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TMR Triple Modular Redundancy

TPG Test Pattern Generation / Generator

TVF Time Vulnerability Factor

VLSI Very Large Scale Integration
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Notation

▷ Sets

∅ empty set

B set of Boolean values, B = {true, false}, denoted as {0,1}
N+

set of positive natural numbers

N set of non-negative natural numbers including 0,N ≡ N+ ∪ {0}
Z set of integer numbers

| · | cardinality of a set

▷ Set Operators

∪ union

∩ intersection

\ difference

▷ Set Relations

∈ element

⊂ subset

⊃ superset

≡ equivalence

▷ Boolean Operators

·̄,¬ negation

∧ conjunction

∨ disjunction

⊕ exclusive disjunction

⇒ implication

⇔ equivalence

▷ Boolean function f : Bn → B, where n ∈ N+
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Acronyms

▷ Vectors

R⃗ vector of values, R⃗ := {rn ,rn−1, . . . ,r1}
∥ R⃗∥1 l1-norm of a vector, ∥ R⃗∥1 :=

∑n
i=1
|ri |

If not stated otherwise, the least significant bit (lsb) of a binary vector, that is

the bit position in a binary number determining whether the number is even

or odd, is noted as the right-most bit.

▷ Hamming distance ∆H ( x⃗, y⃗) between two vectors x⃗, y⃗ is defined as the number

of coefficients in which they differ:

∆H ( x⃗, y⃗) :=

n∑
j=1

x j , yj .

For binary vectors a⃗ and b⃗ ∈ B the Hamming distance is equal to the number

of ones in a⃗ ⊕ b⃗:

∆H (a⃗, b⃗) := ∥a⃗ ⊕ b⃗∥1.
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Summary

The evolution of digital circuits from a few application areas to omnipresence in

everyday life has been enabled by the ability to dramatically increase integration

density through scaling. However, the continuation of scaling gets more difficult with

every generation and poses severe challenges on reliability.

Throughout the manufacturing process the appearance of defects cannot be avoided

and further deteriorates with scaling. Hence, the reliability at timepoint zero denoted

by the manufacturing yield is not ideal and some defective chips will produce wrong

output signals. For this reason, the presence of such hard faults needs to be shown

prior to delivery during test where automatic test equipment (ATE) is used to apply

a test set that covers a predefined set of modeled defects. As some potential defect

locations are hard to test using the chips operational interface, additional dedicated

test infrastructure is included on chip that provides test access.

Throughout the operational lifetime reliability is threatened by soft errors that orig-

inate from interactions of radiation with semiconductor devices and potentially

manifest in sequential state corruptions. With further raising soft error rates ag-

gravated by scaling high reliability is maintained by the inclusion of fault tolerance
infrastructure able to detect, localize and ideally correct soft errors. Thus, the orthog-

onal combination of two independent infrastructures elevates the area overhead

although test support and fault tolerance are never required concurrently.

This work proposes a unified architecture that employs a common infrastructure

to provide fault tolerance during operation and test access during test. Similarities

between both fields are successfully exploited and traced back to the combination of

an efficient sequential state checksum with an effective state update by bit-flipping.

Experiments on public and industrial circuits evaluate the unified architecture in

both fields and show an improved area efficiency as well as successful correction

during fault tolerance. During test, the results substantiate advantages with respect

to test time, test volume, peak and average test power as well as test energy.
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Zusammenfassung

Die Fähigkeit die Integrationsdichte mittels Skalierung drastisch zu steigern, hat die

Evolution digitaler Schaltungen von ein paar Anwendungsgebieten zur Allgegen-

wart im täglichen Leben ermöglicht. Eine Fortführung der Skalierung gestaltet sich

jedoch von Generation zu Generation schwieriger und stellt darüber hinaus ernste

Herausforderungen an die Zuverlässigkeit.

Das Auftreten von Defekten kann während des Herstellungsprozesses nicht verhin-

dert werden und verschlimmert sich unter Skalierung weiter. Die Zuverlässigkeit

zum Zeitpunkt null, ausgedrückt durch die Produktionsausbeute, ist somit nicht ide-

al und einige defekte Chips erzeugen falsche Ausgangssignale. Aus diesem Grund

ist es notwendig vorhandene permanente Fehler (hard faults) vor der Auslieferung

mittels Test zu erkennen. Dabei wird eine vorbestimmte Menge von Defekten in

einer Testmenge modelliert und diese durch Testautomaten (Automatic Test Equipment,
ATE) auf jeden Chip angewendet. Da einige der potentiellen Defektstellen mittels der

funktionalen Chipschnittstellen nur schwer zu testen sind, wird dem Chip zusätzlich

dedizierte Testinfrastruktur hinzugefügt, die einen Testzugriff bietet.

Während des Systembetriebs wird die Zuverlässigkeit durch transiente Fehler (soft
errors) bedroht, die durch die Interaktion von Strahlung mit den Halbleitermaterialien

hervorgerufen werden. Diese manifestieren sich möglicherweise in Veränderungen

des sequentiellen Schaltungszustands. Mit weiter steigenden transienten Fehlerra-

ten, die durch Skalierung verstärkt werden, wird eine hohe Zuverlässigkeit durch

das Hinzufügen von Fehlertoleranzinfrastruktur beibehalten, die transiente Fehler

erkennen, lokalisieren und idealerweise korrigieren kann. Folglich erhöht die ortho-

gonale Kombination zweier unabhängiger Infrastrukturen den Flächenbedarf, obwohl

Testunterstützung und Fehlertoleranz nie gleichzeitig benötigt werden.

Diese Arbeit stellt eine vereinheitlichte Architektur vor, die eine gemeinsame Infra-

struktur verwendet, um Fehlertoleranz während des Betriebs und Testzugriff während
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Zusammenfassung

des Tests bereitzustellen. Ähnlichkeiten zwischen beiden Gebieten werden erfolg-

reich ausgenutzt und auf die Kombination einer effizienten Zustandsprüfsumme mit

einer effektiven Zustandsaktualisierung durch Bit-Flipping zurückgeführt.

Die durchgeführten Experimente für öffentlich verfügbare und industrielle Schal-

tungen beurteilen die vereinheitlichte Architektur in beiden Gebieten und zeigen

eine verbesserte Flächeneffizienz, sowie eine erfolgreiche Korrektur während der

Fehlertoleranz. Für die Testunterstützung belegen die Ergebnisse Vorteile in Bezug

auf Testzeit, Testdatenumfang, maximale und durchschnittliche Verlustleistung im

Testbetrieb sowie Testenergie.
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Chapter 1

Introduction

Since the invention of the transistor in 1947, the development and manufacturing

of integrated circuits (ICs) has undergone a steep evolution as predicted by Gordon

E. Moore [Moo65; Moo75]. The ability to scale transistor sizes and increase the inte-

gration density of ICs in an economic way constitutes the main driver of this digital

revolution. Finally it led to a ubiquitous presence of digital circuits influencing a wide

variety of areas and applications, ranging from computers to everyday commodities.

In the early days, computers were only affordable for a small number of specialized

tasks and were built using discrete ICs containing only a few relatively large transis-

tors. For example, the Apollo Guidance Computer used during the moon landing in

1969 contained 17280 transistors, operated at a frequency of 1 MHz and required 77 W

of electrical power. Today (2015), even mobile phones include embedded processors,

such as the Samsung Exynos 7 Octa 7420, that are manufactured with feature sizes

as small as 14 nm, comprise more than 1 billion transistors and run at 2 GHz while

consuming less than 5 W of power.

Over the last decades, the exponentially increasing transistor counts provided by

manufacturing technology were used to raise the performance of integrated circuits.

With the end of scaling in sight, its continuation is faced with growing challenges

and the speed of further scaling is prognosed to decline [ITR13]. Historically, some of

the difficulties arising from shrinking geometries, such as reaching and maintaining

acceptable yield during production, could be compensated by sole adjustment and

improvement of the manufacturing process. While moving from process generation

to generation, other metrics, such as peak and average power consumption, stopped

scaling proportionally to the transistor dimensions. Hence, the usage and management

of power is required to be concerned concurrently to operation throughout the lifetime

[Mud01].
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However, technology scaling effects have an adverse impact on lifetime reliability
[SABR04]. It denotes the probability that a device will perform its intended function

under stated conditions for a specified period of time [ALRL04]. Reliability has the

potential of being the next principal metric being used for integrated circuits [Muk08].

Whenever an IC produces a wrong output signal, called error [BA00], it fails to fulfill its

specified function. Failure of integrated circuits is caused by a variety of mechanisms,

which result in hard faults and soft errors.

Hard faults are permanent and unrecoverable. They relate to the manufacturing

process, where defects, unintended differences between the implemented hardware

and its intended design [BA00], are unavoidable. As a result some ICs are expected

to fail. Therefore, test is a necessity to prove the absence of hard faults and every

manufactured IC undergoes testing in order to assess product quality and quantify

the production yield [WWW06].

Soft errors are transient events that reduce the reliability of ICs throughout the

lifetime. The continued scaling leads to a dramatic increase in the sensitivity to

radiation [Bau08]. Radiation effects in semiconductor devices are responsible for a

plethora of reliability issues [Bau08]. These single-event effects (SEE) are produced by

several types of energetic particles present in the terrestrial environment [Bau08].

The particles travel through the silicon of the device and a part of the particle’s energy

is transferred to the device. Finally, the deposited energy will result in signal or state

corruption [Bau08]. In contrast to hard faults, soft errors cause incorrect operation

of ICs without the presence of defects. Consequently, recovery from soft errors is

possible.

The likelihood of soft error occurrence mainly depends on two factors: The radiation

level and the susceptibility of semiconductor devices to soft errors. The Apollo com-

puter was exposed to high radiation levels during the moon landing. But soft errors

were unlikely to occur during the mission time due to the large feature sizes being

used resulting in a low susceptibility. In contrast, the feature sizes used in modern

ICs, such as the Exynos processor, entail a much higher susceptibility to soft errors,

even if operated in environments with lower radiation levels such as sea level on

earth. For current transistor technologies soft errors are already an issue [Bau05].

For prospective technology nodes with estimated feature sizes below 6 nm by 2028

[ITR13] integrated circuits are required to employ reliability mechanisms to sustain

Moore’s prediction, even in domains in which soft errors were not a problem until

now [HNG+13].
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1.1. Failure Mechanisms in Integrated Circuits

The remainder of this chapter starts with a discussion of the failure mechanisms re-

sponsible for hard faults and soft errors in Complementary Metal Oxide Semiconductor
(CMOS) materials and transistors. It is followed by a description of common practices

in test and design-for-test. Then, the mitigation of soft errors at different abstraction

levels is depicted. This chapter closes with the challenges in fault tolerance and test

tackled in this work which are followed by the outline of the remaining chapters.

1.1. Failure Mechanisms in Integrated Circuits

Throughout their lifetime, the reliability of integrated circuits is affected by errors

that result in a failure of the IC. The classic “bathtub curve” shown in Figure 1.1 is

used to depict the failure rate over the lifetime.
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Figure 1.1.: Bathtub curve depicting the failure rate over time for a present technology

(solid curve) and a scaled technology (dashed curve).

For any technology three different causes of failure can be distinguished (solid curve

in Figure 1.1). During the initial operation of an IC, the failure rate is high. Early-

life failures cause newly manufactured hardware to fail and can be attributed to

manufacturing problems. After this infant mortality phase, the IC typically works

properly with a relatively low constant failure rate until it reaches the end of its useful

lifetime. Then, the wearout accelerates and results in significantly higher failure rates

caused by a degradation of component characteristics.
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Technology scaling impacts the failure rate in all three phases (dashed curve in

Figure 1.1). ICs are faced with an increased amount of manufacturing defects and

accelerated aging. As a result, the useful lifetime is shortened. During this period

reliable operation is further exacerbated by elevated soft error rates.

The following two subsections depict the basic failure mechanisms to provide a broad

understanding of the present reliability problems and to accentuate the necessity of

test and fault tolerance for prospective technology nodes.

1.1.1. Permanent Faults in CMOS Materials

Permanent or hard faults are caused by two fundamental failure mechanisms: Extrinsic
mechanism that result in decreasing failure rates and affect a small fraction of the

produced ICs and intrinsic mechanisms that show increasing failure rates while

affecting a large fraction of the manufactured ICs [JED03].

1.1.1.1. Extrinsic Failure Mechanisms

Extrinsic mechanisms are related to manufacturing defects introduced during the

production process. They result in early life failure or infant mortality where the

failure rate is high directly after production and decreases over time (Figure 1.1).

The manifestation of extrinsic errors can be accelerated to identify weak ICs that

would otherwise fail early in the field. A process called burn-in is used directly after

production that tests the ICs at elevated temperature and voltages.

The typical causes for defects can be attributed to random and systematic effects.

Random effects are related to contaminations and impurities introduced during the

production process. Systematic effects relate to the involved process steps such as

lithography or polishing. In the following, extrinsic failure mechanisms are summa-

rized according to the book of Chiang and Kawa [CK07].

Random Effects Impurities are inevitable during manufacturing and often inherent

to the involved processing steps. The most common impurities originate from waver

material or chemicals and include dust particles on mask or projection. The likelihood

of features being affected increases with every scaling step if impurities are assumed

to be of constant size. Random Dopant Fluctuation (RDF) describes the random process

involved in the implantation of dopant atoms during transistor fabrication. With
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dopant count and position not being repeatable and transistor channels containing

only tens or few hundreds of dopant atoms in newer technology nodes, the addition

or deletion of a few dopant atoms leads to large variations in threshold voltage. Line
Edge Roughness (LER) denotes variations in the width of features being caused by

statistically fluctuating effects inherent to lithography and etching steps, such as

photon flux variations, distribution of chemical species in the resist and acid diffusion.

Additional details on random effects are found in [BC08].

Systematic Effects Photolithography describes the process of exposing photo resist

during manufacturing. The latest process nodes use light wavelengths that are larger

than the feature sizes to be produced. Difficulties arise from the used masks, where

techniques such as phase-shift masks and optical proximity correction are required

to approximate desired feature geometries as well as the series of needed lithography

steps being affected by effects like depth of focus or misalignment. Chemical Mechan-
ical Polishing (CMP) is used to planarize the waver surface between process steps

with chemical and mechanical forces. As the surface topography changes across the

die with metal density, the material removal leads to wire density dependent erosion

and wire width dependent dishing of metal wires.

1.1.1.2. Intrinsic Failure Mechanisms

Intrinsic mechanisms are related to the wearout of materials used in CMOS transistors,

such as metal or silicon dioxide. In latest technology nodes, the power supply levels

and electric field strengths are already saturated while the clock frequency cannot be

raised any further. Thus, continued performance improvements have to be achieved

through parallelism at the cost of additional area. Technology scaling is a viable

option to confine cost, but goes along with oxide layers consisting of only a few

atomic layers, higher chip temperatures, and increased power densities, effects that

in turn accelerate degradation mechanisms [HNG+13]. Their failure rate corresponds

to the wearout phase in Figure 1.1. It is low in the beginning of the lifetime and

increases with time, the IC is affected by aging. A detailed discussion of intrinsic

failure mechanisms is provided in the book of Segura and Hawkins [SH04].

Thermal Cycling or metal stress voiding is linked to differences in the thermal expan-

sion coefficients of metal and its surrounding isolation. At high temperatures metal

expands and tightly bonds to the isolation. At lower temperatures tensile stress arises

from thermal expansion and can pull the metal line apart. Electromigration describes

5



Chapter 1. Introduction

the movement of metal under the influence of electron flow and temperature. It affects

metal lines if sufficient current density is applied in combination with high tempera-

tures. The metal atoms move and can form voids or extrusions which lead to an open

defect or bridge defect. Time Dependent Dielectric Breakdown (TDDB) denotes the

breakdown of the thin thermally grown silicon oxide used as a dielectric in transistors.

Scaled transistors are operated close to their specified voltage with a low electric field

strength, that results in an electron tunneling current. When the current is applied for

a long time period, a conducting path through the gate oxide to substrate is formed.

Hot Carrier Injection (HCI) causes damage in NMOS transistors as hot electrons enter

the depletion region whenever a transistor is stressed by switching. As a result, the

threshold voltage of the NMOS transistor increases and leads to operating frequency

reduction. Negative Bias Thermal Instability (NBTI) causes threshold voltage shift in

PMOS transistors. Transistors are stressed whenever the input is 0 (negative bias)

and partly recover during relaxation phases when the input is 1. While the physical

cause is not fully understood, the applied electric field is believed to release hydrogen

from the oxide/substrate border that results in hole trapping in the oxide. [SH04]

1.1.2. Radiation-induced Soft Errors in CMOS Transistors

Transient events that result in errors without the presence of physical defects can

be attributed to environmental effects. Representative failure mechanisms include

dynamic variations of the operating conditions (e.g. voltage and temperature) or

the interaction of radiation with CMOS materials. The work at hand focuses on

radiation-induced soft errors as the decrease of feature sizes and the reduction of

operating voltages in order to satisfy the demand for higher integration density,

increased functionality and performance as well as reduced power consumption lead

to a dramatic increase of sensitivity to radiation [Bau08]. In advanced ICs soft errors

have become an important responsibility, as the failure rate attributed to soft errors

exceeds the collective failure rate of all other reliability mechanisms [Bau08].

This section depicts the failure mechanisms leading to soft errors according to the book

chapter by R. Baumann [Bau08]. The discussion of primary and secondary ionizing

radiation as the root cause of soft errors is followed by a description of the interaction

of radiation with CMOS transistors. Finally, the resulting single event effects are

classified according to their impact on the reliability of integrated circuits.
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1.1.2.1. Radiation in the Terrestrial Environment

Ionizing radiation has the ability to interact with the materials being used in integrated

circuits. Ions originate from different sources with alpha particles and neutrons being

the most important ones in the context of soft errors.

Cosmic radiation is a source of natural background radiation that originates in

outer space. Throughout its way down to earth the interaction of cosmic radiation

with the earths atmosphere results in complex cascades of secondary particles. The

predominant particles produced within the cascade are either short-lived (pions and

muons) or are attenuated within the atmosphere (protons and electrons), with one

exception: Neutrons. The soft error rate experienced by an IC depends on the energy

and flux of neutrons. The neutron flux reported in the Jedec standard 89A [JED06] is

based on measurements performed in [GGR+04], which determined the neutron flux

at sea level at New York City to be 13 neutrons per cm2 and per hour for energies above

10 MeV. The neutron flux is not constant and varies with the solar cycle, location and

altitude. The solar cycle has the smallest influence. High sun activity strengthens the

magnetic field around earth, thereby increasing its shielding effect against cosmic

rays. The difference in flux at sea level is 30 % or 0.3 X between solar maximum and

minimum. Location dependency arises from differences in the strength of earths

magnetic field and the neutron flux varies across any two terrestrial sites by a factor

of 2 X. Altitude can increase the flux by more than two orders of magnitude, e.g. in an

airplane at 10 km the neutron flux is increased by 228 X. Neutrons also vary in their

kinetic energy and can be differentiated as high-energy and low-energy neutrons.

High-energy neutrons exhibit energies above 1 MeV. They interact with the nuclei

of semiconductor devices such as silicon (
28Si) or oxygen (

16O) in an elastic or inelastic

reaction. In an elastic reaction a part of the energy of the neutron is transferred to

the nucleus resulting in an ejection of the nucleus from its position in the material

lattice. A high density of electron-hole pairs is produced in the path of the ion until it

is finally stopped. If the reaction is inelastic the neutron is absorbed into the nucleus.

As a consequence, the nucleus gets instable and fissions, thereby ejecting secondary

ions. These ions then generate a high density of charge (Figure 1.2-I).

Low-energy neutrons or thermal neutrons are neutrons that have reached an energy

state in the order of 0.025 eV, which is similar to the energy of their surroundings.

Despite their low energy, they can interact with boron (B) which is used as a p-type

dopant and in borophosphate silicon glass layers. Natural boron occurs in two stable
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isotopes,
10B and

11B with an abundance of 20 % and 80 %. The
10B isotope is able

to capture thermal neutrons resulting in fission that yields secondary high-energy

alpha particles (Figure 1.2-I).

Alpha particles are ions that can directly lead to soft errors. They are emitted when

the nucleus of an unstable isotope decays to a lower energy state. Such nuclei can

be contained close to the transistors if the used packaging material is contaminated

with radioactive impurities. These include lead-based isotopes in solder bumps of flip-

chip technology, gold used for bonding wires and lid plating, aluminium in ceramic

packages, lead-frame alloys and interconnect metalization. [Bau08]

Modern manufacturing technology employs high purity materials and processes,

which results in a significant reduction of alpha particle emission in the finally pack-

aged IC [Nic10]. Processes using aluminium interconnect employ boron precursors

which are carefully screened for their
10B content before being introduced to the

manufacturing process. Advanced CMOS technologies that employ copper intercon-

nect completely eliminated the use of boron. Hence, thermal neutron induced boron

fission is no longer a major source of soft errors [Nic10]. Unfortunately, even latest

process technologies are challenged by soft errors as cosmic high-energy neutrons

cannot be easily shielded [Muk08].

1.1.2.2. Effect of Radiation on Semiconductor Devices

All previously discussed radiation sources finally produce ions (Figure 1.2-I). In the

following, their effect on semiconductor devices is summarized according to [Bau08]

which describes the underlying physical background in more detail.

The upper half of Figure 1.2-II depicts a N-channel MOS (NMOS) transistor. If the n+

node is connected to a positive voltage, a reverse biased n+/p junction is formed that

is especially sensitive to any charge collected from a radiation event.

At the beginning of the radiation event, a cylindrical track of electron-hole pairs is

formed as a consequence of the energetic ion’s passage, which typically takes less

than 0.1 ps (Figure 1.2-II-a). When the resultant ionization track, that incorporates

a very high carrier concentration in a sub-micron radius, is close to or crosses the

depletion region, charge carriers are rapidly collected by the electric field. As a

result, a large current and voltage transient is induced at the node by drift charge
collection (Figure 1.2-II-b). This ‘prompt’ charge collection phase is completed within
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Figure 1.2.: Soft Errors: I) Radiation sources resulting in ions, II) Effect of ions on

semiconductor devices: a) Charge generation, b) Drift charge collection,

c) Diffusion charge collection - (adopted from [Bau08]), III) Caused soft

errors: Transient Pulses (Single Event Transients) and Bit-Flips (Single

Event Upsets).

nanoseconds and is followed by a phase of diffusion charge collection which lasts

hundreds of nanoseconds (Figure 1.2-II-c). The current induced on a single node is

depicted over time in the upper part of Figure 1.2-III.

The magnitude of the collected charge Qcoll depends on the efficiency of the linear
energy transfer (LET) involved in stopping an ion in matter. Qcoll is influenced by a

variety of factors either related to the device (such as size, biasing of the various circuit

nodes, substrate structure, device doping), the ion (such as type, energy, trajectory)

or a combination of both (e.g. the initial position of the event within the device or

the state of the device at the onset of the event).

The critical charge Qcrit denotes the amount of charge needed to change the logic

value of a node. It is primarily defined by the node capacitance, the operating voltage

and if present, the strength of feedback transistors. Whenever a radiation event strikes

a sensitive node and Qcoll > Qcrit holds, a soft error will be induced. For isolated

junctions, such as DRAM cells in storage mode, a simple definition for Qcrit suffices:

Qcrit = Cnode · Vnode . (1.1)
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When storage elements are considered Qcrit needs to account for their sequential

behavior, thus requiring a broader definition. In latches, flip-flops and static random

access memory (SRAM) cells, logic values are stored within an active feedback loop.

It is composed of two cross coupled inverters that each consist of a PMOS and a

NMOS transistor. Independent of the stored logic value, one of the inverters is driven

by a logic 0 and generates a logic 1 at its output. Consequently, its NMOS transistor

contains a reverse biased n+/p junction. If a charged ion traverses the junction, the

stored voltage drops due to the collected charge. But as the PMOS transistor is still

conducting, it provides a restoring current Irestore that recharges the node. The time

available for recharging is bound by the switching speed of the storage element,

denoted by the time constant τswitch . If the stored value is inverted or not thus

depends on whether or not the PMOS transistor contained in the affected inverter

can supply enough current to compensate the induced charge before the feedback

loop flips to the opposite data state. Hence, Qcrit is increased and can be expressed

as:

Qcrit = Cnode · Vnode + τswitch · Irestore . (1.2)

1.1.2.3. Classification of Soft Errors

The term Single Event Effect (SEE) is used to describe all possible effects resulting from

the interaction of ionizing radiation with electronic devices [Nic10]. Single event

effects comprise physical degradation or breakdown of semiconductor devices that

lead to hard faults and soft errors, which alter the processed data without permanent

damage of devices.

Hard faults originating from ionizing radiation are non-recoverable and include

mechanisms such as Single Event Latchup (SEL), Single Event Burnout (SEB) and

Single Event Gate Rupture (SEGR). Upon occurrence, they cannot be distinguished

from hard faults caused by early-life failure or wearout mechanisms. Therefore, hard

faults caused by radiation are not explicitly treated in this work, a detailed discussion

is found in [Sex03].

Soft errors are recoverable events caused by charge collection in junctions due to the

ionizing radiation. Dependent on the position, either the combinational network or

the sequential state of a circuit is affected (Figure 1.2-III).
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In combinational logic, the term Single Event Transient (SET) is used to denote the

generation of transient pulses at device nodes. SETs affect semiconductor devices

and are visible at the outputs of logic gates. SETs propagate along sensitized paths of

a circuit and have a high likelihood of being masked by several effects [SKK+02].

▷ Logical masking happens when the transient pulse cannot propagate from its

origin to a latch due to the lack of a sensitized path.

▷ Electrical masking occurs as the electrical properties of the passed gates atten-

uate pulses with insufficient strength or duration before a latch is reached.

▷ Temporal (or latching window) masking takes place if the pulse indeed reaches

a latch but does not satisfy its setup and hold time conditions.

Thus, not all transient pulses caused by radiation events finally result in a soft error.

Single events that directly affect sequential memory elements are called Single Event
Upsets (SEU). They directly induce enough charge into the storage structure to reverse

or flip the logic value of one or more memory cells, registers, latches or flip-flops

[Bau08]. SEUs are further distinguished according to the amount of affected bits

and their distribution across memory words or registers. For a Single Bit Upset (SBU)
only a single bit is flipped. If more bits are inverted in a register or word by a single

radiation event, the register experiences a Multiple Bit Upset (MBU). If bits across

different registers or words are changed, a Multiple Cell Upset (MCU) happened.

The contribution of single event transients and single event upsets to the soft error rate

was estimated by Mitra et al. in 2005 [MSZ+05]. They concluded, that SETs affecting

static combinational logic account for 11 % of the SER. This is considerably smaller

than the 89 % SER contribution of SEUs, that arises from unprotected SRAMs (40 %)

and sequential elements (49 %) [MSZ+05]. In 2009, Gill et al. from Intel showed for a

32 nm technology, that the chip-level SER contribution of combinational logic is below

30 % of the chip-level nominal latch SER and hence is not a dominant contributor to

the overall SER [GSZ09]. Soft error concerns continue to be exacerbated with scaling

[THL+14]. Details on the implications of scaling effects and emerging devices for

soft errors are provided in the book of Autran and Munteanu [AM15]. Even under

reducing soft error rates per bit, the bit count raises with every technology generation

and thus the soft error rate at system level will continue to increase. Soft errors

have the potential to dominate the failure rate, whereas SEUs constitute the largest

contribution to the soft error rate. Hence, the protection of dedicated memories and

sequential elements is the most promising candidate for reliability improvement.
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1.2. Test and Design for Test

Test since ever is an essential task in the production process of digital circuits. Test

is an experiment to prove the presence of hard faults arising from the production

process and is used to assess the quality of delivered ICs. This section depicts the basic

concepts and the challenges associated with testing, whereas the book of Bushnell

and Agrawal provides a more detailed discussion [BA00].

Functional testing describes the most obvious form of testing. A digital circuit imple-

menting a Boolean function is provided with input assignments in order to exercise

the specified functionality of the circuit. For each input assignment, the correct an-

swer of the circuit is known according to the implemented function. The combination

of an input assignment and the intended answer is called a test pattern, whereas the

aggregation of multiple patterns is called a test set. The circuits response, the test
response, is then compared to the expected answer. If a match is found, the test pattern

is said to pass, otherwise, the pattern failed. Functional testing only accounts for the

specified behavior of a circuit and does not consider the implementation. Due to the

high number of implemented functions and possible input values some defects might

not be detected by functional testing, which are described as test escapes. Coverage

of a circuit can only be defined according to the tested functionalities (for selected

values) and no assertion can be made with respect to the coverage of structural

defects.

Structural testing is independent of the implemented functionality and exercises the

structural implementation of a circuit. The behavior of defects is abstracted with the

help of a fault model, with a fault being specified by its behavior and the affected fault
location (usually signals or gates). In the most commonly used stuck-at fault model,
faults can occur at circuit signals, whereas a signal can be either stuck-at-0 (SA0) or

stuck-at-1 (SA1). A procedure called Automatic Test Pattern Generation (ATPG) is used

to generate a test set covering all faults contained in the fault set.

Testing can be conducted as external test, where test sets are applied to the circuit with

the help of Automatic Test Equipment (ATE), also called tester . Or the test patterns are

generated on-chip by additional circuitry during Built-In Self Test (BIST). Testing is

typically performed in the fab between different production steps and prior to delivery

of ICs, which is called manufacturing test, or, with the help of BIST infrastructure as

an in-field test, e.g. during power-up of safety critical devices such as cars.
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1.2.1. Testability and Test Infrastructure

Testability is the primary metric used in test. In order to detect a fault, the according

test pattern needs to excite the fault location to a desired value, but some locations are

harder to excite than others due to the circuit structure or the presence of sequential

elements. Controllability is defined as the difficulty to drive a signal to a desired logic

value [Rut72]. In addition, the logic value of the fault site must be propagated to a

circuit output in order to determine if the test pattern passed or failed. Observability
is defined as the difficulty to observe the logic value of a signal [Gol79]. The first

testability metric inheriting both aspects is the ‘Scandia Controllability/Observability

Analysis Program’ [GT80].

Testability can be increased by design for test and the introduction of test infrastruc-
ture. Scan design [EW77] is the most widely used test infrastructure to increase the

controllability and observability of sequential elements. A scan chain is a register

composed out of latches or flip-flops. In addition to the parallel access provided

to the circuit, it implements an additional test mode during which the scan-chain

behaves like a shift-register. The register values can then be read and written over

two additional signals in a serial way by bitwise shifting the chain. If all sequential

elements of a circuit are added to scan-chains, the circuit is said to be equipped with

full scan. Although the introduction of scan design is able to significantly increase

testability, it incorporates additional area overhead, additional pins for test access and

increased test time as well as switching activity for the necessary shift operations.

During test application, the test patterns have to be provided to the circuit under test
(CUT) and the test responses have to be fetched and checked. The amount of all data

exchanged by the ATE and the CUT is denoted by the term test data volume (TDV),
or test volume. Test Compression and Compaction is used in conjunction with scan

design to reduce the bandwidth and pin count of the interface between CUT and

ATE. Test compression reduces the test volume delivered to the CUT. The test set is

compressed losslessly, thereby reducing the test volume and the amount of needed

tester pins. Additional infrastructure added at the input side of the CUT in form of a

decompressor is then used to regenerate the original test set. Test compaction reduces

the test volume of the test responses with additional infrastructure, a compactor at the

output side of the CUT. It provides a (potentially) lossy compaction of test responses

in the space or time domain (or a combination of both). The compacted test responses

are then compared with pre-computed responses in the ATE.
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1.2.2. Test Economics

Increasing integration densities and raising functionality due to continued scaling

have a considerable impact on test cost [ITR13]. Test cost arises from the costs

associated with test equipment, the on-chip test infrastructure, and the test application.

The cost for testing a single CUT then depends on the required tester capabilities (e.g.

pin count, speed), the area occupied in the CUT by added test infrastructure, as well

as the test time. In addition to testability, secondary metrics play an important role

during test as they directly influence the test cost, and thereby the product cost.

Area Overhead. Test infrastructure is added to increase testability, ease test access and

reduce the test time and volume. The area overhead associated with test infrastructure

is often considered critical in terms of cost, as test infrastructure is often solely used

to facilitate testing, but not used during functional operation.

Test Application Time. During volume production, a high amount of ICs is produced

in short time. The amount of testers needed to test all ICs during production is

determined by the time needed to test a single IC. Thus, test cost scales nearly linear

with test time reduction.

Test Data Volume. The amount of test data exchanged with the CUT during test

application defines the ATEs minimum memory configuration. As test cost is coupled

to the amount as well as the configuration of the required ATEs, test data volume

reduction helps towards using adequate ATE configurations with reasonable cost.

Peak andAverage Test Power.During test, the power consumption of ICs can be an order

of magnitude higher compared to functional operation due to increased switching

activity. The peak power determines the dimensioning of the circuits power grid. With

a raised peak power during test, either the power grid needs to be reinforced and thus

overdimensioned beyond normal operation or test quality might be impacted due

to voltage droop. The average power is closely related to the thermal design power

of an IC. Thus, with a cooling system optimized for functional operation, the heat

dissipation during test is limited and elevated temperatures must be compensated by

either increasing the test time or by changes in the test architecture.

Test Energy. An average power consumption in excess of the provisioned cooling

capabilities can be compensated for short periods of time by exploiting the thermal

capacitance of the used materials. Thus, a lowered test energy as the product of test

time and average test power enables test conduction under confined cost.
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1.3. Soft Error Mitigation

In order to facilitate reliable operation of digital circuits in the presence of soft errors,

the soft error rate needs to be confined to a feasible level. A variety of possibilities

exists to reduce the probability of transient soft errors. They span across all abstraction

layers and will be discussed with respect to their potential in SER reduction. More

details are found in [Bau08] and [Muk08].

The occurrence of soft errors can be inhibited by reducing the sources of ionizing

radiation or increased shielding. This source level mitigation involves the elimination

of unstable isotopes and impurities as well as boron or the use of isotopically enriched

11B (see Section 1.1.2.1). In addition, remaining alpha particle emission can be shielded

by coating the chip with polyamide prior to packaging or the separation of alpha

emitting materials and sensitive circuit components. With all those non-recurring

actions already being exploited in current technologies, a further improvement cannot

be expected.

Process technology mitigation techniques reduce the collected charge Qcoll by process

and technology choices. The use of buried implants, which increase substrate doping,

reduces the size of the formed funnel and increases substrate charge collection, thereby

reducing the charge collected in sensitive nodes. Isolating the well and actively

biasing it reduces the charge collected by reverse biased drain nodes at the cost of

additional mask and implant layers. Penalties arise in terms of performance (decreased

speed due to increased parasitic input capacitance) and area (to accommodate the

well). For example, compared to conventional silicon processing (bulk CMOS), the

introduction of partially depleted silicon on insulator (SOI) technologies results in a

5 X improvement in SER robustness [RGF+03]. Fully depleted SOI offers a higher SER

immunity by eliminating the floating body effect and thus preventing the formation

of bipolar junction transistors. Process technology solutions are a limited path for

SER reduction, as for a majority the SER reduction is below 100 X at the expense of

additional process complexity, yield loss and substrate cost [Bau08].

