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Abstract. Analyzing of large data and visual information is becoming more and more crucial
in today's world. Faster and more accurate analysis for visual data is vital for industries, which
depend on visual information, such as robotics and automated drive systems. No matter how the
information is obtained, it must be analyzed in order to draw conclusions and create hypothesis.
One of these factors, which is to be analyzed are critical points. With the help of critical point
analysis, borders of objects in a scene can be found. Here robots could calculate grasping points
of the object and use this information for further tasks. In this thesis a pipeline for computing
critical area curvature on point clouds is created. The entire information of the processing
background will be explained and it will be shown how these interact to create the pipeline.
Computations of di�erent normal estimations and curvatures are going to be introduced and
compared. Later these will be implemented to a pipeline, which computes critical areas of the
scanned point clouds. The thesis concludes with the comparison for real and synthetic point
clouds.

1 Introduction

With the Kinect sensor many di�erent applications were created, which would not
have been possible a few years ago. One of these is the analysis of point clouds. Point
clouds of the environment can be obtained very fast and easy. These point clouds can
have di�erent attributes. Whether to cross the point clouds with color, to receive a
RGB point cloud or using �lters to capture certain object, point clouds allow all of
these operations without the need of many adjustments. The Point Cloud Library
and the Robot Operating System are two di�erent open source projects, which supply
some di�erent applications for working with point clouds. When working with point
clouds, di�erent analytical methods can be applied in order to be able to create some
hypothesis about the cloud. This is needed, since the point clouds do not have all the
information, which a real scene has. Compared to a real scene image point clouds of
the same scene can be computed a lot faster. One of the analysis, which has to be
made, is the critical point analysis of point clouds. In this thesis the di�erent open
source projects are combined, in order to create a visualization pipeline for critical
area analysis. The Point Cloud Library and the Robot Operating System are both
used, to enable a fast analysis of a scanned point cloud for critical areas. The goal
of this thesis is �rst to compare di�erent methods for normal estimations. With the
gained knowledge curvature computations are to be evaluated based on the normal
estimations. Finally the curvatures are visualized. All these computations are imple-
mented into a visualization pipeline, which is to be used on point clouds. The point
clouds were obtained using the Kinect. The thesis starts with a general introduction
to how the Kinect functions and how point clouds are obtained. The Robot Operating
System and the Point Cloud Library will be introduced and the functionality behind
these technologies will be explained shortly. After the basis has been laid out, the
comparison of the di�erent normal estimations will be done. All compared estimation
methods, are provided inside the PCL.
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2 Introduction to the functionality of the Kinect

The most important component of the entire thesis is the Kinect Sensor fromMicrosoft.
The Kinect Sensor allows the real-time scanning of point clouds either as direct infrared
data or combined with the RGB (red, green, blue) camera for colored point clouds. The
Kinect has an infrared laser projector and a infrared sensor, which, when combined,
can create a 3D point cloud scan of the scene[wik14d]. Scanning point clouds with
the laser creates real-time images with approximately 30 fps (frames per second) at
a resolution of 300000 points per frame [Kho11]. The range for scanning objects with
the Kinect through the infrared laser is between 0.5m and 5m. Within this distance,
the point clouds will have the best properties for further calculations and estimations.
Points, which are closer than 0.5m, can not be scanned without loss of focus on the
other area. Points, which are further away than 5m, are not optimal for the analysis
since the depth of a point, which is further away, cannot be computed very accurately.
Every point image has a resolution of 640x480 pixels, which results in a decrease of
density, if the scanned object is further away. The point density can be computed as
follows:

p ≈ 1

Z2
(1)

where p is the resulting point density and Z is the distance form the sensor [Kho11].
All the data, which was collected for the thesis, was scanned with a Kinect for Xbox
360 from 0.5m to 4.5m distance. In order to focus on a certain object or area, which
is to be scanned, a simple implementation using axis �lters was used. Points inside a
point cloud carry depth, width and height information of the point. This information
is not a global value of the scanned area, since this data is related to the position of the
Kinect. The points are vectors with x,y and z values. The input data is �rst �ltered
at the x-axis. The �ltered point cloud is then passed to the y-axis �lter. Now the
resulting point cloud is �ltered at the z-axis. This cuts all points away, that are larger
than the given threshold. The Kinect 360 and the Kinect for Windows are apparently
100 percent identical in hardware, but a few drivers may di�er. This limits the use of
the Kinect for Windows in Ubuntu. Since the software, that was used in this project,
runs stable on Ubuntu, a Kinect 360 was used.

The �gure 1 shows the IR (infrared) sensor and the IR projector. The projector and
the sensor work together to capture the 3-D depth information. This is done through
triangulation. The sensor and the projector both take the same point on the infrared
point cluster, which is emitted from the projector. Then the inner angles of the projec-
tor and the sensor are computed. Since the space between the sensor and the projector
is known, the distance from the Kinect to the object can be computed. Figure 2 under-
lines this. The red and green angles from the sensor have a direct relationship between
the red and green angels from the projector. The gray area shows, how objects can be
lost in the depth image. When the projector or the sensor scan di�erent objects, these
shadows can be created. In the depth image this is shown as a black surrounding of
the object, which lies in front of the other objects in the scene.

Image 3 shows a camera scan of depth information. The �rst picture shows the original
data. Here you can see a person standing in front of a scene. The outline of the person
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Fig. 1: shows the Kinect sensor . The positions of the IR Projector and IR Sensor
are shown, as well as the position of the RGB Camera. The distance between the IR
Sensor and the IR Projector are needed for the depth triangulation. [b]

Fig. 2: shows the theoretical capturing of depth information. The objects are at di�er-
ent distances from the Kinect. With the help of triangulation, the distances for each
point in the cloud from the Kinect can be computed. When objects block a part of
another object, a shadow is shown inside the point cloud. This e�ect is shown through
the grey area inside the �gure.
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Fig. 3: shows a real point cloud, which was captured with the Kinect. In the left picture
you can see a person standing in front of a scene. The person seems to have a shadow,
which surrounds him. The red area inside the right picture shows the points, which
can not be captured from the objects, which are behind the person.

in the �gure can also be seen. The second image shows the area, which can not be
scanned and where data loss occurs. This is due to the fact that the object, in this case
the person, is to far away from the other objects. Since the infrared scan only emits
from one point, the information, which lies directly behind and around the person, is
lost. When scanning point clouds with the Kinect this has to be taken into account.
This is often critical, because in small scale objects may be lost, when the scene is
scanned from the wrong angle.
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3 The Robot Operating System

The Robot Operating System (ROS) is an open source project, which provides a set
of tools to create software for di�erent robotic applications [ROS14b]. The framework
is based on publish and subscribe, which allows the modularization of the point cloud
analysis. In the following �gure 4

Fig. 4: shows the pipeline with the di�erent topics, from which the information for the
points is passed. Starting with the Openni_Launcher, which captures the data from
the Kinect. This data is passed either to get down sampled or to have its normals
estimated. The input here is the output of the previous topic. In this case it is the
Openni_Launcher. The rest of the pipeline shows the topics for the computation of
the curvature and the computation of the radii for the critical area analysis.

