton
iteration has the form

ā :=




∂2prprψ′ 1

1
−m∆t

ηec
〈|er|/ec − 1〉m−1n ⊗ n

−∆t
η
〈|er|/ec − 1〉m 1

|er|
{1 − n ⊗ n}


 . (7.76)

According to (6.137) the derivatives of w(ε, e) with respect to the strains ε and the electric
field e, i.e. the generalized covector f′, gives the stresses σ and electric displacement d,
i.e. the generalized vector

s′ :=

[
σ

−d ] :=

[
∂εw(ε, e)
∂ew(ε, e) ] =

[
∂εψ

′

∂eψ′

]
=

[ C′ : εe − e · |pr |
ps

h′(p)

−β′ · e− |pr|
ps

h′(p) : εe − pr

]
. (7.77)

Using the implicit function theorem we may derive a closed-form solution of the coupled

electro-mechanical tangent moduli operators c′ :=
[C′

algo h′
algo ;

(
h′

algo

)T
β′

algo

]
withC′

algo := ∂2
εεw = ∂2

εεψ
′ −

[
∂2

εprψ′

0

]
· ā−1 ·

[
∂2prεψ

′

0

]
,

β′
algo := ∂2eew = ∂2eeψ′ −

[
∂2eprψ′

0

]
· ā−1 ·

[
∂2preψ′

0

]
,

h′
algo := ∂2eεw = ∂2eεψ′ −

[
∂2eprψ′

0

]
· ā−1 ·

[
∂2prεψ

′

0

]
,

(7.78)

and ∂2
εεψ

′ = C′, ∂2eeψ′ = −β′, ∂2eεψ′ = − |pr |
ps

h′(p). For the considered model problem

∂2
εerw̄ = ∂2erεw̄ = 0 and ∂2eerw̄ = ∂2erew̄ = 0 . The second terms on the right hand

side of (7.78) characterize the softening of the fully coupled electro-mechanical tangent
moduli due to the evolution of the internal variables. We note that due to the variational
structure the moduli are symmetric.

7.3.1. Uniaxial Test with Varying Loading Frequencies

In this example, the characteristic hysteresis curves for a ferroelectric crystal is repro-
duced. The specimen is an homogenous quadratic piece of material with length L =
10 mm. At the left edge the electric potential is set to zero while the other edge is ex-
posed to a periodical electric potential φe(t) with the maximum value of φe

max = 30 kV.
From the mechanical point of view the specimen is free to move in the horizontal direction
while is constrained in the vertical movements, cf. Figure 7.8. The material parameters
used are reported in Table 7.3. When the switching is initiated, i.e. the electric field ap-



7.3 Numerical Examples 125

φe(t)φe(t)

tt

ε

d
Figure 7.8: Mechanical and electrical boundary conditions for the uniaxial test. To a piece
of ferroelectric material an electric potential is applied trough two electrodes along the left
and right edges. The electrode on the left hand side is grounded while to the electrode on
the right hand side a periodic electric potential is applied. The specimen is free to expand in
the horizontal direction, but the vertical displacements are not allowed (double black lines).
Under these boundary conditions an hysteretic behavior of the electric displacement d and
of the total strain ε is observed.

proaches ec, pr, and εr evolve. The hysteresis loops are given in Figure 7.9 and in order
to show the time-dependent behavior of the proposed formulation, we consider varying
loading frequencies, (cf. Figure 7.9). The main features of the experimental results in
Zhou, Kamlah and Munz [2001], i.e. order of remanent polarization, order of lower
picks and shape of the high frequency curve, are reproduced.

7.3.2. Multiaxial Test

We now consider a numerical example reproducing the polarization rotation as occurs in
the experiments of Huber and Fleck [64]. In these experiments a plate of PZT was
first poled and the electrodes etched away. Then, specimens were cut from the poled
plate and new electrodes applied to them so that an electric field could be imposed at
an angle relative to the pre-existing polarization. As the electric field is increased, the
remanent polarization rotates so that the angle between the polarization direction and
the electric field reduces. In cases where the angle is initially obtuse, depolarization may
first occur followed by repolarization parallel to the electric field. The experiments are
carried out considering the same specimen as in the previous section subject to an axial

Table 7.3: Material Parameters Used for the Model Problem

No. Parameter Unit Name Value
1 λ N/mm2 Lamé parameter 76.6 · 103

2 µ N/mm2 Lamé parameter 44.7 · 103

3 α′
0 N/(kV·mm) axial piezoelectric expansion −0.2

4 α′
⊥ N/(kV·mm) lateral piezoelectric expansion −4.4

5 α′
= N/(kV·mm) piezoelectric shearing 23.20

6 ǫ mC /(kV·m) electric permittivity 11.2 · 10−3

7 ec kV/mm coercive electric field 1.0
8 ps C/m2 saturation polarization 26. · 10−2

9 εs − saturation strain 10−3

10 h0 (kV·m)/C hysteresis slope parameter 3.8 · 103

11 η mm2/(C·s) viscosity of polarization 10−2

12 m − viscosity shape exponent 2
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Figure 7.9: a) Numerical reproduction of the dielectric hystereses and b) butterfly curves
in commercial soft PZT piezoceramic PIC151 for the loading rates of 0.01 Hz, 0.1 Hz, and
1 Hz according to Zhou, Kamlah and Munz [156].

electric field. The material is assumed to be poled in different orientations relative to the
applied electric field.

The results of the simulation are reported in Figure 7.10 which shows the change of the
component of the electric displacement parallel to the direction of the applied electric field
as a function of the same. Clearly, the curve for an initial angle of 180◦ is a half hysteresis
loop whereas the response when the angle is initially zero is nearly linear. The latter case
arises because the material is approaching lock up and the electric field is simply driving
it further into this state. For angles in between, the behavior involves a gradual transition
from the half hysteresis loop for an initial angle of 180◦ to linear behavior when the angle
is zero. This is exactly what happens in the experiments of Huber and Fleck [64].

7.3.3. Square Plate with a Centered Hole

In this example a squared plate with a centered hole is used as a specimen. It has
edge dimensions of 20 × 20 mm and the hole at the center has a radius of 3 mm and is
discretized with 800 four noded elements. The material parameters used are reported in
Table 7.3. At the left and the right edge the displacements are fixed in horizontal and
vertical directions. A time varying electric potential φe(t) and −φe(t) with the maximum
value of φe

max = 20 kV is applied at the left and the right edges, respectively (cf. Figure
7.11).
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Figure 7.10: Polarization rotation curves. The component of the electric displacement
parallel to the applied electric field is plotted against the electric field.

Figure 7.12 and 7.13 show the distribution of the electric potential φe and the polariza-
tion vector distribution pr in the specimen in correspondence of several time steps. We
can observe that to a non-uniform distribution of the potential follows a non-uniform
distribution of the polarization. The polarization tries to circumvent the hole while near
the edges is parallel to the vertical-edge-direction. In contrast with Schröder & Ro-
manowski [135] where the polarization have a fixed direction a, i.e. pr = pa, a non
constant polarization direction is observed.

7.3.4. Multilayer Actuator

We now want to study an example of practical applications. We consider the structure
shown in Figure 7.14 having the principle design of a multilayer actuator. The geometry
has been chosen in adaption to the literature. Due to symmetry conditions only the
shaded area is modeled and the upper electrode must not deform or rotate, but is only
allowed to translate parallel to its starting position. In order to simulate a poling process
the electric potential φe(t) is prescribed as triangular loading in the following manner:
first is increased from 0 to 170 V until t1 = 100 s and then reduced to zero until t2 = 200
s. Thus, an electric field of approximately 3 kV/mm is reached in the region between the
two electrodes, guaranteeing full poling.

