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Abstract

The importance of managing events has increased steadily over the last
years and has reached a great magnitude in science and industry. The
reasons for that are twofold. On the one hand, sensor devices are cheap
and provide event information which is of great interest for a large variety
of applications. In fact, sensors are ubiquitous in modern life. Nowadays,
RFID tags are attached to goods and parcels to allow an easy tracking.
Numerous weather stations are providing up-to-date information about
temperature, pressure, and humidity to allow for precise weather fore-
casts worldwide. Lately, mobile phones are equipped with various sensor
devices like Global Positioning System sensors or acceleration sensors to
increase the applicability of the phone. On the other hand, reacting on
events has become an increasingly important factor especially for busi-
ness applications. The occurrence of a system failure, a sudden drop
in the stock exchange, or a missing parcel can cause huge costs for the
company if their appearance is not handled properly. As a consequence,
detecting and reacting on events quickly is of great value and has lead to
a change in the design of modern software systems, where event-driven
architectures and service-oriented architectures have become more and
more important.

With the emerging establishment of event-driven solutions, complex event
processing (CEP) has become increasingly important in the context of
a wide range of business applications such as supply chain management,
manufacturing, or ensuring safety and security. CEP allows applications
to asynchronously react to the changing conditions of possibly many busi-
ness contexts by describing relevant business situations as correlations
over many events. Each event corresponds either to a change of a busi-
ness context or the occurrence of a relevant business situation.

This thesis adresses the need to cope with heterogeneity in distributed
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Abstract

event correlation systems in order to i) reuse expressive correlation and
e�cient technology optimized for processing speed, ii) increase scalability
by distributing correlation tasks over various correlation engines, iii) allow
migration of correlation tasks between heterogeneous engines and security
domains, and iv) provide security guarantees among domains in order to
increase interoperability, availability and privacy of correlation results. In
particular, a framework called DHEP is presented that copes with such
requirements.
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Deutsche Zusammenfassung

Umsetzung von e�zienter und sicherer

Ereigniskorrelation in verteilten multi-domänen

Infrastrukturen

1 Einleitung

Ereignisverarbeitung wird in verschiedensten Applikationen eingesetzt,
um aus vielen Ereignissen komplexe Situationen zu erkennen, auf die
dann reagiert werden kann. Grundlage für solche ereignisbasierten Sys-
teme ist eine Vielzahl unterschiedlicher Basisereignisse, wie beispielsweise
Messwerte von RFID Sensoren, Bewegungs- oder Temperatursensoren,
oder wahrgenommene Veränderungen an Anwendungen oder Datenban-
ken. Ziel ist es dabei bestimmte charakteristische Muster von Ereignissen,
sogenannte Situationen, zu erkennen und weiterzuverarbeiten. Diese Si-
tuationserkennung geschieht mit Hilfe von Regeln, welche diese Muster
beschreiben. Da oft viele einfache Ereignisse zu dieser Situationserken-
nung beitragen spricht man auch von Ereigniskorrelation. Ein wichtiges
Merkmal für Ereigniskorrelation ist die Aneinanderreihung von Regeln.
Das heiÿt, erkannte Situationen werden selbst als Ereignisse angesehen,
welche dann wiederum Grundlage für nachfolgende Situationserkennun-
gen sein können. Da durch diese fortlaufende Ereigniskorrelation zwischen
Datenquelle und Datenziel immer aussagekräftigere Ereignisse entstehen,
ihre Komplexität also stetig wächst, spricht man von komplexer Ereignis-
verarbeitung. Zu beachten ist, dass in diesem Zusammenhang der Begri�
Ereignis semantisch doppelt belegt ist. Er steht neben dem tatsächlichen
in der Realität vorkommenden Ereignis auch für die Nachricht, die dieses
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Deutsche Zusammenfassung

Ereignis beschreibt und in das System gesendet wird. In dieser Disser-
tation ist, wenn nicht explizit anders angegeben, ein Ereignis stets eine
Nachricht im Ereignissystem.

Da ereignisbasierte Systeme die Eigenschaft besitzen, automatisiert Si-
tuationen zu erkennen und darauf zu reagieren, haben sie eine hohe Be-
deutung für Anwendungen im Sicherheitsbereich und Überwachungsys-
teme in verschiedensten Varianten. Beispielhaft für die Verwendung von
Ereignisverarbeitung stehen Anwendungen zur Logistikverwaltung, zum
Management groÿer Anlagensysteme, zum Energiemanagement oder für
die allgemeine Überwachung von Geschäftsprozessen. Auch Börsenanwen-
dungen unterliegen typischerweise einer Ereignisverarbeitung. Wichtige
Aspekte in solchen Systemen sind die schnelle Reaktionszeit auf auftre-
tende (Problem-) Situationen, eine hohe Skalierbarkeit sowie der Schutz
der oft vertraulichen Daten vor Zugri�en von Dritten.

Ihren Ursprung haben ereignisbasierte Systeme in aktiven Datenbanksys-
temen der späten 80er Jahre, wie HiPAC oder Postgres [DBB+88, SK91].
Es wurde erkannt, dass die automatisierte Reaktion auf Änderungen in
Datenbanktabellen einen essentiellen Mehrwert für Anwendungen hat. So
war es unter anderem möglich, Fehlerfälle schnell zu erkennen und zu
beheben, was in vielen Fällen einen Sicherheits- und nicht zuletzt Kosten-
vorteil mit sich bringt.

Durch das groÿe Potential dass sich durch die reaktive Funktionsweise
ergibt, wurde das Interesse sowohl von Forschungseinrichtungen als auch
der Industrie geweckt. Es entstanden im Verlauf der 90er Jahre eine Viel-
zahl von Systemen zur Ereigniskorrelation sowie dazugehörige Regelbe-
schreibungssprachen, stellvertretend seien hier Snoop, SAMOS und ODE
genannt [CM94, GD92, GJS92]. Die neuen Korrelationssysteme wurden
immer mächtiger, und es konnten mehr und mehr Ereignisse analysiert
und korreliert werden. Gleichzeitig wurden auch die Beschreibungsspra-
chen immer ausdrucksstärker. Neue Operatoren wurden hinzugefügt die
die Beschreibung von komplexeren Situationen erlauben, und erweiterte
Verarbeitungsrichtlinien ermöglichten eine weitere Verfeinerung der Situa-
tionserkennung [CM94].

Durch die immer gröÿer und wichtiger werdenden Anwendungen, gekenn-
zeichnet durch eine wachsende Anzahl an Ereignissen und Datenquellen,
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1 Einleitung

rückte eine verteilte Ereignisverarbeitung in den Fokus [Cou02]. Anstatt
die Ereigniskorrelation an einer zentralen Stelle zu verwalten und durch-
zuführen, wurden mehrere Korrelationssysteme hintereinander geschaltet,
um die Last zu verteilen. Bei weit entfernten Datenquellen war es möglich
bereits nah an den Quellen erste Verarbeitungsschritte durchzuführen,
und somit die Reaktionszeit sowie die Netzauslastung des Gesamtsystems
spürbar zu verringern. Die Vorteile der verteilten Ereignissysteme fan-
den vor allem in der akademischen Anwendung schnell Anklang, was zu
einer stetigen Weiterentwicklung und Verbesserung führte. Um auf Verän-
derungen von Datenquellen, Ereignislast oder Regeln besser reagieren zu
können, wurden Regeln in mobilen Operatoren gekapselt [Pet04]. Dadurch
war es möglich, zur Laufzeit die Ereignisverarbeitung anzupassen, indem
einzelne Komponenten an optimale Stellen des verfügbaren Korrelations-
netzes verschoben werden konnten.

Allerdings hat die Anwendung von verteilter Ereigniskorrelation bisher
wenig Anwendung in industriell eingesetzten Systemen gefunden. Die Grün-
de hierfür sind vielfältig, haben aber zu groÿen Teilen ihre Ursache in der
Heterogenität heutiger verteilter industrieller Applikationen. Durch die
Globalisierung der Märkte und der damit einhergehenden Kooperation
und Interaktion verschiedenster Marktteilnehmer, sind die resultierenden
kollaborierenden Systeme unterschiedlichen Problemen und Schwierigkei-
ten unterlaufen, deren Lösung Grundlage für einen erfolgreichen Einsatz
in industriellen Anwendungen ist:

• Einheitliche Schnittstellen: Durch das Fehlen von Standards ist
eine Vielzahl verschiedenster Korrelationssysteme mit unterschied-
lichen Schnittstellen auf dem Markt erhältlich. Probleme bei der In-
teraktion verschiedener eingesetzter Technologien/Systeme sind die
Folge.

• Valide und e�ziente Platzierung der einzelnen Korrelations-
komponenten (Operatoren): Da die Situationserkennung in vielen
Fällen eine vertrauliche und unternehmenskritische Geschäftslogik
beinhaltet, ist es nötig, dies bei der Verteilung der Komponenten im
Netz zu berücksichtigen.

• Handhabung vertraulicher Daten in heterogenen System mit

15



Deutsche Zusammenfassung

vielen Teilnehmern: Ähnlich wie die Regeln zur Situationserken-
nung, sind auch die erzeugten Daten in vielen Fällen sensibel. Vor
allem in groÿen Systemen mit vielen Teilnehmern, muss die Vertrau-
lichkeit der Ereignisse beachtet werden.

In dieser Dissertation werden die Probleme heutiger verteilter Korrelati-
onssysteme analysiert und Lösungsmöglichkeiten erörtert. In den folgen-
den drei Unterkapiteln wird eine Kurzübersicht gegeben.

2 Verteilte Ereignisverarbeitung in heterogenen

Systemen

Obwohl sich in den letzten Jahren mehrere Forschungsprojekte mit verteil-
ten Ereignissystemen beschäftigt haben, und durch die Verteilung der Kor-
relationsprozesse groÿe Performance-Fortschritte erzielt werden können,
zögern industrielle Anwender mit dem Einsatz von verteilten Lösungen.
Ein Grund dafür ist die Heterogenität verfügbarer Ereignisverarbeitungs-
systeme. Durch das Fehlen einheitlicher Standards haben sie keinerlei ein-
heitliche Schnittstelle und verwenden unterschiedliche Beschreibungsspra-
chen für die Spezi�kation von Ereignissen und Regeln. Dies macht eine Ko-
operation von Geschäftspartnern mittels ereignisbasierter Systeme nicht
möglich, wenn diese verschiedene Technologien einsetzen.

Dieses Problem macht einen groÿen Vorteil der verteilten Anwendung von
komplexen Ereignisverarbeitung zunichte: Das e�ziente Ausnutzen der
Standorte von Datenquellen und -empfängern durch vorteilhafte Platzie-
rung der Korrelationskomponenten (Operatoren) im verteilten System.

Im Rahmen dieser Dissertation ist das Ereignisverarbeitungssystem DHEP
entstanden. Ziel von DHEP ist es, verteilte Ereigniskorrelation zwischen
verschiedenen Einheiten, über Domänengrenzen und interagierende Nut-
zer hinweg zu ermöglichen, um somit die Akzeptanz von verteilter Ereig-
nisverarbeitung zu erhöhen. Insbesondere ermöglicht DHEP eine Koope-
ration von heterogenen Ereignissystemen, selbst wenn diese verschiedene
Technologien und Beschreibungssprachen einsetzen.
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2 Verteilte Ereignisverarbeitung in heterogenen Systemen

Grundlage dafür ist ein Framework, an die sich die verschiedenen Ereignis-
Korrelationssysteme über Adapter andocken (siehe Abbildung 1). Das
Framework verhält sich daher ähnlich zu einer Middleware. Es abstra-
hiert die Netzwerkkommunikation und übernimmt sämtliche Aufgaben
zum Empfangen und Versenden der Ereignisse im System (Event Bus).
Der Einsatz von DHEP ermöglicht somit auch eine verteilte Ausführung
von ursprünglich rein zentralisiert laufenden Ereignissystemen.
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Abbildung 1: Kurzübersicht und Ereignis�uss des DHEP Systems

Um den korrekten Austausch von Ereignissen in heterogenen Systemen zu
gewährleisten, verwendet DHEP eine Metasprache. Sämtliche Ereignisse
werden in der Metasprache codiert, und bei der Übergabe an Korrelations-
systeme in deren eigene Beschreibungssprache übersetzt. Dies geschieht in
einer Adapterkomponente (Wrapper), die auch sämtliche Kommunikati-
on zwischen Framework und Korrelationssystem übernimmt. Durch die
Verwendung einer Metasprache wird eine Interaktion verschiedener Sys-
teme möglich, selbst wenn diese verschiedene Beschreibungssprachen für
Ereignisse nutzen.
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Deutsche Zusammenfassung

Zusätzlich bietet das DHEP System Komponenten zur Verwaltung und
Verteilung von Operatoren (Operator Management) sowie zur Anreiche-
rung von Metainformationen (Context Enrichment). Während die Regel-
verteilung, gekapselt in Operatoren, dazu verwendet wird, die Performan-
ce im verteilten System zu optimieren, bietet die Kontext-Anreicherung
eine Möglichkeit, die Ereignisse im System mit Metainformationen zu er-
weitern. Dies ist insbesondere in Business Anwendungen notwendig, da
hier oftmals Informationen eines Ereignisses in direkter Relation zu Infor-
mationen in Datenbank-Tabellen stehen (wie beispielsweise Kundeninfor-
mationen).

Das DHEP Framework bietet die Grundlage für die Lösungen weiterer
Probleme, die für den erfolgreichen Einsatz von verteilter Ereigniskorrela-
tion in heterogenen Systemen notwendig sind. Von besonderer Bedeutung
sind dabei die e�ziente Verteilung von Operatoren und das garantierte
Einhalten von Sicherheitsrichtlinien, die in den nachfolgenden Unterkapi-
teln zusammengefasst werden.

3 E�ziente Verteilung von Operatoren

Eine der Kernaufgaben für skalierbare verteilte Ereignisverarbeitung ist
es, die einzelnen Operatoren im Netzwerk so zu platzieren, dass die Verar-
beitung möglichst e�zient ist. Die Platzierung hat einen groÿen Ein�uss
auf die Kommunikationswege im gesamten Netz und somit auf die für die
Verbarbeitung relevanten Faktoren wie Reaktionszeit, verursachte Netz-
werklast oder die maximale Ereignislast. Obwohl in den letzten Jahren
in diesem Gebiet geforscht wurde, und e�ziente Algorithmen zur opti-
malen Platzierung verö�entlicht worden sind [RDR10, Pet04], sind diese
für den Einsatz in einem System wie DHEP nicht geeignet. Diese beste-
hen in groÿen, unternehmensübergreifenden Netzwerken aus heterogenen
Hosts, die sich in Verarbeitungsgeschwindigkeit, Domänenzugehörigkeit,
Netzanbindung und nicht zuletzt verwendeter Korrelationstechnologie un-
terscheiden. Diese Unterschiede müssen beachtet werden, wenn die Ope-
ratoren im System platziert werden. Einige typische Fall-Beispiele sind:
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4 Durchsetzung von Sicherheitsrichtlinien

• einzelne Teilnehmer im System fordern, dass ihre Operatoren nur in
bestimmten Domänen eingesetzt werden

• manche Operatoren erfordern eine bestimmte Korrelationtechnolo-
gie bzw. Korrelationsengine

• es bestehen Mindestanforderungen für die Netzanbindung

Die Präsenz vieler strikter, binärer Bedingungen und Einschränkungen
verändert das Optimierungsproblem ausschlaggebend. Anstatt eine mög-
lichst optimale Positionierung jedes Operators im Gesamtsystem zu er-
reichen, kann jeder Operator nur in einer sehr eingeschränkten Menge an
Positionen im Netzwerk positioniert werden: Die Position ist an Bedin-
gungen geknüpft. Da aus dem ursprünglichen Problem ein Bedingungs-
erfüllungsproblem (englisch: Constraint-Satisfaction-Problem) wird, kön-
nen bisherige Algorithmen zur Operator-Platzierung nicht mehr verwen-
det werden.

Im Rahmen dieser Dissertation wurde die verteilte Platzierung, Migration
und Optimierung von Operatoren in heterogenen Netzstrukturen unter-
sucht. Dabei ist ein Platzierungsalgorithmus entstanden, der die Bedin-
gungen jedes Operators bei der Platzierung beachtet, und gleichzeitig nach
einer möglichst optimalen Platzierung sucht. Das Ziel der Optimierungs-
strategie ist es, die Auslastung des Netzes zu minimieren. Dies führt zu
im Mittel kurzen Antwortzeiten sowie geringem Bandbreitenverbrauch.
Der entstandene Optimierungsalgorithmus arbeitet dezentral und adap-
tiv. Alle zum System gehörenden Hosts werden bei der Suche nach einer
optimalen Platzierung eingebunden. Bei Veränderungen im System (z.B.
Wegfallen eines Knotens oder eine veränderte Ereignislast), wird eigen-
ständig nach neuen Lösungen gesucht.

4 Durchsetzung von Sicherheitsrichtlinien

Eine wichtige Fragestellung beim Einsatz von verteilten Systemen ist die
Einhaltung von Sicherheitsgarantien. Da in verteilten Netzen die Daten-
und Verwaltungshoheit nicht an einer zentralen Stelle liegt, ist die Garan-
tie von Richtlinien deutlich komplexer als in einem zentralen System. So
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Deutsche Zusammenfassung

besteht die Gefahr, dass durch Abhören von Netzwerk-Leitungen Daten
von Unberechtigten abgehört werden, oder dass sich Dritte als Teil des
Systems ausgeben und damit versuchen Ein�uss auf die Ereigniskorrelati-
on zu nehmen. Diese Gefahren haben auch in der Forschung zu verteilten
Ereignissystemen zu einem verstärkten Interesse im Umgang mit Sicher-
heitsgarantien geführt.

Während in Zuge dessen Konzepte entwickelt wurden, wie Ereignisse durch
Verschlüsselngsmechanismen sicher durch ein Ereignissystem versendet
werden können [TKAR10, OP01], sind die Mechanismen zur Verwaltung
und Einhaltung dieser Verschlüsselungen bisher nicht ausgereift und ha-
ben Schwächen. Insbesondere das Fehlen von Mechanismen, die die Ver-
traulichkeit der Ereignisdaten sicherstellen, stellt eine hohe Sicherheits-
lücke dar.

Im Rahmen dieser Arbeit wurden verschiedene Sicherheitsansätze für ver-
teilte Ereignissysteme vor dem Hintergrund eines multi-domänen Netzes
analysiert, bewertet und verbessert. Dabei ist unter anderem ein Algorith-
mus entworfen worden, der die Vertraulichkeit von Ereignisdaten im Ver-
lauf von mehreren Ereigniskorrelationsschritten gewährleistet. Dies stellt
einen wichtigen Baustein dar, um die Akzeptanz von verteilter Ereignis-
korrelation entscheidend zu verbessern.
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1 Introduction

1.1 Motivation

In today's business world, event-based communication is of increasing
importance. The ongoing globalization of markets forces companies to
be �exible and adaptable in order to stay on par with their competitors
and not have a competitive disadvantage. This forces the market players
to continuously monitor and analyze both their business processes and
the global market in order to reveal how well the processes perform and
to react and adapt on various events [LKS+10, IBM12, CD97]. Since it
may become very costly if a problem is not recognized or reacted upon,
the topic gained interest of both the industrial and academic world. For
example, manufacturers have to quickly identify a shortage of materials
or faulty supplies, a crash of important server systems, or a stock market
collapse [CA08, HSB09].

Against this background, many modern (cooperative) application plat-
forms are designed based on the paradigm of reacting on events, called
event-driven architecture (EDA, cf. [Mic06]). In contrast to classical
communication patterns like RPC or RMI, which are active in terms of
communication, event-based system are typically more passive, waiting
on a certain event input before they start any action. As a result, the
EDA-based systems have no control about when data is processed. In-
stead, they are triggered by the input received from event producers, like
sensor devices transmitting their events via event channels. Sensors may
not only measure the physical environment (e.g., for tracking, or intrusion
detection), but also the state of an observed computer system or applica-
tion (e.g., business processes), making EDA systems �exible and holistic,
independent of their application area.
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Figure 1.1: EDA Communication based on the reaction on Events

With the emerging establishment of event-driven solutions, and the con-
temporary rapid increase of event sources, complex event processing (CEP)
has become increasingly important in the context of a wide range of busi-
ness applications such as supply chain management, manufacturing, or
ensuring safety and security [Luc11]. CEP allows applications to asyn-
chronously react to the changing conditions of possibly many business
items by describing relevant business situations as correlations over many
simple and complex events. Each event corresponds either to a change of
a business item or the occurrence of a relevant business situation.

CEP provides high �exibility in writing and recon�guring business ap-
plications, e.g., by decoupling low level information related to technical
content and high level information related to business content. Consider
an organization that wants to monitor access to a restricted area. In this
context, sensor readings that provide position information about move-
ments within the area represent technical data, while the business appli-
cation works on process-relevant events like the entry of a person into a
dangerous area. Though substituting the sensor technology might require
new correlations to detect such a situation, applications that work on this
situation will not require any change at all.

CEP systems have seen a change of perspective recently. While, origi-
nally, powerful CEP systems were used in a central way to e�ciently cor-
relate events and detect situations, the emerging increase of event sources
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and event consumers has lead towards a decentralized handling of events
[Pie04, LJ05, KKR10]. In addition, the increasingly collaborative nature
of today's economy [Hag02] results in large-scale networks, where di�erent
users, companies, or groups exchange data (cf. Figure 1.2). As a result,
event processing networks are heterogeneous in terms of processing capa-
bilities and technologies, consist of di�ering participants, and are spread
across multiple security domains.

Figure 1.2: R&D Partnerships of Companies since 1960 [Hag02]

The increasing need for interoperability of applications leads to additional
challenges for CEP systems deployed in industrial environments. CEP
applications have to run on distributed networks, whose participants are
highly heterogeneous. While cooperating companies act as hosts for a
business network on the one hand, they do, on the other hand, not nec-
essarily use the same event processing technologies. That said, modern
large-scale CEP networks may di�er in terms of hardware and software,
but also the methods of communication may be di�erent. Still, seamless
event processing among di�erent cooperating companies is necessary to
guarantee a successful application of distributed CEP in industrial envi-
ronments.

This thesis focuses on the challenge of establishing an e�cient and secure
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CEP in a distributed multi-domain infrastructure. As a foundation, a
platform is introduced that enables complex event processing over het-
erogeneous networks, consisting of di�erent CEP processing technology.
Furthermore, methods and algorithms are discussed which allow for an
e�cient processing of events in such environments. Finally, we inves-
tigate security mechanisms for cross-domain event processing systems.
Speci�cally, methods for maintaining the privacy of event information are
presented.

To re�ect the diversity of applications utilizing CEP we will use a couple of
application examples illustrating our concepts. In particular, we focus on
the deployment of a CEP system in energy & utility applications, which
manage modern large-scale energy grids where multiple and diverse energy
providers are opposed to a multitude of heterogeneous event consumers.
Furthermore we utilize a logistics example to illustrate application scenar-
ios where event processing is done over a long chain of di�erent entities,
because various heterogeneous logistic partners are involved in today's
logistic chains.

1.2 Technological Trend towards Complex Event

Processing

1.2.1 Sensing and Detecting

In recent years, the importance of complex event processing has increased
dramatically. Technological progress and high demand for sensing appli-
cations has had a major in�uence of event processing [CA08]. Nowadays,
sensor devices are cheap, and the ongoing use of sensors in everyday life
has lead to a massive increase of event data. Today, a considerably large
amount of the more than 3 billion mobile phones are smart phones [Rid07]
which are equipped with multiple sensors measuring the environment, like
GPS [HWLC93] or acceleration sensors. Production systems are period-
ically reporting their current state, and RFID-Tags [Fin10] are attached
to wares and parcels to allow easy tracking of items [HSB09]. Today,
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several billion RFID sensors and GPS receivers are deployed worldwide
[CRHPP09].

In parallel to the availability of sensed information, the interest in events
has been increased steadily. The continuous increase of complexity of
business processes [VVL07] demands for a more and more precise anal-
ysis of current system and business states and a consequent reaction on
it. Furthermore, many modern applications are context-aware and rely
on measurements of its users and their context [DHN+04]. This need
has lead to a massive increase in sensing applications (e.g., [WHFG92,
MLF+08, ASSC02, LM03]). The basic motivation behind these applica-
tions is to gain business bene�ts from the additional information retrieved
by sensors. Examples are optimization of business processes (e.g., logistic
throughput of warehouses), security applications (e.g., intrusion detec-
tion), or public sensing applications (e.g., tra�c news on smart phones
based on current locations).

