
Privacy-aware Sharing of

Location Information

Von der Fakultät Informatik, Elektrotechnik und

Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Marius Alexander Wernke

aus Stuttgart

Hauptberichter: Prof. Dr. rer. nat. Dr. h.c. Kurt Rothermel

Mitberichter: Prof. Dr. Max Mühlhäuser

Tag der mündlichen Prüfung: 13.03.2015

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stuttgart

2015

Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Kurt Rothermel for

giving me the opportunity to accomplish my research in his group. His guidance

during the whole time of my research presented in this thesis was a key factor to

its success. Special thanks also go to Dr. Frank Dürr for supporting and helping

me during my research with many discussions and valuable feedback.

Furthermore, I want to thank Prof. Dr. Max Mühlhäuser for accepting the

task of the second referee.

While working in the Distributed Systems department at the University of

Stuttgart, many people supported me with discussions, comments, and valuable

suggestions to advance my research. Here, I would like to thank especially Beate

Ottenwälder, Dr. Andreas Grau, Dr. Ralph Lange, Patrick Baier, Damian Phil-

ipp, Gerald Georg Koch, Zohaib Riaz, Pavel Skvortsov, Lars Geiger, and Dr.

Boris Koldehofe.

I also would like to thank the Deutsche Forschungsgemeinschaft (DFG) for

their funding of the PriLoc project where the work presented in this thesis

belongs to.

Finally, I would like to thank my parents, my sister, and Ina Friedmann for

their continuous support while I was working on this thesis.

3

Contents

Abstract 15

Deutsche Zusammenfassung 17

1 Introduction 19

1.1 Contributions . 23

1.2 Structure of the Thesis . 25

2 Related Work 27

2.1 Location-based Applications . 27

2.1.1 Applications Relying on User Positions 28

2.1.2 Applications Relying on Movement Trajectories 29

2.2 System Model . 31

2.3 Location Management . 33

2.3.1 Management of Position Information 34

2.3.2 Management of Movement Trajectories 38

2.3.3 Access Control Management 39

2.4 Protection Goals . 39

2.4.1 Identity Information . 40

2.4.2 Spatial Information . 42

2.4.3 Temporal Information 42

2.5 Location Privacy Approaches 43

2.5.1 k -Anonymity . 43

2.5.2 Mix Zones . 46

5

Contents

2.5.3 Position Dummies . 46

2.5.4 Spatial Obfuscation . 47

2.5.5 Cryptography-based Approaches 50

2.5.6 Position Sharing . 51

2.6 Location Privacy Attacks . 51

2.6.1 Attacker Knowledge . 51

2.6.2 Classi�cation of Location Privacy Attacks 53

2.7 Classi�cation of Location Privacy Approaches 59

2.8 Our Approaches: Considered Attacks and Protection Goals . . . 62

2.9 Conclusion . 64

3 Protecting Position Information 65

3.1 Position Sharing based on Multi-Secret Sharing 65

3.1.1 Extended System Model 66

3.1.2 Problem Statement . 68

3.1.3 Geometric Position Sharing 69

3.1.4 Symbolic Position Sharing 84

3.1.5 Privacy Analysis . 88

3.1.6 Evaluation . 91

3.2 Position Sharing based on Binary Space Partitioning 96

3.2.1 Extended System Model 96

3.2.2 Problem Statement . 97

3.2.3 Position Sharing Approach 98

3.2.4 Privacy Analysis . 105

3.2.5 Evaluation . 107

3.3 Related Work . 110

3.4 Conclusion . 114

4 Protecting Movement Trajectories 117

4.1 Trajectory Fragmentation . 117

4.1.1 Extended System Model 118

4.1.2 Problem Statement . 119

6

Contents

4.1.3 Trajectory Fragmentation Algorithms 123

4.1.4 Privacy Analysis . 127

4.1.5 Evaluation . 135

4.1.6 Related Work . 136

4.2 Speed Protection . 137

4.2.1 Extended System Model 140

4.2.2 Problem Statement . 141

4.2.3 Speed Protection Algorithms 143

4.2.4 Privacy Analysis . 149

4.2.5 Evaluation . 151

4.2.6 Related Work . 158

4.3 Conclusion . 159

5 Conclusion and Outlook 161

5.1 Conclusion . 161

5.2 Outlook . 163

7

List of Figures

2.1 System model . 32

2.2 Range query and nearest neighbor query examples 35

2.3 Query processing . 37

2.4 Classi�cation of attacker knowledge and location privacy attacks 52

2.5 Location homogeneity attack . 54

2.6 Location distribution attack . 55

2.7 Map matching attack . 56

2.8 Region intersection attack . 57

2.9 Maximum movement boundary attack 58

3.1 System components . 67

3.2 Geometric area of p(π, l) . 70

3.3 Deterministic grid partitioning 71

3.4 PShare-GLM process overview 73

3.5 Maximum movement boundary attack 79

3.6 Map knowledge example . 81

3.7 Quadtree and e�ective area example 82

3.8 Example showing impact of child nodes 83

3.9 Location hierarchy example . 85

3.10 Successful updates for obfuscation areas of precision 2i[m] 93

3.11 Successful updates for obfuscation areas of precision 2i[m] 93

3.12 Performance evaluation of share generation 94

3.13 Performance evaluation of share combination 95

3.14 Re�nement example for p(π, 0) 99

9

List of Figures

3.15 Share generation overview for PShare-BSPopt 102

3.16 Share combination overview for PShare-BSPopt 102

3.17 Correlation of r-shares and r-keys in PShare-BSPopt 103

3.18 Performance evaluation of share generation 108

3.19 Performance evaluation of share combination 108

3.20 Position sharing based on vector addition 112

4.1 System components . 119

4.2 Road network graph and trajectory example 120

4.3 Di�erent information parts . 121

4.4 Calculation of ΦF (fj) . 122

4.5 City trajectory evaluation . 132

4.6 Highway trajectory evaluation 132

4.7 Minimum number of required LSs for the city trajectory 133

4.8 Minimum number of required LSs for the highway trajectory . . 133

4.9 Cumulated probability distribution of ANC 134

4.10 Cumulated probability distribution of AAC
MAP

. 135

4.11 Runtime performance evaluation 136

4.12 Position adjustment and temporal delay examples 144

4.13 Speed protection process overview 145

4.14 Example for SPA-PA . 147

4.15 Example for SPA-TD . 150

4.16 Speeding violation analysis . 152

4.17 Cumulative distribution of spatial inaccuracy 154

4.18 Cumulative distribution of temporal inaccuracy 155

4.19 Performance evaluation using time-based updates 156

4.20 Performance evaluation using distance-based updates 157

10

List of Tables

2.1 Protection goal examples . 41

2.2 Classi�cation of location privacy approaches 60

2.3 Classi�cation of the concepts presented in this thesis 63

3.1 Position update classi�cation . 92

3.2 Comparison of position sharing approaches 116

11

List of Abbreviations

AC Adjacent fragment Correlation

ATM Automated Teller Machine

BSP Binary Space Partitioning

CPU Central Processing Unit

DFG Deutsche Forschungsgemeinschaft

FNR-tree Fixed Network Range-tree

GLM Geometric Location Model

GPS Global Positioning System

HTC High-Tech Computer

ID Identi�er

IP Internet Protocol

LBAC Location-Based Access Control

LBA Location-Based Application

LS Location Server

LTE Long-Term Evolution

MO Mobile Object

NL Network Load

NSA National Security Agency

NC No fragment Correlation

PA Position Adjustment

PC Personal Computer

PIR Private Information Retrieval

Probe Privacy Preserving Obfuscation Environment

R-tree Range-tree

13

RSG Random Share Generation

SLM Symbolic Location Model

SMI Statistical Movement Information

STR-tree Spatio-Temporal Range-tree

TB-tree Trajectory-Bundle-tree

TCP Transmission Control Protocol

TD Temporal Delay

TFA Trajectory Fragmentation Algorithm

TLS Transport Layer Security

TTP Trusted Third Party

UMTS Universal Mobile Telecommunications System

UTM Universal Transverse Mercator

14

Abstract

Location-based applications such as Foursquare, Glympse, or Waze attract mil-

lions of users by implementing points of interest �nders, geosocial networking,

trajectory sharing, or real-time tra�c monitoring. An essential requirement for

these applications is the knowledge of user location information, i.e., the user's

position or his movement trajectory. Location-based applications typically act as

clients to a location service, which manages mobile object location information

in a scalable fashion and provides various clients with this information.

However, sharing location information raises user privacy concerns, especially

if location service providers are not fully trustworthy and user location infor-

mation can be exposed. For instance, an attacker successfully compromising a

location service may misuse the revealed location information for stalking, mug-

ging, or to derive personal user information like habits, preferences, or interests

of the user. Driven by the increasing number of reported incidents where service

providers did not succeed in protecting private user information adequately, user

privacy concerns are further intensi�ed.

Therefore, we present novel approaches protecting user location privacy when

sharing location information without assuming location service providers to be

fully trustworthy. To protect user position information, we present our position

sharing concept. Position sharing allows to reveal only positions of decreased

precision to di�erent location services, while clients can query position shares

from di�erent location services to increase precision. To protect movement tra-

jectories, we introduce our trajectory fragmentation approach and an approach

protecting the speed information of movement trajectories.

15

Deutsche Zusammenfassung

Heutzutage sind Informationen über die Positionen mobiler Benutzer von we-

sentlicher Bedeutung für ortsbezogene Anwendungen. Weitläu�g bekannte An-

wendungen sind beispielsweise Suchdienste für interessante Orte, die Benutzer

beim Au�nden von Restaurants, Tankstellen oder Geldautomaten in ihrer Um-

gebung unterstützen. Andere weit verbreitete Anwendungen sind beispielsweise

Verkehrsinformationssysteme, die ihre Verkehrs�ussinformationen aus den er-

fassten Bewegungstrajektorien der Benutzer ableiten. Des Weiteren werden Lo-

kationsinformationen heutzutage in nahezu jedem sozialen Netzwerk verwendet,

sodass Benutzer ihren Aufenthaltsort mit Freunden teilen können.

Ortsbezogene Anwendungen verwenden gewöhnlicherweise Lokationsdienste,

um eine skalierbare Verwaltung der Lokationsinformationen der Benutzer zu ge-

währleisten. Der Lokationsdienst kann hierbei entweder ein integraler Bestand-

teil der Infrastruktur des Anbieters der ortsbezogenen Anwendung sein oder von

einem externen Dienstanbieter bereitgestellt werden. Sobald ein Benutzer einem

Lokationsdienst genaue Lokationsinformationen übermittelt, besteht allerdings

die Gefahr, dass diese Informationen missbraucht werden. Dies kann durch den

Anbieter des Lokationsdienstes selbst erfolgen oder durch einen Angreifer, der

sich Zugang zu den Daten des Lokationsdienstes bescha�en konnte. Aufgrund

dieser Tatsache und der zunehmenden Anzahl an Vorfällen, bei denen Dienstan-

bieter persönliche Daten ihrer Benutzer nicht vor dem unberechtigten Zugri�

Dritter schützen konnten, sollten Dienstanbieter nicht als uneingeschränkt ver-

trauenswürdig betrachtet werden. Um die Privatheit eines Benutzers zu gewähr-

leisten, sind Mechanismen zum Schutz von Lokationsinformationen notwendig,

die nicht von der Vertrauenswürdigkeit des Lokationsdienstes abhängen.

17

Deutsche Zusammenfassung

In dieser Dissertation wird hierzu eine Klassi�zierung bestehender Konzepte

zum Schutz von Lokationsinformationen sowie möglicher Angri�e dargestellt.

Anschlieÿend wird ein neues Position Sharing Konzept zum Schutz von Positi-

onsinformationen vorgestellt, welches nicht auf die Vertrauenswürdigkeit eines

Lokationsdienstes angewiesen ist. Beim Position Sharing werden genaue Positi-

onsinformationen in sogenannte Shares beschränkter Genauigkeit aufgeteilt und

anschlieÿend auf mehrere Lokationsdienste unterschiedlicher Betreiber verteilt.

Jeder Lokationsdienst verwaltet somit nur Positionsinformationen beschränkter

bzw. degradierter Genauigkeit und kann höchstens Positionsinformationen mit

der zugehörigen Genauigkeit o�enlegen. Durch die Zusammenführung mehrerer

Shares ist es allerdings möglich, dass Positionen wohlde�nierter Genauigkeit wie-

derhergestellt werden. Zur Realisierung des Position Sharing Konzeptes werden

unterschiedliche Ansätze vorgestellt und hinsichtlich ihrer Sicherheit analysiert.

Neben dem Schutz von Positionsinformationen werden Mechanismen zum

Schutz von Bewegungstrajektorien untersucht. Hierbei wird insbesondere ein

neues Verfahren vorgestellt, welches die Bewegungstrajektorie eines Benutzers

in kleinere, wohlde�nierte Abschnitte aufteilt und diese auf unterschiedliche Lo-

kationsdienste verteilt. Dieses Verfahren besitzt den Vorteil, dass ein Lokati-

onsdienst nur einen bestimmten Teil anstelle der gesamten Bewegungstrajek-

torie des Benutzers o�enlegen kann. Abschieÿend werden Mechanismen zum

Schutz der Geschwindigkeitsinformation von Bewegungstrajektorien vorgestellt.

Hierbei wird die Geschwindigkeit der an den Lokationsdienst übermittelten Be-

wegungstrajektorien an die jeweils erlaubte Höchstgeschwindigkeit angepasst.

Die vorgestellten Mechanismen verhindern somit, dass Benutzern aufgrund einer

unbeabsichtigten Geschwindigkeitsübertretung monetäre oder rechtliche Konse-

quenzen drohen, falls die vom Lokationsdienst gespeicherte Bewegungstrajekto-

rie des Benutzers o�engelegt wird. Der Schutz der Geschwindigkeitsinformation

stellt somit einen wichtigen Bestandteil für die Akzeptanz von neuen ortsbezo-

genen Anwendungen dar.

18

1 Introduction

Nowadays, the number of available mobile devices such as smartphones, tablets,

and portable PCs is increasing tremendously. In 2013, more than one billion

smartphones were sold [Pre14]. Compared to 2012, the number of shipped smart-

phones increased by 38.4%, showing the increasing availability of mobile devices.

Current state of the art smartphones like the iPhone [App14b] or Google An-

droid phones [Goo14a] provide integrated positioning sensors, for instance, for

the global positioning system (GPS). Based on these sensors, users can obtain

their geographical position from their mobile device. In combination with cheap

�at rates for Internet access and a widespread availability of powerful mobile

communication technologies like UMTS or LTE, the widespread availability of

positioning sensors on mobile devices paved the way for location-based applica-

tions (LBAs) entering people's daily life and attracting millions of users today.

Generally, LBAs rely on geographical location information and can be classi-

�ed into three di�erent classes [GL04]:

The �rst class refers to position-aware applications, for instance, navigation

systems using the position of the user only locally on the user's mobile device.

The second class refers to LBAs focusing on sporadic queries, where users

share their geographic position with a service provider in order to �nd, for in-

stance, a certain point of interest next to the geographic position of the user.

Typical examples of LBAs relying on sporadic queries include points of interest

�nders, friend �nders, and geosocial networks. These LBAs have in common

that they rely on the knowledge of a single user position to provide their service

answering location-based queries. For instance, points of interest �nders such as

Yelp [Yel14] help users to �nd the next ATM, the next bus station, or the next

19

1 Introduction

Chinese restaurant based on their current position. Friend �nders such as Find

My Friends [App14a] notify users about geographically close friends and keep

friends informed about current activities of the user. Finally, LBAs implement-

ing geosocial networking allow users for �checking-in� to di�erent locations, e.g.,

to restaurants, bars, or certain points of interest, to document their presence

and to share their current position with friends. Nowadays, one of the most

prominent geosocial networks is Foursquare [Fou14b] having a community of

more than 45 million users [Fou14c].

The third class of LBAs refers to location tracking applications, which re-

quire the knowledge of the user's movement trajectory de�ning the position

of the user over time. Typical examples for this class of LBAs are applica-

tions for sharing movement trajectories and real-time tra�c monitoring. LBAs

for sharing hiking trails, jogging paths, and bike trips record the user's move-

ment trajectory over time and allow for trajectory sharing with friends and

to analyze the traveled path, the traveled distance, or the burned calories of

the user [Map14]. Furthermore, applications for real-time tra�c monitoring as

provided by Google [Goo14b] or TomTom [Tom14] allow users to adapt their

routes based on real-time tra�c information. One of the most prominent LBA

combining real-time tra�c monitoring with trajectory sharing is Waze [Waz14],

implementing a community-based tra�c and navigation application where users

share real-time road and tra�c information. Users of Waze notify each other

about car accidents, tra�c jams, approaching police checkpoints, and further

relevant information. The high attractiveness of Waze is re�ected by the fact

that more than 50 million users are currently using Waze [FR13]. Since Google

acquired Waze in June 2013 for more than 1.1 billion dollars [Efr13], even more

users are joining Waze.

As shown by these examples, LBAs relying on the knowledge of user positions

and movement trajectories are getting huge attention and help users to facilitate

their daily life. Since most LBAs today belong to the second or the third class

of applications, we further focus on these two classes.

Often, LBAs make use of so-called location services, which manage mobile

20

object positions and allow for position sharing between the users of one or more

applications. Mobile objects inform the corresponding location service about

their current position, while clients of this service can query location informa-

tion by means of position, range, or nearest neighbor queries. Location services

provide access control mechanisms allowing users whose location information is

managed by the location service to de�ne who can access their location infor-

mation with which granularity. An e�cient and e�ective location service is a

prerequisite for most of today's LBAs, which might be either a public location

service as o�ered today in the Internet by Geoloqi [Ins14b], or an �LBA internal�

location service as used in Google's geosocial network Google Plus [Goo14c] inte-

grating the former public location service Google Latitude. Most of the provided

access control mechanisms assume that the location service is fully trusted and

hence will ensure that location information is only exposed to legitimate clients.

While sharing of location information is a highly desirable feature from an

application's point of view, it gives rise to severe privacy concerns. For instance,

Krumm [Kru07] showed that identifying user home locations is possible by an-

alyzing movement trajectories. Referring to Golle and Partridge [GP09], even

home and work locations of users can be reconstructed. Furthermore, the Web-

root survey [Web10] showed that 55% of the 1.500 participants using LBAs were

worried about losing their privacy. In case an attacker gets access to the position

information or the movement trajectories a user provided to a location service,

the attacker may derive in addition to the user's home and work location also

other sensitive information of the user by analyzing the revealed data. For in-

stance, checking-in to a bar or a night club late at night may reveal information

about the user's personal preferences and habits [CCW+12]. By checking-in to

di�erent places, users may reveal to be not at home such that an attacker may

use this information to �nd empty homes for burglaries [FRVM+10]. Even with-

out explicitly checking-in to a certain location, movement trajectories leading

to cardiology clinics, hospitals, churches, etc., may reveal information the user

is not willing to share, such as information about his health situation or his po-

litical and religious a�liations [GKdPC10]. In [BE09], Blumberg and Eckersley

21

1 Introduction

present further examples of sensitive personal information that can be derived

from user movement trajectories.

These privacy concerns are further intensi�ed by many reported cases from

the past, where even service providers that were supposed to be trustworthy

�lost� or leaked private user information. For instance, in 2004, an employee

of a big online company has stolen 92 million personal records of company

members and sold the records afterwards [KV04]. In 2008, a German tele-

phone company lost a disk storing the personal information of 17 million cus-

tomers [Say08]. In 2009, attackers broke into the credit card system of a leading

payment processor in the United States and stole more than 130 million credit

card numbers [Pil09, Aco09]. All these examples show that the number of se-

curity breaches where an attacker could get access to the infrastructure of a

service provider and steal personal user data is increasing tremendously. Fur-

thermore, service providers that were assumed to be trusted misused personal

data of their customers. For example, the service provider of a popular music

identi�cation service from England sent until 2014 private user data secretly

to di�erent advertising portals [Hol14]. In addition to the presented examples,

the revealed information about the Prism and Tempora projects of the National

Security Agency (NSA) �nally raises the question whether users can trust any

service provider storing and managing personal user data. As a consequence,

assuming location services to be fully trustworthy is at least questionable.

Driven by the justi�ed doubts that location services are fully trustworthy, lo-

cation privacy mechanisms are required to protect user position information and

movement trajectories when sharing location information. Especially, privacy-

aware sharing of position information must be possible even in the absence of

trusted services providers. Therefore, we tackle the location privacy problem

in this thesis to allow for privacy-aware sharing of location information in a

non-trusted system environment of location services and clients.

In the next section, we present the contributions of this thesis before giving

an overview of its remaining structure.

22

1.1 Contributions

1.1 Contributions

In this thesis, we provide the following contributions to allow for privacy-aware

sharing of location information:

Classi�cation of Location Privacy Approaches: We systematically assess the

robustness of existing privacy approaches protecting user location infor-

mation. We compare the approaches based on the user's protection goal

and provide a classi�cation of existing location privacy approaches taking

the identi�ed goals and di�erent attacks into account.

Position Sharing Concept: We propose a novel concept for sharing positions

using non-trusted server infrastructures. The basic idea of our concept is

to split up the precise position of the user on his mobile device into a set of

position shares of strictly limited precision. These shares are distributed

to multiple location services o�ered by di�erent providers. Therefore, a

compromised location service can only reveal information of limited preci-

sion. However, the precision of position information can be incrementally

increased by combining shares. In fact, the obfuscation can be undone by

combining all shares, for instance, the original precision as captured by the

positioning system can be restored. By allowing the user to control the

set of shares which are accessible by a particular client, di�erent precision

levels can be provided to di�erent clients ranging from the lowest level

up to the original precision. Another advantage of our position sharing

concept is that it provides graceful degradation of privacy in the presence

of compromised location services: The precision of the revealed position

information only increases with the number of compromised location ser-

vices.

Trajectory Fragmentation Algorithms: We propose a novel trajectory frag-

mentation concept protecting movement trajectories of users when shar-

ing their movement traces. In particular, our trajectory fragmentation

algorithms prevent that an individual location service can trace the move-

23

1 Introduction

ment of the user over longer distances. Instead of providing the complete

movement trajectory of a user to a single location service, we split up the

trajectory into a set of trajectory fragments and store the fragments on dif-

ferent location services of di�erent providers. By distributing fragments,

we avoid a single point of failure with respect to privacy in case of com-

promised location services, while di�erent clients can still reconstruct the

movement trajectory of the user based on user-de�ned access rights.

Speed Protection Algorithms: Users sharing movement trajectories are typi-

cally aware that they reveal their position and the corresponding time in-

formation. However, many users are not aware that they share and reveal

also their speed information, which may reveal violations of given speed

limits. It is an important prerequisite for the acceptance of novel LBAs

that such violations cannot be revealed. Otherwise, users could hesitate to

share their movement trajectory, because they could fear negative impacts

when revealing their speed information. Therefore, we introduce novel

speed protection algorithms guaranteeing that shared movement trajecto-

ries do not reveal any speeding violation. The general idea of our approach

is to slow down the shared speed information to the maximum speed the

user is allowed to drive.

The research leading to these contributions was conducted in the PriLoc

project [Pro14] at Institute for Parallel and Distributed Systems of University

of Stuttgart. PriLoc focuses on novel concepts and algorithms for the secure

management of private position information in non-trusted location server in-

frastructures. The major contributions of this thesis were published at di�erent

international conferences [WDR12, WDR13a, WDR13c, WDR14] and in inter-

national journals [WDR13b, WSDR14].

24

1.2 Structure of the Thesis

1.2 Structure of the Thesis

This thesis is organized based on the presented classi�cation of di�erent LBAs

and the presented contributions:

In Chapter 2, we give an overview of the related work in the area of location

privacy by presenting existing location privacy approaches and location privacy

attacks. We classify related work based on the provided protection goals and

the considered attacks. Based on our classi�cation, we show where our work

goes beyond related work and which protection goals our novel concepts provide

that were not considered by existing privacy approaches before.

In Chapter 3, we address the problem of protecting user position informa-

tion. In particular, we introduce our position sharing concept by presenting two

di�erent approaches: Our �rst approach is based on the concept of multi-secret

sharing and supports geometric and symbolic location models. Our second ap-

proach is based on the concept of binary space partitioning and focuses on the

e�ciency of position sharing to reduce the number of required position shares

that must be distributed to di�erent location services for multiple position up-

dates.

In Chapter 4, we address the problem of protecting movement trajectories.

First, we present our novel trajectory fragmentation concept preventing that a

location service can trace the movement of a user over longer distances. Second,

we present our speed protection algorithms guaranteeing that shared trajectories

do not reveal speeding violations.

Finally, we summarize the thesis in Chapter 5 and give an outlook onto

possible future research directions.

25

2 Related Work

In this chapter, we introduce existing LBAs and give an overview of di�erent

location privacy approaches that have been presented in the literature. Gen-

erally, location privacy approaches di�er with respect to their protection goal

and their robustness against di�erent attacks. Therefore, we assess the applica-

bility and robustness of the proposed approaches systematically and provide a

classi�cation of the approaches.

To be able to compare di�erent privacy approaches, we introduce a common

system model for the di�erent approaches in Section 2.2. Then, we present in

Section 2.3 how location services manage location information. In Section 2.4,

we identify di�erent protection goals from a user's point of view and show in

Section 2.5 how existing privacy approaches protect these goals. Afterwards, we

introduce in Section 2.6 di�erent attacks that can undermine user privacy and

classify in Section 2.7 the privacy approaches with respect to their protection

goal and their ability to resist the introduced attacks. Finally, we point out in

Section 2.8 where our contributions go beyond existing work on location privacy

and conclude this chapter in Section 2.9.

2.1 Location-based Applications

First, we present di�erent kinds of LBAs attracting millions of users today.

These applications can be distinguished whether they rely on the knowledge of

user position information or movement trajectories. We begin our description

with applications relying on user position information and continue afterwards

with applications relying on movement trajectories.

27

2 Related Work

2.1.1 Applications Relying on User Positions

Widely known examples of LBAs relying on position information are points of

interest �nders, friend �nders, applications for location-based advertising, and

LBAs implementing geotagging and geosocial networking :

Points of interest �nders such as Yelp [Yel14] answer queries like �Where is

the next supermarket?� based on the geographical position of the user, or

�Find all hotels in downtown Stuttgart� based on a speci�ed geographical

area. The requested information is either a single point of interest, e.g.,

the nearest supermarket, or a set of di�erent points of interest, e.g., the

set of all hotels in downtown Stuttgart. Typically, the query results are

visualized on a map on the user's mobile device.

Friend �nders such as Find My Friends [App14a] answer queries like �Where is

Bob?� returning the known position of a certain user or friend, or �Which

of my friends are currently in Stuttgart?� returning all friends within a

certain geographical area. Furthermore, friend �nders notify users about

geographically close friends.

Location-based advertising applications such as Deals Nearby You [Dea14] no-

tify users about special deals or promotions of businesses within a certain

geographical area or in the vicinity of the user. For instance, users can

bene�t from local deals o�ered to customers of shops in a shopping mall.

Geotagging applications enable geographical content annotations by adding

geographical position information, e.g., longitude and latitude values, to

any kind of content like images, videos, messages, or news. For instance,

the image and video sharing application Instagram [Ins14a] allows for

searching and �nding tagged images and videos based on their annotated

geographical information. Another application using geotagged content is

Twitter [Twi14], which can automatically annotate tweets (i.e., short text

messages of limited length that are published by a certain user) with ge-

ographical information to show where tweets originate from. Since 2011,

28

2.1 Location-based Applications

more than three billion tweets have been tagged by geographical loca-

tions [Van13] showing the high popularity of geospatial content tagging.

Geosocial networking is nowadays implemented by many LBAs of di�erent

providers. One of the most prominent geosocial networks today is

Foursquare [Fou14b], which started out in 2009 and has currently more

than 45 million users [Fou14c]. In Foursquare, users can check-in to dif-

ferent locations and points of interest to share their current position with

friends, or to document their presence at a certain location. Furthermore,

users can earn badges by checking-in to di�erent venues and get crowned

as �mayor� by checking-in to a single location multiple times. Until now,

Foursquare counted more than �ve billion user check-ins [Fou14c]. Driven

by the success of geosocial networking, Facebook [Fac14] launched its own

geosocial network called Facebook Places in 2010, which was afterwards in-

tegrated into the Facebook application. Nowadays, Facebook allows users

to check-in to di�erent locations and to share their location with friends.

To improve its own capabilities in developing geosocial networking appli-

cations, Facebook acquired in 2011 the geosocial network Gowalla, which

was the biggest geosocial network after Foursquare in 2011 [Seg11].

2.1.2 Applications Relying on Movement Trajectories

The movement trajectory of a mobile object is typically acquired as GPS trace

recording the sensed positions plus the corresponding timestamps of the posi-

tions. Examples for LBAs relying on the knowledge of such trajectories are

applications for community-based mapping of collected GPS traces, trajectory

sharing, real-time tra�c monitoring, pay-as-you-drive insurances, and mobile

target tracking :

Community-based mapping of collected GPS traces is used, for instance, in

the OpenStreetMap project [Ope14] where users upload their movement

trajectories as GPS traces to improve quality and completeness of the

project's public map information.

29

2 Related Work

Trajectory sharing applications are getting more and more attention by users.

Glympse [Gly14] is currently one of the most popular trajectory sharing

applications, which has more than ten million users [Gly13]. Glympse al-

lows users to share their current movement trajectories in real-time with

friends for a prede�ned period of time. To this end, users send their tra-

jectories as succeeding position �xes to Glympse showing precisely where

they are located while sharing their movement traces. Further examples

for LBAs sharing movement trajectories are applications for sharing jog-

ging paths, hiking trails, and bike trips [Map14]. In addition to trajectory

sharing, these applications allow users to derive further information from

their traces such as traveled distance, average speed, or burned calories.

Real-time tra�c monitoring applications as implemented by Google [Goo14b]

and TomTom [Tom14] provide users real-time tra�c information like tra�c

jams or expected delays on their current route. Another popular LBA

implementing real-time tra�c monitoring based on a community-driven

approach is Waze [Waz14]. Users of Waze notify each other about relevant

tra�c information such as construction areas, road hazards, or tra�c jams

by sharing road reports with other users traveling in the same geographic

area. In addition to this active participation in the Waze community, Waze

also analyzes the current speed of its users to derive road tra�c conditions

which are afterwards shared among Waze users. Thus, users can adapt

their routes in case of bad tra�c conditions on their selected route to save

time and fuel.

Pay-as-you-drive insurances adapt rates of their customers based on their in-

dividual driving behavior and their traveled distance. Safety-conscious

drivers should receive better rates than other drivers. As shown by the

VPriv system of Popa et al. [PBB09], pay-as-you-drive insurances can be

implemented based on GPS-monitored cars. Typically, insurance compa-

nies like MetroMile [Met14] and National General Insurance [Nat14] insert

additional hardware in the cars of their customers recording the traveled

30

2.2 System Model

distance, the traveled speed, geographical information, etc. However, since

current state of the art smartphones provide all sensors to implement the

required functionalities, insurance companies could also rely on the pro-

vided sensor information of their customers' smartphones for their service

using real-time trajectory updates. For instance, Händel et al. [HOO+14]

implement this idea in their framework combining real-time tra�c moni-

toring with a usage-based insurance relying on smartphone measurements.

Mobile target tracking applications allow the tracking of mobile objects such

as taxis, buses, or trains in real-time. Thus, managers and customers of

the tracked objects can bene�t from the known positions. An example for

an LBA tracking taxis is Mytaxi [Int14], where users can see taxis in their

vicinity and track the arrival of a previously booked taxi.

Despite the popularity of the presented applications, revealing private user

information such as the user's position information or movement trajectory raises

severe privacy concerns because of the introduced threats that an adversary may

get access to the shared information and infer habits, interests, or information

such as the user's religious a�liation [GKdPC10]. Furthermore, an attacker may

misuse the revealed positions or movement trajectories for stalking, mugging, or

to determine empty homes for a burglary [FRVM+10]. Therefore, mechanisms

protecting user privacy are mandatory when using LBAs.

2.2 System Model

Before we discuss the details of protecting private user information, we introduce

a common system model that is applicable to most privacy approaches described

in the literature (cf. Figure 2.1). This model consists of three components,

namely mobile objects, location servers, and clients.

The mobile object represents the mobile device of a user that is equipped with

an integrated position sensor to determine the current position of the user. The

device of a user is assumed to be trusted, and it is guaranteed that no mali-

31

2 Related Work

(a)

Mobile object

Location
server

ClientA ClientB ClientC

Mobile objects

Trusted location
server with
anonymizer

ClientA ClientB ClientC

Location
servers

Mobile object

ClientA ClientB ClientC

(b)

Mobile object

Location
server

ClientA ClientB ClientC

Mobile objects

Trusted location
server with
anonymizer

ClientA ClientB ClientC

Location
servers

Mobile object

ClientA ClientB ClientC

(c)

Mobile object

Location
server

ClientA ClientB ClientC

Mobile objects

Trusted location
server with
anonymizer

ClientA ClientB ClientC

Location
servers

Mobile object

ClientA ClientB ClientC

Figure 2.1: System model: (a) Without a trusted third party, (b) with trusted
LS using an internal anonymizer, and (c) with multiple LSs

cious software component is running on the mobile device that has access to the

position sensor. This can be assured by using a mobile trusted computing ap-

proach such as presented by Gilbert et al. [GCJW10] using, for instance, trusted

hardware components. Otherwise, the location privacy approaches considered

in the following are not e�ective since the malicious software component could

transmit the precise position of the user to an adversary.

Mobile objects send their position information to a location server (LS), which

stores and manages mobile object positions on behalf of the user. The commu-

nication between the mobile object and an LS must take place over a secure

channel to avoid modi�cation, sni�ng, and message injection. Using an LS re-

lieves mobile objects from sending their position individually to di�erent clients

and allows for the e�cient and scalable management of mobile object positions.

The position information of the mobile object has to be sent only once to the LS,

while several clients can access the information stored on the LS. The commu-

nication between clients and the LS must also be protected by secure channels.

The LS can either be non-trusted (cf. Figure 2.1a) or trusted (cf. Fig-

ure 2.1b). In case of a trusted LS, the LS can perform trusted compu-

tations and act, for example, as anonymizer. For instance, a trusted LS

32

2.3 Location Management

can use an internal anonymization algorithm to implement the concept of k-

anonymity [GG03, KGMP07, NASG09] by using the positions of several mobile

objects stored at the LS to make the mobile object indistinguishable from k− 1

other objects. Furthermore, the anonymizer can calculate obfuscated positions

covering the positions of several mobile objects. In addition to the system model

relying on a single LS, approaches implementing the concept of position shar-

ing distribute position information to multiple LSs (cf. Figure 2.1c) of di�erent

providers.