In Figures 7.15a and 7.15b we reported the electric potential distribution at the instant
t1 = 100 s, when the highest voltage is applied, and t2 = 200 s, unloading with zero applied
potential, respectively. In the Figures 7.15c and 7.15d the correspondent distribution of

φe(t)φe(t)

tt

Figure 7.11: Boundary conditions for the test of the square plate with centered hole. The
right and left edges of the plate are fully mechanically constraint,i.e. u = 0 (bold black
lines). The same edges are doted of two electrodes to wich a periodic electric potential is
applied. These electrical potential are in counter phase.
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Figure 7.12: Distributions of the electric potential φe and remanent polarization pr at
different times.

the remanent polarization pr in proximity of the electrode tip is reported. From Figures
7.15a and 7.15c we can conclude that at t1 the region on the left of the electrode tip



7.3 Numerical Examples 129

1

0

1

0 1 2 3 4 5 6 7 8

1

0

1

0 1 2 3 4 5 6 7 8

1

0

1

0 1 2 3 4 5 6 7 8

1

0

1

0 1 2 3 4 5 6 7 8

t = 2.5

t = 3.0

t = 3.5

t = 4.0

prφe

−20.0 +20.0

Figure 7.13: Distributions of the electric potential φe and remanent polarization pr at
different times.

is characterized by linear distribution of the electric potential between the electrodes
while the region on the right of the electrode tip lies at a zero potential. The region
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Figure 7.14: a) Principle design of a multilayer actuator: L1 = L2 = 205µm,H = 57.5µm.
Due to symmetry properties, only the shaded area is modeled. b) Boundary conditions on
the discretized shaded area. In order to simulate a poling process the electric potential
φe(t) is prescribed as triangular loading on the lower electrode while the upper electrode is
grounded. Mechanically, the modeled specimen is allowed to expand both horizontally and
vertically (double bold black lines).

near the electrode tip can be considered as a transition zone. In correspondence the left
region is fully poled and the right region is unpoled. Thus, the region of the electrode
tip experiences a non-uniform polarization because of the transition between these two
extremes. The potential at t2 (cf. Figure 7.15b) clearly does not vanish as consequence of
an inhomogeneous remanent polarization in the electrode tip region (cf. Figure 7.15d).

a) b)

c) d)

−170 V 0 V 0 V 27.1 V

Figure 7.15: a) Electric potential φe at t1 = 100 s, b) electric potential φe at t2 = 200 s, c)
remanent polarization pr at t1 = 100 s in the vicinity of the electrode tip, and d) remanent
polarization pr at t2 = 200 s in the vicinity of the electrode tip.



131

8. Ferroelectricity at Large Strains

In this chapter we extend the concepts proposed in Chapter 7 in order to develop a model
for the ferroelectric material response at large strains. The here constructed mixed energy-
enthalpy function ψ′ and the dissipation function φ can be used within the incremental
variational formulation proposed in Chapter 6.

8.1. Piezoelectricity

In what follows, we construct a simple model for a piezoelectric material response at large
strains which contains the essential electro-mechanical coupling phenomena. This serves
as basis for the construction of a model describing the dissipative response of ferroelec-
tric materials at large strains. In analogy to the small strains case we characterize the
piezoelectric material response in terms of a mixed energy-enthalpy function ψ′(F ,E,P)
depending on the deformation gradient F , the Lagrangian electric field E and the unit
director of electric polarization P := Pr/|Pr| in the reference configuration. Since the
piezoelectric response is assumed to be fully reversible, the mixed energy-enthalpy func-
tion ψ′ can be split into mechanic, electric, and coupling contributions

ψ′(F ,E,P) = ψ′
mech(F ) + ψ′

elec(E) + ψ′
coup(F ,E,P) . (8.1)

In order to keep the model simple we attribute the transversely isotropic character of the
piezoelectric response only to the coupling term ψ′

coup and assume the purely mechanical
contributions, ψ′

mech and ψ′
elec, respectively, to be isotropic. Thus, only ψ′

coup will depend
on the unit director of electric polarization P.

Extending the assumptions which brought in Section 7 to the derivation of the mixed
energy-enthalpy function in small strains we could specify the single terms appearing in
(8.1) in the following way

ψ′
mech(F ) = µ tr[E] − µ ln[J ] +

λ

2
(ln[J ])2

ψ′
elec(E) = − ǫ

2
tr[E⊗E]

ψ′
coup(F ,E,P) = −α′

0 tr[E(P ⊗ P)] tr[E⊗ P]

−α′
⊥ tr[E] tr[E⊗ P] − α′

= tr[E(E⊗ P)] ,

(8.2)

in terms of the Green-Lagrangian strain E := 1
2
(F T gF −G) and the determinant of the

deformation gradient J := det[F ]. Notice that:
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Figure 8.1: Geometrical properties of the bimorph transducer considered in the piezoelec-
tric numerical examples. Two layers of piezoelectric polymer are glued together.
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Table 8.1: Material Parameters for Piezoelectricity at Large Strains

No. Parameter Unit Name Value
1 λ N/mm2 Lamé parameter 15.9 · 103

2 µ N/mm2 Lamé parameter 10.71 · 103

3 α′
0 N/(kV·mm) axial piezoelectric expansion 4.6 · 10−5

4 α′
⊥ N/(kV·mm) lateral piezoelectric expansion −8.09 · 10−6

5 α′
= N/(kV·mm) piezoelectric shearing −0.7 · 10−2

6 ǫ mC/(kV·m) electric permittivity 10.6 · 10−3

• (8.2)1 resembles a Neo-Hookean-type elastic response with the classical Lamé pa-
rameters λ and µ of isotropic elasticity.

• (8.2)2 implies a linear-isotropic dielectric response based on the experimental ob-
servation that an electric field E induces an electric displacement De = ǫE with ǫ
dielectric permittivity.

• (8.2)3 recovers a transversely isotropic coupled response characterized by the basic
effects P3-P5 described already in Section 7. ψ′

coup is formulated in terms of the
modified piezoelectric coupling parameters α′

0, α
′
⊥ and α′

=.

With the mixed energy-enthalpy at hand we can compute the Piola-Kirchhoff stress
and the electric displacement as indicated in equations (5.85)1 and (5.85)2, i.e. gP :=
∂Fψ

′(F ,E,P) and −D := ∂Eψ′(F ,E,P)

gP = µgFG−1 − (λ ln[J ] − µ)F−T − α′
0gF (P ⊗ P) tr[E⊗ P]

−α′
⊥gFG−1 tr[E⊗ P] − α′

=gF sym[G−1E⊗ P]

−D = ǫG−1E− α′
0 tr[E(P ⊗ P)]P − α′

⊥ tr[E]P − α′
=G−1EP .

(8.3)

The second derivative of the mixed energy-enthalpy function ψ′ delivers the tangent mod-
uli C′ = µg⊗̄G−1 − (µ− λ ln[J ])IF−T + λF−T ⊗ F−T

−g⊗̄
[
α′

0P ⊗ P + α′
⊥G−1 tr[E⊗ P] + α′

= sym[G−1E⊗ P]
]

h′ = −α′
0P ⊗ gF (P ⊗ P) − α′

⊥P ⊗ gFG−1 − α′
=h̄

β′ = −ǫG−1 ,

(8.4)
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φe = 1 V

Figure 8.2: Unit voltage applied to one layer of the bimorph transducer.
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Figure 8.3: Deflection of the bimorph transducer due to an applied voltage φe = 1V .

with C′ := ∂2
FFψ

′(F ,E,P), h′ := ∂2
FEψ′(F ,E,P), and β′ := ∂2EEψ′(F ,E,P). In (8.4)

we made use of the following operators

[(•)⊗̄(◦)]aA
b
B = (•)ab(◦)AB

(IF−T )a
A

b
B = (F−1)A

b (F−1)B
a

h̄I
m

M = 1
2

(
(G−1)IM(gFP)m + (G−1)IAF a

AgamPM
)
.

(8.5)

The stresses P and the electric displacement D as well as the tangent moduli C′, h′,
and β′ can be directly used within the context of the variational formulation described in
Section 6 using the identifications

S′ =

[
gP

−D ]
, C′ =

[ C′ h′

h′T β′

]
(8.6)

to solve electro-mechanical boundary-value-problems as done in the next subsections.

To validate the developed material formulation a number of numerical examples have been
solved, see Mukherjee & Chaudhuri [114, 115]. They focus on the large deformation
effects and on sensing phenomena of piezoelectric bimorphs. The specimen used therefore
is a cantilever beam with length of 100 mm and height of 1 mm made up of two equal
thin layers of piezoelectric polymer glued together. The left edge is fixed, the rest of the
specimens boundary is unconstrained, see Figure 8.1.

The displacements u are measured in units of mm, the electric potential φe is measured in
units of kV, and the electric field E in kV/mm, respectively. The stresses P are measured
in units of N/mm2 and the dielectric displacement D is measured in units of C/m2. The
chosen material parameters are reported in Table 8.1. The preferred direction is set to
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Y
αf

Figure 8.4: Varying transverse force applied to the bimorph transducer. For α = 1 the
maximum load of 0.5 N is reached.
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Figure 8.5: Deflected shape of the bimorph transducer under a varying transversal force
αf in correspondence of various load steps α.

P = [0, 1, 0]T . A shift of the measuring units is investigated to reduce the numerical
difference of the material parameters from 1015 to 106, see Romanowski [130].