To be able to make e�cient use of the events produced by sensor devices,
additional logic is needed [Luc08]. Therefore, event processing engines
have been developed, which create valuable, higher level information based
on received basic events [CM94, AE04]. This is done by correlating the
received events, which typically includes comparing, relating, aggregating,
and/or �ltering them. The result of the correlation process is a complex
event, generated by the engine as soon as the conditions, speci�ed in the
correlation description, are ful�lled. The complex event can be thought of
as an indicator that the situation of interest has been detected. Based on
this complex event, a user or a system can then react on the �ndings.

To increase the e�ciency of event processing engines, the generated com-
plex events can not only be send towards a user, but also be again an input
of the engine. By doing this, the process of correlating event information
can be decomposed in multiple consecutive steps. In every step, the gen-
erated event output has a higher level of semantic information. At the
same time, the event throughput gets reduced in every step. This is often
pictured in an event pyramid, where basic events make up the foundation
of the pyramid, and get correlated on their way to the top, where a high
level complex event represents a detected situation (cf. Figure 1.3).
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Figure 1.3: Event Pyramid for a Smart Energy Processing
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1.2.2 Communication and Computation

The original design of correlation systems has been inherently centralized,
thus limiting scalability as the number of event sources increases in the
system [AE04, CM94, GD92, GJS92]. However, the dramatic increase
in the complexity of applications, business situations and the increase of
sensors that contribute to them shows that more and more event sources
need to be accounted for in the future. This growth is ampli�ed by the
industrial need of interoperability.

To be able to distribute the correlation steps in the network, the ab-
straction of operators has been introduced (cf. [LJ05, Pet04]). Operators
encapsulate correlation functionality, like aggregating or �ltering an event
stream, and can be deployed on the existing network nodes, called hosts.

The introduction of operators demands for concepts of communication
and placement of operators, as well as composition and decomposition of
correlation mechanisms. The �rst two concepts are inherently connected
to the distributed network, the available hosts, and their respective char-
acteristics. It has to be assured, that the operators are correctly deployed
on a host, so that they can send and receive events to and from other op-
erators. The latter two concepts are needed to be able to split the whole
situation detection into multiple correlation steps, so that each step can
be encapsulated in an operator. This is closely related to the splitting of
an event pyramid, as described in Section 1.2.1.

Currently, the distributed networks using correlation systems are homoge-
neous, allowing for constraint-less implementation of CEP [LJ05, MSS99,
PSB03, LFA+06, KKR10, LLS08, RDR10, SMW05, ZOTW06]. However,
multi-domain networks, as they are present in today's business world, are
far from being homogeneous in terms of technology and hardware. The de-
ployment of CEP systems is subject to a lot of constraints that have to be
met. Consequently, the necessary step in the development of distributed
CEP systems is the e�cient interconnection of hosts in heterogeneous
networks, to allow for multi-domain event processing.
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1.3 Focus and Contributions

In today's business world, CEP is not yet fully exploited and is still estab-
lishing itself [Luc11]. Distributed CEP is even one step behind. The most
decisive reason is, that for industrial event processing, not only perfor-
mance is important. For example, in many business applications also or-
thogonal attributes like functionality, expressiveness, reusability of present
knowledge, user friendly interfaces, and �exibility are essential [SKPR09].
These attributes are not present in current distributed approaches, which
focus mostly on an e�cient distributed detection of situations.

Therefore, many industrial users still rely on existing, mature complex
event technology [AE04] which is capable of providing the required func-
tionality, at the expense of distribution (cf. [TIB, jBo]). Scalability is
typically achieved by providing more powerful servers hosting the CEP
System (cf. [BER08]). This, however, is a tremendous disadvantage in
scenarios where the application requirements vary or are even completely
unknown before. For example, when the event rates in a system increase
over time due to a rise in users and/or sensor devices, the deployed sys-
tem's capabilities will eventually reach its limits. Also, many scenarios,
like measuring current power consumption within a nationwide or even
continental power grid, are inherently dispersed. A centralized CEP sys-
tem handling all the sensor data would not only cause a huge processing
cost, but in addition cause a major communication overhead.

In the future, integration of universal, heterogeneous CEP technology will
be key to allow �exible CEP systems that are capable of adapting to user
needs. The reason for this is that many users rely on di�erent products
(because they specialize in some certain criteria) that are not capable to
interact. The main reason for that is the missing existance of a generally
accepted de�nition language for complex event processing, though �rst
steps in this direction have been made (cf. [LS11]). This is a major draw-
back for many applications, since interoperability and communication is
mandatory in today's business world. Business partners are forced to in-
teract, and with the emerge of event-driven architectures this also a�ects
CEP systems. Hence, commonly used and accepted communication and
event descriptions have to be developed to enable interoperability.
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1.3 Focus and Contributions

This work focuses on bringing CEP to the next level. Therefore, we elab-
orated which problems have to be solved to allow the establishment of
e�cient and secure event processing in a distributed multi-domain infras-
tructure [SKPR09]. This leads to three main contributions discussed in
this thesis.

First, the interconnection of event processing systems and event commu-
nication among heterogeneous domains is elaborated. Here, the DHEP
framework is introduced, which focusses on these aspects, such that busi-
ness processes can bene�t from a distributed processing of events. The
framework supports the integration of various established centralized CEP
systems in a distributed environment. The system has been developed and
implemented in collaboration with the IBM Research and Development
Laboratory Böblingen. It will be shown that DHEP is a scalable complex
event processing system, which enables interaction with business processes
and context information. It therefore enables an e�cient approach for dis-
tributed CEP in business contexts [SKRR10].

Second, means are provided to optimize the e�ciency of the DHEP sys-
tem. Both the placement and migration of operators in a distributed
heterogeneous environment is discussed. Strategies are presented, which
ensure a correct functionality of the CEP on one hand, and provide an
e�cient usage of the network resources, such as latency and bandwith
consumption, on the other hand. Furthermore, the placement and migra-
tion strategies guarantee, that all constraints set towards the placement
of operators are met [SKR11]. This may include for example security
policies, which do not allow operators to be placed in certain domains.

Third, this thesis describes methods and mechanisms which provide se-
curity in multi-domain environments. While basic security mechanisms
like authentication and con�dential event delivery build the foundation,
the focus in this work lies on the privacy of event information. Especially
if multiple participants are interconnected in a multi-domain network,
the privacy of events plays a major role in the acceptance of the CEP
system. Therefore, methods are presented which protect the event infor-
mation, even if the event is processed and correlated over multiple steps
[SKRR13].
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1.4 Structure of the Thesis

This thesis is structured as follows. First, a detailed overview about the
fundamentals of complex event processing is given in Chapter 2. Both
conventional event-based systems, as well as distributed CEP systems are
discussed in-depth. Afterwards, the DHEP framework is introduced in
Chapter 3. DHEP is our middleware platform allowing a distributed event
processing over heterogeneous environments. Chapter 4 focuses on the
optimization of heterogeneous distributed CEP systems. We give insight
in current placement algorithms for complex event processing and propose
two algorithms that focus on an optimized placement in heterogeneous
networks. In Chapter 5 we elaborate how a sophisticated access policy
management is required to close the security gap that emerges in multi-
domain CEP networks. We propose a way to e�ciently solve this problem
by calculating obfuscation values of event information. Finally, in Chapter
6 we summarize the contributions of this work and give an outlook to
promising future research topics.
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In this chapter, we will give an overview about the current state of event-
based systems and distributed complex event processing. More important,
we will give de�nitions for the components of the system model we use
throughout this thesis. This is necessary to avoid misconception, as there
is no standardized terminology available by the time this thesis is writ-
ten.

2.1 Event Based Systems

2.1.1 The Concept of an Event

The de�nition of an event has brought up a lot of discussion and also
misconception within the event processing community. The reason is that
when event processing became popular in the 1990's, researchers and com-
panies with di�erent scienti�c background put research e�ort in it. As a
result, multiple event de�nitions have been introduced over the years by
di�erent researchers and the lack of standardization attempts has lead
to a state, where almost every event processing system made use of its
own de�nition of an event. One of the biggest disputes about the de�ni-
tion of an event originated in the ambiguity of the term event. Both the
event occurrence, as well as the noti�cation about it (i.e. the transmitted
message) were de�ned as an event.

To overcome the existence of multiple de�nitions, a group of researchers
and organizations formed the event processing technical society (EPTS)
in 2008 [LS08]. The EPTS has, among others, the goal of fostering a
standardization of event processing. As an important �rst step towards
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this, researchers and organizations agreed on a common glossary, speci-
fying the most important event processing terms, including the notion of
an event [LS11]. However, the glossary still contains two de�nitions of
an event, one for the actual event occurrence (e.g. a door is opened), one
for the event message reporting about this event occurrence (e.g. a sensor
noti�cation about the door being opened). To avoid the double de�nition
of the same term, this thesis only uses the EPTS de�nition of an event
message:

De�nition 1 (Event (event object, event message, event tuple))
An object that represents, encodes, or records an event, generally for the
purpose of computer processing.

Examples are an email con�rmation about an online purchase, a message
reporting about a stock exchange trade, or incoming goods in a ware-
house.

While today's agreement in the event processing community is that both
the event message as well as the actual event occurrence can be referred
to as an event, it is ambiguous throughout a written document. Since
this thesis addresses the technical and structural aspects of heterogeneous
event processing networks the de�nition of an event as a message sent in
the network is su�cient.

Every event contains a timestamp, discussed in the following, as well as
one or more attributes (e.g., the name). Event attributes have discrete
values.

2.1.2 Timestamps of Events

The timing of events is crucial in event processing systems. However,
di�erent syntax and semantics are existent in related work. The reason
is, that events can be either primitive or complex whose semantics di�er
substantially. Primitive events are the initial events entering the system.
Typically they are produced by sensor devices or monitoring systems.
Complex events are self-created events of the event processing system.
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The di�culty with the timing of events stems from the fact that complex
events are often the result of multiple correlated events which have dif-
fering timestamps. While primitive events can be usually captured at a
certain discrete point in time, this is not necessarily the case with com-
plex events. Consequently, the occurrence of complex events may also
be described as a timespan instead of discrete timestamps, e.g., by using
the earliest and latest timestamp of the correlated events [YB05, LCB99,
AC06]. However, the handling of events with non-discrete timestamps
is rather complex, especially if the timespans of di�erent complex events
overlap. Finally, it has to be stated that, if uncertainty and reliability
of the event sources are taken into account, the de�nition of timestamps
gets even more ambiguous [BR04].

To simplify the handling of complex event processing, in this work the
event timestamp is de�ned as the time when the event is created at one
of the source nodes or a CEP node due to correlation. This is in line with
most existing distributed CEP systems (e.g., [Fid06, Pie04, KKR10]),
which is important for our system, since it aims towards enabling event
correlations among heterogeneous environments. This means, each event,
whether complex or not, has a de�nite timestamp. The timestamp is
assigned by event detectors (e.g., sensor devices) which create primitive
events or by the host's correlation engines which create complex events.

2.1.3 From Active Databases towards Complex Event
Processing

Event processing was �rst introduced by database monitoring and man-
agement concepts like HiPAC [DBB+88] or Postgres [SK91] in the late
80's, respectively early 90's. At this time, the usage of databases was
more and more common for modern systems and applications, and their
popularity came hand in hand with a continuous extension and improve-
ment of database systems [CA08]. One of these extensions was the ability
of a prompt reaction on changes to the database, causing the terminology
of active databases. This was typically done by a database management
component which monitored the database activity. This feature was a big
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bene�t for many business applications which focus on reacting quickly to
certain changes, like security or banking applications.

To specify the reaction on speci�c database events, database programmers
made use of the ECA (Event-Condition-Action) paradigm, �rst introduced
by HiPAC [DBB+88]. The paradigm contains all necessary information
how to react on a certain event occurrence. The ECA paradigm soon
gained attention, and while initially only one event was speci�ed to trigger
the action, the event part was soon capable of handling several correlated
events, e.g., an event sequence.

De�nition 2 (Rule (CEP/ECA rule, operator description)) 1

An expression formalizing the detection of a complex event. Including (but
not necessarily limited to) the three pieces of information:

1. It contains the event(s) that should be reacted on.

2. It speci�es the conditions that have to be met. For example, this
could be some speci�c value of the event's attribute.

3. It speci�es the action that should be executed when the conditions of
the event were ful�lled. For example, the de�nition of the complex
event.

In many CEP languages, the parts 1. and 2. are referred to as the
event pattern. It is the most prominent characteristic of each rule. And,
although the syntax of it may vary heavily between di�erent expression
languages, their semantic expressiveness is often similar, which allows for
mappings from one language to another.

While an event pattern always refers to a single rule, a situation can com-
prise a potentially large set of rules, which may contribute to its outcome.
An example is the event pyramid depicted in Section 1.2.1, where multiple
rules contribute to a decision to adjust the workload. An event pattern

1With the increasing popularity of distributed CEP systems, where the deno-
tation of operators is widely accepted as the implementation of a rule (cf. 3),
the term operator description has also been used to name a rule. As in most
contemporary work, it will be used in throughout the contributions of this
thesis.
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can, however, be interpreted as the smallest situation detectable in a CEP
system.

ECA rules have been a key concept on many subsequent pioneer CEP
systems developed by academic projects. Prominent examples are Snoop
[CM94], A-RDL [SPC96], ARIEL [Han96], COMPOSE [GJS93], ODE
[LGA96], REACH [BBKZ94] or SAMOS [GD92]. Furthermore, ECA was
also present in the �eld of embedded and reactive systems, where the
reaction on an event was not restricted to a database object but also on
system states [ACV97].

With the conceptual advances made, the ECA paradigm was further ex-
tended in the action part being able to create a new, higher level event
which itself could be the input of another ECA rule. Therefore distinc-
tion has been made between primitive events, which are triggered by the
database, and composite (complex) events, which represent a subset of a
primitive event history [GJS92]. All primitive events that are matched
by the event expression are mapped towards the complex event subset
history. Primitive events typically originate from a transaction, a chang-
ing object state, or the execution of a method. Also, time events can
be considered [GJS92, Cha97]. Furthermore, an event was able to have
attributes associated with it [CM94], i.e. it contains multiple pieces of
information which can be used in the speci�cation of the complex event
detection (cf. the condition part of a rule (De�nition 2)).

With the number of primitive event sources increasing, also the event ex-
pressions got more and more sophisticated. They were originally formed
by primitive events, potentially related by logical operators like conjunc-
tion (∧, and) or disjunction (!, not). Over time, expressions also were
capable of handling interval detection [GJS92, CM94]. While operators
for conjunction and disjunction are ignoring the detection time of events,
others like interval detection consider the sequence of incoming events.
For example, in ODE relative(A,B)[h] expresses the occurrences of event
(or complex event) B, after the occurence of event (or complex event) A,
in an event history h.

To give the user more in�uence on the correlation behavior, the applica-
tion for parameter contexts became apparent, �rst introduced by Snoop
[CM94]. Parameter context enables the user to specify the computational
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behavior of Snoop during the creation of complex events. In particular,
the user is able to specify which events should be used in order to cal-
culate a certain complex event. This is important when multiple events
(with potentially di�ering attribute values) match a certain rule, since
using di�erent events may lead to di�erent results. Hence, Snoop allows
the user to in�uence the application semantic, which made the language
very popular.

Hence, with the progress made in description languages, it was soon pos-
sible to create high level event information based on the occurence of
multiple, possibly already correlated events. Basically, a new research
�eld was named Complex Event Processing (CEP). ECA rules are consid-
ered as the foundation of CEP description languages and although CEP
expressions from modern approaches may have di�ering structures, their
content is very similar to those of traditional ECA rules. Some example
descriptions are presented in Section 2.1.3.

On the downside, most of the Active Database products lack scalability
due to the fact that they work on a single instance [SKPR09]. This is
not only problematic when we consider a large-scale use of the correlation
approach, but additionally the single node turns out to be a single point
of failure. This holds true in particular when event processing is used in
an enterprise-wide context. For example, it is used for central control of
multiple vehicle manufacturing plants with cross-plant event-based com-
munication or for monitoring assets or people in multi-building premises
of some enterprise. The key idea to deal with these problems is to design
a distributed correlation system placed on an interconnected set of hosts.
By spreading correlation tasks across the network the system becomes
more scalable. Additionally, fault-tolerance can be increased by enhanc-
ing the availability of the components (i.e., replicating correlation nodes,
hosts, within the network).

Examples of Language Syntax

To depict the di�erences in language syntax, Figure 2.1 shows examples
of di�erent expressions from the languages ODE, Snoop and AMiT.
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All complex events in ODE can be expressed as regular expressions. This
is advantageous for the implementation, as �nite state automata can be
used to detect complex events easily and e�ciently. However, ODE also
has multiple shortcomings. For example, it does neither enable a �ne-
grained selection of events, nor is it able to reuse an event (for multiple
event expressions). Also, it is unable to create events expressing the se-
mantic information of a detected complex event, as detected complex
events are always expressed as a (subset) history of occured primitive
events. Finally, ODE lacks some operators which later turned out to be
useful in many CEP applications, like counting operators.

Snoop, which has been developed by event processing pioneer Sharma
Chakravarthy in the early 90's at the University of Florida, played a major
role in the beginnings of CEP [CM94]. In contrast to ODE, Snoop is not a
database, but rather an expressive language to specify detection rules for
complex events. It is designed and implemented for the Sentinel object-
oriented database [Cha97].

With the increasing popularity of complex event processing, the capabil-
ities of active databases increased. One modern example of a dedicated
event processing engine is AMiT. AMiT has been developed by IBM in
2004, featuring a wide range of possibilities to detect complex events. Ex-
pressions are very modular and the user is able to specify �ne-grained
parameter context to every object of the events and the rules. To have
more control about the semantics of over-time-correlations, AMiT intro-
duces the notion of a lifespan, which can be seen as a time window wherein
situations can be detected. However, due to the �ne-grained control the
user has over the execution of its event processing, the AMiT language
is much more complex. Hence, operators that can be easily expressed in
older language concepts require multiple lines of AMiT operator descrip-
tion.

2.2 Distributed CEP

While, originally, powerful engines with expressive correlation languages
were used in a central way to e�ciently correlate events and detect sit-
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Figure 2.1: Examples for Di�erent Syntax of Expression Languages

uations, the increasing popularity of event-based communication, for ex-
ample in Publish/Subscribe networks, promoted the investigation in the
distributed detection of complex events. The main motivation for distri-
bution comes from the emerging increase in event sources and consumers,
as well as their often inherent dispersal. Instead of transmitting every
event to a central correlation engine, communication can be reduced if
the correlation functionality is distributed over multiple entities across
the network.

Consequently, multiple distributed CEP approaches have been designed
over the last decade. Examples for systems supporting distributed CEP
are HERMES [Pie04], PADRES [JCL+10], and CORDIES [KKR10]. Fur-
thermore, a lot of research has been conducted on how to e�ciently dis-
tribute the correlation of events (e.g., [Jak03, LJ05, LGL08, PSB03]). The
general conception is that the logic to create complex events is split into
multiple parts. These parts can in turn be deployed on a set of available
hosts in the network. By splitting the event processing task, the load for
processing events can be distributed over multiple hosts. However, the
complexity of handling the event processing is increased. Yet this opens
space for various optimization. For example, one can reduce the used
network bandwidth by placing an aggregation task closer to the event
sources, or in�uence the detection delay by favoring powerful processing
hosts for computation-critical tasks.
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Especially with the increasing popularity of Publish/Subscribe systems
(cf. [TKKR10, BKR09]), event processing has become a highly distributed
technology [JCL+10, KKR10]. In the Publish/Subscribe interaction scheme,
participants of the network can express their interest in certain messages
(i.e., events) as well as publish their own messages to anyone interested.
Over the years, di�erent variants of Publish/Subscribe systems have been
proposed, a good overview can be found in Eugster et al. [EFGK03].

Complex event processing can bene�t from the the method of subscribing
to speci�c events of interest, which can be extended to support complex
events. A CEP engine attached to the Publish/Subscribe system takes
care of the detection of complex events. Furthermore, the possibility to
detect complex events on any host in the system opens a lot of optimiza-
tion possibility, such as moving functionality closer to the source in order
to reduce the overall network usage.

In the following subsections, a description of the major challenges of dis-
tributed CEP is given. First, Section 2.2.1 discusses system and network
models of distributed CEP systems, speci�cally introducing the system
model used in this work. Second, Section 2.2.2 discusses how placement
of functionality in�uences the behavior and e�ciency of these systems.
Finally, Section 2.2.3 discusses the basic security challenges that occur.

2.2.1 System and Network Model

While the advantages of event-based communication have been widely
recognized, the implementation and deployment of such systems requires
a more sophisticated model. More components interacting in networked
environments lead to a more complex and error-prone communication.
As a result, pioneering work in distributed complex event processing had
a strong focus on modeling distributed event-based systems in the pres-
ence of communication speci�c characteristics, like delay and loss of event
messages. Therefore, we �rst brie�y discuss a couple of pioneer DCEP
models, before detailing the model used throughout this thesis.

As one of the �rst works in CEP modeling, Schwiderski describes an ar-
chitecture for distributed event processing in 1996 [Sch96]. The work
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focuses speci�cally on the timing of complex events. To handle the tim-
ing complexity in distributed systems, the architecture is based on the
2g precedence model, which de�nes a global time approximation. When
using the 2g precedence model, events can reliably be ordered if they are
at least two clock ticks apart (hence 2g). Since the clock modeling a�ects
the e�ciency of the event processing, the handling of clocks is re�ected in
the architecture. At every network node (called site), both a local and a
global event detector is deployed. The introduced model is a�ecting the
behavior for the global detectors, receiving events from the whole network,
while the local event detector is not a�ected by the global clock timing
and acts only on local events, similar to the centralized, database centric
CEP systems available at that time. The language used by Schwiderski
is similar to Snoop (cf. Section 2.1.3). The proposed architecture is a
�rst attempt to deploy a CEP system in a distributed architecture. How-
ever, it does not tackle any e�ciency related challenges, like placement of
detectors in the network.

In 2003, Pietzuch et al. presented a Framework for Event Composition
in Distributed Systems [PSB03]. It is basically a middleware, which can
be deployed on top of a Publish/Subscribe infrastrucure for event dis-
semination. The middleware introduces the abstraction of a mobile CE
detector. A CE detector encapsulates a �nite state automaton detecting
a complex event expression, similar to ECA rules. Each of the detectors
uses the Publish/Subscribe infrastructure to subscribe to events needed
for the detection as well as to publish the detected complex events. The
detectors have an agent-like behavior, allowing them to move from one
node to another. Furthermore, the framework supports sub-expressions,
resulting in the capability to reuse some existing CE detectors for newly
added expressions.

These pioneer works form the basis for many of today's approaches, and
many of the introduced concepts can be found in them. As our work is
not aiming towards creating a new detection mechanism or expression lan-
guage, but in enabling interoperability among existing systems, our focus
lies on using a simple, basic system and network model which can work
well with most available CEP systems. Consequently, our system model
used throughout this work is in�uenced by these available distributed CEP
models [PSB03, Sch96].
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Similar to [PSB03], we introduce the notion of an operator, which acts as
a mobile complex event detector.

De�nition 3 (Operator) An implementation of a rule for a distributed
environment. Operators can be deployed on any CEP host participating in
the CEP network. They are mobile, i.e. they can be migrated to another
host during runtime.

Operators receive/access events from the the CEP system and detect/out-
put complex events based on the rule they implement, which will be for-
mally de�ned in the upcoming subsection.

Operators are deployed on the hosts in the CEP system and can be moved
from one host to another. Throughout this work, we assume the presence
of an overlay network capable of migrating components. Distributed CEP
systems are typically built on top of an event broker network which we
will discuss in the following (cf. [PSB03, LJ05]).

CEP Overlay Network

We assume a distributed correlation network N = {n1, n2, ...}, where
dedicated hosts (i.e., event brokers) are interconnected. These hosts are
capable of deploying operators, which are executed to collaboratively de-
tect situations and form the distributed CEP system. The cooperative
interaction of the operators is modeled by a directed operator graph.

The operator graph G = (Ω, S) consists of operators ω ∈ Ω and event
streams (ωi, ωj) ∈ S ⊆ (Ω× Ω) directed from ωi to ωj .

In every event stream (ωi, ωj), we call ωi the event producer and ωj the
consumer of these events.

Operators with an incoming stream degree of 0 are called sources, and
operators with an outgoing stream degree of 0 are called event consumers.
By treating event sources (e.g., sensor devices) and event consumers (e.g.,
user applications) as operators, we do not need to care about interfaces
between them, which considerably simpli�es our model.
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We assume that the overlay network will deliver every message. The event
streams are FIFO, guaranteeing the ordered delivery of events. Operators
are not static, but may leave and reenter the system due to network and
node failures.