Clients, for instance di�erent LBAs, query LSs for mobile object positions

in order to implement a certain location-based service. The LSs grant clients

access to the stored positions based on an access control mechanism. In practice,

clients and LSs can also be integrated. However, we explicitly distinguish both

components in our model.

LSs and clients can both be compromised, even if these entities are assumed to

be trusted. For location privacy approaches relying on a trusted third party, this

means that a successful attack undermines privacy. If an LS is compromised,

the attacker is aware of all information di�erent mobile objects provided to the

LS. On the contrary, a compromised client does not necessarily have access to

all information stored at the LSs but only a portion of it depending on its access

rights.

2.3 Location Management

Since the focus of this thesis is on sharing location information, we present

existing approaches for the management of location information on LSs. We

start with approaches for the management of position information and continue

afterwards with related work for the management of movement trajectories.

Then, we present existing access control mechanisms managing the access of

clients to location information stored at LSs.

33

2 Related Work

2.3.1 Management of Position Information

LSs usually rely on spatial indexing mechanisms such as the R-tree [Gut84], the

R*-tree [BKSS90], or the quadtree [FB74] to manage position information of

mobile and static objects. Spatial indexing mechanisms allow LSs an e�cient

processing of spatial queries. In [IMI10], Ilarri et al. give an overview of existing

indexing mechanisms supporting spatial query processing. Typically, LSs im-

plement the functionality to answer position queries, range queries, and nearest

neighbor queries in a scalable and e�cient manner [BD05]:

Position queries return the positions of mobile or static objects like users,

points of interest, or buildings. The identity of an object is usually de�ned

by an identi�er such as �taxi 345� or �user Bob�. A typical example of

a position query about a certain mobile object with a known identi�er is

�Where is taxi 345?�. The result of this query is the position information

of the corresponding object that is stored at the LS. Depending whether

a geometric or symbolic location model is considered, the position of an

object is represented di�erently. For geometric location models, the posi-

tion of an object can be represented as a tuple of geometric coordinates,

such as the object's longitude and latitude values. For symbolic location

models, symbolic locations are de�ned as abstract symbols representing,

for instance, the name of a street or a building where the object is located.

Range queries return all objects such as users or points of interest that are

located within a speci�ed area. As an example, consider the query shown

in Figure 2.2a specifying the area of interest as the dotted rectangle. The

queried area covers the positions of the objects A and B representing the

result for the range query. The objects C and D are not located in the

queried area and are therefore not part of the query result.

Nearest neighbor queries return for a given value k and a position pQ the k

nearest objects to pQ. To measure whether two objects are close to each

other, di�erent distance metrics can be applied. The most prominent

34

2.3 Location Management

(a)

A

B

C

D

A

B

C

D

Q

dD

dC

dB

dA

(b)

A

B

C

D

Q

dA=121m
dB=222m
dC=250m
dD=274m

dD

dC

dB

dA

Figure 2.2: (a) Range query and (b) k-nearest neighbor query examples

distance metric is the Euclidean distance, which is typically applied in free

space environments. Figure 2.2b shows an example for a nearest neighbor

query where object Q located at position pQ queries for the three (k = 3)

nearest objects to its position. The calculated result is the set of objects

A, B, and C having the smallest distance to Q, while object D is further

apart from Q compared to the other objects. Another prominent distance

metric is the length of the shortest path between two objects, which is

often applied in restricted environments like a road network in�uencing

the actual distance between two objects.

For a detailed description of the algorithms of an LS answering position, range

and nearest neighbor queries using the Euclidean distance as distance measure,

we refer to the work of Leonhardi and Rothermel [LR01]. For the algorithms

considering the length of the shortest path as distance measure we refer to the

work of Papadias et al. [PZMT03] and Jensen et al. [JKPT03].

As pointed out, exposing precise position information raises privacy concerns,

especially if providers of LSs cannot be fully trusted. To prevent that a compro-

mised LS reveals precise position information, spatial obfuscation approaches

protect the position information of a mobile object without assuming a trusted

third party. Instead of providing precise positions to an LS, mobile objects de-

grade the precision of their positions and provide only obfuscated positions to the

35

2 Related Work

LS. As a consequence, LSs do not manage precise position information anymore.

Instead, they manage obfuscated positions, which are typically represented as

circles or rectangles de�ning the areas where the objects are located.

As shown by Chow et al. [CMA09], answering queries based on obfuscated

positions can be classi�ed into three di�erent categories:

• Private queries over public data

• Public queries over private data

• Private queries over private data

Here, public data speci�es the positions of mobile or static objects updating

their precise position to the LS without protecting their position information.

For instance, the positions of static objects such as restaurants, hospitals, ATMs,

and cinemas are typically precisely known by an LS. Furthermore, mobile objects

such as taxis, buses, or trains normally do not protect their position informa-

tion. Instead, they provide their precise position to an LS for answering queries

about their positions. Private data, on the other hand, describes personal infor-

mation such as the protected position information of di�erent users providing

only positions of decreased precision to an LS.

Private queries over public data consider that public data of an LS is queried

based on obfuscated position information. A typical example for such

a query is �Where is the next ATM to user Bob?�, where the positions

of the ATMs representing public data are known to the LS, while only

the obfuscated position of the mobile object (e.g., user Bob) representing

private data is available to the LS. Figure 2.3a shows an example for this

kind of query, where the LS has to evaluate which ATM is the closest one to

Bob. A detailed description of an algorithm evaluating private queries over

public data is presented by Chow et al. [CMA09]. Another approach to

answer private queries over public data is presented by Hu and Lee [HL06]

focusing on nearest neighbor queries for obfuscated positions.

36

2.3 Location Management

(a)

Bob

Alice
Sam

John

Alice

JohnBob

Sam

ATMA

ATMB

ATMC

R

(b)

Alice Sam

John

R

(c)

Alice

JohnBob

Sam

Figure 2.3: (a) Private query over public data, (b) public query over private
data, and (c) private query over private data

Public queries over private data consider that the position of the query issu-

ing object is not protected and, therefore, precisely known. The queried

data on the other hand is protected such that only imprecise position in-

formation is available. An example for such a query is �What is the nearest

customer to my restaurant?�, where the position of the restaurant is not

protected, while the mobile objects, in this case, di�erent customers, pro-

vide only positions of decreased precision to the LS to protect their privacy.

As an example, consider Figure 2.3b, where the precise query position of

the restaurant R is known to the LS, while the positions of the customers

(Alice, John, and Sam) are obfuscated and not precisely known.

Private queries over private data consider that the position of the query issu-

ing object and the positions of the queried data are protected by obfuscated

positions. A typical example for such a query is that the obfuscated po-

sition of a user is used to query the positions of the nearest friends also

providing only obfuscated positions to the LS. Figure 2.3c shows an exam-

ple for this kind of query where Bob wants to know which friend (Alice,

Sam, or John) is located next to him. To answer private queries over pri-

vate data, Chow et al. [CMA09] present algorithms for nearest neighbor

and range queries. In [CZBP06], Cheng et al. propose a solution to answer

these queries based on probabilistic results taking the overlapping size of

the query area and the obfuscated positions into account.

37

2 Related Work

2.3.2 Management of Movement Trajectories

In the literature, di�erent approaches for the management of movement trajecto-

ries on LSs have been proposed. According to Frenztos [Fre03], these approaches

can be distinguished whether the movement of the mobile objects takes place in

the whole of the two dimensional space, or whether their movement is limited to

a constrained space by spatial restrictions. A typical example of a constrained

space is a road network limiting the movement area of cars and pedestrians.

For LSs managing movement trajectories in a free space environment, Pfoser

et al. [PJT00] propose the Spatio-Temporal R-tree (STR-tree) indexing mecha-

nism, which is an extension of the R-tree, supporting an e�cient query processing

of spatio-temporal movement traces. The STR-tree indexes the updated posi-

tions of the mobile objects such that the movement trajectories of the objects

are preserved in the index structure and queried e�ciently based on the algo-

rithms presented in [Gut84] and [PJT00]. Furthermore, the authors propose the

Trajectory-Bundle-tree (TB-tree), which preserves individual trajectories within

a so-called trajectory bundle where the indexing structure manages the individ-

ual parts of the trajectory in the leaf nodes of the indexing tree.

For LSs managing movement trajectories in a constrained space like a road

network, Güting et al. [GdAD06] present an expressive framework for model-

ing and querying mobile object positions. Furthermore, Wang and Zimmer-

mann [WZ08] propose an approach to process spatial queries for mobile objects

on road networks based on an R-tree managing the road network and a grid

structure handling position updates of mobile objects. In [WZ11], the authors

extend their approach to answer range queries and nearest neighbor queries for

movement trajectories. Finally, Frenztos [Fre03] presents an indexing mecha-

nism called Fixed Network R-tree (FNR-tree) answering spatio-temporal range

queries based on a two dimensional R-tree indexing spatial information in com-

bination with a one dimensional R-tree indexing time information.

38

2.4 Protection Goals

2.3.3 Access Control Management

To manage the access of di�erent clients to an LS, LSs rely on access control

mechanisms as presented by Bonatti and Samarati [BS02] or Hengartner and

Steenkiste [HS05]. That is, LSs grant clients access to their stored information

if they provide the LS the required credentials that are speci�ed in the access

control rules of the LS. Otherwise, clients do not get access to the information

stored on the LS. Based on the provided credentials, LSs can distinguish clients

and manage which information is provided to a certain client. For instance, LSs

can provide di�erent clients position information of di�erent precision levels as

long as the LS knows the precise position of the mobile object. As presented

by Leonhardt and Magee in [LM98] for a symbolic location model, LSs can reg-

ulate the access of di�erent clients to the stored position information based on

user-de�ned access policies and the current position of the user. For instance,

clients could only receive access to the user's position information or movement

trajectory stored at an LS as long as the user is traveling on a certain road or

within a speci�ed area. In addition to access control mechanisms de�ning access

policies based on the user's position, location-based access control (LBAC) tech-

niques as presented by Ardagna et al. [ACD+06] allow to take spatial conditions

like the physical location of clients into account to de�ne access policies.

2.4 Protection Goals

Before we discuss di�erent approaches to protect user location privacy, we have

to de�ne the di�erent protection goals which are considered by these approaches.

The attributes to be protected are the user's identity, his spatial information

(position), and temporal information (time). The information provided by a

user can be de�ned as a tuple 〈identity, position, time〉. The protection goal of

the user de�nes which attributes must be protected and which can be revealed.

Prior to explaining the protection of the stated attributes in more detail, we

present some examples of di�erent protection goals and application scenarios.

39

2 Related Work

As a �rst scenario, consider a user of an advanced navigation service providing

real-time tra�c information and points of interest information based on the

current user position. Assume that the user is willing to provide anonymized

position information to the navigation service provider. To this end, the user

protects the identity attribute using an anonymization concept. However, as

shown by Golle and Partridge [GP09], the user's identity can also be revealed

from position information, for instance, based on the periodically visited home

and work locations. Therefore, the position attribute also needs to be protected.

As a second scenario, assume that the user is willing to share his non-

anonymous trajectory. However, he does not want to reveal that he is speeding

on the motorway since revealing such information may have unforeseen conse-

quences for the user if the service provider misuses the data and provides it to

the police, his insurance company, etc. In this scenario, the position as well

as the time attributes have to be protected to avoid the deduction of speeding

violations.

In order to show that the protection of each attribute combination is relevant,

we list further scenarios for each combination in Table 2.1. To achieve the stated

protection goals, di�erent location privacy approaches are required. As we will

see later, no single location privacy approach is suited to protect all protection

goals at the same time.

Next, we consider the protection of each attribute stated above in more detail.

2.4.1 Identity Information

One possible goal to ensure privacy is to hide the user's identity while anony-

mous positions are visible to clients. The identity of a user can be her name, a

unique identi�er, or any set of properties uniquely identifying the user. If a user

publishes position information without personal information, an attacker can

still try to derive the user's identity by analyzing the position information and

additional context data such as the visited objects. In general, quasi-identi�ers

can be used to identify users as shown by Bettini et al. [BWJ05].

40

2.4 Protection Goals

Attributes Examples

ID Pos. Time

3 3 3 Protect the information where a user lives and make it
impossible to infer it from several traces of the user.

3 3 5 Protect the user's identity and his precise position in a
building while showing the security manager that some-
one is still in the building such that it cannot be locked.

Protect that the user drove through a residents-only street.

3 5 3 Provide traces to the OpenStreetMap project to model new
streets without revealing the user's identity or speed.

Give feedback for a bar without revealing the user's iden-
tity.

3 5 5 Use an advanced navigation system for real-time tra�c
monitoring without revealing the user's identity.

Protect the user's identity when publishing jogging paths.

5 3 3 Protect a slight detour on a longer trip while keeping the
general trip visible.

Protect the speed information of the user's trajectory such
that no speeding violation is revealed.

5 3 5 Do not show that a user visits a bar while keeping friends
informed of being in the inner city.

Hide the fact that the user was in a hospital.

5 5 3 Share the last hiking trail with friends without revealing
to be currently not at home.

Table 2.1: Protection goal examples for protected and non-protected attributes.
The symbol �3� implies that the corresponding attribute must be
protected, while the symbol �5� implies that the attribute can be
revealed.

41

2 Related Work

2.4.2 Spatial Information

Another protection goal is to provide position information of a user only with

a given precision to clients. For instance, a user might want to provide precise

position information to his friends, whereas only coarse positions with city-level

precision should be provided to a location-based news feed service. In general,

this goal is known as spatial obfuscation.

We also have to consider that user positions usually carry more information

than only geometric information like longitude and latitude values. Often, the

semantic of a position is de�ning the criticality of the information. For instance,

a user might be willing to share his precise position as long as he does not enter

a certain semantic location such as a hospital, since this could reveal further

private information like the health status of the user. Therefore, a speci�c goal of

protecting spatial information is the protection of semantic location information.

In general, this is achieved by ensuring that a position is associated with several

alternative locations of di�erent semantics. For instance, as shown by Damiani

et al. [DBS10], a semantic position might be protected if the user could be within

a hospital or within one or more locations that are not hospitals.

2.4.3 Temporal Information

Temporal information de�nes the point in time or time period when the spatial

information of the user is valid. In some scenarios, spatial information is only

considered critical if it is associated with temporal information. For instance,

a user might be willing to share with others where he is traveling, whereas he

does not want to reveal that he is speeding. This means that real-time updates

cannot be used in this case without raising privacy concerns, whereas temporally

delayed updates could be used to reach the protection goal. In such scenarios, it

must be considered that even if temporal information is not explicitly stated�for

example, as a timestamp of the position update�, it can be implicitly derived.

For instance, this is possible by knowing the time when the information was

received by the LS and the update protocol that triggered the position update.

42

2.5 Location Privacy Approaches

2.5 Location Privacy Approaches

After introducing possible protection goals in the previous section, we now give

an overview of existing location privacy approaches to reach these goals. There

are a number of works representing the state-of-the-art techniques to protect

user location privacy [SDFMB08, Kru09, CM11]. Therefore, the goal of this sec-

tion is to provide an overview of the fundamental concepts of these approaches.

We distinguish the concepts k-anonymity, mix zones, position dummies, spatial

obfuscation, cryptography-based approaches, and position sharing.

2.5.1 k-Anonymity

The idea of k-anonymity is to make a mobile object indistinguishable from k−1

other objects such that the probability to identify an individual object is 1/k.

The concept of k-anonymity for location privacy was introduced by Gruteser

and Grunwald [GG03]. The idea of their approach is that a user reports an

obfuscation area to a client containing his position and the positions of k−1 other

users. Here, the LS acts as trusted anonymizer calculating the set of k users,

the used pseudonym of the k-anonymity set, and the corresponding obfuscation

area based on the known positions of the users. As an example, consider that

Alice is located at home and queries an LBA for the nearest cardiology clinic.

Without using anonymization, this query could reveal to the client implementing

the LBA that Alice has health problems. By using k-anonymity, Alice would

be indistinguishable from at least k − 1 other users and the client would not be

able to link the request to Alice. Therefore, it is required that all k users of

the calculated anonymization set share the same obfuscation area that was sent

to the client such that the client cannot link the issued position to the home

location of Alice.

Many other approaches make use of the k-anonymity concept to provide loca-

tion privacy. Chow et al. [CMA09] calculate the obfuscation area of the k users in

their Casper framework based on the user-de�ned values of k and an area value

Amin indicating that the user wants to hide his location within an area size of

43

2 Related Work

at least Amin. Kalnis et al. [KGMP07] and Ghinita et al. [GZPK10] calculate

anonymizing spatial regions containing at least k users such that the calculated

spatial region is identical for all k users. Thus, an attacker cannot exclude any of

the k users from the set by analyzing their positions or the applied k-anonymity

algorithm. In [WL09], Wang and Liu introduce their XSTAR approach realizing

anonymous queries of mobile objects traveling on road networks.

Instead of considering individual positions of mobile objects, Gkoulalas-

Divanis et al. [GDVM09] anonymize movement trajectories based on the un-

derlying road network de�ning the restricted movement area where users can

travel. Monreale et al. [MAA+10] focus on achieving trajectory anonymity for

a published dataset of movement trajectories by applying spatial generalization

to the k-anonymity concept. A similar idea is applied by Nergiz et al. [NASG09]

preventing that the movement trajectory of a user reveals the user's identity

when releasing the database containing the trajectory. Gedik and Liu [GL08]

propose their CliqueCloak approach, which performs spatial and temporal cloak-

ing to calculate the k-anonymity set. A user can de�ne individual upper limits

for both the obfuscation area size and time periods associated with positions in

order to preserve an acceptable quality of service. The approach uses tempo-

ral cloaking by delaying updates such that the required k users are within the

user-de�ned time interval and the maximum obfuscation area. The ICliqueCloak

approach present by Pan et al. [PXM12] is similar to this approach. It focuses

on the protection of the identity of a mobile object issuing multiple position

updates based on a clique of k mobile objects sharing their obfuscation area and

providing k-anonymity.

The basic concept of k-anonymity has been further extended by various ap-

proaches to increase user privacy. The most prominent extensions are l-diversity,

t-closeness, p-sensitivity, historical k-anonymity, and (k, δ)-anonymity :

• The idea of location l-diversity presented by Bamba et al. [BLPW08] is

that the location of the user must be unidenti�able from a set of l di�erent

locations such as restaurants, bars, clinics, churches, etc. To this end,

their PrivacyGrid framework guarantees that the positions of the users

44

2.5 Location Privacy Approaches

of the k-anonymity set are not just di�erent, but are also located distant

enough from each other. Otherwise, an attacker would know the target

user location with low imprecision if all user positions belong to the same

semantic location.

• The concept of t-closeness proposed by Li et al. [LLV07] extends the

l-diversity concept. The authors consider the distance between an at-

tribute's distribution within the selected set of k users and the same dis-

tribution over the total set of users. This distance should not be above a

certain threshold value t.

• Xiao et al. [XXM08] improve k-anonymity guarantees by the concept of

p-sensitivity. The idea of p-sensitivity is to guarantee that within a set of

k users each group of sensitive attributes has at least p distinct values for

each sensitive attribute within the same group. Otherwise, the attributes

could be disclosed by the corresponding attributes of the group. As an

example, consider that a group of friends meeting at a certain location

wants to go to a bar. All friends query for the location of the bar and rely

on a k-anonymity concept. However, since all friends are located close to

each other and issue the same query, the probability that they are grouped

to the same k-anonymity set sharing the same query for the bar is high.

Thus, an attacker knows that the target user also queried for the bar.

• Mascetti et al. [MBW+09] and Bettini et al. [BMW+09] describe their

historical k-anonymity approaches to provide k-anonymity guarantees for

mobile objects by taking also the temporal component of the location

information into account. The approaches consider historical information

of multiple users to calculate spatial regions including the locations of at

least k users. Furthermore, the approaches are designed to protect multiple

queries online in real-time.

• Abul et al. [ABN08] present their (k, δ)-anonymity approach concentrat-

ing on the protection of a complete published user trajectory o�ine. To

45

2 Related Work

this end, they apply an enhancement of k-anonymity for spatio-temporal

cloaking. Their idea is to publish a cylindrical volume of radius δ that

covers at least k trajectories of di�erent users that are located next to

each other instead of publishing precise movement traces.

2.5.2 Mix Zones

In [BS03], Beresford and Stajano introduce the idea of frequently changing

pseudonyms to protect the identity of a user and to prevent that an attacker can

derive user habits or interests. Since an attacker could link di�erent pseudonyms

together even if pseudonyms change frequently, Beresford and Stajano improve

their idea by proposing the mix zone concept. A mix zone de�nes an area

where all user positions must be hidden such that the user position is not known

within the zone. This is achieved by suppressing position updates within a zone.

If a user enters a mix zone, the user's identity is mixed with all other users in

the zone by changing pseudonyms. Thus, an attacker cannot correlate di�erent

pseudonyms of the users even by tracing the entry and exit points of a mix zone.

The MobiMix approach proposed by Palanisamy and Liu [PL11] applies the

mix zone concept to road networks. MobiMix takes various context information

like geometrical and temporal constraints into account which an attacker could

otherwise use to reconstruct detailed trajectories of users.

In [LZP+12], Liu et al. propose to use multiple mix zones in road networks to

increase the provided privacy of the mix zones against attackers that are trying

to identify individual users based on additional background knowledge.

2.5.3 Position Dummies

The goal of the position dummies approach presented by Kido et al. [KYS05] is

to protect the user's real position by sending multiple false positions (so-called

�dummies�) in addition to the real position of the user to the LS. An essential

advantage of this approach is that the user herself can generate dummies without

any need for a trusted third party. However, it is challenging to create dummies

46

2.5 Location Privacy Approaches

which cannot be distinguished from the real user position, in particular, if an

adversary has additional context information such as a map and can trace the

movement of the user for longer distances.

You et al. [YPL07] improve the generation of random dummies by generating

them in a human-like movement fashion. That is, dummies are generated fol-

lowing the movement behavior of the user and his long-term movement pattern.

An advanced method to generate dummies is presented in the SybilQuery

approach proposed by Shankar et al. [SGI09]. The approach assumes that the

user has a database of historical tra�c which allows him to create additional

dummy positions that cannot be distinguished from the real user position.

2.5.4 Spatial Obfuscation

Spatial obfuscation approaches try to preserve user privacy by deliberately re-

ducing the precision of position information sent from the mobile object to the

LS and in turn to the client. Thus, an attacker can only retrieve coarse-grained

position information of the user. A classic spatial obfuscation approach is pre-

sented by Ardagna et al. [ACDS11], where a user sends a circular area instead of

his precise position to the LS. Instead of using geometric obfuscation shapes like

circles, Duckham and Kulik [DK05] present a graph-based obfuscation model

that can also be applied to obfuscate the position of the user on road networks.

The advantage of spatial obfuscation approaches is that they typically provide

location privacy without a trusted third party, since the user himself can de�ne

the obfuscation area. However, this advantage comes at the price that clients

cannot retrieve precise user positions.

To answer k-nearest neighbor queries while protecting user privacy, Yiu et

al. [YJML11] present their SpaceTwist framework. Instead of sending precise

user positions to the LS, users send a so-called �anchor� representing a fake

location to the LS. The anchor is used to iteratively request data points based

on various distances to the anchor. The user then calculates the query results

based on his precise position and the received data points. Thus, precise k-

47

2 Related Work

nearest neighbor query results are provided to the user, while location privacy

is achieved through higher query and communication costs.

One problem with many spatial obfuscation approaches is that the e�ective

size of the intended obfuscation area can be reduced if an adversary applies

background knowledge, in particular, map knowledge. For example, an attacker

can increase precision by excluding non-reachable parts of the user's obfuscation

area based on a map matching attack applying map knowledge. In order to resist

such map matching attacks, Ardagna et al. [ACG09] proposed a landscape-aware

obfuscation approach. The approach is based on a probability distribution func-

tion, which de�nes the probability that a user is located in certain areas of a

map. For instance, the probability to be located next to a lake is typically higher

than to be located on the lake. The obfuscation area is then selected considering

the probability of the user to be located in a certain obfuscation area. Another

advanced obfuscation approach is presented in the Privacy Preserving Obfus-

cation Environment (Probe) framework introduced by Damiani et al. [DSB11].

The framework applies a similar principle as Ardagna et al. [ACG09] to protect

semantic locations such that a user position cannot be mapped with a high prob-

ability to a critical location like a hospital. Thus, the Probe framework expands

the map-aware obfuscation area in a way that the probability of the user to be

in a certain semantic location is below a given threshold value.

Beyond the obfuscation of spatial information, Gidofalvi et al. [GHP07] con-

sider spatio-temporal obfuscation to protect movement trajectories. Besides

decreasing the precision of positions, they also decrease the precision of the

temporal information by using a grid-based framework to reduce the spatio-

temporal resolution of the trajectory. Ghinita et al. [GDSB09] present a similar

idea for their spatio-temporal cloaking approach. To improve the provided pri-

vacy of spatial cloaking, the authors consider the movement speed of an object

as additional knowledge such that their approach can resist advanced attacks

based on the known maximum speed of an object.

Yigitoglu et al. [YDAS12] extend the idea of the Probe framework by protect-

ing sensitive information in movement trajectories. That is, the precise position

48

2.5 Location Privacy Approaches

of the user is updated as long as the position is not related to a sensitive loca-

tion. On the other hand, sensitive locations are protected by cloaked regions

which consider that users typically move on streets and that di�erent semantic

locations are characterized by the time periods users stay at the locations.

Hoh et al. [HGXA10] introduce their uncertainty-aware path cloaking ap-

proach hiding location samples in a dataset stored on a trusted LS in order to

provide time-to-confusion guarantees for all users sending their positions to the

LS. The time-to-confusion guarantees consider the time users can be tracked

by an attacker. Terrovitis and Mamoulis [TM08] apply the idea of suppressing

positions violating user privacy constraints to prevent that movement trajecto-

ries can reveal the identity of a user. The idea of suppressing positions is also

applied by Xue et al. [XZZ+13]. In their work, the authors remove positions

from a movement trajectory that should not be published to protect against

destination prediction. By deleting position information, the probability an at-

tacker can assign to the destination of the trajectory can be decreased below a

prede�ned threshold value.

In [HG05], Hoh and Gruteser protected movement trajectories by crossing

paths of at least two mobile objects. Thus, whenever two paths meet, an at-

tacker tracking an object is confused which path is the correct one to follow. A

similar idea is used by Meyerowitz and Choudhury [MRC09] in their CacheCloak

system providing anonymous location data to clients based on path confusion.

Compared to [HG05], CacheCloak focuses on real-time anonymization by caching

query results on the LS and by providing clients predicted paths that intersect

each other.

The approach presented by Hoh et al. [HGH+08] allows for privacy-preserving

tra�c monitoring based on virtual trip lines representing geographic markers

where users should update their position to the LS. The approach allows to

avoid virtual trip lines at privacy critical locations and to cloak several positions

based on the identi�ers of the trip lines.

In [FRVM+10], Freni et al. address the problem of protecting the information

that a user is absent at a certain point in time from a certain location such as his

49

2 Related Work

home. To tackle this problem, the authors introduce their minimal uncertainty

region concept representing spatio-temporal regions where no part of the region

can be excluded by an attacker in order to derive further information about

where the user is not located.

Finally, Chow and Mokbel [CM07] present a group-based approach to obfus-

cate the complete movement trace of a user in real-time.

2.5.5 Cryptography-based Approaches

Cryptography-based location privacy approaches use encryption to protect user

positions. Mascetti et al. [MFB+11] propose an approach to notify users when

friends are within their proximity without revealing the current position of the

user to the LS. To this end, the authors assume that each user shares a secret

with each of his friends and use symmetric encryption techniques.

Approaches as proposed by Ghinita et al. [GKK+08] make use of the private

information retrieval (PIR) technique to provide user location privacy. By using

PIR, an LS can answer queries without learning any information of the query.

The used PIR technique relies on the quadratic residuosity assumption, which

states that it is computationally hard to �nd the quadratic residues in modulo

arithmetic of a large composite number for the product of two large primes.

In order to deal with the problem of non-trusted LSs, Marias et al. [MDKG05]

propose an approach for the distributed management of position information

based on the concept of secret sharing. The basic idea of this approach is to

divide position information into shares, which are then distributed among a set

of (non-trusted) LSs. In order to recover positions, clients need the shares from

multiple servers. The advantage of this approach is that a compromised LS

cannot reveal any position information since it does not have all the necessary

shares. However, LSs cannot perform any computations on the shares, for in-

stance, to perform range queries. In general, cryptographic approaches raise the

question whether location-based queries like nearest neighbor queries or range

queries can be performed e�ciently over the encrypted data.

50

2.6 Location Privacy Attacks

2.5.6 Position Sharing

To perform location-based queries such as nearest neighbor or range queries

while protecting user location privacy, Dürr et al. [DSR11] proposed the concept

of position sharing for the secure management of private position information in

non-trusted systems. Position sharing splits up obfuscated position information

into so-called position shares, where a share de�nes a position of strictly limited

precision. These shares are distributed among a set of non-trusted LSs such

that each LS only has a position of limited precision, which can also be used to

perform calculations on these shares. Through share combination algorithms,

multiple shares can be fused into positions of higher precision such that clients

can be provided with position information of di�erent precision levels depending

on the number of accessible shares. Since an LS only has information of limited

precision, the approach has a graceful degradation property, where the preci-

sion of position revealed by an attacker gradually increases with the number of

compromised LSs. In [SDR12], the authors extended their work by taking map

knowledge into account to prevent attackers from increasing precision.

The publications of Dürr et al. [DSR11] and Skvortsov et al. [SDR12] introduc-

ing position sharing based on random geometric transformations were developed

in the same project and at the same time as the position sharing approaches pre-

sented in this thesis.

2.6 Location Privacy Attacks

In this section, we classify di�erent attackers according to the knowledge they

exploit and the methods they use to derive private user information.

2.6.1 Attacker Knowledge

We classify attacker knowledge according to two dimensions, namely historic

information and context information. These two dimensions represent the hor-

izontal and the vertical axes of our classi�cation of location privacy attacks,

51

2 Related Work

Multiple position attacks
· Identity matching attack
· Multiple query attack
· Location tracking attack
· Maximum movement boundary attack

Context linking attacks
· Personal context linking
· Probability distribution attack
· Map matching attack

Single position attacks
· Location homogeneity attack
· Location distribution attack

Multiple position and context linking attacks
· Combination of different attacks
· Maximum movement boundary and

map matching attack

Snapshot History

N
o

 c
o

n
te

xt
A

d
d

it
io

n
a

l c
o

n
te

xt

Context
information

Context
information

Historic
information

Historic information

C
o

n
te

xt
 in

fo
rm

at
io

n

Historic
information

Figure 2.4: Classi�cation of attacker knowledge and location privacy attacks

which is shown in Figure 2.4.

In the historic information dimension, we consider whether an attacker has

access only to a single user position or whether the attacker can access historical

information. In the �rst case, the attacker knows only a single snapshot of a user

position. This is a common assumption for many location privacy approaches.

In the second case, the attacker knows a set of multiple positions collected over

time or even the whole movement trajectory of a user. Such information could

be revealed, for instance, by a compromised LS or a compromised client. In

particular, if an LS gets compromised, the attacker might also get historical

position information of several users.

In the context information dimension, we distinguish whether the attacker has

additional context knowledge beyond spatio-temporal information. For instance,

an advanced attacker might have additional context information provided by a

phone book, statistical data, a map, etc. The attacker can use this information

in addition to the known user positions. For instance, an attacker could decrease

the e�ective area size of an obfuscated position of a user based on map knowl-

52

2.6 Location Privacy Attacks

edge to determine where users can actually be located, or use a phone book to

determine the home address of a user.

2.6.2 Classi�cation of Location Privacy Attacks

We classify di�erent attacks based on the presented knowledge of an attacker.

Each combination of context information and historic information leads to a

di�erent class of attacks. Our classi�cation of attacks is shown in Figure 2.4

and structured according to the introduced attacker knowledge. We distinguish

between the classes of single position attacks, context linking attacks, multiple

position attacks, and attacks combining multiple positions and context linking

attacks. The concrete methods of the attacker are shown in Figure 2.4 below

the di�erent classes of attacks. In addition to these four classes of attacks, we

consider also the attack of compromising a trusted third party, which can be

applied in addition to all presented attacks.

Single Position Attacks

The general idea of a single position attack is that the attacker analyzes a sin-

gle updated user position to infer more information about the position or the

identity that the user intended to hide.

• A location homogeneity attack [MGKV06] can be used against sim-

ple k-anonymity approaches. The attacker analyzes the positions of all

members of the k-anonymity set. If their positions are almost identical

(cf. Figure 2.5a), the position information of each member of the set is

revealed. If the members are distributed over a larger area, their position

information is protected (cf. Figure 2.5b). An advanced location homo-

geneity attack can utilize map knowledge to reduce the e�ective area size

where users can be located. For instance, the area can be restricted to

a single building (cf. Figure 2.5c). Here, the attacker analyzes the se-

mantic location information of the members of the k-anonymity set and

53

2 Related Work

(a) (b) (c)

Figure 2.5: Location homogeneity attack: (a) Almost identical positions, (b)
distributed positions, and (c) positions belonging to a single building

determines the diversity of the di�erent positions. Only diverse positions

provide location privacy while homogeneous positions do not.

• A location distribution attack [CM07] is based on the observation that

users are often not distributed homogeneously in space. This can be uti-

lized to attack some k-anonymity approaches. Consider a calculated set

of k users whose members cover a densely and sparsely populated area as

depicted in Figure 2.6. Here, the dark square area covering the users A,

B, C, and D de�nes the calculated area of the set of k users. In such a set,

the protected user is most likely the single user A located in the sparsely

populated area further away from the other users. This is based on the

fact that only in that case the obfuscation area has to be extended into

the dense area to cover the requested number of k users. If B were the

protected user, a di�erent set would be the result covering the users B, C,

D, and E in the bright square area in Figure 2.6.

Context Linking Attacks

A context linking attack generally exploits context information in addition to

spatio-temporal information. An attacker can use personal context knowledge

about a user as well as external background knowledge such as an o�ce plan, an

54

2.6 Location Privacy Attacks

A

B

C

D

E

Figure 2.6: Location distribution attack

address book, or a map to decrease user privacy. For the context linking attack,

we distinguish between three di�erent kinds of attacks: the personal context

linking attack, the probability distribution attack, and the map matching attack :

• A personal context linking attack [GG03] is based on personal context

knowledge about individual users such as user preferences or interests. For

instance, assume it is known that a user visits a pub on a regular basis at

a certain point in time and that he uses a simple obfuscation mechanism

to protect his position information. Then, an attacker can increase his

known precision of an obfuscated position by decreasing the obfuscation

area to locations of pubs in the obfuscation area.