Design mitigation denotes changes in the design of logic cells. In a SRAM cell, two

cross-coupled inverters are employed to store a logic value. The critical charge Qcrit to

flip the stored logic value is a function of the storage node capacitance, the voltage and

the restoring current supplied by the pull-up/pull-down network (see Section 1.1.2.2).

The critical charge of such structures can be increased if the restoring current is

increased by additional transistors or transistor resizing. Another possibility is to
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add resistance between the two inverters in order to increase the time to flip a cell.

Thereby providing the pull-up/pull-down transistors with more time to restore the

node voltage before a flip occurs but effectively slowing down the SRAM cell. Design

mitigation incurs additional area overhead to accommodate larger or additional

transistors or additional resistors and is no longer reasonable for clock periods below

1 ns, as adding resistance will constrain the operating frequency.

Hardened latches and flip-flops increase the resilience to soft errors by adopting

cell-internal filtering or local redundant design. While their ease of integration seems

to be attractive, the soft error rate improvement of hardened elements has to be traded-

off against unavoidable impact on area, delay, and power, or a combination thereof

[GJD+14]. Moreover, the confinement of hardened elements to a local context renders

it difficult to determine their integrity after production, disable the fault tolerance

during test, or even obtain the location of detected errors at a higher abstraction

level. Hardened sequential elements are immune to ion hits that induce charge on

a single internal node. However, in deep-submicron technologies the proximity of

circuit nodes within a hardened cell results in charge collection at multiple nodes

when a single ion strikes a node [ASW+07]. As further scaling reduces the proximity

as well as the critical charge of nodes, the SER improvement that can be expected by

hardened sequential elements is limited [GJD+14].

System level redundancy targets soft errors at a high abstraction level by adding

redundancy in order to detect, localize and correct soft errors. In its simplest form,

a parity bit is computed and stored for each register or memory word. Comparing

the parity of the stored data and the stored parity bit allows for the detection of soft

errors affecting a single bit (SBU) while the detection of MBUs is not guaranteed. A

localization of SBUs within the stored data is not possible and a correction needs to

be performed by recomputation. In dedicated memory blocks, the most prominent

method to deal with soft errors is the use of information redundancy in form of error
detecting and correcting (EDAC) codes. By employing multiple check bits, it enables

the localization and correction of soft errors. Memories equipped with built in error
correcting code (ECC) protection are generally available and widely used in many

environments and applications demanding for raised reliability levels. Due to the

regular organization of dedicated memories, the area overhead is relatively small, as

the circuitry added for code computation and consistency checking can be shared

across memory words. The reduction in soft failure rate provided by EDAC/ECC

protection is significant and typically effective error rates are improved by more than

10,000 X [Bau08].
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In summary, soft errors have been shown to dominate the reliability decrease observed

with every new process generation. Single event upsets have been identified as the

largest contributor to the soft error rate (see Section 1.1.2.3). The general availability

and use of effective fault tolerance schemes for dedicated memories is able to reduce

the soft error rate. Revisiting the estimates from Section 1.1.2.3, which attributed

error rate shares of 11 % due to SETs in combinational logic, 40 % due to SEUs in

SRAMs and 49 % due to SEUs in sequential elements, shows that the soft error rate

can be reduced by 40 % under the assumption of all dedicated memories (SRAMs)

being perfectly protected. If the remaining soft error rate of 60 % is not sufficiently

low for reaching a desired reliability level, the protection of sequential elements, with

a potential of reducing the remaining soft error rate by over 80 %, is the next logical

consequence.

1.4. Overview and Contributions

This chapter identified the following substantial challenges to sustain and advance

the reliability of digital circuits:

▷ The emerging need for fault tolerance to provide soft error resilience throughout

the lifetime, with the protection of sequential elements by means of information

redundancy as the next logical challenge.

▷ The necessity to prove the presence of hard faults by offline testing, with

challenges arising from test economics demanding for a further reduction of

test application time, test data volume, test power and test energy.

▷ The capability to exploit potential synergies in area overhead if both fields are

targeted by a unified architecture.

The remainder of this work is organized in three parts as follows:

Part I - Formal Foundation and Related Work

Chapter 2 - Formal Foundation - provides the formal foundation of test and fault

tolerance.
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Chapter 3 - Related Work in Soft Error Mitigation and Test Access - reviews widely used

test architectures along with their amendments as well as alternative test approaches.

Soft error mitigation schemes providing fault tolerance in dedicated memories are

reviewed. For random logic, existing solutions implemented at different abstraction

levels are discussed with a focus on fault tolerance at the architectural level.

Part II - Fault Tolerance Infrastructure

Chapter 4 - Non-Concurrent Detection and Localization of Single Event Upsets - depicts

how information redundancy is employed to detect single event upsets during clock-

gated phases. The detection of SEUs is implemented area efficiently by a new standard

cell and a localization of failing registers is enabled by a checksum with register

granularity. The impact on power consumption is confined by focusing the protection

on the clock-gated phase.

Chapter 5 - Concurrent Online Correction of Single Event Upsets - depicts how registers

are protected by cross-layer fault tolerance during operation. Applying the checksum

computation directly to registers enables the detection of SEUs during operation and

their localization within a register with bit granularity. Correction of soft errors is

enabled in one additional clock cycle by means of a specialized standard cell allowing

to flip the value of an affected bit.

Chapter 6 - Fault Tolerance in Presence of Multiple Bit Upsets - analyzes the effectiveness

of the present detection capabilities in presence of double bit upsets. The online

architecture is extended in order to detect and distinguish errors with a multiplicity

larger than one. The exemplarily performed extension for double errors completely

avoids false detections and is implemented area efficiently by merging with the

checksum computation.

Chapter 7 - Area Efficient Characteristic Computation - analyzes the area overhead

associated with the online architecture. Based on the results, the register checksum

derivation is identified as a major contributor to the area overhead which solely

utilizes a single standard cell type. The cell is carefully optimized for area and used as a

replacement in multiple building blocks of the architecture. The resulting architecture

is shown to possess a significantly improved area efficiency.
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Part III - Infrastructure Reuse for Offline Testing

Chapter 8 - Test Access through Infrastructure Reuse - depicts how the fault tolerance

infrastructure for online correction is reused and extended to provide test access

during offline test.

Chapter 9 - Test Sequence Generation - explains how test sequences are generated that

fully exploit the capabilities offered by the unified architecture.

Chapter 10 - Experimental Evaluation of the Offline Test Scheme - reviews the applica-

tion to benchmark circuits. The unified architecture is shown to incorporate a low

area overhead due to the integrated consideration of fault tolerance and test. The test

generation heuristic is shown to be beneficial in terms of test time, test volume, test

power and test energy.

Chapter 11 - Conclusions - recapitulates the contributions of this work and indicates

future research directions that may benefit from this work.
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Chapter 2

Formal Foundation

This chapter defines the formal apparatus used throughout this work. First, definitions

for combinational and sequential circuits are depicted along with the nomenclature

used to describe deviations from the intended design and erratic behavior at different

abstraction levels. In the following, the fundamentals of soft errors are described in

terms of the used nomenclature, their quantification, and fault tolerance by means of

redundancy. In the test domain, the essential fault models are discussed in combination

with design for testability by test infrastructure and elementary test algorithms. At

last, Boolean satisfiability is introduced as a foundation for Chapter 7.

2.1. Digital Circuits

2.1.1. Modeling Levels

A digital circuit is a device that processes input data and produces output data, whereas

both the input and the output data are represented by vectors over B. A circuit is

well-defined by the size of the input and the output vectors and the mapping between

the input and output domain representing the circuit’s function f : Bn → Bm
.

The simplest representation of a circuit is a truth table enumerating the resulting

output vectors for all possible configurations of the input vector. The applicability

of truth tables reduces with growing circuit sizes. By describing the input-output

relation of a circuit structural information about the circuit’s implementation is

absent but might be necessary for some electronic design automation tasks. Hence,

alternative ways to model circuits exist in literature and practice. To organize these

models different levels of abstraction (or modeling levels) can be used while the number

of used levels can differ dependent on the intended purpose.
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The Y-chart proposed by Gajski and Kuhn and later refined by Walker and Thomas

[GK83; WT85] is commonly used to distinguish five abstraction levels that comprise

details from three domains of description: The behavioral, the structural and the

physical domain. During the top-down design process a higher level description

of a design is refined and transformed into a lower level description. Starting from

the design specification at the architectural or system level, the algorithmic level
describes the function of a circuit in a hardware description language (HDL) without

any assumptions on the implementation or internal organization. The functional block
or register transfer level (RTL) adds structural information by distinguishing sequential

and combinational logic. Individual registers are modeled together with constructs

familiar from programming languages describing the data and control flow. A logical
(gate) level implementation is then synthesized from the RTL description. This gate
level netlist models a circuit as a set of components and a set of signals connecting

them. Each component is a (logic) gate and implements a Boolean function. Similar

to the composition of functional blocks from gates and connections between them,

at the circuit (transistor) level individual gates are described in the structural domain

as netlists that contain transistors, resistors and capacitances. On the contrary, in

the physical domain the actual layout and routing information of individual gates is

modeled by the geometric description of the masks used for production.

Throughout this work logic level modeling is assumed due to the following reasons.

The abstraction level of a gate netlist provides structural information by modeling

single gates and their interconnect, which is necessary to model structural faults,

perform fault simulation and to reason about test pattern generation. A logic level

gate netlist is also technology-independent. Gates, as the smallest units, are defined by

their input and output vectors as well as their Boolean function independent of their

physical implementation. If a model at the circuit level is mandatory to assess the area

overhead or determine the probability of radiation induced soft errors, a gate netlist

can be easily mapped to any technology that provides a (technology-dependent)

standard cell library.

2.1.2. Combinational Circuit

A digital combinational circuit CC is a device with n inputs and m outputs imple-

menting a Boolean function φCC : Bn → Bm
. In Figure 2.1, the gate g2 is called a

predecessor of g4, while g6 is a successor of g4. More general, for any circuit element
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Figure 2.1.: Combinational Circuit CC .

e the term input cone of e denotes the subcircuit containing all predecessors of e,

and the output cone of e consists of all its successors. The subcircuit denoted as the

support of e contains all input cones of the outputs that are successors of e.

At the gate level the combinational circuit CC is represented by a directed acyclic

graph (Figure 2.2) which is called a gate level netlist and defined as follows.

Definition 2.1.1 (Combinational Gate Level Circuit) A combinational gate level
circuit CC is a directed acyclic graph with vertices V and edges E ⊂ V × V . V :=

I ∪ GC ∪O ∪ F is a disjoint union of the input vertices I , combinational vertices GC

and output vertices O as well as fanout vertices F.
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Figure 2.2.: Graph of CC .

The edges represent connections between nodes called

nets, wires or signals. The number of connections of a

vertex depends on its type. Input vertices have only

outgoing edges, while output vertices have exactly one

incoming edge. Fanout vertices with exactly one incom-

ing edge, the fanout stem, and at least two outgoing

edges, called fanout branches, are used to connect mul-

tiple signals. The remaining vertices represent combi-

national logic gates. Each logic gate g ∈ GC with l
inputs and one output implements a Boolean function

φg : Bl → B defined by the gate type.

Throughout this work, logic gates with a maximum of two inputs are assumed, as

gates with more inputs can be built from two-input gates.
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2.1.3. Sequential Circuit

A sequential circuit is a circuit whose output function does not solely depend on

the values present at its inputs, but on their history (Figure 2.3). This sequential
state is represented by storage elements, such as latches and flip-flops, which are

controlled by a clock signal in synchronous sequential designs. Two design styles can

be distinguished dependent on the sensitivity to the clock signal. In level-sensitive
designs latches are used, that are transparent whenever the clock signal has a certain

logic value (0 or 1) and latch data by retaining their state during the opposite value of

the clock signal. In edge-triggered designs that employ flip-flops, new data is latched

at a specific clock transition (rising or falling) and stored otherwise.

A sequential circuit C with n inputs, m outputs and k sequential elements is a finite
state machine (FSM) [Mea55]. The up to 2

k
states are encoded by the data stored in

the sequential elements. The combinational core CC computes two Boolean functions.

The output function φC : Bn × Bk → Bm
, that maps pairs of an input and a state

to an output and the transition function τC : Bn × Bk → Bk
, that maps pairs of an

input and a state to the next state. Typically, collections of sequential elements that

are accessed together are grouped into registers as depicted in Figure 2.3.

2.1.4. Defect, Fault, Error, Failure

This work distinguishes incorrectnesses in digital circuits at different abstractions in

accordance to Bushnell and Agrawal [BA00]. At the physical level, the term defect is

used to describe distortions of the physical shapes in a circuit layout arising from the

manufacturing process or during the operation of devices.

Definition 2.1.2 (Defect [BA00]) A defect in an electronic system is the unintended
difference between the implemented hardware and its intended design.

A fault is a formal representation of a defect, that abstracts the physical properties of

the infinite and non-discrete range of defects.

Definition 2.1.3 (Fault [BA00]) A representation of a “defect” at the abstracted func-
tion level is called a fault.
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Figure 2.3.: Sequential Circuit C.

If the fault is activated and thus visible at the information theoretical view, it is called

an error.

Definition 2.1.4 (Error [BA00]) A wrong output signal produced by a defective sys-
tem is called an error. An error is an “effect” whose cause is some “defect”.

If an error becomes visible at the system boundary and results in a loss of the intended

system function, it is called a failure.

Definition 2.1.5 (Failure [Muk08]) Failure is defined as a system malfunction that
causes the system to not meet its correctness, performance, or other guarantees.

Example Suppose a signal in a circuit that is shorted to the supply voltage signal

due to an impurity introduced during the manufacturing process. This defect can

be modeled as a fault by the assumption that the signal always has a logic value of

1. It is activated whenever the driving gate produces a logic 0 and manifests as an

error as the signal has a logic value of 1 instead of 0. If the error results in a wrong

calculation of the circuit, the system fails.

The causes of failure fall into three broad categories [Con03]. Permanent faults exhibit

a behavior that does not change with time at a fixed location. They are also called

hard faults and can be attributed to physical defects. In contrast, non-permanent faults
occur randomly and can be further subdivided by their location. Intermittent faults
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appear and disappear as a function of time at a fixed location. They relate to marginal

or unstable hardware, are activated by environmental conditions, and may evolve into

permanent faults. Transient faults affect a circuit at random timepoints and random

locations. They are caused by environmental conditions such as dynamic parameter

variations that lead to violations of timing safety margins [Con03; Bor05] or the

charge induced by ionizing radiation [Bau05]. Thus, they are often more precisely

denoted as transient errors to accentuate the absence of a physical defect or soft errors
for particle-induced transients.

2.2. Soft Errors

In the following, the foundation of soft errors used throughout this work is established.

After familiarizing the nomenclature used to classify soft errors, the basic concepts

of soft error quantification are depicted. At last, fault tolerance is discussed with a

focus on error detecting and correcting codes.

2.2.1. Used Soft Error Nomenclature

Soft errors have been distinguished and classified in many different ways in literature

[Bau08; Muk08; Nic10] and standards [JED06]. The nomenclature of soft errors

relevant in this work will be used as follows.

Definition 2.2.1 (Soft Error [JED06]) An erroneous output signal from a latch or
memory cell that can be corrected by performing one or more normal functions of the
device containing the latch or memory cell.

Most soft errors are caused by a single particle and are therefore denoted as Single
Event Upsets. Single Event Upsets most commonly affect a single sequential element

which is expressed by calling them Single Bit Upsets.

Definition 2.2.2 (Single Event Upset (SEU) [JED06]) A soft error caused by the
transient signal induced by a single energetic particle strike.
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Definition 2.2.3 (Single Bit Upset (SBU)) A single event that induces a single bit
in an IC to fail at one time.

If the energy of a single particle is high enough, it can affect multiple bits. With

sequential elements organized into registers or memory words, it is important to

distinguish the amount of upsets affecting a single word.

Definition 2.2.4 (Multiple Cell Upset (MCU) [JED06]) A single event that induces
several bits in an IC to fail at one time.

Definition 2.2.5 (Multiple Bit Upset (MBU) [JED06]) Amultiple cell upset in which
two or more error bits occur in the same word.

2.2.2. Soft ErrorQuantification

The frequency at which soft errors occur is denoted by the Soft Error Rate (SER). It is

measured in units of Failures in Time (FIT), where one FIT is defined as the number

of failures per 10
9

device-hours. For memories or sequential elements, the soft error

rate is often expressed in FIT/device or FIT/Mbit.

The soft error rate of the system components is additive, hence

SERcircuit =
n∑
i=0

(SER nominal
component i × AVFi × TVFi ) . (2.1)

Not all radiation events will finally result in a failure of a digital circuit or system

due to logic derating and time derating [NY03]. The Architectural Vulnerability Factor
(AVF) comprises electrical and logical masking effects and denotes the probability,

that a single event transient affecting a node or device will be observed by the system

or user [MWE+03]. The Time Vulnerability Factor (TVF) contemplates latch window

masking effects of sequential elements and denotes the fraction of time a node or

device is susceptible to upsets [ST04].

Reliability denotes the probability that a device will perform its intended function

during a specified time under stated conditions [ALRL04]. This probability of survival

beyond a specified time (timepoint 0 to timepoint t) is commonly designated by the
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term survival function while in the technical domain the term reliability function
R(t) is widely used. It can be calculated as

R(t) = e−λt
(2.2)

where λ denotes a constant failure rate measured in FIT, such as the soft error rate

SER. The term Mean Time To Failure (MTTF) is often used to denote reliability and is

inversely related to the soft error rate.

MTTF in years =
10

9

λ × 24 hours × 365 days
(2.3)

2.2.3. Fault Tolerance

Fault tolerance, the ability of a circuit to continue its intended operation in presence

of faults, can be achieved by means of redundancy, the provisioning of functional ca-

pabilities that would be unnecessary in an error-free environment [Lap85]. Common

to most solutions, three goals are essential to cope with soft errors:

▷ Error Detection: The presence of a soft error is recognized.

▷ Error Localization: The location of the soft error is revealed.

▷ Error Correction: The original, error-free data is reconstructed.

The addition of redundancy to a circuit in order to increase its robustness in the

presence of soft errors can be performed at different domains and abstraction lev-

els. Temporal redundancy is achieved by repeating an operation multiple times and

comparing the results or by sampling the result of a single execution multiple times.

Structural redundancy includes diversification and n-modular redundancy, where

basic building blocks are replicated structurally and compared. The detection of errors

is possible with two replicas in duplication with comparison, while majority voting

with at least three replicas allows for error correction. Information redundancy in

form of error detecting and correcting codes will be discussed in more detail in the

following.
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2.2.3.1. Error Detecting and Correcting Codes

In coding theory, error detection and correction (EDAC) are techniques that enable the

reliable delivery of digital data over unreliable communication channels. Therefore,

redundancy is added to a message in order to check the consistency of the delivered

message and to recover corrupted data.

In a systematic code, the original data is transmitted in conjunction with a fixed

number of additional check bits that are derived deterministically from the data bits.

In order to detect an error, the same algorithm is applied to the received data bits

and the result is compared with the received check bits. A common way of detecting

errors is the use of a parity bit that denotes whether the number of 1 bits in the data

word is even or odd.

Definition 2.2.6 (Even Parity) Let d⃗ be a vector with n binary values [dn , . . . ,d1],
then the even parity bit p(d⃗) is defined as

p(d⃗) =
n⊕

a=1

da .

The introduction of a parity bit increases the Hamming distance between any two

valid code words to 2, thereby allowing the detection of single bit errors (and any

odd number of errors) while a correction is not possible.

In general, the number of bit errors that can be detected or corrected is determined

by the minimum Hamming distance of a code, defined as the minimum Hamming

distance between any two valid (fault-free) code words.

Definition 2.2.7 (Minimum Hamming Distance) Let c⃗1, c⃗2 ∈ C ⊂ Bn+k be two
code words and let ∆H (c⃗1, c⃗2) denote the Hamming distance between c⃗1 and c⃗2. Then,
the minimum Hamming distance ∆H (C) of the code C is defined as

∆H (C) := min

c⃗1, c⃗2∈C ;c⃗1,c⃗2

∆H (c⃗1, c⃗2) .

In order to detect errors in a or less bits, the minimum Hamming distance is required

to be at least a + 1. To correct all errors in b or fewer bits, a minimum Hamming

distance of at least 2b + 1 is required. If errors should be detected in a or less bits and
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corrected in b or less bits (where a ≤ b), the minimum Hamming distance needs to

be at least a + b + 1 [Muk08].

Error detecting and correctingHamming codes employ multiple check bits to ensure an

adequate distance between code words [Ham50]. The minimum number of check bits

required for sole Single Error Correction (SEC) is given by the Hamming relationship

[Ham50]:

2
c ≥ d + c + 1 (2.4)

where d is the number of data bits and c is the number of check bits. To correct

a single bit error, the 2
c

combinations of the c check bits must be able to localize

the error in d + c code bits. In addition, they need to represent the fault free case

where no error occurred. Hamming codes are commonly expressed as Hamming

(n,d), with n = d + c code bits and d data bits. They are perfect codes, as the Hamming

relationship is satisfied with a minimum number of check bits. Extended Hamming
codes that allow Single Error Correction and Double Error Detection (SECDED) of errors

employ one additional check bit to increase the minimum Hamming distance.

Example Let Hamming(7,4) be the Hamming code defined by the generator matrix
G and the check matrix H with mutually distinct columns.

G =



1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1



H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


(2.5)

To determine the to be transmitted codeword X⃗ = (c1,c2,d1,c3,d2,d3,d4), the data

vector D⃗ = (d1,d2,d3,d4) with value [1010]
T

is pre-multiplied by G.

X⃗ = G · D⃗ = [1011010]
T

To check a received codeword R⃗ it is pre-multiplied by H in order to obtain the

syndrome S⃗. For an error free codeword R⃗ (:=X⃗ ), the syndrome S⃗ is the null vector.

For a codeword R⃗′
with a bit error at bit 5 (R⃗′ = [1011110]

T
), the syndrome S⃗′

is not

the null vector and its value indicates which bit has been flipped.

S⃗ = H · R⃗ = [000]
T S⃗′ = H · R⃗′ = [101]

T
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For an extended Hamming(8,4) code with an additional parity bit p in the codewords

X⃗+ = (c1,c2,d1,c3,d2,d3,d4,p) the generator matrix G+ and the check matrix H+

are extended as follows.

G+ =



1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0



H+ =



1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0

0 0 0 1 1 1 1 0

1 1 1 1 1 1 1 1


(2.6)

2.3. Test of Digital Circuits

This section depicts the basic concepts related to the test of digital circuits. These

include the formal description of defects by fault models and test infrastructure pro-

viding test access in order to increase testability of circuits. In addition, test algorithms

important to generate and grade the quality of test sets are briefly introduced.

2.3.1. Fault Models

Several advantages are associated with the modeling of defects as faults. As the

problem is abstracted and thereby simplified, the need to describe complex physical

effects is omitted. A single fault model can cover many different kinds of failure

mechanisms leading to defects. Fault models allow to grade the quality of a test set

and enable the automated generation of structural test patterns.

In order to reflect the faulty logical behavior of defects at the gate-level, structural
fault models are employed. Faults that affect the temporal behavior are modeled by

delay fault models, which either model changes in the propagation delay of gates as

gate delay faults or paths as path delay faults. Delay faults can be further subdivided

according to their associated delay defect size. Gross delay faults (GDF), that are also

called transition faults (TF), exhibit a defect size that exceeds the clock period. For

small delay faults (SDF), the delay defect size is smaller than the clock period.
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While a variety of fault models exist [Wun10], the structural stuck-at-fault model

and the transition delay fault model will be depicted in the following.

2.3.1.1. Stuck-At Fault Model

The most widely used fault model is the stuck-at fault model [Eld59; GNR61]. It

assumes, that a stuck-at fault (SAF) affects a single line or signal of a circuit, where the

faulty line is permanently set to either logic 0 (Stuck-At-0 or SA0) or logic 1 (Stuck-

At-1 or SA1). A large variety of defects can be represented with this simple model,

although it cannot model defects that involve multiple signals or time-dependent

defects.

Definition 2.3.1 (Stuck-At Fault) A stuck-at fault saf in a combinational circuit
C = (V,E) is a pair saf ∈ E × B, where the first component denotes the fault location
and the second component denotes its polarity.

2.3.1.2. Transition Delay Fault Model

The transition fault model supposes, that a single gate in a circuit exhibits a delay

increase over its nominal value. The delay of the faulty gate is assumed to be suffi-

ciently large to prevent a passing transition from reaching any output within the

circuits clock period, independent of the path involved. Thus, transition faults are also

called gross-delay faults and either affect the 0→ 1 transition (Slow-To-Rise, STR) or

the 1→ 0 transition (Slow-To-Fall, STF) of a gate, usually defined with respect to the

transition of the gate output.

Definition 2.3.2 (Transition Fault) A transition fault tf in a combinational circuit
C = (V,E) with gatesGC ⊂ V is a pair tf ∈ GC ×{STR,STF}, where the first component
denotes the affected gate and the second component denotes the polarity of the output
transition exhibiting a delay greater than the system clock.
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2.3.2. Test Access through Scan Design

During test, input stimuli are applied to a circuit and the circuits answer is compared to

the expected test response. For combinational circuits this is achieved by controlling

the (primary) inputs and observing the outputs. In sequential circuits, where an

internal state is stored in latches or flip-flops, the testability of these sequential

elements is crucial. Scan design provides direct controllability and observability of the

sequential elements [WA73; EW77]. The original sequential elements are replaced

by scannable implementations, that are connected serially in order to form a shift

register, called a scan chain.

In edge-triggered designs where a single clock is used to control the sequential circuit

part, a scannable register can be implemented by multiplexed flip-flops as depicted in

Figure 2.4. The test control signal ScanEnable is used to select if the flip-flop’s inputs

are connected to the combinational circuit in system mode, or to the outputs of the

predecessing flip-flops in test mode.

FFScanIn

CLK
ScanEnable

ScanOut
FF FF

…0

1

0

1

0

1

Figure 2.4.: Multiplexer-based Scannable Register (adopted from [BA00]).

In level-sensitive designs, that are considered especially robust against timing varia-

tions, level sensitive scan design (LSSD) is used [EW77]. The L1/L2 shift register latch
(SRL) depicted in Figure 2.5-a is controlled by one system clock and two test clocks

A and B. In system mode, the L1 latch is used to store data from the combinational

circuit controlled by clock Clk. In test mode, the input ScanIn is controlled by the two

non-overlapping clock signals A,B. Hence, the L2 latch is only used to implement the

shift mode. Also in system mode, latches have to be controlled by a non-overlapping

clock scheme. The simplest scheme is shown in Figure 2.6. The times τl
1

and τh
1

are

the low resp. high phases of clk1, τl
2

and τh
2

are these phases of clk2, and clk1 and clk2

are never high at the same time. As these latches are available anyway they can be

combined to so called L1/L2∗ latches to implement a single SRL (Figure 2.5-b), where

the L2 latch is no longer redundant.
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L1
ScanIn

L2Clk
A B

ScanOut L1
ScanIn

L2*Clk1
A B

Clk2
ScanOut

a) L1/L2 b) L1/L2*

Figure 2.5.: Shift Register Latch.

clk1

clk2

τ1
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h

τ2
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Comb.
Circuit

Comb.
Circuit

R
egister A

R
egister B

clk1 clk2

Figure 2.6.: Non-overlapping Clock Scheme.

An overview on the vast amount of different scan architectures targeting different

design styles is found in [BA00].

Hence, in presence of scan design, arbitrary combinational test patterns can be applied

as a sequential circuit C with n primary inputs (PI), m primary outputs (PO) and k
sequential elements behaves like a combinational circuit CC with n + k inputs and

m + k outputs. The additional k in- and outputs are called pseudo primary in- and

outputs (PPI and PPO). Test application of such a test set is conducted as follows. Each

test pattern pi consists of two parts, a sequential state si and an assignment of the

primary circuit inputs vi . The expected response of a pattern similarly contains values

of the primary outputs oi and a sequential state s′i . The sequential state si is shifted

serially into the scan chain(s), thereby guaranteeing that the scannable sequential

elements are in the desired state. Then, the inputs vi are assigned and the circuit is

operated in normal mode for one clock cycle during the capture cycle. Afterwards,

the circuit outputs are compared to the expected values oi and the sequential state

is shifted out and compared to s′i . At the same time, the sequential state si+1 of the

next pattern is shifted in.

The time to apply a set of test patterns is called the test application time (TAT) or test
time, which is dominated by the shift operations of the scan chains. The test data
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volume (TDV) or test volume denotes all bits exchanged with the circuit during test.

During test application, the peak and average test power consumption as well as the

test energy are elevated due to the shift operations causing a high switching activity

in the scan chains as well as the combinational circuit [IZW+07; EWI+08].

2.3.3. Test Algorithms

2.3.3.1. Fault Simulation

Fault simulation denotes the process of simulating a set of test pattern T for a circuit

C in presence of faults from a fault set F. For every input stimulus t ∈ T , a logic

simulation of the fault free circuit, the good value simulation, is conducted to determine

the fault free circuit response. Then, the circuit model is modified during fault injection
in order to represent the presence of a fault f ∈ F and the resulting faulty circuit is

simulated. If the test response of the good and faulty circuit differ, t is said to be a

test for fault f as fault f is controlled and observed under test t.

Typically, the number of test patterns in T and the number of faults in F that need

to be considered are large. Fault simulation can be accelerated by fault dropping,

where faults that have already been detected by previous patterns are removed from

the fault list. Or parallel-pattern single-fault propagation (PPSFP) is employed, where

multiple patterns are evaluated concurrently during the simulation of a single fault

[WEF+85].

During fault simulation of a test set T , the faults of a fault set F are distinguished

into detected and undetected faults, where F = Fdetected ∪ Fundetected. This classification

is used as a metric for the quality of a test set T , the fault coverage.

Definition 2.3.3 (Fault Coverage) Given a circuit C, a set of faults F and a test set
T , then the fault coverage FC(T ) is defined as

FC(T ) :=
|Fdetected |

|F |
× 100 % .

A perfect fault coverage cannot always be reached as some of the faults in a circuit

are undetectable (F = Fundetectable ∪ Fdetectable with Fdetectable = Fdetected ∪ Fundetected ).

Hence, the effective fault coverage or fault efficiency is used as a metric, where 100 %

denote the maximum quality that a test set can reach.
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Definition 2.3.4 (Fault Efficiency) Given a circuit C, a set of faults F, a set of proven
undetectable faults Fundetectable ⊂ F and a test set T, then the fault efficiency FE(T ) is
defined as

FE(T ) :=
|Fdetected |

|F | − |Fundetectable |
× 100 % .

2.3.3.2. Test Pattern Generation

In case of an insufficient test coverage, additional test patterns are required to target

yet undetected faults. The process of generating test patterns that show the presence

of faults in a circuit is called Automatic Test Pattern Generation (ATPG), which is

known to be a NP-complete problem [IS75]. A brief introduction to test generation is

given here, while more details are provided in literature [BA00].

The ATPG process needs to fulfill two conditions to generate a test for a targeted fault:

Fault activation and fault propagation. For stuck-at faults, fault activation requires

that the fault location is excited to the opposite logic value of the fault polarity, that is

0 for a SA1 and 1 for a SA0. Fault propagation requires that a sensitized path from the

fault location to a primary output exists, over which the fault effect can be observed.

For transition faults, pattern pairs P = (p1,p2) are required, where the initialization
pattern p1 excites the fault location to the initial value of the targeted transition (0

for STR and 1 for STF). The propagation pattern p2 excites the fault location to the

final value of the targeted transition (1 for STR and 0 for STF), and sensitizes a path

from the fault location to a primary output.

Test generation can be conducted by traversing the structural circuit description

in structural ATPG, or can be formulated as a Boolean satisfiability problem (SAT)

[DEFT09; Czu13]. To satisfy a fault’s activation and propagation condition, the input

assignment of the test pattern needs to guarantee the required values of circuit signal

lines. Typically, this line justification only needs to specify a small amount of input

bits to derive a test pattern for a single fault. The specified bits of a test pattern are

called care bits, whereas the unspecified bits are denoted as don’t care bits. Specifying

the don’t care bits of a partially specified pattern allows the detection of additional

faults, which can be determined by fault simulation of the filled pattern. Limiting the

maximum number of specified bits increases the efficiency of test compression and

compaction in reducing the test time and volume [KZIW08].
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2.4. Boolean Satisfiability

Boolean Satisfiability (SAT) is the problem of deciding whether a given propositional

formula can be satisfied. For a Boolean formula f : Bn → B, satisfiability determines

if an interpretation, an assignment a ∈ Bn
of the variables, exists for which f evaluates

to true: f (a) = 1. Any Boolean formula can be represented in conjunctive normal
form (CNF) defined as follows:

Definition 2.4.1 (Conjunctive Normal Form) A conjunction of clauses
∧

i ci , each
clause ci being a disjunction of literals

∨
j li, j , and each literal li, j being either a Boolean

variable v or its negation ¬v .

Example
CNF( f ) = (l1,1 ∨ l1,2 ∨ l1,3) ∧ (l2,1 ∨ l2,2 ∨ l2,3) ∧ (l3,1) ∧ (l4,1 ∨ l4,2) (2.7)

The Boolean formula is called the SAT instance, whereas the interpretation of the

instance variables is called the SAT model or assignment. An assignment of variables

for which the formula evaluates to true is called a satisfying assignment. If such an

assignment exists, the SAT instance is said to be satisfiable (denoted by SAT ). If it

can be proven, that such an assignment does not exist, the function represented by

the formula is immediately false for all possible variable assignments and the SAT

instance is said to be unsatisfiable (denoted as UNSAT ). If an algorithm implemented

in a satisfiability solver is guaranteed to prove either the existence or the lack of a

satisfying assignment for any arbitrary instance, it is said to be complete.

The Boolean satisfiability problem for instances in CNF is NP-complete and hence,

algorithms that solve an arbitrary instance of this problem in polynomial time cannot

exist until P=NP [Coo71; Lev73; GJ79]. Nonetheless, Boolean satisfiability has been

widely adopted in many areas such as electronic design automation or test generation,

as many instances in this domain are nevertheless solvable with manageable runtimes

[PCK99]. Therefore, sophisticated solvers are employed, that often rely on a search

based procedure known as the DPLL algorithm [DLL62]. An overview of state-of-

the-art algorithms is found in [BHvMW09].

Most state-of-the-art algorithms employ learning techniques to speedup the search

for a satisfying assignment. During the search, additional clauses are derived from

conflicting assignments and added to the SAT instance in form of conflict-driven
clauses in order to prune the search space.
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In many application areas, the satisfiability instance is iteratively refined and solved

multiple times. One example is test pattern generation, where a (fixed) circuit instance

is extended with additional clauses representing faults in order to derive a test set for

the circuit. If an instance can be reused for multiple consecutive iterations many time

consuming steps such as building an in-memory model or learning in the unchanged

instance part have to be executed only once. This is difficult to achieve in presence

of learning, as every solver invocation extends the instance with learned clauses,

which are in addition only valid for the actual instance. Thus, additional overhead is

introduced in order to track and remove outdated learned clauses.

In incremental solving, a satisfiability instance CNF( f ) is solved under a set of as-
sumptions A = a1, . . . ,an , where each assumption ai is a literal that is represented

as a unit clause:

CNF( f ) ∧ a1 ∧ · · · ∧ an (2.8)

Hence, the satisfiability of CNF( f ) can be evaluated multiple times under different

assumptions by restarting the solver without the need of clause removal [ES03].