Every operator ω implements a function fω : Iω → Oω that maps incoming
event streams Iω to outgoing event streams Oω. In particular, fω identi�es
which events of its incoming streams are selected, how event patterns are
identi�ed (correlated) between those events, and �nally how events for its
outgoing streams are produced.

We illustrate the de�nition of a CEP system by means of a simple logistic
chain example. In the scenario, a manufacturer, a shipping company, and
a customer each constitute a domain and each is providing an operator in
its domain. The operators establish event streams as depicted in Figure
2.2. The manufacturer wants to send an item to one of its customers.
Therefore, it sends events to a shipping company providing information
about the item's destination, its production place as well as the time
when the product is ready. The shipping company receives these event
attributes and uses them in a correlation function fsc. The correlation
creates a tuple of organizational information: the warehouse the item
is going to be shipped to for further delivery, and the estimated day of
delivery.

domain: Customer domain: ShippingComp 

destination 
production place 
pickup time ωsc ωm ωc 

 warehouse 
 day of delivery 

domain: Manufacturer 

Figure 2.2: Operator Graph of a simple Shipping Scenario

Large-scale, publish/subscribe messaging systems, as we make use of them
within DHEP, are subject to failures of nodes and links. Furthermore,
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hosts participating in the CEP overlay network may join and leave dy-
namically. Consequently, a CEP service like DHEP has to be robust in
the sense that it can handle these conditions hence can be dynamically
recon�gurable.

2.2.2 Operator Placement

One of the core challenge towards scalable complex event processing is to
e�ciently distribute the event correlating operators within the available
hosts of the event processing network. As already motivated in Section
1.2.1, the requirement to place operators is an inherent and crucial conse-
quence of the distribution of CEP. The placement can heavily in�uence the
performance of the detection process as well as the load of the network.

Depending on where the di�erent operators receive, process, and emit
events, the behavior of the whole CEP system will change in terms of
resource consumption, responsiveness, and reliability. The challenge is to
�nd an operator placement, such that CEP is e�cient with respect to the
applications optimization goals, such as network usage.

Consequently, the placement problem has found consideration by many
researchers (cf. [Fid06, LJ05, PSB03]). Depending on the optimization
goal, the placement approaches di�er. For example, some systems try to
detect situations as soon as possible, others seek towards balancing the
load. In large-scale distributed applications, like industrial systems work-
ing on global scale, an e�cient utilization of the network resources is very
important, as they often can be a bottleneck. An optimized network usage
reduces the induced network load and network congestion and therefore
leads to a robust application that is able to process as much events as
possible (cf. [RDR10]). Network utilization is computed as the product
of bandwidth and delay.

To reach the optimization goal, the CEP functionality is encapsulated
and then migrated within the network. Up till now, distributed CEP is
characterized by relying on a homogeneous system, where all hosts have
the same capabilities and no constraints are imposed on the placement.
Hence, handling the placement problem in heterogeneous systems, where
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it is often not possible to place operators on certain hosts due to con-
straints, is not considered in existing work. As a result, today's placement
solutions are not applicable in scenarios with many constraints which is
ubiquitous in industrial settings.

Consequently, we investigate how operator placement has to adapt in
order to �t highly heterogeneous, industrial networks in Chapter 4.

2.2.3 Security in Event Processing

With the establishment of distributed CEP systems, CEP became not
only of interest for individuals or single companies, but has found ap-
plication in collaborative networks where di�erent users, companies, or
groups exchange events [HSB09]. Hence, event processing networks con-
sist of di�erent participants which may be spread across multiple security
domains, resulting in the necessity to consider the security of the network
participants and the data they provide [WCEW02].

Consequently, security of event data has been tackled by research in
the context of Publish/Subscribe systems [TKAR10, PEB07, BESP08].
While, in a distributed Publish/Subscribe system, the publishers have no
knowledge of the recipients of their events, and receivers might have no
knowledge about the source of their events, some of the transmitted event
data might be sensitive. And as a result, the system has to take care of
the availability and visibility of this data.

In this context, a couple of distributed CEP systems have proposed mech-
anisms to secure the event dissemination, like Hermes [Pie04] or Event-
Guard [SL05]. Also, PADRES has the possibility to perform actions after
processing events, which can be used for access restrictions [WJ07]. While
these examples focus on broker-based Publish/Subscribe systems, there
have also been proposals to ensure security in broker-less Publish/Sub-
scribe systems, for example [TKAR10].

Security mechanisms typically use key servers, which manage authentica-
tion of network participants and their credentials. Their goal is to enforce
con�dentiality towards the events transmitted while guaranteeing scala-
bility with the size of the network [TKAR10].
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However, this is not su�cient for industrial, heterogeneous CEP systems,
where information is processed over a long chain of di�erent hosts. In
todays security solutions for CEP, the provider of the original event in-
formation masks its information to have control about who can read the
events. In other words, he restricts the access to any host which does
not know how to decipher the information. However, the provider does
not have any in�uence on what the recipients do, and how they process
their legitimately received information. One can say the provider loses its
in�uence on access control, once the information is received by its recipi-
ents. The access control is moved to the recipients, and they continue to
mask the information they provide. In an extreme example, the original
provider may restrict access to its con�dential event information, which
only its closes business partners are allowed to access and use. However,
these partners are allowed to provide its own information freely to ev-
eryone, even if it is heavily dependent on the original data, maybe even
sharing same attributes. This constitutes a security problem, since it en-
ables recipients of the partners events to infer the original, con�dential
information.

This work investigates, how security management needs to be improved
in order to �t highly heterogeneous, industrial networks in Chapter 5.
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Event Processing

Although a signi�cant amount of research has investigated the bene�ts
of distributed CEP in terms of scalability and extensibility, there is an
ongoing reluctance in deploying distributed CEP in an industrial context.
We developed the DHEP (Distributed Heterogeneous Event Processing)
system in cooperation with the IBMR© laboratory in Böblingen, Germany.
It is designed to address one of the key problems in increasing the accep-
tance of distributed CEP: supporting interoperability between heteroge-
neous event processing systems. In this chapter, the concepts behind the
DHEP system are presented and it is shown how those concepts help to
achieve scalable and extensible event processing in an environment where
heterogeneous CEP technology co-exists.

Our event processing system DHEP focusses on providing interoperability
and communication among heterogeneous, multi-domain CEP systems. In
particular, we contribute the following:

• A framework that supports the integration of various established
centralized CEP systems in a distributed environment. It takes care
of all features necessary to build up a distributed processing system,
like managing the communication between the hosts or distributing
operators in the network.

• The concept of a meta language to be able to interact without some
form of event translation. Therefore, DHEP comes along with a
powerful modeling language that allows the design of distributed
applications. The language enables the use of ontology to design
and manage events, operators (i.e. operator descriptions) and con-
text information within the distributed system. Hence, we are able
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to adapt to a wide range of possible applications and can use this
semantic knowledge to enable e�cient complex event processing.

• A con�guration tool for the application design. On the one hand, it
is a graphical editor, where the user is modeling and managing the
application. On the other hand, it can be used for managing the
placement and deployment of operators.

Based on the DHEP framework, the algorithms for placement and security
propagation are developed and evaluated. These algorithms are discussed
in the subsequent chapters.

3.1 Motivation

In today's industrial applications distributed CEP is often not used to
its full potential. Although many applications are inherently distributed,
industrial event processing systems often rely on existing, centralized, ma-
ture complex event technology [AE04] instead of choosing a distributed
approach. While the bene�ts of CEP are well understood and used in
modern business processes, there are certain factors which impede an
interconnection and distribution of the CEP applications. First, the de-
ployed, centralized CEP technology is well-understood by system users
and accepted as a reliable and e�cient tool. Switching the technology
as a whole is often not acceptable for industrial users. Second, intercon-
necting centralized CEP technology is not supported as for now. While
business processes of heterogeneous entities are often strongly tied in to-
day's industrial world, the non-homogeneous, non-standardized design of
di�erent traditional CEP technologies does not allow to seamlessly in-
terconnect them. Finally, rather than targeting orthogonal attributes
like expressiveness and user-friendly design which are essential for indus-
trial use, distributed approaches tend to focus on e�ciency in detect-
ing situations, e.g. by reducing the detection latency to its maximum
(cf. [BER08, PSB03, Jak03, TOK08, LGL08, LJ05]). Industrial event
processing systems rely on centralized complex event technology [AE04]
which is capable of providing the required functionality, at the expense of
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distribution. Scalability is typically achieved by providing more powerful
servers hosting the CEP System (cf. [BER08]).

This, however, is a disadvantage in scenarios where the applications re-
quirements vary or are even completely unknown upfront. When the re-
quirements, for example the event rates, increase over time, the deployed
system's capabilities will eventually reach its limits. Also, many scenarios
are inherently dispersed. We will exemplify this in the following sec-
tion with a scenario in which we measure the current power consumption
within a continental power grid (cf. smart grid). A centralized CEP sys-
tem handling all the sensor data would not only cause a huge processing
cost, but cause a major communication overhead.

In the future, it will be crucial to integrate universal, heterogeneous CEP
technology which can adapt to user needs (cf. [SKPR09]). While many
users currently rely on di�erent CEP products (which specialize in some
certain criteria of their need), these products are not capable to interact.
The main problem is that they lack a fundamental basis to cooperate on,
most importantly CEP is missing a standardization including a generally
accepted event speci�cation and a common language for the description of
CEP operations. This is a major drawback for many applications, since
interoperability and communication is an integral part in today's busi-
ness world. A commonly used communication platform and standardized
event descriptions would be a signi�cant improvement to enable interop-
erability.

DHEP focusses on closing the gaps that prevent an e�cient interoperation,
such that business processes can bene�t from a distributed processing of
events. The framework supports the integration of various established cen-
tralized CEP systems in a distributed environment. It further makes use
of a meta-language to describe events and operators. The meta-language
serves as an abstraction layer of the integrated CEP systems' event de-
sciptions, and allows them to communicate. This chapter will show that
DHEP is a scalable complex event processing system, which enables in-
teraction with business processes and context information.

The rest of this chapter is structured as follows. In Section 3.2 we present
the challenges for a distributed heterogeneous CEP system on the basis
of our driving e�cient energy (smart grid) scenario. After presenting the
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DHEP framework in Section 3.3 we will show some evaluation results in
Section 3.3.2. Finally, we discuss related work in Section 3.6 before we
conclude the chapter.

3.2 Challenges for Distributed Heterogeneous CEP

When analyzing today's usage of event processing in large business ap-
plications, it can be observed that almost none of the distributed CEP
approaches proposed in the scienti�c literature has made it into industrial
applications so far. Instead, a wide range of dedicated, centralized CEP
systems are used in various application domains to perform event corre-
lation tasks. Also, it is interesting that current development in industrial
CEP technologies tend to favor investigating on highly e�cient clustering
mechanisms (cf. [BER08]) instead of distributing the process and moving
the CEP functionality to dispersed locations.

There are a couple of reasons for this tendency. First, these 'distributed
but centralized' approaches are customized to perform well when massive
event loads can be processed in centralized data centers. Second, espe-
cially in business applications the CEP technology is strongly connected
to business processes of the company. Thus, in order to perform the pro-
cessing of the events, access to context information related to business
processes is needed and such context information often resides in central-
ized databases. Therefore, the DHEP approach is driven by demands and
requirements from distributed business processes where event processing
can play an essential role when implementing the required business func-
tionality.

We will describe our DHEP system throughout this chapter by means of
a smart grid scenario established in a large area. In smart grid scenar-
ios, as they are emerging nowadays, the e�ciency of large power grids
is enhanced by smart meters placed in households from where they send
power consumption events to an energy agency. A simpli�ed scenario is
depicted in Figure 3.1. Here, smart meters in the consumers' households
send the energy requests to substations owned by energy (transmission)
providers. The substations keep track of the currently requested power
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within their subnet. If the requested power exceeds the provided power
within the subnet, the substation requests additional energy from the
providers' mains. The provider itself may request additional power ei-
ther from other providers or from energy producers. On the return path,
the provider sends noti�cations to the smart meters about the available
energy.

Figure 3.1: Simple E-Energy Scenario

The need for extensibility, the inherent distribution of energy consumers,
along with the hierarchical structure of today's power management favors
a distributed CEP solution which imposes the following speci�c challenges:
(cf. [CIM09, McM07]).

• Communication: The power grid of almost every country contains
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a large number of substations that need to interact according to
the (simpli�ed) power consumption forecast scenario described pre-
viously. Therefore, intelligent event emission avoiding unnecessary
event tra�c is a must when power consumption shall be forecast
reliably in shorter time intervals like once per 15 minutes.
As can be seen in the example, di�erent energy transmission provid-
ers, energy consumers, and energy producers have to interact in a
network. Hence, communication between heterogeneous CEP en-
vironments has to be supported. 1 Events and operators have to
be exchangeable between the di�erent CEP systems running in the
network.

• Heterogeneity : Heterogeneity has various aspects. For one, the sub-
stations within the power grid can have di�erent complexity and
tasks. While low-footprint event processing is su�cient in some
places, major substations may require more powerful processing ca-
pabilities. Therefore, having di�erent kinds of event processing op-
erators, provided by di�erent kinds of event processing technology,
within the power grid can be bene�cial. Second, todays power grids
are shared among several providers which are closely connected,
trading energy even among country borders. As a result, CEP net-
works are likely to exist across multiple domains, each using seperate
description languages and CEP concepts.

• Purposeful deployment : Furthermore, the placement and deploy-
ment of operators is essential for a distributed CEP system and
has special challenges in this kind of setting. For example, domain
restrictions and engine constraints may preclude the placement of
operators on some hosts. 2

• Context Modeling : Context information like the structure of the
power grid or the power consumption per household is important.
Hence, a powerful language for modeling context information is re-
quired. In a distributed system, necessary access to context informa-

1The relationship between multiple business partners inevitably also rises the
question of security. However, the security related challenges are excluded in
this chapter, as they are elaborated extensively in Chapter 5

2The placement of operators will be elaborated extensively in Chapter 4
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tion may be expensive from some places in the network. Therefore,
it must be possible that events transport context information and
that operators are able to deal with context information.

By providing solutions to these key aspects, our system is a �rst step to
deliver the bene�ts of distributed event processing systems to industrial
event processing solutions.

3.3 Approach

The main idea behind the DHEP system architecture is to enable dis-
tributed event processing without enforcing users to use a new correlation
technology. Hence, our goal is to interconnect existing, typically central-
ized, engines within a network of correlation nodes (hosts) that is likely
to be widely dispersed. As a consequence, we embed these centralized en-
gines within a framework which takes care of all features necessary to build
up a distributed processing system, like managing the communication be-
tween the hosts or distributing operators. Moreover, since heterogeneous
engines are unable to interact without some form of event translation, we
propose the concept of a meta language (cf. [SKPR09]). Therefore, DHEP
comes along with a powerful modeling language that allows the design of
distributed applications. The language enables the use of ontology to de-
sign and manage events, operators, and context information within the
distributed system. Hence, we are able to adapt to a very wide range of
possible applications and can use this semantic knowledge to enable e�-
cient complex event processing. Finally, we provide a con�guration tool
for the application design. On the one hand, the con�guration tool is a
graphical editor, where the user can model and manage the application.
On the other hand, it is responsible for managing the placement and de-
ployment of operators. Figure 3.2 gives an overview of our system. We
will discuss the meta language, the con�guration tool and the runtime
environment, in more detail in the following.

The DHEP system is very �exible. By integrating more hosts into the
event processing network, the load of each host can be decreased, making
the whole system more robust to a higher event input. By reducing the
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Figure 3.2: DHEP System Overview
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number of hosts, network resources can be saved. Therefore, the CEP
network con�guration can be adapted depending on the desired overall
system behavior. Additionally, latency can be improved by several means.
First, the system can bene�t from placing latency-relevant operators on
hosts with low-latency network connection. Second, semantic knowledge
about operators sets can be exploited: If operators are unrelated, they
may be placed on di�erent hosts within the network, thus reducing the
overall detection time by using parallel computation.

3.3.1 The DHEP Meta Language

The DHEP system is based on a meta language for de�ning the elements
of distributed event-based applications that can be implemented. The
meta language is a necessity based on the requirement to enable inter-
operation of existing, mostly centralized, CEP technologies. It works as
an abstraction layer towards the original description languages of the de-
ployed engines and also contains elements relevant for the distribution
of operators, like the expression of placement restrictions. The goal of
the meta-language is not to be an all-embracing language which is able
to cover every functionality of all existing description languages. Instead,
the DHEP meta language is a modular, easily extendable language frame-
work, such that the most common language concepts can be expressed.
In particular this means that the meta-language will match a Snoop-
expressiveness (cf. [AC06]).

The meta language is based upon the following elements:

• an object-oriented context-model de�ning the information model un-
derlying an event processing application;

• event type de�nitions allowing to include complex objects in events
being transmitted within the system;

• operators for standard event correlation, access to context model
information, and invocation of web services;

• event processing nodes (hosts) within a network; each host can be
equipped with di�erent event processing engines;

55



3 Enhancing Interoperability of Complex Event Processing

• deployment descriptions that allow to express which operator shall
be executed on which engine on which host in the network.

In order to illustrate the language concepts, the smart grid example from
Section 3.2 is modeled in the following. This object model allows to ex-
press that power consumption can be measured at smart meters installed
at a customer's house (cf. Listing 3.1). Customers have a contract with
an energy agency which sell and bill consumed energy on behalf of energy
providers owning the power plants.

The context modeling part of the DHEP language features typical object-
oriented capabilities which are powerful enough to represent complex in-
formation models like the IEC 61970 standard for modeling power grids as
published by the International Electrotechnical Commission (cf. [CIM09,
McM07]). Standards like this gain more and more importance for the
implementation of state-of-the-art industry applications.

object sort NamedObject
attribute name : String;
attribute description : String;

object sort PowerMeter < NamedObject
attribute currentConsumption : Float;
attribute accumulatedConsumption : Float;
attribute parent : SubStation;

object sort SubStation < NamedObject

object sort Customer < NamedObject
attribute myMeter : PowerMeter;

object sort EnergyAgency < NamedObject
relation myCustomers : Customer;

object sort EnergyProvider < NamedObject
attribute sellThrough : EnergyAgency;

Listing 3.1: Example of Object De�nitions

Some typical events that need to be handled include power consumption
at a certain meter or power production information provided by a power
plant operator (cf. Listing 3.2). Event Attributes can be both standard
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attribute types like Integer or String and complex attribute types like
de�ned DHEP object sorts, e.g., a PowerMeter de�ned in Listing 3.1.

event sort PowerConsumption
�eld meter : PowerMeter;
�eld amount : Float;

event sort PowerForecast
�eld meter : PowerMeter;
�eld amount : Float;

event sort AggregatedPowerForecast
�eld station : SubStation;
�eld amount : Float;

event sort PowerProduction
�eld provider : EnergyProvider;
�eld amount : Float;

Listing 3.2: Example of Event De�nitions

Operators are the foundation of every situation detection. Their behavior
is speci�ed in operator descriptions. DHEP operator descriptions are
identi�ed by their name and consist of four parts:

1. The event pattern (WHEN ) speci�es the events used in the oper-
ator as well as their relation.

2. The correlation condition (IF ) is used to access and verify certain
attribute values of the incoming events.

3. The restrictions that have to be met when placing the operator
(RESTRICT ).

4. The action (EMIT ), which describes the event that will be sent to
the network once the situation is detected. Also, the user speci�es
how the values of the result event are set.

Not all of the DHEP language parts are relevant for the operator itself.
For example, the restrictions only in�uence the placement of the operator,
but not its functionality. Listing 3.3 shows the operator description of
an aggregation of two smart meter values. In the example, we attach
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the added amount values of the incoming PowerForecast events to the
resulting AggregatedPowerForecast event.

Our operator language supports typical correlation operators like SEQ,
ALL, OR, and NOT for detecting event patterns. Together with being
able to de�ne time constraints for the detection of event patterns, we are
well positioned with respect to expressiveness of our operator language3.
This holds true in particular as we also support sophisticated context
model access and service invocations via dedicated operators (cf. Section
3.3.2).

OpDesc AggregateConsumptionForecasts
WHEN SEQ(pcf1 : PowerForecast,

pcf2 : PowerForecast)
IF pcf1.meter 6= pcf2.meter
RESTRICT engine.type = amit
EMIT AggregatedPowerForecast

(station = pcf1.meter.parent
amount = pcf1.amount + pcf2.amount)

Listing 3.3: Example of a Simple Aggregation Operator

As can be seen in the example, deployment restrictions can be formu-
lated (cf. Listing 3.3). These restrictions in�uence where an operator can
be placed. We currently support two such restriction types. First, we
support binary restrictions. These are conditions which only have two
possible values (true, false), and are common in heterogeneous systems
like tackled in our work. A typical example is the de�nition of a operator
type classi�cation expressing on what type of engine the operator can be
processed. Another example is the de�nition of a domain restriction ex-
pressing the requirement of an operator to be processed on a host within
a certain domain. Upon deployment this will be used to assure that the
operator is only deployed to an engine and host capable of processing
operators of the respective type. Second, the operator can be annotated
with restrictions on the resources of the host it should be deployed on.
For example, attributes like required CPU speed, memory size, or network

3Adding more sophisticated correlation operators is no big e�ort and not so
essential to our approach.
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connection bandwidth. More detailed information about the operator re-
stricions can be found later in this thesis while discussing the placement
(cf. Chapter 4).

Finally, the event processing network can be de�ned by a set of hosts (see
Listing 3.4), each of which can be equipped with multiple event process-
ing engines. Furthermore, the user has the possibility to in�uence the
placement by manually deploying operators on speci�c hosts. However,
this is optional as we also provide an automatic deployment mechanism
(cf. Section 3.3.3).

host a correlation host
correlation engine AMiT;

host a context model server
query engine queryEngine;
deployed operator R1;

service invocation engine serviceEngine;
Listing 3.4: Example of a Node Model

3.3.2 The DHEP Runtime Environment

Every host in our network is running the DHEP runtime environment
(RE) which is basically a middleware that encapsulates the event pro-
cessing technology. It abstracts the network functionality and performs
all tasks that are necessary to enable a distributed heterogeneous event
processing system. Figure 3.3 shows the most important components of
the RE. The dashed path marks the typical event �ow we have to handle
in the RE. In the following subsections, we describe the components as
they are used in the event �ow. Also, we discuss the functionality of the
Operator Management and Context Enrichment components.

Event Bus

The event bus constitutes the foundation of our system, as it contains
all low-level elements which are needed to distribute the data (events) in
our system. Since heterogeneous systems do also include heterogeneous
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communication methods, the communication interface of the runtime en-
vironment has to be designed in a modular fashion. Thus, all communica-
tion modules implement the same common interface, which provides the
getMessage method to receive events.

Modules share the same interfaces to make them exchangeable. This
enables the integration of multiple heterogeneous message systems and
communication principles, as depicted in Figure 3.4. Typically, DHEP
makes use of a publish/subscribe system, which is connected to the event
bus machanism. For testing purposes in the remainder of this chapter, we
will use a socket-based communication module.

The socket module is based on the reactor design pattern (also known
as dispatcher/noti�er, cf. [Sch94]) and uses non-blocking sockets. The
idea behind the pattern is to demultiplex and dispatch each incoming
request to its corresponding service before invoking the service. A Selector
acts as a demultiplexer to determine which connections are ready to have
operations invoked on them, without blocking the application process.

Figure 3.4: Event Bus & Decoder
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Decoding and internal Routing

As typical for a model and ontology based system, DHEP has to deseri-
alize every incoming event and match it against our description model,
in order to encapsulate the event within an event object. This happens
within the Decoder (see Figure 3.4). To simplify this process and re-
duce programming overhead in this step, we make use of Dynamic EMF
(Eclipse Modelling Framework [SBPM08]). We store our events in a Dy-
namic EMF format and use deserialization methods provided by EMF.
Accordingly, the encoder acts vice versa as a serializer which creates event
messages from DHEP objects. We use a thread pool within the Decoder
component to be able to decode events in parallel.

A routing component receives incoming event objects from the decoder
and forwards them internally (cf. Figure 3.3). A routing table contains
the information about the local engines which are meant to process each
event at the host. Hence, the event bus distributes every incoming event
accordingly, sending it towards one (or more) of the local engines or other
hosts in the network. The values of this table are given by the RESTRICT
section in operator descriptions for ingoing events and in�uenced by the
placement algorithm (by means of con�guration events, cf. Event Wrap-
per).