A special method of the personal context linking attack is spatial observa-

tion [MYYR10], where the attacker has user knowledge gathered through

observation. For instance, if a user protects his identity using pseudonyms

and the attacker can see the user, then the attacker can retrace all prior

locations of the user for the same pseudonym by a single correlation.

• A probability distribution attack [STLBH11] is based on gathered

tra�c statistics and environmental context information. Here, the attacker

tries to derive a probability distribution function of the user position over

the obfuscation area. If the probability is not uniformly distributed, an

attacker can identify areas where the user is located with high probability.

55

2 Related Work

(a) (b) (c)

Figure 2.7: (a) Obfuscated position, (b) map knowledge, and (c) map matching
attack re�ning the position to a road bridge using map knowledge

• A map matching attack [ACG09] can restrict an obfuscation area to

certain locations where users can be located by removing irrelevant areas.

For instance, a map could be used to remove areas like lakes from the

obfuscation area, which e�ectively shrinks the obfuscation area size below

the intended size (cf. Figure 2.7). The attacker can also use semantic

information provided by maps like points of interest or the type of buildings

(e.g., bars, hospitals, residential buildings, etc.) to further restrict the size

of the e�ective obfuscation area.

Multiple Position Attacks

The general idea of a multiple position attack is that an attacker tracks and

correlates several user positions to decrease user privacy. For this class of attacks,

we distinguish between the identity matching attack, the multiple query attack,

the location tracking attack, and the maximum movement boundary attack.

• The identity matching attack [GKdPC10] can be applied to correlate

several pseudonyms of a user. Here, the attacker links several pseudonyms

based on equal or correlating attributes to the same identity such that the

provided privacy of the changed pseudonyms is broken.

56

2.6 Location Privacy Attacks

Figure 2.8: Region intersection attack re�ning obfuscated positions

• For a multiple query attack [TA10], the attacker analyses several posi-

tions and uses the shrink region or region intersection method:

1. The shrink region method can reveal the identity and the position

of a user. To this end, the attacker monitors multiple positions and

the corresponding members of the k-anonymity set. If the members

of the set change, an attacker can infer which user sent the initial

position. As an example, consider three users A, B, and C located

at di�erent positions. User A issues two di�erent queries based on

his position to the same client. The simple k-anonymity approach

used by user A once generates the k-anonymity set (A,B) for the

�rst query and the anonymity set (A,C) for the second query. If the

client can now correlate both queries, the client can infer that user A

originally issued both queries.

2. The region intersection method can be used against location obfus-

cation approaches to increase the precision of obfuscated positions.

To this end, the attacker uses several obfuscated position updates

from a user to calculate their intersection. From the intersections,

the attacker can infer where privacy-sensitive regions of the user are,

or where the user is located. As example, consider a random obfusca-

tion mechanism generating di�erent obfuscation areas whenever the

57

2 Related Work

Maximum

movement

in time Δt=tB-tA

A
B

Refined position

Figure 2.9: Maximum movement boundary attack

user reaches his home (cf. Figure 2.8). Then, the intersection of the

obfuscation areas can be used to decrease user privacy.

• A location tracking attack [GG03] analyses several user positions that

are known to the attacker. For example, this attack can be used against

randomly changing pseudonyms while mix zones are not used. Here, the

attacker can correlate succeeding pseudonyms by linking spatial and tem-

poral information of succeeding positions, even if pseudonyms are changed.

For instance, the attacker can try to reconstruct the movement of a user

based on the provided positions of several pseudonyms.

• In a maximum movement boundary attack [GDSB09] the attacker

calculates the maximum movement boundary area that is reachable for a

user between two position updates. As shown in Figure 2.9, the position

of area A of the �rst update performed at time tA helps the attacker to

increase the precision of the second update (area B) sent at time tB. In this

example, only the striped part of area B is reachable within the maximum

movement boundary of the user, while the remaining part of area B cannot

be reached from area A in time ∆t = tB−tA for a known maximum velocity

vmax of the user. Therefore, the remaining part of area B can be excluded

from the obfuscated position by the attacker.

58

2.7 Classi�cation of Location Privacy Approaches

Multiple Positions and Context Linking Attacks

Instead of using only one single attack presented so far, an attacker can also

combine several of the proposed attacks or use them in sequence to undermine

user privacy. For instance, an attacker can combine the knowledge of map

restrictions gathered by the map matching attack and the restrictions of the

maximum movement boundary attack to determine where the user is moving.

Compromised Trusted Third Party

The attack of compromising a trusted third party describes the fact that an

attacker could get access to the data stored at a service provider that is assumed

to be trusted. For instance, an attacker could compromise a trusted LS and get

access to the stored user data. This attack is not considered in approaches that

rely on a trusted third party, as these approaches are insecure if providers are not

trustworthy. However, as shown by the rapidly increasing number of reported

incidents and successful attacks on di�erent providers managing private user

information [Cle14, Fou14a], this kind of attack is realistic and not negligible.

Therefore, it is at least questionable whether the assumption of a trusted third

party is realistic.

2.7 Classi�cation of Location Privacy Approaches

In this section, we present our classi�cation of location privacy approaches based

on the analysis of the protection goals they ful�ll under di�erent attacks (cf.

Table 2.2). Although di�erent classi�cations of location privacy approaches ex-

ist [SDFMB08, BAB+09, KS10], they do not compare the robustness of di�erent

approaches under di�erent attacker models.

As shown in Section 2.4, we distinguish between di�erent protection goals of

the user, which are de�ned by the attributes identity, position, and time. These

protection goals are presented in Table 2.2 on the vertical axis on the left. For

each protection goal, we depicted the basic approaches presented in Section 2.5

59

2 Related Work

Goals Approaches Attacks

ID Pos. Time
Location
homog.
attack

Map
match.
attack

Pers.
context
linking

Prob.
distr.
attack

Mult.
query
attack

Max.
mov.
bound.

Map m.
& max.
mov. b.

3 3 3 Historical anonymity
[BMW+09]TTP 3 3 3 3
ICliqueCloak
[PXM12]TTP 3 3 3 3
Tra�c-aw. mix zones
[LZP+12]TTP 3 3 3 3 3 3
SybilQuery
[SGI09] 3 3 3 3 3 3

3 3 5 (k, δ)-anonymity
[ABN08]TTP 3 3
k-an.+Amin (Casper)
[CMA09]TTP 3 3 3
l-div. (PrivacyGrid)
[BLPW08]TTP 3 3 3
p-sensitive k-anon.
[XXM08]TTP 3 3 3

3 5 3 Time-t. (CliqueCloak)
[GL08]TTP 3 3
Mix zones (MobiMix)
[PL11]TTP 3 3 3 3 3

3 5 5 k-anonymity
[GG03]TTP 3
Chang. Pseudonyms
[BS03] 3 3 3 3
Private inf. retrieval
[GKK+08] 3 3 3 3 3 3 3

5 3 3 Spat.-temp. cloak.
[GHP07] 3 3
Max. velocity prot.
[GDSB09] 3 3 3
Path cloaking
[HGXA10]TTP 3 3 3 3
Semantic map obf.
[YDAS12] 3 3 3 3 3 3

5 3 5 Spatial obfuscation
[ACDS11] 3
Map-aw. pos. sharing
[SDR12] 3 3
Position dummies
[KYS05] 3 3
Map-aw. obf. (Probe)
[DSB11]TTP 3 3 3

5 5 3 Temp.-generalization
[FRVM+10]TTP 3 3 3 3 3 3

Table 2.2: Classi�cation of location privacy approaches. Each protection goal is
de�ned by whether the attribute identity, position, and time should
be protected (�3�) or not (�5�). The stated approaches provide the
corresponding protection goal assuming certain attacker knowledge.
If the technique can resist an attacker with a certain attack, this is
denoted by the symbol �3� in the main part of the table, whereas
an empty cell denotes that the attack can be successful against the
stated approach.

60

2.7 Classi�cation of Location Privacy Approaches

providing the corresponding goal. For each approach, we marked whether it

needs a trusted third party (denoted as TTP) or not.

The horizontal axis on top of Table 2.2 represents possible location privacy

attacks as presented in Section 2.6. For a clearer representation, we omitted

the location distribution attack, the identity-matching attack, and the location

tracking attack, which are only applicable to a small set of approaches in the

area of k-anonymity and pseudonyms. In the main part of Table 2.2, we use

the symbol �3� to show for each combination of location privacy approach and

location privacy attack that the corresponding protection goal can be achieved.

An empty cell shows that the attack can successfully undermine the privacy

approach such that the protection goal cannot be achieved.

Next, we summarize the observations that can be derived from Table 2.2 and

our analysis of the di�erent approaches:

1. Most approaches providing user privacy require a trusted third party. Es-

pecially, approaches protecting the identity of a user require a trusted

anonymizer, while only few approaches protect the user's identity without

trusted third party.

2. The most popular technique to protect user position information is spatial

obfuscation decreasing the precision of the shared position information of

the user.

3. Most approaches protecting the attribute position or the attributes posi-

tion and time focus on single positions, while only few approaches consider

multiple positions. However, only approaches considering multiple posi-

tions can resist multiple query attacks or maximum movement boundary

attacks.

4. Many approaches assume a free space environment of unrestricted move-

ment. However, the movement of users is typically restricted by spatial

boundaries such as walls or by the road network where users travel. An

61

2 Related Work

attacker can retrieve this map-related knowledge from existing map ser-

vices to restrict the movement area of the user by using a map matching

attack.

5. Many approaches protecting the attributes position and time consider only

the maximum movement boundary attack or already published trajecto-

ries. However, a challenging problem remains to have privacy mechanisms

protecting movement trajectories in real-time as used for online tracking.

6. The combination of the map matching attack and the maximum movement

boundary attack is only rarely considered by approaches protecting the

attribute position or the attributes position and time.

7. Only the approach presented in [GKK+08] resists a personal context link-

ing attack. Most approaches do not consider that an attacker may have

knowledge about user habits, regular user behavior, user interests, etc.

2.8 Our Approaches: Considered Attacks and

Protection Goals

In this section, we give an overview of how the approaches we introduce in this

thesis improve existing location privacy approaches based on the stated obser-

vations of our classi�cation. We show which protection goals our approaches

achieve and which attacks we consider. The classi�cation of our approaches is

shown in Table 2.3.

Generally, our goal is to protect user location privacy without relying on a

trusted third party (cf. Observation 1). Existing spatial obfuscation approaches

protecting the position attribute of the user have the drawback that clients can

only retrieve positions of decreased precision instead of precise user positions (cf.

Observation 2). To overcome this drawback, we propose the concept of position

sharing. Position sharing allows to provide di�erent precision levels to di�erent

62

2.8 Our Approaches: Considered Attacks and Protection Goals

Goals Approaches Attacks

ID Pos. Time
Location
homog.
attack

Map
match.
attack

Pers.
context
linking

Prob.
distr.
attack

Mult.
query
attack

Max.
mov.
bound.

Map m.
& max.
mov. b.

5 3 3 Trajectory fragment.
(Section 4.1) 3 3 3 3 3 3
Speed protection
(Section 4.2) 3 3 3 3 3 3

5 3 5 PShare-GLM/SLM
(Section 3.1) 3 3 3 3 3
PShare-BSP
(Section 3.2) 3 3 3 3

Table 2.3: Classi�cation of the concepts presented in this thesis

clients without limiting the maximum precision of a client due to lack of trust-

worthiness of the LS. Based on this idea, we present two novel position sharing

approaches protecting user position information. Our �rst position sharing ap-

proach presented in Section 3.1 is based on the concept of multi-secret sharing

and is denoted as PShare-GLM/SLM in Table 2.3. Our second position shar-

ing approach presented in Section 3.2 is based on the concept of binary space

partitioning and denoted as PShare-BSP in Table 2.3.

Since most location privacy approaches protecting the attribute position or

the attributes position and time focus on single user positions (cf. Observation

3), they typically do not resist a multiple query attack or a maximum move-

ment boundary attack. Our position sharing approaches improve the provided

privacy of these approaches by resisting the stated attacks. Furthermore, our

position sharing approaches resist probability distribution attacks by using a

deterministic obfuscation technique.

To resist map matching attacks (cf. Observation 4), PShare-GLM/SLM takes

map knowledge into account and guarantees that an attacker cannot decrease

the e�ective area size of an obfuscated position below a user-de�ned threshold

value.

Regarding that mechanism protecting multiple positions in real-time are re-

quired (cf. Observation 5), we present our trajectory fragmentation algorithms

in Section 4.1. Our trajectory fragmentation algorithms focus on the protection

of the position and time attribute, i.e., the protection of the user's movement

63

2 Related Work

trajectory. Our algorithms consider that the movement of a user is restricted by

a road network and that an attacker has map knowledge. To resist the maximum

movement boundary attacks and the map matching attack (cf. Observation 6),

our trajectory fragmentation algorithms consider di�erent movement alterna-

tives of the user based on the given road network.

An attacker can combine the map matching attack and the maximum move-

ment boundary attack to reveal speeding violations of the user based on known

speed limits and the user's maximum reachable position which does not vio-

late speed limits. To avoid revealing speeding violations, we present our speed

protection algorithms in Section 4.2.

Personal context linking attacks may currently decrease the provided privacy

of our proposed approaches (cf. Observation 7). For instance, the knowledge

of frequently visited locations can provide an attacker additional information to

increase the precision of the user's position information. Furthermore, protect-

ing movement trajectories is challenging if an attacker knows the destination

of the user based on personal context information. Finally, an attacker could

use the combination of the map matching attack and the maximum movement

boundary attack against our position sharing approaches to increase precision.

For the di�erent attacks that are currently not considered in our approaches

(cf. Table 2.3), we point out possible extensions to resist these attacks when

presenting the approaches in detail.

2.9 Conclusion

The literature describes many di�erent concepts and approaches to protect user

location privacy, which di�er in terms of the protected information and their

robustness against di�erent attacks. Therefore, we presented existing location

privacy approaches and provided a classi�cation for them based on their pro-

tection goals and their ability to resist attacks. Based on our classi�cation, we

described how the approaches introduced in this thesis improve existing privacy

approaches.

64

3 Protecting Position Information

In this chapter, we address the problem of storing position information on non-

trusted location servers. To allow for privacy-aware sharing of position informa-

tion without assuming that location servers are fully trustworthy, we present two

novel position sharing approaches for protecting user position information. Our

�rst position sharing approach presented in Section 3.1 is based on the concept

of multi-secret sharing and supports geometric and symbolic location models.

Our second position sharing approach presented in Section 3.2 is based on the

concept of binary space partitioning and focuses on the e�ciency of position

sharing. Finally, we show in Section 3.3 how our approaches di�er from existing

location privacy approaches and conclude this chapter in Section 3.4.

3.1 Position Sharing based on Multi-Secret Sharing

The general idea of the position sharing approach presented in this section is to

split up the precise position of the mobile object into a set of position shares and

to distribute the generated shares to di�erent LSs of di�erent providers. Each

share represents an imprecise position. Therefore, LSs manage only position

information of decreased precision. Nevertheless, clients can combine several

shares from di�erent LSs to increase precision of the mobile object's position.

Thus, position sharing allows to provide positions of di�erent precision levels to

di�erent clients without storing precise position information at any single LS.

Our position sharing approach has the following properties:

1. Provides location privacy without relying on a trusted third party.

65

3 Protecting Position Information

2. Supports geometric and symbolic location models.

3. Keeps the mobile object in control of its shared position information that

is provided to di�erent LSs.

4. Resists map matching attacks by taking map knowledge into account.

5. Does not limit the maximum precision that can be provided to a client by

the trustworthiness of an LS.

6. Allows to provide di�erent precision levels to di�erent clients.

7. Provides a graceful degradation of privacy in case of compromised LSs.

First, we introduce our extended system model and describe two variants of

our scheme: one for geometric locations (PShare-GLM), and one for symbolic lo-

cations (PShare-SLM). Afterwards, we analyze the robustness of our approaches

to resist di�erent attacks and show the applicability of our approaches.

3.1.1 Extended System Model

Our extended system model (cf. Figure 3.1) is based on the system model

presented in Section 2.2 consisting of mobile objects, location servers, and clients.

Below, we present the functionality and the interaction between the di�erent

components in more details.

The mobile object (MO) uses an integrated positioning system, such as GPS,

to determine the MO's precise current position π. We assume that the MO is

not compromised and no malicious software component can access π. The only

component allowed to directly access the integrated positioning system is our

share generation component (see below). All other components on the MO query

the MO's position as shown below. In order to ensure that no other component

than the share generator can directly access the integrated positioning system,

trusted computing approaches can be used, for instance, based on trusted module

hardware as presented by Gilbert et al. [GCJW10]. The MO executes a local

66

3.1 Position Sharing based on Multi-Secret Sharing

ClientA

Share generation &

Share distribution

Mobile object

ClientB

LS3LS2LS1

Access control

Share combination

Credentials

to access

LS2 & LS3

Figure 3.1: System components

software component for share generation that splits up π into a master share

mπ, denoted as m-share, and set Sπ = {rπ,1, . . . , rπ,n} of n re�nement shares,

denoted as r-shares, by calculating

generate(π, lmax, n) = (mπ, Sπ).

Parameter lmax de�nes the number of di�erent precision levels, i.e., positions

of di�erent well-de�ned precisions that can be o�ered to clients. We use the

notation p(π, l) to denote a position on precision level l derived from the pre-

cise position π. p(π, 0) represents the least precise position on level zero, and

p(π, lmax) the position of highest precision on level lmax. The concrete de�nition

of precision is dependent on the type of location model (geometric or symbolic),

and is introduced later for each model.

The m-share mπ consists of position p(π, 0) and additional information re-

quired to reconstruct positions of precision levels greater than zero. mπ is pub-

lic, i.e., everyone can know the least precise position p(π, 0). r-shares contain

further secret information to re�ne p(π, 0) to more precise positions of higher

levels. After share generation, the r-shares are distributed to di�erent location

servers such that each server receives one r-share.

67

3 Protecting Position Information

Location servers (LSs) store and manage r-shares. Each LS implements an

access control mechanism as presented in Section 2.3.3 to manage the access of

di�erent clients to shares. The access rights are de�ned by the MO and provided

to the clients of the LS, for instance, as credentials to access a certain number

of r-shares, where the number of accessible shares de�nes the intended precision

o�ered to a client.

Clients receive permissions to access a well-de�ned set S′π ⊆ Sπ of r-shares

from the MO and perform the share combination on the public m-share and

these r-shares:

combine(mπ, S
′
π) = p(π, l)

Combining the m-share mπ and the set S′π of r-shares yields position p(π, l)

of precision level l. Local clients running on the mobile device directly access

the set S′π ⊆ Sπ of r-shares provided by the share generation component to

reconstruct p(π, l). The concepts for share combination are identical to the

case where shares are queried from remote LSs. Thus, we focus the following

descriptions on the more general case where clients access di�erent r-shares from

a set of remote LSs.

3.1.2 Problem Statement

The goal is to design secure share generation and combination algorithms such

that an attacker�either (malicious) client or LS�knowing a set S′π ⊆ Sπ of

shares re�ning p(π, l) of precision level l cannot derive a position of higher preci-

sion than p(π, l). This is the essential requirement for our approach. Otherwise,

the MO could not control the precision o�ered to LSs and clients by limiting

access to a subset of shares.

Note that the basic assumption of position sharing is that the unauthorized

access to shares cannot be perfectly prevented. Thus, a malicious client or LS

could get a position of the precision de�ned by the accessible shares. However,

using secure shares, we can limit this risk by limiting the precision that can be

derived from a certain number of (compromised) shares.

68

3.1 Position Sharing based on Multi-Secret Sharing

3.1.3 Geometric Position Sharing

We start the description of our position sharing approaches with PShare-GLM,

the approach for geometric location models. First, we introduce our geometric

location model, which is used to de�ne positions on di�erent precision levels,

and give an overview on how to apply multi-secret sharing to position sharing.

Then, we describe the algorithmic details of share generation and combination.

Afterwards, we consider multiple position updates of the MO and present an

extension of PShare-GLM taking map knowledge into account.

Geometric Location Model

In PShare-GLM, the MO's precise position π and the obfuscated positions p(π, l)

are de�ned as geometric locations based on a Cartesian coordinate system. We

use a common map projection, e.g., Universal Transverse Mercator (UTM) pro-

jection, to map ellipsoidal coordinates (longitude, latitude) to Cartesian coordi-

nates. The UTM projection divides the Earth into sixty zones, each representing

a six degree band of longitude. For a MO traveling from one zone to another, the

zone is changed as soon as the area of the new check-in location is completely

covered by the new zone. Position π is a point coordinate. A position p(π, l)

of precision level l is de�ned as square area p(π, l) = ((xl, yl), b
lmax−l), where

(xl, yl) de�nes the coordinates of the south-west corner of the square and b
lmax−l

de�nes the side length. Hence, the precision corresponds to the side length of

the square. We assume that a maximum precision of one meter, which is well

below the precision of common positioning systems such as GPS, is su�cient

for every practical application. Therefore, we set the precision of the position

p(π, lmax) of the highest precision level lmax to one meter. Parameter b de�nes

the granularity of the precision levels, where an increase of the precision level by

one increases the precision by a factor of b and partitions the area of p(π, l) into

b2 squares. For b = 2, the result is a quadtree as depicted in Figure 3.2, where

each position of level l is re�ned into four positions of level l + 1.

To encode a position on level l, we specify the x and y coordinates of π as

69

3 Protecting Position Information

2
1

2
2

2
3

2
0

(x0,y0)

(x1,y1) (x2,y2)

(x3,y3)

p(π,1)

p(π,0)

p(π,2)

p(π,3)

Figure 3.2: Geometric area of p(π, l) for b = 2 and lmax = 3

N digits with base b, where N is selected such that each position in the MO's

movement area can be expressed by the corresponding Cartesian coordinates:

π.x =
N−1∑
k=0

αkb
k = (αN−1 · · ·α1α0)b

π.y =
N−1∑
k=0

βkb
k = (βN−1 · · · β1β0)b

Position π is degraded to p(π, l) by setting the lmax− l least signi�cant digits
to 0, meaning the actual digit values are unknown. For instance, for b = 2 and

lmax = 3, p(π, 0) can be written as follows, where underlined digits are unknown:

p(π, 0).x = 00010101011101110011000

p(π, 0).y = 11100100110001000101000

Based on the selected value of lmax, the MO's movement area is partitioned

deterministically into a grid of cells with a side length of 2lmax meter (cf. Fig-

ure 3.3) representing di�erent positions of the MO on precision level zero.

70

3.1 Position Sharing based on Multi-Secret Sharing

p(π,0)

(x0,y0)

2
l max

2
l max

Figure 3.3: Deterministic grid partitioning based on lmax

Overview of Multi-Secret Sharing Algorithm

PShare-GLM utilizes multi-secret sharing algorithms for share generation and

combination. Therefore, we �rst give a brief introduction to multi-secret sharing,

before we describe the basic relation between multi-secret and position sharing.

Multi-secret sharing is an extension of secret sharing. A widely known secret

sharing scheme is Shamir's (τ, n)-threshold scheme [Sha79]. The general idea of

this scheme is to split up a secret, say K, into a set of n shares that can be

distributed to di�erent participants. The so-called dealer, which initiates secret

sharing, de�nes a threshold value τ , which de�nes the required number of shares

to reconstruct K, and distributes the shares to the participants, where each

participant owns one share. Any τ out of the n participants putting their shares

together can reconstruct secret K. If less than τ shares are available, K cannot

be reconstructed.

The general idea of multi-secret sharing is that a dealer splits up m secrets

K1, . . . , Km into a set of n shares so that each secret Ki can be reconstructed

by any set of at least τi ≤ n shares. The number τi of required shares to

reconstruct each secret Ki is again de�ned by the dealer. For less than τi shares,

no information about Ki is exposed.

We apply the idea of multi-secret sharing as follows to our position shar-

ing approach PShare-GLM. We use the required information to re�ne position

71

3 Protecting Position Information

p(π, 0) to position p(π, 1), . . . , p(π, lmax) as secrets K1, . . . , Klmax of the multi-

secret sharing scheme. The MO corresponds to the �dealer�, which creates n

r-shares using function generate(π, lmax , n) as presented below in detail. We as-

sign each precision level l the threshold value τl = l, i.e., l shares are required to

reveal p(π, l). However, our approach provides the �exibility to use any number

τl for level l, where greater values increase robustness at the price of a greater

overhead, as discussed later.

The r-shares are then distributed among n LSs by the MO. The role of the

�participants� is split up between LSs and clients. Whereas participants of the

original multi-secret sharing scheme manage and combine shares, LSs only man-

age at most one share per position, and clients combine multiple shares queried

from di�erent LSs. This role split allows for providing di�erent precision levels

to di�erent clients, and limits the precision known by a single LS.

The m-share contains public data necessary for share combination (see below)

similar to traditional multi-secret sharing. However, in contrast to multi-secret

sharing, the m-share additionally contains coarse-grained position information

serving as origin for the re�nements.

Share Generation

The following description of share generation is based on the multi-secret sharing

approach of Chan and Chang [CC05]. However, also other multi-secret sharing

approaches could be applied.

Figure 3.4 visualizes the whole process of share generation and combination.

Algorithm 1 de�nes the process of share generation, which is entirely performed

by the MO. After sensing π, the MO �rst calculates p(π, 0) (position of minimal

precision) by simply setting the least lmax signi�cant digits to zero using function

floorDigits(π, lmax , b), as described previously. p(π, 0) is part of the public m-

share mπ.

Then, the MO calculates the r-shares for each precision level greater than zero.

As mentioned, the basic idea is to create one secret of the multi-secret scheme

for each position p(π, l) with l > 0. To this end, we �rst have to translate each

72

3.1 Position Sharing based on Multi-Secret Sharing

...

calculate
ClientShare()

combine()

p(π,2)

K1 ... Klmax

generate(π, lmax, n) MO

LS1

Client A

LSn

calculate
ClientShare()

combine()

p(π,3)
Client B

mπ

public

getSecret(π, lmax, b, l)

floorDigits(π, lmax ,b)

sr1
π

Multi-Secret Sharing

srn
π

cr1
π,2 cr1

π,3 cr4
π,3

...

crn
π,2 crn

π,3

Share
generation
executed on
the MO
(Algorithm 1)

Client r-share
calculation
executed on
the LSs
(Algorithm 2)

Share
combination
executed on
the clients
(Algorithm 3)

Figure 3.4: PShare-GLM process overview

position p(π, l) into secret Kl using function getSecret(π, lmax , b, l). Since Kl is

a single integer number, x and y values are to be encoded as a single number.

This is done by interleaving the digits of x and y values. In more detail, function

getSecret(π, lmax , b, l) calculates each secret Kl as di�erence of the interleaved

digit values of p(π, lmax) and p(π, 0) with the 2 · (lmax− l) least signi�cant digits
set to zero.

After the translation of p(π, l) to secret Kl, Chan and Chang's multi-secret

sharing scheme is applied to the calculated secrets K1, . . . , Klmax. To protect a

secret, a secret polynomial fl(X) of degree τl − 1 is calculated by the MO for

each secret Kl:

73

3 Protecting Position Information

Algorithm 1 PShare-GLM : Share generation executed on the MO

Function: generate(π, lmax, n)
1: p(π, 0)← floorDigits(π, lmax, b) . Calculate position of minimal precision
2: for l = 1 to lmax do
3: Kl ← getSecret(π, lmax , b, l) . De�ne secrets
4: end for
5: P, f(X) ← calculatePolynomial(K) . Apply multi-secret sharing
6: X ← n distinct integer
7: for i = 1 to n do
8: y′i ← f(xi) . xi ∈ X
9: sriπ ← (xi, y

′
i) . De�ne server r-share

10: end for
11: mπ ← P, p(π, 0) . De�ne m-share
12: return mπ, {sr1π, . . . , srnπ}

fl(X) = a′0 + a′1X + · · ·+ a′τl−1X
τl−1

The constant term a′0 corresponds to the protected secret Kl. The polynomial

and therefore the secret can be reconstructed by polynomial interpolation using

modular arithmetic if τl distinct points of the polynomial are known. Thus,

each r-share contains information to determine a single distinct point (x, y) of

the secret polynomial as shown below.

According to the introduced multi-secret sharing scheme, the secret polyno-

mials f1(X), . . . , flmax(X) of all secrets are packed together using the Chinese

Remainder Theorem into one single secret polynomial f(X):

f(X) = a0 + a1X + · · ·+ aτlmax−1X
τlmax−1

The constant term a0 of f(X) is the solution of the following simultaneous

congruences for lmax randomly selected distinct primes pl with p1 < . . . < plmax

74

3.1 Position Sharing based on Multi-Secret Sharing

and Kl < p1 for l = 1, . . . , lmax:

a0 ≡ K1 mod p1,

...

a0 ≡ Klmax mod plmax.

The terms a1, . . . , aτ1−1 ∈ ZM are randomly selected for M =
∏lmax

l=1 pl. The

terms aτl−1
, . . . , aτl−1 are computed for l = 2, . . . , lmax as follows:

For each j = τl−1, . . . , τl − 1 the term aj is calculated:

aj ≡ bj · rj ·
l−1∏
k=1

pk mod M.

The term bj is randomly selected from {0, . . . , pl − 1} and rj is a random

integer. Thus, it holds that aj ≡ 0mod pk for all coe�cients aj with j ≥ τl and

k = 1, . . . , l − 1.

By using this calculation, the secret polynomial f(X) is de�ned such that

fl(X) ≡ f(X) mod pl. That is, we can calculate fl(X) by calculating f(X)

modulo pl for prime pl de�ning the �eld Zpl[X] of fl(X). fl(X) is a uniquely

de�ned polynomial of degree less than τl over Zpl[X]. The set of primes P =

{p1, . . . , plmax}, which is required together with the r-shares to reconstruct the

secrets, is part of the m-share.

This leaves the question of the detailed content of an r-share. As pointed

out before, each r-share should contain information about a single distinct point

(x, y) of a certain polynomial fl(X). Using multi-secret sharing, we actually

have to distinguish between the information of the r-shares generated by the

MO, which is sent to and stored by the LSs (called server r-share srLSπ), and

the information sent from the LSs to the clients (called client r-share crLSπ,l).

Each server r-share contains a distinct point (x, y′) of the secret polynomial

f(X). Each client r-share contains a distinct point (x, y) of fl(X), which is

required for share combination. Upon a request of the client for crLSπ,l , cr
LS
π,l

75

3 Protecting Position Information

Algorithm 2 PShare-GLM : Client r-share calculation executed on the LSs

Function: calculateClientShare(l)
1: crLSπ,l .x← srLSπ .x

2: crLSπ,l .y ← srLSπ .y′ mod mπ.pl . Retrieve information from server r-share

3: return crLSπ,l

is calculated by the LS from srLSπ as y = y′ mod pl (cf. Algorithm 2). Note

that di�erent client r-shares of di�erent levels can be calculated from one server

r-share using the speci�c prime of level l.

Share Combination

In order to calculate p(π, l), a client retrieves the publicly available m-share

mπ and τl client r-shares cr
LS1

π,l , . . . , cr
LSτl
π,l from τl di�erent LSs. As described

previously, mπ contains the set of prime numbers (P) and the least precise

position p(π, 0) of the MO. Each client r-share crLSiπ,l de�nes a distinct point

(xi, yi) in fl(X).

Share combination (cf. Algorithm 3) uses the Lagrange interpolation over the

�eld Zpl[X]:

fl(X) =

τl−1∑
i=0

yi
∏

0≤j≤τl−1
j 6=i

X − xj
xi − xj

∈ Zpl[X].

This reconstructs polynomial fl(X) by interpolating the τl distinct points of

the client r-shares, which uniquely de�ne fl(X). SecretKl is the constant term of

fl(X) and is calculated as fl(0) = Kl mod pl. The position p(π, l) is calculated

by adding the reconstructed secret Kl to the interleaved representation of p(π, 0)

and splitting up the sum into the x and y values of p(π, l).

Each polynomial fl(X) ∈ Zpl[X] has a degree of at most τl − 1 and ful�lls

the condition fl(xi) = yi. Because at least τl distinct points are required to

76

3.1 Position Sharing based on Multi-Secret Sharing

Algorithm 3 PShare-GLM : Share combination executed on the clients

Function: combine(mπ, {crLS1

π,l , . . . , cr
LSτl
π,l }, l)

1: fl(X)← lagrange({crLS1

π,l , . . . , cr
LSτl
π,l },mπ.pl) . Polynomial interpolation

2: Kl ← fl(0) . Calculate secret
3: p(π, l)← split(interleave(mπ.p(π, 0)) +Kl) . Re�ne position
4: return p(π, l)

interpolate a polynomial of degree τl− 1, it is guaranteed that p(π, l) cannot be

reconstructed with less than τl client r-shares.

Correctness

The correctness of our position sharing approach is based on the property

that the secrets provided to the multi-secret sharing scheme of Chan and

Chang [CC05] can be reconstructed by share combination. To this end, the

multi-secret sharing scheme [CC05] relies on the presented modulo calculation

when solving the simultaneous congruences and Shamir's well-known secret shar-

ing scheme [Sha79]. What remains to be shown is that for each level l the secret

Kl calculated in our share generation re�nes position p(π, 0) of the m-share to

position p(π, l). Thus, the share combination implements the inverse function of

the share generation splitting up the provided integer value of Kl into the digits

of the MO's coordinates re�ning position p(π, 0) to p(π, l).

Multiple Position Updates

Up to now, we only considered share generation for single position updates.

However, in the worst case, a compromised LS or client could reveal a complete

history of positions for a certain precision level (either precision level one for an

LS with access to a single server r-share, or a certain level l in case of a client that

was granted access to the client r-shares of level l). As shown by the location

privacy attacks presented in Section 2.6.2, the knowledge of multiple obfuscated

77

3 Protecting Position Information

positions might enable an attacker to further re�ne the precision beyond the

intended precision. To avoid this, we extend our basic algorithm as follows.

We assume that the MO has a known maximum velocity vmax, which is also

known by an attacker. Moreover, we consider that in the worst case an attacker

knows the complete history U = {(p(πfirst, l), tfirst), . . . , (p(πlast, l), tlast)} of po-
sition updates for a certain precision level l. Here, tfirst denotes the time of the

�rst update, and tlast the time of the last update up to the present time. Level

l depends on the available shares accessible by the attacker. Then, we have to

guarantee that for all t ∈ [tfirst, tlast] the attacker cannot derive a position of

higher precision than the precision of p(πt, l).