8.1.1. Electric Loading

In this example the cantilever bimorph is subjected to an electric potential difference
∆φe = 1 V, see Figure 8.2. In this case the inverse piezoelectric effect is simulated. The
application of the electric field to one of the two layers will cause elongation of the same
and a contraction in transverse direction. Since the other layer is not excited, its inner
fiber will suffer an elongation and this will result in an overall bending motion of the
actuator, see Figure 8.3. The deformation is very small by reason of the small input
voltage. In the range of very small deformation a difference between linear and nonlinear
analysis cannot be observed.

8.1.2. Mechanical Tip Load in Transverse Direction

In this example the direct piezoelectric effect is simulated. To examine the large defor-
mation effect on sensed voltage of a cantilever bimorph, a varying transverse force up to
0.5 N is applied at the free end, see Figure 8.4. The potential of the inner electrode is set
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Figure 8.6: Distribution of sensed voltages along the bimorph transducer in correspondence
of the maximum transverse force α|f | = 0.5N . Comparison between the linear and non-
linear computations.
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Figure 8.7: Sensed voltage at the root of bimorph transducer subject to a transversal load
plotted as function of the load step α ∈ [0, 1].

to 0 V while the other to electrodes are left free. The boundary condition for the electric
potential is necessary to guarantee the uniqueness of the solution because the simulation
only solves for the gradient of the electric potential. Figure 8.5 shows the deflected shape
at various load steps. For the maximum load, the small-strain analysis predicts a deflec-
tion of 200 mm. However, due to the stress stiffening effect in the large-strain analysis it
reduces to 75 mm. From this observation it is obvious that a large-strain computation is
necessary.

The distribution of the sensed voltage along the cantilever at the final load step is shown
in Figure 8.6. A spatial variation of voltage can be obtained using patch sensors. In
this case it is noticed that the concentration of voltage near the fixed end is very high
compared to that at the free end. In comparison, the small-strain analysis predicts a
linear variation of voltage. It also over-predicts the voltage to a large extent.

Figure 8.7 shows the sensor voltage at the root of the cantilever beam due to an increasing
tip transverse load up to 0.5 N. The voltage sensed in the linear and the nonlinear cases
have been compared. As the load grows the two graphs diverge rapidly. As a result the
voltage computed by the linear analysis is significantly larger than the sensed voltage
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Figure 8.8: Deflected shape of the bimorph transducer under a varying transversal force
αf in correspondence of various load steps α. Comparison between the results obtained
with (continuos lines) and without (dashed lines) a tip axial tensional load.
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Figure 8.9: Distribution of sensed voltages along the bimorph transducer in correspondence
of the final load for a) transversal load applied and b) transversal and axial load revealing
the effects of stress-stiffening.

predicted through non-linear analysis.

8.1.3. Stress Stiffening due to Axial Tensional Load

In the previous example we investigated problems with purely transverse load. To study
the effect of stress stiffening we add an increasing tensile tip load in axial direction of αf

with |f | = 0.5 N. In Figure 8.8 the deflected shape for the current simulation is presented
with the solid lines and the dashed lines are used for the results of the previous example.
Here stress-stiffening effect occurs due to combined action of the axial and transversal
loads. The deflection reduces from 75 mm to 50 mm.

The voltage distribution in the present case is also markedly different from the previous
case. The axial force applied on the structure considerably reduces the voltages developed
in the sensor as compared to the previous case. Figure 8.9 shows the distribution of the
sensed voltages for the pure transverse and the combined load. Figure 8.10 points out the
stress-stiffening for the sensed voltage over the load ratio α.

load steps α
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Figure 8.10: Sensed voltage at the root of bimorph transducer for increasing load of αf

with |f | = 0.5 N. a) Single force αf applied in transverse direction, b) αf applied in
transverse and axial direction.
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Figure 8.11: Bimorph transducer subject to an axial pressure αf and to an actuation
potential φe.

8.1.4. Axial Buckling Load and Actuation Voltage

In the previous examples, we presented the results for sensing in a piezoelectric bimorph.
In this example, the actuation is presented. The cantilever with an axial compressive
force at the tip is supplied with a voltage from an external source see Figure 8.11.

The applied voltage is varied from 0 V to 1.2 kV. It is seen in Figure 8.12 that in presence
of actuation voltage axial compressive force results in large transverse deformations. The
transverse deformation for increasing axial load converges asymptotically to the bifurca-
tion load of the straight column. In presence of an actuation voltage the structure does
not display bifurcation and it generates a finite transverse deflection.

8.2. Modeling of Dissipative Ferroelectric Materials

In this section we will construct a model for the ferroelectric material response at large
strain. This model can be seen as an enhancement of the piezoelectric material response
to a dissipative ferroelectric formulation. The primary focus will be on the modeling
of hysteresis phenomena in a mixed variant formulation. For this purpose, the electric
displacement D is assumed to be additively decomposed into a reversible (elastic) De and
a remanent component Pr D = De +Pr . (8.7)
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Figure 8.12: Transverse deflection of the bimorph transducer subject to the actuation
voltages of 20 V, 200 V, 400 V, 600 V, 800 V, 1000 V and 1200 V together with a tip
axial force αf as function of the load step α. The actuation voltage gives rice to large
deformations preventing the bifurcation.
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Figure 8.13: Representation of the multiplicative decomposition of the deformation gra-
dient F into a remanent and reversible part denoted with F r and F e, respectively. If the
applied electric field E overcomes the coercive electric field Ec in the intermediate state we
observe a remanent polarization P̄r which remains after unloading.

The remanent polarization Pr is identified as the internal variable. Its associated unit
director

P :=
Pr

|Pr| (8.8)

defines the preferred direction of the transversely isotropic piezoelectric material response.
The deformation gradient F is assumed to be multiplicatively decomposed into a reversible
F e and a remanent deformation gradient F r

F = F eF r . (8.9)

We also assume that the remanent deformation gradient F r is only due to the remanent
polarizationPr and we neglect stress depolarization phenomena. Under these assumptions
we can give a representation of the ferroelectric material behavior. If an electric field E
with an amount superior to the coercive electric field Ec and a deformation F are applied,
we could distinguish two superimposed states of the material response. In a first state a
remanent polarization Pr is generated, accompanied by a remanent deformation gradient
F r = F̂

r
(Pr). In a second step a coupled reversible response, due to the developed Pr, is

possible. In this second state the remanent polarizationPr can only be rigidly transformed
but its amount will remain unchanged. This rigid transformation is accompanied by the
reversible deformation gradient F e and the reversible electric displacement De.

In what follows, objects of the introduced intermediate configuration will be denoted by a
bar, e.g. P̄r. Figure 8.13 shows the initial isotropic configuration B which is transformed
to the intermediate configuration B̄ by the mapping property of F r. In this intermediate
configuration the material now possesses transversal isotropic properties characterized in
terms of the remanent polarization P̄r or its unit director P̄. A further transformation
with the reversible deformation gradient F e yields the current deformed configuration S.
This last transformation may be considered as a piezoelectric transformation since the
remanent polarization is not changed in amount anymore.
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In order to determine F r we assume that the remanent deformation is isochoric. Further
we decompose the remanent deformation gradient F r into a left stretch tensor V r and a
rotation tensor Rr by a left polar decomposition

F r = V rRr . (8.10)

The assumption of isochoric remanent deformation implies that det[F r] = 1 and thus
det[V r] = 1. The construction of the remanent stretch tensor V r can be physically moti-
vated. Being a symmetric tensor, V r may be represented by its eigenvalues {ωi}i=1,2,3 and
the corresponding eigenvectors forming an orthonormal basis {N̄ i}i=1,2,3. The spectral
decomposition of V r reads

V r =
3∑

i=1

ωiN̄ i ⊗ N̄
i
. (8.11)

Notice that the N̄ i are vectors and N̄
i
= ḠN̄ i the corresponding covectors. For a pair

of equal roots, i.e. ω1 6= ω2 = ω3 with one unique eigenvector N̄ 1 associated with ω1 we
deduce from (8.11) the reduced representation

V r = ω1N̄ 1 ⊗ N̄
1
+ ω2(1 − N̄ 1 ⊗ N̄

1
) . (8.12)

In (8.12) the eigenvector N̄ 1 is perpendicular to a plane spanned by the mutually orthog-
onal eigenvectors N̄ 2 and N̄ 3 (Gurtin [62], Holzapfel [63]).