one can see, how the di�erent nodes communicate with each other and how the in-
formation is passed using di�erent topics. Each nodes input, which is not a pcd or
ply �le, is the topic, which the node listens for. The topic is passed from the previous
node. All the data in the thesis were obtained using ROS-Groovy. ROS has its own
implementation of the PCL (Point Cloud Library), which in some cases may cause
transformation errors when handling di�erent point cloud data-types.
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4 Point Clouds and PCL

But �rst of all: What is a point cloud? According to the following source [wik14e] a
point cloud is a certain amount of points within a vector space, which show a certain
unorganized structure. A point cloud is hereby described through the contained points,
which are given through their space coordinates. The point cloud library �is a stan-
dalone, large-scale, open project for 2D/3D image point cloud processing� [PCL14b]. It
provides di�erent libraries for di�erent calculations and manipulations on point clouds.
All the data in the thesis were obtained using PCL-1.6. Mainly �lters and normal esti-
mations were implemented to gain data for the di�erent experimental comparisons. In
the following sections the di�erent data-types for point clouds will be looked at brie�y.
Figure 5 below is a scan of a point cloud with an already reduced point cloud density.
Even though the points are relatively far away from each other, the object can still be
identi�ed as a armchair with a ball on it.

Fig. 5: The Point Cloud consists of 2658 points. This image was obtained through down
sampling a point cloud with 307200 points

4.1 Di�erent Point Cloud Data Types

The PCL library uses di�erent point types for di�erent computations. At �rst this
caused some di�culties implementing the di�erent test classes, which were needed for
the comparison. The main problem was the Kinect input data type, which needed to
be converted to do the needed computation and then reconverting the resulting data to
the Kinect data-type. In some cases this was not achievable and therefore no live data
could be used. This resulted from the fact, that the live data was not compatible with
the functions, which were needed to compute normals, curvature etc. When saving the
live data to a pcd (point cloud data) �le format and the �le was loaded, the di�erent
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computations were possible. The following enlist the di�erent point cloud data types,
which were used in the thesis:

� PointCloud2
� PointXYZ
� PointNormal
� PointCloudXYZRGB . . .

The PointCloud2 data-type is the ROS (Robot Operating System) speci�c point
cloud. All information about the point is stored inside this data structure. This data-
type contains information such as: point coordinates stored in a point �eld, height
and width of the point cloud, length of a point in bytes, whether the cloud contains
valid and invalid points, o�set from the starting position, normal orientation and color
information. Of course not all of this information is present from the start. However
within ROS this data-type is used to communicate with di�erent nodes and topics.

PointXYZ is a standard data-type used in PCL. The PointXYZ contains only the
�oat values for the x,y and z coordinates. This data-type is needed for the simple
normal estimation method included in the PCL. It is also the data-type, which was
used for reading in most saved pcd �les in the implementation.

The PointNormal data-type is a special type of point in the PCL. The PointNormal
stores the x,y,z coordinates of the point as well as a 3-dimensional vector. This 3-
dimensional vector is the computed normal vector of the point. In this thesis the
PointNormal is used to combine the original point cloud with the computed normals.
Through this possibility the original cloud can be shown with the normals in each
point without loss of points.

The last data-type, which was used in the thesis, was the PointCloudXYZRGB.
This special point cloud was used in the colorization process. Besides the X,Y and Z
coordinates, the RGB values from 0 to 255 are stored for each point.
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5 Introduction of Normal Estimation Methods

To be able to calculate the areas of interest, whether using the Gauss or the Mean
Curvature algorithms, the normals of the point clouds have to be computed in advance.
When the normals are precomputed with the PCL normal estimation methods, the
run-time of the colorization is sped up. In the following sections the di�erent normal-
estimation methods, which were used with the Kinect point clouds, will be introduced.

5.1 Simple Normal Estimation

For the comparison of normal estimation methods the most basic should not be
skipped. The normal estimation used computes the surface normals directly from the
point cloud. The basic idea behind the estimation of the normal here is, that a normal
is estimated on the tangent plane of the underlying surface [PCL14c]. Figure 6 shows
a tangent plane on a curved surface with the normal N and the tangent vectors v and
u.

Fig. 6: The tangent plane (blue) lies on a curved surface with the normal of N and the
di�erent tangent vectors v and u source [c]

A tangent plane is de�ned as follows: Let (x0, y0) be any point of a surface function

z = f(x, y). (2)

Then the surface has a non tangent plane at (xO, yO) with the equation:

Z = f(xO, yO) + fx(xO, yO)(x− xO) + fy(xO, yO)(y − yO) (3)
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[SHN09] shows, how the normal estimation can hereby be broken down into a covari-
ance matrix analysis of its eigenvectors and values, considering the nearest neighbors.
The resulting covariance matrix is:

C =
1

k

k∑
i=1

(pi − p̄) ∗ (pi − p̄)T (4)

where
C ∗ −→vj = λj ∗ −→vj : j ∈ {0, 1, 2} (5)

k are the number of neighbors, which are in the neighborhood of pi. The centroid p is
the centroid, which is formed around the area of the nearest neighbors. λj is the j-th
eigenvalue of the covariance matrix vj of the h-th eigenvalue. In order to allow fully
understand what will be done, the de�nitions of the eigenvector and eigenvalue will
be introduced.

If V is a vectorspace over scalar K and a linear transformation f : V → V exists, then
an eigenvector v 6= 0 of f exists, if there is a scalar λ in K such that f(v) = λ ∗ v.
The equation is called the �eigenvalue equation� of f and λ is the eigenvalue of f
corresponding to the eigenvector v [wik14a].

Searching for the nearest neighbors is the last thing, that is needed to compute the
normals. The search for the nearest neighbor is done using a K-D Tree.

A K-D tree is a k-dimensional tree, which organizes points in k-dimensional space
[KDT]. The basic search for a nearest neighbor is done as follows: Since the K-D Tree
is based on the binary space partitioning tree, it has multiple branches, which will be
visited in a recursive manner. Starting at the root node the algorithm moves down to
the branch to the �rst leave node. That leave node then is saved as the momentary
nearest neighbor. Then the parent node is visited. If the parent node is closer than the
current nearest neighbor, it is saved. This is done until the root node is reached. The
tree is build up on splitting planes and the algorithm checks, if there are any other
points, that are closer than the current nearest neighbor on the other side of the plane.
Finding the nearest neighbor has been optimized, such that the time complexity is in
O(logN), where N is the number of points in the point cloud. Considering all of the
above one �nal step has to be taken, if the normals are to be oriented in a consistent
way. If the viewpoint is known, the normals can be oriented towards the viewpoint. If
no viewpoint is known, the default point (0,0,0) will be used as the viewpoint.
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The resulting algorithm does the following;

Listing 1: Simple Normal Estimation

In{Point Cloud}
Out{Point Cloud with computed normals }

For{ each po int p in c loud P}{

1 . Ca l cu la t e the nea r e s t ne ighbors o f p .

2 . Compute the su r f a c e normal o f p .

3 . Check i f the normal i s c o n s i s t e n t l y
o r i en t ed toward the viewpoint .