Before describing our counter measure, we have to consider the maximum

movement boundary attack introduced in Section 2.6.2 in more detail. As shown

by Ghinita et al. [GDSB09], a sequence of position updates resists a maximum

movement boundary attack if each pair of succeeding updates resists this attack.

Therefore, it is su�cient to only consider two directly succeeding positions.

For this attack, the attacker considers two succeeding positions (p(πi, l), ti) and

(p(πi+1, l), ti+1) with the obfuscated areas A = p(πi, l) and B = p(πi+1, l) at

times tA = ti and tB = ti+1. With this information, the attacker tries to remove

areas from the obfuscated area B that are not reachable from the obfuscated

area A in time ∆t = |tB − tA| for a MO traveling with a maximum speed

vmax. Figure 3.5 shows an example where an attacker can remove the dark part

of area B, which is not reachable from area A in time ∆t. Furthermore, the

attacker tries to remove areas from area A without reachable point in area B

considering ∆t and vmax. By removing unreachable parts of area A or area B,

the obfuscation area is decreased and the precision of the attacker is increased.

To prevent such an attack, we �rst only consider position updates for level

zero. Later we will show that protecting the position updates of level zero against

maximum movement boundary attacks also protects the position updates for ev-

ery level 0 ≤ l ≤ lmax. Let dpp(p(πi, 0), p(πi+1, 0)) be the point pairwise distance

of two succeeding MO positions p(πi, 0) and p(πi+1, 0). The point pairwise dis-

tance of two rectangular areas is de�ned as the maximum Euclidean distance

78

3.1 Position Sharing based on Multi-Secret Sharing

A

B

vmax*Δt

Non-reachable
part of area B from
area A in time Δt

Reachable part of
area B from area A
in time Δt

Figure 3.5: Maximum movement boundary attack

between any point in the �rst area to any point in the second area. Furthermore,

let ∆t = |ti+1 − ti| be the time between the two updates. Then, the MO only

sends an update for p(πi+1, 0) at time ti+1 if the following condition is ful�lled:

∆t ≥ dpp(p(πi, 0), p(πi+1, 0))

vmax
. (3.1)

If this condition is ful�lled, every point in p(πi+1, 0) is reachable from every

point in p(πi, 0) in time ∆t. Otherwise, p(πi+1, 0) has to be delayed until this

condition is ful�lled.

For precision levels greater than zero, the point pairwise distance is always

smaller than or equal to the point pairwise distance of level zero. Thus, if

Equation 3.1 is ful�lled for level zero, it is also ful�lled for levels greater than

zero.

The maximum delay time δt between two updates depends on the values of b

and lmax and is de�ned as:

δt =
2 ∗ (
√

2 ∗ blmax)
vmax

. (3.2)

Intuitively, δt describes the maximum time that is required to travel a distance

of two times the diagonal of the area of p(π, 0) with vmax. Therefore, the MO

79

3 Protecting Position Information

can trade-o� the maximum delay time against the minimal revealed precision

(p(π, 0)) by adjusting the size of p(π, 0).

We analyzed the check-in behavior of users from di�erent LBAs in our real

world evaluation presented in Section 3.1.6 and show that typically only few

check-ins have to be delayed. For applications requiring higher update rates

than used for sporadic check-ins, the maximum precision decrease δs introduced

by the maximum delay time δt is de�ned by the distance of two times the

diagonal of the area of p(π, 0):

δs = 2 ∗
√

2 ∗ blmax. (3.3)

Geometric Position Sharing Using Map Knowledge

Until now, we assumed a free space environment for PShare-GLM where MOs

can be located at each position within p(π, l). However, in many scenarios, the

position of the MO is restricted to streets, places, buildings, etc. Therefore, an

attacker could use map knowledge for the map matching attack presented in

Section 2.6.2 to decrease the e�ective area size of the obfuscation area p(π, l).

The e�ective area of a MO's position p(π, l) is de�ned as the area within p(π, l)

where the MO can actually be located. An example for a map matching attack is

shown in Figure 3.6, where the e�ective area size of the obfuscation area p(π, 0)

is decreased by considering only positions on roads and buildings.

To overcome this problem, we present PShare-GLMmap, which takes map

knowledge into account. The idea of our extension to PShare-GLM is to adapt

MO positions in a �rst step to map knowledge such that each position p(π, l′i)

covers at least an area with an e�ective area size of a MO-de�ned value Ai. In a

second step, we use the calculated positions for the share generation and apply

the multi-secret sharing scheme as presented for PShare-GLM.

For the �rst step, the MO speci�es its privacy requirements by de�ning dif-

ferent area values Ai ∈ A0, . . . , Am each representing the required minimum

e�ective area size of precision level l′i. The goal is now to �nd the smallest posi-

tion p(π, l′i) for each value Ai, such that the e�ective area size of p(π, l′i) is equal

80

3.1 Position Sharing based on Multi-Secret Sharing

area(p(π,0))=

262 144m
2

esize(p(π,0))=

82 946 m
2

Map

Figure 3.6: Map knowledge reducing the e�ective area size (b = 2, lmax = 9)

to or greater than Ai. To calculate the e�ective area size of position p(π, l), we

use function esize(p(π, l)). Now, our goal is to �nd the maximum level l′i such

that esize(p(π, l ′i)) ≥ Ai for each Ai ∈ A0, . . . , Am. For the sake of simplicity,

we restrict our explanations to parameter b = 2 de�ning the granularity of the

area of the MO's position. Nevertheless, our approach can also be applied to

other parameter values of b.

We analyze map information in a preprocessing step to adapt positions to

map knowledge. Thus, we calculate for each position whether or not it is a

possible MO position, for instance, located on a street or in a building. To allow

for an e�cient search of p(π, l′i) for each Ai, we store all possible MO positions

in a quadtree aggregating the e�ective area sizes for each level in a bottom-up

approach (cf. Figure 3.7). The quadtree has a depth of lmax and its root is

de�ned by position p(π, 0).

To calculate the maximum level l′i ful�lling esize(p(π, l ′i)) ≥ Ai for a given

position π and a required e�ective area size Ai without raising privacy concerns,

we traverse the corresponding quadtree of π top down by evaluating the e�ective

area size of position p(π, l) for each level l and the four child nodes of p(π, l) on

level l + 1. If the described nodes of the quadtree cover an e�ective area of size

equal to or greater than Ai, the quadtree is further traversed on the next level

81

3 Protecting Position Information

4161 3727

16915

82946

28050

...

...

...

...

...

...

...

...

...

...

...

...

Level 0

Level 1

Level 2

Level 9

14535

4284 2363

23446

Figure 3.7: Quadtree and e�ective area example (b = 2, lmax = 9)

l + 1. Otherwise, level l′i = l is found.

To explain why it is required to consider esize(p(π, l)) for level l and also for

the four child nodes of p(π, l) on level l+ 1 within each step when traversing the

quadtree, consider the following example as depicted in Figure 3.8:

Assume position p(π, l) of an arbitrary level l covers the areas p(π1, l + 1),

p(π2, l+1), and p(π3, l+1), all having an e�ective area size of 120. Area p(π4, l+1)

covered by p(π, l) has an e�ective area size of 80. For a given threshold Ai = 100,

the dark area in Figure 3.8a of level l would be calculated as obfuscation area

for each position π ∈ p(π, l).
When not taking the child nodes of p(π, l) into account when determining

l′i, an attacker could increase his precision for an update in an area with an

e�ective area size smaller than Ai based on the returned obfuscation area and

the knowledge of the share generation algorithm. For instance, each position

π ∈ p(π1, l+ 1) would lead to an obfuscation area of level l+ 1 marked in a light

color in Figure 3.8b, whereas π ∈ p(π4, l+1) would lead to an obfuscation area of

level l marked dark. Thus, an attacker could increase his precision based on the

returned obfuscation area by excluding p(π1, l+1) from a calculated obfuscation

area of p(π, l) for Ai = 100.

In the second step, we calculate the secrets K1, . . . , Km that are used as input

82

3.1 Position Sharing based on Multi-Secret Sharing

Level l

Level l+1

p(3,l+1)
120 120

120 80

p(1,l+1)

p(, l)

p(2,l+1)

p(4,l+1)

440

(a) Obfuscation area for each position π ∈
p(π, l) considering e�ective area sizes and
child nodes

p(3,l+1)
120

440

 120

120 80

p(1,l+1)

p(, l)

p(2,l+1)

p(4,l+1)

Level l

Level l+1

(b) Di�erent obfuscation areas considering
e�ective area sizes without considering child
nodes

Figure 3.8: Example showing impact of child node consideration (Ai=100, b=2)

for the multi-secret sharing scheme based on the calculated positions p(π, l′i) for

each Ai ∈ A0, . . . , Am. The number m of generated secrets is de�ned by the

m + 1 MO-de�ned area threshold values. Each secret Ki is calculated as the

interleaved digits re�ning position p(π, l′0) of A0 to position p(π, l′i) of Ai for

1 ≤ i ≤ m.

The share generation of PShare-GLMmap extends the share generation algo-

rithm presented in Algorithm 1 for PShare-GLM. We apply the area adaptation

to calculate the secrets by changing line 1 to 4 of Algorithm 1 and, therefore,

the way how the secrets are generated. Furthermore, we change the position

provided within the m-share from p(π, 0) to p(π, l′0).

Details of the share generation are presented in Algorithm 4. First, we cal-

culate the obfuscation area p(π, l′i) for each MO-de�ned threshold value Ai ∈
A0, . . . , Am by using function getMaxLevelConsideringChilds(π,Ai , q) travers-

ing quadtree q top-down by checking the previously described requirements for

the child nodes and esize(p(π, l)) ≥ Ai for each position p(π, l). Then, the ob-

fuscation areas are used to generate the secrets Ki by interleaving the re�ning

digits of position p(π, l′0) of A0 to position p(π, l′i) of Ai. The calculated secrets

are then used as input for the multi-secret sharing scheme as presented in Algo-

83

3 Protecting Position Information

Algorithm 4 PShare-GLMmap: Map-based share generation of the MO

Function: generate(π, lmax, n, {A0, . . . Am})
1: q ← getQuadtree(π, lmax) . Calculate quadtree
2: for i = 0 to m do
3: p(π, l′i)← getMaxLevelConsideringChilds(π,Ai, q)
4: end for
5: for i = 1 to m do
6: Ki ← interleave(refinement(p(π, l′0), p(π, l

′
i))) . De�ne secrets

7: end for
8: P, f(X) ← calculatePolynomial(K) . Apply multi-secret sharing
9: X ← n distinct integer

10: for i = 1 to n do
11: y′i ← f(xi) . xi ∈ X
12: sriπ ← (xi, y

′
i) . De�ne server r-share

13: end for
14: mπ ← P, p(π, l′0) . De�ne m-share
15: return mπ, {sr1π, . . . , srnπ}

rithm 1 for PShare-GLM. Finally, position p(π, l′0) is stored within the m-share

ful�lling esize(p(π, l′0)) ≥ A0.

The share combination of PShare-GLMmap is basically calculated as presented

in Algorithm 3 for PShare-GLM. The only di�erence is that position p(π, l) in

line 3 is now de�ned as p(π, l′i) and is calculated by splitting up Ki into the x and

y part re�ning p(π, l′0) of them-share to p(π, l′i) by substituting the corresponding

digits of p(π, l′0). Furthermore, the value of l′i is calculated based on the length

of the reconstructed secret Ki.

3.1.4 Symbolic Position Sharing

Next, we present PShare-SLM, the symbolic counterpart to the position shar-

ing algorithm PShare-GLM. The general idea of PShare-SLM is similar to

PShare-GLM : We apply the multi-secret sharing scheme presented by Chan

84

3.1 Position Sharing based on Multi-Secret Sharing

New York

Palmetto_ station

California Florida

Gainesville Orlando Tampa

Miami_i_airportMiami_art_museum

USA

Miami

Texas

Babcock_Park

Level 0

Level 1

Level 2

Level 3

Figure 3.9: Simpli�ed location hierarchy example

and Chang [CC05] to share the MO's position in di�erent precision levels with

di�erent clients. Since the symbolic location de�nition di�ers from the geometric

de�nition, we start with an explanation of our symbolic location model, before

we present the speci�c share generation and combination algorithms.

Symbolic Location Model

Our symbolic location model consists of a location hierarchy based on the spatial

containment relationship. Each location is represented as a vertex vj in the

hierarchy and has a level l de�ning the length of the path from the root to vj

(cf. Figure 3.9). The root location is on level zero, and we assume that all leaf

vertices have the same level lmax. Each location has a unique location name in the

context of its parent location, for instance, �Florida� for the location representing

the State of Florida as child of the location representing the country USA. The

concatenation of names on the path from the root to a location de�nes a unique

label for each location, such as usa/florida/miami/miami_i_airport for the

location representing the Miami International Airport. Each location label can

be mapped to a unique identi�er represented as an integer, which serves as input

to the secret sharing scheme as presented below.

Using a hierarchical model makes it easy to de�ne positions of di�erent pre-

85

3 Protecting Position Information

Algorithm 5 PShare-SLM : Share generation executed on the MO

Function: generate(π, lmax, n)
1: p(π, 0), . . . , p(π, lmax)← ancestors(p(π, lmax)) . Calculate ancestor vertices
2: for i = 1 to lmax do
3: Ki ← p(π, i).id . De�ne secrets
4: end for
5: P, f(X) ← calculatePolynomial(K) . Apply multi-secret sharing
6: X ← n distinct integer
7: for i = 1 to n do
8: y′i ← f(xi) . xi ∈ X
9: sriπ ← (xi, y

′
i) . De�ne server r-share

10: end for
11: mπ ← P, p(π, 0).id . De�ne m-share
12: return mπ, {sr1π, . . . , srnπ}

cisions. Each hierarchy level de�nes a precision level, where level lmax de�nes

the highest precision where the MO is located. Again, p(π, l) denotes a position

of precision level l similar to the geometric model. However, p(π, l) is now rep-

resented as symbolic location identi�er rather than geometric coordinates. The

sequence of ancestor vertices of a position p(π, l) is denoted as

ancestors(p(π, l)) = (p(π, 0), . . . , p(π, l)).

Share Generation and Share Combination

We now apply the idea of multi-secret sharing to our symbolic position sharing

approach PShare-SLM. The share generation executed by the MO is shown in

Algorithm 5.

First, the MO evaluates function ancestors(p(π, lmax)) to determine the set of

positions (p(π, 0), p(π, 1), . . . , p(π, lmax)) (line 1). The identi�er of p(π, 0) de�nes

the root of the hierarchy and is stored in them-share. The identi�ers of p(π, 1) to

p(π, lmax) are used as secrets K1, . . . , Klmax for the multi-secret sharing scheme.

86

3.1 Position Sharing based on Multi-Secret Sharing

Algorithm 6 PShare-SLM : Share combination executed on the clients

Function: combine(mπ, {crLS1

π,l , . . . , cr
LSτl
π,l }, l)

1: fl(X)← lagrange({crLS1

π,l , . . . , cr
LSτl
π,l },mπ.pl) . Polynomial interpolation

2: p(π, l).id← fl(0) . Reconstruct secret as location identi�er
3: return p(π, l)

The remaining part of the algorithm is similar to the share generation of PShare-

GLM. That is, we apply the multi-secret sharing algorithm by calculating the

server r-shares, and distribute them to the LSs.

Similarly, the share combination algorithm as depicted in Algorithm 6 again

uses the Lagrange interpolation over the �eld Zpl[X] to reconstruct the secret

polynomial fl(X) for a given level l. The constant term of fl(X) is the identi�er

of p(π, l), which can be mapped to the label of p(π, l).

Multiple Position Updates

Next, we analyze PShare-SLM with regard to multiple symbolic position up-

dates. As pointed out, an attacker knowing the complete position history

U = {(p(πfirst, l), tfirst), . . . , (p(πlast, l), tlast)} for a certain level l could try to

use a maximum movement boundary attack to increase precision. Note that

although the location hierarchy itself does not de�ne the distance information

necessary for such attacks, an attacker can determine this information by match-

ing symbolic locations to available topographic maps.

The basic idea to counter such attacks is similar to the geometric case: A

new update p(πi+1, l) is only permitted if any position within p(πi+1, 0) is reach-

able from any position within p(πi, 0) considering ∆t = |ti+1− ti| and the MO's

maximum velocity vmax. Although theoretically this would be an e�ective coun-

termeasure, it impacts the minimal update time between two succeeding updates

as speci�ed in Equation 3.1. In contrast to the geometric case, where the pre-

cision of p(πi, 0) can be speci�ed by the MO, level zero is now de�ned by the

87

3 Protecting Position Information

root location of the given symbolic location model. Therefore, it is worthwhile

to have a closer look at the in�uence on the minimal update time.

Assume a model where the root location covers a whole country like Germany.

In this case, the maximum distance between two positions within the hierarchy

would be about 1 000 km. For a MO walking with vmax = 6 km/h, this results in

a maximum delay of 6.94 days, whereas a maximum velocity of vmax = 200 km/h

of a car decreases the minimum time between two updates to �ve hours. For an

inner city scenario with a maximum distance of 10 km and a MO walking with

at most vmax = 6 km/h, the minimum delay between two updates would be 1.66

hours.

These examples show that there are scenarios where the minimal update time

between two succeeding updates would be hours rather than days. This would

be su�cient for many �check-in� applications, as our evaluations based on real

world position information show in Section 3.1.6. For applications with shorter

update intervals, the geometric approach would be better suited.

3.1.5 Privacy Analysis

Next, we present the privacy analysis for PShare-GLM and PShare-SLM. We

start with a description of the attacker model and present afterwards the ana-

lyzed attacks in detail.

Attacker Model

As attackers we consider malicious LSs and malicious clients. Each attacker

has access to the public m-shares. Each malicious LS additionally knows one

server r-share for each position. Each malicious client with access to a position

of precision level l additionally knows l client r-shares. We both consider single

attackers (a single malicious LS or client), as well as colluding attackers (mul-

tiple malicious LSs or clients). We structure the following analysis according

to di�erent attacks. First, we consider single attackers who analyze a single

(current) position, or even the complete history of positions based on the di�er-

88

3.1 Position Sharing based on Multi-Secret Sharing

ent attacks presented in our attacker classi�cation in Section 2.6.2. Second, we

analyze the e�ect of colluding attackers who combine their compromised shares.

Since PShare-GLM and PShare-SLM are based on the same multi-secret sharing

scheme, we do not distinguish between them unless the di�erence is relevant.

Single Attacker

First, we consider a malicious client having access to l client r-shares of a sin-

gle position that can be used to reconstruct p(π, l). Thus, the client knows

secret Kl re�ning p(π, 0) to p(π, l) from these shares. As shown by Chan and

Chang [CC05], their multi-secret sharing scheme ensures that di�erent secrets

are independently protected by di�erent polynomials. Thus, the information

from Kl cannot be used to reconstruct other secrets and positions of levels

greater than l.

A single malicious LS has access to the m-share and one server r-share, i.e., it

knows one distinct point of the secret polynomial f(X). Therefore, the malicious

LS can calculate for each precision level l with 0 < l ≤ lmax exactly one point

of the polynomial fl(X). Thus, the malicious LS can reconstruct the MO's

position p(π, 1) of level one, while the positions of all levels greater than one,

which require at least two r-shares, cannot be reconstructed.

Our proposed extension against map matching attacks (cf. Section 3.1.3)

ensures that an attacker cannot reduce the e�ective area size of a known position

p(π, l′i) below a MO-de�ned value Ai by using additional map knowledge.

Next, we consider attackers knowing for a certain level l the complete position

history U = {(p(πfirst, l), tfirst), . . . , (p(πlast, l), tlast)} instead of only a single

position of the MO. Our algorithms create position shares of di�erent positions

independently from each other. Therefore, shares generated for (p(πi, l), ti) can-

not be combined with shares for (p(πi+1, l), ti+1). Nevertheless, the reconstructed

positions p(πfirst, l), . . . , p(πlast, l) could be used by an attacker for a region in-

tersection attack or a maximum movement boundary attack as presented in

Section 2.6.2. However, our deterministic obfuscation approach guarantees that

two calculated positions of a certain precision level l are always either identical

89

3 Protecting Position Information

or do not intersect each other. Therefore, an attacker cannot increase his known

precision based on a region intersection attack. Since we use delayed updates as

countermeasure against maximum movement boundary attacks, these attacks

are also futile.

To prevent that an attacker can increase the precision of an obfuscated position

by combining the map matching attack and the maximum movement boundary

attack, our approaches could further be extended based on the idea presented

by Yigitoglu et al. [YDAS12] to calculate the delay time between two position

updates according to the map-based reachability of two obfuscated positions

instead of the point-pairwise distance.

Colluding Attackers

Assume, for instance, three malicious clients ClientA, ClientB, and ClientC .

Assume that ClientA and ClientB own l client r-shares of the same precision

level l so that both can calculate p(π, l). ClientC owns l + 1 client r-shares of

the next precision level l + 1 to reconstruct p(π, l + 1). Then, the collusion of

ClientA and ClientB does not reveal anything new to ClientA and ClientB, as

they were both already allowed to reconstruct p(π, l) by calculating polynomial

fl(X) using their l client r-shares each representing a distinct point of fl(X). Be-

cause polynomial fl(X) is uniquely de�ned by l distinct points, even using more

than l client r-shares of the same precision level leads to the same polynomial

fl(X) and therefore p(π, l). Furthermore, the client r-shares of precision level

l reconstructing fl(X) reveal nothing about the polynomial fl+1(X) and there-

fore about p(π, l+ 1). This is based on the fact that the polynomials of di�erent

precision levels are generated independently from each other in the multi-secret

sharing scheme [CC05]. Thus, even the collusion of ClientA and ClientC with

client r-shares of di�erent precision levels does not reveal any new information.

ClientC can reconstruct p(π, l + 1) even without collusion and the additional

client r-shares of ClientA carry no information about polynomial fl+2(X) of the

next precision level l + 2.

Second, we consider multiple malicious LSs. LetM be the number of colluding

90

3.1 Position Sharing based on Multi-Secret Sharing

LSs. These LSs can use their stored server r-shares to calculateM di�erent client

r-shares for each level l. Since we de�ned the threshold values as τl = l, l client

r-shares are required to get a position p(π, l) of precision level l. Therefore, M

colluding LSs can reveal positions up to level l = M . This shows the desired

graceful degradation of privacy property of our approach. The revealed precision

increases with the number of compromised LSs. We could even increase the

robustness by setting the threshold values τl to values greater than l. Then, more

LSs are required to calculate a position of a certain level, which increases the

overhead on the one hand, but on the other hand increases the robustness of our

approach. Thus, our scheme allows for trading o� overhead against robustness.

The collusion of malicious LSs and malicious clients is a special case of the col-

lusion of malicious LSs. In this case, either the client with the highest precision

level or the number of colluding LSs de�nes the revealed precision level.

3.1.6 Evaluation

Next, we present our evaluation results. We begin with our evaluation based on

real world positions and present our runtime performance evaluation afterwards.

Real World Position Evaluation

As de�ned in Equation 3.1, the minimum time between two updates is restricted

by the MO's maximum speed and the size of the level zero position to guaran-

tee protection against maximum movement boundary attacks. To analyze the

practical impact of this restriction, we analyzed real datasets of position check-

ins from existing LBAs to see how they comply with this restriction. If many

updates were violating the restriction, this would indicate that our approach is

not applicable to these applications as users would be unable to perform many

desired updates.

The analyzed dataset, which was collected by Cheng et al. [CCLS11] between

September 2010 and January 2011, contains 22 387 922 user position check-ins

of 224 803 users from di�erent LBAs, such as Foursquare [Fou14b], all over the

91

3 Protecting Position Information

Category Pedestrian Ground vehicle Plane

Distance
(d) and
average
speed (v)

d ≤ 10 km
and
v ≤ 6 km

h

(d ≤ 10 km and 6 km

h
< v ≤ 200 km

h
)

or
(10 km < d ≤ 10 000 km and
v ≤ 200 km

h
)

d > 10 000 km
or
v > 200 km

h

vmax 6 km

h
200 km

h
1 000 km

h

#updates 15 895 691 6 079 316 412 915

Table 3.1: Position update classi�cation

world. Since the dataset only contains geometric coordinates, this evaluation

focuses on PShare-GLM. For our purpose, we processed the dataset by clas-

sifying each position update as pedestrian, ground vehicle, or plane based on

the traveled distance and the average speed between two succeeding updates,

as shown in Table 3.1. The categories pedestrian and ground vehicle represent

typical user movement behavior, while category plane considers all updates that

do not match the �rst two categories.

Table 3.1 also shows the assumed maximum speed for PShare-GLM and the

resulting number of updates per category. For each category, we calculated the

percentage of updates that can be performed without violating the restriction

presented in Equation 3.1. Figure 3.10 depicts the results for the categories and

di�erent sizes of level zero positions ranging from 1m (20) square side length to

32 768m (215). As we can see, in the worst case, for an obfuscation area with

a side length of 32 768m, 55.19% of the pedestrian updates are possible. For

a side length of 1 024m, which provides su�cient privacy for pedestrians in an

inner city scenario for example, 88.09% of the updates are possible. For ground

vehicles, 83.59% of the updates are possible using even the coarsest obfuscation

of 32 768m. Figure 3.11 depicts the results of all position updates together from

all categories. As it can be seen, for a level zero size of 1 024m, 90.08% of all

updates can be published. Thus, we can state that the minimum update time

restriction only a�ects a small number of updates.

92

3.1 Position Sharing based on Multi-Secret Sharing

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
cc

es
sf

ul
 u

pd
at

es
 [%

]

Obfuscation area precision exponent i

Pedestrian
Ground vehicle

Plane

Figure 3.10: Successful updates for obfuscation areas of precision 2i[m]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
cc

es
sf

ul
 u

pd
at

es
 [%

]

Obfuscation area precision exponent i

All categories

Figure 3.11: Successful updates for obfuscation areas of precision 2i[m]

Runtime Performance Evaluation

Besides privacy, the e�ciency of share generation is important for the practical

application of our approaches. Share generation is performed on the MO's mobile

device, which typically has low performance in terms of computational speed.

Also on such resource-poor devices, share generation must be possible in short

time. An e�cient share generation also leads to small overhead in terms of

energy, which is desirable for battery-operated mobile devices.

We measured the overall time for share generation of PShare-GLM, PShare-

93

3 Protecting Position Information

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m

e
[s

]

Number of generated r-shares

PShare-GLM
PShare-GLMmap

PShare-SLM

Figure 3.12: Performance evaluation of share generation (n = lmax shares, b = 2)

GLMmap, and PShare-SLM on a mobile device (HTC Desire HD, 1GHz Qual-

comm Snapdragon S2, 768MB RAM). For PShare-SLM, we used a hierarchy

with a maximum level of lmax = 3 and measured the time to generate one m-

share and three to �fteen r-shares. The shares are all generated for the same

number of lmax = 3 secrets so that three r-shares are required to reconstruct

the precise position of the MO on level three. For PShare-GLM, we measured

the time to create one m-share and a varying number of n = lmax r-shares.

By increasing n, we also increased the number of secrets used. To evaluate

PShare-GLMmap, we used road network and building data provided by Open-

StreetMap [Ope14] for the inner city of Stuttgart. We de�ned the obfuscation

area of p(π, 0) by setting lmax = 13, such that p(π, 0) covers an area of 67.1 km2

and has an e�ective area size of 10.5 km2. We increased the number of generated

r-shares from one to �fteen by increasing the number of area thresholds used.

We varied each area threshold between 10 km2 and 10m2. The results are shown

in Figure 3.12. The depicted results of PShare-GLM are measured for b = 2

only since other b values led to almost identical results. The plotted values are

the average over several runs per share number.

As it can be seen, the runtime of PShare-SLM is almost constant for the

di�erent numbers of generated r-shares. This is based on the fact that the

94

3.1 Position Sharing based on Multi-Secret Sharing

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m

e
[m

s]

Number of combined r-shares

PShare-GLM
PShare-GLMmap

PShare-SLM

Figure 3.13: Performance evaluation of share combination

number of used secrets is de�ned by the maximum level three of the hierarchy.

For PShare-GLM and PShare-GLMmap, the number of secrets was increased

by increasing the number of generated shares. Nevertheless, the runtime of all

three approaches stays well below one second even for larger numbers of shares.

Therefore, we can state that the share generation algorithms are e�cient and

suitable even for resource-poor devices.

Next, we show the performance evaluation for the share combination, which

is done by clients typically running in an infrastructure without energy restric-

tions and high computational power. For PShare-GLM, PShare-GLMmap, and

PShare-SLM, we measured the time to combine the m-share with up to 15 r-

shares on a personal computer (Intel Core 2 Duo, 2.53 GHz, 3 GB RAM). The

results are shown in Figure 3.13. As it can be seen, the time for share combina-

tion of all three approaches is nearly the same and stays below 1.1milliseconds

even for a larger number of combined shares.

95

3 Protecting Position Information

3.2 Position Sharing based on Binary Space

Partitioning

In this section, we present our second position sharing approach PShare-BSP,

which is based on binary space partitioning instead of multi-secret sharing.

PShare-BSP focuses on the e�ciency of position sharing by implementing an

optimized share update protocol reducing the communication costs for position

updates.

First, we describe our extended system model and our problem statement for

PShare-BSP. Afterwards, we introduce the details of PShare-BSP and analyze

the level of privacy it provides. Finally, we present our evaluation results.

3.2.1 Extended System Model

The basic functionality of the mobile objects, location servers, and clients in our

extended system model corresponds to their functionality presented for PShare-

GLM in Section 3.1.1. Compared to PShare-GLM, PShare-BSP is based on

a di�erent technique to implement position sharing such that the de�nition of

the m-share and the r-shares di�er with respect to their contained information

as further introduce below. Nevertheless, the general de�nition of positions on

di�erent precision levels is identical. The share generation executed on the MO

splits up the MO's precise position π into the m-share mπ and the set of r-shares

Sπ = {rπ,1, . . . , rπ,lmax} by using function

generate(π, lmax) = (mπ, Sπ).

The MO-de�ned parameter lmax de�nes the number of lmax + 1 di�erent pre-

cision levels o�ered to clients, and the number of generated r-shares. Due to the

share combination technique presented below, the number of generated r-shares

in PShare-BSP corresponds to the number of di�erent precision levels provided

to clients. In PShare-GLM, the number n of generated r-shares was indepen-

dent from the number of supported precision levels. Thus, even more than lmax

96

3.2 Position Sharing based on Binary Space Partitioning

r-shares could be generated. The de�nition of the MO's position of precision

level l with 0 ≤ l ≤ lmax is again p(π, l). The m-share mπ de�nes position

p(π, 0) with a precision which is low enough to be published without raising

privacy concerns. The r-shares increase the precision of the m-share (p(π, 0))

by providing re�nement information stored in the r-shares.

LSs store position shares and answer queries from di�erent clients by returning

the corresponding shares based on the implemented access control mechanism.

Clients query shares from di�erent LSs and use the share combination function

combine(mπ, {rπ,1, . . . , rπ,l}) = p(π, l)

to increase the provided precision of p(π, 0) to p(π, l) with 0 < l ≤ lmax by

combining the m-share mπ and l r-shares from di�erent LSs. Each r-share rπ,i

has an index i de�ning the sequence of the lmax r-shares. Compared to PShare-

GLM, where any l out of the n LSs could be queried for their r-shares to increase

precision from level zero to level l, the set of r-shares which a client has to query

in PShare-BSP is the set of the LSs storing the sequence of the �rst l r-shares.

3.2.2 Problem Statement

As introduced in Section 3.1.2, an ideal position sharing approach will not allow

an attacker knowing position p(π, l) to derive a position with a precision beyond

the precision of p(π, l). Otherwise, the precision o�ered to LSs and clients could

not be controlled by providing access to a certain number of shares. Therefore,

we consider the same problem statement as presented for PShare-GLM, but rely

on a di�erent technique to solve this problem, namely, binary space partitioning

instead of multi-secret sharing. Additionally, our goal is to allow for an e�cient

update of position shares to reduce the overhead of position sharing.

97

3 Protecting Position Information

3.2.3 Position Sharing Approach

In this section, we present our position sharing approach PShare-BSP imple-

menting the functions for share generation and share combination introduced

above. Then, we introduce an optimization reducing the number of required

share updates signi�cantly.

Basic Approach

Both share generation and combination depend on the concept of how to trans-

late the MO's precise position π into an obfuscated position p(π, l) of a certain

precision level l. As pointed out, PShare-BSP focuses on geometric locations

and relies on the same location model as presented for PShare-GLM in Sec-

tion 3.1.3. We assume a granularity parameter of b = 2 such that an obfuscated

position p(π, l) of a given precision level l is de�ned as p(π, l) = ((xl, yl), 2
lmax−l)

representing the square area that contains the MO's precise position π. Coordi-

nates (xl, yl) of p(π, l) are de�ned as coordinates of π.x and π.y with the lmax− l
least signi�cant bits set to zero. These bits are the unde�ned bits of p(π, l). The

position of the i-th unde�ned bit of a coordinate is equal to its (lmax + 1) − i
least signi�cant bit. The precision value of p(π, l) is set to 2lmax−l de�ning the

range of the lmax − l unde�ned bits. The less unde�ned bits exist, the higher

is the precision of a position. As an example, consider Figure 3.14 where the

unde�ned bits of p(π, l) that were set to zero are underlined for each level l.

The m-share mπ represents the coarsest obfuscation area p(π, 0) with the

coordinates (x0, y0) and the precision value lmax. To calculate p(π, 0), the lmax

least signi�cant bits of π.x and π.y are replaced by zero. lmax again de�nes the

deterministic partitioning of the movement area into the grid of cells with a side

length of 2lmax meter.

To increase the precision of the m-share mπ, the unde�ned bits of p(π, 0) have

to be de�ned. To this e�ect, we use a set S′π = {rπ,1, . . . , rπ,l} of l ≤ lmax

r-shares, where each r-share rπ,i de�nes the i-th unde�ned bit of the x and y

value of p(π, 0). At the same time the precision is improved by decreasing the

98

3.2 Position Sharing based on Binary Space Partitioning

p(π,2)

p(π,3)

p(π,1)

p(π,0)

(x0,y0)
p(π,3)=((..1101,..1011), 20)

p(π,2)=((..1100,..1010), 21)

p(π,1)=((..1100,..1000), 22)

p(π,0)=((..1000,..1000), 23)

(x1,y1)

(x2,y2)
(x3,y3)

rπ,2.x=0
rπ,2.y=1

rπ,3.x=1
rπ,3.y=1

rπ,1.x=1
rπ,1.y=0

Figure 3.14: Re�nement example for p(π, 0) based on lmax = 3

side length value of p(π, 0). Thus, position p(π, 0) can be re�ned up to p(π, l)

by incrementally substituting the unde�ned bits of p(π, 0) by the corresponding

bits of the r-shares. As mentioned, the number of generated r-shares for each

position update is de�ned by the value lmax such that the precision of p(π, 0)

can be increased up to lmax di�erent precision levels from p(π, 1) to p(π, lmax).