The eigenvalue ω2 can be determined as function of ω1 using the isochoric constraint
det[V r] = 1. In the spectral representation the determinant is computed as det[V r] =
ω1 · ω2

2 = 1 yielding ω2 = 1/
√
ω1. With this result at hand, V r can be expressed in terms

of the only eigenvalue ω1 which will be denoted by ω in what follows. Further, we need to
identify the unique eigenvector N̄ 1 of V r. Therefore we have a closer look at the material
response in the intermediate configuration B̄. The material response is characterized by
the remanent polarization vector P̄r which gives rise to a transversely isotropic material
behavior with preferred direction coinciding with the remanent polarization director P̄ =P̄r/|P̄r|. This unit vector can be identified as the eigenvector N̄ 1. Indeed the material
experiences an expansion in the P̄-direction and an isotropic contraction in the directions
orthogonal to P̄. Using these considerations, we can express V r in terms of P̄ as follows

V r = ωP̄⊗ ḠP̄ +
1√
ω

(1 − P̄ ⊗ ḠP̄) . (8.13)

The eigenvalue ω is expressed in terms of a material parameter λ̄r
s characterizing the sat-

uration of the remanent deformation state corresponding to a saturation of the remanent
polarization

ω = 1 +
|P̄r|
P̄s

λ̄r
s . (8.14)

The factor |P̄r|/P̄s grows linearly from 0 to 1 with the remanent polarization expressing
zero or maximum polarization state in terms of the saturation polarization P̄s.

To determine the remanent rotation Rr we observe that it is nothing but the rotation
from P0 to P̄, i.e.

P̄ = RrP0 (8.15)
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Figure 8.14: Fundamental geometric mappings in the Lagrangian, Eulerian, and interme-
diate configuration. Here TXB, T̄X̄B̄ and TxS are the material, intermediate and spatial
tangent spaces, while T ∗

XB, T̄ ∗
X̄
B̄ and T ∗

xS are the corresponding cotangent spaces.

with P0 preferred direction in the initial configuration. Because of the isotropy of the
initial state, Pr

0 is a null vector and this induces P0 = 0 and consequently Rr = 1 . From
the above argumentation it becomes evident that we need to introduce an intermediate
configuration between the Lagrangian and Eulerian ones and eventually characterize the
state of the materials in terms of variables belonging to this configuration. Figure 8.14
shows the geometric relations of the objects of Lagrangian, Eulerian, and the introduced
intermediate configuration. In what follows the constitutive equations will be represented
with respect to the intermediate setting characterized by the metric Ḡ. Its pull back to the
Lagrangian configuration is denoted by Cr = F rT ḠF r called the remanent right Cauchy-
Green tensor. The pull back of the Eulerian metric g to the intermediate configuration
results in the reversible Cauchy-Green tensor C̄

e
= F eT gF e yielding the reversible Green-

Lagrange strain Ē
e

= 1
2
(C̄

e−Ḡ), which is a fundamental tensor in the following modeling
of the ferroelectric material response.

8.2.1. Continuous Ferroelectric Material Response

As discussed above, the material model can be expressed in terms of variables in the
intermediate configuration

State := {Ēe
, Ē, P̄r} (8.16)

with P̄r taking the role of an internal variable. The macroscopic phenomenological mod-
eling of the overall response of ferroelectric materials can be characterized by three con-
stitutive functions: the mixed energy-enthalpy function, the dissipation function, and the
hardening function. The mixed energy-enthalpy-function ψ′

ferro(Ē
e
, Ē, P̄r) governs the

local storage mechanisms in ferroelectricity, whereas the dissipation function φ∗(Ēr) gov-
erns the evolution of the polarization P̄r. The hardening function ψ′

pol(|P̄r|) characterizes
on the other hand the kinematic hardening of the polarization.

Dielectric Hysteresis – Construction of the Hardening Function. We now con-
struct a hardening function ψ′

pol(|P̄r|) based on phenomenological assumptions focus-
ing first on an idealized modeling of the dissipative process approaching the description
of a regularized material response. We start our observation with the maximal ideal-
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Figure 8.15: Ideal dielectric hysteresis. Remanent polarization induced by the polarization.
Idealized process parts of poling: ➀ fully reversible virgin loading for Ē < Ēc, ➁ full idealized
switching at Ē = Ēc and ➂ reversible response after saturated switching.

ized description of a dielectric hysteresis visualized in Figure 8.15, where we consider a
monotonous electric loading process starting from a virgin, completely unpoled material,
observing the following three steps (cf. Figure 8.15):

➀ Initial Range. For a range |Ē| < Ēc below the coercive field strength Ēc, no macro-
scopic polarization occurs, i.e. P̄r = 0 .

➁ Domain Switching. In this highly idealized picture, the switching of all domains
takes place at Ēc where the polarization P̄r fully develops.

➂ Saturated Range. The poling process stops if the polarization reaches its saturation
value P̄r = P̄s. The subsequent loading is non-dissipative.

In a cyclic electric loading process which alternates between fully poled states in positive
and negative direction, we observe the above rectangle-shaped electric hysteresis. Thus
the idealized situation is characterized by the reversible range of the electric field

E := {Ē ∈ R3 | f(Ē) := |Ē| − Ēc < 0} (8.17)

in which no dissipative effect occurs. Note carefully that the electric field is not bounded
by E due to the arbitrarily large reversible saturated range ➂. In contrast, the polarization
is bounded by

P := {P̄r ∈ R3 | g(P̄r) := |P̄r| − P̄s < 0} . (8.18)

These two ranges are the cornerstones for the modeling of the poling process. The evo-
lution of the polarization will take place for an isotropic response in the direction of the
electric field, e.g.

˙̄Pr
∼ Ē . (8.19)

The above outlined modeling of the dissipative poling effort is highly idealized concerning
the assumption that switching takes place at the constant value |Ē| = Ēc of the electric
field. Experiments show that full polarization develops only for electric fields |Ē| > Ēc.
This effect is highly non-linear and approaches the saturation polarization asymptotically
as illustrated in Figure 8.16. As a consequence, the dissipative polarization process for
monotonous electric loading reduces to two steps:
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Figure 8.16: Regularized dielectric hysteresis. Remanent polarization induced by the
polarization. Process parts of poling: ➀ fully reversible virgin loading for Ē < Ēc and ➁
regularized switching at Ē > Ēc, approaching asymptotically the saturation.

➀ Initial Range. For a range |Ē| < Ēc below the coercive field strength Ēc, no macro-
scopic polarization occurs, i.e. P̄r = 0 .

➁ Domain Switching. The polarization occurs for |Ē| > Ēc in a nonlinear format such
that it approaches asymptotically the saturation value P̄s.

In a cyclic electric loading process we then observe the hysteretic effect depicted in Figure
8.16, where the center of the elastic range is shifted by a so-called back electric fieldĒb(P̄r). The modeling of this moving reversible range is obtained by an extention of
(8.24) to

E := {Ē ∈ R3 | f(Ē, P̄r) := |Ē− Ēb(P̄r)| − Ēc < 0} . (8.20)

The back electric field Ēb(P̄r) is assumed to be governed essentially by a scalar, mono-
tonically increasing function h(x) with the properties

h(x) > 0 , h(0) = 0 , lim
x→P̄s

h(x) = ∞ , (8.21)

providing the non-linear saturation effect visualized in Figure 8.16. In analogy to the
gradient character of the electric field E = −∂Dψ the back electric field Ēb(P̄r) is modeled
as the gradient of a hardening function Ēb(P̄r) = ∂P̄rψpol(|P̄r|). The specific form of
ψpol(|P̄r|) used in the subsequent model is given by

ψpol(|P̄r|) := −h0P̄
2
s

[
ln

(
1 − |P̄r|

P̄s

)
+

|P̄r|
P̄s

]
, (8.22)

whose derivative with respect to |P̄r| satisfies the properties (8.21). Here h0 is a material
parameter governing the shape of the hysteresis curves. The construction of an evolution
law will be given in the following subsection.

Construction of a Dissipation Function. Comparably to classical plasticity models
we assume that the evolution of the internal variables is governed by a dissipation function.
Let us start the construction by recalling the dissipation derived in Section 5

ρ0D
red
loc := M ⋆ Q̇ ≥ 0 with M = −ρ0∂Qψ

′(F ,E,Q) . (8.23)
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In the model problem under consideration we can identify the remanent polarization as
the internal variable Q = P̄r and the internal force as M = Ēr. A reversible range is
defined in the space of the thermodynamic driving force Ēr of polarization by

E := {Ēr ∈ R3 | f(Ēr) := |Ēr|/Ēc − 1 < 0} (8.24)

in terms of the convex macroscopic switching function f := R3 → R. The material
parameter Ēc > 0 which bounds the reversible range is the already defined coercive field
strength.