Event Wrapper

The framework architecture has the ability to integrate di�erent existing
CEP engines even within the same network. The wrapper component is
responsible for the integration of the di�erent engines. It acts primarily
as the adapter between the routing component and an event processing
unit, i.e. correlation engine, on the host. A wrapper is required for ev-
ery di�erent engine, because its main task is to translate event messages
from the meta language into the language of the target engine. Due to a
modular design, a wrapper is in fact an adapter not only to engines but
to any unit that can process and act with events. A new wrapper just has
to implement the provided wrapper interface.
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We use this concept not only for the integration of various correlation
engines but also for context enrichment as well as the con�guration of our
system. For context enrichment, we attach a query engine, which reacts on
user-de�ned query rules to enrich event data with related information. For
con�guration, we implemented a con�guration wrapper, that receives all
system relevant information via con�guration events which are distributed
via the event bus. The con�guration events contain for example routing
information and operator placements. The con�guration wrapper takes
care of the proper settings of the routing table and moves operators to
their correct target engines (according to the placement algorithm).

Besides context enrichment and con�guration, we use the wrapper archi-
tecture to access a service engine which can invoke web services.

Operator Management

The operator management is responsible for the distribution, migration,
and deployment of operators in our system. It is strongly coupled with the
con�guration events, since it uses these events to manage the deployment
of operators. The component o�ers interfaces to move operators to other
hosts as well as to deploy them on a local event processing engine which
is connected via one of the wrappers. The deployment process consists
of sophisticated re-organization and optimization mechanisms performed
in a distributed manner. It also tackles the constraints and optimization
criteria of our heterogeneous environments. The operator placement for
heterogeneous systems will be elaborated in detail in Chapter 4.

Similar to the event translation done by the wrappers, the deployment
of operators requires a translation process, because operator descriptions
de�ned with the DHEP meta language are not understood by the various
CEP engines. As a result, translators are attached to the Operator Man-
agement. Their input is the DHEP operator description and their output
is the equivalent operator de�ned in the description language of the re-
spective target engine. While we provide the interface speci�cations, the
implementation of the translators has to be done by system administra-
tors, i.e. DHEP users. It is worth mentioning that not all parts of DHEP
operator descriptions are relevant to the operators itself and need to be
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translated. Especially the speci�ed restrictions are used by the placement
algorithm and not the operator.

Event Context Enrichment

In distributed scenarios, access to context information is not always avail-
able or might be very expensive. However, it is often needed during the
event processing. Especially in business applications, context information
is important since many business decisions can not be made solely by
information contained in the events, but require additional meta infor-
mation applying to the events. For example, events from a smart meter
do contain little information, typically an identi�er of the customer as
well as some value representing the requested energy amount. However,
this information is most likely not su�cient for the energy provider which
requires additional data about the users contract. This information is
typically located at the data center, where all business processes are run-
ning. It needs to be added to either events or the event processing system
in order to use it within the complex event processing, hence allowing to
make correct decisions.

Figure 3.5: Enrichment of Smart Meter Events

In contrast to centralized approaches, distributed CEP systems did not
address the access to external information so far. To be able to use ex-
ternal sources for event information, context enrichment and transport
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becomes necessary. The DHEP system is providing this feature. For ac-
cessing context information in our system, we make use of the modular,
heterogeneous architecture by providing a query engine, which is capable
of enriching events with context retrieved from external sources, such as a
database. To con�gure the query engines we are able to de�ne query rules
which are also covered by the DHEP language. The transport of context is
ensured since all speci�ed objects can be serialized and deserialized within
the encoder/decoder.

To allow a con�gurable, independent context enrichment with the query
engine, a three tier architecture is chosen (see Figure 3.6). The archi-
tecture consists of the query engine, an information access layer and the
database containing the actual context data.

Figure 3.6: Three-Tier Architecture to access Context Information
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The reason behind this partitioning is to keep the actual data access inde-
pendent from the query engine, where the events are processed according
to the deployed query rules. Therefore, the information access layer is
designed as a separate component with a standardized interface which is
called by the query engine. This enables the exchange of the data access
implementation easily without touching the query engine code. Further-
more, this makes it easy to also use other information systems than rela-
tional databases. For example, object-oriented databases, XML �les, and
web services can be used for the retrieval of context information.

Finally, by not accessing the database directly, context information can
be cached in the access layer. This can reduce the expected cost produced
by the database access by a large margin.

3.3.3 Con�guration Tool

The con�guration tool is the meeting point of the DHEP meta language
and the actual CEP network. With the con�guration tool the user mod-
els, deploys and interacts with the application. From the users perspec-
tive, the tool is a graphical modeling editor (see Figure 3.7). Here, users
can de�ne operator descriptions or create wrappers for event translations.
Furthermore, the tool initiates the deployment mechanisms. During this
process, the con�guration tool communicates with the operator manage-
ment component of the framework nodes, using con�guration events (see
Section 3.3.2).

3.4 Benchmarking

With the Con�guration Tool, the DHEP framework is, architecture-wise,
capable of integrating a variety of centralized placement and optimization
algorithms. Then, the placement is computed in the Con�guration Tool
and the deployment is handled with con�guration events. In scenarios
where no central con�guration tool is available, the operator management
component described in Section 3.3.2 provides interfaces to integrate dis-
tributed placement algorithms. In the upcoming Chapter 4, we discuss
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Figure 3.7: Excerpt of the Graphical Editor

and present a distributed placement algorithm designed speci�cally for
heterogeneous environments, which can be e�ciently used and deployed
within the DHEP framework. Before we can elaborate about e�cient
placement algorithm in the next chapter, we will benchmark our frame-
work itself.

While DHEP has no in�uence on the usage of network resources, compared
to a homogeneous CEP system, it does have an in�uence on the processing
costs, as the processing within the framework causes CPU load. Further-
more, the CPU load caused by operators in heterogeneous systems can
vary dependent on the hosts. This is caused by di�erent engines, which
can cause di�erent processing costs while deploying the same operator.
Therefore, we measure the CPU load caused by the framework in order to
integrate this knowledge into the operator placement algorithm, discussed
in Chapter 4.

In our system, every deployed operator produces a CPU load which is
based on the following parameters: the operator itself (when processing
an event), the used CEP engine, the event rate, and the composition of
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the event stream. The latter is important, as depending on the incoming
events, the operator might trigger a situation, i.e., a result event, or not.
Figure 3.3 shows a typical event �ow within our system. As can be seen, 7
components are passed, after an event has been received, each contributing
to the resource usage: i) Decoder, ii) Routing, iii) Translation, iv) CEP,
v) (Back-)Translation, vi) Routing, vii) Encoder. Only component iv) is
engine-dependent.

Hence we can calculate the total resource usage of every event for oper-
ator eω on host n as the sum of the resource consumption of every used
component ci. We use the required processing time of each component as
the cost in our function. This also covers the host con�guration like CPU
speed, as it is directly related to the processing time.

C(eω, n) =
∑

cost(ci) (3.1)

Equation 3.1 is in fact a pessimistic calculation, as the components v) to
vii) are only used if the CEP engine produces a result, and therefore re-
quire no resource consumption in many cases where no event is produced.
However, with this calculation we can give a pessimistic forecast of how
many events can be handled by a host.

Cmax(ω, n) = λ ∗ C(eω, n) (3.2)

Since Equation 3.1 determines the required CPU time of one event, we can
calculate an operator's maximum resource consumption Cmax (Equation
3.2) for a given event rate λ and give a lower bound for the maximum
event throughput λmax (Equation 3.3):

λmax =
1

C(eω, n)
(3.3)

3.4.1 Correlation Cost Analysis

To be able to ful�ll placement conditions and make useful cost approxi-
mations for operator placements, knowledge about the resource require-
ments of operators is mandatory. In DHEP, two concept elements produce
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Figure 3.8: Cost vs. Operator Types

(CPU) cost: the framework (i.e., the runtime environment), and the cor-
relation engines. The framework cost is not dependent on the operator
itself, but on the event rate coming along with the operator, we will tackle
this in the evaluation of our framework (Section 3.5). However, this is not
true for the correlation cost. Here, operator types and operator charac-
teristics have a major in�uence on the cost.

To understand the engines behavior and resource consumption, bench-
marks on the processing cost are necessary which are collected exemplary
for the IBM AMiTTMengine (see Figure 3.8 and following). For the bench-
marks, the processing time (latency) between the input of an event to the
engine's interface and the eventual output of a result event was mea-
sured.

Figure 3.8 shows the latency of di�erent basic operator types: Filter op-
erators, logical operators, and temporal operators (like a sequence). The
results show that the cost increases with the operator's complexity. As
can be seen in �gure 3.8, the cost increases about 20% from 100 microsec-
onds for the most simple �lter operator to about 120 microseconds for the
most complex operator, the sequence detection.

The second benchmark shows the impact of speci�c event streams on
AMiT's processing time of operators (see Figure 3.9). This is a�ecting
sequential operators, as they are producing new instances. For example,
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Figure 3.9: Cost vs. Size of History

an event stream AnB produces an instance for every incoming event A,
while waiting for the matching event B that triggers the rule pattern
A;B → C. The benchmark shows that the increase is approximately
quadratic. The reason is that every event has to the go through all n
previously created instances until a new instance is created. This e�ect
causes quadratic runtime for the event stream AnB.

Figure 3.10 shows the impact of event attributes. As can be seen, the
operator's latency increases logarithmic with the number of accessed event
attributes. While the increase of processing cost is apparent at �rst, about
20% from zero to four attributes, the increase of required processing time
is pretty minimal after an event is checked for 4 attributes.

Finally, Figure 3.11 shows the impact of multiple operators that are af-
fected by an event. As can be seen, the latency increases linearly, which
shows that the AMiT engine processes every operator after the other.
However, the cost increase is not an accumulation of the individual oper-
ator costs, but the engines scheduling mechanism creates an overhead for
every additional operator.

As a result from the evaluations, we can approximate the correlation cost
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Figure 3.10: Cost vs. number of Attributes

of di�erent operators for di�erent engines. This information will be gath-
ered for all available engines and will further be used for more sophisti-
cated placement algorithms, as will be discussed in the remainder of this
thesis.

3.5 Evaluation

The evaluation of the DHEP framework was driven by two guiding ques-
tions:

1. What is the framework performance characteristic?

2. When is the framework applicable?
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Figure 3.11: Cost vs. number of Operators

3.5.1 Framework Cost Analysis

In order to understand our system's performance characteristic, as well
as calculate the bene�ts of a distributed deployment, we �rst evaluated
how the di�erent components that are used in the standard event �ow
contribute to the total processing cost of events. The event processing
stages within the framework were described in Section 3.2 and shown in
Figure 3.3. In the processing stages, each event is typically processed in
7 intervals, after it has been received:

1. Decoder

2. Routing

3. Translation

4. Complex Event Processing

5. (Back-)Translation

6. Routing

7. Encoder
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As can be seen, the stages 1-3 correspond the incoming events, while stages
5-7 correspond to outgoing events. Furthermore, stage 4 is independent of
our framework and has to be measured seperately. An exemplary bench-
mark for one engine is presented in Section 3.4.1.

We deployed a small evaluation network: an event source, the processing
host, and an event sink. The processing host is a Windows PC running
a single core CPU@2.0GHz. IBM's AMiT engine was connected via a
wrapper to the DHEP Runtime Environment. The event source was sim-
ulating a smart meter sending powerrequest events continuously. In order
to receive consistent, repeatable results, only one �lter operator was de-
ployed on the engine, �ltering for an id, and thus always evaluating to
true for every event sent.

Figure 3.12: Processing Cost per Component

For the evaluation, we had a very low event rate of 1 event/second to
ensure that there is only one event within the framework at every time.
Figure 3.12 depicts the results we gained.

Several results are remarkable: First, the correlation (i.e., the �ltering)
has the highest processing cost. Second, the wrapper concept proves to
be reasonable since translation of events is pretty fast compared to other
tasks. Third, deserialization results in a considerable amount of processing
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cost. In fact, the cost for retrieving and generating a DHEP object for
an incoming event is almost as high as the �ltering process of the engine.
This is caused by the serialization methods of EMF, which seem to leave
space for optimization.

Figure 3.13: Framework Cost vs. Event Size

In a second evaluation, we varied the events produced from our event
source in their size. We did this by adding additional attribute value pairs
in the same settings. The result is shown in Figure 3.13. One can see that
with an increasing size of the events, here the number of event attributes,
the framework cost increases too. The reason for this is the additional
overhead that is caused during the (de)serialization and translation of the
event within the wrapper component. However, it can be seen that the
cost increase is rather small and linear: About 1.5% increase for each
additional attribute of the incoming and the outgoing events. The only
exception is the low cost of an attribute-less event, which is based on the
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fact that both (de)serialization and translation do not access the attribute
list of the event at all. However, an event without any attribute is rather
unusual in complex event processing scenarios. Therefore this e�ect only
has a minimum in�uence.

Figure 3.14: Event Context Enrichment Cost

3.5.2 Event Enrichment by the Query Engine

In our next evaluation we tackled the access of context and enrichment of
events with the retrieved information. This is done with the query engine
we brie�y introduced in section 3.3.2. For the measurements, we used our
basic network setup, and added a MySQL database to the processing host.
We then created an operator that should retrieve some integer value from
the database and add it to the input event. The results of our processing
cost measurements are depicted in Figure 3.14. Context access produces
a massive overhead to the system. The costs for accessing a database and
querying for a value and adding the value to an event are about ten times
higher than �ltering for an attribute.
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The expense of event enrichment can be reduced by enabling the caching
mechanism as it is described in Section 3.2. As can be seen in the results,
this can be a great bene�t for applications, where the same attribute
is retrieved for a large number of events. Furthermore, when caching
comes into consideration, other factors like cache size and freshness of
data should have a major in�uence on the cache behavior. Also, a type
speci�c caching can further improve the caching mechanisms. However, it
has to be noticed that these parameters are mostly application dependent
and have to be set by application developers accordingly.

3.5.3 Scalability due to Distribution

Based on the previous evaluations (cf. Section 3.4.1 and 3.5.1), we are
able to understand the processing latency within our system. As has
been shown, the systems overall processing cost is caused by both the
framework and the used CEP engine. Furthermore, we can state, that the
framework costs per event are constant, whereas the cost for processing an
event in a CEP engine are dependent on the used engine and the deployed
operator set. In our last evaluations, we want to show the scalability of
DHEP: by adding hosts to the network we are able to process an increasing
event load.

We tested our framework with a simple deployment of our e-energy sce-
nario which was introduced in Section 3.2: Smart meters calculate the
current energy consumption of a household and send periodically con-
sumption events to the energy provider. The energy provider �rst checks,
whether the power consumption exceeds a prede�ned threshold. This
is done with a simple �lter operator ωf . Afterwards, the exceeding con-
sumption events are aggregated with ωa (cf. operator de�nition in Section
3.3.1). The scenario's operator graph is depicted in Figure 3.15.

We chose this scenario based on four considerations: i) The deployed
operators are the most basic operators one can get for a CEP engine.
Therefore, we expect the correlation process to be very fast. This fa-
vors the CEP engine, and stresses our framework, because a high event
throughput can be reached by the correlation process. ii) By setting the
�lter values we can adapt the event rates that are used within aggregation
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Figure 3.15: A simple operator graph with �ltering and aggregation

operator. iii) With a low number of operators, the centralized deployment
is favored, because there is not much space for splitting and distributing
the operator set. iv) The setting re�ects a typical distributed CEP ap-
plication, which is often composed of operators processing frequent basic
events close to the event sources, and more complex operators which pro-
cess their results.

Figure 3.16: The two di�erent deployment scenarios

To test the e�ects of operator distribution within DHEP, we deployed
the set of operators (cf. Figure 3.16) on one centralized CEP engine as
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Figure 3.17: Maximum Event Throughput

well as three hosts running DHEP. While in the �rst, centralized case the
operator results were directly processed further within the engine, in the
second, distributed case DHEP overtakes the responsibility to connect the
CEP engines. The results of the evaluation are shown in Figure 3.17. As
can be seen, we deployed the scenario with three di�erent �lter settings,
where we changed the restrictiveness of the �lters. Moreover, we used the
evaluation to verify our approximation functions presented in Section 3.4
(cf. the lighter bars in Figure 3.17). We approximated the values for the
various component costs from our evaluation results presented before.

The results show three main conclusions: First, the more restrictive the
�lters are, the more events can be processed in both settings. This is
self-evident, as less events are reaching the aggregation operator, hence
producing less cost. Second, our lower bound approximations are pretty
close to the actual values we got from our evaluations. Third, we bene�t
from a distributed deployment of operators although we deployed a sce-
nario that is likely to favor a centralized one. Furthermore, the bene�t
increases, as the �lters get more restrictive. The aggregation operator
processes events much slower due to a more complex functionality, and
consequently is the bottleneck in a deployment where no events are �l-
tered out (0% Filter). In more realistic scenarios, where the events are
�ltered out, the aggregation receives less events. Hence, the bene�t in
distributing operators increases.
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As can be seen, although our system produces additional costs, the ad-
vantage in distributing operators over multiple hosts is measurable even
in very small scenarios. The advantage gets even more obvious, when big-
ger and more realistic business scenarios are deployed or when additional
sources have to be processed by the CEP system. The increase of CEP
costs might exceed the available processing power and network bandwidth
of centralized CEP systems. With our framework, we can easily extend
our setup by adding additional processing hosts to reduce both processing
cost and network bandwidth usage of the CEP system.

3.6 Related Work

Since we combine in DHEP the expressiveness and power of mature CEP
systems running on large servers, typically used nowadays, with the ideas
of distributed CEP systems, a look in both directions is necessary.

While initial research focused on expressive languages and e�cient cen-
tralized situation detection mechanisms (cf. [AE04, CM94, GD92]), acade-
mia has shifted its main focus on distributed CEP. Multiple approaches
have been designed recently (cf. [Jak03, LJ05, LGL08, PSB03, KKR10]).
Especially with the increasing popularity of Publish/Subscribe systems
(cf. [TKKR10, BKR09]), event processing has become a highly distributed
technology. CEP scales well in these systems, since it can bene�t from
the Publish/Subscribe paradigm by subscribing to speci�c events of in-
terest, which can be extended to support complex events. A CEP engine
attached to the Publish/Subscribe system takes care of the detection of
complex events. Furthermore, the possibility to detect complex events on
any node in the system opens a lot of optimization possibility, such as
moving functionality closer to the source in order to reduce the overall
network usage.

While we can learn from these approaches in terms of e�cient network
usage and operator migration, they lack the special industrial require-
ments we have de�ned in Section 3.2. They consider homogeneous en-
gines for their migration and deployment techniques. Furthermore, they
do not integrate context information of applications. Finally, distribution
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techniques do not seem to be mature enough to be deployed in business
applications. They take only static node resources into account, but ig-
nore important aspects for business application, such as dynamic load,
additional restrictions for the processing of operators, security aspects,
and the proximity to context data sources that are necessary for event
processing.

Attempts to interconnect heterogeneous components within a common
distributed platform can be found in the context of service oriented archi-
tectures in form of the SCA or JBI speci�cations (cf. Service Component
Architecture [BBB+05], Java Business Integration [THW05]). Similar as
in DHEP, di�erent services can interact and communicate with each other
based on a common communication bus. Adapters are used to translate
between the internal languages of the services and the communication
language. However, the focus in these systems is to interconnect existing
functionality encapsulated in services instead of distributing application
parts among various con�gurable nodes.

First steps towards increasing the performance of CEP systems by combin-
ing heterogeneous correlation technology has been made by Chakravarthy
et al. [CA08]. They manually combine a classical event processing engine
and a stream processing engine in order to achieve an e�cient situation
detection.

Most closely to our goal in maintaining the scalability of mature correla-
tion technology is the work of Biger et al. [BER08]. They integrate several
centralized CEP systems into a distributed correlation network without
modifying the system itself. In addition to connecting input and output of
individual powerful correlation nodes and deciding which correlation tasks
to perform at which node, the con�guration and deployment of each corre-
lation machine becomes a main issue. However, the approach has several
characteristics contradicting our goal. First, the network setup as well as
the CEP con�guration has to be tailored towards the target application
beforehand. Second, the intention of strati�cation is to achieve a max-
imum throughput by splitting a speci�c set of operators and pipelining
it through multiples stratas. It is not intended for inherently distributed
applications like the e-energy scenario.
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3.7 Conclusion

In this chapter we presented the complex event processing system DHEP,
which has been designed and created to close the gap between current CEP
systems and business requirements. The concepts behind DHEP focus on
providing a very modular architecture, that comprises various di�erent
event processing engines, and enables communication among them within
a distributed system. In addition, DHEP comes along with a powerful
object-oriented de�nition language, that enables e�cient, tool-aided de-
signing of big industrial CEP applications. The evaluation results show
that, although the functionality provided by DHEP imposes additional
cost, the system scales well by exploiting distributed detection of situa-
tions.

Future work in this research area might extend the evaluations with larger
scenarios, which will provide knowledge about the weaknesses of the ap-
proach in large scale, long running application. To be able to e�ciently
use the system, we will provide and practically evaluate a variety of place-
ment algorithms in the upcoming chapter.
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4 E�cient Operator Placement in

Constraint-Driven Environments

One of the core challenge towards scalable complex event processing is to
e�ciently distribute the event correlating operators within an event pro-
cessing network. Although signi�cant research has been made recently to
allow an e�cient operator placement, there remains a gap in supporting
requirements that emerge from deploying CEP over heterogeneous and in-
dependent processing environments. Heterogeneity imposes strict binary
constraints on the placement of operators, like the availability of a cer-
tain processing engine or the membership in a certain domain. This adds
to the complexity of the underlying optimization problem and cannot be
handled e�ciently by existing solutions.

In the previous chapter, we presented the DHEP framework with its di�er-
ent elements, including a con�guration tool which can be used to centrally
calculate placements and deploy the operator set via con�guration events.
In distributed systems, maintaining central knowledge on a con�guration
tool is not always feasible. Consequently, our goal in this chapter is to
present a distributed placement algorithm, which can �nd and optimize
placement solutions locally on the nodes. Previously, we benchmarked the
DHEP framework and learned how its various components behave under
heavy load. This forms the foundation towards evaluating algorithms
which handle the placement in a distributed network of DHEP hosts.

Based on the measurements presented so far, we examine the distributed
placement, migration, and optimization of operators in heterogeneous en-
vironments. This is always done in the context of the optimization goal to
minimize network usage as a commonly used measure for e�ciency. We
propose and evaluate a placement algorithm that e�ciently �nds valid so-
lutions in scenarios where the solution space is heavily restricted by con-
straints. The algorithm operates in a decentralized way and is adaptive
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to dynamic changes of processing hosts, operators, and load characteris-
tics of the event processing network. The proposed operator migration
policies resolve invalid placements and therefore counteract node failures.
The evaluations show that the proposed algorithm is able to �nd e�cient
solutions within constraint-driven conditions that also include binary con-
straints.

In this chapter, we present a distributed solution to minimize the network
usage in distributed CEP networks. In particular the contributions are

• a placement algorithm, which is capable of valid placements within
constraint driven settings.

• an optimization algorithm which is capable of �nding near optimal
placements in terms of minizing the network usage within heavy
constraint driven settings.

The presented approaches are implemented and evaluated. We discuss
their applicability in detail.
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4.1 Introduction

In distributed CEP the detection of a situation is typically performed by
multiple cooperative operators which themselves are deployed on hosts
within the CEP network. The distribution of event correlation enables
scalable applications and can also result in a more e�cient CEP. For ex-
ample, by moving the correlation functionality closer to the event sources,
the network usage of detecting situations may be improved. Furthermore,
by distributing the same functionality among several hosts, CEP applica-
tions become more available and reliable.

The distribution of multiple operators within the network of correlation
hosts (i.e., the CEP system) raises the question of placement. Depending
on where the di�erent operators receive, process, and produce events, the
behavior of the whole CEP system will change in terms of detection time,
resource consumption, and reliability. The challenge is to �nd an operator
placement, such that CEP is e�cient with respect to the applications
optimization goals, such as network usage.

The placement problem in event processing systems has been tackled by
many researchers recently (cf. [Fid06, LJ05, PSB03]). So far, distributed
CEP is characterized by relying on a homogeneous system, where all hosts
have the same capabilities and no binary constraints are imposed on the
placement. In this context, a binary constraint is a capability need which
must be matched by the host to be allowed to deploy an operator, like the
membership in a certain security domain. Hence, handling the placement
problem in heterogeneous systems, where it is often not possible to place
operators on certain hosts due to constraints, is not considered in existing
work. As we will discuss in the remainder of this chapter, today's place-
ment solutions are not optimal in scenarios with many binary constraints
as we face them with our DHEP framework.