As shown in Figure 3.14, the re�nement information of the r-shares rπ,1, rπ,2,

and rπ,3 de�nes stepwise the unde�ned bits of p(π, 0) increasing the provided

precision up to the precise position without any unde�ned bits. As we can see, a

partial re�nement up to a certain precision level l is also possible where certain

bits remain unde�ned.

The share generation uses function generate(π, lmax) presented in Algorithm 7

to calculate the m-share and the r-shares. The m-share is calculated in function

floorBits(π, lmax) by setting the lmax least signi�cant bits of π.x and π.y to

zero. Each r-share rπ,i with 1 ≤ i ≤ lmax de�nes the two bits of π.x and π.y

corresponding to the bits at the position of the i-th unde�ned bit in p(π, 0).

These bits are returned by function getBits(π, i).

The share combination function combine(mπ, {rπ,1 , . . . , rπ,l}) is implemented

as shown in Algorithm 8. It takes as input the m-share mπ representing the

obfuscation area p(π, 0) and a sequence of l r-shares rπ,1 , . . . , rπ,l . In order to

re�ne the position up to a certain precision level l, the sequence of r-shares must

contain all r-shares for level one to l. The re�ned position p(π, l) is calculated

99

3 Protecting Position Information

Algorithm 7 PShare-BSP : Share generation executed on the MO

Function: generate(π, lmax)
1: mπ.p(π, 0)← floorBits(π, lmax) . Generate m-share
2: for i = 1 to lmax do
3: rπ,i ← getBits(π, i) . De�ne r-shares
4: end for
5: Sπ ← {rπ,1, . . . , rπ,lmax} . De�ne set of lmax r-shares
6: return mπ, S

Algorithm 8 PShare-BSP : Share combination executed on the clients

Function: combine(mπ, {rπ,1, . . . , rπ,l})
1: p(π, 0)← mπ.p(π, 0)
2: for i = 1 to l do
3: p(π, i)← setBits(p(π, i− 1), rπ,i) . De�ne unde�ned bits
4: end for
5: return p(π, l)

by replacing the i-th unde�ned bit of the x and y values of p(π, 0) by the bits

of r-share rπ,i.x and rπ,i.y for 1 ≤ i ≤ l. This step is implemented in function

setBits(p(π, i − 1), rπ,i).

To protect multiple position updates from revealing additional information

to an attacker using the maximum movement boundary attack, we rely on the

concept of delayed position updates as counter measure, which we introduced

and analyzed for PShare-GLM in Section 3.1.6. Since PShare-GLM and PShare-

BSP both rely on the same representation of an obfuscated position p(π, l) for

a certain precision level l, the analysis and the results for the temporal delayed

position updates of PShare-GLM can be applied to PShare-BSP.

100

3.2 Position Sharing based on Binary Space Partitioning

Update Optimization

A drawback of position sharing is that multiple shares have to be updated per

position �x instead of one. To alleviate this problem, we present an optimization

of our basic approach PShare-BSP, called PShare-BSPopt, reducing the number

of messages required for position updates signi�cantly.

Existing position sharing approaches [DSR11, SDR12], PShare-GLM/SLM,

and the basic approach of PShare-BSP need to update the m-share and all

r-shares for each new position. The general idea of PShare-BSPopt is that,

initially, the m-share and all r-shares are updated once. For the following k− 1

position updates, we re-use the r-shares to re�ne the positions of several m-

shares and update only the m-share for every new position. To this end, a

m-share contains a partially encrypted position that can be decrypted by the

bits of the corresponding key that is split up and stored within di�erent r-

shares. Therefore, only one share has to be updated per new position rather

than 1 + lmax (one m-share and lmax r-shares). In order to allow for the re-use

of r-shares for the next k−1 updates, we have to include additional information

for each r-share. The value of k can be de�ned by the MO and determines the

number of times the r-shares can be re-used before they must be updated. For

simplicity, we limit our explanations to the x coordinate of the MO's position.

The y coordinate is handled analogously.

We use a one-time pad encryption to protect the lmax least signi�cant bits of

π.x for each position update. Generally, a one-time pad encryption can be used

to protect a secret by XORing it with a random set of bits de�ning the key of

the encryption. The result of the encryption is a cipher that does not provide

any information about the secret without the key. We de�ne the secret sx as the

lmax least signi�cant bits of π.x. The corresponding key is of length lmax and is

called re�nement-key (r-key). The cipher cx is calculated by bitwise XORing sx

with the corresponding r-key as

cx = sx XOR r-keyx. (3.4)

101

3 Protecting Position Information

π.x αlmax-1...α0

0…..0 sx

lmax-bits

lmax-bits

r-keyx

mπ

XOR

cx

r1

rlmax

…

p(π,0).x

Figure 3.15: Share generation overview for PShare-BSPopt

m

XOR

cx[l]

r1 rl…

r-keyx[l]

sx[l]

0…..0
p(,0).x

sx[l]

refine
p(,l).x

0..0

l lmax-l

lmax

Figure 3.16: Share combination overview for PShare-BSPopt

Cipher cx is then stored within the m-share mπ in addition to p(π, 0) as shown

in Figure 3.15. The idea is now to split up r-keyx into its lmax bits and distribute

them as part of the r-shares to di�erent LSs. The re�nement of p(π, 0) to p(π, l)

for a certain precision level l requires the l most signi�cant bits of the r-keyx,

denoted as r-keyx[l]. The re�nement is done by decrypting cx with the combined

r-keyx[l] of the r-shares as shown in Figure 3.16. The result of the decryption

de�nes the l most signi�cant bits of sx, denoted as sx[l]. Finally, p(π, 0) is re�ned

to p(π, l) by substituting the l most signi�cant unde�ned bits of p(π, 0) by sx[l].

The lmax − l unde�ned bits remain zero.

102

3.2 Position Sharing based on Binary Space Partitioning

0 1 … 0

1 1 … 0

1 0 … 1

1 1 … 1

0 0 … 0

r-keyx
1

r-keyx
k

LS1 LS2 LSlmax

r1.x rlmax.xr2.x

Figure 3.17: Correlation of r-shares and r-keys in PShare-BSPopt

To ful�ll the optimization goal, we provide within each r-share k bits that can

reconstruct the r-keys of k updates. The r-share ri stores the i-th bit of any of the

k generated r-keys. The di�erent r-keys are referenced by an identi�er, denoted

as r-keyid. The correlation of r-shares and r-keys is shown in Figure 3.17, where

LSi stores the r-share ri representing a secure random set of k bits.

Next, we describe the algorithms for share generation and share combination of

PShare-BSPopt. The share generation presented in Algorithm 9 checks whether

a distributed r-key can be used for the next update. If no unused r-key is

available, a set of k new r-keys and lmax new r-shares is generated. Then, the

id of the r-key to use is set. Finally, Algorithm 10 generates the m-share mπ

including cipher cx. After generation, the shares are distributed to the LSs.

The share combination presented in Algorithm 11 reconstructs position p(π, l)

of precision level l by combining the m-share mπ with l r-shares r1, . . . , rl. The l

r-shares compose the corresponding r-key idx [l] of length l. Then, cipher cx of mπ

is XORed with r-key idx [l]. The reconstructed re�nement bits then substitute the

corresponding unde�ned bits. The remaining lmax − l bits are still unde�ned.

Without knowing the missing lmax− l r-shares and thus the corresponding parts

of the r-key, it is not possible to further increase the precision of p(π, l).

To guarantee the provided privacy of PShare-BSPopt, it is essential that each

r-key is only used once. Otherwise, the encryption can be broken. Thus, we use

each r-key only once and renew the r-shares after all k r-keys have been used.

103

3 Protecting Position Information

Algorithm 9 PShare-BSPopt: Share generation executed on the MO

Function: generateSharesOPT (π, lmax)
1: if noUnusedRKeyAvailable() then
2: for id = 1 to k do
3: r-key idx ← getRandBits(lmax) . Generate random bits
4: end for
5: for i = 1 to lmax do
6: r i.x← getBitsFromRKeys(i) . De�ne r-shares
7: end for
8: S ← {r1, . . . , rlmax}
9: end if

10: id← getUnusedRKeyID() . Select r-key id
11: mπ ← generateMShareOPT (π, lmax,r-key

id
x , id) . Calculate m-share

12: return mπ, S

Algorithm 10 PShare-BSPopt: m-share generation executed on the MO

Function: generateMShareOPT (π, lmax,r-key
id
x , id)

1: mπ.p(π, 0)← floorBits(π, lmax) . Calculate p(π, 0)
2: sx ← getXRefinement(π.x, lmax) . De�ne secret
3: mπ.cx ← sx XOR r-key idx . Calculate cipher of m-share
4: mπ.rKeyID← id . Set r-key id of m-share
5: return mπ

Algorithm 11 PShare-BSPopt: Share combination executed on the clients

Function: combineOPT (mπ, {r1, . . . , rl})
1: r-key idx [l]← getRKey(mπ.rKeyID, {r1.x, . . . , rl.x}) . Calculate r-key
2: p(π, l).x← setXBits(mπ.p(π, 0).x,mπ.cx[l] XOR r-key idx [l]) . De�ne bits
3: return p(π, l)

104

3.2 Position Sharing based on Binary Space Partitioning

3.2.4 Privacy Analysis

In this section, we present our attacker model and analyze the robustness of our

approaches against di�erent location privacy attacks.

Attacker Model

We assume malicious clients and malicious LSs that could be compromised as

possible attackers. Malicious clients are a special sub-case of malicious LSs.

We consider the case that the LSs storing the m-share and l r-shares are com-

promised and collude together such that the attacker knows the MO's position

p(π, l) of precision level l. As presented in our problem statement, an ideal po-

sition sharing approach will not allow an attacker knowing p(π, l) to derive a

position with a precision beyond the precision of p(π, l).

Attacks on PShare-BSP and PShare-BSPopt

PShare-BSP and PShare-BSPopt both deterministically transform the MO's po-

sition π for a given value of lmax to position p(π, 0). For each position π′ ∈ p(π, 0)

it holds that the same position p(π, 0) is calculated. This is guaranteed by map-

ping the lmax least signi�cant bits of the x and y coordinate to zero, independent

whether the bit was zero or one before. An attacker knowing p(π, l) trying to

increase his precision to level l + 1 would have to determine the �rst unknown

bit of the x and the y coordinate of p(π, l). Thus, the attacker could analyze the

unde�ned bits of p(π, l) and try to calculate the inverse function of the mapping

to zero values. However, as values of zero and one are both mapped to zero, no

further information is revealed to the attacker without knowing the correspond-

ing r-share rl+1. The same holds for an attacker analyzing the four possible

re�nement areas of p(π, l) on level l + 1. All four areas are of the same size

and share therefore the same probability to cover π. Thus, the probability of

selecting the correct area on level l + 1 is equal to randomly guessing a certain

area on level l + 1.

An attacker knowing mπ in PShare-BSPopt also knows ciphers cx and cy. As

105

3 Protecting Position Information

proven by Shannon [Sha49], the cipher of a one-time pad encryption provides no

information about the protected secret even if the attacker has in�nite computa-

tional power. Thus, it is not possible for an attacker to increase precision from

p(π, l) to p(π, l + 1) without knowing r-share rl+1 de�ning the corresponding

parts of the r-keys to decrypt cx and cy.

In addition to analyze the unde�ned bits, an attacker can try to analyze the

generated positions and apply the attacks presented in Section 2.6.2. Therefore,

we analyze how PShare-BSP and PShare-BSPopt resist these attacks.

An attacker can try to use the region intersection attack, which is a special

method of the multiple query attack that can be successful on obfuscation-based

approaches, if di�erent obfuscation areas are generated for the same position π.

However, we always deterministically generate the same obfuscation area for each

position π and each level l. For the MO's value of lmax and two di�erent positions

π′ and π′′, either the obfuscation areas of level l are equal, i.e., p(π′, l) = p(π′′, l),

or the areas do not intersect each other, i.e., p(π′, l)∩p(π′′, l) = ∅. In both cases,

an attacker cannot re�ne p(π, l) based on the region intersection attack.

The probability distribution attack calculates the probability that the MO is

located in certain areas. It is most bene�cial for probabilistic privacy algo-

rithms that might lead to an uneven distribution of (possible) MO positions

within the obfuscation area. For instance, the algorithm presented in [DSR11]

leads to a concentration in the center of the obfuscation area. We try to avoid

such concentrations and strive for a uniform distribution within the obfuscation

area. Our deterministic share generation algorithm guarantees that each posi-

tion π′ ∈ p(π, l) leads to the obfuscation area p(π, l) with the same probability

for a certain precision level l. Thus, running a Monte Carlo simulation for the

deterministic obfuscation and share generation algorithm over π′ ∈ p(π, l) leads
to a uniform distribution over p(π, l). Therefore, probability distribution attacks

do not provide any additional information to the attacker.

By design, we only generate and update new position shares if they are not

vulnerable to themaximum movement boundary attack by using delayed position

updates as a countermeasure. Thus, an attacker cannot increase his precision

106

3.2 Position Sharing based on Binary Space Partitioning

by analyzing multiple positions using a maximum movement boundary attack.

A possible extension of PShare-BSP to resist map matching attacks could

be based on the introduced idea of PShare-GLM taking map knowledge into

account. Then, the re�nement shares of PShare-BSP would increase precision

to precision levels of di�erent e�ective area sizes as presented for PShare-GLM.

3.2.5 Evaluation

Next, we analyze the computational e�ciency of our approaches by measuring

the runtime performance of share generation and combination using a prototype

of our system. Then, we analyze the bandwidth e�ciency of our approaches.

Runtime Performance Evaluation

Generally, the share generation is performed on a resource-constrained mobile

device with limited CPU power and battery capacity. Even on such resource-

poor devices, share generation must be possible in short time, which results in a

small overhead in terms of energy. To show the performance of our approaches,

we measured the overall time for share generation on a mobile device (HTC

Desire HD, 1GHz Qualcomm Snapdragon S2, 768MB RAM). We measured the

time to create one m-share and one to 15 r-shares and plotted the overall time

over the number of r-shares in Figure 3.18. For reference values, we used the

results presented in [DSR11] for the random share generation algorithm (denoted

as RSG) and the results presented in Section 3.1.6 for PShare-GLM. We limited

the number of generated r-shares to 15, because a precision of 32 768m should

be su�ciently coarse to provide location privacy for the MO. As we can see,

the share generation of both PShare-BSP and PShare-BSPopt stays well below

one millisecond even when providing for PShare-BSPopt k = 184 di�erent r-

keys within the r-shares. Thus, we can state that the share generation is highly

e�cient and suitable even for resource-poor devices. PShare-BSP decreases the

computational complexity by one order of magnitude compared to [DSR11], and

by three orders of magnitude compared to PShare-GLM.

107

3 Protecting Position Information

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m

e
[m

s]

Generation of r-shares

RSG
PShare-GLM
PShare-BSP

PShare-BSPopt(k=184)

Figure 3.18: Performance evaluation of share generation

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m

e
[m

s]

Combination of r-shares

RSG
PShare-GLM
PShare-BSP

PShare-BSPopt(k=184)

Figure 3.19: Performance evaluation of share combination

In contrast to share generation, the share combination is done by clients that

typically run in the infrastructure with no energy restriction and high computa-

tional power. We measured the time required to combine onem-share with up to

15 r-shares on a personal computer (Intel Core 2 Duo, 2.53 GHz, 3 GB RAM).

As we can see in Figure 3.19, share combination is calculated very e�ciently in

less than 150 microseconds even for a larger number of shares.

108

3.2 Position Sharing based on Binary Space Partitioning

Bandwidth E�ciency

To analyze the e�ciency of our approaches in terms of communication over-

head, we compare the number of required update messages for PShare-BSP and

PShare-BSPopt. We assume that the MO performs a number of k′ ≤ k posi-

tion updates using lmax + 1 LSs to store the generated m-share and the lmax

r-shares. Then, for PShare-BSP, the MO has to send a total of k′ · (1 + lmax)

update messages, where each of the k′ position updates triggers an update of the

m-share and all lmax r-shares. For PShare-BSP
opt, we once update the m-share

and all lmax r-shares, while for the next k − 1 updates only the m-share has to

be updated. This results in a total number of k′ + lmax update messages. The

r-shares are updated after k′ = k position updates were sent.

Next, we analyze the generated network load by analyzing the di�erent share

sizes and the overhead of lower level communication protocols. Each share has a

share-ID (32 bits), a user-ID (32 bits), and a type de�nition (8 bits). In PShare-

BSP, them-sharemπ adds position information (112 bits) and a list of IDs de�n-

ing the r-shares ofmπ (lmax · 32 bits). An r-share rπ adds 2 bits for its re�nement

property. In PShare-BSPopt, the m-share mopt
π adds cipher cx (lmax bits), cipher

cy (lmax bits), and the used r-key id (32 bits) to mπ. The additional payload

of mopt
π compared to mπ is denoted as ∆mopt

π . Each r-share ropt consists of k

(32 bits) and 2 · k bits to reconstruct r-keyx and r-keyy.

Thus, the network load of PShare-BSP for k′ position updates is

NLbasic = k′ · ((size(mπ) + o) + lmax · (size(rπ) + o)) bits, (3.5)

where o de�nes the protocol overhead introduced by lower level protocols for

each message. The network load of PShare-BSPopt is

NLopt = k′ · (size(mopt
π) + o) + lmax · (size(ropt) + o) bits. (3.6)

109

3 Protecting Position Information

Comparing NLbasic and NLopt leads to

k′ ≥ lmax · (size(ropt) + o)

lmax · (size(rπ) + o)− size(∆mopt
π)

(3.7)

denoting the number of k′ updates that have to be sent until PShare-BSPopt

outperforms PShare-BSP and NLopt ≤ NLbasic holds. The size of the message

overhead measured for sending a share over TCP/IP is o = 320 bits. For lmax =

16 generated r-shares and, for example, k = 128, this results in a value of

k′ ≥ 1.72. This means that PShare-BSPopt outperforms PShare-BSP as soon

as the second position of the MO is updated. By using Equation 3.7, we can

calculate that PShare-BSPopt always outperforms PShare-BSP with the second

update, as long as k ≤ 184. For sending k′ = k = 184 position updates,

PShare-BSP generates a total network load of NLbasic= 172 040 bytes when also

taking the TCP/IP overhead into account. PShare-BSPopt at the same time only

generates a load of NLopt= 27 896 bytes. This results in a reduction of 83.8% of

the generated network load. By considering the additional overhead required to

provide secure channels by using, for instance, Transport Layer Security (TLS),

the overhead of each message is further increased. Thus, reducing the number

of messages by PShare-BSPopt further increases its e�ciency.

In addition to optimizing the updates of shares, i.e., the communication be-

tween MO and LSs, PShare-BSPopt also optimizes the communication between

the LSs and the clients. A client has to query all accessible r-shares only once

within k updates instead of querying the r-shares every time a new position of

the MO is updated.

3.3 Related Work

The most prominent location privacy concept is k-anonymity [KGMP07], which

protects the user's identity. However, k-anonymity approaches and extensions

such as l-diversity [BLPW08] or t-closeness [LLV07] usually require a trusted

third party anonymizer, although the presented doubts exist that LSs can be

110

3.3 Related Work

assumed to be fully trusted. In contrast, our position sharing approaches pro-

tect user privacy without the use of a trusted third party. Furthermore, our

approaches protect the user's position information instead of the user's identity.

A simple approach to protect user position information is to store encrypted

positions on the LS. This approach does not rely on any security mechanism

of the LS. However, the LS cannot perform essential computations like nearest

neighbor queries or range queries on the server side. In contrast, our position

sharing approaches provide obfuscated position information to the LSs that can

be used to answer position, range, and nearest neighbor queries.

Dummy approaches [KYS05] send the real user position together with several

false positions to the LS. Advanced dummy approaches as presented by Shankar

et al. [SGI09] make dummy identi�cation more di�cult using databases of col-

lected position information. However, this leads to the problem of collecting

user position information without raising privacy concerns, and to the problem

of operating such a database without a trusted third party such that it cannot be

manipulated. Furthermore, the provided privacy of these approaches is reduced

if dummies can be identi�ed. As shown by Peddinti and Saxena [PS11], this is

possible even if dummies are generated by sophisticated algorithms.

Spatial obfuscation approaches [DK05, GDSB09, DSB11] provide user privacy

by sending positions of degraded precision to the LS. Spatial obfuscation ap-

proaches generally do not require a trusted third party. Unfortunately, they

limit the maximum allowed precision of mobile object positions that can be pro-

vided to clients of an LS by the trustworthiness of the LS. Consequently, clients

cannot be provided with more precise positions than stored at any LS, no matter

how trustworthy the clients are. This might have severe impact on clients, since

usually the quality of an application degrades with the quality of the position

information. Furthermore, an incremental precision increase for di�erent clients

with di�erent quality of service demands and trust levels, as provided by our

position sharing approaches, is not supported.

The position sharing approach introduced by Dürr et al. [DSR11] and its ex-

tension to maps presented by Skvortsov et al. [SDR12] do not require a trusted

111

3 Protecting Position Information

(a)

c0

c1

r1

c2

r1
r2


r2

r1

r3

(b)

c1

r1

(c)

c2

r1 r2

(d)

r2
r1

r3

Figure 3.20: Position sharing based on vector addition

third party. Furthermore, they can provide di�erent precision levels to di�er-

ent clients by combining position shares from di�erent LSs based on random

geometric transformations. In [DSR11], each LS stores the imprecise position

of a mobile object, which is represented as a circle with a well-de�ned radius

(cf. circle c0 in Figure 3.20a). Additionally, each LS stores an individual shift

vector that can increase the precision of the mobile object's position by shifting

the center of the circle along the vector. At the same time, the radius of the

circle is decreased. An example for the di�erent re�nement steps is shown in

Figure 3.20b, Figure 3.20c, and Figure 3.20d, where the precision of the most

imprecise position of circle c0 is increased by using three re�nement shares (de-

noted as r1, r2, and r3). These re�nement shares represent the shift vectors

from di�erent LSs that were queried by a client to obtain the precise position of

the mobile object. In [SDR12], map information is considered to de�ne possible

mobile object positions instead of assuming a uniform probability distribution

of the mobile object's position within the circles. Then, the circles and shift

vectors are calculated according to the map information such that an attacker

cannot use map matching attacks to increase precision.

Although the two approaches [DSR11] and [SDR12] provide su�cient privacy

in many scenarios, an attacker can apply the location distribution attack pre-

sented in Section 2.6.2 by using Monte Carlo simulations to derive positions

of higher precision than intended with a certain probability. In contrast, our

position sharing approaches make such an attack impossible because of the de-

112

3.3 Related Work

terministic obfuscation approach calculating obfuscated positions on di�erent

precision levels. This improves the robustness of our approaches signi�cantly.

Furthermore, our position sharing approaches do not just consider isolated po-

sition check-ins, but also succeeding position �xes of the same mobile object,

which might unintentionally increase precision if updated in an uncontrolled

manner.

While the position sharing approaches [DSR11] and [SDR12] apply probabilis-

tic geometric transformations for obfuscation, our �rst position sharing approach

presented in Section 3.1 is based on the concept of multi-secret sharing [CC05].

Using multi-secret sharing for position sharing allows to apply our approach not

only to geometric positions (longitude, latitude values) but also to symbolic lo-

cations, such as cities, buildings, or restaurants, which are important for a wide

range of applications.

Our second position sharing approach based on binary space partitioning im-

proves the existing position sharing approaches by signi�cantly increasing the

communication e�ciency. To this end, our position sharing approach imple-

ments an optimized share update protocol reducing the communication costs

for position updates. The approaches [DSR11] and [SDR12] would have to up-

date all shares for each position update, while our approach has to update all

shares once. Afterwards, only a single share has to be updated.

The approach based on (single) secret sharing presented by Marias et

al. [MDKG05] divides the position of the mobile object into several shares so

that only a prede�ned number of shares can reconstruct the mobile object's po-

sition. This approach provides location privacy, however, it reveals the precise

position of the mobile object to each client. In contrast, our position sharing

approaches ensure graceful degradation of privacy instead of implementing an

�all-or-nothing� approach. Therefore, clients can be assigned to di�erent preci-

sion levels without revealing the precise position of the mobile object.

113

3 Protecting Position Information

3.4 Conclusion

In this chapter, we focused on the protection of user positions when sharing lo-

cation information with location services and clients. To protect user privacy, we

presented two novel position sharing approaches protecting user position infor-

mation against advanced attackers without assuming a trusted third party. Our

�rst position sharing approach PShare-GLM/SLM makes use of the concept of

multi-secret sharing to calculate position shares. Our second position sharing

approach PShare-BSP is based on binary space partitioning. The basic idea of

our position sharing approaches is to split up precise position information into

position shares of limited precision, which are distributed to multiple location

servers of di�erent providers. Clients query position shares from di�erent loca-

tion servers to increase precision. Thus, the individual quality requirements of

di�erent clients can be satis�ed.

Finally, we compare our position sharing approaches against each other. Espe-

cially, we consider the �exibility, the robustness, the computational complexity,

and the overhead of each position sharing approach.

Flexibility: PShare-GLM/SLM supports geometric and symbolic location mod-

els, which demonstrates the versatility of the approach, while PShare-BSP

supports only geometric locations. Furthermore, the number of shares that

can be generated in PShare-GLM/SLM can be selected equal to or above

the number of di�erent precision levels that should be provided to clients,

while the number of generated shares in PShare-BSP is prede�ned and

limited based on the number of di�erent precision levels. Additionally,

PShare-BSP requires that clients query shares in a well-de�ned sequence

from the corresponding LSs, while PShare-GLM/SLM provides the �ex-

ibility that clients can query the required number of shares from any set

of available LSs storing the corresponding shares. Thus, we can state that

PShare-GLM/SLM is more �exible than PShare-BSP.

Robustness: PShare-GLM/SLM and PShare-BSP both resist attackers using

114

3.4 Conclusion

probability distribution attacks, multiple query attacks, and maximum

movement boundary attacks. Furthermore, both approaches do not require

a trusted third party. Since PShare-GLM/SLM takes also map knowl-

edge into account to resist map matching attacks, PShare-GLM/SLM pro-

vides a higher robustness compared to PShare-BSP. In addition, PShare-

GLM/SLM allows to individually specify the number of shares that are

required to reconstruct a position of a given precision level to increase ro-

bustness, while each share in PShare-BSP increases the precision by one

level. Based on these properties, we can state that PShare-GLM/SLM

provides a higher robustness than PShare-BSP

Complexity: Even if PShare-GLM/SLM and PShare-BSP can both generate

position shares very fast, the complexity of PShare-GLM/SLM is higher

than the complexity of PShare-BSP because of the multi-secret sharing

scheme that has to be applied to generate the position shares. As shown

in our performance evaluation in Section 3.2.5, the share generation and

share combination of PShare-BSP outperform the share generation and

share combination of PShare-GLM/SLM.

Overhead: Generally, position sharing approaches have the overhead of dis-

tributing position shares to multiple LSs for each position update. PShare-

GLM/SLM requires to update the position shares for all LSs for each po-

sition update. As shown in our evaluation in Section 3.2.5, the update

optimization of PShare-BSP signi�cantly reduces the number of required

update messages compared to an non-optimized position sharing approach

like PShare-GLM/SLM. To this end, PShare-BSP initially updates the

shares of all LSs, while afterwards only the share of one LS has to be

updated. Therefore, PShare-BSP outperforms PShare-GLM/SLM with

respect to the message overhead of the position sharing approaches.

As summarized in Table 3.2, PShare-GLM/SLM outperforms PShare-BSP

considering the �exibility and the robustness of the approaches, while PShare-

BSP has its advantages considering the complexity and the introduced overhead.

115

3 Protecting Position Information

Property PShare-GLM/SLM PShare-BSP

Flexibility 3

Robustness 3

Complexity 3

Overhead 3

Table 3.2: Comparison of position sharing approaches

Therefore, users can apply the corresponding position sharing approach depend-

ing on whether a higher privacy or a higher e�ciency is required.

116

4 Protecting Movement

Trajectories

In this chapter, we address the problem of storing movement trajectories on

non-trusted location servers. To protect movement trajectories, we introduce

in Section 4.1 our novel trajectory fragmentation approach sharing the user's

movement trajectory among multiple LSs of di�erent providers. To this end, the

user's movement trajectory is split up into a set of smaller fragments that are

distributed to the LSs. An attacker successfully compromising an LS therefore

gets only limited knowledge about the user's movement instead of his complete

movement trace.

Our second approach focuses on the protection of private information that can

be derived from movement trajectories, in more detail, the protection of speed

information. Although LBAs are attracting a tremendous amount of users today,

many users may still hesitate to use LBAs sharing movement trajectories as they

are not willing to reveal, for instance, their driving behavior (e.g., whether the

user is a safety conscious or an aggressive driver) or the occurrence of a speeding

violation. Therefore, we introduce in Section 4.2 our novel speed protection

algorithms protecting users from revealing violations of given speed limits when

using LBAs. Afterwards, we conclude this chapter in Section 4.3.

4.1 Trajectory Fragmentation

Instead of providing the complete movement trajectory of a mobile object to

a single LS, the idea of our trajectory fragmentation approach is to split up

117

4 Protecting Movement Trajectories

the trajectory of the mobile object into a set of smaller fragments and to dis-

tribute the fragments among LSs of di�erent providers. Thus, each LS stores

and manages only a certain part of the trajectory and no LS knows the complete

movement trace of the mobile object. Thus, an attacker compromising an LS

has only limited knowledge about the mobile object's movement. To prevent an

attacker compromising multiple LSs from correlating the retrieved fragments,

our approach uses di�erent pseudonyms for the calculated fragments. Di�erent

clients of the LSs, for instance, di�erent LBAs access the trajectory of the mobile

object by querying fragments from multiple LSs based on the known pseudonym

used for the corresponding LS.

Our trajectory fragmentation approach provides the following contributions:

1. A concept for distributing trajectory fragments among a set of LSs to

avoid that a single LS can reveal the complete movement trace of a mobile

object.

2. An optimal algorithm that calculates a minimum number of fragments

under the constraint of ful�lling a given level of privacy.

3. A privacy evaluation with attackers of di�erent strength showing the ro-

bustness of our approach.

First, we introduce our extended system model, formalize our problem state-

ment, and present our trajectory fragmentation algorithm in detail. Afterwards,

we present our privacy analysis and our evaluation results before we compare

our approach to related work.

4.1.1 Extended System Model

The components of our extended system model are depicted in Figure 4.1. The

mobile object executes a local software component providing the MO's current

position π to a set of di�erent location servers, which store and manage tra-

jectories of several MOs. LSs provide an access control mechanism to manage

118

4.1 Trajectory Fragmentation

Mobile object

Location servers

Trajectory fragmentation

Clients

Trajectory reconstruction

Figure 4.1: System components

access to the stored trajectories. Di�erent clients get access to the trajectories

on di�erent LSs based on their provided access rights.

The MO's position π is de�ned by its longitude and latitude values. Since MOs

usually travel on streets, we map π to a graph representing the road network

by using existing map matching approaches. For an overview of existing map

matching algorithms, we refer to the work of Quddus et al. [QON07]. As shown

in Figure 4.2, the road network can be modeled as graph G = (V,E) consisting

of a set of nodes V and a set of edges E. Each node vi ∈ V represents a junction

or an intermediate node that models the shape of the road. Each edge ej ∈ E
represents a road segment between two nodes. The MO's movement trajectory

T = {(πstart, tstart), . . . , (πend, tend)} represents a set of succeeding position �xes

πi where the MO is located at time ti. An example for trajectory T is shown

in Figure 4.2. We assume that the destination πend of trajectory T is already

known at time tstart because the MO typically knows its movement destination.

4.1.2 Problem Statement

Since we have to consider that LSs are non-trusted, an attacker can successfully

compromise an LS with a certain probability greater than zero. In this case, the

part of the MO's movement trajectory that was provided to the LS is revealed.

119

4 Protecting Movement Trajectories

v9v7

Node

Edge

Position update

Trajectory

Figure 4.2: Road network graph and trajectory example

Therefore, our goal is to protect the MO's movement trajectory by minimizing

the revealed information of an attack on an LS.

We use a distributed approach to store and manage the MO's movement

trajectory T . Our trajectory fragmentation algorithm splits up T into a set

F = {f1, . . . , fn} of n trajectory fragments (or fragments for short). The number

n of generated fragments corresponds to the number of used LSs to store the

fragments and is either prede�ned by the MO or calculated by the fragmentation

algorithm. While traveling, the MO uses the fragmentation algorithm to update

its position over time on di�erent LSs. Each position is provided to exactly one

LS, and each LS receives only the positions of a single fragment.

To measure the information exposed to an LS, we use weight function Φ(fj)

assigning each fragment fj the value of its exposed information. More precisely,

we measure the length of the trajectory that is revealed to an attacker, called the

revealed trace length Φ(fj). Nevertheless, also other information, for instance,

the traveled time or the number of visited road segments of the MO could be

used to measure the exposed information of an LS. We selected the measure of

the revealed trace length Φ(fj) since a MO is typically concerned about how

long an LS can trace its movement. Furthermore, the MO may be concerned to

reveal information where it came from or where it is going to. This information

is also taken into account by the revealed trace length Φ(fj).

Before presenting the details of how to calculate Φ(fj), we de�ne the length

120

4.1 Trajectory Fragmentation

Past mov. ΦP(fj) Current mov. ΦC(fj) Future mov. ΦF(fj)

v9v7

fj

e3 e5

Fragment

Possible paths

Split position

Figure 4.3: Di�erent information parts

of fragment fj as the length of the road segments where the MO is traveling

while updating its position to the LS storing fragment fj. Thus, the length of

fragment fj is the length of all edges ei ∈ fj on the MO's movement trajectory

T between two junctions splitting up trajectory T into di�erent fragments.

The revealed trace length Φ(fj) is de�ned as the distance an attacker com-

promising fragment fj can trace the MO. The value of

Φ(fj) = ΦC(fj) + ΦF (fj) + ΦP (fj)

is calculated by the MO as the sum of the following three parts (cf. Figure 4.3):

• ΦC(fj) is the length of the current fragment fj.