As in classical plasticity theory, we require that the dissipation defined in (8.23) has to be
maximized. This requirement is usually known as “Principle of Maximum Dissipation”
(PMD in the following) and yields the definition of a rate-independent dissipation function

φ( ˙̄Pr
) = supĒr∈E

{Ēr · ˙̄Pr
} . (8.25)

The constraint maximum problem (8.25) can be solved in an approximative way with a
penalty-type method yielding a rate-dependent dissipation function

φη(
˙̄Pr

) = supĒr

{Ēr · ˙̄Pr
− Ēc

η(m+ 1)

〈
f(Ēr)

〉m+1
}
, (8.26)

where 1/η plays the role of a penalty parameter. However, from a physical point of view
η is interpreted as a viscosity of polarization. Note that the rate-independent limit is
obtained for vanishing viscosity η → 0, i.e. when the penalty parameter becomes in-
finitely large. Observe furthermore that (8.26) can be also seen as the Legendre-Fenchel

transformation between the dissipation function φ( ˙̄Pr
) and the dual dissipation function

φ∗
η(Ēr) =

Ēc

η(m+ 1)

〈
f(Ēr)

〉m+1
, (8.27)

where 〈x〉 := 1
2
(x + |x|) denotes the ramp function. The two material parameters η > 0

and m > 0 characterize the viscosity of polarization and viscosity of shape, respectively.
The necessary condition of (8.26) defines the evolution equation of polarization by

˙̄Pr
= ∂Ērφ

∗
η(Ēr) (8.28)

in terms of the thermodynamic driving force Ēr. The evolution equation of the remanent
polarization takes the closed form

˙̄Pr
=

1

η

〈 |Ēr|
Ēc

− 1

〉m Ēr

|Ēr| . (8.29)

Observe that the polarization P̄r evolves in the direction of the driving force, character-

izing an isotropic macroscopic response of the material. The amount | ˙̄Pr
| of evolution

is zero in the elastic range E (8.24) and increases outside the elastic range as a nonlin-
ear function of the “dimensionless over-force” |Ēr|/Ēc − 1 > 0 in terms of the material
parameters η and m.
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Mixed Energy-Enthalpy Function. The mixed energy-enthalpy function ψ′ = ψ′
ferro

is decomposed into a piezo-electric ψ′
pie and a polarization ψ′

pol contribution

ψ′ = ψ′
ferro = ψ′

pie + ψ′
pol , (8.30)

whereas the piezo-electric part ψ′
pie is again decomposed into a mechanical ψ′

mech, an
electrical ψ′

elec, and a coupling ψ′
coup contribution

ψ′
ferro(Ē

e
, Ē, P̄r) = ψ′

mech(Ē
e
, J) + ψ′

elec(Ē) + ψ′
coup(Ē

e
, Ē, P̄r) + ψ′

pol(Ē, P̄r) . (8.31)

As described at the beginning of this section we decomposed the ferroelectric material re-
sponse into an irreversible and a reversible part. The last contribution may be compared
to piezo-electric material behavior when the reversible part of the deformation gradient
F e is regarded as kinematic variable and takes place between the intermediate and the
Eulerian configuration. In the intermediate configuration the material possesses a rema-
nent polarization that depends on the previous poling process but will not evolve anymore
in the reversible piezoelectric process.

The modeling of the piezoelectric part of the mixed energy-enthalpy function for fer-
roelectricity resembles the constitutive modeling of piezoelectricity described in Section
8.1. Only the arguments in the mixed energy-enthalpy functions (8.1) and (8.2) have
to be fitted to the representation in terms of variables in the intermediate configuration.
Furthermore, one slight modification has to be done on the coupling part ψ′

coup. The
amount of coupling is now dependent on the amount of developed polarization. This can
be realized by simply multiplying the constitutive equation of ψ′

coup with the linear factor
|P̄r|/P̄s. The contributions to the mixed piezoelectric energy-enthalpy function read in
particular

ψ′
mech(F

e) = µ tr[Ē
e
] − ln[J ] +

λ

2
(ln[J ])2

ψ′
elec(Ē) = − ǫ

2
tr[Ē⊗ Ē]

ψ′
coup(F

e, Ē; P̄) =
|P̄r|
P̄s

{
−α′

0 tr[Ē
e
(P̄ ⊗ P̄)] tr[Ē⊗ P̄]

−α′
⊥ tr[Ē

e
] tr[Ē⊗ P̄] − α′

= tr[Ē
e
(Ē⊗ P̄)]

}

(8.32)

with J := det[F ] = det[F e]. The poling contribution to the energy-enthalpy function is
defined in terms of the hardening-function ψpol as follows

ψ′
pol = ψpol(|P̄r|) − P̄r · Ē . (8.33)

8.2.2. Numerical Implementation of Ferroelectricity

The response of the material is assumed to be governed by the potential W (F ,E) having
the form introduced in Section 6.1

W (F ,E) = infP̄r
supĒr

W̄ (F ,E, P̄r, Ēr) . (8.34)

W̄ (F ,E, P̄r, Ēr) is the algorithmic expression of the incremental electro-mechanical work

W̄ (F ,E, P̄r, Ēr) = ρ0ψ
′(F ,E, P̄r) − ρ0ψ

′(F n,En, P̄r
n) + Ēr ·

[P̄r − P̄r
n

]
− ∆tφ∗

η(Ēr) .
(8.35)
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In (8.35) ψ′(F ,E, P̄r) is the mixed energy-enthalpy function ψ′
ferro defined in (8.30)-

(8.33) and φ∗
η(Ēr) the conjugate dissipation potential introduced in equation (8.27). The

enforcement of the necessary condition of the constitutive variational principle (8.34)
yields the non-linear system of equations

r̄ :=

[
∂P̄rW̄
∂ĒrW̄

]
=

[
∂P̄rψ

′ + ĒrP̄r − P̄r
n − ∆t

η

〈
|Ēr|
Ēc

− 1
〉m

N̄

]
= 0 (8.36)

with the definition of the flow direction N̄ := Ēr/|Ēr|. The first equation in (8.36) repre-
sents the algorithmic definition of the conjugate internal force Ēr. The second equation
of (8.36) gives the viscous evolution equation of the internal variable P̄r. The above
non-linear system can be solved at given deformation F and electric field E by a local
Newton-type algorithm for the current variables v̄ := {P̄r, Ēr}

v̄ ⇐ v̄ − ā−1r̄ (8.37)

until convergence is achieved in the sense |r̄| < tol. The tangent matrix of the Newton
iteration has the form

ā :=




∂2P̄rP̄rψ
′ 1

1
−m∆t

ηĒc

〈
|Ēr|/Ēc − 1

〉m−1
N̄ ⊗ N̄

−∆t
η

〈
|Ēr|/Ēc − 1

〉m 1
|Ēr|

{
1 − N̄ ⊗ N̄

}


 . (8.38)

According to (6.35) the derivatives of W (F ,E) with respect to the strains F and the
electric field E give the stresses gP and electric displacement D, i.e. the generalized
covector S′

S′ :=

[
gP

−D ]
:=

[
∂FW (F ,E)
∂EW (F ,E)

]
=

[
∂Fψ

′

∂Eψ′

]
. (8.39)

For the model problem under consideration, the 1st Piola-stress P and the electric dis-
placement D take the specific form

gP = µgFCr−1 + (λ ln[J ] − µ)F−T − |P̄r|
P̄s

{
−α′

0gF (P ⊗ P) tr[Ē⊗ P̄]

+α′
⊥gFCr−1 tr[Ē⊗ P̄] +

α′
=

2
[gFP ⊗ G−1E+ gFG−1E⊗ P]

}
,

−D = −ǫG−1E− |P̄r|
P̄s

{
α′

0 tr[Ē
e
(P̄ ⊗ P̄)]P + α′

⊥ tr[Ē
e
]P

+α′
=F r−1Ḡ

−1
Ē

e
P̄
}
−Pr .

(8.40)
Using the implicit function theorem we may derive a closed-form solution of the coupled

electro-mechanical tangent moduli operators c′ :=
[C′

algo h′
algo ;

(
h′

algo

)T
β′

algo

]
. The

single entries of c′ are computed as total second derivative with respect to the deformation
gradient F and the electric field E yieldingC′

algo := ∂2
FFW = ∂2

FFψ
′ −

[
∂2

F P̄rψ
′

0

]
· ā−1 ·

[
∂2P̄rF

ψ′

0

]
,

β′
algo := ∂2EEW = ∂2EEψ′ −

[
∂2EP̄rψ

′

0

]
· ā−1 ·

[
∂2P̄rEψ′

0

]
,

h′
algo := ∂2EFW = ∂2EFψ

′ −
[
∂2EP̄rψ

′

0

]
· ā−1 ·

[
∂2P̄rF

ψ′

0

]
.