}

For the algorithms the runtime was calculated with regards to the input cloud size
and the radius. The radius is computed from the pre-created K-D tree and is passed
to the normal computation. This information is available in cm. The scanned Object
consists of 307200 points. Table 1 shows these di�erent runtimes. These runtimes are
extremely high in comparison to the cloud size. As one can easily notice, the runtimes
increase tremendously with the radius of the nearest neighbor search. To emphasize
these runtimes, the three �gures 7,8,9 show the average, min and max runtimes for
their respective radius. As one can see, the di�erence in the max and min values seem
to be about the same percent for all radii.

Table 1: Simple Normal Estimation Runtimes [s]

Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
1 1,4880 1,4892 1,5067 1,5319 1,5028 1,5037
3 8,7910 8,6918 8,5493 8,5049 8,5514 8,6177
5 22,2429 22,4472 22,4941 22,2436 22,1929 22,3242
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Fig. 7: Simple Normal Estimation runtimes with 1 cm radius

Fig. 8: Simple Normal Estimation runtimes with 3 cm radius
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Fig. 9: Simple Normal Estimation runtimes with 5 cm radius

5.2 Parallelized Normal Estimation

Considering the results in table 1 a faster computation for normals must be found. To
speed up the normal estimation, the �rst idea is to use more computing power through
parallelization. With OpenMP (Open Multi-Processing) this is achievable. OpenMP
is an API (application programming interface) for shared memory processing. The
parallelization is based on multi-threading and parallel message passing [ope14]. PCL
provides a OpenMP implementation for the simple normal estimation algorithm. The
implementation apparently is able to speed up the normal estimation with a standard
set up of eight cores about six to 8 times [PCL14a]. However as table 2 shows, the
expected faster computation times were not nearly achieved. The object, on which
the parallelized implementation was tested, was the same as in the simple normal
estimation. The speci�cation shows a tuple (a, b), where a resembles the amount of
threads and b the radius (in cm) of the nearest neighbor search. The max, min and the
average values, have the same percentual di�erence as for the simple normal estimation.

Table 2 shows some aspects, which could not be accurate, since more threads should
result in faster computation times. This is due to the fact, that the input point clouds
are not nearly large enough for the multi-threading to reach its potential. The largest
point cloud, which was used, had 307200 points. This is the highest single image
resolution, which could be achieved through the used Kinect. It should be mentioned,
that all experimental data is taken directly form the camera and not manipulated
before computation.
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Table 2: Paralellized Simple Normal Estimation Runtimes [s]

Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
2,1 0,6787 0,6563 0,6621 0,6572 0,6550 0,6619
2,3 3,1321 3,1252 3,1374 3,1314 3,1372 3,1327
2,5 7,8661 7,8719 7,8750 7,880 7,9459 7,8878
4,1 0,6394 ,63905 0,6392 0,6492 0,6455 0,6425
4,3 3,1017 3,1013 3,0955 3,0930 3,1010 3,0985
4,5 7,8679 7,8774 7,8814 7,8810 7,8739 7,8763
6,1 0,6365 0,6444 0,6394 0,6415 0,6370 0,6397
6,3 3,0991 3,0967 3,0943 3,0954 3,0975 3,0967
6,5 7,8747 7,8724 7,8855 7,8971 7,8772 7,8814
8,1 0,6426 0,6354 0,6381 0,6425 0,6376 0,6392
8,3 3,1032 3,0835 3,0957 3,0936 3,0934 3,0939
8,5 7,8746 7,8840 7,8700 7,8816 7,8807 7,8782

5.3 Normal Estimation Using Integral Images

The simple normal estimation and the normal estimation using OMP are not able to
perform the normal computation in a manner, which could be referred to as �realtime�.
Considering the runtimes, which were achieved, even faster methods are needed. In
the following section 5.3.1 the normal estimation method �Normal Estimation Using
Integral Images� are introduced. In order to use any of the integral image estimation
methods, the input cloud may not have any non-assigned values. These are values,
which are created when �ltering the point cloud. To show how these values a�ect the
computation of an integral image, the basic structure of such has to be explained.

5.3.1 Introduction Integral Images An integral image (IO) of an image O is
the sum of all values in a certain region of O [SHN09] [Der07]. An integral image is
the same as a summed area table. The integral image is de�ned as

IO(m,n) =
m∑
i=0

N∑
j=0

O(i, j) (6)

whereO(0, 0) andO(m,n) create a rectangular area. In order to �nd any area inside the
integral image all that needs to be done, is to compute the corners of the rectangular
region of IO. This results in a runtime complexity of O(1) [Sou14].

The next step after computing the integral image is to apply a �lter to the input cloud
to reduce noise. Noise inside a point cloud are points, which are super�uous. The
process for reducing noise in a point cloud is called smoothing [NJM03]. When using
integral images the duration for smoothing is not dependent on the size of the area,
which is being �ltered. This is due to the fact, that no mater how large the area is,
the same amount of memory is needed to compute the integral image. Since no access
memory is needed for larger areas, di�erent indicators may be used to manipulate the
area of smoothing. One of the �rst ideas for indicators, that can be used for smoothing,
is the depth of a point. Choosing the depth as a smoothing factor is a logical choice,
since close objects have a better signal to noise ratio than objects, which are further
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away. The signal to noise ratio is a scienti�c measurement, which compares a signal
strength to the amount of background noise [wik14f].

The depth itself however is not su�cient enough. If one would only �lter according
to the depth values of a cloud, depth changes, which occur at object borders, would
also be �ltered. This in turn would result in bad normal estimations, since the surfaces
would be blurred. To �x this issue, Holzer, Rusu and Dixon propose to set the size
of the smoothing area in dependence on the depth changes, which occur in the area.
They then combine both, the depth and the depth change indicator, to produce a
�Smoothing Area Map�. Holzer, Rusu and Dixon approximated the following function
for their depth change factor with d being the depth value.

fDC(d) = α ∗ d2 (7)

In their results they proposed, that α should be approximately 0.0028. The smoothing
area map results as

β(m,n) = β ∗ fDC(D(m,n)) (8)

β is used to control the smoothing area size. D(m,n) is the resulting depth value.
Now a depth change indicator map could be computed with a threshold from the
previously computed depth map. A problem, which arises now, is that the threshold
would only hold to a speci�c depth. In order to have a dynamic threshold, which
applies to di�erent depths, Holzer, Rusu and Dixon create a �Binary Depth Change
Indication Map�, which uses a �depth change detection threshold�. The threshold is
dependent on the distance and is computed through the following:

tDC(d) = γ ∗ fDC(d) (9)

γ here is a factor, which de�nes the sensitivity of the depth change. Later the depth
change indication map is computed. Combining the depth change indication map C
and the smoothing area map B they compute a �nal smoothing area map R.

R(m,n) = min(B(m,n),
τ(m,n)√

(2)
(10)

Finally the normals are estimated with the help of the smoothed depth changes. The
normal vector is computed through the vectors of the left and right neighbors and the
vectors from the neighbors above and below the point. Calculating the cross product of
these two vectors results in the normal vector of the point. The vectors are smoothed
before the computation using the smoothing area map. This reduces the noise, but
keeps the boundaries of the objects in place. With the smoothed vectors the normals
are computed using the cross product like in the original normal computation, see
Holzer, Rusu and Dixon for more details.

5.3.2 Average 3D Gradient The Average 3D Gradient is another normal estima-
tion method based on integral images. In this case 6 integral images are needed. Three
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images are needed to compute the horizontal smoothed versions of the normals and
the other three images are needed to compute the vertical smoothed normals. The
computation is again the cross product between these two.