• ΦF (fj) is the length of the predicted future movement. Since multiple pos-

sible future paths exist where the MO can continue traveling after fragment

fj, each road segment gets a probability assigned that the MO will con-

tinue traveling on the corresponding road segment. The probability that

the MO travels along an edge ei after traveling on fj is pr(ei|fj). The MO's

future movement trajectory is predicted as the fastest path from fragment

fj to the MO's destination πend. Then, ΦF (fj) is calculated as the length

of all edges ei on the MO's predicted future movement trajectory weighted

by the probability pr(ei|fj). We assume that the probability pr(ei|fj) is

121

4 Protecting Movement Trajectories

e3 e5 v9

e10

e11e12
v7

v10

e20

e21

e22

ΦF(fj)=pr(e11|fj)*length(e11) + pr(e21|fj)*length(e21)

fj

Fragment

Predicted

movement

Split position

Figure 4.4: Calculation of ΦF (fj)

given for each edge ei, for instance, by a statistical movement analysis,

or by using map knowledge assuming a uniform distribution for all edges.

The uniform distribution is used, for instance, by Krumm [Kru08] to pre-

dict the MO's future movement. An example to calculate ΦF (fj) based on

map knowledge is shown in Figure 4.4. Here, the probability pr(e11|fj) is
33.33%, since three alternatives exist to continue traveling after fj. The

probability pr(e21|fj) in Figure 4.4 is 11.11% taking also pr(e11|fj) into

account.

• ΦP (fj) is the length of the reconstructed past movement. The past move-

ment describes where the MO came from when reaching fragment fj. It

is calculated as the fastest path from the MO's starting position πstart to

fragment fj. ΦP (fj) is calculated analogously to ΦF (fj) by weighting the

length of each road segment of the MO's past movement by the probability

that the MO travels on the corresponding road segment before reaching

fragment fj.

In order to �nd a fragmentation of trajectory T such that each fragment has a

minimum revealed trace length Φ(fj), we have to minimize the maximum value

of Φ(fj). This means, no matter which LS is compromised, only the maximum

trace length Φ(fj) can be revealed. Formally, we have to solve the following

122

4.1 Trajectory Fragmentation

optimization problem:

minimize max
j∈[1;n]

(Φ(fj))

subject to
⋃

j∈[1;n]

fj= T

Additionally, we want to answer the question of how many LSs are required to

protect trajectory T from revealing a larger trace length than speci�ed by a MO-

de�ned maximum trace length ΦMO
max. This means, we consider the problem of

minimizing the number n of required LSs for ΦMO
max. Formally, this optimization

problem is de�ned as

minimize n

subject to max
j∈[1;n]

(Φ(fj)) ≤ ΦMO
max⋃

j∈[1;n]

fj= T

4.1.3 Trajectory Fragmentation Algorithms

In this section, we present our trajectory fragmentation algorithms (TFA for

short). We start with an overview of our approach and present the individual

steps of TFA afterwards.

Overview

The concept of TFA consists of two parts:

1. The trajectory fragmentation performed by the MO.

2. The trajectory reconstruction performed by clients.

The trajectory fragmentation �rst calculates the MO's predicted trajectory T

based on the given destination. Secondly, it splits up T into a set of fragments.

Thirdly, each fragment is assigned to an LS. While traveling, the MO updates

123

4 Protecting Movement Trajectories

its position on the LSs based on the calculated fragmentation. If the predicted

trajectory deviates from the real trajectory where the MO is currently traveling,

a new fragmentation is initiated using a new set of LSs.

The process of TFA is shown in Algorithm 12. Since MOs usually travel on

fastest paths to reach their destination, we predict the MO's trajectory T at time

tstart as the fastest path from the current position πstart to the known destination

πend. Then, we split up T into set F = {f1, . . . , fn} of n fragments, one for each

LS, by using function

fragment(T, n) = {f1, . . . , fn},

which is further introduced below. For each fragment fj ∈ F , we calculate a

new random pseudonym of the MO and select an LS to store fj. To calculate

the pseudonyms, also other approaches can be applied. For example, Rass et

al. [RFSK08] derive pseudonyms for di�erent trajectories and position �xes to

anonymize �oating car data and to hide the identity of a driver. Furthermore,

Jorns et al. [JQJ07] provide di�erent pseudonyms using transaction pseudonyms

to preserve user privacy in LBAs. The LS storing the positions of fragment fj is

denoted as LSj. We use the notation πi ∈ fj to denote that position πi is part of
fj. As formalized in our problem statement, the goal of function fragment(T , n)

is to minimize the maximum revealed trace length Φ(fj) for each fragment.

To solve the presented optimization problem, we use a dynamic programming

approach presented below.

After calculating fragmentation F , the MO updates its position πi ∈ fj to

LSj while traveling on fj. As soon as a new sensed position is part of fj+1, the

MO changes the LS from LSj to LSj+1. Furthermore, the used pseudonym is

changed from idj to idj+1. In case the MO leaves the predicted trajectory T at

position πk /∈ T , a new calculation of TFA is initiated for the new initial position

πstart = πk and the destination πend using a new set of LSs.

The trajectory reconstruction allows di�erent clients to access the MO's real

trajectory T by querying the LSs using the provided pseudonyms of the MO.

124

4.1 Trajectory Fragmentation

Algorithm 12 TFA: Process overview

Function: TFA(n, πend)
1: πstart ← sensed position . Initial positioning
2: T ← FP (πstart, πend) . Calculate fastest path
3: F [1, . . . , n]← fragment(T, n) . Fragmentation
4: ID[1, . . . , n]← getIDs(F) . Calculate pseudonyms for fragments
5: πi ← πstart
6: while πi ∈ T do
7: fj ← getFragment(πi) . Map position to fragment
8: LSj ← getLS(fj) . Map fragment to LS
9: idj ← getID(fj) . Get calculated pseudonym

10: update(πi, LSj, idj) . Update πi to LSj using pseudonym idj
11: πi ← sensed position . Positioning
12: end while

That is, LSs grant clients access to the stored position information of the assigned

trajectory fragments based on the MO-de�ned access rights. For example, clients

can access the complete movement trajectory T or only certain parts of T while

the MO travels on the motorway or within a certain geographical area.

Trajectory Fragmentation

Next, we present function fragment(T , n) calculating set F = {f1, . . . , fn} of

fragments in Algorithm 13. As introduced, each fragment fj ∈ F de�nes to

which LSj position πi ∈ fj should be sent. The part of trajectory T belonging

to fragment fj is the part of T between two split positions. For example, fragment

fj in Figure 4.3 is de�ned by the split positions of junction v7 and junction v9. We

split up the MO's predicted trajectory T at nodes representing junctions instead

of splitting up T within an edge or at an intermediate node. This approach has

the advantage that all positions belonging to the same edge ei are assigned to the

same fragment which is stored by only one LS. Furthermore, we assume for our

description that trajectory T starts and ends at a node representing a junction.

125

4 Protecting Movement Trajectories

Algorithm 13 TFA: fragmentation

Function: fragment(T, n)
1: GT ← getGraph(T) . Calculate fragmentation graph GT

2: M ← getAdjacencyMatrix(GT) . Calculate adjacency matrix M
3: L← n . Set number of LSs
4: ML ← maxMatrixMult(M,L)
5: Φmax ←ML[0,m− 1] . Store maximum value of Φ
6: Gmax

T ← removeEdges(GT ,Φmax) . Delete edges in GT

7: Mmax ← getAdjacencyMatrix(Gmax
T) . Calculate adjacency matrix Mmax

8: ST ← getRandomPath(Mmax, n, v0, vm−1) . Calc. random path of length n
9: F [1, . . . , n]← getFragments(ST) . Calculate fragments for split nodes

10: return F [1, . . . , n]

The problem is now how to �nd the split positions for trajectory T such

that the corresponding set of fragments F is optimal considering the maximum

revealed trace length Φ(fj). To solve the proposed optimization problem, we �rst

calculate the fragmentation graph GT = (VT , ET). The set of nodes VT = {vi ∈
T} consists of all possible split positions of T , i.e., the set of nodes representing
a junction on T . The set of edges ET is generated by calculating for each node

vi ∈ VT an edge to each node vj ∈ VT if the MO will visit the junction of vi

before visiting the junction of vj. The generated edge from vi to vj is denoted

as eij ∈ ET . The weight of eij is Φ(f(vi, vj)) representing the revealed trace

length of the fragment that is de�ned by the split position vi and vj. Then, we

calculate the adjacency matrix M of GT , which is of size m×m with m = |VT |.
Each valueM [i; j] = Φ(f(vi, vj)) de�nes the weight of edge eij. Since we aim for

an optimal fragmentation using n LSs, we have to �nd a path in GT consisting

of n edges from the start node v0 ∈ VT of T to the destination node vm−1 ∈ VT
of T minimizing the maximum edge weight. The L-th power of the adjacency

matrix M is denoted as ML and calculated using matrix multiplication. For

each possible node vk ∈ VT , we calculate the maximum value of ML−1[i; k]

and M1[k; j]. Then, we select the minimum value from all possible nodes vk

126

4.1 Trajectory Fragmentation

and store the determined maximum value in ML[i; j]. Thus, ML[i; j] is the

minimized maximum revealed trace length of a single fragment on the path of

length L that leads from vi to vj. The maximum value for a path of length n

from node v0 to vm−1 for L = n is the value of ML[0,m− 1]. This value is then

stored in Φmax and used to remove all edges in GT with a higher value than

Φmax. The corresponding adjacency matrix after deleting these edges is Mmax,

which represents the former fragmentation graph GT containing only edges with

a weight up to Φmax. Based on Mmax, a random path of length n from v0 to

vm−1 is calculated. The selected nodes are stored in the set ST of split nodes.

The nodes of the calculated path represent the split positions for an optimal

fragmentation. Finally, we determine set F of fragments using the calculated

split positions of set ST .

Minimizing the Number of Required LSs

After solving the problem of how to �nd an optimal fragmentation for trajectory

T , we consider now the problem of minimizing the number n of required LSs

to achieve a MO-de�ned maximum revealed trace length ΦMO
max. To solve this

problem, we adapt Algorithm 13 as follows (cf. Algorithm 14). Instead of using

a �xed value of L = n to calculate Φmax, we stepwise increment L. As soon

as ML[0,m − 1] ≤ ΦMO
max, the minimum path length L and thus the minimum

number of required LSs is found that can provide a maximum value of ΦMO
max.

After setting Φmax to ΦMO
max, we calculate a random path of length L based on

Mmax and calculate the corresponding fragmentation. If L reaches a value above

Lmax, which represents the maximum number of available LSs, no solution could

be found for trajectory T and ΦMO
max. Then, the MO has either to adjust ΦMO

max

or to use Algorithm 13 to �nd an optimal fragmentation using n = Lmax LSs.

4.1.4 Privacy Analysis

In this section, we evaluate the provided privacy of our trajectory fragmentation

approach. First, we introduce our attacker model followed by our privacy metric.

127

4 Protecting Movement Trajectories

Algorithm 14 TFA: fragmentation minimizing the number of required LSs

Function: fragmentMinLS (T,ΦMO
max)

1: GT ← getGraph(T) . Calculate fragmentation graph GT

2: M ← getAdjacencyMatrix(GT) . Calculate adjacency matrix M
3: L← 1
4: while (ML[0,m− 1] > ΦMO

max) and (L ≤ Lmax) do . Incremental search
5: ML ← maxMatrixMult(M,L)
6: L++ . Stepwise increment L
7: end while
8: Φmax ← ΦMO

max

9: Gmax
T ← removeEdges(GT ,Φmax) . Delete edges in GT

10: Mmax ← getAdjacencyMatrix(Gmax
T) . Calculate adjacency matrix Mmax

11: ST ← getRandomPath(Mmax, L, v0, vm−1) . Calc. random path of length L
12: F [1, . . . , L]← getFragments(ST) . Calculate fragments for split nodes
13: return F [1, . . . , L]

Attacker Model

Nowadays, map knowledge is widely available, for instance, provided by the

OpenStreetMap project [Ope14]. Therefore, we assume that an attacker has

map knowledge and knows the used fragmentation algorithm. In case an attacker

compromises a client, all positions of the MO's movement trajectory provided

to the client are revealed. To limit the revealed information of a client, the

MO can individually specify which part of the trajectory should be accessible

for each client by de�ning access rights on the LSs. Because the access control

mechanisms do not prevent that the stored information of an LS is revealed to

an attacker compromising an LS, we further consider in our evaluation that an

attacker compromises a single or multiple LSs. If an attacker compromises an

LS, all positions assigned to the stored fragment of the MO are revealed.

The goal of an attacker is to derive as much information as possible from

his known positions. Therefore, we consider attackers using movement predic-

tion methods to predict and reconstruct the MO's movement trajectory. More

128

4.1 Trajectory Fragmentation

precisely, we use the �rst order Markov model presented by Krumm in [Kru08]

to simulate attackers using di�erent turn probability estimations. First, we

consider attacker ANC that cannot correlate fragments that were provided to

di�erent LSs using di�erent pseudonyms. Secondly, we consider attacker AAC

that can correlate adjacent fragments based on their spatio-temporal properties.

That is, attacker AAC analyses the positions of two fragments and merges both

fragments if the analyzed positions belong to two adjacent edges on the road

network graph.

In addition to the ability of correlating fragments, we distinguish two attack-

ers which are of di�erent strength based on their known information. The �rst

attacker AMAP uses map knowledge to determine the MO's trajectory from his

known positions based on the introduced map matching and maximum move-

ment boundary attack. To this end, attacker AMAP estimates at each junction

a uniform probability distribution where the MO probably came from or where

the MO is probably going to. For instance, if three alternatives exist at a junc-

tion where the MO can continue traveling, attacker AMAP assigns each edge

the probability of 33.33%. Then, attacker AMAP predicts and reconstructs the

MO's trajectory by selecting step by step adjoining edges to his known fragments

based on the calculated probability distribution. The second attacker ASMI uses

statistical movement information gained from a road network tra�c analysis

from trajectories of other MOs. The goal of attacker ASMI is to improve his

prediction by using more accurate turn probabilities. Considering the attackers

of our attacker classi�cation presented in Section 2.6.2, attacker ASMI improves

his attack based on additional personal context knowledge of di�erent MOs.

Privacy Metric

To measure the provided privacy of fragmentation F , we analyze the maximum

revealed trace length ΦA
max an attacker A compromising di�erent LSs can de-

rive. For an attacker who is able to correlate adjacent fragments even if di�erent

pseudonyms are used, the maximum revealed trace length ΦA
max is in the worst

case equal to the length of the complete movement trajectory of the MO. There-

129

4 Protecting Movement Trajectories

fore, we analyze also the probability that the maximum revealed trace length

ΦA
max is above a threshold length θ. To this end, we calculate for a given length

θ the cumulated probability Pr(θ < ΦA
max) as follows:

Let FC be the set of all possible combinations of compromised fragments for

fragmentation F . Furthermore, let F θ
C = {ci ∈ FC |θ < ΦA

max} be the set of all
possible combinations ci ∈ FC ful�lling that the maximum revealed trace length

for attacker A is above length θ. The probability that attacker A compromises

exactly the k fragments of ci ∈ F θ
C is

α(ci) = pk ∗ (1− p)n−k, (4.1)

where p ∈ (0, 1] is the probability that attacker A compromises a single LS.

Then, Pr(θ < ΦA
max) is calculated as

Pr(θ < ΦA
max) =

∑
ci∈F θC

α(ci). (4.2)

Privacy Evaluation

We analyze the success of di�erent attackers in predicting and reconstructing

the MO's movement trajectory based on the compromised fragments by using

movement prediction methods. In our evaluation, we use the real world dataset

provided by Piorkowski et al. [PSDG09], which consists of the traces of about

500 taxi cabs collected over 30 days in 2008 in San Francisco, USA. The posi-

tion of each taxi cab is measured by its GPS receiver and updated within an

update time of less than 10 s on average [PSDG09]. The used map information

is derived from the OpenStreetMap project [Ope14]. The turn probabilities of

attacker AMAP consider a uniform distribution for all possible paths at each

junction. For attacker ASMI, we performed a road network tra�c analysis where

we analyzed the movement behavior of all taxis of [PSDG09] for a complete day

(2008/06/01) and derived for each junction the corresponding turn probability

distribution. We selected for our evaluation from the next day (2008/06/02) a

130

4.1 Trajectory Fragmentation

short trajectory of 4.52 km length within the city (denoted as city) and a long

trajectory of 17.04 km length mainly using highways (denoted as highway). We

assume a probability of p = 10% that a single LS is compromised and calculate

the probability that multiple LSs are compromised according to Equation 4.1.

Next, we evaluate attacker ANC and continue afterwards with attacker AAC .

Attacker ANC: Since attacker ANC does not correlate fragments, the case that

ANC compromises multiple LSs is identical to the case that ANC compro-

mises a single LS. To show the success of protecting movement trajectories

against attacker ANC when using fragmentation, we measure the maximum

revealed trace length ΦA
max that is revealed to attacker ANC

MAP
and ANC

SMI
for

the introduced trajectories. The results are shown in Figure 4.5 for the

city trajectory and in Figure 4.6 for the highway trajectory. For the city

trajectory, ΦA
max of A

NC
MAP

decreases to 523m (11.56%) when using up to 15

LSs. By considering statistical movement information in addition to map

knowledge, ΦA
max of ANC

SMI
decreases to 1157m (25.58%). For the highway

trajectory, ΦA
max decreases to 5591m (32.80%) for attacker ANC

MAP
respec-

tively 9199m (53.97%) for attacker ANC
SMI

. As we can see, each trajectory

has a limiting value of ΦA
max such that even if the number n of used LSs

is increased, the maximum revealed trace length known to the attacker

does not decrease further. This is based on the fact that the maximum

revealed trace length ΦA
max cannot decrease below the maximum revealed

trace length of a single road segment on the considered trajectory.

By comparing the relative values of ΦA
max from the highway trajectory with

the city trajectory, ANC
SMI

receives a higher value of ΦA
max for the highway

trajectory. This is based on the fact that the prediction of ANC
SMI

works well

on the highway due to a high statistical probability that the MO stays on

the highway for longer times. For the city trajectory, many junctions exist

with approximately equal turn probabilities for alternative roads such that

the attacker cannot precisely predict the MO's movement.

Next, we analyze the minimum number of LSs that is required to reveal

131

4 Protecting Movement Trajectories

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Φ
A m

ax
 [m

]

Number of used LSs

ASMI
NC

AMAP
NC

Figure 4.5: City trajectory evaluation

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Φ
A m

ax
 [m

]

Number of used LSs

ASMI
NC

AMAP
NC

Figure 4.6: Highway trajectory evaluation

at most a trace length of ΦMO
max to a single LS. Figure 4.7 and Figure 4.8

show which values of ΦMO
max can be provided using the map based and the

statistical movement based fragmentation for the city and the highway

trajectory. By decreasing ΦMO
max from the maximum length of the consid-

ered trajectory, the minimum number n of required LSs to provide ΦMO
max

increases. Again, each trajectory has a limiting minimum value of ΦMO
max

such that smaller values of ΦMO
max cannot be provided even when increasing

n as presented before.

132

4.1 Trajectory Fragmentation

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 1000 2000 3000 4000 5000

M
in

im
um

 re
qu

ire
d

LS
s

ΦMO
max [m]

MAP
SMI

Figure 4.7: Minimum number n of required LSs for the city trajectory

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 3000 6000 9000 12000 15000 18000

M
in

im
um

 re
qu

ire
d

LS
s

ΦMO
max [m]

MAP
SMI

Figure 4.8: Minimum number n of required LSs for the highway trajectory

To show that attacker ANC cannot derive a higher revealed trace length

than speci�ed by the MO in ΦMO
max, we analyze for the city trajectory the

cumulated probability distribution Pr(θ < ΦA
max) using the fragmentation

generated by optimizing n. We select a value of ΦMO
max = 1.5 km, which leads

to n = 4 LSs for the map based fragmentation and n = 5 for the statistical

movement based fragmentation. As shown in Figure 4.9, the probability

that attacker ANC
MAP

and attacker ANC
SMI

can derive a maximum revealed

trace length above ΦMO
max drops to zero such that the privacy requirement

133

4 Protecting Movement Trajectories

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1500 3000 4500

Pr
(θ

 <
 Φ

A m
ax

)

θ [m]

ANC
MAP

ANC
SMI

Figure 4.9: Cumulated probability distribution of ANC for the city trajectory

is ful�lled and TFA prevents that an attacker can derive a higher revealed

trace length than ΦMO
max. Altogether, we can state that TFA e�ectively

prevents that attacker ANC can trace the MO over longer distances.

Attacker AAC: The powerful attacker AAC can correlate adjacent fragments

based on the spatio-temporal properties of the compromised positions.

If attacker AAC can compromise all used LSs, the complete movement

trajectory of the MO is revealed. This results in a maximum revealed

trace length of ΦA
max equal to the length of the trajectory. To better

understand this kind of strong attacker, we show the success of attacker

AAC to trace the movement of the MO over a certain length θ by analyzing

the cumulated probability that attacker AAC receives a maximum revealed

trace length above θ by compromising a certain set of LSs. Figure 4.10

shows for the city trajectory the cumulated probability that attacker AAC
MAP

can derive a maximum value ΦA
max above θ for di�erent values of n used

LSs. As we can see, increasing the number of generated fragments increases

the probability that a small part of the trajectory is revealed, whereas the

probability that longer parts of the trajectory are revealed decreases. For

instance, attacker AAC
MAP

can trace the MO for a value of θ = 1 km, which

represents 22.10% of the trajectory, only with a probability of 2.61% when

134

4.1 Trajectory Fragmentation

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

Pr
(θ

 <
 Φ

A m
ax

)

θ [m]

1 LS
2 LS
5 LS

10 LS
15 LS

Figure 4.10: Cumulated probability distribution of AAC
MAP

for the city trajectory

using 15 LSs. Therefore, we can state that our trajectory fragmentation

algorithms can prevent attacker AAC from tracing the MO over longer

distances with a high probability.

4.1.5 Evaluation

In this section, we present our runtime performance evaluation for our trajectory

fragmentation algorithm. We evaluate the performance of TFA by measuring its

runtime on a mobile device (HTC Desire HD, 1GHz Qualcomm Snapdragon S2,

768MB RAM). We measure the required time to calculate the corresponding

fragmentation for the city and the highway trajectory using n LSs. The city

trajectory is of 4.52 km length and passes 50 junctions. The highway trajectory

is of 17.04 km length and passes 57 junctions. As shown in Figure 4.11, the cal-

culation time of TFA stays below four seconds for the city trajectory and below

�ve seconds for the highway trajectory even for a larger number of calculated

fragments. The calculation time for the highway trajectory is higher than for the

city trajectory because of the higher number of passed junctions. The runtime of

TFA optimizing the number of required LSs for a value of ΦMO
max = 1.5 km for the

city trajectory stays below 1.0 s while a value of ΦMO
max = 6.0 km for the highway

trajectory leads to a calculation time below 1.6 s. Recall that the fragmentation

135

4 Protecting Movement Trajectories

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ca
lc

ul
at

io
n

tim
e

[s
]

Number of used LSs

City trajectory
Highway trajectory

Figure 4.11: Runtime performance evaluation

is only calculated initially at the start of the MO's movement or if the MO leaves

the predicted trajectory. While traveling, TFA only performs a simple lookup

of the current position against the corresponding fragment before sending the

position to the LS. Therefore, we can state that TFA supports real-time position

updates and that the fragmentation time is reasonable.

4.1.6 Related Work

Trajectory k-anonymity [NASG09] protects the identity of a mobile object by

making the mobile object indistinguishable from k−1 other objects for the com-

plete trajectory. Mix zones [BS03] protect the identity of a mobile object by

changing pseudonyms within an area where no mobile object provides position

information to a client. Trajectory obfuscation [CM07] uses a group-based ap-

proach to collect positions of multiple objects to calculate obfuscated areas for

the complete trajectory. However, all these approaches require a trusted third

party, while we do not rely on a trusted third party.

Dummy approaches [YPL07, SGI09] provide false trajectories to the LS in

addition to the real trajectory of the mobile object such that the LS cannot dis-

tinguish the received trajectories. However, since identifying dummy trajectories

is possible as shown in [PS11], the provided privacy can be decreased.

136

4.2 Speed Protection

The approaches presented by Ardagna et al. [XZZ+13] and Xue et al. [ALS12]

protect the start and the destination of movement trajectories without assuming

a trusted third party. To this end, Ardagna et al. [XZZ+13] rely on a so-called

end-point generation method calculating position information of a trajectory

that have to be deleted such that an attacker cannot derive the trajectory's

destination with a probability above a certain threshold value. Instead of sup-

pressing location information, Xue et al. [ALS12] protect the destination of a

trajectory by publishing a cover story for the trajectory. Both approaches rely

on a �rst order Markov model to predict possible trajectory destinations. With

our approach, we focus on protecting the complete movement trajectory rather

than only its start or destination. Finally, Yigitoglu et al. [YDAS12] protect

sensitive positions in trajectories instead of protecting the complete trajectory.

4.2 Speed Protection

After showing in the previous section how movement trajectories can be pro-

tected, we focus in this section on the protection of private information that

can be derived from movement traces, in more detail, the protection of speed

information. Although the user is typically aware of the fact that LBAs, as

the ones presented in Section 2.1.2, collect movement trajectories, he is seldom

aware that this information can be used to derive further information beyond

geographical positions. In particular, movement trajectories consisting of posi-

tions and timestamps can be used to calculate the speed of the user. Although

this speed information is mandatory for many applications like real-time tra�c

monitoring�e.g., to detect tra�c jams�, the user might involuntarily reveal

information about his behavior that he is not willing to share, in particular,

information about when and where he might have driven too fast.

At this point, we have to make clear that in the case of violations of speed

limits, the protection of information is ambivalent. On the one hand, the protec-

tion of private information�in particular, location information�is a commonly

accepted goal. On the other hand, it should be clear to everybody that speed

137

4 Protecting Movement Trajectories

limits are there to protect people, and therefore, monitoring speed information is

an important measure for law enforcement. Our decision to design mechanisms

to protect speed information is based on the commonly accepted principle that

everybody should be able to control which information about him is revealed

to someone else. In other words: If the user is aware that the collected infor-

mation might be used for detecting speeding violations�for instance, as part of

a pay-as-you-drive insurance with special rates for safety-conscious drivers, or

using a tachograph for trucks�, no protection mechanisms are necessary. On

the contrary, the insurance or police might want to ensure that the driver does

not manipulate the speed information using tamper-proof devices (which is a

di�erent research topic on its own right). However, if the driver does not explic-

itly agree on accurately monitoring his speed, our mechanisms will make sure

that no information can be recorded that might later be used against him.

This is a very important prerequisite for ensuring the acceptance of LBAs

based on movement trajectories and time information. Clearly, although ev-

eryone would assume to obey speed limits in general, the possibility to detect

violations will deter users from participating in such applications like automatic

tra�c jam detection. Even if the recorded information cannot be used by the

police due to legal restrictions, private companies like car insurances might use

information found on the Internet (e.g., in OpenStreetMap GPS traces) to screen

their customers and adjust rates. This poses a serious psychological barrier in

providing un�ltered trajectory information to LBAs.

Various cases from the past have shown that speed information is indeed used

without knowledge of the users. For instance, in 2001, a car rental company in

the United States �ned customers for speeding violations using GPS-equipped

cars [Pre01]. One customer was billed $150 for each of his alleged speeding

violations where the trace showed a speed faster than 79 miles per hour. For

tracking, the company installed GPS-devices in their cars. Nowadays, sensing

and tracking technology of mobile devices and car navigation systems can be

used to track users. For instance, new navigation systems provide real-time

speed and location data to servers calculating real-time tra�c conditions, which

138

4.2 Speed Protection

is clearly a service that many drivers �nd useful and would actively support. Or,

consider the Waze application introduced in Section 2.1.2, which analyzes the

speed information of users based on the positioning sensors provided in current

smartphones to calculate information about the current tra�c situation.

However, in 2010, a company providing such real-time tra�c services sold

their collected GPS records to the Dutch police, which used the data to tar-

get speed traps where they could catch most drivers [Wil11]. Immediately, the

company stressed that they only stored anonymous data such that individual

speeders could not be identi�ed by the police. However, as shown in [HGXA06],

user identi�cation from anonymized trajectories is possible if, for instance, an

anonymized trajectory starts in front of an individual home. Therefore, identi-

fying individual speeders would be possible.

As we can see from these examples, publishing user trajectories without pro-

tecting the speed information can have severe monetary and legal e�ects on the

user if speeding violations can be revealed, as well as for the acceptance of LBAs

based on trajectory information. To remove these concerns and, therefore, to

support the acceptance of LBAs, we present speed protection algorithms pro-

tecting the speed information of a user trajectory in real-time by adjusting the

reported trajectory to the allowed speed limit such that users do not have to

fear any negative impact due to speeding violations. To protect trajectories

from indicating speedings, we either adjust temporal information by delaying

position updates or adjust spatial information of positions. In our evaluation,

we analyze real world traces and point out that protecting speed information

of movement trajectories is necessary. Furthermore, we show that the accuracy

decrease introduced by our speed protection algorithms only a�ects few position

updates such that the speed protected trajectories are of high quality.

Next, we present our extended system model and introduce our problem state-

ment. Then, we show the details of our speed protection algorithms. Afterwards,

we present our privacy analysis including our proof of correctness for the algo-

rithms. Then, we show evaluation results and related work. Finally, we conclude

our approach protecting the speed information of movement trajectories.

139

4 Protecting Movement Trajectories

4.2.1 Extended System Model

Our extended system model is based on the basic system model presented in

Section 2.2 and shown in Figure 2.1a using a single location server. However,

our speed protection algorithm can also be applied to the other presented models

such as the model using multiple LSs storing speed protected position informa-

tion. The mobile object provides its current position π to an LS storing and

managing trajectory information of several MOs. To this end, the MO sends

its position information to the LS by using function update(π, t) consisting of

its current position π and the temporal information de�ning the corresponding

time t. The position updates are triggered based on the MO-selected location

update protocol. The LS provides di�erent clients access to the stored trajec-

tory information and controls the access of di�erent clients by using an access

control mechanism as presented by Bonatti and Samarati [BS02]. Thus, only

clients with the corresponding access rights can access the stored information of

the MO's movement trajectory.

It must be guaranteed by existing trusted mobile computing approaches such

as [GCJW10] that no other component than our speed protection component

can directly access the MO's position π locally on the mobile device. Otherwise,

a local client that could access π by directly querying the positioning system

could maliciously reveal a speeding violation of the MO. In the following, we

focus our description on remote clients querying the remote LS and mention

local clients only if they behave di�erently.

The MO's position π is de�ned by its longitude and latitude value. Since

vehicles typically move on streets, we map positions to a graph representing

the road network. As introduced for our trajectory fragmentation algorithm in

Section 4.1.1, we model the road network by a weighted graph G = (V,E). Each

node vi ∈ V represents either a junction or de�nes an intermediate node that is

used to model the shape of a road. Each edge ei ∈ E represents a road segment

between two nodes and has an assigned maximum allowed speed limit. To map

�raw� GPS positions to the underlying road network, map matching algorithms

140

4.2 Speed Protection

can be used. In the following, we do not consider the map matching any more,

but assume that π is located on a road segment of the graph.

Trajectory T is de�ned as sequence T = {(πstart, tstart), . . . , (πend, tend)} of

di�erent positions πi, where the MO was located at time ti. The MO's trajectory

T can be split up into a set of segments, where each segment πi, πi+1 de�nes the

path the MO traveled from position πi at time ti to position πi+1 at time ti+1.

We assume that MOs travel on fastest paths, since usually a MO intends to reach

its destination as quick as possible. Thus, πi, πi+1 is the fastest path between πi

and πi+1 on the road network. The distance between πi and πi+1 is

distance(πi, πi+1) = length(FP (πi, πi+1)) (4.3)

de�ning the length of the fastest path (FP) from πi to πi+1.

The time the MO traveled from πi to πi+1 on segment πi, πi+1 is de�ned as

time(πi, πi+1) = ti+1 − ti. (4.4)

4.2.2 Problem Statement

We tackle the problem that real-time position updates of a MO's movement tra-

jectory T reveal speeding violations of the MO. To solve this problem, we use our

speed protection algorithms transforming trajectory T into the speed protected

trajectory T̂ (introduced below) guaranteeing that nobody can determine any

speeding violation by analyzing T̂ .

For trajectory T = {(πstart, tstart), . . . , (πend, tend)}, a speeding violation is

detected if for at least one segment πi, πi+1 ∈ T the MO traveled from πi to πi+1

within shorter time than it takes the MO when driving at the maximum allowed

speed of the segment:

time(πi, πi+1) < timeMaxSpeed(πi, πi+1). (4.5)

This concept is also known as �section control�, where the average speed over

141

4 Protecting Movement Trajectories

a certain known distance is calculated. Here, timeMaxSpeed(πi, πi+1) de�nes

the time it takes the MO driving from πi to πi+1 at the maximum allowed

speed. In case the maximum allowed speed changes within segment πi, πi+1,

timeMaxSpeed(πi, πi+1) is calculated by splitting up segment πi, πi+1 into sep-

arate parts of di�erent speed limits. Then, the required times to travel the

distances of the di�erent parts at the maximum allowed speed limits are calcu-

lated and summed up de�ning timeMaxSpeed(πi, πi+1).

An attacker is interested in �nding segment πi, πi+1 ∈ T indicating that the

MO was speeding:

∃ πi, πi+1 ∈ T : time(πi, πi+1) < timeMaxSpeed(πi, πi+1). (4.6)

As stated previously, πi, πi+1 de�nes the fastest path from πi to πi+1. If a

speeding violation is detected for πi, πi+1, then the MO is also speeding for all

other slower paths from πi to πi+1. Thus, we call this a de�nitely speeding

semantic, where the MO has no plausible way of denying a speeding violation.

The goal of our speed protection algorithms is to transform trajectory T into

a speed protected trajectory T̂ such that for every segment πi, πi+1 at least one

possible path exists where the MO could have traveled from πi to πi+1 without

speeding. Then, the de�nitely speeding condition is not ful�lled for T̂ :

∀ πi, πi+1 ∈ T̂ : time(πi, πi+1) ≥ timeMaxSpeed(πi, πi+1). (4.7)

Obviously, transforming the original trajectory T into the speed protected

trajectory T̂ introduces arti�cial inaccuracies. Therefore, another goal is to alter

trajectory T as less as possible to reduce the introduced inaccuracies. Later, we

will show that the speed protection algorithms either lead to spatial or temporal

inaccuracies for positions of T̂ . Therefore, the spatial or temporal di�erence

should be as small as possible.

By guaranteeing that the de�nitely speeding condition is not ful�lled for the

published trajectory T̂ , the MO can plausibly deny a speeding violation since the

MO could have traveled on each segment of trajectory T̂ without driving faster

142

4.2 Speed Protection

than the allowed speed. In combination with the �in dubio pro reo� principle,

this ful�lls our goal to protect the speed of a MO's movement trajectory T̂

because no evidences of a speeding violation exist as long as the MO could have

traveled along T̂ on the fastest path without any speeding violation.