Certainly, such constraints are of high relevance for real world deploy-
ments as we extensively discussed in Chapter 3. We face heterogeneous
CEP systems hosted with di�ering con�gurations at various domains
(cf. [SKPR09]). Throughout this Chapter, we will illustrate the place-
ment problem by means of an energy & utility scenario. Consider a large
power grid, where several participants (e.g., energy producers, brokers,
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and customers), further referred to as domains, are producing, trading, or
purchasing/consuming energy. Hence, a network of hosts is established.
Due to the presence of several participants, the hosts are situated in var-
ious domains and may embrace heterogeneous CEP technology. In this
scenario, a set of CEP operators is de�ned to detect energy load violations,
regulate energy consumption, or steer the energy �ow.

As a consequence of the heterogeneity, the placement of operators is often
restricted to a small subset of hosts, that have the corresponding capa-
bilities and permissions. Moreover, CEP systems require a high level of
decentralization since a host that gains global knowledge might be a se-
curity and scalability problem in heterogeneous networks. Furthermore,
the placement has to be adaptive, due to the dynamic behavior of CEP
applications that stems from load variations, changes in the availability of
correlation hosts, as well as to changes in the operators deployment. For
example, energy consumption in our example scenario is likely to peak at
certain times during a day, resulting in many concurrent energy shortage
messages that have to be dealt with.

The rest of this Chapter is structured as follows. In Section 4.2, we detail
the challenges of placement in heterogeneous CEP systems by means of
the energy & utility example before presenting the system model and for-
mal problem statement. We present our approach in Section 4.3, discuss
related work in Section 4.4, and evaluate our approach in Section 4.5.
Finally, we will have an outlook on possible extensions and conclusion in
Section 4.6.

4.2 Problem Description

In this section, we �rst motivate the problem and present the challenges.
After that, we describe the system model underlying our problem. Finally,
we will formally de�ne the problem.
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4.2.1 Challenges

Constraints and Resources

The high number of collaboration among business partners in today's
world results in a cooperative nature of the involved companies business
processes. As an e�ect, the processing and execution of business events
is performed in heterogeneous environments, where hosts have di�erent
characteristics, resources, domains and processing capabilities. This im-
poses two main challenges that need to be tackled by placement solutions:
a constraint-based operator placement as well as the inclusion of resource
usage. We exemplary show this with our energy and utilities scenario
which was introduced in Chapter 3. In the scenario, the event processing
is typically organized hierarchically among several domains, where infor-
mation is processed and reacted on with the help of correlation engines.
Smart meters act as event sources and processing hosts at the same time:
they emit events about current consumption on the one hand but also
steer energy consumption within the household on the other hand (e.g.,
based on energy prices). A functional overview of the scenario is given in
Figure 4.1).

Figure 4.1: Participants in an energy network
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It can be seen, that di�erent situations are detected at various domains
(e.g., Broker, Consumer) within a very large system. Thus, event corre-
lation is favored to be deployed in a distributed way. However, multiple
binary constraints increase the complexity of the placement process:

a) Heterogeneous Engines: The functionality needed at di�erent levels
within the power grid is of di�erent complexity. While low-footprint
event processing is su�cient in some places (e.g., �ltering at power
meters), major domains like the energy broker require more expressive
processing capabilities. Therefore, di�erent kinds of processing engines
are installed within the domains of a large power grid. As a result,
operators are not able to be processed at every host.

b) Domain Restrictions: Due to many participants in a large-scale power
grid (e.g., di�erent energy providers), security becomes a major issue
(e.g., con�dentiality). Domain restrictions can be speci�ed in the op-
erator descriptions and enforce a placement prohibition for operators
on hosts outside the domain.

c) Heterogeneous Resources: The hosts within the network have di�er-
ing resources. While energy providers are likely to possess large-scaled
dedicated servers with high-end computing capabilities, small power
meter units at the customer are equipped with less memory and pro-
cessing power.

An algorithm which aims towards �nding viable placement solutions for a
heterogeneous network must be able to deal with these restrictions. This
makes most placement algorithms used in CEP systems inappropriate, as
they typically try to �nd the best placement (concerning a speci�c opti-
mization goal) in the whole search space (cf. [PSB03, Fid06, RDR10]), e.g.,
by introducing a latency space. However, applications imposing binary
constraints typically require the search space to be pruned to a subset
of allowed placements. Consequently, a placement algorithm can only
�nd valid solutions in a potentially small subset of the available hosts,
depending on the given operator restrictions. Furthermore, since the so-
lution space contains binary constraints it does not converge towards the
valid solutions. This makes the available placement algorithms not appli-
cable, as they rely on the converging solution spaces to �nd valid solutions
(cf. [RDR11]).
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Moreover, most current placement algorithms do not consider the actual
resource usage of operators on the hosts. However, the presence of a
wide range of di�erent machines with di�erent capabilities, processing
power or memory makes the introduction of resource usage necessary (cf.
[SKRR10]). Hosts can be overloaded when their operators are causing
a lot of computational e�ort, resulting in falsi�ed and unreliable results.
To the best of our knowledge, no algorithm exists that both considers
constraints and resource consumption at the same time.

Dynamics
Despite handling constraints and resource requirements, a placement al-
gorithm has to respect the dynamic behavior of CEP in heterogeneous
environments. For our approach, we assume the following application
behavior:

a) Static Operator Network : Although adding new operators is often a
typical example for dynamic behavior in CEP systems it is, in our
experience, rather uncommon for industrial CEP applications. These
applications are usually not changed frequently in terms of functional-
ity. Once established, the set of operators is meant to run for a longer
period and is going to report speci�c situations whenever they occur.
Changes to the deployed set of operators often result from changes in
the business logic of a company, for example when use cases are added
or changed within a software. However, whenever a new operator is
added, a quick deployment is desired.

b) Dynamic Resource Availability : Resource availability on a host a�ects
our target applications more often than a changing set of operators.
Resource consumption is often a consequence of changing event rates,
which a�ects the stability and reliability of the processing: if the event
processing is slower than the incoming event rate, the latency is in-
creasing and events may be dropped. Once the available resources
at a host get scarce, migration of one or more operators is necessary.
Since operators are often based on real world events, the event rates
are heavily dependent on uncontrollable sources and can therefore of-
ten not be predicted reliably.

As a consequence of these dynamics we have to be able to react on chang-
ing conditions properly:
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a) Solutions have to be found quickly to minimize the time a system is
in an invalid state, which is either that a host is overloaded, or an
operator restriction is not ful�lled.

b) Due to changes in the system (which do not lead to an invalid state)
a running operator placement may become ine�cient over time. Con-
sequently, the system needs to adapt itself in order to optimize the
operator placement during runtime.

4.2.2 System Model

We consider a correlation network N = {n1, n2, ...}, and operator graph
G = (Ω, S) as speci�ed in Section 2.2.1. The hosts n are connected via a
P2P network and together run a user-speci�ed CEP application decribed
by G.

A simple example of a typical operator description in our energy grid
scenario is shown in Listing 4.1. Here, powerConsumption events from
di�erent households are aggregated and an AggregatedPowerConsumption
event is forwarded for further processing.

OpDesc AggregateCurrentConsumption
WHEN SEQ(pc1, pc2 : PowerConsumption)
IF pc1.meter 6= pc2.meter
RESTRICT engine.type = amit
EMIT AggregatedPowerConsumption

(amount = pc1.amount+pc2.amount)
Listing 4.1: Operator Description of a Simple Aggregation Operator

Both operators and hosts are dynamic: users may add, change, and re-
move operators as well as hosts may be added to, and removed from the
CEP system during runtime.

As already indicated by the operator graph description in Section 2.2.1,
operators can depend on each other. In particular, the outgoing event
stream of an operator Oωi can serve as input to another operator, i(ωj) ⊆
Iω. Sticking with the given example, the AggregatedPowerConsumption
events are used in another operator that determines energy overload within
a sub-network of the power grid. These interdependencies are described
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in the directed, acyclic operator graph G, where we create an edge for
every event stream between operators.

The hosts can be interpreted as network nodes in the correlation network.
They are heterogeneous with respect to the capabilities they have and
resources they provide. Resources, for example processing power or mem-
ory, are �nite on every host and consumed by the operators placed on it.
A capability is de�ned as a non-resource attribute of a host that might be
required by an operator: for example a speci�c CEP engine, or member-
ship in a domain. Capabilities are representing the binary constraints of
our placement problem, as they only have two values (true, false). They
are either ful�lled or not ful�lled. The host is modeled in our system such
that every host nj has p capabilities χ(nj) = {cj,1, .., cj,p} and q resources
γ(nj) = {gj,1, .., gj,q}.

Sources and targets of events are not doing actual event processing in our
network (i.e., they have no engine equipped and are therefore not capable
of actually hosting operators). They are therefore not considered in the
placement algorithm discussed in this chapter.

Operators can have di�erent requirements with respect to resources and
capabilities. Every operator ωi has k capability requirements α(ωi) =
{ai,1, ..., ai,k} (which we call binary constraints) and m average resource
requirements β(ωi) = bi,1, ..., bi,m. The requirements are based on either
the measured average resource consumption on a host (if the operator
has been deployed before), or on a standard value based on the operator
type (if the operator has not yet been deployed in the system). Resource
requirements are measured on the nodes and updated on a regular basis.
This is important as our proposed optimization process will later rely on
resource consumption of operators and available resources on nodes. The
measured average resource consumption is currently aggregated based on
on the measurements of a speci�ed time frame, which is currently set to
1 day.

Note: We chose the average resource consumption (instead of, e.g. the
maximum value) since it was the most suitable value for most of our
usecases, where the event rates within the system have not been sub-
ject to �uctuations and remained within a certain deviation threshold.
In scenarios where the resource consumption varies heavily and has for

91



4 E�cient Operator Placement in Constraint-Driven Environments

example peaks only during speci�c occurences, an average resource con-
sumption measurement is unpro�table and other measurement metrics
should be used. In our approach, we di�er the resources of hosts (e.g.
CPU consumption) and network (e.g. bandwidth consumption). There-
fore, we additionally de�ne the resource usage of an event stream (ωi, ωj)
as δ(ωi, ωj) = [di,j,1, ..., di,j,s], where d is the average resource consump-
tion of a network resource.

Domain B 

Domain A 

n1 n2 

n3 

n4 

ω ω 

ω 

ω 

Operator Set 1 

ω ω 

ω ω 

Operator Set 2 

Capabilities: 

engine = amit 

domain = B 

Resources: 

memory = 4GB 

Constraints: 

engine = amit 

domain = A 

Res. Req.: 
memory = 300MB 

Figure 4.2: Elements of the System Model

Within this system, we now try to �nd a valid placement of operators on
hosts in the correlation network with respect to constraints and resource
requirements (cf. Figure 4.2). Therefore, we de�ne the boolean matching
function µ(a, c) : α × χ → {true, false}, which is true if the constraint
ai,k is included in the set of capabilities χ(nj). A valid placement for
an operator is given, if all constraints are ful�lled, i.e., ∀a∀c : µ(a, c) =
true.
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4.2.3 Problem Statement

Based on the given system model, we �rst formalize the general placement
problem in distributed heterogeneous event processing networks (DHEP)
and then state the optimization problem of minimizing network usage.

De�nition 4 (The placement problem in DHEP) Given an event
processing network N consisting of j hosts n and a set of i operators
ω ∈ Ω that form an operator graph G = (Ω, S), �nd a placement P with
the mapping function π(r) = n, which assigns an operator to a host, such
that:

∀ω : µ(α(ω), χ(π(ω))) = true (4.1)

∀n,∀c :
∑

π(ω)=n

(bc) +
∑

π(ωi)=n∨π(ωj)=n

(di,j,c) ≤ gc (4.2)

whereas δ(ei,j) = 0, if π(ωi) = π(ωj)

Condition 4.1 ensures, that all constraints of the placed operators are
ful�lled. Condition 4.2 ensures that the resource usages of the operators
and event streams do not exceed the host and network resources. This
means, that for all operators placed on a host n and all resources c the
sum of these operators' resource requirements as well as the incoming and
outgoing event streams of these operators is less or equal to the number
of provided resources.

Theorem 4.2.1 The placement problem in heterogeneous systems is NP-
hard.

Proof sketch: Figure 4.3 illustrates how the problem can be reduced to
Bin Packing. Here, hosts are mapped to bins, while operators are mapped
to the values that going to be packed in the bins. The size of the bins
is chosen by the free host resources, while the operators' resource con-
sumption determines the values. Hence, if we could �nd an algorithm
that solves the placement problem in deterministic polynomial time, the
algorithm would also give a solution to pack the bins. �
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Figure 4.3: Reduction to Bin Packing

The formulated placement problem can be seen as a constraint satisfaction
problem (CSP), where the operators constitute variables and the opera-
tor requirements are constraints that have to be matched by the hosts.
Based on this CSP, we can formulate the constraint optimization prob-
lem of minimizing network usage. Network usage is the bandwidth-delay
product, which denotes the load that is on the network at a certain point
in time. Hence, we formally de�ne the network usage σ of an event stream
as

σ(ωi, ωj) = delay(π(ωi), π(ωj))× dataRate(ωi, ωj) (4.3)

Furthermore, we de�ne the placement cost φ of an operator ωj on a host as
the sum of network usage of its incoming event streams, i.e., its incoming
edges in the operator graph:

φ(ωj , n) =
∑

ωx|(ωx,ωj)∈Iωj

σ(ωx, ωj) (4.4)

With Equation 4.3 and 4.4, we de�ne our goal:
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De�nition 5 (Minimizing Network Usage in DHEP) Given a cost
function φ that determines the placement cost of an operator ω on a host
n. If P = {P1, ..., Pk} is the set of all possible placements solving the
placement problem in DHEP (c.f. De�nition 4) and πPi(ω) = n is the
assignment of operator ω to host n done by Pi, Pi ∈ P is optimal i� for
all Pj ∈ P : ∑

Ω

(
φ(ω, n)πPi

(ω)=n

)
≤
∑
Ω

(
φ(ω, n)πPj

(ω)=n

)
(4.5)

With the given cost calculation, a placement is optimal in the sense of our
optimization goal, network utilization, if it has the lowest placement costs
in total. As a result, by reducing the placement cost the communication
load generated by the operators is minimized. Furthermore we would like
to stress that the de�nition of our cost function can be extended with the
resource usage of the hosts, as it is demonstrated in [SKRR10]. By doing
that, we would not only consider the event tra�c in the network, but also
resource usage on the hosts. This would change the optimization goal to
minimizing system resource utilization.

4.3 Approach

Finding an optimal solution to the optimization problem (cf. 5) is ex-
pected to take signi�cant processing time. This can lead to long phases in
which the CEP system is inactive and events are unavailable. In order to
ensure a high validity of the CEP system, our approach makes combined
use of two algorithms. While the system is in an invalid state the algo-
rithm aims to determine an initial placement for which all constraints are
satis�ed and no host su�ers from overload (cf. 4). Here, we make use of
concepts that aim towards �nding a valid solution early by favoring hosts
which both match the constraints and have the resources available needed
by the operator. Once the initial solution is deployed and the system is
running in a valid state, an optimization phase is started which aims at
minimizing the network utilization.
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During runtime, all hosts operate without central coordination. Contin-
uously, a host checks for all of its operators whether the constraints are
satis�ed. To ensure the availability of the system during optimization,
we perform logical migrations: Every host creates an update list where
it stores potential migrations for the operator it wants to get optimized.
Actual changes to the system are made in a commit phase, where up-
dates with respect to an operator deployment are executed. The commit
phase is entered, when the optimization algorithm has stopped. During
the commit phase, every host that is participating in the running opti-
mization deploys the new operators that are assigned to it.

Before presenting the details of the initial placement algorithm and the op-
timization phase in Section 4.3.2 and 4.3.3, we �rst concentrate in Section
4.3.1 on the common parts shared by the two algorithms.

4.3.1 Algorithm Basics

Our placement algorithm needs to react to the dynamics which stem from
inserting new operators into the system or changing event rates. We there-
fore make use of a monitoring component at the host. If the changes result
in an invalid placement, the a�ected host initiates a recon�guration (i.e.,
initial placement). This may trigger subsequent migrations of operators, if
necessary, to �nd a valid placement. If the placement stays valid, the con-
tinuously running optimization algorithm will eventually search for new
con�gurations that would result in a better network usage. During this
process, hosts go into a busy state while searching for alternative place-
ments to prevent invalidations caused by parallelism. The generic course
of action performed by a placement algorithm is characterized brie�y in
Algorithm 2.
Both the initial placement and the optimization of an operator run through
several steps when they are started. The steps are sketched in proce-
dure FindPlacement in Algorithm 1. After the placement algorithms are
started for an operator, we de�ne our solution space by searching for hosts
that ful�ll the constraints, i.e., are valid hosts for the operator. Then, each
host checks whether it has enough free resources to deploy the operator
and locally calculates the placement costs based on the expected network
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Algorithm 1 Standard Routine of Placement Algorithm

procedure FindPlacement(ω)
identify valid candidate hosts(ω)
receive calculated deployment costs()
repeat

choose next best target host()
tryLogicalMigrate(r)

until migrationSuccess
end procedure

Algorithm 2 Generic Placement Algorithm

procedure monitorValidity
while true do

if (invalidState) then
FindPlacement(ω)
enterOptimizationState()

end if
end while

end procedure
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utilization (c.f. Section 4.2.2). The result is sent back to the requesting
host. Finally, among the replies a new host is chosen and the operator
is migrated. Note that after migrating an operator, other subsequent
migrations might be necessary to reach a valid state. Thus, we always
perform these steps logically: The running system is only a�ected in the
commit phase, where the changes are accepted and �nally deployed on
the hosts. Hence, optimization can run in parallel and is not continuously
interrupting the CEP process.

Each of these typical steps will now be described in detail. However,
although both the initial placement and the optimization algorithm follow
this concept, they di�er after the identi�cation of valid candidate hosts.
Therefore, we describe both mechanisms separately in Section 4.3.2 and
4.3.3.

Identifying Candidate Hosts

Candidate hosts are potential targets for an operator that needs to be
migrated. Determining candidate hosts requires to deal with two di�cul-
ties: i) candidates must be determined fast and at low communication
cost even though there is no central knowledge; ii) due to the presence
of constraints the number of candidate hosts is typically restricted to a
small subset of all available hosts.

To overcome these di�culties, our candidate selection uses a content-based
Publish/Subscribe system that is deployed as part of the CEP system (cf.
[TKKR10]). Target hosts are determined by publishing the operator by
means of its binary constraints. The key is, that each host subscribes to
the constraints it is capable to su�ce (cf. Figure 4.4). In our system im-
plementation, we specify the needed engine type, domain, and connections
to database as constraints.

The course of �nding candidate hosts is depicted in Figure 4.4. When
an operator must be placed within the system, the initiating host (n4)
publishes a deployment request with the operator's constraints. Pub-
lish/Subscribe delivers the message to all subscribers, i.e., the hosts that
can potentially deploy the operator. The deployment request contains
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two pieces of information: the operator and an identi�er. The operator
is essential for the cost calculation, the identi�er is needed for handling
parallelism in the system, since multiple requests can occur concurrently.

Pub/Sub 

System 

n1 

n2 

n3 

Constraints: 

A 

Constraints: 

B 

Constraints: 

A,B 

(i) 

Pub/Sub 

System 

n1 

n2 

n3 

(ii) 

n4 
publish(ω) 

Constraints: 

A 

response 

response 

Figure 4.4: Subscribing to Operator Constraints

4.3.2 Initial Placement

After receiving a placement request, every host �rst checks whether it can
deploy the operator. Therefore, a host compares the estimated operator
requirements with its own free resources. Basically there are two options:
i) the host can deploy the operator; ii) the host cannot deploy the operator
unless one or more other operators are migrated away from the host (that
means, it meets the binary constraints, but not the resource requirements).
If the host can deploy the operator he sends an answer containing the cost
for the operator deployment (i.e., the network utilization it would cause).
However, when migration of other operators is necessary, the operation of
placing a operator becomes complex. The reason is that these migrated
operators might cause high overall costs on other hosts themselves after
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Figure 4.5: Requesting Placements with the 3-Way Heuristic
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moving them, hence compensating for a good placement of the originally
placed operator. Furthermore, the migrated operators might cause even
more migrations subsequently.

As a result, we use a 3-way heuristic which

a) aims at reducing the number of migrations,
b) favors placements with low costs in terms of the optimization goal,
c) guarantees to �nd a solution if there exists one.

In our approach every request is associated with a priority. The larger
the priority value the more hosts will answer a placement request. The
algorithm uses three priority levels, and its behavior is sketched in Figure
4.5.

At priority level 0, only hosts that can directly deploy the operator reply to
the deployment request, i.e., they ful�ll all constraints and have su�cient
resources. The reply contains the result of the cost function. In our
example, the requesting host n1 waits for the results, and selects the host
which results in the best placement cost, i.e., the lowest network utilization
value. If no host can be found that can directly place the operator, the
request message is assigned priority level 1. Now, every host replies that
can deploy the operator after migrating one or multiple other operators
whose migration cost are below the cost of the operator. The migration
cost is used in order to prevent operators from migrating that require a lot
of migration e�ort. With this cost, we are able to order operators based
on their migration e�ort. The migration e�ort is a �xed value assigned
to each operator at time of de�ntion and is determined by the amount
of state information that has to be transferred in a migration process.
Finally, priority level 2 is assigned to a request message if priority level 0
and priority level 1 messages did not succeed in �nding a valid placement.
Any host receiving a request message of priority 2 is answering the request,
even if the migration cost of the already deployed operators is higher than
that of the new operator. If there is no valid placement after priority 2 is
reached, an error is sent to the host initiating the migration.

Replies to a deployment request are sorted by the initiator according to
the deployment cost. For example, in Figure 4.5 the initial placement
leads to a result list of n2, n4, n3. Based on the result list, the requesting
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host sends a placement request to place the operator to the best host in
the list. The recursive component of the algorithm comes into account at
this point: If the host receiving the placement request cannot deploy the
operator without migrating one of its other operators (i.e., priority level
1 or higher), the placement process is initiated again.

This procedure is depicted in Figure 4.6. In (a) host n2 is chosen to deploy
operator ωn. However, it is forced to migrate operators in order to do so.
Therefore it creates a migration list containing the operators ordered by
the migration cost. The host then tries to migrate operators based on the
list, here ω1 and ω2. For both operators, a new placement procedure is
initiated by n2 subsequently in (b). If a placement fails, the next host in
the result list is chosen (cf. ω2 in (b) and (c)). As can be seen in (c),
host n3 may also be forced to migrate one of its operators in order to
�nd a valid placement. After a better valid placement is found, and the
algorithm �nally terminates, the hosts can update their state and deploy
the new operators (d).

Backtracking

If a placement attempt failed failed during the logical migration phase, an
error message is sent to the host which initiated the placement request.
All logical changes made during the placement attempt are revoked. This
is done by sending a rollback message to every host participating in the
placement attempt (in opposition to the already mentioned commit mes-
sage). The hosts can be identi�ed by a tracepath-list associated with the
operator. Every host participating in the logical migration steps puts
itself on the tracepath-list. The rollback mechanism resembles backtrack-
ing, i.e., it jumps back to a valid state if an entered path does not lead to
a solution (in fact, it stays in the current state as the changes were only
logically). The logical changes are then deleted on the hosts.

Termination

To ensure termination of our algorithm, we have to avoid in�nite cycles
during the logical migration phase. The cycles can occur in scenarios with
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Figure 4.6: Cost Calculation during Placement
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an overall heavy consumption of the available network and host resources
. In these scenarios, a priority level 2 search is likely done (cf. Figure 4.5.
That means, all hosts try to deploy the operator, possibly by migrating
other operators away from itself. During this process, cycles can occur.
To avoid cycles, we add an operatorPath variable to the placement re-
quest message. Every host receiving the request updates this variable by
adding an identi�er representing the host. A cycle can now be detected
whenever an identical sub-path in the operatorPath is repeated. If a cycle
is detected, the logical placement goes back the operator graph stepwise
to the last logical placement before entering the cycle.

Furthermore, deadlocks might occur when two independent placement
algorithms are running in parallel. Whenever a host is calculating a new
deployment it gets into a busy state and will not accept other placement
requests. To avoid the possible deadlocks, each requesting host waits for
a random time until requesting again whenever a host is busy. If the host
is still blocked, it has to cancel its running request if it has a lower id than
the new request.

Properties

In this Section we discuss and prove properties of the presented algorithm.
Lemma 4.3.1 states, that the algorithm is complete. Lemma 4.3.2 states,
that the algorithm instantly terminates if there exists a host that allows
a valid placement and has enough resources available.

Lemma 4.3.1 (Completeness) Assume a system without node and net-
work failures and the existence of a solution to the placement problem in
DHEP (c.f. Section 4.2.3), where network conditions, hosts, and opera-
tors do not change. The initial placement algorithm will eventually �nd a
solution.