In order to evaluate the satisfiability of multiple refined instances a single instance

is used, where clauses that refine an original instance are activated conditionally

through assumptions. Let CNF( f ) be the original instance solved in a first iteration,

and let CNF( f ) ∧ (li,1 ∨ li,2) be a refined instance to be solved in a consecutive

iteration. Then, the instance CNF( f )′ := CNF( f ) ∧ (ai ∨ li,1 ∨ li,2) can be used in

both iterations by solving CNF( f )′ under assumption ai in the first iteration and

under assumption ¬ai in the second iteration.

The modeling of circuits, faults, and timing behavior as Boolean formulae within

SAT-instances will be discussed in the context of satisfiability-based automated test

sequence generation in Chapter 9.
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Chapter 3

Related Work
in Soft Error Mitigation and Test Access

This chapter discusses the related work in soft error mitigation and test access. The

protection of regular dedicated memories by information redundancy is followed

by solutions that mitigate soft errors in sequential elements embedded in random

logic. In order to increase testability, infrastructure for test access, compression and

compaction as well as alternative test access architectures are depicted.

3.1. Soft Error Mitigation

Single event upsets affecting memory elements have been identified to be a major

contributor to the overall soft error rate (see Chapter 1). This section discusses the

related work in protecting dedicated memory blocks as well as sequential elements

embedded in random logic.

3.1.1. Dedicated Memories

For dedicated memory blocks information redundancy is employed in form of error
correcting codes (ECC). The code computation can be implemented efficiently due to

the regular structure and organization of memories. In the following, two solutions

will be discussed: Error correcting codes, where checksums are computed at memory

word granularity, stored in conjunction with the words and checked during read oper-

ations. And error detecting refreshment, where a signature characterizing the complete

memory content is derived, concurrently updated and checked periodically.
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3.1.1.1. Error Correcting Code Memory

Nowadays, most server systems provide some form of protection against memory

errors. The most commonly used technique is the implementation of error correcting
codes (ECC). Thereby, memories, such as ECC DIMMs either provide single-bit error
correction and double-bit error detection (SECDED), or use more complex codes for Sin-

gle Device Data Correction like Chipkill [Del97], that allow to tolerate entire memory

chip failures at an elevated energy usage and potentially reduced performance.

Dedicated memories are implemented as a regular array of DRAM-cells. In each cell,

a single bit of information is represented by an electrical charge stored in a capacitor.

The memory array is addressed row-wise by a row select signal and a single row

is called a memory word. Thereby a single signal line per memory column, called a

bit-line, is sufficient to read and write the cells. To protect a 64-bit memory word,

7 check bits are required to correct all single bit errors according to the Hamming

relationship (see Section 2.2.3.1). In order to distinguish single from double bit errors

an additional parity bit is used. Thus, the resulting extended SECDED Hamming code

uses 8 check bits per 64-bit word and is denoted as (72,64)-Hamming code.

Upon writing a single word to the memory, an encoder is used to derive the additional

check bits, which are then stored along with the memory word. Upon a read request,

the memory word and the associated check bits are fetched, decoded and checked for

consistency. Hence, in case that a memory cell’s content is corrupted by a soft error

(called a latent error), the error will not manifest until it is accessed. To cope with the

high detection latency if read operations are infrequent, the complete memory content

can be read periodically. This memory scrubbing also prevents the accumulation of

errors into more severe forms that exceed the capabilities of the used code. Scrubbing

is performed during idle cycles with a low frequency to limit the memory power

consumption and contention. As the encoder and decoder are shared among all

memory words, the overhead is dominated by the additional memory cells needed to

store the ECC bits, which is 12.5% if 64-bit words are used.

The use of SECDED protection in memories has been reported to decrease the ob-

served soft error rate by 10000 X [Bau08]. In [LSHC07; LHSC10] the SER of unpro-

tected memories is reported to be in a range of thousands of FIT per machine. The

application of ECC results in a SER reduction to 1000 FIT, which are attributed to

hard faults. The two studies in [SPW09; HSS12] show, that the use of more complex
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correction mechanisms, such as Chipkill, is also effective for a significant portion of

hard faults as transient errors are almost eliminated by ECC protection.

3.1.1.2. Error Detecting Refreshment of Memories

Soft errors affecting memories can also be addressed by periodic maintenance testing,

where a signature of the complete memory content is derived in order to check the

memory content for consistency. To calculate such a signature, a counter (or LFSR)

is used to enumerate all memory addresses and the memory content is fed to an

output data compactor (MISR). Then, the final state of the compactor represents a

characteristic of the memory content. This reference characteristic Cre f is learned and

stored during the initialization phase. In order to check the memory for consistency,

the same procedure is repeated periodically and the newly derived characteristic

Ctest is compared to Cre f . While being able to detect soft errors affecting the memory

content, such a scheme is challenged in two ways: As the reference characteristic

Cre f characterizes the memory content, a new learning phase is required after every

write operation. In addition, the explicit enumeration of the memory content to

calculate Ctest involves a high error detection latency.

Both challenges are addressed by the BIST architecture for embedded DRAMs pre-

sented in [YHW98; HWI+99; HWI+02]. Assume without loss of generality a bit

oriented memory array M containing m · n bits at addresses A = {m · n, . . . ,1}.

Further, let the set of all addresses where M contains a logic 1 be denoted by A1 :={a ∈ A|M[a] = 1}. Then, the bitwise modulo-2 sum of all binary addresses in A1 is

calculated by

C =
⊕
a∈A1

a (3.1)

which characterizes the complete memory content in l = ⌈log
2
(m · n)⌉ characteristic

bits and is used as the reference characteristic Cre f . Write operations modifying the

memory content need to be reflected in this reference characteristic. Therefore, the

new characteristic Cnew
re f

can be derived from the old characteristic Cold
re f

if the written

address is known along with the old and new data at that address. As writing a single

bit in embedded memories is only possible by fetching a complete data word to the

refreshment register, updating it and writing it back, the reference characteristic is

updated concurrent to a write operation by calculating

Cnew
re f = Cold

re f

⊕
a · (M[a]

new
⊕

M[a]
old ) . (3.2)
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As DRAM cells need to be periodically refreshed for data retention, Ctest is calculated

concurrently to their refreshment, thus providing low error detection latencies.

The modulo-2 address characteristic has been shown to incorporate the following

properties:

▷ All single bit upsets are detectable and Cre f ⊕ Ctest provides the address of

the affected memory cell.

▷ All double bit upsets are detectable and Cre f ⊕ Ctest is a sum of two addresses

a1 and a2, where a1 , a2 implies Cre f ⊕ Ctest , 0.

▷ Data compaction based on the modulo-2 address characteristic has been shown

to be equivalent to serial signature analysis. Hence, the probability of aliasing

is estimated by 2
−l

, where l denotes the length of the characteristic.

The complete architecture for a row oriented memory array with m rows and n
columns and memory addresses split into row and column addresses a = (ar ,ac )

is depicted in Figure 3.1. In order to derive the characteristic C concurrent to the

refreshment, the row characteristics Cr are calculated in a single clock cycle from

the refreshment register. The global characteristic C is then obtained as

C =
⊕

1≤ar ≤m

Cr (3.3)

and each row characteristic is defined as

Cr =
⊕

ac∈A1 (r )
(ar ,ac ) = (

⊕
ac∈A1 (r )

ar ,
⊕

ac∈A1 (r )
ac ) (3.4)

where A1(r) := {ac |M[ar ,ac] = 1} denotes the set of all column addresses contain-

ing a 1 in row r. The first component of Cr depends on the parity of the row entries

and is either ar or 0. The second component is a modulo two sum with size ⌈log
2
(n)⌉

of all column entries that contain a 1 in row r. It can be implemented by a set of parity

trees as ⊕
ac∈A1 (r )

ac = (
⊕

ac∈A1 (r )
a1

c , . . . ,
⊕

ac∈A1 (r )
al
c ) (3.5)

where ai
c denotes the i’th component of ac ,1 ≤ i ≤ ⌈log

2
(n)⌉.

While the scheme is able to detect single and double bit upsets in the memory,

only single bit upsets are correctly localized. As the modulo-2 characteristic has a
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Figure 3.1.: Architecture of a DRAM with Error Detecting Refreshment (adopted from

[HWI+02]).

Hamming distance of 3, it cannot distinguish a single from a double bit upset. Hence,

a correction can only be attempted if double bit upsets are not assumed to occur.

To distinguish single from double bit upsets, [MIY07] uses a characteristic with an

incremented Hamming distance. By appending a constant 1 to every memory address,

Single Error Correction Double Error Detection (SECDED) is achieved in analogy to

the additional row of 1s in an extended Hamming code check matrix (see Eq. 2.6).

3.1.2. Sequential Elements in Random Logic

With the availability and use of fault tolerance for dedicated memories, the protection

of sequential elements embedded in random logic is the next logical consequence in

further reducing the overall soft error rate. In contrast to dedicated memories orga-

nized in a highly regular fashion additional challenges arise, as sequential elements

are distributed throughout the layout of circuits. As discussed in the introduction

(Section 1.3) soft errors in sequential elements can be mitigated at different abstrac-

tion levels ranging from the process level, over the circuit and architectural level
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to the software level. This section focuses on the architectural or system level, as it

offers the highest potential in increasing the robustness of digital circuits [Bau08].

Additional details on process, circuit and software techniques are found in [Nic10].

At the architectural level, the introduction of redundant sequential elements is used

as a basic principle. Most schemes rely on local redundancy achieved by adding

two memory elements, although the implementation at bit granularity limits the

achievable efficiency in terms of hardware overhead. One of these memory elements

may be a C-element or an additional voter is required (Figure 3.2).

The composition of a reliable system out of unreliable components can be achieved by

Triple Modular Redundancy (TMR) [vNeu56; LV62]. It introduces space redundancy by

triplicating the basic building blocks and combines their results using a synchronous

majority voter. It has been shown, that the application of TMR to latches as depicted

in Figure 3.2-a in combination with delayed clocks is effective in mitigating transient

glitches at the input, and especially SEUs affecting the latches [ME02; CO07]. The

hardware overhead of such a scheme is around +400% (two latches plus voter) and

is further increased by the need for multiple clock trees if time redundancy is em-

ployed. If the voter is triplicated in order to improve the detection probability as in

[WWW+03], additional overhead is introduced. Moreover, the delay of the data path

is increased due to the voter.

The Built-In Soft-Error Resilience (BISER) scheme combines one latch and the voter of

TMR into an asynchronous majority voter, the C-Element (Figure 3.2-b) [MSZ+05;

ZMM+06]. The C-Element [MB57; SEE98] retains its previous output value until both

inputs have a common logic value. Thus, any transition on a single input is filtered

and all single bit upsets affecting the latches are mitigated. In order to reduce the

hardware overhead, the authors propose to reuse the scan portion to implement one of

b) Triplication with Combinational Votera) Duplication with Sequential C-Element

L3

L1

L2

VL1

L2

C

Figure 3.2.: Principle of Robust Latch Design.
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the two remaining latches. This might not always be possible, especially when partial

scan is used where not all registers are equipped with scan design. Even in presence

of scan, if an L1/L2* scheme is employed, the scan portion is already allocated during

system mode. Reusing a scan latch during functional operation implies that the scan

latch can be operated at the same speed as the main latch in order to not sacrifice

performance. If the scan portion is not designed for at-speed scan due to power and

area constraints, additional effort might be involved [Muk08].

A variety of other hardened latches and flip-flops exist that increase the resilience

to soft errors by means of filtering or local redundant design. The dual-interlocked
storage cell (DICE) [CNV96] employs two redundant latch sections. The sections are

cross-coupled in a way that the data in the uncorrupted section provides specific state

restoring feedback to recover the corrupted data. The delay filtered DICE (Df-DICE)
[ND05] combines DICE with a SET-filtering technique for every input. While this

adds immunity to SETs with a duration smaller than the introduced delay, the data

path is also delayed and performance is reduced. The SER-tolerant path-exclusive latch
[HKW+04] adds a redundant standard clocked keeper to a path-exclusive latch and

divides all other internal gates and the output buffer to balance the drive strength

and load on the redundant storage nodes. Although the data path speed is retained,

spurious glitches at output Q during recovery cannot completely be avoided. The

Schmitt trigger (ST) latch [LKL11] employs the large voltage hysteresis of a Schmitt

trigger to mask transients in the latch feedback loop. While it offers a low power

consumption and area overhead, the added data path delay limits the performance. The

feedback redundant SEU-tolerant (FERST) latch [FPME07; FMEP09] uses a redundant

feedback path and three C-elements to filter transient errors at most internal nodes.

However, the output nodes are still vulnerable while the two C-elements between the

input D and the output Q introduce additional delay and thus reduce performance.

By delaying one of the two feedback paths, the immunity to SETs can be increased

[FMEP09]. The high-performance SEU tolerant (HPST) latch [Hua14; HLH15] builds

upon the FERST latch and optimizes the power-delay product. To this end, the C-

element at the output is clock gated while new data is latched and the output Q is

directly driven by the input D. Although this improves the power-delay product, the

area overhead is comparable to the high overhead of a TMR latch.

In the following, two solutions will be discussed in more detail. These include the

RAZOR architecture ([EKD+03], Figure 3.3) and the GRAAL architecture ([Nic07],

Figure 3.4).
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Figure 3.3.: RAZOR Architecture (adopted from [EKD+03]).

The RAZOR architecture has been designed to detect propagation delays due to

voltage scaling but can also detect and correct SETs under some conditions [EKD+03].

It targets an edge-triggered design style and combines space and time redundancy as

depicted in Figure 3.3. Each bit of the sequential circuit part (dotted box) is extended

with a redundant latch that samples the logic value from the combinational circuit

part CC1 at a second timepoint controlled by the delayed clock clk d. Thereby, SETs

are guaranteed to be detected as long as two conditions hold: The duration of the

transient is smaller than the phase shift δ between the two clocks clk and clk d; and

all paths in the combinational circuit parts have a delay of at least δ. A local error

signal err l is derived by comparing the outputs of the flip-flop and the latch by an

XOR gate. The error signal controls the multiplexer in order to copy the latch value

to the flip-flop. Note, that the multiplexer is usually merged with the feedback loop

contained in the flip-flop to minimize additional delay on the data path. In addition,

an OR-tree is used to derive a global error signal over all bits to indicate the presence

of errors, restore complete registers instead of a single bit, and gate the clock of all

other registers in the module to hinder the error effect from propagation.

In case of any difference between the flip-flop and latch values, the local error signal

is 1. Thus, the flip-flop value is restored from the redundant latch. If the discrepancy

is caused by a SET (with a duration < δ), the latch contains the correct value which

was sampled at a sufficiently late timepoint. If the transient lasts longer than δ, both,

the flip-flop and the latch, contain the wrong value and the SET is not detected. For

SEUs directly affecting the sequential elements two cases need to be distinguished: If
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Figure 3.4.: GRAAL Architecture (adopted from [Nic07]).

the flip-flop is hit, the correct value is restored from the unaffected latch and the upset

is corrected. If the redundant latch is struck by the upset, the employed redundancy

correctly detects a discrepancy but is not able to localize its origin in the flip-flop or

the latch. Hence, a false correction is performed.

TheGlobal Reliability Architecture Approach for Logic (GRAAL) eliminates the stringent

timing requirements inherent to the RAZOR approach and allows to correct SEUs

[Nic07]. It also combines space and time redundancy, but targets a level-sensitive

design style as shown in Figure 3.4. Latches are used on the data path, are grouped into

odd (L1) and even (L2) stages, and are controlled by two non-overlapping clocks clk1
and clk2. In each stage, the functional latches are equipped with a redundant flip-flop,

a comparator to derive a local error signal and a multiplexer to restore the flip-flop

value to the latch. The correction works as follows: Assume without loss of generality

a SEU in the L2 stage that flipped the value of the flip-flop. Instead of restoring the

value of the affected even stage, the error signal err2 is used to restore the latches in

all odd stages. Thereby, any error effect is eliminated that already propagated to the

consecutive odd stage. In the second half of the clock cycle, the values of all even

stages (including the affected stage) are recomputed from the (correct) state of the

odd stages. Consequently, the upset is corrected in one additional clock cycle. The

correction is also effective for SEUs affecting all other sequential elements as well as

SETs. In [YNA09] a detection scheme based on the GRAAL architecture is presented,

that combines latch-based design and time redundancy. While being effective for

the detection of timing errors, transients, and upsets, the correction needs to be

performed at a higher abstraction level, e.g. by instruction-level retry.
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The RAZOR-II scheme focuses the hardware support on the in situ detection of

errors (both, SETs and SEUs) in registers, where spurious transitions in the state-

holding latch node are detected as errors. The correction is performed by architectural

replay, which requires several clock cycles to recompute the correct result [BKL+08;

DTP+09]. A concrete application and implementation for a 32-bit ARM processor

was shown in [BDS+11]. The Bubble RAZOR scheme addresses the significant hold

time constraints introduced by the RAZOR technique. Error detection is based on

duplication with comparison in two-phase latch designs, which is combined with a

local replay mechanism for the correction [FFK+12; FFK+13].

The recently presented RAZOR-Lite scheme also just supports error detection with

dedicated hardware. In contrast to earlier versions, the detection is implemented by

exploiting internal signals of the used flip-flops, thereby reducing the influence on

the data path, such as additional load and delay. Moreover, the presented scheme

results in further reduced area and energy requirements [KKF+13].

The time redundant parity proposed in [PNL11] uses information redundancy imple-

mented by a parity tree to detect SEUs. Thereby a localization of the affected bit is

not possible and the correction is performed by recomputation.

The protection with Hamming codes was proposed in [HCB95]. The sequential

elements are partitioned into registers, which are individually equipped with an

encoder and decoder. Thereby, single bit upsets in the register bits are detected,

localized, and corrected at the register output. Soft errors can accumulate if write

operations are infrequent, as the data word stored in the register is not corrected.

The results indicate, that the use of registers with 6 or 7 bits results in a lower area

overhead compared to TMR. In [HML+02] a register file with register sizes of 8 or 16

bit is protected with a Hamming code, where the en- and decoder is shared among all

registers. While being able to detect SEUs and correct the register output, the scheme

incorporates a high area overhead. The use of information redundancy for a whole

register is promising, but needs to be carefully designed and implemented to limit

the area overhead associated with the code computation, storage, and checking to an

economic degree.

Most schemes for sequential elements embedded in random logic introduce space

redundancy for each bit of a register. This enables the detection of single event upsets

by comparing the original and the redundant bit value. The correction is performed by

voting, restoring the correct value from the redundant copy, or architectural replay.
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The properties of the discussed solutions can be summarized as follows:

▷ Majority voting has negative impact on the timing behavior of the data path,

even when no error occurs.

▷ Space redundancy combined with majority voting results in a high hardware

overhead.

▷ Restoring the correct value from a shadow element implies a better, but not

negligible hardware overhead.

▷ If the correct value is generated by recomputation, the hardware overhead asso-

ciated with the correction is avoided, but the runtime is extended considerably

if upsets occur.

▷ The use of information redundancy proposed so far allows the area efficient

detection of SEUs if a parity bit is used. As a localization is not possible, the

correct value needs to be recomputed.

3.2. Test Access

The growing circuit complexity revealed some of the problems inherent to the serial

scan paradigm such as high test application times, test data volume and test power

consumption. Two solutions that are able to deal with those problems will be detailed

in the following: Test data compression and compaction, which builds upon the clas-

sical scan paradigm and Random Access Scan, an alternative architecture providing

individual access to the sequential elements.

3.2.1. Test Data Compression and Compaction

Test compression and compaction takes advantage of the small number of specified

bits (care bits) in a test set. Therefore, the design is modified with additional on-chip

hardware attached to the scan chains (Figure 3.5). At the input-side the test stimuli

from the tester are decompressed and loaded into the chains. At the output-side the

test responses are compacted before being delivered to the tester. The advantages

associated with such an embedded deterministic test (EDT) architecture are twofold:

Test volume is reduced as the test data is stored in compressed form on the tester. Test

time is reduced as more internal chains can be driven with a given amount of tester

channels, thereby enabling the use of shorter chains requiring less shift cycles.
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Many different lossless compression techniques exist for the input vectors, which

rely on one of the following three basic principles [Tou06]:

▷ Applying the same value to multiple scan chains in broadcast-scan-based
schemes,

▷ data compression codes used in code-based schemes, or

▷ linear operations implemented as exclusive-OR networks or LFSRs in linear-
decompression-based schemes.

ATECompressed
Stimuli

Compacted
Responses

D
ecom

pressor

C
om

pactor

Figure 3.5.: General Embedded Deterministic Test (EDT) Architecture (adopted from

[RTK+02]).

The lossy compaction of test responses at the output side is either performed in the

time or space domain:

▷ Time compaction or infinite-memory compaction employs linear finite state

machines, such as linear feedback shift registers (LFSR) or multiple input shift

registers (MISR). The test responses are compacted into a small signature and

high compaction ratios are reached. Unknown values
1

in the test responses

corrupt the signature and render the test useless.

1
An unknown state of signals during the design process, e.g. due to incompletely specified models,

which is indeterminable during test generation/simulation but a valid binary value during test.
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▷ Space compaction uses combinational circuits built of exclusive-OR gates to

reduce the amount of required outputs. The reachable compaction ratios are

lower as compared to time compaction, whereas unknown values in the test

responses can be handled.

▷ Convolutional compaction or finite-memory compaction combines space com-

paction with a finite memory without feedback.

The embedded deterministic test architecture in [RTK+02; RTKM04] uses a sequential

linear decompressor, that is dynamically reseeded by injecting a fixed amount of free

variables shifted in from the tester during decompression. In combination with a

linear spatial compactor, test data volume is reduced by up to 25 X. If the convolutional

compaction from [RTWR03; RTWR05] is used at the output side, compression ratios

in excess of 100 X can be reached as long as the decompressor is considered during

test generation and the test responses contain a low amount of unknown values.

The X-compact scheme in [MK02; MK04] focuses on the response compaction by

combinational circuits in presence of unknown (X) values. In combination with a

linear decompressor at the input side, arbitrary deterministic patterns can be applied

[MK03; MK06].

3.2.2. Random Access Scan

An alternative architecture to increase testability is called random-access scan (RAS)
[And80]. It allows to address individual flip-flops during test mode similar to the

access provided in random access memory (RAM) blocks. Therefore, a general RAS

architecture organizes the flip-flops in a two-dimensional array (Figure 3.6).

During functional mode (TC=0) all flip-flops latch data from the combinational logic

under the control of the clock CLK and the flip-flop outputs feed into the combina-

tional logic. A typical storage element used in the addressable array, called a RAS cell,
is given in Figure 3.7.

During test mode (TC=1) individual flip-flops can be read and written. To select a

flip-flop, its x- and y-addresses are serially loaded into the two address shift registers
(ASR) with an additional clock ACLK. For a total amount of n × m bits organized

into n columns and m rows, the address sizes are ⌈log2n⌉ respectively ⌈log2m⌉. The

address decoders enable the x- and y-select signals for the addressed flip-flop, while

all other select signals stay 0. As only single flip-flops can be addressed, the scanout
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Figure 3.6.: General Random Access Scan Architecture.

signals SO of all RAS cells are tied together to the global scanout pin SDO. As soon

as a RAS cell is selected, its value is observable at the SDO output (independent of

the value of the mode signal TC). To write a cell during test mode (TC=1), the x- and

y-select signals of the addressed flip-flop are 1, and the value of SI is latched in the

flip-flop by CLK. All scanin inputs SI of flip-flops are connected to the global scanin

pin SDI. As the select signals of not addressed flip-flops are not conjointly 1, the clock

signal CLK is blocked and SDI is not latched in other flip-flops.

RAS is able to reduce the test time associated with controlling and observing the

flip-flop states, but incorporates a large overhead [BA00]. The address decoders and

shift registers require additional gates and thereby area. In addition to the clock and

select signals, three signals need to be connected to every RAS cell: TC, SDI, SDO.

Thereby, significant routing effort and interconnect resources might be required as the

RAS cells are distributed within the circuit layout to minimize the impact on circuit

delay during functional mode. Moreover, each RAS cell itself incorporates additional

gates compared to the scan cells used in scan design. While the RAS architecture

has been used in practice [Ito90], it did not gain popularity, perhaps due to the large

overhead involved [BA00]. A series of publications built upon the basic RAS idea in

order to reduce the overhead and improve the test time, volume, and power.
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Figure 3.7.: Multiplexer-based Addressable Random Access Scan Cell.

In Progressive Random Access Scan (PRAS) [BS05a], the RAS cell consists of a trans-

mission-gate based flip-flop, where the master latch is extended by two additional

transistors. Thereby, a SRAM cell is formed which is accessed over sense lines as in

a regular SRAM. Read operations are performed in parallel for complete rows and

compacted into a signature with the help of a MISR implemented together with the

sense amplifiers. While reducing the area of the RAS cell, additional overhead arises

from the doubled amount of column select lines (positive and negative polarity), the

column drivers and the sense amplifiers.

The idea behind Toggle RAS is to invert the value stored in a RAS cell instead of

writing it [MAS05a; MAS05b]. The inversion is implemented by a toggle-flip-flop that

is activated whenever a cell is addressed in order to be read. Thereby, the global SDI

network driving the SI inputs of all cells is eliminated. The combination of toggle RAS

and progressive RAS depicted in [AAS+10] further reduces the hardware overhead by

modifying the T-FF based RAS cells. For reading, a combination of sense amplifiers

with a MISR is utilized similar to progressive RAS, thereby allowing to read and

compact complete rows.

In principle any test set can be applied using Random Access Scan, although it might

result in elevated test time and test volume. In RAS, the test time depends on the

amount of write and read operations required during test application, whereas the

time to conduct each operation is dominated by the required shifts of the address

registers. The number of write operations between two test vectors is equal to the

Hamming distance between the sequential states of the vectors.

In [BSK04; BS05a] existing test sets are reordered to minimize the amount of address

scan operations needed during test application in the RAS architecture. The problem

is modeled as a asymmetric traveling salesman problem, where the Hamming distance
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between test vectors serves as a cost function. The heuristically determined solution is

further improved by identifying don’t care values in the test vectors and appropriate

filling (before and after the reordering). If multiple bits differ between vectors, the

write operations are reordered to minimize address shifts by reusing portions of the

scanned addresses. [BSK04] compares the reordered test sets for benchmark circuits

equipped with a single chain for serial scan and a single address register for RAS. The

reordered test sets show a test time speedup between 1.06 X and 5.3 X, a test volume

reduction by between 25.27 % and 82.26 % and a test power (defined by the number of

gate outputs switching) of below 1 % compared to serial scan. In [BS05a] the reordered

test sets are evaluated w.r.t. multiple (3 to 4) scan chains. A speedup between 1.9 X

and 4.6 X and a volume reduction between 10.4 % and 62.6 % are reported.

In [BS05b], a test generation procedure for Progressive RAS is described. It iteratively

generates test patterns, where each test pattern targets the faults with the highest

probability of being detected by the current state of the RAS cells. Thereby, every

generated test pattern has a low Hamming distance to the current state. In comparison

to the test set reordering in [BS05a], the test time and volume are reduced by additional

20 % on average, with a maximum reduction by up to 50 % for two circuits.

3.3. Combined Solutions

Two necessary tasks related to the reliability of digital circuits have been identified.

Test to assess the reliability of every produced chip at the beginning of the lifetime

and fault tolerance to cope with soft errors during the operation. Thereby, on-chip

infrastructure is used to increase testability by providing test access and to efficiently

detect and correct soft errors. A variety of solutions exist in both areas that can be

combined and implemented orthogonally. Using a common infrastructure that is able

to provide test access during test mode of a circuit and fault tolerance during system

mode offers the potential of a reduced hardware and area overhead.

The BISER scheme [MSZ+05; ZMM+06] discussed in Section 3.1.2 reuses portions of

the test infrastructure to implement fault tolerance. The AVERA cell in [ZMT+07]

extends the scanout portion of the BISER scheme with an additional compaction

of the test responses. During test both, BISER and AVERA, allow to observe the

sequential elements, while controlling them is not possible. During operation, single

event upsets affecting the latches are filtered by the C-element, but not corrected.
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In [GBMR06] the area overhead of BISER is optimized by reducing the number of

latches from four to three, whereas the system latch is fully controllable and the third

latch can be used as a hold latch. Thus, enhanced scan is implemented efficiently, which

allows to apply arbitrary two-pattern tests by storing a first input vector, shifting in

a second vector and applying both vectors in consecutive cycles. The area overhead

of the enhanced scan flip-flop with soft error correction from [GBMR06] is further

reduced in [NII10]. In [OJC07], instead of a C-Element triple modular redundancy

with a majority voter is used for error masking. Thereby, the complete clock period

can be protected at the cost of additional area overhead while still providing enhanced

scan capabilities. The combination of scan design and local soft-error detection can

also be used in the context of irradiation testing as discussed in [YKI+08].

An enhancement of random access scan for soft error tolerance was proposed in

[WA10]. The toggle RAS-cell from [MAS05a] contains a feedback path from the slave

latch to the master latch that is activated whenever the cell is not addressed. For

this reason, the cell is inherently radiation hardened and exhibits reduced soft error

rates. Addressed cells are protected either similar to the BISER scheme by employing

one additional redundant cell in combination with a C-element or by triple modular

redundancy with two redundant cells and a majority voter. In [EMA11; EMAF13]

the built-in design for testability resources are reused to recover faulty modules in a

coarse-grained triple modular redundancy scheme.
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Chapter 4

Non-Concurrent Detection and
Localization of Single Event Upsets

Digital circuits manufactured in recent technologies have to cope with two major

challenges aggravated by continued scaling: Strict power and energy budgets and

an elevated susceptibility to soft errors. Power consumption is often addressed by

clock gating which partitions a circuit into modules and utilizes gated clock trees to

disable the clock of individual modules. Thus, switching activity is avoided whenever a

module is idle while the sequential state of a module, typically organized in registers, is

retained. Consequently, in presence of soft errors with the potential to alter this state,

the correctness of data needs to be assured upon leaving such a phase. Clock gated

circuits are specifically error prone due to the probability of state corruption being

proportional to the length of the gated phase during which errors can accumulate.

The most essential contribution to protect a clock gated module is the detection of

spurious modifications of register values. A correction can then be performed by

restarting the module’s computation with an often acceptable performance impact,

especially if errors occur seldom. However, if the error is in addition localized at

register granularity, a correction might not always be obligatory, when, for example,

the data of an affected register is known as not being used in further computations

or if the data was already read before the error occurred.

This chapter is based on the fault tolerance scheme presented in [IWZ08a; IWZ08b]

which targets Single Event Upsets during clock gated phases. To this end, individual

registers are geared with error detection and the localization of failing registers within

a module is enabled. The differentiation between the detection and localization of soft

errors and their implementation at different abstraction levels is shown to facilitate a

low area overhead. The impact on power consumption is strictly limited by equipping

the architecture itself with clock gating.
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4.1. Non-Concurrent Architecture

The presented architecture distinguishes between the detection and the localization of

Single Event Upsets as shown in Figure 4.1. This two-tiered approach allows to tailor

the architecture properties to comply with the requirements posed by the targeted

application: The detection and localization of Single Event Upsets during clock gated

phases, a low area overhead and a low power consumption during operation.

The sequential portion of a clock gated circuit targeting a level-sensitive design

style is depicted in Figure 4.1. The unprotected latches are clustered into N registers

R1, . . . ,RN , where every register can contain an arbitrary number of bits. Without

loss of generality it is assumed that every register consists of n bits.

The SEU detection is implemented at gate level as shown in Figures 4.1-b and 4.1-c.

Each register Ri is protected by a single parity bit pi . The parity bit can be computed

by a XOR-tree composed out of standard cells (Fig. 4.1-b). By gating the parity tree

with the clock disable signal, the parity is only computed during the clock gated phase,

thereby limiting the power consumption during operation. Such an implementation

incorporates an elevated area overhead as n two-input NAND gates and (n-1) two-

input exclusive OR (XOR) gates are needed to compute p for a n-bit register.
1

In order to reduce the area overhead arising from the parity computation per register,

the latches and the first level of the XOR-tree are combined and implemented as a

new standard cell: The Parity-Pair Latch (PPL). The register is then composed out of

(n/2) Parity-Pair Latches, (n/2) two-input NAND gates and (n/2)-1 two-input XOR

gates (Fig. 4.1-c).

The SEU localization is performed at module level as shown in Figure 4.1-d, where a

module-wide checksum is used to identify the affected register. The used modulo-2

address characteristic depends on the register parities p1, . . . ,pN and the associated

register addresses 1, . . . ,N and is implemented area efficiently using XOR gates. Upon

entry of a clock gated phase the reference characteristic C is computed and stored

in the additional register C composed of ⌈log2(N + 1)⌉ latches. During the clock

gated phase, the recomputed characteristic C′
is computed concurrently from the

register parities and compared to the reference. The resulting syndrome S indicates

the presence of changed register parities and provides the address of the failing

register.

1
The gating is not explicitly depicted to highlight the contribution of the Parity-Pair Latch.
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Figure 4.1.: Presented Non-Concurrent Configurations.

The remainder of this chapter is organized as follows. Section 4.2 details the Parity-

Pair Latch standard cell and shows how registers can be composed that allow an

efficient SEU detection at gate level (Block I in Figures 4.1-c and 4.1-d). Section 4.3

depicts how the register parities are encoded by an error detecting code and how the

code computation is implemented in an area efficient way to allow the localization

of the failing register (Block II in Figure 4.1-d). Finally, both parts are evaluated

experimentally in Section 4.4 before concluding the chapter with a short summary.

4.2. Single Event Upset Detection at Gate Level

In order to detect Single Event Upsets affecting the state of a circuit stored in sequential

elements, redundancy in form of additional check bits is employed. To allow error

detection, two properties need to hold:

▷ The checksum needs to depend on all data bits to be protected.

▷ A changing value of any one bit entails a change of the checksum.
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4.2.1. Register Parity Protection

The shortest possible checksum to detect Single Event Upsets consists of one addi-

tional bit being used for an arbitrary amount of data bits. Often, a parity bit is used,

that depicts if the number of data bits with value ’one’ is even or odd. For an even

parity, a ’one’ parity bit is added for an odd number of ’ones’ in a register, thereby

resulting in an even amount of ’ones’ in the total set of bits. Correspondingly, a ’zero’

parity bit is employed for an even number of ’ones’ (see Definition 2.2.6).
2

The even parity bit can be calculated effectively as the exclusive OR (XOR) sum of

the data bits, which evaluates to ’zero’ for an even parity and ’one’ for an odd parity.

For a register R⃗i with n data bits, the parity pi is calculated by n − 1 two-input XOR

gates, which are typically organized in a tree of depth log
2
(n).

To detect Single Event Upsets affecting the register data during a clock gated phase,

the parity bit is computed upon entry of the clock gated phase and stored in an

additional register bit. From now on, this parity will be called the reference parity pi
of register Ri . While the clock is gated, the parity tree concurrently computes the

recomputed parity p′i . By comparison of the reference and the recomputed parity, the

syndrome Si is computed with the help of one additional XOR operation.

si = pi ⊕ p′i (4.1)

Whenever the reference and the recomputed parity differ, the syndrome si is one.