5.3.3 Average Depth Change The normal computation, using the Average Depth
change, creates only a single integral image. The normals are then computed from the
average depth changes in the neighborhood of the individual points.

5.3.4 Covariance Matrix To compute normals with the help of a covariance ma-
trix, the eigenvector of the matrix Cp of a point p have to be calculated. In order to
compute the covariance matrix a nearest neighbor search has to be done in prior to
calculating the eigenvectors. The neighborhood of a point p is found by computing
its nearest neighbors. This operation is expensive. Instead it is possible to compute
covariance matrices through integral images. The algorithm, which is described in the
work of Holzer, Rusu and Dixon, does the following: Nine integral images are needed;
IPX

, IPY
, IPZ

, IPXX , IPY Y , IPZZ , IPXY , IPXZ , IPY Y , IPY Z and IPZZ �Here IPAB is the
element-wise multiplication of IPA

and IPB
� [SHN09]. The resulting covariance matrix

results into:

Cp =

cxx cxy cxzcyx cyy cyz
czx czy czz

−
cxcy
cz

 ∗
cxcy
cz


where

cxx = s(IPxx,m, n,R(mn)) (11)

cxy, cyx = s(IPxy,m, n,R(mn)) (12)

... (13)

czz = s(IPzz,m, n,R(mn)) (14)

Then the eigenvector of the matrix is computed. The resulting eigenvector is the normal
in point p.
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6 Description of di�erent Curvature Estimation Methods

based on MLS

The next step after computing the normals of a point cloud is to compute the curvature
of the cloud. The curvature allows us to view critical points in the point cloud. Di�erent
types of curvatures will show di�erent aspects of the point cloud and enable di�erent
estimations on the same data set. The curvature is shown through di�erent color values,
which are implemented inside the curvature computation algorithms. The colorization
in the implementation and the resulting experiments are obtained using the MLS
(Moving-Least-Squares) curvature estimation algorithm within Meshlab.

6.1 MLS

For computing the Moving-Least-Squares of a point cloud, the input data must be
precomputed. This means, that the normals in each point have to be calculated prior
to running the MLS-Algorithm [YQ07]. Normals are needed, so that the orientation of
the underlying surface can be estimated. Colorization is dependent on the orientation
of the normals, since the di�erent colors determine how the curvature, in relation to the
object, is oriented. To get an estimation of the surface, the di�erent compositions need
to be calculated. To calculate these compositions, the eigenvectors of the covariance
matrix of a point are analyzed. In a 3-D point cloud a centroid is used to determine the
covariance matrix of a certain point. With the resulting three dimensional covariance
matrix the eigenvalues and eigenvectors can be obtained [Koc78].

C =
1

k

K∑
1

(pi − p̄) ∗ (pi − p̄)T , pi ∈ Np (15)

C is symmetrical and positive. Due to these facts, all eigenvalues are real. To obtain
the eigenvector the following formula has to be examined.

C ∗ vl = λ ∗ vl, l ∈ 0, 1, 2 (16)

Hereby λ is the eigenvalue of the eigenvector vl. Given that we compute the formula
for three values, three λ values will be obtained. Estimating the surface variations of
a point p in a neighborhood, n can be described by looking at the deviation from a
point p of the underlying tangent plane [PGK02].

C ∗ vl = λ ∗ vl, l ∈ 0, 1, 2 (17)

σn(p) =
λ0

λ0 + λ1 + λ2
(18)

All that the MLS has done till here is estimate the surface normals with the help of
an underlying surface, which was projected with the help of the covariance matrix and
its eigenvalues. The visualization of the curvature can now be calculated.
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6.1.1 Simple Curvature, K1 and K2 The simplest idea to measure the curvature
of a point is to measure, how the tangent line changes, when the point is moved toward
the neighboring points. This however is only applicable in R2. When computing curves
in R3 the normal curvature rely on a plane O. This plane has a surface normal U and
the tangent plane tp in a certain point p. Both the tangent tp and p have to reside inside
O. Now assuming that p is in R3, every tangent direction is assigned to the normal
curvature. The tangent direction is the direction, which the tangent vector can have
at a given point p [wik14b]. This is considered the normal curvature. The minimum
and maximum values of the normal curvature are the principal curvatures k1 and
k2. These can also be obtained using the �Weingartenmap�. The �Weingartenmap�
is based on the inner product space. This is a vectorspace with an inner product.
The inner product is the scalar product over the vectorspace and hereby provides all
computations for a pair of vectors in the given space. With this in mind, the shape
operator(Weingartenmap) Sx can be de�ned [wik14g].

(Sxv, w) = (δf(v), w) (19)

v and w are here the tangent vectors of point p.

6.1.2 Gaussian Curvature The eigenvalues of Sx result in the principal curvature.
After computing k1 and k2, the mean and Gaussian curvatures can be computed. The
Gaussian curvature K is the product of the principal curvatures K = k1∗k2. With the
help of the Gaussian curvature some analysis of the underlying object can be made. If
k1 ∗ k2 are greater than 0, the resulting Gaussian curvature is positive. If this is the
case, the underlying surface is elliptic. If k1 ∗ k2 are smaller than zero, the resulting
Gaussian curvature is negative. The underlying surface is hyperbolic. The last case has
a curvature of 0. This results when k1 ∗ k2 = 0. This can occur either at a parabolic
surface or when the surface is planar [DM99] [JP03] [Jia13]. Figure 10 below shows
three of the four di�erent cases.

Fig. 10: The �rst image shows a elliptic curvature, the second image shows a hyperbolic
curvature and the third image shows a parabolic curvature [a]
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6.1.3 Mean Curvature Computing the mean curvature also allows assumptions
about the underlying object. The mean curvature can be used to identify sudden
changes in the curvature of a surface or object.

Hereby the mean curvature H is calculated as follows:

H = 1/2 ∗ (k1 + k2) (20)
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7 Experimental Setup for the Pipeline

7.1 Installation Issues

In this thesis multiple examples where implemented and tested in order to �nd a
suitable work�ow, which �nally allows the analysis of point clouds. As mentioned
earlier, the experiments were all executed on a laptop with an i7 processor under
Ubuntu 12.04. To get the point cloud input, a Kinect 360 with the corresponding
openni drivers was used. As one might have already guessed, the experimental work�ow
is based on the following pattern as shown in �gure 11.

Fig. 11: The image shows the general work�ow of the pipeline. Starting with the scan-
ning of the image, computing the normals, computing the curvature, computing the
radii and �nally visualizing.

The �rst and major problem was installing and setting up of the environment, in order
to get some input data. The problems ran from wrong hardware, to di�cult to solve
software dependency issues, up to not functioning drivers. The systems, which were
tested, were Ubuntu 14.04 LTS, 13.10, 12.04 LTS, and Windows 7. Apart from the
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di�erent systems, three di�erent input drivers were installed and checked for compati-
bility. These included the openni driver, the freenect driver and the primesense driver
for Windows and Ubuntu. Furthermore two di�erent Kinects, the Kinect 360 and the
Microsoft Kinect, were used. With the di�erent operating systems, di�erent versions
of the ROS were also tested, as well as di�erent versions of the PCL. The �nal working
setup, which was used, was: Ubuntu 12.04 LTS, Kinect 360, ROS-Groovy, PCL-version
1.6 and Openni. With the setup at hand, the �rst idea was to use live data for all the
experiments. The problem with live data is the compatibility and conversions between
all the di�erent components, which were used. Live data was not possible to scan and
compute within ROS itself, since ROS has a close interaction with PCL and uses a lot
of its functionality. So live data was not an option and it was decided, that it would
be the best to run the experiments from saved data. The saved data was obtained by
scanning in and saving the point cloud directly to the pcd �le format. Then the pcd
�les were used for the di�erent experiments.