Proof sketch: Following algorithm 1, the �rst step is to �nd a valid target
host, by using the 3-way heuristic. In the worst case scenario, no host
with enough free resources can be found, which will cause the initiation
of a placement request at priority 2. This will result in an answer of all
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hosts which can validly deploy the operator. At this point, the initiating
host has knowledge about all possible placements. By logically migrating
the operator to a target, the target host will also use algorithm 1 for every
operator it hosts until a solution is found. By doing this, the initial place-
ment algorithm will, in the worst case, iterate over all valid placements
combinations. In particular it will �nd any existing solution. �

Lemma 4.3.2 (Quick termination) Assume a system without node and
network failures. If there exists both an invalid operator placement and a
host with enough free resources to satisfy the constraints of this operator.
A valid placement for the operator is found after the �rst iteration step.

Proof sketch: In the �rst iteration step, an event is published at priority
level 0. The event contains the required resource types (as attributes). In
a stable state all hosts have subscribed to their resource types they are able
to provide. Consequently, any host capable of satisfying the constraints of
the invalidated operator will respond to the event and eventually deploy
the operator. �

Further remark : If such a host does not exist, the algorithm will always
need more than one iteration step, since (multiple) migrations are done.
The time spent on �nding a solution is heavily dependent on the length of
the search path, and therefore on the number of migrations done. While
the di�erent priority levels are used to keep the search path as short as
possible, the highest priority results in a lot of communication. Yet it
is required for completeness, as any host is eventually considered in the
placement process.

4.3.3 Optimization Phase

The previously presented initial placement task is solving the placement
problem in heterogeneous environments, as it guarantees to �nd a valid
placement if one exists. To �nd a near optimal solution, we optimize this
initial placement in the optimization phase described in the following.
On a regular basis, every host tries to �nd alternative placements for
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operators, calculates the cost di�erence of the new placement, and decides
whether a migration should be initiated (as depicted in Figure 4.6).

Relating to the challenges stated in Section 4.2.1, the algorithm for min-
imizing the network latency in a heterogeneous event processing system
needs to ful�ll two major properties:

i) decentralized coordination,
ii) avoid to be stuck in local minima.

Decentralized coordination prevents us from maintaining global knowledge
and forces us to make decisions based on local knowledge. This is espe-
cially problematic when we determine the next operator that should be
optimized. Considering the optimization problem, the operator with the
highest migration priority ideally should be the worst placed operator on
the host. That means, the operator with the highest cost in terms of the
optimization goal is tried to be migrated �rst. Ideally, there is a high dis-
parity between its current and its optimal placement cost, and the overall
placement cost in the system gets signi�cantly better after migration. The
operators with the lowest cost will be migrated with the lowest priority.

If a new target host with a better placement cost could be found during
the logical migration steps, the actual migration will be triggered for the
operator. At this point, another factor comes into play: Always choosing
the host with the best result may lead to suboptimal solutions. The reason
is, that the solution is found greedily, without being able to get back. That
means, the algorithm tries to �nd the best placement for the operator.
However, this placement may prevent deployments of other operators,
thus leading to non optimal overall results. In other words, the algorithm
will run into a local minimum for the migrated operator and may prevent
solutions with an overall better cost in terms of the optimization goal.
We approach this problem with two mechanisms: On the one hand, we
calculate a migration probability for every logical migration. On the other
hand, we may allow a migration with a worse placement cost in some cases
(cf. Algorithm 3) . distribute the knowledge about the best cost within
the system during the optimization process. Avoiding local minima is
crucial for optimization algorithms.

106



4.3 Approach

We approach this problem by letting the hosts optimize their operators
independently based on their local knowledge and applying techniques of
simulated annealing. Our optimization algorithm is sketched in Algorithm
3. After entering the optimization phase, every host periodically starts
the optimization algorithm. At �rst, it chooses the worst placed operator
that has not been optimized so far (cf. ChooseOperatorFromHost). That
means, the operator with the best optimization potential based on the
host's local knowledge. It does so by comparing the cost of each operator
with a best known system cost parameter that is distributed within the
system during the optimization process. Thereafter, a migration proba-
bility is calculated which is determined by means of the current placement
and the improvement potential (c.f. Section 4.3.1). The migration prob-
ability increases with the improvement potential. This value is used to
add randomness in the process of choosing the next operator that is going
to be optimized. After an operator has been selected, placement options
are searched and the best replying host is selected. The host is selected
if either:

i) the new placement cost is lower or,
ii) a randomly calculated number is higher than an acceptance function.

Algorithm 3 Pseudocode for the Optimization Algorithm

procedure initLSA( )
r ← choose Operator from Host( )
if searchAlternativePlacements(ω) then

diff ← calculateCostDiff( )
if migrationProbab(ω) ≥ RAND[0; 1] then

if diff < 0 or e−
diff
T (n) ≥ RAND(0..1) then

updateHosts( )
else discard( )
end if

end if
end if

end procedure
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It can be seen, that the basic principle of optimizing a current solu-
tion based on simulated annealing techniques shares similarities to a dis-
tributed greedy optimization:

i) every host has limited knowledge that is based upon the tracePath of
a placement request;

ii) after prede�ned intervals, every host tries to �nd alternative place-
ments for any of its operators.

However, there exist some di�erences which are motivated by the major
requirements to coordinate the optimization decentrally as well as avoid-
ing local minima.

Properties

The presented algorithm allows to �nd near best solutions decentralized by
adopting techniques from simulated annealing in a decentralized network
and avoiding to get stuck in local minima. In the following, we present
the algorithms properties and discuss their correctness informally.

Property 4.3.1 (Improvement potential) The optimization favors op-
erators with a higher potential to improve the placement.

Discussion: as in classic simulated annealing, our optimization algorithm
does not always migrate the operator(s) when �nding an alternative so-
lution. Instead, there exists a certain migration probability P which is
determined by means of the achieved improvement and the best possible
improvement ∆max. The best possible improvement describes the max-
imum di�erence between all operator's worst and best placement. The
migration probability increases, when the achieved improvement is closer
to the best possible improvement. Formally, the probability is de�ned
as:

P (ω) =
φ(ω, ncurrent)− φ(ω, nnew)

∆max
(4.6)

However, in a distributed system ∆max is unlikely to be known, since
each host would have to know every possible placement. Thus, ∆max is
estimated locally. It is determined by the maximum cost di�erence of all
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locally known operator costs. During the optimization process, various
operator requests and replies reach the hosts and the values of ∆max on
each host adjust. In resource sparse systems, where many migrations are
performed, the hosts �nally have almost equal values for their local ∆max.
With that, a similar behavior like in the original simulated annealing
algorithm is achieved, and the operators with the highest improvement
potential are more likely to be chosen.

Property 4.3.2 (local minima) The optimization algorithm can avoid
getting stuck in local minima, given a non-zero temperature value.

Discussion: as in classic simulated annealing, our optimization algorithm
accepts a worse placement with a certain probability. This is done in or-
der to be able to jump out of local minima, that would hinder a greedy
algorithm from improving further. Therefore, we introduce an acceptance
function that gives the algorithm a chance to accept worse placements too
(c.f. Algorithm 3). The probability to accept a worse placement is depen-
dent on two factors: the di�erence di� between the new solution and the
current solution, as well as temperature value T , which is calculated by
a temperature function. The probability to accept a worse placement in-
creases with a higher T and a small di�. During the optimization process,
the temperature function constantly reduces T to ensure the termination
of the optimization process. Therefore, as long as T is non-zero, the al-
gorithm may accept worse solutions and can escape local minima.

Property 4.3.3 (Termination) The optimization algorithm running at
each host terminates, when one of two conditions is met:

i) an optimization run has been started for each (local) operator or,
ii) a user-de�ned termination criterion is ful�lled.

Discussion: While the �rst condition ensures, that an optimization run
is �nished after every operator has been considered, the second condition
is introduced in order to compensate a probably long and unwanted run-
time. Because no heuristic is used to �nd quick solutions (as with the
initial placement), it can occur that the chosen path in the solution tree
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is long. To overcome this problem, it is possible to add a user-de�ned ter-
mination criteria, which may for example stop the optimization run after
a certain time or when the temperature value is below a certain thresh-
old. Furthermore, the same mechanisms to avoid deadlocks and cycles
are applied as in the initial placement algorithm (c.f. Section 4.3.2). Af-
ter termination, the commit phase is started and the optimization results
are deployed (if changes should be made). Note, that the optimization
algorithm runs periodically, and a �nal termination does not exist.

4.4 Related Work

Placement in DCEP

With the increasing importance of distributed CEP, researchers have also
tackled the placement of CEP functionality within a distributed CEP
network. However, the existing solutions are unable to deal with heavy
constraint settings, where only a small subset of hosts is appropriate for
the placement of each operator. As a result, these systems are not able
to solve the constraint satisfaction (optimization) problem.

For example, Pietzuch et al. describe a framework for event composition
in distributed systems [PSB03]. Here, operators are de�ned as mobile
CE detectors that move around in the network, searching for the best
placement by means of a distribution policy. However, the system does
not include any constraint respective behavior. Basically, placement is
not restricted to a subset of hosts. Also, resource usage is no explicit
variable in the system. As a result, the proposed framework is not able
to solve the constraint satisfaction (optimization) problem.

Padres is a well-known distributed content-based Publish/Subscribe sys-
tem which can deal with complex events [Fid06]. Migration of CEP func-
tionality is provided and can be placed dynamically within the system.
The provided algorithm reduces the bandwidth usage. Constraints are
also not present in the system, since heterogeneity is not tackled.
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Beside these approaches, many stream-based event processing system
work with similar strategies (e.g., [SMW05]). This behavior comes along
with the characteristics of current stream processing systems, where the
focus lies in a high speed processing of huge amounts of events. As a con-
sequence, operators in stream based systems are less complex and there
are no constraints associated with them. Hence, placement is handled
constraintless, for example by means of spring relaxation techniques (cf.
[PLS+06] and [RDR10]). Here, a latency space is created in order to ef-
�ciently search for the best placement within the search space. However,
it is not possible to restrict the search space based on constraints other
than latency.

However, the CEP community has identi�ed the need for placement al-
gorithms that can handle operator restrictions. This is �rst mentioned in
[KKR10], where the authors present a description language where users
can attach restrictions to rule de�nitions. They also describe a simple
mechanism which relies on proactively collected information to �nd a valid
placement that satis�es all restrictions. However, there exists no concrete
optimization goal and an adaption during runtime is not existent (as long
as the restrictions are ful�lled). Moreover, the proposed algorithm is in-
complete, since it relies on proactively collected information about the
neighborhood.

(Distributed) Constraint Optimization

Algorithms that do handle placement problems in high constraint set-
tings can be found within the constraint optimization community where
a lot of research has been done in the last decades (c.f. [GL97, KJV83]).
This resulted in many distributed algorithms, that try to be both e�-
cient in terms of completeness and speed (c.f. [K. 95, CDM+91, YH00]).
However, these algorithms are designed for static problems, making it un-
e�cent to deploy them in a dynamically changing distributed system like
ours. However, we still want to discuss some of the work in more detail, as
basic principles are adopted in our solution: Weak Commitment Search
[Yok95] was designed to overcome the problems of both backtracking and
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hill climbing. The algorithm is based on a minimal-con�ict backtrack-
ing. Instead of performing the backtracking step in case of a failure, the
whole solution is discarded. The process then starts again with the old
settings as the initial ones as well as additional constraints preventing the
algorithm to enter wrong paths again. Hence, there only exists a weak
commitment to the old (partial) solution. The weak commitment search
is complete, meaning that it will always �nd a solution when there is one.
However, to prevent an exponential increase of the number of constraints,
it is proposed to cut the number of constraints to a value k. With this,
a compromise is achieved between runtime and completeness. However,
k is highly dependent on the problem and therefore it is unacceptable for
dynamic scenarios as they are considered here.

Moreover, Branch-and-Bound optimizations have found a major consider-
ation in the �eld of DCOP (cf. [EBB+08, MSTY05]). While these meth-
ods are able to provide quality guarantees, they are mostly slow as their
backtracking based algorithm relies on synchronous communication. Also,
they are not able to optimize previous solutions. Instead, when changes
to the system are made, the algorithms start all over again to �nd a new
solution, which makes them unacceptable for our problem.

Another recent approach tries to enhance the iterative improvement al-
gorithm by improving the variable with the most violated constraints
[CD01]. This, however, makes the algorithm incomplete, as not always a
solution may be found.

In our work, we adopt mechanisms of DCOP, combine them with heuris-
tics and integrate them into our distributed event system. This enables us
to create a new placement algorithm for heavy constraint systems. The
algorithm is able to �nd valid solutions with acceptable cost by restrict-
ing the search space and optimizing the current solutions by searching for
alternative placements in the restricted search space.

4.5 Evaluation

Within the DHEP framework (cf. Chapter 3), we implemented the pre-
sented energy utility scenario from Section 4.2.1. Here, powerConsump-
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tion events serve as the input of the CEP system. These events are �ltered
by (typically cheap and fast) di�erent �lter operators and aggregated by
aggregation operators to AggregatedPowerConsumption events. Further-
more, more expensive sequence operators are used to calculate overload
and underload situations. Constraints were assigned to all operators con-
cerning required engine types, domains, and the connection to some spe-
ci�c database. At the same time, all our hosts are located in exactly one
domain, provide at least one engine, and may have access to a database for
context enrichment (cf. Chapter 3). Matching of these binary constraints
is essential for our scenario.

In this setup, our goal was to �nd placements which match all binary
constraints. First, the placement algorithm will run to �nd one valid
placement which is deployed. Afterwards, the system will optimize itself
to �nd better placements. We measured the overall placement cost by
aggregating the placement cost of each deployed operator.

Before discussing our evaluations in detail, we describe how the placement
optimization is behaving during runtime. As we were not able to �nd al-
gorithms which were able to handle the binary constraints we face in our
system, our primary goal is to verify the correctness of our approach.
During our evaluations, we compare our proposed optimization algorithm
with itself, by adapting its optimization behavior. Our optimization al-
gorithm presented in Section 4.3.3 includes a temperature value based
on the simulated annealing method. This algorithm is called SA-based
algorithm in the remainder of this evaluation chapter. By removing the
temperature value, we achieve a di�erent optimization behavior. More
speci�cally, if the temperature value is 0, the optimization algorithm will
always only accept placement with overall better placement costs. Hence,
it acts purely greedy and is therefore called the greedy algorithm in the
remainder of this evaluation chapter.

To verify the validity of our approach, we want to compare the results
of our distributed optimization algorithm with the theoretically optimal
result. To be able to calculate the optimal result of a placement problem,
an exhaustive search (i.e. brute-force) had to be made for a placement
scenario. To be able to perform an exhaustive search in a reasonable
low time, we chose a small placement scenario where 28 operators were

113



4 E�cient Operator Placement in Constraint-Driven Environments

Figure 4.7: Optimization Improvements over Time
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placed on 12 hosts. As described earlier, we used the smart energy scenario
during our evaluations. Each operator performs the task of either �ltering,
aggregating, or measuring an event sequence. Every operator produces
a di�erent cost on its hosts. Among the 28 operators, every operator
had a certain number of binary constraints which were randomly chosen.
Likewise, the 12 hosts had randomly chosen capabilities matching those
constraints.

Within this scenario, we measured the overall placement cost by aggregat-
ing the individual cost of all placed operators. The result of our exhaustive
search marks the optimium solution which could theoretically be found
by our distributed optimization algorithm. It is shown as the dotted line
at the bottom in Figure 4.7. In comparison to that, we show the place-
ment results of the greedy algorithm and the SA-based algorithm as they
converge towards the optimum over time. Note: The X-axis of Figure 4.7
shows the various solutions found during the optimization steps, not the
calculation time.

Several results are worth noting: 1) the greedy optimization algorithm
gets better continuously while the SA-based optimization algorithm also
accept worse solutions with a certain probability. 2) the greedy algorithm
stops earlier than the SA-based algorithm, indicating that it converged to
a local minimum without being able to get overall better results. 3) The
SA-based algorithm was able to �nd an overall better solution than the
greedy algorithm.

During long running applications, the behavior showed by Figure 4.7 is
recurring: If the system changes, the current placement gets worse (or
even invalid). Consequently, the sytem will be adapted. A new placement
is calculated and optimized.

4.5.1 Comparing Di�erent Constraint Levels

Since our algorithm was speci�cally designed for systems, in which binary
constraints exist and restrict the amount of valid target hosts for each op-
erators, we examined in our second evaluation how the binary constraints
a�ect the placement results. Therefore, we evaluated the di�erences of
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the algorithm variants under varying di�erent scenarios. We measured
both the achieved overall placement cost and the caused tra�c in terms
of messages sent. The latter is an indicator for the time and e�ort it
took to �nd a valid solution. Similar to the �rst evaluation, we wanted
to compare the optimization results with the theoretical optimium, found
with an exhaustive search.

Table 4.1 lists the results for three scenario variants. For every scenario,
we created multiple operator sets with varying constraints and deployed
them on a network of 15 hosts. Scenario 1 is the most restrictive one. Out
of the available hosts, only 10% were able to meet the binary constraints
(i.e., the valid search space for an operator's target host is signi�cantly
lowered by the available capabilities). In Scenario 2, on average 18% of
the hosts are possible placements for each operator. In scenario 3 about
35% of the hosts are on average valid for an operator placement.

Constraint Sat. 10% 18% 35%

Algorithm Cost Msgs Cost Msgs Cost Msgs

Initial 1055 3.8 997 9.2 877 13.1
Greedy 1024.1 19.1 923.8 17.2 777.8 29.8
SA-based 1006.7 23.2 867.4 24.8 769.6 34.5
Optimum 949 - 789 - 721 -
Random 1219.3 13.1 1158.3 9.2 1178.4 13.1

Table 4.1: Optimization Results at di�erent Scenarios

Table 4.1 lists the overall placement cost and the messages sent for each
migration in the di�erent scenarios. That means, for migrating an oper-
ator during the initial placement, an average of 9.2 messages had been
sent in scenario 2. It can be observed, that reducing the constraints of a
scenario leads to a di�erent result of the algorithms: On the one hand,
the overall quality that can be achieved is better, since there are more
possibilities to �nd a better placement. On the other hand, this leads to
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a higher number of messages that are processed during the optimization
process.

We can derive some important results. First, all optimization algorithms
improved the initially found placement result. In our experiments the
convergence of the SA-based algorithm is 6.3% to 9.8% worse than the
optimium depending on the scenario. The improvement is independent of
the scenario's constraint satisfaction.

Second, the more restrictive the scenarios are, the more they pro�t from
our distributed simulated annealing algorithm: Less messages are pro-
cessed and the quality improvement is more promising. In scenarios that
have less constraints like scenario 3, it is reasonable to favor a greedy al-
gorithm. Here, the small di�erence between the optimization results does
not justify the additional load imposed by the SA-based algorithm.

Third, the tra�c caused by our algorithm is negligible. Even in worst
case scenarios, where many hosts are involved in the placement process,
we processed in average 35 messages for migrating an operator. In a
system, which processes hundreds of event messages per second, the com-
munication overhead of the placement algorithm is marginal.

Finally, it is worth noting that the average runtime of the initial placement
algorithm was 331ms. This is signi�cantly lower than the average runtime
of the subsequent optimization phase of the SA-based algorith, which took
9.5s. We conclude that the di�erentiation between the two algorithms is
of high importance for the availability of the system. This veri�es our
approach of achieving both a high availability by quick initial deployments
as well as making logical optimization steps during runtime to improve
the overall placement.

4.5.2 Insertion of Operators in Large Scenarios

In our third evaluation, the presented setup was changed in size by adding
additional operators and hosts. In constrast to our previous evaluation,
the binary constraints within our system are not changed but set �xed.
More speci�cally, we simulated a network of 250 heterogeneous hosts. In
this network, we continuously added operators, such that the resources
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within the DHEP system get more and more scarce. Each added operator
had a randomized constraint. However, it was guaranteed that at least 10
di�erent hosts exist matching this constraint (at least 4%). After every
operator insertion, we measured the overall placement cost. Then, we
waited for the optimization algorithm to be completed, and measured the
overall placement cost again. This procedure of adding operators was
repeated until our system was not able to place the next operator. This
whole scenario was repeated 10 times, the average results can be found
in Figures 4.8 and 4.9. To put our results into perspective, we added the
results of an algorithm which randomly chose a host as the target. The
only condition was that it would need to match the binary constraints.
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Figure 4.8: Quality Comparison in Large Scenarios under Growing Oper-
ator Sets

Figure 4.8 shows the achieved results of all algorithm variants. Several
outcomes are apparent: First, as expected, the algorithms perform way
better than a randomized operator deployment. Second, in the early and
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Figure 4.10: Improvement achieved by the Optimization Algorithms
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mid stages of our evaluation, where the system resources are su�cient, the
di�erence between an optimized placement and an initial placement is not
as signi�cant. This can be seen in Figure 4.10. Because there are enough
free resources to place each operator directly on a host providing good
placement results, without having to migrate other operators. Note that
the system is already in an optimized state whenever the new operator
is added. Hence, the improvement made during the optimization phase
appear to be small.

However, this changes as soon as hosts resources get scarce and migrations
might be needed to achieve a valid placement. This behavior can be seen
in the late stages of the experiment, as depicted in Figure 4.9 as well as
Figure 4.10. Based on our experiment, the use of the SA-based algorithm
achieves the best optimization results especially when resources get scarce
on the nodes.

4.5.3 Optimization under varying Temperature Values

In this evaluation we compare the behavior of our algorithm based on three
di�erent temperature values for the SA-based optimization: One fast con-
verging temperature value, causing the algorithm to behave greedily soon;
one slow converging temperature, allowing the algorithm to avoid local
minima for a longer time; and one mediocre temperature in between. We
compare the three algorithms with the greedy algorithm under a chang-
ing amount of available resources. By reducing the available resources,
the overall resource utilization is increasing. This means, we increase the
restrictiveness of the scenario stepwise, hence reducing the solution space
of the placement problem and making it more di�cult to �nd a valid
placement.

Figure 4.11 shows the quality improvement achieved by all four optimiza-
tion strategies relative to the scenario restrictiveness. Figure 4.12 shows
the number of migrations needed during optimization to �nd the results
relative to the restrictiveness of the scenario. In the depicted evaluation,
the last valid placement could be found at an average resource usage of
97%. There were no valid solutions after reducing the resources even
further.
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Remarkably, it can be observed that �nding valid solutions for highly re-
strictive scenarios (i.e., where almost all resources are consumed), results
in more migrations (and therefore in a higher runtime). The reason is,
that for optimizing the placement of an operator, it is more likely that an-
other operator has to be migrated subsequently. Hence, the optimization
under extreme resource requirements (>95%) resulted in a high number
of migrations. This is especially true with slow converging temperature
values, where additional migrations are performed due to accepting worse
placements with a higher probability. This behavior can also be observed
on other scenarios. As a consequence, we conclude: i) independent of
the resource conditions on the hosts, there exists a tradeo� between the
e�ort one is willing to put into optimizing the solution, and the quality
of the result he will get; ii) Under extreme conditions, where all parts of
the systems su�er from extreme resource consumption, our optimization
strategies may require many migrations to eventually �nd valid solutions.
This will highly increase the runtime of the algorithms. Here, we propose
to prefer a greedy optimization to keep the runtime acceptable. However,
we believe that these extreme conditions are rather unusual and should
not happen regularly.

4.6 Conclusion

This chapter has addressed the placement of operators in heterogeneous
event processing systems where it is important to cope e�ciently with
many constraints. The algorithm can adapt to dynamics that stem from
load variations as well as to changes in the operator deployment. The
analysis and evaluations show that the approach is in particular bene�cial
in heavy constraint settings. Here, it �nds near optimal placements with
low cost by e�ciently restricting the search space of possible placements.
Furthermore, the separation in two phases � the initial placement phase
and the subsequent optimization phase � contributes to a fast operation
of the event processing which is crucial in the practical operation of event
processing networks. In our evaluations this was true until we reached at
an average resource consumption of about 95%.
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4.6 Conclusion

Future work to enhance the presented algorithms could concentrate on the
selection of the temperature function and a more e�cient use of Publish/-
Subscribe to signi�cantly reduce the communication cost in low constraint
scenarios.
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5 Access Policy Management in

Distributed Multi-Domain CEP Systems

The goal of this part of our work is to ensure that in a multi-domain, large-
scale CEP system, every producer of information can control the access
to its information even over multiple correlation steps. In particular, our
contributions are:

• An access policy inheritance mechanism to overcome the lack of
security in multi-domain CEP systems. The inheritance ensures
that the privacy of original information is guaranteed, even if the
information is processed through a chain of operators.

• A mechanism to calculate event obfuscation. Here, we take into
account the obfuscation of information during the correlation pro-
cesses.