Two causes leading to such a non-zero syndrome can be distinguished:

▷ A flipped data bit manifests in the recomputed parity p′i and the syndrome

correctly indicates a corruption.

▷ The stored reference parity bit pi is directly affected by a Single Event Upset

while the data bits are correct.

For a protected register, all n + 1 bits can be affected by a Single Event Upset. Though,

the probability of a data bit being affected is n/(n + 1), which is significantly larger

than the probability for a corrupted parity bit 1/(n + 1). Hence, in rare cases, a Single

Event Upset is indicated although all data bits are correct (false detection).
3

Besides

2
An odd parity bit, the inversion of an even parity bit, could be used in the same manner. In the

following, the even parity will be used without loss of generality.

3
The amount of false detections can be further reduced by increasing the minimum Hamming

distance, e.g. by duplication of the parity bit (n+2 total bits) and consensus checking (see Section 2.2.3.1).
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4.2. Single Event Upset Detection at Gate Level

a slightly reduced system performance such a false detection is not an issue as the

triggered countermeasures (e.g. a recomputation) also rectify the corrupted parity.

The power consumption of a module during idle phases is reduced by clock gating.

As opposed to normal operation, where the state is written once in a while, the

vulnerability to Single Event Upsets raises during long periods of data retention.

It follows, that focusing the protection on the clock gated phase offers the highest

potential to increase robustness. In order to not sacrifice the power consumption

during operation, the parity computation itself is gated whenever the clock is enabled.

Therefore, NAND2 gates are employed due to their small area footprint, which are

attached to the leaves of the parity tree. A reference implementation of a register

with four data bits and a gated parity computation is shown in Figure 4.2.

As the area overhead introduced in order to escalate robustness against SEUs directly

relates to the production cost, area is possibly the most important metric besides

power consumption and delay. The area of the unprotected register depends on its

width in terms of bits as well as the size of the used sequential element and will be

used as the area baseline in the following (Eq. 4.2). The area of the reference parity

computation is larger due to the additional parity tree (XOR2 gates) and its gating

(NAND2 gates) (Eq. 4.3).

AreaUnprotected = n · ALatch (4.2)

AreaParity = n · ALatch + n · ANAND2 + (n − 1) · AXOR2 (4.3)
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Figure 4.2.: Reference Parity Tree Implementation (n = 4).
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4.2.2. Area Efficient Register Parity Computation - Parity-Pair Latch

While the parity computation for a register is effectively implemented by a tree of

standard cells as depicted in the last section, such an implementation might not be as

area efficient as desired. Rewriting Formula (4.3) unveils, that a significant share of

the area overhead is spent to implement the first level of the parity computation.

AreaParity = n · (ALatch + ANAND2) +

n
2

· AXOR2︸                                     ︷︷                                     ︸
first level

+ (
n
2

− 1) · AXOR2︸             ︷︷             ︸
remaining levels

(4.4)

Implementations with much less impact on power, delay and area can be found, if the

first level of the parity tree is merged with the latches. Figure 4.3 shows the schematic

of the parity computation between two latches from [IWZ08a; IWZ08b], referred

to as the Parity-Pair Latch (PPL) 4
. Each latch consists of a feedback loop with two

inverters (INV1/2 resp. INV3/4) that drives the output Q, as well as two transmission-

gates (TG1/2 resp. TG3/4) used to control each latch. To this end, either the feedback

loop is disabled and a new value from input D is registered (latch-operation), or the

registered value is stored within the enabled feedback loop (hold-operation). The

parity computation is especially efficient to implement with two transmission-gates

TG5 and TG6, as the latches already provide both polarities of their internal state.

Latch 1 Latch 2
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L L

L
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Figure 4.3.: Schematic of the Parity-Pair Latch (PPL).

4
The Parity-Pair Latch from [IWZ08a; IWZ08b] implements local clock gating internally. The

generalized implementation depicted here results in a lower area overhead if clock gating is not desired.
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4.2. Single Event Upset Detection at Gate Level

With these Parity-Pair Latches (PPL) a register is formed like in Figure 4.4. In order

to reduce the power consumption during operation, clock gating is implemented

by accompanying the Parity-Pair Latch cells with standard CMOS NAND2 cells

controlled by the inverted clock gating signal. Hence, the parity is only computed

during clock gated phases of the module and the switching activity during operation is

reduced to a minimum. As the PPL parity computation is performed cell internal, the

NAND2 gating cells are connected to the parity outputs of the PPL cells where they

also restore the signal levels of the transmission-gate based parity computation.

Compared to a standard CMOS XOR2 with 8 or 10 transistors, the parity computation

in the Parity-Pair Latch requires only 4 transistors. The critical path of the PPL is just

4 inverters and 3 pass transistors which is less than three times the delay through

a latch, and in the same range as any of the double latch solutions mentioned in

Section 3.1.2. As in the reference implementation, the remaining levels of the parity

computation are implemented as a XOR tree composed of standard XOR2 cells.

In excess of the advantages with respect to power consumption and delay, such an

optimized register parity computation comprises a reduced area overhead (Eq. 4.5)

▷ as soon as the area of a Parity-Pair Latch standard cell implementation is smaller

than the sum of the replaced equivalent latch and exclusive OR standard cells;

▷ in presence of clock gating, as the amount of gate cells at the leaves of the

remaining parity tree is bisected.

AreaPPL =
n
2

· (APPL + ANAND2)︸                    ︷︷                    ︸
first level

+ (
n
2

− 1) · AXOR2︸             ︷︷             ︸
remaining levels

(4.5)
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Figure 4.4.: Parity Tree Implementation utilizing Parity-Pair Latches (n=4).
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4.3. Single Event Upset Localization at Module Level

The error information of the basic registers has to be passed to module’s top level,

stored in a register and will be used for error handling. If only error detection is

required in order to restart computations, a simple XOR tree may connect all the

registers. More effort is needed, if the detection of multiple errors is also desired, or

if the error location is required in order to allow more fine-grained recomputation

decisions to be taken at module level.

This localization information will be provided by a checksum computed over all

register parity bits, which allows a detection and localization of Single Bit Upsets

(Block II in Figure 4.1-d). Therefore, upon entry of a clock gated phase, a reference
characteristic C is computed and stored. Throughout the clock gated phase, the recom-
puted characteristicC′

is concurrently derived from the register parities and compared

to the reference characteristic.

4.3.1. Modulo-2 Address Characteristic

In embedded memories, transparent online test can be used for error localization

(see Section 3.1.1.2, [HWI+02; BNLC06]). The transparent test technique for static

and dynamic memory arrays from [HWI+02] has been adapted to random logic in

[IWZ08a; IWZ08b]. The modulo-2 address characteristic of a bit-oriented memory is

computed by a bit-wise XOR of the addresses of those memory cells which contain a

’1’ (Figure 4.5).

Definition 4.3.1 (Modulo-2 Address Characteristic) Let D⃗ be anm-bitwidemem-
ory with addresses A = {m, ...,1} and let A1 := a ∈ A | D⃗[a] = 1 denote the set of all
addresses containing a logic 1. Then, the modulo-2 address characteristic is defined as

C⃗ =
⊕
a∈A1

a .

The characteristic is now used to localize the module register affected by a Single Bit

Upset during clock gated phases. Let pi denote the parity of register Ri calculated by

the Parity-Pair Latches from the previous section. Let P⃗ = [pN , · · · ,p1]
T

represent
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the parity vector in matrix notation of all N register parity bits in the module, where

padr (N ≥ adr ≥ 1) references the parity of register R with address adr .

The mapping between parity and characteristic bits corresponds to a Hamming code

check matrix (see Eq. 2.5) expressed by the modulo-2 characteristic matrix M .

M =
 ad

r
N

. . .

ad
r

1

It consists of l rows and N columns, where N is the number of parity bits and each

column contains the binary address adr of the associated parity bit. The size l of the

calculated characteristic is defined by the maximum length over all used addresses

and depends on N logarithmically.

l = ⌈log2(N + 1)⌉ (4.6)

The characteristic C⃗ is computed by multiplying M with P⃗.

C⃗ = M · P⃗ (4.7)

To detect an error, the reference characteristic C⃗ of the original parity bits is computed

at the initiation of a clock gated phase and stored in an additional register of size l.
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The recomputed characteristic C⃗′
is then concurrently derived from the parity bits P⃗

until the end of the clock gated phase. The difference between the reference charac-

teristic C⃗ and the recomputed characteristic C⃗′
is called the syndrome of P⃗.

S⃗ = C⃗ ⊕ C⃗′
(4.8)

If S⃗ is the all-zero vector no deviation was detected, otherwise S⃗ contains the address

localizing the register bit affected by a Single Bit Upset (SBU).

Example Assume a module with 7 registers and let P⃗ denote the associated parity

bits with values

[
0010110

]T
. Together with the modulo-2 checksum matrix M , the

reference characteristic C⃗ of size l = ⌈log2(7 + 1)⌉ = 3 is computed and stored.

C⃗ = M · P⃗ =


1 1 1 1 0 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1


· P⃗ =



1

0

0


Now, a SBU affects register R5 which results in the inversion of the associated register

parity p5 and leads to the faulty parity vector P⃗′ =
[
0000110

]T
. The characteristic is

recomputed as C⃗′
and the syndrome S⃗ is calculated.

C⃗′ = M · P⃗′ =



0

0

1


S⃗ = C⃗ ⊕ C⃗′ =



1

0

0


⊕



0

0

1


=



1

0

1


As S⃗ is not the zero vector, the SBU is detected. Moreover, as S⃗ contains the address

5, the register affected by the SBU is correctly localized.

The characteristic has some substantial benefits compared with signature analysis

and error correcting codes (see Sections 2.2.3.1 and 3.1.1.1) [DSS95; Ham50]. Single

error location is especially easy, as the computed syndrome directly provides the

address of the affected register. Double errors are always detected, and the overall

aliasing probability is 2
−l

, where l is the number of address bits [WDGS87; WDGS88;

DOFR89]. Address ’0’ is not used, as it does not contribute to the error detection. The

overall characteristic can be computed sequentially bit by bit like in Figure 4.5.
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4.3. Single Event Upset Localization at Module Level

4.3.2. Optimal Combinational Characteristic Computation

However, the sequential computation is only appropriate for memory arrays, but

in random logic a combinational logic is required. In a straight-forward way this is

implemented by a tree whose leaves are the N binary l-bit words pi ∧ i, and each

node represents bit-wise XOR. Figure 4.6 illustrates this for 7 registers (N=7) with

parity bits p1, . . . ,p7 for l = 3.

The number of vertices in the tree of Figure 4.6 is 2
l+1 − l, due to address 0 not being

used. As the root node has not to be connected two times there are

l · (2l+1 − l − 1) (4.9)

point-to-point connections. A significant amount of hardware can be saved if only a

subset of all bits is passed between the levels (Figure 4.7).

To recapitulate: The characteristic C is the modulo-2 sum of all addresses that contain

a logic 1 (see Def. 4.3.1). It follows, that the i’th characteristic bit is the modulo-2 sum

of all i’th address bits that contain a logic 1 (Fig. 4.6). However, only addresses that

have a logic 1 at position i can actually contribute to characteristic bit i. Consequently,

as the addresses are a priori known, each characteristic bit i can be computed by a

XOR-tree that sums up all parity (data) bits where the i′th address bit is 1 (Fig. 4.7).

In level k ∈ {0, . . . , l − 1} there are 2
k

vertices and each vertex vk, i , i ∈ {0, . . . ,2k − 1}
corresponds to 2

l−k
addresses. ck, i = (ck, i,l−1, . . . ,ck, i,0) is the output of vertex

vk, i . The k most significant bits (al−1, . . . ,al−k+1) of the addresses of vertex vk, i are

identical and the result bits (ck, i,l−1, . . . ,ck, i,l−k+1) only depend on the parity of the

2
l−k

leaf vertex register-parities:

▷ (ck, i,l−1, . . . ,ck, i,l−k+1) = (0, . . . ,0) if the parity is 0,

▷ (ck, i,l−1, . . . ,ck, i,l−k+1) = (al−1, . . . ,al−k+1) if the parity is 1.

Thus, it is not necessary to compute this vector of k bits. Instead, the generation of

the information can be deferred to the successor in level k − 1 and only the parity is

computed and forwarded:

pk, i = pk+1,2·i ⊕ pk+1,2·i+1 .

The l − k − 1 bits (ck, i,l−k−2, . . . ,ck, i,0) are computed from the characteristics of the

predecessors of vk, i :

ck, i, j = ck+1,2·i, j ⊕ ck+1,2·i+1, j j ∈ {l − k − 2, . . . ,0} .
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Figure 4.6.: Non-optimal Computation of the Modulo-2 Characteristic.

Finally, ck, i,l−k−1 corresponds to the highest address bit that distinguishes the two

predecessors of vk, i . From the previous observations, it is known that any most

significant bit of the characteristic can be derived from the parity bits pk,2·i and

pk,2·i+1. Here, address bit l − k − 1 of predecessor vk,2·i is known to be 0, and 1 for

vk,2·i+1 respectively. It follows:

ck, i,l−k−1 = (0 ∧ pk+1,2·i ) ⊕ (1 ∧ pk+1,2·i+1)

= pk,2·i+1 .
(4.10)

Therefore, each vertex on level k has 2 connections to read each parity of the 2

predecessors and 2·(l−k−1) connections to read the characteristic of the predecessors.

Hence, the number of input connections on level k is 2
k · 2 · (l − k).

Since the least significant parity bit in any level does not contribute to the overall

characteristic, there is no need to compute this bit (see Figure 4.7). The overall number

of point to point connections is:

l−1∑
k=0

2
k+1 · (l − k) − l

which is easily transformed into

2
l+2 − 3 · l − 4 (4.11)
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and is less than Formula (4.9).

The reduced amount of connections originating from the optimal characteristic tree

organization results in a lowered routing congestion in the layout of circuits equipped

with the detection and localization scheme. Thereby, alleviating the routing effort

and lowering the area associated with routing.

Of even higher importance is the reduction of the cell area required to implement

the characteristic tree. The characteristic computation for a single data bit is straight-

forward as no parity bit is needed due to address 000 not being used. To derive the

2-bit characteristic of 3 data bits with addresses 001,010,011 (the left sub-tree in

Figure 4.7 with N = 3 and l = 2) two additional XOR gates are required in excess of

the computation of a single characteristic bit:

▷ Characteristic Bit 1 (k = 1): To combine the two sub characteristics from the

lower level identified by a ’1’ at the first address position (bits 001 and 011),

▷ Characteristic Bit 2 (k = 2): To compute the parity of the two bits containing a

’1’ at the second address position (bits 010 and 011).

In general, the amount of supplemental XOR gates to extend the characteristic from

l − 1 to l bits is

2
l − 2 .
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The total amount of XOR gates for a given characteristic size l is then calculated

by summation over all levels. The area of the optimal combinational characteristic

computation is derived by multiplication with the area of the used two-input XOR

standard cell.

AreaChar =
∑

2≤ j≤l

(2 j − 2) · AXOR2 = (2l+1 − 2 · l − 2) · AXOR2 (4.12)

Example Continuing the previous example, let N be 7. Further, let the characteristic

size l be 3 due to Formula 4.6. Consequently, the number of XOR2 gates required to

implement the characteristic tree is 8 as depicted in Figure 4.7:∑
2≤ j≤3

(2 j − 2) = 2
3+1 − 2 · 3 − 2 = 16 − 6 − 2 = 8 .

4.4. Experimental Evaluation

The Non-Concurrent Detection and Localization of Single Event Upsets will be eval-

uated in the following. The description of the experimental setup is followed by the

results for the detection at gate level building upon the Parity-Pair Latch. Finally, the

results regarding the modulo-2 address characteristic used to facilitate the localization

at module level are discussed. More details on the used tools are found in Section A.1.

Tabulated results are provided in Section A.3.1 where appropriate.

4.4.1. Experimental Setup

The Parity-Pair Latch schematic from Section 4.2.2 is implemented at layout level as a

new standard cell. The cell is designed according to the design rules and electrical rules

of the FreePDK Process Design Kit [SCW+07], which also lays the foundation of the

Nangate Open Cell Library (OCL) [Nan11]. The cell layout is checked for consistency

with the schematic during Layout-vs-Schematic (LVS). Afterwards, Physical Extraction
(PEX) is performed to obtain a transistor netlist modeling all parasitic layout effects

at electrical level.

The Parity-Pair Latch transistor netlist, as well as the reference implementation using

Open Cell Library gates, are simulated at the analog level using SPICE [NP73] in order
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to derive the timing behavior and power consumption. In all simulations, the input

is driven by a rising and a falling edge with a slew rate of 22 V/ns; which implies

that the input signal reaches the nominal voltage of 1.1 V respectively 0 V after 50 ps.

An inverter (OCL INV X1) is connected to every output as a load. For the output

transition delay, the logical ’0’ is detected below 10 % and the logical ’1’ is recognized

above 90 % of the nominal voltage. In contrast to the 30 % and 70 % used within the

Open Cell Library, these percentages are pessimistic and underestimate the reachable

delays.

The standard cell is added to a new standard cell library during Library Characteriza-
tion, which determines the electrical properties for a much larger space of operating

points than the previous manual analog simulation. As the new library comprehends

full compatibility to the Open Cell Library (same cell height and operating voltage)

the detection of Single Event Upsets is evaluated at gate level. Therefore, two variants

of the parity computation for a single register, a reference implementation and the

presented solution employing Parity-Pair Latches, are implemented in VHDL, syn-

thesized and compared with respect to their area overhead. Finally, the localization

across multiple registers is implemented in VHDL, added to both variants, synthesized

and evaluated across different register sizes and quantities.

4.4.2. Single Event Upset Detection at Gate Level

The overhead to implement the Single Event Upset detection at gate level consists

of the Parity-Pair Latch (PPL), the remaining XOR gates to compute the register

parity and the associated wiring. The properties of a Parity-Pair Latch standard cell

implementation will be discussed first, followed by the results regarding the parity

computation for a single register.

4.4.2.1. Parity-Pair Latch Standard Cell

The Parity-Pair Latch is implemented as a new standard cell using a full custom design

style. In the following, this basic building block of the presented Single Event Upset

detection will be evaluated with respect to three metrics. The area of the standard cell

in order to quantify the achievable hardware overhead reduction; the timing behavior

to substantiate an accelerated parity computation; as well as the power consumption

and energy to depict an increased efficiency during operation.
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Standard Cell Area

The layout of the Parity-Pair Latch standard cell is shown in Figure 4.8. The order of

the gates from the schematic (Fig. 4.3) from left to right is as follows: TG1, TG2, INV1,

INV2, TG6, TG5, INV4, INV3, TG4, TG3. The cell height is - as in the Open Cell Library

- 1.4 µm. Employing the same cell height ensures interoperability with arbitrary

standard cells from the Open Cell Library; and especially enables the use of OCL

XOR2 cells to implement the remaining levels of the register parity computation. The

Parity-Pair Latch standard cell has a width of 2.66 µm and a total area of 3.724 µm2
.

Implementing the same functionality using OCL standard cells requires two high

enable latches (DLH X1) and one exclusive OR (XOR2 X1). With an area of 2.926 µm2

for the OCL DLH X1 latch and 1.596 µm2
for the OCL XOR2 X1 cell, the resulting

area adds up to 2 · 2.926 µm2
+ 1.596 µm2 = 7.448 µm2

.

In summary, in contrast to the reference implementation, the newly designed Parity-

Pair Latch standard cell PPL X1 requires just half the area.

Timing Behavior

In order to measure the delay of the Parity-Pair Latch cell (Sec. 4.2.2) and to quantify

the improvement with respect to a straight forward implementation solely utilizing

Open Cell Library cells, both alternatives are simulated at the circuit level using SPICE.

P

Q2
gnd!

L1_ENL1_ENB

vdd!

Q1

D1

L2_EN L2_ENB

D2

2.66 µm

1
.4
µ

m

n Well

p Well

Active

p Implant

n Implant

Polysilicon

Contact

Metal 1

Via M1-M2

Metal 2

Figure 4.8.: Layout of the Parity-Pair Latch Standard Cell PPL X1.
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The OCL reference implementation of the PPL functionality consists of a transistor

netlist composed out of of two DLH X1 high enable latches and one XOR2 X1 exclu-

sive OR connected to the two latch outputs (left half in Figure 4.2 without NAND2

gates). The Parity-Pair Latch transistor netlist is identical to Figure 4.3. The delays

from the D1 input to the Q1 output respectively the parity output P are determined

for both netlists. For the PPL netlist the delay from D2 to Q2 and P is considered in

addition, as both transmission gates of the XOR function are driven by the second

latch while their drains are connected to the first latch. The second latch is transparent

throughout the simulation and propagates a logical ’0’.

Figure 4.9 shows the simulation results for the OCL implementation. For a falling

transition at D1, the Q1 output reaches 0.11 V after 98.76 ps, for a rising transition

0.99 V are reached after 98.63 ps. The parity output P needs 130.99 ps for the falling

and 136.45 ps for the rising transition.

Figure 4.10 depicts the results for the implemented PPL standard cell. The D1-to-Q1

delay for the falling transition is 72.4 ps and for the rising transition 76.36 ps. The

D1-to-P delays are as low as 74 ps (falling) and 82.42 ps (rising), which is significantly

faster as in the OCL reference implementation. As the implementation of the XOR

function in the PPL cell is not symmetric, the transition at input D2 is simulated in
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addition. With D2-to-Q2 delays of 69.33 ps (falling) and 69.34 ps (rising) as well as

D2-to-P delays of 67.74 ps (falling) and 73.39 ps (rising) the parity even outperforms

the latch output and all delays are lower than for the D1 input.

In summary, the Parity-Pair Latch standard cell is faster than the reference implemen-

tation for all measured delays, with a considerably accelerated parity computation.
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Power Consumption and Energy

During the analog simulation, a transient analysis of the power consumption is

performed for both circuits. The power consumption of the reference implementation

(depicted in orange in Figure 4.11) shows two major peaks for each transition, which

can be attributed to the switching of the contained latch and the exclusive OR. For the

Parity-Pair Latch, only a single peak is visible due to the integrated parity computation

and power is consumed in much smaller timeframes for both transitions.

The peak power is reduced for both transitions in comparison to the peak power

of 112.2 µW for the reference implementation. For the Parity-Pair Latch, the peak

power is 91.33 µW for a transition at the D2 input, and 84.29 µW for the D1 input.

Consequently, the peak power is reduced by 18.60 % and 24.87 % respectively.

For the average power, the reduction is even higher due to the steeper and shorter

power consumption of the Parity-Pair Latch. The average power consumption of the

reference implementation during the simulated 500 ns is 23.40 µW . In contrast to

this, the Parity-Pair Latch has an average power of 8.14 µW for a transition at the D1

input and 7.86 µW for the D2 input, thereby reducing the average power by 65.21 %,

respectively 66.41 %.
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Figure 4.11.: Power and Energy of the OCL Parity-Pair Latch Reference Implementa-

tion (DLH X1 and XOR2 X1) and the Parity-Pair Latch (PPL X1).
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The energy (area under each curve in Fig. 4.11) of the reference implementation is

116.99 pJ (OCL PPL). The energy of the Parity Pair Latch amounts 40.71 pJ (PPL D1)

and 39.27 pJ (PPL D2) and is reduced by the same percentage as the average power

due to the identical simulation time.

In summary, these results reassure a reduced peak and average power consumption,

as well as a significant energy reduction for the Parity-Pair Latch.

4.4.2.2. Parity Computation for a Single Register

Typically, a register contains more than two bits. To this end, several Parity-Pair

Latch cells can be combined to form larger registers as depicted in Figure 4.1-c.

Area Overhead

The area required for such an implementation was already discussed in Section 4.2

and will now be evaluated. Figure 4.12 depicts the normalized area after synthesis as

a function of register size for three different registers that have been implemented

using VHDL. The unprotected register consisting of DLH X1 latches which serves

as the area baseline (Eq. 4.2), the reference parity protection exclusively using Open

8 16 32 64 128
0

20

40

60

80

100

82.52
86.25

88.12 89.06 89.53

7.52
11.25

13.12 14.06 14.53

Register Size [bit]

A
r
e
a

O
v
e
r
h

e
a
d

t
o

O
r
i
g

i
n

a
l

[
+

%
]

Reference (OCL)
Parity-Pair Latch (PPL)

Figure 4.12.: Area Overhead - Parity Computation for a Single Register - Reference

Implementation (OCL) and Parity-Pair Latch (PPL) (data from Table A.4).

80



4.4. Experimental Evaluation

Cell Library gates (Sec. 4.2.1, Eq. 4.4), and the Parity-Pair Latch protection (Sec. 4.2.2,

Eq. 4.5). Absolute area values are provided in Table A.4 in the appendix.

The reference implementation has an area overhead of +82.52 % for a single 8-bit

register. This overhead moderately increases with the register size due to the log-

arithmic growth of the parity tree. For 128 bits, +89.53 % of the original register

size are required to compute the parity. The Parity-Pair Latch protection exhibits

a significantly lower area overhead ranging from +7.52 % (8 bits) to +14.53 % (128

bits).

In summary, the application of Parity-Pair Latches to register parity computation sig-

nificantly lowers the area overhead by 75 % independent of the register size. Thereby,

the area necessary for the register parity computation is reduced from a almost

doubling of the unprotected register area to less than 15 % additional area.

4.4.3. Single Event Upset Localization at Module Level

In presence of multiple registers, the modulo-2 address characteristic from Section 4.3

is used to localize Single Event Upsets as shown in Figure 4.1-d.

Area Overhead

To evaluate the overhead associated with the localization, the modulo-2 address

characteristic is implemented and synthesized along with multiple parity protected

registers, the characteristic register C, the syndrome computation as well as the

derivation of the module wide fail signal. As previously, three configurations are

considered, but from now on in the two-dimensional design space spanned by the

size and the amount of registers.

Figure 4.13 depicts the normalized area for the previously used register sizes. For each

register size, multiple registers are used to implement between 256 bits and 4096 bits

in total. Consequently, between 32 and 512 8-bit registers are considered, while the

number of 128-bit registers is between 2 and 32. For 8-bit registers, the area overhead

associated with the detection and localization is between +99.1 % (256 total bits) and

+97.68 % (4096 total bits), effectively doubling the area of the unprotected register.

With growing register sizes, the area overhead reduces as the constant amount of

total bits is implemented in fewer registers. Hence, area is saved by using a shorter

characteristic at the cost of a decreasing localization resolution. The area overhead is

81



Chapter 4. Non-Concurrent Detection and Localization of Single Event Upsets

significantly reduced if Parity-Pair Latches are used. It ranges from +23.4 % to +22.6 %

for 8-bit registers and further reduces for larger register sizes.

To quantify the particular overhead of the localization, the difference to the parity

registers can be considered as follows. The characteristic of 512 parity bits is derived

when 4096 bits are implemented using 8-bit registers. By subtracting the overhead

for the 8-bit registers of +7.52 % from the total overhead of +22.6 % reported here,

the localization overhead is +15.08 %. Similarly, 256 bits implemented in two 128-bit

registers lead to a localization overhead of +1.17 % (+15.7 % − +14.53 %).

It is worth mentioning, that, if a constant amount of total bits is considered, whenever

the localization overhead is high due to many small registers being used, the detection

overhead is low. On the other hand, the use of fewer larger registers with a higher

detection overhead implies a low localization overhead.

In summary, independent of the register organization, the detection and localization

of Single Event Upsets has a relatively constant area overhead between one quarter

and one sixth of the unprotected sequential portion of a module.
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4.5. Summary

This chapter focused on the detection and localization of Single Event Upsets in

registers contained in a module during clock gated phases. The presented two-tiered

architecture provides dedicated solutions for the detection and localization imple-

mented on different levels of abstraction.

The detection of Single Event Upset is implemented at gate level by deriving a parity

checkbit for each individual register. Within a register, the first level of the parity

tree is merged with the register latches into a new gate, the Parity-Pair Latch. Its

implementation as a new standard cell is shown to be faster, to require less area, to

exhibit a lowered peak and average power, as well as to result in a lower energy than

the reference implementation. Consequently, the computation of register parities is

shown to require a very low area effort.

The localization of Single Event Upsets across multiple registers is achieved at module

level with the help of a checksum. The used modulo-2 address characteristic is able to

detect and correctly localize all single errors. By using the optimal tree organization

the amount of required gates as well as connections is significantly reduced and paves

the way for an area efficient implementation.

By combining the detection at gate level with the localization at module level, an

effective detection and localization of Single Event Upsets is facilitated, which can be

implemented efficiently.
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Chapter 5

Concurrent Online Correction
of Single Event Upsets

The occurrence of soft errors is not limited to the clock gated phase. During operation,

Single Event Upsets have the potential to result in additional failure modes due to an

enabled clock. As in the previous section, the impairment of data stored in registers

leads to data corruption, which potentially spreads to all data deduced from the

affected register during successive computations. More severe is the corruption of

the module’s state itself, as the control flow is altered and thereby the sequence of

instructions executed is changed.

The efficient detection and localization of Single Event Upsets during clock gated

phases from the previous chapter is not limited to the clock gated phase and can also

be applied during operation with a continuously enabled checksum computation.

However, usually tighter requirements arise during operation that must be carefully

considered during online Single Event Upset correction:

▷ Error Containment: With an enabled clock, all data stemming from the original

upset location is corrupted. Thus, correction entails a complete recomputation.

▷ Localization Granularity: Correction modes more sophisticated than straight

forward recomputation demand an error localization within the failing register.

▷ Correction Latency: The correction itself must be completed with a very low

latency to reduce the impact of fault tolerance on operation performance.

This chapter is based on the online correction presented in [IW11a; IW11b], which

copes with all these requirements by a self-contained architecture that provides an

area, time, and power efficient online correction.
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5.1. Concurrent Online Architecture

The concurrent online architecture builds upon the fundamentals of the previously

described detection and localization. The architecture treats the registers of a module

individually and allows for error detection, localization and correction. Therefore, in

the following, a single register composed of n latches is considered (Figure 5.1-a).

The detection of transient errors is realized by protecting the register content with

a checksum (Figure 5.1-b). The modulo-2 address characteristic discussed earlier is

used and attached directly to the register (Block I). Thus, a sufficient localization

granularity is provided in combination with an area efficient implementation. The

register reference characteristic C is derived and stored in log(n) additional latches

upon the beginning of each clock cycle (Block II). Throughout the clock cycle, the

recomputed characteristic C′
is calculated concurrently from the register value and

compared to the reference characteristic. The resulting syndrome S comprises the

localization information, which as opposed to the non-concurrent detection now

pinpoints to individual register bits. The syndrome is then compacted into a single bit

fail signal by a simple OR tree and used to trigger a correction by recomputation.
1

To implement an online correction that is faster than recomputation, the scheme is

extended with a correction mechanism (Figure 5.1-c). In case of an error, the raised

fail signal of a register is used to disable the clock of all other registers within the

module which is beneficial in two ways. On the one hand, this local clock gating

ensures that no new data is written to the affected register. Hence, the redundant

information stored in the checksum, as well as its relationship to the register content

is preserved. On the other hand, the error effect is contained in the register and

can be corrected locally, within an extended timeframe procured by the local clock

gating. To perform the actual correction, the register is composed of n Bit-Flipping
Latches (BFL), which are inherently able to invert their internal state (Block III). As

the syndrome S directly derives the address of the affected bit, it is decoded and used

to control the Bit-Flipping Latches to reconstruct the correct register state.

For all presented configurations no additional elements are inserted into the data path,

thus no additional delay is introduced in the fault free case. If a single event upset

occurs, either the global recomputation is triggered (Figure 5.1-b) or one additional

clock cycle is used to correct the effect of the upset (Figure 5.1-c).

1
The syndrome also allows fine-grained decisions, e.g. based on the significance of the affected bit.
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Figure 5.1.: Presented Concurrent Online Configurations.

Throughout this chapter, soft errors are confined to the occurrence of Single Bit Upsets
(SBU) (single error assumption). The detection and correction in presence of multiple

errors will be discussed in Chapter 6.

The remainder of this chapter starts with the Single Error Detection in Section 5.2. It

briefly depicts the application of the modulo-2 address characteristic to individual

registers (Block I), as well as the protection of the stored error condition in order to

eliminate false detections (Block II). Subsequently, Section 5.3 details the extension

to Online Correction with a focus on the Bit-Flipping Latch (Block III). Prior to the

summary, both parts are experimentally evaluated in Section 5.4.

5.2. Single Error Detection (SED)

Upon the detection of errors during operation, a correction by recomputation requires

many clock cycles during which a module is not available. Thus, the avoidance of non-

essential corrections has the potential to reduce the performance impact associated

with the time consuming restart of a computation. In the course of this section the

base for such fine-grained correction decisions is laid by

▷ an improved localization granularity to spot errors within registers and

▷ the avoidance of false detections whenever the data path is correct.
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5.2.1. Derivation of a Register Specific Error Condition

The modulo-2 address characteristic discussed in Section 4.3 has been shown to be

an effective solution for the localization of SEU across multiple registers of a circuit.

The need for an online detection and localization of SEUs within the registers can be

fulfilled by deriving a characteristic for each individual register.

In contrast to the non-concurrent localization, the register characteristic C of a single

register R with n bits is derived as C = M · R. The characteristic is computed by

attaching the characteristic tree directly to the register as shown in Figure 5.2 and

stored in the l-bit reference characteristic register C. The syndrome S is derived by

comparison of C and C′
and compacted into the one bit syndrome fail signal fail S to

indicate any discrepancy between the register content R and its characteristic C.

The implementation for each register profits from the low number of connections

and gates enabled by the optimal characteristic tree organization introduced in

Section 4.3.2. As a register is locally confined to a relatively small area in the final

layout, only few routing resources are occupied and a small area overhead of the

protected register is expected. The characteristic tree only requires exclusive OR

standard cells and the associated area is identical to the non-concurrent localization

(Eq. (4.12)). As all remaining infrastructure parts solely depend on the logarithmic

characteristic, the area associated with the derivation of the error condition (EC)

within a single register is low (Eq. (5.1)).

AreaEC = n · ALatch︸    ︷︷    ︸
Register R

+ (2l+1 − 2l − 2) · AXOR2︸                       ︷︷                       ︸
Characteristic Tree (Eq. (4.12))

+ l · ALatch︸   ︷︷   ︸
Register C

+ l · AXOR2︸    ︷︷    ︸
Syndrome S

+ (l − 1) · AOR2︸          ︷︷          ︸
fail S

(5.1)

The application of the modulo-2 address characteristic to individual registers provides

the localization granularity necessary to identify single failing bits and will later

allow to reconstruct the correct bit value at the erroneous location.
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Figure 5.2.: Block I and Block II: Deriving and Protecting the Error Condition.
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5.2.2. Protected Storage of the Error Condition

The modulo-2 address characteristic is able to detect and localize single errors in

the protected register. The syndrome fail signal fail S will indicate any Single Event

Upset in R. Unfortunately, a Single Upset in the stored reference characteristic C also

leads to a raised syndrome fail signal (Figure 5.2). Hence, a false detection is triggered

although the register content and thereby the data on the data path is unaltered and

valid. To decide if a SEU affected the original register and thereby the data path or if it

manifested in the stored reference characteristic, an additional protection of the error

condition is necessary to distinguish both cases under a single error assumption.