(8.41)
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For the considered model problem ∂2
F ĒrW̄ = ∂2ĒrF

W̄ = 0 and ∂2EĒrW̄ = ∂2ĒrEW̄ = 0 .
Note that the second terms on the right hand side of (8.41) characterize the softening of
the fully coupled electro-mechanical tangent moduli due to the evolution of the internal
variables. We note that due to the variational structure the moduli are symmetric. The
fully coupled electro-mechanical reversible tangent moduli are obtained as second deriva-
tive of the mixed energy-enthalpy function ψ′ with respect to the deformation gradient
F and the electric field E, i.e. C′ = ∂2

FFψ
′, β′ = ∂2EEψ′, and h′(p) = ∂2EFψ

′. Using the
mixed energy-enthalpy function defined above in (8.30)-(8.33) they take the specific form

C
′ = µg⊗Cr−1 − (λ ln[J ] − µ)F−1⊗̃F−1 + λF−T ⊗ F−T

−|P̄r|
P̄s

{
−α′

0g⊗(P ⊗ P) tr[Ē⊗ P̄] + α′
⊥g⊗Cr−1 tr[Ē⊗ P̄]

+
α′

=

2
[g⊗(P ⊗ (G−1E) + (G−1E) ⊗ P)]

}
,

h′ = −|P̄r|
P̄s

{
α′

0P ⊗ gF (P ⊗ P) + α′
⊥P ⊗ gFCr−1 +

α′
=

2
h̃

}
,

β′ = −ǫG−1 .

(8.42)

In (8.42) we made use of the operators

[(•)⊗(◦)] A B
a b = (•)ab(◦)AB and [F−1⊗̃F−1] A B

a b = F−1A
bF

−1B
a (8.43)

together with the definition

h̃ = h̃I M
m = Cr−1MI

(gmlF
l
LPL) + (Cr−1)LIglmF

l
LPM . (8.44)

In order to have a quick and robust implementation different types of simplifications of
the model problem can be considered. The easiest one consists in making the following
assumption concerning the remanent deformation gradient which is approximated with
the remanent deformation gradient at time t = tn

F r ≈ RrV r(P̄r
n) := F r

n (8.45)

yielding to a simplified expression for the remanent Cauchy-Green Tensor Cr and of the
reversible Green-Lagrange strain Ē

e
which now only depend on the internal variable P̄r

n

at time tn
Cr ≈ F r

n
T ḠF r

n := Cr
n

Ē
e

= 1
2
(F eT gF e − Ḡ) ≈ 1

2
(F rT

n F T gFF r
n − Ḡ) .

(8.46)

Further, the explicit linear dependence of the coupling term in the mixed energy-enthalpy
function with respect to the normalized amount of the polarization |P̄r|/P̄s is simplified by
considering a proportionality with respect to the normalized amount of the polarization
|P̄r

n|/P̄s at time tn. Finally, the polarization director P in the coupling term of the mixed
energy-enthalpy function is replaced with its value P̄n = P̄r

n/|P̄r
n| at time tn. Including

these assumptions, the free energy reads

ψ′
ferro ≈ µ tr[Ē

e
] − µ ln[J ] +

λ

2
(ln[J ])2 − ǫ

2
tr[Ē⊗ Ē]

−|P̄r
n|

P̄s

{
α′

0 tr[Ē
e
(P̄n ⊗ P̄n)] tr[Ē⊗ P̄n] + α′

⊥ tr[Ē
e
] tr[Ē⊗ P̄n]

+α′
= tr[Ē

e
(Ē⊗ P̄n)]

}
+ ψpol(|P̄r|) − P̄r · Ē . (8.47)
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These assumptions simplify the dependency of the internal force Ēr which will be influ-
enced only by the electric field and the hardening function ψpol. The stresses and dielectric
displacement then read

gP = µgFCr−1 + (λ ln[J ] − µ)F−T − |P̄r
n|

P̄s

{
α′

0gF (Pn ⊗ Pn) tr[Ē⊗ P̄n]

+ α′
⊥gFCr−1 tr[Ē⊗ P̄n] +

α′
=

2
[gFPn ⊗ G−1E+ gFG−1E⊗ Pn]

}

−D = −ǫG−1E− |P̄r
n|

P̄s

{
α′

0 tr[Ē
e
(P̄n ⊗ P̄n)]Pn + α′

⊥ tr[Ē
e
]Pn

+α′
=F r−1Ḡ

−1
Ē

e
P̄n

}
−Pr .

(8.48)
The derivatives appearing in (8.41) have the following expression

∂P̄rψ
′ = −Ē+ (∂

|P̄r |
ψpol)GP̄ ,

∂2P̄rF
ψ′ = ∂2

F P̄rψ
′ = 0 ,

∂2P̄rP̄rψ
′ = (∂

|P̄r|
ψpol)

1

|P̄r|(G − GP̄ ⊗ GP̄) + (∂2
|P̄r ||P̄r|

ψpol)P̄ ⊗ P̄ ,

∂2P̄rEψ′ = ∂2EP̄rψ
′ = −F r−T .

(8.49)

The reversible part of the moduli in (8.41) is obtained by replacing P with Pn and Cr

with Cr
n in the equation (8.42)

C′ = µg⊗Cr
n
−1 − (λ ln[J ] − µ)F−1⊗̃F−1 + λF−T ⊗ F−T

−|P̄r|
P̄s

{
−α′

0g⊗(Pn ⊗ Pn) tr[Ē⊗ P̄n] + α′
⊥g⊗Cr

n
−1 tr[Ē⊗ P̄n]

+
α′

=

2
[g⊗(Pn ⊗ (G−1E) + (G−1E) ⊗ Pn)]

}
,

h′ = −|P̄r|
P̄s

{
α′

0Pn ⊗ gF (Pn ⊗ Pn) + α′
⊥Pn ⊗ gFCr

n
−1 +

α′
=

2
h̃(Pn)

}
,

β′ = −ǫG−1 .

(8.50)

8.3. Numerical Examples

In this section we test the newly proposed material model of ferroelectricity at large
strains with representative numerical examples. We first reproduce some of the tests
regarding piezoceramics which were already computed by using the proposed model for the
ferroelectric material response at small strains in order to check that the same results are
obtained. To show the potentialities of the proposed formulation we consider afterwards
typical applications of ferroelectric polymers which show large deformations.

8.3.1. Uniaxial Test with Varying Loading Frequencies

In this example, the characteristic hysteresis curves for a ferroelectric crystal is repro-
duced. The specimen is a homogenous quadratic piece of material with length L = 10 mm.
At the left edge the electric potential is set to zero, while the other edge is exposed to
a periodical electric potential φe(t) with the maximum value of φe

max = 20 kV. From the
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Figure 8.17: Mechanical and electrical boundary conditions for the uniaxial test. To a
piece of ferroelectric material an electric potential is applied trough two electrodes along the
left and right edges. The electrode on the left hand side is grounded while to the electrode on
the right hand side a periodic electric potential is applied. The specimen is free to expand in
the horizontal direction, but the vertical displacements are not allowed (double black lines).
Under these boundary conditions an hysteretic behavior of the electric displacement D and
of the total deformation F is observed.

mechanical point of view the specimen is free to move in the horizontal direction while is
constrained in the vertical movements, cf. Figure 8.17. The material parameters used are
reported in Table 8.2.

When the switching is initiated, i.e. the electric field approaches the coercive value, P̄r

and F r evolve. The hysteresis loops are given in Figure 8.18 and in order to show the time
dependent behavior of the proposed formulation we consider varying loading frequencies.
The main features of the experimental results in Zhou, Kamlah and Munz [156],
i.e. order of remanent polarization, order of lower picks, and shape of the high frequency
curve are reproduced.

8.3.2. Multiaxial Test

We now consider a numerical example reproducing the polarization rotation as occurs in
the experiments of Huber & Fleck [64]. In these experiments a plate of PZT was first
poled and the electrodes etched away. Then, specimens were cut from the poled plate

Table 8.2: Piecoceramic Material Parameters

No. Parameter Unit Name Value
1 λ N/mm2 Lamé parameter 76.6 · 103

2 µ N/mm2 Lamé parameter 44.7 · 103

3 α′
0 N/(kV·mm) axial piezoelectric expansion −0.2

4 α′
⊥ N/(kV·mm) lateral piezoelectric expansion −4.4

5 α′
= N/(kV·mm) piezoelectric shearing 23.20

6 ǫ mC/(kV·m) electric permittivity 11.2 · 10−3

7 Ēc kV/mm coercive electric field 1.0
8 P̄s C/m2 saturation polarization 26. · 10−2

9 λ̄r
s − saturation strain 10−3

10 h0 (kV·m)/C hysteresis slope parameter 3.8 · 103

11 η mm2/(C·s) viscosity of polarization 10−2

12 m − viscosity shape exponent 2
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Figure 8.18: a) Numerical reproduction of the dielectric hystereses and b) butterfly curves
for loading rates of 0.01, 0.1 and 1 Hz.

and new electrodes applied to them so that an electric field could be imposed at an angle
relative to the pre-existing polarization. As the electric field is increased the remanent
polarization rotates so that the angle between the polarization direction and the electric
field reduces. In cases where the angle is initially obtuse, depolarization may first occur
followed by re-polarization parallel to the electric field. The experiments are carried out
considering the same specimen as in the previous section subjected to an axial electric
field. The material is assumed to be poled in different orientations relative to the applied
electric field.