4.2.3 Speed Protection Algorithms

In this section, we present our speed protection algorithms (SPA for short),

which guarantee that the updated movement trajectory T̂ of the MO does not

contain any speeding violation.

Overview

The general idea of SPA is to slow down the speed of trajectory T̂ to the max-

imum speed the MO is allowed to drive on each road segment. Since location

update protocols are usually either time-based or distance-based, we use the

methods of position adjustment (PA) and temporal delay (TD) to support both

kinds of protocols. Later, we show that our position adjustment method can

also be applied to dead reckoning-based update protocols, which can reduce the

number of position updates.

We use position adjustment in SPA-PA to support time-based position update

protocols, which periodically update πi+1 after a prede�ned update time period

TP. Our position adjustment shifts position πi+1 to position π̂i+1 if a speeding

violation happened between the last updated position π̂i and the currently sensed

position πi+1 (cf. Figure 4.12a). Here, position adjustment protects the speed of

the MO by decreasing the spatial accuracy of πi+1 such that the speed protected

position π̂i+1 is updated instead of πi+1 at time ti+1. As soon as the speed of

the MO is below the speed limit, the spatial accuracy is increased until posi-

tion π̂i+1 is equal to πi+1 and the accurate position of the MO can be updated

again without revealing a speeding violation. In case the MO does not drive

faster than the speed limit, SPA-PA updates the movement trajectory of the

MO without modi�cation. Thus, clients can provide their service based on the

143

4 Protecting Movement Trajectories

(a)

(πi,ti)

(πi+1,ti+1)

^(πi+1,ti+1)

^
(πi+1,ti+1)

(πi+1, ti+1)
^

(πi,ti)
^

(b)

t
 t̂

t̂

Figure 4.12: (a) Position adjustment and (b) temporal delay examples. Dotted
segments indicate a speeding violation while the dashed ones do not

MO's movement trajectory without decreasing quality for non-speeding MOs.

Later, we analyze the introduced inaccuracies of the speed protected trajectory

depending on the MO's driving behavior.

We use temporal delays in SPA-TD to support distance-based position update

protocols taking the traveled distance of the MO into account. With distance-

based protocols a new position πi+1 is updated whenever the Euclidean distance

to the last reported position πi reaches a given threshold distance D. If a

speeding violation occurred between the last updated position πi and the new

sensed position πi+1, the update of position πi+1 is delayed until time t̂i+1 such

that no speeding violation can be recognized between πi updated at time t̂i

and πi+1 updated at time t̂i+1 (cf. Figure 4.12b). Our temporal delay keeps the

spatial information of the position accurate and decreases the temporal accuracy

of the update. As soon as the speed of the MO is reduced and the MO drives

slower than the allowed speed limit, the temporal accuracy is increased until the

timestamps of the sensed and updated positions are identical and no temporal

delay is needed any more. If no speeding violation of the MO occurred, SPA-TD

updates the MO's movement trajectory without modi�cation.

Figure 4.13 shows an overview of the complete process of our approach. The

MO senses its position πi+1 at time ti+1 using the positioning sensor. For time-

based updates, SPA-PA uses the position adjustment method and provides po-

sition π̂i+1 at time ti+1 to the update algorithm. For distance-based updates,

SPA-TD uses the temporal delay method to provide position πi+1 at the delayed

144

4.2 Speed Protection

Remote
client

Remote
client

Positioning sensor

(πi+1,ti+1)

Update algorithm

Local client

update()

Position management

getPosition()

M
o

b
ile

 o
b

je
c
t

L
o

c
a

ti
o

n

s
e

rv
e

r
C

lie
n

ts

(πi+1, ti+1) ^

Position
adjustment

Temporal
delay

(πi+1,ti+1)

 getPosition()

Speed protection algorithm

getPosition()

 ^(πi+1,ti+1)

Figure 4.13: Speed protection process overview

time t̂i+1 to the update algorithm. Then, function update(π̂i+1 , ti+1) respectively

update(πi+1 , t̂i+1) is used by the update algorithm to provide the new position

information of the MO to the LS. Finally, clients can access this information by

using function getPosition(). Below, we present the two protection methods in

more detail.

SPA with Position Adjustment

The detailed speed protection algorithm SPA-PA for time-based updates is

shown in Algorithm 15. First, the initial position πstart is sensed at time tstart

145

4 Protecting Movement Trajectories

Algorithm 15 SPA with position adjustment

Function: SPA− PA()
1: πstart, tstart ← sensed position . Initial positioning
2: T ← πstart, tstart . Sensed trajectory
3: π̂start ← πstart . Initial position
4: update(π̂start, tstart) . Initial position update
5: while report movement do
6: πi+1, ti+1 ← sensed position . Triggered time-based
7: T ← T ∪ πi+1, ti+1

8: π̂i, ti ← last updated position
9: if time(π̂i, πi+1) < timeMaxSpeed(π̂i, πi+1) then

10: δt← time(π̂i, πi+1) . Speeding detected
11: π̂i+1 ← getReachablePosition(π̂i, δt, T)
12: else
13: π̂i+1 ← πi+1 . No speeding occurred
14: end if
15: update(π̂i+1, ti+1) . Update π̂i+1 at time ti+1

16: end while

and updated on the LS as position π̂start by using function update(π̂start , tstart)

at time tstart. Afterwards, a new position πi+1 is sensed at time ti+1 = ti + TP

based on the MO-selected update time period TP. Next, SPA-PA uses the last

updated position π̂i to evaluate time(π̂i , πi+1) < timeMaxSpeed(π̂i , πi+1). If the

MO reached πi+1 from π̂i within shorter time than it takes a MO driving at the

maximum allowed speed, then updating πi+1 would reveal a speeding violation.

In this case position πi+1 has to be adjusted before it can be published. To this

end, SPA-PA uses function getReachablePosition(π̂i , δt ,T) to calculate position

π̂i+1 as the position that can be reached from the last updated position π̂i within

time δt = time(π̂i , πi+1) when driving at the maximum allowed speed on seg-

ment π̂i , πi+1 . In case no speeding violation is detected, position πi+1 is used

as position π̂i+1 . Finally, the calculated position π̂i+1 is updated using function

update(π̂i+1 , ti+1).

An example of SPA-PA for time-based updates is presented in Figure 4.14a.

For simplicity, we use a �xed value of maxSpeed(e) = 100 km/h for each edge

146

4.2 Speed Protection

(a)

(π3,t3)

(π3,t3)^
(π4,t4) (π5,t5)

(π6,t6)
(π7,t7) (π8,t8)(π4,t4)

(π5,t5) (π6,t6)
(π7,t7)

(π8,t8)
(π9,t9)

(π9,t9)

^
^ ^

^ ^
^

(π10,t10)

(π10,t10)^

(b)

Sp
ee

d
[k

m
/h

]

t3 t4 t5 t6 t7 t8 t9 Timet10

80
100
120

20
40
60

0

Max. speed
Trajectory T

(c)

Sp
ee

d
[k

m
/h

]

t3 t4 t5 t6 t7 t8 t9 Timet10

80
100
120

20
40
60

0

Max. speed
Trajectory T̂

Figure 4.14: (a) SPA-PA example using time-based updates, (b) the time-speed

diagram of trajectory T , and (c) the protected trajectory T̂

e of a road segment and assume that a new position is sensed after a time

period of TP = 5 s. Without SPA-PA, trajectory T shown in Figure 4.14a

with the corresponding time-speed diagram shown in Figure 4.14b would be

published. The MO's accurate positions of trajectory T are depicted as circles

(◦) in Figure 4.14a. The MO drives with a speed of 80 km/h at time t3. At

time t4, the MO accelerates up to a speed of 120 km/h at time t5 and travels

at this speed until time t6. Then, the MO slows down to 80 km/h at time t7

that is kept until time t10. By using SPA-PA, the maximum speed between two

updated positions in T̂ is limited to the maximum allowed speed of 100 km/h.

The generated updates are shown in Figure 4.14a, where the protected positions

of trajectory T̂ are depicted as triangles (s). The corresponding time-speed

diagram of the speed protected trajectory T̂ is shown in Figure 4.14c. While

actually a speeding violation of the MO occurred, the reported speed is limited

to the maximum allowed speed. The time after the MO's speeding violation is

used to reduce the spatial di�erence between the updated and the actual position

of the MO. Thus, the introduced spatial inaccuracy is reduced.

147

4 Protecting Movement Trajectories

We assume for SPA-PA and SPA-TD that the MO updates its protected

movement trajectory to the LS until the destination of the protected trajectory

T̂ is equal to the destination of the MO's trajectory T . Otherwise, for instance,

if the MO would turn o� its mobile device before, trajectory T̂ could end in case

of a speeding violation before reaching the actual destination of the MO.

SPA with Temporal Delay

The speed protection algorithm SPA-TD for distance-based updates is shown

in Algorithm 16. The positioning sensor provides a new position to SPA-TD as

soon as the Euclidean distance between the last sensed position πi and the new

sensed position πi+1 reaches the MO-de�ned threshold distance D. The initial

position is updated as described for SPA-PA. For the following position updates,

it is evaluated whether position πi+1 sensed at time ti+1 can be reached in time

time(πi, πi+1) = ti+1 − t̂i from the last updated position πi updated at time

t̂i. A speeding violation is detected if time(πi , πi+1) < timeMaxSpeed(πi , πi+1).

Then, the update of position πi+1 must be delayed until πi+1 can be reached

from πi without exceeding the speed limit. To this end, SPA-TD calculates

time t̂i+1 at which the MO can reach πi+1 from πi without speeding violation.

SPA-TD assumes a MO driving at the maximum allowed speed from πi to πi+1

and uses the minimum required time timeMaxSpeed(πi, πi+1) to calculate t̂i+1

as t̂i+1 = t̂i + timeMaxSpeed(πi, πi+1). The update of position πi+1 is then

delayed until time t̂i+1. Otherwise, if πi+1 can be reached from πi without a

speeding violation, time ti+1 is used to de�ne t̂i+1 = ti+1. Finally, position

πi+1 is updated at time t̂i+1 using function update(πi+1 , t̂i+1). After a speeding

violation occurred and the MO is again driving at a speed below the speed limit,

the temporal accuracy is increased until no delay is needed any more.

An example for SPA-TD is shown in Figure 4.15a. For this example, we

assume the same movement of the MO and the same speed limitations as pre-

sented in our previous example for SPA-PA. Compared to the former example,

the sensing of a new position is triggered based on the MO-de�ned threshold

distance D that is set to D = 100m. The sensed positions of trajectory T and

148

4.2 Speed Protection

Algorithm 16 SPA with temporal delay

Function: SPA− TD()
1: πstart, tstart ← sensed position . Initial positioning
2: t̂start ← tstart . Initial update time
3: update(πstart, t̂start) . Initial position update
4: while report movement do
5: πi+1, ti+1 ← sensed position . Triggered distance-based
6: πi, t̂i ← last updated position
7: if time(πi, πi+1) < timeMaxSpeed(πi, πi+1) then
8: t̂i+1 ← t̂i + timeMaxSpeed(πi, πi+1) . Speeding detected
9: else

10: t̂i+1 ← ti+1 . No speeding occurred
11: end if
12: update(πi+1, t̂i+1) . Update πi+1 at time t̂i+1

13: end while

the corresponding position updates of trajectory T̂ are shown in Figure 4.15a.

The accurate positions are again depicted as circles (◦), while the protected po-

sitions are depicted as triangles (s). As shown, the spatial position information

of each sensed position is kept accurate, while the point in time used to update

the position is adjusted to protect the speed information of the MO. The corre-

sponding distance-speed diagrams of trajectory T and the protected trajectory

T̂ are shown in Figure 4.15b and Figure 4.15c.

4.2.4 Privacy Analysis

In this section, we prove that the MO's movement trajectory T̂ generated by

our speed protection algorithms does not indicate any speeding violation to an

attacker. First, we consider SPA-PA and proceed afterwards with SPA-TD.

Proof of Correctness for SPA-PA

We prove the correctness of SPA-PA by contradiction. Assume that there exists

a segment in the published trajectory T̂ of the MO indicating a speeding viola-

tion. Furthermore, assume that trajectory T̂ = {(π̂start, tstart), . . . , (π̂end, tend)}

149

4 Protecting Movement Trajectories

(a)

(π4,t4) (π5,t5) (π6,t6)
(π7,t7)

(π8,t8)(π4,t4)
(π5,t5) (π6,t6)

(π7,t7)
(π8,t8)

(π9,t9)

(π9,t9)

^
^ ^

^
^

^

(π10,t10)

(π10,t10)
^

(π11,t11)

(π11,t11)
^

(π3,t3)

(π3,t3)
^

(π12,t12)

(π12,t12)
^

(b)

Sp
ee

d
[k

m
/h

]

80
100
120

Max. speed

d3 d4 d5 d6 d7 d8 d9 Distanced10d11d12

20
40
60

0

Trajectory T

(c)

Sp
ee

d
[k

m
/h

]

80
100
120

d3 d4 d5 d6 d7 d8 d9 Distanced10d11d12

20
40
60

0

Max. speed
Trajectory T̂

Figure 4.15: (a) SPA-TD example using distance-based updates, (b) distance-

speed diagram for trajectory T , and (c) the protected trajectory T̂

generated by SPA-PA consists of at least two position updates, which is the

minimum number of position updates required to derive speed information. Fol-

lowing our assumption, at least one segment π̂i, π̂i+1 ∈ T̂ has to exist indicating

a speeding violation of the MO. Without loss of generality, let position π̂i+1 up-

dated at time ti+1 be the �rst update indicating a speeding violation. As we can

see in Algorithm 15, π̂i+1 can only be updated using function update(π̂i+1 , ti+1)

(cf. line 15). Moreover, our assumption requires that the MO drove faster than

the allowed speed limit on segment π̂i, π̂i+1. However, because SPA-PA detects

the speeding violation for position πi+1 at time ti+1 (cf. line 9), the updated

position π̂i+1 is calculated as the position that can be reached from the last

updated position π̂i without speeding violation (cf. line 11). Therefore, the

updated position π̂i+1 cannot indicate a speeding violation on segment π̂i, π̂i+1.

This contradicts our assumption that segment π̂i, π̂i+1 ∈ T̂ indicates a speeding

violation. Thus, it is guaranteed that trajectory T̂ does not contain any speeding

violation.

150

4.2 Speed Protection

Proof of Correctness for SPA-TD

For SPA-TD, we can show in a similar way to SPA-PA that no segment

πi, πi+1 ∈ T̂ can exist indicating a speeding violation of the MO. Assume tra-

jectory T̂ provided to the LS consists again of at least two position updates.

Moreover, assume that position πi+1 updated at time t̂i+1 is the �rst position

update indicating a speeding violation. The only function updating the MO's

position πi+1 in Algorithm 16 is function update(πi+1 , t̂i+1) (cf. line 12). How-

ever, a speeding violation is detected by SPA-TD (cf. line 7) and the update of

position πi+1 is delayed until time t̂i+1 (cf. line 8). Therefore, the update of po-

sition πi+1 does not provide any information that the MO drove faster than the

allowed speed limit. This contradicts our assumption that segment πi, πi+1 ∈ T̂
indicates a speeding violation of the MO, and we can state that trajectory T̂

generated by SPA-TD protects the speed information of the MO.

4.2.5 Evaluation

In this section, we present a real world trace evaluation analyzing the speed

information of taxi cabs in the San Francisco Bay Area. Moreover, we evaluate

the runtime performance of our speed protection algorithms using a prototype

implementation on a mobile device.

Analysis of Real World Traces for Speeding Violations

We select from the mobility traces provided by Piorkowski et al. [PSDG09] the

time period of one day (2008/06/01) and analyze the behavior of the taxi cabs

for this day. To determine the speed limit and the length of each road segment,

we use the map information of OpenStreetMap [Ope14] providing road network

data, speed limits, and further information.

First, we analyze the driving behavior and the occurred speeding violations

that can be derived from the movement trajectories. To this end, we distinguish

for each position update whether it indicates a speeding violation or not by

analyzing the travel time and distance between succeeding updates as formalized

151

4 Protecting Movement Trajectories

 0
 2500
 5000
 7500

 10000
 12500
 15000
 17500
 20000

 0 25 50 75 100 125 150 175 200

Sp
ee

di
ng

 v
io

la
tio

ns

Speed above speed limit [km/h]

Analyzed dataset

Figure 4.16: Speeding violation analysis

in Equation 4.5. Overall, we analyzed 365 348 position updates of 484 di�erent

taxi cabs. 347 818 of the updates (95.20%) conform to the local speed limits,

while 17 530 position updates (4.80%) indicated a speeding violation.

We further analyzed these speeding violations and calculated the speed

∆vspeeding = v − vmax (4.8)

as the di�erence between the MO's speed v and the allowed speed limit vmax.

The results are shown in Figure 4.16, where we plotted the number of detected

speeding violations over ∆vspeeding. The majority (87,93%) of the speeding viola-

tions occurred for ∆vspeeding ≤ 40 km/h. On average, ∆vspeeding is 20.47 km/h for

all detected speeding violations. From these results we can see that protecting

the speed information of movement trajectories is a relevant problem.

Analysis of Introduced Inaccuracies

Next, we formalize the spatial and temporal inaccuracy introduced by SPA-

PA and SPA-TD. The protection of the speed information leads to an arti�cial

inaccuracy in case the MO drives faster than the allowed speed limit. We de�ne

∆vmaxspeeding as the maximum speed di�erence between the MO's speed v and the

152

4.2 Speed Protection

allowed speed limit vmax. Therefore, ∆vmaxspeeding depends on the individual driving

behavior of the MO. Furthermore, we de�ne position πj ∈ T measured at time

tj as the last measured position in trajectory T where the MO drove equal to or

below the allowed speed limit. Then, we can calculate for each position π̂k ∈ T̂
updated at time tk ≥ tj the maximum spatial inaccuracy introduced by SPA-PA

as

∆dmax(πj, π̂k) = time(πj, π̂k) ·∆vmaxspeeding. (4.9)

For SPA-TD, the maximum introduced temporal inaccuracy for each position

πk ∈ T̂ and the last measured non-speeding position πj is calculated as

∆tmax(πj, πk) =
distance(πj, πk) ·∆vmaxspeeding

(vmax)2 + (vmax ·∆vmaxspeeding)
. (4.10)

As we can see, the maximum spatial and temporal deviation introduced by

our speed protection algorithms depends on the MO's driving behavior de�ning

∆vmaxspeeding and the duration of the speeding violation of the MO respectively the

traveled distance between position πj and position πk.

To get an insight into real world user driving behavior, we analyze the spatial

and temporal inaccuracy introduced by SPA-PA and SPA-TD for the presented

real world dataset. To this end, we analyze the spatial inaccuracy introduced by

SPA-PA by measuring the Euclidean distance between position π̂i+1 calculated

by SPA-PA and the original position πi+1, which would be updated without

speed protection. Formally, the spatial inaccuracy is calculated for time ti+1 as

∆d(ti+1) = dist(π̂i+1, πi+1). (4.11)

The temporal inaccuracy introduced by SPA-TD is the time between ti+1

when position πi+1 is updated without SPA-TD and time t̂i+1 SPA-TD updates

πi+1. The temporal inaccuracy is calculated for position πi+1 as

∆t(πi+1) = t̂i+1 − ti+1. (4.12)

153

4 Protecting Movement Trajectories

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 200 400 600 800 1000

Po
sit

io
n

up
da

te
s [

%
]

Spatial inaccuracy [m]

Analyzed dataset

Figure 4.17: Cumulative distribution of spatial inaccuracy

Because the taxi cabs of the analyzed dataset triggered their position updates

in an irregular manner, the used update strategy is neither strictly distance-

based nor time-based. However, since our algorithms are also applicable for

irregular update intervals and distances, we used the provided positions from

the original dataset with the original timestamps.

We analyze SPA-PA by calculating the spatial inaccuracy ∆d(ti+1) for each

position update πi+1 triggered at time ti+1. As shown in Figure 4.17, 93.3% of

the position updates have an inaccuracy below 100m. Therefore, we can state

that the speed protected movement trajectories are of high quality and only few

updates have a low spatial accuracy.

For our analysis of SPA-TD we calculate the temporal inaccuracy ∆t(πi+1)

for each position update triggered by position πi+1. The evaluation results are

shown in Figure 4.18. As we can see, 94.56% of the position updates have

a temporal inaccuracy below ten seconds. An inaccuracy of 60 seconds covers

99.14% of all updates. Therefore, we can state that the temporal inaccuracy

introduced by SPA-TD is low.

154

4.2 Speed Protection

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

Po
sit

io
n

up
da

te
s [

%
]

Temporal inaccuracy [s]

Analyzed dataset

Figure 4.18: Cumulative distribution of temporal inaccuracy

Performance Evaluation

Next, we analyze the e�ciency of SPA-PA and SPA-TD. Since the protection

algorithms have to be executed online on the mobile device, which typically

has relatively low computational power, e�ciency is a critical factor for the

algorithms. Moreover, a small computational overhead also reduces the energy

consumption, which is desirable for battery-operated mobile devices.

We evaluate SPA-PA and SPA-TD using a prototype implemented on a mobile

device (HTC Desire HD, 1GHz Qualcomm Snapdragon S2, 768MB RAM). The

used map is the road network of Stuttgart, Germany. The time required to

calculate a new speed protected position depends on the selected update protocol

and its update parameter.

For SPA-PA, we analyze randomly selected positions on the map with di�er-

ent update time periods TP ranging from one second to 60 seconds. Figure 4.19

shows the evaluation results for a movement trajectory over several runs for each

measurement. As we can see, the required time to determine a new speed pro-

tected position increases by increasing the update time period TP. This is based

on the fact that the speed protection algorithm has to calculate the fastest path

on the road network from the last updated position to the currently evaluated

position. By increasing TP, the traveled distance also increases. The measured

155

4 Protecting Movement Trajectories

 0

 100

 200

 300

 400

 10 20 30 40 50 60

Ti
m

e
[m

s]

Update time period TP [s]

SPA-PA

Figure 4.19: Performance evaluation using time-based updates

time includes the time required to calculate the map matching on the road net-

work for the sensed position of the MO. The map matching is required because

position π provided by the positioning system has to be mapped to the road

network before it can be used by our speed protection algorithms. On average,

the map matching takes 150milliseconds. As the introduced calculation of SPA-

PA for time-based position updates is well below 250milliseconds even for larger

update time periods, we can state that protecting the speed information of a

MO is possible without a�ecting the real-time property of position updates.

For SPA-TD, we vary the threshold distance D from ten meters to 1 000

meters. As shown in Figure 4.20, the processing time of SPA-TD stays well below

250milliseconds. The time for the map matching part of SPA-TD is identical

to the evaluation of SPA-PA. Generally, calculating the temporal delay of a

position update in SPA-TD takes nearly the same time than calculating the next

reachable position not indicating a speeding violation in SPA-PA. This is based

on the fact that the functions used in the introduced algorithms mainly di�er

only in line 11 in Algorithm 15 and line 8 in Algorithm 16, where we calculate the

next reachable position and the next reachable point in time that can be used

without indicating a speeding violation for the next update. Therefore, SPA-TD

can also be calculated very fast and support real-time position updates.

156

4.2 Speed Protection

 0

 100

 200

 300

 400

 0 200 400 600 800 1000

Ti
m

e
[m

s]

Update distance threshold D [m]

SPA-TD

Figure 4.20: Performance evaluation using distance-based updates

Analysis of Update Costs

As we can see from Algorithm 15 and Algorithm 16, each sensed position of the

MO leads to exactly one (protected) position update. Thus, the update costs of

SPA-PA and SPA-TD are identical to the costs without speed protection.

To reduce the number of required position updates sent to the LS, advanced

update protocols based on dead reckoning can be used. In these protocols, the LS

estimates the position of the MO based on its last known position, its movement

speed, and its movement direction. The MO calculates the same estimation and

updates its position, its movement speed and its movement direction as soon as

its actual position di�ers from the estimated position by more than a certain

distance threshold DT . To this end, the MO evaluates for its current position

πi and its estimated position πest at time ti the update criteria

dist(πi, πest) > DT. (4.13)

If the update criteria is ful�lled, the MO updates its movement information

to the LS. Otherwise, no update is required. Typically, linear prediction mecha-

nisms are used to estimate the position of the MO. By using prediction functions

of higher order or map-based functions, the number of required updates can fur-

157

4 Protecting Movement Trajectories

ther be reduced. For an overview of di�erent variants of dead reckoning-based

update protocols, we refer to the work of Leonhardi et al. [LNR02].

To allow for speed protected position updates based on dead reckoning, the

time-based location update protocol SPA-PA provides the MO's speed protected

position π̂i at time ti to the update algorithm implementing dead reckoning.

Then, the MO evaluates based on the speed protected position π̂i instead of

position πi the update criteria

dist(π̂i, πest) > DT. (4.14)

This approach guarantees that the dead reckoning algorithm does not reveal

any speeding violation when updating the MO's movement information to the

LS. Since dead reckoning-based update protocols explicitly update the speed of

the MO, which is calculated based on the speed protected trajectory T̂ , this

speed is equal to or below the maximum allowed speed limit. The correctness

of this approach relies on the correctness of SPA-PA presented in Section 4.2.4.

That is, the MO's speed protected position is provided by SPA-PA to the al-

gorithm implementing dead reckoning instead of providing the position directly

to the LS. Thus, the correctness arguments presented for SPA-PA also apply to

speed protected position updates based on dead reckoning.

4.2.6 Related Work

Existing k-anonymity approaches [KGMP07] try to protect the user identity by

preventing an attacker from linking a trajectory�which is not modi�ed and,

therefore, contains all speeding violations�to an individual user. However, as

shown in [ZB11, MHVB13], spatial and temporal information can be used to

identify individual users and, therefore, to identify individual speeders.

Spatial obfuscation approaches [ACG09, DSB11] protecting user position in-

formation can reveal speeding violations if multiple obfuscated positions are pro-

vided to the LS. Thus, these approaches do not protect the speed information of

the user. This applies also to the position sharing approaches [DSR11, SDR12]

158

4.3 Conclusion

and our position sharing approaches presented in Chapter 3.

Our trajectory fragmentation approach presented in Section 4.1 may reveal

violations of given speed limits to the LS storing a trajectory fragment which in-

cludes a speeding violation of the user. Therefore, trajectory fragmentation does

not protect the speed information of movement traces. However, our trajectory

fragmentation approach could be extended by our speed protection algorithms

to protect the updated positions of the shared fragments.

Dummy approaches [KYS05, SGI09] do not consider the speed information of

dummies. Thus, if all dummies and the real user trajectory contain speeding

violations, an attacker knows that the user is de�nitely speeding. As the dummy

approach is orthogonal to our approach, our speed protection algorithms could

be integrated to protect dummies from revealing speeding violations.

4.3 Conclusion

In this chapter, we presented novel approaches to share movement trajecto-

ries in a privacy-aware manner in system environments of location servers and

clients without assuming a trusted third party. To this end, we focused on the

protection of movement trajectories and speed information that can be derived

from trajectories. First, we introduced our trajectory fragmentation algorithm

splitting up a trajectory into di�erent trajectory fragments that are distributed

among LSs of di�erent providers to limit the maximum revealed trace length of

an LS. In case an LS gets compromised, only the positions of the stored fragment

are revealed instead of the complete movement trajectory.

Second, we presented our speed protection algorithms protecting mobile ob-

jects from revealing violations of given speed limits when sharing movement

trajectories. To this end, the maximum speed of a shared trajectory is limited

to the speed limit of the corresponding road segment.

159

5 Conclusion and Outlook

In this chapter, we summarize this thesis and give an outlook onto possible

future research directions.

5.1 Conclusion

Driven by the widespread availability of powerful mobile devices with integrated

positioning sensors, location-based applications are attracting millions of users

today. For example, users share position check-ins to restaurants or their move-

ment trajectory with friends. When sharing location information, users provide

precise information to a location service managing location information of multi-

ple users in a scalable and e�cient manner. Location services provide clients, for

instance di�erent location-based application, access to their stored location in-

formation. However, sharing location information raises severe privacy concerns,

especially if service providers cannot be assumed to be fully trustworthy. These

concerns are intensi�ed by the increasing number of reported privacy breaches

where service providers did not succeed in protecting private user information

adequately. Therefore, approaches protecting user location privacy are required,

and user location information should not be exposed carelessly. Otherwise, an

attacker could derive information the user is not willing to share, like his precise

position, his home location, or where he is currently traveling.

In this thesis, we presented a classi�cation of existing location privacy ap-

proaches and location privacy attacks. We analyzed which privacy approaches

can be applied to achieve a certain protection goal and which attacks a privacy

approach resists. To allow for privacy-aware sharing of location information, we

161

5 Conclusion and Outlook

presented di�erent approaches taking into account that location service providers

are non-trusted.

First, we focused on the protection of user position information and introduced

a novel position sharing concept. Position sharing splits up precise position infor-

mation into position shares of limited precision that are distributed to multiple

location services of di�erent providers. Therefore, location services store only

position information of decreased precision instead of precise position informa-

tion. Nevertheless, clients can combine multiple shares to increase their precision

to di�erent well-de�ned precision levels up to the precise position information.

Thus, position sharing improves existing obfuscation-based privacy approaches

by not limiting the maximum precision that can be provided to clients by the

trustworthiness of the location service. Furthermore, position sharing provides

a graceful degradation of privacy in case of compromised location servers. Our

�rst position sharing approach is based on the concept of multi-secret sharing. It

supports geometric and symbolic location models and resists advanced attackers

using map knowledge. Our second position sharing approach is based on the

concept of binary space partitioning. This position sharing approach allows to

increase the e�ciency of position sharing by reducing the number of required

share updates for multiple position updates signi�cantly.

Second, we focused on the protection of movement trajectories and presented

a trajectory sharing concept to allow for storing movement trajectories on non-

trusted servers. Instead of providing the complete movement trajectory of a user

to a single location service, our trajectory fragmentation approach splits up the

user's movement trace into a set of shorter trajectory fragments that are shared

among multiple location servers. The trajectory fragmentation approach mini-

mizes the maximum revealed trace length an attacker compromising a location

server can reveal. As shown in our evaluation, protecting movement trajectories

is possible even against advanced attackers using map knowledge and movement

prediction mechanism.

Finally, we presented algorithms protecting the speed information of move-

ment trajectories. Movement trajectories can reveal violations of given speed

162

5.2 Outlook

limits, which can lead to monetary or legal e�ects for the user. Therefore, the

speed information of the user's movement trajectory must be protected when

sharing movement traces. To this end, the speed protection algorithms slow

down the user's speed information that can be derived from a shared movement

trajectory to the maximum allowed speed limit. Thus, it is guaranteed that no

speeding violation can be revealed from the user's movement trace unless the

user explicitly agrees on sharing this information.

5.2 Outlook

Driven by the tremendous number of users sharing location information and

the increasing number of reported privacy breaches, protecting user privacy will

remain a big research topic in future. In the following, we discuss two possible

research directions:

Protection of semantic locations: Shared location information typically have

a certain semantic. For instance, the semantic location information of a

user position can be that the user is currently located at the university

or in a restaurant. However, semantic information can also be related to

critical locations, such as churches, hospitals, or buildings with a political

association. If users do not want to reveal that they visit such locations,

privacy approaches protecting semantic location information are required.

This must be possible even if location services are non-trusted and if at-

tackers use advanced attacks. To this end, our position sharing approach

taking road network and building data into account could be extended by

assigning each location in a �rst step its semantic, and by calculating after-

wards the number of e�ectively covered locations with a certain semantic

instead of calculating the e�ective area size of an obfuscated position.

Preventing user pro�ling: Beyond revealing semantic location information,

shared location information can be used by an attacker to create user pro-

�les. For instance, a user pro�le can reveal how frequently a user visits a

163

5 Conclusion and Outlook

bar or a shopping mall. Compared to the protection of semantic locations,

preventing user pro�ling has to consider all shared information of the user

instead of only certain locations. As an example, consider that visiting a

bar once may represent a typical user behavior, which is not critical to be

revealed. However, if the user visits the bar frequently, this could reveal

a characteristical behavior of the user, his habits, or personal interests al-

lowing to derive further information of the user. If the user does not want

to reveal such information, mechanisms preventing user pro�ling based on

revealed location information are required. This is important especially

for geosocial networks, where users frequently share location information.

Furthermore, it would be interesting how mechanisms providing di�erent

privacy levels of user pro�les ranging from a stranger to an individual user

could be implemented.

164

Bibliography

[ABN08] Osman Abul, Francesco Bonchi, and Mirco Nanni. Never walk

alone: Uncertainty for anonymity in moving objects databases. In

Proceedings of the 24th International Conference on Data Engineer-

ing (ICDE '08), pages 376�385, Cancun, Mexico, April 2008.

[ACD+06] Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani, Sabrina

De Capitani di Vimercati, and Pierangela Samarati. Supporting

location-based conditions in access control policies. In Proceed-

ings of the 2006 ACM Symposium on Information, Computer and

Communications Security (ASIACCS '06), pages 212�222, Taipei,

Taiwan, March 2006.

[ACDS11] Claudio A. Ardagna, Marco Cremonini, Sabrina De Capitani di

Vimercati, and Pierangela Samarati. An obfuscation-based ap-

proach for protecting location privacy. IEEE Transactions on De-

pendable and Secure Computing, 8(1):13�27, January 2011.

[ACG09] Claudio A. Ardagna, Marco Cremonini, and Gabriele Gianini.

Landscape-aware location-privacy protection in location-based ser-

vices. Journal of Systems Architecture, 55(4):243�254, April 2009.

[Aco09] Byron Acohido (USA Today). Hackers breach heartland payment

credit card system. www.usatoday.com/money/perfi/credit/

2009-01-20-heartland-credit-card-security-breach_N.htm,

January 2009.

165

www.usatoday.com/money/perfi/credit/2009-01-20-heartland-credit-card-security-breach_N.htm
www.usatoday.com/money/perfi/credit/2009-01-20-heartland-credit-card-security-breach_N.htm

Bibliography

[ALS12] Claudio A. Ardagna, Giovanni Livraga, and Pierangela Samarati.

Protecting privacy of user information in continuous location-based

services. In IEEE 15th International Conference on Computa-

tional Science and Engineering (CSE '12), pages 162�169, Paphos,

Cyprus, December 2012.

[App14a] Apple. Find my friends. www.apple.com/apps/find-my-

friends/, accessed January 2014.

[App14b] Apple. Iphone 5s technical speci�cation. www.apple.com/iphone-

5s/specs/, accessed June 2014.