This can be achieved by either protecting the register R or the characteristic C with

an additional parity bit. The parity of the characteristic C is chosen due to a smaller

area overhead resulting from the logarithmic relationship between the register size n
and the characteristic size l (Eq. 4.6). The parity is then computed from the reference

characteristic register C by a small XOR tree and stored in one additional latch PC as

shown in the gray part of Figure 5.2. In the following, the difference of the reference

parity P and the actual parity P′
is called the parity fail signal fail P. Any Single Bit

Upset in the register R, its characteristic C or the parity P thereof, will be visible in

at least one of the two fail signals.

With two fail signals at hand, that indicate a discrepancy between either R and C
(fail S), or C and P (fail P), the location can be derived for an error affecting the

▷ Original Register (R): The syndrome fail signal is ’1’ (as C , C′
), the parity fail

signal is ’0’ (P = P′
). As the data on the data path is affected, a correction is

triggered.

▷ Reference Characteristic (C): Both, the syndrome and the parity fail signal are

’1’ (C , C′
and P , P′

). The error changed C, not the data path, no correction

is needed.

▷ Characteristic Parity (P): The syndrome fail signal is ’0’ while the parity fail

signal is ’1’ (C = C′
and P , P′

). The reference parity P was altered. The data

path is correct, no correction is needed.

Hence, the correction signal is defined as correct = fail S ∧ ¬fail P . The negation of

the parity fail signal is efficiently implemented by merging with the XOR2 gate and
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Chapter 5. Concurrent Online Correction of Single Event Upsets

using a XNOR2 gate instead. The additional area to protect the error condition is

small and grows logarithmically with the register size (Eq. (5.2)).

AreaSED = AreaEC︸ ︷︷ ︸
Eq. (5.1)

+ (l − 1) · AXOR2︸            ︷︷            ︸
Parity Tree of C

+ ALatch︸︷︷︸
Register PC

+ AXNOR2︸  ︷︷  ︸
¬fail P

+ AAND2︸︷︷︸
correct

(5.2)

Detection Capability: All single faults can be detected, correctly localized and cor-

rected. Double faults can be detected, but not corrected. The detection of other multiple

faults cannot be guaranteed. In general, the Hamming distance of the used code can

be increased to allow the detection, localization and correction of multiple faults.
2

Consequently, Single Error Detection (SED) is achieved, which completely avoids

false detections. In case of a detection, detailed localization information within a

register is supplied. Thus, fine-grained decisions are permitted for correction by

recomputation.

5.3. Single Error Correction (SEC)

The previous section described how SEUs can be detected and localized while allowing

more sophisticated correction decisions and reducing the amount of corrections by

recomputation to a minimum. This section extends the scheme with a much faster

online correction that directly utilizes the localization information to invert the

affected bit while preserving the state of all other latches.

5.3.1. Rapid Correction by Bit-Flipping

To implement such a fast correction, only few building blocks are needed on top of the

previously discussed detection. The localization of altered bits is already performed

by the syndrome S which contains the address of the Single Bit Upset in binary form

and is decoded by an 1-out-of-l decoder into a n-bit correction vector. By gating

the syndrome with the correct signal in front of the decoder, the correction vector

contains a single ’1’ if a correction is advisable and is the zero-vector otherwise. The

2
The Extended Modulo-2 Characteristic for double error detection is discussed in Chapter 6.
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5.3. Single Error Correction (SEC)

area of the correction is hence given by Equation (5.3). The last summand denotes

the area delta of the bitwise correction which will be discussed next.

AreaSEC = AreaSED︸  ︷︷  ︸
Eq. (5.2)

+ l · AAND2︸    ︷︷    ︸
Gate

+ l · AINV2 + n · (l − 1) · ANAND2︸                                 ︷︷                                 ︸
Binary Decoder

+ n · (ABFL − ALatch)︸                 ︷︷                 ︸
Bit Flipping Overhead

(5.3)

5.3.1.1. The Bit-Flipping Latch

The actual correction of the erroneous bit is then performed by so-called Bit-Flipping
Latches (BFL) as shown in Figure 5.1-c. Compared to other solutions for inverting the

latch content, these have the advantage to go without additional gates or multiplexers

in the data path that could compromise the timing behavior.

In general, a latch consists of two inverters (INV) and two transmission-gates (TG)

(gray in Figure 5.3, with a direct connection between Q and TG5). It is controlled by

a pair of control signals {L,L} which decides if a new value is latched from D (the

latch is transparent) or if the internal state is preserved (the latch is blocking).

The Bit-Flipping Latch (BFL) is an extension, that contains an additional inverting

feedback loop (TG4, inverter INV3 and TG3) (Figure 5.3). The reversion of the latched

valued is controlled by an additional control signal pair {HI,HI} (Figure 5.3) as

depicted in the following.

▷ Hold Mode: For {HI,HI} = {1,0} the upper loop is used (TG2 and TG4 con-

ducting, TG3 blocked), and the BFL behaves like a normal latch without com-

promising the timing behavior. In addition, the inverter INV3 is precharged by

TG4. Hence, already holding the inverted value of Q ready at its output.

▷ Invert Mode: By inverting the additional control signal pair while the latch is

blocking ({HI,HI} = {0,1}), both loops are blocked (TG2 and TG4 blocked,

TG3 conducting) to avoid metastability of the inverting feedback loop. Simul-

taneously, the inverted value of Q is fed from INV3 to the inverter chain.

As soon as the inversion of {HI,HI} is canceled in the next clock cycle, the

non-inverting feedback loop stores the inverted value.
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Figure 5.3.: Block III: Schematic of the Bit-Flipping Latch (BFL).

5.3.2. Timing Behavior of the Online Correction

With this effective correction mechanism implemented at bit-level, the course of

events during the online correction implemented at register-level is now exemplified.

Figure 5.4-a visualizes the timing of an unprotected register in a level-sensitive design

with two non-overlapping clocks A and B (Figure 5.1-a). The timing of the presented

correction scheme (Figure 5.1-c) is shown in Figure 5.4-b. A soft error hits the register

in clock cycle clki at time t1 and becomes visible at the register output at time t2. The

online correction detects the changed value at time t3. The raising correct signal gates

the clock signal B, which controls all predecessing and subsequent registers in the

level-sensitive design style and triggers the correction, which is completed at time t4.

The falling correct signal at t5 in clock cycle clk′i indicates the successful correction.

5.4. Experimental Evaluation

The Online Correction of Single Event Upsets is now evaluated. The description of the

experimental setup is followed by the results for the Single Error Detection relying on

correction by recomputation. The review of the Single Error Correction first focuses

on the Bit-Flipping Latch serving as the basic building block before evaluating the

protection of complete registers. The used tools are particularized in Section A.1,

while Section A.3.2 supplies tabulated results where appropriate.
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Figure 5.4.: Timing Behavior in Presence of Soft Errors: a) Unprotected Register

(Figure 5.1-a); b) Protected Register with Correction (Figure 5.1-c).

5.4.1. Experimental Setup

The Online Single Error Detection from Section 5.2 is implemented as a gate level

netlist in VHDL, synthesized for the 45 nm Nangate Open Cell Library (OCL) [Nan11]

and compared to classical Duplication With Comparison (DWC) in terms of area.

For the Rapid Correction by Bit-Flipping from Section 5.3 first the Bit-Flipping Latch

from Section 5.3.1 is implemented as a new standard cell. As previously, the cell is

designed according to the design rules and electrical rules of the FreePDK Process
Design Kit [SCW+07] in order to be compatible with the Open Cell Library (OCL)
cells. Thereafter, consistency with the schematic is checked and confirmed during

Layout-vs-Schematic (LVS) and a transistor netlist containing all parasitic layout

effects is obtained during Physical Extraction (PEX). The netlists of the Bit-Flipping

Latch and the standard latch from the Open Cell Library are then simulated at the

analog level using SPICE [NP73]. A rising and a falling edge with a slew rate of

22 V/ns are employed to characterize the timing behavior and power consumption.

An inverter (INV X1) is consistently used as a load at the output and 10 % as well as

90 % of the nominal voltage serve as the used trip points.

93



Chapter 5. Concurrent Online Correction of Single Event Upsets

Subsequent to Library Characterization the standard cell is added to a new library

and used in conjunction with cells from the Open Cell Library to extend the VHDL

netlist used for Single Error Detection with the rapid Single Error Correction. Last,

the area overhead involved in protecting single registers is compared to two classical

approaches across different register sizes, namely Triple Modular Redundancy (TMR)
and bitwise Fault Tolerance (FT) comparable to RAZOR [EKD+03] and GRAAL [Nic07]

(see Sec. 3.1.2). Finally, the Timing Behavior of the Online Correction is validated

through a fault injection experiment.

5.4.2. Single Error Detection (SED)

The Single Error Detection relies on the derivation of a logarithmic checksum for

each individual register. The used modulo-2 address characteristic was already shown

to possess a lightweight implementation in Section 4.3. Therefore, the area overhead

of its direct application to single registers will be evaluated.

Area Overhead

In the following, an unprotected register serves as a baseline to allow the quantifica-

tion of the normalized area overhead across different register sizes. It is implemented

using the high enable latches (DLH X1) from the Open Cell Library, where each latch

has a cell height of 1.4 µm, a width of 1.9 µm, and an area of 2.66 µm2
.

The bit-wise detection by Duplication With Comparison (DWC) is implemented for

comparison and better classification of the area efficiency. In DWC, for each register

bit, two OCL DLH X1 latches and a XOR2 X1 exclusive OR are used to derive the error

condition of the bit. These bit error conditions are then aggregated into the register

error condition by an OR tree (OR2 X1). The area overhead of DWC is depicted in

Figure 5.5; it is approximately +190 % and does not depend on the register size.

The Single Error Detection extends the n-bit register block (using DLH X1 cells) with

the characteristic computation, the additional register to store C and the comparator.

An OR-tree aggregates the computed syndrome S into the syndrome fail signal.

Protecting the reference characteristic C with an additional parity determines if a

soft error affected R or C. The area overhead of the detection actually decreases

with growing register sizes as all used components depend logarithmically on the

register size (Eq. (4.6), Eq. (5.2)). Compared to the area of the unprotected register,
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the presented detection introduces an area overhead reaching from +177.12 % for a

7-bit register down to +94.31 % for a 255-bit register.

In summary, for small registers, the presented online detection already has a smaller

area overhead which further reduces with growing register sizes. For large regis-

ters a significantly lower area overhead is achieved by turning away from bitwise

redundancy in favor of a logarithmic checksum.

5.4.3. Single Error Correction (SEC)

Implementing the rapid correction on top of the online detection requires only few

extensions. A syndrome decoder is added to control the bit-level correction which

is implemented by replacing the register latches with Bit-Flipping Latches. As this

substitution directly affects the data path independent of the occurrence of Single

Event Upsets, the properties of the designed Bit-Flipping Latch standard cell will be

evaluated first. In succession, the protection of complete registers is evaluated along

with the timing behavior of the online correction.
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Figure 5.5.: Area Overhead - Single Error Detection (SED) - Single Register (data from

Table A.6).
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Chapter 5. Concurrent Online Correction of Single Event Upsets

5.4.3.1. Bit-Flipping Latch Standard Cell

The Bit-Flipping Latch is implemented as a new standard cell using a full custom

design style. This building block fundamental to the online correction will be evaluated

with respect to three metrics. The cell area to quantify the correction area overhead;

the timing behavior to except any negative impact during error free operation; as well

as the power consumption and energy to depict savings over the replaced latches.

Standard Cell Area

Figure 5.6 shows the layout of the Bit-Flipping Latch standard cell. The order of the

single gates from the schematic (Figure 5.3) from left to right is: TG1, TG5, INV1,

INV2, TG2, TG4, TG3, INV3. The left part of the cell implements a latch (TG1, TG5,

INV1, INV2), while the right part contains the additional inverting feedback loop.

The DLH X1 latch from the Open Cell Library is used for comparison which has

an area of 2.66 µm2
. The Bit-Flipping Latch uses the same cell height of 1.4 µm to

maintain compatibility. Together with the width of 2.28 µm, the area is 3.192 µm2
.

Hence, compared to the OCL DLH X1 latch, the additional area for implementing

the inverting feedback in the Bit-Flipping Latch is as low as +20 %.
3
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Figure 5.6.: Layout of the Bit-Flipping Latch Standard Cell BFLATCH X1.

3
In [IW11a] an older version of the Open Cell Library was used, which led to an area overhead of

+9 % due to a larger reference area of 2.926 µm2
instead of 2.66 µm2

for the DLH X1 latch.
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Timing Behavior of the Bit-Flipping Latch

To identify any negative bias of the correction scheme on the timing behavior in the

fault free case, the delay of a high enable latch from the OCL and of the Bit-Flipping

Latch is compared using SPICE. Figure 5.7 plots the voltage at the input D and the

output Q of both latches over the simulation time of 500 ns.

The output of the OCL latch (orange dashed) reaches 0.11 V after 81.93 ps for a falling

edge. For the rising edge 0.99 V are reached after 76.1 ps.
4

The Bit-Flipping Latch (blue dotted) has a delay of just 70.59 ps for the falling edge.

For the rising edge, the delay of 77.28 ps is only marginally larger as for the reference.

Thus, the Bit-Flipping Latch is faster than the standard latch from the library, which

is explained by a careful scaling of the used transistors.

Consequently, the application of Bit-Flipping Latches has no negative influence on

the timing behavior of a circuit.
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Figure 5.7.: Timing Behavior of the OCL Low Enable Latch (DLH X1) and the Bit-

Flipping Latch (BFLATCH X1): D-to-Q Delay.

4
In comparison to Chapter 4 the DLH X1 latch is faster due to the reduced load of a single inverter

instead of an inverter and an exclusive OR in the PPL reference implementation.

97



Chapter 5. Concurrent Online Correction of Single Event Upsets

Power Consumption and Energy

The power consumption of the reference latch and the Bit-Flipping Latch during the

analog simulation are depicted in Figure 5.8.

For the DLH X1 latch, the instantaneous power consumption for the falling edge

is significantly lower than for the rising edge with a peak power consumption of

80.91 µW . The power consumption of the Bit-Flipping Latch is more balanced and

a slight increase of the peak power to 83.51 µW is observed. The average power

consumed during simulation by the DLH X1 latch is 10.88 µW . As the Bit-Flipping

Latch has a shorter delay for the falling edge, its power consumption is higher and

shorter. Consequently, the average power of the Bit-Flipping Latch is lower and

amounts only 8.37 µW or 76.93 % of the average power for the reference latch. The

energy (area under the curves in Figure 5.8) is reduced by the same fraction due to

the identical simulation time.

In summary, the Bit-Flipping Latch has a comparable peak power consumption as

the superseded latch, while the average power consumption and energy are both

reduced by almost a quarter.
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Figure 5.8.: Power and Energy of the OCL Low Enable Latch (DLH X1) and the Bit-

Flipping Latch (BFLATCH X1).
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5.4.3.2. Correction within a Single Register

Now, the application of Single Error Correction to complete registers is evaluated

which makes use of the efficient bit-level correction enabled by Bit-Flipping Latches.

Area Overhead

For comparison, Triple Modular Redundancy (TMR) and bitwise Fault Tolerance (FT)
similar to RAZOR [EKD+03] and GRAAL [Nic07] (see Sec. 3.1.2) are considered.

Triple Modular Redundancy is implemented by three DLH X1 latches and a majority

voter (see Figure 3.2-b). For the voter, an area optimized implementation with three

NAND2 X1 and one OR2 X1 gate is used instead of the straight forward use of three

AND2 X1 and two OR2 X1 gates to allow an unbiased examination. The area overhead

of TMR depicted in Figure 5.9 is constant across all register sizes and amounts +330 %.

Bitwise Fault Tolerance consists of bit slices composed of a DLH X1 latch, a shadow

DFF X1 flip-flop, a XOR X1 exclusive OR, and a MUX2 X1 multiplexer to restore the

value from the shadow flip-flop. All bit slice fail signals are aggregated into a global

register fail signal by an OR tree (OR2 X1) (also optimized for area during synthesis)

to restore the complete register upon failure of at least one bit. The area overhead of

bitwise FT is +328.57 % for a 7-bit register and slowly grows with the register size.

7 15 31 63 127 255
0

100

200

300
330 330 330 330 330

329.32 330.32 330.79 331.42 331.49

340.01

272.66

248.71

228.89
213.78 211.69

Register Size [bit]

A
r
e
a

O
v
e
r
h

e
a
d

t
o

O
r
i
g

i
n

a
l

[
+

%
]

TMR
FT
SEC

Figure 5.9.: Area Overhead - Single Error Correction (SEC) - Single Register (data

from Table A.7).
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The presented online Single Error Correction (SEC) is implemented according to

Figure 5.1-c and includes all earlier discussed building blocks to compute, to store,

and to protect the characteristic. The syndrome S is gated with the correct signal,

decoded and used to control the Bit-Flipping Latches superseding the register latches.

The Single Error Correction has an area overhead of +340 % for a 7-bit register, which

is higher than TMR or FT. However, with growing register sizes, the logarithmic

checksum can play to its strength and the overhead is significantly reduced. For a

127-bit register the area overhead is only +213.78 %.

Timing Behavior of the Online Correction

To determine the Time Vulnerability Factor (TVF) of the presented scheme, soft errors

are injected into an 8-bit register protected with the correction from Section 5.3. The

used clock period was 4 ns with a 25 % high phase (as depicted in Figure 5.4). During

the high phase of the clock the latches are transparent; soft errors hitting the latch

can lead to glitches, but cannot permanently alter the sequential state. During the

low phase, the latches are locked and vulnerable to Single Event Upsets. A series of

simulations was performed, where a soft error is injected into a randomly chosen

latch by forcing the output of the first feedback inverter to its opposite value (injection

time t1). A testbench then recorded the following time points corresponding to t2

till t5 in the previous section: Visibility at the register output, raising correct signal

indicating the upset, visibility of the corrected value at the output and a falling correct

signal. The experiments were conducted for the whole low phase of 3 ns, while the

injection time point was moved forward by 100 ps for every experiment. The results

in Table 5.1 show, that all SEUs during the low phase are detected and corrected.

Table 5.1.: Time Vulnerability: 8-bit Register with Single Error Correction (SEC).

Injection Visible Detected Corrected End

Time at output (correct rising) at output (correct falling)

[ps] [ps] [ps] [ps] [ps]

0 (bit 4) 100 300 3200 4300

100 (bit 6) 200 300 3200 4300

200 (bit 6) 300 400 3200 4300

… … … … …

2600 (bit 0) 2700 2800 3200 4300

2700 (bit 1) 2800 2900 3200 4300

2800 (bit 5) 2900 3000 3200 4300
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5.5. Summary

Example In Figure 5.4-b the line starting with “200 (bit 6)” from Figure 5.1 represents

the experiment where an error is injected in bit 6 at time t1 = 200 ps, visible at the

output at t2 = 300 ps, and detected at t3 = 400 ps. It is corrected at t4 = 3200 ps and

the falling correct signal indicates the successful correction at t5 = 4300 ps.

5.5. Summary

Resilience to soft errors is nowadays considered a necessity. However, resilient designs

require additional circuitry or clock cycles to detect and correct soft errors. Hence,

the application of fault tolerance has to trade off design robustness against design

quality and cost (area, performance and power).

The presented Soft Error Detection conquers the area overhead associated with

a bitwise implementation by deriving a register-wide checksum. The employed

modulo-2 address characteristic is implemented as a tree with optimal organization

and compacts the register content into a logarithmic error condition. The protected

storage of the error condition completely avoids false detections and upon detection,

the Single Bit Upset is correctly localized. Thereby allowing to trade off the necessity

of correction by recomputation against the associated performance penalties at a

higher abstraction level. During evaluation, the Soft Error Detection scheme is shown

to not sacrifice performance of the data path and incorporate a low area overhead.

The presented Soft Error Correction overcomes the performance penalties associ-

ated with correction by recomputation such as increased computational latency

and throughput degradation. Correction in one additional clock cycle is enabled by

confining the necessary inversion of the affected register bit to a newly designed

standard cell: The Bit-Flipping Latch. The cell is shown to combine no performance

degradation during fault free operation with a reduced power consumption and a

low hardware overhead. Rapid correction is rendered possible by exploiting the local-

ization information procured during detection to control the bit-inversion inherent

to the Bit-Flipping Latches. Overall, the Soft Error Correction scheme is shown to

incorporate a lower area overhead than bitwise fault tolerance for widely used register

sizes while limiting the performance impact of correction to a minimum.

101





Chapter 6

Fault Tolerance
in Presence of Multiple Bit Upsets

Radiation induced soft errors originate from radiation events that are random in

time and location. Most single events result in Single Bit Upsets (SBU) that are

perfectly handled by the online correction discussed in the last chapter. With a

lower probability, multiple bits may be affected concurrently by a single event with a

sufficiently high energy.
1

For multiple upsets it is, independent of the root cause,

important to differentiate how many bits are affected within a register block (the

protected register and its fault tolerance infrastructure) at a time.

A Multiple Cell Upset (MCU) affects multiple bits of a module but each register block is

struck by at most one upset. As the previously discussed fault tolerance scheme allows

each register to correct a single error, the upsets can be corrected simultaneously.

Hence, Multiple Cell Upsets are covered without additional effort.

In case of a Multiple Bit Upset (MBU) at least two bits within a single register block

are affected.
2

As the online correction from the last chapter was designed under a

single error assumption, amendments are needed to cope with multiple errors which

will be discussed in the course of this chapter.

In theory, any arbitrary number of upsets affecting a register can be corrected under

a sufficiently high minimum Hamming distance. As the probability of multiple bit

upsets decreases with their multiplicity and as the cost associated with fault tolerance

raises with the Hamming distance, it is mandatory to carefully trade off correction

capabilities against their cost in terms of area overhead.

1
Theoretically, multiple independent events may also occur simultaneously in very rare cases.

2
The terms MCU and MBU are used in a generalized form that covers all sequential elements within

a register and its protection in contrast to the strict definition per register from Section 2.2.1.
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This chapter depicts the amendments to handle Multiple Bit Upsets and exemplarily

extends the online correction from Chapter 5 to double errors. The remainder of this

chapter starts with the analysis of the shortcomings of single error correction in

presence of double errors. It is followed by the improved architecture in Section 6.2

and the employed extended characteristic in Section 6.3. Last, the architecture is

experimentally evaluated in Section 6.4 before concluding with a short summary.

6.1. Preliminary Error Multiplicity Considerations

The online correction from the previous chapter employs two fail signals (syndrome

fail fail S and parity fail fail P). Thereby, an effective distinction of the four error

scenarios possible under a single error assumption is enabled as shown in the upper

three dotted parts of Table 6.1. If double errors are considered in addition, the amount

of possible error location combinations increases to 9 and two fail signals are no

longer sufficient for their differentiation. As a consequence, false corrections cannot

be prevented in three out of the five additional cases (the lower three dotted blocks

with false detections highlighted in gray) as follows.

▷ For two errors in register R at addresses a1 and a2, the correction is performed

at the wrong location a1 ⊕ a2 as a single error location is assumed.

▷ For two errors in the characteristic register C, a false correction is not hindered

by the parity fail signal fail P, as the actual characteristic parity collides with

the stored reference characteristic parity for any even number of errors in C.

▷ For one error in the characteristic register C and one in the characteristic

parity register PC, the parity fail signal fail P is zero as both, the actual and

the reference parity are altered simultaneously.

Note that, for all of the cases discussed above that result in false corrections, the

error multiplicity in register R is even. While, for the single case where a single error

affects register R and a correction is desired, the error multiplicity of R is odd. Hence,

to trigger only the desired correction, additional information needs to be provided

by the fault tolerance architecture as discussed in the following.
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Error

Multiplicity

Error Location Fail Signal Decision

R C PC PR S P E correct correct+

None 0 0 0 0 0 0 0 0 0

Single

1 0 0 0 1 0 1 1 1

0 1 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 na 0

Double

2 0 0 0 1 0 0 1 0

0 2 0 0 1 0 0 1 0

1 1 0 0 1 1 1 0 0

1 0 1 0 1 1 1 0 0

0 1 1 0 1 0 0 1 0

1 0 0 1 1 0 0 na 0

0 1 0 1 1 1 1 na 0

0 0 1 1 0 1 1 na 0

Table 6.1.: Double Error Locations - Single Error Correction (SEC, dotted part, Sec-

tion 5.2) and Single Error Correction, Double Error Detection (SECDED).

6.2. Online Architecture for Double Errors

To eliminate false detections in presence of double errors, the fault tolerance from

Chapter 5 is extended. The online detection and correction shown in the dotted area

in Figure 6.1 uses the l-bit modulo-2 address characteristic C as the error condition.

In order to increase the Hamming distance of the error condition, the additional

register parity PR is used. It can easily be computed by an exclusive OR tree and is

stored in an additional latch PR. Similar to the protected storage of the reference

characteristic, the reference register parity is compared to the actual register parity

PR’ and the extended fail signal fail E is derived.

The additional columns for the register PR and the fail signal fail E in Table 6.1 show

that, for the above mentioned 9 cases, the extended fail signal fail E is one only for

an error multiplicity of 1 where a correction is possible. As upsets cannot only affect

the original register R, the reference characteristic register C and the characteristic

parity PC but also the newly derived register parity PR, the four remaining cases

where PR is directly altered by a Single Bit Upset are shown in Table 6.1.
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Figure 6.1.: Block I and Block II: Deriving and Protecting the Extended Error Condition

in Presence of Double Errors.

With the addition of fail E, all cases can be distinguished and a correction is only

performed when a single error affects the data path by defining the extended correction
signal as correct+ = fail S ∧ ¬fail P ∧ fail E.

Also note the close relationship to the additional parity bit of an extended Hamming

code (see Eq. 2.6 in Sec. 2.2.3.1) or the extension of error detecting memory refreshment

by appending a constant 1 to every address (see Sec. 3.1.1.2).

6.3. Optimal Extended Characteristic Computation

The extended modulo-2 address characteristic C+ combines the register parity PR and

the register characteristic C into a l + 1 bit wide error condition defined as follows.

Definition 6.3.1 (Extended Modulo-2 Address Characteristic) Let R⃗ be a n-bit
wide register with addresses A = {n, ...,1} and let A1 := a ∈ A | R⃗[a] = 1 denote the set
of all addresses containing a logic 1. Then, the extended modulo-2 address characteristic
is defined as

C⃗+ = (
⊕
a∈A

R⃗[a] ,
⊕
a∈A1

a) .

In the following, the characteristic computation from Section 4.3.2 is augmented with

the register parity computation. Thereby, the hardware overhead is reduced as logic

sharing between the parity and the characteristic computation can be exploited.

The optimal organization of the characteristic computation was already discussed in

detail in Section 4.3.2. To recapitulate: The characteristic tree derives the l character-

istic bits C⃗ = (cl−1, . . . ,c0) in l tree levels as shown in Figure 6.2.
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Figure 6.2.: Optimal Extended Characteristic Tree Organization.

In level k ∈ (0, . . . , l − 1), exactly (l − k) characteristic bits are derived, where

the (l − k − 1) least significant characteristic bits (ck, i,l−k−2, . . . ,ck, i,0) (with white

background in Figure 6.2) are computed from the characteristics of the predecessors.

The most significant bit ck, i,l−k−1 (with gray background in Figure 6.2) corresponds

to the most significant address bit (l − k − 1) that distinguishes the two predecessors

and is known to be 0 respectively 1. It follows from Formula (4.10):

ck, i,l−1 = pk,2·i+1 .

Hence, the most significant bit ck,1,l−1 at level k ∈ (1, . . . , l) is equivalent to the parity

of all (2l−k ) leaf nodes with a 1 at address bit (l − k) (with bold text in Figure 6.2).

Thus, the register parity PR is derived as the parity of these l sub parity bits by (l − 1)
additional exclusive OR gates (contained in the gray highlighted slice at the left

of Figure 6.2), which is significantly less than the (n − 1) exclusive OR gates for

implementing a complete register parity tree.

In general, to dilate the extended characteristic from l − 1 to l characteristic bits, one

exclusive OR gate is required in addition to the sole characteristic tree: 2
l −1. The total

amount of exclusive OR gates for implementing an extended characteristic of size l
is calculated by summation over all levels. The area of the extended characteristic is
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obtained by multiplication with the area of the used two-input exclusive OR.

AreaChar+ =
∑

2≤ j≤l

(2 j − 1) · AXOR2 = (2l+1 − l − 3) · AXOR2 (6.1)

Example In Section 4.3.2, deriving the 3-bit characteristic of a 7-bit register required

8 XOR2 gates (Formula 4.12 with N = 7, l = 3). Here, just two additional two-input

exclusive OR gates are required to compute the extended characteristic C+:∑
2≤ j≤3

(2 j − 1) = 2
4 − 3 − 3 = 16 − 3 − 3 = 10 .

6.4. Experimental Evaluation

The extension of fault tolerance to cope with double bit upsets in single register

blocks is now evaluated with respect to the involved area overhead. The employed

tools and tabulated results are depicted in Section A.1, respectively Section A.3.3.

6.4.1. Experimental Setup

The Single Error Detection (SED) and the Single Error Correction (SEC) architecture

from Section 5 are complemented with the parity fail signal as shown in Figure 6.1

and the correction signal is updated to implement the extended correction signal

correct+ according to Section 6.2. The optimal extended characteristic computation is

used and implemented by augmenting the characteristic tree with the register parity

computation as described in Section 6.3. The resulting architectures support Single

and Double Error Detection (DED) as well as Single Error Correction Double Error

Detection (SECDED) and are synthesized using the Nangate Open Cell Library and

the additional library containing the Bit-Flipping Latch.

6.4.2. Area Overhead

The area overhead of the two newly derived architectures over an unprotected register

is now evaluated and compared to the architectures from Section 5 and commonly

used techniques which rely on a bitwise implementation.
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6.4. Experimental Evaluation

The results for Single and Double Error Detection (DED) are shown in Figure 6.3. In

comparison to sole Single Error Detection, the area requirements are higher due to the

introduced constant area associated with the storage of the reference register parity

and the derivation of the extended correction signal. With growing register size, the

area overhead reduces logarithmically as the impact of amendments with constant

area reduces. More importantly, the extended characteristic computation still grows

logarithmically with register size. For a register size of 15 bits the DED architecture

has an area overhead of +159.32 %, which is already lower than bitwise Duplication

with Comparison (DWC). For 127-bit registers, the overhead is only +102.13 %, which

is almost negligible compared to the SED architecture and just merely higher than

register duplication (without comparison).
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Table A.8).
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Single Error Correction and Double Error Detection (SECDED) involves an elevated

area overhead as depicted in Figure 6.3. It ranges from +295.99,% for a 15-bit register

to +217.95 % for a 127-bit register, which is also only slightly higher than Correction

without Double Error Detection. As for the DED architecture, the advantages of a

register wide checksum start to pay off for register sizes of at least 15 bits, where

the area overhead begins to fall below the overhead associated with bitwise Fault

Tolerance (DWC with restore) or Triple Modular Redundancy (TMR).

6.5. Summary

The online protection from the last chapter was thoroughly analyzed with respect

to its behavior in presence of multiple errors. The analysis showed, that double bit

upsets or the coexistence of two single bit upsets may result in false corrections.

These false corrections were targeted by augmenting the error condition with an

additional register parity bit. The newly derived extended error condition is shown

to successfully avoid false detections for an error multiplicity of up to two. Thus,

corrections are only cleared when the protected main register is reconfirmed to be

affected by a Single Bit Upset that is correctable by the Bit-Flipping architecture.

The register parity computation is implemented by merging with the register charac-

teristic computation into the Extended Characteristic. The Extended Characteristic is

shown to possess an optimal combinational tree organization, which exhibits a very

low additional area overhead of just (l − 1) exclusive OR gates due to the exploitation

of logic sharing between both trees.

The two architectures from the previous chapter were updated with the extended

protection and thereby support Double Error Detection (DED) respectively Single
Error Correction Double Error Detection (SECDED). The area overhead after synthesis

across various register sizes is shown to be lower than the overhead of classical

approaches like Duplication with Comparison (DWC) or Triple Modular Redundancy

(TMR) for registers with 15 or more bits. The area overhead is also shown to grow

logarithmically with register size due to the use of a register wide checksum instead

of bitwise redundancy.
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Area Efficient
Characteristic Computation

The previous chapters showed, how fault tolerance in random logic is achieved by

applying a logarithmic checksum to individual registers. The depicted architectures

offer a high localization granularity as well as a low correction latency if extended

with Bit-Flipping Latches providing a bitwise correction. The extension to distinguish

single from double errors and thereby avoid false corrections further increases the

circuit robustness. However, all these advantages are associated with an increased

hardware overhead in comparison to sole detection and localization.

Although, the overhead of the presented architectures is already lower than the

straight forward application of bitwise dual or triple modular redundancy, hardware

and area overhead directly relate to cost while the ability to reduce cost is considered

a competitive advantage in economics. This is especially true, as cost is considered

crucial and non-functional properties of a design such as safety or reliability, which

demand for additional area, are often undervalued. Consequently, the willingness to

trade off resources for achieving additional properties raises with the area efficiency.

This chapter focuses on further improving the area efficiency of the fault tolerance

architectures. Therefore, the total area overhead from the last chapters is decomposed,

attributed to the architectures components and analyzed in the next section. Sec-

tion 7.2 then optimizes the component identified as the largest overhead contributor -

the characteristic computation - by providing and utilizing an area efficient exclusive

OR standard cell. The experimental evaluation in Section 7.3 explores the properties

of the new standard cell and confirms an improved area efficiency if the cell is applied

to multiple components of the fault tolerance architecture.

111



Chapter 7. Area Efficient Characteristic Computation

7.1. Detailed Analysis of the Correction Area Overhead

The area overhead of the Single Error Correction (SEC) architecture (see Sec. 5.3) is

now investigated in more detail.
1

Figure 7.1 shows the total area overhead across

multiple register sizes, which is decomposed and attributed to the following architec-

ture components: The Bit-Flipping Latches (’BFL’), the characteristic tree (’Char’), the

derivation of the syndrome and the syndrome fail signal (’S/fail S’), the protection

of the error condition (’fail P’), the syndrome decoder (’Decoder’), as well as the

remaining parts such as deriving and latching the correction signal (’Top’).

The results for a register size of 63 bits show, that the total area overhead of +228.89 % is

partitioned as follows among the different units (Fig. 7.1). The Bit-Flipping Latches en-

tail an overhead of +20 % and the attached characteristic computation adds +108.57 %.

Storing the characteristic and deriving the syndrome contributes +15.08 % while its

parity protection involves only +6.83 %. Finally, decoding the difference adds +72.22 %.

If the overhead is regarded across all register sizes, the following observations can be

made. Many architecture components have a negligible overhead. For the components

with significant overhead, the characteristic computation and the decoder can be

identified as the main contributors. While the overhead for decoding declines with

growing register size, the overhead of characteristic computation even increases.

Hence, the characteristic computation offers the highest potential for further area

overhead reductions. As mentioned in Section 4.3.2, its overhead depends on two

factors: The amount of exclusive OR gates contained in the characteristic tree and the

size of each individual gate. By using the optimal tree organization from Section 4.3.2,

respectively Section 6.3, the amount of gates within the characteristic tree is already

minimal. Thus, a further reduction of the area associated with the characteristic

computation is only possible by utilizing a optimized exclusive OR implementation.