The results of the simulation are reported in Figure 8.19 which shows the change of the
component of the electric displacement parallel to the direction of the applied electric field
as a function of the applied electric field. Clearly, the curve for an initial angle of 180◦ is a
half hysteresis loop whereas the response when the angle is initially zero is nearly linear.
The latter case arises because the material is approaching lock up and the electric field
is simply driving it further into this state. For angles in between, the behavior involves
a gradual transition from the half hysteresis loop for an initial angle of 180◦ to linear
behavior when the angle is zero. This is exactly what happens in the experiments of
Huber & Fleck [64].
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Figure 8.19: Polarization rotation curves. The component of the electric displacement
parallel to the applied electric field is plotted against the electric field.
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Figure 8.20: Boundary conditions for the test of the square plate with centered hole. The
right and left edges of the plate are fully mechanically constraint, i.e. u = 0 (bold black
lines). The same edges are doted of two electrodes to wich a periodic electric potential is
applied. These electrical potential are in counter phase.

8.3.3. Square Plate with a Centered Hole

In this example, a squared plate with a centered hole is used as a specimen. It has
edge dimensions of 20×20 mm and the hole at the center has a radius of mm and is
discretized with 800 four noded elements. The material parameters used are reported in
Table 8.2. At the upper and the lower edge, the displacements are fixed in horizontal and
vertical directions. A time varying electric potential φe(t) and −φe(t) with the maximum
value of φe

max = 20 kV is applied at the upper and bottom edge, respectively (cf. Figure
8.20). Figure 8.21 and 8.22 show the distribution of the electric potential φe and the
polarization vector distribution P̄r in the specimen in correspondence of several time
steps. We can observe that to a non-uniform distribution of the potential follows a non-
uniform distribution of the polarization. The polarization tries to circumvent the hole
while near the edges is parallel to the vertical-edge-direction.

8.3.4. Multilayer Actuator

We now want to study an example of practical application. We consider the structure
shown in Figure 8.23 having the principle design of a multilayer actuator. The geometry
has been chosen in adaption to the literature, cf. Kamlah [73]. Due to symmetry
conditions only the shaded area is modeled and the upper electrode must not deform
or rotate, but is only allowed to translate parallel to its starting position. In order to
simulate a poling process, the electric potential φe(t) is prescribed as triangular loading
in the following manner: first it is increased from 0 to 170 V until t1 = 100 s and then
reduced to zero until t2 = 200 s. Thus, an electric field of approximately 3 kV/mm is
reached in the region between the two electrodes, guaranteeing full poling.

In Figure 8.24a and 8.24b, we reported the electric potential distribution at the instant
t1 = 100 s, when the highest voltage is applied, and t2 = 200 s, unloading with zero
applied potential, respectively. In Figure 8.24c and 8.24d the correspondent distribution
of the remanent polarization P̄r in proximity of the electrode tip is reported. From Figure
8.24a and 8.24c we can conclude that at t1 the region on the left of the electrode tip is
characterized by linear distribution of the electric potential between the electrodes, while
the region on the right hand side of the electrode tip lies at a zero potential. The region
near the electrode tip can be considered as a transition zone. In correspondence, the left
region is fully poled and the right region is unpoled. Thus, the region of the electrode
tip experiences a non-uniform polarization because of the transition between these two
extremes. The potential at t2 (cf. Figure 8.24b) clearly does not vanish as consequence of
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Figure 8.21: Distributions of the electric potential φe and remanent polarization Pr at
different times.

an inhomogeneous remanent polarization in the electrode tip region (cf. Figure 8.24d).

Figure 8.25 shows the results of the 3D computation, where the specimen described in the
previous was extruded in e3 direction to a thickness of 60 mm. The boundary conditions
of the 2D example are incorporated, the bottom left edge is only allowed to expand in
the e3 direction. The results obtained are in agreement with the 2D computation. The
polarization develops uniformly in the thickness direction of the specimen in the region
between the electrodes not closed to the electrode-tip, is zero in the region far away from
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Figure 8.22: Distributions of the electric potential φe and remanent polarization Pr at
different times.

the electrode-tip where no electric potential is applied, and is non-uniformly distributed
around the electrode-tip.

8.3.5. Polymers in an Undrawn State

In the previous examples, we investigated the modeling of dissipative materials that show
hystereses found in ferroelectric crystals. In the following we focus on the modeling of
the hysteretic behavior of ferroelectric polymers. To this end we adapt the homogeneous
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Figure 8.23: a) Principle design of a multilayer actuator: L1 = L2 = 205 µm, H = 57.5 µm.
Due to symmetry properties, only the shaded area is modeled. b) Boundary conditions on
the discretized shaded area. In order to simulate a poling process, the electric potential
φe(t) is prescribed as triangular loading on the lower electrode while the upper electrode is
grounded. Mechanically, the modeled specimen is allowed to expand both horizontally and
vertically (double bold black lines).

quadratic specimen used in the previous subsection (cf. Figure 8.17) with length L = 10
mm. At the left edge the electric potential is set to zero, while the other edge is exposed
to a periodic electric potential φe(t) with the maximum value of φe

max = 300 kV ensuring
an electric field E = 3Ēc. The aim is to reproduce the hysteresis curves for VDF-TrFE
copolymers shown in Figure 2.18. The developed material parameters for VDF-TrFE
copolymers are given in Table 8.3 and are derived from Mukherjee & Chaudhuri

a) b)

c) d)

0 V −170 V 18.5 V −5.4 V

Figure 8.24: a) Electric potential φe at t1 = 100 s, b) electric potential φe at t2 = 200 s, c)
remanent polarization Pr at t1 = 100 s in the vicinity of the electrode tip, and d) remanent
polarization Pr at t2 = 200 s in the vicinity of the electrode tip.
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0 V −170 V 18.5 V −6.5 V

Figure 8.25: a) Electric potential φe at t1 = 100 s, b) electric potential φe at t2 = 200 s,
c) remanent polarization Pr at t1 = 100 s, and d) remanent polarization Pr at t1 = 200 s.

[114], Furukawa & Seo [54], and Zhang, Bharti and Zhao [153]. The hysteresis
curves generated with this set of material parameters are shown in Figure 8.26a and 8.26b.
The F -E-hysteresis has two sharp picks at E = 0 . As we already mentioned in Section
2, homopolymer and copolymer of VDF become thicker when their polarization reverses
and thinner when the absolute value of the electric displacement is maximum. As shown
in Figure 2.18, this is opposite to the case for ferroelectric PZT which becomes thinner
when the polarization reverses.

Table 8.3: Material Parameters for Undrawn Polymers

No. Parameter Unit Name Value
1 λ N/mm2 Lamé parameter 1.59 · 102

2 µ N/mm2 Lamé parameter 1.0705 · 102

3 α′
0 N/(kV·mm) axial piezoelectric expansion 4.6 · 10−5

4 α′
⊥ N/(kV·mm) lateral piezoelectric expansion −8.09 · 10−6

5 α′
= N/(kV·mm) piezoelectric shearing −0.7 · 10−2

6 ǫ mC/(kV·m) electric permittivity 10.62 · 10−3

7 Ēc kV/mm coercive electric field 45.0
8 P̄s C/m2 saturation polarization 8.0 · 10−2

9 λ̄r
s − saturation strain −3.0 · 10−3

10 h0 (kV·m)/C hysteresis slope parameter 16.67
11 η mm2/(C·s) viscosity of polarization 1.0
12 m − viscosity shape exponent 2
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Figure 8.26: a) Dielectric hysteresis and b) butterfly curve of an homogeneous specimen
of VDF-TrFE copolymer.

8.3.6. Polymers in a Modified Material State

As reported in Section 2, large hystereses are not desirable for some practical applications
and there exist some techniques to modify the material response of polymers rendering
the hystereses thinner. The existence of hystereses in ferroelectric materials is due to the
energy barrier when switching from one polarization direction to another when the mate-
rial transforms from one phase to another. This phase transformation can be facilitated
and exceptionally large electrostrictive strain can be achieved reducing the size of all-trans
conformation by introducing defects. One possible approach to achieve this is through a
high-energy radiation. The aim of this section is to reproduce the thin hysteresis curves
presented in Figure 8.27. The considerable differences between the two material states
are the very thin hysteresis and butterfly loop and the enormous strain response at equal
electric loading. To this end a new set of material parameters is identified as reported in
Table 8.4.