7.2 Di�erent Normal Estimations

The �rst experiment was the simple scanning and resizing of the point clouds. The
standardized point cloud has a size of 300000 points, which was to big to do the
computations on. This resulted from the limited amount of RAM capacity on the
experiment laptop. For the experiments the cloud was resized to 56850 and 811 points.
The objects were between scanned 0.5m and 4.5m away from the Kinect. The scanned
objects were saved for the next step. From here di�erent normal estimation methods
were implemented and tested on the saved point clouds. For the normalization the
basic setup was the same. At �rst was the loading of the pcd �le into the cloud. A K-D
tree was implemented for calculating the surrounding neighbors and then the di�erent
normalization methods followed. First of all was the simple normal estimation. The
di�erent runtimes are shown in the table 3. Here the object, which was used for the
normal estimation, consisted of 307000 points. The numbers in the speci�cation show
the radius in cm of the nearest neighbor search. As one can easily spot, there are large

Table 3: Simple Normal Estimation Runtimes [s]

Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
1 1,4880 1,4892 1,5067 1,5319 1,5028 1,5037
3 8,7910 8,6918 8,5493 8,5049 8,5514 8,6177
5 22,2429 22,4472 22,4941 22,2436 22,1929 22,3242

di�erences in the used radii. The runtime is dependent on the amount of neighbors,
which are used in the normal computation. The resulting normals are shown in pictures
12, 13 and 14. The best and most spread normals are achieved using the higher radii.
The lower the radii are, the more uneven the normals seem. This e�ect occurs especially
at the borders of the planes.
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Fig. 12: An armchair, which was down sampled to 2568 points. The image shows the
normals computed from a radius of 5cm.

Fig. 13: An armchair, which was down sampled to 2568 points. The image shows the
normals computed from a radius of 3cm.

Fig. 14: An armchair, which was down sampled to 2568 points. The image shows the
normals computed from a radius of 1cm.
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The second tested normal estimation method was the parallel implementation with the
OMP framework. Here the normal estimation is sped up according to the amount of
threads speci�ed in the program. The amount of threads, which were used, was depen-
dent on the hardware, it was run on. This limits the amount of possible threads, which
in this case was 8. For the usage of the comparison only even numbers of threads were
used. Table 4 shows the resulting runtimes. What one might notice immediately is,
that the runtimes do not seem to be faster the more cores are participating in the com-
putation. This results from the size of the used point cloud. The largest point cloud,
that was analyzed, had 307200 points. To e�ciently use the parallel computation, the
point cloud size would have to be much larger. For parallelization the multi-threading
has to go through the K-D tree for each point and assign each point normal compu-
tation to a thread. The passage through the K-D tree takes more time in comparison
to the normal computation, when the point cloud size is relatively small. The table
4 should be read as follows: Speci�cation shows a tuple (a, b), where a resembles the
amount of threads and b the radius (in cm) of the nearest neighbor search.

Table 4: Multithreaded Normal Estimation Runtimes [s]

Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
2,1 0,6787 0,6563 0,6621 0,6572 0,6550 0,6619
2,3 3,1321 3,1252 3,1374 3,1314 3,1372 3,1327
2,5 7,8661 7,8719 7,8750 7,880 7,9459 7,8878
4,1 0,6394 ,63905 0,6392 0,6492 0,6455 0,6425
4,3 3,1017 3,1013 3,0955 3,0930 3,1010 3,0985
4,5 7,8679 7,8774 7,8814 7,8810 7,8739 7,8763
6,1 0,6365 0,6444 0,6394 0,6415 0,6370 0,6397
6,3 3,0991 3,0967 3,0943 3,0954 3,0975 3,0967
6,5 7,8747 7,8724 7,8855 7,8971 7,8772 7,8814
8,1 0,6426 0,6354 0,6381 0,6425 0,6376 0,6392
8,3 3,1032 3,0835 3,0957 3,0936 3,0934 3,0939
8,5 7,8746 7,8840 7,8700 7,8816 7,8807 7,8782

What immediately comes to mind, when taking a look at table 4, is, that the compu-
tation times for larger radii take more than one second. In order to create a pipeline,
which allows the analysis of the point cloud, faster computation times for the normal
estimations are needed. For the experiments the next step was the down sampling of
the point clouds. This was done through a voxel grid �lter. The voxel grid �lter is part
of the PCL and works as follows: The voxel grid consists of small 3-D boxes, which are
placed on the point cloud. These boxes have a certain size, which can be speci�ed inside
the implementation. All the points, which are inside one of the voxel grid elements, are
merged into one at the center of the box. This reduces the amount of points inside the
point cloud. This is su�cient for the simple normal estimation. With the voxel grid
two smaller input point clouds were created. The �rst is the CameraExampleScan.pcd,
which consists of 56850 Points, and the second is the CameraExampleScan1000.pcd,
which consists only of 811 Points. To receive an idea of the di�erence in the point
cloud, �gure 15 shows the three di�erent sizes in comparison from left to right, with
left being the densest and right being the loosest point cloud.
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Fig. 15: From left to right: Cloud with 307200 points, the same cloud down sampled
to 43937 points and the cloud down sampled to 2658 points

The runtime comparison was done with these down sampled point clouds as well. First
the simple normal estimation was tested to see, if the improvements were su�cient
enough. The table 5 shows the runtime of the simple normal estimation on two di�erent
down sampled clouds. CES.pcd consists of 56850 points, while CES100 consists of only
811 points.

Table 5: Simple Normal Estimation Runtimes [s] Comparison With Down Sampled
Cloud

Object Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
CES.pcd 1 cm 0,14383 0,1428 0,1444 0,1422 0,1413 0,1429
CES.pcd 3 cm 0,3376 0,3360 0,3353 0,3398 0,3470 0,3391
CES.pcd 5 cm 0,7497 0,7497 0,7571 0,7756 0,7840 0,7632

CES1000.pcd 1 cm 0,0015 0,0015 0,0015 0,0015 0,0016 0,0015
CES1000.pcd 3 cm 0,0015 0,0015 0,0018 0,0015 0,0016 0,0016
CES1000.pcd 5 cm 0,0015 0,0018 0,0019 0,0016 0,0016 0,0017

With the down sampled point clouds the runtimes were sped up, so that the resulting
normal estimations took less than 1 second. However the larger radii still took too much
time to be used for �Realtime�. The logical next step was to try the multi-threaded
approach on the down sampled point clouds. The tables 6 and 7 show the results of the
multi-threaded approaches on both down sampled point clouds. The initial acceleration
in speed, is increased just like in the none down sampled case. But the increase o�
multiple processors did not change the results, since the point clouds contain even
less points, and the multithreading can not e�ciently use its potential. The following
tables 6 and 7 show the runtimes for both down sampled point clouds with di�erent
amounts of threads. Table 6 shows the resulting runtimes from a point cloud with
56800 points. Table 7 shows the runtimes from a point cloud with 811 points. The
speci�cation shows a tuple (a, b), where a resembles the amount of threads and b the
radius (in cm) of the nearest neighbor search.