7.2. Area Efficient Exclusive OR Trees

The characteristic computation derives the l-bit checksum from a n-bit register by

a linear network. It is implemented using XOR2 standard cells from a cell library,

which tend to be larger than other combinational cells. For example, in the Open Cell

1
The analysis is likewise valid for the Single Error Detection (SED) architecture and both architec-

tures targeting double errors (DED and SECDED), which will as well be evaluated in Section 7.3.3.
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Figure 7.1.: Detailed Area Overhead Analysis of the Single Error Correction (SEC)

Components (see Figure 5.9) (data from Table A.9).

Library, the XOR2 X1 standard cell has an area of 1.596 µm2
, while the AND2 X1 cell

with 1.064 µm2
and the NAND2 X1 cell with 0.789 µm2

are considerably smaller.

The exclusive OR logic function computes the Boolean difference of its inputs as

depicted for two inputs by the truth table in Figure 7.2-a. The function can be perceived

as a selection between either the identity or the inversion of the first input, which is

controlled by the value of the second input.

If the inputs are dual rail encoded as shown in Figure 7.2-b both polarities of the

first input are available and a cell internal inversion is not necessary. The register

A B Z

0 0 0

1 0 1

0 1 1

1 1 0

(a) Single Rail Encoding

A/AN B/BN Z

0/1 0/1 0

1/0 0/1 1

0/1 1/0 1

1/0 1/0 0

(b) Input Dual Rail Encoding

of the Parity Pair Latch

A/AN B/BN Z/ZN

0/1 0/1 0/1
1/0 0/1 1/0
0/1 1/0 1/0
1/0 1/0 0/1

(c) Full Dual Rail Encoding

Figure 7.2.: Exclusive OR Truth Tables.
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parity computation from Chapter 4 is one such example, where both polarities are

available anyway within the latches. For the first level of the parity tree, the parity

computation is efficiently implemented by merging with the latches into Parity Pair
Latches that require only two additional multiplexers. For the remaining parity tree

levels, standard exclusive OR cells have to be used due to the lack of the negated

polarities for the intermediate parities.

Hence, in order to facilitate the use of a multiplexer based exclusive OR implemen-

tation in exclusive OR trees, it is necessary to implement a full dual rail encoding

as depicted in the truth table in Figure 7.2-c which provides the inverted output

polarity in addition. This two-input exclusive OR with dual rail encoding for all ports

is now implemented by the use of two multiplexers. The existence of an area efficient

multiplexer realization by using transmission gates was already depicted within the

Parity Pair Latch (Section 4.2.2) as well as the Bit-Flipping Latch (Section 5.3.1).

Figure 7.3 shows the schematic of the presented Transmission-Gate Exclusive OR. It

uses four transmission gates (labeled TG1 to TG4) to implement the two multiplexers

(TG1 and TG2, respectively TG3 and TG4). The input signal pair A/AN is used to

drive the output signal pair Z/Z N , whereas the input signal pair B/BN selects the

polarity of the connection between A/AN and Z/Z N .

The new exclusive OR can be used to implement exclusive OR trees of arbitrary

depth such as the characteristic or parity computation. The expected increase in area

efficiency depends on the yet to be proven small footprint of the Transmission-Gate

Exclusive OR standard cell implementation.

2

1

4

3

A

AN

B

BN

Z

ZN

Figure 7.3.: Schematic of the Transmission-Gate Exclusive OR.
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7.3. Experimental Evaluation

The Area Efficient Characteristic Computation is now evaluated. The experimental

setup is followed by the results for the Transmission-Gate Exclusive OR in Sec-

tion 7.3.2. Its application to the previously discussed fault tolerance architectures is

examined in Section 7.3.3. The employed tools and tabulated results are depicted in

Section A.1, respectively Section A.3.4 of the Appendix.

7.3.1. Experimental Setup

The Transmission-Gate Exclusive OR from Section 7.2 is implemented as a new

standard cell. Similar to the previous custom standard cells, it is designed according

to the design rules and electrical rules of the FreePDK Process Design Kit [SCW+07]

to enable compatibility with the Open Cell Library (OCL) [Nan11] cells. Consistency

with the schematic is checked and confirmed during Layout-vs-Schematic (LVS) and

a transistor netlist containing all parasitic layout effects is obtained during Physical
Extraction (PEX). The netlists of the Transmission-Gate and the standard Exclusive

OR from the Open Cell Library are then simulated at the analog level using SPICE

[NP73]. Timing behavior and power consumption are characterized for a rising and

a falling edge with a slew rate of 22 V/ns. An inverter (INV X1) loads all outputs and

10 % respectively 90 % of the nominal voltage are used as trip points.

After Library Characterization the standard cell is added to a new library and used to

replace most exclusive OR cells in the components of the four previously discussed

fault tolerance architectures. In particular, these include the cells in the targeted

characteristic computation, its parity protection as well as the syndrome comparator

and if present, the register parity protection of the extended characteristic.

7.3.2. Transmission-Gate Exclusive OR Standard Cell

This section discusses the area, the timing behavior as well as the power consumption

and energy of the Transmission-Gate Exclusive OR standard cell.
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Standard Cell Area

The Transmission-Gate Exclusive OR uses 8 transistors which are placed as depicted

on the left hand side of Figure 7.4. Thereby, the cell width is reduced as only two

straight polysilicon lines are required. The final layout including the cell internal

metal wiring is shown on the right hand side. The TGXOR X1 cell has a width of

0.57 µm and an OCL compatible height of 1.4 µm.

Compared to the OCL XOR X1 cell with an area of 1.596 µm2
, the TGXOR X1 cell has

an area of 0.798 µm2
and thereby enables a significant reduction of 50 %. Hence, the

architecture’s area efficiency can be improved, especially when taking into account

the high fraction of employed exclusive OR cells.

Timing Behavior and SignalQuality

In the desired application to fault tolerance architectures, the exclusive OR is used

in the well defined environment of parity trees. Thus, the cell load is bound as only

XORs can occur as a load and the fanout at the cell output is limited. Therefore, a tree

fragment of a series of three XORs is simulated, where input A is on the sensitized

path and input B has a constant value of 0.
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Figure 7.4.: Layout of the Transmission-Gate Exclusive OR Standard Cell TGXOR X1.
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The Timing Behavior is depicted in Figure 7.5 for TGXOR X1 as well as OCL XOR X1

cells. For the OCL implementation, the first cell has a delay of 112.01 ps for a rising

and 83.05 ps for a falling transition. After three cells, the rising transition is delayed

by 208.4 ps and the falling transition by 161.33 ps. The TGXOR X1 implementation

with 57.21 ps (rising) and 44.24 ps (falling) is much faster after the first level. Actually,

with 71.87 ps respectively 63.05 ps after the third level, the delay is even lower than

for a single level of OCL XORs.

This dramatic speed increase is explained by the intended non-compliance to the

CMOS property of actively driving the cell output by either the supply or the ground

voltage. While this could generally result in a degraded signal quality for highly

loaded outputs, the confined field of application circumvents this corner case and a

degradation of signal quality could not be observed in the performed simulations.

Power Consumption and Energy

The power consumption of the reference and the Transmission-Gate Exclusive OR are

depicted in Figure 7.6. The faster switching speed of the Transmission-Gate Exclusive

OR demands a raised peak power consumption of 103.7 µW for the TGXOR X1 cell

in contrast to the 58.1 µW for the reference XOR X1 cell. Diametrical, the increased
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speed is beneficial for the average power consumption as power is consumed in a much

shorter time period that compensates for the higher instantaneous power. With an

average power of 19.20 µW for the XOR2 X1 and 9.95 µW for the TGXOR X1 cell,

the average power consumption is almost bisected to 51.8 %. The energy during the

simulated 600 ps reflects the same reduction and is lowered from 115 pJ to 59.7 pJ .

7.3.3. Area Efficient Characteristic Computation

The developed Transmission-Gate Exclusive OR cell is now used to improve the area

efficiency of the single error correction fault tolerance scheme. Therefore, the cell is

as intended deployed to the characteristic tree and used in addition to optimize the

syndrome comparator as well as the protected storage of the error condition.

The resulting Area Efficient Characteristic Computation is now first evaluated for

single registers equipped with the Single Error Correction (SEC) which was analyzed

at the beginning of the chapter (see Section 7.1). The results depicted in Figure 7.7

show, that the area overhead of the characteristic computation is as expected reduced

by 50 %. Additional savings arise from the application to the syndrome comparator

(’fail S’) as well as the optimized protection of the error condition (’fail P’). For a
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Figure 7.6.: Power and Energy of the OCL Exclusive OR (XOR2 X1) and the

Transmission-Gate Exclusive OR (TGXOR2 X1).
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63-bit register, the area overhead of +228.89 % is reduced to +170.16 %. Thus, fault

tolerance is achieved with even less overhead than sole detection implemented by

bitwise application of Duplication with Comparison (DWC).

The Transmission-Gate Exclusive OR is also applicable to the Single Error Detec-

tion (SED) from Section 5.2 as well as the extended characteristic C+ employed in

the Double Error Detection (DED) and the Single Error Correction Double Error

Detection (SECDED) architectures from Chapter 6. The results for different register

sizes depicted in Figure 7.8 disclose an area overhead reduction of more than 50 %

independent of the register size or used architecture configuration.

7.4. Summary

The analysis of the area overhead associated with the Single Error Correction scheme

from Chapter 5 identified the characteristic computation as a major area contributor.

Due to the amount of used Exclusive OR gates being already minimal, the standard

cell implementation itself constitutes the last resort for further area reduction.
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The use of a dual rail encoding within the exclusive OR trees enables a standard cell

implementation that only employs multiplexers. The presented Transmission-Gate
Exclusive OR depicts an area efficient realization containing four transmission gates.

The experimental evaluation quantifies a significant cell area reduction by 50 %. As

a side effect, the cell is substantially faster by more than 3 X and almost bisects the

average power consumption and energy.

The cell’s application to multiple building blocks of the previously discussed fault

tolerance architectures reconfirms the targeted area efficiency increase and lowers

the area overhead by at least 50 %. For registers with 63 or more bits, the bitwise

implementation of Dual Modular Redundancy is even more expensive than Error

Correction based on the logarithmic characteristic.
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Summary and Discussion of Part II

This part targeted soft errors in the sequential state of a circuit’s random logic by

detection, localization and correction implemented with different localization granu-

larities and correction capabilities. In favor of a bitwise redundancy implementation,

error detecting and correcting codes are used across all presented fault tolerance

architectures which will be recapitulated in the following.

Chapter 4 - Non-Concurrent Detection and Localization of Single Event Upsets - focuses

on circuits equipped with clock gating to diminish the power consumption during idle

phases. During these clock gated phases, the sequential state of a module is retained

over long periods of time. Thus, assuring the data correctness upon leaving the gated

phase is a necessity. The presented two-tiered architecture combines an efficient

error detection based on individual register parities with a module-wide localization

founded on a logarithmic checksum of register parities. The Parity Pair Latch efficiently

implements the detection by merging the register latches with the first level of the

parity tree into a new standard cell. Compared to the reference implementation,

it bisects the area overhead and significantly accelerates the parity computation

while reducing the power consumption and energy considerably. The Modulo-2
Address Characteristic of register parities is used for module-wide localization and

inherits a low gate and connection count by using the optimal characteristic tree

organization. Overall, for modules with registers containing 16 or more bits, the area

overhead associated with detection and localization is reduced from over +90 % to

below +20 %.

Chapter 5 - Concurrent Online Correction of Single Event Upsets - targets single errors

affecting the sequential state during the operational phase of a circuit. Single Error
Detection is achieved by implementing the modulo-2 address characteristic for indi-

vidual registers to derive a register specific error condition. The protected storage

of the error condition eliminates false detections that may result from soft errors

directly affecting the architecture while the register content is correct. Thus, all single

errors are detected and localized and can be corrected by recomputation. Compared
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to bitwise Dual Modular Redundancy, the use of a logarithmic error detecting and

correcting code results in a lowered area overhead which is almost bisected for larger

registers. Single Error Correction within one clock cycle is achieved by exploiting

the computed localization information. It is used to control the efficient low level

correction provided by the Bit-Flipping Latch standard cell which augments a latch

with the ability to invert its stored value. The Bit-Flipping Latch requires only +20 %

area in addition to a latch, has no negative impact on timing behavior of the data path

and reduces the average power consumption and energy by 25 %. The self-contained

online correction architecture has a time vulnerability factor, i.e. the unprotected

time interval of a register, of zero. Compared to bitwise Triple Modular Redundancy,

the area overhead is reduced by more than one third for larger registers.

Chapter 6 - Fault Tolerance in Presence of Multiple Bit Upsets - contemplates the behav-

ior of the online architecture under Multiple Bit Upsets. While double errors affecting

the register are correctly detected, their localization and thus correction is not possible

due to the limited minimum Hamming distance of the used characteristic. However,

the introduction of an additional register parity bit allows to distinguish correctable

single errors from double errors and completely avoids false corrections. The resulting

Extended Characteristic C+ is computed with negligible hardware overhead by reusing

intermediate results of the optimal characteristic tree implementation. Thus, Single
and Double Error Detection as well as Single Error Correction Double Error Detection
are facilitated at a lower area overhead than bitwise modular redundancy for register

with 15 or more bits while retaining all other architecture properties.

Chapter 7 - Area Efficient Characteristic Computation - analyzes the architecture’s area

overhead in more detail and identifies the characteristic computation as a major area

overhead contributor. Due to the already optimal characteristic tree organization,

a further area reduction can only be expected through an optimized Exclusive OR

standard cell. The presented Transmission-Gate Exclusive OR is smaller by 50 %, faster

by three times and has a lower power consumption and energy than the reference

Exclusive OR. Its application to the characteristic tree as well as other building blocks

of the presented fault tolerance architectures lowers their previously reported area

overheads by at least 50 % in all cases. Thereby, for register with 64 or more bits, fault

tolerance based on the presented error correction utilizing a logarithmic checksum

becomes even more favorable in terms of hardware overhead than sole detection

achieved through the bitwise implementation of Double Modular Redundancy.
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Infrastructure Reuse
for Offline Testing
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Chapter 8

Test Access
through Infrastructure Reuse

The emerging need for fault tolerance was targeted in the last part by the introduction

of a self-contained infrastructure able to correct Single Bit Upsets in the sequential cir-

cuit state. Typically, a design is augmented by different types of infrastructure serving

orthogonal objectives. The most widely used field that utilizes on-chip infrastructure

is test, an experiment to show the presence of hard faults, which is performed at least

once for every produced chip during manufacturing test. Testing a circuit involves

the abstraction from defects to faults within a fault model and the generation of a

circuit specific test set that covers a maximized fraction of all possible fault locations.

As faults located at internal nodes may exhibit a low accessibility, usually additional

infrastructure is employed that serves as a Test Access Mechanism (TAM) in order to

increase testability and reduce test application time at the cost of additional area. The

traditional use of two distinct infrastructures to conquer soft errors during operation

while orthogonally providing test access raises the chip area that has to be allotted

to infrastructure. Collaterally, both infrastructures are never used concurrently due

to the contradicting goals pursued by fault tolerance, that mitigates the effect of soft

errors, and test, that shows the presence of hard faults.

This chapter is based on the Bit-Flipping Scan architecture from [IW14], a unified

infrastructure with low hardware overhead that procures fault tolerance by online

correction and supports offline test by serving as an efficient test access mechanism.

The remainder of this chapter starts by depicting the unified architecture and its exten-

sions in excess of the online fault tolerance from the previous part. Subsequently, test

application under infrastructure reuse is detailed along with the modes of operation

that provide test access to the sequential circuit state in Sections 8.2 to 8.4. Finally,

the reachable test access efficiency is discussed theoretically before concluding with

a short summary.
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Chapter 8. Test Access through Infrastructure Reuse

8.1. Unified Architecture

Traditionally, test access is provided by the introduction of scan design where the

circuit registers are replaced by scan chains. The presented unified architecture

implements test access in addition to fault tolerance by exploiting similarities between

both fields. Fault tolerance involves the introduction of redundancy to detect and

localize undesired register content modifications in combination with an efficient

correction mechanism during circuit operation. Test requires to observe the circuit

response to a test for comparison with the expected test response in addition to

control of the circuit state to set up and apply the next test.

The unified architecture depicted in Figure 8.1 is based on the online fault tolerance

architecture from Chapter 5. Instead of providing direct test access to each register

Ri with the help of scan design, test access to register Ri is indirectly enabled via its

associated characteristic register Ci . The two fundamental concepts of the previously

discussed fault tolerance architecture, namely the logarithmic register checksum and

the bit-flipping mechanism, are reused to provide full access to register Ri and facili-

tate observability and controllability. The external test interface is implemented by

outfitting the characteristic register Ci with scan design in order to supervise both

concepts during test mode.

Only small modifications in excess to the already discussed self contained fault

tolerance architecture are necessary to demarcate the application of the unified

architecture as a test access mechanism which will be discussed along with its two

essential operation modes in the next three chapters.

Register Ri

Combinational Circuit Cc

Register Rk

PI

PPI PPO

PO

Scan
 In

Scan
Out Ck 

Scan
 In

Scan
Out

PPIPPO

…

Checksum Bit-Flip

…

Ci 

Figure 8.1.: Unified Architecture.
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8.2. Test Application

A brief overview on the sequence of operations used during test application will be

given to clarify the similarities and differences between classical scan design and

Bit-Flipping Scan with a special focus on the used test access mechanisms. Suppose

a sequential circuit with at least two registers Ri and Rk as depicted in Figure 8.1.

Let p1 and p2 denote two consecutive patterns of a test sequence where p2 targets

a fault f . Further let f be controllable through register Ri (at least one bit of Ri is

contained in the input cone or in the support of f , see Figure 2.1) and observable via

register Rk (the output cone of f feeds at least one bit of Rk ).

Classical Scan Design equips all registers with scan chains (see Section 2.3.2). In

order to set up pattern p2, the next state of register Ri is serially shifted into the

corresponding scan chain. One capture cycle is applied to record the sequential

portion of the test response into the registers. To assert the presence of fault f , the

content of register Rk is shifted out and compared to the reference response.

Bit-Flipping Scan assumes a protection by the unified architecture. Thus, all registers

contain the checksum computation, the bit-flipping mechanism, and an additional

characteristic register. To apply a test pattern, a sequence of operations is used as

follows (Figure 8.2). After pattern p1, the checksum contained in Ci is used to validate

the state of register Ri ( 3 ). To set up test pattern p2, an incremental update of the

known and unaltered state of Ri is performed by a series of bit-flips ( 3 - 6 ). For each

bit position to be updated, the checksum of the next desired register state is shifted

into Ci ( 3 , 5 ) to trigger the inversion of that register bit ( 4 , 6 ). After Ri is updated

( 6 ), the test response is captured to Rk ( 7 ) and validated via Ck ( 8 , 9 ).

0 0 1 0 1 1 0

1 0 0

0 0 1 0 1 0 0

1 1 0

0 0 1 1 1 0 0

0 1 0
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Ci 

Paern p1

① Capture

② Checksum
③ Scan
     Out
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     In

④ Bit-Flip
⑤ Scan

     In

⑥ Bit-Flip

⑦ Capture

⑧ Checksum
⑨ Scan
     Out

Circuit Cc with Fault f

Ck 

Rk

Paern p2

Capture/Validate Ri Setup Ri via two Bit-Flips Capture/Validate Rk

Figure 8.2.: Bit-Flipping Scan Test Application.
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8.3. Observing a Test Response

After setting up all test conditions for a test pattern p, the circuit response is cap-

tured into the internal registers. In order to validate if the test pattern passed or

failed, the test response must be observed. The fault tolerance infrastructure already

computes the reference characteristic C and stores it in the additional register Ci

(see Section 5.2.1). Figure 8.3 shows the architecture parts reused for observing the

register content.

The value of Ci depends on all bits of register Ri and represents a compacted version

of the register content. Instead of directly observing Ri by adding it to a scan chain

and shifting out all contained bits in n shift cycles, Ci is made scannable and the

compacted circuit response can be observed in l shift cycles, where l ≪ n (see

Eq. (4.6)).

n

Ri

…

Ci 

⊕
⊕ ⊕

⊕
⊕ ⊕

l

Scan
Out

Figure 8.3.: Observing the Compacted Test Response of a Register.

Extending the reference characteristic register Ci with scan design would lead to false

corrections in register Ri as any shift operation of Ci will violate the entanglement of

the register Ri and its reference checksum Ci . To resolve this situation the occurrence

of not intended bit flips is avoided

▷ during shift operations by gating the syndrome decoder with the scan enable

signal and

▷ after completion of the scan operation, when the decoder is no longer gated,

by shifting in the expected reference characteristic during the scan operation.

Note, that the presented architecture implicitly shifts out the compacted test response

after each pattern and every bit-flip. Hence, the complete sequential state is always

observed with low overhead as opposed to other architectures, where every observed

bit increases the test time (Random Access Scan, see Sec. 3.2.2) or the parallel readout

demands for additional area (Progressive Random Access Scan, see Sec. 3.2.2).
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8.4. Controlling a Register by Bit-Flipping

A mechanism to flip single bits of a register Ri is present in the architecture to correct

SBUs in the fault tolerance mode (see Section 5.3.1). Now, this feature is used to set

up the next state of register Ri by a series of bit-flips. Figure 8.4 shows the involved

architecture parts.

Let p1 and p2 denote two consecutive test patterns of a test sequence. Further, let

O(Ri ,p1) denote the state of register Ri after the capture cycle of p1 with both

characteristics Ci ,C′
i being equal and let I (Ri ,p2) denote the state of Ri needed to

set up p2. Assume without loss of generality, that I (Ri ,p2) and O(Ri ,p1) differ in

exactly one bit at address adr b (1 ≤ adr b ≤ n), and their Hamming distance is one.

Then, the desired register value can be deduced by a single flip of the bit at adr b.

In order to perform a bit-flip the syndrome computed on-chip needs to result in the

address of the bit to be flipped.

Si := adr b

As the register state after p1 and thus the associated recomputed characteristic C′
i

are known, the reference characteristic Ci can be predetermined.

Ci := Si ⊕ C′
i

Scanning in Ci triggers a bit-flip at address adr b and thus generates I (Ri ,p2) from

O(Ri ,p1) with l shift cycles and one additional cycle for the bit-flipping. At the same

time, the compacted register state Ci is shifted out and observed.

If the Hamming distance between the two register states is larger than one, a series

of single bit-flips is used.

n

Ri

…

⊕

Ci 

Ci' 
Ci n n

l⊕
⊕ ⊕

⊕
⊕ ⊕

l

Scan
 In

Decoder
SilScan

Enable

Figure 8.4.: Controlling a Register by Bit-Flipping.
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8.5. Test Access Efficiency

The test application time (TAT) for scan design depends on the maximum scan chain

length n and the pattern count. To apply a single pattern p2 the captured response

O(Ri ,p1) of the previous pattern p1 is shifted out in n cycles while the desired state

I (Ri ,p2) for p2 is shifted in. Then the test response is captured in one extra cycle.

TATS = n + 1

For the presented bit-flipping scan scheme, the test time is dominated by the number

of bit-flips bf. For each flip, l shift cycles and one flip cycle are needed. After applying

all flips the circuit state is captured.

TATBFS = bf · (l + 1) + 1

In order to reduce the test application time compared to scan design, the maximum

number of flips per pattern is bound by

TATBFS ≤ TATS
⇔ bf · (l + 1) + 1 ≤ n + 1

⇔ bf ≤
n

l + 1

⇔ bf ≤
n

⌈log
2
(n + 1)⌉ + 1

.

(8.1)

Thus, for a maximum register size of 127 bits, bit-flipping scan still results in a lower

TAT than standard scan design with a maximum chain length of 127 bits if no more

than 15 flips are required per register and pattern (bf ≤ 15.875).

8.6. Summary

Test since ever is a necessity to show the presence of hard faults. To ease test execution

testability is increased by augmenting circuits with test access infrastructure. The

presented Unified Architecture provides test access by reusing the two fundamental

concepts of the previously discussed fault tolerance architecture. Themodulo-2 address
characteristic enables full observability of the register content with logarithmic effort

while bit-flipping allows an incremental register update of crucial bit positions in the

captured circuit answer and thereby offers full controllability.
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Test Sequence Generation

The Bit-Flipping Scan architecture provides an efficient test access mechanism that

enables the use of arbitrary test sets generated by ATPG. During test conduction,

the sequential circuit state is incrementally updated through a series of bit-flips that

transform the present state after the last test pattern into the initial state of the

following test pattern. Thus, the time to apply the complete test set is dominated

by the amount of necessary updates which is determined by the sequential state

specified within the test patterns. As a test set that targets scan-design is generated

under the implication of full accessibility to the sequential state by combinational

ATPG, its fully specified patterns are unordered. Hence, the Test Application Time can

be reduced by test set reordering that minimizes the amount of necessary bit-flips.

However, test time is still bound by the sequential states specified during test genera-

tion. To this end, the amount of specified bits in the test set can be reduced either

during ATPG or through test set stripping in a post-processing step [KZIW08]. Con-

sequently, appropriate filling of unspecified bits allows to avoid irrelevant bit-flips.

Ideally, to put the architecture’s bit-flipping capability into practice and demonstrate

its full benefits, a tailored test sequence is needed that

▷ reuses the sequential state of the previous pattern,

▷ limits the amount of necessary bit-flips per pattern while it

▷ maximizes the number of faults covered per pattern and

▷ avoids unnecessary bit-flips whenever they do not contribute to fault coverage.

This chapter builds upon the sequential test sequence generation from [IW14] that

targets the unified architecture by explicitly modeling its bit-flipping capability and

is able to produce tailored test sequences fulfilling the above mentioned properties.
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The algorithm iteratively generates the test sequence as depicted in Figure 9.1. There-

fore, the circuit structure, the faults to be covered, and the bit-flipping ability within

the sequential state are modeled. The model is augmented with cardinality constraints

to control the number of bit-flips as well as the amount of faults covered. Starting from

the current sequential state a pattern is generated with precedence on improving the

fault coverage while using a minimal amount of bit-flips. Consecutively, the coverage

of all modeled faults is optimized under the laid bit-flip bound. Finally, the pattern is

accepted and the procedure is repeated until all faults are covered.

Build Model
Circuit        ɸCC,tj

Faults         ∀ f∈FND: ɸf

Bit-Flips     ɸB tj-1,tj

Cardinality Constraints
   Faults      ɸFnumF

   Bit-Flips  ɸBnumBF

FaultSim pj
prune FND, F

Add pj to P

SAT?
pj

found
?

Extract pj
numF++

numBF++

no yes

yes no

yes

done

update FND
F

empty
?

80%
of FND

covered
?

no

yes

no

Solve under
pj-1 

numF, numBF

Incremental SAT

Figure 9.1.: Iterative Bit-Flipping Scan Test Pattern Generation.

The remainder of this chapter starts with details on the used models in Section 9.1

before discussing the challenges in finding an optimal test sequence in Section 9.2.

The iterative Bit-Flipping Scan test sequence generation is detailed in Section 9.3 and

evaluated with respect to test time, volume, power and energy in Chapter 10.

9.1. Modeling the Test Sequence Generation

For a sequential circuit CS with a set of faults F, an optimal bit-flipping scan test

sequence Popt ensures that

▷ all faults f in the fault universe F are detected by Popt ,

▷ the number of bit-flips to set up a register Ri for pattern pi from the previous

registers state O(Ri , t j−1) is bound by ∆H (O(Ri , t j−1), I (Ri , t j )) ≤ bfbound, and

▷ the length of Popt is minimal.
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Finding such a test sequence is modeled as a Boolean satisfiability problem in con-
junctive normal form (CNF) (see Section 2.4).

9.1.1. Circuit Modeling

The combinational core CC of the sequential circuit CS is extracted by removing

all sequential elements and adding pseudo-primary in- and outputs (PPI/PPO). The

circuit model in conjunctive normal form is then obtained by applying the Tseitin
transformation which yields a model with a linear number of clauses at the cost of

introducing a linear number of new literals [Tse68; Tse83].

To derive the CNF modelΦCC for each circuit input i ∈ I , output o ∈ Oi, and internal

signal s ∈ S, a new literal is added to the set of literals: L = {I,O,S}.

Each gate g ∈ GCC with inputs (i1, · · · , in ) and output o implementing a Boolean

function o = ϕ (i1, · · · , in ) is logically equivalent to

g ≡ (o→ ϕ (i1, · · · , in )) ∧ (ϕ (i1, · · · , in ) → o)

≡ (o ∨ ϕ (i1, · · · , in )) ∧
(
ϕ (i1, · · · , in ) ∨ o

)
.

Expanding the equation in a product-of-sums form yields the set of clauses Φg in

CNF. The circuit CC is then described in CNF as

ΦCC =
∧

g∈GCC

Φg . (9.1)

9.1.2. Fault Modeling

To represent stuck-at faults, the circuit model is structurally extended in order to

distinguish the circuit behavior in absence of the fault (good circuit) from the behavior

in presence of the fault (faulty circuit) as shown in Figure 9.2.

Given a stuck-at fault f located at signal s f ∈ {I,S,O}. First, the model of the fault

cone Φc f (output cone of the fault site) is copied to derive the faulty circuit model

Φc′f
under f . New literals are assigned for the fault location and all other signals in

the cloned cone ( s′f for s f and ∀sn ∈ cf : s′n ). All signals at the edge of the cone are

connected to the signals in the good circuit.
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Φcf

Φcf'

ΦCC

sf

sf'

Φf

obsf≥1

⊕
⊕

ΦBDf

Figure 9.2.: Model of a Combinational Circuit ΦCC (Single Timeframe) and a Target

Fault f represented by Φ f .

Second, the Boolean difference ΦBD f between the faulty and the fault free circuit

is modeled as the bitwise comparison of all outputs in the faulty cone c′f with the

corresponding outputs in the fault free cone cf .

ΦBD f = obs f ⇔
∨

∀(o,o′)∈(c f ,c
′
f )

(o ⊕ o′) (9.2)

In addition to the structural representation of fault f with polarity pf ∈ {0,1}, three

constraints need to be fulfilled to generate a test pattern:

▷ In the fault-free circuit, the fault location carries the correct value: s f := pf .

▷ In the faulty circuit, the fault location carries the faulty value: s′f := pf .

▷ The fault effect is observed in at least one output: obs f = 1 .

Then fault f is modeled as

Φ f = Φc′f
∧ ΦBD f ∧

(
f ∨ (s f = pf ) ∨ (s′

f
= pf ) ∨ (obs f )

)
∧

( f ∨ (s f = pf )) ∧ ( f ∨ (s′f = pf )) ∧ ( f ∨ obs f ) .
(9.3)

9.1.3. Sequential Mapping and Modeling of Bit-Flips

The sequential behavior of CS is modeled by unrolling as shown in Figure 9.3. Each

timeframe t j is modeled by ΦCC , t j consisting of a copy of ΦCC with appropriate

literal renaming and Φ f , t j denotes fault f in timeframe t j .
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ΦCC,tj-1

⊕ ⊕ ⊕

ΦCC,tj

O
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i,t
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i)
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i,t

j)

ΦBtj-1,tj

Figure 9.3.: Sequential Mapping Modeled by Unrolled TimeframesΦCC , t j−1,ΦCC , t j
and Model of Bit-Flips ΦB

t j−1, t j
.

Bit-Flips are modeled by introducing new free literals B(Ri , t j ) for each register

Ri . Together with the pseudo-primary output literals O(Ri , t j−1) of the previous

timeframe the sequential state in timeframe t j is modeled.

Φ
B
t j−1, t j

=
∧

∀Ri∈CS

(
O(Ri , t j−1) ⊕ B(Ri , t j ) = I (Ri , t j )

)
(9.4)

For an unrolled model with x timeframes, the sequential behavior under bit-flips is

modeled by ΦB .

ΦB =
∧

∀ j=1...x

Φ
B
t j−1, t j

(9.5)

The number of bit-flips is restricted by a cardinality constraint that allows ’atmost’

bfbound flip literals per register and timeframe to be true.

Φ
Bcard
t j−1, t j

=
∧

∀Ri∈CS

atmost(B(Ri , t j ),bfbound) (9.6)

9.2. Optimal Test Sequence

The SAT instance for the optimal test sequence Popt from the beginning of this section

can now be modeled as follows. The circuit is unrolled for x timeframes and the

combinational core is modeled per timeframe (Eq. (9.7)). All target faults are modeled

in each timeframe. As it is sufficient to detect a fault once, a disjunction over all

timeframes is added per fault (Eq. (9.8)).

ΦC =
∧

∀ j=1...x

ΦCC , t j (9.7)
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ΦF =



∧

∀t j∀ f

(
Φ f , t j

)∧


∧
∀ f



∨
∀t j

(
f (t j )
)

 (9.8)

The sequential behavior under bit-flips is modeled by ΦB (Eq. (9.5)) and between

consecutive timeframes, bit-flip cardinality constraints ΦBcard are added to limit the

maximum number of flips per register (Eq. 9.9). The literals of timeframe 0 are set to

the registers’ initialization values in Φ0.

ΦBcard =

x∧
∀ j=1

(
Φ

Bcard
t j−1, t j

)
(9.9)

Solving the model Φopt = ΦC ∧ ΦF ∧ ΦB ∧ ΦBcard ∧ Φ0 yields a solution for x
timeframes if it exists. The assignment of literals associated with primary in- and

outputs in each timeframe ti corresponds to a pattern pi . The generated sequence

detects all faults in F with at most bfbound bit-flips per pattern. The test sequence Popt
with minimum length can be found by bisection over the number of timeframes.

Finding the optimal test sequence is only feasible for small circuits, small fault uni-

verses and a limited number of timeframes due to the high complexity of ATPG

and the associated runtimes [IS75]. Nonetheless, an optimized bit-flipping scan test

sequence can be generated iteratively as depicted in the next section.

9.3. Bit-Flipping Scan Test Sequence Generation

The heuristic iteratively generates patterns of the test sequence where each pattern

targets a limited number of faults FND from the fault universe F. Each pattern p is

guaranteed to require a minimal number of bit-flips while covering the maximum

amount of faults from FND.

To apply the heuristic three preprocessing steps are performed. First, the single-

fault theorem is exploited which testifies that “a target single-fault [from F] that is

untestable in [the combinational core CC ] is also untestable in the sequential circuit

[C]” [AC95]. Consequently, all detectable faults are identified by combinational fault

grading and all other faults are pruned from the fault universe F. Second, easy
faults with a high probability of being covered by random patterns are targeted by a

sequence of test patterns which ensures that all register bits at least once carried both
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logic values. For all registers and all contained PPIs the assignment of 0 and 1 values

is tracked. The bit values the initial sequential state are marked. Each subsequent

pattern starts from the current sequential state and performs one bit-flip per register

such that the selected bit has a not yet covered value after the flip. The value is marked

as covered and the PIs are randomly assigned. The detected faults are removed from

F and the bit values of the resulting sequential state are marked. Additional patterns

are generated until all PPI values are covered. The length of the generated sequence

is limited by the width of the largest register. At last, the remaining difficult faults are

sorted in descending order according to their testability to put preference on hard to

detect faults, and are targeted by the iterative pattern generation discussed next.