Again, the specimen described in the previous subsection is used with the same boundary-
conditions and electric potentials. The results are plotted in Figure 8.27a and Figure
8.27b comparing the two sets of material parameters. The black curves repeat the results
achieved in the previous calculations whereas the red ones depict the present calculations.

Table 8.4: Material Parameters for Irradiated Polymers

No. Parameter Unit Name Value
1 λ N/mm2 Lamé parameter 1.59 · 102

2 µ N/mm2 Lamé parameter 1.0705 · 102

3 α′
0 N/(kV·mm) axial piezoelectric expansion 4.6 · 10−4

4 α′
⊥ N/(kV·mm) lateral piezoelectric expansion −8.09 · 10−6

5 α′
= N/(kV·mm) piezoelectric shearing −2.7 · 10−1

6 ǫ mC/(kV·m) electric permittivity 10.62 · 10−3

7 Ēc kV/mm coercive electric field 4.0
8 P̄s C/m2 saturation polarization 5.0 · 10−2

9 λ̄r
s − saturation strain −1.0 · 10−2

10 h0 (kV·m)/C hysteresis slope parameter 10
11 η mm2/(C·s) viscosity of polarization 1.0
12 m − viscosity shape exponent 2
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Figure 8.27: a) Dielectric hysteresis and b) butterfly curve of an homogeneous specimen
of VDF-TrFE copolymer in undrawn state (black lines) and irradiated state (red lines).

We can observe a good qualitative agreement with the experimental data reported in
Section 2.

To validate the developed material formulation and material parameters a boundary-
value-problem showing large deformations has to be solved. Therefore, we analyze a
finger-actuator consisting of two sheets of electroded polymer films glued together. The
length of the specimen is equal to 100 mm and its width is equal to 1 mm. In the following
examples, only one sheet is electrically active, see Figure 8.28. The electric field applied
to one of the two films will cause the elongation of the same. Since the other layer is not
activated, its inner fiber will suffer an elongation and this will result in an overall bending
motion of the actuator. The motion will be upward or downward (a finger-like motion)
according to the activated layer. In the considered case the displacement of the left edge
is fixed in one direction, the bottom left corner is fixed in both directions implying a
homogeneous deformation at the fixed end. A time varying electric potential φe(t) with
the maximum value of φe

max = 70 kV is applied at the bottom line ensuring a electric fieldE = 3Ēc guaranteeing full poling.

The hysteresis curves for strain and dielectric displacements over the electric field of a
point near the outward surface of the active layer are shown in Figure 8.29. The green
curves represent the results of calculation for polymers in the natural material state using
the first set of material parameters reported in Table 8.3. The red curves depict the
outcome of calculation for irradiated polymers where the second set of material parameters
(cf. Table 8.4) is used. Figures 8.30 and 8.31 show the bending motion of the polymer-film

φe(t) φe(t)

t t

l = 100 mm

1 mm

Figure 8.28: Top pannel: geometry of the finger actuator. Bottom pannel: mechanical
and electrical boundary condition for the films integrated in the finger actuator.
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Figure 8.29: a) Dielectric hysteresis and b) butterfly curve measured on the film specimen
for an operating voltage of 70 kV. The geen curves represent the results of calculation with
material parameters for polymers in the natural material state, the red curves depict the
outcome of calculation with material parameters describing modified polymers.

as well as the remanent polarization vector for both sets of material parameters at several
time steps. The enormous difference in the deformation has to be noticed. While the
calculations for polymers in a natural state yield a low bending motion, the results for
modified polymers describe almost a circle.
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Figure 8.30: Distribution of remanent polarzation Pr and deformed configuratio at differ-
ent times for a finger-actuator. Comparison between the response of an irradiated polymer
(red arrows) and the response of an undrawn polymer (green arrows).
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Figure 8.31: Distribution of remanent polarzation Pr and deformed configuratio at differ-
ent times for a finger-actuator. Comparison between the response of an irradiated polymer
(red arrows) and the response of an undrawn polymer (green arrows).

The same finger actuator with dimensions length 100 mm, width 20 mm, and thickness 1
mm is also simulated in a 3D fashion. Homogeneous boundary conditions ensure a uniform

Figure 8.32: Bending motion of a finger-actuator at several time steps. The actuating
potential is increased linearly up to a maximum value of φe

max = 70 kV.
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Figure 8.33: Grip actuator designed with two finger actuators disposed parallel to each
other at a certain distance. The consequent evolution of the deformation is shown.

a) b)

c) d)

Figure 8.34: Different deformation stages of a bimorph double-S-shaped-actuator. a) Un-
deformed configuration, b) deformed shape when the external layers are active, c) deformed
shape when the internal layers are active, and d) deformed shape when the internal layers
are active and the contact renders the system stiffer.
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development of the polarization and of the deformation. A linear increasing electric
potential φe(t) with the maximum value of φe

max = 70 kV is applied at the left outward
surface. In Figure 8.32 one can see the bending motion of a finger actuator at different
time steps. Afterwards, a configuration with two finger-actuators disposed parallel to each
other at a certain distance in order to grip objects is considered. In this case, the two
finger-actuators touch each other after a certain deformation. The consequent evolution
of the deformation is analyzed in Figure 8.33. The deformation of the polymer film can be
used in many other different ways to produce actuation. Another possible configuration is
the bimorph double-S-shaped-actuator. Here, two sheets of electroded polymer films are
glued together and form a double-S-shape. If the external layers are active, the curvature
of the actuator can be accentuated (see Figure 8.34a and 8.34b) and otherwise diminished
if the internal layers are active (see Figure 8.34c and 8.34d). The configuration in which
the curvature is diminished turns out to be stiffer with respect to the previous one. The
reason of such a behavior is the occurring contact between the upper and lower part of
the actuator. As the contact evolves the curvature after diminishing starts to increase
again as shown in Figure 8.34d.
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9. Conclusion

This work was concerned with aspects of the formulation and numerical implementation of
dissipative electro-mechanics at large strains. At first, the principal equations of non-linear
continuum mechanics and electrostatics were separately described. The description of the
electrostatic boundary-value-problem was done by using an approach similar to the one
used for the non-linear continuum mechanics to get a better understanding through proper
analogies. Particular emphasis was given to the geometric nature of the two problems
which allowed the differentiation between geometric and physical dual quantities.

Thereafter, the continuum mechanics and electrostatic equations were properly combined
to account for a fully coupled, dissipative, and geometrically non-linear electro-mechanical
boundary value problem. The point of departure was a merging of the two set of equations
with a proper modification of the mechanical set in order to incorporate the effect of
body force, couple and energy supply due to the interaction of the electrostatic field with
the body under consideration. The set of electro-mechanical equations was afterwards
modified in terms of a total stress, sum of the mechanical and of the Maxwell stress, and
a total energy, sum of the energy stored in the body and the electrostatic energy stored
in the underlying free space. This proper modification brought a clear understanding of
the fields characterizing the electro-mechanical boundary-value-problem.

The core of this work was the development of a variational formulation for a generic
dissipative electro-mechanical response. At first, a purely local constitutive modeling was
treated. An incremental constitutive variational principle in terms of the energy storage
and of the dissipation functional was proposed to describe the local material response when
advancing the electro-mechanical loading process in a discrete time interval. Secondly,
the global treatment of the electro-mechanical boundary-value-problem was taken under
consideration. The variational approach was taken as the cornerstone for the development
of the finite element methodology. The discretization of the two-field problem appeared,
as a natural consequence of the proposed incremental variational principle, in a symmetric
and very compact format.

As case of studies for the proposed variational formulation, the ferroelectric dissipative
material response was taken under consideration. Particular attention was paid on the
construction of the storage and dissipation functionals, in order to built up a micro-
mechanically motivated phenomenological model, and on the fundamental kinematic as-
sumptions. The performance of the proposed methods was demonstrated by means of a
spectrum of benchmark problems showing eventually large deformations.

The proposed incremental variational approach is a very robust tool. It allows a very com-
pact treatment of the coupled dissipative electro-mechanical boundary-value-problem and
an easier overall understanding. It is not only confined to the treatment of phenomenolog-
ical ferroelectricty. With the proper extensions other case of studies could be considered.
Few examples are electro-mechanical phase field modeling, electro-mechanical fracture,
viscous dissipative material response of electro-active-polymers. Further, a straight for-
ward extension to magneto-mechanical coupled problems could be considered, since the
underlying differential equations have an almost identical structure.
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