The tables 6 abd 7 only show the runtimes, but to make a serious statement, the
resulting normals have to be analyzed. To compare the normal estimations, the pictures
have to be analyzed. Image 18 shows the normals computed with the radius of 5 cm.
The error rate within this picture is low enough, so that, if it would be used for further
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Table 6: Multithreaded Runtimes [s] On Down Sampled Cloud With 56800 Points

Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
2,1 0,0869 0,0856 0,0887 0,0885 0,0771 0,0854
2,3 0,1504 0,1522 0,1544 0,1577 0,1566 0,1543
2,5 0,2941 0,2890 0,2872 0,2855 0,2907 0,2893
4,1 0,0795 0,0824 0,0787 0,0784 0,0770 0,0792
4,3 0,1525 0,1570 0,1611 0,1531 0,1605 0,1568
4,5 0,2944 0,2877 0,2927 0,2912 0,2930 0,2918
6,1 0,0773 0,0819 0,0766 0,0772 0,0803 0,0787
6,3 0,1529 0,1500 0,1508 0,1505 0,1479 0,1504
6,5 0,2809 0,2805 0,2782 0,2770 0,2829 0,2799
8,1 0,0877 0,0771 0,0845 0,0736 0,0764 0,0798
8,3 0,1512 0,1547 0,1504 0,1507 0,1495 0,1513
8,5 0,2829 0,2880 0,2806 0,2821 0,2825 0,2832

Table 7: Multi-threaded Runtimes [s] On Down Sampled Cloud With 811 Points

Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
2,1 cm Radius 0,0161 0,0151 0,0161 0,014108775 0,0060 0,0135
2,3 cm Radius 0,0153 0,0145 0,0077 0,018163271 0,0131 0,0138
2,5 cm Radius 0,0083 0,0173 0,0105 0,013787366 0,0144 0,0128
4,1 cm Radius 0,0166 0,0158 0,0183 0,016355505 0,0175 0,0169
4,3 cm Radius 0,0131 0,0131 0,0106 0,014974114 0,0126 0,0129
4,5 cm Radius 0,0099 0,0077 0,0141 0,02062239 0,0087 0,0122
6,1 cm Radius 0,0149 0,0136 0,0126 0,012617526 0,0125 0,0132
6,3 cm Radius 0,0110 0,0136 0,0155 0,009134126 0,0146 0,0128
6,5 cm Radius 0,0137 0,0150 0,0154 0,013340522 0,0147 0,0144
8,1 cm Radius 0,0075 0,0101 0,0119 0,008896383 0,0150 0,0107
8,3 cm Radius 0,0189 0,0112 0,0110 0,015349163 0,0160 0,0145
8,5 cm Radius 0,0112 0,0072 0,0136 0,015719037 0,0138 0,0123
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computation, the results would be satisfying. Image 16 shows the normals computed
with the radius of 3 cm. Here one can already see, that there are a few areas, where
the normals are not consistently oriented. This is due to the fact, that the error occurs
in a region, where there are not enough points inside the neighborhood (3cm). Hence
resulting in false computations. Image 17 shows a chaotic normal distribution. The
points in the image are to far apart, so that the chosen radius �nds only few neighbors
to compute the surface on. Due to the point scarcity in comparison to the radius, the
normal estimation with this radius can not be used for further computation. Images
16 and 18 show normal computations for the point cloud, which were computed with
larger radii.

Fig. 16: The sideview of an armchair, which was down sampled to 2568 points. The
image shows the normals computed from a radius of 3cm. The orientation here is not
that well structured in low point density areas.
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Fig. 17: The sideview of an armchair, which was down sampled to 2568 points. The
image shows the normals computed from a radius of 1cm. The orientation of the
normals does not allow further computations, due to the chaotic distribution of the
di�erent normals.

What can be seen here is, if one was to use only normals with a small radius, the spread
and accuracy of the normals in critical areas would not be good enough to conduct
further computations. However the next step in the pipeline is the computation of the
MLS. If the MLS should compute an accurate curvature, the precomputed normals
can not have to many wrong vertex normals. Due to this fact other normal estimation
methods have to be used. Another normal estimation method, which is provided within
the PCL, are the methods, which are all based on integral images. Integral images are
described in section 5.3. The integral image can only be computed from point clouds,
where the values are ordered. This means, that no down sampling can take place. Down
sampling reduces the three-dimensional array of the point cloud into a two-dimensional
array. The integrity of the points is lost, when down sampled, thus not allowing the
normal computation with integral images on down sampled clouds.
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Fig. 18: The sideview of an armchair, which was down sampled to 2568 points. The
image shows the normals computed from a radius of 5cm. The orientation of the
normals here are structured and can be used for further computation.

The table 8 shows the normal computation using integral images with di�erent speci-
�cations.

Table 8: Normal Estimation Runtimes [s] Using Integral Images

Speci�cation First Run Second Run Third Run Fourth Run Fifth Run Avg Runtime
Average 3d Gradient 0,0497 0,0490 0,0484 0,0486 0,0492 0,0490
Simple 3d Gradient 0,0535 0,0534 0,0532 0,0538 0,0536 0,0535

Average Depth Change 0,0679 0,0679 0,0683 0,0676 0,0716 0,0686
Covariance Matrix 0,1029 0,1035 0,1030 0,1027 0,1031 0,1030

When comparing these to the simple normal estimation you can see a tremendous
lowering of the computation time. Especially, when looking at the larger radii, the
computation with the integral images is superior to the normal and even the multi-
threaded normal estimation. The normal estimation, which uses the covariance matrix,
takes twice as long. However the covariance matrix provides better results than the
other estimation methods. Even though the runtime was higher, it was still in an area,
where a possible �realtime� computation could be achieved. Figure 19 shows the the
average, max and min runtimes of the di�erent normal estimation methods based on
integral images. As you can see the di�erence between the covariance method, and the
other methods is close to double. However the speed up in comparison to the simple
normal estimation is signi�cant.
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Fig. 19: The image shows a table of the di�erent average, max and min runtimes of
the normal estimations based on integral images.

The image 20 shows the synthetic bunny. The di�erent normal estimations were also
used on this mesh. In �gure 20 the �rst picture shows the down sampled bunny point
cloud. Here you might notice, that the bunny seems to be black. This results from the
scale of the bunny. The normals are computed on the point set, but the bunny is to
small, so the normals are all inverted. The second picture shows the inverted normals
of the bunny. The distribution here shows, that the algorithms also work at very small
scale. Since the inverted normals were used here to demonstrate the distribution of

Fig. 20: The �gure shows a bunny point cloud. The bunny to the left, shows the bunny
with its inverted normals.

the normals on synthetic objects, the original �le should not be forgotten. Figure 21
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is a magni�ed picture of the bunny. The normals here are all facing inwards, however
the distribution is very accurate and allows further calculations.