• A scalable approach for secure access management across multiple
domains and correlation steps, by integrating event obfuscation into
the access policy inheritance. We take into account the obfuscation
of information during the correlation processes, which has an im-
portant in�uence whether access policies need to be respected or
not.

In the upcoming Sections, we will present the aforementioned contribu-
tions, discuss our implementation as well as evaluate it's e�ectiveness.

5.1 Introduction

In today's business processes, it is very important to detect inconsisten-
cies or failures early. For example, in manufacturing and logistic processes,
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items are tracked continuously to detect loss or to reroute them during
transport. To satisfy this need, complex event processing (CEP) systems
are of increasing importance in today's business environments [HSB09].
The goal of CEP systems is to detect situations by observing and process-
ing events which emerge from sensors all over the world, e.g., from packet
tracking devices. CEP systems consist of operators which create complex
events (representing a situation) based on other events they collect or
retrieve.

CEP systems have seen a change of perspective recently. While, originally,
powerful operators were used in a central way to e�ciently correlate events
and detect situations, the emerging increase of event sources and event
consumers has lead towards a decentralized handling of events [Pie04,
LJ05, KKR10, SKRR10]. In addition, the collaborative nature of today's
economy results in large-scale networks, where di�erent users, companies,
or groups exchange events. As a result, event processing networks are
heterogeneous in terms of processing capabilities and technologies, consist
of di�ering participants, and are spread across multiple security domains.
However, the increasing interoperability of CEP applications raises the
question of security [HSB09]. It is not feasible for a central instance to
manage access control for the whole network. Instead, every participant
wants to control access to the data it produces. For example, a company
wants to restrict some pieces of the information it provides to a subset
of authorized users (i.e., that are registered in its domain), while other
information should be publicly accessible.

While current work in providing security for event systems covers con�-
dentiality of data, authorization of network participants as well as encryp-
tion of event data [TKAR10, PEB07, BESP08], this is not su�cient for
CEP systems. Since event information is used to create complex events,
the provider of the original event information loses its in�uence on access
control, once another participant processes it. During the processing, a
new event is created based on the incoming information. The original
information is obfuscated. Although access to the original information
is heavily restricted, the provider's business partners can provide their
correlated information freely to everyone, even if it is heavily dependent
on the original data. This constitutes a security problem, since it enables
recipients of the correlated information to infer the original event data.
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5.1 Introduction

For example, think about a logistics process, where a manufacturer wants
to deliver an item to a certain destination (see Figure 5.1). Based on
the destination, a shipping company determines a warehouse close to the
destination, where the item will be shipped to for further delivery. This
is done in an event processing system, where operators are hosted in the
domain of each party and communicate the relevant information between
each other (e.g. the item's destination is transmitted to the shipping com-
pany). If now a third party receives the information about the warehouse,
it might be able to draw some conclusions about the original event data
(i.e., destination), which is undesired by the manufacturer. Hence, we
have to take care that access control ensures the privacy of information
even over multiple processing steps. In our case, the access policy for the
warehouse is in�uenced by the access policy of the destination.

Manufacturer 
Shipping Company 

? 

Customer 

Figure 5.1: Access Control & Event Dependency

To ensure that in a multi-domain, large-scale CEP system, every producer
of information can control the access to its information even over multiple
correlation steps we specify an access policy inheritance mechanism to
overcome this lack of security. The inheritance ensures that the privacy
of original information is guaranteed, even if the information is processed
through a chain of operators. Event producers can not only specify an
access policy for the event information they provide, but also when the
access policy can be ignored for certain events. Here, we take into account
the obfuscation of information during the correlation processes, which has
an important in�uence whether access policies need to be respected or
not.
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We de�ne our system model and security goal in Section 5.2 and 5.3 re-
spectively. Based on this, we present a general concept, how to achieve
a policy consolidation algorithm respecting obfuscation of information in
Section 5.4. Furthermore, we discuss the complexity of the general concept
and, as a consequence, propose a local realization of the policy consolida-
tion mechanism in Section 5.5. We present evaluation results in Section
5.6. Finally, we discuss related work in Section 5.7 and give a summary
of the work in Section 5.8.

5.2 System Model

The system model used for the remainder of this Chapter is equivalent to
the DHEP system model presented in Chapter 2.2.1. To ease the under-
standing of the chapter, the system model is recapped in the following.

We assume a distributed correlation network, where dedicated hosts are
interconnected. On these hosts we deploy operators, which are executed
to collaboratively detect situations and form the distributed CEP system.
The cooperative behavior of the operators is modeled by a directed opera-
tor graph G = (Ω, S) which consists of operators ω ∈ Ω and event streams
(ωi, ωj) ∈ S ⊆ (Ω×Ω) directed from ωi to ωj . Thus, we call ωi the event
producer and ωj the consumer of these events. Each event contains one
or more event attributes which have discrete values. Every operator ω
implements a function fω : Iω → Oω that maps incoming event streams
Iω to outgoing event streams Oω. In particular, fω identi�es which events
of its incoming streams are selected, how event patterns are identi�ed
(correlated) between those events, and �nally how events for its outgoing
streams are produced.

We illustrate the de�nition of a CEP system by means of our introduced
logistic chain example, which will be used throughout this chapter. In
the scenario, a manufacturer, a shipping company, and a customer each
constitute a domain and each is providing an operator in its domain.
The operators establish event streams as depicted in Figure 5.2. The
manufacturer wants to send an item to one of its customers. Therefore,
it sends events to a shipping company providing information about the

128



5.3 Access Control for CEP

item's destination, its production place as well as the time when the prod-
uct is ready. The shipping company receives these event attributes and
uses them in a correlation function fsc. The correlation creates a tuple of
organizational information: the warehouse the item is going to be shipped
to for further delivery, and the estimated day of delivery.

domain: Customer domain: ShippingComp 

destination 
production place 
pickup time ωsc ωm ωc 

 warehouse 
 day of delivery 

domain: Manufacturer 

Figure 5.2: Attributes in Shipping Scenario

5.3 Access Control for CEP

The idea of our approach is to inherit access requirements, which are
assigned to event attributes in an access policy, over a chain of event
processing operators. During every processing of an event attribute, its
obfuscation is calculated. Once a certain obfuscation threshold is reached
during the further processing of the attribute, the attribute's access re-
quirements can be ignored. In the following, we introduce the concepts
we need to realize our approach, namely access policies and obfuscation
policies, and de�ne our security goal.

5.3.1 Access Policies

State of the art event processing systems provide basic mechanisms for
access control. They allow to specify the access rights of subjects (op-
erators) for the set of available objects (event attributes). These access
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rights are usually provided by the owner of an object (e.g., the producer of
an event stream) and may be granted to operators based on some access
requirement. Such a requirement may be a role, a location, or a domain
a�liation. As can be seen, the requirements are usually not direct prop-
erties of the operators, but of the hosts where the operators are deployed.
Formally, we specify the access rights within an access policy AP for an
operator ω as a set of (attribute, access requirement) pairs:

APω = {(att1, ar1), ..., (attn, arn)} .

If there is no requirement speci�ed for an attribute, it is accessible freely
to any participant in the network. Note that we consider attributes to be
distinct even if they use the same name, but are produced at two distinct
operators.

An access requirement is a tuple of a property p, a mathematical operator
op, and a value set val: ar = (p, op, val), where op ∈ {=, <,>,≤,≥,∈}.
val can be speci�ed by a range or a set of values. For the sake of simplicity,
in this paper access requirements are only referring to domain a�liation
and have a structure like this:

ari = (domain,∈, {domainA, domainB}).

In our example scenario, the manufacturer's event attributes have di�erent
access requirements. While the information about the item's destination is
accessible by the customer, information about where the item is produced
and when it can be picked up is restricted to the shipping company.

Therefore, the attached AP is de�ned as follows:

APmanufacturer =

{(destination, (domain,∈,{shippingComp,customer})),

(pickup time, (domain,=,shippingComp)),

(production place, (domain,=,shippingComp))}

130



5.3 Access Control for CEP

If access policies are enforced and assured, a consumer is only eligible to
receive an attribute if its properties match the access requirements de�ned
for the attribute. In this case the consumer is trusted to use the attribute
in its correlation function. We aim towards extending the semantics of
this relationship. In our approach, the consumer is also trusted to adopt
the requirements speci�ed for the attribute in its own access policy for
the correlated attribute resulting from the correlation function.

5.3.2 Obfuscation of Event Information

While access policies allow a producer to specify access requirements in a
�ne-grained manner, the inheritance of requirements to subsequent opera-
tors is also very restrictive and can limit the e�ciency and applicability of
the CEP system: If content is propagated or correlated over many steps,
the number of access requirements will steadily increase and will prevent
the access for more and more operators. This does not re�ect the nature
of event processing systems where basic events like single sensor readings
may have only little in�uence on the outcome contained in a complex
event representing a speci�c situation.

In our logistics example, the estimated day of delivery is calculated based
on the destination, the production place, and the pickup time. As a conse-
quence, the customer would have no access to the estimated day of delivery
of the ordered item, since he does not ful�ll the access requirements for
production place and pickup time. Yet she has a reasonable interest in this
information. And one may claim, that knowledge of the day of delivery
does not necessarily allow to draw a relevant conclusion on the production
place and pickup time attribute values. We say, the attribute values get
obfuscated during the correlation process and depending on the achieved
level of obfuscation, the access requirements of an attribute might no
longer be needed. In our approach, the level of obfuscation is a measure,
to which extent a consumer of the produced attribute (estimated day of
delivery) can infer the value of the original attribute (production place). It
can be easily seen in the example, that obfuscation is not only dependent
on the values of the attributes, but also on the knowledge of the con-
sumer. Since the destination value has led to the day of delivery as well,
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knowledge of the destination would be of great help when trying to infer
the restricted attribute production place because the delivery time of the
item is probably related to the distance between destination and produc-
tion place. In this work, we model the achieved obfuscation between two
attributes as a function obf(attold, attnew, ωreq) returning the obfuscation
achieved for a pair of attributes for a requesting operator. We elaborate
event obfuscation and its theoretical background in Section 5.4.

Since attributes can and will get obfuscated during the correlation pro-
cesses, every operator can also specify with its access policy an obfuscation
policy. The obfuscation policy contains obfuscation thresholds for every
attribute the operator produces. During the processing of an event at-
tribute, its obfuscation is calculated. Once the threshold is reached during
the further processing of the attribute, the attribute's access requirements
can be ignored. Formally, we de�ne the obfuscation policy OP for an op-
erator ω as a set of (attribute, obfuscation threshold) pairs:

OPω = {(att1, ot1), ..(attn, otn)} .

For instance, the obfuscation policy

OPmanufacturer = {(destination, 0.9)}.

states, that the obfuscation threshold of 0.9 has to be exceeded for the
destination attribute in order to ignore the access requirements for it, and
therefore to be freely accessible. The semantics of the obfuscation value
is further described in Section 5.4.

5.3.3 Security Goal

Let attold →ω attnew denote that i) at some operator ω ∈ Ω, attold is
taken as input to the correlation function fω, and ii) fω produces attnew
in dependence of attold. Furthermore, let attold →∗ attnew denote the
transitive closure of the dependency relation. For any pair of attributes
with attold →∗ attnew we say that attnew is dependent on attold. Our main
goal is to preserve the privacy of event attributes over multiple correlation
steps by respecting the dependency relationship between the attributes

132



5.3 Access Control for CEP

produced by the CEP system. In particular, access requirements must
not be applied solely to the attribute attold, but have to be inherited to
all dependent attributes (attnew) unless a su�cient obfuscation threshold
for attnew has been reached.

More formally, given for each attribute att an initial set of access require-
ments denoted by ARinit(att). We require for any policy consolidation
algorithm two conditions to be met:

Condition 1 For all attributes att ∈ Oω produced at ω

ARinit(att) ⊂ APω. (5.1)

Condition 2 For all dependent attribute pairs

(attold, attnew) ∈→∗ with

1. ωi has produced attold with access requirement AR(attold) and ob-
fuscation threshold (attold, x) ∈ OPωi ,

2. attnew is produced by ωj

3. attnew is consumed by ωk

the access requirement in APωj yield

AR(attold) ⊂ APωj i� obf(attold, attnew, ωk) < x. (5.2)

A policy consolidation algorithm needs to ensure Condition 1 and Con-
dition 2 in the presence of adversaries who try to derive event attribute
values they are by policy not allowed to access directly.

An adversary can execute any operator of the CEP system. In doing
so, the adversary is however limited to the behavior described in the
system model. The adversary needs to be authenticated and can only ac-
cess streams according to its properties. Furthermore, the derived event
output follows the operator speci�cation as well as follows the access re-
quirements for each executed operator. Hence, each adversary is bound
to analyzing outgoing event streams, which it is allowed to access, for
inferring any additional information.
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In the following, we �rst introduce our concept for distributed access pol-
icy composition in Section 5.4 which ensures that all access requirements
are inherited for dependent attributes. In Section 5.5 we provide an imple-
mentation of our approach. We introduce means in measuring obfuscation
and we show how measuring obfuscation can be used to reduce the number
of access requirements in a scalable manner.

5.4 Policy Consolidation and Event Obfuscation

In this section we describe the basic concepts to achieve the security goal
for a CEP system (as speci�ed in Section 5.3.3). We assume a CEP system
which is capable of establishing event streams between producer/consumer
pairs. To establish an event stream, a consumer requests an event or
event attribute. We assume that the request is always handled by the
producer of an attribute. The consumer authenticates itself towards the
producer. Based on this information, the producer handles the request,
and we will elaborate the alternative request handlings in the following
subsections. The assumed system behavior can, for example, be achieved
by a Publish/Subscribe system.

We present our general concept by means of a new consumer request-
ing the warehouse attribute from operator ωsc. The operator implements
a correlation function fωsc , which maps events containing the attribute
destination to outgoing events containing the attribute warehouse. The
producer of the incoming attribute destination speci�ed an access pol-
icy which requires that a recipient of destination must be within domain
shippingComp or customer and an obfuscation policy which allows the
requirement to be ignored for an obfuscation value of at least 0.9. Op-
erator ωsc, which is located in domain shippingComp, does not provide
any additional access requirements for warehouse and thus no obfuscation
threshold for it, but it has to respect the access policy from its predeces-
sor. The new consumer wants to have access to the warehouse attribute.
In general, we have to distinguish between two cases:

1. The consumer is within domain shippingComp or customer.

2. The consumer is not within domain shippingComp or customer.
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In the �rst case, the consumer is allowed to access the destination, and
since there is no additional requirement for the warehouse, it is also al-
lowed to access the new attribute. Thus, it will receive every event pro-
duced by ωSC . Furthermore, the new consumer has to ensure access policy
inheritance if it further correlates the warehouse information.

In the second case, it will not have access to warehouse, unless the ob-
fuscation of 0.9 is achieved. This is decided on a per-event basis, since
obfuscation can depend on individual attribute values and di�ers for ev-
ery event instance. Hence, the consumer will only receive a subset of the
events containing the attribute produced by ωSC . Apart from that, the
consumer has no commitment for access policy inheritance, since every
event it receives is freely available.

As can be seen, the two cases comprise the two main concepts we like to
address: the inheritance of access policies as well as obfuscation calcula-
tion. These two concepts are now discussed.

5.4.1 Access Policy Inheritance

Even if access policies can be de�ned in a CEP system, information con-
tained in the event stream of a producer may be inferred by hosts which
do not ful�ll the access requirements. The correlation function f of an op-
erator can map data contained in an attribute to another attribute inside
a newly produced event. That means the content provided by an event
may be propagated over a chain of operators using event streams whose
access cannot be controlled by the original producer.

In order to establish access control in complex event processing networks,
it is essential that producers do not solely control the access of their own
produced attributes, but also of the attributes which depend on them. We
introduce an inheritance mechanism, which inherits access requirements of
attributes to other attributes dependent on them. This ensures that every
producer has full access control over the event information it produces,
even if the information is used or transformed in a subsequent operator
within the CEP network.
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destination 

pickup time 

prod place 

day of delivery 

warehouse 

Figure 5.3: Dependency Graph of the Shipping Company Operator

Access policy inheritance consists of two basic conceptual steps: First,
we have to identify the dependencies between attributes. Second, we
have to map all access requirements speci�ed for these attributes to their
dependent outgoing attributes in the access policy. In the following, both
concepts are discussed. We present our realization of these concepts in
Section 5.5.

Creating a Dependency Graph

Since access policies are respecting access requirements from dependent
attributes in our approach, these attribute dependencies have to be de-
tected. We do that by analyzing the correlation function fω of every
operator ω, once the operator is deployed in the system. For each outgo-
ing attribute, our system looks up fω for the incoming attributes that are
used for its creation.

Basically, all dependencies att→∗ attnew for every outgoing attribute are
modeled in a graph. In the policy creation phase, we can determine in the
policy creation phase i) which access requirements need to be inherited and
ii) how multiple access requirements need to be merged for the outgoing
attributes. In our example, the warehouse is determined based on the
item's destination (cf. Figure 5.3). The day of delivery of the item is
estimated, based on the destination, the production place, and the pickup
time.
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Creating new Access Policies

In accordance with the dependency graph a policy composition mech-
anism is initiated, which generates the new access policy based on the
received access requirements of all dependent objects. That means, the
requirements have to be included in the newly generated access policy. Ba-
sically, the mechanism assigns the access requirements from all attributes
att ∈ att →∗ attnew to the new attribute attnew. Finally, the new access
policy will be merged (i.e., optimized). Consolidating the policies will
cause that new access policies steadily grow in size, since requirements
of preceding operators are integrated. However, a new access policy may
contain attributes with multiple associated access requirements, which
will unnecessarily increase the access policy's size. Hence, we will merge
access requirements associated to the same attribute and eliminate unnec-
essary requirements from the access policy. In our example scenario, the
operator that determines the warehouse needs to map the requirement

(domain,∈, {shippingCompany, customer})

which is associated to the destination in APmanufacturer to the warehouse
attribute, since the warehouse is dependent on the destination. Hence,
only operators hosted by the shipping company or the customer could
access the attribute. After creating the new access policy for the shipping
company operator, the access policy contains the following entries:

APshipping =
{(warehouse, (domain,∈,{shippingComp,customer})),
(day of delivery, (domain,=,shippingComp)),
(day of delivery, (domain,=,shippingComp)),
(day of delivery, (domain,∈,{shippingComp,customer}))}

Finally, the restrictions referring to the same attributes (estArrivalTime)
are merged, resulting in the access policy:

APshipping =
{(warehouse, (domain,∈,{shippingComp,customer})),
(estArrivalTime, (domain,=,{shippingComp}))}
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5.4.2 Obfuscation Model

If a consumer does not ful�ll the access requirements, she can still get
access to an attribute. As de�ned in the security goal, we have to check,
whether a speci�ed obfuscation threshold is reached. This can only be
decided if we take a closer look at i) the correlation function's in-/output
and ii) the knowledge of the consumer. We have to analyze how likely it
is that the consumer can infer on the incoming attribute.

Obfuscation is typically highly dependent on the correlation function, i.e.,
how it creates outgoing events based on the incoming events. We exem-
plary show this with two basic operators found in all major CEP systems:
a �lter and an aggregator. A �lter is a common, often used operator and
its correlation function is pretty simple: For every incoming event it is
checked whether one or more attributes have a certain value or are within
a certain value range. If this is the case, the events are forwarded to all re-
questers of the �lter operator. Since the values of the incoming attributes
match the output attributes, there is no obfuscation of event information.
For every received attribute, the requester can directly infer the values of
the original, incoming attributes.
An aggregator is also a very common, but more complex operator. Typi-
cally, it collects some events before producing any output. After a certain
time window, or a certain amount of events have been collected, the ag-
gregator combines the attribute values of the incoming events for a newly
created output. As can be seen easily, the original values from the incom-
ing attributes get obfuscated during the aggregation. The requesters of
the aggregated output can not directly infer the incoming attribute val-
ues. Depending on the aggregation function she might still guess, though,
that some values of incoming attributes are more likely to have occurred
than others.

We already stated in Section 5.3.2, that the knowledge of the requester
plays an important role for event obfuscation. If an attribute is correlated
based on two or more incoming attributes, knowledge about one of these
incoming attribute values would be of great help for a consumer of the
correlated attribute when trying to infer another incoming attribute. As
a result, we have to integrate the knowledge of every user when specifying
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the inference of an event attribute. We model this knowledge as a function
knownωr (Iω), which returns the set of input attributes from Iω known to
the recipient ωr, i.e., knownωr (Iω) ⊆ Iω.

Discussing the Semantics of Obfuscation

By dealing with obfuscation, our goal is not to in�uence or control the
network participants in how they use the CEP system. In particular, we
can not in�uence the domain of an attribute, i.e., its possible values. This
is important for the semantics of attribute obfuscation. One may claim
that obfuscation of an attribute is related to the number of possible values
the attribute can have. The reason is, that the more attribute values are
possible, the smaller is the chance of guessing the correct value. How-
ever, in a distributed, heterogeneous CEP system we have no in�uence
on the number of possible values (e.g., increase it on purpose by dummy
values). Furthermore, we have no control about knowledge of operators.
For example, whether an operator knows the (semantics of a) correla-
tion function implemented at another operator, or the possible values an
attribute might have.

Therefore, we have to make strict assumptions for obfuscation measure-
ment: We assume a requester of an attribute attout has knowledge about
i) the semantics of a correlation function producing attout and ii) the
possible values of the unknown event attributes attout is dependent from.
Based on these assumptions, we measure obfuscation of an unknown event
attribute as the equality of likelihood of the di�erent values it can have.
That means, if a consumer cannot, based on its knowledge, make any
conclusions on the correct value of an attribute, the attribute is perfectly
obfuscated.

The obfuscation is perfect if the probability for all possible values of the
incoming attribute is equal, i.e., the recipient can not infer on a value
because it was more likely to have occurred. Then, maximum obfuscation
is achieved. Consequently, if there is only a single possible value for the
incoming attribute, and the user can directly infer on that value, the
achieved obfuscation should be 0.
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Formalizing Obfuscation

The discussed characteristics lead us to a formalization of attribute in-
ference as a probability value. This inference probability is known as the
Bayesian inference and gives us an answer to the question: Given a cer-
tain output attribute, and a certain set of input attributes the consumer
knows, how likely is a speci�c value for the incoming attribute we need to
secure?

The obfuscation is perfect if the probability for all possible values of the
incoming attribute is equal, i.e., the recipient can not infer on a value
because it was more likely to have occurred. In this case, the entropy of
the distribution is 1. Consequently, if there is only a single possible value
for the incoming attribute, and the user can directly infer on that value,
the entropy is 0. That means, no obfuscation is achieved, hence it is also
0.

We de�ne that I∗(attnew) is the set of attold for which attold →∗ attnew.
Then the inference probability ip of an attribute attold ∈ I∗(attnew) used
to correlate attnew for a requester ωr is the conditional probability distri-
bution of attold:

ip(attold, attnew, ωr) =

P (attold|knownωr (I∗(attnew)\I∗(attold)), attnew))
(5.3)

As one can see, the inference probability is not a single probability value,
but a probability distribution over the value set of the inferred event
attribute attold. Furthermore, ip is not only dependent on the operator
function, but also on the knowledge of the recipient.

Based on the inference probability, we can now measure the obfuscation
value achieved for the incoming attribute attold with respect to the out-
going event attnew by calculating the entropy of the inference probability
distribution:

obf(attold, attnew, ωr) = H(ip(attold, attnew, ωr)) (5.4)
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Figure 5.4: Bayesian Network consisting of Topology and Conditional
Probability Tables

The entropy serves as the desired measure for obfuscation. If the probabil-
ity for all possible values of the incoming attribute is equal, the entropy
of the distribution is 1. Consequently, if there is only a single possible
value for the incoming attribute, the entropy and therefore the achieved
obfuscation is 0.

5.4.3 Measuring Obfuscation

To measure the obfuscation between two attributes a Bayesian Network is
used, since it answers probabilistic queries about the attribute inference
[RNC+95]. Before being able to query the Bayesian network, it needs to
be trained.

Training a Bayesian Network is typically done in two phases: Structure
learning and parameter learning. While parameter learning is done by ob-
serving the events of interest, structure learning tries to �nd the optimal
network structure of the observed events, which is NP-hard. However,
in our approach, we can skip the structure learning phase, as we model
the structure of the Bayesian Network based on the event dependency
graph. Every event attribute represents a variable (i.e., host) in the
Bayesian Network and every dependency between attributes represents
an edge. However, in addition to the dependencies of event attributes,
every Bayesian Network associates a probability function with an event
attribute. The probability distributions are created during the parameter
learning phase. By analyzing processed events, a Bayesian Network trains
about the probability distribution of attribute values. More speci�c, the
training algorithm checks which particular attributes were used by the

141



5 Access Policy Management in Distributed Multi-Domain CEP Systems

creation of another attribute. Based on these observations, probability
tables are created for every event attribute. (cf. Figure 5.4).