The heuristic depicted in pseudocode in Algorithm 1 is called with the pattern se-

quence P from the preprocessing, the index j of the last pattern, the fault universe

F and the maximum number of concurrently targeted faults maxF. The algorithm

starts by initializing the list of targeted faults FND. Second, the SAT-model Φ (l. 4) is

built that consists of one timeframe of the combinational circuit (ΦCC ), the limited

number of faults contained in FND as well as the bit-flip literals associated to the PPIs

ΦB . Last, the amount of bit-flips allowed per register numBF is modeled as ΦBnumBF .

The for-loop (l. 6-14) searches for a pattern pj that covers a maximum number of faults

numF from FND while respecting the fixed amount of bit-flips allows by numBF. The

cardinality constraint ΦFnumF = atleast(FND,numF) is used to require the detection of

at least numF faults. If the model is satisfiable under the current sequential stateΦp j−1

and the two constraints, the found pattern pj is extracted and the loop continues

with a constraint tightened by incrementing numF. If the model is not satisfiable, two

cases need to be distinguished.

In the first case, a pattern was found (l. 15) and the current iteration proves that no

pattern exists that covers more faults from FND. Thus, the list of currently modeled

faults FND and the global fault list F are pruned by fault simulation. The pattern pj is

added to the pattern sequence P and the bit-flip constraint ΦBnumBF is reset (l. 16-18).

When more than 80% of the faults contained in FND are detected, the model is rebuilt

with the next maxF undetected faults (l. 20).

In the second case, no pattern was found (l. 22) and the iteration proves that no pattern

exists that detects even a single fault under the constrained amount of bit-flips. Thus,

numBF is increased and the for-loop is re-executed, thereby ensuring that the next

pattern is allowed to spend more bit-flips during the fault coverage maximization.
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Algorithm 1 Iterative Bit-Flipping Scan Test Pattern Generation.

1: function generateBFSPatterns(P, j,F,maxF)

2: FND ← getND(F,maxF) ▷ get maxF not detected faults

3: Φ← ΦCC ∧ ΦFND ∧ ΦB ▷ build model

4: numBF← 1; update(ΦBnumBF ) ▷ allow 1 bit-flip per register

5: while F , ∅ do
6: for numF← 1, · · · ,maxF do ▷ cover maximum faults

7: update(ΦFnumF ) ▷ update cardinality constraint

8: SAT← solveΦ(Φp j−1
,ΦBnumBF ,ΦFnumF ) ▷ under assumptions

9: if SAT then ▷ remember found pattern

10: pj ← extractPattern(Φ); pFound← true
11: else
12: break for-loop ▷ (line 6)

13: end if
14: end for
15: if pFound then ▷ accept found pattern

16: F ← fsim(pj ,F); FND ← fsim(pj ,FND) ▷ prune fault lists

17: P ← P ∪ pj ; j ← j + 1; pFound← false ▷ add pattern pj

18: numBF ← 1; update(ΦBnumBF ) ▷ reset allowed bit-flips

19: if |FND | < 0.2 ·maxF then ▷ update targeted faults

20: FND ← getND(F,maxF); update(Φ)
21: end if
22: else ▷ no p exists under numBF
23: numBF← numBF + 1; update(ΦBnumBF )
24: end if
25: end while
26: return P
27: end function

The surrounding while loop (l. 5-25) terminates when all faults from F are detected. As

F only contains combinationally detectable faults and all inputs are fully controllable

all faults will be detected, in the last resort by a pattern requiring a high amount of

bit-flips. The model Φ is only modified when a sufficiently high number of targeted

faults is covered. Otherwise, it is solved under the assumptions regarding the current

sequential state, the number of allowed bit-flips and the number of to be covered

faults. Hence, the use of incremental SAT solving is facilitated that reuses learned

clauses identified in previous solver calls and thus accelerates the test generation.
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9.4. Summary

The unified Bit-Flipping architecture from Chapter 8 supports test with a test access

mechanism that allows the observation of compacted test responses and provides the

ability to update the captured sequential state through incremental bit-flipping. The

architecture can be used to apply arbitrary test sets that will directly profit from the

implicit response compaction. However, no guarantees with respect to other relevant

test metrics can be given and especially test time might be inadequate due to high

amounts of bit-flips necessary to set up the next pattern.

To this end, the generation of test sequences that are able to profit from the capabil-

ities offered by the unified Bit-Flipping architecture is depicted. The test sequence

generation is mapped to a Boolean satisfiability problem which explicitly models the

possibility to employ bit-flips of the captured sequential state to set up a subsequent

pattern. The problem is solved incrementally by a heuristic that generates one test

pattern of the sequence per iteration. The sequence generation is guided by cardinality

constraints in order to minimize the amount of bit-flips required during pattern setup

while maximizing the pattern’s fault coverage.
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Chapter 10

Experimental Evaluation
of the Offline Test Scheme

Based on public and industrial circuits, the test access through infrastructure reuse

(Section 8) and the associated test sequence generation (Section 9) are evaluated with

respect to all relevant test metrics. These include the area overhead (Section 10.2),

the test time (Section 10.3), the test volume (Section 10.4), as well as the peak and

average test power (Section 10.5), and the test energy (Section 10.6). Appendix A

provides details on the employed design automation flow (Section A.1), the properties

of the used benchmark circuits (Section A.2), and extended results for more circuits

in tabulated form (Section A.4).

10.1. Experimental Setup

The hardware overhead of the unified architecture from Section 8.1 is evaluated for

single registers of different sizes and benchmark circuits. These include public circuits

from the ISCAS89 and ITC99 benchmark collections [BBK89; Dav99; CRS00] as well

as industrial circuits kindly provided by NXP (formerly Philips). For each circuit, a

combinational circuit representation is generated by substituting pseudo-primary in-

and outputs for all sequential elements. This combinational core CC is then mapped

to the 45 nm Nangate Open Cell Library [Nan11].
1

As the benchmark circuits target an edge-triggered design style, the level-sensitive

Bit-Flipping Latch (BFL) from Chapter 5 cannot directly be used to implement the

low-level correction within the sequential circuit portion. However, it can easily

1
Mapping of the combinational core to the target library preserves the original circuit structure.

Synthesis as performed in [IW14] aims to optimize the area while preserving the circuit behavior.
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be extended into a Bit-Flipping Flip-Flop (BFFF) by abutment of a standard master

latch as shown in Figure 10.1. The Bit-Flipping Flip-Flop has similar properties as the

Bit-Flipping Latch and has a standard cell area of 5.054 µm2
.
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Figure 10.1.: Schematic of the Bit-Flipping Flip-Flop (BFFF).

The combinational core CC is then combined with five different sequential payloads:

▷ a) Original: D-Flip-Flops (DFF, 4.522 µm2
).

▷ b) Scan Design: Scannable D-Flip-Flops (SDFFR, 6.916 µm2
).

▷ c) Scan Design + Fault Tolerance (FTScan): Scannable D-Flip-Flops together

with a bitwise fault tolerance scheme comparable to RAZOR [EKD+03] or

GRAAL [Nic07]: A shadow latch (DLH, 2.926 µm2
), an exclusive OR (XOR2,

1.596 µm2
) and a multiplexer (MUX2, 1.862 µm2

).

▷ d) Bit-Flipping Scan (BFScan): Bit-Flipping Flip-Flops (BFFF, 5.054 µm2
) com-

bined with the characteristic computation and the syndrome decoder as well

as scannable characteristic registers (SDFFR, 6.916 µm2
) (see Figure 8.1).

▷ e) Area Efficient Bit-Flipping Scan (BFScan TG): Bit-Flipping Scan with the

Transmission-Gate Exclusive OR (TGXOR X1, 0.798 µm2
) from Chapter 7 used

in the characteristic tree, its parity protection and the syndrome comparator.

For b) and c), all FFs are organized into scan chains with a maximum length of 127. For

d) and e), a register is implemented for each chain from the scan chain configuration

used in b) and c). Note, that a chain length of 127 is very short. For longer chains,

the scan based payloads will scale linear in terms of area and test time. The area of
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the unified architecture and the test time of Bit-Flipping Scan sequences will grow

slower due to the logarithmic correlation between n and l (see Eq. (4.6)).

The behavior during test application is evaluated for public and industrial benchmark

circuits equipped with two of the above mentioned architectures. In particular, these

include the ’FTScan’ architecture, a combination of classical scan design and fault

tolerance as a representative for a bitwise implementation, as well as the ’BFScan’

architecture, as a representative for the presented unified architecture relying on a

logarithmic checksum combined with bit-flipping.

To compare the test specific attributes, test sets for the former architecture are gen-

erated by a state-of-the-art test pattern generation tool respectively the presented

test sequence generation algorithm for the latter architecture. The Bit-Flipping Scan

test sequence generation discussed in the last chapter is implemented as a module

within an inhouse Electronic Design Automation framework written in Java. The full

featured Boolean reasoning library ’Sat4j’ [LP10], a Java implementation based on

MiniSAT [ES04] that supports native cardinality constraints, is used to build and solve

the described models. Test conduction is simulated by applying the generated test

sequences via a test bench. During simulation, the test bench records the number of

cycles used (test time), the amount of bits exchanged over the test access mechanism

(test volume) as well as the switching activity. The switching activity is finally used

to perform a cycle accurate power analysis and determine the peak and average test

power as well as the test energy.

10.2. Area Overhead

The different payloads are now evaluated and compared with respect to their area

overhead. To this end, the overhead is first highlighted as a function of the register

size before applying the sequential payloads to benchmark circuits which will be

used later to quantify the quality of the provided test access.

10.2.1. Dependence on Register Size

The area overhead for different register sizes is depicted in Figure 10.2 where all

results are normalized to the ’Original’ payload area to ease comparability. The first

two payloads have a constant area overhead, which amounts to around +50 % of the

143



Chapter 10. Experimental Evaluation of the Offline Test Scheme

original register size for classical scan design (’Scan’) and slightly more than +200 %

if scan design and bitwise fault tolerance are combined (’FTScan’).

The unified architecture has an elevated overhead for very small registers which

rapidly declines with growing register size (’BFScan’). For a 15-bit register, the over-

head is already lower than for ’FTScan’ and amounts only +131.91 % for a 127-bit

register. A further reduction is achieved when the area efficient Transmission-Gate

XOR cell is used (’BFScan TG’). For registers with at least 127 bits test access and

fault tolerance as in the classical ’FTScan’ architecture are provided by the ’Area

Efficient Bit-Flipping Scan’ architecture with a bisected area overhead.

10.2.2. Application to Benchmark Circuits

The results for the application to benchmark circuits are provided in Figure 10.3.

Compared to the results regarding only a single register, the area overhead now

depends on the ratio between the sequential and the combinational circuit part. The

circuits from the ISCAS89 suite (starting with ’s’) tend to contain more sequential logic

in contrast to the newer circuits from the ITC99 suite (denoted by ’b’). Scan design

introduces an overhead between +5.2 % (’b21’) and +17.5 % (’s35932’) (’Scan’). In
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Figure 10.2.: Unified Architecture - Area Overhead for a Single Register (data from

Table A.13).
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combination with the orthogonal implementation of bitwise fault tolerance (’FTScan’)

the overhead is increased to a range between +22.4 % (’b21’) and +75.6 % (’s35932’).

The presented unified architecture inherits a lower area overhead for all circuits

(’BFScan’) of at least +14.5 % (’b21’) and at most +48.4 % (’s35932’). Compared to the

reference area (’FTScan’) the overhead is lowered by +7.9 % (’b21’) in the worst and

+27.2 % (’s35932’) in the best case. The use of the area optimized variant (’BFScan

TG’) continues to reduce the overhead and consistently results in an area overhead

bisection for all circuits.

The results for industrial benchmark circuits (starting with ’p’) are more counterbal-

anced due to a higher sequential fraction except for circuit ’p469k’, which contains

an extraordinary low amount of sequential elements. With this circuit excluded, the

overhead of ’FTScan’ is between +30.9 % (’p81k’) and +54.6 % (’p239k’). By using

the ’Area Efficient Bit-Flipping Scan’ architecture the overhead is lowered to +15 %

respectively +26.4 % and thereby reduced by more than half.

In summary, the results show that the unified architecture targeting both, test and

fault tolerance, incorporates a significantly lower area overhead than the orthogonal

combination of the two classical methods.
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Figure 10.3.: Unified Architecture - Area Overhead for Benchmark Circuits (data and

additional results in Table A.14).
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10.3. Test Application Time

To measure and compare the test application time (TAT) a highly compacted test set

is generated for each ’FTScan’ configuration using a commercial ATPG. The heuristic

from Section 9.3 is used to generate BFScan test sequences, where maxF is set to 500,

providing a good tradeoff between runtime and achieved TAT.
2

The achieved test application times are partially depicted in Figure 10.4 and are

normalized to the test time required by scan design. For Bit-Flipping Scan the test

application is faster for all circuits and a minimum speedup of at least 2.86 X is

observed (’b18’). For a majority of the circuits, speedups of more than 5 X are achieved

with a maximum speedup of 9.44 X (’p35k’). The not visualized results provided

additionally in Tables A.16 and A.17 confirm and even outperform these observations.

Test time is consistently reduced in all cases and many circuits exhibit speedups in

excess of 5 X with a maximum speedup of 11.73 X for circuit ’p45k’.
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Figure 10.4.: Test Application Time for Benchmark Circuits (data and more results in

Tables A.16 and A.17).

2
Due to sufficient degrees of freedom in choosing a large subset of faults covered by the next

pattern and excessive reuse of clauses learned in previous solver calls during incremental SAT solving.

[IW14] used maxF = 100 and rebuilt the model whenever 10 % of FND were covered.
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The absolute values provided in Tables A.16 and A.17 unveil that although the test

time is significantly lowered by Bit-Flipping Scan (col. 10 and 5) in fact more patterns

are contained in the sequential BFScan test sequence than in the combinational test set

for scan design (col. 6 and 2). Instead of n shift cycles per pattern, only l = ⌈log2(n)⌉
cycles are required per pattern and bit-flip (col. 4 and 9), thus allowing to apply more

patterns in shorter time. While this seems to indicate a raised coverage of non-target

faults, further investigation is needed. Finally, the quotient of col. 8 and 6 indicates,

that BFScan on average requires only few bit-flips to set up the following pattern.

In summary, in addition to the reduced area overhead of the unified Bit-Flipping Scan

architecture, the achieved test application time speedups substantiate the effective-

ness and efficiency of the corresponding test sequence generation. In addition, the

shortened test times leverage a test cost reduction by shortening the allocation of

expensive automatic test equipment per device under test.

10.4. Test Data Volume
The test data volume visualized in Figure 10.5 includes all bits exchanged with the

circuit over primary and pseudo-primary in- and outputs during test application.
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Figure 10.5.: Test Data Volume for Benchmark Circuits (data and more results in

Tables A.16 and A.17).
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The test data volume is reduced by Bit-Flipping Scan for all circuits. For circuit ’b14’,

the test data for BFScan amounts just 26.38 % of the test data required by classical

scan design. Thus, the application of Bit-Flipping Scan entails a significant test data

volume reduction by 73.62 %. For the majority of the examined public and industrial

circuits, Bit-Flipping Scan exhibits a test data volume reduction of more than 70 %.

In summary, the application of Bit-Flipping Scan significantly reduces the memory

requirements posed on the automatic test equipment. Hence, the use of less sophisti-

cated and thus cheaper test equipment as well as a prolonged application of equipment

before its decommissioning contribute towards a further test cost reduction.

10.5. Peak and Average Test Power

The power consumption of a chip during operation has excessive influence in two

areas. First, careful dimensioning of the chip internal power distribution network to

avoid the occurrence of power droop and voltage sag during peak power consumption.

Second, proper dimensioning of the package and heat sink to dissipate the heat

produced by the average power consumed. Thus, difficulties arise during test as the

goal of exercising all fault locations in a short time period raises the switching activity

and violates the peak and average power bounds determined by normal operation.
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Figure 10.6.: Peak and Average Test Power and Test Energy for Circuit ’b14’.
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Figure 10.6 depicts the power consumption of circuit ’b14’ for three of the previously

introduced architectures. During the application of the reference test set for classical

scan design (’Scan’) an average power of 4.647mW is consumed with a peak power

consumption of 5.156mW at 224.8 µs. The combination of scan design with bitwise

fault tolerance (’FTScan’) uses the same test set but has a higher average power

consumption of 5.570mW and a peak power of 6.176mW (at 224.8 µs) due to the

shadow latches and exclusive OR gates included for error detection. The use of Bit-

Flipping Scan (’BFScan’) considerably lowers the average power to 0.7178mW and

the peak power to 0.9743mW (at 36.4 µs).

The peak and average power for the used public and industrial circuits is depicted in

Figures 10.7 and 10.8. For the public circuits, the peak power is reduced by between

84.22 % (’b14’) and 89.55 % (’b19a’) while the average power reduction ranges between

86.75 % (’s35932’) and 90.71 % (’b17a’). For the industrial circuits, savings in a range

from 77.79 % (’p469k’) to 89.89 % (’p295k’) are observed for the peak power and the

average power is lowered by between 82.78 % (’p469k’) and 91.02 % (’p500k’).

In summary, along with the previously discussed advantages in terms of test time

and test volume, Bit-Flipping Scan is a viable test solution that inherits considerable

benefits in limiting the peak and reducing the average test power consumption.
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Figure 10.7.: Peak Test Power for Benchmark Circuits (data and more results in Ta-

bles A.18 and A.19).
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10.6. Test Energy

The last sections showed, that the application of Bit-Flipping Scan inherits a lowered

average test power consumption which is also consumed for much shorter time

periods due to the reduced test application time. Thus, test energy, the product of

power consumption and time, profits from a reduction in both dimensions.

The test energy for circuit ’b14’ is equal to the area in Figure 10.6. The reference

test set used for classical scan design (’Scan’) and its combination with bitwise fault

tolerance (’FTScan’) both have a test application time of 395260 ns (98815 cycles from

Table A.16 multiplied with a clock period of 4 ns due to a used test frequency of

250MHz). Thus, the test energy of classical scan design amounts 1.83 · 10
3 nJ (’Scan’)

while the orthogonal combination of scan design and fault tolerance has an energy of

2.20 ·10
3 nJ (’FTScan’). In contrast, the test energy of Bit-Flipping Scan is considerably

lower and constitutes with 3.43 ·10
1 nJ a reduction by 98.44 % compared to FTScan.

The test energy for the FTScan and BFScan architectures is depicted for all public

and industrial circuits with logarithmic scale in Figure 10.9. For the public circuits

the test energy is reduced by at least 96.64 % (’b18’) while the maximum reduction

of 98.55 % is achieved for circuit ’s13207’. The industrial benchmarks show energy
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Figure 10.8.: Average Test Power for Benchmark Circuits (data and more results in

Tables A.18 and A.19).
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10.7. Summary

savings in the same order between 94.92 % (’p483k’) and 98.97 % (’p45k’). In most

cases, test energy is reduced by more than 97 %.

In summary, Bit-Flipping Scan positively influences both test power dimensions.

Hence, the use of Bit-Flipping scan consistently lowers the test energy for all circuits

by more than one order of magnitude. The absence of outliers with a low reduction as

well as the narrowness of all observed reduction ratios further fortifies the efficiency

of the Bit-Flipping Scan architecture and the associated test sequence generation.

10.7. Summary

For small registers, the hardware overhead associated with the unified architecture

is already comparable to the overhead of an orthogonal combination of bitwise

fault tolerance with scan design. With growing register sizes, the overhead declines

logarithmically and is reduced by more than one third for large registers. By incorpo-

rating the area efficient Transmission-Gate Exclusive OR standard cell from Chapter 7

the area overhead is even further reduced and amounts only half of the overhead

that comes along with a orthogonal bitwise implementation. The results for public
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Figure 10.9.: Test Energy for Benchmark Circuits (logarithmic scale, data and more

results in Tables A.18 and A.19).
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benchmark and industrial circuits confirm the bisected area overhead for all circuits

and demonstrates the applicability and viability of Bit-Flipping Scan as a unified

architecture that supports test and fault tolerance.

The generated Bit-Flipping Scan test sequences are evaluated and compared to state-

of-the-art test sets applied through scan design for public and industrial circuits with

respect to all relevant test metrics. The results express preferences of the unified

architecture in terms of test application time with a speedup of at least 5 X and test

data volume which is reduced by more than 70 % for a majority of the circuits. In

addition, peak and average test power are reduced by around 90 % and test energy is

lowered by more than 95 %.

Thus, Bit-Flipping scan leverages the use of cheaper automatic test equipment due to

significantly lowered requirements on the tester memory (test data volume reduction)

and the tester power supply system (peak test power reduction). Furthermore, the

test equipment allocation is shortened per device under test (test application time

reduction) and device handling is eased due to relaxed cooling requirements (average

test power reduction). In addition, even more complex tests might be facilitated during

waver level test, where no external cooling is available and the thermal capacitance of

the waver needs to be utilized (test energy reduction). Hence, the application of Bit-

Flipping Scan contributes towards test cost reduction through manifold mechanisms

without sacrificing test quality.
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This part targeted hard faults by offline testing. Proving the presence of hard faults

since ever has been a necessity for every produced chip and is typically supported by

dedicated test infrastructure in order to increase testability and attenuate test cost.

Instead of implementing classical scan design in addition to bitwise fault tolerance to

cope with hard faults and soft errors, a novel unified architecture is developed that

provides fault tolerance concurrent to operation and supports test with an effective

test access mechanism otherwise. While being able to support arbitrary test sequences,

the full amenities of the architecture are unlocked by a test generation heuristic that

takes advantage of the provided capabilities.

Chapter 8 - Test Access through Infrastructure Reuse - extends the fault tolerance

architecture depicted in the last part to also serve as a test access mechanism. During

test, reaching a high testability is crucial and mandates for full accessability to the

sequential circuit state. Here, test access is provided with limited area overhead by

repurposing the two fundamental concepts used during fault tolerance. The modulo-2
address characteristic of a register allows to observe the test response in compacted

form. The bit-flipping mechanism permits to set up the next test pattern from the

last test response by an incremental update of crucial register bits. As both, the

characteristic and the bit-flip addresses, depend logarithmically on the register size,

the ’Bit-Flipping Scan’ architecture provides a high test access efficiency as long as

the number of accesses per test pattern can be limited.

Chapter 9 - Test Sequence Generation - maps the test sequence generation to a Boolean

satisfiability problem. The used model adheres the aspects necessary for sequential

test generation: The combinational circuit core, the representation of faults and the

sequential mapping between consecutive timeframes with the unique possibility

to alter the sequential state between two timeframes by bit-flipping. While finding

an optimal test sequence with a minimal test time for a given upper bound on the

number of allowed bit-flips is shown to be possible in theory, it is only feasible for

rather small model sizes due to the high complexity of sequential ATPG. Instead, the
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satisfiability problem is solved heuristically under two cardinality constraints that

allow to adjust the maximum amount of allowed bit-flips and the minimum amount

of to be covered faults. Thereby, each pattern of the iteratively generated sequence

is guaranteed to use a minimized amount of bit-flips while covering a maximized

subset of the still undetected faults.

Chapter 10 - Experimental Evaluation of the Offline Test Scheme - finally reviews

the application of the infrastructure reuse to benchmark circuits with respect to all

relevant test metrics. The area overhead of the unified architecture is compared to the

overhead required by the orthogonal combination of scan design with bitwise fault

tolerance. For small registers the overhead is in the same range and reduces with

growing register sizes. For large registers the constant overhead of the orthogonal

combination is undercut by one third. A further optimization is achieved by applying

the Transmission-Gate Exclusive OR from Chapter 7 that implements the XOR func-

tion with half of the area. The evaluation for public and industrial circuits affirms the

bisected area overhead for all circuits and substantiates the efficacy and efficiency of

the unified architecture to assist test and fault tolerance. Compared to test sequences

targeting the orthogonal combination of scan design with bitwise fault tolerance, the

test sequences tailored to the unified architecture are shown to result in a test time

speedup of at least 5 X , reduce test volume by 70 %, limit peak test power to 10 %,

lower average test power by an order of magnitude and decrease test energy by more

than 95 %.
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Conclusions

The ability to escalate the integration density of digital circuits throughout the last

decades finally culminates in their omnipresence in everyday life. This progressive

proliferation also comprehends more and more safety critical application areas where

failure is not an option. Thus, reliability, the probability of survival beyond a specified

time, evolves as a primary objective. However, with an end of scaling in sight, reaching

and maintaining a high reliability is severely challenged as every further scaling

step raises the probability of failure. Hard faults unavoidable during manufacturing

endanger the yield of fully functional chips and the elevated susceptibility to radiation-

induced soft errors degrades the reliability during operation.

Consequently, every produced chip undergoes testing to screen the presence of hard

faults throughout the manufacturing process which is supported by additional on-chip

infrastructure for test access. Throughout the operation, fault tolerance infrastructure

is used to mitigate the effect of soft errors with the help of redundancy. Due to the

seemingly contradicting goals of test, that shows the presence of hard faults, and

fault tolerance, that hides the occurrence of soft errors, both causes of failure are

often contemplated independently. Thus, hard faults and soft errors are treated by

two specialized but distinct infrastructures that are implemented orthogonally at

elevated cost although they are never used at the same time.

The work at hand supports both application areas through a unified architecture with

a reduced infrastructure area footprint that allows to provision fault tolerance during

operation while acting as a test access mechanism during test. To this end, the unified

architecture employs a unique combination of an efficient sequential state checksum

with an effective state update by bit-flipping.

During fault tolerance, each individual register is protected by a combination of

information and structural redundancy. The register specific error condition in form
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of a modulo-2 address characteristic is derived area efficiently by a combinational

characteristic tree with optimal organization. False detections are completely avoided

by protecting the stored error condition. In contrast to classical bitwise fault tolerance,

Single Event Upset detection is achieved with a considerably lower area overhead. By

using the localization information compromised in the characteristic to control the

bit-flipping capability embedded in new standard cells at low level a self-contained

and fast concurrent online correction of single bit upsets is achieved. In presence of

multiple bit upsets, the characteristic is easily extended without sacrificing efficiency

in order to classify upsets according to their multiplicity and identify correctable

Single Bit Upsets. As the checksum computation solely relies on exclusive OR gates,

a further area reduction is enabled by the presented area optimized XOR cell.

During test, the unified architecture acts as a test access mechanism where the loga-

rithmic register checksums allow to observe inherently compacted test responses

while the next test pattern is set up through a selective update of the captured sequen-

tial state by bit-flipping. The generation of test sequences that exploit the capabilities

of the unified architecture is mapped to a Boolean satisfiability problem and solved

heuristically. Cardinality constraints are used to guide the pattern generation and

restrict the number of bit-flips while maximizing the fault coverage. The results

for public and industrial benchmark circuits depict substantially accelerated test

application times, considerable test volume reductions, peak test power limitations,

significant average test power cutbacks, as well as remarkable test energy savings.

In summary, the unified architecture based on a unique combination of logarithmic

register checksums with a low-level bit-flipping mechanism is practically applicable,

inherits reduced infrastructure cost, and incorporates direct benefits in the fault

tolerance and test domains.

11.1. Future Research Directions

The unified architecture depicted in this work provides fault tolerance by correcting

single bit upsets during operation and supports test with the ability to flip individual

register bits. However, if multiple bit-flips are necessary in a register a sequence of

single bit-flips has to be used. Theoretically, multiple bit-flips can be performed in a

single clock cycle as the bit-flipping mechanism is implemented per bit at low-level and

the used characteristic can easily be extended to provide a higher Hamming distance
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(see Chapter 6). Thus, a more sophisticated decoder could bridge the gap between an

extended localization information and the excitation of multiple concurrent flips.

The application of the unified architecture as a test access infrastructure targets faults

in the combinational circuit part. Although the infrastructure itself can be affected

by production defects, a large subset of the associated architecture-internal faults
is already implicitly covered. In order to improve the coverage of such faults that

possibly affect the provided fault tolerance and test access, all infrastructure parts

should be thoroughly exercised by explicit test sequences. The robust test sequence for

XOR-trees from [THL89] could serve as a starting point for the characteristic tree.

While the work at hand focuses on external testing supported by automatic test

equipment, the raising failure rates stemming from expedited infant mortality and

aging demand for Built-In Self Test (BIST) performed throughout the lifetime. The

presented test access mechanism is applicable to BIST and seems to be well suited due

to its low area overhead, the reduced test data volume stored on-chip, the accelerated

test application time as well as the lowered test power consumption and energy.

In order to support the test of timing faults, the discussed test access mechanism

supports the application of two pattern tests required by fault models that consider

the temporal behavior of a circuit, such as the transition, gate or path delay fault

model. While common schemes are constricted to launch a transition ’on shift’ or ’on

capture’ of the first test response, the presented infrastructure could facilitate a more

flexible ’launch on bit-flip’ with an appropriate bit-flipping aware test sequence.

Timing characterization allows to detect premature aging by means of online delay

measurement enabled through double sampling. The infrastructure contains the

functional register R as well as its characteristic register C which are controlled

by two delayed clocks. Thus, with a known clock phase shift and a sweep over the

clock frequency, it allows the determination of the lowest frequency that results in a

mismatch between the stored reference and the recomputed characteristic.

Small delay defects might not yet violate the nominal circuit timing after manufactur-

ing but point to underlying hardware marginalities which may degrade into early
life failures. Their confirmation is impaired since the slack along sensitized paths

is typically much larger than the defect size. Faster-than-at-speed tests allow their

detection under raised clock frequencies. However, operating the circuit above the

nominal frequency increases noise in the power and clock network, which threatens

reliable detection and also causes over-testing. Thus, the significant peak and average
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test power reduction of the Bit-Flipping Scan architecture eases faster-than-at-speed

testing while the shortened test time help to obey a provided thermal budget.

The work at hand is not limited to Application Specific Integrated Circuits (ASICs).

Reconfigurable architectures dynamically instantiate application specific accelerators

during runtime to combine the high performance of hardware with the flexibility

of software. However, the Field Programmable Gate Arrays (FPGAs) used as the

underlying fabric are also susceptible to soft errors. While the configuration data that

defines the fabric’s behavior is by now protected through error correcting codes, soft

errors in the sequential state of the implemented accelerators are not yet addressed

[Xil14]. Hence, the presented unified architecture could conquer this issue by provid-

ing fault tolerance. It is especially suited for FPGAs as its two fundamental concepts,

the characteristic computation and the bit-flipping mechanism, possess lightweight

implementations. The bit-flipping functionality requires only one additional FPGA

lookup table (LUT) in excess to the sequential element. The exclusive OR function

that forms the base of the characteristic tree is not harder to implement by a LUT

than any other gate function.

Dynamic reconfiguration also demands for appropriate testing of the underlying

fabric prior to reconfiguration (pre-reconfiguration test, PRET) and the validation of

the instantiated functionality after reconfiguration (post-reconfiguration test, PORT).

While structural tests implemented by specialized test configurations are used during

the PRET, PORT employs functional tests due to the lack of an appropriate test

access mechanism. With the unified architecture provisioning fault tolerance during

operation, the inherently contained test access mechanism could also facilitate the

use of structural tests during PORT.
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[ES03] N. Eén and N. Sörensson, “Temporal induction by Incremental SAT

Solving”, Electronic Notes in Theoretical Computer Science, vol. 89, no.

4, pp. 543–560, 2003. doi: 10.1016/S1571-0661(05)82542-3.

162

http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1109/43.41499
http://dx.doi.org/10.1007/BF00995313
http://dx.doi.org/10.1109/JSSC.2008.2007145
http://dx.doi.org/10.1109/MICRO.2003.1253179
http://dx.doi.org/10.1109/DATE.2011.5763277
http://dx.doi.org/10.1109/TVLSI.2012.2213102
http://dx.doi.org/10.1016/S1571-0661(05)82542-3


Bibliography
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Appendix A

Tables with Experimental Results

This appendix starts with details on the electronic design automation tools employed

throughout this work (Section A.1) followed by the characteristics of the public and

industrial benchmark circuits used during evaluation (Section A.2). The remaining

sections exhibit additional experimental results in tabulated form for both parts of

this work, the Fault Tolerance Infrastructure (Section A.3) as well as the Infrastructure

Reuse for Offline Testing (Section A.4).

A.1. Electronic Design Automation Flow and Tools

The work at hand copes with fault tolerance and test by a new unified architecture.

Dedicated solutions are used to solve specific challenges efficiently at different ab-

straction levels (see Section 2.1.1). Thus, the used Electronic Design Automation flow

as depicted in Figure A.1 involves a wide range of tasks that reach from layout to

circuit level. The tools used to conduct each task are listed in Table A.1.

Circuit Level (Chapters 4,5,7): Throughout this work, several custom standard cells are

developed and implemented that constitute the foundation of the unified architecture.

The Parity-Pair Latch to enable an area efficient register parity computation during

non-concurrent detection. The Bit-Flipping Latch that offers an area efficient and fast

concurrent online correction. And last but not least, the Transmission-Gate Exclusive
OR which reduces the area overhead of the characteristic computation. Starting from

the structural schematic netlist, the physical cell geometry is derived during layout
generation and validated by comparison of the cell specification (schematic netlist) to

its realization (layout netlist from physical extraction) during layout-vs-schematic. The

electrical properties, the timing behavior as well as power and energy consumption
are quantified for selected operating conditions during analog simulation.
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Figure A.1.: Experimental Setup with EDA Tool and Data Flow.
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A.1. Electronic Design Automation Flow and Tools

Table A.1.: Used Electronic Design Automation Tools and Versions.

Task Vendor, Tool Version

Power Analysis Synopsys, PrimeTime H-2012.12

Simulation Mentor Graphics, ModelSim SE 6.4a

Test Pattern Generation

- Scan Mentor Graphics, Tessent FastScan v9.5

- Bit-Flipping Scan Inhouse, Computer Aided Test (CAT),

Inhouse, Sequential SAT ATPG (S2ATPG)

Infrastructure Generation Inhouse, Soft Error (SERROR)

Design Preprocessing Inhouse, Design for X (DFX)

Synthesis Synopsys, Design Compiler G-2012.06

Library Characterization Cadence, Encounter Library Characterizer v07.13

Analog Simulation Synopsys, HSPICE B-2008.09

Layout vs Schematic Mentor Graphics, Calibre LVS v2008.3

Physical Extraction Mentor Graphics, Calibre PEX v2008.3

Design Rule Check Mentor Graphics, Calibre DRC v2008.3

Layout Generation Cadence, Virtuoso Layout Suite IC6.1.3.1

Logic Level (Chapters 4-7,8): The cell properties are then automatically quantified

for a larger range of operation conditions during library characterization which

allows to abstract from cells to gates represented in a custom cell library. Together

with a standard cell library, the different architectures and sequential payloads are

synthesized for different register sizes in order to quantify their area overhead.

Register-Transfer Level (Chapters 8,9): Circuits outfitted with the architectures are

synthesized by combining the combinational circuit core of benchmark circuits ex-

tracted during design preprocessing with a tailored sequential circuit portion obtained

by architecture instantiation during infrastructure generation. Test pattern generation
is conducted and the resulting test patterns are applied to the circuit via a testbench
during simulation to quantify test time and test volume. The recorded switching activity
finally allows to quantify test power and energy during power analysis.