Fig. 21: The �gure shows a cut through the bunny. The normals which can be seen
here, are the normals directly after computation. These normals are facing inward due
to the fact, that the bunny is to small to use a normal estimation method based on
the distance between the points. The normals have to be inverted to be facing away
and outward from the bunny.
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7.3 Conversion and Colorization

Having found a normal estimation, which satis�ed the needs for the pipeline, the next
step was computing the curvature of the point clouds. In order to do so, we used the
MLS algorithm, which was introduced earlier in section 6.1[GGG08]. The point clouds
with normals were provided as a pcd �le. Since it was decided, that the MLS from
Meshlab could be used, the conversion between the pcd and ply �le was needed. This
was achieved by calling the conversion inside the main pipeline and did not create
a problem. After the conversion, a mlx script was used to access the meshlabserver
to and compute the curvature. For our experiments it was su�cient enough to use
the standardized parameters for all curvature estimations. The point cloud with the
curvature colors was saved as a ply �le and had to be converted back to a pcd �le
for further computation. This computation was needed, because further computations
were done using ROS. After calling two conversions and colorizations the work�ow
can proceed to the next step. Figure 22 shows two di�erent curvatures, which were
calculated from the normals. The input cloud here was the down sampled armchair
with already precalculated normals. This can be seen very well in the �rst image.
The second image shows the mean curvature, which was calculated from the normals.
Third is the Gaussian curvature. The di�erent types of curvature can be used inside
the pipeline, enabling di�erent critical area analysis.

Fig. 22: From left to right: image with the calculated normals, image with the mean
curvature, image with the Gaussian curvature
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7.4 Computing Areas of Interest and Visualization

The standardized visualizer, which comes with ROS, is Rviz. Rviz is able to directly
listen on topics independent of the underlying �le format of the cloud. This made
it extremely practical for �rst scanning and then analyzing the point clouds. When
scanning the point clouds, Rviz can subscribe directly to the input topic to visualize
the depth data from the Kinect. This allows the user to e�ciently scan, what is needed.
Resulting from this are numerous implementations for �ltering, which were tested to
receive the optimal results for the input cloud data. One of the implementations uses
the axis-�ltering to create an area of focus. The input data is �ltered at the x-axis
and passed to the next topics, where it is �ltered at the y- and z-axis. The result is
a cubic area, where all points, which lie within the area, are saved and the rest are
discarded. Such �ltering allows the user to create areas of focus for further analysis.
The main goal of the experiments however was to analyze and visualize the points for
critical areas. These areas of course are computed with the curvature, but are of no use
without the proper visualization. With Rviz there was already a very powerful tool to
visualize the incoming data. The incoming data however was not very useful, since one
is not able to analyze the critical points. For this a re computation of the points has to
be done. This re computation and re�tting was done in a separate topic, which Rviz
could subscribe to. From the color of the curvature di�erent spheres were computed in
order to show the critical areas. Since the di�erent point clouds vary in size and their
neighbors are at di�erent lengths, an integral shift function is included, so that the
visualization of the points is independent of the actual size of the point cloud. Hence
allowing di�erent point cloud sizes to be evaluated without having to change the area
of focus. Even though the mlx script allows multiple methods for colorizing curvature,
the evaluation of the points only required one algorithm.

Listing 2: Point Size Calculation

In{RGB Colors o f a Point }
Out{ rad iu s }

Step 1 : Compute min and max co l o r va lue s o f the input po int .

Step 2 : Convert RGB co l o r to HSV co l o r .

Step 3 : Adapt rad iu s based on the r e s u l t i n g HSV co l o r .

Step 4 : I n t e g r a l s h i f t to c r e a t e r a d i i whit in a c e r t a i n s i z e
th r e sho ld .

Step 5 : Return rad iu s

The algorithm reads the color of each point from the input cloud. In order to compute
the radius, the HSV model is used [wik14c]. The HSV is a color space, where the color
is only 1 value. The HSV model is based on the �hue�, the saturation and the value of
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the color. Since only the value of the color is necessary for the computation, the other
values are not needed. First the min and max values of the RGB have to be computed.
One of the preconditions for computing max and min values is that RGB ∈ {0, 1}.

MAX = max(R,G,B) (21)

and
MIN = min(R,G,B) (22)

After computing MIN and MAX four di�erent values must be calculated. If MIN and
MAX are the same, the resulting value is 0. This case is the simplest to test. The next
cases test for each max value. In the normal HSV model one starts with R and then
goes to G and B. In the �rst implementation of the colorization, the R and B values
were switched. This is due to the fact, that R would have the smallest hue and B would
have had the largest hue. The �rst visualization experiment was to show large values
for R. The resulting cases were implemented using the following functions:

max = B (23)

hue = 60 ∗ (0 +
G−R

max−min
) (24)

max = G (25)

hue = 60 ∗ (2 +
R−B

max−min
) (26)

max = R (27)

hue = 60 ∗ (4 +
G−B

max−min
) (28)

After the hue has been computed, the hue has to be changed from its values. Inside
the HSV model, the hue can range from 0◦to 360◦. The next step is to remove any hue,
that have a larger value than 240. When all hues have been calculated, they can be
normalized. Normalizing the hues reduces them form hue ∈ {0..240} to hue ∈ {0..1}.
The reduced hues could now be used to calculate the radii, but the smaller values
would not be noticeable in Rviz. To counter the loss of visual information, an integral
shift is used. An integral shift creates a new �eld, in which the value can possibly lie.
The standard formula for an integral shift works as follows:

Say the integral should be between the values a and b, then the resulting interval would
be written as [a, b]. Since the hue should only be able to take these integers as values,
the resulting hue would be calculated as:

hue = ((b− a) ∗ hue) + a (29)
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The standardized hue is then passed to the point as its input radius. Rviz however has
a di�erent method to visualize points. The method Rviz uses are called marker arrays.
�The Markers display allows programmatic addition of various primitive shapes to the
3D view by sending a visualization_msgsMarker or visualization_msgsMarkerArray
message� [ROS14a] The marker array basically creates small primitive shapes at the
position of the points, which it receives from its subscribed topic. The topic in our
pipeline has loaded the colorized pcd �le. For each point inside the cloud, a marker
is created. The marker receives the color and the position directly from the loaded
point cloud. The marker shape is set to be a simple sphere. Thus only needing the
radius and a point for it to be calculateable. When all the information is passed to
the marker, it is written inside the marker array, which is displayed in Rviz. The
resulting image can be seen in �gure 23. In this case the blue values are too small

Fig. 23: Armchair with crital points and radii computed with integral shifting

in relation to their importance. Recalling the Gaussian curvature from 6.1.2, red and
blue coloring show the critical points. Considering that the critical points are the focus
of the implementation, their size has to be adapted. This results in a slightly changed
implementation, where the hue is recalculated. The hue is still normalized, but is
ordered according to the di�erent values of RGB. The radii are then set accordingly.
The results can be seen in image 24. The largest radii are set for the blue and red
values. These are the critical points inside the scanned point cloud. The large yellow
colored points, are points, where the color values are able to occur on both sides of
the threshold, hence resulting in large and small yellow points.
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Fig. 24: Armchair with crital points with set radii for certain color values

8 Comparison

To show, that the resulting pipeline works with real and synthetic point clouds, two
images will be shown in comparison. One being the down sampled armchair with a
ball, and the other being a synthetic hippo. The armchair consists of about 3000 points
and the hippo of 8127. Figure 25 shows both point clouds. Considering the pipeline,