[BAB+09] Ken Barker, Mina Askari, Mishtu Banerjee, Kambiz Ghazinour,

Brenan Mackas, Maryam Majedi, Sampson Pun, and Adepele

Williams. A data privacy taxonomy. In Dataspace: The Final

Frontier, volume 5588 of Lecture Notes in Computer Science, pages

42�54. Springer Berlin Heidelberg, 2009.

[BD05] Christian Becker and Frank Dürr. On location models for ubiqui-

tous computing. Personal Ubiquitous Computing, 9(1):20�31, Jan-

uary 2005.

[BE09] Andrew J. Blumberg and Peter Eckersly. On locational privacy,

and how to avoid losing it forever. www.eff.org/wp/locational-

privacy, April 2009.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bern-

hard Seeger. The r*-tree: An e�cient and robust access method for

points and rectangles. In Proceedings of the 1990 ACM SIGMOD

International Conference on Management of Data (SIGMOD '90),

pages 322�331, Atlantic City, New Jersey, USA, June 1990.

[BLPW08] Bhuvan Bamba, Ling Liu, Peter Pesti, and Ting Wang. Supporting

anonymous location queries in mobile environments with privacy-

166

www.apple.com/apps/find-my-friends/
www.apple.com/apps/find-my-friends/
www.apple.com/iphone-5s/specs/
www.apple.com/iphone-5s/specs/
www.eff.org/wp/locational-privacy
www.eff.org/wp/locational-privacy

Bibliography

grid. In Proceeding of the 17th International Conference on World

Wide Web (WWW '08), pages 237�246, Beijing, China, April 2008.

[BMW+09] Claudio Bettini, Sergio Mascetti, Xiaoyang Sean Wang, Dario

Freni, and Sushil Jajodia. Anonymity and historical-anonymity

in location-based services. In Privacy in Location-Based Applica-

tions, volume 5599 of Lecture Notes in Computer Science, pages

1�30. Springer Berlin Heidelberg, 2009.

[BS02] Piero A. Bonatti and Pierangela Samarati. A uniform framework

for regulating service access and information release on the web.

Journal of Computer Security, 10(3):241�271, September 2002.

[BS03] Alastair R. Beresford and Frank Stajano. Location privacy in per-

vasive computing. IEEE Pervasive Computing, 2(1):46�55, January

2003.

[BWJ05] Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Protecting pri-

vacy against location-based personal identi�cation. In Secure Data

Management, volume 3674 of Lecture Notes in Computer Science,

pages 185�199. Springer Berlin Heidelberg, 2005.

[CC05] Chao-Wen Chan and Chin-Chen Chang. A scheme for thresh-

old multi-secret sharing. Applied Mathematics and Computation,

166(1):1�14, July 2005.

[CCLS11] Zhiyuan Cheng, James Caverlee, Kyumin Lee, and Daniel Z. Sui.

Exploring millions of footprints in location sharing services. In

Proceedings of the 5th International AAAI Conference on Weblogs

and Social Media (ICWSM 2011), Barcelona, Spain, July 2011.

[CCW+12] G.B. Colombo, M.J. Chorley, M.J. Williams, S.M. Allen, and R.M.

Whitaker. You are where you eat: Foursquare checkins as indica-

tors of human mobility and behaviour. In Proceedings of the 10th

167

Bibliography

IEEE International Conference on Pervasive Computing and Com-

munications Workshops (PerCom '12 Workshops), pages 217�222,

Lugano, Switzerland, March 2012.

[Cle14] Privacy Rights Clearinghouse. Chronology of data breaches. www.

privacyrights.org/data-breach, accessed June 2014.

[CM07] Chi-Yin Chow and Mohamed F. Mokbel. Enabling private con-

tinuous queries for revealed user locations. In Proceedings of the

10th International Conference on Advances in Spatial and Tempo-

ral Databases (SSTD '07), pages 258�273, Boston, MA, USA, July

2007.

[CM11] Chi-Yin Chow and Mohamed F. Mokbel. Trajectory privacy in

location-based services and data publication. SIGKDD Explo-

rations, 13(1):19�29, August 2011.

[CMA09] Chi-Yin Chow, Mohamed F. Mokbel, and Walid G. Aref. Casper*:

Query processing for location services without compromising pri-

vacy. ACM Transactions on Database Systems, 34(4):1�48, Decem-

ber 2009.

[CZBP06] Reynold Cheng, Yu Zhang, Elisa Bertino, and Sunil Prabhakar.

Preserving user location privacy in mobile data management in-

frastructures. In Proceedings of the 6th International Conference on

Privacy Enhancing Technologies (PET '06), pages 393�412, Cam-

bridge, UK, June 2006.

[DBS10] Maria Luisa Damiani, Elisa Bertino, and Claudio Silvestri. The

probe framework for the personalized cloaking of private locations.

Transactions on Data Privacy, 3(2):123�148, August 2010.

[Dea14] Deals Nearby You. Local free coupons on your mobile phone! www.

dealsnearbyyou.com, accessed June 2014.

168

www.privacyrights.org/data-breach
www.privacyrights.org/data-breach
www.dealsnearbyyou.com
www.dealsnearbyyou.com

Bibliography

[DK05] Matt Duckham and Lars Kulik. A formal model of obfuscation

and negotiation for location privacy. In Proceedings of the Third

International Conference on Pervasive Computing (Pervasive '05),

pages 152�170, Munich, Germany, May 2005.

[DSB11] Maria Luisa Damiani, Claudio Silvestri, and Elisa Bertino. Fine-

grained cloaking of sensitive positions in location-sharing applica-

tions. Pervasive Computing, 10(4):64 �72, April 2011.

[DSR11] Frank Dürr, Pavel Skvortsov, and Kurt Rothermel. Position shar-

ing for location privacy in non-trusted systems. In Proceedings of

the 9th IEEE International Conference on Pervasive Computing

and Communications (PerCom '11), pages 189 �196, Seattle, USA,

March 2011.

[Efr13] Amir Efrati (The Wall Street Journal). Google con�rms antitrust

review of waze deal. http://blogs.wsj.com/digits/2013/06/

22/google-confirms-antitrust-review-of-waze-deal/, June

2013.

[Fac14] Facebook. www.facebook.com, accessed June 2014.

[FB74] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data struc-

ture for retrieval on composite keys. Acta Informatica, 4(1):1�9,

April 1974.

[Fou14a] Open Security Foundation. DataLossDB. www.datalossdb.org,

accessed June 2014.

[Fou14b] Foursquare. www.foursquare.com, accessed June 2014.

[Fou14c] Foursquare. About foursquare. www.foursquare.com/about, ac-

cessed June 2014.

[FR13] Josef Federmann and Max J. Rosenthal (Yahoo News).

Waze sale signals new growth for israeli high tech. http:

169

http://blogs.wsj.com/digits/2013/06/22/google-confirms-antitrust-review-of-waze-deal/
http://blogs.wsj.com/digits/2013/06/22/google-confirms-antitrust-review-of-waze-deal/
www.facebook.com
www.datalossdb.org
www.foursquare.com
www.foursquare.com/about
http://news.yahoo.com/waze-sale-signals-growth-israeli-high-tech-174533585.html
http://news.yahoo.com/waze-sale-signals-growth-israeli-high-tech-174533585.html

Bibliography

//news.yahoo.com/waze-sale-signals-growth-israeli-

high-tech-174533585.html, June 2013.

[Fre03] Elias Frentzos. Indexing objects moving on �xed networks. In Ad-

vances in Spatial and Temporal Databases, volume 2750 of Lecture

Notes in Computer Science, pages 289�305. Springer Berlin Heidel-

berg, 2003.

[FRVM+10] Dario Freni, Carmen Ruiz Vicente, Sergio Mascetti, Claudio Bet-

tini, and Christian S. Jensen. Preserving location and absence pri-

vacy in geo-social networks. In Proceedings of the 19th ACM Inter-

national Conference on Information and Knowledge Management

(CIKM '10), pages 309�318, Toronto, Canada, October 2010.

[GCJW10] Peter Gilbert, Landon P. Cox, Jaeyeon Jung, and David Wether-

all. Toward trustworthy mobile sensing. In Proceedings of the 11th

Workshop on Mobile Computing Systems & Applications (HotMo-

bile '10), pages 31�36, Annapolis, Maryland, February 2010.

[GdAD06] Hartmut Güting, Teixeira de Almeida, and Zhiming Ding. Model-

ing and querying moving objects in networks. The VLDB Journal,

15(2):165�190, June 2006.

[GDSB09] Gabriel Ghinita, Maria Luisa Damiani, Claudio Silvestri, and Elisa

Bertino. Preventing velocity-based linkage attacks in location-

aware applications. In Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information

Systems (GIS '09), pages 246�255, Seattle, USA, November 2009.

[GDVM09] Aris Gkoulalas-Divanis, Vassilios S. Verykios, and Mohamed F.

Mokbel. Identifying unsafe routes for network-based trajectory pri-

vacy. In Proceedings of the 9th SIAM International Conference on

Data Mining (SDM '09), pages 942�953, Sparks, Nevada, USA,

April 2009.

170

http://news.yahoo.com/waze-sale-signals-growth-israeli-high-tech-174533585.html
http://news.yahoo.com/waze-sale-signals-growth-israeli-high-tech-174533585.html
http://news.yahoo.com/waze-sale-signals-growth-israeli-high-tech-174533585.html

Bibliography

[GG03] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-

based services through spatial and temporal cloaking. In Proceed-

ings of the 1st International Conference on Mobile Systems, Ap-

plications and Services (MobiSys '03), pages 31�42, San Francisco,

California, USA, May 2003.

[GHP07] Gyözö Gidofalvi, Xuegang Huang, and Torben Bach Pedersen.

Privacy-preserving data mining on moving object trajectories. In

Proceedings of the 2007 International Conference on Mobile Data

Management (MDM '07), pages 60�68, Mannheim, Germany, May

2007.

[GKdPC10] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del

Prado Cortez. Show me how you move and i will tell you who you

are. In Proceedings of the 3rd ACM SIGSPATIAL International

Workshop on Security and Privacy in GIS and LBS (SPRINGL

'10), pages 34�41, San Jose, California, USA, November 2010.

[GKK+08] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi,

and Kian-Lee Tan. Private queries in location based services:

anonymizers are not necessary. In Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data (SIG-

MOD '08), pages 121�132, Vancouver, Canada, June 2008.

[GL04] Marco Gruteser and Xuan Liu. Protecting privacy in continuous

location-tracking applications. IEEE Security Privacy, 2(2):28�34,

March 2004.

[GL08] Bu§ra Gedik and Ling Liu. Protecting location privacy with per-

sonalized k-anonymity: Architecture and algorithms. IEEE Trans-

actions on Mobile Computing, 7(1):1�18, January 2008.

[Gly13] Glympse Inc. Localization support for global audience; company

171

Bibliography

surpasses 10 million users milestone. www.glympse.com/news/

press/15, August 2013.

[Gly14] Glympse Inc. www.glympse.com, accessed June 2014.

[Goo14a] Google. Introducing the all-new 5" phone from google. www.

google.com/nexus/, accessed June 2014.

[Goo14b] Google Maps. www.maps.google.com, accessed June 2014.

[Goo14c] Google Plus. www.plus.google.com, accessed June 2014.

[GP09] Philippe Golle and Kurt Partridge. On the anonymity of home /

work location pairs. In Proceedings of the 7th International Con-

ference on Pervasive Computing (Pervasive '09), pages 390�397,

Nara, Japan, May 2009.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching. In Proceedings of the 1984 ACM SIGMOD International

Conference on Management of Data (SIGMOD '84), pages 47�57,

Boston, Massachusetts, USA, June 1984.

[GZPK10] Gabriel Ghinita, Keliang Zhao, Dimitris Papadias, and Panos Kal-

nis. A reciprocal framework for spatial k-anonymity. Information

Systems, 35(3):299�314, May 2010.

[HG05] Baik Hoh and Marco Gruteser. Protecting location privacy through

path confusion. In First International Conference on Security

and Privacy for Emerging Areas in Communications Networks (Se-

cureComm '05), pages 194�205, Athens, Greece, September 2005.

[HGH+08] Baik Hoh, Marco Gruteser, Ryan Herring, Je� Ban, Daniel Work,

Juan-Carlos Herrera, Alexandre M. Bayen, Murali Annavaram,

and Quinn Jacobson. Virtual trip lines for distributed privacy-

preserving tra�c monitoring. In Proceeding of the 6th Interna-

172

www.glympse.com/news/press/15
www.glympse.com/news/press/15
www.glympse.com
www.google.com/nexus/
www.google.com/nexus/
www.maps.google.com
www.plus.google.com

Bibliography

tional Conference on Mobile Systems, Applications, and Services

(MobiSys '08), pages 15�28, Breckenridge, CO, USA, June 2008.

[HGXA06] Baik Hoh, Marco Gruteser, Hui Xiong, and Ansaf Alrabady. En-

hancing security and privacy in tra�c-monitoring systems. IEEE

Pervasive Computing, 5(4):38�46, October 2006.

[HGXA10] Baik Hoh, Marco Gruteser, Hui Xiong, and Ansaf Alrabady.

Achieving guaranteed anonymity in gps traces via uncertainty-

aware path cloaking. IEEE Transactions on Mobile Computing,

9(8):1089�1107, August 2010.

[HL06] Haibo Hu and Dik Lun Lee. Range nearest-neighbor query. IEEE

Transactions on Knowledge and Data Engineering, 18(1):78�91,

January 2006.

[Hol14] Martin Holland (Heise Verlag). Shazam räumt weitergabe von

nutzerdaten ein. http://heise.de/-2125289, February 2014.

[HOO+14] Peter Händel, Jens Ohlsson, Martin Ohlsson, Isaac Skog, and Elin

Nygren. Smartphone based measurement systems for road vehi-

cle tra�c monitoring and usage-based insurance. IEEE Systems

Journal, 8(4):1238�1248, December 2014.

[HS05] Urs Hengartner and Peter Steenkiste. Access control to people lo-

cation information. ACM Transactions on Information and System

Security, 8(4):424�456, November 2005.

[IMI10] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. Location-

dependent query processing: Where we are and where we are head-

ing. ACM Computing Surveys, 42(3):1�73, March 2010.

[Ins14a] Instagram. www.instagram.com, accessed June 2014.

[Ins14b] Environmental Systems Research Institute. Geoloqi. www.geoloqi.

com, accessed June 2014.

173

http://heise.de/-2125289
www.instagram.com
www.geoloqi.com
www.geoloqi.com

Bibliography

[Int14] Intelligent Apps GmbH. Mytaxi. www.mytaxi.com, accessed June

2014.

[JKPT03] Christian S. Jensen, Jan Kolá°vr, Torben Bach Pedersen, and Igor

Timko. Nearest neighbor queries in road networks. In Proceedings of

the 11th ACM International Symposium on Advances in Geographic

Information Systems (GIS '03), pages 1�8, New Orleans, Louisiana,

USA, November 2003.

[JQJ07] Oliver Jorns, Gerald Quirchmayr, and Oliver Jung. A privacy en-

hancing mechanism based on pseudonyms for identity protection

in location-based services. In Proceedings of the Fifth Australasian

Symposium on ACSW Frontiers (ACSW '07), volume 68, pages

133�142, Ballarat, Victoria, Australia, January 2007.

[KGMP07] Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris

Papadias. Preventing location-based identity inference in anony-

mous spatial queries. IEEE Transactions on Knowledge and Data

Engineering, 19(12):1719�1733, December 2007.

[Kru07] John Krumm. Inference attacks on location tracks. In Proceed-

ings of the 5th International Conference on Pervasive Computing

(Pervasive '07), pages 127�143, Toronto, Canada, May 2007.

[Kru08] John Krumm. A markov model for driver turn prediction. In Society

of Automotive Engineers (SAE) World Congress, Detroit, Michi-

gan, USA, April 2008.

[Kru09] John Krumm. A survey of computational location privacy. Personal

and Ubiquitous Computing, 13(6):391�399, August 2009.

[KS10] Ali Khoshgozaran and Cyrus Shahabi. A taxonomy of approaches

to preserve location privacy in location-based services. Interna-

tional Journal of Computational Science and Engineering, 5(2):86�

96, November 2010.

174

www.mytaxi.com

Bibliography

[KV04] Jonathan Krim and David A. Vise (Washington Post). AOL em-

ployee charged in theft of screen names. www.washingtonpost.

com/wp-dyn/articles/A860-2004Jun23.html, June 2004.

[KYS05] Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. An anony-

mous communication technique using dummies for location-based

services. In Proceedings of the International Conference on Per-

vasive Services (ICPS '05), pages 88�97, Santorini, Greece, July

2005.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-

closeness: Privacy beyond k-anonymity and l-diversity. In Pro-

ceedings of the 23rd IEEE International Conference on Data Engi-

neering (ICDE '07), pages 106�115, Istanbul, Turkey, April 2007.

[LM98] Ulf Leonhardt and Je� Magee. Security considerations for a dis-

tributed location service. Journal of Network and Systems Man-

agement, 6(1):51�70, March 1998.

[LNR02] Alexander Leonhardi, Christian Nicu, and Kurt Rothermel. A map-

based dead-reckoning protocol for updating location information.

In Proceedings of the 16th International Parallel and Distributed

Processing Symposium (IPDPS '02), Ft. Lauderdale, Florida, USA,

April 2002.

[LR01] Alexander Leonhardi and Kurt Rothermel. Architecture of a large-

scale location service. Technical Report 2001/01, Faculty of Com-

puter Science, University of Stuttgart, Germany, January 2001.

[LZP+12] Xinxin Liu, Han Zhao, Miao Pan, Hao Yue, Xiaolin Li, and

Yuguang Fang. Tra�c-aware multiple mix zone placement for pro-

tecting location privacy. In Proceedings of the 31st Annual IEEE In-

ternational Conference on Computer Communications (INFOCOM

'12), pages 972�980, Orlando, Florida, USA, March 2012.

175

www.washingtonpost.com/wp-dyn/articles/A860-2004Jun23.html
www.washingtonpost.com/wp-dyn/articles/A860-2004Jun23.html

Bibliography

[MAA+10] Anna Monreale, Gennady Andrienko, Natalia Andrienko, Fosca Gi-

annotti, Dino Pedreschi, Salvatore Rinzivillo, and Stefan Wrobel.

Movement data anonymity through generalization. Transactions

on Data Privacy, 3(2):91�121, August 2010.

[Map14] MapMyFitness Inc. Mapmy�tness. www.mapmyfitness.com, ac-

cessed June 2014.

[MBW+09] Sergio Mascetti, Claudio Bettini, X. Sean Wang, Dario Freni, and

Sushil Jajodia. ProvidentHider: An algorithm to preserve historical

k-anonymity in LBS. In Proceedings of the 10th IEEE International

Conference on Mobile Data Management (MDM '09), pages 172�

181, Taipei, Taiwan, May 2009.

[MDKG05] Giannis F. Marias, Constantinos Delakouridis, Leonidas Kazat-

zopoulos, and Panagiotis Georgiadis. Location privacy through se-

cret sharing techniques. In Proceedings of the 1st International

IEEE WoWMoM Workshop on Trust, Security and Privacy for

Ubiquitous Computing (WOWMOM '05), volume 3, pages 614�620,

Taormina, Sicily, Italy, June 2005.

[Met14] MetroMile Inc. Metromile. www.metromile.com, accessed June

2014.

[MFB+11] Sergio Mascetti, Dario Freni, Claudio Bettini, X. Sean Wang, and

Sushil Jajodia. Privacy in geo-social networks: proximity noti�-

cation with untrusted service providers and curious buddies. The

VLDB Journal, 20(4):541�566, August 2011.

[MGKV06] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and

Muthuramakrishnan Venkitasubramaniam. L-diversity: Privacy

beyond k-anonymity. In Proceedings of the 22nd International Con-

ference on Data Engineering (ICDE '06), pages 24�35, Atlanta,

Georgia, USA, April 2006.

176

www.mapmyfitness.com
www.metromile.com

Bibliography

[MHVB13] Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen,

and Vincent D. Blondel. Unique in the crowd: The privacy bounds

of human mobility. Scienti�c Reports, 3(1376):1�5, March 2013.

[MRC09] Joseph Meyerowitz and Romit Roy Choudhury. Hiding stars with

�reworks: Location privacy through camou�age. In Proceedings

of the 15th Annual International Conference on Mobile Computing

and Networking (MobiCom '09), pages 345�356, Beijing, China,

September 2009.

[MYYR10] Chris Y.T. Ma, David K.Y. Yau, Nung Kwan Yip, and

Nageswara S.V. Rao. Privacy vulnerability of published anonymous

mobility traces. In Proceedings of the 16th Annual International

Conference on Mobile Computing and Networking (MobiCom '10),

pages 185�196, Chicago, Illinois, USA, September 2010.

[NASG09] Mehmet Ercan Nergiz, Maurizio Atzori, Yücel Saygin, and Baris

Güç. Towards trajectory anonymization: a generalization-based

approach. Transactions on Data Privacy, 2(1):47�75, April 2009.

[Nat14] National General Insurance. Smartdiscounts for smart

drivers. www.nationalgeneral.com/auto-insurance/smart-

discounts.asp, accessed June 2014.

[Ope14] OpenStreetMap. www.openstreetmap.org, accessed June 2014.

[PBB09] Raluca Ada Popa, Hari Balakrishnan, and Andrew J. Blumberg.

Vpriv: Protecting privacy in location-based vehicular services. In

Proceedings of the 18th Conference on USENIX Security Sympo-

sium (SSYM '09), pages 335�350, Montreal, Canada, August 2009.

[Pil09] Ed Pilkington (The Guardian). Us hacker charged with stealing

130m credit card ids. www.theguardian.com/world/2009/aug/

18/american-credit-card-hacker, August 2009.

177

www.nationalgeneral.com/auto-insurance/smart-discounts.asp
www.nationalgeneral.com/auto-insurance/smart-discounts.asp
www.openstreetmap.org
www.theguardian.com/world/2009/aug/18/american-credit-card-hacker
www.theguardian.com/world/2009/aug/18/american-credit-card-hacker

Bibliography

[PJT00] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel

approaches in query processing for moving object trajectories. In

Proceedings of the 26th International Conference on Very Large

Data Bases (VLDB '00), pages 395�406, Cairo, Egypt, 2000.

[PL11] Balaji Palanisamy and Ling Liu. Mobimix: Protecting location

privacy with mix-zones over road networks. In Proceedings of the

27th IEEE International Conference on Data Engineering (ICDE

'11), pages 494�505, Hannover, Germany, April 2011.

[Pre01] The Associated Press (USA Today). Gps system used to �ne driver

for speeding. www.usatoday.com/tech/news/2001-07-03-car-

tracking.htm, March 2001.

[Pre14] International Data Corporation (IDC) Press. Worldwide smart-

phone shipments top one billion units for the �rst time, according to

idc. www.idc.com/getdoc.jsp?containerId=prUS24645514, Jan-

uary 2014.

[Pro14] PriLoc Project. www.PriLoc.de, accessed June 2014.

[PS11] Sai Teja Peddinti and Nitesh Saxena. On the limitations of query

obfuscation techniques for location privacy. In Proceedings of the

13th International Conference on Ubiquitous Computing (UbiComp

'11), pages 187�196, Beijing, China, September 2011.

[PSDG09] Michal Piorkowski, Natasa Sara�janovoc-Djukic, and Matthias

Grossglauser. A parsimonious model of mobile partitioned networks

with clustering. In Proceedings of the 1st International Conference

on COMmunication Systems and NETworkS (COMSNETS '09),

pages 1�10, Bangalore, India, January 2009.

[PXM12] Xiao Pan, Jianliang Xu, and Xiaofeng Meng. Protecting location

privacy against location-dependent attacks in mobile services. IEEE

178

www.usatoday.com/tech/news/2001-07-03-car-tracking.htm
www.usatoday.com/tech/news/2001-07-03-car-tracking.htm
www.idc.com/getdoc.jsp?containerId=prUS24645514
www.PriLoc.de

Bibliography

Transactions on Knowledge and Data Engineering, 24(8):1506�

1519, August 2012.

[PZMT03] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao.

Query processing in spatial network databases. In Proceedings of the

29th International Conference on Very Large Data Bases (VLDB

'03), volume 29, pages 802�813, Berlin, Germany, September 2003.

[QON07] Mohammed A. Quddus, Washington Y. Ochieng, and Robert B.

Noland. Current map-matching algorithms for transport applica-

tions: State-of-the art and future research directions. Transporta-

tion Research Part C: Emerging Technologies, 15(5):312 � 328, Oc-

tober 2007.

[RFSK08] Stefan Rass, Simone Fuchs, Martin Scha�er, and Kyandoghere Kya-

makya. How to protect privacy in �oating car data systems. In

Proceedings of the Fifth ACM International Workshop on Vehicu-

lAr Inter-NETworking (VANET '08), pages 17�22, San Francisco,

California, USA, September 2008.

[Say08] Peter Sayer (New York Times). T-mobile lost disk contain-

ing data on 17 million customers. www.nytimes.com/idg/IDG_

852573C400693880002574DA0034AE43.html, October 2008.

[SDFMB08] Agusti Solanas, Josep Domingo-Ferrer, and Antoni Martínez-

Ballesté. Location privacy in location-based services: Beyond ttp-

based schemes. In International Workshop on Privacy in Location-

Based Applications (PILBA '08), pages 12�23, Malaga, Spain, Oc-

tober 2008.

[SDR12] Pavel Skvortsov, Frank Dürr, and Kurt Rothermel. Map-aware

position sharing for location privacy in non-trusted systems. In

Pervasive Computing, volume 7319 of Lecture Notes in Computer

Science, pages 388�405. Springer Berlin Heidelberg, 2012.

179

www.nytimes.com/idg/IDG_852573C400693880002574DA0034AE43.html
www.nytimes.com/idg/IDG_852573C400693880002574DA0034AE43.html

Bibliography

[Seg11] Laurie Segall (CNN Money). Facebook buys gowalla. http://

money.cnn.com/2011/12/02/technology/gowalla_facebook/,

December 2011.

[SGI09] Pravin Shankar, Vinod Ganapathy, and Liviu Iftode. Privately

querying location-based services with sybilquery. In Proceedings of

the 11th International Conference on Ubiquitous Computing (Ubi-

comp '09), pages 31�40, Orlando, Florida, USA, 2009.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems.

Bell System Technical Journal, 28(4):656�715, October 1949.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612�613, November 1979.

[STLBH11] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and

Jean-Pierre Hubaux. Quantifying location privacy. In Proceedings

of the 31st IEEE Symposium on Security and Privacy (SP '11),

pages 247 �262, Berkeley, California, USA, May 2011.

[TA10] Nilothpal Talukder and Sheikh Iqbal Ahamed. Preventing multi-

query attack in location-based services. In Proceedings of the third

ACM Conference on Wireless Network Security (WiSec '10), pages

25�36, Hoboken, New Jersey, USA, March 2010.

[TM08] Manolis Terrovitis and Nikos Mamoulis. Privacy preservation in the

publication of trajectories. In Proceedings of the 9th International

Conference on Mobile Data Management (MDM '08), pages 65�72,

Beijing, China, April 2008.

[Tom14] TomTom International. www.tomtom.com/en_gb/licensing/

products/traffic/real-time-traffic/, accessed June 2014.

[Twi14] Twitter Inc. www.twitter.com, accessed June 2014.

180

http://money.cnn.com/2011/12/02/technology/gowalla_facebook/
http://money.cnn.com/2011/12/02/technology/gowalla_facebook/
www.tomtom.com/en_gb/licensing/products/traffic/real-time-traffic/
www.tomtom.com/en_gb/licensing/products/traffic/real-time-traffic/
www.twitter.com

Bibliography

[Van13] Kyle Vanhemert (Wired.com). Amazing maps of 3 billion tweets

reveal iphone vs. android neighborhoods. www.wired.com/design/

2013/07/design_06272013_tweetmaps/, July 2013.

[Waz14] Waze Ltd. www.waze.com, accessed June 2014.

[WDR12] Marius Wernke, Frank Dürr, and Kurt Rothermel. PShare: posi-

tion sharing for location privacy based on multi-secret sharing. In

Proceedings of the 10th IEEE International Conference on Perva-

sive Computing and Communications (PerCom '12), pages 153 �

161, Lugano, Switzerland, March 2012.

[WDR13a] Marius Wernke, Frank Dürr, and Kurt Rothermel. E�cient posi-

tion sharing for location privacy using binary space partitioning. In

Mobile and Ubiquitous Systems: Computing, Networking, and Ser-

vices, volume 120 of Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering,

pages 263�275. Springer Berlin Heidelberg, 2013.

[WDR13b] Marius Wernke, Frank Dürr, and Kurt Rothermel. PShare: ensur-

ing location privacy in non-trusted systems through multi-secret

sharing. Pervasive and Mobile Computing, 9(3):339 � 352, June

2013.

[WDR13c] Marius Wernke, Frank Dürr, and Kurt Rothermel. Speed protection

algorithms for privacy-aware location management. In Proceedings

of the IEEE 9th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob '13), pages

355�362, Lyon, France, October 2013.

[WDR14] Marius Wernke, Frank Dürr, and Kurt Rothermel. Protecting

movement trajectories through fragmentation. In Mobile and Ubiq-

uitous Systems: Computing, Networking, and Services, volume 131

of Lecture Notes of the Institute for Computer Sciences, Social

181

www.wired.com/design/2013/07/design_06272013_tweetmaps/
www.wired.com/design/2013/07/design_06272013_tweetmaps/
www.waze.com

Bibliography

Informatics and Telecommunications Engineering, pages 303�315.

Springer International Publishing, 2014.

[Web10] Webroot Inc. Webroot survey �nds geolocation apps prevalent

amongst mobile device users, but 55% concerned about loss of pri-

vacy. www.webroot.com/us/en/company/press-room/releases/

social-networks-mobile-security, July 2010.

[Wil11] Christopher Williams (The Telegraph). Police use tomtom data

to target speed traps. www.telegraph.co.uk/technology/

news/8480195/Police-use-TomTom-data-to-target-speed-

traps.html, April 2011.

[WL09] Ting Wang and Ling Liu. Privacy-aware mobile services over road

networks. Proceedings of the VLDB Endowment, 2(1):1042�1053,

August 2009.

[WSDR14] Marius Wernke, Pavel Skvortsov, Frank Dürr, and Kurt Rother-

mel. A classi�cation of location privacy attacks and approaches.

Personal and Ubiquitous Computing, 18(1):163�175, January 2014.

[WZ08] Haojun Wang and Roger Zimmermann. Snapshot location-based

query processing on moving objects in road networks. In Pro-

ceedings of the 16th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems (GIS '08), num-

ber 50, pages 1�4, Irvine, California, November 2008.

[WZ11] Haojun Wang and Roger Zimmermann. Processing of continu-

ous location-based range queries on moving objects in road net-

works. IEEE Transactions on Knowledge and Data Engineering,

23(7):1065�1078, July 2011.

[XXM08] Zhen Xiao, Jianliang Xu, and Xiaofeng Meng. p-sensitivity:

A semantic privacy-protection model for location-based services.

182

www.webroot.com/us/en/company/press-room/releases/social-networks-mobile-security
www.webroot.com/us/en/company/press-room/releases/social-networks-mobile-security
www.telegraph.co.uk/technology/news/8480195/Police-use-TomTom-data-to-target-speed-traps.html
www.telegraph.co.uk/technology/news/8480195/Police-use-TomTom-data-to-target-speed-traps.html
www.telegraph.co.uk/technology/news/8480195/Police-use-TomTom-data-to-target-speed-traps.html

Bibliography

In Proceedings of the Ninth International Conference on Mobile

Data Management Workshops (MDMW '08), pages 47�54, Beijing,

China, April 2008.

[XZZ+13] Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, and

Zhenghua Xu. Destination prediction by sub-trajectory synthe-

sis and privacy protection against such prediction. In Proceedings

of the 2013 IEEE International Conference on Data Engineering

(ICDE '13), pages 254�265, Brisbane, Australia, April 2013.

[YDAS12] Emre Yigitoglu, Maria Luisa Damiani, Osman Abul, and Claudio

Silvestri. Privacy-preserving sharing of sensitive semantic locations

under road-network constraints. In Proceedings of the IEEE 13th

International Conference on Mobile Data Management (MDM '12),

pages 186�195, Bengaluru, India, July 2012.

[Yel14] Yelp Inc. www.yelp.com, accessed June 2014.

[YJML11] Man Lung Yiu, Christian S. Jensen, Jesper Møller, and Hua Lu.

Design and analysis of a ranking approach to private location-based

services. ACM Transactions on Database Systems, 36(2):1�42, May

2011.

[YPL07] Tun-Hao You, Wen-Chih Peng, and Wang-Chien Lee. Protecting

moving trajectories with dummies. In Proceedings of the 8th In-

ternational Conference on Mobile Data Management (MDM '07),

pages 278�282, Mannheim, Germany, May 2007.

[ZB11] Hui Zang and Jean Bolot. Anonymization of location data does

not work: A large-scale measurement study. In Proceedings of the

17th Annual International Conference on Mobile Computing and

Networking (MobiCom '11), pages 145�156, Las Vegas, Nevada,

USA, September 2011.

183

www.yelp.com

	Abstract
	Deutsche Zusammenfassung
	Introduction
	Contributions
	Structure of the Thesis

	Related Work
	Location-based Applications
	Applications Relying on User Positions
	Applications Relying on Movement Trajectories

	System Model
	Location Management
	Management of Position Information
	Management of Movement Trajectories
	Access Control Management

	Protection Goals
	Identity Information
	Spatial Information
	Temporal Information

	Location Privacy Approaches
	k-Anonymity
	Mix Zones
	Position Dummies
	Spatial Obfuscation
	Cryptography-based Approaches
	Position Sharing

	Location Privacy Attacks
	Attacker Knowledge
	Classification of Location Privacy Attacks

	Classification of Location Privacy Approaches
	Our Approaches: Considered Attacks and Protection Goals
	Conclusion

	Protecting Position Information
	Position Sharing based on Multi-Secret Sharing
	Extended System Model
	Problem Statement
	Geometric Position Sharing
	Symbolic Position Sharing
	Privacy Analysis
	Evaluation

	Position Sharing based on Binary Space Partitioning
	Extended System Model
	Problem Statement
	Position Sharing Approach
	Privacy Analysis
	Evaluation

	Related Work
	Conclusion

	Protecting Movement Trajectories
	Trajectory Fragmentation
	Extended System Model
	Problem Statement
	Trajectory Fragmentation Algorithms
	Privacy Analysis
	Evaluation
	Related Work

	Speed Protection
	Extended System Model
	Problem Statement
	Speed Protection Algorithms
	Privacy Analysis
	Evaluation
	Related Work

	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