Tools specific to this work are realized as modules of the internal EDA framework

’Design for X (DFX)’ and implemented in Java (’Inhouse’ in Table A.1). The circuit

preparation from benchmarks to fully outfitted circuits is managed by the ’SERROR’

module. The satisfiability-based test sequence generation from Chapter 9 targeting

the Bit-Flipping Scan architecture is implemented within the ’S2ATPG’ module.
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A.2. Benchmark Circuits

Throughout the experimental evaluation of the Unified Architecture in Part III se-

quential circuits are used that originate from three different sources. All benchmark

circuits are modeled by a structural gate level description composed of gates with up

to two inputs where gates with more inputs have been dissolved.

The used public circuits depicted in Table A.2 stem from the sets of digital sequential

circuits presented at the International Symposium on Circuits and Systems in 1989

Table A.2.: Properties of the used Public Benchmark Circuits.

Gates Primary

Name Combinational Sequential Inputs Outputs Depth

(1) (2) (3) (4) (5) (6)

s13207 8 668 669 31 121 65

s13207a 8 668 638 62 152 65

s15850 10 211 597 14 87 88

s15850a 10 211 534 77 150 88

s35932 16 353 1 728 35 320 30

s38417 23 537 1 636 28 106 49

s38584 21 462 1 452 12 278 60

s38584a 21 462 1 426 38 304 60

b14 10 735 245 32 54 67

b14a 7 459 245 32 54 61

b15 9 947 449 36 70 73

b15a 14 122 449 36 70 56

b17 35 549 1 415 37 97 104

b17a 42 879 1 415 37 97 56

b18 124 952 3 320 37 44 175

b18a 118 329 3 320 37 44 175

b19 251 692 6 642 24 71 180

b19a 238 942 6 642 24 71 180

b20 21 599 490 32 22 74

b20a 15 354 490 32 22 75

b21 22 055 490 32 22 75

b21a 15 460 490 32 22 71

b22 32 090 735 32 22 75

b22a 23 210 735 32 22 73
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A.2. Benchmark Circuits

(ISCAS89, denoted by ’s’) [BBK89] and at the International Test Conference in 1999

(ITC99, denoted by ’b’) [Dav99; CRS00]. Table A.2 denotes the properties of the

selected public circuits which include the name (col. 1), the amount of combinational

and sequential gates (col. 2 and 3), the number of primary in- and outputs (col. 4 and

5) as well as the circuit depth (col. 6).

Industrial designs were kindly provided by NXP (formerly Philips). Their properties

in Table A.3 contain two additional columns that depict the number of scan chains in

the original scan configuration and the length of the longest chain for reference.

Table A.3.: Properties of the used Industrial Benchmark Circuits.

Gates Primary Scanchain Configuration

Name Comb. Seq. Inputs Outputs Depth Chains Max. Length

(1) (2) (3) (4) (5) (6) (7) (8)

p35k 46 435 2 173 739 56 72 23 100

p45k 43 190 2 331 1 408 219 61 97 333

p77k 72 370 3 386 101 14 570 13 304

p78k 74 243 2 977 171 507 47 65 64

p81k 108 991 3 877 152 75 56 8 485

p89k 88 726 4 301 331 256 111 18 963

p100k 96 685 5 735 167 94 106 18 792

p141k 172 686 10 501 789 1 80 24 486

p239k 259 241 18 382 310 113 185 40 541

p259k 334 524 18 398 315 97 188 40 541

p267k 271 538 16 528 804 93 75 45 494

p269k 272 630 16 528 805 93 75 45 494

p279k 287 939 17 524 554 311 151 55 409

p286k 364 347 17 713 638 122 155 55 416

p295k 291 022 18 465 43 56 115 11 1 852

p330k 355 642 16 775 1 235 693 72 64 317

p378k 371 215 14 885 847 2 535 47 325 64

p388k 489 271 23 789 1 216 276 226 50 525

p418k 439 198 28 616 1 814 1 193 207 64 830

p469k 75 572 332 303 71 175 1 332

p483k 515 717 32 307 957 303 110 71 900

p500k 495 544 29 312 1 456 1 528 171 76 446

p533k 662 730 32 409 964 201 114 71 900

p874k 717 302 41 803 1 108 454 240 59 780
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A.3. Results - Fault Tolerance Infrastructure

Tabulated results and absolute area values for the four chapters of Part II are provided

in the following.

A.3.1. Non-Concurrent Detection and Localization of Single Event
Upsets

Chapter 4 focuses on protecting modules equipped with clock gating against soft

errors during phases where the clock is disabled to increase power efficiency.

Single Event Upset Detection at Gate Level (Chapter 4.2) Table A.4 reports the

area overhead associated with the register parity computation across different register

sizes (col. 1) for a reference standard cell implementation (col. 3-4) and the presented

Parity-Pair Latch (col. 5-6) over the original register (col. 2).

Single Event Upset Localization atModule Level (Chapter 4.3) Table A.5 shows

the area overhead as a function of register size (col. 1) and register count (col. 2 divided

by col. 1), if the modulo-2 address characteristic is used to implement a module wide

localization on top of multiple registers equipped with above mentioned reference

and parity-pair latch based parity computation.

Table A.4.: Area Overhead - Parity Computation for a Single Register - Reference Im-

plementation (OCL) and Parity-Pair Latch (PPL) (visualized in Figure 4.12).

Detection (Fig. 4.1-b and 4.1-c)

Register Unprotected Reference Parity-Pair Latch

(Fig. 4.1-a) (OCL, Fig. 4.2) (PPL, Fig. 4.4)

Size Area Area Overhead Area Overhead

[bit] [µm2
] [µm2

] [+%] [µm2
] [+%]

(1) (2) (3) (4) (5) (6)

8 21.28 38.84 +82.52% 22.88 +7.52%

16 42.56 79.27 +86.25% 47.35 +11.25%

32 85.12 160.13 +88.12% 96.29 +13.12%

64 170.24 321.86 +89.06% 194.18 +14.06%

128 340.48 645.32 +89.53% 389.96 +14.53%

182



A.3. Results - Fault Tolerance Infrastructure

Table A.5.: Area Overhead - SEU Localization across Multiple Registers - Reference

Implementation (OCL) and Parity-Pair Latch (PPL) (visualized in Fig-

ure 4.13).

Unprotected Detection & Localization (Fig. 4.1-c)

Size (Fig. 4.1-a) Reference (OCL) Parity Pair Latch (PPL)

Register Total Area Area Overhead Area Overhead

[bit] [bit] [µm2
] [µm2

] [+%] [µm2
] [+%]

(1) (2) (3) (4) (5) (6) (7)

8 256 680.96 1355.80 +99.10% 840.29 +23.40%

512 1361.92 2702.56 +98.44% 1675.53 +23.03%

1024 2723.84 5393.95 +98.03% 3344.68 +22.79%

2048 5447.68 10775.66 +97.80% 6682.72 +22.67%

4096 10895.36 21537.49 +97.68% 13357.99 +22.60%

16 256 680.96 1328.14 +95.04% 813.43 +19.45%

512 1361.92 2649.63 +94.55% 1623.40 +19.20%

1024 2723.84 5290.21 +94.22% 3242.27 +19.03%

2048 5447.68 10569.24 +94.01% 6477.10 +18.90%

4096 10895.36 21126.25 +93.90% 12947.55 +18.84%

32 256 680.96 1313.24 +92.85% 799.33 +17.38%

512 1361.92 2621.96 +92.52% 1596.53 +17.23%

1024 2723.84 5237.27 +92.28% 3189.61 +17.10%

2048 5447.68 10466.04 +92.12% 6374.69 +17.02%

4096 10895.36 20919.84 +92.01% 12741.93 +16.95%

64 256 680.96 1305.53 +91.72% 792.41 +16.37%

512 1361.92 2607.07 +91.43% 1582.43 +16.19%

1024 2723.84 5209.61 +91.26% 3162.74 +16.11%

2048 5447.68 10412.57 +91.14% 6322.02 +16.05%

4096 10895.36 20816.63 +91.06% 12639.52 +16.01%

128 256 680.96 1300.21 +90.94% 787.89 +15.70%

512 1361.92 2599.35 +90.86% 1575.52 +15.68%

1024 2723.84 5194.71 +90.71% 3148.64 +15.60%

2048 5447.68 10384.91 +90.63% 6295.16 +15.56%

4096 10895.36 20763.16 +90.57% 12586.85 +15.52%
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A.3.2. Concurrent Online Correction of Single Event Upsets

In Chapter 5, the clocked phase of a module is protected by deriving register specific

error conditions through directly applying the modulo-2 address characteristic.

Single Error Detection (SED) (Chapter 5.2) Table A.6 depicts the area overhead

associated with the derivation and the protected storage of the register specific error

condition in order to provide single error detection (col. 5-6) in comparison to bitwise

duplication with comparison (col. 3-4).

Single Error Correction (SEC) (Chapter 5.3) Table A.7 list the area overhead if

the architecture is extended to a self-contained rapid correction by replacing the

register latches with the developed Bit-Flipping Latches (col. 7-8). In addition to the

unprotected area (col. 2), the area and overhead of bitwise triple modular redundancy

(col. 3-4) and bitwise fault tolerance (col. 5-6) are provided for reference.

A.3.3. Fault Tolerance in Presence of Multiple Bit Upsets

Chapter 6 investigates the behavior with respect to multiple errors and extends the

detection capabilities to double errors by utilizing the extended characteristic.

Online Architecture for Double Errors (Chapter 6.2) Table A.8 depicts the area

overhead for sole double error detection (col. 3-4) and its combination with single

error correction (col. 5-6).

Table A.6.: Area Overhead - Single Error Detection (SED) (visualized in Figure 5.5).

Register Unprotected Duplication with Detecting

(Fig. 5.1-a) Comparison (DWC) (Fig. 5.1-b)

Size Area Area Overhead Area Overhead

[bit] [µm2
] [µm2

] [+%] [µm2
] [+%]

(1) (2) (3) (4) (5) (6)

7 18.62 53.73 +188.56% 51.60 +177.12%

15 39.90 115.44 +189.32% 94.16 +135.99%

31 82.46 239.13 +190.00% 177.95 +115.80%

63 167.58 485.72 +189.84% 342.61 +104.45%

127 337.82 979.68 +190.00% 668.72 +97.95%

255 678.30 1966.80 +189.96% 1318.03 +94.31%
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A.3. Results - Fault Tolerance Infrastructure

Table A.7.: Area Overhead - Single Error Correction (SEC) (visualized in Figure 5.9).

Register Unprotected Triple Modular Fault Tolerance Correcting

(Fig. 5.1-a) Redundancy (TMR) (FT) (Fig. 5.1-c)

Size Area Area Overhead Area Overhead Area Overhead

[bit] [µm2
] [µm2

] [+%] [µm2
] [+%] [µm2

] [+%]

(1) (2) (3) (4) (5) (6) (7) (8)

7 18.62 80.07 +330.02% 79.80 +328.57% 81.93 +340.01%

15 39.90 171.57 +330.00% 171.30 +329.32% 148.69 +272.66%

31 82.46 354.58 +330.00% 354.84 +330.32% 287.55 +248.71%

63 167.58 720.59 +330.00% 721.92 +330.79% 551.15 +228.89%

127 337.82 1452.63 +330.00% 1457.41 +331.42% 1060.01 +213.78%

255 678.30 2916.69 +330.00% 2926.80 +331.49% 2114.17 +211.69%

A.3.4. Area Efficient Characteristic Computation

Chapter 7 first analyzes the area overhead of the single error correction architecture

and identifies the characteristic computation as a major area contributor. The devel-

oped area efficient Transmission-Gate Exclusive XOR is shown to further reduce the

overhead and to be beneficial for all previously presented architectures.

Table A.8.: Area Overhead - Single and Double Error Detection (DED), Single Error

Correction Double Error Detection (SECDED) - Single Register (visualized

in Figure 6.3).

Register Unprotected Double Detecting (DED) Single Correcting, Double Detecting

(Fig. 5.1-a) (Fig. 5.1-b & Fig. 6.1) (SECDED) (Fig. 5.1-c & Fig. 6.1)

Size Area Area Overhead Area Overhead

[bit] [µm2
] [µm2

] [+%] [µm2
] [+%]

(1) (2) (3) (4) (5) (6)

7 18.62 59.32 +218.58% 89.64 +381.42%

15 39.90 103.47 +159.32% 158.00 +295.99%

31 82.46 188.86 +129.03% 298.45 +261.93%

63 167.58 355.11 +111.90% 563.65 +236.35%

127 337.82 682.82 +102.13% 1074.11 +217.95%

255 678.30 1333.72 +96.63% 2129.86 +214.00%
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Appendix A. Tables with Experimental Results

Detailed Analysis of the Correction Area Overhead (Chapter 7.1) Table A.9

shows the detailed area overhead breakdown of single error correction. The total

area (col. 9) is partitioned and attributed to the Bit-Flipping Latches (col. 3), the

characteristic tree (col. 4), the checksum register and syndrome derivation (col. 5), its

parity protection (col. 6), the syndrome decoder (col. 7), and the top level (col. 8).

Table A.9.: Detailed Area Overhead Analysis of Single Error Correction (SEC) Com-

ponents (see Table A.7) (visualized in Figure 7.1).

Register Unprotected Correcting (Fig. 5.1-c)

(DLH X1) BFL Char S/fail S fail P Decoder Top Sum

Size Area Area Area Area Area Area Area Area

[bit] [µm2
] [µm2

] [µm2
] [µm2

] [µm2
] [µm2

] [µm2
] [µm2

]

(1) (2) (3) (4) (5) (6) (7 ) (8) (9)

7 18.62 22.34 12.77 12.51 6.65 19.15 8.51 81.93

15 39.90 47.88 35.11 16.22 8.25 32.72 8.51 148.69

31 82.46 98.95 82.99 20.75 9.84 65.97 9.05 287.55

63 167.58 201.10 181.94 25.27 11.44 121.03 10.37 551.15

127 337.82 405.38 383.04 29.52 13.04 217.06 11.97 1060.01

255 678.30 813.96 788.42 33.52 14.63 448.47 15.17 2114.17

Area Efficient Exclusive OR Trees (Chapter 7.2) Table A.10 shows the area break-

down after applying the Transmission-Gate XOR to the characteristic computation

(col. 4), the syndrome comparator (col. 5) and the characteristic protection (col. 6).

Table A.10.: Detailed Area Overhead Analysis of the Area Efficient Single Error Cor-

rection (SEC TG) utilizing the Transmission-Gate XOR (vis. in Fig. 7.7).

Register Unprotected Area Efficient Correcting (Fig. 5.1-c & Fig. 7.3)

(DLH X1) BFL Char S/fail S fail P Decoder Top Sum

Size Area Area Area Area Area Area Area Area

[bit] [µm2
] [µm2

] [µm2
] [µm2

] [µm2
] [µm2

] [µm2
] [µm2

]

(1) (2) (3) (4) (5) (6) (7 ) (8) (9)

7 18.62 22.34 6.38 10.11 5.06 19.15 9.05 72.09

15 39.90 47.88 17.56 13.03 5.85 32.72 9.04 126.08

31 82.46 98.95 41.50 16.76 6.65 65.97 9.57 239.40

63 167.58 201.10 90.97 20.48 8.25 121.03 10.90 452.73

127 337.82 405.38 191.52 23.94 8.25 217.06 12.50 858.65

255 678.30 813.96 394.21 27.13 9.05 448.47 15.70 1708.52
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A.3. Results - Fault Tolerance Infrastructure

Table A.11 depicts the area overhead for the area efficient detection of single errors

(col. 3-4) and double errors (col. 5-6).

Table A.11.: Area Overhead - Area Efficient Error Detection (SED TG, DED TG) (vi-

sualized in Figure 7.8).

Area Efficient Detecting (Fig. 5.1-b & Fig. 7.3)

Single Detecting Double Detecting

Register Unprotected (SED TG) (DED TG) ( & Fig. 6.1)

Size Area Area Overhead Area Overhead

[bit] [µm2
] [µm2

] [+%] [µm2
] [+%]

(1) (2) (3) (4) (5) (6)

7 18.62 41.23 +121.43% 47.35 +154.30%

15 39.90 71.02 +77.99% 77.94 +95.34%

31 82.46 129.28 +56.78% 136.99 +66.13%

63 167.58 243.66 +45.40% 252.17 +50.48%

127 337.82 466.83 +38.19% 476.14 +40.94%

255 678.30 911.85 +34.43% 921.96 +35.92%

Table A.12 lists the area overhead for the area efficient correction combined with

single error detection (col. 3-4) and double error detection (col. 5-6).

Table A.12.: Area Overhead - Area Efficient Error Correction (SEC TG, SECDED TG)

(visualized in Figure 7.8).

Area Efficient Correcting (Fig. 5.1-c & Fig. 7.3)

Single Correcting Single Correcting, Double Detecting

Register Unprotected (SEC TG) (SECDED TG) ( & Fig. 6.1)

Size Area Area Overhead Area Overhead

[bit] [µm2
] [µm2

] [+%] [µm2
] [+%]

(1) (2) (3) (4) (5) (6)

7 18.62 72.09 +287.16% 77.67 +317.13%

15 39.90 126.08 +215.99% 132.47 +232.01%

31 82.46 239.40 +190.32% 246.58 +199.03%

63 167.58 452.73 +170.16% 460.71 +174.92%

127 337.82 858.65 +154.17% 867.43 +156.77%

255 678.30 1708.52 +151.88% 1718.09 +153.29%
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Appendix A. Tables with Experimental Results

A.4. Results - Infrastructure Reuse for Offline Testing

Part III focuses on offline testing, achieves full testability and targets two domains

to increase test efficiency. Test access is provided by reusing the fault tolerance

infrastructure from the last part. To capitalize the unique properties of the provided

test access, customized test sequences are generated. Thus, all secondary test metrics

from Section 1.2.2 are evaluated.

A.4.1. Test Access through Infrastructure Reuse

Chapter 8 extends the previously developed concurrent fault tolerance architec-

ture. The resulting unified ’Bit-Flipping Scan’ architecture doubles as a test access

mechanism during offline test and requires only small amendments.

Unified Architecture (Chapter 8.1) Table A.13 discloses the area overhead if sin-

gle registers of different sizes (col. 1) are equipped with scan design (col. 3-4), the

combination of scan design with bitwise fault tolerance (col. 5-6), Bit-Flipping Scan

(col. 7-8) as well as Area Efficient Bit-Flipping Scan (col. 9-10).

The area overhead associated with the application to complete circuits is provided in

Table A.14 for public circuits and in Table A.15 for industrial circuits.

Table A.13.: Unified Architecture - Area Overhead for a Single Register equipped

with Scan, Fault Tolerance & Scan, Bit Flipping Scan and Area Efficient

Bit Flipping Scan (visualized in Figure 10.2).

Fault Tolerance Area Efficient

Reg. Original Scan Design & Scan Design Bit-Flipping Scan Bit-Flipping Scan

Size (DFF) (SDFFR) OH (SDFFR) OH (BFFF) OH (BFFF) OH

[bit] [µm2
] [µm2

] [+%] [µm2
] [+%] [µm2

] [+%] [µm2
] [+%]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

7 31.65 47.61 +50.43% 97.09 +206.76% 115.71 +265.59% 105.34 +232.83%

15 67.83 100.81 +48.62% 206.15 +203.92% 201.10 +196.48% 177.95 +162.35%

31 140.18 209.87 +49.71% 427.46 +204.94% 374.00 +166.80% 326.12 +132.64%

63 284.89 425.07 +49.20% 863.97 +203.26% 700.64 +145.93% 601.69 +111.20%

127 574.29 853.33 +48.59% 1743.10 +203.52% 1331.86 +131.91% 1129.97 +96.76%

255 1153.11 1720.75 +49.23% 3502.16 +203.71% 2590.84 +124.68% 2184.66 +89.46%
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A.4. Results - Infrastructure Reuse for Offline Testing

A.4.2. Test Sequence Generation

Chapter 9 provides heuristically generated tailored test sequences that are able to fully

exploit the test access capabilities provided by the ’Bit-Flipping Scan’ architecture.

Bit-Flipping Scan Test Sequence Generation (Chapter 9.3) Table A.16 and Ta-

ble A.17 list the test application time (col. 2-11) for the public respectively the indus-

trial circuits. For the reference test set, the number of patterns (col. 2) as well as the

amount of test cycles needed for application through classical scan design (col. 5)

are provided along with the number of scan (col. 3) and capture cycles (col. 4). For

the Bit-Flipping Scan test sequence, the pattern count (col. 6) is depicted along with

the test cycles used during scan (col. 7), flip (col. 8) and capture (col. 9) operations

as well as the total number of used cycles (col. 10). Finally, the test time speedup is

calculated for comparison (col. 11).

The test data volume, the amount of bits exchanged externally with the test access

mechanism, for both schemes is contained in column 12 respectively 13 of Table A.16

and Table A.17. The ratio between both volumes (col. 14) determines the test volume

reduction achieved by the Bit-Flipping Scan architecture.

Table A.18 and Table A.19 provide insight to the peak (col. 2-4) and average power

(col. 5-7) consumption of the used public and industrial circuits during test applica-

tion.

The remaining columns of Table A.18 and Table A.19 finally denote the test energy

consumption (col. 8-10), the product of test time and average test power, for the public

and industrial circuits.
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Appendix A. Tables with Experimental Results
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A.4. Results - Infrastructure Reuse for Offline Testing
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Appendix A. Tables with Experimental Results

Table A.18.: Peak and Average Test Power (TP) and Test Energy (TE) for Public Circuits

(partially visualized in Fig. 10.7, Fig. 10.8 and Fig. 10.9).

Test Power Test Energy

Peak Average

Circuit FTScan BFScan Red. FTScan BFScan Red. FTScan BFScan Red.
name [W ] [W ] [%] [W ] [W ] [%] [nJ] [nJ] [%]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

s13207 8.30·10
-3

1.00·10
-3 87.94 7.78·10

-3
8.19·10

-4 89.47 1.24·10
3

1.80·10
1 98.55

s13207a 8.05·10
-3

9.88·10
-4 87.71 7.72·10

-3
7.84·10

-4 89.85 1.16·10
3

1.74·10
1 98.50

s15850 8.17·10
-3

8.95·10
-4 89.05 7.49·10

-3
7.91·10

-4 89.44 6.60·10
2

1.77·10
1 97.31

s15850a 7.22·10
-3

8.64·10
-4 88.03 6.69·10

-3
7.33·10

-4 89.05 6.37·10
2

1.84·10
1 97.11

s35932 2.14·10
-2

3.00·10
-3 85.96 1.96·10

-2
2.60·10

-3 86.75 6.32·10
2

1.06·10
1 98.31

s38417 2.23·10
-2

2.45·10
-3 89.00 2.16·10

-2
2.30·10

-3 89.37 1.87·10
3

4.92·10
1 97.36

s38584 1.89·10
-2

2.37·10
-3 87.48 1.81·10

-2
2.06·10

-3 88.64 1.83·10
3

4.12·10
1 97.75

s38584a 1.85·10
-2

2.54·10
-3 86.24 1.77·10

-2
2.09·10

-3 88.18 1.82·10
3

3.99·10
1 97.81

b14 6.18·10
-3

9.74·10
-4 84.22 5.57·10

-3
7.18·10

-4 87.11 2.20·10
3

3.43·10
1 98.44

b14a 4.93·10
-3

6.94·10
-4 85.91 4.46·10

-3
4.92·10

-4 88.96 1.37·10
3

2.76·10
1 97.98

b15 6.61·10
-3

8.62·10
-4 86.95 6.05·10

-3
6.93·10

-4 88.53 1.62·10
3

3.40·10
1 97.89

b15a 7.72·10
-3

9.03·10
-4 88.31 6.98·10

-3
7.18·10

-4 89.71 4.44·10
3

1.10·10
2 97.52

b17 2.25·10
-2

2.59·10
-3 88.50 2.16·10

-2
2.09·10

-3 90.32 1.23·10
4

2.42·10
2 98.02

b17a 2.45·10
-2

2.68·10
-3 89.07 2.34·10

-2
2.17·10

-3 90.71 1.54·10
4

4.40·10
2 97.15

b18 6.61·10
-2

7.22·10
-3 89.07 6.40·10

-2
6.15·10

-3 90.38 3.99·10
4

1.34·10
3 96.64

b18a 6.31·10
-2

7.08·10
-3 88.77 6.14·10

-2
5.94·10

-3 90.31 3.76·10
4

1.24·10
3 96.69

b19 1.37·10
-1

1.46·10
-2 89.31 1.32·10

-1
1.26·10

-2 90.45 9.58·10
4

3.13·10
3 96.73

b19a 1.31·10
-1

1.37·10
-2 89.55 1.27·10

-1
1.23·10

-2 90.29 9.20·10
4

2.89·10
3 96.85

b20 1.35·10
-2

2.00·10
-3 85.14 1.24·10

-2
1.49·10

-3 87.98 5.47·10
3

1.04·10
2 98.09

b20a 1.07·10
-2

1.50·10
-3 86.02 9.89·10

-3
1.14·10

-3 88.50 2.96·10
3

5.39·10
1 98.17

b21 1.35·10
-2

2.03·10
-3 84.99 1.25·10

-2
1.51·10

-3 87.89 5.56·10
3

1.11·10
2 98.00

b21a 1.07·10
-2

1.50·10
-3 85.99 9.87·10

-3
1.12·10

-3 88.67 3.06·10
3

5.72·10
1 98.12

b22 1.93·10
-2

2.86·10
-3 85.19 1.82·10

-2
2.24·10

-3 87.67 6.93·10
3

1.53·10
2 97.79

b22a 1.58·10
-2

2.20·10
-3 86.06 1.47·10

-2
1.79·10

-3 87.82 4.42·10
3

9.21·10
1 97.91
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A.4. Results - Infrastructure Reuse for Offline Testing

Table A.19.: Peak and Average Test Power (TP) and Test Energy (TE) for Industrial

Circuits (partially visualized in Fig. 10.7, Fig. 10.8 and Fig. 10.9).

Test Power Test Energy

Peak Average

Circuit FTScan BFScan Red. FTScan BFScan Red. FTScan BFScan Red.
name [W ] [W ] [%] [W ] [W ] [%] [nJ] [nJ] [%]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

p35k 3.05·10
-2

3.52·10
-3 88.46 2.75·10

-2
3.09·10

-3 88.74 2.03·10
4

2.41·10
2 98.80

p45k 3.40·10
-2

5.01·10
-3 85.26 3.19·10

-2
3.82·10

-3 88.02 3.43·10
4

3.50·10
2 98.97

p77k 5.08·10
-2

5.73·10
-3 88.72 4.61·10

-2
5.00·10

-3 89.15 1.28·10
4

2.83·10
2 97.78

p78k 5.89·10
-2

9.62·10
-3 83.66 5.77·10

-2
8.56·10

-3 85.16 2.54·10
3

3.42·10
1 98.65

p81k 6.13·10
-2

8.02·10
-3 86.92 5.91·10

-2
7.13·10

-3 87.94 1.16·10
4

4.58·10
2 96.05

p89k 6.24·10
-2

6.94·10
-3 88.87 5.98·10

-2
6.12·10

-3 89.76 2.46·10
4

7.55·10
2 96.93

p100k 8.08·10
-2

9.21·10
-3 88.59 7.81·10

-2
8.33·10

-3 89.33 8.22·10
4

9.41·10
2 98.85

p141k 1.47·10
-1

2.13·10
-2 85.54 1.45·10

-1
1.93·10

-2 86.66 5.07·10
4

8.78·10
2 98.26

p239k 2.53·10
-1

2.93·10
-2 88.41 2.49·10

-1
2.68·10

-2 89.24 7.54·10
4

1.64·10
3 97.82

p259k 2.62·10
-1

3.73·10
-2 85.77 2.47·10

-1
3.27·10

-2 86.76 9.11·10
4

2.09·10
3 97.69

p267k 2.27·10
-1

2.41·10
-2 89.37 2.23·10

-1
2.17·10

-2 90.28 1.04·10
5

1.67·10
3 98.39

p269k 2.27·10
-1

2.41·10
-2 89.37 2.22·10

-1
2.19·10

-2 90.12 1.05·10
5

1.68·10
3 98.40

p279k 2.31·10
-1

2.51·10
-2 89.12 2.26·10

-1
2.38·10

-2 89.48 1.01·10
5

1.94·10
3 98.08

p286k 2.73·10
-1

3.56·10
-2 86.94 2.44·10

-1
3.12·10

-2 87.20 1.46·10
5

4.18·10
3 97.14

p295k 2.49·10
-1

2.52·10
-2 89.89 2.34·10

-1
2.30·10

-2 90.14 2.22·10
5

4.77·10
3 97.84

p330k 2.64·10
-1

2.67·10
-2 89.88 2.59·10

-1
2.49·10

-2 90.38 3.04·10
5

3.29·10
3 98.91

p378k 2.96·10
-1

4.58·10
-2 84.52 2.91·10

-1
4.11·10

-2 85.85 1.25·10
4

2.31·10
2 98.15

p388k 3.75·10
-1

4.79·10
-2 87.22 3.37·10

-1
4.44·10

-2 86.80 1.05·10
5

2.70·10
3 97.43

p418k 3.87·10
-1

3.97·10
-2 89.74 3.82·10

-1
3.77·10

-2 90.12 1.88·10
5

4.67·10
3 97.51

p469k 2.43·10
-2

5.39·10
-3 77.79 2.34·10

-2
4.03·10

-3 82.78 4.84·10
3

7.75·10
1 98.39

p483k 4.59·10
-1

6.10·10
-2 86.71 4.47·10

-1
5.61·10

-2 87.44 8.83·10
4

4.48·10
3 94.92

p500k 4.13·10
-1

4.25·10
-2 89.70 4.06·10

-1
3.65·10

-2 91.02 4.95·10
5

8.83·10
3 98.21

p533k 4.83·10
-1

6.83·10
-2 85.86 4.27·10

-1
5.72·10

-2 86.61 1.26·10
5

4.86·10
3 96.14

p874k 5.56·10
-1

5.64·10
-2 89.85 5.48·10

-1
5.03·10

-2 90.81 3.64·10
5

6.03·10
3 98.34
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Index

ATPG, see test pattern generation

bathtub curve, 3

benchmark circuits, 180

industrial

NXP, 181

public

ISCAS89, 181

ITC99, 181

BISER, 46

characteristic

extended, 106

modulo-2 address, 43, 68

recomputed C′
, 68

reference, 43

reference C, 68

tree, 71

extended, 106

charge

collected, 9

collection, 8

critical, 9

circuit, 23, 24

abstraction level, 23

algorithmic, 24

architectural/system, 24

circuit/transistor, 24

functional block/register

transfer, 24

logical/gate, 24

combinational, 24

definition, 25

domain of description

behavioral, 24

physical, 24

structural, 24

output function, 26

sequential, 26

combinational core, 26

edge-triggered, 26

level-sensitive, 26

state, 26

transition function, 26

CMOS, see complementary metal

oxide semiconductor

CNF, see conjunctive normal form

complementary metal oxide

semiconductor, 3

DED, see Single and Double Error

Detection

defect, 2, 26

definition, 26

derating

logic, 29

time, 29
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INDEX

design for test, 12

EDAC, see error detection and

correction

EDT, see embedded deterministic

test

embedded deterministic test, 51

error, 2, 27

correction, 30

definition, 27

detection, 30

localization, 30

soft error, 2, 10

error correcting code, 16, 41, 42

error detection and correction, 16,

31

failure, 2, 27

definition, 27

rate, 3

failure mechanism, 4

extrinsic, 4

random, 4

systematic, 5

intrinsic, 5

fault, 12, 26

classification

detected, 38

undetectable, 38

undetected, 38

coverage, 37

definition, 26

efficiency, 38

hard fault, 2, 10

location, 12

model, see fault model

non-permanent, 27

intermittent, 27

transient, 28

permanent, 27

simulation, 37

fault model, 12, 33

delay, 33

gate, 33

path, 33

gross delay/transition, 33, 34

small delay, 33

structural, 33

stuck-at, 12, 34

fault tolerance, 30, 60

correction, 30, 85

detection, 30, 61

localization, 30, 61

GRAAL, 49

Hamming

code, 32

distance

minimum, 31

relationship, 32

hardware description language, 24

infrastructure, 60

masking

electrical, 11

logical, 11

temporal, 11

MBU, see Multiple Bit Upset

MCU, see Multiple Cell Upset

MTTF, see mean time to failure

performance, 1

RAZOR, 48
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INDEX

RAZOR-II, 50

RAZOR-Lite, 50

redundancy, 30

information, 30

structural, 30

temporal, 30

reliability, 2

SAT, see satisfiability

satisfiability, 39

assumption, 40, 138

conjunctive normal form, 39,

133

incremental solving, 40, 138

instance, 39

model, 39

satisfiable, 39

unsatisfiable, 39

SBU, see Single Bit Upset

scan design, 13, 35

edge-triggered, 35

level sensitive, 35

scan chain, 13, 35

SEC, see Single Error Correction

SECDED, see Single Error Correction

and Double Error

Detection

SED, see Single Error Detection
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und Entwurf (ZuE), Hamburg-Harburg, Germany, Sep. 2011, pp. 76–83, isbn:

978-3-8007-3357-6.

[C12] A. Mumtaz, M. E. Imhof, and H.-J. Wunderlich, “P-PET: Partial Pseudo-Exhaustive

Test for High Defect Coverage”, in Proc. IEEE International Test Conference
(ITC), Anaheim, CA, USA, Sep. 2011, pp. 1–8. doi: 10.1109/TEST.2011.6139130.

[C11] M. E. Imhof and H.-J. Wunderlich, “Soft Error Correction in Embedded Storage

Elements”, in Proc. 17th IEEE International On-Line Testing Symposium (IOLTS),
Athens, Greece, Jul. 2011, pp. 169–174. doi: 10.1109/IOLTS.2011.5993832.

[C10] M. A. Kochte, C. G. Zoellin, R. Baranowski, M. E. Imhof, H.-J. Wunderlich, N.

Hatami, S. Di Carlo, and P. Prinetto, “Efficient Simulation of Structural Faults

for the Reliability Evaluation at System-Level”, in Proc. 19th IEEE Asian Test
Symposium (ATS), Shanghai, China, Dec. 2010, pp. 3–8. doi: 10.1109/ATS.2010.

10.

205

http://dx.doi.org/10.1109/VTS.2012.6231079
http://dx.doi.org/10.1109/LATW.2012.6261229
http://dx.doi.org/10.1109/ATS.2011.60
http://dx.doi.org/10.1109/TEST.2011.6139130
http://dx.doi.org/10.1109/IOLTS.2011.5993832
http://dx.doi.org/10.1109/ATS.2010.10
http://dx.doi.org/10.1109/ATS.2010.10


Publications of the Author

[C9] M. A. Kochte, C. G. Zoellin, R. Baranowski, M. E. Imhof, H.-J. Wunderlich,

N. Hatami, S. Di Carlo, and P. Prinetto, “System Reliability Evaluation Us-

ing Concurrent Multi-Level Simulation of Structural Faults”, in Proc. IEEE
International Test Conference (ITC), Austin, TX, USA, Oct. 2010, p. 1. doi:

10.1109/TEST.2010.5699309.

[C8] M. A. Kochte, C. G. Zoellin, R. Baranowski, M. E. Imhof, H.-J. Wunderlich,

N. Hatami, S. Di Carlo, and P. Prinetto, “Effiziente Simulation von struk-
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