Fig. 25: Hippo point cloud and armchair point cloud

the normals in both point clouds have to be computed next. The resulting normal
estimations are shown in �gure 26, Even though the hippos normals are pointing
outward in this �gure, they are inverted. When examining the hippo closely, the hippo
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seems to have black points. This is due to the fact, that the back of the points are
on the outside. The non inverted normals would be harder to compare, since they
would be facing inward. With the computed normals both pictures are passed to the

Fig. 26: Hippo point cloud with normals and armchair point cloud with normals

meshlabserver, which computes the curvature from the precomputed normals. Figure
27 shows the Gaussian curvature for both images. These pictures show the colorized

Fig. 27: Hippo point cloud and armchair point cloud with the computed Gaussian
curvature for both.

point clouds. The colorized pictures are then converted back into the pcd �le format,
where they are passed to a ROS topic. The ROS topic computes the marker arrays
from the computed curvature and passes it to the ROS visualizer Rviz. The following
�gure 28 shows both the armchair and the hippo as marker arrays. Since the hippo is
relatively large, it is hard to check, if the algorithm worked. To show that the pipeline
works, a closeup of the a hippos ear is shown in �gure 29. As seen here, the point cloud
is analyzed with the help of the marker arrays. These now show a detailed visualization
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Fig. 28: Armchair and hippo with their critical points, with set radii for certain color
values

Fig. 29: This �gure shows the ear of the hippo with the adapted radii. These seem
small in comparison to the armchair because the hippo is much larger. However this
shows, that the pipeline works.

of the critical points in both point clouds. With these critical points di�erent structures
in the surfaces of the object can be detected. The borders of an object can be estimated
without having to save every detail about the object in advance.
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9 Future Work

The here implemented pipeline for critical point analysis in point clouds shows, that
it is possible to compute critical areas from a scanned point cloud with a Kinect.
In this thesis the computation of the critical areas was not done in realtime since a
few factors were missing: The �rst being the di�erent point types, which need to be
converted. In the pipeline more than 5 conversions had to be made. This results from
the di�erent ROS and PCL versions, but also from the di�erent point types in PCL
itself. The second factor was the time, which was needed to compute the normals.
The normal computation, based on the integral images, turned out to be fast enough
for point clouds with a maximum size of 307200 points. However these might not
be su�cient enough, when the point cloud size increases. The integral images also
have disadvantages, which might not appear directly. Integral images can only be
computed on non resized clouds. Any point cloud, that has unorganized points, can
not be computed with the integral image approach. If realtime data is to be used in the
future, faster normal estimation methods are needed, which also allow the computation
of normals on down sampled point clouds. Down sampling is another factor, where the
calculation speed has to be increased. The larger the point clouds are, the longer the
calculations need. However the algorithms, which can be used on down sampled point
clouds, still have to be found. When larger point clouds have to be computed, the
colorization speed has to be increased in order to compute the curvature in realtime.
When the camera is moved and we accept real data, the curvature computation has
to be fast enough to show it in the visualizer software. When these items are solved,
it should be possible to do the realtime curvature computation.
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10 Summary

In this thesis a pipeline for curvature based analysis of point clouds was introduced
and implemented. To receive an overall understanding of the technology, all the used
techniques were introduced and explained. Starting with the Kinect and how the point
clouds are scanned, over to the di�erent libraries and integrations, such as PCL and
ROS. With in this integration di�erent problems with the compatibility have been
detected. These problems were driver and compatibility problems, which were solved,
so that the pipeline can be used on any system with the same software and hardware.
Following the integration the di�erent normal estimations and the curvature compu-
tation with the means of MLS were shown. After the introduction the di�erent normal
estimation methods were compared and weighted against each other, to �nd the one,
that was most suitable for the pipeline. Finally the pipeline was implemented and
tested. In the comparison it was shown, how well the pipeline works with real and
synthetic data. Hereby it should again be mentioned, that the real size of the point
clouds matter to analyze these e�ciently. The hippo, that was used, was so large, that
an e�cient view on a certain area was not easy to achieve. With the help of curva-
ture computation, areas of interest can be integrated. This provides a better and more
robust method to compute areas of interest.
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11 Appendix

In order to use and understand some of the algorithms, that were mentioned in this
thesis, a few code fragments will be shown in order to deepen the understanding of the
pipeline. The �rst code fragment, which will be looked at brie�y, is the computation
of the max and min values for the colors. This is needed since the HSV color space
is used for calculating the radii. The HSV model allows the computation of a color
only with the value of the color. This enables the use of the color as indicators for
the radii. The code receives the color values of the input point. Then these values are
normalized, so that R,G,B ∈ 0..1 After the normalization the max and min values
are calculated.

Listing 3: Computation of max and min values for the HSV model transformation

f loat rm = cloud−>po in t s [ i ] . r ;
f loat gm = cloud−>po in t s [ i ] . g ;
f loat bm = cloud−>po in t s [ i ] . b ;
f loat R = (rm / 2 5 5 . 0 ) ;
f loat G = (gm / 25 5 . 0 ) ;
f loat B = (bm / 25 5 . 0 ) ;

f loat min = fmin (R, fmin (G,B) ) ;
f loat max = fmax (R, fmax (G,B) ) ;

After calculating the min and max values for the HSV model, the radii can be com-
puted.
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Listing 4: Computation of the radii

f loat hue = 0 . 0 ;

i f (min == max){
}
else i f (max == B){

hue = 60 ∗ (0+((G−R)/(max−min ) ) ) ;
}
else i f (max == G){

hue = 60 ∗ (2+((R−B)/(max−min ) ) ) ;
}
else {

hue = 60 ∗ (4+((B−G)/(max−min ) ) ) ;
}
i f ( hue < 0 . 0 ) {

hue = hue + 360 ;
}
i f ( hue > 240){

hue = hue ;
}

One might notice, that the hue computation in listing 4 is not the same as for the
standard HSV model. This is due to the fact, that the critical areas, which we want to
examine here, are red. If the original HSV transformation would be used, red would
be assigned the smallest values. This is, why in the code the red and blue cases are
switched. After the hue is calculated, all that is left, is the normalization of the hue.
This is done in listing 5

Listing 5: Computation of the radii

hue = hue / 360 . 0 ;
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Now the two di�erent cases for the radii computation will be shown. The �rst three
lines of code in listing 6 show the �rst colorization of Rviz marker arrays, which were
tested. Here the hue was transformed, so that the values were between 0.02 and 0.07.
This was done with the help of the integralshift function, which is called below. The
second case shows a case di�erentiation, where the hue is changed according to di�erent
hue values, which were obtained earlier.

Listing 6: Computation of the radii

f loat a = 0 . 0 2 ;
f loat b = 0 . 0 7 ;
hue = ( ( ( b−a )∗ hue ) + a ) ;

And

i f ( ( hue <0 . 1 ) | | ( hue >0.5)){
hue = 0 . 1 ;

}
else {

hue = 0 . 0 2 5 ;
}

These code fragments showed the math, which was behind the colorization and allow
a better understanding of what happens inside the visualization pipeline, aside from
the saving and transmorphing of point clouds.
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