Once the Bayesian network is trained, it can be queried about the inference
probability of certain attributes. Querying means to provide information
about some known event attributes and to calculate the conditional prob-
ability distribution of the unknown event attributes. For example, by
providing the occurrence of a certain event and its attributes, one can
estimate the most probable attribute values that are going to be cre-
ated in the next correlation. Fitting to our needs, we can also query
the network the other way round: By providing information about the
observed attribute outcome, we can query the probability distribution of
the attribute values that have led to the observed outcome. In particular,
we can query the inference probability ip(attold, attnew, ωr) by telling the
Bayesian network the observed values for knownωr (I∗ω) and attnew.

5.4.4 On Parameter Learning

In this subsection, we brie�y discuss parameter learning, as our approach
is not able to work unless some parameter learning is done. However,
parameter learning algorithms constitute a large research �eld for itself.
And since it is not directly related to our actual contribution, we only
give a short overview.

As indicated earlier in this section, parameter learning is used to create
the conditional probability tables for each event's parameter values on
every host in the network. Two driving factors play an important role in
how parameter learning a�ects the the obfuscation calculation:

1. Accuracy of initial parameter learning

2. Adjusting probabilities in long-running environements

The initial learning has an e�ect on the timespan the system has to learn,
until it has computed acceptable probabilities in order to run obfuscation
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calculation. This is de�ned by a threshold value specifying the accuracy
of the learning. This threshold is highly dependent on the application and
what its users consider as acceptable. The point, when this acceptance
level is reached, is furthermore highly dependent on the number of incom-
ing events and the distribution of the parameter values. The calculation
of the probability distributions is often following a maximum likelihood
approach, which can be adapted in various ways dependent on applica-
tion knowledge to enhance the results. The basic course of the approach
is to look at the currently collected event data, and then searching for
probability distributions that describe the collected data best. Many vari-
ations of this basic approach are existent. For example, to overcome the
problem of de�ning the probability of unobserved parameter values, the
expectation-maximization algorithm has been designed. It alternates be-
tween computing values for the unobserved parameters and maximizaing
the likelihood. In our evaluation, we made use of the Weka data mining
tool [HFH+09] which integrates multiple learning algorithms. However,
it has to be stated that considering the exact distribution of parameter
values is not known in our system, it is not possible to state concrete
threshold values indicating the acceptable starting point for calculating
obfuscation. Instead, this has to be an application speci�c value which
needs to be set up by domain experts. For example, if the underlying
system is working on business processes that occur on a daily basis, it
might be needed to integrate the data of at least one working day in the
learning process to achieve an acceptable knowledge base.

Once the application is running and working on the learned probability
distribution, it may be necessary to adjust the values over time. This is
especially true in long running applications, where the probabilities may
shift over time. Keeping the probability tables up-to-date is typically
solved by using a windowing mechnism, which rates newer data higher and
�nally forgets about outdated data. Those techniques are also integrated
in the data mining tool we make use of in our evaluations.

143



5 Access Policy Management in Distributed Multi-Domain CEP Systems

5.4.5 Complexity Analysis

While it is easy to verify that the introduced mechanisms ful�ll our secu-
rity goals, the naive application of Bayesian networks does not allow for a
scalable usage of CEP. Calculating the inference probability is NP-hard,
adding a potentially infeasible amount of additional latency to the event
processing, if the size of the Bayesian network is large.

To meet the large computational e�ort of calculating Bayesian inference,
two di�erent types of optimizations exist. On the one hand, approxi-
mation algorithms exist which use sampling techniques to estimate the
conditional probabilities of the Bayesian network (e.g., [GG84, GS90]).
Their precision depends strongly on the number of samples taken from
the network, and it can be shown that no approximation scheme exists
that allows to draw samples in polynomial time to achieve a certain pre-
cision, which makes the approximate algorithms infeasible for security
applications (since no guarantees on security can be made in appropri-
ate time) [RNC+95]. On the other hand, optimizations exist which try
to reduce the complexity of calculating exact inference by storing partial
results of the inference calculation which otherwise would have to be cal-
culated multiple times (e.g., [ZP96, LS88]). Depending on the structure of
the Bayesian network, the optimizations can reduce the time-complexity.
This is especially bene�cial for single connected Bayesian Networks (cf.
Figure 5.5), where space- and time-complexity can be reduced to be lin-
ear to the number of attribute values. This is a great bene�t for networks
with a limited number of attributes, which themselves have possibly large
domains.

Besides the computational e�ort, creating and querying a Bayesian Net-
work also requires communication e�ort if the sources providing the needed
information are spread among a network. All information about processed
events need to be gathered since the training algorithm has to check which
particular attributes were used by the creation of another attribute. Fur-
thermore, in order to calculate obfuscation over a chain of operators, addi-
tional communication among operators will be needed, since the inference
probability relies on the knowledge the consumer has (cf. Equation 5.3).
Additionally, we would have to take a huge e�ort in order to identify the
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exact events which have led to an attribute value for which we want to
calculate obfuscation.

As can be seen, the time and communication needed to calculate the infer-
ence probability can be huge because for the measurement all dependent
event attributes need to be considered (I∗(attnew)). Hence, calculating
the inference for the transitive closure of dependable attributes is not scal-
able. We tackle this by dividing the problem, and therefore the Bayesian
Network, in multiple parts that allow to be treated independently.

5.5 Scalable Access Policy Consolidation

Instead of accounting for a global Bayesian network, we propose to ex-
ploit local knowledge available at each host. This allows us to reduce the
number of relations of incoming and outgoing attributes and thus leads
to a big reduction of processing costs. The idea of our approach is that
a host in the CEP network creates a local Bayesian network for each of
its deployed operators. The handling (i.e. forwarding) of the event is
based on the locally achieved obfuscation. This limits the computational
e�ort by accepting that obfuscation is not measured over multiple corre-
lation steps. The consequence of this is, that some events may be treated
more restrictive than actually needed. Since event information will only
get more, but never less, obfuscated during the processing of the event,
the locally measured obfuscation is always lower or equal than the actual
global obfuscation.

ω2 

ω1 

Source ω 
Source 

attold attnew 

Consumer Consumer 

Figure 5.5: Single- and Multiply-Connected Correlation Networks
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5.5.1 Measuring Local Obfuscation

In our approach, every host calculates obfuscation only for the locally
known attribute dependencies (i.e., attold →ω attnew) in contrast to
calculating the obfuscation for every pair of dependent attributes (i.e.,
attold →∗ attnew). This has three major bene�ts: i) a smaller depen-
dency graph, ii) less communication overhead, and iii) the local graph is
not multiply connected because there exist only paths with length 1. As a
consequence, every host can create a local dependency graph on its own in-
stead of creating a global dependency graph for all dependent attributes.
Furthermore, we can e�ciently calculate the exact inference probabili-
ties by applying optimizations for single connected networks to e�ciently
determine the obfuscation value (cf. Section 5.4.5).

However, even in a local approach to calculate obfuscation one has to
consider the multi-path dependencies of attributes. These are attributes
that might reach the recipient via multiple paths (i.e., parallel chains of
operators in a multiply-connected correlation network, cf. Figure 5.5).
An adversary that can subscribe to such attributes may be able to infer
the original value by combining the event information received through
the multiple paths.

Algorithm 4 illustrates the approach to determine local obfuscation. At
initialization of the algorithm, multi-path dependencies between all pos-
sible attribute pairs are detected by analyzing the entire operator graph.
For every attribute pair with multi-path dependencies the operators that
reside on distinct paths exchange the dependency functions w.r.t. the at-
tributes. For example, in a scenario as depicted in Figure 5.5, the inference
probability is calculated as follows:

P (attold|att1, att2) = α ∗ P (attold) ∗ P (att1|attold) ∗ P (att2|attold)

where α is the normalization constant 1/P (att2).
Hence, P (att1|attold) is sent to operator ω2 and P (att2|attold) to operator
ω1 vice versa.

After performing the initialization each operator can calculate the obfus-
cation value from local knowledge only. In the above example, if operator
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Algorithm 4 Local Obfuscation Calculation

procedure initialize(ω)
for all operator ω do

Dω ← findMultiPathOperators(ω)
end for
for all ω ∈ Dω do

relAtts←findRelatedAttributes
for all relAtts do

transmit P(attnew|attold) to ω
end for

end for
end procedure

procedure uponReceiveEvent(e)
for all att in e do

if ∃ multPathDependency(att) then
calculateWorstCaseObfuscation(att)

else
calculateLocalObfuscation(att)

end if
end for

end procedure

ω1 now calculates the obfuscation of an incoming attribute attold for the
outgoing attribute att1, it uses the dependency functions received during
the initialization phase. There, it searches for the outcome att2 which
has the highest chance for inferring attold, i.e. the entry with the highest
probability. This value is then used in the calculation of P(attold|att1,
att2), as it results in the minimal achievable obfuscation.

Note that the initialization needs to be performed with each change of the
correlation graph and follows the learning phase of the Bayesian networks.
However, for many practical settings, changes to the operator graph are
typically a result of changes to the business logic. Hence, we expect
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only infrequent changes which might interrupt of the event processing
service.

5.5.2 Correctness

As our work addresses mainly how to establish producer centric access
policies in CEP in a scalable way, we give only informal correctness argu-
ments under the limitations for the adversary introduced in Section 5.3.
Three main properties guarantee, that the proposed approach is correct
in terms of the de�ned security goal:

1. According to our assumptions in Section 5.3, an adversary tries to
infer additional information by analyzing all event streams which
it is allowed to access. The proposed algorithm considers the com-
plete knowledge the recipient might have. That means, it is consid-
ered that every attribute in�uencing the requested local obfuscation
(obf(attold, attnew, ωr)) that is accessible to the consumer is known.

2. In accordance to property 1, every path from attold to attnew is
considered in the algorithm. That means, every piece of information
an adversary may access in order to infer attold is included when
calculating the inference.

3. Locally unknown events (which may occur in multi-path dependency
calculations) are always handled as a worst-case consideration. We
always use the value in our calculations which would give an adver-
sary the most inference information, i.e., the value resulting in the
worst obfuscation.

Since all sources of event information which might in�uence the obfusca-
tion value of any operator are considered in our approach, the obfuscation
value calculated at an operator cannot be lowered further by any means.

Hence, with the presented approach, we guarantee: If the consumer does
not ful�ll the access requirements for an attribute attold, it will also not be
able to access any attribute attnew if the attributes depend on each other
((attold →∗ attnew) unless a su�cient obfuscation threshold for attnew
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has been reached. We do not guarantee, though, that the consumer will
receive every attribute that has achieved a su�cient obfuscation.

5.6 Discussion and Evaluation

We implemented the presented approach within the DHEP framework
[SKRR10] which enables complex event processing in a heterogeneous en-
vironment. That means, hosts may be spread among di�erent security
domains and have di�ering processing capabilities or use di�erent correla-
tion engines. Hence, using the framework allows us to create multi-domain
distributed CEP networks.

To achieve policy consolidation, every operator receiving a request pro-
vides the requester with the information needed for further processing:
the access policy as well as the obfuscation policy. The policies might
be di�erent depending on the consumer (see Section 5.4). The events a
consumer receives as well as its adherence to access policy inheritance is
dependent on whether it ful�lls the access requirements. To realize the
obfuscation measurement we make use of the Weka framework [HFH+09].
Weka is a data mining tool which comes with a Bayesian network im-
plementation. Furthermore, it allows us to add hidden variables which
is needed to compute multi-path inference as discussed in Section 5.5.
Every host in our framework runs its own implementation of Weka. For
every event attribute produced, we calculate the achieved obfuscation and
forward it to potential recipients in accordance to the obfuscation. Weka
does not provide any optimization for calculating the Bayesian inference.
Instead, it uses the naive full calculation. To measure the computational
e�ort of the variable elimination optimization (see Section 5.4.5), we pro-
vide an own algorithm implementation. In the following, we discuss the
results of our evaluations.

In�uence on Network Usage and Latency

Introducing access policy consolidation will cause a reduction in network
usage. This is due to the fact that both number and size of events decrease
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because not all events or event attributes will be received by an operator.
However, it can be seen easily that this reduction is fully dependent on the
application characteristics, especially on the access rights of the operators
and the frequency distribution of event attribute values. Therefore it is
not possible to provide meaningful evaluations and we focus on evaluations
of the additional latency caused by our approach.

Despite reducing the network usage, policy consolidation will also cause
additional latency for event processing on the network hosts. Although
we can reduce the computational e�ort by only considering local obfus-
cation, the computation still takes a considerable amount of time. The
computational e�ort is mainly dependent on the size of the Bayesian Net-
work and the number of consumers, since di�erent consumers can have
di�ering obfuscation. We analyzed the additional latency caused by our
policy consolidation mechanism both dependent on the number of input
attributes as well as the number of attribute values. For our evaluations,
we create a simple setup, where one operator receives events containing
one attribute. In our evaluations, both the size of the attribute domain
as well as the number of event sources vary. The operator is hosted on
a machine with a 2GHz CPU and 3GB main memory, where the intro-
duced Weka framework (as well as our external optimization algorithm) is
deployed. The incoming events are processed by an ESPER correlation en-
gine which creates an output event, containing one attribute, once events
from all sources are received. For the newly created event, we calculate
the achieved obfuscation for a consumer. We extracted and depicted only
the time needed for calculating inference in the Bayesian Network, since
it is the main source for additional latency caused in our approach.

Figure 5.6a depicts the additional latency depending on the number of
event sources. The number of event sources has a direct in�uence on the
size of the locally created dependency graph, hence on the size of the
Bayesian Network. No incoming attribute was known to the consumer.
The size of the attribute domain was �xed to two, meaning that every
event attribute was boolean. The results show that the increase of the
latency, caused by the computation of obfuscation values increases expo-
nentially with the total number of attributes. This behavior is expected,
as we already discussed in Section 5.4.5. However, computations are fast
for networks with a small number of attributes, as they are common in

150



5.6 Discussion and Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5  6  7  8  9

A
dd

iti
on

al
 L

at
en

cy
 [m

s]

# of ingoing Attributes

full calculation
variable elimination

(a) Latency vs. Attributes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5  10  15  20  25

A
dd

iti
on

al
 L

at
en

cy
 [m

s]

Size of Valuerange

2 unknown attributes (full calc.)
1 unknown attribute (full calc.)

2 unknown attributes (var. elim.)
1 unknown attributes (var. elim.)

(b) Latency vs. Size of Domain

Figure 5.6: Measuring additional Latency

151



5 Access Policy Management in Distributed Multi-Domain CEP Systems

many CEP applications. Since security-related event systems have, de-
pending on the network and event parameters, a processing time in the
range of one millisecond and more per event [SL05, RR06, TKAR10], we
consider a latency of up to 1ms as acceptable for our approach.

In our second evaluation, we leave the number of event sources �xed at two
but varied the domain size (cf. Figure 5.6b). Furthermore, we calculate
the achieved obfuscation for two di�erent consumers. One consumer has
no knowledge about any incoming attribute, while the other has knowl-
edge about one incoming attribute. We calculate the obfuscation for the
other event attribute, which both consumers might try to infer. As can
be seen, the optimized algorithm proves to be signi�cantly faster than the
standard calculations, if there is more than one unknown event source.
It can be seen, that the standard calculation causes a high amount of
additional latency, when the size of the attribute domains increase. The
variable elimination reduces the complexity to be linear dependent on the
size of the attribute domain, and our approach bene�ts heavily from it.

Our results show that the additional processing time is highly dependent
on the number of unknown attributes in the dependency graph as well
as the number of potential values each of the unknown attributes might
have. It can be seen, that the size of the attribute domain is less critical
than the number of attributes. This �ts well with many CEP systems,
where it is unusual to correlate events from many di�erent sources, but
rather have a limited number of sources with potentially large attribute
value ranges. We conclude that obfuscation calculation is reasonable if
the application characteristics allow for it. The calculation may not be
feasible for applications with very high event rates, since measuring the
obfuscation would take too long and the processing of events would be
slowed down. One solution for this kind of applications may be to calculate
a static, worst case obfuscation instead of calculating the obfuscation for
every new event.
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5.7 Related Work

Due to the increasing popularity of event-driven systems, a lot of e�ort
has been spent to make the systems secure. For example, a proposal of a
role-based access control is stated in [Pie04]. Pesonen et al. and Bacon et
al. discuss, how Publish/Subscribe systems can be secured by introducing
access control policies in a multi-domain architecture [PEB07, BESP08].
They describe how event communication between the domains can be sup-
ported. Opyrchal et al. present the concept of event owners, that can be
speci�ed. These are used to provide access to their events [OP01]. Tariq
et al. propose a solution to provide authentication and con�dentiality
in broker-less content-based Publish/Subscribe systems [TKAR10]. Our
work is based on the previous work which make event communication se-
cure among di�erent entities in the system. We assume the presence of a
system that can handle access control on events. Based on this, we use
policy composition in order to derive the necessary access policies at any
point during the event processing steps.

Access policy composition has found a lot of consideration in distributed
systems. Bonatti et al. de�ned a well recognized algebra for compos-
ing access policies [BDCdVS02]. Especially in the area of web service
composition, the composition of security policies plays an important role,
as di�erent policies have to be combined for every combination of web
services (e.g., [ST11, LBOG06]). We adopt concepts from access policy
composition into our distributed CEP system. This allows us to inherit
access restrictions during the di�erent processing steps in the various op-
erators of our system.

To realize our concepts we make use of techniques from statistical infer-
ence. More speci�c, we calculate the Bayesian inference after creating a
Bayesian network and learning the dependencies (e.g., [Lee12, RNC+95,
HFH+09]). Since Bayesian inference is a complex calculation, several
Monte-Carlo algorithms have been proposed to estimate the inference
value(s). They all have in common to arbitrarily pick samples from the
Bayesian network probability distribution, and estimate the values based
on the samples. The precision of the estimated inference values is depen-
dent on the number of samples. A commonly used technique is the Gibbs
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sampler [GG84, GS90].

5.8 Conclusion

This chapter has addressed the inheritance and consolidation of access
policies in heterogeneous event processing systems. We identi�ed a lack
of security in multi-hop event processing networks and proposed a solution
to close this gap. More speci�c, we presented an approach that allows the
inheritance of access requirements, when events are correlated to complex
events. Our algorithm includes the obfuscation of information, which can
happen during the correlation process, and uses the obfuscation value as a
decision-making basis whether inheritance is needed. We implementated
our approach, based on Bayesian Network calculations, to evaluate the
overhead it imposes on CEP systems. Our analysis and evaluations show
that the approach is computation-intensive, once the Bayesian Network
grows, hence raising the processing time of an event. To deal with the
calculation cost we introduced a local approach, where every participant
calculates local obfuscation based on local knowledge achieved during the
correlation process. Furthermore, we made use of the variable elimina-
tion optimization, to further reduce the computational e�ort for calcu-
lating obfuscation values. This approach constitutes a pioneer step for
the enhancement of the security in multi-domain CEP systems by using
obfuscation calculation. By increasing the Bayesian Network size or mak-
ing use of even more suitable optimizations, one could be able to measure
obfuscation e�ciently over more than one correlation step.
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6 Conclusion

This chapter gives a summary based on the results and contributions
of this thesis. Furthermore, a brief outlook is given on possible future
research directions.

6.1 Summary

With the constant rise in event generating and processing entities, com-
plex event processing will be a key technology for many applications. Con-
sidering the interconnections resulting from modern, world wide collabora-
tion of users, companies, or group of interests, the creation, management,
and security of heterogeneous event processing solutions is mandatory.

In this thesis, we surveyed the current state of the art correlation sys-
tems and identi�ed the lack of support as soon as event processing is
established among multi-domain infrastructures. Especially the available
optimization algorithms were unable to perform well in heavy constraint-
driven networks. Furthermore, we discovered the lack of privacy guaran-
tees for event information when events are processed over multiple hops
in a multi-domain network.

Based on this observation we concluded the need to establish a secure,
e�cient distributed event processing system.

We developed the complex event processing system DHEP, which has been
designed and created to close the gap between current CEP systems and
business requirements. The concepts behind DHEP focused on providing
a very modular architecture to support the variety and heterogeneity of
current CEP solutions. This includes the possibility to interconnect vari-
ous di�erent event processing engines, and enables communication among
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them within a distributed system. Moreover, DHEP comes along with a
modeling component. The modeling is established by a powerful object-
oriented de�nition language that enables e�cient, tool-aided designing of
big CEP applications. We extensively evaluated the DHEP system and
showed that, although the functionality provided by DHEP imposes addi-
tional cost, the system scales well by exploiting the distributed detection
of situations.

To allow for an e�cient complex event processing in multi-domain infras-
tructures, we addressed the placement of operators in heterogeneous event
processing systems. We focused on large-scale systems with many partic-
ipants, where it is important to cope e�ciently with many constraints.
In particular, we presented an approach to minimize network utilization.
The algorithm can adapt to dynamics that stem from load variations as
well as to changes in the operator deployment. The analysis and evalua-
tions show that the approach is particularly bene�cial in heavy constraint
settings. Here, it �nds near optimal placements with low cost by e�-
ciently restricting the search space of possible placements. Furthermore,
the separation in two phases � the initial placement phase and the sub-
sequent optimization phase � contributes to a fast operation of the event
processing which is crucial in the practical operation of event processing
networks. Moreover, in a setting where enough resources are available the
algorithm ensures that a solution is found fast and at low overhead.

Finally, we addressed the security issues of complex event processing in
multi-domain infrastructures. We proposed a solution to overcome the
lack of privacy of event information by introducing inheritance and con-
solidation of access policies in heterogeneous event processing systems.
Speci�cally, we presented an approach that allows the inheritance of ac-
cess requirements, when events are correlated to complex events. This
is established by investigating the obfuscation of event information dur-
ing the correlation process. This obfuscation measure is then used as a
decision-making basis whether inheritance is needed.

The implementation of our approach is based on Bayesian Network calcu-
lations. The analysis and evaluations show that the approach is computa-
tion-intensive, once the Bayesian Network grows, hence raising the pro-
cessing time of an event. To deal with the calculation cost we introduced
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a local obfuscation measure, where every participant calculates local ob-
fuscation achieved during the correlation process. Furthermore, we made
use of a variable elimination optimization, to further reduce the compu-
tational e�ort for calculating obfuscation values.

In conclusion, the presented approaches overcome the lack of support for
multi-domain infrastructures current CEP solutions su�er from. We in-
troduced a framework as a foundation for heterogeneous event processing.
Based on this, we presented conceptual and algorithmic solutions to over-
come the lack of e�ciency and security which inherently comes along with
CEP in multi-domain infrastructures.

6.2 Further Research Directions

There are several possibilities to extend the work presented in this thesis.
This can be subdivided by the two main approaches presented. In the
following, we will �rst address enhancements to increase the e�ciency
of the operator placement, and then discuss further extensions for the
security solutions and access policy inheritance.

Operator Placement Our experiments showed that there is no unique
temperature function for the optimization algorithms which guarantees
best performance for all application scenarios. Hence, the adaptive selec-
tion of the temperature function gives further potential for improvements.
An improvement of the the presented algorithms could be achieved by
wisely selecting the temperature function depending on the underlying
problem, i.e. the application, the resources consumed, the available net-
work, and the available resources. This would highly involve the investi-
gation of e�cient problem evaluation and analysis.

Furthermore, the communication cost of our approach may not be opti-
mal under certain conditions. This is, if the complexity of the placement
decision of the underlying problem is not as high, i.e. the solution space is
large. Here, other approaches are more e�cient. Especially with a more
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6 Conclusion

e�cient use of Publish/Subscribe one may signi�cantly reduce the com-
munication cost in low constraint scenarios. However, this again would
also involve the investigation of e�cient problem evaluation and analysis,
since we have to decide based on the problem parameters, which approach
might be superior.

Security Our proposed mechanism to enhance the privacy of event in-
formation uses a limited obfuscation measurement. This is caused by the
fact that calculating obfuscation in a distributed environment results in
a high load, both for computation and communication. There exists a
trade-o� between the responsiveness of the correlation network and the
accuracy of the obfuscation calculation. While this trade-o� is (in our
view) acceptable for obfuscation achieved in one correlation step, it re-
sults in a signi�cant loss of responsiveness for obfuscation achieved over
multiple correlation steps.

We consider the investigation of methods to increase the Bayesian Network
size as a challenging, but also worthwhile enhancement to the proposed
approach. With e�cient methods, it might be acceptable to measure
obfuscation over more than one correlation step.
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